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Abstract

Coalition announcement logic is one of the family of logics of quantified announce-
ments. It extends public announcement logic with formulas 〈[G]〉ϕ that are read
as ‘there is a truthful public announcement by agents from G such that whatever
agents from A \G announce at the same time, ϕ holds after the joint announce-
ment.’ The logic has enjoyed comparatively less attention than its siblings —
arbitrary and group announcement logics. The reason for such a situation can be
partially attributed to the inherent alternation of quantification in coalition an-
nouncements. To deal with the problem, we consider relativised group announce-
ments that separate the coalition’s announcement from the anti-coalition’s re-
sponse. We present coalition and relativised group announcement logic and show
its completeness. Apart from that, we prove that the complexity of the model-
checking problem for coalition announcement logic is PSPACE-complete in the
general case, and in P in a special case of positive target formulas. We also study
relative expressivity of logics of quantified announcements. In particular we show
that arbitrary and coalition announcement logics are not at least as expressive
as group announcement logic. Finally, we present a counter-example to the pro-
posed definition of coalition announcements in terms of group announcements,
and consider some other interesting properties.
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Chapter 1

Introduction

Communication is a social behaviour, and as such often includes several inter-
locutors. It can be usually characterised by goal-orientedness, and participants
in the communication are involved in a kind of game to successfully achieve their
goals. These goals may differ, but learning is invariably among them. Sharing
ideas, asking questions, letting others know your intentions — all these involve
increasing knowledge. Contrary to the famous maxim, words sometimes are on a
par with actions, and for the goals of acquiring and sharing knowledge words are
the most effective actions.

A formal framework for reasoning about knowledge is epistemic logic (EL)
[Fagin et al., 2004; van Ditmarsch et al., 2008], where it is possible to express
propositions like ‘Ann knows that Beth knows whether 16th of June is Bloomsday,
and Ann does not know whether Carol knows that fact.’ Already in this example
our interest in the social dimension of knowledge is manifested. Indeed, in the
context of communication interlocutors may possess knowledge not only of the
facts they would like to share or conceal but also some higher-order knowledge
about what they already know, and what others know as well.

Epistemic logic describes the static distribution of knowledge in some situ-
ations, and hence captures only snapshots of the learning process. In order to
reason about how agents’ knowledge changes as a result of communication, we
should consider a dynamic take on knowledge. Dynamic epistemic logic [van Dit-
marsch et al., 2008] is an umbrella term for various logics of knowledge and belief
change. These formalisms model multiple aspects of epistemic change: suspicion
[Baltag et al., 1998], lying [van Ditmarsch et al., 2012], ontic changes [van Ben-
them et al., 2006; van Ditmarsch and Kooi, 2008], time [Hoshi, 2010; Renne et al.,
2016], and so on.

In our work we are interested in arguably the most fundamental type of epis-
temic actions — truthful public announcements [Plaza, 2007], [van Ditmarsch
et al., 2008, Chapter 4] — that describe the situation when all agents acquire the
same piece of true information, and all of them are commonly aware of every-
one acquiring it. Although public announcements are quite idealised epistemic
actions, they capture a plethora of communication scenarios where interlocutors
trust each other and strive to decrease their ignorance. However, a formalism
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CHAPTER 1. INTRODUCTION 2

that allows us to reason about such epistemic events, public announcement logic
(PAL), does not specify where the announcements come from. Hence, in the set-
ting of multi-agent communication, we are particularly interested in announce-
ments made by interlocutors, or agents. Moreover, goal-orientedness of commu-
nication suggests that we should also be able to reason about the existence of a
sequence of announcements that achieve a given epistemic goal.

The latter requirement led to the exploration of the new exciting frontier in
the area of dynamic epistemic logic. This new research is concerned with quan-
tification over various epistemic actions [van Ditmarsch, 2012]. The most notable
examples of such formalisms are arbitrary [Balbiani et al., 2008], group [Ågotnes
et al., 2010], and coalition [Ågotnes and van Ditmarsch, 2008] announcement log-
ics (APAL, GAL, and CAL respectively), the latter of which is the least studied
one. As its name suggests, coalition announcement logic deals with coalitions
and their opponents, or anti-coalitions, in epistemic communication scenarios.
Such scenarios usually include situations when an epistemic goal is not only to
increase knowledge of some agents but also to leave some other agents ignorant
of a certain fact at the same time. For example, bidders in an auction submit
their bids simultaneously, making other bidders aware of their current bid but
not of the total sum at their disposal. We may be interested in whether there is a
bid by a single participant which wins the auction, no matter what other bidders
offer. Or, if the bidder does not have a required sum, whether there is a suit-
able coalition with which she can outbid everyone outside of the coalition. Other
examples include communicating over an insecure channel with an eavesdropper
who may add some bits of information to the messages sent between the sender
and the receiver, or making everyone aware of some property of a coalition, like its
number of coffee-drinkers, so that properties of individual agents in the coalition
cannot be deduced no matter what agents in the anti-coalition announce.

Presence of coalitions and anti-coalitions in coalition announcement logic hints
at a game-theoretic setting. Indeed, coalition announcements were partially in-
spired by game theory, in particular by the forcing operator [van Benthem, 2014,
Chapter 11] and [van Benthem, 2001], and coalition logic [Pauly, 2002]. Thus,
coalition announcement logic is one of the meeting points between games and
dynamic epistemic logic.

In our work we study coalition announcements and their relation to other
types of quantified announcements.

1.1 Overview and Contributions

Our thesis comprises eight chapters. We start off with the introduction (Chapter
2) of the base underlying logics, EL and PAL, along with presenting standard def-
initions, properties, and proof strategies of modal logic. The chapter closes with
a high-level exposition of coalition logic, which can be considered as a spiritual
predecessor of coalition announcement logic.

Three main logics of quantified public announcements — APAL, GAL, and
CAL — are presented in Chapter 3. Not only do we introduce the formalisms
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but also mention all the relevant logical properties, such as complexity and ex-
pressivity. This chapter sets the stage for the rest of the thesis. We also consider
a worked example.

In Chapter 4 we deal with the model-checking problem for CAL. Since the
direct implementation of the truth definition for coalition announcements is im-
possible, we use an equivalent semantics with quantification over a finite set of
strategies instead of an infinite set of possible announcements. This allows us to
show that the complexity of the model-checking problem is PSPACE-complete. In
addition we show that if a formula within the scope of a coalition announcement
is positive, then it is enough to check the maximal informative announcement by
agents in a coalition. Complexity in this case is in P. Results discussed in the
chapter are presented in [Galimullin et al., 2018].

Sometimes, knowing whether a given formula of a logic is valid or not may
result in stronger intuitions regarding logic’s axiomatisation, expressivity, etc.
Chapter 5 offers a selection of various properties of CAL and GAL. Such proper-
ties are expressed as logical formulas with operators [〈G〉] and 〈[G]〉 for CAL, and
[G] and 〈G〉 for GAL. To the best of our knowledge, none of the results presented
in the chapter were proved in the literature, and some of them were mentioned as
open questions. In particular, we show that 〈[G]〉ϕ↔ 〈G〉[A \G]ϕ is not valid by
presenting a counterexample to the right-to-left direction (and proving validity of
the left-to-right direction). This formula was considered as a possible definition of
coalition operators in GAL. Another intriguing result deals with commutativity
of box and diamond versions of coalition and group announcement operators: the
Church-Rosser principle ♦�ϕ → �♦ϕ (where ♦ and � are substituted with the
corresponding operator) is not valid in both GAL and CAL.

Existing techniques for proving the completeness of logics of quantified public
announcements [Balbiani et al., 2008; Balbiani and van Ditmarsch, 2015] seem
inadequate for dealing with coalition announcements, which, being complex oper-
ators with an internal alternation of quantifiers, do not work well with the Linden-
baum lemma in the aforementioned papers. This is why we employ relativised
group announcements [G,χ]ϕ that parametrise group announcements by some
given formula χ that is to be announced in conjunction with G’s announcement.
This operator ‘splits’ coalition announcements and anti-coalition responses, and
hence allows us to treat them separately. We present a logic with coalition and
relativised group announcements in Chapter 6, and show its completeness. The
chapter is based on [Galimullin and Alechina, 2017] (and the corrected version
[Galimullin and Alechina, 2018]).

Relative expressivity of logics of quantified announcement has been a long-
standing open question. In Chapter 7 we make some progress towards its solution.
In particular, we show that CAL and APAL are not at least as expressive as GAL.
To achieve this, we present two classes of models and a GAL formula that is true
in one class and false in the other, and show that no CAL or APAL formula can
distinguish these two classes. For evaluation of the formulas we use formula games
for CAL and GAL with relativised group announcements. The latter separate
the moves in a game corresponding to coalition and anti-coalition announcements.



CHAPTER 1. INTRODUCTION 4

We also mention that CAL is not at least as expressive as APAL. The chapter
is based on collaborative work with Natasha Alechina, Hans van Ditmarsch, and
Tim French. Formula games (Definition 7.2) were originally proposed by Tim,
and contributions to the proof of Theorem 7.6 are shared equally.

In the conclusion (Chapter 8), we recapitulate the thesis, and point to some
promising directions for further research.



Chapter 2

Knowledge, Announcements, and
Coalitions

This chapter serves as an exposition of the basic underlying formalisms of the
thesis — epistemic logic (Section 2.1) and public announcement logic (Section
2.2). The former models an agent’s knowledge and ignorance of basic facts as
well as her knowledge and ignorance of knowledge of other agents. Next, we
move on from the static scenarios of epistemic logic to the dynamic ones of public
announcement logic. The latter allows us to reason about events when all agents
simultaneously receive the same piece of information, and it is common knowledge
that such an event has taken place. In Section 2.3 we consider a somewhat
tangential topic of coalition logic. This logic, however, is a precursor of coalition
announcement logic, which is the main subject of our work, and while presenting
it, we hope to indicate some the basic intuitions of the latter.

2.1 Epistemic Logic

In this section we introduce epistemic logic (EL) that serves as a foundation for all
other logics considered in the thesis. Broadly speaking, EL studies the notion of
knowledge in terms of possible states, or worlds. Such an approach to knowledge
was conceived by Jaakko Hintikka in [Hintikka, 1962]. In the exposition of the
subject, we limit ourselves to facts and notions that will be used in the thesis. A
more comprehensive treatment of EL and modal logic in general can be found,
for example, in [Blackburn et al., 2001, 2006; van Benthem, 2010; Fagin et al.,
2004].

2.1.1 Introductory Example

Two agents, a and b, want to acquire the same item, and whoever offers the
greatest sum, gets it. Agents may have 5, 10, or 15 pounds, and they do not
know which sum the opponent has. Let agent a have 15 pounds, and agent b
have 5 pounds. This situation is presented in Figure 2.1.

5



CHAPTER 2. KNOWLEDGE, ANNOUNCEMENTS, AND COALITIONS 6

5a5b 5a10b 5a15b

10a5b 10a10b 10a15b

15a5b 15a10b 15a15b

a a

a a
b b b

a a
b b b

Figure 2.1: Initial model (M, 15a5b)

In the model (let us call it M), state names denote money distribution. Thus,
in our designated, or actual, state 15a5b (boxed), agent a has 15 pounds, and
agent b has 5 pounds. Formally, (M, 15a5b) |= 15a and (M, 15a5b) |= 5b, or,
equivalently, (M, 15a5b) |= 15a ∧ 5b. Note that in this particular example we
conflate names of states and basic facts that are true in them. Labelled edges
connect the states that a corresponding agent cannot distinguish. These edges
represent equivalence relations, and the full version of model M is presented if
Figure 2.2. Throughout the thesis we will omit reflexive and transitive arrows.

5a5b 5a10b 5a15b

10a5b 10a10b 10a15b

15a5b 15a10b 15a15b

a a

a a
b b b

a a
b b b

b b

a

a

b

a

a, b

a, b

a, b

a, b

a, b

a, b

a, b

a, b

a, b

Figure 2.2: Full version of M

For example, in the actual state agent a knows that she has 15 pounds, but
she does not know how much money agent b has; in other words, every a-arrow
from state 15a5b leads to a state where 15a holds, and there are a-arrows to states
with 5b, 10b, and 15b. Formally, (M, 15a5b) |= Ka15a ∧¬(Ka5b ∨Ka10b ∨Ka15b).
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2.1.2 Syntax and Semantics of EL

Let P denote a countable set of propositional variables, and A be a finite set of
agents.

Definition 2.1 (Language of EL). The language of epistemic logic LEL is as
follows:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ,

where p ∈ P , a ∈ A, and all the usual abbreviations of propositional logic (such
as ∨, →, ↔) and conventions for deleting parentheses hold. Diamond version of

the operator K is defined as K̂aϕ := ¬Ka¬ϕ. The language of propositional logic
LPL is the one without Kaϕ. Formula Kaϕ is read as ‘agent a knows ϕ,’ and the
dual K̂aϕ is read as ‘agent a considers ϕ possible.’

Formulas of EL are interpreted on epistemic models. Figure 2.1 is an example
of such a model.

Definition 2.2 (Epistemic model). An epistemic model is a triple M = (W, ∼,
V ), where

• W is a non-empty set of states,

• ∼: A→ P(W ×W ) is an equivalence relation for each agent a ∈ A,

• V : P → P(W ) is a valuation of propositional variables p ∈ P .

A pair (W,∼) is called an epistemic frame, and a pair (M,w) with w ∈ W is
called a pointed model. M is called finite if W is finite. Also, we write M1 ⊆M2

if W1 ⊆ W2, ∼1 and V1 are results of restricting ∼2 and V2 to W1, and call M1 a
submodel of M2.

Next definition specifies how truth or falsity of an epistemic formula is deter-
mined in a pointed model.

Definition 2.3 (Semantics of EL). Let a pointed model (M,w) with M = (W ,
∼, V ), a ∈ A, and ϕ, ψ ∈ LEL be given. The semantics of epistemic logic is
presented below.

(M,w) |= p iff w ∈ V (p)
(M,w) |= ¬ϕ iff (M,w) 6|= ϕ
(M,w) |= ϕ ∧ ψ iff (M,w) |= ϕ and (M,w) |= ψ
(M,w) |= Kaϕ iff for all v ∈ W : w ∼a v implies (M, v) |= ϕ

The semantics for the dual of Kaϕ follows easily from the definition of K̂aϕ.

(M,w) |= K̂aϕ iff there is v ∈ W : w ∼a v and (M, v) |= ϕ

Definition 2.4 (Validity and satisfiability). We call formula ϕ valid and write
|= ϕ if and only if for any pointed model (M,w) it holds that (M,w) |= ϕ. And
ϕ is called satisfiable if and only if there is some (M,w) such that (M,w) |= ϕ.
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In the thesis epistemic models with equivalence relation defined in Definition
2.2 is the only class of models we are dealing with. Hence, when we write |= ϕ,
we mean that ϕ is valid on the class of epistemic models.

Definition 2.5 (Equivalence of Formulas). Two formulas ϕ and ψ are called
equivalent, if for all (M,w) it holds that (M,w) |= ϕ if and only if (M,w) |= ψ.

2.1.3 Bisimulation

The basic notion of similarity in modal logic is bisimulation.

Definition 2.6 (Bisimulation). Let two models M = (W,∼, V ) and M ′ = (
W ′, ∼′, V ′) be given. A non-empty binary relation Z ⊆ W × W ′ is called a
bisimulation if and only if for all w ∈ W and w′ ∈ W ′ with (w,w′) ∈ Z:

• w and w′ satisfy the same propositional variables;

• for all a ∈ A and all v ∈ W : if w ∼a v, then there is a v′ such that w′ ∼a v′
and (v, v′) ∈ Z;

• for all a ∈ A and all v′ ∈ W ′: if w′ ∼a v′, then there is a v such that w ∼a v
and (v, v′) ∈ Z.

If there is a bisimulation between models M and M ′ linking states w and w′, we
say that (M,w) and (M ′, w′) are bisimilar.

Note that any union of bisimulations between two models is a bisimulation,
and the union of all bisimulations is a maximal bisimulation.

Definition 2.7 (Quotient model). Let model M be given. The quotient model
of M = (W,∼, V ) with respect to some relation R on W is MR = (WR,∼R, V R),
where WR = {[w] | w ∈ W} and [w] = {v ∈ W | wRv}, [w] ∼Ra [v] iff ∃w′ ∈ [w],
∃v′ ∈ [v] such that w′ ∼a v′ in M , and [w] ∈ V R(p) iff ∃w′ ∈ [w] such that
w′ ∈ V (p).

Definition 2.8 (Bisimulation contraction). Let model M be given. Bisimulation
contraction of M (written ‖M‖) is a model that is isomorphic to the quotient
model of M with respect to the maximal bisimulation of M with itself. Such a
maximal bisimulation is an equivalence relation.

Informally, bisimulation contraction is the minimal representation of M .
The following theorem is a well-known result in modal logic.

Theorem 2.1. Suppose (M,w) and (M ′, w′) are bisimilar. Then for all ϕ ∈ LEL,
(M,w) |= ϕ iff (M ′, w′) |= ϕ.

This fact means that no modal formula can distinguish two bisimilar states.

Corollary 2.2. (‖M‖, [w]) |= ϕ iff (M,w) |= ϕ for all ϕ ∈ LEL.
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Definition 2.9 (n-bisimulation). Let two models M = (W,∼, V ) and M ′ = (
W ′, ∼′, V ′) be given. We call pointed models (M,w) and (M ′, w′) n-bisimilar
if and only if there is a sequence of binary relations Zn ⊆ . . . ⊆ Z0 with the
following properties (for i+ 1 ≤ n):

• (w,w′) ∈ Zn;

• if (v, v′) ∈ Z0, then v and v′ satisfy the same propositional variables;

• for all a ∈ A and all u ∈ W : if v ∼a u and (v, v′) ∈ Zi+1, then there is a u′

such that v′ ∼a u′ and (u, u′) ∈ Zi;

• for all a ∈ A and all u′ ∈ W ′: if v′ ∼a u′ and (v, v′) ∈ Zi+1, then there is a
u such that v ∼a u and (u, u′) ∈ Zi.

Note that bisimulation implies n-bisimulation, and not vice versa.

Intuitively, n-bisimulation means that the models behave similarly up to a
certain depth n.

Let us consider an example. In Figure 2.3, states u and u′, and t and t′ are
bisimilar, and each EL formula that satisfies one of the states in a pair, satisfies
the other.

u′ t′ s t u
p ¬p p ¬p p

a, b a a a, b

Figure 2.3: Model (M, s)

Bisimulation contraction of (M, s) that basically results in ‘collapsing’ sets
of mutually bisimilar states into ‘representative’ states is shown in Figure 2.4.
Note that (M, s) and (‖M‖, s) satisfy the same formulas, and we cannot ‘reduce’
(‖M‖, s) any further without compromising its bisimilarity with (M, s).

s t u
p ¬p pa a, b

Figure 2.4: Model (‖M‖, s)

2.1.4 Satisfiability and model checking for EL

Two basic reasoning problems in logic are satisfiability and model checking. The
common procedure for both of the problems is checking an input for some prop-
erty, and returning ‘yes’ or ‘no’.

Definition 2.10 (Satisfiability). Let some formula ϕ be given. The satisfiability
problem is the problem to determine whether there is a model (M,w) that satisfies
ϕ.
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Definition 2.11 (Model checking). Let some finite model (M,w) and some
formula ϕ be given. The model checking problem is the problem to determine
whether ϕ is satisfied in (M,w) (or, equivalently, whether (M,w) |= ϕ holds).

Theorem 2.3 ([Halpern and Moses, 1992]). The satisfiability problem for EL is
NP-complete in the single-agent case, and PSPACE-complete in the multi-agent
case.

Theorem 2.4 ([Halpern and Moses, 1992]). The model checking problem for EL
is in P.

2.1.5 Axiomatisation and completeness of EL

Semantics tells us what formulas of LEL are true in a given model. If we want to
have a minimal set of formulas and rules of inference that allows us to derive all
the validities of EL, we need a sound and complete axiomatisation.

Definition 2.12 (Axioms and rules). The axiom system for EL is presented
below.

all instantiations of propositional tautologies
Ka(ϕ→ ψ)→ (Kaϕ→ Kaψ) distribution
Kaϕ→ ϕ truth
Kaϕ→ KaKaϕ positive introspection
¬Kaϕ→ Ka¬Kaϕ negative introspection
If ` ϕ and ` ϕ→ ψ, then ` ψ modus ponens
If ` ϕ, then ` Kaϕ necessitation

Given some axiomatisation X, if there is a finite sequence of formulas ϕ1, . . . , ϕn−1, ϕ
such that every formula is either an instance of an axiom schema, or a result of
application of rules of inference, then we say that ϕ is derivable in X (or, equiv-
alently, ϕ is a theorem of X), written `X ϕ. However, if X is clear from the
context, we will omit X and write ` ϕ.

Axioms truth, positive introspection, and negative introspection correspond to
restrictions on the accessibility relation ∼. This correspondence is summarised
in the table below. Recall that in our case ∼ is an equivalence relation.

Reflexivity Kaϕ→ ϕ ∀x : R(x, x)
Transitivity Kaϕ→ KaKaϕ ∀x, y, z : R(x, y) ∧R(y, z)→ R(x, z)
Euclidity ¬Kaϕ→ Ka¬Kaϕ ∀x, y, z : R(x, y) ∧R(x, z)→ R(y, z)

Different combinations of these axioms result in different modal logics. For
example, the truth axiom marks the difference between epistemic logic and dox-
astic logic (logic of belief). Indeed, if an agent knows something, then it must
be true. On the other hand, if an agent believes something, then it may turn
out to be false (i.e. agents can have false beliefs). In the thesis we consider only
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epistemic logic, and more information on other similar logics and axioms may be
found, for example, in [Fagin et al., 2004; van Benthem, 2010].

Consider the distribution axiom and the rule of necessitation. They mean
that agents know all theorems of the logic, and their knowledge is closed under
inference. Dealing with such idealised agents gives rise to the problem of logical
omniscience (see [Fagin et al., 2004, Chapter 9]). This problem, however, is a
whole separate avenue of research, and we do not consider it in the thesis.

Definition 2.13 (Soundness). Let an axiom system X be given. Then, X is
called sound if for every formula ϕ it holds that `X ϕ implies |= ϕ.

Definition 2.14 (Completeness). Let an axiom system X be given. Then, X is
called complete if for every formula ϕ it holds that |= ϕ implies `X ϕ.

It is usually straightforward to prove soundness: we show that all axioms are
indeed valid, and that rules of inference preserve validity. Proving completeness,
however, is trickier. There are several approaches to show completeness, and here
we sketch the standard one.

The basic idea is to reason about the contraposition: if a formula is not deriv-
able, then there is a model in which it is false. A special model that demonstrates
this for all formulas is called the canonical model.

In order to construct the canonical model, we use maximal consistent sets.

Definition 2.15 (Maximal consistent set). A set of formulas Γ ⊆ LEL is a
maximal consistent set (MCS) if Γ 6` ⊥, and there is no ∆ ⊆ LEL such that
Γ ⊂ ∆ and ∆ 6` ⊥.

The next result states that every formula is an element of an MCS.

Lemma 2.5 (Lindenbaum). If Γ is a consistent set, then there exists a maximal
consistent set ∆ such that Γ ⊆ ∆.

We can now define the canonical model.

Definition 2.16 (Canonical model). The canonical model M c = (W c,∼c, V c) is
defined as follows:

• W c = {Γ | Γ is an MCS},

• Γ ∼ca ∆ iff {Kaϕ | Kaϕ ∈ Γ} = {Kaϕ | Kaϕ ∈ ∆},

• V c(p) = {Γ ∈ W c | p ∈ Γ}.

Next lemma ties together proof theory and semantics: a formula is true in a
state of the canonical model (which is an MCS by Definition 2.16) if and only if
it belongs to that MCS.

Lemma 2.6 (Truth). For every ϕ ∈ LEL and every MCS Γ, (M c,Γ) |= ϕ iff
ϕ ∈ Γ.
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Finally, the completeness of EL.

Theorem 2.7. For all ϕ ∈ LEL, |= ϕ implies ` ϕ.

Proof. Suppose that 6` ϕ. Then {¬ϕ} is a consistent set, and it is a subset of some
MCS Γ by Lindenbaum Lemma. By Truth Lemma we have that (M c,Γ) |= ¬ϕ,
and hence 6|= ϕ.

2.1.6 Common and Distributed Knowledge

The EL setting allows us to reason not only about knowledge of individual agents
but about knowledge of groups of agents as well. Such knowledge is called group
knowledge and is written as EGϕ, meaning that ‘everyone in G knows ϕ.’

Definition 2.17 (Group Knowledge). Given G ⊆ A and ϕ ∈ LEL, group knowl-
edge is defined as

EGϕ :=
∧
a∈G

Kaϕ.

Note that EGϕ is not necessarily an equivalence relation.
In terms of semantics, accessibility relations for group knowledge of G is a

union of relations of agents from G, i.e.

∼EG
=

⋃
a∈G

∼a .

The ultimate version of the higher-order knowledge is common knowledge. It
is common knowledge that ϕ if everybody knows that ϕ, everybody knows that
everybody knows that ϕ, and so on. Informally, common knowledge is ‘what
every fool knows.’

Definition 2.18 (Common Knowledge). Given G ⊆ A, the accessibility relation
for common knowledge ∼CG

is defined as the reflexive transitive closure of ∼EG
.

Intuitively, common knowledge can be thought as an infinite conjunction

CGϕ :=
∞∧
n=0

En
Gϕ,

where En
Gϕ is a shorthand for

n times︷ ︸︸ ︷
EG . . . EGϕ. However, this representation is not a

formula of EL since it is infinite.

Another important notion of group knowledge is distributed knowledge. Dis-
tributed knowledge among a set of agents G that ϕ means that if the agents could
combine their knowledge, they would be able to deduce ϕ. Informally, distributed
knowledge is ‘what a wise person knows.’
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Definition 2.19 (Distribute Knowledge). Given G ⊆ A, the accessibility relation
for distributed knowledge ∼DG

is defined as

∼DG
=

⋂
a∈G

∼a .

Note that common and distributed knowledge cannot be expressed in standard
EL, and in order to reason about them, we should add CGϕ and DGϕ in the
definition of the language. In that case, the semantics looks as follows.

Definition 2.20. Let (M,w), G ⊆ A, and ϕ ∈ LEL be given.

(M,w) |= EGϕ for all v ∈ W : w ∼EG
v implies (M, v) |= ϕ

(M,w) |= CGϕ for all v ∈ W : w ∼∗EG
v implies (M, v) |= ϕ

(M,w) |= DGϕ for all v ∈ W : w ∼DG
v implies (M, v) |= ϕ

where ∼∗EG
is the reflexive transitive closure of ∼EG

.

Intuitively, if everybody knows that ϕ, then every a-transition from w leads
to a state where ϕ holds. It is common knowledge that ϕ, if any G-path of any
length ends in a ϕ-state, where a G-path is a sequence of a-transitions such that
a ∈ G. Finally, it is distributed knowledge that ϕ, if a ϕ-state is reachable by
every agent in G.

2.2 Public Announcement Logic

Whereas epistemic logic deals with a static distribution of knowledge of agents,
dynamic epistemic logic [van Ditmarsch et al., 2008; Moss, 2015] is used to de-
scribe how this knowledge distribution changes as a result of various epistemic
actions. The most studied dynamic epistemic operator is public announcement. A
(truthful) public announcement can be described as an action of simultaneously
informing all the agents of some true formula ϕ, and it is common knowledge
among the agents that all of them accept ϕ. A logic for reasoning about pub-
lic announcements, public announcement logic (PAL), was introduced in [Plaza,
2007]. PAL allows us to reason about how agents’ knowledge changes after ac-
quiring new information. The presentation of the section follows closely [van
Ditmarsch et al., 2008, Chapter 4].

Let us return to the example in Figure 2.1. Suppose that agents bid in order
to buy the item. Once one of the agents, let us say a, announces her bid, she
also wants the other agent to remain ignorant of the total sum at her disposal.
Formally, we can express this goal as formula ϕ := Kb(10a ∨ 15a) ∧ ¬(Kb10a ∨
Kb15a) (for bid 10 by agent a). If a commits to pay 10 pounds, agent b knows
that a has 10 or more pounds, but she does not know the exact amount. This
condition can be achieved by a public announcement of Ka10a ∨Ka15a. In other
words, agent a commits to pay 10 pounds, which denotes that she has at least
that sum at her disposal. Formally, (M, 15a5b) |= [Ka10a ∨ Ka15a]ϕ, and the
result of such announcement is shown in Figure 2.5.
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10a5b 10a10b 10a15b

15a5b 15a10b 15a15b

a a

a a
b b b

Figure 2.5: Updated model (M, 15a5b)
Ka10a∨Ka15a

In the figure, all states that do not satisfy formula Ka10a ∨ Ka15a and all
corresponding relations are removed. Note that in the original model (M, 15a5b)
formula ϕ was false, whereas in the updated model (M, 15a5b)

Ka10a∨Ka15a formula
ϕ is true.

2.2.1 Syntax and Semantics of PAL

Definition 2.21 (Language of PAL). The language of public announcement logic
LPAL is as follows:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | [ϕ]ϕ,

where p ∈ P , a ∈ A, [ϕ] is a public announcement, and all the usual abbreviations
of propositional logic and conventions for deleting parentheses hold. The operator
〈ϕ〉ψ is by definition ¬[ϕ]¬ψ. Formulas [ψ]ϕ and 〈ψ〉ϕ are read as ‘after public
announcement of ψ, ϕ holds.’

