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Abstract

A long standing goal of artificial intelligence is to enable machines to perceive the vi-

sual world and interact with humans using natural language. To achieve this goal,

many computer vision and natural language processing techniques have been pro-

posed during the past decades, especially deep convolutional neural networks (CNNs).

However, most previous work mainly focus on the two sides separately, and few work

have been done by connecting the vision and language modalities. Hence, the semantic

gap between the two modalities still exists.

To solve this, the overall objective of my PhD research is to design machine learning

algorithms for visual content understanding by connecting the vision and language

modalities. Towards this goal, we have developed several deep learning models com-

bined with natural language processing techniques to represent and analyze the im-

age/video and text data. We focus on a series of applications to demonstrate the effec-

tiveness of the proposed models and obtain promising results.

Firstly we show that tag-based image annotations exhibit many limitations for visual

content representation, and then develop techniques to discover visual themes as an al-

ternative by re-organizing the original image and tag set into a group of visual themes.

More concretely, we extract visual feature and semantic feature from two trained deep

learning models respectively, and then design a method to effectively evaluate the sim-

ilarity between a pair of tags both visually and semantically. Next we cluster these tags

into a set of visual themes based on their joint similarities. We conduct human-based

evaluation and machine-based evaluation to demonstrate the usefulness and rational-

ity of the discovered visual themes and indicate their potential usage for automatically

managing user photos.

Secondly we develop a novel framework for understanding complex video scenes in-

volving objects, humans, scene backgrounds and the interactions between them. In

this work, we propose to automatically discover semantic information for these videos

from an unsupervised manner. We do this by introducing a set of semantic attributes
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derived from a joint image and text corpora. Then we re-train a deep constitutional

neural network to produce visual and semantic features simultaneously. Our trained

model encodes the complex information including the whole visual scene, object ap-

pearance/property and motion. We apply our model to solve the video summarization

problem by adopting a partially near duplicate image discovery technique to cluster

visually and semantically consistent video frames together. The experimental results

demonstrate the effectiveness of the semantic attributes in assisting the visual features

in the video summarization and our new technique (SASUM) achieves state-of-the-art

performance.

Thirdly we decide to depict and interpret the traffic scene using vehicle objects. Firstly,

we collect an hour-long traffic video with a resolution of 3840× 2160 at 5 busy intersec-

tions of a megacity by flying an UAV during the rush hours. We then build a UavCT

dataset containing over 64K annotated vehicles in 17K 512× 512 images. In the next,

we design and train a deep constitutional neural network from scratch to detect and

localize different types of road vehicles (i.e. car, bus and truck), and propose a fast

online tracking method to track and count vehicles in consecutive video frames. We

design vehicle counting experiments on both image and video data to demonstrate the

effectiveness of the proposed method.

Fourthly we extend our work in the previous stage and explore more potential appli-

cations of our deep model for traffic scene understanding. Specifically, we first track

all the target vehicles from the original video, and then recognize vehicle behaviors

based on nearest neighbor search (clustering) and bidirectional long short-term mem-

ory (classification). By conducting comparative studies, we further demonstrate the

effectiveness and versatility of our approach for object-based visual scene understand-

ing.

As last, we focus on TV series video understanding and develop techniques to recog-

nize characters in these videos. Using label-level supervision, we transform the prob-

lem to multi-label classification and design a novel semantic projection network (SP-

Net) consisting of two stacked subnetworks with specially designed constraints. The

first subnetwork is aiming to reconstruct the input feature activations from a trained

single-label CNN, and the other one functions as a multi-label classifier which pre-

dicts the character labels as well as reconstructing the input visual features from the

mapped semantic label space. We show such kind of mutual projection significantly

benefits the character recognition by conducting experiments on three popular TV se-

ries video datasets. We also show that region-based prediction strategy could further

improve the overall performance.
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Our work contribute to a developing research field that demonstrates the power of

deep learning techniques in solving different visual recognition problems by connect-

ing the vision and language modality and advance the state-of-the-art on various tasks.
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CHAPTER 1

Introduction

1.1 Overview

Humans can easily achieve to classify a given image or identify different objects de-

picted in that image. A quick glimpse at an image is enough for us to catch all the

important visual details. Besides, we can easily obtain adequate semantic information

from the visual world including the types and locations of objects within it, and the

concurrent actions/events, etc. Taking Figure 1.1 as an example, we can immediately

point out the "a male cartoon character" with just a glance, and then notice the man is

holding "a grey golf club", and the "golf ball above the lawn". Some people may simply

summarize the whole image as "a man playing golf".

Since we do visual recognition so naturally and effortlessly, we may not realize how

hard this task is for computer vision (CV) algorithms. Visual recognition and other

machine vision perception cannot be easily solved by manually designing rules which

are used for processing visual inputs. In the scene above, a man hits a golf ball with a

grey golf club. On the CV side, it involves many interpretations of the depicted cartoon

image to be recognized by computers from an object level. And the recognized objects

(including interactions) need to be reconstructed back together to form accurate and

complete recognition results [5]. Because an image stored in computers is made up of

tiny dots named pixels, the vision algorithms must transform these pixel values into

high-level semantic meanings such as a "man" and a "golf ball". Besides, different races

of men with various poses could still be described using same sentence, but the lighting

condition, camera angles and the artistic styles (e.g. cartoons, painting, photos, etc.)

might be totally different. On another aspect, some similar low-level image patterns

(e.g. furry pattern) might be components of a large number of different object (e.g.

hats, shoes, tigers, wolves, etc.).
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Figure 1.1: The connection between vision and language. Left: the process of visual

perception. Middle: the example image and the natural language descrip-

tion. Right: the process of natural language understanding.

The story is also not simple on the language side. A natural language description such

as "a man playing golf" might be rephrased using many different words (e.g. syn-

onyms) and phrases (e.g. variation of word order), due to human’s subjectivity of lan-

guage understanding. For example, images containing lakes, rivers and ocean could all

be annotated with water, or we can just use lake, river, ocean respectively. Some people

may just describe such an image as a "a beautiful scene". It is a very natural case but this

often confuses CV algorithms since they are forced to distinguish similar visual con-

tents. Additionally, some words in an image caption often refer to particular parts in

that image, and understanding such an image actually involves a complicated region-

based pattern recognition process which is aiming to detect and identify salient regions

from a wide range of pixels. The aforementioned issues bring forward the problem of

semantic image/video understanding, i.e. enabling computers to effectively connect

the two modalities of vision and natural language, and accurately extract human un-

derstandable meaning from the vast visual world.
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1.2 Contributions

In this thesis we focus on developing models and machine learning techniques to con-

nect the vision and language modalities for computer vision applications.

We first develop techniques to discover Visual Theme (VT) as a better (more compact,

efficient and effective) alternative for tag-based image annotations. A visual concept

is denoted as a subset of human language vocabularies that refer to particular visual

entities (e.g. fireman, policeman). We discover visual themes by clustering user tags

according to the combination of visual similarity (based on deep features) and seman-

tic similarity (based on word embeddings) using a spectral clustering algorithm. The

discovered visual themes are demonstrated to be more effective via user study and

common computer vision tasks.

In the second stage, we show that tag based image annotation is subjective and suf-

fers from the diversity of natural language understanding, and consider generating

semantic representation from the visual information directly. More concretely, we train

a deep convolutional neural network to automatically obtain joint (visual and seman-

tic) feature representation from the images themselves without having to explicitly rely

on human supervision. We validity our proposal by conduct the video summarization

experiment and obtained promising results.

In the third stage, we focus on the total scene understanding by inspecting various

objects in it. We first collect a large-scale high resolution traffic video dataset by fly-

ing an UAV during rush hours, and then annotate the video frames using bounding

boxes and vehicle types. Next, build a deep learning based vehicle counting frame-

work which is capable of detecting, tracking and counting vehicles in 4K high resolu-

tion UAV videos. To evaluate the proposed framework, we conduct experiments on

five complicated traffic scenes by counting different types of vehicle in testing images

and videos. The results demonstrate the effectiveness and superiority of the proposed

method over other state-of-the-art methods.

In the fourth stage, we extend our work in the previous stage and recognize vehicle

behaviors by analyzing their trajectories in the traffic videos. We focus on behavior

recognition at road intersections and approach this problem via unsupervised (near-

est neighbor search) and supervised (bidirectional long short-term memory network)

manners respectively. The experimental results demonstrated the effectiveness and su-

periority of the proposed methods.

In the final stage, we focus on TV series video understanding and design a method

to automatically recognize characters in them. The proposed semantic projection net-
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work (SPNet) consists of two stacked subnetworks with specially designed constraints

for different purposes. More specifically, the first subnetwork is a contractive autoen-

coder which focuses on reconstructing visual feature activations extracted from a pre-

trained CNN, while the second subnetwork functions as a multi-label classifier with

additional constraints which require to reconstruct input visual features from the pro-

jected semantic space. Besides, we also design the region-based classification strategy

to further improve the overall performance. Experiment results on three challenging

TV series show that the proposed method achieves very promising performance, and

demonstrate the effectiveness of autoencoders for character recognition.

1.3 Outline

In order to make each part of the thesis self-contained, we will leave the background

and related work to each individual chapter. The rest of thesis is organized as follows.

In Chapter 2, we describe relevant mathematical knowledge for unsupervised learning,

supervised learning, convolutional neural networks, and general strategies of network

architectural design for visual information processing. We also provide some funda-

mental knowledge of natural language processing, including word segmentation, part-

of-speech tagging and word embedding.

In Chapter 3, we introduce our work on visual theme discovery. Given an dataset

containing images and tag-based annotations, we cluster tags into visual themes based

on their visual similarity and semantic similarity measures using a spectral clustering

algorithm. We conduct both user studies and experiments to evaluate the effectiveness

and rationality of the discovered visual themes, and obtain promising results. The

content of this chapter published in [6].

In Chapter 4, we describe our work on semantic attributed based user video summa-

rization. Firstly, we use a natural language processing tool to discover a set of keywords

from an image and text corpora to form the semantic attributes of visual contents. Sec-

ondly, we train a deep constitutional neural network to extract visual features as well as

predict the semantic attributes of video segments which enables us to represent video

contents with visual and semantic features simultaneously. Thirdly, we construct a

temporally constrained video segment affinity matrix and use a partially near duplicate

image discovery technique to cluster visually and semantically consistent video frames

together. These frame clusters can then be condensed to form an informative and com-

pact summary of the video. The experimental results demonstrate the effectiveness of

the semantic attributes in assisting the visual features in video summarization. The
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content of this chapter is published in [7].

In Chapter 5, We introduce our work on traffic scene understanding by detecting, track-

ing and counting vehicles in road traffic videos. We first capture nearly an hour-long

ultra high-resolution (4K) traffic video at 5 busy road intersections of a modern megac-

ity by flying an UAV during the rush hours. We then develop a novel traffic analysis

framework consisting of deep neural network based vehicle detection and localiza-

tion, type (car, bus and truck) recognition, tracking and vehicle counting over time.

In the experiments we show that our model outperforms other deep neural network

based techniques and that deep learning techniques are more effective than traditional

computer vision techniques in urban traffic analysis. The content of this chapter is

published in [8].

In Chapter 6, we introduce our work on vehicle behavior recognition for city road

traffic. Specifically, we first detect and track different types of road vehicles in traffic

videos, and then we design a double spectral clustering method and a bidirectional

long short-term memory method to identify different types of vehicle behaviors. By

conducting comparative studies, we further demonstrate the powerfulness and ver-

satility of our deep model for urban traffic scene understanding. The content of this

chapter is published in [9] and [10].

In Chapter 7, we describe our work on character recognition in TV series videos using

label-level supervision. We transform the problem to multi-label classification and de-

sign a novel semantic projection network (SPNet) to effectively recognize character in

video frames. The proposed SPNet contains two stacked subnetworks with different

constraints. The experiment results on three popular TV series video datasets demon-

strate the effectiveness of the proposed model. The content of this chapter is published

in [11].

Finally, in Chapter 8 we summarize our work and discuss the path forward.
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CHAPTER 2

Relevant Background

In computer vision, a long standing and open issue is how to enable computers or

intelligent agents to automatically extract useful semantic information and make inter-

pretations as human do. However it is too difficult to be solved by manually designed

rules for computers to follow. Instead, various computer vision algorithms are de-

signed for machines to learn the inherent patterns and powerful visual representations

from a set of image/video data, and the learned feature representations can be then

applied solve different computer vision problems. This practical approach is usually

known as machine learning that enable computers to learn without being explicitly

programmed. This chapter provides the necessary background on machine learning,

deep learning, and natural language processing. For more details, we recommend the

Pattern Recognition and Machine Learning book from CM Bishop et al. [12], the Deep

Learning book from Goodfellow et al. [13] and the Foundations of Statistical Natural

Language Processing book from CD Manning et al. [14].

2.1 Unsupervised Learning

Many machine learning problems can be formulated as training an artificial intelligence

(AI) algorithm to perform a mapping function f : X → Y, where X = {X1, X2, ..., Xp}
stands for variables in the input feature space, and Y is the outcome or response vari-

able in the output space. The goal is then to predict Y using X, and this kind of machine

learning is named as the supervised learning.

However, there are also many problems where we only have the input data X and no

corresponding output variables exist. Instead of predicting something, the goal is to

explore the underlying structure or distribution of data in the input space in order to

learn more about the data themselves. Such kind of machine learning is called un-
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supervised learning since no correct answer or guidance is available. Compared to

supervised learning, there is no common metrics to evaluate how well the algorithm is

doing: the performance is often subjective and domain-specific.

We will discuss two unsupervised learning techniques which we used in our experi-

ments: clustering and dimensionality reduction.

2.1.1 Clustering

Clustering refers to the technique which is aiming to find subgroups or clusters in an

unstructured and unlabelled dataset. In each distinct group, the data observations are

quite similar to each other in some aspects, while they significantly differ in different

groups. Anyway, the definition of being similar or different depends on the knowledge

(domain-specific) of the data being studied. As we may not know what we’re looking

for, clustering is useful for discovery rather than prediction. It provides an insight into

the inherent groups found within the dataset.

K-means Clustering

The K-means algorithm is probably the most popular clustering method, and it serves

as the foundation of many sophisticated clustering algorithms. Assuming that we have

a high dimensional feature space where each data observation is represented using a

data point, then the K-means algorithm is aiming to cluster these points into k groups.

A large value of k generates small groups with fine granularity, while a small value of

k creates large groups with coarse granularity.

The K-means algorithm is formally described in Algorithm 1. Starting with some data

points, the K-mean algorithms first randomly selects K point as the initial centroids,

then iteratively assigns data points to its nearest centroid by some distance measure

function and recompute all the centroids. The algorithm converges when the centroids

do not change. Two commonly used distance functions are the Euclidean distance and

the Cosine distance.

Spectral Clustering

Compared to the K-means algorithm which aims to condense data points into compact

groups, the spectral clustering is aiming to inspect the intrinsic connectivity in the dis-

crete data points. To achieve this, the algorithm represents data points as vertices V

of a graph G, where vertices V are connected by edges E, and these edges have corre-

sponding weights W. A large weight means that the adjacent vertices are quite similar,

while a small weight implies certain dissimilarity between them.
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Algorithm 1 The basic K-means algorithm.

Input: Initial data points.

Output: K data clusters with centroids {C1, C2, ..., CK}.
1: Randomly select K data points as the initial centroids.

2: repeat

3: Calculate the distance between each data point and each centroid in the K clus-

ters.

4: Assign data points to its closest centroid.

5: Recompute the centroid of each cluster.

6: until All centroids stop changing.

Hence, the goal of spectral clustering is straightforward: given data points X = {x1, x2, ..., xn}
and the similarity matrix containing pairwise similarities w(xi, xj), partitioning the

data points into groups so that points within a group are similar and points in dif-

ferent groups are dissimilar. The similarity measure w(xi, xj) can be some distance

functions, such as the Euclidean distance, the Cosine distance and the Gaussian types.

The Gaussian type is commonly used in spectral clustering and is defined as:

w(xi, xj) = exp
−|xi − xj|2

σ2 (2.1.1)

where σ controls the width of the neighborhoods.

Apart from the distance measure, there are also different approaches to construct the

data graph. For instance, in a fully connected graph, all weights w(xi, xj) are not null;

in a k-nearest neighbor graph, each vertex is only connected to its k nearest neighbors;

and in a r-neighbor graph, each vertex is connected to other vertices where their weight

w falls inside the value of r. Some other graphs are constructed using both k and r to

control the local structure of the data points.

Here we provide an overview of two popular spectral clustering algorithms, the un-

normalized spectral clustering and the normalized spectral clustering in Algorithm 2.

Assuming that we have n data points X = {x1, x2, ..., xn}, and we have computed their

pairwise similarities W(xi, xj) by some similarity function which is symmetric and non-

negative, and we denote the similarity matrix by W = (wij)i,j=1,...,n. To perform the

algorithm, we also need an essential matrix named the unnormalized graph Laplacian

matrix L, which is defined as:

Lij = Dij −Wij (2.1.2)

where D is the diagonal degree matrix assigned to the graph vertices, and W refers to

the similarity matrix. For a more systematic and complete explanation for Laplacian
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matrix, we refer to the paper of Daniel A Spielma et al. [15].

Algorithm 2 The spectral clustering.

Input: Similarity matrix S ∈ Rn×n , number k of clusters to construct.

1: Construct a similarity graph by using some distance measure. Denote W as the

weighted adjacency matrix.

2: Compute the unnormalized Laplacian matrix L.

3: if perform the unnormalized spectral clustering then

4: Compute the first k eigenvectors {u1, u2, ..., u3} of L.

5: else if perform the normalized spectral clustering then

6: Compute the first k generalized eigenvectors {u1, u2, ..., u3} of the generalized

eigenproblem Lu = λDu.

7: end if

8: Denote U ∈ Rn×k as the matrix which contains the eigenvectors {u1, u2, ..., u3} as

its columns.

9: for i = 1; i < n; i ++ do

10: let yi ∈ Rk be the vector corresponding to the i-th row of U.

11: end for

12: Using the k-means algorithm to cluster the points (yi)i=1,...,n ∈ Rk into k clusters

{C1, C2, ..., Ck}
Output: Clusters M1, M2, ..., Mi with Mi = {j|yj ∈ Ci}.

Compared to traditional clustering methods like k-means, spectral clustering only take

the similarity matrix into consideration, which makes it very helpful to process sparse

data. Besides, the built-in character of dimensionality reduction allows it to effectively

tackle high-dimensional data.

2.1.2 Dimensionality Reduction

In machine learning, the term "dimensionality" simply refers to the number of features

in the dataset. In the digital era, real-world data often comes with too many features

which results in a very high dimensionality (see Chapter 1), and this poses significant

challenges for machine learning algorithms to work on it. Sometimes, most of these fea-

tures are redundant or even irrelevant, which introduces unnecessary computational

cost and further leads to performance degradation. Hence, that’s where we need di-

mensionality reduction techniques to fight against these problems.

The dimensionality reduction can be conducted in two ways: by only reserving the

most relevant or useful features from the original dataset (this is called feature selec-
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tion) or by transforming the original data from a high dimensional feature space to a

new feature space with less number of dimensions (this is called feature extraction).

In this work, we mainly introduce a very popular feature extraction technique named

principal component analysis (PCA). For other dimensionality reduction techniques,

please refer to the paper of C.O.S. Sorzano et al. [16].

Principal Component Analysis

The Principal Component Analysis (PCA) [17] is an unsupervised algorithm that cre-

ates principal components (new features) by linearly combining the original features.

The newly created components are orthogonal, which means that they are uncorre-

lated. Besides, all components are ranked according to their "variance". The first

principal component (PC1) contains the most variance in your dataset, PC2 holds the

second-most variance, and so on.

Therefore, one can reduce dimensionality of the original dataset by limiting the number

of principal components. For instance, we can decide to reserve as many principal

components based as needed to keep a cumulative variance above 95%.

Assuming that we have the input image data matrix X ∈ Rn×d where n denotes the

number of images and d represents the original number of image feature dimensions,

we can describe the working flow of PCA in Algorithm 3. Detailed explanations of

some basic linear algebra concepts like eigenvalues, eigenvectors, and singular value

decomposition could be found in the Introduction to Linear Algebra book from Gilbert

Strang et al. [18].

Algorithm 3 The principal component analysis.

Input: Data matrix X ∈ Rn×d, number of reserved pricinpal components k.

Output: Transform matrix R.

1: Compute the mean value x̄ = 1
n ∑i=1

n xi.

2: subtract x̄ from each row xi in X.

3: Compute the covariance matrix Mcov = 1
n XTX.

4: Compute eigenvalues {e1, e2, ..., ed} of Mcov and sort them.

5: Compute matrix V which satisfies V−1 ×Mcov × V = D, where D is the diagonal

matrix of the eigenvalues of Mcov.

6: Keep the first k column of V as the transform matrix R.

10
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2.2 Supervised Learning

In supervised learning problems, we start with a data set containing data samples with

associated ground-truth labels or values. For instance, when recognizing handwritten

digits, a supervised learning algorithm accepts hundreds or thousands of handwritten

digit pictures together with their labels indicating the number (from 0 to 9) each image

represents. The goal of the algorithm is to learn a mapping function f to model the

relationship (Y = f (X)) between images and their associated numbers. When the

learning process completes, we apply the learned model to predict possible numbers

represented by unseen images. The overall goal of the supervised learning algorithm

is to generalize this function f so that it performs well on unknown samples.

Supervised learning problems can be grouped into the regression and the classification

problems depend on the type of the output. The task of classification is to assign a

label or category to a testing sample (e.g. the handwritten digit recognition), while the

regression problem predicts a continuous numerical value such as "weight" or "price".

2.2.1 The Learning Objective

Assuming that we have a training data set Tn consisted of pairs of input and output

points {(x1, y1), ..., (xn, yn)} generated from some joint probability distribution func-

tion P(x, y), and the data samples in Tn is independent and identically distributed

(i.i.d). We then design appropriate learning function that ideally satisfy y = f (x). More

specifically, we consider some particular mapping functions F and choose a loss func-

tion L(ŷ, y) which quantifies the differences between a predicted label ŷi using f ∈ F

and a ground-truth label yi. The choices of loss function L could vary according to

the practical need. In the case of pattern recognition where y = {−1,+1}, a common

choice of L is the misclassification error:

L( f (x), y) =
1
2
| f (x)− y| (2.2.1)

The loss function L leads to the definition of the risk (or generalization error) for the

learning function f :

R( f ) =
∫

L( f (x), y)dP(x, y) (2.2.2)

Therefore, the learning objective is expressed as a minimization of R for any mapping

function f ∈ F. Unfortunately, it is impractical because the joint probability distribu-
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tion P(x, y) is unknown. However, under the i.i.d assumption, the problem of minimiz-

ing R could be approached using the available training set Tn = {(x1, y1), ..., (xn, yn)}
via:

Remp( f , Tn) =
1
n

n

∑
i=1

L( f (xi), yi) (2.2.3)

Using Equation 2.2.3, We can then represent f as:

f̃ = arg min
f∈F

1
n

n

∑
i=1

L( f (xi), yi) (2.2.4)

2.2.2 The Generalization Problem

Although we hope the training data Tn is a good estimation for the actual distribution

P(x,y), we cannot guarantee a low loss on all other data points generated using P(x,y),

because our mapping function f may fit the training samples too well. Besides, there

may be many different functions that achieve the same loss using Equation 2.2.4, but

their abilities of generalization on other data points may significantly vary. A popu-

lar solution to this problem is to introduce a regularization term R(f) to the learning

objective:

f̃ = arg min
f∈F

1
n

n

∑
i=1

L( f (xi), yi) + λR( f ) (2.2.5)

where R serves as a penalty function that prefer some functions over others in despite

of their fit to the training data samples. λ is a manually-defined parameter that controls

the impact of regularization penalty. If λ = 0 , the optimization problem minimizes

empirical risk as Equation 2.2.4. In deep learning, the most commonly used function

in the space of F is a neural network (see Section 2.3.1 for more details) with some

parameters within the internal layers. The loss function L could be a Euclidean distance

based loss in regression or a cross-entropy loss in classification, and the regularization

term R generally takes the L2 norm (i.e. sum of squares of all parameter weights).

