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Abstract

R.F. sputtering was used to deposit thin films of YBCO onto a variety of 
substrates. The films were found to be superconducting with critical temperatures in 
excess of 77 Kelvin. Using x-ray diffraction the orientation of the YBCO thin films on 
MgO(lOO) was found to be c-axis. The films deposited on SrTiO3(100) were found to 

be a and c axis orientated, where as on SrTiO3(110) the thin films were (110/013) 
orientated. Using scanning electron microscopy the films were found to be granular in 
nature. The films deposited on MgO(lOO) had circular grains. The films deposited on 

SrTiO3(110) had elongated sausage like grains. The shape of the grains is due to spiral 
and ridge type growth respectively. Electrical measurements were taken using a 4 probe 
contact technique. The rf experiments were used to calculate the paraconductivity. The 
coherence length and superconducting sheet thickness where calculated for c-axis YBCO 
thin films using the Lawrence-Doniach theory. The coherence length was found to be 

4 A, the sheet thickness was 11 A for T=0 Kelvin. Examination of the transition region 
revealed a flux flow region in films deposited on MgO(lOO). The temperature 
dependence of the flux flow region was found to be in agreement with that predicted by 
Kosterlitz-Thouless and independently by Berezinskii. This implies that the films were 

2 dimensional in nature. Some films deposited on SrTiO3(110) do not appear to have a 
flux flow region. Films deposited on SrTiO3(110) may be 3 dimensional. Examination 
of the magnetic properties were in agreement with existing theory, namely that the 
resistance was directly proportional to the applied magnetic field. In order to perform 

critical current measurements the films were wet etched into strips. The temperature 
dependence of the critical current of the granular thin films was found to be in 
agreement with Ambegaokar-Baratoff theory for a 2 dimensional film of Josephson 
junctions. An ac electrical technique was used to investigate the reactive properties of 

YBCO thin films. Results show that the normal inductance was very anisotropic. The 

inductance for temperature below Tc was used to calculate the penetration depth. The 

penetration depth, for T=0K, was found to be between 2.24-10.58[xm. Penetration depths 
of this magnitude are predicted by Ambegaokar-Baratoff for certain cases. The 
temperature dependence of the penetration depth was investigated in terms of the London 

theory and good agreement was found. Anomalous behaviour was found to occur in 
certain thin films. The anomaly was present as a change in the temperature dependence 

of the kinetic inductance. The anomaly may be due to 2D-3D crossover, known to occur 
in YBCO thin films. An anomalous resonance effect was observed in very thin film at 
48 Kelvin. The behaviour of the anomaly is very similar to a dielectric but may be due 
to substrate effect.
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CHAPTER 1: INTRODUCTION

1: Introduction - This Thesis

This thesis is separated into nine chapters. The first chapter is a short review 

of the history of superconductivity since its discovery in 1911. This chapter will 

introduce the more important theoretical models that have appeared over the years. The 

end of this chapter reviews the discovery of Yttrium Barium Copper Oxide (YBCO) and 

its impact since 1987.

The second chapter takes a more in depth look at YBCO thin films. This chapter 

will include the methods available for the production of thin films. It will centre mainly 

on RF sputtering and how it has developed over the last few years to become a very 

successful method of deposition. The review will also take a look at the electrical 

properties of the thin films around the transition region. This work will include the 

various theories used today to explain the resistive properties of YBCO. Experiments to 

calculate values of penetration depth, coherence length, sheet thickness and various other 

parameters will be reviewed, accompanied by the results of this work.

Chapter three is the theoretical section of this thesis. Due to the complexity of 

both the RF sputtering and electrical properties of YBCO, it quickly became apparent 

that to review or investigate both aspects of YBCO in the detail necessary for clear 

understanding would be overwhelming. It was necessary therefore to concentrate on one 

aspect only. In this thesis I have chosen to review the electrical theories of YBCO and 

superconductivity rather than sputtering theory. For this reason chapter three will consist 

of the theories presently used to explain the electrical behaviour of YBCO thin films. 

This chapter will review much of the early work, since this is often used by researchers 

to describe the YBCO thin films. This will include London and Ginzburg-Landau 

theories and Andersons' flux flow model. This chapter also contains more modern ideas
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such as the Kosterlitz-Thouless and Berezinskii theories of two dimensional

superconductivity and Anderson's Resonating Valence Bond Theory. Theories relating 

to paraconductivity will also be reviewed since some believe that the mechanism 

responsible for superconductivity may be magnetically orientated. These theories will be 

used to obtain theoretical results that will be compared with the results from 

experiments. The close of this chapter is a review of the present theory relating to the 

experimental technique used in this thesis. This will enable us to see how the results 

obtained from the ac experiments can be used to calculate the parameters derived from 

theory.

In Chapter four a review of the apparatus used to produce the thin films is 

described. The method of production used here is RF sputtering. The extra equipment 

required for successful sputtering of YBCO, such as a substrate heater and target 

material will be reviewed in this section. The experimental technique of RF sputtering 

will also be reviewed in this chapter.

Chapter five describes the equipment and experimental techniques used to 

determine the electrical properties of YBCO thin films. This chapter will include details 

of mask production and etching techniques. The low temperature experiments will be 

reviewed in detail in this chapter.

Chapter six contains the results and discussion. This chapter will review the 

results obtained from the experiments described in chapter five. The first section of this 

chapter will review the production of thin films. This will include the effect of the 

growth parameters on the quality of the YBCO thin films. The structural properties of 

the YBCO thin films investigated using x-ray diffraction will be covered in this chapter.

Chapter seven is concerned with the electrical results obtained from the thin films 

that exhibited superconductivity. This will include the steps required and used to
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calculate parameters such as coherence length and sheet thickness from the experimental 

data. The various transport theories mentioned in chapter three will be examined here 

and the results from the experiments will be given in terms of these theories.

Chapter eight covers the investigation into the reactive properties of YBCO thin 

films. The inductive properties of YBCO at 13 MHz will be used to determine the 

penetration depth of the YBCO thin films. This chapter will also include the anomalous 

results that have occurred. A resonance effect observed in a very thin film will be 

reported along with a model used to simulate the films peculiar transport properties. This 

chapter will also include the results obtained from etching YBCO thin films. Critical 

current measurements will be reported here. The final section of this chapter will include 

a simple model to explain some of the properties observed in experiment. The model is 

based on an equivalent circuit and is not meant to be a theoretical model of 

superconductivity. It is designed to explain the properties observed in the experiments 

performed and presented here in terms of a simple electrical circuit, consisting of 

inductors, resistors and capacitors. This is therefore an attempt to simplify, qualitatively, 

the electrical behaviour of YBCO thin films.

The final chapter will be a review of this thesis has a whole. The value of the 

research performed and presented here, will be given. It shall therefore be a review of 

what has actually been achieved. Suggestions for future work will also be reviewed.

1.1: Introduction to Superconductivity

The story of superconductivity started with its discovery in 1911(1). For decades 

theoretical physicists and experimentalists strived to obtain a thorough understanding of 

this remarkable property, and following the publication of a quantum mechanical model 

in 1956® it was generally assumed that this had been achieved. Thirty years later is was
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realised however that this was not so. The discovery in 1987 of high temperature 

superconductivity raised questions that cannot be fully explained or understood using 

existing theory. This fact, coupled with the high temperature at which the materials 

become superconducting, resulted in a massive amount of work in recent years on this 

subject. The work given here represents one small area of this research.

1.1.1: Kamerlingh Onnes, Meissner and Oschenfeld

The initial discovery of superconductivity was made by Kamerlingh Onnes(1). His 

experiments were designed to investigate the electrical properties of metals to verify the 

Drude - Lorentz theory of metallic resistance. He discovered that instead of the 

temperature dependence predicted by the existing theory, the resistance of the mercury 

sample fell sharply to zero at around 4 Kelvin. This behaviour became known as 

superconductivity, since the material appears to have zero resistance. (Experiments to 

determine the resistivity of a superconducting sample have shown that for lead the 

resistivity is less than 10'23 ohms-meter^). Theories to explain this phenomenon began 

almost immediately though physicists soon realised that the property of infinite 

conductivity was rather difficult to explain. Thus it was not until 1933 with a discovery 

by Meissner and Oschenfeld(3) that acceptable theoretical arguments began to appear.

Meissner and Oschenfelds' experiments demonstrating the exclusion of the 

magnetic field from the bulk of a superconductor by screening currents revolutionised 

thinking. The importance of their work was that it solved the problem of perfect 

conductivity that existed until that point. The experiment proved that below the critical 

temperature of the sample, namely the temperature at which the sample becomes 

superconducting, any small magnetic field would be expelled from the sample 

irrespective of the sample's previous history. In other words it does not matter whether
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the sample is first cooled and the field is then applied or the field is applied first and 

then the sample is cooled, the effect is still the same. The Meissner effect, as the 

phenomena is known, proved that the "superconducting state" was a reversible 

equilibrium state, a stable thermodynamic one.

1.2: Development of superconductor theory

1.2.1: Two Fluid Theory, Gorter-Casimir, the Londons and Pippard

Soon after the discovery of the Meissner effect, phenomenological theories began 

to appear. Gorter and Casimir developed a two fluid theory®. The theory, as the name 

suggests, considers the superconductor to consist of two independent fluids, a normal 

fluid and a superconducting fluid. The normal fluid is simply the normal electrons. The 

second fluid known as the superfluid or superconducting fluid consists of electrons 

having no resistance. The superconducting electrons can travel through the material 

without dissipation. Gorter-Casimir theory described various properties of 

superconductivity including the temperature dependence of the superelectrons.

Pursuing the two fluid theory the London brothers were able to develop a theory 

from Maxwell's equations to explain the Meissner effect®. Their work lead to the 

definition of a new parameter, now known as the penetration depth. The value of 

penetration depth is linked directly to the number of superconducting electrons. 

Combining Gorter and Casimir's results with their own, the Londons were thus able to 

establish the change in penetration depth with temperature. The London equations fitted 

experiment remarkably well.

Work by Pippard® lead him to realise that for certain pure superconductors the 

London equations were no longer valid and that they should be replaced by non local 

equations. The evidence for this came from Pippard's measurements on the anisotropic
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nature of tin. Pippard pointed out that the very fact that the penetration depth is 

anisotropic in certain materials is sufficient reason to investigate new ideas. Pippard's 

work resulted in equations to replace the Londons' equations as well as the definition 

of a new parameter called the coherence length. The coherence length is the length of 

the boundary of the superconducting phase. Pippard also proposed that the only time that 

the Londons equations were still valid was when the penetration depth was very much 

larger than the coherence length. This is an important point, since in the new high 

temperature superconductors, the penetration depth, although being anisotropic, is very 

much larger than the coherence length at low temperatures(7).

1.2.2: Ginzburg and Landau

In 1950, Ginzburg and Landau(8) proposed an extension to an idea developed by 

Landau in 1937(9). The work by Landau was based on the superconductor being 

represented by an order parameter. This parameter tended to zero at the transition 

temperature. Ginzburg and Landau realised that the order parameter was a wave function 

of the system. From Landau's earlier work, they were able to derive a term equivalent 

to the London penetration depth. They also discovered a second dimensionless parameter

k . It later became clear that this parameter was the ratio of the penetration depth and the 

coherence length. The importance of this parameter is in its relationship to type I and II 

superconductors. Abrikosov(10) pointed out that for values of k < 1/V2 the 

superconductors are type I, where as for k > 1/V2 the materials are type II 

superconductors.

l .  2.3: Abrikosov Theory

In 1957, Abrikosov put forward a theory he conceived in 1952 to explain the
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magnetic properties of type II superconductors^115. His theory described a mixed state 

consisting of vortex lines arranged periodically throughout a type II superconductor. He 

suggested that vortices, namely the normal regions, would be surrounded by circulating 

superelectrons that would cause any magnetic flux flowing through the normal region 

to be quantised. This was a revolutionary idea, though its importance was not fully 

realised until later. Cribiei*125 used the idea to explain his observations on vortices in 

niobium and lead bismuth alloys.

The theory by Abrikosov led Anderson(13) to develop a flux flow model in which 

the vortices would move from their lattice space and travel throughout the sample, 

resulting in a measurable dissipation. The model suggested that a current flowing through 

the superconductor would interact with the flux flowing in the normal region to produce 

a Lorentz force(46). He argued that if this force passed a critical value, then the fluxons 

would actually start to move through the sample, dissipating energy as they went.

Further work by Kosterlitz and Thouless(145 and independently by Berezinskii*155 

established that if the system was two dimensional, for example, a strongly anisotropic 

superconductor; then an external magnetic field would not be necessary to produce 

quantised vortices. Dislocations in the film could produce a vortex-antivortex pair 

simultaneously. The pair would then separate because of the Lorentz force acting in 

opposite directions on the vortices. The theory further suggests that if vortices are 

produced simultaneously the number free to move would be dependent on the magnitude 

of the current density. The resulting dissipation, the resistance, would therefore be 

dependent on the current and not ohmic in nature. It also implies that a two dimensional 

superconductor could not sustain any current without the production of vortices. In other 

words the superconductor's critical current, the current required to drive the 

superconductor into the mixed or normal state from the superconducting state, would be
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When Ginzburg and Landau first proposed their phenomenological theories, the 

first of the quantum mechanical (QM) models began to appear. The difficulty that had 

delayed the QM models was understanding the type of interaction responsible for 

superconductivity. In 1950, Frohlich(16) proposed a mechanism involving a coupling 

between electrons via the positive ions in the lattice. Frohlich was able to show that the 

mechanism responsible for superconductivity in the non transition metals was due to the 

coupling of the electrons to the ionic lattice. Experimental results on isotopes of mercury 

gave support to this idea. It was from this theory that Bardeen, Cooper and Schrieffer(2) 

were able to put forward a microscopic theory to explain superconductivity in 1956. The 

theory was the solution to the problem of a gas of electrons in the presence of an 

attractive interaction. Their theory was able to explain the Meissner Effect, the Isotope 

effect, the discontinuity in specific heat and was considered by many to be the correct 

theory of superconductivity.

The BCS theory, due to its importance, was soon followed by several papers 

offering reformulations of the BCS calculations. In 1959 Gorkov(17) was able to show 

that the Ginzburg-Landau equations could be derived from the microscopic theory, thus 

adding strength to the validity of the phenomenological theories. Eliashberg(18) then used 

Gorkov's method to derive an electron-phonon interaction that became the starting point 

for a theory on strong coupling superconductors. Carbotte(19) later pointed out that this 

was applicable to situations where gap anisotropy is important, namely, high temperature 

superconductors.

1.2.4: Bardeen, Cooper and Schrieffer
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Besides the theories described above, all of whose validity are somewhat in 

question, there is one theory that is likely to remain unaffected by the discovery of the 

high temperature superconductors. The theory was the work of Josephson(20).

Several years after the BCS and Abrikosov theories, Josephson, while considering 

certain quantum mechanical properties of the superconductors discovered that tunnelling 

of electron pairs could take place between a junction made from two superconductors. 

The problem he was considering was the behaviour of two superconductors separated 

by a very thin insulating or oxide layer. He demonstrated, that under certain conditions, 

tunnelling of superconducting Cooper pairs between the two superconductors could take 

place.

An experiment to investigate this theory was undertaken and found that the 

tunnelling did take place. A junction of this type is now called the Josephson Junction. 

By placing two of these junctions in parallel it was found that a very sensitive magneto 

interferometer could be produced. These devices are known as Superconducting 

gi/antum interference .Devices, SQUIDS. These are extremely useful for measuring very 

small magnetic signals, for example brain waves, and have already been in use for over 

a decade. SQUIDs made from the new HTS materials would have the advantage of 

requiring less refrigeration and would be far cheaper to run than conventional 

superconductors. More importantly to this work, is that YBCO films may be made up 

of many such junctions. This, along with the other theories, will be investigated more 

in chapter six.

1.3: The Discovery by Bednorz and Muller

The profound impact that high or room temperature superconductors would have

1.2.5: Josephson Effect
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on society has led many groups to investigate materials that may become 

superconducting at high temperatures. Researchers over the years continued to search for 

these high Tc materials, although progress had become very slow. Experiments had 

shown that binary systems, systems consisting of two elements, existed with critical 

temperature greater than those of single elements(21). This led to the idea that it may be 

possible to produce tertiary materials with even higher critical temperatures. The 

drawback to this philosophy is that there are thousands, possibly millions, of tertiary 

materials that could be produced. Work based on this idea, however, did pay dividends, 

with the peculiar discovery of the perovskite superconductors.

1.3.1: Perovskite Superconductivity

The mineral perovskite, CaTi03, was first named in 1925 and large amounts of 

research were undertaken into this material after the discovery of ferro-electricity in 

1943. The ferro-electric behaviour resulted from the off-centre atomic displacements in 

the material. These materials regularly occur in tetragonal, orthorhombic, rhombohedral 

and monoclinic structures. Only a few compounds of this nature are metallic. The 

discovery in 1973 by Lango and Raccah(22) of superconducting La2Cu04 was therefore 

very surprising. This was followed by Sleight(23) in 1975 with the BaPblxBix0 3 

compound. BaPb(1.x)Bix0 3 also exhibited superconductivity. (For x>0.35 these alloys are 

semiconducting and have a bronze colour whereas for x<0.35 the compound is black and 

metallic and superconducting at low temperatures). The critical temperatures of the 

barium, lead bismate and the lanthanum cuperate were lower than other materials in 

existence. The fact that materials of this type could become superconducting however, 

inspired research into these compounds. Throughout the Seventies and Eighties groups 

regularly replaced the alkaline metals for rare earths in the Lanthanum cuperate
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compound and it was as a result of these investigations that in 1986 Bednorz and 

Muller(24) discovered La2,xBaxCu04(LBC0). This material, described as a pseudo-tertiary, 

was found to become superconducting at 30 Kelvin, better than previous materials by 

over 7 Kelvin. The results were to become arguably the most important in physics in the 

1980's.

1.3.2: High Tc Superconductors

The discovery of LBCO renewed interest in superconductivity and groups 

immediately started to investigate the possibility of similar substances with even higher 

critical temperatures. Wu et al(44) realised that higher T„ materials may be produced by 

altering the internal pressure generated by a large A-B size difference in an ABCuO 

compound. In January 1987 they announced the discovery of a new perovskite like 

material consisting of Yttrium, Barium, Copper and Oxygen.

YBa2Cu3Ox, as the compound is now known, is an open, layered structure, with 

some similarity to a perovskite in the sense that the Cu ions in the lattice can be 

octahedrally co-ordinated, see figure 1.1. The material is the first true quaternary metallic 

structure and appears ceramic in nature. The metallic behaviour is a surprising discovery. 

More surprising however, is that when cooled to temperatures below 93 Kelvin, YBCO 

becomes superconducting. This discovery has resulted in massive amounts of work being 

published by groups around the world. Thousands of papers are now published every 

year on subjects relating to high Tc superconductivity.

With the discovery of YBCO, it became apparent that a new series of 

superconductors had been discovered. The world record for a critical temperature had 

risen by over 70 kelvin from what it had been only one year before. This led to the hope 

that materials with even higher Tc's may exist. Theory had shown that the CuO layers
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were probably responsible for the superconducting behaviour. This is not fully 

understood, however. Suggestions were made that by obtaining materials with greater 

numbers of elements and still containing CuO layers, new superconductors could be 

found. These ideas led first to the discover of Bismuth*421 and secondly to the discovery 

of the Thallium groups(43).

Both the Bismuth and the Thallium groups are more complicated than the YBCO 

superconductor. This complexity has hindered understanding and has led to difficulties 

in production. The Bismuth group was found to contain at least two distinct 

superconducting phases. The first of these had a Tatro less than that of YBCO the second 

having a Traero of 110 Kelvin. The problem of producing the higher Te phase however 

has slowed the progress of the research on this group.

Thallium also has production problems, not only is it difficult to produce the 

superconducting phase, but thallium is very toxic. Special care must be taken when 

handling this material. The toxic nature has reduced the amount of research that has been 

performed on this group. This is unfortunate since there exists a thallium group with a 

Tc of 128 Kelvin, the highest ever recovered.