Next, we define model updates that are results of public announcements.

Definition 2.22 (Updated model). For a pointed model (M,w) and ϕ, an up-
dated model (M,w)ϕ is a restriction of the original model to the states where
ϕ holds and to corresponding relations. Let JϕKM = {w | (M,w) |= ϕ}. Then
Wϕ = JϕKM , ∼ϕa=∼a ∩ (JϕKM×JϕKM) for all a ∈ A, and V ϕ(p) = V (p)∩JϕKM . A
model which results in subsequent updates of (M,w) with formulas ϕ1, . . . , ϕn is
denoted (M,w)ϕ1,...,ϕn . We will also sometimes write (M,w)X = (WX ,∼X , V X),
where WX = X, w ∈ X, ∼Xa =∼a ∩(X×X) for all a ∈ A, and V X(p) = V (p)∩X.

Definition 2.23 (Semantics of PAL). Let a pointed model (M,w), and ϕ, ψ ∈
LPAL be given. The semantics of PAL is as in Definition 2.3 plus the following:

(M,w) |= [ψ]ϕ iff (M,w) |= ψ implies (M,w)ψ |= ϕ

The semantics for the dual operator is as follows:

(M,w) |= 〈ψ〉ϕ iff (M,w) |= ψ and (M,w)ψ |= ϕ

Note that [ψ]ϕ is vacuously true if ψ is false, i.e. every ϕ is true after a false
announcement. Also, it is easy to see that the diamond version of the public
announcement operator implies the box one: |= 〈ψ〉ϕ → [ψ]ϕ. This fact means
that for a truthful public announcements there is just one deterministic outcome.
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2.2.2 Axiomatisation and Completeness of PAL

Axiomatisation of PAL extends the one for EL.

Definition 2.24 (Reduction axioms for PAL). Let a ∈ A, and ϕ, ψ, χ ∈ LPAL.
The axiom system for PAL includes all the axiom schemata and rules of inference
from Definition 2.12 plus the following:

[ψ]p↔ (ψ → p) atomic permanence
[ψ]¬ϕ↔ (ψ → ¬[ψ]ϕ) announcement and negation
[ψ](ϕ ∧ χ)↔ ([ψ]ϕ ∧ [ψ]χ) announcement and conjunction
[ψ]Kaϕ↔ (ψ → Ka[ψ]ϕ) announcement and knowledge
[ψ][χ]ϕ↔ [ψ ∧ [ψ]χ]ϕ announcement composition
If ` ϕ, then ` [ψ]ϕ announcement necessitation

These axioms are reduction axioms, since they ‘push through’ the public an-
nouncement operator, and allow us to get rid of it altogether.

To prove the completeness of PAL, we define a translation function that re-
duces the complexity of a PAL formula within the scope of a public announce-
ment operator. Applying this translation successively yields an EL formula that
is equivalent to the original PAL one.

Definition 2.25 (Translation). The translation t : LPAL → LEL is as follows:

t(p) = p
t(¬ϕ) = ¬t(ϕ)
t(ϕ ∧ ψ) = t(ϕ) ∧ t(ψ)
t(Kaϕ) = Kat(ϕ)
t([ψ]p) = t(ψ → p)
t([ψ]¬ϕ) = t(ψ → ¬[ψ]ϕ)
t([ψ](ϕ ∧ χ)) = t([ψ]ϕ ∧ [ψ]χ)
t([ψ]Kaϕ) = t(ψ → Ka[ψ]ϕ)
t([ψ][χ]ϕ) = t([ψ ∧ [ψ]χ]ϕ)

Lemma 2.8. For all ϕ ∈ LPAL, ` ϕ↔ t(ϕ).

This allows us to prove completeness of PAL via reduction to EL.

Theorem 2.9. PAL is sound and complete.

An alternative axiomatisation of PAL and completeness proof without using
reduction axioms are presented in [Wang and Cao, 2013].

2.2.3 Expressivity and Complexity of PAL

Reduction axioms for PAL (and in particular Lemma 2.8) indicate that PAL and
EL express the same properties of epistemic models. In other words, PAL and
EL have the same expressive power.
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Definition 2.26 (Expressivity). Let two languages L1 and L2 that are inter-
preted in the same class of models be given. We say that L2 is at least as
expressive as L1 (denoted as L1 � L2) if and only if for every formula ϕ1 ∈ L1

there is an equivalent formula ϕ2 ∈ L2. If L1 � L2 and L2 � L1, then we write
L1 ≡ L2 and say that L1 and L2 have the same expressive power (or that they are
equally expressive). If L2 is not at least as expressive as L1, we write L1 6� L2.
We say that L1 and L2 are incomparable if and only if L1 6� L2 and L2 6� L1.

We will, however, abuse the notation and write L1 � L2, L1 6� L2, and
L1 ≡ L2, for LL1 � LL2 , LL1 6� LL2 , and LL1 ≡ LL2 correspondingly.

Lemma 2.8 implies the following fact.

Theorem 2.10 ([Plaza, 2007]). PAL ≡ EL, i.e. PAL and EL are equally expres-
sive.

For other results on the expressivity of various DELs, see [van Ditmarsch
et al., 2008, Chapter 8].

Although it might seem that reduction axioms make public announcement
operator excessive, it was shown [Lutz, 2006; French et al., 2013] that PAL is
exponentially more succinct than EL, i.e. using EL formulas instead of equivalent
PAL ones generally requires exponentially more space.

Despite PAL being more succinct, the computational profile of PAL is the
same as that of EL.

Theorem 2.11 ([Lutz, 2006]). The satisfiability problem for PAL is NP-complete
in the single-agent case, and PSPACE-complete in the multi-agent case.

Theorem 2.12 ([van Benthem et al., 2006]). The model checking problem for
PAL is in P.

2.2.4 Positive Fragment

An interesting property of public announcements is that formula ϕ, after being
announced, does not necessarily remain true, that is ϕ→ [ϕ]ϕ is not valid. The
most (in)famous example of such a sentence ϕ is Moore sentence: ϕ := p∧¬Kap.
If some fact p is true and agent a does not know it, then after this informa-
tion is announced, a cannot help but learn p, making this ϕ false. Formally,
|= [p ∧ ¬Kap]¬(p ∧ ¬Kap). For some formulas ϕ, however, [ϕ]ϕ is a validity.
Such formulas are called successful, and the fragment of PAL that contains only
successful formulas is called positive PAL [van Ditmarsch and Kooi, 2006]. This
fragment, however, does not contain all successful formulas: an interesting ob-
servation is that inconsistent formulas are successful.

Definition 2.27 (Positive Fragment). The language LPAL+ of the positive frag-
ment of public announcement logic is defined by the following BNF:

ϕ ::= p | ¬p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | Kaϕ | [¬ϕ]ϕ,



CHAPTER 2. KNOWLEDGE, ANNOUNCEMENTS, AND COALITIONS 17

where p ∈ P and a ∈ A. Positive fragment of EL LEL+ is the one without [¬ϕ]ϕ.

Positive formulas remain true in all further restrictions of a model.

Definition 2.28 (Preservation). Formula ϕ is preserved under submodels if for
any models M1 and M2, M2 ⊆M1 and (M1, w) |= ϕ implies (M2, w) |= ϕ.

Theorem 2.13 ([van Ditmarsch and Kooi, 2006]). If ϕ ∈ LPAL+ , then ϕ is
preserved under submodels.

Theorem 2.13 holds for EL+ in both directions [Andréka et al., 1995]. The
same can be said about PAL+.

Theorem 2.14. If ϕ ∈ LPAL is preserved under submodels, then ϕ is equivalent
to some ψ ∈ LPAL+ .

Proof. Let ϕ be preserved under submodels. This formula has an equivalent
EL formula t(ϕ) due to the translation function (Definition 2.25). Since t(ϕ) is
preserved and t(ϕ) ∈ LEL, it has an equivalent t(ϕ)+ ∈ LEL+ [Andréka et al.,
1995]. From LEL+ ⊂ LPAL+ we conclude that t(ϕ)+ ∈ LPAL+ . Thus a preserved
ϕ has a PAL+ equivalent.

2.3 Coalition Logic

One of the basic formalisms for reasoning about coalitional powers in multi-
agent systems is Coalition Logic (CL) [Pauly, 2002] that extends the language
of propositional logic with the coalition operator 〈〈G〉〉ϕ. Given a set of agents
G ⊆ A and a formula ϕ of coalition logic, 〈〈G〉〉ϕ means that ‘agents from G have
a joint strategy to guarantee that ϕ is true.’ CL is not an epistemic logic per
se, however, it predates coalition announcement logic (Section 3.3) and can be
considered as a somewhat more general case of the latter.

2.3.1 Syntax and Semantics of CL

Definition 2.29 (Language of CL). The language of coalition logic LCL is defined
by the following grammar:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | 〈〈G〉〉ϕ,

where p ∈ P , a ∈ A, G ⊆ A and all the usual abbreviations of propositional
logic and conventions for deleting parentheses hold. The dual coalition operator
[[G]]ϕ is defined as ¬〈〈G〉〉¬ϕ and is read ‘whatever agents from G do, they cannot
avoid ϕ.’ Two special cases of coalitions are the grand coalition A and the empty
coalition ∅.

The semantics of CL can be given in terms of neighbourhood models [Pacuit,
2017] and concurrent game models (CGM) [Ågotnes and van Ditmarsch, 2014;
Ågotnes et al., 2015]. In our exposition we choose the latter, since CL coalition
operators in GCM semantics are easier to contrast with CAL operators (Section
3.3).
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Definition 2.30 (CGM). A concurrent game model (CGM) M is a tuple (St, V,
Act, act, out), where

• St is a non-empty set of states.

• V : P → P(St) is a valuation of propositional variables.

• Act is a non-empty finite set of actions.

• act : A × St → P(Act) assigns to each player in each state a non-empty
set of actions. The set of joint actions for a coalition G in s is act(a, s) ×
. . . × act(b, s) for a, . . . , b ∈ G. We denote such a set as ACTG(s) and its
elements as actG(s).

• out is a transition function that maps each state s ∈ St and joint action
actA(s) to a state out(s, actA(s)) ∈ St.

Pair (M, s) is called a pointed CGM.

Definition 2.31 (Semantics of CL). Let a pointed CGM (M, s), and ϕ ∈ LCL
be given. The semantics of CL is the same as for propositional logic plus the
following:

(M,w) |= 〈〈G〉〉ϕ iff ∃actG(s) ∈ ACTG(s),∀actA\G(s) ∈ ACTA\G(s) :
(M, out(s, actG(s) ∪ actA\G(s))) |= ϕ

where actG(s) ∪ actA\G(s) is (αa, . . . , αb) for a, . . . , b ∈ A.

Thus operator 〈〈G〉〉ϕ should be read as ‘G has an action to achieve ϕ no
matter what other agents A \G do.’

Let us consider an example of a CGM presented in Figure 2.6. Three re-
searchers, a, b, and c, decide to spend some of their research budget on an espresso
machine. Currently they have none in their office (state coffee), and they are
deliberating between two options (states coffee I and coffee II). In order to
choose the espresso machine, researchers have to vote. Thus, the set of available
actions Act = {vI , vII , e}, the set of all joint actions is {(vI , vI , vI), (vI , vI , vII),
(vI , vII , vI), (vII , vI , vI), (vII , vII , vII), (vII , vII , vI), (vII , vI , vII), (vI , vII , vII), (e, e, e)},
where (vI , vI , vII) means that a and b vote for the first machine, and c votes for
the second one, and (e, e, e) means that all of the agents are enjoying coffee. Note
that only one action is possible in coffee I and coffee II.

Assume that some p holds in coffee I, some q holds in coffee II, and both
p and q are false in coffee. Hence we have that (M, coffee) |= ¬p ∧ ¬q. The
grand coalition consisting of all agents can choose either espresso machine, i.e.
(M, coffee) |= 〈〈{a, b, c}〉〉p ∧ 〈〈{a, b, c}〉〉q. However, there is not enough budget
to have both, (M, coffee) |= [[{a, b, c}]]¬(p∧q). In this scenario it is also possible
for two agents to team up and force some outcome no matter what the third agent
does. Formally,

(M, coffee) |=
∧ 〈〈{a, b}〉〉p ∧ 〈〈{a, b}〉〉q〈〈{a, c}〉〉p ∧ 〈〈{a, c}〉〉q

〈〈{b, c}〉〉p ∧ 〈〈{b, c}〉〉q

 .
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coffee coffee Icoffee II

(vI , vI , vI)
(vI , vI , vII)

(vI , vII , vI)
(vII , vI , vI)

(vII , vII , vII)
(vII , vII , vI)

(vII , vI , vII)
(vI , vII , vII)

(e, e, e) (e, e, e)

Figure 2.6: Researchers and Espresso Machines

Finally, a single agent cannot force any outcome in the best-of-three voting, i.e.

(M, coffee) |=
∧ [[{a}]]p ∧ [[{a}]]q

[[{b}]]p ∧ [[{b}]]q
[[{c}]]p ∧ [[{c}]]q

 .

2.3.2 Axiomatisation of CL

A sound and complete axiomatisation of CL was provided in [Pauly, 2002].

Definition 2.32 (Axiomatisation of CL). Let G,H ⊆ A and ϕ, ψ ∈ LCL. The
axiom system for CL is presented below.

propositional tautologies,
¬〈〈G〉〉⊥ liveness,
〈〈G〉〉> safety,
¬〈〈∅〉〉¬ϕ→ 〈〈A〉〉ϕ A-maximality,
〈〈G〉〉(ϕ ∧ ψ)→ 〈〈G〉〉ϕ outcome-monotonicity,
〈〈G〉〉ϕ ∧ 〈〈H〉〉ψ → 〈〈G ∪H〉〉(ϕ ∧ ψ), if G ∩H = ∅ superadditivity,
If ` ϕ and ϕ→ ψ, then ` ψ modus ponens,
If ` ϕ↔ ψ, then ` 〈〈G〉〉ϕ↔ 〈〈G〉〉ψ equivalence.

Intuitively, liveness expresses the fact that every action of a coalition leads
to some outcome, and safety assumes that every coalition has some choice. A-
maximality indicates the relationship between the empty and grand coalitions.
According to outcome-monotonicity, if a coalition can force some outcome, then
the coalition can force any superset of that outcome. Superadditivity allows
disjoint coalitions to combine their choices.

Theorem 2.15 ([Pauly, 2002]). CL is sound and complete.

Finally, we mention the complexity results for CL.

Theorem 2.16 ([Pauly, 2002]). The satisfiability problem for CL is PSPACE-
complete.

Theorem 2.17 ([Alur et al., 2002]). The model checking problem for CL is in
P.

In this section we do not consider an epistemic variant of CL. Such an exten-
sion of the logic with individual, distributed, and common knowledge operators
has been studied in [Ågotnes and Alechina, 2012].



Chapter 3

Logics of Quantified Public
Announcements

One of the ways to generalise PAL is to allow for quantification over public an-
nouncements. Such a generalisation was first implemented in [Balbiani et al.,
2008], where the authors introduce Arbitrary Public Announcement Logic (Sec-
tion 3.2) with operators for quantification over announcements of epistemic for-
mulas. Restricting such a quantification to knowledge formulas of agents gives rise
to Group Announcement Logic (Section 3.1). A formalism that allows us to con-
sider not only announcements by a group of agents but counter-announcements
by their opponents as well, is Coalition Announcement Logic (Section 3.3). This
logic, as opposed to group and arbitrary announcement logics, entertains a more
game-theoretic setting, where some coalition may not have a strategy to achieve
their goal in the presence of the anti-coalition, even though the goal is achievable
in the non-competitive setting. In Section 3.4 we present a worked example for
group and coalition announcement logics.

3.1 Group Announcement Logic

Group Announcement Logic (GAL) [Ågotnes and van Ditmarsch, 2008; Ågotnes
et al., 2010] is an extension of PAL with group announcement modalities [G]ϕ
(and its dual 〈G〉ϕ). Alternatively, GAL can be considered as a restriction of
Arbitrary Public Announcement Logic (APAL) [Balbiani et al., 2008]: instead
of quantifying over all epistemic formulas, we quantify over formulas known by
agents in a group G. Although APAL predates GAL, we start our discussion
with the latter since APAL is not in the primary focus of our work.

Formula 〈G〉ϕ should be read as ‘there is a truthful announcement by agents
from group G such that ϕ holds after that announcement.’ In this context a truth-
ful announcement means that agents actually know formulas they announce. In
other words, announcement of ϕa by agent a ∈ G is interpreted as Kaϕ. Similarly,
[G]ϕ is read ‘whatever agents from group G announce, ϕ holds afterwards.’

In Figure 2.5 model (M, 15a5b) is updated with the announcement Ka10a ∨
Ka15a. Coincidentally, the same model is the result of updating (M, 15a5b) with

20
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Ka(10a ∨ 15a). Note that this formula is a knowledge formula of agent a. Hence,
we can conclude that there is an announcement by agent a such that ϕ is true
afterwords; from (M, 15a5b) |= 〈Ka(10a ∨ 15a)〉ϕ it follows that (M, 15a5b) |=
〈{a}〉ϕ. Announcement by groups of more than one agent are conjunctions of
corresponding announcements by agents.

3.1.1 Syntax and Semantics of GAL

As usual, P is a countable set of propositional variables, and A is a finite set of
agents.

Definition 3.1 (Language of GAL). The language of group announcement logic
LGAL is inductively defined as

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | [ϕ]ϕ | [G]ϕ,

where p ∈ P , a ∈ A, G ⊆ A and all the usual abbreviations of propositional logic
and conventions for deleting parentheses hold. The operator 〈G〉ϕ is by definition
¬[G]¬ϕ.

Let us denote by ψG formula
∧
a∈GKaψa such that ψa ∈ LEL. We refer to this

fragment as LGEL. So ψG’s are shorthands for conjunctions of knowledge formulas
of agents from group G.

Definition 3.2 (Semantics of GAL). Let a pointed model (M,w), and ϕ ∈ LGAL
be given. The semantics of GAL is as in Definition 2.23 plus the following:

(M,w) |= [G]ϕ iff ∀ψG : (M,w) |= [ψG]ϕ

The semantics for the dual operator is as follows:

(M,w) |= 〈G〉ϕ iff ∃ψG : (M,w) |= 〈ψG〉ϕ

In the definition of the semantics, the group announcement operator [G] only
quantifies over epistemic formulas (and hence, by Theorem 2.10, over PAL formu-
las) known to agents. This allows us to avoid circularity in the definition. More
on this issue and alternative semantics for quantified announcements is in [van
Ditmarsch et al., 2016].

It is easy to see that the following proposition holds.

Proposition 3.1. Let some ϕ ∈ LGAL be given. Then |= [G]ϕ if and only if for
all ψG it holds that |= [ψG]ϕ.

Note that generalisations of Proposition 3.1 to [ψ][G]ϕ, Ka[G]ϕ, and ψ → [G]ϕ
also hold. To address this variety of possible rules of inference, we consider a
more succinct way of their representation. Ultimately we require premises to be
expressions of depth n of the type

ϕ1 → �1(ϕ2 → . . . (ϕn → �n]) . . .),
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where �i is either Ka or [ψ] for some a ∈ A and ψ ∈ LGAL, atom ] denotes a
placement of a formula to which a derivation is applied, and some ϕ’s and �’s can
be omitted. This condition is captured by necessity forms originally introduced by
Goldblatt in [Goldblatt, 1982, Chapter 2] (under the name admissibility forms).

Definition 3.3. (Necessity forms) Let ϕ ∈ LGAL, then necessity forms are in-
ductively defined as follows:

η(]) ::= ] | ϕ→ η(]) | Kaη(]) | [ϕ]η(]).

The atom ] has a unique occurrence in each necessity form. The result of the
replacement of ] with ϕ in some η(]) is denoted as η(ϕ). The dual of a necessity
form η(ϕ) is a possibility form η{ϕ} that is defined as η(ϕ) ::= ¬η{¬ϕ}.

3.1.2 Axiomatisation of GAL

In this section we present an axiomatisation of GAL.

Definition 3.4 (Axiomatisation of GAL). Let a ∈ A, G ⊆ A, ψG ∈ LGEL, and
ϕ, ψ, χ ∈ LGAL. The axiom system for GAL is an extension of PAL and is
presented below.

(A0) propositional tautologies,
(A1) Ka(ϕ→ ψ)→ (Kaϕ→ Kaψ),
(A2) Kaϕ→ ϕ,
(A3) Kaϕ→ KaKaϕ,
(A4) ¬Kaϕ→ Ka¬Kaϕ,
(A5) [ϕ]p↔ (ϕ→ p),
(A6) [ϕ]¬ψ ↔ (ϕ→ ¬[ϕ]ψ),
(A7) [ϕ](ψ ∧ χ)↔ ([ϕ]ψ ∧ [ϕ]χ),
(A8) [ϕ]Kaψ ↔ (ϕ→ Ka[ϕ]ψ),
(A9) [ϕ][ψ]χ↔ [ϕ ∧ [ϕ]ψ]χ,
(A10) [G]ϕ→ [ψG]ϕ,
(R0) If ` ϕ and ` ϕ→ ψ, then ` ψ,
(R1) If ` ϕ, then ` Kaϕ,
(R2) If ` ϕ, then ` [ψ]ϕ,
(R3) If ` ϕ, then ` [G]ϕ,
(R4) If ∀ψG : ` η([ψG]ϕ), then ` η([G]ϕ).

Rule R4 makes the axiomatisation infinitary. Whereas finitary rules require
a finite number of premises, infinitary rule R4 requires an infinite number of
formulas η([ψG]ϕ) to be theorems of GAL in order to conclude that η([G]ϕ) is a
theorem of GAL as well. Hence, in what follows, we override Definition 2.12 so
that ` ϕ means that ϕ belongs to the smallest subset of LGAL that contains all
the axioms A0 – A10 and closed under rules of inference R0 – R4. Such a set is
called GAL, and we refer to elements of GAL as theorems. Set GAL is infinite,
and if η([ψG]ϕ) are all theorems, then η([G]ϕ) is also a theorem. Note that for
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finitary systems, both definitions of a theorem – as an element of a set, and as a
final line in a derivation — are equivalent.

The completeness of the axiom system for GAL is due to [Ågotnes et al., 2010;
Balbiani et al., 2008; Balbiani and van Ditmarsch, 2015; Balbiani, 2015].

Theorem 3.2. The axiom system for GAL is sound and complete.

3.1.3 Complexity and Logical Properties

Let us mention some interesting validities of GAL.

Proposition 3.3 ([Ågotnes et al., 2010]). All of the following are valid.

1. 〈G〉p↔ p,

2. 〈∅〉ϕ↔ [∅]ϕ↔ ϕ,

3. ϕ→ 〈G〉ϕ,

4. 〈G〉〈H〉ϕ→ 〈G ∪H〉ϕ,

5. 〈G〉〈G〉ϕ↔ 〈G〉ϕ.

The first validity states that agents’ announcements cannot alter propositional
variables. The second one expresses the property that the empty group is pow-
erless. A group variant of the truth axiom is presented in 3. According to 4, if
consecutive announcements by groups achieve ϕ, then ϕ can be achieved by a
single joint announcement. The validity of the other direction of 4 used to be an
open question. In Chapter 5 we settle it by presenting a counterexample. Prop-
erty 5 is a corollary of 4. Even though 4 and 5 reduce sequences of announcements
to a single announcement, in some scenarios agents may be unaware of the conse-
quences of their joint announcements. This leads to a distinction between being
able to execute some protocol and knowing how to execute it. For the discussion
see [Ågotnes et al., 2010].

Proposition 3.4. Let G,H ⊆ A, and ϕ, ψ ∈ LGAL. Property (〈G〉ϕ ∧ 〈H〉ψ)→
〈G ∪H〉(ϕ ∧ ψ) is not a validity of GAL.

Proof. Consider some pointed model (M,w) such that (M,w) |= 〈{a}〉Kcp ∧
〈{b}〉¬Kcp. Trivially, this does not imply (M,w) |= 〈{a, b}〉(Kcp ∧ ¬Kcp).

Invalid property in Proposition 3.4 is the superadditivity axiom of CL. This
implies that GAL is not a coalition logic in a sense that there are some validities
of CL that are not valid in GAL [Ågotnes and van Ditmarsch, 2014]. This is
due to the fact that GAL operators do not take into account agents outside of a
given group (if there are any). A logic with quantified announcements that is a
coalition logic is considered in Section 3.3.

Now we present the complexity profile of GAL.
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Theorem 3.5 ([Ågotnes et al., 2016]). The satisfiability problem for GAL is
undecidable.

Theorem 3.6 ([Ågotnes et al., 2010]). The model checking problem for GAL is
PSPACE-Complete.

Finally, we state a known expressivity result for GAL: GAL is as expressive
as EL in the single-agent case, and strictly more expressive in the multi-agent
case.

Theorem 3.7. GAL ≡ EL in the single-agent case, and EL � GAL, and GAL 6�
EL in the multi-agent case.

3.2 Arbitrary Public Announcement Logic

The expansion of the domain of quantification in GAL to the set of all epistemic
formulas, rather than knowledge formulas of agents, results in another well-known
formalism — Arbitrary Public Announcement Logic (APAL). Modalities of APAL,
�ϕ and ♦ϕ, mean that ‘after all (some) announcements of epistemic formulas, ϕ
holds.’ From a logical perspective, APAL is quite similar to GAL, and hence our
exposition of the logic is rather condensed.

3.2.1 Syntax, Semantics, and Axiomatisation of APAL

Definition 3.5 (Language of APAL). The language of group announcement logic
LGAL is inductively defined as

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | [ϕ]ϕ | �ϕ,

where p ∈ P , a ∈ A, and all the usual abbreviations of propositional logic and con-
ventions for deleting parentheses hold. The operator ♦ϕ is by definition ¬�¬ϕ.

Definition 3.6 (Semantics of APAL). Let a pointed model (M,w), and ϕ ∈ LGAL
be given. The semantics of APAL is as in Definition 2.23 plus the following:

(M,w) |= �ϕ iff ∀ψ ∈ LEL : (M,w) |= [ψ]ϕ

The semantics for the dual operator is as follows:

(M,w) |= ♦ϕ iff ∃ψ ∈ LEL : (M,w) |= 〈ψ〉ϕ
Similarly to the case of GAL, the quantification is restricted to epistemic

formulas.

Definition 3.7 (Axiomatisation of APAL). The axiom system for APAL is the
same as the one for GAL with the following exceptions:

(A10) �ϕ→ [ψ]ϕ, where ψ ∈ LEL,
(R3) If ` ϕ, then ` �ϕ,
(R4) If ∀ψ ∈ LEL : ` η([ψ]ϕ), then ` η(�ϕ).

APAL was shown to be complete in [Balbiani et al., 2008; Balbiani and van
Ditmarsch, 2015; Balbiani, 2015].

Theorem 3.8. The axiom system for APAL is sound and complete.
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3.2.2 Expressivity and Complexity of APAL

Regarding the relation between APAL and EL, we have exactly the same result
as for GAL.

Theorem 3.9 ([Balbiani et al., 2008]). In the single-agent case APAL ≡ EL, and
APAL 6� EL and EL � APAL in the multi-agent case.

When APAL and GAL are compared to each other, it turns out that GAL is
not at least as expressive as APAL, i.e. there are some properties of epistemic
models expressible in APAL that cannot be expressed in GAL.

Theorem 3.10 ([Ågotnes et al., 2010]). Generally, APAL 6� GAL. In the special
case when an agent with the identity relation is present, APAL � GAL.

Whether GAL 6� APAL was posed as an open question in [Ågotnes et al.,
2010]. We solve this problem in Chapter 7.

The complexity profile of APAL is the same as of GAL.

Theorem 3.11 ([Ågotnes et al., 2016]). The satisfiability problem for APAL is
undecidable.

Theorem 3.12 ([Balbiani et al., 2008]). The model checking problem for GAL
is PSPACE-Complete.

3.3 Coalition Announcement Logic

Coalition Announcement Logic (CAL) was proposed in [Ågotnes and van Dit-
marsch, 2008] as a generalisation of PAL. CAL modalities [〈G〉] and 〈[G]〉, as op-
posed to the GAL ones, are interpreted as double quantifications of the type ∀∃
and ∃∀ over epistemic formulas known by agents. Thus, [〈G〉]ϕ means ‘whatever
agents from G announce, there is an announcement by agents from A \ G such
that ϕ holds afterwards. And its dual, 〈[G]〉ϕ, is read as ‘there is a truthful an-
nouncement made by the agents in G such that no matter what the agents not
in G simultaneously announce, ϕ holds afterwards.’

CAL modalities were motivated by coalition logic [Pauly, 2002] and van Ben-
them’s playability operator [van Benthem, 2014, Chapter 11] and [van Benthem,
2001]. Among other logics of quantified announcements — APAL and GAL —
CAL is the least studied one.

Returning to the example in Figure 2.5, not only is ϕ true after a truthful
announcement Ka(10a ∨ 15a) by a, but also it is true no matter what agent b
announces at the same time. Formally, we write (M, 15a5b) |= 〈[{a}]〉ϕ. A more
complex example is presented Section 3.4.