2.2.3 Optimization

Once the choices of these functions and terms are made, the solution of a supervised

learning problem is formulated as an optimization problem with a general form σ̂ =

arg minσ h(σ), where σ is the collection of parameters and h(σ) = 1
n ∑n

i=1 L( fσ(xi), yi) +

12
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λR( fσ). Note that σ only belongs to the mapping function f , and is irrelevant to the

loss function L and regularization term R.

A greedy approach to choose the appropriate σ is to randomly draw a huge number of

σ from some distribution, and then seek the one that minimizes h(σ). This "guess-and-

check" strategy might be helpful to find the global optimal solution, however, consid-

ering the millions or billions of parameters in a typical neural network (much more if

it is deeper), such kind of approach is computationally intractable.

The first-order methods are good alternatives to the greedy search. Here "first-order"

means these techniques only require first-order derivatives of the mapping function

f . In this method, we use the gradient as the search direction. We can adjust σ to

achieve lower h(σ) by adding a small value to it, and this value is determined by the

negative direction of the gradient (since the direction of gradient indicates the direc-

tion of increase of h(σ)). This is the core idea of the popular Gradient Descent (GD)

algorithm. The GD algorithm iteratively execute these two steps: 1) compute the gra-

dient, and then 2) update parameters by a small amount towards the direction of the

negative gradient. A practical concern of the GD algorithm is it requires to compute

the gradient using all training samples, however, the dataset we use in practice is often

extremely large (e.g. the ImageNet has more than 10 million training images), which

significantly limits its application. To fight this problem, we only estimate the gradient

using a mini-batch of training samples (e.g. 32, 64 or more) at a time. This allows us to

perform many small updates to approximate a large-scale update, and the correspond-

ing algorithm is named Stochastic Gradient Descent (SGD) [19]. A popular variation of

the SGD algorithm which is frequently used in deep learning is shown in Algorithm 4,

where the Momentum [20] is introduced to improve the convergence speed.

Algorithm 4 The Stochastic Gradient Descent with Momentum.

Input: learning rate α > 0, momentum weight η ∈ (0, 1), mini-batch size s ∈N

Input: a starting point σ ∈ (R)n

1: repeat

2: Sample a mini-batch of s samples {(x1, y1, ..., (xs, ys))}.
3: Compute the gradient ∇σh(σ) = ∇σ[

1
s ∑s

i=1 L( f (xi), yi) + λR( f )].

4: Compute the update direction ∆σ := η∆σ∗ + (1− η)∇σh(σ), η∆σ∗ is the previ-

ous update direction.

5: Update the parameter σ := σ− α∆σ

6: until Convergence.

The learning rate α is critical in SGD because an inappropriately value of α may cause

13
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the learning algorithm to malfunction: either to converge too soon (the α is very large)

or too slow (the α is very small). Another important parameter is the momentum η

which controls the speed of the gradient descent in order to provide small but consis-

tent directions of the gradient. In recent years, some methods such as RMSProp [21]

and Adam [22] are proposed to neutralize the mutual impact between α and η: param-

eters will take smaller learning rates if they see large gradients, and parameters that

see low gradients will take relatively large learning rates.

2.2.4 Cross-validation

We have seen that the learning problem formulation and optimization requires setting

proper values to various parameters, for example, the regularization term λ, the learn-

ing rate α, the momentum η, etc. However, these parameters are very difficult to set

considering the huge searching cost in the parametric space. In practice, we often try

several possibilities according to the specific dataset, then we optimize the learning

model in each case, and ultimately evaluate the predicted results on an extra validation

set which is isolated from the training samples. This is an effective approach to esti-

mate the generalization error. In the case that there are not too many available data

samples, one can split them into some number of folds, and then use one fold for vali-

dation and the rest for training. The average validation performance could be obtained

by averaging the results on all possible combinations of training and validation folds.

This process is named as k-fold validation (e.g. 5-fold validation in case of 5 folds).

2.3 Deep Learning

Most traditional machine learning methods work well because the data representa-

tion scheme and input features are manually designed in order to best fit the training

data. When model learning is applied only to the input features, the learning process is

mainly focusing on parameter optimization in order to achieve the optimal prediction

results. However, a obvious drawback of this approach is that it relies on extra human

guidance for specific dataset and exhibit poor performance in terms of generalization.

Another problem is when the input feature space is linearly inseparable, traditional

methods often fail to find an hyperplane to ideally divide the positive samples and the

negative samples apart.

As an emerging subfield of machine learning, deep learning can be seen as the inte-

gration of feature representation and model learning. It attempts to jointly learn good
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features, across multi-scale levels of feature representation, dimensionality reduction,

and the final prediction. In stead of finding a hyperplane in the input space, deep learn-

ing algorithms use some non-linear mapping function to transform the original input

space to another feature space, where the feature points might by linearly separable.

In this section we mainly provides the neural network basics and introduce one of the

most widely used deep learning model: the Convolutional Neural Network. The in-

troduction to other popular networks such as the Recurrent Neural Network and the

Generative Adverse Network could be found in the Deep Learning book from Good-

fellow et al. [13].

2.3.1 Neural Networks

The fundamental component of a deep learning model is the the artificial neural net-

work (ANN), where the term neural is derived from the functional unit neuron in ani-

mal brains. Similar to the biological neural network, the ANN also acquires knowledge

through learning, and the learning knowledge is stored and updated within the inter-

neuron connections known as the parameter weights.

From the mathematic view, neural networks are constructed by some repetitions of

matrix multiplications and element-wise non-linear activations. Figure 2.1 illustrates a

single neuron composed of inputs (including the bias), an activation function and the

output. Denoting the inputs be some n-dimensional vector x ∈ R, the output can be

computed as:

a = f (wTx + b) (2.3.1)

where w refer to the parameter weights, b denotes the bias unit and f represents the

activation function. f is also called the non-linearity and commonly used examples are

the sigmoid function 1
1+e−x , the hyperbolic tangent function tanh(x) = 1−e−2x

1+e−2x , and the

rectified linear unit (ReLU) max(0, x). The sigmoid activation function maps any real

number to the interval of [0, 1]. With this unit, the activation process can be interpreted

as the probability for the "neural unit" to be "on". The choice of nonlinearity often

depends on the specific dataset and should be tested by cross-validation.

A neural network could be constructed by stacking single neurons horizontally and

vertically. Vertically stacked neurons from layers in the network, and horizontally

stacked layers show the internal structure of the network. The layers between the input

and layer and the output layer are called hidden layers. In Figure 2.2, a 2-layer network

could be implemented as f (x) = W2ϕ(W1x), where W1, W2 are weight matrices and ϕ
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Input Output

Bias unit Activation 
function

w  x+b fT

A Single Neuron
3 inputs, and 1 output,

 parameters w and bias b

Figure 2.1: The definition of a single neuron with inputs, bias, activation function and

the output.

is the element-wise non-linearity (e.g. sigmoid). Similarly, A 3-layer network would

have the form f (x) = W3ϕ(W2ϕ(W1x)), etc. Generally the last layer of the neural net-

work does not contain the non-linearity, and a 1-layer neural network is just a linear

transformation.

Weights

Weights

Inputs

Inputs

Outputs

Outputs

X =

(a) (b)
Figure 2.2: (a): An example arrangement of neurons in a 2-layer neural network. Neu-

rons in one layer have connections to all neurons in the previous layer but

are not connected to each other. The input layer was represented using a

6× 4 matrix where 6 is the number of input neurons and 4 is the number

of input samples. The output is a 3× 4 matrix where 3 is the number of

output neurons. (b): The matrix multiplication operation to compute the

output.

2.3.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs / ConvNets) [23] are a category of neural net-

works that are have shown excellent performance in various tasks such as image/video
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classification, speech recognition, text sequence prediction, etc. Similar to ordinary

neural networks, CNNs are composed of neurons containing learnable parameter weights

and biases. In the task of image classification, each layer in the designed CNN accepts

some inputs, performs the matrix multiplication and optionally follows it with an ac-

tivation function. The whole network still provide a scoring function to map the raw

image pixels to the class scores in the output layer where a loss function is used.

The main difference between the CNN and the ordinary neural network is the inner

structure of their hidden layers. We know that in the ordinary neural network, each

hidden layer is made up neurons, where each of them is fully connected to all neu-

rons in the previous layer, and neurons in the same layer do not have any connections.

In other words, each neuron only stores its own parameter weight, and do not share

it with all the others. A problem of this architecture is it do not scale well on large-

scale input data. Assuming that we have an image with size of 48× 48× 3 (48 width,

48 height, with 3 color channels), then a single fully-connect neuron in the first hid-

den layer of a ordinary neural network would have 48× 48× 3 = 6912 weights. This

amount seems not quite large, however, when the size of image becomes larger (e.g.

224× 224× 3), the number of weights would be 224× 224× 3 = 150, 528. To construct

a neural network, we often need some number of such neurons, and the amount of pa-

rameters could increase dramatically. It is obvious that the full connectivity makes the

computation intractable and huge amount of parameters often lead to the overfitting

problem.

As a alternative network structure, the convolutional neural network handles inputs

in a square of neurons. For instance, an color image (3 channels) with the size of 48×
48× 3 is stored as a multi-dimensional array (e.g. a tensor) in computers, and would be

represented using 3 squares (48× 48) of neurons as the input layer of a CNN. Besides,

the neurons in the first hidden layer will only be connected to a small region of the input

pixels (e.g. 3× 3 region, corresponding to 9 input pixels), instead of all of the pixels in

a fully-connected manner. Such a small region is called the local receptive field [13] for

the hidden neuron. And each hidden neuron learns a overall bias for that region. This

local-connectivity significantly reduce the dimensionality and the computation cost.

The Convolutional Layer

The Convolutional layer is the core building block of a CNN that slides the local receptive

field (i.e. the convolutional operation) across the input tensor using a set of filters and

then produces the output tensor. For example, assuming that the input tensor of an

image is a 28 × 28 × 3 tensor, if the size of local receptive field (or the filter size) is

5× 5× 3, then each neuron in the following convolutional layer will have 5× 5× 3 = 75
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weights. We then "convolve" this filter by sliding it across the spatial positions of the

input tensor and for each position, we compute the dot product between each small

region of the input tensor and the filter. If we move the filter by one pixel at a time,

the result will be a feature map represented by 24× 24 neurons in the hidden layer (see

Figure 2.3). Moreover, if we use a larger stride length, then we will get fewer number of

neurons in the hidden layers. Sometimes it is useful to pad the input pixels with zeros

around the border (i.e. zero-padding) to help limiting the output dimension. Since

the convolutional layer often contains a set of filters, the final output tensor could be

obtained by stacking all the outputs of the convolutional operation using each filter.

24

24

1

28

28

3

Image

Filter

Convolve:

Feature map

5

5

3
Stride over all spatial positions

Figure 2.3: An illustration of convolving a 5× 5× 3 filter over a 28× 28× 3 input im-

age with stride 1 and pad 0. The filers span a small area, but take the same

depth as the input tensor (i.e. 3). In each depth, there are 24 unique spatial

positions for a 5× 5 filter in a 28× 28 input tensor, so the convolutional

operation produces a 24× 24 feature map. A convolutional layer possess

a set of different filters, each one is applied on the input tensor indepen-

dently, generating different feature maps. The feature maps are stacked

one-by-one to form the final output tensor.

To put it all together, with the input tensor size T, the filter size F, the stride length S,

the zero padding size P on the border and the number of filters N, we can compute the

dimension of the output tensor using a formula: N((W− F + 2P)/S + 1). For instance,

for a 7× 7 input tensor, 30 filters with size of 3× 3, stride 1 and pad 0, we would get a

5× 5× 30 output tensor.

The Pooling Layer

The convolutional layers are often followed by pooling layers to further reduce the di-
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mension of feature maps in order to alleviate the overfitting problem. Pooling (also

called subsampling or downsampling) spatially simplify the information in each fea-

ture map but reserves the most important information. For example, in case of max-

pooling, we could use a 2× 2 filter with a stride of 2 to take the largest value of every

spatial locations (2× 2 or 4 numbers) in the feature map (see Figure 2.4). The result

is an output tensor downscaled by a factor of 2 both vertically and horizontally. We

then repeatedly apply the max-pooling on each feature map, and stack the results of

them as the final output tensor. Instead of taking the max value in each filter, we could

also take the average (average-pooling) or the sum of all values in that filter. Anyway, in

practice, max-pooling is often shown to work better.

2 3
8 68

4

1 0
1

1
2

2
23

7 3
35
6

2 Max-pooling
2x2 filter and stride 2

Max(4, 7, 2, 8) = 8

X

Y
Figure 2.4: An illustration of max-pooling a 2× 2 filter over a 4× 4 feature map with

stride 2. We slide the 2× 2 filter by 2 and take the maximum value in each

spatial location. This reduces the dimensionality of the feature map. The

pooling results on each feature map are then stacked together to construct

the final output.

The Architecture of the CNN

Generally a convolutional neural network is constructed by stacking a sequences of

layers such as the convolutional layer (CONV), the pooling layer (POOL) and the

fully-connected layer (FC). A simple CNN that process color images might have the

structure [INPUT, (CONV, CONV, CONV, POOL)× 2, FC, FC]. Here the INPUT de-

notes a mini-batch of input image tensors (e.g. [64× 28× 28× 3] for a mini-batch of

64 color images with the size of 28× 28). The CONV computes the output of neurons

that are connected to small regions in the input image pixels. The output would be

a 24 × 24 × 30 tensor if we use the 30 filters with size of 5 × 5, stride 1 and pad 0.

The POOL summarizes the feature maps along the spatial dimensions and produce an

output tensor with reduced dimension. The FC undertakes the same job as they do

in ordinary neural networks: fully-connect the neurons in the previous layers and the

19



Chapter 2. Machine Learning and Natural Language Processing Background

output layer. The last FC could be a 1× 1× 10 tensor holding 10 class scores if the CNN

is designed for the classification task. In such a manner, CNNs transform the original

image pixels layer-by-layer to the final class scores. The parameters within the network

could be trained using some optimizer function (e.g. SGD) and the backpropagation

algorithm.

2.4 Natural Language Processing

Natural Language Processing (NLP) refers to the ability of a computer program to un-

derstand and manipulate human language as it is written or spoken. NLP has been

studied for decades and now is seen as a critical component of the artificial intelligence

(AI). Using different NLP techniques, researchers and developers can perform various

tasks such as the automatic document summarization, machine translation (e.g. Google

translation), named entity recognition (e.g. name or place recognition), question an-

swering, sentiment analysis (e.g. online product review analysis), speech recognition

(e.g. Apple Siri and Microsoft Cortana), topic classification, etc.

NLP is not easy. As great language users, human can communicate with each other

freely and do not have to formally understand and describe the inherent rules that gov-

ern languages. However, human language is highly ambiguous, and it is also changing

and evolving at all times [24]. Hence, to accurately understanding human language,

computers need to learn the usage of these rules, this is what NLP algorithms is aiming

to do.

Thanks to recent advances in the realm of machine learning (especially deep learning)

techniques, NLP is able to automatically learn the intrinsic rules by analyzing a large set

of examples (e.g books, news reports, human speeches, etc.), and then make inferences

based on statistical theories. In general, increasing the scale of training data can more

or less improve the accuracy of the model.

NLP tasks can be divided into many sub-groups, and in each group, a set of techniques

are proposed to tackle specific problem. In this section, we mainly introduce two key

NLP methods we used to aid our work of visual content recognition: the part-of-speech

tagging and the word vector representation. To know more about NLP techniques, we

recommend the book from CD Manning et al. [14].
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2.4.1 Part-of-speech Tagging

Part-of-speech (POS) measures how a word functions in a sentence, and the process

of assigning a POS to a word in a sentence is called POS tagging. The tag sets of POS

includes nouns (NN), verbs (VB), adverbs (ADV), adjectives (ADJ), pronouns (PRON),

prepositions (PREP), conjunctions (CONJ) and their fine-grained sub-categories. POS

tagging is a critical problem in many NLP tasks due to the ambiguity of human lan-

guage in different context. For instance, the word chair is noun (NN) in the sentence

"He is sitting on a brown chair", while it functions as a verb (VB) in the sentence "She

chairs the faculty for a few years". Besides, POS tagging is also useful for finding named

entities like people, places and organizations in the text or speeches.

An example of POS tagging and sentence analysis (parsing) is shown in Figure 2.5. We

use the Stanford CoreNLP toolkit [25] to analyze a sentence A small dog is lying with a

blue ball of yarn on the brown floor. Firstly we can get each word’s POS tag, and then we

start to look into the relationships between different POS tags (e.g. noun phrases, verb

phrases, etc.) in the sentence.

Figure 2.5: An illustration of POS tagging and sentence parsing for the sentence A

small dog is lying with a blue ball of yarn on the brown floor. The capital letters

in colorful boxes are the POS tags of the words in the sentence, and the ab-

breviations in the middle of bi-directional arrows indicate the relationships

between different POS tags.

To give an intuitive impression how POS tagging could benefit computer vision (CV)

tasks, we provide another example in Figure 2.6. We can point out the "dog" in the

image with just a glance. This is also what early CV algorithms do: passively output

a class label by analyzing the input image. Then we may notice more details like the

"brown dog" (noun phrase), "blue ball of yarn" (noun phrase) and "dog holding a ball"

(verb phrase), or we can simply describe the whole scene using "A small dog is lying

with a blue ball." Note that we do this naturally without explicitly specifying the func-

tionality (POS tags) of these words or pointing out the regions (bounding boxes) which

correspond to these words in the image. However, computers need to do all of these

things in order to make accurate detection and prediction. For a complete example of

using the POS tagging, we refer to our work on automatic video summarization which

is described in Chapter 4.
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Dog

I. ClassicationI. Classication

A small dog is 
lying with a blue 
ball of yarn on 
the brown floor.

II. Captioning

Small brown dog

III. Details Detection

Blue ball of yarn

Dog holding a ball

brown floor

Figure 2.6: The pyramid of semantic scene understanding. Left: Mapping pixels to

a semantic class label. Middle: Image captioning that captures more se-

mantic meanings in the visual content. Right: Jointly detect and describe

the relationships between semantic objects in the visual scene.

2.4.2 Word Vector Representation

From last section we know that computer vision algorithms can learn the meaning of

words via POS tagging, however, they also need some way to represent words in order

to learn these semantic meanings in the context when processing visual contents.

One-hot Representation

Many statistical NLP algorithms treat a single word as an atomic unit, and each unique

word in the whole corpus (e.g. a book or a novel) is used to build the vocabulary.

By this means, the word vector is represented as a vector of weights where "1" indi-

cates the index location of current word in the vocabulary, and all other elements in

the vector are zero. A demo is illustrated in Figure 2.7, where the size of vocabulary

consists of five words: (Python, Ruby, Caffe, Tensorflow, network). Then the vector of

caffe is [0, 0, 1, 0, 0]. This so-called "one-hot" representation has the problem that it does

not describe any type of similarity between each pair of words. Unfortunately, there

are more than 10 million words in English language, and many of these are related,

for instance, spouse to parter and hotel to motel. Besides, the one-hot representation is

impractical when the vocabulary is extremely large (e.g. a Google News document

collection contains more than 3 million unique words.).

Distributed Representation

The distributed representation (a.k.a word embedding) represents a word as a fixed-

dimensional and real-valued vector. Typically the dimension is low, like 100, 300 or

1000. For instance, the words (python, ruby, caffe, tensorflow, network) might be expressed

as follows:

From Figure 2.8 we can observe that the word Caffe is similar to Tensorflow, and Python is

similar to Ruby. This is meaningful to us because both Python and Ruby are program-

ming languages, while Caffe and Tensorflow are deep learning frameworks. Hence,

these dimensions in word vectors are believed to capture the semantic properties of
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Figure 2.7: Left: The example of one-hot representation of the vocabulary (Python,

Ruby, Caffe, Tensorflow, network). Right: The element-wise product is a

zero vector, which means the relationship between different words cannot

be measured by arithmetic operations.
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Figure 2.8: Left: Distributed representation of words (Python, Ruby, Caffe, Tensorflow,

network). Right: The similarity of different words could be measured by

arithmetic operations.

the words. Note that the values of these vectors in the example are chosen arbitrar-

ily and do not describe an actual representation. The actual distributed word vectors

can be obtained by using a large corpus (e.g. Google News, Wikipedia, etc.) to train a

neural network with special architectures: the Skip-Gram model and the Continuous

Bag-of-Words (CBOW) model [26].

In the Skip-gram model, we take a word as the central point and try to predict some of

its neighboring words (typically within a window size). More specifically, the model

is aiming to define a probability distribution representing the existence of some words

as neighbors of the central word. Hence, the training objective is to adjust the values

in the word vectors so as to maximize the corresponding probability. All values in the

word vectors are randomly initialized before training. Conversely, in CBOW model,

we try to predict the central word by evaluating the vectors of its neighbor words. For

detailed introduction of these two models and their training procedure, we refer to

the paper of Tomas Mikolov, et al. [26] and the Word2Vec toolkit [27]. Our work of

using distributed word representation to improve the tag-based image annotation is
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summarized in Chapter 3.

2.5 Applications

In this section, we will briefly introduce the applications of deep learning. Though

deep learning are widely used in various research field such as computer vision, nat-

ural language processing and signal processing, we would like to focus on image and

language related tasks.

The ultimate goal of computer vision is to sense the visual world and interact with

us using our own languages. Most deep learning techniques for computer vision are

used to object-oriented tasks, from image classification [28–31] which maps pixels to

a semantic class label, to image captioning [32–34] which describes the image using

natural language sentences and object detection [35–37] which localize and label vari-

ous objects in a visual scene. Other applications include image segmentation [38, 39],

which means labeling image pixels in order to localize specific objects and identify

their shapes; style transfer [40–42], which means re-arranging image pixels in order to

stylize it according to the style of other images; image synthesis [43, 44], which means

generating new images that do not exist before.
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CHAPTER 3

Visual Themes: More

Comprehensive Annotation for

Images

In this chapter we develop techniques to discover Visual Theme (VT) as a better (more

compact, efficient and effective) alternative for tag-based image annotations. Given a

joint image and tag corpora, We start by examining each tag’s ability for visual content

description, then eliminate tags whose descriptive abilities are relatively low. Next we

measure the pairwise semantic and visual similarity amongst the remaining tags, then

merge them into a joint similarity matrix. Visual similarity measures how tags are vi-

sually connected to describe similar visual contents, and semantic similarity measures

how close they are in natural language understanding. Finally we cluster the tags into

a collection of VTs according to the joint similarity matrix. We conduct user study and

computer vision tasks to demonstrate the effectiveness and versatility of the discovered

VTs. The workflow of the proposed framework is illustrated in Figure 3.1.

3.1 Related Work

Our definition of visual theme is partly inspired by the naming of the visual concept

[45]. A visual concept is denoted as a subset of human language vocabularies that refer

to particular visual entities (e.g. fireman, policeman). Visual concepts have long been

collected and used by computer vision researchers in multiple domains [46–49]. An

example in image analysis is the ImageNet [2], where visual concepts (only nouns) are

selected and organized hierarchically on the basis of the WordNet [50]. A drawback of

the visual concepts is, they are often manually defined, and sometimes they may fail to
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Figure 3.1: Overview of the visual theme discovery framework and its applications.

Given images and associated tags, we first eliminate less qualified tags

using the WNKM tag filtering method, then cluster tags into visual themes

according to their semantic and visual similarities. Next we ask human

evaluators to evaluate the quality of the discovered visual themes. The

applications of the visual themes are shown in the bottom row.

capture complex information within the visual world. This makes them less applicable

in multiple domains.

As discussed before, the subjectivity of visual concept definition hinders its extension

to be used on different joint image and text databases. This motivates us to explore

objective visual theme directly from raw images and associated tags. Our work on

visual theme discovery is related to previous work on concept discovery [45, 51, 52].