1.4 Yttrium Barium Copper Oxide

YBCO bulk material is relatively easy to produce, requiring only an industrial 

oven and the basic starting materials. By a relatively simple cooking experiment, material 

exhibiting the Meissner effect above 77.3 K can be regularly produced. This ease in 

production enabled almost every university's science departments to investigate this 

remarkable material and as a result many properties of YBCO have been investigated. 

Papers on the production of bulk materials(2S), thin films(26), critical currents*271, 

anisotropy*281, flux creep(291 and flux flow*-301, as well as penetration depth*311, surface
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resistance(32), hall effect(33), susceptibility(34) and critical magnetic fields(3S) have all been 

reported. It is these results that will help to validate the new theories of high temperature 

superconductivity.

1.4.1: Mechanisms for High Tc Superconductors

The results obtained from the experiments on of the high temperature 

superconductors has placed doubt on the validity of existing theories. Explaining the 

isotope effect in high temperature superconductors, which is far smaller than expected, 

as well as the type of interaction responsible for superconductivity, are just two of the 

problems theoreticians now face. For high temperature superconductors the question is 

what type of mechanism is responsible?

In conventional superconductors pairs of electrons with opposite spin and 

momentum, form a bound state that leads to a coherent and highly correlated many body 

superconducting state. This may still be true of course, since it must be realised that a 

full examination of BCS theory has not yet been accomplished. This will be a very 

difficult task. Anisotropic properties need to be included, anti-ferromagnetic ordering is 

also present and the possibility of the spin-triplet pairing being responsible for the 

observed behaviour must be investigated before this theory is discounted. This has not 

however stopped theoreticians proposing entirely new mechanisms for high temperature 

superconductors.

An important new theory is the Resonating Valence Bond model proposed by 

Anderson(36). In this theory the mechanism responsible for superconductivity is magnetic 

in origin and not BCS-like. The starting point is a two dimensional Hubbard model and 

this is important since the superconductivity results from the formation of a condensed 

state made up of holons. Bose-Einstein condensation cannot exist in a two dimensional
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system, however, and this implies that the interplanar coupling is important within this 

model. Rice and Wang(37) have proposed a model in which a phonon interaction is 

responsible for the attraction between bosons. Alternatively Schrieffer et al(38) put 

forward a spin bag mechanism. The pairing mechanism here is a result of an attractive 

interaction between two holes that are able to overcome the coulomb interaction. These 

are not the only mechanisms proposed thus far. Models based on plasmons(39),excitons(40), 

and a strong coupling mechanism between oxygen holes and copper sites, have also been 

investigated(41). The correct solution or solutions are at this point still unknown. With 

new theories being proposed regularly it is likely to take years to distinguish the good 

theories from the bad. It is because of this ambiguity in theoretical mechanisms that of 

the new theories only the RVB theory will be investigated or used to interpret the results 

in this thesis. The well established theories will be employed, making it possible for us 

to see the gaps in these theories.

15



1.5 References

1 Kamerlingh Onnes, H. Leiden Comm, 112b, 124c, (1911)

2 Bardeen J., Copper L.N., Schrieffer J.R., Phys Rev 108,1175, (1957)

3 Meissner W., Oschenfeld R., Naturwissen, 21, 787, (1933)

4 Gorter C.J., Casimir H.B.G., Physica, 1, 306, (1934)

5 London F., London H., Proc Roy Soc A149, 71, (1935)

Physica, 2, 341, (1935)

6 Pippard A.B., Proc Roy Soc A216, 547, (1950)

7 Horie Y., Kuroumaru S., Zhao B., Qiu X., Zhang Y., Zhao Y., Xu P., Li L., 

Okubo H., Mase S., Physica C170 (1990) 513

8 Ginzburg V.L., Landau L.D., Zh Eksperim, i Teor, Fiz 20, 1064, (1950)

9 Landau L.D., Phys Z Sowjet U 11, 545, (1937)

10 Abrikosov A.A., Dokl Akad Navk SSSR 86, 489, (1952)

11 Abrikosov A.A., Zh Eksperim, i Teor, Fiz 32, 1442, (1957)

(English Trans : Soviet Phys JEPT, 5, 1174, (1957))

12 Cribier D., Jacrot B., Rao L.M., Farnoux B., Phys Lett 9 (1964) 106

13 Anderson P.W., Phys Rev Lett 9, 309, (1962)

14 Kosterlitz J.M., Thouless D.J., J Phys C: Solid State Phys 6, 1181, (1973)

15 Berezinskii V.L., Sov. Phys. JETP 34 (1972) 610

16 Frohlich J.C., Phys Rev 79, 845, (1950)

17 Gorkov L.P., Zh Eksperim, i Teor, Fiz 36, 1918 and 37, 833 and 1407, (1959) 

English Trans : Soviet Phys Jetp 9, 1364, (1959) and 10, 593 and 998, (1960)

18 Eliashberg G.M., Zh Eksp Teor Fiz 38, 966, 1960 (English Trans : Soviet 

Physics JETP 11, 969, 1960)

19 Carbotte J.C., 1977 Anisotropy Effects in Superconductors (H.W.Weber, New

16



York, Plenum)

20 Josephson B.D., Phys Lett. 1 (1962) 251

21 Tilley D.R., Tilley J. Superfluid and Superconductivity 3 ed. pp 13,23 

(Adam Hilger 1990)

22 Longo J.M., Raccah P.M., J. Solid State Chem 6, 526, (1973)

23 Sleight A.W., Gillson J.L., Bierstedt P.E., Solid State Comms 27, 299, (1975)

24 Bednorz J.G., Muller K.A., Z Phys B64, 189, (1986)

25 McN Alford N., Button T.W., Birchall J.D., Supercond. Sei.

Technol. 3 (1990) 1

26 Takano S., Hayashi N., Okuda S., Hitotsuyanagi H.,

Physica C 162-164 (1989) 1535

27 Ohlsen H., Stolt L., Hudner J., Ostling M., Physica C 153-155 (1988) 772

28 Cava R.J., Batlogg A.B., Nature 332 (1988) 814

29 Zhao B., Kuroumaru S., Horie Y., Yanada E., Aomine T., Qiu X., Zhang Y., 

Zhao Y., Xu P., Li L., Ohkubo H., Mase S., Physica C 176 (1991) 409

30 Artemenko S.N., Gorlova I.G., Latyshev Y.I., Phys Lett A 138 (1989) 428

31 Flueckiger P., Gavilano J.L., Leemann C , Martinoli P., Dam B.,

Stollman G.M., Srivastava P.K., Debely P., Hintermann H.E.,

Physica C 162-164 (1989) 1563

32 Cooke D.W., Gray E.R., Houlton R.J., Javadi H.H.S., Maez M.A.,

Bennett B.L., Rusnak B., Meyer E.A., Arendt P.N., Beery J.G., Brown D.R., 

Garzon F.H., Raistrick I.D., Rollett A.D., Bolmaro B., Elliott N.E., Klein N., 

Muller G., Orbach S., Piel H., Josefowicz J.Y., Rensch D.B., Drabeck L., 

Grüner G., Physica C 162-164 (1989) 1537

33 Hagen S.J., Lobb C.J., Greene R.L., Forrester M.G., Kang J.H.,

17



Phys Rev B 41 (1990) 11630

34 Muller K.H., Physica C 168 (1990) 585

35 Tewksebury S.K., Hornak L.A., Hatamain M., Solid State Elec. 32 (1989) 947

36 Anderson P.W., Mater. Res. Bull. 8 (1973) 153, Science 235 (1987) 1196

37 Rice M.J., Wang Y.R., Phys Rev B 37 (1988) 5893

38 Schrieffer J.R., Wen X.G., Zhang S.C., Phys Rev Lett 60 (1988) 944

39 Varma C.M., Schmitt-Rink S., Abrahams E., Solid State Comm 62 (1987) 681

40 Rivalds J., Phys Rev B 36 (1987) 8869

41 Emergy V., Phys Rev Lett 58 (1987) 2794

42 Chu C.W., Bechtold J., Gao L., Hor P.H., Huang Z.J., Meng R.L., Sun Y.Y., 

Wang Y.Q., Xue Y.Y., Phys Rev Lett 60 (1988) 941

43 Sheng Z.Z., Herman A.M., El Ali A., Almasan C., Estrada J., Datta T., 

Maitson R.J., Phys Rev Lett 60 (1988) 937

44 Wu M.K., Ashburn J.R, Torng C.J., Hor P.H., Meng R.L., Gao L.,

Huang Z.J., Wang Y.Q., Chu C.W., Phys Rev Lett 58, 908, (1987)

45 Quinn D.J., Ittner W.B., J. Appl. Phys. 33 (1962) 748

46 Gorter C.J., Phys. Letters, 1 (1962) 69

47 Kadin A.M., Epstein K., Goldman A.M., Phys Rev B 27 (1983) 6691

18



Chapter 2: REVIEW OF YBCO THIN FILMS 

2.1: Introduction

Due to the large amount of papers that have been published over the seven years 

since the first discovery of YBCO, the task of carrying out a thorough analysis of the 

literature is onerous. In this chapter I have attempted to include as many papers as 

possible that have relevance to this thesis. This chapter is divided into two sections. The 

first section is concerned with the production of the thin films, and the second reviews 

the relevant electrical aspects of the thin films.

The first section reviews the deposition of thin films. This is a very important 

part of high temperature superconducting (HTS) research. Film quality and structural 

properties, for example, must be well understood if there is to be a cost effective method 

of producing devices from the new HTS materials. The reproducible deposition of 

YBCO thin films onto a variety of substrates will decide the extent that YBCO will be 

viable for use. Due to the importance of deposition and because of the complexities 

surrounding the techniques it is necessary to investigate the difficulties and successes 

encountered by other groups if high quality YBCO thin films are to be produced. The 

most important parameters are the temperature of the substrate during deposition, the gas 

pressure and content, and the composition of the target material. Further, the position of 

the substrate in the growth chamber and the substrate material are also important in film 

production. Each of these aspects will be reviewed below.

The possibility of superconducting devices operating at liquid nitrogen 

temperatures has inspired thousands of papers on parameters important to device 

fabrication. The second section reviews some of the more relevant (to this thesis) areas 

of this research. The behaviour of the transport properties will help in the understanding 

of high Tc materials.
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2.2: Production of Thin Films 

2.2.1: Introduction

Both thin films and bulk samples of YBCO prepared by different techniques are 

found to give similar superconducting transition temperatures1̂'25. The critical current 

densities of the films and bulk however vary by orders of magnitude(1,3). The differences 

in the J0 are explained by differences in microstructure, in particular grain boundaries, 

defect density and crystallographic structure. A typical critical current, at 77 Kelvin, of 

bulk YBCO is 103 A cm"2, compared with 4xl06 A cm"2 for a thin film. It is this large 

difference in current carrying capabilities that prompted the view that devices dependent 

on the ability to carry large current densities would have to be based on thin films. The 

production of high quality superconducting thin films emerged therefore, as one of the 

most active areas of research into YBCO.

2.2.2: Substrate Materials

The production of thin films raised several questions that required attention before 

any success could be achieved. The choice of substrate material was one such question. 

The substrates were required to have large surface areas, be single crystal in nature and 

have a lattice constant very similar to that of YBCO. Single crystals were preferred since 

they offer the possibility of producing epitaxial thin films.

Results have proved that the superconducting phase of YBCO is orthorhombic. 

The room temperature lattice constants of this phase being a=3.825 A, b=3.887 A and 

c=11.68 A(4)- It was thus necessary to find single crystals with lattice constants similar 

to these values. It was due to these restrictions that the first substrate to be used was 

SrTi03. Besides being available in highly polished single crystals with typical dimensions 

of 10x10x1 mm this substrate also has an a-axis lattice value of 3.905 A- Comparing this
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with YBCO it becomes clear that the two materials have a lattice mismatch in the a-axis

of about 2 %. If the c-axis value of YBCO is compared with the a-axis value of SrTi03 

it becomes clear that 3aSrTiQ3 = c^ q as a lattice mismatch of around 1/2 %. This is 

significant in so far as epitaxial films can only be deposited when the lattice mismatch 

is less than 1 %. This is therefore a prime candidate for epitaxial thin film deposition, 

and has been used many times for this purpose. SrTi03 does have one drawback 

however, and this is the large permittivity values, especially around 77 Kelvin. The 

permittivity of SrTi03 at 77 K is around 1000®. This is not a concern in the d.c. 

measurements. The microwave experiments however incur substantial losses because of 

the substrate effect and this will be particularly important when designing devices. To 

overcome this problem other substrates have been investigated. The most prominent 

being MgO. MgO has a lattice constant of 4.212 A, this results in a 10 % mismatch in 

the a and b axis of YBCO, but only a 8 % mismatch with the c-axis. Thus while the 

mismatch between axis' is larger than hoped the permittivity of only 9.72 at 77 K (using 

a 4 GHz signal) makes this a useful substrate for device application®.

Recent attempts to deposit YBCO onto other substrates with device possibilities 

have given some very encouraging results. It is highly probable that one of the first uses 

of HTS materials will be in millimetre and microwave devices. It is therefore essential 

to use substrates with low permittivity. MgO does fit this criterion, although the lattice 

mismatch with YBCO is poor. Alternatively LaGa03, NdGa03 and LaA103 offer good 

lattice matches of 0.1, 0.27® and 0.92® % respectively. The substrates also have low 

permittivities, namely LaA103 = 27 at 1kHz®, 293 K, LaGa03 = 23.1 at 4 GHz, 77 K(6), 

NdGa03 = 26 at 1kHz®. It is likely that future work will be performed using these 

substrates(6,7l

21



2.2.3: Deposition Techniques

The methods used to produce the thin films of YBCO vary widely. They include 

thermal® and electron beam evaporation®, laser ablation(10), Rf*115 and DC sputtering^25, 

metal oxide chemical vapour deposition(13), plasma spraying(14) and MBE(1S). Publications 

have shown that each of these methods has been successful in producing high Tc 

superconducting thin films.

Each of these methods involves very complicated growth mechanisms. The 

complexity of the growth procedure originally made it very difficult to reproduce high 

quality thin films. Results quoted by a group as reproducible were often not producing 

thin films of equal quality when deposited in a different system using the same 

deposition conditions. This problem was particularly true in sputtering methods. Many 

groups report on the deposition of thin films by conventional on axis sputtering(16,17). 

Experiments carried out in this work, like several others(18,19), found that back sputtering 

was so severe that it was not possible to produce quality thin films using on axis 

sputtering.

2.2.4: R.F. Sputter Deposition

R.F. sputter deposition is an excellent method for thin film production, offering 

large area deposition and reproducibility. Its reproducible nature makes it particularly 

attractive for large scale production. This method like all those mentioned was not 

without problems. Growth parameters capable of producing reproducible high quality 

thin films have been difficult to determine. Changes in gas pressures(17), substrate 

temperatures(20) and gas content^85 have all been shown to influence deposition rates and 

quality of the thin films. Back sputtering has caused many problems^215. Deposition 

temperature has also been shown to influence the orientation of the deposited YBCO(205.
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Each of these factors need to be addressed and understood if devices are going 

to be manufactured on a large scale basis.

2.2.4.1: Gas pressure and Back Sputtering

From the work carried out on the deposition of thin films it has become clear that 

the gas pressure is very important in the deposition of high quality thin films. When 

using low pressure deposition severe back sputtering often occurs. This effect is probably 

due to the high energy O' particles sputtering the lighter elements from the newly 

deposited thin film. Back sputtering can cause composition changes in the films(21). The 

result is a poor superconductor and poor reproducibility, and is often accompanied by 

a rapid deterioration of the final film due to moisture(22). Various methods have been 

employed in an attempt to overcome this problem. Non-stoichiometric targets have been 

used to overcome the selective back sputtering effect(23,24). Others have used high 

pressure deposition techniques to overcome this problem(25l  The theory being, that at 

high pressures the oxygen ions undergo frequent collisions that result in a reduction in 

the energy of the O' particles. A reduction in the energy of the particles leads to a 

reduction in the back sputtering. This approach has a second advantage in that high 

oxygen pressures can be used. High oxygen pressures are now thought to be essential 

for in situ growth.

In experiments using a 50:50 ratio of argon to oxygen have been reported for 

pressures varying from 4-120 Pascals(17). The target material was stoichiometric YBCO 

and, to ensure no other factors could be responsible for the observations, both the 

substrate and the deposition temperature were held constant. The results showed that the 

films deposited at the lower pressures had large c-axis lattice constants (11.93 A). This 

was thought to be due to crystal dilation. The films were found to have poor
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superconducting qualities. Those films deposited at 120 Pascals were found to have a c - 

axis lattice parameter of 11.70 A- This is almost equal to the bulk value of 11.68 A- The 

films had good superconducting qualities, thus suggesting that a higher sputtering 

pressure is desirable. These results agree with work carried out by others using RF 

sputtering(84,85).

2.2.4.2: Substrate Temperature During Deposition

Low temperature depositions have been used successfully to produce 

superconducting thin films. It was soon realised however, that the high temperature 

anneal required to convert the film from amorphous to a poly-crystalline or epitaxial 

state often led to film/substrate interactions that sometimes damaged the thin films. This 

method also had the disadvantage of requiring an oven complete with its own oxygen 

supply. To overcome this problem and to produce in situ thin films, work on high 

temperature deposition began. Results of this research soon showed that the use of the 

high temperature during deposition produced films that following a low temperature 

anneal were often superconducting.

The use of high temperature deposition is not limited to the R.F. sputtered films. 

For example, films deposited by chemical vapour deposition(26), co-evaporation(8), Laser 

Ablation075 have all used high substrate temperatures during deposition to improve the 

quality of the thin films.

2.2.4.2.1: High Temperature Deposition

The high temperature deposition (680 - 780 °C) ensures that the tetragonal YBCO 

phase forms during the growth(4). The low temperature anneal allows the oxygen to take 

up the correct occupancy of the high Tc orthorhombic phase. The ability to produce thin
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films without the need for the high temperature anneal is desirable, particularly in multi 

layer devices. Furthermore by using a heated substrate it is possible to produce the 

finished thin films within the chamber*283.

2.2.4.3: Substrate Temperature and Thin Film Orientation

During the investigation of the heated substrate deposition, it became clear that 

the temperature at which the YBCO was deposited affected the final orientation. Several 

groups(20,293report that on (100) SrTi03 substrates low deposition temperatures, namely 

those below 730 °C, result in the deposition of a-axis YBCO. Films deposited above 

750°C however have a c-axis orientation with the CuO planes parallel to the substrate. 

Further investigation of this phenomenon has shown that films deposited between 730 - 

750 °C are a mixed phase of a and c - axis orientation. The degree of mixed orientation 

is dependent on the temperature. The films deposited near, but slightly below, 750°C 

generally contain more c- axis than a axis. For films deposited at temperatures just above 

730°C the films are mostly a-axis. This phenomenon is not limited to films deposited on 

(100) SrTiOj. Films deposited on SrTiOj (110) are also temperature dependent. Films 

deposited at lower temperatures tend to be (110) orientated, whereas, films deposited at 

temperatures greater than 800°C are generally (013) orientated*333.

The most likely reason for the change from a to c - axis of the YBCO films with 

temperature is the change in lattice constants with temperature, as mentioned above. At 

700°C YBCO is tetragonal in orientation. The a axis lattice value of YBCO at 700°C is 

3.896 A rising linearly to 3.905 A at 900 °C. The c axis value at 700 °C is 11.88 A, 

rising almost linearly to 11.94 A at 818 °C*273. Using these values it is possible to 

calculate the lattice values of the a and c axis at 760 °C. YBCO deposited at 760 °C on 

SrTiOj (100) is reported to be c-axis, whereas YBCO deposited at 700 °C on a similar
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substrate is a axis oriented. Thus using the above values to calculate a and c at 760 °C 

gives a=3.899 A and c=11.91 A- It is immediately clear that the changes in the values 

of a and c with temperature are very small. It is these small changes however, coupled 

with the equally small change in the a axis value of the SrTi03 that results in the shift 

from one orientation to the other. This can be explained using the following simplified 

example. Using the temperature dependence of YBCO given above it is possible to 

calculate a range of values for a and c axis for temperatures in the region 700-800 °C. 