Definition 3.8 (Language of CAL). The language of coalition announcement
logic LCAL is by the following BNF:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | [ϕ]ϕ | [〈G〉]ϕ,
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where p ∈ P , a ∈ A, G ⊆ A and all the usual abbreviations of propositional
logic and conventions for deleting parentheses hold. The operator 〈[G]〉ϕ is by
definition ¬[〈G〉]¬ϕ.

As in the case of GAL, we denote by ψG formula
∧
a∈GKaψa such that ψa ∈

LEL, and refer to this fragment as LGEL.

Definition 3.9 (Semantics of CAL). Let a pointed model (M,w), and ϕ ∈ LCAL
be given. The semantics of CAL is as in Definition 2.23 plus the following:

(M,w) |= [〈G〉]ϕ iff ∀ψG,∃χA\G : (M,w) |= ψG
implies (M,w) |= 〈ψG ∧ χA\G〉ϕ

The semantics for the dual operator is as follows:

(M,w) |= 〈[G]〉ϕ iff ∃ψG,∀χA\G : (M,w) |= ψG and (M,w) |= [ψG ∧ χA\G]ϕ

In order to avoid circularity in the definition above, operators [〈G〉] and 〈[G]〉
quantify only over epistemic formulas known to agents.

Interestingly, the two special cases of the grand coalition A and the empty
coalition ∅ are duals. Let us consider their semantics:

(M,w) |= 〈[A]〉ϕ iff ∃ψA : (M,w) |= 〈ψA〉ϕ
and

(M,w) |= 〈[∅]〉ϕ iff ∀ψA : (M,w) |= [ψA]ϕ

This definition is used in the following proposition.

Proposition 3.13. All of the following is valid.

1. 〈[G]〉p↔ p,

2. [〈A〉]ϕ↔ 〈[∅]〉ϕ,

3. ϕ→ 〈[A]〉ϕ.

Property 1 states that agents cannot change values of propositional variables.
This follows from the fact that the only available action in CAL, public announce-
ment, is a purely epistemic action. The second formula captures the semantics
of grand and empty coalitions. Finally, property 3 is a CAL variant of the truth
axiom. Note that 3 is not valid for G ( A.

CAL is a coalition logic: axioms and rules of inference of CL are valid or
validity preserving in CAL [Ågotnes and van Ditmarsch, 2008] (see Section 5.3
for the proof). Moreover, CAL can express some properties that are not valid in
CL, e.g. formula 1 above.

Other known results for CAL include the following theorems.

Theorem 3.14 ([Ågotnes et al., 2016]). The satisfiability problem for CAL is
undecidable.
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The complexity of the model checking for CAL was an open question. In
Chapter 4 we show that it is PSPACE-complete.

Theorem 3.15. CAL ≡ EL in the single-agent case, and EL � CAL and CAL 6�
EL in the multi-agent case.

To the best of our knowledge, relative expressivity of CAL and other logics
of quantified announcements has not been studied yet. We address this open
problem in Chapter 7, and demonstrate that GAL 6� CAL and APAL 6� CAL.

3.4 Households and Burglars: An Example

In city N. local authorities decided to gather information about and present statis-
tics on electricity consumption. This information should be submitted by each
neighbourhood in the city, indicating the total number of households that have
been using electricity last month. Data about neighbourhoods is public, and data
about individual households is private, i.e. particular users of electricity are not
revealed, but the total number of such users in the area is common knowledge.
And there is a reason for such a requirement.

A group of local burglars is also interested in the public report on electricity
consumption: they hope to deduce which households have not used electricity
recently since it is an indication that property owners are not in their houses
these days (most probably, they are on vacation). Burglars, however, want to be
quite certain that the house of their choice is empty, and hence they would not
risk burglary unless they know for sure that the property owners are away. Also,
they are highly reluctant to lurk around a neighbourhood trying to learn who is
away, such a behaviour is quite suspicious. Thus, their only way to know about
‘vacant’ households is through the public report.

In the city, there is a small neighbourhood of only four houses: a, b, c, and
d. They are situated around a park in a circular fashion such that neighbours
on the left and on the right are equidistant. The park is quite large and dwellers
of the houses tend to know only their closest neighbours on the left and on the
right. Thus, for example, owner of c knows owners of b and d, and about their
plans, but she is unaware about plans of owners of a.

Epistemic model TES describing the given situation is presented in Figure
3.1. In the model, state-names indicate which owners are at home; for instance,
1001 means that a and d are at home, and that b and c are not. Burglars v
(for ‘villains’) do not have any information regarding home-owners, and their
epistemic relation is universal. We do not present the relation in the figure for
readability.

Let the actual state be 0101, and let 0101 also abbreviate ¬pa ∧ pb ∧¬pc ∧ pd,
where pi stands for ‘owner i is at home.’ Note that neither burglars nor the
owners possess the full information about the neighbourhood: (TES, 0101) |=
¬(Ka0101 ∨Kb0101 ∨Kc0101 ∨Kd0101 ∨Kv0101). Also note that dwellers are
aware of their own states and states of their left- and right-hand-side neighbours,
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Figure 3.1: Model (TES, 0101)

but not about a state of the farthest owner. E.g. (TES, 0101) |= Kc¬pc ∧Kcpb ∧
Kcpd ∧ ¬(Kc¬pa ∨Kcpa).

Information agents a, b, c and d want to submit is ‘two household in our neigh-
bourhood have been using electricity these days.’ This sentence, however, should
conform to the requirement that exact households remain unknown to the public
outside the neighbourhood. We can express this goal as formula

sofa := Kv

∨


pa ∧ pb ∧ ¬pc ∧ ¬pd
pa ∧ ¬pb ∧ pc ∧ ¬pd
pa ∧ ¬pb ∧ ¬pc ∧ pd
¬pa ∧ pb ∧ pc ∧ ¬pd
¬pa ∧ pb ∧ ¬pc ∧ pd
¬pa ∧ ¬pb ∧ pc ∧ pd

 ∧ ¬
∨

Kvpa ∨Kv¬pa
Kvpb ∨Kv¬pb
Kvpc ∨Kv¬pc
Kvpd ∨Kv¬pd

 ,

where sofa stands for ‘the state of affairs.’ A successful group announcement by
agents to achieve this goal is possible when everyone announces ‘I know that if I
have not been using electricity recently, then at least one of my neighbours on the
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left and on the right has, and if I have been using it, then one of the neighbours
must be on vacation.’ Formally, such an announcement can be expressed by the
following formula:

mis :=
∧

Ka((¬pa → (pd ∨ pb)) ∧ (pa → ¬(pd ∧ pb)))
Kb((¬pb → (pa ∨ pc)) ∧ (pb → ¬(pa ∧ pc)))
Kc((¬pc → (pb ∨ pd)) ∧ (pc → ¬(pb ∧ pd)))
Kd((¬pd → (pc ∨ pa)) ∧ (pd → ¬(pc ∧ pa)))

 ,

where mis stands for ‘mutual informative statement.’
Thus we have that (TES, 0101) |= 〈mis〉sofa. Since mis is an announce-

ment of agents’ knowledge, we can conclude that there is an announcement by
a, b, c and d such that sofa holds in the resulting model, i.e. (TES, 0101) |=
〈{a, b, c, d}〉sofa. Result of updating (TES, 0101) with mis is presented in Fig-
ure 3.2.

1001 1010

1100

01010011

0110

Figure 3.2: Model (TES, 0101)mis

All the relations in the model are v equivalence relations. Hence, indeed, in
(TES, 0101)mis exactly two households have been using electricity recently, and
although the public (and burglars as well) knows that fact, they cannot name
particular houses that are ‘vacant.’ A ‘side-effect’ of group announcement mis is
that all residents in the neighbourhood know exactly who is on vacation, and it
is common knowledge.

Note that we can state a fact stronger than (TES, 0101) |= 〈{a, b, c, d}〉sofa.
Since v’s relation is universal, they cannot preclude the group to make sofa true
whatever they (i.e. v) announce. In other words, (TES, 0101) |= 〈[{a, b, c, d}]〉sofa.

Interestingly, in this particular example even two agents can make an an-
nouncement such that sofa holds in the resulting model. Consider the following
announcement by agents a and b:

misa,b := Ka((pa → ¬pd) ∧ (¬pa → pd)) ∧Kb((pb → ¬pc) ∧ (¬pb → pc)).
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The resulting updated model is shown in Figure 3.3 (all the relations are v-
relations).

1010

1100

01010011

Figure 3.3: Model (TES, 0101)misa,b

The reader can verify that (TES, 0101)misa,b |= sofa, and hence (TES, 0101) |=
〈{a, b}〉sofa. Note that compared to model (TES, 0101)mis (Figure 3.2), model
(TES, 0101)misa,b has fewer states. This means that owners gave a bit more infor-
mation than necessary, but they still managed to inform authorities that exactly
two households have been using electricity while not revealing the exact state of
affairs.

Even though two owners can make a successful announcement, they must en-
sure that none of the other agents has not been conspiring with burglars. For
assume this is the case that agent c, for example, decides to reveal to burglars
which houses are empty. She can pass the following information with a’s and
b’s submission: Kc(¬pc ∧ pb ∧ pd). This announcement made in conjunction with
misa,b results in a singleton model with 0101 as the only state. Moreover, what-
ever a and b announce, c always has an announcement to make sofa false in
the resulting model (and, alas, to let the burglars know that she is on vaca-
tion). Formally, we have that (TES, 0101) |= ¬〈[{a, b}]〉sofa, or, equivalently,
(TES, 0101) |= [〈{a, b}〉]¬sofa. Hence, in this particular example, property own-
ers should always cooperate if they want to inform authorities about electricity
consumption and keep the burglars away.

We have seen that an announcement by two owners is enough to make sofa
true. What about the single-agent case? As owners possess information about
themselves and two closest neighbours, they do not know the actual state of the
world, i.e. they do not have enough information about their farthest neighbour.
However, it is possible for some agents to make an announcement such that it
informs the public that at least two of the households have been using electricity
recently, and particular users and non-users remain incognito. Formally, such a
target formula is as follows:
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sofa1 := Kv

∨



pa ∧ pb ∧ ¬pc ∧ ¬pd
pa ∧ ¬pb ∧ pc ∧ ¬pd
pa ∧ ¬pb ∧ ¬pc ∧ pd
¬pa ∧ pb ∧ pc ∧ ¬pd
¬pa ∧ pb ∧ ¬pc ∧ pd
¬pa ∧ ¬pb ∧ pc ∧ pd
pa ∧ pb ∧ pc ∧ ¬pd
pa ∧ pb ∧ ¬pc ∧ pd
pa ∧ ¬pb ∧ pc ∧ pd
¬pa ∧ pb ∧ pc ∧ pd
pa ∧ pb ∧ pc ∧ pd


∧ ¬

∨
Kvpa ∨Kv¬pa
Kvpb ∨Kv¬pb
Kvpc ∨Kv¬pc
Kvpd ∨Kv¬pd

 .

Agent a, for instance, can make sofa1 true in (TES, 0101) by announcing

misa := Ka((¬pa → (pb ∧ pd)) ∧ (pa → (pb ∨ pd))).

The result of such an announcement is presented in Figure 3.4 (all relations are
v-relations).

1001 0111
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01011011
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1111 1101

Figure 3.4: Model (TES, 0101)misa

It easy to verify that (TES, 0101)misa |= sofa1. Hence, it also holds that
(TES, 0101) |= 〈{a}〉sofa1, and, obviously, (TES, 0101) |= ¬〈[{a}]〉sofa1.



Chapter 4

Model Checking for CAL

The complexity of the model checking problem for GAL is known to be PSPACE-
complete [Ågotnes et al., 2010]. In this chapter we show that the same holds for
CAL. Since both [〈G〉]ϕ and 〈[G]〉ϕ are defined using quantification over an infinite
number of epistemic formulas, direct application of the semantics of CAL in the
model checking algorithm is not possible. In Section 4.1 we employ distinguishing
formulas to make a transition from an infinite number of possible announcements
to a finite number of strategies available to a coalition of agents. This allows us
to present the model checking algorithm for CAL in Section 4.2, and prove the
complexity result. Moreover, we demonstrate that if a formula within the scope
of a coalition announcement operator is a positive PAL or GAL formula, then
the complexity of the model checking problem is in P. This chapter is based on
[Galimullin et al., 2018].

4.1 Strategies of Groups of Agents on Finite

Models

4.1.1 Distinguishing Formulas

In this section we introduce distinguishing formulas that are satisfied in only one
(up to bisimulation) state in a finite model. The discussion is based on [van
Ditmarsch et al., 2014]. Although agents know and can possibly announce an
infinite number of formulas, using distinguishing formulas allows us to consider
only finitely many different announcements. This is done by associating strategies
of agents with corresponding distinguishing formulas, where a strategy of agent
a is a union of a-equivalence classes.

Here and subsequently, all epistemic models are finite and bisimulation con-
tracted. Also, without loss of generality, we assume that the set of propositional
variables P is finite. It follows from the fact that in a finite epistemic model
M = (W,∼, V ) there are 2|W | unique truth assignments for a propositional vari-
able, and a truth assignment for any p2|W |+1 will repeat one from p1, . . . , p2|W | .

We continue with the formal definition of distinguishing formulas.

32
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Definition 4.1 (Distinguishing Formula). Let a finite epistemic model M be
given. Formula δS,S′ is called distinguishing for S, S ′ ⊆ W if S ⊆ JδS,S′KM and
S ′ ∩ JδS,S′KM = ∅. If a formula distinguishes state w from all other non-bismilar
states in M , we write δw.

Proposition 4.1 (van Ditmarsch et al. [2014]). Let a finite epistemic model M be
given. Every pointed model (M,w) is distinguished from all other non-bisimilar
pointed models (M, v) by some distinguishing formula δw ∈ LEL.

Given a finite model (M,w), a distinguishing formula δw is constructed recur-
sively as follows:

δk+1
w := δ0

w ∧
∧
a∈A

(
∧
w∼av

K̂aδ
k
v ∧Ka

∨
w∼av

δkv ),

where 0 ≤ k < |W |, and δ0
w is the conjunction of all literals that are true in w,

i.e. δ0
w :=

∧
w∈V (p) p ∧

∧
w 6∈V (p) ¬p. So, formula δw := δ

|W |
w .

Assumptions regarding some given model being finite and bisimulation con-
tracted are of vital importance for the construction of distinguishing formulas.
If the model is infinite, then we may either need an infinite amount of proposi-
tional variables to describe the given state, or there may be infinite branches of
accessibility relations. If the model is not bisimulation contracted, i.e. there are
bisimilar states in the model, then distinguishing formulas cease to be unique —
the same formula describes all bisimilar states in the model.

Having defined distinguishing formulas for states, we can define distinguishing
formulas for sets of states.

Definition 4.2. Let some finite and bisimulation contracted model (M,w), and
a set S of states in M be given. A distinguishing formula for S is

δS :=
∨
w∈S

δw.

Let us recall the bidding example from Section 2.1.1, and construct distin-
guishing formula δ15a5b .

5a5b 5a10b 5a15b

10a5b 10a10b 10a15b

15a5b 15a10b 15a15b

a a

a a
b b b

a a
b b b

Figure 4.1: Model (M, 15a5b)
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First, we start with the propositional description of the state:

δ0
15a5b

:= 15a ∧ 5b ∧ ¬10a ∧ ¬5a ∧ ¬10b ∧ ¬15b.

Let us assume that we calculated δ0’s in the same fashion for all other states.
Next, we proceed with the first iteration of δ15a5b :

δ1
15a5b

:= δ0
15a5b

∧
∧


K̂aδ

0
15a5b

∧ K̂aδ
0
15a10b

∧ K̂aδ
0
15a15b

∧Ka

∨ δ0
15a5b

δ0
15a10b

δ0
15a15b


K̂bδ

0
15a5b

∧ K̂bδ
0
10a5b

∧ K̂bδ
0
5a5b
∧Kb

∨ δ0
15a5b

δ0
10a5b

δ0
5a5b



 .

The process continues for |W | iterations. Informally, each iteration of a distin-
guishing formula construction adds one step of ‘reachable distance’ from a given
state. Hence, in our example with 9 states distinguishing formula δ15a5b looks as
follows (assuming that all previous δk15a5b

’s have been calculated):

δ9
15a5b

:= δ0
15a5b

∧
∧


K̂aδ

8
15a5b

∧ K̂aδ
8
15a10b

∧ K̂aδ
8
15a15b

∧Ka

∨ δ8
15a5b

δ8
15a10b

δ8
15a15b


K̂bδ

8
15a5b

∧ K̂bδ
8
10a5b

∧ K̂bδ
8
5a5b
∧Kb

∨ δ8
15a5b

δ8
10a5b

δ8
5a5b



 .

Note that since models we are dealing with in this chapter are finite, distin-
guishing formulas always exist.

4.1.2 Strategies

In this section we introduce strategies and connect them to public announcements
using distinguishing formulas. Intuitively, strategies are sets of states that agents
can ensure to be in the updated model by announcing a formula that holds in
those states. The formal definition of a strategy is presented below.

Definition 4.3 (Strategies). Let M/a = {[w1]a, . . . , [wn]a} be the set of a-
equivalence classes in M . A strategy Xa for an agent a in a finite model (M,w) is
a union of equivalence classes of a including [w]a. The set of all available strate-
gies of a is S(a, w) = {[w]a ∪Xa : Xa ⊆ M/a}. Group strategy XG is defined as⋂
a∈GXa for all a ∈ G. The set of available strategies for a group of agents G is

S(G,w) = {
⋂
a∈GXa : Xa ∈ S(a, w)}.

Strategies can only be implemented by agents, and generally public announce-
ments do not correspond to strategies. Consider model (M, 15a5b) in Figure
4.1, and an a-equivalence class {15a5b, 15a10b, 15a15b}. This equivalence class
is also a strategy Xa. It is easy to see that public announcement of (15a ∧
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5b) ∨ (15a ∧ 10b) does not correspond to any strategy of a, that is for all Xa:
J(15a∧5b)∨ (15a∧10b)K 6= Xa. Implementing a strategy Xa results in an updated
model where agent a knows some ϕ, and in our example it is not the case that
Ka((15a ∧ 5b) ∨ (15a ∧ 10b)).

Note, that for any (M,w) and G ⊆ A, S(G,w) is not empty, since the trivial
strategy that includes all the states of the current model is available to all agents.

Proposition 4.2. In a finite model (M,w), for any G ⊆ A, S(G,w) is finite.

Proof. Due to the fact that in a finite model there is a finite number of equivalence
classes for each agent.

Thus, in Figure 4.1 there are three a-equivalence classes: {15a5b, 15a10b, 15a15b},
{10a5b, 10a10b, 10a15b}, and {5a5b, 5a10b, 5a15b}. Let us designate them by the
first element of a corresponding set, i.e. 15a5b, 10a5b, and 5a5b. The set of
all available strategies of agent a in (M, 15a5b) is {15a5b, 15a5b ∪ 10a5b, 15a5b ∪
5a5b, 15a5b ∪ 10a5b ∪ 5a5b}. Similarly, the set of all available strategies of agent b
in (M, 15a5b) is {15a5b, 15a5b ∪ 15a10b, 15a5b ∪ 15a15b, 15a5b ∪ 15a10b ∪ 15a15b}.
Finally, there is a group strategy for agents a and b that contains only two states
– 15a5b and 10a5b. This strategy is an intersection of a’s 15a5b ∪ 10a5b and b’s
15a5b, that is {15a5b, 15a10b, 15a15b, 10a5b, 10a10b, 10a15b}∩ {15a5b, 10a5b, 5a5b}.

Now we tie together announcements and strategies. Each of infinitely many
possible announcements by agents in a finite model corresponds to a set of states
where it is true (a strategy). In a finite bisimulation contracted model, each
strategy is definable by a distinguishing formula, hence it corresponds to an an-
nouncement. This allows us to consider finitely many strategies instead of con-
sidering infinitely many possible announcements: there are only finitely many
non-equivalent (in terms of model updates) announcements for each finite model,
and each of them is equivalent to a distinguishing formula of some strategy.

Given a finite and bisimulation contracted model (M,w) and strategy XG,
a distinguishing formula δXG

for XG can be obtained from Definition 4.2 as∨
w∈XG

δw.
Next, we show that agents know their strategies and thus can make corre-

sponding announcements.

Proposition 4.3. Let agent a have strategy Xa in some finite bisimulation con-
tracted (M,w). Then (M,w) |= KaδXa . Also, let XG := Xa ∩ . . . ∩ Xb be a
strategy, then (M,w) |= KaδXa ∧ . . . ∧KbδXb

, where a, . . . , b ∈ G.

Proof. We show just the first part of the proposition, since the second part fol-
lows easily. By the definition of a strategy, Xa = [w1]a ∪ . . . ∪ [wn]a for some
[w1]a, . . . , [wn]a ∈M/a. For every equivalence class [wi]a there is a corresponding
distinguishing formula δ[wi]a . Since for all v ∈ [wi]a, (M, v) |= δ[wi]a (by Proposi-
tion 4.1 and Definition 4.2), we have that (M, v) |= Kaδ[wi]a . The same holds for
other equivalence classes of a including the one with w, and we have (M,w) |=
(Kaδ[w1]a ∨ . . . ∨Kaδ[wn]a), which implies (M,w) |= Ka(δ[w1]a ∨ . . . ∨ δ[wn]a). Note
that δ[w1]a ∨ . . .∨ δ[wn]a is a distinguishing formula of strategy Xa, so we can write



CHAPTER 4. MODEL CHECKING FOR CAL 36

(M,w) |= KaδXa . Finally, having defined KaδXa , . . . , KbδXb
for all a, . . . , b ∈ G,

group strategy XG in (M,w) corresponds to (M,w) |= KaδXa ∧ . . . ∧KbδXb
.

The following proposition (which follows from Propositions 4.1 and 4.3) states
that given a strategy, corresponding public announcement yields exactly the
model with states specified by the strategy.

Proposition 4.4. Given a finite bisimulation contracted model M = (W,∼, V )
and a strategy Xa, W

KaδXa = Xa. More generally, WKaδXa∧...∧KbδXb = XG, where
a, . . . , b ∈ G.

We also show that true group announcements correspond to group strategies.

Proposition 4.5. Given some model (M,w) and formula ψG such that (M,w) |=
ψG, there is a strategy XG such that XG = WψG .

Proof. Assume that (M,w) |= ψG. Formula ψG is an abbreviation for Kaψa ∧
. . . ∧ Kbψb, where a, . . . , b ∈ G and ψa ∈ LEL. Let us consider Kaψa. By the
semantics we have that (M,w) |= Kaψa holds if and only if for all v reachable
from w via a, (M, v) |= ψa. Note that all states reachable from the given one
via a form an a-equivalence class [w]a. In the same way Kaψa may be true in
other a-equivalence classes [u]a, . . . [t]a. Hence, formula Kaψa holds in the union
of these equivalence classes, i.e. it holds in WKaψa = [w]a∪. . .∪[t]a. By Definition
4.3, [w]a ∪ . . . ∪ [t]a is a strategy Xa of agent a.

Now assume that we have defined strategies of all a, . . . , b ∈ G in this fashion.
Note that WKaψa∧...∧Kbψb = WKaψa∩. . .∩WKbψb , and for all agents i, WKiψi = Xi.
Hence we have that WKaψa∧...∧Kbψb = WKaψa ∩ . . . ∩WKbψb = Xa ∩ . . . ∩Xb, and
the latter is a group strategy XG.

Now, let us reformulate semantics for the group and coalition announcement
operators in terms of strategies.

Proposition 4.6. For a finite bisimulation contracted model (M,w) we have
that

(M,w) |= 〈G〉ϕ iff ∃XG ∈ S(G,w) : (M,w)XG |= ϕ,
(M,w) |= 〈[G]〉ϕ iff ∃XG ∈ S(G,w) ∀XA\G ∈ S(A \G,w) : (M,w)XG∩XA\G |= ϕ.

Proof. Case 〈G〉ϕ: From left to right. Assume that for some pointed model we
have that (M,w) |= 〈G〉ϕ. By the semantics this means that ∃ψG such that
(M,w) |= 〈ψG〉ϕ. Formula ψG is true in some set of states that is an intersection
of unions of agents’ equivalence classes. Note that this set is some strategy XG,
that is WψG = XG (by Proposition 4.5).

From right to left. Let there be some strategy XG such that (M,w)XG |= ϕ,
then, by Propositions 4.3 and 4.4, there is an announcement of distinguish-
ing formulas by agents from G such that XG = WKaδXa∧...∧KbδXb , and hence
(M,w)KaδXa∧...∧KbδXb |= ϕ and (M,w) |= KaδXa ∧ . . . ∧ KbδXb

. The latter is
equivalent to (M,w) |= 〈G〉ϕ by the semantics.



CHAPTER 4. MODEL CHECKING FOR CAL 37

Case 〈[G]〉ϕ: From left to right. Suppose that for some (M,w) it holds that
(M,w) |= 〈[G]〉ϕ. By the definition of semantics this is equivalent to ∃ψG,∀χA\G:
(M,w) |= ψG ∧ [ψG ∧ χA\G]ϕ. As in the previous case, ψG correspond to some
group strategy XG such that WψG = XG. The same holds for announcements
by A \G. The only interesting case to consider is a false announcement by that
coalition, i.e. some χA\G such that (M,w) 6|= χA\G. This announcement, however,
makes (M,w) |= [ψG ∧ χA\G]ϕ trivially true. Hence, it is enough to consider just
‘meaningful’ true announcements by A \G. So, for each formula ψG ∧χA\G there
is a strategy XG ∩XA\G (by Proposition 4.5) such that WψG∧χA\G = XG ∩XA\G.

From right to left. Assume that there is some strategy XG such that for
all strategies XA\G it holds that (M,w)XG∧XA\G |= ϕ. By Propositions 4.3 and
4.4 this means that for some KGδXG

and all KA\GδXA\G it holds that (M,w) |=
KGδXG

∧ KA\GδXA\G and (M,w)
KGδXG

∧KA\GδXA\G |= ϕ. Note that in a model
there is always an infinite number of formulas such that (M,w) |= Kaψa ↔ Kaχa
[Ågotnes and van Ditmarsch, 2011]. Therefore, there is an infinite amount of
possible equivalent announcements for agents from A \ G of the form χA\G. So,
we have that for some KGδXG

and for all χA\G it holds that (M,w) |= KGδXG
∧

χA\G and (M,w)KGδXG
∧χA\G |= ϕ. We can relax the assumption of χA\G being

true, and rewrite the latter as (M,w) |= KGδXG
and (M,w) |= χA\G implies

(M,w)KGδXG
∧χA\G |= ϕ, which is equivalent to (M,w) |= KGδXG

∧ [KGδXG
∧

χA\G]ϕ for all χA\G, and this is (M,w) |= 〈[G]〉ϕ by the semantics.

So, we have tied together announcements and strategies via distinguishing for-
mulas. From now on, we may abuse notation and write MXG , meaning that MXG

is an update of model M by a joint announcement of agents G that corresponds
to strategy XG.

Sometimes we may be interested in situations where it is beneficial for agents
to be as informative as possible (or, equivalently, leave as little uncertainty as
possible). The type of announcements that fulfil those requirements is defined in
Definition 4.4.

Definition 4.4 (Maximally Informative Announcement). Let some finite bisim-
ulation contracted model (M,w) and G be given. A maximally informative an-
nouncement is a formula ψG such that w ∈ WψG and for all ψ′G such that w ∈ Wψ′

G

it holds that WψG ⊆ Wψ′
G . For finite models such an announcement always exists

[Ågotnes and van Ditmarsch, 2011]. We will call the corresponding strategy XG

the strongest strategy on a given model.

Intuitively, the strongest strategy is the smallest available strategy. Note that
in a bisimulation contracted model (M,w), the strongest strategy of agents G is
XG = [w]a ∩ . . . ∩ [w]b for a, . . . , b ∈ G, that is agents’ strategies consist of the
single equivalence classes that include the current state.

In model (M, 15a5b) in Figure 4.1 a’s strongest strategy is {15a5b, 15a10b, 15a15b},
and b’s strongest strategy is {15a5b, 10a5b, 5a5b}. So, the strongest strategy of
group {a, b} is the intersection of strongest strategies of agents from the group:
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{15a5b, 15a10b15a15b}∩ {15a5b, 10a5b, 5a5b} = {15a5b}. Corresponding announce-
ments are, respectively, Ka(δ15a5b ∨ δ15a10b ∨ δ15a15b), Kb(δ15a5b ∨ δ10a5b ∨ δ5a5b), and
Ka(δ15a5b ∨ δ15a10b ∨ δ15a15b) ∧Kb(δ15a5b ∨ δ10a5b ∨ δ5a5b).

4.2 Model Checking Algorithm for CAL

Employing strategies allows for a rather simple model checking algorithm for
CAL. We switch from quantification over an infinite number of epistemic formulas,
to quantification over a finite set of strategies (Section 4.2.1). Moreover, we show
that if the target formula is a positive PAL or GAL formula, then model checking
is even more effective (Section 4.2.2).

4.2.1 General Case

Algorithm 1 takes a finite model M , a state w of the model, and some ϕ0 ∈ LCAL
as an input, and returns true if ϕ0 is satisfiable in the model, and false otherwise.
Strictly speaking, for completeness’ sake, the algorithm works for a language that
includes both group and coalition announcements.