In particular, LEVAN [52] starts with a group of general concepts and gradually divide

them into sub-concepts according to massive resources of online books. VisKE [51]

focuses on validating relationships between pairs of concept entities from the semantic

and visual aspects. [45] builds a large amount of classifiers for terms filtering and

similarity computation, then cluster selected terms into concepts.

A significant difference between our work and previous work is that we are not try-

ing to build large amount of general visual concepts so as to describe as many images

as possible, instead, we put forward an unsupervised and efficient framework to al-

low different image databases to have their own collection of visual themes for visual

content description. Considering the quantity and diversity of images, dividing large

image collections into visual theme based categories can facilitate various tasks such as

image management, indexing and retrieval.
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3.2 Methodology

This section elaborates the workflow of the visual theme discovery. Recall that a visual

theme is constructed by a subset of tags which are capable of representing similar visual

contents. To make it practical, we argue that a VT should show strong connection to

certain visual contents that can be easily processed by computer vision algorithms.

Besides, tags (including synonyms) describing same or similar visual content should

be grouped into the same visual theme in order to maintain compactness. Starting

from an image corpus and associated tags, we first pick tags which show high-level

visual content descriptive ability, then cluster them into a set of VTs based on visual

and semantic similarity.

3.2.1 Tag Filtering

As we mentioned before, not all tags show strong connection with their associated vi-

sual contents. Before discovering the visual themes, we need to examine each tag’s

ability of visual content description, and filter out ones who are not qualified. The

idea to achieve this is simple: if a tag is good at depicting particular visual content,

the majority of its associated images should also share similar visual contents. Hence,

the visual similarities between images under a tag can reflect the tag’s ability towards

visual content description. For implementation, we represent images as feature activa-

tions extracted from a pre-trained convolution neural network (CNN) model due to its

excellent performance in image classification tasks [53]. We then define the Weighted

K-Nearest Measure (WKNM) as the measurement of tags’ ability towards visual con-

tent description.

The procedure of WKNM is illustrated in Figure 3.2. Given tag ti and its associated

image set Fi = set
{

fi1, fi2, ..., fij, ..., fin
}

, for every related image fij, we find its K nearest

neighbors based on the cosine distance of their visual features. Thus, the similarity

score between image fij and other images in Fi could be computed as:

Sim( fij, Fi) =
K

∑
k=1

(1− k− 1
K

)δ(ti, fijk) (3.2.1)

where δ(ti, fijk) is an indicator function which equals to 1 if image fijk contains tag ti,

otherwise it is set to 0. K is the number of nearest neighbors of image fij. It could be

noticed that, δ(ti, fijk) is penalized by multiplying a weight according to the sequence

in K neighbors (a closer neighbor has a smaller sequence index). Hence, Sim( fij, Fi)

quantifies tag ti’s ability towards visual content description based on image fij.
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Figure 3.2: The workflow of Weighted K-Nearest Measure. Given a tag and its as-

sociated images, for each image, we find its visual K-nearest neighbors

and examine if other images under the same tag frequently appear in its K

neighbors. We compute a score (higher is better) of each associated image

of the given tag, then take the median to quantify the tag’s ability towards

visual content description.

We successively compute all similarity scores based on each image in tag ti’s associated

image set Fi, then take the median score to quantify tag ti’s ability of visual content de-

scription. We call such a median the Visual Content Descriptive Level (VCDL). A large

VCDL of a tag indicates it is good at describing certain visual contents. We choose the

median because it is a robust statistic, even if dataset is biased, the median is unlikely

to offer an arbitrarily large or small value. We design the WKNM method to perform

tag filtering because traditional method like tf-idf cannot offer much help on this task.

More specifically, in each image’s annotation, the tf-idf method only uses 1 to represent

the existence of a certain tag, and 0 if it does not exist. So the tf in the tf-idf method

would always be 1 or 0. Besides, some tags like people, car often appear in many im-

age annotations, and that will make its idf scores extremely large. Consequently, those

important tags will be allocated with small tf-idf scores, and would be potentially re-

moved by thresholding.

Based on WKNM, we compute VCDLs for all tags and eliminate those whose scores fall

below a certain threshold. The threshold is often empirically set since the distribution

of tag data is often biased and unbalanced. Note that we do not need to examine each

tag’s frequency of occurrence since the WKNM method has inherently done this.

Table 3.1 gives a few examples of filtered tags from the Corel5K [54] dataset. Here

we use "too specific", "too abstract" and "too generic" to subjectively describe some fil-

tered tags. Note that The tag filtering algorithm is not aware of what is "too specific",
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Table 3.1: Examples of filtered tags on Corel5K dataset.

Filtered tags Evaluation

{f-16, kauai, oahu} too specific

{whited-tailed, close-up} too abstract

{art, festival} too generic

"too abstract" or "too generic", and these terms are manually defined to show that the

tag filtering algorithm is able to eliminate inappropriate tags (consistent with human

perception) for building the visual themes. However, when we take a look at the re-

maining tags, we found some of them are synonyms e.g. jet and plane. It is necessary to

group them together since they are likely to confuse computer vision (CV) algorithms

and introduce extra computational cost. Moreover, we notice some tags are often used

together to describe particular visual content. For instance, in the Corel5K dataset, griz-

zly only appears together with bears in images containing bears. This motivates us to

measure tag similarity both semantically and visually.

3.2.2 Tag Visual Similarity Measure

We measure tag visual similarity by examining their distances in the visual space. In

this space, each tag could be represented by its associated images which takes up a

small region in the visual space. We use holistic visual features to represent images

in the visual space. These visual features are extracted from a convolutional neural

network named VGG-16 [55] trained on ImageNet [2] (a large dataset for image classi-

fication). VGG-16 is able to produce good image features and is widely used in many

computer vision tasks in recent years. In the VGG-16 model, we take the output of

fully-connected layer ’fc7’ (4,096 dimensions) as the image-level holistic visual features.

Hence, the well-known Hausdorff distance (HD) is quite appropriate to measure visual

distance between two different tags.

The Hausdorff distance is defined as the maximum distance of a set to the nearest point

in the other set [56]. In our case, the Hausdorff distance from tag A to tag B in the visual

space would be:

h(A, B) = max
aεA
{min

bεB
{dist(a, b)}} (3.2.2)

where a and b are image feature points of tags A and B in the high-dimensional visual

space, dist(a, b) denotes some distance measure between these points. For simplicity,

we take dist(a, b) as the Euclidean distance between a and b.
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Since HD measures the relative position of points in visual space, it’s more robust to

position variations than other methods. However, HD method is quite sensitive to

outliers, which makes it inappropriate to tackle noisy data. A modified version of HD

is proposed in [57]:

hmod(A, B) =
1
|A| ∑aεA

min
bεB
{dist(a, b)} (3.2.3)

where |A| is the number of images associated with tag A. A problem of this modified

version of HD is that it contains points whose pairwise distances are zero. Considering

that an image’s annotation often contains more than 1 tag, points a and b in dist(a, b)

could refer to the same image. Hence, we revise the formula in (3.2.3) to remove this

negative impact:

h
′
mod(A, B) =

1
|A′ | ∑aεA

min
bεB
{dist(a, b)} (3.2.4)

where A
′
= minbεB{dist(a, b) 6= 0}. We use (3.2.4) to measure visual distance between

tag A and tag B. Since associated images of different tags also differ, we modify the

final Hausdorff distance between two tags as:

F
′
(A, B) = max{h′mod(A, B), h

′
mod(B, A)} (3.2.5)

Ultimately we can obtain a distance matrix Mvdist where each entry is the visual dis-

tance between a pair of tags. It’s easy to switch distance to similarity: just rescale all

values in Mvdist to the range from 0 to 1, then replace each entry value with the dif-

ference between 1 and original value. We denoted the tag visual similarity matrix as

Mvsim. Larger values in Mvsim indicates stronger visual similarity between two corre-

sponding tags.

3.2.3 Tag Semantic Similarity Measure

We measure semantic similarity between two tags by evaluating their word embed-

dings [26] [58] in an unsupervised manner. In the embedding space, each distinct word

is represented as an N-dimensional vector. The embedding algorithm first assigns each

word vector with random values, then recursively adjust the value of these vectors

according to some objective function. More specifically, we train a Skip-gram neu-

ral network language model [26] on the latest dump of English Wikipedia using the

Word2Vec [27] toolset.
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To elaborate, the training set is a large collection of English Wikipedia articles, and each

articles contains lots of sentences. Since the length of the input of the word-embedding

algorithm is fixed, sentences with different lengths cannot be directly passed to the

algorithm. Hence, in the training phase, each time a short sequence of words are ex-

tracted from an article using a sliding window with fixed width (similar as 1-D con-

volution). Then the corresponding word vectors (random values at first) are extracted

and fed into the skip-gram model. The training objective is to enable a word to effec-

tively predict its nearby words, so words enjoy higher semantic similarity lie closer in

the semantic space.

Once the training process is completed, we extract word vectors from the trained model

according to the content of tags, then evaluate the semantic similarity of each pair of

tags by computing cosine distance between their corresponding word vectors. Sim-

ilarly, we build the semantic similarity matrix Mssim. Again, we replace each entry

value in Mssim with the difference between 1 and original value. Larger values in Mssim

indicates stronger semantic similarity between two corresponding tags.

3.2.4 Clustering Tags into Visual Themes

With two similarity matrices Mvsim and Mssim, we linearly merge them into a joint sim-

ilarity matrix Mjoin via a parameter α (from 0 to 1). We can control the proportion of

visual and semantic components by tuning α.

Mjoin = α×Mvsim + (1− α)×Mssim (3.2.6)

Based on Mjoin, we use the spectral clustering [59] to cluster tags into a collection of

visual themes. Table 3.2 describes a few themes discovered on the Corel5K dataset

with α fixed to 0.12. We have done some experiments on alpha values ranges from

0.0 to 1.0 with an interval of 0.02. We found that a large value of alpha would group

tags with similar semantic meanings into different visual themes, which makes results

not quite reasonable. This is due to the way of computation of tag visual similarity.

The tag visual similarity evaluates the similarity between two tags in the visual space.

More specifically, if these two tags are often used to describe visually similar contents,

they are then close to each other in the visual space and vice versa. However, although

the image features are extracted from a large-scale image dataset, the number of tags

participate in the computation is relatively small (260, 291 and 268 in three datasets) in

this project. Hence, the visual similarity Mvsim computed on a relatively small image

and tag dataset may introduce bias to the clustering algorithm. Consequently, tags
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with similar semantic meanings are likely to be grouped into different visual themes

because they are used to describe visually different images. While in the semantic

space, tags are represented using word vectors and these vectors were trained on a

very large natural language corpus (Wikipedia, over 6 billion word tokens). Hence, a

large portion of tag semantic similarity Mssim (i.e. setting α to a small value) is able to

balance the bias brought by visual similarity Mvsim in the joint similarity matrix Mjoin.

In this regard, we empirically set alpha to a small value of no more than 0.3 which

we found worked well. This is not ideal and a systematic way to set this parameter

would be better. However, as in many real applications, this is impossible. Fortunately,

we have data and it is possible to use cross validation method to empirically choose a

reasonable value.

Table 3.2: Examples of visual themes discovered on the Corel5K dataset.

Concept Type Concept Content

scene {sunrise, sunset}

object {mare, foals, horses}

mixed {cloud, sky, mist, horizon}

mixed {jet, flight, runway, plane}

3.3 Human Evaluation

After the clustering phase, each visual theme is represented as a set of tags with asso-

ciated images. As we mentioned in Section 3, a visual theme should show strong con-

nection to certain visual contents. Besides, tags (including synonyms) describing the

same or similar visual content should be grouped into the same visual theme. Hence,

we design a human based test to evaluate the quality of discovered visual themes. As

visual themes are subjective, human evaluation is probably the only way to assess the

soundness of them.

We work on the Corel5K dataset and discover 100 visual themes from 4500 training im-

ages and associated tags. We feed training images into the VGG-16 [55] model and take

the output of fully-connected layer ’fc7’ (4,096 dimensions) as the image-level holistic

visual features. Then we choose 499 testing images as the evaluation set, and replace

tag based annotation with corresponding visual themes. Hence, testing images are cat-

egorized into a collection of visual themes. Next we remove themes whose frequencies

of occurrence are less than 3 times across all testing images, and keep 66 visual themes
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for evaluation.

We design a two-step procedure for human evaluation. An example of the evaluation

interface is shown in Figure 3.3. For each visual theme, we first display its tags and

associated images to human evaluators, then asked them to examine whether the visual

content described by this visual theme appears in all the associated images. If not,

they need to give the number of images which they think are irrelevant to the given

theme. Thus we can easily compute the ratio of relevant images for each visual theme,

and we name such a ratio as the accuracy of visual content description (AVCD) of a

visual theme. The AVCD for each visual theme is obtained by averaging all evaluators’

responses on that theme.

Figure 3.3: An example of the human evaluation interface. Human evaluators need

to give the numbers of images which are irrelevant to current displayed

visual theme, and also vote for the rationality of this visual theme.

In the following step we asked evaluators to examine tags contained in visual themes.
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They need to check if all tags within a visual theme are semantically connected and

refer to similar visual content. If so, the corresponding visual theme is regarded as

rational and vice versa. The final decision of rationality for each visual theme was

obtained by taking the majority of votes of the human evaluators.

17 human subjects participated in the evaluation experiment. Ten of them are students

studying in the University of Nottingham or the Shenzhen University, and all of them

have some knowledge of image annotation. The other seven participants are industrial

practitioners and all of them were properly trained with basic concepts of image anno-

tation. The evaluation result is summarized in Figure 3.4. In (a) we can clearly see that

more than half of discovered visual themes achieve an AVCD over 0.9 on the visual

content description, and only 4% of them did not perform well on this task. In terms of

rationality, 92% of visual themes are voted as rational while the remaining 8% are not.

The experiment result demonstrates the effectiveness of the discovered visual themes

towards visual content description.

Figure 3.4: Results of the human evaluation of the discovered visual themes on the

Corel5K dataset. (a): The result on the accuracy of visual content descrip-

tion of visual themes. (b): The evaluators’ responses on rationality of visual

themes.

3.4 Machine Evaluation

Besides human evaluation, we also evaluate the discovered VTs via three common CV

tasks: example based image search, keyword based image search and image label-

ing. We work on four popular benchmarks, namely, Corel5K [54], NUS-Wide-Lite [60],

IAPR-TC12 [61] and a subset of ESP-game [62]. The first two are used for example
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based search and keyword based search respectively. The last two and Corel5K are

chosen as the testbeds of image labeling.

To conduct the image retrieval and labeling experiments, we need to construct an ap-

propriate framework. To achieve this, a vital issue needs to be taken into consideration:

how to design an effective data structure in terms of storage and speedy retrieval. In-

spired by [63], we build a random forest using image features and the discovered visual

themes. The image features are holistic visual features extracted from a convolutional

neural network named VGG-16 [55] model. Denoting the image feature vector as f
′
,the

split function is defined as:

{
f
′
i ≥ thres, go to the left child

f
′
i < thres, go to the right child

(3.4.1)

In the traditional random forest, we can generate multiple splits with different feature

dimensions and thresholds. In this project, we plan to use the distribution of visual

themes to guide the generation of trees. More specifically, in each random tree, we do

binary split on visual features. After splitting image samples to the left child node or

right child node, we compute the histogram of their corresponding visual themes. A

good split means the visual theme histogram at the left child node should be quite dif-

ferent with from the visual theme histogram at the right child node. In other words,

the visual theme histograms in the right or left child node can be viewed as the prob-

abilities that a child node contains the specific visual theme. Hence, the well-known

information gain [64] could be used as the objective function. The number of trees can

vary and are empirically set based on the specific dataset. We do not explicitly set the

maximum depth of trees and allow each single random tree to grow until no new split

is made.

The architecture of our random forest is illustrated in Figure 3.5. Given a test image,

we feed its visual feature into a random tree, and it keeps falling until it reaches a

leaf node. Consequently, training examples under the same leaf node share similar

or same visual themes with the test image. Here we name a related training example

as a Hybrid Neighbor (HN). We successively feed the test image to all random trees

and obtain the Hybrid Neighbor Set (HNS) which is formed by all HNs. Additionally,

the frequency of occurrence for a single HN in HNS is defined as Hybrid Neighbor

Vote (HNV). Apparently, a larger HNV indicates stronger similarity between a training

image and a testing image, and vice versa.
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Figure 3.5: The architecture of our random forest for image retrieval and labeling. The

visual feature of the testing image is put into the forest and the similar im-

ages in training set will be found. Training images with higher frequency

of occurrence will enjoy a higher rank in the returned result.

3.4.1 Example Based Image Search

Scenario. The retrieval system accepts an image as the input and then returns a list

of ranked images according to some similarity measure. In our case, we just put the

testing image into the random forest and obtain its HNS and corresponding HNVs. The

returned images are then ranked by their HNVs following a descending order. Usually

the top K results will be returned by the retrieval system.

Data. We work on the popular Corel5K [54] benchmark which contains 4999 images. It

is commonly split into 4500 images for training and the remaining 499 for testing, and

260 tags appear in both of these two sets.

Evaluation metric. Since the Corel5K dataset does not have ground truth results for

this task, we use the K-Nearest Semantic Measure (KNSM) defined in [63] as the eval-

uation metric:

KNSM =
Q

∑
q=1

T

∑
t=1

K

∑
k=1

δ(Hqk, t) (3.4.2)

where Q is the number of queries, T denotes the number of tags contained in the query

image and K represents the top K retrieved Hybrid Neighbors. δ(Hqk, t) = 1 if the

query image q’s tag t appears in its kth HN, and δ(Hqk, t) = 0 if not. Hence a larger

KNSM indicates stronger similarity between the query image and its HNs since they

share more visual themes.
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Parameter setting. We eliminate tags whose visual content description levels (VCDLs)

fall below 1.5, which removes 25 tags from the original tag set. Next, 100 visual themes

are obtained by clustering 235 remaining tags. We initially created 600 random trees

and start with different number of trees to carry out the image retrieval experiments.

We found we got the best result when the tree number is set to 400. We also reproduce

the result in [63] to justify the superiority of VTs over tags. In terms of the baseline

method, we select the Joint Equal Contribution (JEC) [65] where various types of fea-

tures are equally weighted for visual distance measurement, and is shown to perform

well in image retrieval and annotation.

Query Image Retrieved Result 

Ours

Ours

Ours

45 36 32 28 26

48 48 44 44 42

JEC

JEC

JEC

@1 @2 @3 @4 @5

@1 @2 @3 @4 @5

@1 @2 @3 @4 @5

36 24 24 21 21

Figure 3.6: The qualitative result of the example based image search

Result. Figure 3.6 shows some qualitative results of these three methods: random

forest on visual themes (RFoVT), random forest on tags (RFoT) [63] and JEC. Purple

numbers under the result images denote their corresponding HNVs, the orange num-

ber is similar to HNV, but it’s computed based on the tags in stead of the visual themes.

The purple numbers in the third row mean the rankings of returned images using the
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JEC method. Apparently RFoVT and RFoT greatly outperforms their JEC counterpart.

Moreover, our RFoVT performs better than RFoT both in good (see first example) and

bad cases (see the last example).

Figure 3.7: The KNSM measure of example based image search.

We also provide quantitative analysis using KNSM. We perform retrieval using all 499

testing images and result is illustrated in Figure 3.7. Clearly our method finds images

with higher semantic similarity than the other two. Our success on this task demon-

strates that visual themes are better than tags in terms of visual content description.

3.4.2 Keyword Based Image Search

Scenario. Given a query keyword, the retrieval system returns a collection of images

that are most likely to contain that word. On this task, we tend to use a large image

repository where the training instances are annotated with tags while the testing in-

stances are not.

Data. We consider the NUS-Wide-Lite dataset which contains 55,615 images, half of

them (27,807) are used for training and the other half (27,808) for testing. We directly

use 1,000 tags provided by the author for visual theme discovery. There are also 81

manually defined concepts available in dataset, each concept is represented with a sin-

gle word.

Parameter setting and evaluation metric. We first remove tags whose VCDLs are

lower than 2.5, then cluster 904 remaining tags into 300 visual themes. We build 400
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random trees and evaluate the proximity between a test instance T and a visual theme

c as:

p(T, c) = ∑N
n=1 δ(hn, c)vn

∑N
n=1 vn

(3.4.3)

where N is the size of hybrid neighbor set (HNV) of instance T, hn denotes a hybrid

neighbor (HN) in HNV, and vn denotes the hybrid neighbor votes (HNV) of hn. δ(hn, c)

is an indicator function which equals to 1 if visual theme c exists in hn, and is equal to

0 otherwise.

In the experiment, we treat each visual theme as a whole keyword, which means

searching with any tags within the same visual theme will obtain the same results. We

compare the Mean Average Precision (MAP) achieved on visual themes (RFoVT) with

five previous methods on 81 manually defined concepts, namely, K Nearest Neighbor

(KNN), Support Vector Machine (SVM) [66], Entropic Graph Semi-Supervised Clas-

sification (EGSSC) [67], Label Exclusive Linear Representation (LELR) [68], and Fea-

ture Analysis and Multi-Modality Fusion (CFA-MMF) [69]. Additionally we repeat the

work in [63] and construct another random forest using 81 manually defined concepts

(RFoMC), then perform the same task.

Figure 3.8: The MAP of the keyword based image search on NUS-WIDE-Lite.

Result. The overall results are shown in Figure 3.8. We can clearly see that some of pre-

vious methods have achieved much higher MAP than the KNN baseline on 81 manu-

ally selected concepts, but they still fail to achieve a MAP over 40%. While our random

forest on visual themes (RFoVT) could obtain a MAP of 42.96%. This result demon-

strates automatically discovered visual themes could do better than manually selected

concepts in terms of visual content representation.
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3.4.3 Image Labeling

In order to further explore the potential of visual themes, we perform the image label-

ing experiment on three well-known benchmarks: Corel5K [54], IAPR-TC12 [61] and

a subset of ESP-game [62]. Table 3.3 provides details of three datasets and parameter

settings of this task.

Table 3.3: Details of three image datasets and experimental parameters.

Dataset Corel5K IAPR-TC12 ESP Game

Training samples 4500 17665 18689

Testing samples 499 1962 2081

Tags 260 291 268

α 0.15 0.3 0.2

Random trees 400 400 400

Top voted HNs 3 3 3

Tags returned up to 5 up to 5 up to 5

In this task, we do not perform tag filtering and only calculate the VCDLs for all tags.

Given a testing image, we put it into the random forest and obtain its HNs, and re-

tain top voted m HNs according to their HNVs. Then we collect all tags within these

HNs and keep at most n tags with the highest VCDLs as the final results. It’s a natu-

ral approach since selected tags are visually and semantically connected to the testing

image.

We report the average precision and the average recall of image labeling with compari-

son to previous works in Table 3.4. From the table we can see that our method (RFoVT)

outperforms all previous methods on Corel5K dataset, but its performance falls behind

the TagProp [62] and RF_optimize [70] on the other two datasets. However, the suc-

cess of TagProp largely depends on its tedious optimization for each image and tag,

which hinders its extension to large scale dataset. While RF_optimize treats each tag

as an independent unit and ignore their visual and semantic connection, which makes

it less competent in dealing with noisy data. Note that web images in real world often

come with considerable amount of redundant and unnecessary information. On the

contrary, our image labeling method can be easily extended to large scale dataset, and

can effectively eliminate the majority of noisy dataset by tag filtering. Although RFoVT

does not perform very well on all datasets, it is quite simple yet efficient considering

the intrinsic architecture of random forest. The result could be improved by adopting

more sophisticated tag selection algorithm.
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Table 3.4: Image annotation results on three datasets.