If SrTi03 also under goes a similar linear expansion it is again possible to calculate a 

range of values for the specified temperature region. These values can then be used to 

calculate the lattice mismatch of YBCO with SrTi03. Clearly, at lower temperatures the 

c-axis has a closer match than the a-axis. This results in YBCO growing with the c-axis 

normal to the substrate and the a-axis perpendicular to the substrate. At higher 

temperatures, however, the situation is reversed, resulting in c-axis growth perpendicular 

to the substrate as observed in experiment. In the mid range of the temperature region 

the lattice mismatch is similar for both orientations and there is therefore an equal 

opportunity for both to be deposited, resulting in the mixed phase. For the MgO (100) 

substrates the lattice mismatch between the YBCO and the MgO substrate is around 

10%. This ensures that although the substrate lattice value will change with temperature 

the c - axis phase of the YBCO perpendicular to the substrate is the most prevalent 

orientation.

The most important point is that it is possible to choose, prior to deposition, the 

orientation of the YBCO thin films. This is particularly interesting to those studying the 

anisotropic nature of YBCO.
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2.2.4.4: Off Axis Sputter Deposition

Even with the high temperatures during deposition and the high deposition 

pressure, problems with uniformity and film quality(21) continued to arise. To overcome 

this, groups mounted the substrates at 90° to the target. The change from planar to off 

axis sputtering resulted in high quality, reproducible thin films being produced and this 

has been reported on several occasions(30,31). Films produced this way are very similar to 

those produced by a successful post annealing method. As a rule thin films deposited in 

situ are superior to post annealed films in terms of epitaxy, surface smoothness and the 

reduction of substrate inter diffusion. A comprehensive study has shown that not only 

Tco is dependent on the growth conditions, but other parameters such as normal 

resistance, superconducting surface resistance are also growth dependent(21).

Using this off axis arrangement Inameti et al(27) studied the effect of substrate 

position with respect to the target. The target was stoichiometric in nature, since it was 

argued that this would be the most commonly available composition. It is also the easiest 

to produce. Thin films were deposited without altering any of the growth parameters, 

except substrate position. The results showed that although all the films were grown at 

90 degrees to the target, films deposited on substrates inside the plasma were of a poor 

quality and often had a low Tro. It was initially expected that the quality was due to 

damage caused by ion bombardment. Post anneal treatment did not, however, correct the 

damage, as it does in low temperature deposited films. It was assumed therefore that the 

film was not pure YBCO but contained other compounds, which acted as impurities. On 

increasing the distance of the substrate from the target film quality improved, though 

growth rate decreased. Results showed that films deposited on the edge of the plasma 

produced the higher quality superconducting thin films. These films required a low 

temperature anneal at 400°C in pure oxygen to produce the superconducting phase. The
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position of the substrate is therefore very important. This method was used to successful 

produce many high quality thin films.

2.2.4.S: Growth Mechanisms

It has been shown that by depositing at substrate temperatures between 700 - 

800°C the tetragonal phase YBCO is produced. By cooling films produced by this 

method in an oxygen atmosphere, however, the films were found to be the orthorhombic 

superconducting phase(4). Thus, by cooling the thin films in oxygen and annealing at 

around 400°C it was possible for the YBCO thin film to absorb oxygen. This does not 

however give us clues as to the deposition mechanism. The films were investigated using 

Scanning Transmission Microscopy in order to determine possible mechanisms. Some 

results have revealed that YBCO sputtered on MgO (100) and SrTiO3(100) show an 

orientated surface with spiral growth on each grain(J2). The effect of this growth method 

is not fully understood. Growth of this nature may result in many defects. The defects 

may cause flux pinning(32), hence the increase in current carrying capabilities of the thin 

films over single crystals. The growth mechanism is reported to be not one but three 

different processes. Measurements taken using STM of YBCO sputtered on MgO (100) 

and SrTiO3(100) show that the clusters grow as spirals around screw dislocations^15. The 

films grown on SrTiO3(110) substrates have an entirely different surface morphology 

thought to be a result not of spiral growth but ridge growth(21l

The results suggest that the growth mechanism of the two orientations are 

different. Nucleation and island growth occurs on the MgO (100) and SrTiO3(100) 

substrates and lateral epitaxial growth on the SrTiO3(110) substrates, even though the 

films were deposited under the same conditions. In the experiments reported the MgO 

(100) and the SrTiO3(110) substrates experienced the same growth conditions. Therefore,
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the only variables concerned are substrate material and orientation. Furthermore, since 

"spiral growth" has been reported on both SrTiO3(100) and MgO (100) but not on 

SrTiO3(110) then it suggests that the growth mechanism is most certainly dependent on 

substrate orientation.

2.3: Film Characterisation 

2.3.1: Introduction

Measurements on the electrical properties of the new high Tc superconductors are 

of physical and technical interest. Kinetic inductance measurements of superconducting 

thin films, for example, are used to give details of the superelectron concentration and 

the dissipation associated with vortex motion(34,35). Experiments on critical current(36,37), 

critical magnetic fields(38), Q factor^9,405 and anisotropic behaviour(41,42) are of technical 

interest since it will be these parameters that decide device limitations. On the other 

hand, temperature dependence of the superconductors can give clues to the transport 

mechanism responsible. Current-Voltage measurements^3,44,455, B field(46,47), specific heat 

capacity(48), muon spin(49), d.c. resistivity(50,51), a.c. susceptibility(52,53,54), Hall effect(55,56), 

paraconductivity(57,58), millimetre(59) and microwave (60,61,62) measurements and isotope 

experiments^35 have all been performed so as to understand and categorise the physical 

properties of the new high temperature superconducting compounds.

2.3.2: Resistance Temperature Measurements

The most common experiment is likely to be that of temperature dependence of 

the resistance. The critical temperature and film resistivity are the parameters of most 

interest. The simple experiment requires only a constant current source and a volt-meter 

as well as the cooling unit. Results from these experiments can be used to give a fairly
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accurate assessment of the quality of material. With closer analysis they also yield 

information concerning the coherence length and sheet thickness of the samples. This 

experiment was first carried out on YBCO based compounds in 1987 by Wu et al(64). 

They discovered that around 93 Kelvin the resistance of the sample fell sharply to zero. 

They were the first group in the world to produce a superconductor with a critical 

temperature greater than that of liquid nitrogen. This result was soon verified by other 

groups including Dubson et al(43) who realised that during the transition to 

superconductivity the bulk material passed through a region that was almost but not quite 

superconducting. Closer inspection of the transition region showed that the film actually 

became superconducting via an intermediate non ohmic region.

2.3.3: Non Ohmic Resistance Region

When bulk or thin films of YBCO are cooled through the transition temperature 

it becomes clear that the superconducting state is sometimes reached after passing 

through an intermediate state. The intermediate state was defined by Dubson et al(43) as 

the region between the zero dissipation temperature Tra, namely the temperature at which 

the film is superconducting, and an upper temperature described as the zero resistance 

temperature Tci. The zero resistance temperature is the temperature below which the 

electrical resistance appears to be zero. Closer inspection of this region just below Td 

reveals that the film is not superconducting since it does not have a critical current. The 

application of a current results in dissipation. The behaviour is non ohmic and can be 

summarised by V = kla, where a  is temperature dependent, becoming very large as the 

temperature reaches Tcz, and k is a constant. Below Tcz the HTS is in the 

superconducting state possessing a critical current and exhibiting the Meissner effect etc. 

The nature of the transition in the intermediate region is strongly dependent on weak
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external magnetic fields. The discovery of this behaviour is of particular interest in 

describing the new superconductors.

The transition to the zero dissipation region in zero applied magnetic field takes 

place via an intermediate stage. It is thought that the intermediate stage may be due to 

vortices that flow throughout the sample. This implies that, since there is no magnetic 

field present, the mechanism responsible must be different to that normally expected for 

type II superconductors. Existing theory favours work developed by Kosterlitz and 

Thouless(65) and separately by Berezinskii(66) in which they examined excitations in thin 

film superconductors, Josephson-coupled superconducting arrays and superfluid helium 

films. When applied to HTS materials their work predicts the ability for vortex anti

vortex pairs to form at lattice defect points throughout the sample. The theory also 

predicts that these vortices, once in motion, will cause non-ohmic behaviour to be 

observed within the transition region. This vortex behaviour is different to that predicted 

by Anderson(67) in which an external magnetic field is required to produce the vortices. 

This peculiar current voltage behaviour has been observed on several occasions^44,45). 

These results imply that some the YBCO thin films are similar to two dimensional 

superconductors(68). If this is the correct interpretation of the results, then the temperature 

at which dissipation stops, is the Kosterlitz-Thouless, Berezinskii temperature, Tktb. 

Below this temperature the vortex-antivortex pair are bound within the crystal. Thus, 

only for temperatures below TKXB will the idea of critical current and critical magnetic 

field have any real significance.

The behaviour of the electrical transport below Tc is also very interesting. An 

area of particular relevance to this thesis is the a.c. nature of the YBCO thin films within 

the superconducting region.

Normal metals are characterised by their surface resistance, which for films
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thicker than the skin depth is simply the metal's bulk resistivity divided by the skin 

depth. In superconductors the resistive losses are much lower because at temperatures 

well below the transition temperature the vast majority of the electrons are in the paired 

collisionless state. However, for any non zero temperature, a small fraction of the 

electron population is not paired. These normal electrons scatter and dissipate energy in 

the presence of an electric field just as they do in normal metals. The paired electrons, 

although collisionless, do have inertia and a voltage is required to maintain their 

oscillating flow. The paired electron motion is out of phase with this voltage and does 

not dissipate energy, but rather presents a surface inductance0705.

The surface inductance of YBCO material has been investigated using an 

induction coil technique071,725. Although the perfect diamagnetic behaviour of low 

temperature superconductors, namely the complete Meissner effect, has been well 

understood for many years0735, the diamagnetic properties of the new materials are not 

as well understood. The behaviour of the susceptibility and relative permittivity are 

generally ignored when considering the a.c. aspects of superconductors. However, these 

properties may be of importance in high Tc superconductors. For example, the vortex has 

been considered to behave similar to a polarisable material resulting in the 

superconductor having an effective permittivity068,695. Secondly, the poor electrical 

properties also imply that the displacement current may be detectable0745. The behaviour 

of the vortices is most dominant around the critical temperature. Around Tc vortices can 

move throughout the sample, producing a measurable dissipation. The dissipation not 

only affects the resistive nature of the sample, but due to the dielectric nature of the 

vortices, the reactance of the superconductor may also be altered. The reactive nature of 

superconductors is of particular interest since theory has shown that reactance is 

normally due only to the kinetic inductance of the superelectrons0715, which is then used
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to calculate the penetration depth. Thus, it is quite possible that in YBCO thin films the 

observed reactance is a combination of kinetic inductance and vortex polarisation. It is 

worth-while therefore to investigate the penetration depth to determine if it deviates from 

that predicted by conventional kinetic inductance theory.

2.3.4: Penetration Depth

The penetration depth originally derived by the London s a3) is a measure of the 

super electron concentration. Its temperature dependence is of major interest since it 

reflects the change in superelectron density as the temperature approaches the critical 

temperature, Tc. The methods used to calculate the penetration depth vary to include 

muon spin resonance(49), microwave(70) or induction coil techniques(51). The microwave 

technique uses a cavity injected with microwaves to determine the dissipation due to the 

surface impedance. The imaginary component of the surface impedance is directly 

proportional to the penetration depth.

The induction coil technique consists of two coils placed either side of the 

superconductor*7̂ . One coil, the 'primary' coil, carries a current which induces a voltage 

to Occur in the second 'pick up' coil. As the sample passes through the critical 

temperature region the YBCO film produces a flow of current to compensate for the 

existence of the magnetic field produced by the primary coil, namely, the Meissner 

effect. By recording the change in the pick up coil it is possible to obtain information 

about the nature of the film, such as the penetration depth. The third technique 

mentioned is that of muon spin resonance. In this experiment, muons are injected into 

the superconducting sample where they decay. By application of a magnetic field it is 

possible to calculate a term known as the muon depolarisation rate, which is proportional 

to the field distribution inside the sample. As the sample becomes superconducting the
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partial expulsion of the magnetic field due to the Meissner effect results in an increase 

in the spin-relaxation rate. This parameter can then be used to calculate the penetration 

depth X.

Results show that for T=0 K the magnitude of the penetration depth varies 

depending on the technique used. Early results of measurements on the penetration depth 

reported that it ranged from 21 A to 4500 A(76)- More recent results show that it is 

possible to distinguish between the penetration depth of the ab plane with that of the c- 

axis. Due to the anisotropic nature of the materials, these values vary considerably. 

Values of Xab range from 950 A to 1500 A compared with X0 of 4500 A to 8000 A(76). 

The variation of penetration depth with temperature has been investigated and compared 

to existing theory(34,38,42,51). Both London and BCS theory, which are very successful at 

describing low temperature superconductors, have been used to describe the temperature 

dependence. For temperatures not too close to Tc, BCS theory and London theory, with 

X(0)=0.15pm, give a good fit to X(T) in films, ceramics and single crystals with the 

sharpest transitions1755. Results appear to show that neither theory is adequate in 

explaining the behaviour of the new materials near to Tc. A reason for the deviation of 

the measured penetration depth from that predicted by London and BCS theory may be 

the two dimensional nature of the films. KTB theory predicts that the penetration depth 

will tend to infinity with the onset of flux flow, namely the production and movement 

of vortices within the transition region. This idea is supported by work on YBCO single 

crystals. The single crystal have very few defects resulting in very few vortices. Single 

crystals will therefore appear to be similar in behaviour to traditional superconductors, 

the results of penetration depth experiments tend to agree with conventional pairing 

theory(75). Work has shown that for thin films of YBCO with crystal defects, current 

carrying capabilities are greater than the results obtained from single crystals^865. In other
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words the defects actually help pin the vortices, resulting in a film with increased current 

carrying capabilities.

Besides the low frequency induction coil, microwave and muon spin techniques, 

experiments have also been conducted within the radio frequency range, namely between 

1-20 MHz(51,57,76,77). The results from these experiments are particularly interesting since 

they give values of X far larger than the values mentioned previously. The magnitude of 

the penetration depth for these experiments was between 15 and 100 pm, which is 

approximately 100 times larger than expected. Once again a good fit between experiment 

and BCS and London theories occurs for these experiments. Why are the values of X so 

large? There are suggestions0785 that the high value is due to the penetration of the ac 

signal into the crystals of YBCO. The large value of the penetration depth then 

represents the average of the maximum penetration depth and the maximum crystal size. 

Thus the large value of X is a result of the penetration of the RF field into the grains. 

In this analysis the film is assumed to be an array of two dimensional Josephson 

junctions and an investigation of this idea demonstrates that in bulk YBCO the observed 

penetration depth may be far larger than expected(83).

The two dimensional behaviour of the high temperature superconductors suggests 

that there is only weak coupling between the Cu02 layers. This is because of the very 

short coherence length, which may be smaller than the distance between the Cu02 layers. 

As mentioned, this allows the production of vortex-antivortex pairs to be a favourable 

energy state for the new high temperature superconductors. These vortices, once excited 

by thermal fluctuations will travel perpendicular to the current because of the Lorentz 

force. The reactive nature will appear as capacitive due to the effective dielectric nature 

the vortices. The KTB theory suggests that this will be observed as a jump in X‘2(T) as 

the temperature rises above Tktb. This will result in a shift from the temperature
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dependence predicted by London, BCS, GL etc. Results suggest that this behaviour 

seems to have occurred(34l  The theory also suggests that it is possible to calculate the 

thickness of the 2 dimensional superconducting layer, which is expected to be of the 

order of the Cu02 spacing, namely 2-5 A- Results thus far have quoted values of s as 

sometimes far larger, varying from 6-500 A(34,57), the larger value of s, s=500 A being 

equal to the film thickness.

Gasparov points out that a more successful method of calculating the sheet 

thickness, the coherence length, and the critical temperature may be found by examining 

the fluctuation paraconductivity. The paraconductivity is calculated from the four probe 

d.c. resistivity measurements, similar to those performed by Wu described earlier. The 

behaviour is predicted more accurately by the Lawrence and Doniach 2D-3D form of 

paraconductivity rather than the Aslamazov and Larkin's (AL) theory of two dimensional 

paraconductivity. The AL theory is based on the measurable paraconductivity that arises 

from the nucleation and decay of superconducting electron-hole pairs. This theory breaks 

down with the increase in coherence length around the critical temperature. The LD 

theory accounts for this increase and results show that values of s, Tc and £ calculated 

from experiments using this theory match very closely the values quoted from work 

performed on YBCO single crystals. Results of these investigations show clearly that the 

coherence length is very small compared with penetration depth, suggesting that the films 

are strongly type II in nature.

2.3.5: Anisotropy

2.35.1: Superconducting Anisotropy

The new high temperature superconductors are all anisotropic. This phenomenon 

first identified in YBCO by Cava et al(41) is very important for physical and application
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studies. The very strong anisotropy of the penetration depth for example, is very 

important to models derived to explain high Tc superconductivity. The anisotropic 

behaviour is evident in other characteristics of YBCO besides penetration depth. The 

critical current density, for example, is orientation dependent. Results suggest that critical 

current flow within the ab plane exceeds that in the c-axis. The anisotropy can be 

observed in both the normal and superconducting phases. In the superconducting phase 

we have seen that it not only causes differences in critical current values but also 

influences the penetration depth(76). The anisotropy may also explain the very small 

coherence lengths between the CuO planes. It is thought that it may be because of these 

short coherence lengths that the two dimensional behaviour occurs within these samples. 

The anisotropy is observed in the normal phase by measuring the resistivity for the 

various crystal orientations. Anderson argues that it may be here that the clues to the 

current transport mechanism can be found.

2.3.5.2: Normal Behaviour and Carrier Type

In experiments carried out on single crystals of YBCO, the ratio of resistivity, 

between current transport in the c-axis and that in the ab plane was 30 at room 

temperature, rising to 80 around 100 K(80). Values larger than these have been quoted by 

Hagen et al who estimates the anisotropy ratio to be between 30 and 300(81). In the 

BSCCO superconductors the anisotropic ratio is even higher, in the order of 

thousands(82).

Anderson points out that from the resonating valence bond theory terms 

representing the 'normal' electrical behaviour of YBCO thin films are very simple and 

results show that the predictions are confirmed for many films(79).
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Many groups have reported different methods of thin film production. Thus it has 

become clear from this work that, although the exact growth mechanism is not fully 

understood, the reproduction of high quality thin films is possible. Using rf sputtering 

it is possible to deposit thin films on a regular, reproducible basis. Deposition in the off 

axis mode, with heated substrates and high sputtering gas pressures, has proved to be a 

most reliable method of producing the tetragonal phase of YBCO. This is then converted 

to the superconducting phase by a low temperature anneal in oxygen. The orientation of 

the YBCO thin films is dependent not only on the substrate material but also on 

substrate orientation and the temperature at which deposition takes place. The orientation 

of the films is important because of the anisotropic nature of YBCO.

The anisotropic nature of YBCO is apparent from the resistivity measurements 

and the penetration depth results. However precise values of the penetration depths for 

the various orientations are still unresolved. The anisotropy may explain the apparent two 

dimensional behaviour of YBCO thin films although other theories based on different 

mechanisms have been used to explain this behaviour.

On the theoretical side, the BCS and London theories appear to explain some of 

the behaviour of this new class of materials, and therefore may still be valid, requiring 

only modification. Anderson, among others, has proposed a new transport mechanism 

based on a resonating valence bond to explain the behaviour of the superconductors. 

Results again appear to agree to a certain extent with his predictions.

It is worth pointing out however, that others have speculated that the transition 

and all the behaviour observed and described above is due to a percolation transition, an 

entirely different mechanism to those mentioned. Using this theory, it is possible to 

predict the behaviour described above, namely the non ohmic behaviour in terms of

2.4: Summary
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grains connected by Josephson junctions. The question of who is right or wrong, will 

not be made here, though it is worth.bearing in mind that other theories do exist.