Algorithm 1: mc(M,w, ϕ0)
1: case ϕ0:
2: p : if w ∈ V (p) then return true else return false;
3: ¬ϕ : if mc(M,w, ϕ) then return false else return true;
4: ϕ ∧ ψ : if mc(M,w, ϕ) ∧mc(M,w, ψ) then return true else return

false;
5: Kaϕ : for all v such that w ∼a v

if ¬mc(M, v, ϕ) then return false
return true;

6: [ψ]ϕ : compute the ψ-submodel Mψ of M
if w ∈ Wψ then return mc(Mψ, w, ϕ) else return true;

7: 〈G〉ϕ: compute (‖M‖, w) and the set of strategies S(G,w)
for all XG ∈ S(G,w)

if mc(‖M‖XG , w, ϕ) then return true
return false;

8: 〈[G]〉ϕ: compute (‖M‖, w) and sets of strategies S(G,w) and S(A \G,w)
for all XG ∈ S(G,w)
check = true
for all XA\G ∈ S(A \G,w)

if ¬mc(‖M‖XG∩XA\G , w, ϕ) then check = false
if check then return true

return false.

Now we show the correctness of the algorithm.
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Proposition 4.7. Let (M,w) and ϕ ∈ LCAL be given. Algorithm mc(M,w, ϕ)
returns true iff (M,w) |= ϕ.

Proof. By a straightforward induction on the complexity of ϕ. We use Proposi-
tion 4.6 to prove the case for 〈[G]〉:
⇒: Suppose mc(M,w, 〈[G]〉ϕ) returns true. By line 8 this means that for some
strategy XG and all strategies XA\G, mc(‖M‖XG∩XA\G , w, ϕ) returns true. By
the Induction Hypothesis, (‖M‖, w)XG∩XA\G |= ϕ for some XG and all XA\G, and
(‖M‖, w) |= 〈[G]〉ϕ by the semantics.
⇐: Let (‖M‖, w) |= 〈[G]〉ϕ, which means that there is some strategy XG such

that for all XA\G, (‖M‖, w)XG∩XA\G |= ϕ. By the Induction Hypothesis, the latter
holds iff for some XG and for all XA\G, mc(‖M‖XG∩XA\G , w, ϕ) returns true. By
line 8, we have that mc(‖M‖, w, 〈[G]〉ϕ) returns true.

Proposition 4.8. Model checking for CAL is PSPACE-complete.

Proof. All the cases of the model checking algorithm apart from cases for 〈G〉ϕ
and 〈[G]〉 require polynomial time (and polynomial space as a consequence). More-
over, computing the bisimulation contraction of a given model is known to be in
P [Paige and Tarjan, 1987]. Cases for 〈G〉 and 〈[G]〉 iterate over exponentially
many strategies. However each iteration can be computed using only polynomial
amount of space to represent (‖M‖, w) (which contains at most the same number
of states as the input model M) and the result of the update (which is a submodel
of (‖M‖, w)) and make a recursive call to check whether ϕ holds in the update.
By reusing space for each iteration, we can compute the cases for 〈G〉 and 〈[G]〉
using only a polynomial amount of space.

Hardness can be obtained by a slight modification of the proof of PSPACE-
hardness of the model-checking problem for GAL in [Ågotnes et al., 2010]. The
proof encodes satisfiability of a quantified boolean formula (QBF) as a problem
whether a particular GAL formula is true in a model corresponding to the QBF.
We highlight just some parts of the proof from [Ågotnes et al., 2010]. Given
some QBF Ψ := Q1x1 . . . QnxnΦ(x1, . . . , xn), the authors construct a model that
depends on the number of variables in the formula (see Figure 4.2).

x0
1 x0

2 x0
n

xp−1 p−2 . . . p−n

x1
1 x1

2 x1
n

p+
1 p+

2
. . . p+

n

i i i i

i i i

i i i i
i

Figure 4.2: Model M that corresponds to a QBF.

Apart from agent i, whose relation is universal, there is also agent g, whose
relation is an identity. Next, the authors define properties qj ‘only one xj, upper
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or lower, is in the model’ and rj ‘xj is in both upper and lower rows.’ These
properties are used to recursively define a GAL formula ψ(Ψ) that will be then
evaluated in model (M,x) |= ψ(Ψ). An example of a corresponding GAL formula

for the given QBF ∀x1∃x2∀x3 : Φ(x1, x2, x3) is Ki[g](q1 ∧ r2 ∧ r3 → K̂i〈g〉(q1 ∧
q2 ∧ r3 ∧Ki[g](q1 ∧ q2 ∧ q3 → Φ(K̂ip

+
1 , K̂ip

+
2 , K̂ip

+
3 )))).

For our proof, however, it is enough to notice the following. Since the encoding
uses only two agents: an omniscient g and a universal i, we can replace [g] and
〈g〉 with [〈g〉] and 〈[g]〉 (since i’s only strategy is equivalent to > and no other GAL
operators are used in the encoding) and obtain a CAL encoding.

4.2.2 Positive Case

In this section we demonstrate the following result: if in a given formula of LCAL
(or the language extended with group announcements) subformulas within scopes
of coalition announcement operators are positive PAL (or GAL) formulas, then
the complexity of the model checking is polynomial.

Allowing coalition announcement modalities to bind only positive formulas
is a natural restriction. Positive formulas have a special property: if the sum of
knowledge of agents in G (their distributed knowledge) includes a positive formula
ϕ, then ϕ can be made common knowledge by a group or coalition announcement
by G. Formally, for a positive ϕ, (M,w) |= DGϕ implies (M,w) |= 〈[G]〉CGϕ. See
[van Ditmarsch et al., 2018; van Ditmarsch and Kooi, 2006], and also [Ågotnes
and Wáng, 2017] where this is called resolving distributed knowledge. In other
words, positive epistemic formulas can always be resolved through cooperative
communication.

Negative formulas, however, do not have this property. For example, it can
be distributed knowledge of agents a and b that p and ¬Kbp: D{a,b}(p ∧ ¬Kbp).
However, it is impossible to achieve common knowledge of this formula: C{a,b}(p∧
¬Kbp) is inconsistent, since it implies both Kbp and ¬Kbp. Going back to the
example in Section 4.1, it is distributed knowledge of a and b that Ka15a and
Kb5b. Both formulas are positive and can be made common knowledge if a and b
honestly report the amount of money they have. However, it is also distributed
knowledge that ¬Ka5b and ¬Kb15a. The conjunction

Ka15a ∧Kb5b ∧ ¬Ka5b ∧ ¬Kb15a

is distributed knowledge, but it cannot be made common knowledge for the same
reasons as above.

The positive fragment of PAL was presented in Section 2.2.4. Here we present
the positive fragment of GAL.

Definition 4.5 (Positive Fragment). The language LGAL+ of the positive frag-
ment of group announcement logic is defined by the following BNF:

ϕ ::= p | ¬p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | Kaϕ | [¬ϕ]ϕ | [G]ϕ,

where p ∈ P , a ∈ A, and G ⊆ A.
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Recall the definition of preserved formulas.

Definition 4.6 (Preservation). Formula ϕ is preserved under submodels if for
any models M1 and M2, M2 ⊆M1 and (M1, w) |= ϕ implies (M2, w) |= ϕ.

A known result that we use in this section states that formulas of LPAL+ are
preserved under submodels [van Ditmarsch and Kooi, 2006]. Let us show that
this is also true about formulas of LGAL+ .

Proposition 4.9. Let M1,M2 with M2 ⊆ M1, w ∈ W2 and a positive formula
ϕ ∈ LGAL+ be given. If (M1, w) |= ϕ, then (M2, w) |= ϕ.

Proof. We extend the corresponding proof from [Balbiani et al., 2008].
Case [G]ϕ: Suppose towards a contradiction that (M1, w) |= [G]ϕ and (M2, w) 6|=

[G]ϕ. Then, there is a formula ψG such that (M2, w) |= 〈ψG〉¬ϕ. By the seman-
tics we have (M2, w)ψG 6|= ϕ. Since MψG

2 ⊆ M2 ⊆ M1, and by contraposition
of the Induction Hypothesis, we have that (M1, w) 6|= ϕ. But at the same time,
(M1, w) |= [G]ϕ implies (M1, w) |= [KG>]ϕ, where KG> := Ka> ∧ . . . ∧ Kb>
and a, . . . , b ∈ G. The latter is equivalent to (M1, w) |= ϕ. Hence, we have a
contradiction.

Proposition 4.10. [G]ϕ↔ ϕ is valid for all positive ϕ.

Proof. Left-to-right direction holds due to the fact that G can announce >G, and
right-to-left direction holds due to Proposition 4.9.

Since positive fragments are normally defined to be universal fragments, and
both CAL modalities contain existential quantification over formulas, it would
appear that CAL modalities cannot occur in its own positive fragment.

Next, we show the following interesting fact.

Proposition 4.11. 〈[G]〉ϕ↔ [〈A\G〉]ϕ is valid for positive ϕ on finite bisimulation
contracted models.

Proof. The left-to-right direction is generally valid and we omit the proof (see
Proposition 5.7). Suppose that (M,w) |= [〈A \ G〉]ϕ. By Proposition 4.6 we
have that for all XA\G, there is some XG such that (M,w)XA\G∩XG |= ϕ. This
implies that (M,w)>A\G∩XG |= ϕ for the trivial strategy >A\G and some XG. The
latter is equivalent to (M,w)XG |= ϕ. Since ϕ is positive (and hence preserved
under submodels), (M,w)X

′
G |= ϕ, where X ′G is the strongest strategy of G. The

latter implies (again, due to the fact that ϕ is positive) that for all updates of
the form X ′G ∩XA\G (since they generate a submodel of (M,w)X

′
G), we also have

(M,w)X
′
G∩XA\G |= ϕ. And this is (M,w) |= 〈[G]〉ϕ by Proposition 4.6.

Now we are ready to deal with the model checking for the positive case. Note
that we do need to check case [G]ϕ due to Proposition 4.10.

Proposition 4.12. Let ϕ ∈ LCAL ∪ LGAL be a formula such that all its sub-
formulas ψ that are within scopes of 〈G〉 or 〈[G]〉 belong to fragment LPAL+ (or
LGAL+). Then the model checking problem for CAL and GAL is in P.
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〈G〉ϕ, 〈[G]〉ϕ: compute (||M||, w) and (||M||XG , w), where XG corresponds to
the strongest strategy of G,

if mc(||M||XG , w, ϕ) then return true else return false.

Proof. For this particular case we modify Algorithm 1 by inserting the following
instead of cases on lines 7 and 8:

For all subformulas of ϕ0, the algorithm calls are in P. Consider the modified
call for 〈[G]〉ϕ. It requires constructing a single update model given a specified
strategy, which is a simple case of restricting the input model to the set of states
in the strategy. This can be done in polynomial time. Then we call the algorithm
on the updated model for ϕ, which by assumption requires polynomial time.

Now, let us show that the algorithm is correct.

Proposition 4.13. Let (M,w) and ϕ ∈ LPAL+ (or in ϕ ∈ LGAL+) be given. The
modified algorithm mc(M,w, ϕ) returns true iff (M,w) |= ϕ.

Proof. By induction on ϕ. We show the case for 〈[G]〉ϕ:
⇒: Suppose that mc(M,w, 〈[G]〉ϕ) returns true. This means that mc(‖M‖XG ,

w, ϕ) returns true, where XG is the strongest strategy of G. By the induction
hypothesis, we have that (‖M‖, w)XG |= ϕ. Since ϕ is positive, for all stronger
updates XG ∩ XA\G it holds that (‖M‖, w)XG∩XA\G |= ϕ, which is (‖M‖, w) |=
〈[G]〉ϕ by Proposition 4.6. Finally, the latter model is bisimilar to (M,w) and
hence (M,w) |= 〈[G]〉ϕ.
⇐: Let (M,w) |= 〈[G]〉ϕ. By Proposition 4.6 this means that there is some

XG such that for all XA\G: (M,w)XG∩XA\G |= ϕ. Set of all XA\G’s also includes
the trivial strategy >A\G, and we have (M,w)XG∩>A\G |= ϕ, which is equivalent
to (M,w)XG |= ϕ. Since ϕ is positive and hence preserved under submodels,
(M,w)X

′
G |= ϕ, where X ′G is the strongest strategy of G. By the induction

hypothesis, we have that mc(‖M‖X′
G , w, ϕ) returns true. And by line 8 of the

modified algorithm, we conclude that mc(‖M‖, w, 〈[G]〉ϕ) returns true.

Note that in this particular case we cannot use the duality of coalition an-
nouncements. Indeed, if we try to rewrite [〈G〉]ϕ into ¬〈[G]〉¬ϕ, we negate positive
formula ϕ and it ceases to be positive. However, we can resolve the case of [〈G〉]ϕ
by translating the formula into equivalent 〈[A \G]〉ϕ, which is allowed by Propo-
sition 4.11.



Chapter 5

Logical Properties of GAL and
CAL

Validity and non-validity of certain logical formulas may shed light on some inter-
nal properties of the logic as well as build (or disproof) intuitions about how this
logic may be (dis)similar to some other one. In Section 5.1 we study how unit-
ing and decoupling groups and coalitions of agents affects their powers to achieve
some configurations of a given model. Moreover, we investigate some relations be-
tween box and diamond versions of group and coalition announcement operators.
After that, in Section 5.2, we consider properties that capture some aspects of the
interaction between CAL and GAL. Particularly, we demonstrate that a proposed
definition of the CAL modality in terms of GAL modalities 〈[G]〉ϕ↔ 〈G〉[A\G]ϕ
is not valid. Finally, it is shown in Section 5.3 that axioms of coalition logic
(Section 2.3) remain valid if they are expressed in CAL. Throughout the chapter
we assume that axioms of PAL remain valid for the richer languages of CAL and
GAL. This is due to the fact that the validity of PAL schemata does not depend
on the structure of formulas involved (and hence the proofs are not inductive)
[van Ditmarsch et al., 2008, Chapter 4].

5.1 Cooperation and Ordering

5.1.1 Virtues of Cooperation

Intuition suggests that various groups and coalitions of agents, when united, can
do no worse than if they were acting on their own. In this section we show that
this intuition is indeed true.

We start with a somewhat obvious statement: if some configuration of a
model can be achieved by a coalition, then the configuration can be achieved by
a superset of the coalition.

Proposition 5.1. 〈[G]〉ϕ→ 〈[G ∪H]〉ϕ, where G,H ⊆ A, is valid.

Proof. Let (M,w) |= 〈[G]〉ϕ for some arbitrary (M,w). By the semantics of CAL

43
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this is equivalent to

∃ψG,∀χA\G : (M,w) |= ψG ∧ [ψG ∧ χA\G]ϕ.

Let us consider formula χA\G: since A\G = A\ (G∪H)∪H \G, we can ‘unpack’
the formula into χA\(G∪H) and χH\G. Hence we have

∃ψG,∀χH\G,∀χA\(G∪H) : (M,w) |= ψG ∧ [ψG ∧ χH\G ∧ χA\(G∪H)]ϕ.

The latter implies

∃ψG,∃>H\G,∀χA\(G∪H) : (M,w) |= ψG ∧ >H\G ∧ [ψG ∧ >H\G ∧ χA\(G∪H)]ϕ,

where >H\G :=
∧
a∈H\GKa>. Combining ψG and >H\G into a single announce-

ment ψG∪H by the united coalition G ∪H, we conclude that

∃ψG∪H ,∀χA\(G∪H) : (M,w) |= ψG∪H ∧ [ψG∪H ∧ χA\(G∪H)]ϕ.

This is equivalent to (M,w) |= 〈[G ∪H]〉ϕ by the semantics.

It was shown in [Ågotnes et al., 2010] that 〈G〉ϕ ↔ 〈G〉〈G〉ϕ. This property
demonstrates that within the framework of GAL a multiple-step strategy of a
group can be executed in a single step. Whether this is true for CAL is an open
question. We show, however, that if the truth of some ϕ can be achieved by
two consecutive coalition announcements by G, then whatever agents from A \G
announce, they cannot preclude G from making ϕ true.

Proposition 5.2. 〈[G]〉〈[G]〉ϕ→ [〈A \G〉]ϕ is valid.

Proof. Suppose that for some (M,w) it holds that (M,w) |= 〈[G]〉〈[G]〉ϕ. This is
equivalent to

∃ψG,∀χA\G,∃ψ′G,∀χ′A\G : (M,w) |= ψG ∧ [ψG ∧ χA\G](ψ′G ∧ [ψ′G ∧ χ′A\G]ϕ).

Since χ′A\G quantifies over all epistemic formulas known to A\G, it also quantifies

over >A\G :=
∧
a∈A\GKa>. Hence it is implied that

∃ψG,∀χA\G,∃ψ′G : (M,w) |= ψG ∧ [ψG ∧ χA\G](ψ′G ∧ [ψ′G ∧ >A\G]ϕ),

which is equivalent to

∃ψG,∀χA\G,∃ψ′G : (M,w) |= ψG ∧ [ψG ∧ χA\G]ψ′G ∧ [ψG ∧ χA\G][ψ′G]ϕ.

Using PAL validity [ψ]χ ∧ [ψ][χ]ϕ↔ [ψ]χ ∧ [ψ]〈χ〉ϕ, we get

∃ψG,∀χA\G,∃ψ′G : (M,w) |= ψG ∧ [ψG ∧ χA\G]ψ′G ∧ [ψG ∧ χA\G]〈ψ′G〉ϕ.

Next, we use PAL validity [ψ]ϕ↔ (ψ → 〈ψ〉ϕ):

∃ψG,∀χA\G, ∃ψ′G : (M,w) |= ψG∧[ψG∧χA\G]ψ′G∧(ψG∧χA\G → 〈ψG∧χA\G〉〈ψ′G〉ϕ).
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By propositional reasoning the latter implies

∃ψG,∀χA\G,∃ψ′G : (M,w) |= ψG ∧ (ψG → (χA\G → 〈ψG ∧ χA\G〉〈ψ′G〉ϕ),

and this implies

∃ψG,∀χA\G,∃ψ′G : (M,w) |= χA\G → 〈ψG ∧ χA\G〉〈ψ′G〉ϕ.

Finally, by PAL axiom 〈ψ〉〈χ〉ϕ↔ 〈ψ ∧ [ψ]χ〉ϕ, we have that

∃ψG,∀χA\G,∃ψ′G : (M,w) |= χA\G → 〈ψG ∧ χA\G ∧ [ψG ∧ χA\G]ψ′G〉ϕ.

We can move ∃ψG within the scope of ∀χA\G, and morph ψG and [ψG∧χA\G]ψ′G
into a single announcement by G.

The latter is (M,w) |= [〈A \G〉]ϕ by the semantics of CAL.

Whether 〈[G]〉〈[G]〉ϕ→ 〈[G]〉ϕ is valid is an open question. We conjecture that
the property is not valid. Consider 〈[G]〉〈[G]〉ϕ: after initial announcement, coali-
tion G has a consecutive announcement to make ϕ true. This announcement,
however, depends on the choice of A \G in the first operator. In other words, a
consecutive announcement by G may vary depending on the initial announcement
by A \G. Hence, it seems highly counterintuitive that G has a single announce-
ment that can incorporate all possible simultaneous announcements by A \G in
a general (infinite) case.

Formula 〈G〉〈H〉ϕ → 〈G ∪ H〉ϕ is a validity of GAL [Ågotnes et al., 2010].
Again, it is unknown whether the same property holds for coalition operators,
and, for the same reasons as for Proposition 5.2, we conjecture that the corre-
sponding formula is not valid in CAL.

We show, however, a generalisation of Proposition 5.2.

Proposition 5.3. 〈[G]〉〈[H]〉ϕ→ [〈A \ (G ∪H)〉]ϕ is valid.

Proof. Let (M,w) |= 〈[G]〉〈[H]〉ϕ. By Proposition 5.1 applied twice, we have
(M,w) |= 〈[G∪H]〉〈[G∪H]〉ϕ, and by Proposition 5.2, the latter implies (M,w) |=
[〈A \ (G ∪H)〉]ϕ.

Next, we show that splitting an announcement by a unified coalition into
consecutive announcements by sub-coalitions may decrease their power to force
certain outcomes. Whether 〈[G∪H]〉ϕ→ 〈[G]〉〈[H]〉ϕ is valid was mentioned as an
open question in [Ågotnes et al., 2016]. We settle this problem by presenting a
counterexample.

Proposition 5.4. 〈[G ∪H]〉ϕ→ 〈[G]〉〈[H]〉ϕ is not valid.

Proof. Let G = {a}, H = {b}, and ϕ := Kb(p∧q∧r)∧¬Ka(p∧q∧r)∧¬Kc(p∧q∧r).
Formula ϕ says that agent b knows that the given propositional variables are true,
and agents a and c do not. Consider model (M, pqr) in Figure 5.1 (reflexive and
transitive arrows are omitted for convenience). Names of the states in the model
show values of propositional variables; for example, (M, pqr) |= p ∧ ¬q ∧ r.
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pqr

pqrpqr pqr

ca, c

c

b

Figure 5.1: Counterexample

By the semantics (M, pqr) |= 〈[{a, b}]〉ϕ if and only if ∃ψa,∃ψb,∀χc : (M, pqr) |=
ψa ∧ ψb ∧ [ψa ∧ ψb ∧ χc]ϕ. Let ψa be Kaq, and ψb be Kb>. Observe that
(M, pqr) |= Kaq ∧ Kb>. This announcement leads to b learning that q. More-
over, c does not know any formula that she can announce to avoid ϕ. An in-
formal argument is as follows. By announcing Kaq agent a ‘chooses’ a union
of a-equivalence classes {pqr, pqr, pqr} (and b ‘chooses’ the whole model). Any
simultaneous ‘choice’ of c includes {pqr, pqr, pqr} as a subset. Thus, intersection
of {pqr, pqr, pqr} and any of unions of c-equivalence classes is {pqr, pqr, pqr}, and
ϕ is true in such a restriction of the model.

Let us show that (M, pqr) 6|= 〈[{a}]〉〈[{b}]〉ϕ, or, equivalently, (M, pqr) |=
[〈{a}〉][〈{b}〉]¬ϕ. According to the semantics, ∀ψa,∃χb,∃χc: (M, pqr) |= ψa →
〈ψa ∧ χb ∧ χc〉[〈{b}〉]¬ϕ. Assume that for an arbitrary ψa, announcements by b
and c are Kbp and Kc> correspondingly. Then (M, pqr) |= ψa ∧ [ψa ∧ Kbp ∧
Kc>][〈{b}〉]¬ϕ. Note that no matter what a announces, Kbp ‘forces’ her to learn
that p∧q∧r, and whatever is announced in the updated model (M, pqr)ψa∧Kbp∧Kc>,
a’s knowledge of p ∧ q ∧ r and, hence, falsity of ϕ remains. Thus we reached a
contradiction.

The same counterexample can be used to demonstrate that [〈A\(G∪H)〉]ϕ→
〈[G]〉〈[H]〉ϕ is not valid, where A \ (G ∪H) = {c}. In the proof of Proposition 5.4
we show that (M, pqr) |= 〈[{a, b}]〉ϕ. Using Proposition 5.7 we obtain (M, pqr) |=
[〈c〉]ϕ. The rest of the proof remains the same.

Corollary 5.5. [〈A \ (G ∪H)〉]ϕ→ 〈[G]〉〈[H]〉ϕ is not valid.

To the best of our knowledge, the group announcement version of Proposition
5.4 has not been considered. We show that the property does not hold for GAL
operators as well. To derive a contradiction, we use the intuition that separated
groups, while being able to force a certain configuration of a model when united,
may lack discerning power on their own. Contrast this to the proof of Proposition
5.4, where the contradiction was derived on the basis that former partners may
spoil each other’s strategies when pitched against one another.

Proposition 5.6. 〈G ∪H〉ϕ→ 〈G〉〈H〉ϕ is not valid1.

Proof. Consider the model in Figure 5.2.

1The original idea of an infinite-grid counterexample is by Tim French. Here we present its
finite and reworked version.
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s t u v
¬p p p ¬pa b a

s′ t′ u′ v′ w′
p ¬p p p ¬p

b a b a

c d c d

Figure 5.2: Model M1

Note thatM1 is bisimulation contracted, and (M1, t) can be distinguished from
other states in this proof by some distinguishing formula ϕ1. Also let G = {a, d}
and H = {b, c}. Next consider model M2 in Figure 5.3.

s t u
¬p p pa b

t′ u′ v′ w′
¬p p p ¬p

a b a

d c

Figure 5.3: Model M2

Again, M2 is bisimulation contracted, and let some ϕ2 be a distinguishing
formula for (M2, t). The union of all agents in model M1 can make ϕ2 true, i.e.
(M1, t) |= 〈{a, d} ∪ {b, c}〉ϕ2. Indeed, a possible mutual choice for the agents
is as follows: Xa = {s, t, u, v, t′, u′, v′, w′}, Xb = {s, t, u, s′, t′, u′, v′, w′}, Xc =
{s, t, u, s′, t′, u′, v′, w′}, and Xd = {s, t, u, v, t′, u′, v′, w′}. Hence the corresponding
group announcement reduce M1 to Xa∩Xb∩Xc∩Xd = {s, t, u, t′, u′, v′, w′} which
is exactly model M2.

Now we show that (M1, t) |= [{a, d}][{b, c}]¬ϕ2, or, informally, any successive
announcements by the corresponding groups do not result in M2. Since we are
interested only in group announcements that can lead to M2, and due to the
fact that M2 is bisimulation contracted, we do not consider announcements that
result in a model with fewer states than M2.

There are only two such strategies for {a, d}. First strategy is the trivial one
— a and d announce Ka> and Kd>. Such an announcement leaves M1 intact. It
is easy to see that whatever {b, c} announce afterwards, they cannot both retain
only states of M2. The closest they can get to M2 is M3, which is presented in
Figure 5.4. Clearly, M3 is not bisimilar to M2.

The second meaningful restriction of M1 by {a, d} is shown in Figure 5.5.
It might seem that the only difference between M2 and M4 is state v. Observe,

however, that v is bisimilar to t′, and any announcement by {b, c} that ‘deletes’
v will also ‘delete’ t′ (see Figure 5.6).
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s t u
¬p p pa b

s′ t′ u′ v′ w′
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b a b a
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Figure 5.4: Model M3

s t u v
¬p p p ¬pa b a

t′ u′ v′ w′
¬p p p ¬p

a b a

d c d

Figure 5.5: Model M4

Thus we showed that (M1, t) |= [{a, d}][{b, c}]¬ϕ2, which is equivalent to
(M1, t) 6|= 〈{a, d}〉〈{b, c}〉ϕ2.

5.1.2 Boxes, Diamonds, and Church-Rosser

In this section we consider two rather straightforward results for coalition an-
nouncement operators, and demonstrate that the Church-Rosser property does
holds in neither GAL nor CAL (although it holds in APAL [Balbiani et al., 2008]).

We start with the fact that if coalition G has an announcement such that they
can achieve ϕ no matter what agents outside of the coalition announce at the same
time, then for every possible announcement by A \ G there is a corresponding
‘counter-announcement’ such that ϕ holds afterwards.

Proposition 5.7. 〈[G]〉ϕ→ [〈A \G〉]ϕ is valid.

Proof. Assume that for some arbitrary (M,w) we have that (M,w) |= 〈[G]〉ϕ. By
the semantics this is equivalent to ∃ψG,∀χA\G : (M,w) |= ψG ∧ [ψG ∧ χA\G]ϕ,
and the latter implies ∀χA\G, ∃ψG : (M,w) |= ψG ∧ [ψG ∧ χA\G]ϕ. Using the
validity of PAL |= [ψ]ϕ ↔ (ψ → 〈ψ〉ϕ), we have that ∀χA\G,∃ψG : (M,w) |=
ψG ∧ (ψG ∧ χA\G → 〈ψG ∧ χA\G〉ϕ), which implies, by propositional reasoning,
∀χA\G,∃ψG : (M,w) |= χA\G → 〈ψG ∧ χA\G〉ϕ. The latter is (M,w) |= [〈A \G〉]ϕ
by the semantics of CAL.

The other direction of Proposition 5.7 is not valid. An intuitive explanation is
that even though A \G may have a ‘counter-announcement’ to every announce-
ment by G, they may, at the same time, lack the single ‘universal’ announcement
for all possible G’s announcements.
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s t u
¬p p pa b

u′ v′ w′
p p ¬p
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Figure 5.6: Model M5

Proposition 5.8. [〈G〉]ϕ→ 〈[A \G]〉ϕ is not valid.

Proof. We present a counterexample. Consider the model in Figure 5.7.

t′ s t u
¬p p ¬p pb a b

Figure 5.7: Model M1

Pointed model (M1, s) can be described by formula ϕ1 := p∧K̂b(¬p∧Ka¬p)∧
K̂a(¬p ∧ K̂bKap).

Let us also consider some submodels of M1 presented in Figure 5.8.

t′ s t
¬p p ¬pb a

s
p

Figure 5.8: Models M2 (top) and M3 (bottom)

Corresponding distinguishing formulas for (M2, s) and (M3, s) are ϕ2 := p ∧
K̂b(¬p ∧Ka¬p) ∧ K̂a(¬p ∧Kb¬p) and ϕ3 := p ∧Kap ∧Kbp.