Dataset Corel5K IAPR-TC12 ESP Game

Method Precision Recall Precision Recall Precision Recall

MBRM [71] 0.24 0.25 0.24 0.23 0.18 0.19

JEC [65] 0.27 0.32 0.28 0.29 0.22 0.25

TagProp [62] 0.33 0.42 0.46 0.35 0.39 0.27

GS [72] 0.30 0.33 0.32 0.29 - -

SML+RF [73] 0.36 0.33 0.27 0.30 - -

RF_optimize [70] 0.29 0.40 0.45 0.31 0.41 0.26

RFoVT 0.40 0.35 0.31 0.23 0.29 0.20

3.5 Summary

In this chapter, we have described an unsupervised framework to automatically dis-

cover visual themes which effectively depict various visual contents. Our idea of the

unsupervised image tag clustering is very original and novel, which has been further

demonstrated to be useful in common computer vision tasks via human evaluation

and three experiments. Considering the huge amount of (noisy) tags in online image

sources (e.g. Facebook, Instagram), our new image tag clustering method can poten-

tially be used for knowledge discovery and image categorization in large online repos-

itories.
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CHAPTER 4

Semantic Attribute Based User

Video Summarization

In this chapter, we build a novel offline video summarization framework to jointly use

visual and semantic features to represent and summarize online user videos. More

concretely, we build semantic features by introducing a set of semantic attributes. Each

semantic attribute is in the form of a unique word discovered from a database consist-

ing of web images and associated text captions. We then train a deep convolution neu-

ral network for extracting visual features as well as predicting the semantic attributes

of the video segments. Based on the observation that adjacent video frames almost in-

evitably contain partially duplicate objects or regions, we adapt the partially duplicate

image discovery technique, bundling center clustering method [74], for generating the

final video summary. The experimental results show the effectiveness of the semantic

attributes in assisting the visual features in offline video summarization and our new

technique achieves state-of-the-art performance.

4.1 Related Work

In recent years, the rapid proliferation of video contents in the internet has created a

demand for methods to perform effective video management and retrieval. However,

the user-defined crowd-sourcing data such as titles, annotations and thumbnails often

fail to provide specific semantic representation of the abundant visual content, which

could lead to unsatisfactory retrieval performance.

A possible solution to improve the performance of video retrieval performance is to

adopt automatic video summarization, which provides a synopsis for the given video

content, saving time and money cost both for users and enterprises that provide video
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Chapter 4. Semantic Attribute Based User Video Summarization

Figure 4.1: An overview of our offline video summarization framework. For video

understanding, we train a deep neural network for predicting a set of se-

mantic attributes. We then compute deep features of the input video seg-

ments and construct the affinity matrix based on the pairwise similarity

and temporal constraints. For summary generation, we cluster the whole

sequence of segments into several continuous groups and then concatenate

the central part of some segments in each group to obtain the final video

summary.

based services. Early work on automatic video summarization mainly focuses on cer-

tain domains such as sports [75] and news [76] videos, and generates summaries by

leveraging domain-specific knowledge during the analysis process. However, most of

these approaches only consider visual features, while the high-level semantics are often

ignored.

To address this problem, some recent approaches attempt to introduce manually de-

fined semantics to help generate video summaries, for example, interestingness [77],

categoric knowledge from web images [78] and titles of user video [79], etc. An im-

plicit assumption under this line of work is that these crowd-sourcing data, such as

tags, categories, user titles are correctly given. But due to the subjective nature of the

problem, different tags and titles are often used to describe the same or similar video

contents, and some of them are even irrelevant. Such imperfections make these meth-

ods less applicable without proper human supervision.

In stead of using these subjective data, our work approach the video summarization
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problem by automatically obtaining joint (visual and semantic) feature representation

from the video themselves without explicit human supervision. We introduce a set of

automatically discovered semantic attributes. Each semantic attribute is in the form of

a unique word obtained from online images and associated text captions.

4.2 Methodology

Our video summarization framework is illustrated in Figure 4.1. Given an input video

segment, we first use a trained deep neural network to extract the joint deep features,

and then apply a clustering method to divide the whole sequence of segments into

several continuous groups. Finally, we select a few segments from each group and

concatenate them following the temporal order to form the final video summary.

blue
snow
sky

plane
mountain

snowy

A plane emitting smoke stream flying over a mountain.
A plane darts across a bright blue sky behind a mountain covered in snow.
A plane leaves a contrail above the snowy mountain top.
A mountain that has a plane flying overheard in the distance.
A mountain view with a plume of smoke in the background.

CaptionsImage Attributes

The stoplight is much larger than the people standing around.
A picture of a downtown intersection with a large street light.
A stop light that is flashing green in front of a group of people.
A traffic light turns green in a crowded city.
people and buildings in a city with a streetlight

street
group

building
green
city

picture
light
stop

traffic

The baby elephants follow the momma elephant through the field.
Group of baby elephants walking behind a mother elephant in the woods.
A herd of elephant standing on top of a grass covered field.
A large elephant is leading two smaller elephants.
An elephant and her young proceed through the forest.

group
field

grass
elephant

wood
herd

Figure 4.2: The examples of attributes extracted from the original image captions (the

right column).

4.2.1 Learning Semantic Attributes

As mentioned before, we want to use semantic attributes to capture the semantics in

videos. In stead of using hand-labeled data, our semantic attributes are extracted from

image captions, including object classes, appearance & properties and motions. The

question is how to discover such attributes. We do it by examining a joint image and

text corpora, where images come with human-annotated captions. Different from [80]
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who directly extracts semantic features from the raw image captions, we use Stanford

Corenlp toolkit [25] to automatically extract a set of attributes (words) from the cap-

tions of the training images in the Microsoft COCO [81] dataset. We then retain T most

frequent words as our semantic attributes. In order to avoid overgrowing the dimen-

sion of our attribute vocabulary, we only consider the "lemma" form of a word, for

example, "spots", "spotted" and "spotting" are all treated as "spot".

Some examples of extracted attributes are shown in Figure 4.2. We also examine the fre-

quency of each attribute across all training image captions, and the result is illustrated

in Figure 4.3. We notice that some attributes like "person", "street" and "white" appear

with very high frequencies across the training set, which indicates that many images

are annotated with such words by human annotators. It is reasonable since most of the

images in the COCO database are about daily lives.

Given that attribute vocabulary, we can easily replace the original caption of an image

with a small set of attributes. We then wish to train a predictor to predict the attributes

of a given video segment. Considering that each segment may contain multiple at-

tributes and some attributes may only apply to sub-regions of the segment, we treat

the prediction task as a region-based multi-label classification problem [82].

Figure 4.4 summarizes our deep neural network for attribute prediction. We adopt the

powerful ResNet [1] pre-trained on ImageNet [2] as our base model. We modify the

structure of ResNet by inserting a fully-connected layer with 1024 neurons before the

output layer and then change the target output for multi-label prediction. In the fine-

tuning phase, the output of the fully-connected layer are passed to a T-way softmax

function. For objective function, we use the popular binary cross-entropy loss. Assum-

ing that we have N training samples and corresponding attribute based annotations,

we then use yn = [yn1, yn2, ...ynt] to denote the attribute vector of the nth training image,

where ynt = 1 if the image contains the tth attribute, and ynt = 0 otherwise. If we use

ŷn = [ ˆyn1, ˆyn2, ... ˆynt] to represent the predicted attribute probabilities of the nth training

image, then the training objective is to minimize:

J = − 1
N

1
T

N

∑
n=1

T

∑
t=1

[ynt log ˆynt + (1− ynt) log(1− ˆynt)] (4.2.1)

For implementation, we use the 82,783 training images from the MS COCO dataset

[81] for the training purpose. We obtained 186 unique words and use them as our

semantic attributes. We do not consider a large vocabulary since the distribution of

discovered semantic attribute is unbalanced. The original caption of an image is then

replaced with a small set of attributes as the ground-truth annotation. During the fine-

tuning phase, the parameters of the new fully-connected layer and the output layer are
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FlattenFine-tuning multi-label CNN Dense

FlattenPre-trained single-label CNN

Images with single label

Single-label 
prediction

Multi-label 
prediction

Imagenet

COCO

Images with multipl labels

Generate

Sub-regions
Max-pooling

Fatt

Regions

Input video segment

Weights     transferring

Attribute       prediction

Figure 4.4: Our attribute prediction model. We build the CNN based on the ResNet

[1] pre-trained on ImageNet [2]. We add a new dense layer after the last

convolution block and then fine-tune the model for multi-label prediction

purpose. Given a test video segment, a small set of proposed sub-regions

are passed into the CNN and the output of each sub-region are then ag-

gregated by max-pooling to generate the final attribute prediction result

(denoted as Fatt).

initialized with random values. The learning rates of these two layers are set to 0.001.

All parameter values in other layers are fixed throughout the fine-tuning process. We

employ the Stochastic Gradient Descent (SGD) as the optimizer and execute 20 epochs

in total. The momentum is set to 0.9, and the dropout rate is set to 0.5.

After the fine-tuning process, we predict each video frame’s attributes by selecting and

feeding image regions into the trained model. Considering the efficiency of the deep

network, we firstly employ Multi-scale Combinatorial Grouping (MCG) [83] to extract

hundreds of sub-regions from the given image, we then follow a similar approach in

[82] and adopt the normalized cut algorithm to cluster all region proposals into c clus-

ters based on the IoU (Intersection-over-Union) affinity matrix. The top k proposals

with highest predictive scores are then selected, which produces c ∗ k image propos-

als. Besides, we also add the original image to the proposal group, and then pass the

c ∗ k + 1 region proposals to the trained CNN for the attribute prediction. In the final

stage, we use the simple max-pooling to aggregate the outputs of attribute prediction

on all the proposals into a compact attribute prediction vector Fatt (see Figure 4.4).
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Chapter 4. Semantic Attribute Based User Video Summarization

To evaluate the region-based attribute prediction approach, we design an experiment

to predict attributes for a set of images using regions and the whole image respectively.

Since no ground-truth captions of test images are provided in the MS COCO dataset,

we randomly sample 5000 images from the validation set and use them for testing. The

evaluation metric is the Average Precision (AP) and the mean of AP (mAP), complying

with the protocols in [82].

We report APs on each attribute in Fig. 4.5. The results indicate that our region based

prediction method significantly outperforms the whole image based method on more

than 93% of all the attributes. The mAP on the 186 attributes is 0.439 for region-

based method and 0.116 for whole image based. To provide more intuitive experi-

ence, we show some examples of attribute prediction in Fig.4.6. The experimental re-

sults demonstrate the effectiveness of our region-based attribute prediction strategy

and strengthen our belief to apply the region-based method to video content analysis.

Figure 4.6: The examples of the attribute prediction. For each image, we show the

predictive probabilities (PP) for the ground-truth attributes. The blue bar

denotes PP of region based attribute prediction method, and the orange

bar represents the PP of whole image based prediction.
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4.2.2 Building Deep Features

As summarized in Figure 4.1, our deep features come with two parts. Given a single

video frame, we pass it into the trained CNN and take the output of the last convolution

block as the visual features. The result of attribute prediction is then treated as the

semantic features. For feature fusion, we notice that the authors in [84] compute two

affinity matrices on visual features and semantic features respectively, and introduce an

external parameter γ (from 0 to 1) to fuse the two affinity matrices. This method is not

applicable to our case, since their visual features and semantic features are extracted

from two different models that are trained respectively on different image and text

corpora. Moreover, the values of γ are often set empirically, and tuning the value of γ

will introduce extra computational cost.

Considering that our visual and semantic features are computed using the same model,

we fuse these two types of features by vector concatenation. Besides, we also investi-

gate the impact of applying dimensionality reduction techniques to our deep features.

Please see Section 4.3.1 for the experimental details.

4.2.3 Generating Video Summary

Given an input video, we divide it into small segments, and each small segment con-

tains 10 consecutive frames. Considering the temporal redundancy in adjacent video

frames, directly processing all the frames in each video segment would introduce un-

necessary computational cost. Hence, for each segment, we only keep the first frame

to represent the content of this video segment. For example, if a video contains 1000

frames, only 100 fames participate into computation. We then generate the video sum-

mary by finding an optimal subset of these video segments. To achieve this, our first

step is to group all video segments into M continuous groups by evaluating pairwise

similarity of the adjacent segments. We measure such similarity by computing the Co-

sine distance of their corresponding deep features extracted from our deep CNN. We

then obtain a symmetric affinity matrix Msim where each entry Msim(i, j) quantifies the

similarity between segment i and segment j. Considering the temporal peculiarity of

the video content, we only consider the similarity between a segment with its k tempo-

ral neighbors, so we set Msim(i, j) = 0 if |i− j| > k, and Msim(i, i) = 0.

We apply the Bundling Center Clustering (BCC) [74] to help cluster video segments

into M groups. Based on the temporal constrained affinity matrix, dense neighbors

[85] of each video segment from the matrix are generated, and local dense neighbor

clusters with high average similarity score are then identified as the local bundling
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centers. We follow [74] to grow and merge local bundling centers and finally obtain

M merged large clusters, which we consider as the video segment groups. An obvious

advantage of BCC is that the number of cluster M can be automatically obtained by

its dynamic programming approach, which significantly reduce the time for parameter

tuning.

After the clustering stage, for each group Gi(i = 1, ..., N), we pick a certain length

of continuous segments from its central part to avoid introducing noisy or redundant

information near the group boundary (see Figure 4.1). Denote the video summary

length as Lsum, the picked video length from each group Gi would be:

PickedLength(Gi) =
length(Gi)

∑N
i=1 length(Gi)

∗ Lsum (4.2.2)

Hence, a longer group will contribute relatively more video segments for the summary

generation. The final summary is then obtained by concatenating all the selected video

segments Sm(m = 1, ..., M) in the temporal order.

4.3 Experiment and Discussion

To evaluate the proposed framework, we use the SumMe [77] dataset containing 25

videos as our testbed. This dataset features various types of user-generated videos,

such as static, moving and egocentric, and most of them are either unedited or mini-

mally edited. Each video in the SumMe dataset contains at least 15 manually-created

video summaries, we treat all of them as the ground truth to evaluate our method.

Two types of evaluation metric, namely, the maximun-based f-measure [86] and the

average-based f-measure [77] are used. More specifically, the maximum-based f-measure

is computed based on the most similar human generated summary, while the average-

based f-measure is computed on all manually created summaries. We use both of them

to compare our approach with other state-of-the-art methods.

We use the code provided by [77] to compute the average f-measure and maximum

f-measure. For constructing the temporal affinity matrix Msim, we set Msim(i, j) = 0 if

|i− j| > 20 (we have varied this number and obtained similar results). The summary

length L is set to be approximately 15% of the input video’s length following [77].
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4.3.1 Evaluating Different Feature Construction Methods

To examine the performance of different feature construction approaches, we design

the following five methods: 1) visual features only (VF, 2048-d); 2) semantic features

only (SF, 186-d); 3) concatenate visual and semantic features (VSF, 2234-d); 4) concate-

nate visual and semantic features, then apply PCA to the joint features (PCA-VS, 442-

d); 5) apply PCA to the visual features, then concatenate visual and semantic features

(PCA-V+S, 256-d + 186-d).

We use these five types of deep features to summarize videos in the SumMe dataset and

use the average f-measure as the evaluation metric. The results shown that the PCA-

V+S approach outperforms all the other approaches in terms of the average f-measure

(0.243) computed on all the 25 videos. We also notice that only using semantic features

gives the worst performance in this experiment (0.176), this is probably caused by the

lack of visual cues in the semantic space. Besides, we learn that directly concatenate

visual and semantic features are not applicable, due to the dimensionality difference

(2048 for visual part and 186 for semantic part). Hence, we adopt the PCA-V+S ap-

proach to compute our deep features for the summarization task. The complete result

could be found in Table 4.2.

4.3.2 Maximum-based Evalution

We compare our SASUM with some recent approaches using the maximum f-measure:

1) Interestingness video summarization [77] is a supervised method which uses sev-

eral manually defined objective function to help summarizing videos. 2) Submodular

[86], in which a submodular function is learned to optimize the objective function for

selecting video frames. 3) DPP [87] is a supervised approach which use Determinant

Point Process (DPP) to help generating video summaries. 4) dppLSTM [88] is a super-

vised method which combines both of DPP and LSTM. 5) Video MMR [89] is an un-

supervised approach which defines redundancy and representativeness to select video

frames for summary generation.

As shown in Table 4.1, our approach achieves the highest overall score of 0.521 on

the SumMe dataset (the previous state-of-the-art result published very recently was

0.429 [88]). The results demonstrate that the proposed approach is able to create video

summaries closer to the human-level performances than other approaches.

Some examples of video summaries generated using our method is shown in Figure

4.7. The peaks of blue lines mean that the corresponding video segments enjoy high

popularity for being selected by human subjects. From the figure we could observe
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Table 4.1: The quantitative results with the maximum-based evaluation. We report the

mean maximum f-measure computed on all videos in the SumMe dataset.

Method Mean Max F-measure

Supervised

Interestingness 0.394

Submodular 0.397

DPP 0.413

dppLSTM 0.429

Unsupervised
Videov MMR 0.266

SASUM (Ours) 0.521

that the segments selected by our method (orange blocks) show strong correlation to

the blue lines. This demonstrate that our approach is consistent with human perception

of the visual contents.

4.3.3 Average-based Evaluation

We compare our SASUM with several recent approaches using the average-based eval-

uation: 1) Uniform sampling is a popular baseline method. 2) Interestingness [77]

manually defines and optimizes some objectives based on the SumMe dataset. 3) At-

tention model focuses on the visual attention [90] to generate video summary. 4) Title-

based [79] is a semi-supervised method which leverages a set of visual concepts discov-

ered using video titles in the SumMe dataset. 5) Semantic approach is an unsupervised

technique that maps the visual content to the semantic space [80] for summary genera-

tion. 6) WebPrior [78] uses web-image based prior information to help generate video

summaries. 7) Quasi [91] learns a dictionary from the given video using group sparse

coding for summary generation.

We only report the mean average f-measure scores of the WebPrior [78] and Quasi

[91] since the f-measure on each video are not available: [78] achieves 0.24 while [91]

achieves 0.246. The remaining results of the average-based evaluation is shown in Fig-

ure 4.8. It could be noticed that our SASUM outperforms all the other video summa-

rization approaches except the title-based. Note that this approach leverages the video

titles in the SumMe dataset to find some groups of web images, and then a mapping

function from images to videos is learned to generate visual concepts for the summa-

rization task. Adding such domain specific knowledge would be helpful for video

summarization. Our video summaries are generated using a relatively simple frame-

work without prior knowledge from these videos. Nevertheless, our approach outper-

formed the title-based method for some videos. We believe the performance of our
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Jumps

Saving Dolphins

Playing Ball

Figure 4.7: Some qualitative results of the video summarization. The orange blocks

represent the video segments selected by our approach. For each segment,

we show an image shot at its central part. The blue lines denotes the ratio

of human annotators who agree to include each frame in their manually-

created summaries.
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approach could be enhanced by defining domain-specific semantic attributes and by

adopting more sophisticated video segmentation techniques like [77].

4.4 Summary

In this chapter, we present the investigation into the value of automatically mining

high-level semantic information for the offline video summarization problem. In the

process, we design an algorithm to learn a set of semantic attributes that are automat-

ically discovered from a joint image and text corpora. We then predict attributes on

user videos and use the predicted output as an essential part of our deep features. We

employ the bundling center clustering method to help generating the final video sum-

mary. By comparing our result with several recent computational approaches, we show

the advantage of our joint deep features for the video summarization problem.
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Table 4.2: The results of the video summarization using different types of deep fea-

tures. We report the f-measure on each video and the average f-measure on

all videos. The best scores among these approaches are highlighted.

Video Info Different Types of Deep Features

Type Name VF SF VSF PCA-VS PCA-V+S

Egocentric

Base Jumping 0.169 0.152 0.122 0.210 0.246

Bike Polo 0.219 0.163 0.208 0.159 0.263

Scuba 0.201 0.129 0.157 0.137 0.216

Valparaiso Downhill 0.122 0.140 0.195 0.175 0.198

Dynamic

Bearpark Climbing 0.093 0.128 0.128 0.140 0.137

Bus in Rock Tunnel 0.28 0.123 0.145 0.218 0.217

Car Railcrossing 0.197 0.185 0.182 0.198 0.242

Cockpit Landing 0.132 0.142 0.132 0.114 0.163

Cooking 0.363 0.148 0.133 0.122 0.350

Eiffel Tower 0.111 0.179 0.285 0.114 0.290

Excavators River Crossing 0.191 0.204 0.264 0.221 0.264

Jumps 0.455 0.335 0.350 0.374 0.517

Kid Playing in Leaves 0.186 0.236 0.281 0.276 0.285

Playing on Water Slide 0.192 0.144 0.189 0.135 0.189

Saving Dophines 0.134 0.191 0.240 0.197 0.248

St Maarten Landing 0.147 0.206 0.216 0.202 0.216

Statue of Liberty 0.121 0.138 0.146 0.094 0.169

Uncut Evening Flight 0.142 0.145 0.141 0.105 0.169

Paluma Jump 0.261 0.219 0.227 0.228 0.257

Playing Ball 0.201 0.215 0.214 0.300 0.286

Notre Dame 0.121 0.174 0.177 0.113 0.244

Static

Air Force One 0.374 0.263 0.258 0.183 0.258

Fire Domino 0.209 0.120 0.140 0.230 0.253

Car Over Camera 0.208 0.093 0.100 0.110 0.116

Paintball 0.18 0.225 0.158 0.100 0.286

Mean 0.200 0.176 0.192 0.178 0.243
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CHAPTER 5

Detecting, Tracking and Counting

Vehicles for City Road Traffic

In this chapter, we present an advanced urban traffic analysis solution using the latest

deep learning techniques to intelligently process 4K ultra high definition traffic videos

taken from an Unmanned Aerial Vehicle (UAV). We first capture nearly an hour-long

ultra high-resolution traffic video at 5 busy road intersections of a modern megacity by

flying an UAV during the rush hours. We then randomly sampled over 17K 512x512

pixel image patches from the video frames and manually annotated over 64K vehicles

to form a dataset for this research which will also be made available to the research

community for research purposes. Our innovative urban traffic analysis solution con-

sists of advanced deep neural network based vehicle detection and localization, type

(car, bus and truck) recognition, tracking and vehicle counting over time. In the ex-

periments, we show that our enhanced single shot multibox detector (Enhanced-SSD)

outperforms other deep neural network based techniques and that deep learning tech-

niques are more effective than traditional computer vision techniques in traffic video

analysis. We also show that 4K ultra high-resolution video provides more information

which enables more accurate vehicle detection and recognition than lower resolution

contents.

5.1 Related Work

Urban traffic monitoring has long been a popular research topic among scholars and

industrial practitioners. Considering the rapid growth of our metropolis road network

and the booming of private cars in recent decades, it is indispensable to build a more

comprehensive system to help understand the intricate transportation system in the
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Figure 5.1: The working flow of the Deep Vehicle Counting Network. Detection is

performed on image patches which are extracted from the original input

video frame, and then the results are stitched back together to obtain the

global result. In the tracking & counting phase, a set of trackers are built

to capture unique vehicle identities across the whole video sequence. The

numbers of vehicles could be obtained by counting the outputs of trackers.

urban area. Conventional traffic monitoring systems rely on thousands of detectors

(e.g. cameras, induction loops, radar sensors) deployed on fixed locations with small

detecting ranges to help capture various road conditions throughout the network [92–

95]. Such kind of system has exhibited many limitations in terms of range and effec-

tiveness. For instance, if the information is required beyond the scope of these fixed

detectors (i.e. blind regions), human labors are then frequently deployed to assess

these particular road conditions [96]. Besides, many monitoring tasks require to tem-

porally detect detailed traffic conditions such as sources and destinations of the traffic

flow, regions of incidents and queuing information at crossroads [97–99]. To achieve

this, the visual information of multiple fixed detectors need to be aggregated in order

to provide a relatively large view of the interested area, which could introduce extra

noisy information and the overhead costs. Therefore, it is essential to develop a more

effective approach for acquiring visual information.

To tackle these issues, some previous works attempt to exploit still satellite images

for traffic monitoring [100–103]. Satellites allow observing wide areas, but they lack

spatial resolution for specific ground locations. Additionally, the data acquisition and
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Figure 5.2: The examples of deep features computed on different types of vehicles in-

cluding the background: (a) background, (b) car, (c) bus and (d) truck. In

the top row, the original images are shown, while related deep features ex-

tracted from a convolution layer and a fully-connect layer are illustrated in

the middle and bottom row respectively.

processing are complicated and time consuming, which hinders its application to real-

time urban traffic monitoring tasks.