Within this thesis, I have attempted to investigate some points raised here, the 

behaviour of the penetration depth, the flux flow region, paraconductivity, 2D/3D 

crossover, film anisotropy, the Tktb transition etc. To do this it is necessary to investigate 

more thoroughly the theoretical behaviour of these remarkable materials. This will take 

place in the next chapter.
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Chapter 3: THEORY 

3.1: Introduction

From chapter one and two it becomes apparent that the 'old' theories of 

superconductivity fail to predict some of the behaviour of high temperature 

superconductors. Results from experiments have revealed some remarkable behaviour. 

This has lead to many new ideas being put forward to explain the new materials. This 

chapter is a review of some of these theories and ideas. This first section of this chapter 

reviews the well established theories, namely the theories developed after the discovery 

of the Meissner effect. The work under review will include the theories of Gorter 

Casimir®, London(4) and Ginzburg-Landau(S). Also, Abrikosov's(6) work on type II 

superconductors including the theory and magnitude of quantised magnetic flux. The 

BCS(2) theory will be reviewed particularly its reformulisation by Gorkov(24). Each of 

these theories are important for defining parameters such as coherence length, penetration 

depth, critical temperature and critical current etc.

The second section is on more recent ideas concerning flux flow. This is in turn 

split into two subsections. The first section is a review of traditional flux flow theory as 

developed by Anderson075. The second of these is the theories relating to the possibility 

of 2 dimensional behaviour and its implications on flux production and behaviour. This 

section thus includes the Kosterlitz ThouIess(8) and Berezinskii(9) (KTB) theories. These 

will be important in explaining the intermediate region observed in certain thin films. 

The production of spontaneous vortex and anti-vortex pairs will be reviewed. The 

dielectric nature predicted by this theory will be reviewed due to its possible effect on 

the temperature dependence of the penetration depth. The temperature dependence of the 

resistance within the intermediate region will also be reviewed in terms of the KTB 

theories.
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The possibility of 2D behaviour also leads to several other interesting theories. 

The first of these is paraconductivity. The theory is of interest since it is describes the 

behaviour of the normal phase of the superconductor, namely temperatures greater than 

the critical temperature. The work under review, namely the Lawrence-Doniach(26) 2 

dimensional - 3 dimensional theory and Aslamazov Larkin(2S) 2 dimensional theory make 

it is possible to determine fundamental parameters such as coherence length and 

superconducting sheet thickness.

Also included in this section is the new theories of superconductivity namely 

Anderson's(17) Resonating Valence Bond theory and its predictions for the normal 

resistive behaviour. These predictions have been investigated using single crystals 

elsewhere and have been found to give good agreement with theory. There will also be 

a review of the temperature dependence of the penetration depth from the RVB theory 

as developed by Rice-Wang's work.

In addition to these theories there will also be work performed by Ambegaokar 

and Baratoff*41) (AB). This work interprets the superconducting thin films as an array of 

grains connected by Josephson junctions(10). The derivation of the penetration depth is 

of particular importance since it predicts very large penetration depths to occur in certain 

circumstances and large values of penetration depth have been reported in the literature. 

The temperature dependence of the critical current as predicted by AB is also reviewed. 

There will also be a short section on 2D-3D behaviour and its possible effects on the 

resistive and reactive nature of YBCO thin films.

3.1.1: Experimental Background Introduction

The third section of the theoretical section is the interpretation of the results 

obtain from experiments. Throughout this thesis the electrical properties of YBCO thin
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films have been investigated using an electrical contact technique. The transport 

measurements involve the use of a high frequency (13MHz) a.c. signal. This allows for 

the investigation of, not only the resistive properties of the thin film, but also the reactive 

properties. This is of particular interest since it is well known that when any ac field is 

applied to a superconductor, the material supports a potential difference. The potential 

difference that occurs is due to the inertia of the superelectrons. In 2D superconductors 

(or 3D films in a magnetic field), at temperatures near to the transition temperature, any 

electric field that occurs will be complicated by the flux flow phenomenon. Furthermore 

the insulating/semiconductor nature of electrons travelling perpendicular to the c-axis 

may cause a large displaced electric field. Although the displaced electric field is 

normally so small that it can be neglected, it may be large enough to have a measurable 

effect in the transition region(20). It is necessary therefore to analyze possible theoretical 

models that consider the properties mentioned.

The theory of a current travelling from a normal conductor into a 

superconducting thin film and then back into a normal conductor was first investigated 

by London(44). In the analysis given below this model is extended to include a 

displacement term that can be used to represent the anisotropic nature of the films. The 

analysis given below has been applied to a system operating with frequencies ranging 

from 0.1-13 MHz, a range that has not been investigated by electrical contact methods. 

It may be of interest to the reader to compare the results obtained from these 

experiments with those obtained from the non-contact techniques, which are usually 

favoured when carrying out this type of investigation. To do this it is necessary to 

review the current theory of ac effects within the GHz regions. In these experiments the 

surface resistance and inductance are measured using a resonant cavity technique and do 

not involve an electrical contact(21). It is hoped that the results obtained here will
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complement the results obtained by others using the microwave technique mentioned.

The final section in the theoretical chapter concerns the structural analysis of 

YBCO thin films. Using X-ray diffraction and Scanning Electron Microscopy (SEM) it 

is possible to investigate the structure of YBCO thin films. This information is of 

importance for several reasons. Firstly the HTS materials are anisotropic. Furthermore, 

some existing theories are based on the films being granular as opposed to epitaxial etc. 

It is important therefore to obtain, if possible, thorough structural properties of the thin 

films.

3.2: Theory 

3.2.1: Meissner Effect

Initially, superconductivity was thought to exist because of a material acquiring 

infinite conductivity®. Infinite conductivity would allow a material to pass a current 

without having an E field present. This idea, however, leads to problems with the energy 

states that the electrons occupy and, before 1933, theoreticians struggled with the idea 

of infinite conductivity. The theory until this period assumed that from an analysis of 

Maxwell's theories dB/dt = 0 and so B would be constant with time. This implies that 

any magnetic flux present during transition from the normal to the superconducting state 

would be 'frozen in' to the superconductor material. In other words the final state of the 

superconductor would be dependent on the initial state of the system.

In 1933 Meissner and Ochsenfeld(22) proved that the magnetic field was not 

frozen in but was instead expelled from the superconductor, i.e., the final state of the 

superconductor was independent of its state while normal. This result also showed that 

the superconductors were not simply perfect conductors but were also similar in nature 

to a perfect diamagnet. The results obtained by Meissner did not show perfect exclusion
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of the magnetic field even for the highest purity materials. This led them to conclude 

that, without inhomogenaities and impurities, that may be intrinsic to the material, there 

would exist a pure superconducting state.

3.2.2: Gorier - Casimir

The work provided by Meissner led Gorter and Casimii^ to put forward the idea 

that the superconducting material could be considered to consist of two individual 

phases. A superconducting phase and a normal phase. By using the two fluid approach 

Gorter and Casimir proposed a phenomenological model based on the thermodynamic 

properties of a superconducting material. Their ideas proved to be in excellent agreement 

with practiced In their theory they assumed that besides the electrons in the normal 

state a proportion a  are assumed to condense into a lower energy state. In the lower 

energy state the electrons are not scattered and are able to flow throughout the material 

without dissipation. The theory proposed that at T = 0 Kelvin, all the electrons in the 

system would be in the lower energy state and would therefore be superconducting. At 

the critical temperature, all the electrons would be in the normal state and the system 

would contain no superelectrons. From the work Gorter and Casimir proposed that the 

variation of the superelectrons with temperature could be represented by

n. t  A
-±  = 1 -  ( _ ) 4 3.1
n T Te

where n, is the total number of electrons and ng is the number of electrons in the 

superconducting phase. The variation of superelectrons with temperature according to 

this theory can be seen in figure 3.1, note that the normalised temperature = T/Tc.
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Figure 3.1
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3.2.3: London Theory

London theory, like Gorter and Casimir theory also proposed a phenomenological 

theory of the electromagnetic behaviour of superconductors. The theory is again based 

on a two fluid type model, with super fluid and normal fluid densities n„ and nn, with 

velocities vg and vn respectively. The charge densities are governed by ng + nn = n„ 

where n, is the average number of electrons per unit volume. The super and normal fluid 

current densities are given by

V .
dt m J r - ensv,

3.2

and

Jn= °nE  » Jn "  ~ennvn 3 3

The first of these is simply F=ma applied to a set of free particles of charge -e and 

density ng. The second equation of the London theory is

VxJJ 3.4

and this leads to the all-important Meissner effect, described earlier. Thus by taking the 

Curl of one of Maxwell's equations

VxVxfl = p0VxJ4 3.5

where the displacement current and the normal fluid current Jn have been ignored, 

namely the static Meissner effect. Combining equations 3.4 and 3.5 gives

* D - ± B  . XL -  ( _ ^ ) . «  3 6

where ^  is the London penetration depth. From the number of superelectrons ng is
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possible to obtain information about the density of states N(0) and the Fermi velocity 

since,

2  « V
" , - -N(0) 3.7

Furthermore the solution of equation 3.6 shows that the magnetic field decreases 

into the superconductor according to

_£_ g g
B(x) = B(0)e Xl

This equation implies that as x becomes large, the magnetic field vanishes in the bulk 

of the material and one obtains perfect diamagnetism as required. It is in equation 3.4 

that the London's added the important condition that B=0 inside the superconductor, 

irrespective of its history. For YBCO bulk, B is effectively zero for distances of 2 pm 

or more from the surface.

Note that the magnetic field does not vanish at a distance equal to the London 

penetration depth. The B field for x=X, namely the B field at the penetration depth is

B(X)=B(0)eA 39

this is obviously non zero. In a thin film this result implies that the magnetic field may 

penetrate the entire film. This implies that perfect diamagnetism is not achieved(33). Many 

films used in this thesis are around .2 pm thick, therefore the external magnetic field 

penetrates the whole film to some extent. Since it is likely that pinning centres are field

dependent^, the effect of magnetic field penetration may be observable in the behaviour 

of the flux flow.

Combining the result from Gorter - Casimir model with London's equation of
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penetration depth, i.e.,

one finds

a - * )  = i - ( ^ ) 4 .
n.

3.10

m

■* c

1/2 3.11

This is not as good as that result forthcoming from microscopic theory though it is very 

good. Using this equation, namely by plotting X against (l-t4)'1/2, where t=T/Tc the 

gradient will be equal to X(0). Furthermore by extrapolating the graph back to T=0 

Kelvin the intercept is also X(0). This result will be of particular use later.

3.2.4: Ginzburg Landau Theory

In 1937 Landau developed a theory for second order phase transitions(23). 

Although the theory was not valid for all transitions of this type, it did prove to be 

useful in describing superconductors. The theory was based on the idea that any phase 

transition could be represented by an order parameter. Ginzburg and Landau realised that 

the order parameter in a superconductor must be related to a macroscopic wave function. 

This idea lead them to develop an extraordinary theory based on the assumption that the 

superconducting state is characterised by a complex order parameter. This makes it clear 

that the system behaves according to quantum mechanics but on a macroscopic scale, 

which, although widely accepted now, was a very remarkable statement in 1950.

In going from the normal state to the ordered superconducting state, the material 

undergoes a phase transition, the new state being described by a complex order 

parameter
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Y(r) = Y0(r)expii|f(r) 3.12

which is a function of both position and time. Above Tc the normal state is the lowest 

in energy and so ^  = 0 everywhere. Below Tc the order parameter gives an estimate of 

the fraction of superconducting electrons. This fraction varies from 0 at Tc to 1 at T=0 

Kelvin. From the analysis it can be shown that the current density carried by the 

superconductor in a magnetic field is given by

j  = —— (Y*V¥ -  7 W )  -  — 3. 13 
2nm m

using the value of W given above this then becomes

j  = -£ il |Y o|2W  -  4g2/* |Y |2 3.14
nm m 0

if this is examined for large distances from the phase boundary, namely distances greater 

than the coherence length, then

and therefore

W  = 0 3.15

j  = ~4e2A |y  I2 = ~4e2(tA 3.16
m 0 m p

again using Maxwell's equation linking current and magnetic field, namely, VxB = p<j, 

and combining with the equation 3.16 this gives

V2̂ = _B_
m B i 2

k gl

where XGL is known as the Ginzburg Landau penetration depth

3.17
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3.18*GL = (
wP

4e2
_)l/2

P0a

This theory goes further to predict that £ will have the same temperature dependence as 

the penetration depth but this is not supported by experiment. This is not surprising since 

the theory is only valid very close to Tc. By comparing this equation with the result 

obtained by the Londons, it is clear that the term ns has been replaced by B/4a. B is a 

constant and a  is represented by

a = k - ^ -  3.19
Tc-T

comparing this temperature dependence with that in equation 3.11, it becomes clear that 

in the limit T - Tc they are the same, namely

-------------  -------------------- — - —  3 20
i-(77rc)4 1 - 777;

as T/Tc -> 1. This is most easily demonstrated graphically. It is possible to represent the 

Ginzburg-Landau penetration depth by

3.21
*c ■*

where XGL(0) would be the zero temperature penetration depth. Taking logarithms of both 

sides this becomes

2\n-~ GL = -In Q l H  3.22
*««*> Te

Thus by plotting 21n ^giA gl(O) against In (Tc-T)/Tc,the normalised temperature, the 

resulting curve will be a straight line. Performing a similar task on the London 

penetration depth
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3.2321nM > .
XL(0) T* Tc J*

and by again plotting ln(XL(T)/XL(0)) against ln(Tc-T)/Tc it is possible to obtain a very 

similar curve. Overlaying one curve upon the other, (as shown in Figure 3.2, page 58), 

it becomes apparent that for values of (Tc-T)/Tc <0 .1  the curves are the same. If 

therefore T > 0.9TC, namely that T>81 Kelvin in a film with Tc=90 K, the curves are the 

same, except for a small scaling constant. The significance of this becomes apparent 

when considering Gorkov's(24) reformulation . of BCS theory using Green's theorem and 

the experimental results.

3.2 J : Bardeen, Cooper and Schrieffer Theory (BCS theory)

The BCS theory was the first successful microscopic quantum mechanical model 

of superconductivity. The theory was the solution to the problem of a gas of electrons 

in the presence of an attractive interaction. In this solution the repulsive Coulomb 

interaction is overcome by the coupling of the electrons to the ionic lattice, as proposed 

several years earlier by Frohlich(34). The theory was able to explain with accuracy the 

various properties associate with superconductivity, the Meissner effect, isotope effect, 

etc. Due to its importance and success, it was soon followed by many papers offering 

reformulisations etc. One of the most applicable to this thesis was the work of 

Gorkov(24).

Gorkov realised that, with the use of Green's theorem, it was possible to redefine 

the Ginzburg Landau equations from the BCS theory. He discovered that for a 'dirty' 

superconductor, namely a superconductor with a coherence length far greater than the 

mean free path, the terms a  and B, defined above by Ginzburg and Landau, could be 

represented by
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3.24a = 1.36 1 t ~tc 

2 « V  Tc

ß =  0.2 1 , h2 J _  
M 0)k2m $0Z)2 3.25

where £0 is the coherence length and N(0) is the density of state. Substituting these 

equations into the GL penetration depth gives

,2 _ 1.838.10"2A2 Te
A ~  ■ —

IT-TJ
3.26

Gorkov also pointed out that

.378X L(0)2e, Tc 
i |r„-r|

It is immediately obvious therefore that

3.27

*i(0)2 * ^ < 862. 10-2^2

e2w m f ä 7 f
3.28

Comparing this with the London penetration depth given by equations 3.6 and 3.7

4.86210~2/t2 = 3 3

with a little rearranging this becomes

£„ -  0 A 8 -~ -  3.30
V .

Ihe coherence length, where v, is the Fermi velocity. Thus given V(0) it is possible to 

calculate N(0)|„2. If the value of the coherence length can be determined it is possible 

to calculate the density of states of the YBCO thin film and the Fermi velocity. The 

coherence length can be determined from the theories of paraconductivity.
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Figure 3.2
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3.2.6: The Ginzburg - Landau parameter, HCI and HC2

In the original paper by G - L, they defined a dimensionless parameter k by the 

expression

K(7)=-|«/tp2 3.31

since they where unaware of the coherence length | 0at the time. The equation later 

became

London had shown that, for certain conditions, it was energetically favourable for the 

bulk of the material to separate into normal and superconducting layers. The analysis by 

G - L went further to propose that for values of k < l/v/2 the system had a positive 

surface energy and it was defined as a type I superconductor. For values of k > 1/V2 the 

surface energy was negative and materials with this property were described as type II 

superconductors. The most obvious difference between type I and type II 

superconductors is their behaviour in the presence of a magnetic field.

In type I superconductors the application of a magnetic field to a sample results 

in the Meissner effect as described above. If the magnetic field is continually increased, 

there will come a point where the magnetic field is large enough to penetrate the entire 

superconductor. This results in the superconductor returning, completely, to its normal 

state. The magnetic field required to achieve this transition is called the critical field and 

is often referred to as Hc or H^. The behaviour of type II superconductors in magnetic 

fields is slightly more complicated. If a small magnetic field is applied the Meissner 

effect occurs, as expected. When the magnetic field is increased passed Hc however,
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rather than the superconductor returning to the normal phase, it first enters an 

intermediate or mixed phase. The mixed phase allows the partial penetration of the 

magnetic field, while still retaining superconducting properties. A further increase in the 

applied magnetic field results eventually in the normal properties being restored. The 

magnetic field required to induce the mixed state is known as H^, where as the magnetic 

field required to drive the type II superconductor into the normal state is H^.

3.2.7 Abrikosov Theory

Following the work of Ginzburg and Landau, Abrikosov published a theory 

explaining the peculiar magnetic properties of type II superconductors. The theory was 

based on a 2 dimensional periodic array of vortices. The core of each filament contained 

a magnetic flux and was to be surrounded by a vortex of superconducting electrons. In 

1950 London had suggested that a flux trapped by a superconducting ring would be 

quantized. London had foreseen a situation in which a superconducting ring would trap 

a quantized amount of flux, given by

and in type I superconductors this could only be achieved by using a superconductor 

with the geometry of a ring. In type II material the situation is different. Abrikosov 

proposed that flux quantisation could occur in any geometry because the mixed state 

consists of superconducting regions circling normal regions. The normal regions allow 

flux to penetrate them. The flux flowing through the normal region must be quantised. 

Results showed that flux quantisation in type II superconductors did occur. Experimental 

results also showed that even at values close to HC2 each filament carries only one flux

60



quantum. The idea of single fluxons is particularly important when considering results 

in which large amounts of flux are observed, since it implies that flux bundles, namely 

a batch of individual flux grouped together, most occur.

3.2.8 Type II Superconductors

Since it is possible for the coherence length to be shorter than the penetration 

depth, even in a pure superconductor, it is more likely to be the case in superconductors 

with high critical temperatures since

=  0. 18-
2nkBTe

3.34

Such substances are known as intrinsic type II superconductors.

3.2.8.1 YBCO and Type II Superconductivity

For YBCO, k »  W 2 and YBCO is therefore a type II material. It is 

energetically more favourable for YBCO superconductors to exist in a mixed state of 

normal/ superconductor material under certain conditions. Measurements show that there 

does not appear to be a HC1 value for bulk YBCO(12). In other words there is no lower 

limit below which the material behaves as if it where type I. On becoming 

superconducting the YBCO material exists in a mixed state of fluxons and 

superconductor. The reasons and the consequences of this behaviour will be discussed 

below.