Let G = {a}, A \G = {b}, and ϕ := ϕ1 ∨ ϕ2 ∨ ϕ3.
First we show that (M1, s) |= [〈a〉]ϕ. By the semantics of CAL this is equivalent

to ∀ψa,∃χb: (M1, s) |= ψa → 〈ψa ∧ χb〉ϕ. In the model, agent a has four possible
‘choices’: {s, t}, {t′, s, t}, {s, t, u}, and {t′, s, t, u}. Options {t′, s, t} and {t′, s, t, u}
clearly satisfy ϕ as agent b announces Kb> at the same time. If agent a ‘chooses’
to announce {s, t} or {s, t, u}, agent b can announce {t′, s} at the same time, and
such a joint announcement results in {s} that satisfies ϕ3.

Now, let us show that (M1, s) 6|= 〈[b]〉ϕ, which is equivalent to (M1, s) |= [〈b〉]¬ϕ.
Agent b has only two options — {t′, s, t, u} and {t′, s}. In the first case, agent
a simultaneously ‘chooses’ {s, t} that leads to ϕ being false. In the second case,
agent a announces Ka>, and ϕ is false in the resulting model.
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The Church-Rosser principle, ♦�ϕ→ �♦ϕ, where ♦ and � are some modal
operators, corresponds to the confluence frame property ∀x, y, z(xRy ∧ xRz →
∃w(yRw ∧ zRw)) (see [Blackburn et al., 2001, Chapter 3]). We are interested in
how group boxes and diamonds commute together. In Proposition 5.9 we show
that the Church-Rosser property does not hold for group announcements. An
intuitive explanation of this fact may be that knowledge of agents changes as a
model is updated. Hence, they may lose their original strategies and discerning
power as a result of an announcement by some other group. In other words, the
order of announcements matters.

Proposition 5.9. 〈G〉[H]ϕ→ [H]〈G〉ϕ is not valid.

Proof. The counterexample model is the same as in Proposition 5.14 and pre-
sented in Figure 5.9.

u′ t′ s t u v
p ¬p p ¬p p ¬pa, b a a a, b c

t′ s t u
¬p p ¬p pa a a, b

Figure 5.9: Models M1 (top) and M2 (bottom)

Formula ϕ is K̂aKb¬p ∧ K̂a(K̂bp ∧ K̂b¬p), and (M2, s) |= ϕ and (M1, s) 6|= ϕ.
First we show that (M1, s) |= 〈{a}〉[{b, c}]¬ϕ. Let a’s announcement be

Ka(¬p → Kc¬p). Update of (M1, s) with this announcement (M1, s)
Ka(¬p→Kc¬p)

is shown in Figure 5.10.

u′ t′ s t u
p ¬p p ¬p p

a, b a a a, b

Figure 5.10: Model (M1, s)
Ka(¬p→Kc¬p)

Note that in this model states t and t′, and u and u′ became bisimilar. Hence,
no matter what agents b and c announce, they cannot get rid of u′ without
‘deleting’ u as well. In other words, agents b and c cannot make ϕ true. This
establishes (M1, s) |= 〈{a}〉[{b, c}]¬ϕ.

The remaining part of the proof is to show that (M1, s) 6|= [{b, c}]〈{a}〉¬ϕ, or,
equivalently, (M1, s) |= 〈{b, c}〉[{a}]ϕ. Let b and c’s announcement be Kc(p →
(Kbp ∨ K̂c¬p)) and Kb(¬p → K̂bp). Such a mutual announcement results in
model M2. Observe that in (M2, s), since the whole model is an a-equivalence
class, agent a has no announcement to modify it. Moreover, (M2, s) |= ϕ, and
hence (M1, s) |= 〈{b, c}〉[{a}]ϕ.

Remark. In [Ågotnes et al., 2010] (as well as in [van Ditmarsch, 2012]) it was
claimed that the Church-Rosser property holds for GAL. However, we presented a
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counterexample to the property in Proposition 5.9. One of the problems with the
proof in [Ågotnes et al., 2010] is the transition from 〈ψ〉[χ]ϕ to 〈ψ ∧ χ〉ϕ, where
ψ and χ are announcements of values of propositional variables by agents (and
thus are positive formulas). We present a small counterexample to 〈ψ ∧ χ〉ϕ →
〈ψ〉〈χ〉ϕ.

Proposition 5.10. Let ψ and χ be positive formulas. The following are not
valid: 〈ψ ∧ χ〉ϕ→ 〈ψ〉〈χ〉ϕ and 〈ψ〉〈χ〉ϕ→ 〈ψ ∧ χ〉ϕ.

Proof. Consider model M in Figure 5.11. State names represent values of propo-
sitional variables in them, and agent a’s relation is the identity.

pqr pq¬r ¬p¬qrc b

Figure 5.11: A counterexample

Let ψ := Kap, χ := Kbq, and ϕ := Kcr. It is easy to see that (M, pqr) |=
〈Kap ∧ Kbq〉Kcr, since the updated model (M, pqr)Kap∧Kbq consists only of one
state — pqr.

Successive announcements, on the other hand, do not make Kcr true. Indeed,
after announcement of Kap, the resulting model consists of pqr and pq¬r. In
both states Kbq holds, hence this announcement does not modify the updated
model, and c considers r and ¬r possible. Formally, (M, pqr) |= [Kap][Kbq]¬Kcr.

The same argument holds in the other direction.

The Church-Rosser principle is not valid in CAL as well.

Proposition 5.11. 〈[G]〉[〈H〉]ϕ→ [〈H〉]〈[G]〉ϕ is not valid.

Proof. Consider models in Figures 5.7 and 5.8. Also let G = {a}, H = {b}, and

ϕ2 := p ∧ K̂b¬p ∧ K̂a¬p, ϕ3 := p ∧ Kap ∧ Kbp, and ϕ := ϕ2 ∨ ϕ3. Note that
(M2, s) |= ϕ2 and (M3, s) |= ϕ3.

First we show that (M1, s) |= 〈[{a}]〉[〈{b}〉]ϕ, which means that agent a has a
strategy Xa such that whichever strategy Xb agent b simultaneously implements,
[〈{b}〉]ϕ holds in the resulting model. Consider a’s strategy Xa = {t′, s, t}. Agent
b has only two options in (M1, s): X

1
b = {t′, s, t, u} and X2

b = {t′, s}. Two possible
resulting models are presented in Figure 5.12

t′ s t
¬p p ¬pb a

st′

p¬p b

Figure 5.12: Resulting Models (M1, s)
Xa∩X1

b (top) and (M1, s)
Xa∩X2

b (bottom)



CHAPTER 5. LOGICAL PROPERTIES OF GAL AND CAL 52

Next let us examine further model updates by coalition announcement [〈{b}〉].
Again, there are only two options for agent b in (M1, s)

Xa∩X1
b : Y 1

b = {t′, s, t}
and Y 2

b = {t′, s}. On Y 1
b agent a responds with the same strategy, and on

Y 2
b she responds with {s, t} that results in the model with single state s. In

both cases ϕ holds. In (M1, s)
Xa∩X2

b agent b has only trivial strategy, and a
responds with {s} yielding the single-state model and making ϕ true. Hence,
(M1, s) |= 〈[{a}]〉[〈{b}〉]ϕ.

Now we show that (M1, s) 6|= [〈{b}〉]〈[{a}]〉ϕ, or, equivalently, that (M1, s) |=
〈[{b}]〉[〈{a}〉]¬ϕ. Let b’s strategy be the trivial one, i.e. Xb = {t′, s, t, u}. Results
of updates of (M1, s) with various a’s strategies are presented in Figure 5.13.

s t
p ¬pa

s t u
p ¬p pa b

t′ s t
¬p p ¬pb a

t′ s t u
¬p p ¬p pb a b

Figure 5.13: Models (M1, s)
Xb∧X1

a , (M1, s)
Xb∧X2

a , (M1, s)
Xb∧X3

a , and (M1, s)
Xb∧X4

a

Finally, we consider further updates of the models in Figure 5.13 by [〈{a}〉].
It is easy to see that any further announcements by a in models (M1, s)

Xb∧X1
a

and (M1, s)
Xb∧X2

a can be countered by the trivial strategy of b so that ¬ϕ is
true in resulting models. In model (M1, s)

Xb∧X3
a agent b responds with {t′, s, t}

on a’s strategy {s, t}, and with {t′, s} on a’s {t′, s, t}; in both restrictions ϕ is
false. Cases for (M1, s)

Xb∧X4
a are the same as for other updates of (M1, s). Thus,

(M1, s) |= 〈[{b}]〉[〈{a}〉]¬ϕ.

5.2 Interaction Between Coalition and Group

Announcements

We start this section with somewhat basic results concerning interaction between
GAL and CAL operators.

In Proposition 5.12 formula 1 states that if a coalition can force some outcome,
then they can achieve the outcome by a group announcement. Property 2 shows
that coalition and group announcements are equivalent for the grand coalition
A. That an anti-coalition cannot undo the result of a coalition announcement
is presented in 3. Finally, property 4 states that if a coalition can force some
outcome, then they can achieve the outcome by making one additional group
announcement. The converse, however, is not valid (formula 5).



CHAPTER 5. LOGICAL PROPERTIES OF GAL AND CAL 53

Proposition 5.12. 1–4 are valid, and 5 is not valid.

1. 〈[G]〉ϕ→ 〈G〉ϕ,

2. 〈[A]〉ϕ↔ 〈A〉ϕ,

3. 〈[G]〉ϕ↔ 〈[G]〉[A \G]ϕ,

4. 〈[G]〉ϕ→ 〈[G]〉〈G〉ϕ,

5. 〈[G]〉〈G〉ϕ→ 〈[G]〉ϕ.

Proof. 1. If G can make ϕ true no matter what agents from A \ G simulta-
neously announce, they can make ϕ true if all agents from coalition A \ G
announce >.

2. Trivially by the semantics of the grand coalition.

3. From left to right. We prove the contrapositive. Let (M,w) |= [〈G〉]〈A \
G〉ϕ for some arbitrary (M,w). By the semantics of CAL we have that
∀ψG,∃χA\G,∃χ′A\G: (M,w) |= ψG → 〈ψG ∧ χA\G〉〈χ′A\G〉ϕ. Due to PAL

validity 〈ψ〉〈χ〉ϕ↔ 〈ψ ∧ [ψ]χ〉ϕ the latter is equivalent to (M,w) |= ψG →
〈ψG ∧ χA\G ∧ [ψG ∧ χA\G]χ′A\G〉ϕ. Note that χA\G ∧ [ψG ∧ χA\G]χ′A\G in the
presence of ψG ∧ χA\G is equivalent to some epistemic formula announced
by agents from A \G (see the proof of Proposition 5.13 for details). Hence,
by semantics the latter is equivalent to (M,w) |= [〈G〉]ϕ.

From right to left. Immediate by the fact that A \G can announce >A\G.

4. Immediate by the fact that G can announce >G after the coalition an-
nouncement.

5. The counterexample is the same as in Proposition 5.8 with G = {b}. Indeed,
(M1, s) |= 〈[{b}]〉〈{b}〉ϕ, which is equivalent to ∃ψb,∀χa,∃ψ′b: (M,w) |=
ψb∧ [ψb∧χa]〈ψ′b〉ϕ. Let ψb := Kb>. Then we have that ∀χa,∃ψ′b: (M,w) |=
Kb> ∧ [Kb> ∧ χa]〈ψ′b〉ϕ, or ∀χa,∃ψ′b: (M,w) |= [χa]〈ψ′b〉ϕ. The rest of the
proof follows the one of Proposition 5.8 with substitution of b’s simultaneous
choice {t′, s} with the consecutive choice {s}.

Whether CAL operators can be expressed in GAL is an open question (work
in progress). The most probable definition of coalition announcements in terms
of group announcements is 〈[G]〉ϕ ↔ 〈G〉[A \ G]ϕ. The validity of this formula
was stated to be an open question in [van Ditmarsch, 2012; Ågotnes et al., 2016].
We settle this problem by proving one direction and presenting a counterexample
to the other direction.

Consider the left-to-right direction of the formula. In the antecedent all agents
make a simultaneous announcement, whereas in the consequent agents from A\G
know the announcement ψG made by G. Thus, in the updated model (M,w)ψG

the agents in A \ G may have learned some new epistemic formulas χA\G that
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they did not know before the announcement. However, since ψG holds in the
initial model, and χA\G holds in the updated one, agents from A \G can always
make an announcement in the initial model that they know that after the an-
nouncement of ψG, χA\G is true. Informally, Beth can say to Ann: ‘I don’t know
whether Infinite Jest is worth reading, but if you say that it is, then I’ll learn that
you’ve heard about (and probably read) the book.’ This announcement, made
simultaneously with the announcement by G, ‘models’ the effect of announcing
χA\G later. Moreover, this announcement is equivalent to an announcement of
an epistemic formula due to the translation function (Definition 2.25).

Proposition 5.13. 〈[G]〉ϕ→ 〈G〉[A \G]ϕ is valid.

Proof. Assume that for some pointed model (M,w) it holds that (M,w) |= 〈[G]〉ϕ.
By the semantics of CAL this is equivalent to

∃ψG,∀χA\G : (M,w) |= ψG ∧ [ψG ∧ χA\G]ϕ.

Since χA\G quantifies over all possible announcements by A \G, it also quantifies
over a specific subset of these announcements —KA\G[ψG]χ′A\G :=

∧
a∈A\GKa[ψG]χ′a

for some ψG and for all χ′a ∈ LEL.
Hence ∃ψG, ∀χA\G: (M,w) |= ψG ∧ [ψG ∧ χA\G]ϕ implies

∃ψG,∀χ′A\G : (M,w) |= ψG ∧ [ψG ∧KA\G[ψG]χ′A\G]ϕ.

Note that KA\G[ψG]χ′A\G is not an epistemic formula per se. It is equivalent,
however, to an epistemic formula of type KA\GχA\G, where χA\G ∈ LEL, via
translation t(KA\G[ψG]χ′A\G) (Definition 2.25). Thus we have that

∃ψG,∀χ′A\G : (M,w) |= ψG ∧ [ψG ∧ t(KA\G[ψG]χ′A\G)]ϕ.

Let us consider announcement ψG ∧ t(KA\G[ψG]χ′A\G). By propositional rea-

soning it is equivalent to ψG∧(ψG → t(KA\G[ψG]χ′A\G)). Since ψG is an epistemic

formula, the latter is equivalent to ψG ∧ t(ψG → KA\G[ψG]χ′A\G). Applying the

PAL axiom [ψ]Kaϕ ↔ (ψ → Ka[ψ]ϕ), we get ψG ∧ t([ψG]KA\Gχ
′
A\G), which is

equivalent to ψG ∧ [ψG]KA\Gχ
′
A\G. Finally, we have that

∃ψG,∀χ′A\G : (M,w) |= ψG ∧ [ψG ∧ [ψG]KA\Gχ
′
A\G]ϕ.

Using the axiom [ψ][χ]ϕ↔ [ψ ∧ [ψ]χ]ϕ, we get

∃ψG,∀χ′A\G : (M,w) |= ψG ∧ [ψG][KA\Gχ
′
A\G]ϕ,

where χ′A\G ∈ LEL. The latter is equivalent (M,w) |= 〈G〉[A\G]ϕ due to validity

|= ψ ∧ [ψ]ϕ↔ 〈ψ〉ϕ and by the semantics of GAL.

The converse of Proposition 5.13 is, however, not valid. There are two main
points in the intuition behind a counterexample. First, an announcement by G
may make some states bisimilar and thus indistinguishable for A \ G. In such a
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way, agents from A\G may ‘lose’ some strategies they had in the original model.
And the second point is that an announcement by a group of agents A \ G can
influence not only epistemic relations of their opponents, but of agents from A\G
as well.

Proposition 5.14. 〈G〉[A \G]ϕ→ 〈[G]〉ϕ is not valid.

Proof. We present a counterexample (Figures 5.14, 5.15, and 5.16) to the contra-
position [〈G〉]ϕ → [G]〈A \ G〉ϕ. The reader can verify that models M1 and M2

are bisimulation contracted.

u′ t′ s t u v
p ¬p p ¬p p ¬pa, b a a a, b c

t′ s t u
¬p p ¬p pa a a, b

Figure 5.14: Models M1 and M2

Let G = {a}, and A \G = {b, c}. Also, let ϕ := K̂aKb¬p ∧ K̂a(K̂bp ∧ K̂b¬p).
This formula is a distinguishing formula of state s of model M2, i.e. ϕ is true
only in (M2, s) and nowhere else in this proof.

First, we show that (M1, s) |= [〈a〉]ϕ. By the semantics of CAL this means that
for every ψa, there are χb and χc such that (M1, s) |= ψa → 〈ψa ∧ χb ∧ χc〉ϕ. In
terms of strategies this says that whatever strategy Xa agent a chooses in (M, s),
agents {b, c} have a strategy X{b,c} such that restriction of M to Xa∩X{b,c} results
in some M ′, and (M ′, s) |= ϕ. Agent a has two strategies in (M1, s): >a and
{u′, t′, s, t, u}a. On the other hand, due to the fact that intersection of unions of
relations of b and c is an identity relation, agents {b, c} have all possible submodels
ofM1 that include s as strategies. For either of a’s strategies, >a or {u′, t′, s, t, u}a,
agents {b, c} announce {t′, s, t, u}{b,c}. (Particularly, b announces {u′, t′, s, t, u}b,
and c announces {t′, s, t, u, v}c.) Such a simultaneous joint announcement results
in model M2, and ϕ holds in (M2, s).

Now, let us show that (M1, s) 6|= [a]〈{b, c}〉ϕ, which is equivalent, by the se-
mantics, to (M1, s) |= 〈a〉[{b, c}]¬ϕ. In terms of strategies, this means that agent
a has some strategy Xa in (M1, s) such that whichever strategy agents {b, c}
choose in (M1, s)

Xa , ϕ does not hold in the resulting model. Let a announce
{u′, t′, s, t, u}. Such an announcement makes states u and u′, and t and t′ bisim-
ilar. The resulting model M3 and its bisimulation contraction are presented in
Figure 5.15.

In model (‖M3‖, s) agents {b, c} have the following strategies: {s, t, u}{b,c},
{s, t}{b,c}, and {s}{b,c}. Results of corresponding updates are presented in Figure
5.16.

It is easy to check that none of the models from Figure 5.16 satisfy ϕ. Hence,
(M1, s) 6|= [a]〈{b, c}〉ϕ.
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u′ t′ s t u
p ¬p p ¬p p

a, b a a a, b

s t u
p ¬p pa a, b

Figure 5.15: Model M3 and its contraction

s t u
p ¬p pa a, b

s t
p ¬pa

s
p

Figure 5.16: Subsequent updates of model (‖M3‖, s)

5.3 Coalition Annoucement Logic Subsumes Coali-

tion Logic

It is known [Ågotnes and van Ditmarsch, 2008] that CAL subsumes CL, i.e. all
axioms of CL are valid in CAL, and rules of inference of CL are validity preserving
in CAL. However, to the best of our knowledge, a formal proof has not yet been
presented.

Proposition 5.15. All of the following are valid and validity preserving in CAL.

(C0) all instantiations of propositional tautologies,
(C1) ¬〈[G]〉⊥,
(C2) 〈[G]〉>,
(C3) ¬〈[∅]〉¬ϕ→ 〈[A]〉ϕ,
(C4) 〈[G]〉(ϕ1 ∧ ϕ2)→ 〈[G]〉ϕ1,
(C5) 〈[G]〉ϕ1 ∧ 〈[H]〉ϕ2 → 〈[G ∪H]〉(ϕ1 ∧ ϕ2), if G ∩H = ∅,
(R0) ` ϕ, ϕ→ ψ ⇒` ψ,
(R1) ` ϕ↔ ψ ⇒` 〈[G]〉ϕ↔ 〈[G]〉ψ.

Proof. C0 and R0 are obvious.
C1: It holds that |= >, and > is true in every restriction of a model, i.e.

|= [ψ]>. In particular, for some model (M,w) and all true formulas ψG and
χA\G: (M,w) |= 〈ψG ∧ χA\G〉>. We can relax the requirement of ψG being true
by adding the formula as an antecedent. Formally, for all (true and false) ψG and
some (true) χA\G: (M,w) |= ψG → 〈ψG ∧ χA\G〉>. The latter is (M,w) |= [〈G〉]>
by the semantics this is equivalent to (M,w) |= ¬〈[G]〉⊥ by the duality of the
coalition announcement operators.
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C2: For any pointed model (M,w) and any announcement ψG∧χA\G it holds
that (M,w) |= [ψG∧χA\G]>. The latter implies that for some true ψG and for all
χA\G: (M,w) |= ψG ∧ [ψG ∧ χA\G]>, which is (M,w) |= 〈[G]〉> by the semantics.

C3: Let ¬〈[∅]〉¬ϕ be true in some arbitrary pointed model (M,w). This is
equivalent to ∃ψA: (M,w) |= ¬[ψA]¬ϕ, which is (M,w) |= 〈[A]〉ϕ by the semantics.

C4: Suppose that for some (M,w), (M,w) |= 〈[G]〉(ϕ1 ∧ ϕ2) holds. By the
semantics, ∃ψG,∀χA\G: (M,w) |= ψG ∧ [ψG ∧ χA\G](ϕ1 ∧ ϕ2). Then, by axiom of
PAL [ψ](ϕ∧χ)↔ [ψ]ϕ∧[ψ]χ, we have ∃ψG, ∀χA\G: (M,w) |= ψG∧[ψG∧χA\G]ϕ1∧
[ψG ∧ χA\G]ϕ2. The latter implies ∃ψG,∀χA\G: (M,w) |= ψG ∧ [ψG ∧ χA\G]ϕ1,
which is (M,w) |= 〈[G]〉ϕ1 by the semantics.

C5: Assume that for some (M,w) we have that (M,w) |= 〈[G]〉ϕ1 ∧ 〈[H]〉ϕ2.
Let us consider the first conjunct (M,w) |= 〈[G]〉ϕ1. By the semantics it is equiv-
alent to ∃ψG, ∀χA\G: (M,w) |= ψG ∧ [ψG ∧ χA\G]ϕ1. Since G ∩ H = ∅, we
can split χA\G into χH and χA\G∪H . Thus we have that ∃ψG, ∀χH ,∀χA\(G∪H):
(M,w) |= ψG ∧ [ψG ∧χH ∧χA\(G∪H)]ϕ1. The same holds for the second conjunct:
∃ψH ,∀χG,∀χA\(G∪H): (M,w) |= ψH ∧ [ψH ∧ χG ∧ χA\(G∪H)]ϕ2. Since χH (χG)
quantifies over all formulas known to H (G), we can substitute χH (χG) with ψH
(ψG). Hence we have

∃ψG,∃ψH ,∀χA\(G∪H) :

(M,w) |= ψG ∧ ψH ∧ [ψG ∧ ψH ∧ χA\(G∪H)]ϕ1 ∧ [ψG ∧ ψH ∧ χA\G∪H ]ϕ2.

By the axiom of PAL [ψ](ϕ ∧ χ)↔ [ψ]ϕ ∧ [ψ]χ, we have that

∃ψG,∃ψH ,∀χA\(G∪H) : (M,w) |= ψG ∧ ψH ∧ [ψG ∧ ψH ∧ χA\(G∪H)](ϕ1 ∧ ϕ2),

and the latter is equivalent to (M,w) |= 〈[G ∪H]〉(ϕ1 ∧ ϕ2) by the semantics.
R1: Assume that |= ϕ ↔ ψ. This means that for any pointed model (M,w)

the following holds: (M,w) |= ϕ iff (M,w) |= ψ (1). Now suppose that for
some pointed model (M, v) it holds that (M, v) |= 〈[G]〉ϕ. By the semantics,
∃ψG,∀χA\G: (M, v) |= ψG ∧ [ψG ∧ χA\G]ϕ, which is equivalent to the follow-
ing: (M, v) |= ψG and ((M, v) |= ψG ∧ χA\G implies (MψG∧χA\G , v) |= ϕ). By
(1) we have that ∃ψG,∀χA\G: (M, v) |= ψG and ((M, v) |= ψG ∧ χA\G implies
(MψG∧χA\G , v) |= ψ), which is (M, v) |= 〈[G]〉ψ by the semantics. The same argu-
ment holds in the other direction.

Proposition 5.15 indicates that CAL is indeed a coalition logic in the sense of
[Pauly, 2002]. The proof of the proposition is a straightforward application of the
semantics of CAL. In [Ågotnes and van Ditmarsch, 2008], however, it was shown
that for every epistemic model there is an epistemic coalition model that satisfies
exactly the same formulas of the logic. This implies that some of the results
presented in the chapter (in particular, Propositions 5.1, 5.8, and 5.15) follow
immediately from this fact. Nonetheless, our alternative proofs are interesting in
their own right as more ‘direct’ versions of their ‘immediate’ siblings.



Chapter 6

A Logic of Coalition and
Relativised Group
Announcements

A sound and complete axiomatisation of CAL is an open question. One of the
reasons why finding one seems hard is the inherent alternation of quantifiers in the
semantics of the coalition announcement operators. In order to mitigate this, we
introduce relativised group announcements that allow us to separate a coalition’s
announcements from counter-announcements by their opponents. The resulting
formalism, Coalition and Relativised Group Announcement Logic (CoRGAL), is
sound and complete. To the best of our knowledge, this is the first axiomatisation
of a logic with coalition announcements. CoRGAL is reminiscent of alternating-
time temporal dynamic epistemic logic (ATDEL) [de Lima, 2014]. The latter,
however, is a more PDL-style logic [Harel et al., 2000] with postconditions and
factual change. Moreover, in ATDEL agents are not required to know the for-
mulas they announce. This chapter is based on [Galimullin and Alechina, 2017]
(and its corrected version [Galimullin and Alechina, 2018]).

6.1 Syntax, Semantics, and Axiomatisation

6.1.1 Syntax and Semantics

Let P denote a countable set of propositional variables, and A be a finite set of
agents.

Definition 6.1 (Language of CoRGAL). The language of coalition and relativised
group announcement logic LCoRGAL is as follows:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | [ϕ]ϕ | [G,ϕ]ϕ | [〈G〉]ϕ,

where p ∈ P , a ∈ A, G ⊆ A, and all the usual abbreviations of propositional logic
and conventions for deleting parentheses hold. Diamond version of the operator
[G,χ]ϕ is defined as 〈G,χ〉ϕ := ¬[G,χ]¬ϕ.

58
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Relativised group announcement [G,χ]ϕ says that ‘given announcement χ,
whatever agents from G announce at the same time, they cannot avoid ϕ.’ In
this chapter we are interested in χ’s that are announced by a (anti-)coalition, i.e.
we consider primarily χA\G :=

∧
a∈A\GKaχa such that χa ∈ LEL.

Let us recall the definition of necessity forms.

Definition 6.2. (Necessity forms) Let ϕ ∈ LCoRGAL, then necessity forms are
inductively defined as follows:

η(]) ::= ] | ϕ→ η(]) | Kaη(]) | [ϕ]η(]).

The dual of a necessity form η(ϕ) is a possibility form η{ϕ} that is defined as
η(ϕ) ::= ¬η{¬ϕ}. The atom ] has a unique occurrence in each necessity form.
The result of the replacement of ] with ϕ in some η(]) is denoted as η(ϕ) and is
inductively defined as follows:

• ](ϕ) = ϕ,

• (ψ → η)(ϕ) = ψ → η(ϕ),

• (Kaη)(ϕ) = Kaη(ϕ),

• ([ψ]η)(ϕ) = [ψ]η(ϕ).

Formulas of CoRGAL are interpreted on epistemic models introduced in Def-
inition 2.2.

Definition 6.3 (Semantics of CoRGAL). Let a pointed model (M,w) with
M = (W , ∼, V ), a ∈ A, G ⊆ A, ψG ∈ LEL and ϕ, ψ, χ ∈ LCoRGAL be given.
The semantics of coalition and relativised group announcement logic is presented
below.

(M,w) |= p iff w ∈ V (p)
(M,w) |= ¬ϕ iff (M,w) 6|= ϕ
(M,w) |= ϕ ∧ ψ iff (M,w) |= ϕ and (M,w) |= ψ
(M,w) |= Kaϕ iff for all v ∈ W : w ∼a v implies (M, v) |= ϕ
(M,w) |= [ψ]ϕ iff (M,w) |= ψ implies (M,w)ψ |= ϕ
(M,w) |= [G,χ]ϕ iff (M,w) |= χ and ∀ψG : (M,w) |= [ψG ∧ χ]ϕ
(M,w) |= [〈G〉]ϕ iff ∀ψG, ∃χA\G : (M,w) |= ψG

implies (M,w) |= 〈ψG ∧ χA\G〉ϕ

Note that as in GAL and CAL we restrict the quantification in [G,χ]ϕ and
[〈G〉]ϕ to formulas of epistemic logic. This allows us to avoid circularity in the
definition of semantics.

Semantics for duals of relativised group announcements and coalition an-
nouncements is as follows.

(M,w) |= 〈G,χ〉ϕ iff (M,w) |= χ implies ∃ψG : (M,w) |= 〈ψG ∧ χ〉ϕ
(M,w) |= 〈[G]〉ϕ iff ∃ψG, ∀χA\G : (M,w) |= ψG and (M,w) |= [ψG ∧ χA\G]ϕ
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Note that semantics of coalition announcement operators are given in a ‘clas-
sic’ way. An equivalent definition is possible using relativised group announce-
ments.

(M,w) |= [〈G〉]ϕ iff ∀ψG : (M,w) |= 〈A \G,ψG〉ϕ
(M,w) |= 〈[G]〉ϕ iff ∃ψG : (M,w) |= [A \G,ψG]ϕ

6.1.2 Relativised Group Announcements

Relativised group announcements help us to ‘split’ coalition announcements, and
treat the coalition’s announcement and anti-coalition responses separately. Note
that the syntax of such announcements is very similar to the one for relativised
common knowledge.