Thanks to the technological advances in electronics and remote sensing, Unmanned

Aerial Vehicles (UAVs), initially invented for military purposes, are now widely avail-

able on the consumer market. Equipped with high-resolution video cameras, geo-

positioning sensors and a set of communications hardwares, UAVs are capable of cap-

turing a wide range of road situations by hanging in the air or by traveling through the

road network without restrictions [104–107]. Traffic videos captured by UAVs contain

important information for traffic surveillance and management, and play a vital role in

multiple fields such as the transportation engineering, density estimation and disaster

forecasting [108–110].

Among these tasks, traffic density estimation is of significant importance since it pro-

vides direct information about the traffic condition in various locations across the city

road network, helping traffic authority better design traffic rules and manage the light

signal system [107, 108, 110]. However, UAVs are not widely applied in the traffic den-

sity estimation system due to specific challenges for detecting and tracking vehicles in

the UAV’s images and videos.

On one hand, the equipped camera of a UAV may rotate and shift during the recod-
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ing process. Moreover, sudden camera shakes could happen due to the unexpected

airflows or electromagnetic interference, which would pose negative impacts on the

data quality. On the other hand, compared with conventional monitoring systems, the

UAV’s video contains not only the ordinary data such as the global view of the traffic

flow, but also each vehicle’s own data like its moving trajectory, lane changing informa-

tion and interaction with other vehicles [111, 112]. Therefore, the UAV’s video needs

to be recorded using a very high resolution and frame frequency so as to capture ade-

quate ground details. This inevitably leads to a huge size of the UAV’s video data and

pose challenges to vehicle detection and tracking algorithms [113].

Detection Based Approaches

Many existing vehicle detection methods for aerial images mainly adopts sliding win-

dow based searching and hand-crafted feature matching techniques to identify and

localize vehicles in an image (or a frame in videos) [96, 114–116], however, due to the

lack of high-level semantic information in terms of vehicle types, all the detected ob-

jects are treated as vehicles. Note that identifying vehicle types in traffic density esti-

mation is essential since the capacity of different vehicles contribute differently to the

road traffic pressure. Some work adopts extra classifiers to recognize different types of

vehicles [117], but their approaches introduce more overhead cost for computation and

parameter optimization.

Motion Based Approaches

Several methods try to estimate traffic density using motion based vehicle tracking

techniques (e.g. background subtraction and optical flow) [96, 118, 119]. These ap-

proaches could work well on simple traffic scene such as the expressway and roads in

the rural area, but they tend to fail in the urban traffic scene due to the distraction of

various background noises and intricate local ground conditions. Additionally, some

vehicles appear in only a few frames and their trajectories cannot be accurately esti-

mated.

Deep learning based Approaches

Recently a few deep learning based methods were proposed for object density esti-

mation [120–123]. These methods attempt to predict the object density from a holistic

view using deep neural networks (DNN). However, the original images have to be

down-sampled in order to be processed by DNN, which would lead to the loss of local

pixel-wise information. Besides, the problem of scale variation of moving objects is not

well addressed.

To summarize, detection based and motion based approaches cannot work well on city
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road traffic density estimation, because they are sensitive to video quality and road

conditions. Moreover, many existing methods are unable to provide the accurate num-

ber of different types of vehicles. While our technique for traffic density estimation

can work on high-resolution videos recorded under complex city road conditions, and

the proposed deep vehicle counting framework (DVCF) can count different types of

vehicles with accurate numbers. To the best of our knowledge, this is the first frame-

work which integrates deep neural networks and traditional algorithms for analyzing

4K (3840× 2178) UAV road traffic videos.

5.2 Methodology

In this section, we introduce the traffic data acquisition and pre-processing, then we

elaborate the Deep Vehicle Counting Framework for traffic flow analysis. To be more

specific, we handle the vehicle counting problem in two stages. The first stage is a mod-

ified and sliding window based Single Shot Multi-box Detector (Enhanced-SSD), which

is able to produce bounding boxes of vehicles with type information in 4K videos. The

second stage is a fast multi-object tracker applied on these bounding boxes, estimating

each vehicle’s trajectory, maintaining its unique identity and the corresponding type.

Such a tracking-by-detecting framework is a natural approach to process very high res-

olution UAV videos since performing vehicle detecting and tracking simultaneously is

almost impossible considering such high computational cost. The whole workflow is

illustrated in Fig. 5.1.

5.2.1 Data Acquisition

A UAV traffic monitoring system has been set up to acquire the traffic data, which con-

sists of a quadrocopter (Fig. 5.3a), a remote controller with built-in video transferring

system (Fig. 5.3b) and a camera mount (Fig. 5.3c).

The quadrocopter used in the experiments is the Dajiang Innovations (DJI) Inspire 1

Pro. It contains motors, main controller, battery and the connection port for the cam-

era mount. The UAV is designed to be lightweight, flexible and stable when recording

high-quality videos. With the help of the built-in inertial measurement unit (IMU)

which incorporates both a 6-axis gyroscope and an accelerometer for movement com-

pensation, the camera mounted by the UAV is capable of stably recording road traffic

at 4K resolution (30fps). The third part of the UAV is the remote controller which trans-

mits real time video stream and UAVs’ flight data back to the controller, such as the
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Figure 5.3: The UAV traffic monitoring system used in this paper: (a) the whole set,

(b) the camera mount and (c) the remote controller .

distance between the aircraft and the remote controller, GPS location, flight velocity,

etc. We collect traffic data in Shenzhen, a typical metropolis which undertakes signifi-

cant traffic pressure in China. We pick 5 key road intersections in Shenzhen to acquire

our traffic data. Considering the capability issues, the videos were firstly stored in the

camera’s SD card, and then transferred to the computer. Some parameter settings of

the data collection are listed in Table 5.1.

Table 5.1: The parameter settings for data collection

Parameter Range/Value

Time slot Peak hours (7:00-9:00am, 5:00-7:00pm)

Weather condition Sunny/cloudy

Operating temperature -10◦C∼50◦C

Hovering altitude 126 meters above ground

Hovering accuracy (GPS Mode) Vertical: 0.5 m, Horizontal: 2.5 m

Ground resolution 5.5 cm per pixel

Number of videos taken 10

Video length of each record up to 10 minutes

Video resolution 3840× 2178

FPS 30

We use this UAV toolkit to collect and then labeled a large-scale UAV city traffic dataset

(UavCT) from 5 busy intersections of the city. In the UavCT, the video’s physical reso-

lution is 5.5 cm per pixel at the ground level. This makes cars range in size from 80 to

180 pixels. To build the training set, we first temporally subsample the original video

frames by a factor of 150, then for each frame in the subset, we divide it into small
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patches with a uniform size of 512× 512. We allow an overlapping area of 200 pixels

vertically and horizontally between these patches to ensure each vehicle appears as a

complete object. The final training set contains 17,186 image patches. These patches

are then annotated with the following information: (i): Bounding box: rectangle sur-

rounding each vehicle. (ii): Vehicle type: three general types including car, bus, and

truck. Note that we do not classify vehicles into very specific categories (e.g. private

cars, taxi, etc.) because too many types would inevitably exacerbate the problem of

unbalanced data, which would lead to sub-optimal performance of machine learning

algorithms. An example of the data annotation is illustrated in Fig. 5.4.

Figure 5.4: A example of the data annotation performed on the UacCT dataset. The

overlapping areas are denoted by gray bars. The yellow boxes are image

patches extracted from the original video frame. In each patch, vehicle are

annotated with bounding boxes and corresponding types.

To challenge the robustness of the vehicle detection and tracking algorithms, we ask

human annotators to avoid labeling similar vehicles for multiple times. In other words,

most vehicles are annotated only once. But in the testing phase, they are required to be

detected multiple times at different locations across the whole video sequence. More

details about the training set are described in Table 5.2.

Table 5.2: The number of annotated vehicles in each training video of the UavCT

dataset.

Type/Video 1 2 3 4 5 Total

Car 12190 9680 6281 8409 15531 52091

Bus 3082 940 704 181 1411 6318

Truck 330 284 143 3174 1727 5658

Total 15602 10904 7128 11764 18669 64067
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Figure 5.5: The overview of the two testing sets.

Table 5.3: The number of vehicles in each image in the testing set 1.

Type/Image 1 2 3 4 5 Total

Car 77 60 81 23 42 283

Bus 21 3 3 0 8 35

Truck 2 0 1 5 6 14

Total 100 63 85 28 56 332

For building the testing set, we collect traffic data from the five road intersections again

but limit the length of each video to be no more than 100 seconds. That is to say, we

take testing videos at different time slot from training videos. We then construct two

testing sets to evaluate the proposed framework. The first one contains five images,

each image is one full resolution frame (4K) which are randomly sampled from each

testing video accordingly. The second testing set consists of the original five testing

videos (see Fig. 5.5). The whole length of videos in testing set 2 is 5m 30s. To build the

ground truth of the testing set 1, we ask human subjects to count numbers of different

types of vehicles in each image in set 1. For the testing set 2, only vehicles within the

road range are counted because other vehicles do not make contribution to the traffic

pressure. More details of testing set 1 and set 2 could be found in Table 5.3 and Table

5.4 respectively.

5.2.2 Vehicle Detection

We propose a deep learning based vehicle detection method. Unlike previous works

which perform vehicle detection and classification separately, we integrate these two

parts in a whole deep neural network (DNN) named enhanced single shot multi-box
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Table 5.4: The number of vehicles in each video in the testing set 2.

Type/Video 1 2 3 4 5 Total

Car 124 65 90 124 195 598

Bus 22 7 4 1 24 58

Truck 2 0 5 36 28 71

Total 148 72 99 161 247 727

detector (Enhanced-SSD).

The two main components of this approach are feature description and vehicle local-

ization. To generate feature descriptors with class information, a set of convolutional

layers in a DNN which is initially applied for image classification are used to construct

our base network. In the vanilla single shot multi-box detector (SSD) [124], small con-

volutional filters are used to predict the object classes and coordinate offsets of the

bounding boxes. Besides, a set of separate filters for detections with various aspect

ratio are applied to multiple feature maps in order to detect objects at multiple scales.

For the proposed Enhanced-SSD, we follow similar approaches to build the detector as

the vanilla single shot multi-box detector (SSD), however, the main difference between

Enhanced-SSD and the vanilla SSD is that we employ the more powerful classification

model called ResNet [4] as our based model. We do this because SSD has the limita-

tion that very small objects (i.e. small vehicles in 4K videos) are not detected well, and

replacing the original VGGNet [55] with ResNet would increase the number of layers

and total number of channels, thus it can describe the object feature with more details

than the original VGGNet model adopted in the vanilla SSD. Besides feature descrip-

tion, another key component is the vehicle localization. To achieve this, we add several

auxiliary convolutional layers and a pooling layer to the base network for predicting

the locations of vehicles. Then we feed the output of 6 layers (two from the reduced

ResNet and four from the newly added layers) to the classification layer for generating

each vehicle’s location and its corresponding category. (see Fig. 5.6). Note that Pool6

is a Global Average Pooling [125] layer, and its size is determined by the number of

categories (i.e. 4 classes in our case: background, car, bus and truck). Moreover, only

layers in the multi-scale feature layer group are illustrated in Fig. 5.6. Other three lay-

ers, namely Conv1-1, Conv2-1 and Conv3-1 are all designed with 256 filters, the kernel

size is 1 × 1 and the stride is 1.

Multi-scale feature layers for vehicle detection. Similar to the conventional single

shot multi-box detector (SSD), in a convolutional manner, we initialize a set of detecting

boxes with various scales and aspect ratios at each location in these multi-scale feature
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Figure 5.6: The overall structure of the Enhanced-SSD. The layers from Res3b3 to

Pool6 which are fed into the classifier layer are responsible for predicting

the locations of vehicles in different scales and aspect ratios. All outputs

of the detected bounding boxes are filtered by thresholding in the Non-

Maximum Suppression algorithm.

layers. For each detecting box, we calculate shape offsets [124] and confidences (class

scores) for each vehicle’s category {C1, C2, ..., Cn}. In a feature layer of size i × j with

p channels, a small kernel (e.g. 4× 4) is applied to predict either the class score or the

shape offsets relative to the coordinates of the initial detecting box. More specifically,

for each detecting box in m given locations, we compute n class scores and the 4 offsets

relative to the original detecting boxes. This yields a total number of (n + 4)m filters

which are applied on each location in the feature map, and resulting in (n + 4)mij

outputs for a m × n feature map (see Fig. 5.7). Varying the shape of detecting boxes

in several feature maps allows us to effectively capture different vehicle sizes in high

resolution traffic videos.

Training. Training Enhanced-SSD is straightforward: we find which detecting boxes

are close to a ground truth box and then tuning the parameters of the network accord-

ingly. Specifically, for each ground truth box, we firstly pick a small set of detecting

boxes with various locations, sizes and aspect ratios. And then we sequentially match

each ground truth box to the detecting box according to the best Jaccard overlap [126].

Unlike the approach in [126] which reserves only one detecting box with the maximum

overlap, we replace it with a threshold α (0.5 in our experiments) and allow matching

detecting boxes to any ground truth box with the Jaccard overlap higher than α. This

reduces the computational cost and avoids the risk of missing detecting boxes with

high Jaccard overlap scores.

The training objective is extended from MultiBox objective [126] by adding support

for multiple vehicle categories. It is consisted of two components: the localization

loss (loca) and class confidence loss (conf). The former is responsible for localizing

vehicle in input images and the latter is aiming to identify its corresponding type. De-

noting δ(m, n, c) = {0, 1} as an indicator for matching the mth detecting box to nth

ground truth box with category c, then according to the matching strategy, we could
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Figure 5.7: The structure of the multi-scale feature maps in Enhanced-SSD. Given an

input image with ground truth bounding boxes (e.g. (a)), we first initialize

a small set of detecting boxes with various aspect ratios at each location

in several feature maps (e.g. 8 × 8 or 4 × 4 scales in (b)). Then for each

detecting box, we predict the shape offsets of bounding boxes and the class

scores for all vehicle types.

have ∑i δ(m, n, c) ≥ 1. The overall objective function is:

L(δ, c, p, g) =
1

Nmatch
(γLloca(δ, p, g) + Lcon f (δ, c)) (5.2.1)
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log(ĉ0

i ) (5.2.3)

where Nmatch is the number of matched detecting boxes, Lloca(δ, p, g) refers to the Smooth

L1 [127] localization loss between the ground truth box (g) and the predicted box (p).

We represent the bounding box using its center coordinates (cx, cy), width (w) and

height (h), and apply regression on the offsets of these parameters. The confidence loss

Lcon f (δ, c) is the softmax loss for multi-class classification. The weight term γ controls

the proportion of localization loss and is set to 1 in our experiments (validated by cross

validation). For pre-processing, we follow the conventional SSD to augment data and

to determine shapes of the initial detecting boxes, please see [124] for more details.

Testing. In the testing phase, an input image is fed into the trained Enhanced-SSD, and

couples of predicted boxes with class confidences are generated as the initial output.
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For each unique vehicle, only a single prediction (bounding box and type) is reserved

via thresholding using the Non-Maximum Suppression algorithm [128].

One important issue in testing is that the input scale of Enhanced-SSD is 300 × 300,

so directly using the original 4K (3840× 2178) traffic video frames is not applicable.

To fill the scalability gap, we designed a region-based strategy by employing a sliding

window to divide the original video frame into small patches with the size of 512× 512.

We allow an overlap of 200 pixels horizontally and vertically between patches in order

to capture complete vehicles. We then perform detections on each image patch and

stitch them back together to the initial scale (see Fig. 5.1).

Allowing overlaps between these patches could obtain complete detections, however,

this also increases the numbers of repeated detections (i.e. a single vehicle is detected

multiple times in different patches). To solve this issue, in our experiment, we find

repeated boxes by evaluating: either their center distances are smaller than a threshold

(Tcd) or their IoU (intersection over union) scores are above a threshold (Tiou). IoU is a

popular evaluation criteria in the field of object detection [126, 127], which is used to

measure the ratio of overlap between two bounding boxes. In our case, the IoU score

of two predicted boxes Bi and Bj is:

IoU(Bi, Bj) =
Bi ∩ Bj

Bi ∪ Bj
(5.2.4)

IoU = 1 represents a complete match between two bounding boxes. After we obtained

all repeated boxes on a single vehicle, we reserve the one with the maximum scale.

5.2.3 Vehicle Tracking and Counting

As mentioned before, the proposed deep vehicle counting framework (DVCF) is a

tracking-by-detection framework. Since we could obtain detection results in the whole

video sequence, we simplify the problem of multiple object tracking (MOT) as a data

association problem which is aiming to associate detections across different frames in

a video sequence. Hence, we found that traditional algorithms are quite appropriate

for this objective in term of accuracy and efficiency. Compared with previous works

[129–131] which focus on a single variation of objects and low resolution videos, our

approach is able to handle multiple types of objects simultaneously in high resolution

(4K) videos.

In our approach, only the location coordinates of bounding boxes and corresponding

vehicle types are considered for motion estimation and data association. Moreover,

long-term occlusion is also ignored as it occurs infrequently in road traffic videos. De-
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signing vehicle re-identification algorithms maybe helpful to fight this problem, how-

ever, it would introduce significant overhead cost to the whole framework, which po-

tentially hinders its usage in real world applications.

Motion estimation. To estimate motions for each unique vehicle, we represent it using

a linear model and propagate its identity into the next frame. And each modeled vehi-

cle is independent of other vehicles and the camera motion. The state of each vehicle is

represented using a column vector:

V = [xc, yc, s, a, c, x̂c, ŷc, ŝ]T (5.2.5)

where xc and yc represents the horizontal and vertical centers of the vehicle bounding

box, while s and a refers to its scale and aspect ratio respectively. The vehicle category is

denoted as c. x̂c, ŷc, ŝ represent the estimated values of xc, yc and s. Note that the aspect

ratio and the vehicle category is treated as constant during the tracking progress. Once

a detection is assigned to a vehicle, its bounding box is used to update its state via the

Kalman filter algorithm [132].

Data association. For assigning detections to vehicles over time, each vehicle’s motion

(bounding box coordinates) is estimated by computing its new location in the current

frame. We then create a cost matrix Mcost by measuring the intersection-over-union

(IoU) between each detection and predicted bounding boxes of the existing vehicles.

Then our goal is finding an optimal assignment to maximize the numbers of matches

in these two sets of bounding boxes. In our experiments, we solve it via the Hungarian

algorithm [133]. Again, a threshold Thassign is set to discard assignments with low IoU

scores between detections and bounding boxes of existing vehicles.

Life cycle management of tracks. Track maintenance is an essential aspect of vehicle

tracking. When vehicles enter or leave the traffic scene, unique trackers need to be

created or deleted accordingly over time. In the first frame, a set of trackers are ini-

tialized by measuring locations (bounding box coordinates) of existing vehicles. Then

in the following frames, the state of assigned trackers are updated using the matched

detections, while any unassigned detection may begin a new track. For creating a new

tracker, we treat any detection with an overlap (to existing trackers) lower than Tassign

as an untracked vehicle.

Each track will keep count of a number of consecutive frames, where no new detec-

tions are assigned. If this number exceeds a threshold Tmiss, the target is assumed to

have left the field of traffic view and the track is terminated. This avoids overgrowing

the number of trackers and reducing tracking errors caused by missing detections over

70



Chapter 5. Detecting, Tracking and Counting Vehicles for City Road Traffic

a long-term period. In our experiments, we empirically set Tmiss to 10. We do this be-

cause trackers are initialized under the assumption that the velocity of moving targets

is constant in short-term tracking, which means that it is a poor indicator to model the

true dynamic movements in a long period. Besides, early deletion of missing targets

improves efficiency.

Vehicle counting. Using the results of tracking, counting vehicles is simple. Each

newly created tracker contains an unique ID, the vehicle type, and its bounding box

coordinates. The numbers of different types of vehicles could be obtained by inspecting

the number of trackers created with the specific type.

Figure 5.8: The examples of the sub-dataset for image classification. The car class con-

tains private cars, taxis, SUVs and small vans, etc. The bus type refers to

buses and coaches. While the truck category include various trucks and

large-sized multi-functional vehicles.

5.2.4 Motivation of Deep Learning Based Approach

In this work, vehicle detection is done by feature matching, and good feature repre-

sentation can help generating good detection results. We notice that deep feature rep-

resentation which is proposed recently has shown significant superiority over conven-

tional features in multiple fields of computer vision, such as image classification [4],

image segmentation [134], object detection and tracking [135]. Hence we are interested

that how well the deep features can do compared to conventional features in our ex-

periments. To do this, we design a multi-label image classification test to distinguish
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vehicles from the background as well as predicting corresponding vehicle types.

Settings. We train a linear Support Vector Machine (SVM) classifier to identify four

categories: car, bus, truck and the background. To build the sub-dataset, we randomly

subsample 4,000 images from the training set. Each image appears as a small block

which contains at most one object: either a vehicle or just the background (see Fig. 5.8).

We randomly select 3,200 images for training and remaining images for testing. For

feature representation, we extract 3 types of deep features from different deep neural

network models which are popular for image classification, namely AlexNet [136], VG-

GNet [55] and ResNet [4]. We then compute 3 famous conventional features, namely

Scale Invariant Feature Transform (SIFT) [137], Speeded-up robust features (SURF)

[138] and Histograms of Oriented Gradients (HOG) [139] features for comparison. For

implementation, we use the Caffe [140] toolkit to extract deep features and use OpenCV

[141] for conventional feature extraction and SVM based classification. More details of

feature architecture are listed in Table 5.5.

Table 5.5: The architecture of features used in the classification experiment.

Feature Type Layer Dimension

AlexNet deep fc7 4096

VGGNet deep fc7 1024

ResNet deep pool5 2048

SIFT conventional – 12800

SURF conventional – 6400

HOG conventional – 861840

We use the classification accuracy (CA) to evaluate the classification performance. CA

is defined as either the fraction or the count of correct predictions. In multi-label clas-

sification, if the entire set of predicted labels completely match the ground truth labels,

the CA would be 1.0, otherwise it is 0.0. Denote pi as the predicted label of ith testing

sample and gi as the corresponding ground truth label, then the classification accuracy

could be formulated as:

CA(p, g) =
1
N

N

∑
i=1

ϕ(pi, gi) (5.2.6)

where ϕ(pi, gi) is an indicator function which equals to 1 if pi = gi, otherwise it is 0. N

represents the number of testing samples.

Results and discussion. We perform the classification test on the subset containing

4000 images and the quantitative results are shown in Fig. 5.9. The AC scores of deep

features are significantly higher (more than 20%) than the conventional features, and

features extracted from ResNet is ranked as the first place over the other five types of
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features. These are reasonable results since ResNet (101 layers) is much deeper than

AlexNet (7 layers) and VGGNet (16 layers), which means it is able to capture more

in-depth information in the images, thus yielding relatively higher quality feature rep-

resentation. This is also one reason why we use ResNet as our base network in the

Enhanced-SSD. Since deep features perform overwhelmingly well in the classification

test, we only consider deep learning based approaches in the following experiments.

Figure 5.9: The results of the vehicle type classification using different types of fea-

tures. The highest classification accuracy score is highlighted using the

bold font.

5.3 Experiment and Discussion

We thoroughly evaluate our Enhanced-SSD on vehicle counting tasks using the UavCT

dataset. We compare our method with three state-of-the-art deep learning based ap-

proaches on these two testing set to verify the effectiveness and robustness of the pro-

posed framework.

5.3.1 Counting Vehicles in 4K Images (testing set 1)

In this section, we evaluate the proposed deep vehicle counting framework (DVCF) for

vehicle counting in traffic images. Our objective is to count all types of vehicle in all

the five images in the testing set 1.