3.2.9 Paraconductivity

In a magnetic system, the magnetic susceptibility can be represented by the Curie 

Weiss Law
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3.35X = 1Q~ ~
1 1C

as the temperature tends towards the critical temperature Tc, the susceptibility increases 

and becomes very large. The result of this is that the spin system becomes spontaneously 

arranged at the phase change. It was realised that in superconductors a similar effect may 

be at work, namely that as T -> Tc the conductivity diverges. Aslamazov and Larkin(25) 

investigated this idea and realised that the conductivity of a thin film could be 

represented by

where s is the thickness of the superconducting sheet. This is an important parameter 

since it represents the thickness of the superconducting sheet which is not necessarily 

equal to the thickness of the thin film. This is particularly true in 2 dimensional systems, 

where s will be very small. Gasparov(19) point out however that due to the peculiar nature 

of these HTS materials it is more appropriate to replace equation 3.36 with the Lawrence 

Doniach(26) 2D-3D form of paraconductivity

a -l
LD

« >  i  T-T' Tc c

The conductivity can be calculated from experiment using

3.37

« ' i  -  tp*o)‘1-p(7)-,r 1 338

where pN and p represent the normal resistivity and the resistivity of the sample 

respectively. By examining the region close to Te it becomes clear that if

21 T
1s T-T. 3.39
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then the above expression for Old'1 simplifies to

-A
16 hK^.T-T.

ne1

By plotting Old'1 against [(T-Tc)/Tc]l/2 the gradient would be

3.40

16*5

Tie1
b.0 3.41

and hence, the coherence length. The coherence length value can then be substituted to

calculate the sheet thickness, s. The values of coherence length and sheet thickness may 

prove to be very important to the understanding of the YBCO thin films.

3.3 Flux Dissipation in YBCO

3.3.1 Anderson's Flux Flow Theory

The application of a magnetic field to a type II superconductor that exceeds the 

Hcl value, results in the penetration of magnetic flux into the sample. The flux lines are 

quantised with a flux quantum given by

• • = i  3-42

In 1962 Gorter^ put forward the theory that these flux quanta would experience 

a Lorentz force if a transport current were to flow through the sample. The magnitude 

of this force being

= J x O 3.43

perpendicular to the direction of flow. Anderson™ then went further to suggest that if 

this force exceeded the restraining force due to the pinning potential then the flux could 

actually move throughout the sample. The movement of flux would result in a 

measurable dissipation and this dissipation was first observed in 1965 by Giaever™0. The
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fluxons are held in place by pinning centres/sites. The pinning sites are potential wells 

that have an energy U0. This energy must be overcome if flux are to flow. The sites thus 

prevent the movement of flux until the transport current is large enough to produce a 

Lorentz force capable of displacing a flux from the pinning site. The movement of flux 

can be viewed as the end of superconductivity. The current required to produce flux 

motion can therefore be called the critical current. In YBCO thin films the critical 

currents are often very large, in the order of 106A/cm2 thus implying that effective 

pinning takes place. The pinning sites are thought to be because of defects in the thin 

film. It is possible to test this idea using single crystals of YBCO. Single crystals have 

far fewer defects than thin films and therefore also have fewer pinning centres. If the 

defects are pinning centres then the movement of flux would be most easily achieved in 

the system with fewest defect. This would result in the single crystals having a lower 

critical current than that of a thin film. It is found that this is indeed the casc(43).

The Lorentz force is also helped by the thermal energy in the system. The 

thermal energy can enable the flux lines to escape from the pinning centre. Once free the 

flux lines are driven by the Lorentz force. The thermally activated behaviour can be 

summarised by the equation

Rnet = VoeXp---—
0 kBT

where v0 is the attempt to escape rate or attempt frequency and 

fluxons free to move under the direction of the Lorentz force. The 

Lorentz force is given by

3.44

Rnet is the number of 

work done due to the

AW  = JBWd 3.45

where V* is the volume of magnetic flux moving with the de-pinned flux line and d the
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distance over which that volume moves. By realising that U0 is altered by AW, namely

UF = U0-AW  , UR =  Un+AW 3.46

where UF is the preferred hopping direction and UB is the backward hopping direction,
i

It is thus possible to recalculate R,*, using this result, this then becomes

_  .  U0-AW
Rnet " 2v0eXP----TkBT 3.47

Considering the case when AW = U0, the transport current used to produce AW would 

represent the critical current, therefore

BV*d

Rnet then becomes

3.48

Rnet = 2v0exp- ( l — 3. 49
Jc 1

This translates into a resistivity p (using E=vB, v=Rneta0 and p=E/J) given as

P =
2v0a0R

e x p - ( l - i A 3.50

From work on YBCO single crystals, even for temperatures approaching Tc, U</kB is 

approx 10SK in a 0.1 T field(29). The resulting flux flow is, according to this theory, very 

small. This result implies that for small fields and currents the resistance will be 

H6gli§ihlc. Extrapolating the graph of resistance against B field back to a point where 

B=0, namely a point where the applied field is below this theory predicts that the 

resistance will be zero. Results show however that in thin films of YBCO there is a 

substantial zero B field resistivity. The magnitude is larger than that expect from the 

above theory. To account for this behaviour it is necessary to examine theory put 

forward by Kosterlitz and Thouless^ and separately by Berezinskii^. This work is based
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on a two dimensional systems.

3.3.2 Kosterlitz-Thouless, Berezinskii Flux Flow

The model of flux flow described by Anderson and outlined above was found to 

be consistent with magnetic field results. As mentioned, however, when the applied 

magnetic field was zero the flux flow was not zero as proposed in Anderson's model. 

To explain this behaviour, theoreticians turned to an alternative theory. The theory 

favoured by most is that proposed by Kosterlitz and Thouless and by Berezinskii. The 

original theory is based on the two dimensional ordering of a helium system. It was 

realised however that this system could be equally valid in describing a two dimensional 

superconducting system. Work on low temperature superconductors confirmed that this 

was indeed the case. The theory depends on the system under investigation being two 

dimensional in nature. From the literature it became clear that some researches believe 

that the superconducting sheet thickness of YBCO may be as small as 6.4 A(19), thus 

implying that the film is very thin indeed. The KT theory predicts, among other things, 

a transition to occur in 2 D systems. One key feature of this transition is that its 

occurrence takes place through the unbinding of pairs of topological defects, whose 

interaction energy exhibits a logarithmic dependence on separation. In a two dimensional 

superconductor, the topological defects are vortices that interact with a logarithmic 

potential. The interaction occurs for distances less than the transverse penetration depth 

Kt. It has been shown that the low temperature electrical properties are dominated by 

logarithmically bound vortex pairs. This behaviour will be summarised below. Before 

this, however, it is interesting to consider exactly what happens to the coherence length 

as the temperature approaches Tc. Due to the temperature dependence of £, there will 

come a point where |  exceeds s. Once the sheet thickness is smaller than the coherence
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length it is no longer possible to consider the film as two dimensional. This is important, 

since the KTB theory would no longer be valid. This may then explain why it has been 

difficult to observe the singularity in X'2 predicted to occur by KT theory. Furthermore, 

it is interesting that the cross over from 2 D to 3 D paraconductivity above Te appears 

to be accompanied by a change in the carrier type, as observed in the Hall effect 

measurements'16'35'3̂ . No attempt to explain this phenomenon will be made here.

3.32.1 Current Induced Vortex Unbinding

Measurements of the d.c. voltage characteristics of YBCO thin films have been 

demonstrated on several occasions. The log-log plots tend to fit a straight line over a 

large range of currents and voltages. The gradient of the curves is not however equal to 

one. The results imply that the voltage varies as a power of the current, namely

V ~ / “W 3.51

From the idea of the KT transition, below the mean field transition temperature Tco, there 

exists a local order parameter, but long range order is destroyed by the presence of 

vortex excitations of both polarities (even if B=0). The current density causes a force on 

the vortex (Lorentz Force) that is perpendicular to the direction of current, i.e.

Fl -- - A  . J, -  n /v ,  , ®0 -  A  3.52
¿e

If there is no flux pinning then this would produce a steady state flow of vortices 

resulting in dissipation. The vortex-antivortex (antivortex- one with opposite polarity) 

pairs tend to attract each other and below a certain temperature Tktb they are effectively 

bound together as a pair. The current exerts a force on these vortices. The net force must 

be zero if the vortices are stationary, when this occurs there will be no resistance.

Because the applied currents exert opposite force on the members of a pair, some
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will break apart and undergo dissipating interactions, until they re-combine. It can be 

shown (see below) that for an arbitrary small current there will be some vortices free to 

move around, in other words the critical current of a two dimensional system is zero. 

The number of free vortices does, however, become so small as to be immeasurable for 

low Tc. As the current increases a larger amount of vortices will become unbound 

resulting in a larger resistive term. The resistance will therefore, be dependent on current. 

The vortex/antivortex pair energy for zero applied current, can be written in the

form

where Ec is the core energy, r is distance between vortices and |  is the vortex core 

dimension. By analogy with 2D coulomb gas

were n8=n63Dd, where d is the film thickness. In the presence of an applied supercurrent, 

this energy is modified by the Lorentz force to give

l/0(r) = 2Ee + q2l n | 3.53

\  8%m
3.54

U(r) = U0(r) -  Fv r 3.55

3.56

This energy will have a saddle point orientated so that the vector connecting them is 

perpendicular to the direction of the current. The distance cotresponds to a maximum in

the potential in that direction, given by



r = h * hn*e 
4itmvJ 4nmJs

with an energy at the saddle of

3.57

U(rc) = 2EC + q20 n ^ - l )  3.58

By rearranging in this way it becomes clear that the logarithmic term is larger than 1 

since rc» | .  This implies therefore, that the modification of the saddle energy due to the 

Lorentz force is very small and can be neglected, therefore

U(rc) -  UQ(re) rc> l 3.59

1 /(0  = 2Ec -  q2I n i  /,< J0
*'o

3.60

where

,  _ hnse
Jn ~ -----— "

4 nmÇ

Now, by assuming a thermal assisted 

production of free vortices is given by

G-L critical current

escape over the pinning point,

3.61

the rate of

r0 exp V(r)
kBT 3.62

Clearly this is similar to equation 3.44 shown above, as expected. The difference is of 

course the nature of the pinning potential. In this analysis the magnitude of U(r) is 

dominated by the logarithmic term, namely that

92ln-^ > 2Ee 3.63
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substituting this into the above gives

r, -«2/V
r, -

using the term for JGL0 given above, this then becomes

J ,  92lkBT
r .  = ( f )

Further analysis shows that the resistance is then given by

I d T'1/2R = 2nVRnr ;

using V=IR, this becomes

v -- » u ;

where

2nZ2Rn a2
k = — , a  = 1+

T9lmBT lkBT

The temperature dependence of the resistance can be summarised by(19)

R -R ^xp-H b—*-' Tktb1] i

This can be simplified by taking logarithms, thus becoming

(In— )2 = -4  bE f J ^
Rx (T -T ^ )

This temperature dependence will be examined in chapter 6.

One further important point from this work is the screening

3.64

3.65

3.66

3.67

3.68

3.69

of the
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vortex/antivortex interaction, due to vortex pairs situated between the test vortices. As 

T -> Tc and the number of vortices increases, screening will become important. This 

phenomenon can be represented by dielectric. The screening effect causes the effective 

vortex charge to alter so that

2 .
2 = 5» ,  3.70

e 4 me

where e is the value of the permittivity. Thus

= . 3.71
2k,T  2k„Te

At Tkt the value of a, according to Kosterlitz and Thouless, is 3. Therefore at this 

temperature

9o
2M X

-  2

rearranging this, and using the value of q0 given above

3.72

e" * v  '
Thus it is possible to calculate the permittivity at Tkt.

3.73

3.3.3 Normal Transport Equations

The most promising of the new theories of superconductivity is likely to be that 

of Anderson's resonating valence bond model. In this model Anderson argues that the 

pairing mechanism responsible for high Tc superconductivity is due to a magnetic 

property and not BCS type. The theory is based on a two dimensional Hubbard model
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at half filling with strong in site Coulomb repulsion U and an attractive intersite hopping 

energy t. Superconductivity arises from the condensate made up of holon pairs. The 

theory predicts that the normal resistivity in both the ab or c planes can be fitted by

p = AT + -  3.74
T

this can be approximated to

P . -  AT • Pat, -  |  3-75

This result can easily be investigated from the normal behaviour of the thin films.

A more relevant result to this thesis is the penetration depth derived by Rice and 

Wang(37). Using the RVB model they are able to show that the London penetration depth 

of a holon superconductor is

X(T)2 = A(0)2(1- i £ K - i
c 3.76

where

A(0)2 = - 2 4
Hof*2

3.77

and

{ -  m  , f.(7 ) .  - A - " £ 3.78
dEk

{ is the mean number of holons per unit area and Cl is the number of 'normal' holons 

per unit area at temperature T. { is a constant. The term nk is the quasi-particle 

occupation number given by n ^ f e x p t^ T ) - ! ] - .  also Cl=hV/2m, namely the kinetic
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energy of a free holon, with mass m and momentum hk. Ek is the excitation energy of 

the holon and d is the lattice constant along the c direction. As T tends to Tc, £n(T)/£ 

tends to T/Tc, namely,

given penetration depth therefore, it is thus possible to calculate the mean number of 

holons from X(0), and therefore the variation of normal holons with temperature.

It is interesting to note that this theory is dependent on the superconductor being 

clean, namely that the holon mean free path 1 is greater than the coherence length. 

Earlier, however, the results obtained by the Gorkov formulation of BCS were for a dirty 

superconductor. The reason for this is that there is insufficient information, at this time, 

as to the true nature of YBCO, namely dirty or clean, since there have been claims for 

both dirty(38) and clean(30 37). The effect of changing from dirty to clean in the Gorkov 

formulation results in the penetration depth given by

If the superconductor is clean it will be necessary to replace this for equation 3.26 given 

above.

3.3.4 Josephson junctions and critical current

It was soon realised that many of the superconducting thin films were granular 

in nature. This led to the idea that at the grain boundaries, namely,where one grain 

touches another, there may be a Josephson junction. Ambegaokar and Barato£f41) 

amongst others have already investigated this idea namely, a superconductor being a 2 

dimensional array of Josephson junctions. This theory considers the effect of 

intragranular and intergranular interactions. Work has shown that in the case of YBCO

A(7) = X (p)[l-W cr 112 3.79

3.80
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bulk the intergranular penetration depth can exceed the intragranular penetration depth. 

A bulk YBCO sample, with a critical current J0 of 104A/cm2 and an average grain size 

of 1 pm, will have an effective penetration depth of 3 pm(38), almost 20 times larger than 

the London penetration depth. Several workers using RF induction coil experiments have 

reported measurements of penetration depth far larger than expected(39,40\  This analysis 

makes it possible to determine not only the penetration depth but also the temperature 

dependence of the critical current. The penetration depth is given by

A(7)'2 = j H 7)* tanh-^£Q- <* [ i - j j T]  3 81
1*0 V h 2ksT c

which is proportional to [1 - T/Tc]1/2 as T tends to Tc. The critical current on the other 

hand is proportional to [1 - T/Tc]3n. If the thin films are simply an array of two 

dimensional Josephson junctions this behaviour will be observed.

3.3.5 Two Dimensional to Three Dimensional Crossover

Thus far in the theoretical section several theories have been reviewed. This 

resulted in several derivations of penetration depth as well as a number of theories 

explaining flux flow. The first of these was the Anderson flux flow model and the 

second was the Kosterlitz Thouless Berezinskii model. Furthermore work performed on 

paraconductivity as well as work on the RVB model and Josephson junctions was 

presented.

In the section on paraconductivity it was shown that two theories exist namely, 

the Aslamazov-Larkin 2 dimensional theory or the Lawrence-Doniach 2D/3D theory. The 

question as to which theory is right is very significant to the understanding of YBCO 

thin films. If the AL theory is correct and the films are 2 dimensional they will be 

explained in terms of the KTB theories. The Anderson flux flow model will not
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therefore, be needed. Furthermore the equations for penetration depth, given above, will 

also be invalid. This is because one property of a KTB transition is a discontinuous jump 

in penetration depth at TK1B. If however, the LD theory is correct and the film becomes 

3 dimensional in nature when £(T)>s/V2 .where s is the sheet thickness, then the reverse 

is true. In this case the KTB theories are no longer valid and the traditional theories of 

London, Ginzburg Landau, Anderson etc. are applicable.

Since the two groups of theories are different and have different predictions as 

to the electrical behaviour, it raises the question as to what will be observed, if anything, 

at the cross over point? This in turn leads to the question of what happens if the cross 

over temperature is below or above the Tktb temperature?

If the cross over were to take place below the transition temperature then the 

film would behave similar, if not identical, to a traditional superconductor. In other 

words there would be no flux flow without an applied magnetic field in excess of H^, 

the changes in penetration depth would be those predicted by London etc.

If, however, the cross over takes place at temperatures above the critical 

temperature, namely the zero dissipation temperaturea2) then there will be the 

spontaneous production and movement of vortices according to Kosterlitz Thouless 

Berezinskii theory, resulting in dissipation. The characteristics of the dissipation will of 

course be those described in the section on KTB given above. If the film then becomes 

3 dimensional, what happens to the vortices? After all, in 3 dimensional superconductors 

the vortices cannot exist without the application of a magnetic field. According to theory 

the vortices will be stable. Lawrence and Doniach predict that the vortices will be forced 

to align themselves from sheet to sheet, one on top of the other. This change may be 

visible as a change in the temperature dependence of the penetration depth. If the film 

is 2 dimensional then according to KTB theory the penetration depth will tend to infinity
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more sharply than that predicted by 3 dimensional theory. If the film becomes 3 

dimensional before the penetration depth reaches infinity then the remaining 

superelectrons should dissociate according to the temperature dependence of London, 

Ginzburg Landau, BCS theories etc. Thus it may be possible to observe the change from 

2 dimensional to 3 dimensional behaviour as a deviation in the temperature dependence 

of the penetration depth.

3.4 Low frequency impedance of superconducting YBCO thin films.

In order to investigate the behaviour of the electrical properties of YBCO, it was 

decided to use an alternating electric signal technique. It is therefore necessary to analyse 

the theory behind the experimental arrangement used.

In this thesis I have chosen to use a contact technique to investigate the electrical 

behaviour of the YBCO thin films. By choosing this method one immediately has the 

problem of contact resistance and inductance and complications due to wiring. These 

problems can be overcome. The advantage of this method is that it is possible to 

investigate small areas of the sample, this improves the sensitivity of the results. It is 

also possible to carry out other experiments, such as critical current, B field or dc 

experiments without having to alter the experimental arrangement. This is advantageous, 

since an entire range of experiments can be performed in a short time.

In the experiments conducted here, it is possible to use the London analysis given 

above to analyse the thin films grown by this group. The above analysis is altered 

however to include a new term due to the displacement current. This term is normally 

very small in normal superconducting materials, though it may be of significance in 

these materials especially around the critical temperature.
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3.4.1 The revised current density equations.

The revised current density is obtained by summing the normal current and 

supercurrent and solving the two dimensional wave equations as described by Raven(32). 

In this type of analysis the displacement current is normally ignored. In the High Tc 

oxide materials however there is a suggestion that the capacitive displacement current 

may be significant, at least near the transition temperature. Furthermore the vortices 

produced spontaneously in the transition region of the HTS materials also contribute to 

the electrical measurements. It is therefore necessary to include these new terms with the 

normal conductive term and a modified inductive term. The revised total current density 

is now given by

oe is an equivalent normal conductivity, e=e0Er where er is the permittivity of the film 

material. Le is the equivalent inductive term that includes the normal inductance and the 

inductance due to the supercurrent. The modification by the normal inductance is 

discussed below. Equation 3.82 becomes

3.82

3.83
yup

3.84

Therefore the stationary state theory will apply providing there is no charge build up. It 

is well known that due to the inertia of the superconducting electron pairs, the E field 

is only zero when the frequency of the signal is zero. A potential difference will appear



between the inner contact probes when an a.c. signal is applied. The solution for the 

current density is still similar to that given by London and follows the same analysis. 

According to the above analysis the reciprocal penetration depth p is replaced by the 

propagation constant y. The film is assumed to be infinite in the x- direction and has a 

thickness of 2a in the y direction. The current enters at -b and leaves at +b. 

Experimentally the thin film impedance is determined by the four terminal method and 

in this analysis the potential terminals are at points z=A and z=B. By solving the 

Maxwell's equations using the same arguments as above, this gives

as expected. This result is easily verified by finding the total current I by integrating 

over the film section area ds=xdy. In this analysis the limits of integration are +/- a. The 

film is assumed to be infinite in the x direction and the resulting current given in units 

of amps/meter width of x. The final result is equal to the current that enters the contact, 

namely I=J(2ax).