Next we show some intuitive properties of relativised group announcements.

Proposition 6.1. All of the following are valid:

1. [G]ϕ↔ [G,>]ϕ

2. [∅, ψ]ϕ↔ 〈ψ〉ϕ

3. [A,ψ]ϕ→ 〈ψ〉ϕ

4. ¬χ→ 〈G,χ〉ϕ

Proof. 1. Trivial by the definition of semantics (Definition 6.3).

2. By property 2 of Proposition 3.3.

3. By the fact that group A can always announce >A :=
∧
a∈AKa>.

4. Assume that for some arbitrary pointed model (M,w) we have that (M,w) |=
¬χ. By propositional reasoning we have that (M,w) |= ¬χ→ (χ→ ψ) for
any ψ ∈ LCoRGAL. In particular, (M,w) |= ¬χ→ (χ→ 〈ψG ∧ χ〉ϕ) for any
ψG. The latter implies (M,w) |= ¬χ→ 〈G,χ〉ϕ by the semantics.

The first property states that classic group announcements can be defined
using relativised group announcement. Indeed, announcing a tautology in con-
junction with an announcement by a group does not have any additional effect
on the resulting model. Validities 2 and 3 demonstrate the relation between pub-
lic announcements and relativised group announcements with empty and grand
groups. Note that the property 3 holds only in one direction. A counterexample
for the other direction would be a model with two states such that p holds only in
one of them, agent’s a relation is universal, and agent’s b relation is the identity.
If ψ := p∨¬p and ϕ := ¬Kap, then 〈p∨¬p〉¬Kap is true, and [{a, b}, p∨¬p]¬Kap
is false in the p-state (since agent b can announce Kbp). Formula 4 says that if a
false formula is being announced, we can always add a group announcement such
that any ϕ holds vacuously afterwards.
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6.1.3 Axiom System of CoRGAL

In this section we present an axiomatisation of CoRGAL and show its soundness.
The axiomatisation based on the axiom system for PAL, and have two additional
axioms and four additional rules of inference.

Definition 6.4 (Axiomatisation of CoRGAL). The axiom system for CoRGAL
is an extension of PAL with a relativised version of GAL and interaction axioms.

(A0) propositional tautologies,
(A1) Ka(ϕ→ ψ)→ (Kaϕ→ Kaψ),
(A2) Kaϕ→ ϕ,
(A3) Kaϕ→ KaKaϕ,
(A4) ¬Kaϕ→ Ka¬Kaϕ,
(A5) [ϕ]p↔ (ϕ→ p),
(A6) [ϕ]¬ψ ↔ (ϕ→ ¬[ϕ]ψ),
(A7) [ϕ](ψ ∧ χ)↔ ([ϕ]ψ ∧ [ϕ]χ),
(A8) [ϕ]Kaψ ↔ (ϕ→ Ka[ϕ]ψ),
(A9) [ϕ][ψ]χ↔ [ϕ ∧ [ϕ]ψ]χ,
(A10) [G,χ]ϕ→ χ ∧ [ψG ∧ χ]ϕ for any ψG,
(A11) [〈G〉]ϕ→ 〈A \G,ψG〉ϕ for any ψG,
(R0) If ` ϕ and ` ϕ→ ψ, then ` ψ,
(R1) If ` ϕ, then ` Kaϕ,
(R2) If ` ϕ, then ` [ψ]ϕ,
(R3) If ` ϕ, then ` [G,χ]ϕ,
(R4) If ` ϕ, then ` [〈G〉]ϕ,
(R5) If ∀ψG :` η(χ ∧ [ψG ∧ χ]ϕ), then ` η([G,χ]ϕ),
(R6) If ∀ψG :` η(〈A \G,ψG〉ϕ), then ` η([〈G〉]ϕ).

We call CoRGAL the smallest subset of LCoRGAL that contains all the axioms
A0 – A11 and is closed under rules of inference R0 – R6. Elements of CoRGAL
are called theorems. Note that R5 and R6 are infinitary rules: they require an
infinite number of premises.

Axiom A10 says that if given some χ, agents from G cannot avoid ϕ no matter
what they announce, they cannot avoid ϕ making any particular announcement
in this situation. The property expressed by A11 is as follows: if for every an-
nouncement by G there is a ‘counter-announcement’ by A \ G, then for some
particular announcement ψG by G there is a ‘counter-announcement’ by A \ G.
Rules R3 and R4 are necessitation rules for relativised group announcements and
coalition announcements. Informally, they express the fact that if ϕ is valid, ϕ
remains so no matter what agents announce. Rules R5 and R6 demonstrate how
to infer formulas with relativised group and coalition announcements from an
infinite number of premises.

Proposition 6.2. Axioms A10 and A11 are valid.

Proof. Follows directly from the definition of semantics (Definition 6.3). We just
show validity of (A11).
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Assume that for some arbitrary pointed model (M,w) is holds that (M,w) |=
[〈G〉]ϕ. By semantics this is equivalent to ∀ψG,∃χA\G: (M,w) |= ψG → 〈ψG ∧
χA\G〉ϕ. Since ψG quantifies over all epistemic formulas known to G, we can
choose any particular ψG. Hence, we have that ∃χA\G: (M,w) |= ψG → 〈ψG ∧
χA\G〉ϕ, which is equivalent to (M,w) |= 〈A \G,ψG〉ϕ by semantics.

Proposition 6.3. R5 and R6 are truth-preserving.

Proof. The proof is by induction on the construction of necessity forms.
(R5) Base case. If for all ψG we have that (M,w) |= χ ∧ [ψG ∧ χ]ϕ, then this

is equivalent to (M,w) |= [G,χ]ϕ by the semantics.
Induction Hypothesis. If for some (M,w) it holds that (M,w) |= η(χ ∧ [ψG ∧

χ]ϕ) for all ψG, then (M,w) |= η([G,χ]ϕ).
Case ∀ψG: τ → η(χ ∧ [ψG ∧ χ]ϕ) for some τ ∈ LCoRGAL. This means that

(M,w) |= ¬τ or (M,w) |= η(χ ∧ [ψG ∧ χ]ϕ). By Induction Hypothesis we have
that (M,w) |= ¬τ or (M,w) |= η([G,χ]ϕ), which is equivalent to (M,w) |= τ →
η([G,χ]ϕ).

Case ∀ψG: Kaη(χ∧ [ψG∧χ]ϕ) for some a ∈ A. By semantics we have that for
every v ∈ W : w ∼a v implies (M, v) |= η(χ∧[ψG∧χ]ϕ). By Induction Hypothesis
we conclude that for every v ∈ W : w ∼a v implies (M, v) |= η([G,χ]ϕ), which is
equivalent to (M,w) |= Kaη([G,χ]ϕ).

Case ∀ψG: [τ ]η(χ ∧ [ψG ∧ χ]ϕ) for some τ ∈ LCoRGAL. This means that
(M,w) |= τ implies (M,w)τ |= η(χ ∧ [ψG ∧ χ]ϕ). By Induction Hypothesis
we have that (M,w) |= τ implies (M,w)τ |= η([G,χ]ϕ), which is equivalent to
(M,w) |= [τ ]η([G,χ]ϕ).

(R6) Base case. If for all ψG we have that (M,w) |= 〈A \G,ψG〉ϕ, then this
is equivalent to (M,w) |= [〈G〉]ϕ by the semantics.

Induction Hypothesis. If for some (M,w) it holds that (M,w) |= η(〈A \
G,ψG〉ϕ) for all ψG, then (M,w) |= η([〈G〉]ϕ).

Case ∀ψG: τ → η(〈A \ G,ψG〉ϕ) for some τ ∈ LCoRGAL. This means that
(M,w) |= ¬τ or (M,w) |= η(〈A \ G,ψG〉ϕ). By Induction Hypothesis we have
that (M,w) |= ¬τ or (M,w) |= η([〈G〉]ϕ), which is equivalent to (M,w) |= τ →
η([〈G〉]ϕ).

Case ∀ψG: Kaη(〈A\G,ψG〉ϕ) for some a ∈ A. By semantics we have that for
every v ∈ W : w ∼a v implies (M, v) |= η(〈A\G,ψG〉ϕ). By Induction Hypothesis
we conclude that for every v ∈ W : w ∼a v implies (M, v) |= η([〈G〉]ϕ), which is
equivalent to (M,w) |= Kaη([〈G〉]ϕ).

Case ∀ψG: [τ ]η(〈A \ G,ψG〉ϕ) for some τ ∈ LCoRGAL. This means that
(M,w) |= τ implies (M,w)τ |= η(〈A\G,ψG〉ϕ). By Induction Hypothesis we have
that (M,w) |= τ implies (M,w)τ |= η([〈G〉]ϕ), which is equivalent to (M,w) |=
[τ ]η([〈G〉]ϕ).

Theorem 6.4 (Soundness). For all ϕ ∈ LCoRGAL, if ϕ ∈ CoRGAL, then ϕ is
valid.

Proof. Soundness of A0–A4, R0, and R1 is due to soundness of EL. Axioms
A5–A9 and rule of inference R2 are sound, since PAL is sound [van Ditmarsch
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et al., 2008, Chapter 4]. Soundness of R5 and R6 follows from Proposition 6.3,
and validity of A10 and A11 is shown in Proposition 6.2. So, it is only left to
show that R3 and R4 are sound. Proofs for both of the rules are similar, and we
present only the proof for R4.

(R4) Assume |= ϕ. Since public announcements preserve validity, we have
that for any (M,w) and ψ, (M,w) |= [ψ]ϕ. Since ψ is arbitrary, we have that
for all ψG and χA\G (M,w) |= [ψG ∧ χA\G]ϕ. The latter implies that for some
true ψG it holds that (M,w) |= ψG ∧ [ψG ∧ χA\G]ϕ, which is (M,w) |= [〈G〉]ϕ by
semantics. Since (M,w) was arbitrary, we conclude that |= [〈G〉]ϕ.

Note that unlike R3 and R4, rules R5 and R6 preserve not only validity, but
truth as well (Proposition 6.3). This fact is quite important in the proof of the
completeness of the logic, since we use closure on these rules (and modus ponens,
which is also truth-preserving) to define theories. As was pointed in Section 3.1,
there are multiple rules of inference we would like to use to deduce formulas with
relativised group and coalition announcements. It is easy to see that rule

If ∀ψG :` χ ∧ [ψG ∧ χ]ϕ, then ` [G,χ]ϕ

is truth preserving. So is, for example,

If ∀ψG :` Ka(χ ∧ [ψG ∧ χ]ϕ), then ` Ka([G,χ]ϕ),

or
If ∀ψG :` τ → [θ](χ ∧ [ψG ∧ χ]ϕ), then ` τ → [θ]([G,χ]ϕ)

and so on. Necessity forms succinctly capture such a plethora of rules of inference.

6.2 Completeness

In order to prove completeness of CoRGAL, we expand and modify the complete-
ness proof for APAL [Balbiani et al., 2008; Balbiani and van Ditmarsch, 2015;
Balbiani, 2015]. Although the proof is partially based upon the classic canonical
model approach, we have to ensure that construction of maximal consistent theo-
ries (Proposition 6.8) allows us to include an infinite amount of formulas for cases
of coalition announcements. This is possible due to axioms A10, A11 and rules
of inference R5, R6. After that we use induction on the complexity of CoRGAL
formulas to prove Truth Lemma.

First, we prove a useful auxiliary lemma.

Lemma 6.5. Let ϕ, ψ ∈ LCoRGAL. If ϕ → ψ is a theorem, then η(ϕ) → η(ψ) is
a theorem as well.

Proof. Assume that ϕ → ψ is a theorem. We prove the lemma by induction on
η.

Base case η := ]. Formula ϕ→ ψ is a theorem by assumption.
Induction Hypothesis. Assume that for some η, η(ϕ)→ η(ψ) is a theorem.
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Case (τ → η(ϕ)) → (τ → η(ψ)) for some τ ∈ LCoRGAL. Formula (η(ϕ) →
η(ψ)) → ((τ → η(ϕ)) → (τ → η(ψ))) is a propositional tautology, and, hence,
a theorem of CoRGAL. Using Induction Hypothesis and R0, we have that (τ →
η(ϕ))→ (τ → η(ψ)) is a theorem.

Case (Kaη(ϕ))→ (Kaη(ψ)) for some a ∈ A. Since η(ϕ)→ η(ψ) is a theorem
by Induction Hypothesis, Ka(η(ϕ) → η(ψ)) is also a theorem by R1. Next,
Ka(η(ϕ) → η(ψ)) → (Kaη(ϕ) → Kaη(ψ)) is an instance of A1, and, hence, a
theorem. Finally, using R0 we have that Kaη(ϕ)→ Kaη(ψ) is a theorem.

Case ([τ ]η(ϕ)) → ([τ ]η(ψ)) for some τ ∈ LCoRGAL. Formula [τ ](η(ϕ) →
η(ψ)) → ([τ ]η(ϕ) → [τ ]η(ψ)) is a theorem of PAL (see [van Ditmarsch et al.,
2008, Chapter 4]), and hence of CoRGAL. Using Induction Hypothesis and R0
we conclude that [τ ]η(ϕ)→ [τ ]η(ψ) is also a theorem of CoRGAL.

Now, the first part of the proof up to Proposition 6.8 is based on [Balbiani
et al., 2008] and [Goldblatt, 1982, Chapter 2]. Here we introduce theories and
prove Lindenbaum Lemma.

Definition 6.5 (Theory). A set of formulas x is called a theory if and only if it
contains CoRGAL, and is closed under R0, R5, and R6. A theory x is consistent
if and only if ⊥ 6∈ x, and is maximal if and only if for all ϕ ∈ LCoRGAL it holds
that either ϕ ∈ x or ¬ϕ ∈ x.

Note that theories are not closed under necessitation rules. The reason for
this is that while these rules preserve validity, they do not preserve truth, whereas
R0, R5, and R6 preserve both validity and truth.

Proposition 6.6. Let x be a theory, ϕ, ψ ∈ LCoRGAL, and a ∈ A. The following
are theories: x + ϕ = {ψ : ϕ → ψ ∈ x}, Kax = {ϕ : Kaϕ ∈ x}, and [ϕ]x = {ψ :
[ϕ]ψ ∈ x}.

Proof. Let ψ be a theorem, i.e. ψ ∈ CoRGAL. Then ϕ → ψ is also a theorem,
since ψ → (ϕ → ψ) ∈ CoRGAL and CoRGAL is closed under R0. Moreover,
Kaψ and [ϕ]ψ are theorems as well due to the fact that CoRGAL is closed under
R1 and R2. Therefore, ψ ∈ x+ϕ, ψ ∈ Kax, and ψ ∈ [ϕ]x, and hence CoRGAL ⊆
x+ ϕ,Kax, [ϕ]x.

The rest of the proof is an extension of the one from [Balbiani et al., 2008],
where it was shown that x + ϕ, Kax, and [ϕ]x are closed under R0. We argue
that corresponding sets are closed under R5 and R6.

Case x+ ϕ. Suppose that η(χ ∧ [ψG ∧ χ]τ) ∈ x+ ϕ for some given χ, for all
ψG, and for some τ ∈ LCoRGAL. This means that ϕ → η(χ ∧ [ψG ∧ χ]τ) ∈ x for
all ψG. Since ϕ → η(χ ∧ [ψG ∧ χ]τ) is a necessity form, and x is closed under
R5 (by Definition 6.5), we infer that ϕ → η([G,χ]τ) ∈ x, and, consequently,
η([G,χ]τ) ∈ x+ ϕ. So, x+ ϕ is closed under R5.

Now, let ∀ψG: η(〈A \ G,ψG〉τ) ∈ x + ϕ. By the definition of x + ϕ this
means that ϕ → η(〈A \ G,ψG〉τ) ∈ x for all ψG. Since ϕ → η(〈A \ G,ψG〉τ is a
necessity form and x is closed under R6, we infer that ϕ → η([〈G〉]τ) ∈ x, and,
consequently, η([〈G〉]τ) ∈ x+ ϕ. So, x+ ϕ is closed under R6.
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Case Kax. Suppose that η(χ∧ [ψG ∧χ]τ) ∈ Kax for some given χ, for all ψG,
and for some τ ∈ LCoRGAL. This means that Kaη(χ ∧ [ψG ∧ χ]τ) ∈ x for all ψG.
SinceKaη(χ∧[ψG∧χ]τ) is a necessity form, and x is closed underR5 (by Definition
6.5), we infer that Kaη([G,χ]τ) ∈ x, and, consequently, η([G,χ]τ) ∈ Kax. So,
Kax is closed under R5.

Now, let ∀ψG: η(〈A \ G,ψG〉τ) ∈ Kax. By the definition of Kax this means
that Kaη(〈A \ G,ψG〉τ) ∈ x for all ψG. Since Kaη(〈A \ G,ψG〉τ is a necessity
form and x is closed under R6, we infer that Kaη([〈G〉]τ) ∈ x, and, consequently,
η([〈G〉]τ) ∈ Kax. So, Kax is closed under R6.

Case [ϕ]x. Finally, suppose that η(χ∧[ψG∧χ]τ) ∈ [ϕ]x for some given χ, for all
ψG, and for some τ ∈ LCoRGAL. This means that [ϕ]η(χ∧[ψG∧χ]τ) ∈ x for all ψG.
Since [ϕ]η(χ∧[ψG∧χ]τ) is a necessity form, and x is closed underR5 (by Definition
6.5), we infer that [ϕ]η([G,χ]τ) ∈ x, and, consequently, η([G,χ]τ) ∈ [ϕ]x. So,
[ϕ]x is closed under R5.

Now, let ∀ψG: η(〈A \ G,ψG〉τ) ∈ [ϕ]x. By the definition of [ϕ]x this means
that [ϕ]η(〈A \ G,ψG〉τ) ∈ x for all ψG. Since [ϕ]η(〈A \ G,ψG〉τ is a necessity
form and x is closed under R6, we infer that [ϕ]η([〈G〉]τ) ∈ x, and, consequently,
η([〈G〉]τ) ∈ [ϕ]x. So, [ϕ]x is closed under R6.

Proposition 6.7. Let ϕ ∈ LCoRGAL. Then CoRGAL + ϕ is consistent iff ¬ϕ 6∈
CoRGAL.

Proof. From left to right. Suppose to the contrary that CoRGAL+ϕ is consistent
and ¬ϕ ∈ CoRGAL. Then having both ϕ and ¬ϕ means that ⊥ ∈ CoRGAL +ϕ,
which contradicts to CoRGAL + ϕ being consistent.

From right to left. Let us consider the contrapositive: if CoRGAL + ϕ is
inconsistent, then ¬ϕ ∈ CoRGAL. Since CoRGAL + ϕ is inconsistent, ⊥ ∈
CoRGAL + ϕ, or, by Proposition 6.6, ϕ → ⊥ ∈ CoRGAL. By consistency of
CoRGAL and propositional reasoning, we have that ¬ϕ ∈ CoRGAL.

The following proposition is a variation of Lindenbaum Lemma. In order to
prove it, we rely heavily on rules of inference R5 and R6.

Lemma 6.8 (Lindenbaum). Every consistent theory x can be extended to a
maximal consistent theory y.

Proof. Let ψ0, ψ1, . . . be an enumeration of formulas of the language, and let
y0 = x. Suppose that for some n ≥ 0, yn is a consistent theory, and x ⊆ yn. If
yn + ψn is consistent (i.e. if ¬ψn 6∈ yn), then yn+1 = yn + ψn. Otherwise, if ψn is
not a conclusion of either R5 or R6, yn+1 = yn.

If ψn is a conclusion of R5, that is if ψn is of the form η([G,χ]ϕ), then
yn+1 = yn + ¬η(χ ∧ [ψG ∧ χ]ϕ), where ¬η(χ ∧ [ψG ∧ χ]ϕ) is the first formula
in the enumeration such that η(χ ∧ [ψG ∧ χ]ϕ) 6∈ yn. Theory yn+1 is consistent
due to the fact that if ¬η([G,χ]ϕ) ∈ yn, then there must exist some ψG such
that η(χ ∧ [ψG ∧ χ]ϕ) 6∈ yn, for otherwise R5 would lead to η([G,χ]ϕ) ∈ yn,
which contradicts the assumption that η([G,χ]ϕ) 6∈ yn and consistency of yn.
We pick the first formula ¬η(χ ∧ [ψG ∧ χ]ϕ) in the enumeration, and have that
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¬η(χ ∧ [ψG ∧ χ]ϕ) ∈ yn+1 and η(χ ∧ [ψG ∧ χ]ϕ) 6∈ yn+1. Note that adding such
a witness ψG corresponds to the semantics of relativised group announcements,
i.e. for formula η{〈G,χ〉¬ϕ} we have ψG such that η{χ→ 〈ψG ∧ χ〉¬ϕ}.

If ψn is a conclusion of R6, that is if ψn is of the form η([〈G〉]ϕ), then
yn+1 = yn + ¬η(〈A \ G,ψG〉ϕ), where ¬η(〈A \ G,ψG〉ϕ) is the first formula
in the enumeration such that η(〈A \ G,ψG〉ϕ) 6∈ yn. Theory yn+1 is consis-
tent due to the fact that if ¬η([〈G〉]ϕ) ∈ yn, then there must exist some ψG
such that η(〈A \ G,ψG〉ϕ) 6∈ yn, for otherwise R6 would lead to η([〈G〉]ϕ) ∈ yn,
which contradicts the assumption that η([〈G〉]ϕ) 6∈ yn and consistency of yn.
We pick the first formula ¬η(〈A \ G,ψG〉ϕ) in the enumeration, and have that
¬η(〈A\G,ψG〉ϕ) ∈ yn+1 and η(〈A\G,ψG〉ϕ) 6∈ yn+1. Note that since for all χA\G:
η([A \G,ψG]ϕ)→ η(ψG ∧ [ψG ∧ χA\G]ϕ) are theorems, they and their contrapo-
sitions (due to Proposition 6.5) are already in yn (because CoRGAL ⊆ x ⊆ yn).
Thus, adding ¬η(〈A\G,ψG〉ϕ) to yn adds all the ¬η(ψG → 〈ψG∧χA\G〉ϕ) for χA\G
as well. This satisfies the semantics of coalition announcements, i.e. for formula
η{〈[G]〉¬ϕ} we have some ψG such that for all χA\G: η{ψG ∧ [ψG ∧ χA\G]¬ϕ}.

Next we need to show that y =
⋃∞
n=0 yn is a maximal consistent theory. First,

we argue that y is consistent, i.e. that if ψ ∈ y, then ¬ψ 6∈ y. Suppose towards a
contradiction that ψ,¬ψ ∈ y. This means that there is n, such that ψ,¬ψ ∈ yn,
which contradicts yn being a consistent theory.

Now we argue that y is a theory, i.e. CoRGAL ⊂ y (1), and y is closed under
R0 (2), R5 (3), and R6 (4).

1. Since x ⊆ y, we have that CoRGAL ⊆ x ⊂ y.

2. Assume that ψ → ϕ ∈ y, and ψ ∈ y. This means that there is n such that
ψ → ϕ, ψ ∈ yn. The latter implies that ϕ ∈ yn, and thus ϕ ∈ y. Therefore,
y is closed under R0.

3. Let some ψn be η([G,χ]ϕ). By the construction of yn+1, if ¬η([G,χ]ϕ) 6∈ yn,
then η([G,χ]ϕ) ∈ yn and hence η([G,χ]ϕ) ∈ y. Since CoRGAL ⊂ y and
y is closed under R0, this means that η(χ ∧ [ψG ∧ χ]ϕ) ∈ y for all ψG. If
¬η([G,χ]ϕ) ∈ yn, then ¬η(χ ∧ [ψG ∧ χ]ϕ) ∈ yn+1 ∈ y, and hence ¬η(χ ∧
[ψG ∧χ]ϕ) ∈ y. By the consistency of y, we have that η(χ∧ [ψG ∧χ]ϕ) 6∈ y,
and therefore y is closed under R5.

4. Let some ψn be η([〈G〉]ϕ). By the construction of yn+1, if ¬η([〈G〉]ϕ) 6∈ yn,
then η([〈G〉]ϕ) ∈ yn and hence η([〈G〉]ϕ) ∈ y. Since CoRGAL ⊂ y and
y is closed under R0, this means that η(〈A \ G,ψG〉ϕ) ∈ y for all ψG.
If ¬η([〈G〉]ϕ) ∈ yn, then ¬η(〈A \ G,ψG〉ϕ) ∈ yn+1, and hence ¬η(〈A \
G,ψG〉ϕ) ∈ y. By the consistency of y, we have that η(〈A \ G,ψG〉ϕ) 6∈ y,
and therefore y is closed under R6.

Finally, we show that y is maximal. For any formula ψn in the enumeration, we
have that either ¬ψn 6∈ yn, and thus ψn ∈ yn+1 ⊆ y, or we have that ¬ψn ∈ yn and
hence ¬ψn ∈ y. Therefore, for any ψn we have that either ψn ∈ y or ¬ψn ∈ y.
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The rest of the proof is an expansion of the one from [Balbiani and van
Ditmarsch, 2015]. It employs induction on complexity of formulae to prove Truth
Lemma (Proposition 6.10) and, ultimately, completeness (Proposition 6.11) of
CoRGAL.

Definition 6.6 (Size). The size of some formula ϕ ∈ LCoRGAL is defined as
follows:

1. Size(p) = 1,

2. Size(¬ϕ) = Size(Kaϕ) = Size([G,χ]ϕ) = Size([〈G〉]ϕ) = Size(ϕ) + 1,

3. Size(ϕ ∧ ψ) = Size(ϕ) + Size(ψ) + 1,

4. Size([ψ]ϕ) = Size(ψ) + 3 · Size(ϕ).

The [, ]-depth is defined as follows:

1. d[,](p) = 0,

2. d[,](¬ϕ) = d[,](Kaϕ) = d[,]([〈G〉]ϕ) = d[,](ϕ),

3. d[,](ϕ ∧ ψ) = max{d[,](ϕ), d[,](ψ)},

4. d[,]([ψ]ϕ) = d[,](ψ) + d[,](ϕ),

5. d[,]([G,χ]ϕ) = d[,](ϕ) + d[,](χ) + 1.

The [〈〉]-depth is the same as [, ], with the following exceptions.

1. d[〈〉]([G,χ]ϕ) = d[〈〉](ϕ) + d[〈〉](χ),

2. d[〈〉]([〈G〉]ϕ) = d[〈〉](ϕ) + 1.

Definition 6.7 (Size Relation). The binary relation<Size
[,],[〈〉] between ϕ, ψ ∈ LCoRGAL

is defined as follows:
ϕ <Size

[,],[〈〉] ψ iff d[〈〉](ϕ) < d[〈〉](ψ), or, otherwise, d[〈〉](ϕ) = d[〈〉](ψ), and either

d[,](ϕ) < d[,](ψ), or d[,](ϕ) = d[,](ψ) and Size(ϕ) < Size(ψ). The relation is a
well-founded strict partial order between formulas. Note that for all epistemic
formulas ψ we have that d[,](ψ) = d[〈〉](ψ) = 0.

We need the following size inequalities between formulas in our proof of the
Truth Lemma.

Proposition 6.9. Let ψG and G ⊆ A be given, and let χ, ϕ, τ ∈ CoRGAL.

1. χ ∧ [ψG ∧ χ]ϕ <Size
[,],[〈〉] [G,χ]ϕ,

2. [τ ](χ ∧ [ψG ∧ χ]ϕ) <Size
[,],[〈〉] [τ ][G,χ]ϕ,

3. 〈A \G,ψG〉ϕ <Size
[,],[〈〉] [〈G〉]ϕ,
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4. [τ ]〈A \G,ψG〉ϕ <Size
[,],[〈〉] [τ ][〈G〉]ϕ.

Proof. 1. Note that [〈〉]-depth for both sides of the inequality is the same and
equals d[〈〉](χ)+d[〈〉](ϕ). In particular, we have the following for the left-hand
side: d[〈〉](χ ∧ [ψG ∧ χ]ϕ) = max{d[〈〉](χ), d[〈〉]([ψG ∧ χ]ϕ)} = d[〈〉]([ψG ∧ χ]ϕ) =
d[〈〉](ψG ∧χ) + d[〈〉](ϕ) = max{d[〈〉](ψG), d[〈〉](χ)}+ d[〈〉](ϕ) = d[〈〉](χ) + d[〈〉](ϕ). For
the right-hand side we have that d[〈〉]([G,χ]ϕ) = d[〈〉](χ) + d[〈〉](ϕ).

Since [〈〉]-depths are the same, we calculate [, ]-depths. For the left-hand
side we have that d[,](χ ∧ [ψG ∧ χ]ϕ) = d[,](χ) + d[,](ϕ). In particular,
d[,](χ∧[ψG∧χ]ϕ) = max{d[,](χ), d[,]([ψG∧χ]ϕ)} = d[,]([ψG∧χ]ϕ) = d[,](ψG∧
χ) + d[,](ϕ) = max{d[,](ψG), d[,](χ)} + d[,](ϕ) = d[,](χ) + d[,](ϕ). Depth of
the right-hand side formula is d[,]([G,χ]ϕ) = 1 + d[,](ϕ) + d[,](χ). Hence,
χ ∧ [ψG ∧ χ]ϕ <Size

[,],[〈〉] [G,χ]ϕ.