Settings. The training dataset in the UavCT contains 17,168 image patches. We ran-

domly select 85% of these patches for training and the remaining 15% for validation.
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We compare our approach (Enhanced-SSD) with three recent deep learning based ob-

ject detection methods trained on the same dataset, including the vanilla SSD [124],

Faster RCNN (FRC) [142] and YOLO [143]. We train the four deep models using Caffe

[140] toolkit on a GTX 1080Ti GPU with 11 GB video memory. The setting of main train-

ing parameters is shown in Table 5.6. We use smaller batch size to train the Enhanced-

SSD to avoid the problem of insufficient video memory. The optimizer is set to stochas-

tic gradient descent (SGD) for better performance in this experiment. We initialize the

learning rate as 0.001 and it begins to decrease to the one tenth of current value after

20,000 epochs. The momentum is set to 0.9 by default according to these models.

Table 5.6: Training parameters of the four deep learning based approaches.

Model SSD Faster-RCNN YOLO Enhanced-SSD

Batch size 32 32 32 6

Optimizer SGD SGD SGD SGD

Learning rate 0.001 0.001 0.001 0.001

Momentum 0.9 0.9 0.9 0.9

Epoch 12,000 12,000 60,000 12,000

In the testing phase, a testing image is divided into small patches (512× 512) with an

overlap of 200 pixels, and these patches are then fed into the trained network to detect

vehicles. The global result is obtained by aggregating detection results on all patches.

We eliminate the repeated bounding boxes on each vehicle by setting center distance

threshold Tcd as 0.3 and IoU threshold Tiou as 0.1 respectively (determined by cross

validation).

To make vehicle counting more straightforward, the detection result is visualized by

drawing vehicle locations and corresponding types on the input image. Then count-

ing is done naturally by measuring the number of these bounding boxes. We quan-

titatively evaluate the counting result via correctness (Cor), completeness (Com) and

quality (Qua), which are defined in [144]. The true positives (TP) means the number

of correctly detected vehicles, false positives (FP) represents the number of invalid de-

tections and false negatives (FN) denotes the number of missed vehicles. Among the

three evaluation criteria, quality is most important since it considers both correctness

and completeness of detection algorithms.

Correctness =
TP

TP + FP
(5.3.1)

Completeness =
TP

TP + FN
(5.3.2)
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Table 5.7: The quantitative results of vehicle counting in 4K testing image. For each

testing image, we show the TP, FP, FN, correctness, completeness and qual-

ity. The best values are highlighted by bold fonts. Up arrow means higher

is better, and down arrow denotes lower is better.

Method TP ↑ FP ↓ FN ↓ Correctness ↑ Completeness ↑ Quality ↑
Faster-RCNN 184 58 138 0.760 0.571 0.484

YOLO 158 1 174 0.994 0.476 0.474

SSD 287 8 45 0.973 0.864 0.844

Enhanced-SSD (ours) 293 7 39 0.977 0.883 0.864

Quality =
TP

TP + FP + FN
(5.3.3)

Results and discussion. We report the overall counting result on testing set 1 (see

Table 5.7) instead of each image because it better describes the overall performance

and robustness of these detection algorithms. It is obvious that our Enhanced-SSD

achieves the best performance in terms of quality on the testing set 1, followed by

the conventional SSD. For correctness, YOLO earns the highest score. However, this

method yields too many false negatives (missing vehicles) which leads to very low

scores of completeness and quality. Faster-RCNN obtains similar results as YOLO, but

with lower scores of correctness.

We also visualize the detection results on testing image 2 as an example to show the

overall performance of deep learning based approaches (see Fig. 5.10). Cars, buses

and trucks (if any) are automatically marked with light green, orange and light blue

bounding boxes respectively. The small images in the middle are patches extracted

from the original images which give more ground details for type-specific detection.

We have noticed that all the four methods except YOLO generates a small number of

false positives. That’s no accident because in the training set, only regions containing

vehicles are annotated by human annotators, while non-vehicle area (including pure

background and empty road) are ignored. A few ignored regions may exhibit very

similar appearance with particular vehicles (especially buses and trucks) which would

consequently lead to a few wrong detections. YOLO does not give false positives prob-

ably because it takes a relatively conservative strategy by setting a high threshold to

rejects many potentially correct detections in order to avoid generating wrong detec-

tions. This is why it misses a large number of vehicles (see orange boxes of YOLO in

Fig. 5.10). Besides, both Enhanced-SSD and the conventional SSD performs very well

on this task, but SSD gives more wrong detections and misses more vehicles than our

model.
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Figure 5.10: The counting results on the testing image 2 using four deep learning ap-

proaches. True positives (correctly detected vehicles) are marked using

green boxes with corresponding class types and confidence scores, while

false positives (erroneous detections) are denoted using red boxes and

false negatives (missed vehicles) are surrounded by orange boxes.

The counting results of specific vehicle types are illustrated in Fig. 5.11. We show the

counting quality measure here to evaluate the overall performance of these four deep

learning approaches. It is obvious that the proposed Enhanced-SSD outperforms the

other three methods on all vehicle types (especially on "truck" ). This again demon-

strates the effectiveness and versatility of our method.

5.3.2 Counting Vehicles in 4K Videos (testing set 2)

Since our deep vehicle counting framework (DVCF) is a tracking-by-detection approach,

in this section, we investigate how detection performance will affect vehicle tracking

and how well our tracking method could work collaboratively with the deep neural

networks. Hence, our objective is to count all types of vehicles in 4K testing videos.

Settings. Given a testing video, we perform frame-by-frame detection using the trained

network. This significantly challenges the generalization ability and robustness of the

detection algorithms, because in the training set, most vehicles are annotated only once,

and it is then required to be detected multiple times (at different locations) across the

whole video sequence.

Once detection is done, A set of trackers are created to associate bounding boxes with

different vehicles across the whole video sequence. We empirically set the threshold

Tassign as 0.3 to start a new track, and set Tmiss as 10 to terminate a track. However,
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Figure 5.11: The counting results of specific vehicle types on the testing set 1 (images).

repeated tracker may still be created for the same vehicle because the algorithm loses

track on it (exceeding the Tmiss) and treat it as another new identity. To avoid this, we

only initialize a set of trackers according to the detection results of the first frame in

testing videos, then we only focus on vehicles who enter the traffic view in the testing

videos and build new trackers for them. Another possible solution is to design vehicle

re-identification algorithms which also consider the visual appearance to associate de-

tections to vehicles, not just bounding boxes. However, it would inevitably introduce

extra computational cost which leads to low efficiency. We will work on efficient and

robust vehicle re-identification algorithms in our future work.

During the tracking phase, vehicles which are not within the range of roads (e.g. park-

ing lots) are ignored in the counting phase since they contribute nothing to estimate

the city traffic density. We manually define the road ranges since testing videos contain

large-range and complex traffic scenes. For example, crossroads, T-junctions, slip roads

and ring roads are often intertwined with buildings and planting, and they cannot be

accurately identified by current automatic road-detection algorithms. Recent work on

semantic segmentation may be helpful but it is beyond the scope of this work. For

implementation, we run the tracking algorithm on the 5 testing videos using an Intel

i7-6700K CPU with 32GB on-board memory.

Because our deep vehicle counting framework (DVCF) separates the vehicle detection

and tracking into two different phases, the vehicle counting results should be evaluated

separately. However, there’s no common approach or standard to evaluate the result

of vehicle counting in videos. In this work, we define the Counting Accuracy (CA)
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Figure 5.12: Detection performance in different resolutions.

which is based on the "tracking rate" defined in [145] as the evaluation criteria. The

CA is formulated as CA = Nsc
Nt

, where Nsc refers to the number of successfully counted

vehicles, and Nt represents the total number of vehicles in the testing video. Counting

of a vehicle is failed if the algorithm does not create a tracker for it during the tracking

phase.

Table 5.8: The counting results on the testing set 2 (videos). We list the number of

successfully counted vehicle (Nsc), the total number of vehicles (Nt) and the

counting accuracy. The best values are highlighted using bold fonts.

Method Nsc / Nt Counting Accuracy (CA)

Faster-RCNN 470 / 727 0.646

YOLO 427 / 727 0.587

SSD 663 / 727 0.912

Enhanced-SSD (ours) 681 / 727 0.937

Results and discussion. The overall results of vehicle counting on testing set 2 are

listed in Table 5.8, from which we can see that the proposed Enhanced-SSD achieves

the best CA score on the testing set. This also indicates that good detection performance

would lead to promising results in vehicle tracking and counting. Besides, Faster-

RCNN and YOLO do not perform well on this task because they miss many vehicles in

the detection phase (see Fig. 5.10), which undoubtedly poses negative impacts on the

counting results. Similar results are obtained when we measure type-specific vehicle

counting (see Fig. 5.13): on each vehicle type, our Enhanced-SSD outperforms other

deep learning based approaches, especially for truck detection.
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Figure 5.13: Counting results of specific vehicle types on testing set 2 (videos).

We also provide the training time and the testing time/speed in Table 5.9. It can be

observed that training and testing of the Faster-RCNN method takes the longest time

amongst the four approaches. The YOLO method achieves the lowest training time

and the fastest testing speed on the testing set 2, which is due to its shallow network

architecture compared with other models. However, its detection performance is sig-

nificantly worse than other methods. The SSD and Enhanced-SSD (ours) approaches

obtained similar results in terms of time consumption, however, the enhanced-SSD per-

forms better than SSD when inspecting the performance (accuracy) of vehicle counting.

Table 5.9: The time consumption of vehicle counting in testing set 1 (images) and test-

ing set 2 (videos). The up arrow means higher is better while the down

arrow demotes lower is better. The best values are highlighted using a bold

typeface.

Method Faster-RCNN YOLO SSD Enhanced-SSD

Training time ↓ 87h 29m 57h 31m 64h 58 m 66h 42m

Testing time on testing set 1 ↓ 52.35s 11.15s 7.95s 10.85s

Testing speed on testing set 2 ↑ 35.3 fps 72.3 fps 44.1 fps 46.2 fps

5.3.3 The Impact of the Resolution

Although our data was recorded using ultra high resolution, we were interested to de-

termine if a high resolution really helps detection results. To do this, we created an

auxiliary set where we down-sampled all the testing images in the testing set 1 and
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testing set 2. By adjusting the resolution of each image, we can determine performance

changes of our detection algorithms. More specifically, we resize each original testing

image to a resolution of 2K (2560), 1080p (1920× 1080), and 720p (1280× 720) respec-

tively. We then count all types of vehicles in these low-resolution images/videos.

The results are shown in Table 5.10 and Table 5.11. We can see the counting perfor-

mance degrades dramatically when image resolution goes down. It makes sense be-

cause in a high resolution image (both for training set and the testing set), a vehicle

generally takes a few pixels. However, in a 720p image, it only takes one or two pixels.

This makes these vehicles (especially small cars) totally unrecognizable (see Fig. 5.14)

for vision-based algorithms. Hence, recording data in a high resolution is necessary

since it provides enough ground details to help the detection algorithms accurately

localizing different types of vehicles.

(a) (b) (c) (d)
Figure 5.14: Example of an image patch in different resolution: (a) 4K, (b) 2K, (c) 1080p

and (d) 720p.

Table 5.10: Counting results (quality measure) of specific vehicle types on testing set 1

(images) with different resolutions. The best values are highlighted using

a bold typeface.

Type / Resolution 720P 1080P 2K 4K

Car 0.056 0.096 0.256 0.886

Bus 0.045 0.112 0.288 0.892

Truck 0.043 0.104 0.349 0.80

Table 5.11: Counting results (counting accuracy measure) of specific vehicle types on

testing set 2 (videos) with different resolutions. The best values are high-

lighted using a bold typeface.

Type / Resolution 720P 1080P 2K 4K

Car 0.074 0.127 0.397 0.950

Bus 0.063 0.124 0.361 0.931

Truck 0.065 0.111 0.329 0.831

We show the testing time/speed of vehicle counting on the testing set 1 (images) and

testing set 2 (videos) in different resolutions (see Table 5.12). It can be seen that the
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time consumption decreases when the resolution goes down. This is because fewer

vehicle are detected and tracked in low resolution images/videos, which requires rela-

tively low computational cost. Anyway, we do not considering using a low resolution

in practical applications since the counting performance degrades rapidly when the

resolution goes down.

Table 5.12: The time consumption of vehicle counting on the testing set 1 (images) and

testing set 2 (videos) in different resolutions. The up arrow means higher

is better and the downarrow denotes lower is better. The best values are

highlighted using a bold typeface.

Method 720P 1080P 2K 4K

Testing time on set 1 ↓ 2.95s 7.5s 9.4s 10.85s

Testing speed on set 2 ↑ 125.3fps 104.1fps 78.2fps 46.2fps

5.4 Summary

In this paper, a UAV and deep learning based vehicle detecting, tracking and counting

system has been presented with a series of advantages in the traffic density estima-

tion system. The proposed Deep Vehicle Count Framework (DVCF) effectively and

efficiently extracts traffic density data from the high-resolution UAV videos at various

geo-location with complex traffic view scopes. To summarize, three significant features

of our approach have been demonstrated:

(i): A UAV city traffic video dataset is created to help estimate the real-world city traffic

density and is also aiming to motivate research in vision based traffic flow analysis in

intricate traffic views.

(ii): In this work, the deep vehicle counting framework (DVCF) is specifically designed

for vehicle detection, classification, tracking and counting. However, it is easy to be

extended to detect and track many other types of objects (e.g. people, bicycles etc.).

(iii): The proposed deep vehicle counting framework (DVCF) presents a successful

attempt to integrate conventional vision based algorithms and deep learning based ap-

proaches. To be more specific, we design a deep neural network to accurately localize

different types of vehicle in high-resolution images, and then employ traditional track-

ing approaches to associate the detection results in consecutive video frames in order

to maintain the processing speed. Compared with recent methods, our approach con-

siders both the accuracy and the efficiency, while exhibiting good robustness.

For future work, we would develop more effective vehicle detection and tracking al-
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gorithms while achieving a high processing speed and robustness. Besides, another

working direction is designing a method to automatically select wanted regions (city

roads) to further reduce human supervision and improve the overall efficiency.
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CHAPTER 6

Vehicle Behavior Recognition for

City Road Traffic

In this chapter, we present an all-in-one behavior recognition framework for moving

vehicles based on the latest deep learning techniques. Unlike traditional traffic anal-

ysis methods which rely on low-resolution videos captured by road cameras, we cap-

ture 4K (3840× 2178) traffic videos at a busy road intersection of a modern megacity

by flying a unmanned aerial vehicle (UAV) during the rush hours. We then manually

annotate locations and types of road vehicles. The proposed method consists of the

following three steps: (1) vehicle detection and type recognition based on deep neu-

ral networks; (2) vehicle tracking by data association and vehicle trajectory modeling;

(3) vehicle behavior recognition by nearest neighbor search and by bidirectional long

short-term memory network, respectively. This chapter also presents experimental re-

sults of the proposed framework in comparison with state-of-the-art approaches on

the 4K testing traffic video, which demonstrated the effectiveness and superiority of

the proposed method. We include all the necessary details to make the chapter self-

contained.

6.1 Related Work

Behavior recognition of moving objects is a hot research topic in multiple fields, espe-

cially for surveillance and safety management purposes. In this paper, we focus on city

road traffic where the basic road element is the vehicle object.

Studying the behavior of on-road vehicles at road intersections is a vital issue for build-

ing intelligent traffic monitoring systems and self-driving techniques. For example, in

order to ensure safe driving, drivers need to know if the vehicles in front are going
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straight through the intersection or are making left or right turns. However, due to

the crossing of multiple roads, crashes generally occur at intersections [146]. In 2015,

there were 5295 traffic crashes at four-way intersections with one or more pedestrian

fatalities reported in the U.S. [147]. Hence, the intelligent transportation systems need

to actively monitor and understanding the road conditions and give warnings of po-

tential crashes or the occurrence of the traffic congestion. In this work, we focus on

vehicle behavior recognition at intersections.

Behavior understanding could be treated as the classification of time series data, for

example, matching an unknown sequence to some types of learned behaviors [148]. In

other words, behavior understanding in traffic monitoring describes the type, location

or speed changing of a vehicle in the traffic video sequence (e.g. running, turning,

stopping, etc).

6.1.1 Behavior Recognition with Trajectory

Many existing traffic monitoring systems are based on motion trajectory analysis. A

motion trajectory is generated by tracking an object frame-by-frame in the video se-

quence and then linking its locations across the consecutive frames. In recent decades,

various approaches to handle trajectory of moving objects analysis based on city road

traffic videos have been proposed. In [149], a self-organizing neural network is pro-

posed to learn behavior patterns from the training trajectories, then activities of new

vehicles are predicted based on partially observed trajectories. In [150], the vehicle tra-

jectories are modeled by tracking the feature points through the video sequences with a

set of customized templates. Then, the behavior understanding is conducted to detect

abnormal events: illegal lane changing or stopping, sudden speeding up or slowing

down, etc. In [151], the turning behaviors of road vehicles is detected by computing the

yaw rate using the observed trajectories. Based on the yaw rate and modified Kalman

filtering, the behavior recognition system is capable of effectively identify the turning

behavior. In [152], the lane changing information of target vehicles is modeled using

the dynamic Bayesian network, and the evaluation is performed using the real-world

traffic video data.

6.1.2 Behavior Recognition Without Trajectory

Another way of behavior understanding is to inspect non-trajectory information such

as the size, velocity, location, moving orientation, or the flow of traffic objects [153]. The

main objective is to detect abnormal events according to these information of a moving
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target if the values of these attributes exceed the pre-defined value ranges. In vision

based road traffic analysis, speed is estimated by converting the image pixel based

distances to the absolute distances by manual geo-location calibration. By extracting

velocity data, the traffic monitoring system is able to quickly detect congestion, traffic

accident or violation behaviors. For example, Huang et al. use velocity, moving direc-

tion and position of vehicles to detect vehicle activities including sudden breaking, lane

changing and retrograde driving [154]. Pucher et al. employ video and audio sensors

to detect accidents like static vehicles, wrong way driving behaviors and congestion on

highways [155]. The authors in [156] adopt flow and velocity to detect the highway

congestion, and they found that the traffic jam is caused by the weak traffic controlling,

instead of the overload of the capacity.

To summarize, lots of work has been done on road vehicle behavior understanding,

however, most published results are rely on small camera networks, which means their

cameras only capture a small range of the traffic scene, and they focus on specific ve-

hicle tracking and activity analysis. Besides, many approaches just treat road vehicles

as "moving pixels" while the types of road vehicles are often ignored. For example,

they cannot process a query like "find all illegally stopped cars in the Southwest road"

or "find all trucks queueing for the red lights to cross the road". In our work, we use

the UAV to capture a large area of the road traffic such as the whole crossroads, in-

tersections or multi-lanes. Besides, our vehicle detection and tracking algorithms are

able to recognize different types of vehicles and maintain these unique identities for all

tracked vehicles.

6.2 Methodology

This section elaborates the deep vehicle behavior recognition (DVBR) framework. In

the vehicle trajectory extraction part, we first detected road vehicles based on the Retina

object detector [157] and then tracked vehicles by associated detections across whole

video sequences. Next, we modeled and extracted the vehicle trajectories using the

tracking results. In the behavior recognition part, we designed both semi-supervised

and supervised approaches to classify vehicle trajectories in order to recognize their

behaviors. Figure 6.1 illustrates an overview of our work and its relations to the intel-

ligent transportation system (ITS).
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Figure 6.1: An illustration of the hierarchical structure of our work and its relationship

to the intelligent transportation system (ITS). In the first stage, we used a

UAV to collect high-resolution city traffic videos and, in Stage 2, extracted

the static and dynamic information of road vehicles. In the third stage,

we modeled and analyzed vehicle trajectory data, and observed vehicle

behaviors. In our future work, all these achievements could contribute to

the construction of comprehensive ITS services, such as traffic flow analy-

sis, abnormal event detection, and security monitoring.

6.2.1 Vehicle Trajectory Extraction

Vehicle Detection

Network Architecture. We used RetinaNet [157] to detect vehicles in UAV videos. Reti-

naNet introduces a novel focal loss, which significantly improve the object detection

accuracy than the SSD-based method (including Enhanced-SSD), especially for small

objects. Besides, RetinaNet addresses the one-stage object detection problem in which

the foreground and background classes are imbalanced. RetinaNet consists of a base

network for multi-scale feature generation and two subnetworks for object detection
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(see Figure 6.2). The base network uses a Feature Pyramid Network (FPN) [3] on top

of a feedforward ResNet [4] initially designed for image classification. The FPN can

be seen as a standard convolutional network with top–bottom and lateral connections

in order to build multi-scale (feature pyramid) feature maps for a single input image.

Each layer of the pyramid is responsible for detecting objects at a specific scale.
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+
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(a) ResNet (b) Feature pyramid net (c) Class subnet (top) (d) Box subnet (bottom)

Figure 6.2: The RetinaNet network architecture uses a Feature Pyramid Network

(FPN) [3] backbone on top of a feedforward ResNet architecture [4] (a)

to generate a rich, multi-scale convolutional feature pyramid (b). To this

backbone, RetinaNet attaches two subnetworks, one for classifying anchor

boxes (c) and one for regressing from anchor boxes to ground-truth object

boxes (d).

The other two subnetworks are used for object detection. The first one is the classifica-

tion subnet which predicts the probability of object existence at each spatial position for

each bounding box location and C object categories. The second one is the box regres-

sion subnet which regresses the offset from each predicted bounding box to a nearby

ground-truth object bounding box.

Training and Testing. We used the training images extracted from the training video

to train the vehicle detector, and in the testing phase, a testing image was fed into the

trained detector. Couples of predicted boxes with class confidences were generated

as the initial output. For each unique vehicle, using a Non-Maximum Suppression

algorithm [128], only a single prediction (bounding box and type) was reserved via

thresholding.

One important issue in testing is that the original 4K (3840× 2178) traffic video frames

are too large for the network input. To solve this, we designed a region-based strategy

by employing a sliding window to divide the original video frame into small patches

with a size of 512× 512. We allowed an overlap of 200 pixel horizontally and vertically

between patches in order to capture complete vehicles. We then performed detections

on each image patch and stitched them back together to the initial scale.

Allowing overlaps between these patches sometimes yielded complete detections, but
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this also increased the numbers of repeated detections (i.e., a single vehicle was de-

tected multiple times in different patches). To solve this issue, in our experiment, we

found repeated boxes by evaluating them: either their center distances were smaller

than a threshold (Tcd) or their intersection-over-union (IoU) scores were above a thresh-

old (Tiou). IoU is a popular evaluation criterion in the field of object detection [126, 127],

and is used to measure the ratio of overlap between two bounding boxes. In our case,

the IoU score of two predicted boxes Bi and Bj is

IoU(Bi, Bj) =
Bi ∩ Bj

Bi ∪ Bj
. (6.2.1)

IoU = 1 represents a complete match between two bounding boxes. After we obtained

all repeated boxes on a single vehicle, we reserved the one with the maximum scale.

Trajectory Modeling and Extraction

The proposed deep vehicle behavior recognition (DVBR) framework follows a tracking-

by-detection strategy for trajectory modeling. Since we could obtain detection results in

the whole video sequence, we simplified the problem of multiple object tracking (MOT)

as a data association problem aiming to associate detections across different frames in

a video sequence. In our approach, only the location coordinates of bounding boxes

and corresponding vehicle types are considered for motion estimation and data asso-

ciation. Moreover, long-term occlusion is also ignored as it occurs infrequently in road

traffic videos.

We adopt the same strategy for vehicle motion estimation, data association and track

management, please see Section 5.2.3 for details.

The location of vehicles in video frames can be obtained from the tracking results,

which are represented as their tracking ID and corresponding center points (cx and

cy). We then extract the trajectory of a vehicle by linking its center points across the

consecutive frames in the traffic video. More concretely, we represent the location of ith

vehicle in the video sequence as Li = [(xi1, yi1), (xi2, yi2), ..., (xin, yin)], where n refers to

the number of frame where this vehicle is tracked. We can easily draw a vehicle’s trajec-

tory by linking all its center points stored in L. Compared to other trajectory modeling

approaches where vehicle trajectories are only estimated data, our trajectory data are

more accurate and reliable because they are obtained through frame-by-frame vehicle

detection and tracking.
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6.2.2 Vehicle Behavior Recognition

Behavior Recognition Based on Nearest Neighbor Search

We define three types of typical vehicle behavior, such as go straight, right turn, and left

turn. We do not consider the U-turn because it occurs very rarely in traffic videos. This

would lead to very few samples and cannot be processed by recognition algorithms.