The potential difference due to the frequency that can be measured by the inner 

probes is determined by integrating the electric fields in equation 3.83 between the limits 

A and B at distance d. This gives

3.85

3.86

The impedance is then calculated from the ration7 Z=Vab/I and by putting y=a in 3.86 

giving
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7  -  M \idLab ----------y2X cothya 3.87

This can be expanded using the power series

ecothe = 1 + s" ,(-i)n-122"B - 5— = i * . i i  + 3.ss
1 "(2»)! 3 45 •"

where 0=ya, n is an integer and Bn is the Bernoulli number. Using the first two terms 

only from this expression the impedance becomes

z  = ¿“ ¡±yJ L + y<*\ d
*  Y •

3.89

The impedance should decrease with ya according to equation 3.89. Furthermore by 

substituting for y from equation 3.84

* * - < ■
1 +-(-$-)«

+ yo>[
1+4(^1)4

6

3.90

Where A is the film cross sectional area 2aX, pe is the equivalent normal resistivity and 

L* is the inductance due to the contact.

The first point to note is that the last term, pa2/3, is due to the film dimensions 

and represents the geometric inductance. The first term represents the real part, namely 

resistivity and the second term is the inductance, which for low temperatures is simply 

the kinetic inductance due to the superelectrons. Analysis of this theory combined with 

an equivalent circuit has been carried out elsewhere^. In the analysis the capacitive term 

is due to the displacement current generated by the normal transport mechanism. 

Furthermore the resistivity term is due to the normal electrons flowing within the thin 

film. It is clear that by reducing the frequency of the a.c. signal to zero, the impedance 

will in turn tend to zero. This model breaks down at Tco unless an alternating signal is
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used. Results show that above Tro vortex flow can occur without the need for an external 

alternating current. This model does not include a flux flow term at present. It should 

be possible to include vortex motion in the above analysis, and by following a similar 

process to that described above it should be possible to redefine the transport equations. 

This will be discussed later in chapter 6.

3.5 Structure and X-ray Diffraction

The compound of YBCO as several phases, the only difference between them is 

the amount of oxygen they posses. Experiments have shown that the superconducting 

phase has 7 oxygen atoms where as the semiconducting phase contains 6.5 or less. This 

variation in oxygen results in a slight difference in physical structure. The 

superconducting phase of YBCO is orthorhombic, where as the semiconducting phase 

is tetragonal. YBCO is also anisotropic and it is advantageous therefore to know the 

orientation of the sample under test. Using X-ray diffraction to analyse a sample it is 

possible to determine not only the orientation but in some cases also which compound 

has been deposited. This is particularly useful for determining growth parameters.

The condition for diffraction is given by Bragg's equation

2d sin0 = nX . ^.91

This equation gives the angle 0 at which a set of planes, of spacing d, co-operatively 

reflects X-rays of wavelength X. in the nth order. Assuming d and X are constant and 

since 0 cannot exceed 90° (sin 90=1) there exists a limited series of solutions 

corresponding to all values of n for which 0<9O. This condition places a limit on the 

number of reflections that can emanate from a crystal. These are described as first, 

second, third order reflections etc., for n=l,2,3 ... Alternatively, it is possible to set n=l 

and to calculate the change in d with sin 0. This second method of analysing diffraction
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patterns is particularly useful in analysing YBCO.

Of the 14 Bravais lattices (ie the 14 distinct space lattices that can be used to 

represent any crystal) the YBCO tends, as mentioned, to be either orthorhombic or 

tetragonal. The orthorhombic phase being the superconducting phase, the tetragonal the 

semiconductor phase, see figure 1.1, page 12.

An orthorhombic structure is one in which all the lattice constants are different, 

but the angle between them is 90°. In the case of the tetragonal however, the a and b 

lattice constants are equal but different to the c axis. Again, the angle between them is 

90°. It can be shown that for the orthorhombic structure, d the lattice spacing, described 

above, is given by

J_
d2

where as for a tetragonal structure

_1_ 
d2

where a,b and c are the lattice constants and h,k and I are the Miller indices. The Miller 

indices define the orientation of the crystal, for example, in a (110) orientated crystal, 

h=l, k=l and 1=0, where as in an (013) orientated crystal h=0, k=l and 1=3. Therefore 

given a,b and c it is possible to calculate d and hence 0 for every orientation of a given 

crystal. Comparing the calculated values of 0 with those obtained from experiment it is 

possible to identify the orientation of the crystal. Alternatively, if the orientation is 

known it may be possible to calculate the value of the lattice parameters. This is of 

particular use in YBCO thin films deposited on MgO(lOO) and SrTiO3(100). Research 

has shown that these films are c-axis orientated, (001), the changes in the values of d with 

0 correspond to changes in 1, namely 1=1,2,3,4... etc. This is because h=k=0, and

+ £  + J l  
a2 * b2 + c2

h2+k2 l2

3.92

-t o';
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therefore equations 3.92 and 3.93 simplify to

by plotting 1/d against 1, the gradient gives 1/c, where c is the c-axis lattice constant. 

Knowledge of the orientation is of particular interest in this work because of the 

anisotropic nature of YBCO.

Finally, it is important to realise that X-ray diffraction describes only those parts 

of the sample which contain coherently scattering lattice planes. Regions of the samples 

which are less well ordered may contribute only a small background to measured 

diffraction spectra. These regions, however, may represent a substantial volume of the 

samples. These areas may be inhomogenously oxidised and only partially ordered with 

respect to metallic layering. With 3 metallic components and such a complex deposition 

mechanism there is no reason to expect perfect ordering. The level of residual disorder 

is unknown at the present time. Some experiments which are not based on diffraction 

suggest substantial disorder. It has been argued(42> that even grains of YBCO with the 

best transitions may only consist of thin superconducting shells surrounding normal and 

probably semiconducting cores.

3.6 Summary

In this chapter several aspects of superconductivity have been reviewed. 

London's, Ginzburg-Landau, BCS, Rice-Wang and Ambegaokar-Baratoff theories have 

been used to derive the penetration depth. The penetration depth seems to have 

approximately the same temperature dependence close to the critical temperature, 

irrespective of the initial theory. Depending on which theory is correct however, will 

determine wether the results represent super electron density, super holon density etc.
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Furthermore Abrikosov's theory, to explain type II behaviour based on a mixed 

state, was examined by Gorter and later by Anderson in which they realised that a 

Lorentz force would result in the film if a transport current where present. Using this 

model it has been shown that flux flow can exist. The magnitude of the flux flow from 

this model appears to be too small to account for that observed in YBCO thin films(29). 

To explain the excess flux flow, Kosterlitz-Thouless and Berezinskii theories where 

employed. From these theories it is possible to explain the non linear behaviour observed 

in YBCO. Using models explaining the paraconductive nature of thin films it may be 

possible to calculate the thickness of the 2 dimensional superconducting sheets. It is also 

possible to calculate the coherence length. Using this information it will then possible 

to calculate the density of states and the Fermi velocity using Gorkov's formalisation. 

It is also possible to observe a cross over from two dimensional to three dimensional 

behaviour from the penetration depth measurements.

Using an ac contact process it is possible to obtain information not only about 

the resistive nature of YBCO, but also information about the inductance behaviour of the 

thin films. From these results it should be possible to determine the parameters defined 

in the theoretical section above, namely, sheet thickness, coherence length, penetration 

depth, density of states as well as observing the flux flow phenomena.

In the final section the technique of X-ray diffraction was described and 

examined with respect to its use in analysing the structure of YBCO thin films. It is 

possible to determine lattice parameters and film orientations from analysis of the x-ray 

results.
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4.1: Introduction - The Radio Frequency Sputtering System

The sputtering system used throughout these experiments is shown in 

schematically in Figure 4.1. A radio frequency generator was used to produce a 13.56 

MHz voltage across the terminals, namely the target and the substrate holder. The R.F. 

voltage of the system could be altered using a variable transformer voltage divider. The 

sputtering current was measured with an ammeter in the primary winding of the 

divider®. Throughout these experiments the current was used as a guide to the rate of 

deposition. In general, low current values resulted in lower deposition rates. The lower 

the deposition rate the better quality the thin films appear to be®.

4.1.1 The Vacuum System

High vacuums were achieved using an Edwards high vacuum system model 303 

with an oil based diffusion pump. In the sputtering system there was also a liquid 

nitrogen cooled cold trap between the water cooled baffle and the vacuum chamber. This 

reduces back streaming of oil vapour and decomposition products. The vacuum chamber 

also contained a liquid filled coil which further trapped water vapour inside the chamber, 

see Figure 4.1. With this arrangement it was possible to obtain base pressures of less 

than 10'6 Torr.

4.12: Substrate Heater

To produce high quality thin films substrate temperatures (Tsub) >650 °C are 

necessary®. The heater also had to operate in oxygen needed for post deposition 

oxygenation to convert the semiconducting tetragonal phase into the superconducting 

orthorhombic phase®. To reach the high temperatures a heater capable of heating

Chapter 4: R.F. Sputtering
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consistently for long periods of time within an oxidising environment was therefore 

required. Several heaters are available though each has its limitations, e.g., filament 

bulbs. Filament bulbs have a limited life span and can cause serious damage to both the 

target and the chamber if they explode. Ceramic heaters are also available but could not 

easily be fitted to the system used. Because of these problems a heater was designed 

capable of producing the temperatures required for deposition. The heater described 

below was designed by my co-worker Dr. E.E.Inameti and has been used to produce 

many good superconducting films, see Figures 4.1 and 4.2.

The heating element is a Thermocoax heating element produced by Thermocoax 

(Philips). It consists of a coaxial element made of Ni/Cr wire. Around the wire is 

compacted MgO, which isolates the wire from the rest of the heater. The outer part of 

the heater is made of zirconium copper alloy. The element wire is wound into a 

rectangular spiral, Figure 4.2. The bends have to be made with care to ensure that they 

are not acute enough to damage the insulation and cause a short circuit between the wire 

and the alloy. The coaxial connectors are brazed onto the holder and then the exposed 

Ni/Cr wire using a high temperature brazing material. The other parts of the element 

including nuts, bolts and sandwich material, are all made from stainless steel. The 

element is held between two flat stainless steel plates. The dimensions of the plates are 

65 x 50 x 1.2 mm. On the upper plate a rectangular slot 45 x 10.5 x 0.4 mm deep was 

milled out. The slot made it easier to mount the substrates. The substrates where held 

firmly in place by the 2 pieces of metal that could be tightened to hold he substrates at 

the top and bottom. Later, silver paint was used to attach the substrates and the 2 pieces 

of metal became obsolete. The second advantage of the slot is that the heat transfer 

between the element and the substrates is improved, since this is the thinnest area on the 

upper plate. To reduce the heat loss further, the two stainless steel plates that make up
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the sandwich are encased in two radiation shields, one on either side. The inner shield 

has 90° flaps at the ends to enclose the plates. The assembly of the plates uses four 

screws, which helped to guarantee that the element is in contact with both plates along 

the entire length of the plates. Both shields over the top plate have openings that allow 

sputtering to take place. The support for the connectors of the element are attached to 

the inner lower shield into which the leads from the power supply can then be screwed. 

The heater is attached to the chamber by two screws. The screws make it easy to move 

the heater from position to position. Furthermore, due to their small size they helped to 

reduce heat loss due to conduction. It was possible to mount the heater vertically or 

horizontally without the need for further alteration. To measure the temperature of the 

slot a type K thermocouple was spot welded onto the slot where the substrates where to 

be held, see Figure 4.1.

The heater was tested and found to have an almost uniform temperature along the 

growth channel, namely the position where the substrates where held. The variation of 

the temperature being less than 5°C from one end of the slot to the other, while operating 

at 730°C. The heater can operate at this temperature for long periods of time in an 

oxygen atmosphere. This is particularly important since there is activated oxygen in the 

chamber, which readily oxidises bare surfaces.

4.1.3: The Target

Throughout the experiments performed and mentioned here two types of target 

were used. The first was stoichiometric superconducting YBCO powder. The powder 

was spread uniformally on the target using a spatular. Alternatively, the second target 

was a stoichiometric YBCO disk produced by pressing YBCO powder at a pressure of 

50 tons per square inch. The targets were produced using a die consisting of 3 metal
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plates designed by Dr.Inameti as shown in Figure 4.3. The disk has a radius of 30 mm 

and is 3 mm thick. Although targets of this size were available commercially, their cost 

was prohibitive for this project. Besides the large disks used for sputtering smaller disks 

were produced using a small press. By immersing these in liquid nitrogen and placing 

a small magnet on top of the disc superconductivity was indicated by the levitation of 

the magnet due to the Meissner effect.

The YBa2Cu3Ox powders were prepared by solid state reaction using high purity 

barium carbonate, BaC03, copper oxide, CuO and yttrium oxide, Y20 3. The starting 

materials were better than 99.99% pure. High purity is essential in the production of high 

quality bulk YBCO. The starting powders were mixed in the ratio of 1:3.5:2.12, 

Y20 3:BaC03:Cu0. The mixture was ground together using a mortar and pestle for 

approximately 30 minutes. The powder was then heated to 940°C and held at this 

temperature for 12 hours in air. The sample was then cooled to 700°C over a 2 hour 

period, then to 600°C over a 2 hour period, then to 400°C over a 3 hour period. Finally 

the sample was allowed to cool to room temperature in its own time. The resulting 

powder could then be pressed as described above to produce disk targets. The powder 

or disk then required a second heat treatment. The sample was heated to 950°C and held 

at this temperature for 12 hours. The sample was then allowed to cool in flowing 

oxygen. This process resulted in high quality superconducting bulk YBa2Cu3Ox.

The target was bonded directly onto a water cooled copper block, using silver 

paint see Figure 4.1. The paint ensured good thermal and electrical contact. The target 

was surrounded by an earthed stainless steel sheath to ensure that the copper block onto 

which the YBCO was mounted was not sputtered. Targets produced by the method 

described above were used throughout the growth experiments to produce the thin films 

examined in this thesis. The targets were found to be very reliable and could be used for
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over 100 hours of sputtering.

4.2: Thin Film production

4.2.1: Substrates and substrate preparation

The MgO and SrTi03 substrates were supplied by Furuchi Chemical Corporation 

(Japan) and Superconductive Components inc (USA). These substrates had dimensions 

of 10x10x1 mm, the large dimension cut to +/- 1% of the <110> or <100> axis. 

Substrate cleaning was performed using organic solvents and de-ionised water. The 

substrates were immersed first in trichloroethylene, followed by acetone and then 

methanol. Finally the substrates were immersed in de-ionised water to remove the 

organic residues. Any water that remained on the surface was blown off with air or 

removed by gently touching the substrate with filter paper. Following the cleaning 

process it was advantageous to mount the substrates quickly to avoid dust or any other 

contamination settling on the surface.

4.2.2: Loading the substrate and system preparation

The substrates were loaded onto a substrate heater which could be mounted at 90 

degrees to the target. The earliest substrate were held in place by two rails and thermal 

contact was ensured by using silver foil. In later depositions the substrates were first 

painted on one side with silver paint. The substrates were then held against the substrate 

heater slot for approximately 15 seconds. This allowed time for an adhesive bond to 

occur. This was repeated for each substrate. Once all the substrates were mounted the 

paint was allowed to dry for about 30-60 minutes. When the paint had dried the chamber 

was lowered into position and the system evacuated.
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4.2.3: Deposition Procedure

Before deposition started the baffle valve was turned to the glow discharge 

setting. This had the effect of reducing the efficiency of the pumping system and allowed 

for greater control of the pressure inside the chamber. The gas inlets were then opened.

The Ar and 0 2 had separate inlets that allowed for the easy control of the gas 

mixture. A typical Ar:02 mixture was 4:1. While the gas was leaking into the system, 

the substrates were brought up to the deposition temperature. The deposition temperature 

was normally between 690 and 750° C. There was a visual difference between the colour 

of the heater slot and the colour of the substrate surface. However, once silver paint was 

employed the colour of the substrate was almost identical to the colour of the slot and 

it is thought that the temperature difference between the heater plate and the substrate 

surface was less than 10 Kelvin.

The gas pressure was set to that required for deposition, typically around 280 

mTorr. Once the required temperature and pressure had been reached the target was pre

sputtered. With the target shutter in place, an r.f. signal was produced and a discharge 

occurred. At this point liquid nitrogen was poured into both traps to remove water 

vapour from the system. This period enabled the target and the system to reach 

equilibrium before deposition. Any alterations to gas pressure, substrate temperature etc 

were made during this period. After one hour of presputtering the shutter was opened 

and deposition started.

Deposition normally lasted for around 5-8 hours during which tíme the deposition 

temperature and pressure were held constant. Films grown for 5-8 hours normally had 

a film thickness of .1 to .5 microns. Following deposition the shutter was closed, the 

oxygen pressure was increased and the argon flow was stopped completely. This allowed 

the system to fill with pure oxygen. The pressure was raised to atmospheric as quickly
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as possible while maintaining the same substrate temperature. The film was then allowed 

to cool in flowing oxygen until it reached a temperature of around 400-470°C. The 

cooling process took approximately 5 minutes, though this could be extended if required 

by adjusting the electrical supply to the heater. When the YBCO/substrates had reached 

the required temperature, the substrate temperature was held constant for 1 hour. The 

annealing process was performed in flowing oxygen or in a closed system; the results 

appeared to be the same. The low temperature anneal allowed the film to absorb the 

oxygen needed to ensure a good superconducting film(4>. Following the one hour anneal 

the unit was closed down and the substrate allowed to cool to room temperature.

By depositing thin films of YBCO by this method it has been possible to produce 

films with Tc > 80 K on a reproducible basis. Throughout the experiments, various 

pressures, gas combinations and substrate temperatures were used in an attempt to 

optimise the growth conditions. The deposition process was however, basically the same, 

namely, cleaning the substrates, mounting the substrates, evacuating the system, 

presputtering while reaching equilibrium, sputtering and post anneal. Due to the 

similarity in the various growths, the results given in chapter 6 will only outline the 

conditions in the system. Gas ratio, gas pressure, substrate temperature and post anneal 

temperature will be given and unless stated otherwise, the reader can assume that the 

experiment is the same as that described above.

4.2.4: Evaporation of Silver Contact Pads

Before the evaporation of silver contact pads, the sample along with the 

appropriate mask were cleaned in acetone to remove dirt and grease. The acetone appears 

to have no detrimental effect on the thin films. The 99.998% pure silver was also 

cleaned by this method and then placed into an evaporation basket that was in turn
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placed in the evaporation system. The films were placed directly above the basket, 

approximately 15 cm from the silver, see Figure 4.4. A shutter was placed between the 

silver and the sample and this could be controlled from outside the chamber. The 

vacuum chamber was evacuated to a pressure greater than 10'5 torr before evaporation. 

The silver was evaporated from the tungsten filament which was heated from an external 

current source.
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4.4 Figure Captions

Figure 4.1 : Schematic diagram of R.F. sputtering system. The system was used to 

produce the thin films examined in this thesis.

Figure 4.2 : The heater unit. High temperature deposition (700-750°C) was achieved 

using this unit.

Figure 4.3 : Schematic diagram of the 3 piece die used to produce the YBCO 

disks/targets.

Figure 4.4 : The schematic diagram of the evaporation unit used to deposit silver 

contacts onto YBCO thin films.
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Chapter 5: EXPERIMENTAL PROCEDURE 

5.1: Introduction

This chapter covers the electrical and structural measurements carried out on 

YBCO thin films. The electrical experiments include AC and DC resistance 

measurements, critical current and magnetic field experiments.

5.2: Cooling Unit

The films to be tested were mounted onto a cold head inside a closed cycle 

helium cryostat. The cold head consisted of a two stage cold head cylinder and drive unit 

displacer assembly. Together they produce closed cycle refrigeration at temperatures that 

ranged from 60-120 Kelvin for the first stage cold station and from 10-20 Kelvin for the 

second stage cold station, depending on the operating conditions. During operation, high 

pressure helium from the compressor enters the cold head at the helium supply 

connector. This then flows through the displacer regenerator assembly, crank case and 

motor housing before exiting through the helium gas return connector and returning to 

the compressor. Helium expansion in the displacer-regenerator assembly provides cooling 

at the first and second stage cold stations. When cold head operation reaches a steady 

state condition, further pressure regulation is unnecessary.