2. On the left-hand side we have d[〈〉]([τ ](χ∧ [ψG∧χ]ϕ)) = d[〈〉](τ)+d[〈〉](χ∧ [ψG∧
χ]ϕ) = d[〈〉](τ) + d[〈〉](χ) + d[〈〉](ϕ). We have the same [〈〉]-depth of the right-
hand side: d[〈〉]([τ ][G,χ]ϕ) = d[〈〉](τ) + d[〈〉]([G,χ]ϕ) = d[〈〉](τ) + d[〈〉](χ) + d[〈〉](ϕ).
However, [, ]-depth is different: d[,](τ)+d[,](χ)+d[,](ϕ) and d[,](τ)+d[,](χ)+
d[,](ϕ) + 1 correspondingly (see the previous case). Hence, [τ ](χ ∧ [ψG ∧
χ]ϕ) <Size

[,],[〈〉] [τ ][G,χ]ϕ.

3. On the left-hand side we have that d[〈〉](〈A \G,ψG〉ϕ) = d[〈〉](ϕ), and on the
right-hand side the depth is d[〈〉][〈G〉]ϕ = d[〈〉](ϕ)+1. Hence, 〈A\G,ψG〉ϕ <Size

[,],[〈〉]
[〈G〉]ϕ.

4. Again, according to the definition of [〈〉]-depth, d[〈〉]([τ ]〈A\G,ψG〉ϕ) = d[〈〉](τ)+
d[〈〉](〈A\G,ψG〉ϕ) = d[〈〉](τ)+d[〈〉](ϕ), whereas d[〈〉]([τ ][〈G〉]ϕ) = d[〈〉](τ)+ d[〈〉]([〈G〉]ϕ) =
d[〈〉](τ) + d[〈〉](ϕ) + 1. Thus, [τ ]〈A \G,ψG〉ϕ <Size

[,],[〈〉] [τ ][〈G〉]ϕ.

Definition 6.8 (Canonical Model). The canonical model is the model MC =
(WC ,∼C , V C), where

• WC is the set of all maximal consistent theories,

• ∼C is defined as x ∼Ca y iff Kax = Kay,

• x ∈ V C(p) iff p ∈ x.

Relation ∼C is equivalence due to axioms A2, A3, and A4. And by Lindenbaum
Lemma WC is non-empty.

Lemma 6.10 (Truth). For all maximal consistent theories x and all ϕ ∈ LCoRGAL,
we have that ϕ ∈ x if and only if (MC , x) |= ϕ.

Proof. The proof is by induction on <Size
[,],[〈〉]-complexity of formulas. The base case,

and cases for boolean, knowledge, and public announcement (with p, ¬ψ, ψ ∧ χ,
Kaψ, [ψ]χ within its scope) formulas were proved in [Balbiani and van Ditmarsch,
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2015]. We prove here only remaining instances involving relativised group and
coalition announcements.

Induction Hypothesis. For all x and ψ <Size
[,],[〈〉] ϕ0, we have that ψ ∈ x if and

only if (MC , x) |= ψ.
Case ϕ0 = [G,χ]ϕ. (⇒) Suppose that [G,χ]ϕ ∈ x. Since x is a theory, and

thus contains all theorems and closed under R0, by axiom A10 we have that ∀ψG:
χ ∧ [ψG ∧ χ]ϕ ∈ x. By Proposition 6.9 it holds that χ ∧ [ψG ∧ χ]ϕ <Size

[,],[〈〉] [G,χ]ϕ.

Using Induction Hypothesis we have (MC , x) |= χ ∧ [ψG ∧ χ]ϕ for all ψG. The
latter is equivalent to (MC , x) |= [G,χ]ϕ by the semantics.

(⇐) Let (MC , x) |= [G,χ]ϕ. By the semantics of CoRGAL this is equivalent to
∀ψG: (MC , x) |= χ∧[ψG∧χ]ϕ. By Proposition 6.9 it holds that χ∧[ψG∧χ]ϕ <Size

[,],[〈〉]
[G,χ]ϕ. Using Induction Hypothesis we have that ∀ψG: χ∧ [ψG ∧χ]ϕ ∈ x. Since
x is a maximal consistent theory and closed under R5, it holds that [G,χ]ϕ ∈ x.

Case ϕ0 = [τ ][G,χ]ϕ. (⇒) Assume that [τ ][G,χ]ϕ ∈ x. Since x is a maximal
consistent theory and hence contains all theorems, [τ ]([G,χ]ϕ→ χ∧ [ψ∧χ]ϕ) ∈ x
for all ψG. Using the distributivity of public announcements and the fact that x
is closed under R0, we conclude that [τ ](χ∧ [ψG∧χ]ϕ) ∈ x. Next, by Proposition
6.9 it holds that [τ ](χ ∧ [ψG ∧ χ]ϕ) <Size

[,],[〈〉] [τ ][G,χ]ϕ, and thus using Induction

Hypothesis we have that (MC , x) |= [τ ](χ ∧ [ψG ∧ χ]ϕ) for all ψG. The latter
amounts to the fact that (MC , x) |= τ implies (MC , x)τ |= χ ∧ [ψG ∧ χ]ϕ for all
ψG. By the semantics of CoRGAL, we have that (MC , x) |= τ implies (MC , x)τ |=
[G,χ]ϕ, which is equivalent to (MC , x) |= [τ ][G,χ]ϕ.

(⇐) Let (MC , x) |= [τ ][G,χ]ϕ. By the semantics of CoRGAL, this means
that for any ψG: (MC , x) |= [τ ](χ ∧ [ψG ∧ χ])ϕ. By Proposition 6.9 we have that
[τ ](χ∧ [ψG ∧χ]ϕ) <Size

[,],[〈〉] [τ ][G,χ]ϕ for all ψG. Using Induction Hypothesis we can

conclude that ∀ψG: [τ ](χ∧ [ψG∧χ]ϕ) ∈ x. Since [τ ]] is a necessity form, and due
to the fact that x is closed under R5, we have that [τ ][G,χ]ϕ ∈ x.

Case ϕ0 = [〈G〉]ϕ. (⇒) Suppose that [〈G〉]ϕ ∈ x. Since x is a theory, and thus
contains all theorems and closed under R0, by axiom A11 we have that ∀ψG:
〈A \ G,ψG〉ϕ ∈ x. By Proposition 6.9 it holds that 〈A \ G,ψG〉ϕ <Size

[,],[〈〉] [〈G〉]ϕ.

Using Induction Hypothesis we have (MC , x) |= 〈A \ G,ψG〉ϕ for all ψG. The
latter is equivalent to (MC , x) |= [〈G〉]ϕ by the semantics.

(⇐) Let (MC , x) |= [〈G〉]ϕ. By the semantics of CoRGAL this is equivalent to
∀ψG: (MC , x) |= 〈A\G,ψG〉ϕ. By Proposition 6.9 it holds that 〈A\G,ψG〉ϕ <Size

[,],[〈〉]
[〈G〉]ϕ. Using Induction Hypothesis we have that ∀ψG: 〈A \ G,ψG〉ϕ ∈ x. Since
x is a maximal consistent theory and closed under R6, it holds that [〈G〉]ϕ ∈ x.

Case ϕ0 = [τ ][〈G〉]ϕ. (⇒) Assume that [τ ][〈G〉]ϕ ∈ x. Since x is a maximal
consistent theory and hence contains all theorems, [τ ]([〈G〉]ϕ→ 〈A\G,ψG〉ϕ) ∈ x
for all ψG. Using the distributivity of public announcements and the fact that x is
closed under R0, we conclude that [τ ]〈A \G,ψG〉ϕ ∈ x. Next, by Proposition 6.9
it holds that [τ ]〈A\G,ψG〉ϕ <Size

[,],[〈〉] [τ ][〈G〉]ϕ, and thus using Induction Hypothesis

we have that (MC , x) |= [τ ]〈A \ G,ψG〉ϕ for all ψG. The latter amounts to the
fact that (MC , x) |= τ implies (MC , x)τ |= 〈A \ G,ψG〉ϕ for all ψG. By the
semantics of CoRGAL, we have that (MC , x) |= τ implies (MC , x)τ |= [〈G〉]ϕ,
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which is equivalent to (MC , x) |= [τ ][〈G〉]ϕ.
(⇐) Let (MC , x) |= [τ ][〈G〉]ϕ. By the semantics of CoRGAL, this means

that for any ψG: (MC , x) |= [τ ]〈A \ G,ψG〉ϕ. By Proposition 6.9 we have that
[τ ]〈A \ G,ψG〉ϕ <Size

[,],[〈〉] [τ ][〈G〉]ϕ for all ψG. Using Induction Hypothesis we can

conclude that ∀ψG: [τ ]〈A \ G,ψG〉ϕ ∈ x. Since [τ ]] is a necessity form, and due
to the fact that x is closed under R6, we have that [τ ][〈G〉]ϕ ∈ x.

Finally, we prove the completeness of CoRGAL.

Proposition 6.11. For all ϕ ∈ LCoRGAL, if ϕ is valid, then ϕ ∈ CoRGAL.

Proof. Towards a contradiction, suppose that ϕ is valid and ϕ 6∈ CoRGAL. Since
CoRGAL is a consistent theory, and by Propositions 6.6 and 6.7, we have that
CoRGAL + ¬ϕ is a consistent theory. Then, by Proposition 6.8, there exists a
maximal consistent theory x ⊇ CoRGAL+¬ϕ such that ¬ϕ ∈ x. By Proposition
6.10, this means that (MC , x) 6|= ϕ, which contradicts ϕ being a validity.



Chapter 7

Groups Versus Coalitions

Relative expressivity of logics of quantified public announcements is a long-
standing open problem. We provide a small contribution towards solving this
problem by showing that CAL and APAL are not at least as expressive as GAL.
The proof is based on presenting a property and a set of models such that some
GAL formula holds only in the models with the property, and for all formulas
of CAL and APAL there are models with and without the property where they
are true. In Section 7.2 we introduce a mechanism for evaluating GAL and CAL
formulas in epistemic models. After that, we present the models and property
expressed in GAL (Sections 7.3 and 7.4.1), and show that none of CAL formulas
can capture this property (Section 7.4.2). As a nice ‘side-effect’ we obtain the
same result for APAL. We start the chapter, however, with the proof that CAL
is not at least as expressive as APAL (Section 7.1).

7.1 APAL 6� CAL

It was proved in [Ågotnes et al., 2010] that APAL 6� GAL. The intuition be-
hind the proof is that agents A can only force A-definable restrictions of a given
model, whereas APAL operators may force any restriction of the model up to
bisimulation. The same reasoning can be applied to both groups and coalitions.
Therefore, we use the proof from [Ågotnes et al., 2010] and modify it to show
that APAL 6� CAL.

Theorem 7.1. APAL 6� CAL.

Proof. Consider an APAL formula ♦(Kap ∧ ¬KbKap). Let us assume that there
is an equivalent CAL formula Ψ. Without loss of generality we also assume that
propositional atom q does not occur in Ψ, i.e. q 6∈ ΘΨ.

Consider models in Figure 7.1.
These models correspond to various restrictions of M that agents can enforce.

We need to show that the APAL formula distinguishes M and Ma
1 , and no CAL

This chapter is the result of joint work with Natasha Alechina, Hans van Ditmarsch, and
Tim French. In particular, use of formula games (Definition 7.2) is originally Tim’s idea, and
everyone contributed equally to the proof of Theorem 7.6

71
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Figure 7.1: From left to right: models M , Ma
1 (bottom), Ma

2 (top), M b
1 , M b

2 and
Ma,b (four single-state models)

formula can distinguish them. Formally, it should be the case that (M,w) |= Ψ
and (Ma

1 , w) |= Ψ, while (M,w) |= ♦(Kap ∧ ¬KbKap) and (Ma
1 , w) 6|= ♦(Kap ∧

¬KbKap).
That (M,w) |= ♦(Kap ∧ ¬KbKap) and (Ma

1 , w) 6|= ♦(Kap ∧ ¬KbKap) is easy
to check. In order to make Kap ∧ ¬KbKap true, it is required to remove state v
and retain states u and t. In model (M,w) announcement of p ∨ q would do the
trick. And in model (Ma

1 , w) either of possible updates, > or removing state v,
does not satisfy the formula.

To prove that (M,w) |= Ψ if and only if (Ma
1 , w) |= Ψ we need to show that

for all subformulas ψ of Ψ, all states reachable from w, and all updates of M by
agents’ announcements, the equivalence holds. The extended induction hypoth-
esis of the proof from [Ågotnes et al., 2010] conforms to all these requirements.
We consider only cases of coalition announcements, and prove only the first row
of the equivalences (proofs for other three rows are similar).

Let ψ ∈ LCAL, and q 6∈ Θψ.
Induction Hypothesis :

(M,w) |= ψ iff (Ma
1 , w) |= ψ iff (M,u) |= ψ iff (Ma

2 , u) |= ψ

(Ma,b, w) |= ψ iff (M b
1 , w) |= ψ iff (M b

1 , u) |= ψ iff (Ma,b, u) |= ψ

(M, v) |= ψ iff (Ma
1 , v) |= ψ iff (M, t) |= ψ iff (Ma

2 , t) |= ψ

(Ma,b, v) |= ψ iff (M b
2 , v) |= ψ iff (M b

2 , t) |= ψ iff (Ma,b, t) |= ψ

Case [〈∅〉]ψ. Let (M,w) |= [〈∅〉]ψ. This is equivalent to the fact that there
is a joint {a, b}-strategy Xa ∩Xb such that (M,w)Xa∩Xb |= ψ. Either agent has
two strategies, and all possible intersections are presented in Figure 7.1 (models
(M,w), (Ma

1 , w), (M b
1 , w), and (Ma,b, w)). Therefore, at least one of the restric-

tions should satisfy ψ, i.e. ((M,w) |= ψ or (Ma
1 , w) |= ψ or (M b

1 , w) |= ψ or
(Ma,b, w) |= ψ) (∗).

According to the induction hypothesis, (∗) is equivalent to (Ma
1 , w) |= ψ or

(Ma,b, w) |= ψ. The latter means that there is an {a, b}-strategy in model Ma

such that ψ holds in the resulting model, which is equivalent to (Ma
1 , w) |= [〈∅〉]ψ.

Statement (∗) is also equivalent, by the induction hypothesis, to ((M,u) |= ψ
or (Ma

2 , u) |= ψ or (M b
1 , u) |= ψ or (Ma,b, u) |= ψ). These are all possible
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intersections of agents’ strategies in (M,u), which is equivalent to (M,u) |= [〈∅〉]ψ
by the semantics.

Finally, (∗) is equivalent to ((Ma
2 , u) |= ψ or (Ma,b, u) |= ψ), which holds

if and only if there is an {a, b}-strategy in (Ma
2 , u) such that ψ is true in the

resulting updated model. This is equivalent to (Ma
2 , u) |= [〈∅〉]ψ by the semantics.

Case [〈{a, b}〉]ψ. The same as above with the replacement of ‘or’ with ‘and’.
Case [〈{a}〉]ψ. Let (M,w) |= [〈{a}〉]ψ. This is equivalent to the fact that for

every a-strategy Xa there is a b-strategy Xb such that (M,w)Xa∩Xb |= ψ. We
consider all these intersections: ((M,w) |= ψ or (M b

1 , w) |= ψ) and ((Ma
1 , w) |= ψ

or (Ma,b, w) |= ψ)(∗).
By the induction hypothesis, (∗) is equivalent to ((Ma

1 , w) |= ψ or (Ma,b, w) |=
ψ), which means that for every a-strategy in model Ma

1 there is a b-strategy such
that ψ holds in the resulting model. The latter is equivalent to (Ma

1 , w) |= [〈{a}〉]ψ
by the semantics.

According to the induction hypothesis, (∗) is equivalent to ((M,u) |= ψ or
(M b

1 , u) |= ψ) and ((Ma
2 , u) |= ψ or (Ma,b, u) |= ψ). These are all possible

combinations of a’s strategies and b’s responses in (M,u). Hence, it is equivalent
to (M,u) |= [〈{a}〉]ψ by the semantics.

Finally, (∗) is equivalent to ((Ma
2 , u) |= ψ or (Ma,b, u) |= ψ), and the latter

holds if and only if for all a-strategies in (Ma
2 , u) (agent a has only the trivial

strategy in the model), there is a b-strategy such that ψ is true in the resulting
updated model, which is equivalent to (Ma

2 , u) |= [〈{a}〉]ψ by the semantics.
Case [〈{b}〉]ψ. Similar reasoning as above.

The rest of the chapter is dedicated to proving GAL 6� CAL.

7.2 Formula Games

The standard approach to comparing expressivity of modal languages is by using
formula games [van Ditmarsch et al., 2008, Chapter 8]. In this section we present
formula games for CAL and GAL. In order to deal with coalition announcement
modalities, we use relativised group announcements (see Section 6.1) that allow
us to consider an announcement by a coalition and a counter-announcement by
an anti-coalition as separate moves in the game.

Definition 7.1 (NNF). Negation Normal Form (NNF) is defined by the following
BNF:

ϕ ::=
> | ϕ ∧ ϕ | Kaϕ | [G]ϕ | [G,ϕ]ϕ | [〈G〉]ϕ

| ⊥ | p | ¬p | ϕ ∨ ϕ | K̂aϕ | [ϕ]ϕ | 〈G〉ϕ | 〈G,ϕ〉ϕ | 〈[G]〉ϕ .

If for some formula ϕ in NNF the outermost operator is from the top line, then we
say that ϕ is in Universal Negation Normal Form (UNNF); and if the outermost
operator is from the line below, then ϕ is in Existential Negation Normal Form
(ENNF).



CHAPTER 7. GROUPS VERSUS COALITIONS 74

Proposition 7.2. Every formula of GAL and CAL is equivalent to a formula in
NNF.

Proof. The proof is a straightforward ‘pushing’ of negations inside of the scope
of operators. We use translation function t : (LGAL ∪ LCAL) → LNNF that is
defined as follows:

t(¬p) = ¬p
t(¬(ϕ ∧ ψ)) = t(¬ϕ) ∨ t(¬ψ)

t(¬Kaϕ) = K̂at(¬ϕ)
t(¬[ψ]ϕ) = t(ψ) ∧ t([ψ]¬ϕ)
t(¬[G]ϕ) = 〈G〉t(¬ϕ)
t(¬[〈G〉]ϕ) = 〈[G]〉t(¬ϕ)

t(p) = p
t(ϕ ∧ ψ) = t(ϕ) ∧ t(ψ)
t(Kaϕ) = Kat(¬ϕ)
t([ψ]ϕ) = [t(ψ)]t(ϕ)
t([G]ϕ) = [G]t(ϕ)
t([〈G〉]ϕ) = [〈G〉]t(ϕ)

Note that >, ⊥, [G,ψ]ϕ, and 〈G,ψ〉ϕ will not appear in the image of the
translation. These formulas, however, play the role of final and intermediate
steps in games.

Now we are ready to define formula games.

Definition 7.2 (Formula Games). Let some pointed model (M,w) and ϕ in NNF
be given, and suppose that M is the set of pointed submodels (N,w)X of the
given model M , where X ⊆ W and w ∈ X. A formula game for ϕ over (M,w)
is a tuple Gϕ(M,w) = (V∀, V∃, E, s), where

• V∀ = {p(N, v), ψq | (N, v) ∈M, ψ ∈ LUNNF}∪{p(N, v), X, χ, ψq | (N, v) ∈
M, X ⊆ W,χ, ψ ∈ LNNF} is the set of vertices of the ∀-player,

• V∃ = {p(N, v), ψq | (N, v) ∈ M, ψ ∈ LENNF} is the set of vertices of the
∃-player,

• E ⊂ (V∀ ∪ V∃)× (V∀ ∪ V∃) is the set of edges, where
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E =
⋃



{(p(N, v), pq, p(N, v),>q), (p(N, v),¬qq, p(N, v),>q)
| v ∈ V (p) and v 6∈ V (q)}

{(p(N, v), pq, p(N, v),⊥q), (p(N, v),¬qq, p(N, v),⊥q)
| v 6∈ V (p) and v ∈ V (q)}

{(p(N, v), ψ ∧ χq, p(N, v), ψq), (p(N, v), ψ ∧ χq, p(N, v), χq}

{(p(N, v), ψ ∨ χq, p(N, v), ψq), (p(N, v), ψ ∨ χq, p(N, v), χq}

{(p(N, v), Kaψq, p(N, u), ψq) | v ∼a u}

{(p(N, v), K̂aψq, p(N, u), ψq) | v ∼a u}

{(p(N, v), [χ]ψq, p(N, v), X, χ, ψq)}

{(p(N, v), X, χ, ψq, p(N, u), χq) | u ∈ X}

{(p(N, v), X, χ, ψq, p(N, u), t(¬χ)q) | u ∈ W \X}

{(p(N, v), X, χ, ψq, p(N, v)X , ψq)}

{(p(N, v), [G]ψq, p(N, v), [ψG]ψq)}

{(p(N, v), 〈G〉ψq, p(N, v), [ψG]ψq)}

{(p(N, v), [〈G〉]ψq, p(N, v), 〈A \G,ψG〉ψq)}

{(p(N, v), 〈[G]〉ψq, p(N, v), [A \G,ψG]ψq)}

{(p(N, v), [G,χ]ψq, p(N, v), [ψG ∧ χ]ψq)}

{(p(N, v), 〈G,χ〉ψq, p(N, v), [ψG ∧ χ]ψq)}



,

• s is the initial vertex p(M,w), ϕq.

The game is played between the ∀-player and the ∃-player, and a play consists of
a sequence of vertices s, s1, . . . , sn. The play is built by the players such that for
some edge (sm, sm+1) ∈ E if sm ∈ V∀, then the universal player chooses sm+1, and
if sm ∈ V∃, then the existential player chooses sm+1. If either player is unable to
move, i.e. they are in a >-vertex or ⊥-vertex, then they lose the game.

Consider model (M,w) in Figure 7.2 as an example. The set of pointed
submodels of M is {(M,w){w}, (M,w){w,v}, (M, v){v}, (M, v){w,v}}, and agent b’s

relation is identity. The formula game for [p]K̂a¬p is presented in Figure 7.3, and
the formula game for 〈[{b}]〉Kap in partially shown in Figure 7.4.

w v
p ¬pa

Figure 7.2: Model (M,w)
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Let us ensure that there are no loops in games, i.e. plays of games are finite.

Proposition 7.3. Given formula ϕ in NNF, pointed model (M,w), and a game
Gϕ(M,w), every play of the game is finite.

Proof. The proof is by induction on subformulas of ϕ.
Base Case: in the case of a propositional variable there is exactly one step in

a play of the game.
Induction Hypothesis : plays of the game for subformulas ψ, t(¬χ), and χ are

finite on all pointed submodels (N, v) of M .
Propositional and epistemic cases are straightforward, so we omit them. Also

note that it means that plays for epistemic formulas are finite.
Case p(N, v), [χ]ψq: in this node of the game the existential player chooses a

subset of the set of states of the given model. Such a choice leads to one of the
vertices p(N, v), X, χ, ψq. Every possible choice of the ∀-player from this vertex
— p(N, u), χq, p(N, u), t(¬χ)q, or p(N, v)X , ψq — leads to a vertex with a play
for either χ, t(¬χ) or ψ that is finite by the Induction Hypothesis. Hence, a play
of the game in p(N, v), [χ]ψq is finite.

Case p(N, v), [G]ψq: there is just one step from this vertex to some p(N, v),
[ψG]ψq, and using the Induction Hypothesis and the fact that agents can only
announce epistemic formulas, we conclude that the play from this vertex is finite.

Cases p(N, v), 〈G〉ψq, p(N, v), [G,χ]ψq and p(N, v), 〈G,χ〉ψq are similar to
the previous one.

Case p(N, v), [〈G〉]ψq: from this vertex there is exactly one ∀-step to some
p〈A \ G,ψG〉ψq. Since ψG is a formula of epistemic logic, and A \ G can only
announce epistemic formulas, we have that a play from p(N, v), [〈G〉]ψq is finite.

Case p(N, v), 〈[G]〉ψq is the same as above.

Next proposition ties together satisfiability and existence of a winning strat-
egy.

Proposition 7.4. The ∃-player has a winning strategy in a game Gϕ(M,w) if and

only if (M,w) |= ϕ.

Proof. From right to left. The proof is by induction on the complexity c of ϕ. As
a complexity measure we can use the one from Definition 6.6 with negations only
in front of propositional variables.

Base Case: Assume that (M,w) |= p. Then the corresponding formula game
consists only of one ∃-step from p(M,w), pq to p(M,w),>q, and the latter is the
winning vertex of the existential player. The same argument holds for ¬p.

Induction Hypothesis : Assume that for all pointed submodels (N, v) of M
and all formulas t(ψ) in NNF such that c(t(ψ)) < c(ϕ), if (N, v) |= t(ψ), then
p(N, v), t(ψ)q is a winning position for the ∃-player.

Propositional and epistemic cases are straightforward.
Case (M,w) |= [ψ]χ: by the semantics this means that (M,w) |= ¬ψ or

(M, s)ψ |= χ. If the former is the case, then consider X = JψKM and Y =
W \JψKM , where X can be an empty set. We have that for all v ∈ X: (M, v) |= ψ
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and for all u ∈ Y : (M,u) |= t(¬ψ). By the Induction Hypothesis this implies that
p(M, v), ψq and p(M,u), t(¬ψ)q are winning positions for the existential player
for all v ∈ X and u ∈ Y . Hence, p(M,w), X, ψ, χq is also a winning position for
the ∃-player that she can choose from p(M,w), [ψ]χq.

If (M,w)ψ |= χ, then again we consider X = JψKM similarly to the case
of (M,w) |= ¬ψ. Since w ∈ X, we need to deal with an additional case
(M,w)X |= χ. By the Induction Hypothesis this means that p(M,w)X , χq is
a winning position for the ∃-player. Hence, p(M,w), X, ψ, χq is also a winning
position for the ∃-player that she can choose from p(M,w), [ψ]χq.

Case (M,w) |= 〈G〉ψ: by the semantics (M,w) |= 〈G〉ψ is equivalent to
∃ψG: (M,w) |= 〈ψG〉ψ. The latter implies (M,w) |= [ψG]ψ. By the Induction
Hypothesis, that means that the ∃-player can always choose a step in the game
that corresponds a winning position p(M,w), [ψG]ψq. Thus, p(M,w), 〈G〉ψq is
also a winning position for the existential player.

Cases (M,w) |= [G]χ, (M,w) |= [G,ψ]χ, (M,w) |= 〈G,ψ〉χ: a similar argu-
ment as above.

Case (M,w) |= 〈[G]〉ψ: by the semantics of relativised group announcements
we have that ∃ψG: (M,w) |= [A \ G,ψG]ψ. By the Induction Hypothesis, node
p(M,w), [A \ G,ψG]ψq is a winning position for the ∃-player. Hence, she can
choose that particular ψG in p(M,w), 〈[G]〉ψq.

Case (M,w) |= [〈G〉]ψ: similar to the previous one.
From left to right. A similar argument as in the opposite direction for the

contraposition: if (M,w) 6|= ϕ, then the ∀-player has a winning strategy in a
game Gϕ(M,w).

Let us return to the example in in Figure 7.2. For (M,w) we have that

(M,w) 6|= [p]K̂a¬p and (M,w) |= 〈[{b}]〉Kap. Indeed, in Figure 7.3 the ∃-player
does not have a winning strategy, and in Figure 7.4 she does (noting that none
of a’s announcements modify the original model).

7.3 Chain Models

In order to compare relative expressivity of GAL and CAL it is not enough to
consider just a pair of models. Suppose that for some ϕ ∈ LGAL we have that
(M,w) |= ϕ and (N, v) 6|= ϕ. In this case, formula ϕ must have subformulas with
group announcement operators, for otherwise ϕ would be a CAL formula as well.
Hence, in ϕ or its negation there is an existential group announcement operator
〈G〉ψ. According to the semantics, this implies that we can substitute 〈G〉ψ
with some 〈ψG〉ψ. And ϕ with such a substitution for all group announcements
operators is a PAL (and hence CAL) formula. In other words, given two finite
models group announcement operators [G]ϕ can be ‘simulated’ via a disjunction
with all possible non-equivalent (in the sense of model updates) substitutions ψG
for [G]ϕ.

The same argument can be carried out for any finite set of epistemic models.
Therefore, in order to unleash the full potential of group announcement operators
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we consider two infinite sets of models. After that, we show that there is GAL
formula that is true in one such set and false in the other, and no CAL formula
can capture the difference between the sets.

Models we are dealing with are called chain models.

Definition 7.3 (Chain Models). A chain model, or a chain, is an epistemic model
M = (S,∼, V ), where

• S = {l, l + 1, . . . , r − 1, r} ⊂ Z is a finite set of consecutive integers,

• x ∼a y if and only if y = x+ 1 and x is even,

• x ∼b y if and only if y = x+ 1 and x is odd,

• z − 1 ∼c z ∼c z + 1 if and only if z mod 3 = 1,

• V (p) = {3k, 3k − 1 ∈ S | k ∈ Z}.

We use pair (l, r) to refer to the corresponding chain model.

In graphical representation of chains we use a solid line for agent a’s relation,
a dashed line for b’s relation, and c cannot distinguish states in the same dotted
box. An example of a chain is presented in Figure 7.5.