In this section, we approach the vehicle behavior recognition by a semi-supervised

nearest neighbor search. We first propose a double spectral clustering (DSC) method to

cluster vehicle trajectories into three subgroups, and then in each subgroup, we deter-

mine its class label by inspecting the majority type of the trajectories in it. In the testing

phase, we measure the distance between the testing image and each clustering center

using the longest common sub-sequence similarity (LCSS), and assign a class label to it

according to the label of the nearest clustering center. This is the basic idea of a nearest

neighbor search.

The LCSS was proposed in [158] and is able to effectively handle trajectories with dif-

ferent lengths:

DLCSS(Fp, Fq) = 1−
LCSS(Fp, Fq)

min(Tp, Tq)
(6.2.2)

where LCSS(Fp, Fq) measures the longest overlapping length of the trajectory between

Fp, Fq, and Tp, and Tq refers to the length of these two trajectories. The LCSS is defined

as

LCSS(Fp, Fq) =


0, Tp = 0|Tq = 0

1 + LCSS(FTp−1
p , FTq−1

q ), dE( fp,Tp , fq,Tq) < ε

max(LCSS(FTp−1
p , FTq

q ), FTp
p , FTq−1

q ), otherwise

(6.2.3)

where ε denotes the threshold of the Euclidean distance, and fp represents the sample

point in the trajectory Fp.

The proposed double spectral clustering (DSC) method proceeds as follows. Given a

vehicle trajectory, we first compute its curvature via the least square and polynomial

fitting method and take the average values of the first N curvatures as the final result.

We then treat the trajectory as a curve (i.e., a vehicle taking turns) if its curvature is

larger than the threshold Cth, and treat it as a non-curve (i.e., vehicle going straight)

otherwise. Note that the threshold Cth is empirically set, which means that a curve

with a small curvature could be grouped into the non-curve subgroup. This is because

the overtaking and lane changing behaviors can be frequently observed on these "go

straight" vehicles, which make their trajectories frequently fluctuate. In some cases, if

the magnitude of overtaking or lane changing is large enough, the LCSS [158] trajectory
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similarity between "going straight" vehicles and "making turn" vehicles would be high.

Hence, for non-curves, we firstly compute the similarity of dip angles of vehicle trajec-

tories then perform the spectral clustering to distinguish "going straight" and "making

turn" vehicles. In the second stage, the "making turn" vehicles are further clustering

into "turning left" and "turning right" groups respectively based on the LCSS similar-

ity. For curve trajectories, LCSS similarity can directly be used to perform spectral

clustering since these trajectories only contain vehicles which make turns in the traffic

video. Finally we merge the clustering results for curves and non-curves. The whole

clustering workflow is illustrated in Figure 6.3.

The similarity between trajectory dig angles is defined as

Simθ(i,j) = 1−
θi − θj

dθmax
, 0 6 i, j 6 n (6.2.4)

where θi is the dig angle of the ith trajectory and is computed as

θi =
arcsin(− k√

1+k2 )× 180◦

π
(6.2.5)

dθmax = max(|θi− θj|), k is the slope of the trajectory, and n is the number of trajectories.

Behavior Recognition by Classification

In this section, we approach the behavior recognition by supervised classification. Dif-

ferent from traditional approaches which incorporating Hidden Markov Modeling and

other classification methods such as random forest and k nearest neighbor, we design

a novel deep learning model based on Long Short-Term Memory (LSTM) [159]. As a

special type of Recurrent Neural Networks (RNNs) [160], LSTM can effectively model

the inherent structure of the sequential data and is proved to be powerful in many

sequential classification problems [161–163].

Network Structure. The basic structure of LSTM is depicted in Figure 6.4. The LSTM

has a memory named “cell” to store the state vector which summarizes the sequence of

the past input data. The current state is updated according to the current input, output,

and the previous state stored in that “cell”. LSTM has a gate control mechanism that

allows the network to “forget” the past state stored in cells or to learn the time stamp

to update its state according to the new state information. Denoting Ct as the state of

the memory cell at the time step t, then Ct is updated by
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Figure 6.3: The working flow of the proposed double spectral clustering (DSC)

method. For curve trajectories, we directly measure their pairwise similar-

ities using the longest common sub-sequence similarity (LCSS) measure.

For non-curve trajectories, we first cluster them according to the similar-

ities of their dip angles, then use LCSS again to obtain the final results.

Finally, we combine the clustering results on the two types of trajectories.

it = σ(Wxixt + Whiht−1 + bi)

ft = σ(Wx f xt + Wh f ht−1 + b f )

ot = σ(Wxoxt + Whoht−1 + bo)

gt = tanh(Wxcxt + Whcht−1 + bc)

ct = ft � ct−1 + it � gt

ht = ot � tanh(ct)

(6.2.6)
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where σ is the sigmoid function, and x � y means element-wise product. Wxi, ..., Whc

are the weight matrices for linear transformation. bi,b f ,bo,bc are the bias vectors. it is

the input gate vector, ft is the forget gate vector, ot is the output gate vector, gt is state

update vector, and ht is the output hidden state vector.

Input Gate

Forget Gate

Cellht-1
xt

it

CtX
gt

t

X

X

bc

ht-1 xt bi

ht-1 xt bf

Output Gate ot

f

ht-1

ht

xt bo

Figure 6.4: The basic Long Short-Term Memory (LSTM) structure.

The input gate it and the forget gate ft can control the information flow from the input

to the output, respectively. Note that the behavior of the gate control is learned from

data as well. Due to their recurrent nature, even a single layer of LSTM nodes can be

considered a “deep” neural network.

For many sequence classification tasks, it is beneficial to have access to future as well as

past contexts. However, standard LSTM networks process sequences in temporal order

and ignore past contexts. Bidirectional LSTM (BiLSTM) networks extend the standard

LSTM networks by introducing a second layer where the hidden-to-hidden connec-

tions flow in opposite temporal order. The bidirectional model is therefore able to ex-

ploit information both from the past and the future. In our work, we built a trajectory-

based bidirectional LSTM model (T-BiLSTM) to classify vehicle trajectories. We merged

the output of the two directions by vector concatenation, which generates double the

number of outputs to the next layer. In order to extract the information relevant to the

class labels, we added an additional output network to the hidden state ft. We used a

fully connected(FC) layer and one softmax layer that contains the linear transformation

of ht followed by the softmax function. We show our network structure in Figure 6.5.
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Figure 6.5: The network structure of trajectory classification using bidirectional LSTM

(BiLSTM).

Feature representation. The BiLSTM accepts sequential vectors as inputs, so we need

to transform the road plane position information stored in trajectories into the sequen-

tial features according to the temporal order. General features such as the location co-

ordinates and vehicle speed often contain noisy information since they are sensitive to

the motions of vehicles. In our work, we used angular changes to capture the trajectory

variations due to its superior robustness compared to other types of features.

Let (xt, yt) be the trajectory coordinates of a vehicle at time step t and (xt+1, yt+1) be its

coordinates at time step t + 1. The direction angle θ can then be calculated by

θ = arctan
(yt+1 − yt)

(xt+1 − xt)
. (6.2.7)

To build the trajectory features, first we resampled the trajectory to a unique length of

N trajectory points. More specifically, we computed the overall length of trajectory M,

then divided it into N − 1 segments, each of which has length L. We then rechecked

the distance between each adjacent point in M and linearly inserted a new point if their

distance was larger than L. Each vehicle trajectory consisted of N points.

Second, we encoded and quantized the trajectory based on angular changes on 16 dif-

ferent directions with an interval of π/8, as depicted in Figure 6.6a. For example,

the sequential angle changes of a vehicle going straight could be encoded as “3-3-3-

3-3-3-3-3-3-3-3-2-2-2-2-3-3-3-3-3” (b), and a vehicle turning right could be encoded as

“3-3-7-7-3-3-7-3-7-7-7-7-7-15-7-15-7-7-15” (c).
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Figure 6.6: (a) The encoding and quantization of direction angles. (b) The changing

angles of a vehicle going straight. (c) The changing angles of a vehicle

turning right.

At last, we normalized the features values to [0, 1] and used them as the input of the

T-BiLSTM model.

Training. We formulated the behavior recognition problem as a multi-class classifi-

cation problem where one class label was predicted given the sequential features of

a testing vehicle’s trajectory. To train the T-BiLSTM, we minimized the negative log-

likelihood function:

L(w) = −
t=1

∑
J

M

∑
m=1

ct,m ln zt,m + (1− ct,m) ln(1− zt,m) + λΦ(w) (6.2.8)

where w refers to the parameter of the neural network, J is the number of training

samples, ot,m is the mth entry of ct, zt,m denotes the mth output of the softmax layer

associated by class label ct,m, and Φ(w) is the regularization term controlled by the

parameter λ.

6.3 Experiment and Discussion

To evaluate the proposed framework, we captured a 14 m long traffic video with 4K

resolution at a busy road intersections of a modern megacity by flying a UAV during

the rush hours. The fps was 30 and the total number of frames was 25,200. The traffic

scene at this intersection is shown in Figure 6.7.

To build the training set, we first temporally subsampled the original video frames by

a factor of 150. For each frame in the subset, we then divided it into small patches with

a uniform size of 512 × 512. We allowed an overlapping area of 200 pixel vertically

and horizontally between these patches to ensure each vehicle appeared as a complete

object. We then obtained 3400 training images. Next, we manually annotate vehicles

with the following information: (a) bounding box: a rectangle surrounding each ve-
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hicle; (b) vehicle type: three general types including car, bus, and truck. This yielded

10,904 annotated vehicles. We used this dataset to train the RetinaNet object detector.

For testing, we collected another short video at the same road intersection but at a

different time. The length of the testing video is 2 m and 47 s, with a 3840 × 2178

resolution and 30 fps. The total number of frames was 5010.

Figure 6.7: The traffic scene of the testing video. (a) The snapshot of the original video.

(b) The sketch map of the intersection. The character "I" means "into the

camera view" and the "O" means "out of the camera view".

6.3.1 Vehicle Trajectory Extraction

Vehicle Detection

We conducted the vehicle counting experiment to evaluate the effectiveness of the Reti-

naNet for vehicle detection. More concretely, we counted all types of vehicles in a ran-

domly selected frame from the testing video.

Settings. In the training phase, we randomly selected 85% of these training images

for training and the remaining 15% for validation. We compared RetineNet with an-

other three recent deep-learning-based object detection methods: the you-only-look-

once version 3 (YOLOv3) [164], the single shot multi-box detector (SSD) [124], and the

faster regional convolutional neural network (Faster-RCNN) [142]. We trained the four

deep models using Caffe [140] toolkit on a GTX 1080Ti GPU with 11 GB of video mem-

ory. The optimizer was set to stochastic gradient descent (SGD) for better performance.

We initialized the learning rate at 0.001, and it began to decrease to one-tenth of the

current value after 20,000 epochs. The total number of epochs was set to 120,000, and

the momentum was set to 0.9 by default according to these models.

In the testing phase, the testing image was first divided into small patches (512× 512)

95



Chapter 6. Vision Based Vehicle Behavior Recognition for City Road Traffic

with an overlap of 200 pixels, and these patches were then fed into the trained network

to detect vehicles. The global result was obtained by aggregating detection results on

all patches. We eliminated the repeated bounding boxes on each vehicle by setting

the center distance threshold Tcd as 0.3 and the IoU threshold Tiou as 0.1, respectively

(determined by cross validation).

Evaluation. To make vehicle counting more straightforward, the detection result was

visualized by drawing vehicle locations and corresponding types on the input im-

age. Counting was done naturally by measuring the number of these bounding boxes.

We quantitatively evaluated the counting result via precision, sensitivity, and quality,

which are defined in [144]. True positives (TPs) are correctly detected vehicles, false

positives (FPs) are invalid detections, and false negatives (FNs) are missed vehicles.

Among the three evaluation criteria, quality is most important since it considers both

the precision and the sensitivity of detection algorithms.

Precision =
TP

TP + FP
(6.3.1)

Sensitivity =
TP

TP + FN
(6.3.2)

Quality =
TP

TP + FP + FN
. (6.3.3)

Result and discussion. We report the counting result on the testing image (see Table

6.1). It can be seen that the RetinaNet achieves the best performance, followed by

YOLOv3 and SSD. The Faster-RCNN method yields too many false negatives (missing

vehicles), which leads to low sensitivity and quality scores.

Table 6.1: Quantitative results of vehicle counting in 4K testing image. For each test-

ing image, we show the TP, FP, FN, precision, sensitivity, and quality. The

best values are highlighted by bold typefaces. The up arrow means that

higher is better, and the down arrow means that lower is better. The best

values are highlighted using a bold typeface.

Method TP ↑ FP ↓ FN ↓ Precision ↑ Sensitivity ↑ Quality ↑
Faster-RCNN 49 6 36 0.890 0.576 0.538

SSD 68 2 17 0.971 0.80 0.782

YOLOv3 71 0 14 1.0 0.835 0.835

RetinaNet 81 0 4 1.0 0.953 0.953

We visualize the results on the testing image (see Figure 6.8). Cars, buses, and trucks

(if any) are automatically marked with light green, orange, and light blue bounding
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boxes, respectively. The small images in the middle are patches extracted from the

original images, which give clearer ground details for type-specific detection. We no-

ticed that SSD and Faster-RCNN generate a small number of false positives. This is to

be expected, because in the training set, only regions containing vehicles are annotated

by human annotators, while non-vehicle areas (including pure background and empty

road) are ignored. A few ignored regions may exhibit very similar appearances with

particular vehicles (especially buses and trucks), which would consequently lead to a

few wrong detections.

Figure 6.8: The qualitative result of vehicle detection on a testing image.

We also provide the training time and the testing speed (frame per second) in Table

6.2. It can be observed that training of the Faster-RCNN model takes the longest time,

but the testing speed is the lowest. The YOLOv3 model achieves the lowest training

time and the fastest testing speed, which is due to its shallow network architecture

compared with other models. However, its detection performance is worse than the

RetinaNet model.

Table 6.2: Training time and testing speed of vehicle detection methods. The up arrow

means that higher is better, while the down arrow means that lower is better.

The best values are highlighted using a bold typeface.

Model Faster-RCNN SSD YOLOv3 RetinaNet

Training Time ↓ 37 h 29 m 24 h 58 m 18 h 29 m 20 h 15 m

Testing Speed ↑ 15.3 44.1 fps 72.3 fps 60.2 fps

Vehicle Trajectory Modeling

Settings. We modeled vehicle trajectories according to the tracking results. Given the
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testing video, we performed frame-by-frame vehicle detection using the trained net-

work. Once detection was complete, a set of trackers were created to associate bound-

ing boxes with different vehicles across the whole video sequence. We empirically set

the threshold Tassign as 0.3 to start a new track, and set Tmiss as 10 to terminate a track.

During the tracking phase, vehicles which were not within the range of roads (e.g.,

parking lots) were ignored in the counting phase since they contribute nothing to

estimate the city traffic density. We manually defined the road ranges, since testing

videos contained large-range and complex traffic scenes. For implementation, we ran

the tracking algorithm on the testing videos using an Intel i7-6700K CPU with 32 GB

on-board memory.

Evaluation. To evaluate the performance of the trajectory modeling approach, we

tracked the target vehicle in consecutive frames, and extracted the tracked center point

Ĉ = (x̂, ŷ) of its bounding box in each frame. For the ith, we computed the trajectory

modeling error between the tracked center point and the ground-truth center point

(labeled by human annotators) Cg = (x, y) using

Ei =
√
(x̂i − xi)2 + (ŷi − yi)2. (6.3.4)

Based on Equation (6.3.4), we can compute the overall error by adding the modeling

error in each frame:

E =
n

∑
i=1

√
(x̂i − xi)2 + (ŷi − yi)2 (6.3.5)

where n is the number of frame being tracked. This error E is quantified using the

number of pixels, and it could be easily extend to the real value of centimeters by

multiplying it by a factor of 10 (i.e., the ground resolution is 10 cm/pixel).

We tracked all vehicles in the testing video and extracted 238 complete trajectories. The

trajectories with unknown types were ignored. We then randomly selected 50 vehicles

and computed their trajectory modeling errors using Equation (6.3.4). We took the

average value as the modeling error of this frame. The modeling error of the whole

testing video was then computed using Equation (6.3.5).

Since our modeling method is based on vehicle tracking, we used three other recent

tracking approaches to model the vehicle trajectory and evaluate their performance for

comparison, namely, tracking-learning-detection (TLD) [165], tracklet confidence and

online discriminative appearance learning (TC-ODAL) [166], and the Markov decision

process (MDP) [167]. In other words, our objective was to model the vehicle trajec-

tories using the four methods and then evaluate their performance by computing the

modeling error.
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Result and discussion. We illustrate the frame-based trajectory modeling error for the

first 280 frames of the testing video in Figure 6.9 and report the overall error in Table

6.3. It can be seen that our method outperformed the other three approaches in terms of

both frame-based error and the overall error. The TLD method performed worst in this

experiment, probably due to the lack of tracking information, since this method does

not perform frame-by-frame vehicle detection on the video sequence. Fluctuations of

the modeling error could be observed from the results of all four methods, but the error

fluctuation range of our method was the smallest compared to the other three ones.

Figure 6.9: The frame-based trajectory modeling errors (lower is better) for four meth-

ods. The horizontal axe denotes the frame number, and the vertical axe

represents the error value measured in pixels.

Table 6.3: The overall trajectory modeling errors (lower is better) for four meth-

ods: tracking-learning- detection (TLD), tracklet confidence and online dis-

criminative appearance learning (TC-ODAL), the Markov decision process

(MDP), and ours. The error value is measured in pixels. The best value is

highlighted using a bold typeface.

TLD TC-ODAL MDP Ours

Overall Error (pixel) ↓ 1743 796 632 316

We also provide the tracking speed (frame per second) of the aforementioned approaches

99



Chapter 6. Vision Based Vehicle Behavior Recognition for City Road Traffic

(see Table 6.4). Since we already have the frame-by-frame detection results, we can treat

the tracking problem as the data association problem and do not need to train the al-

gorithm. It can be seen that all the approaches achieve a relatively high tracking speed

(i.e., above 55 fps), and the proposed method achieves the highest speed (i.e., 82.5 fps)

as well as the lowest tracking error.

Table 6.4: The tracking speed (higher is better) of different methods. The best value is

highlighted using a bold typeface.

Method TC-ODAL MDP TLD Ours

Tracking speed (fps) 78.9 65.1 58.4 82.5

6.3.2 Vehicle Behavior Recognition

Behavior Recognition by Nearest Neighbor Search

Settings. For training, we built a training set by extracting 973 complete vehicle trajec-

tories from the training video. Five hundred forty-two of them were with the type “go

straight”, 204 of them were with the type “turn left”, and the remaining 227 were with

the type “turn right”. For testing, we used 238 trajectories obtained from the testing

video.

We applied the proposed double spectral clustering (DSC) on all the 973 trajectories and

identified their types (i.e., go straight, right turn, and left turn). Given a testing trajectory,

we determined its category based on a nearest neighbor search. We also performed two

other clustering methods for comparison, one was a K-Means clustering based on LCSS

similarity and the other one was normal spectral clustering based on LCSS similarity.

Evaluation. We employed the normalized accuracy metric considering the large vari-

ation in the number of samples in each trajectory type (most of them were of the type

“going straight”). We first computed the accuracy within each class and then averaged

them over all classes:

ACCi =
Number of correct predictions of class i

Number of samples from class i
(6.3.6)

ACC =
1
N

i=1

∑
N

ACCi. (6.3.7)

Result and discussion. The results are listed in Table 6.5. We noticed that our approach

achieved an overall accuracy of 0.899, which is pretty high considering the complex

road structure. In addition, the recognition accuracy of vehicle going straight is 0.910,

followed by the the accuracy of “left turn” and “right turn”, achieving 0.857 and 0.882,
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respectively. On each class, our DSC method outperformed the other two methods,

which demonstrates the effectiveness of our approach for unsupervised vehicle behav-

ior recognition.

Table 6.5: The results of vehicle trajectory clustering for behavior recognition. For

each type of behavior, we show the accuracy on each type and the aver-

age value (higher is better). The best values are highlighted using a bold

typeface.

Bebavior LCSS-KMeans LCSS-Spectral DSC (Ours)

Go straight 0.813 0.802 0.910

Right turn 0.727 0.764 0.857

Left turn 0.667 0.769 0.882

Average 0.756 0.782 0.899

The training time and testing speed of these three approaches are shown in Table 6.6.

It can be seen that the LCSS-KMeans runs faster than other methods, this is due to the

relatively simpler complexity of the KMeans algorithm (the time complexity of KMeans

is O(n, k), while the time complexity of spectral clustering is O(n3)). However, the

performance of LCSS-KMeans is worse than the proposed DSC method. In addition,

the three methods achieve a very similar testing speed, because they have roughly the

same sizes of searching space.

Table 6.6: The training time (in seconds, lower is better) and testing speed (trajectory

per second, higher is better) of the three methods. The best values are high-

lighted using a bold typeface.

Method LCSS-KMeans LCSS-Spectral DSC (Ours)

Training Time (s) ↓ 11.3 25.8 43.2

Testing Speed (tps) ↑ 62.1 57.5 55.6

Behavior Recognition by Bidirectional Long Short-Term Memory

In this test, we performed behavior recognition using the proposed T-BiLSTM model.

Settings. We used the same training and testing data as in the previous section. For

feature representation, we resampled the length of each trajectory to 256 points, and

computed the sequences of angular changes for them. We followed [159] and employed

the "back propagation through time" (BPTT) algorithm with a mini-batch size of 32 to

train the network. For implementation, we used the Keras [168] deep learning toolkit

for Python using Tensorflow [169] as backend.

For comparison, we trained five other models using our training data, namely a Hid-
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den Markov Model (HMM) [170], an Activity Hidden Markov Model (A-HMM) [171],

a Hidden Markov Model with Support Vector Machine (HMM-SVM) [172], a Hidden

Markov Model with Random Forest (HMM-RF) [172], and normal LSTM [173]. The

first four algorithms were trained on the CPU (i7-6700K), while the normal LSTM and

our method were trained on the GPU (GTX 1080Ti). For evaluation, we used the nor-

malized accuracy metric again.

Results and discussion. Table 6.7 presents the classification accuracy of each method

on the testing data. Our approach outperformed all other methods in terms of both

single class performance and overall performance. To be more specific, our T-BiLSTM

achieved an accuracy of 0.965 on the "go straight" types, probably because the structure

of the trajectories under this type are relatively easy to be temporally modeled and rec-

ognized. The accuracies decrease on the other two trajectory types due to the increased

structural complexity. The LSTM method achieves the second highest accuracy, fol-

lowed by HMM-RF and A-HMM.

Table 6.7: The results of vehicle trajectory classification for behavior recognition. We

show the accuracy on each type and the average value (higher is better).

The best values are highlighted using a bold typeface.

Behavior HMM A-HMM HMM-RF HMM-SVM LSTM T-BiLSTM

Go straight 0.825 0.893 0.931 0.832 0.924 0.965

Right turn 0.703 0.803 0.856 0.752 0.896 0.938

Left turn 0.671 0.733 0.832 0.714 0.875 0.916

Average 0.733 0.810 0.873 0.766 0.898 0.940

We also show the training time and testing speed of these methods in Table 6.8. It can

be seen that the training time of our method on the GPU is the lowest among the six

trajectory classification approaches. For fair comparison, we also provide the training

time of two deep-learning-based methods (LSTM [173] and ours) on the CPU side,

which is much lower than on the GPU side. For testing speed, the HMM achieves the

highest speed, but its classification performance is significantly worse than our method.