The cryostat is shown in Figure 5.1 and schematically in Figure 5.2. The unit 

contains two temperature sensors situated either side of the sample position. The first 

temperature sensor was a silicon diode type DT470, see (D) in Figure 5.2. By passing 

a 10 pA current through the diode a voltage appears across the device. The magnitude 

of the diode voltage is inversely proportional to the diode temperature and is used to 

measure the temperature of the sample (see appendix for conversion tables). The voltage 

was measured using a digital voltmeter (Keithley 617DMM) on-line to a computer. The 

silicon diode was already fitted and calibrated when the system was purchased. Further

100



calibration was carried out at 293 K and 77.4 K and the results agreed with those of the 

manufacturer. The diode measured temperatures down to 1 Kelvin. The silicon diode is 

approximately 1 cm from the sample. Since a small temperature difference may result 

between the sample and the silicon diode a second temperature sensor was added (E). 

This is a platinum resistor temperature sensor linked directly to a Oxford Instruments 

model 3120 temperature controller. The sensor material was calibrated at 293 K, 273 K 

and 77.4 K. The platinum resistor has the drawback of becoming very inaccurate for 

temperatures below 65 Kelvin.

On top of the cold head was placed a large lid (B) that sits on top of a rubber 

ring (A) that ensured that the unit was sealed. The chamber was evacuated by closing 

valve (J) and opening (I). Evacuation was necessary to avoid heating due to conduction. 

A vacuum of 5.10'2 Torr was adequate. Upon cooling the unit, the refrigerator 

cryopumps the residual gasses in the chamber and an insulating vacuum of between 10'4 

and 10'5 Torr is achieved.

5.2.1 Device Under Test

The film under investigation (F) was attached to the cold head by either silver 

paint or double sided tape. Silver paint proved to be the best adhesive. It was not always 

possible to use silver paint as problems with earthing between the film and the cold head 

sometimes occurred. If there was a problem with earthing then double sided tape, which 

insulated the film from the cold head, was used. To test that the film was not earthed, 

each contact was tested individually. Once the film was mounted, wires (G) were 

bounded to the silver islands on the film surface. The wires were bonded in place using 

the same silver paint (Electrolube) that was used to bond the film to the cold head. 

These wires made up the four probes. The wires were in turn linked via a vacuum sealed
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sealed BNC to leads outside the cooling chamber (H). The external leads were altered 

depending on the experiment being performed. For example, while performing an 

experiment using d.c. sources short coax cables were used to cany the current. The 

cables were then attached to either a constant current source, device ZN5245 or a high 

impedance voltmeter, Keithley 196DMM. In the RF experiments the wires were 

connected, via the BNC’s, to 4 x 1 metre calibrated coax cables which link the Hewlett 

Packard 4192A impedance analyzer to the film. The impedance analyzer and/or 

Keithley’s were in turn linked to a personal computer via an IEEE 488 interface unit. 

The interface unit allowed the instruments to be remote controlled. The measurements 

from the impedance analyzer/ Keithley were then stored directly into permanent hard 

disk memory by a simple computer program (see appendix for programs).

Below the cold head and wrapped around the column making up the cold head 

is a filament heater (K). By cooling the sample, while allowing a current to pass through 

the filament, it was possible to hold the temperature at the cold head stable long enough 

to complete a set of readings at a constant temperature (temperature +/- 0.1 K)

5.3: Radio Frequency Experiments 

5.3.1: Impedance Analyzer

The a.c. measurements were obtained using an impedance analyzer (Hewlett 

Packard 4192A). The impedance analyzer is calibrated for use with one metre cables. 

For the low impedance measurements and variable frequency measurements it was 

necessary to re-calibrate the analyzer to determine the impedance due to the extra wires 

from the end of the coax cable to the film, the silver contact pads and the silver paint 

used to bond the wires to the silver contact pads. It is assumed that the YBCO sample 

once installed in the bio rad and wired to the impedance analyzer can be represented by
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the equivalent circuit given in figure 5.6. The region of interest is that between the 

dotted lines, namely the part of the circuit encountered by the voltmeter, figure 5.6b. 

The signal received by the voltmeter is distorted, the difference between C and D is 

given by

Z CD =  Z sample +  2 Z W

the distortion due to the. extra wiring is 2Z*. assuming the wires have the same 

impedance. The stray impedance should therefore, appear as a linear offset. By shorting 

together the voltage contacts the circuit becomes that given in figure 5.3C the 

impedance measured being due to the extra wiring, silver paint etc. This impedance can 

then be subtracted from the measured results to leave the impedance due to the sample 

alone. Two separate methods of calibration were used.

5.3.2: Calibration by shorting method

To perform the re-calibration, the wires used to provide the electrical contacts 

from the coax cables to the substrate were short circuited. The short circuit was achieved 

by placing a copper block into the system and bonding the four wires to it as if the 

copper block were a film. The copper block was bonded to the cold head using double 

sided tape to avoid earthing. The copper block had previously been filed and washed in 

acetone to produce a clean surface onto which the wires could be bonded. The Bio Rad 

was sealed and the system was evacuated. The HP 4192A impedance analyzer was set 

to measure the equivalent series inductance and resistance of the sample namely, the 

wires, silver paint and copper block. The frequency response of this arrangement was 

taken for values between 0.1 and 13 MHz (in 50 kHz steps). The results obtained were 

assumed to be due to the wires and the bonding silver. It was assumed that the copper 

block had a negligible effect on the inductance and resistance due to its excellent current
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carrying characteristics.. Note that the copper was not a perfect conductor and there was 

a residual resistance. This is not a problem if the stray impedance is in the form of a 

linear offset.

The results of this experiment demonstrated that the effect of the wires and silver 

paint was to offset the inductance by approximately 8 nH at .1 MHz, rising to 9.5 nH 

at 13 MHz. The resistance was offset by 0.003 Ohms at 0.1 MHz rising to .022 Ohms 

at 13 MHz. Providing that the calibration results are in series with the inductance and 

resistance due to the thin film it is possible to subtract the calibration results directly 

from those results obtained from thin film measurements to give the reactance and 

resistance of the sample alone, as described in 5.3.1.

5.3.3: Hewlett - Packard Self Calibration

The HP 4192A analyzer used throughout these experiments was designed to be 

self calibrating when required. This entails calibrating the analyzer for a set frequency. 

The analyzer then alters the measured results and displays the calibrated equivalence 

values of the film for all the frequencies®.

To calibrate the analyzer was first set to short circuit. The short circuit was 

achieved using a copper block as described above. The analyzer was set for the series 

mode. The impedance analyzer calibrated itself for this arrangement, at frequency chosen 

by the user, usually 13 MHz. The impedance and resistance were set automatically to 

zero. The film under test was then loaded into the system. The four wires were placed 

onto the silver pads in the same arrangement as they were on the copper block. The film 

was then cooled and tested.

The effect of the calibration by this method can be seen in Figure 5.4. Here, the 

impedance analyzer was calibrated using the self calibration technique mentioned. The

104



resistance and inductance were recorded as a function of temperature. The second set 

of readings are for the same device without the self calibration. The experiments were 

carried out within minutes of each other in exactly the same way. It is safe to assume 

therefore that any difference in the results is due to the stray impedance. The stray 

impedance results in a linear offset in the inductance and the resistance of the sample. 

This is in agreement with section 5.3.1 and figure 5.6. The magnitude of the offset is 

similar to that determined in section 5.3.2.

Since the stray impedance appears as a linear offset it can be shown, (see section 

8.1.2), that provided the geometric inductance and the kinetic inductance are very small, 

in comparison to the stray inductance, it is possible to calculate the value by 

extrapolation. It is not necessary therefore to perform the calibration experiments, 

described here, for each film. These calibration experiments prove that parts of the 

analysis used in section 8.1.2, concerning the stray impedance, are valid.

5.3.4: Frequency Response Experiments

Frequency response measurements were taken between the frequencies of 0.1 and 

13 MHz in 50 kHz steps using the RLFREQ program, see appendix A program 2. 

Experiments were typically carried out at 293,100 and 70 Kelvin. Readings taken at 100 

and 70 Kelvin required the cold head to be held at constant temperature. This was 

achieved by heating the column of the cold head onto which the sample was fixed while 

engaging the compressor. This allowed the temperature to be held constant (+/- 0.1 K) 

for 3-5 minutes, giving time to complete the readings. Data was stored directly from the 

impedance analyzer onto disk to speed up the process. These results made it possible 

to observe the difference in inductance and resistance response between the normal and 

superconducting phase.
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The second type of experiment was to measure the impedance with respect to 

temperature at constant frequency. The results obtained by this method were the 

equivalent series resistance and inductance of the YBCO thin films. Analysis o f the 

inductance was expected to yield information about the critical temperature, flux flow, 

penetration depth and displacement current, an element that is normally ignored in 

superconductor research.

During cooling, a signal of 13 MHz was passed through the sample and the



resistance and inductance of the film were measured with respect to the temperature. Due 

to the position of the temperature sensors there was a slight temperature difference 

between the temperature sensors. The difference arises because of the distance of the 

sensor from the cold head. This only occurs during the cooling process. Due to the slight 

discrepancy that does occur, results taken during cooling were only used as a rough 

guide to the quality of the thin films. More accurate results were taken during the 

wanning process. When the films were warming, the rate of warming was slower than 

that of cooling. The temperature discrepancy between the two temperature sensors was 

less than 0.1 K.

This process was repeated to record results with the application of a magnetic 

field. The magnetic field produced by the solenoid was used to ensure the mixed state 

within YBCO. The effect of applying a magnetic field to a sample can be seen within 

the results section. Note that with this arrangement the applied magnetic field was 

perpendicular to the sample.

During the experiments in which a magnetic field was used, the film was first 

cooled through the transition temperature. While the sample was allowed to warm the 

frequency/temperature response was measure again. This was then repeated for fields of 

different magnitude. Readings were taken every 0.1 Kelvin whilst the sample was 

warming. This allowed the change in resistance and inductance to be followed very 

closely. By cooling and repeating this process for different magnetic fields a series of 

results was obtained.

5.4: DC Resistance Experiments

Resistance-temperature measurements. were performed in the cooling unit 

described above. The film to be investigated was mounted onto the cold head of the
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cryostat as described above. Four wires were bonded to the silver strips previously 

evaporated onto the surface of the thin film with silver paint. The 4 probe method uses 

the outer contacts to supply a constant current. The constant current source used here 

was a model ZN5245. The inner two contacts were wired to a high impedance voltmeter 

and measured the potential drop across the film, as demonstrated in Figure 5.2. The 

voltmeter in these experiments was a Keithley 196DMM. The Keithley was IEEE 488 

compatible. A simple programme (see appendix, program DCTEMP) was devised to take 

readings from the temperature sensor and the voltmeter almost simultaneously. By 

programming the computer, the resistance could be measured every 1 Kelvin or 0.1 

Kelvin. The temperature sensors were used along with the Keithley voltmeter to record 

the change in resistance with temperature.

5.5: Critical Current Experiments

Critical current measurements were carried out using a 4-probe arrangement and 

an etched film. To achieve this four silver strips, 1 cm x 1.25 mm, were evaporated onto 

the thin film. The high current strip and the high potential strip were separated by 0.5 

mm. The high potential and low potential strips were separated by 2 mm and the low 

potential and low current strips were separated by 0.5 mm. The films were etched using 

a photolithographic technique described below. Following etching, the silver strip was 

reduced in size to 1 mm x 1.25 mm and were separated as described above, see figure 

5.4a. The etched film was mounted onto the cold head of the Bio Rad unit using silver 

paint as the bonding agent. Wires were bonded to the silver contacts using silver contact 

paint as the bonding agent. This allowed the formation of good ohmic contacts needed. 

The contacts were deliberately made large to accommodate the currents that would be 

necessary to drive the film into the normal state .
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The cryostat was cooled to around 10 Kelvin and the current applied to the 

sample was increased. Due to the nature of the arrangement an offset voltage occurred 

and this was zeroed before increasing the current. By applying a large enough current 

it was possible to produce a voltage across the sample. The current needed to produce 

a voltage of 1 microvolt was defined as the critical current. The nature of the dissipation 

will be discussed elsewhere. The critical current was measured using this process at 

several different temperatures. Theory predicts that the response of critical current will 

be dependent on the structural properties of the thin films. The temperature dependence 

of the critical current may give some information about the structure of the thin film 

deposited. The magnitude of the current carrying capabilities of a thin film is determined.

5.5.1: Photomask Production

The photomask used for the photolithography was designed to allow for critical 

current measurements and to improve the sensitivity of the inductance measurements, see 

Figure 5.4b. The design consisted of five strips varying from 140 pm to 1 mm as shown 

in Figure 5.4b. The thinnest strip was to be used for critical current or magnetic field 

measurements. The mask was produced using a computer aided design package, PADS. 

The mask design, which was 256 times larger than the final product was plotted onto 

mylar paper using a standard HP plotter with a 0.5 mm pen filled with black india ink. 

To reduce the number of pin holes the mylar sheets were touched up by hand before 

reduction. Reduction consisted of a two-stage process. First the design was reduced to 

1/16 of its original size and converted to a negative using a standard reduction technique. 

The negative was reduced further by photographing the negative using a camera placed 

directly above the negative. The distance between the camera and the negative was 

varied until the entire mask image was less than 1 cm2 as required. Once the image was
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in correct focus the camera was loaded with film. Since the final pattern would need to 

be on a rigid base that could protect it from damage and allow for easy use, the second 

reduction used Kodak High Resolution plates type 1A as the film. The glass plates where 

mounted into a camera placed above the negative. The plate was exposed to the negative 

using green light for 15 minutes. The exposed plate was then immersed for 5 minutes 

in Kodak HRP developer. The developer was diluted with water in the ration of 1:4 

respectively. After developing, the design was washed in water for 2 minutes. The plate 

was then fixed by a further 2 minutes in Kodak 3000:water fixer solution. The ratio of 

fixer to water was 1:1. The pattern was then washed for 10-15 minutes to guarantee all 

chemicals had been removed. This process reduced the negative by a further 16 times.

5 5 2 :  Film Etching

The films were etched using photolithographic technique. A positive photoresist, 

Microposit AZ1350, was applied to the film surface which was then spun at 3000 rpm 

for 30 seconds to produce a uniform film of resist. After drying for 10 minutes at 100°C, 

the resist was exposed to ultraviolet light for 20 seconds through a photographic mask 

of the required thin film pattern.

The photoresist was developed in Microposit HPR developer. The substrate was 

placed in the developer for 45 seconds. Once developed the film with photoresist was 

washed in water to remove any developer that was left. The excess water was then spun 

off. The substrate was then reheated to 100 °C and held at this temperature for 10 

minutes. This ensured that the photoresist would remain bonded to the thin film, thus 

protecting the area where the thin film coating was to remain on the substrate.
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The etchant used was Ferric (III) Nitrate. The ferric nitrate solution was prepared 

using equal masses of etchant and water. Once the films were exposed to the Ferric 

Nitrate, etching took place at a reported 1.5 p,m/sec(3). Since most of the films were less 

than lpm thick, simply dipping the substrate in the solution and then straight into water 

was normally enough to etch the film. Since the thin film with photoresist was well 

protected it was possible to use the etchant for longer periods, say 2-3 seconds to remove 

the more stubborn areas (those areas with silver deposited on them). If the films were 

exposed for more than 1 second however, the ferric nitrate had the opportunity to etch 

into the thin film underneath the edges of the protective photoresist. This was not a 

serious problem in this work and it is thought that the amount of undercutting is, in the 

worst case, only about 25% of the width of the thin film(4). The etchant does not react 

with the substrate and the advantage of this as we shall see later was that it made 

recycling of old substrates possible. Once the etching had taken place the remaining 

photoresist was removed by simply brushing the surface of the thin film with acetone.

5,6: Experiments in an Applied Magnetic Field

In type II superconductors the application of a magnetic field can result in the 

familiar mixed state, in which normal and superconducting states exist in unison. The 

production of the mixed state usually requires the application of a magnetic field greater 

than some critical field Hcl, see chapter 3 for more details. Although the value of is 

not known for YBCO, experiments have shown that it is very small(1). Values lower than 

100 Gauss have been found to produce the mixed state(5). To achieve a magnetic field 

of the size, namely 100 Gauss or more, which could be used with the cooling system a 

solenoid was designed. The diameter of the cooling unit was approximately 105 mm. 

This meant that to produce the field required the solenoid would have to be physically
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large. The inner diameter of the solenoid was 110 mm, were as the outer diameter was 

300 mm. The solenoid was 85 mm wide. The copper wire used in the solenoid was 

capable of carrying 25 amps. With 1500 turnings the solenoid designed could produce 

a field of 0.075 T. During experiments the current used was no larger than 12 Amps, 

producing a field of 360 Gauss. The solenoid was calibrated using a hall probe and the 

results are displayed in Figure 5.5. The solenoid was used to ensure the YBCO thin film 

was in the mixed phase during testing.

5.7: X-ray Diffraction

X-ray diffraction was used to investigate the crystal structure of YBCO thin 

films. The X-rays used throughout this work were produced by a copper target with a 

nickel filter. The X-rays generated had a wavelength of 1.5418 A. Since the substrates 

used were single crystal there was a high intensity of X-rays at the corresponding 20 

values, for example, in SrTiO3(100) there was a large intensity of X-rays at 20 = 22.78, 

41.71 and 104.14. Below is a summary of the X-ray diffraction parameters of the 

substrates used throughout this thesis.

Substrate Orientation Ka / 20° K8 / 20°

MgO 100 21.07 19.00

MgO 200 42.91 38.53

MgO 400 93.99 82.57

SrTi03 110 32.42 29.18

SrTi03 220 67.8 60.43

SrTi03 100 22.78 20.53

SrTi03 200 46.48 41.71

SrTiOj 300 72.54 64.52

SrTi03 400 104.14 90.75
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5.8: Substrate Reclamation

Because of the cost of the substrate materials it was necessary to reclaim 

substrates. YBCO films on SrTi03 were removed using Ferric III Nitrate. For films 

deposited on MgO(lOO) examination of the surface often shows that it had sustained 

damage. It is not the ferric nitrate that caused the scratches, although it may have reacted 

with the scratches causing further damage. The origin of the scratches was not fully 

understood but it was probably due to a substrate/film interaction caused by the high 

temperatures during growth. The substrates were repolished by mounting onto a circular 

weight using dental wax as the adhesive. Once attached the substrates are moved from 

side to side by an arm. This side to side movement coupled with the rotating pad and 

a fluid consisting of particles 0.05pm in diameter, PP503 polishing compound enables 

the surface scratches to be removed. The length of time needed to remove the damage 

depended on the severity of the scratches, although a typical substrate generally took 

between 2-4 hours. Once polished, the substrates were cleaned using TAM and de

ionised water. Recycled substrates have been used successfully to produce high quality 

superconducting thin films of YBCO.
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5.10 Figure Captions

Figure 5.1 : The bio-rad cooling unit used to investigate the low temperature electrical 

properties of YBCO thin films.

Figure 5.2 : Schematic diagram of the bio-rad unit shown from the side and from above.

Figure 5.3 : The results of the calibration experiment. The results show that the wires 

and the silver contacts produce a linear offset in the inductance measurements.

Figure 5.4 : Diagram of a YBCO thin film before (5.4a) and after (5.4b) etching.

Figure 5.5 : The magnetic field/ current characteristics of the solenoid.
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CHAPTER 6: FILM DEPOSITION, RESULTS AND DISCUSSION

6.1 Introduction

This chapter describes the results of experiments performed on YBCO thin films. 

The first sections concern the deposition and structural analysis of YBCO thin films 

where the conditions used to produce YBCO thin films on a reproducible basis are 

described. This involved varying the substrate temperature, sputtering gas composition 

and pressure, position of the substrates, i.e. off-axis or on-axis sputtering. This is

followed by X-ray diffraction results used to determine the orientation and lattice 

constants of the YBCO thin films.

6.2 Film Deposition

A summary of the growth conditions is given in Table 6.1. This includes the 

substrate material, gas pressure and content during deposition. The substrate temperature, 

R.F. sputtering current and deposition length are also given, as well as the critical 

temperature and film thickness. Each of the parameters given above was investigated in 

order to determine the effect on the quality of the thin films. This enabled the most 

favourable conditions for film deposition to be determined. The following section is an 

investigation into each of the parameters.