¬p
1

p
2

p
3

¬p
4

p
5

p
6

¬p
7

p
8

p

9

¬p
10

p

11

p

12

Figure 7.5: A (1, 12)-chain

Chain models are regular in their structure, and they may only differ from
each other in leftmost and rightmost states. Hence, we can give a classification
of chains based on their extremities.

Definition 7.4 (Classification of Chains). Let some chain model (x, y) be given.

• If x mod 6 = 1 (y mod 6 = 4), then (M,x) |= Ka¬p ((M, y) |= Ka¬p).

• If x mod 6 = 2 (y mod 6 = 3), then (M,x) |= KbKap ((M, y) |= KbKap).

• If x mod 6 = 3 (y mod 6 = 2), then (M,x) |= Kap ((M, y) |= Kap). Note
that for such an x (y), chain (x, y) is bisimilar to model (2x − (y + 1), y)
((x, 2y − x + 1)) via bisimulation {(x + k, x − k − 1) | 0 ≤ k ≤ y − x}
({(y + k + 1, y − k) | 0 ≤ k ≤ y − x}). See Figure 7.6 for an example.
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• If x mod 6 = 4 (y mod 6 = 1), then (M,x) |= Kb¬p ((M, y) |= Kb¬p).

• If x mod 6 = 5 (y mod 6 = 0), then (M,x) |= KaKbp ((M, y) |= KaKbp).

• If x mod 6 = 0 (y mod 6 = 5), then (M,x) |= Kbp ((M, y) |= Kbp). Note
that for such an x (y), chain (x, y) is bisimilar to model (2x − (y + 1), y)
((x, 2y − x + 1)) via bisimulation {(x + k, x − k − 1) | 0 ≤ k ≤ y − x}
({(y + k + 1, y − k) | 0 ≤ k ≤ y − x}). See Figure 7.6.

Therefore, we can describe the type of a chain (x, y) as the pair [x mod 6, y mod 6].

¬p p p ¬p p

¬p p p ¬p p

p¬ppp¬p

Figure 7.6: A bisimulation (wavy arrows) between chains (1, 5) (in the middle)
and (1, 10) (starts at the top and wraps around on the right to the bottom)

In our proof we are primarily interested in models of types [1, 2], [0, 4], and
[0, 2], and their examples are depicted in Figures 7.7, 7.8 and 7.9. We also note
that models with ‘unbroken’ c-relations are all bismilar to a [0, 2]-chain (see Figure
7.9).

¬p p p ¬p p p ¬p p

¬p p p ¬p p p ¬p p

p¬ppp¬pp

Figure 7.7: [1, 2]-models

Definition 7.5 (Terminal State). Given a [1, 2]- or [0, 4]-chain M , state x of the
model is called terminal, if (M,x) |= Ω, where Ω := Ka¬p.
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p ¬p p p ¬p

p ¬p p p ¬p p

p¬ppp¬p

Figure 7.8: [0, 4]-models

p ¬p p

p ¬p p p ¬p p

p ¬p p

p ¬p p

p ¬p p

Figure 7.9: The only chain of type [0, 2] up to bisimulation

In Figures 7.7 and 7.8 the terminal state is the leftmost and rightmost state
respectively. Note that in such models there is only one terminal state.

We use terminal states to define a property expressible in GAL in the next
section. Moreover, terminal states may be used to target other states in the
model in order to ‘cut’ chains. For example, to specify a state that is exactly
three steps from the Ω-state we can use the formula:

Ω + 3 := K̂bK̂aK̂bΩ ∧KaKbKa¬Ω.

See Figure 7.10 for representation of the formula.
In the example, if agent b announces, for instance Kb¬(Ω + 3), the updated

model will be the one without the b-link with the Ω+3-state (squared). A similar
announcement Ka¬(Ω+3) can be made by agent a, and group {a, b} can cut any
a- and b-links in models with terminal states.

Now let us consider non-terminal rightmost and leftmost states in [1, 2]- and
[1, 4]-chains. They are presented in Figure 7.11. In Definition 7.4 we pointed out
that no epistemic formula can distinguish these states from n-bisimilar ones in
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¬p p p ¬p p p ¬p p

Ω K̂bΩ

Ka¬Ω

K̂aK̂bΩ

KbKa¬Ω

K̂aK̂bK̂aΩ

KaKbKa¬Ω

Figure 7.10: Removing states from a model using Ω

larger models. In other words, in order to specify such states, we should refer
to the terminal one. Epistemic formulas, however, have a finite size, and hence
formulas that refer to the terminal state are true only in chains of some depth, and
we can always find a larger chain of the same type such that any given epistemic
formula that was true in the smaller model will be false in the greater one.

Therefore, we use formulas of GAL to describe those non-terminal states, and
we call these formulas Mida and Midb. The former is defined as

Mida := Kap ∧ [A](K̂b¬p→ KaK̂b¬p),

and it holds in the rightmost states of [1, 2]-models. The latter is defined as

Midb := Kbp ∧ [A](K̂a¬p→ KbK̂a¬p),

and it holds in the leftmost states of [0, 4]-models.

¬p p p ¬p

Figure 7.11: Mida and Midb

7.4 GAL 6� CAL

In this section we define a property of [1, 2]-chains expressible in GAL (Section
7.4.1), and show that it is impossible to capture that property in CAL (Section
7.4.2). Throughout the section we assume that for all considered pointed [1, 2]-
models ((l, r), w), distances between l and w and r are sufficiently long.

7.4.1 What GAL Can Express...

We start this section with formulas that are valid on a certain class of chain
models. First,

T (0, 2) := KaKb(¬p→ [A]((K̂ap ∧ K̂bp)→ KaKb¬(Kap ∧Kbp)))
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describes [0, 2]-models as there is no announcement from any agent that can make
a and b know p without removing all ¬p states.

Formulas for [1, 2]- and [0, 4]-models are as follows:

T (1, 2) := ¬T (0, 2) ∧ [Kb¬Ω]T (0, 2) ∧ [¬Midb ∧Kb¬Ω]T (0, 2),

T (0, 4) := ¬T (0, 2) ∧ [Kb¬Ω]T (0, 2) ∧ [¬Mida ∧Kb¬Ω]T (0, 2).

Intuitively, they mean that [1, 2]- and [0, 4]-chains are not bisimilar to [0, 2]-
chains (first conjunct), removing the link with the terminal state makes them
bisimilar to a [0, 2]-chain (second conjunct), and they differ between each other in
extreme non-terminal states described by Mida and Midb (third conjunct). Note
that group announcement operators appear only in T (0, 2), Mida and Midb, and
none of these formulas mention agent c.

The actual property we are interested in applies to pointed models. Given
a pointed model ((l, r), w) of type [1, 2], is the terminal node in the a direction
from w (((l, r), w) is an a-model), or the b direction (((l, r), w) is a b-model)? See
Figure 7.12 for a representation of this problem.

¬p p p ¬p p p ¬p p

Ω ←− a

Figure 7.12: A (1, 9)-model, where w = 7, and ((1, 9), w) is an a-model

We show that GAL can express whether a given pointed model is an a- or
b-model.

The formula that expresses the property of (M,w) being a b-model is

b : Ω =
∧ Kap→ 〈{c}〉(Mida ∧ T (1, 2))

¬p→ Ka(p→ 〈{c}〉(Midb ∧ T (0, 4)))
Kbp→ [{c}](Midb → ¬T (0, 4))

 .

Formula a : Ω can be obtained by swapping subscripts a and b, and formulas
T (1, 2) and T (0, 4) in b : Ω:

a : Ω =
∧ Kbp→ 〈{c}〉(Midb ∧ T (0, 4))

¬p→ Kb(p→ 〈{c}〉(Mida ∧ T (1, 2)))
Kap→ [{c}](Mida → ¬T (1, 2))

 .

We sketch a proof of correctness of formula a : Ω.

Theorem 7.5. Let sets MA and MB of all a and b pointed [1, 2]-chains be
given. Then (M,w) |= a : Ω for all (M,w) ∈ MA, and (N, v) 6|= a : Ω for all
(N, v) ∈MB.
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Proof. The reader is encouraged to use figures from the previous section for ref-
erence. Let (M,w) |= a : Ω for some [1, 2]-chain (M,w). Since no conjunction of
any two formulas Kbp, ¬p, or Kap can be true in a pointed chain, we have that
either (M,w) |= Kbp, or (M,w) |= ¬p, or (M,w) |= Kap.

Case Kbp. Let (M,w) |= Kbp. By the construction of chain models, this
means that b cannot distinguish two p-states in two adjacent c-equivalence classes,
and a considers ¬p possible in the current c-equivalence class. Hence, c can cut
b’s relation making the current state a Midb state. Note that the terminal state
remains intact, and thus we have that T (0, 4) holds in the updated model. This
means that (M,w) |= 〈{c}〉(Midb ∧ T (0, 4)).

Assume that (N, v) |= Kbp. As (N, v) is a b : Ω-model, every cut by c
either cuts the b-relation, and hence cuts the path to the terminal state, or does
not satisfy Midb (c cannot make the current state to be extreme). Therefore,
(N, v) |= [{c}](¬Midb ∨ ¬T (0, 4)).

Case ¬p. Let (M,w) |= ¬p and (M, t) |= p for some t such that w ∼b t. By the
construction of chain models, this means that a cannot distinguish two p-states
in two adjacent c-equivalence classes, and b considers ¬p possible in the current c-
equivalence class. Hence, c can cut a’s relation making the current state t a Mida
state. Note that the terminal state remains intact, and thus we have that T (1, 2)
holds in the updated model. This means that (M, t) |= p∧ 〈{c}〉(Mida ∧ T (1, 2))
for some w ∼b t. We can make the latter formula less strict so that it holds in
¬p states as well: (M, t) |= p → 〈{c}〉(Mida ∧ T (1, 2)). By the construction of
chains, there are only two states in b-relation with the current one: a p-state and
a ¬p-state. Thus, (M,w) |= Kb(p→ 〈{c}〉(Mida ∧ T (1, 2))), and we finally have
that (M,w) |= ¬p→ Kb(p→ 〈{c}〉(Mida ∧ T (1, 2))).

Assume that (N, v) |= ¬p and (N, s) |= p for some s such that v ∼b s. As
(N, v) is a b-model, (N, s) is an a- model. So, every cut by c either cuts the
a-relation, and hence cuts the path to the terminal state, or does not satisfy
Mida (c cannot make the current state to be extreme). Therefore, (N, s) |=
[{c}](¬Mida ∨ ¬T (1, 2)).

Case Kap. Let (M,w) |= Kap. By the construction of chain models, this
means that a cannot distinguish two p-states in two c-equivalence classes, and b
considers ¬p possible in the current c-equivalence class. Hence, if c cuts a-relation
making Mida true, she also makes the terminal state inaccessible from the current
one. On the other hand, if the terminal state is still accessible from the current
state, then in this case the current state does not satisfy Mida. This means that
(M,w) |= [{c}](Mida → T (1, 2)).

Assume that (N, v) |= Kap. As (N, v) is a b-model, c has a cut such that Mida
and T (1, 2) holds. Such a cut ‘removes’ all c-equivalence classes to the right of
the current state, and makes the current state the rightmost state in the updated
model. Therefore, (N, v) |= ¬[{c}](¬Mida ∨ ¬T (1, 2)).
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7.4.2 ...And CAL Can Not

In this section we show that no CAL formula can capture the property of a
pointed model ‘being an a-model.’

An intuition behind the proof is that CAL operators require all agents an-
nounce their knowledge formulas simultaneously. For our chain models, intersec-
tion of agents’ relations is an identity, and hence if it is possible to force some
configuration of an a-model, then agents together, whether in the same coali-
tion, or divided, can replicate the same configuration in a b-model. Contrast
this to formula a : Ω in the previous section. The only agent that makes any
announcements is c, and her relation is not discerning enough to force isomorphic
submodels of some a- and b-models. If c preserves the terminal state in one class
of models, she cannot replicate this announcement in the other class such that
the resulting updated models are isomorphic (c cannot cut her own equivalence
class to make Ω true in the opposite direction).

Theorem 7.6. Let setsMA andMB of all a and b pointed [1, 2]-chains be given.
Then for all Ψ ∈ LCAL, if (M,w) |= Ψ for all (M,w) ∈ MA, then there exists
some (N, v) ∈MB such that (N, v) |= Ψ.

Proof. Suppose, contrary to our claim, that for all (M,w) ∈ MA there is a
formula Ψ ∈ LCAL such that (M,w) |= Ψ and for all (N, v) ∈ MB it holds that
(N, v) 6|= Ψ. The proof proceeds by playing simultaneous formula games over all
pointed chains.

We also assume that models in both sets are sufficiently large: for |Ψ| = n we
have that models in sets MA and MB are 2n-bisimilar to each other. This is to
ensure that no epistemic formula can distinguish any two models.

Let us partition the sets of games into GA and GB where player ∃ will have a
winning strategy for games in GA, and player ∀ will have a winning strategy for
games in GB.

For all moves in games except moves via coalition announcements, we proceed
as follows. If it is an ∃-player move, we consider the games played overMA, and
play the move for the ∃-player’s winning strategy on all models in MA. We also
play the corresponding move over MB: in the case of disjunction, we choose the
same disjunct, and in the case of K̂a-move in 2k-bisimilar states, we consider
moves equivalent if the chosen states are 2k−1-bisimilar. If it is a ∀-player move,
we play the move that agrees with the ∀ winning strategy in GB games, and
copy this move in the GA games. Thus, we are playing two winning strategies
against one another, and the game ends if either ∃-player or ∀-player cannot
move. However, this cannot happen because all pointed models are 2n-bisimilar.

Therefore, we need show that we can maintain the following invariant : after
step i of the formula game, there are infinitely many models of the same type
in MA and MB that are still 2n−i-bisimilar. In the final step of the game, we
end up with some propositional variable on which both classes of models agree.
Hence, we have a contradiction since both players have a winning strategy by the
assumption.

Cases of boolean and epistemic formulas are trivial.
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Case [χ]ψ. Assume that for some (M,w) ∈ MA, p(M,w), [χ]ψq is a win-
ning position for the ∃-player. This means that there is a subset X such that
p(M,w), X, χ, ψq is also a winning position. Let for some (N, v) ∈MB such that
(M,w) and (N, v) are 2n−i-bisimilar, JχKN = Y . We consider two cases.

First, if (M,w)χ is 2n−i−1 bisimilar to (N, v)χ, then ∃ can play the correspond-
ing move p(N, v), Y, χ, ψq in GB, and the invariant continues to hold.

In the second case, if (M,w)χ and (N, v)χ are not 2n−i−1-bisimilar, there is
some s ∈ WM and and some t ∈ WN such that (M, s) and (N, t) disagree on the
interpretation of χ, and s and t are within the same 2n−i−1 steps from w and v
respectively. Suppose (M, s) |= χ and (N, t) 6|= χ. In this case ∃ must still play
the corresponding move p(N, v), Y, χ, ψq in GB, as any alternative to Y would
allow the ∀-player to have a winning strategy. The universal player, however, can
respond with the moves p(M, s), χq in GA and p(N, t), t(¬χ)q in GB. According to
Proposition 7.4, the ∃-player has a winning strategy in p(N, t), t(¬χ)q, and thus
the ∀-player has a winning strategy in p(N, t), χq. Since s and t are the same
number of steps away from w and v, we have that (M, s) is an a-model if and
only if (N, t) is a b-model. Moreover, since s and t are within 2n−i−1 steps and
the original models (M,w) and (N, v) are 2n−i-bisimilar, it follows that (M, s)
and (N, t) are 2n−i−1-bisimilar. Hence the invariant holds for those models and
the proof proceeds in (M, s) and (N, t).

So, we must reach coalition operators. Note that at this point games may cease
to be over [1, 2]-models since prior public announcements may have cut chains
in various ways. However, this does not affect the proof as we are interested in
agents’ announcements rather than in chain types. Moreover, for the coalition
cases we do not have to keep the invariant since all these cases lead straight to a
contradiction.

We will consider only existential coalition announcement operators 〈[G]〉ψ, and
the corresponding results for [〈G〉]ψ can be obtained by swapping A to B, and the
∃-player to the ∀-player.

Case 〈[{a, b, c}]〉ψ. Let (M,w) |= 〈[{a, b, c}]〉ψ. According to Definition 7.2
there is a relativised group announcement by a, b, and c such that p(M,w), [∅,
ψ{a,b,c}]ψq is a winning position for the ∃-player. For this node there is only one
possible ∀-step: p(M,w), [ψ{a,b,c}]ψq. SinceMB is infinite, there is a model (N, v)
and an announcement χ{a,b,c} by a, b, and c, such that (M,w)ψ{a,b,c} is isomorphic
to (N, v)χ{a,b,c} (see Figure 7.13 for an example).

Indeed, consider set Wψ{a,b,c} . We can enumerate states in the set from left
to right. Next, let N0 = (W 0,∼0, V 0) be a model such that W 0 = Wψ{a,b,c} ,
wn+1−i ∈ V 0(p) if and only if wi ∈ V (p), and wn+1−i ∼0

a wn−i if and only if
wi ∼a wi+1 for all a ∈ A. In other words, we flip model (M,w)ψ{a,b,c} from left to
right. Note that agents’ relations are also flipped: if state w was an a-state, it
would become a b-state. Moreover, we can always find a b-model (N, v) that has
N0 as a submodel. Since agents can together enforce any configuration of (N, v),
they have a joint announcement χ{a,b,c} such that (N, v)χ{a,b,c} is isomorphic to
(M,w)ψ{a,b,c} , where (N, v)χ{a,b,c} = N0. The same argument can be made in other
cases of the proof.
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ψ{a,b,c}

¬p p p ¬p p p ¬p p

χ{a,b,c}

Figure 7.13: An a-model (above) and a b-model (below)

Thus p(N, v), [χ{a,b,c}]ψq (and hence p(N, v), [∅, χ{a,b,c}]ψq) is a winning po-
sition for the ∃-player, and she has a winning strategy for a model from MB.
A contradiction. Note that since agents a, b, and c can together enforce any
configuration of a model (up to bisimulation), the argument holds for the case of
arbitrary public announcements.

Case 〈[{a, b}]〉ψ. Let (M,w) |= 〈[{a, b}]〉ψ. This means that p(M,w), 〈[{a, b}]〉ψq
is a winning position for the ∃-player. Therefore, p(M,w), [{c}, ψ{a,b}]ψ is also a
winning node for the player. This means that whichever announcement ψ{c} by
agent c the ∀-player chooses, the ∃-player is still in a winning position p(M,w), [ψ{a,b}
∧ ψ{c}]ψq. There is a model (N, v) ∈MB such that for some announcement χ{a,b}
by agents a and b it holds that (M,w)ψ{a,b} is isomorphic to (N, v)χ{a,b} , and c
has an isomorphic set of possible counter-announcements (see Figure 7.13 for an
example). This is due to the fact that a and b can together force any configura-
tion of a model. Hence p(N, v), [{c}, χ{a,b}]ψq is also a winning position for the
existential player, and this leads to a contradiction.

Case 〈[{a, c}]〉ψ. Let (M,w) |= 〈[{a, c}]〉ψ. This means that p(M,w), 〈[{a, c}]〉ψq
is a winning position for the ∃-player. Therefore, p(M,w), [{b}, ψ{a,c}]ψ is also a
winning node for the player. This means that whichever announcement ψ{b} by
agent b the ∀-player chooses, the ∃-player is still in a winning position p(M,w), [ψ{a,c}
∧ ψ{b}]ψq. Consider a model (N, v) ∈MB. If there is some announcement χ{a,c}
by agents a and c such that (M,w)ψ{a,c} and (N, v)χ{a,c} are isomorphic, then by
the similar reasoning as in the previous case we have a contradiction. See Figure
7.14, where counter-announcements by b are depicted by dashed rectangles.

Note that {a, c} sometimes cannot make such an announcement, because
the coalition cannot cut a’s relations that are within c-equivalence classes, and
(M,w)ψ{a,c} may contain some extreme state. In other words, this a’s relations
that a and c cannot cut, may have been cut by a previous public announcement
(and hence the corresponding state is the rightmost or the leftmost one). Since
our chosen a-model is large enough even after being trimmed by public announce-
ments (i.e. because the invariant holds), there is an a-relation in (M,w)ψ{a,c}



CHAPTER 7. GROUPS VERSUS COALITIONS 89

¬p

p p ¬p p p ¬p p

p¬ppp¬pp

ψ{a,c}

¬p

p p ¬p p p ¬p p

χ{a,c}

Figure 7.14: An a-model (above) and a b-model (below)

between two c-equivalence classes that b cut. Moreover, a submodel (M,w)ψ
′
{a,c}

of (M,w)ψ{a,c} that is restricted by that b-cut can also be forced by {a, c} (be-
cause c can cut this relation as well). Thus, replicating the corresponding move
in (N, v) allows the existential player to have a winning strategy in a b-model
no matter what agent b announces at the same time, and in this case the set of
responses by b will be a subset of those she had in the a-model. This means that
p(N, v), [{b}, χ{a,c}]ψ) is also a winning node for the ∃-player. Hence, a contradic-
tion. For an example, see Figure 7.15, where the set of counter-announcements
by b in a b-model is a subset of the set of counter-announcements by b in an
a-model.

Case 〈[{b, c}]〉ψ is similar to the previous one.
Case 〈[{a}]〉ψ. Similar to the case 〈[{a, c}]〉ψ. If a cannot make (N, v) iso-

morphic to (M,w)ψ{a} , then it is enough to cut a b-relation between two c-
equivalence classes and ‘announce’ such a subset of (M,w)ψ{a} . In this case,
it is still an a-announcement in the b-model, as well as it is one of the counter-
announcements by {b, c} in the a-model (c cuts b’s relation). Hence, the set of
counter-announcements in the b-model is the subset of counter-announcements
in the a-model.

Cases 〈[{b}]〉ψ and 〈[{c}]〉ψ are as the previous one.
This completes the proof.

Combining Theorems 7.5 and 7.6, we obtain the final result.

Theorem 7.7. GAL 6� CAL.

In case 〈[{a, b, c}]〉ψ of the proof agents a, b, and c can together enforce any
configuration of a given model. This is due to the fact that the intersection
of the corresponding relations is an identity relation. Hence, for chain models
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Figure 7.15: An a-model (above) and a b-model (below)

〈[{a, b, c}]〉ψ is equivalent to ♦ψ (and [〈{a, b, c}〉]ψ is equivalent to �ψ), and we
have the following result:

Corollary 7.8. GAL 6� APAL.

That GAL 6� APAL was conjectured in Ågotnes et al. [2010], where it was
also shown that APAL 6� GAL. Now we combine these two results.

Theorem 7.9. APAL and GAL are incomparable.



Chapter 8

Conclusion

The final chapter of the thesis serves two purposes. First, we briefly recapitulate
the main results of our work. After that, we present a potpourri of related open
research questions we find particularly interesting.

8.1 What Has Been Done

The complexity of the model checking problem for coalition announcement logic
was shown to be PSPACE-complete in Chapter 4. To obtain this result we used an
alternative equivalent semantics for the coalition announcement operator, where
instead of quantification over an infinite set of possible epistemic announcements
by agents, we consider a finite number of strategies. The latter are unions of
equivalence classes and defined on finite models with the help of distinguishing
formulas. We also considered a special case of the model-checking problem when
formulas within scopes of coalition operators are positive. In this case the com-
plexity of the model-checking algorithm is in P.

In Chapter 5 we considered validity and non-validity of various formulas of
group and coalition announcement logics. Some of those formulas were mentioned
as open questions in the literature. The most interesting result is non-validity of
〈[G]〉ϕ ↔ 〈G〉[A \ G]ϕ. We proved it in the left-to-right direction, and presented
a counterexample for the right-to-left direction. Among other interesting results
is non-validity of the Church-Rosser principle in both GAL and CAL.

Since the introduction of coalition announcement operators in 2008 [Ågotnes
and van Ditmarsch, 2008], no complete and sound axiomatisations of logics that
include the operators have been given. We present such a logic in Chapter 6.
Apart from the PAL base and coalition announcements, our logic includes rel-
ativised group announcements. This new operators [G,χ]ϕ mean that ‘given a
formula χ, whatever agents from G announce, ϕ holds after their announcement
has been made jointly with χ.’ Relativised group announcements allowed us to
tame the inherent alternation of quantifiers in the coalition operators.

We show that CAL and APAL are not at least as expressive as GAL in Chapter
7. To achieve this result, we introduce formula games between the universal and
the existential players. Relativised group announcements help us once again by
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separating moves corresponding to coalition announcements and anti-coalition
responses. After that we define two classes of pointed models and show that there
is a GAL formula that distinguishes them, whereas no CAL or APAL formula
can do that. We also modify the existing proof to demonstrate that CAL is not
at least as expressive as APAL.

8.2 What Is Yet To Be Done

Axiomatisation of CAL. First and foremost, a sound and complete axioma-
tisation of coalition announcement logic has been an open question since [Ågotnes
and van Ditmarsch, 2008]. Moreover, the completeness proof of such an axioma-
tisation would be different from the proofs in [Balbiani et al., 2008] and [Balbiani
and van Ditmarsch, 2015]. In particular, double quantification in coalition an-
nouncements does not fit well with the proof of the Lindenbaum lemma, where we
find witnesses for negations of a quantified announcement operator (e.g. the GAL
operator). In the case of CAL, we would be required to add an infinite number
of witnesses in a single step. Hence, if an axiomatisation of CAL is found, we
expect its completeness proof to differ significantly from those of APAL, GAL,
and CoRGAL.

Finding finitary axiomatisations. Axiomatisations of all logics of quantified
public announcements discussed in the thesis – APAL, GAL, CAL, CoRGAL –
include infinitary rules of inference. It is unknown whether finitary axiomatisa-
tions of the logics exist. The non-existence of the one for a somewhat related
logic – arbitrary arrow update logic with common knowledge (AAULC) – was
demonstrated in [Kuijer, 2017]. Applying the proof for AAULC to a logic with
quantified announcements and without common knowledge seems exciting and
challenging at the same time. Another way of approaching the problem of fini-
tary axiomatisations has been presented in [van Ditmarsch and French, 2017],
where the authors considered a restriction of APAL to arbitrary announcements
of boolean formulas only. The resulting logic, boolean arbitrary public announce-
ment logic (BAPAL), has a complete finitary axiomatisation. Thus, a more viable
open problem would be providing finitary axiomatisations for restricted versions
of GAL and CAL, e.g. restricting agents’ group and coalition announcements to
announcements of boolean formulas only.

Finding decidable fragments. The satisfiability problem for all of APAL,
GAL, and CAL is undecidable [Ågotnes et al., 2016]. Hence, finding decidable
fragments of those logics is an open problem. And there are already some results
in this direction. For example, BAPAL, which is a quite well-behaved logic, is
decidable. The same can be said about another restriction of APAL – APAL+ [van
Ditmarsch et al., 2018]– where quantification is only over positive EL formulas.
Testing similar restrictions of GAL and CAL is an intriguing avenue of further
research.
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Expressivity. All the known results on the expressivity of logics of quantified
public announcements, including those that were presented in Chapter 7, are
depicted in Figure 8.1.

EL≡PAL

CAL

APAL GAL

??

Figure 8.1: Relative expressivity of logics of quantified public announcements

In the figure an arrow → from logic L1 to L2 means that L1 � L2. A struck-

out arrow 6→ denotes that L1 6� L2, and an arrow
?→ labelled with a question

mark indicates an open problem. Hence, whether CAL 6� APAL and CAL 6�
GAL is yet to be answered. We conjecture that all logics of quantified public
announcements are incomparable with one another.

Adding common and distributed knowledge. To the best of our knowl-
edge, extensions of quantified announcement logics with common or distributed
knowledge have not been considered. Probably the closest work that touches
upon that problem is [Kuijer, 2017], where the author shows that AAULC does
not have a finitary axiomatisation. Common knowledge plays an integral role
in establishing that result. An axiomatisation of AAULC is, however, an open
question.

Epistemic planning. Another perspective on GAL and CAL may be offered
by the problem of epistemic planning [Bolander and Andersen, 2011]. In such a
setting the task would be to find a sequence of group or coalition announcements
such that for some initial model and a joint goal formula, this sequence makes the
formula true. A similar problem was mentioned as an open question in [Bolander,
2017]. Since in both GAL and CAL agents do not communicate within their
groups, considering implicitly coordinated plans [Engesser et al., 2017], where
agents are not allowed to negotiate in advance, seems to be yet another promising
area of further research.

Beyond announcements. Public announcements can be considered as a spe-
cial case of more general structures — action models [Baltag et al., 1998]. Action
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model logic (AML) allows us to reason about more complex epistemic events
such as suspicion, private announcements, etc. A quantification over action mod-
els was considered in [Hales, 2013], where an axiomatisation of arbitrary action
model logic (AAML) was presented. The axiom system is based on reduction
axioms, and hence AAML is as expressive as K. Note that AAML is not based
on EL, and extending the basis of the logic beyond K is an open question.

Another way of modifying AAML is to consider only actions executed by
groups and coalitions of agents. In that setting we may require agents to know
preconditions of a certain epistemic action in the same way we require agents
to know formulas they announce in GAL and CAL. However, as it was pointed
out, AAML does not require the accessibility relation to be an equivalence. In
this sense, AAML is not epistemic. Hence, if we would like agents to know the
preconditions of actions, we should take this into account. A somewhat similar
logic with the epistemic basis was presented in [Bozzelli et al., 2014].
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