Table 6.8: The training time (in seconds, lower is better) and the testing speed (trajec-

tory per second) of these methods. The best values are highlighted using a

bold typeface.

Method HMM A-HMM HMM-RF HMM-SVM
LSTM

(CPU/GPU)

T-BiLSTM

(CPU/GPU)

Training ↓ 296.4 331.1 395.7 388.5 1351.5/136.6 526.6/47.7

Testing ↑ 65.2 62.1 59.9 58.1 37.1/40.3 38.2/59.2
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6.4 Summary

A deep vehicle behavior recognition framework is proposed in this paper for urban

vehicle behavior analysis in UAV videos. The improvements and contributions in this

study mainly focus on four aspects: (1) we expand the vehicle behavior analysis area

to the whole traffic network at road intersections, not individual road sections; (2) to

recognize vehicle behaviors, we propose a nearest neighbor search based model and a

deep BiLSTM-based architecture considering both forward and backward dependen-

cies of network-wide traffic data; (3) multiple influential factors for the proposed model

are carefully analyzed; (4) we combine deep-learning-based methods and traditional

algorithms to effectively balance the speed and accuracy of the proposed framework.

In recent years, the rapid development of autonomous car technologies and driving

safety support systems have attracted considerable attention as solutions for prevent-

ing car crashes. The implementation of technologies in the intelligent transportation

system to assist drivers in recognizing driving behaviors around their own vehicles can

be expected to decrease accident rates. Car crashes often occur when traffic participants

attempt to change lanes or make turns. Hence, vehicle behavior recognition exhibits

significant importance in our daily lives. In our work, we mainly use vehicle trajectory

analysis to help recognize three types of vehicle behaviors, but vehicle trajectory anal-

ysis also has more applications which we will consider in future work: for example,

illegal lane changes, violations of traffic lines, overtaking in prohibited places, and il-

legal retrograde. We will also implement an artificial-intelligence-based transportation

analytical platform and integrate it into the existing intelligent transportation system

in order to improve the driving experience and safety of drivers.
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CHAPTER 7

Character Recognition via a

Semantic Projection Network

In this chapter, we design a method to automatically recognize characters in popular

TV series. In contrast to conventional approaches which rely on weak supervision af-

forded by transcripts, subtitles or character facial data, we formulate the problem as

multi-label classification which requires only label-level supervision. We propose a

novel semantic projection network consisting of two stacked subnetworks with spe-

cially designed constraints. The first subnetwork is a contractive autoencoder which

focuses on reconstructing feature activations extracted from a pre-trained single-label

CNN. The second subnetwork functions as a region-based multi-label classifier which

produces character labels for the input video frame as well as reconstructing the input

visual feature from the mapped semantic labels space. Extensive experiments show

that the proposed model achieves state-of-the-art performance in comparison with re-

cent approaches on three challenging TV series datasets (the Big Bang Theory, the De-

fenders and Nirvava in Fire).

7.1 Related Work

Recent years have witnessed increasing studies on character recognition in multimedia

resources. Most previous approaches for automated character recognition are aided by

transcripts aligned with the subtitles to provide strong supervision for the task [174–

176], however, transcripts and subtitles for all films or the entire seasons of a TV series

are tough to find from the IMDB or social media sites. Besides, they often come in

various styles and formats, results in much work on pre-processing and re-formatting.

In contrast, only labeling the existence of every targeted characters in video frames
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are easy to achieve and does not introduces ambiguous information contained in tran-

scripts and subtitles.

Some other transcript-free approaches tend to use face recognition algorithms to help

capture the facial characteristics of actors in videos [177–182], and some also go beyond

the frontal faces to also consider the profiles such as hair and poses [183–186]. Facial

knowledge can benefit the character recognition algorithms, however, this requires ex-

tensive and tedious facial data annotation including the location and class labels of

faces in order to train the algorithm. Moreover, the variations of lighting, posing and

background also significantly challenge the face recognition algorithms, and would

lead to dissatisfied performance if the training data is limited. In this work, we only

use the label-level supervision to make predictions based on both holistic and regional

information in the videos.

As the supervision is available from character labels, the problem of character recogni-

tion can be cast as the multi-label classification [187]. It is a long-standing problem and

has been studied from multiple angles. One common method is the problem transfor-

mation. For example, Li et al. [188] transform the multi-label problem into a single-label

problem by designing a binary coding strategy, while Nam et al. [189] treat each label

independently and train a set of classifier to predict each label.

Many recent approaches tackle the multi-label classification problem using convolu-

tional neural networks (CNNs). CNN has achieved promising results in many single

label dataset [4, 55, 136] , such as the CIFAR10/100 [190] and ImageNet [2]. Many

researchers have therefore adopted the CNN-based techniques to address multi-label

classification problems. Wu et al. [191] design a weakly weighted pairwise ranking

loss to tackle weakly labeled images and a triplet similarity loss to handle unlabeled

images. Wang et al. [192] add a recurrent neural network (RNN) to the CNN backbone

so as to predict multiple labels sequentially. Wei et al. [82] extend the single-label CNN

to multi-label CNN which predicts all the labels at one time. All these methods can

be formulated as a one-off mapping function which projects the visual (image) space

to the semantic (label) space, however, such kind of projection strategy often suffers

from the problem of imbalance data. This is, if some classes have very limited training

samples, then the samples from these classes are likely to be classified as other classes

which have many more training samples. In our work, we propose to solve this prob-

lem by encouraging mutual projection between the visual space and semantic space in

order to learn more robust feature representation.
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Figure 7.1: The workflow of the proposed character recognition framework. Given an

input video frame, we first generate a set of region proposals and then ex-

tract their visual features using a pre-trained single-label CNN. Next we

feed the features into the trained semantic projection network and predict

the existence of each targeted character. To obtain the final predicted re-

sults, we employ the max-pooling strategy over all the region proposals to

aggregate their predictions.

7.2 Methodology

In our work, we do not rely on transcript, subtitles or facial data to help recognize

different characters, instead, we formulate this problem as the multi-label classification,

where each character is treated as an independent label. Given a testing video frame,

we first pass it into a pre-trained single-label convolutional neural network (CNN) to

extract the visual feature activations from the last fully-connected layer, then take these

features as the input of the trained semantic projection network (SPNet). The SPNet

then produces the final character labels following a max-pooling strategy (see Fig. 7.1).

As depicted in Fig. 7.2, The semantic projection network (SPNet) consists of two stacked

autoencoders with special constraints. Given the original visual features as the input

(v), the first autoencoder (visual reconstruction subnet, VRNet) is used to learn robust

visual embeddings (vh) as well as reconstructing visual features from vh. In the second

autoencoder (semantic mapping subnet, SMNet), the learned visual embeddings (vh)

is employed to predict the character labels (s) while reconstructing the input vh from s.
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Figure 7.2: The architecture of the semantic projection network (SPNet). The input

visual features are refined by the visual reconstruction subnet and then

mapped to the semantic space (represented by n class labels) in the seman-

tic mapping subnet. We encourage the mapping from semantic space to

visual space so as to learn robust semantic embeddings for the input vi-

sual feature.

7.2.1 Visual Reconstruction Subnetwork

The first subnetwork is the visual reconstruction subnetwork (VRNet) which aims to

learn robust visual embeddings from the visual features. We start by introducing the

formulation of the linear autoencoder and then extend it to the proposed one. An

autoencoder is a feed-forward neural network with the same input vector and the tar-

get output. In its simplest form, an autoencoder is linear and only one hidden layer

is placed between the encoder and decoder layers, compressing the input data into a

low-dimensional representation. Formally, given an input data matrix D ∈ Rn×M con-

sisting of M feature vectors with the feature dimension of n, the encoder projects it

into a k-dimensional (k < n) latent space with an encoding matrix Wen ∈ Rk×n, result-

ing in a latent representation H ∈ Rk×M. The latent representation is then projected

back to the input feature space via the decoding matrix Wde ∈ Rn×k and becomes to

the reconstructed data matrix D̂ ∈ Rn×M. For the learning objective, we minimize the

reconstruction error, i.e. D and D̂ should be as similar as possible. Hence, the objective

function could be formulated as:

min(Wen, Wde) = ‖D−WdeWenD‖2
F (7.2.1)

The VRNet can be seen as a basic linear autoencoder with the contractive loss [193]. By

adding such loss, it is aiming to learn more robust visual embeddings for the images

of same class. To formulate, the VRNet projects the input visual feature vector v to

the latent representation vh, and then seeks to reconstruct v from vh. Denoting recon-
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structed vector as v̂, the model parameters are learned by minimizing the regularized

reconstruction error:

Lv =
1
N

N

∑
1
‖v− v̂‖2 + α ‖J(v)‖2

F (7.2.2)

where N is the number of training samples, and the J(·) is the Jacobian matrix [193]

and is computed by:

‖J(v)‖2
F = ∑

ij
(

∂vh(j)
∂v(i)

) (7.2.3)

where ∂ denotes the differential operation, v(i) means the ith input visual feature vec-

tor, vh(j) denotes the jth hidden vector. The Jacobian matrix contains partial derivatives

of the feature activations of neurons with respect to the input values, and so it is pos-

sible to inspect the impact of variations of the activation values and penalizing the

representation accordingly. The α is a hyper-parameter controlling the proportion of

the contractive loss during training.

7.2.2 Semantic Mapping Subnetwork

The second subnetwork is the semantic mapping subnetwork (SMNet) which is a multi-

layer autoencoder with semantic constrains. In the SMNet, the encoder projects the

learned visual embeddings to the semantic label space, similar to a conventional multi-

label classification model. However, we also consider the semantic label space as an

input to a decode in order to reconstruct the input original visual feature representa-

tion. This extra reconstruction task introduces a new constraint to the learning of the

projection function from the semantic space to the visual space.

To formulate, the input of the SMNet is the visual feature activations vh extracted from

the hidden layer of the trained VRNet. The objective of SMNet is to first encode vh to

the latent semantic label space s and then decode it to the input visual feature space v̂h.

The number of hidden neural in the semantic label space equals to the number of class

labels. Hence, we wish to minimize the visual reconstruction error combined with the

multi-label classification error:

Ls = β
1
N

N

∑
1
‖vh − v̂h)‖2 + ‖Φ(s)‖2

F (7.2.4)

where N is the number of training samples and the parameter β controls the proportion

of visual reconstruction loss in Ls. Φ(·) denotes the multi-label soft margin error [194]:
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‖Φ(ŝ, s)‖2
F = −

N

∑
i=1

[
si log

eŝi

1 + eŝi
+ (1− si) log

1
1 + eŝi

]
(7.2.5)

where ŝi and si is the predicted label vector and ground-truth label vector for ith testing

sample respectively. Combining Eq. (7.2.2) and Eq. (7.2.4), we have:

Ltotal = Lv + Ls (7.2.6)

To minimize Ltotal , we train the two subnetworks sequentially. In the first stage, we

train the VRNet by minimizing Lv and then freeze the network parameters. In the

second stage, we extract features from hidden layer (vh) of the trained VRNet and use

them as the input of the SMNet, then train the subnetwork by minimizing Ls.

7.2.3 Region-based Multi-label Classification

In our work, the predicted class scores can be directly obtained from the hidden layer

of the SMNet (as depicted in Fig. 7.2) because we force its content to be as similar as

possible to the ground-truth label annotations during training.

Considering that each video frame may contain multiple labels and some labels may

only apply to sub-regions, we add a region-based strategy to predict the character la-

bels. More specifically, we first employ multi-scale combinatorial grouping (MCG) [?

] method to extract hundreds of sub-regions from the given image, we then adopt the

normalized cut algorithm [195] to cluster all region proposals into c clusters based on

the IoU (Intersection-over-Union) affinity matrix. In each cluster, we select k region pro-

posals with the largest predictive scores defined by the MCG approach and feed them

into the trained SPNet. We also add the original image to the proposal group, and ob-

tain ck + 1 region proposals for that image. The final prediction result is then obtained

by max-pooling the predicted output of all the proposals (as depicted in Fig. 7.1). With

max-pooling, large predicted class scores corresponding to targeted characters will be

reserved, while the values from the noisy proposals will be ignored.

7.3 Experiment and Discussion

We evaluate the proposed SPNet on three challenging TV series, namely the Big Bang

Theory, (BBT) from the US, the Defenders, (TD) from the US and Nirvana in fire, (NIF)

from China. We also examine the importance of region-based strategy for character

recognition.
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Datasets. Consider the temporal redundancy of videos, for each TV series, we first

sample five consecutive episodes every 5 frames and annotate these sampled frames

with character labels. We then use the first four annotated episodes for training and

the last one for testing. Note that such splitting strategy is very challenging since the

lighting, scenario, and costumes of characters might be totally different between the

training samples and testing samples. More details about these datasets are shown in

Table 7.1.

Table 7.1: Details of the three TV series video datasets.

Name The Big Bang Theory The Defenders Nirvana in fire

Season No. 7 1 1

Training episodes No. 1∼4 1∼4 2∼5

Testing episodes No. 5 5 6

No. of training samples 54,985 56,616 53,349

No. of testing samples 5,481 14,661 13,325

Visual features. In our experiments, we use the ResNet (pre-trained on ImageNet) [4]

features which is the 2048D activation of the final fully-connected layer. The input

video frame is first resized to 224 × 224 and then fed into the ResNet model to ex-

tracted visual features. For fair comparison with published results, we uniformly use

the ResNet features as the input of the compared methods.

Parameter settings. The length of layers in the VRNet (first subnetwork of SPNet) is

2048 → 1024 → 2048, and the length of layers in the SMNet (second subnetwork of

SPNet) is 1024 → 512 → n → 512 → 1024, where n denotes the number of character

labels.

Besides, the SPNet has two hyper-parameters: α in (see Eq. 7.2.2) and β (see Eq. 7.2.4).

They are trade-off parameters for different loss components. As in [196], their values

are set by class-wise cross-validation using the training data.

We train the two subnetworks in the SPNet separately. We employ the Adam algo-

rithm [197] as the optimizer, the momentum is set to 0.9, the batch size is set to 128, the

initial learning rate is set to 0.0001. We decrease the learning rate to one-tenth of its cur-

rent value every 10 epochs. We execute 25 epochs to train the VRNet (first subnetwork)

and 30 epochs to train the SMNet (second subnetwork).

Evaluation metric. We use the f1 scores to throughly evaluate the performance of the

proposed model. This score can be interpreted as a weighted average of the precision

and recall, where an f1 score reaches its best value at 1 and worst value at 0. The

formula for the f1 score is:
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f 1 = 2× precision× recall
precision + recall

(7.3.1)

Competitors. We compare our method (SPNet-RP) with several recent multi-label clas-

sification approaches as follows.

CNN-SVM [198] and ML-KNN [199] serve as baseline methods which uses support

vector machines and and k-nearest neighbor search to tackle the multi-label classifi-

cation problem. Visual features are feature activations extracted from the pre-trained

CNN.

HCP [200] is a novel CNN infrastructure, named hypotheses CNN pooling. In HCP,

object segments hypotheses are taken as the input of the shared CNN, and the final

predictions are obtained by max-pooling the results on all these hypotheses.

DeepBE [188] transforms the multi-label classification problem to single-label classifi-

cation using the specially designed binary coding scheme. The transformed data can be

learned by powerful CNNs which are initially designed for single-label classification.

LGC [201] is a flexible deep CNN framework for multi-label classification. LGC con-

sists of a local level multi-label classifier which takes object segment hypotheses as

inputs to a local CNN, and a global CNN that is trained by multi-label images to di-

rectly predict the multiple labels from the input. The predictions of local and global

level classifiers are fused together to obtain the final predicted results.

Besides, we also predict the character labels without the region-proposals in the SPNet

to spot the differences.

Implementations. We implementate all the models using the Python programing lan-

guage with the support of the PyTorch[202] deep learning toolkit. Codes were running

on the GTX1080ti GPU with 11GB display memory.

Results and discussion.

The results of character recognition on the three TV series are shown in Table 7.2, 7.3

and 7.4 respectively. From results, we can see that the proposed models (SPNet and

SPNet-RP) outperform all the recent approaches and achieve a significant improvement

over those two baseline methods (over ML-KNN [199] and CNN-SVM [198]). Only one

observed exception is that the HCP [200] method achieves the best f1 score (0.791) on

the Bernadette character in the BBT dataset.

We also notice that the best f1 scores obtained on the BBT and TD datasets (0.627 and

0.658 respectively) are lower than the one obtained on the NIF (0.788). This is because

the video content in NIF contains many close-up views of individual characters which
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provide more detailed information in the corresponding visual features.

Besides, it can bee seen that the SPNet with region proposals (SPNet-RP) achieved very

similar results as the vanilla SPNet on the BBT and TD datasets, however, the former

exhibits significantly better performance than the latter on the NIF dataset. This is

because its video content contains many big scenes like palaces and the battleground, in

which the characters only appear in small regions. This demonstrates the effectiveness

of region-based strategy for character recognition.

Table 7.2: The result of character recognition on the Big Bang Theory, (BBT). We show

f1 scores computed on each individual character and the average of them.

The best values are highlighted using bold fonts.

Method ML-KNN CNN-SVM HCP DeepBE LGC SPNet SPNet-RP

Sheldon 0.663 0.697 0.641 0.767 0.665 0.778 0.795

Amy 0.303 0.311 0.273 0.390 0.474 0.587 0.546

Howard 0.535 0.437 0.611 0.466 0.520 0.660 0.618

Raj 0.364 0.356 0.407 0.407 0.452 0.663 0.670

Penny 0.463 0.571 0.497 0.348 0.411 0.628 0.540

Bernadette 0.571 0.544 0.791 0.586 0.557 0.506 0.553

Leonard 0.348 0.380 0.440 0.549 0.403 0.566 0.635

Average 0.464 0.471 0.523 0.502 0.497 0.627 0.622

Table 7.3: The result of character recognition on the Defenders, (TD). We show f1 scores

computed on each individual character and the average of them. The best

values are highlighted using bold fonts.

Method ML-KNN CNN-SVM HCP DeepBE LGC SPNet SPNet-RP

Dare Devil 0.511 0.614 0.633 0.609 0.620 0.629 0.716

Jessica Jones 0.364 0.378 0.427 0.529 0.441 0.531 0.497

Luke Cage 0.486 0.476 0.561 0.531 0.570 0.596 0.591

Iron Fist 0.543 0.522 0.592 0.520 0.613 0.573 0.649

Alexandra 0.461 0.611 0.712 0.771 0.831 0.858 0.836

Average 0.473 0.520 0.585 0.592 0.615 0.637 0.658

7.4 Summary

In this work we propose a novel semantic projection network (SPNet) to address the

problem of character recognition in TV series. The SPNet consists of two stacked sub-

networks with specially designed constraints for different purposes. More specifically,

112



Chapter 7. Character Recognition via a Semantic Projection Network

Table 7.4: The result of character recognition on Nirvana in fire, (NIF). We show f1

scores computed on each individual character and the average of them. The

best values are highlighted using bold fonts.

Method ML-KNN CNN-SVM HCP DeepBE LGC SPNet SPNet-RP

Changsu Mei 0.759 0.669 0.734 0.770 0.813 0.834 0.831

Jingyan Xiao 0.604 0.622 0.591 0.667 0.469 0.604 0.725

Nihuang Mu 0.596 0.579 0.579 0.617 0.585 0.683 0.686

Jinghuan Xiao 0.761 0.753 0.653 0.686 0.625 0.659 0.839

Emperor of Liang 0.610 0.605 0.705 0.751 0.773 0.775 0.857

Average 0.666 0.646 0.652 0.698 0.653 0.711 0.788

the first subnetwork is a contractive autoencoder which focuses on reconstructing vi-

sual feature activations extracted from a pre-trained CNN, while the second subnet-

work functions as a multi-label classifier with additional constraints which require to

reconstruct input visual features from the projected semantic space. Considering that

some character labels may only apply to the subregions of the video frames, we in-

troduce the region-based strategy to further improve the classification performance.

Experimental results on three challenging TV series show that the proposed method

achieves state-of-the-art performance.
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Concluding Remarks

8.1 Summary of Thesis and Contribution

In this thesis, we develop models and techniques for visual content understanding by

connecting vision and language modalities. More specifically, we build both unsuper-

vised and supervised learning models to bridge the gap of vision and natural language,

and train the model parameters on datasets of images/videos with corresponding nat-

ural language annotations.

In Chapter 2, we provide necessary background knowledge of machine learning, in-

cluding clustering, dimensionality reduction, deep neural networks and describe pop-

ular network architectures for processing images/videos. Besides, we also introduce

some typical natural language processing techniques such as the part-of-speech tag-

ging and the word vector representation.

In Chapter 3, we build a data-driven visual theme discovery framework which is able

to automatically reorganize images with tag-based annotations into a set of compact

and comprehensive visual themes. We do it by measuring the visual similarity and

semantic similarity respectively for each pair of tags, and then apply a spectrum clus-

tering technique to divide the tags and their corresponding images into different sub-

groups (visual themes). We conduct user study and common computer vision tasks

to validate the effectiveness of the proposed framework and have obtained promising

results.

In Chapter 4, we attempt to mine inherent semantic information from user videos by

predicting their semantic attributes in each frame, and then inspect the impact of these

semantic attributes in assisting the the visual features to effectively describe the visual

content in videos. In particular, we first discover a set of semantic attribute from a

joint image and text corpora, and then use these attributes as a supplementary compo-
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nent of visual feature to summarize user videos. In the experiment, our unsupervised

approach outperforms several supervised methods using the maximum-based evalua-

tion, and achieve the second place using the average-based evaluation.

In Chapter 5, we focus on vehicle detection, tracking and counting in high resolution

(4K) UAV traffic videos, and develop a deep neural network to accurately localize road

vehicles as well as giving them semantic labels (i.e. car, bus and truck). We then design

a fast online tracking technique to associate the vehicle detection results across consec-

utive video frames. We finally conduct the vehicle counting experiments on both 4K

images and videos, and have obtained very promising results.

In Chapter 6, we extend our work in the previous chapter and perform vehicle behavior

recognition in traffic videos based on trajectory modeling. We first model the vehicle

trajectory by connecting the center points of each track vehicle in consecutive video

frames, then design a double spectral clustering method to group their trajectories into

a set of sub-groups. We also develop a Bidirectional LSTM model to address this prob-

lem from a supervised manner. In the experiment, we have achieved a high accuracy

of vehicle behavior recognition both on the unsupervised side and the supervised side.

In Chapter 7, we approach the character recognition problem from the angle of multi-

label classification. We propose a novel semantic projection network (SPNet) which

consists of two stacked autoencoders with special constraints. The first autoencoder

reconstructs the input visual feature activations from a pre-trained multi-label CNN

in order to learn robust visual embeddings, and the second autoencoder reconstructs

the learned visual features from the mapped semantic label space so as to learn robust

semantic embeddings. The experiments on the three popular TV series video datasets

demonstrate the effectiveness of the proposed model in comparison of state-of-the-art

methods. We also show that adding region-based strategy can effectively improve the

performance of character recognition.

8.2 Future Work

In this thesis, we have showed that combining convolutional deep neural networks

with natural language processing techniques can effectively solve multiple vision recog-

nition task. We hope these techniques can inspire novel ideas and solutions for the joint

modeling of image, videos and natural languages.

However, despite the rapid progress in visual content recognition, it is clear that many

challenging problems still remain unsolved. One major disadvantage that all the CNN
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models for computer vision is that the joint learning of semantic and visual features

are mainly based on the training of images with carefully annotated captions or tags,

which means that they may not fully describe the real-world user data. Besides, the

detection and reasoning of the interconnectivity of abstract concepts and knowledge

which is hidden in the visual world is still beyond the scope of current visual recogni-

tion algorithms. This is because human can see much more from the visual scene than

computers by thinking and reasoning. Hence, the major direction of our future work

is to enable the computers to think beyond the vision, modeling abstract concepts and

theories, and finally making predictions and reasoning like the human do. Our ulti-

mate goal is to realize Turing’s vision of artificial intelligence that computers can sense

the world and interact with us using our own languages.
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