6.3 Ex-situ deposition

Deposition at low substrate temperature of about 100°C - 450°C followed by post 

anneal treatment can give superconducting thin films and this is of considerable 

interest(1,2). By performing similar experiments with Tgub approximately 100 °C on-axis 

sputtering with a stoichiometric target, thin films of YBCO were deposited. A typical 

film is featured in Figure 6.1. The film featured in Figure 6.1 was deposited on axis, at
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a substrate temperature of 420°C. The gas ratio was 4:1, Ar:02, the chamber pressure 

200 mTorr, deposition length was 10 hours. Following deposition the thin film was 

heated in an oven to a temperature of 850°C. The film was held at this temperature for 

3 minutes in flowing oxygen. The film was then allowed to cool in 0 2 to room 

temperature.

In order to achieve superconducting thin films a series of experiments was 

performed. The gas content of the chamber was varied from 1:1 to 1:10, Ar:02 and the 

substrate was placed in the on-axis and off-axis arrangements. The pressure during 

deposition was also altered, from 150 mTorr to 280 mTorr. Although each of the 

deposition parameters namely, the gas content, pressure, substrate position and post 

deposition treatment were varied, 'cold' deposition proved to be an unsuccessful method 

of producing good quality superconducting thin films. From analysis of the bulk target 

and sputtered thin films using EDAX it became clear that on several occasions the bulk 

and the thin films were very similar in composition, namely that the barium, copper and 

yttrium content were similar for both film and bulk. It was not possible however to 

detect the oxygen content. The superconducting properties are of course dependent on 

the oxygen content, lower oxygen content resulting in semiconducting properties(3). It is 

possible therefore that although YBCO may have been deposited, the poor oxygen 

content of the material resulted in the formation of the tetragonal semiconducting phase. 

If this is the case then this would imply that the post deposition treatment used was 

incorrect. The effect of this type of deposition was poor quality films that degenerated 

visibly with time. X-ray analysis of these films, gave very few if any clear spikes that 

could be used for identification purposes. This implies that the films were not epitaxial 

or even oriented and were probably still amorphous in nature. Several attempts where 

made to deposit superconducting thin films using this method and some were successful,
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The initial experiments in which the substrates were heated were more successful 

than the low temperature experiments, in the sense that the films had metallic as opposed 

to semiconducting electrical characteristics after deposition. The films were of poor 

quality however and did not become superconducting until very low temperatures. The 

solution to the problem lay in the overall growth conditions. Gas pressure, composition, 

substrate position, substrate temperature during deposition as well as post anneal 

treatment all effected the quality of the thin film deposited. The effect of each of these 

parameters is investigated here.

The substrates were initially cleaned in Trichloroethylene, Acetone and Methanol 

followed by a wash in deionised water. The substrates were mounted off axis to the 

target. Silver foil was placed behind the substrates to improve thermal contact. In later 

experiments silver paint was used. A presputtering period varying from 30-60 minutes 

allowed the system to reach equilibrium. The substrate temperature, Tgub, during 

deposition was generally between 700 - 750 °C. The sputter depositions lasted from 4 - 

12 hours.

6.4.1 Sputtering Gas Pressure

The gas pressures available for use were limited to a relatively small window. 

Low pressure discharges, around 50 mTorr were too low to maintain effective sputtering. 

At higher pressures, greater than 300 mTorr, the system became unstable and it was 

difficult to maintain equilibrium. Due to these restrictions films were deposited at 

pressures varying from 200-280 mTorr. Within this small pressure range the effect on 

the quality of the thin films was still visible. The film deposited on SrTiO3(110) at a 

pressure of 280 mTorr (YRF57), with Ar:02 of 4:1, was of better quality, Tc>71 Kelvin,

6.4 In-situ deposition on SrTiO/llO)
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than the film grown under the same conditions but with the pressure at 200 mTorr, 

Tc=53 K, (YRF56). Initially this result was thought to be due to the lower oxygen partial 

pressure in the 200 mTorr deposition, namely 40 mTorr instead of 56 mTorr. Increasing 

the amount of oxygen from 20 % to 50 % in the sputtering gas, at a sputtering pressure 

of 200 mTorr, did not however improve the quality of the thin film deposited on 

SrTiO3(110). The increase in the partial pressure of the oxygen to 100 mTorr resulted

in a poorer quality film. The film, deposited with all the other growth parameters kept 

constant, had a Tc=32 K, (YRF59).

Although the oxygen partial pressure did influence the quality of the thin film it 

was difficult to determine, from the experiments performed, the exact relationship 

between the oxygen partial pressure and the quality of the thin films deposited. It was 

clear however that the film deposited at the higher total pressure of 280 mTorr was the 

better of the films. In all the experiments after YRF61 on SrTiO3(110) the sputtering 

pressure was set to 280 mTorr and the gas ratio to 4:1, Ar:02.

6.4.2 Post Annealing

Although each of the films described above was cooled to room temperature in 

pure 0 2, there was no post anneal, the films were simply allowed to cool to room 

temperature. A further experiment using the same technique and deposition parameters 

as YRF57, which also included a post deposition anneal at 450°C for 1 hour in pure 

oxygen, YRF62, resulted in a film with a Tc 6 Kelvin higher than the film without the 

anneal, see Figure 6.2. All subsequent films were post annealed in pure oxygen at 

temperatures ranging from 400-450°C for 1 hour.
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6.43 Substrate Position

In order to improve the films further, the horizontal distance of the substrate from 

the centre of the target was altered. Using the off axis mode, with the vertical distance 

from the target held constant, several films were deposited at varying horizontal distances 

from the centre of the plasma. The growth parameters were the same throughout the 

various depositions. The growth parameters were Ar:Oz, 4:1 at 280 mTorr, T,ub=735 °C 

deposition length of 6 hours. Post deposition anneal at 425 °C in pure 0 2 for 1 hour 

Results demonstrated that the off axis distance from the centre of the target did 

have an effect on the quality of the thin films. At a distance x = 8 cm from the centre 

of the target, a film with T ^  in excess of 87 K was produced, YRF67. The film was 680 

A thick, an average deposition rate of 1.89 A/min. Shortening the distance x, lead to a 

reduction in the T ^  of the subsequent films. At x=63 mm, the Tco was 71 K, with an 

onset temperature of 77 K, YRF70. At x=43 mm, the T ^ was less than 20 K, YRF66.

These films were visibly thicker than those deposited at x=80 mm. The results were 

reproducible, see Figure 6.3.

6.4.4 Substrate Temperature

The substrate temperature during the deposition was varied from 700-750 °C It 

was not possible to establish any dear link between deposition temperature and film 

quality within this temperature region, for films deposited on SrTiO3(110). However, 

there was a suggestion that the orientation of the YBCO thin film was dependent on the 

substrate temperature. This will be discussed in the section on X-ray diffraction given 

below.
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The MgO(lOO) substrates were polished and cleaned and mounted in the same 

way as the SrTiO3(110) substrates. The deposition parameters were also similar to those 

described above. The effects on the thin films of altering the various growth parameters 

appears to be different to those films deposited on SrTiO3(110). AH the films described 

below were deposited off axis. Each film, except YRF59, was post annealed in pure 

oxygen for approximately 1 hour in the temperature region 400-450°C.

6.5.1 Sputtering Gas Pressure

The pressure and content of the sputtering gas was less critical for the films 

deposited on MgO(lOO). Successful deposition occurred for sputtering pressures of 200 

mTorr, YRF59, see Figure 6.4. The gas ratio during deposition was 1:1, Ar:02. The 

critical temperature of the thin film on MgO(lOO) was 72 K. Increasing the deposition 

pressure to 280 mTorr and changing the ratio of the sputtering gas to 4:1, Ar:02 did not 

have any detrimental effect on the thin films deposited on MgO(lOO). This was fortunate 

since it allowed films to be deposited on SrTiO3(110) and MgO(lOO) simultaneously. 

YRF67, YRF68 and YRF70 are examples of this.

6.5.2 Substrate Position

The off axis position of the MgO(lOO) was important to the quality of the thin 

films deposited. Several experiments were performed in which the only parameter to be 

altered was the off-axis position.

The substrates were cleaned and mounted and thermal contact was improved 

using silver foil. Presputtering lasted for 55 minutes. The gas pressure during deposition 

was 280 mTorr, the gas ratio was 4:1, Ar:02 and Tlub=735 "C. The length of the

6.5 In-situ Deposition on MgO (100)

125



deposition was 6 hours. The post anneal took place in flowing pure oxygen. The 

substrate temperature during the post anneal was 425 °C and the anneal lasted 1 hour.

The results of the experiments demonstrated that the position of the MgO(lOO) 

substrate did influence the quality of the thin film, see Figure 6.5. The film deposited 

closest to the centre of the plasma, x=43 mm, was the poorest, Tc=60 K (compared with 

Tc=50 K for the film deposited on SrTiO3(110)). For x=63 mm the Tc=75 K for the film

on MgO, compared with T=80 K for the film on SrTiO3(110). The best films were 

deposited on the edge of the plasma, x=80 mm. The resulting critical temperatures of the 

thin films deposited on MgO(lOO) and SrTiO3(110) was 82 and 88 K respectively.

6.5.3 Substrate Temperature

The exact effect of the substrate temperature during the growth is difficult to 

determine since it was not specifically investigated. Results demonstrate that the effect 

of the substrate temperature may be important in the thin films deposited on MgO(lOO). 

During the course of producing thin films several experiments were repeated to 

determine the reproducibility of RF sputtering. Many of the films deposited on 

SrTiO3(110) were found to be reproductions of the earlier experiments, having a similar 

Toasct and Tc etc. For the films deposited on MgO(lOO) however the results were not 

always reproduced, for example YRF67 and YRF68, see Figure 6.6. Although the 

change in normal resistance is due to the difference in thickness (see Table 6.1), the 

reason for the change in Tc is unclear, though the most plausible reason is the thermal 

contact. If the thermal contact between the substrates and the heater were to deteriorate 

the effect would be similar to depositing the thin film at a lower temperature. It would 

also mean that the temperature of the post anneal would be lower than expected. This 

could have a dramatic effect since it is well known that the low temperature anneal

126



converts the thin film from the tetragonal to the orthorhombic phase and that the 

temperature of the anneal is required to be above 400°C. (This idea is supported by thin 

films deposited when the silver foil, used to ensure thermal contact, was replaced by 

silver paint. The quality of the films deposited on MgO(lOO) became more consistent.) 

If  this is the case then it implies that the films deposited on the SrTiO3(110) substrates 

are effected less by changes in the deposition and annealing temperatures than those 

deposited on MgO(lOO). If this is correct then it raises the question of whether the 

orientation or the substrate material is responsible for this difference. In order to 

investigate this idea it is necessary to examine the results from the experiments 

performed on SrTiO3(100) substrates.

6.6 In-situ Deposition on SrTiO3(100)

Deposition of YBCO thin films onto SrTiO3(100) makes it possible to determine 

the effect of substrate orientation on the thin film. Furthermore by comparing the results 

of films deposited on SrTiO3(100) with those deposited on MgO(lOO) it is also possible 

to determine the effect of substrate material on film quality. For all the films deposited 

on SrTiO3(100) the sputtering gas pressure was 280 mTorr, 4:1, Ar:02. The films were 

also post annealed in pure oxygen at 400-450°C for 1 hour.

6.6.1 Substrate Position

The effect of the change in the off axis position of the substrates prior to 

deposition was more evident in films on SrTiO,(100) than those on SrTiCyilO). The 

change in critical temperature was not as great as that observed in films deposited on 

MgO(lOO). These results imply that the substrate and the substrate orientation influence 

the quality of the thin film, see Figure 6.7.
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The firs, experiments to be performed on SrTiO,(100), were under conditions that

had been used successfully to deposit YBCO thin films on SrT10j(HO). In order to

verily the reproducibility of the rf sputtering method, a SrTiO,(110) substrate was

mounted next to the SrTiO3(100) substrate. Both substrates were held in place by the

rails and thermal contact had been improved with the use of silver foil. The target was

presputtered, prior to deposition, for 40 minutes. During deposition the substrate

temperature was 735”C and deposition lasted for 6 horns. The resulting films were post

annealed in flowing pure oxygen for 1 hour at 405°C Testing the films with the 4 probe

method revealed that the critical temperatures were 77 and 76 K for the films on

SrTiOj(UO) and SrTiO3(100), respectively, Figure 6.8. The onset temperatures of the

films were 87 and 82 K respectively, YRF62. The reason for the difference in the onset

temperatures was assumed to be due to differences in film orientation and crystal

structure. Resistivity measurements on the two films revealed anisotropy, this is

investigated below. It is interesting to note that if the AT fAT -  T ^  \ .v ~ conset * a cj is taken as

a measure of film quality, namely that the smaller the AT the better the film then the 

film deposited on SrTiO3(100) is in fact the better quality film.

Further experimentation revealed that in every simultaneous deposition on to 

SrTiOj(llO) and SrTiO,(100) the films deposited.on the (110) substrates had higher 

critical temperatures, as well as a small AT. The difference in critical temperatures of the 

two films ranged from 1 K in YRF62 to 14 K in YRF86. It is thus evident that under 

the growth conditions used here that SrTiO,(110) is the most suitable substrate.

6.8 Films deposited on SrTiO/lOO) and MgO(lOO)

Films were deposited simultaneously on MgO(lOO) and SrTiO3(I00). Growths

6.7 Films deposited on SrTi03(100) and (110)
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YRF80 and YKF83 produced thin films on SrTiOJIOO) with ^ , = 8 2  K, ^ = 7 0  K and 

Tconset=80 K> Tco=72 K respectively, see Figure 6.9 for example. The corresponding films 

deposited on MgO(lOO) had T(W =70 K, ^ = 6 5  K and ^ , = 5 9  K, TC0=52 K 

respectively. One reason for this difference in critical temperature of the films may be 

due to the lattice mismatch, which is smaller in SrTiO3(100) than in MgO(lOO). However 

the AT was smaller in the films deposited on MgO(lOO).

6.9 X-ray Diffraction

The X-ray diffraction measurements were carried out using an X-ray 

diffractometer, the Siemans K-4, in the Materials and Materials Design Engineering Dept 

at the University of Nottingham. The samples were scanned form 0 - 900 using an X-ray 

source of copper with a characteristic wavelength of 1.54 A. The angle over which the 

sample was scanned represented 20, where 0 is the angle in the Bragg equation r~

nk = 2cfein0 6.1

Each 20 value of each peak on a diffraction pattern was recorded. The data was 

analysed using a computer program, XANAL.BAS. The program identifies at least two 

peaks due to the substrate materials using a 'look up' table containing values given in 

the ASTM files. The peaks given by the film substrate were compared with the ASTM 

results and the 2 0 values of the peaks given by the films were corrected accordingly. 

The corrected 20 values are compared with the various orientations of YBCO. The 

program displays any orientations which lie within 0.1 • of the peaks obtained from 

experiment. These results enable the user to identify the most likely orientation(s) of the 

YBCO thin films. When a series of peaks have been identified they can be used to 

calculate the lattice parameters of the film using the theory given in chapter 3.

A problem in this work is the substrate materials. The substrates are high quality
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single crystals and thus generate some very clear diffraction peaks. This is unavoidable 

since 90 % of the X-rays penetrate to about 2 pm. Since many of the films are 0.5 pm 

or less, a large number of X-rays are diffracted by the single crystal substrates. To 

overcome this problem the sensitivity of the X-ray detector is sometimes reduced. This 

reduces the clarity of the peaks due to the YBCO thin film. A compromise is thus made 

that is not always satisfactory.

6.9.1 YBCO films deposited on SrTiO/110)

A  typical X-ray diffraction pattern of a YBCO thin film on SrTiO3(110) is shown 

in Figure 6.10. The YBCO peak is dwarfed by the SrTiO3(110) peak although it is large 

enough to identify. The 20 value of the YBCO peak is 68.5°. Comparing this with the 

ASTM files it becomes clear that either of two orientations could be present, namely 

(110) or (013) or a combination of (110/013). It is not possible from these results to 

determine the orientation of the films. This is very unfortunate since the films are 

anisotropic. It will be shown below that the anisotropic nature of these thin films may 

help solve the problem of identifying the orientation. Besides the peaks identified as 

(013/110) there were also several other peaks. These peaks were identified as a-axis and 

c-axis peaks. The X-ray diffraction patterns of YRF42, YRF67 and YRF82 give evidence 

of a and/or c-axis orientation. From the peaks it was possible to calculate the lattice 

constants which are summarised here, in Table 6.2

Sample YRF42 YRF67 YRF82

a-axis /  À 3.88 3.86

c-axis /  Â — 11.69 11.66

Tco/K 88 —

Table 6.2
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A typical X-ray diffraction pattern of a YBCO thin film deposited on MgO(lOO) 

is shown in Figure 6.11. From the ASTM files these are identified as being from the 

(001) series. Although this has been reported elsewhere it is worth noting that there is 

no evidence of any (hOO) peaks except for those of the MgO(lOO). Due to the amount 

of peaks it is possible to calculate the c-axis lattice values of the thin films. Table 6.3 

gives a summary of the samples investigated using X-ray diffraction and the 

corresponding c-axis lattice constants.

6.9.2 YBCO thin films deposited on MgO(lOO)

Sam ple Y R F 47 Y R F65 Y R F68 Y R F 70 Y R F72 Y R F78 Y R F 83 Y R F 87

c-ax . /  A 11.73 11.85 11.83 11.76 11.81 11.81 11 .76 11.71

R F I/m A 140 140 140 120 140 130 120 125

To/K — 49 72 76 — 65 72 73

Table 6.3

From these results it is possible to see that there does appear to be some 

relationship between the c-axis lattice constant and the critical temperature. The films 

with the higher Tc's, except YRF68, tend to have the smaller lattice constant. There also 

appears to be a link between the c-axis value and the sputtering current. Namely the 

higher the sputtering current the lower the critical temperature, again with the exception 

of YRF68. It is worth noting that every film except YRF68 was deposited over a 6 hour 

period. YRF68 was deposited over a 10 hour period. It may be that the film deposited 

in the last four hours was of YRF68's deposition was of better quality than that 

deposited in the first 6 hours.

Since it has been reported in the literature that current transport is easiest in the 

a-b planes, namely c-axis perpendicular to the substrate surface as is the case for films
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deposited on MgO(lOO) it is expected that the resistivity of the films deposited on MgO

should be less than for films deposited on SrTiO3(110). This is investigated in the 

following chapter.

6.9.3 YBCO Films deposited on SrTiO/lOO)

The films deposited on SrTiO3(100) gave some very interesting results featured 

in Figure 6.12. Films were deposited simultaneously on MgO(lOO) and SrTiO3(100). The 

X-ray diffraction patterns of several films deposited on SrTiO3(100) were investigated 

and the results as well as the deposition temperature and critical temperature are given 

here in table 6.4.

Sample YRF74 YRF80 YRF81 YRF83 YRF116
a axis /  Â 3.89 3.86 3.82 3.83 —

c-axis /  A 11.68 11.76 11.76 11.67 11.75
tsub/ k 715 735 735 735 705
RF I /  mA 130 130 130 120 130
Tco/K 64 65 72 72 81

Table 6.4

The X-ray diffraction results demonstrated clearly that c-axis orientated thin films 

had been deposited on the SrTiO3(100). There were also several other peaks which were 

identified as (100), (200) and (300), namely a-axis orientated YBCO. The a-axis peaks 

were not present on the films deposited on MgO(lOO), The reason for the a-axis 

deposition on SrTiO3(100) is presumably due to the small lattice mismatch between the 

substrate and thin film. The YBCO thin films are therefore mixed orientated consisting 

of (hOO) and (001). The deposition of the mixed phase is temperature dependent. All the 

films deposited for TSUB=735 Kwere mostly a-axis orientated, namely that the peaks due
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to the a-axis were larger than the c-axis peaks. Further work YRF116 revealed that c- 

axis films could be deposited by using a lower deposition temperature. There was no 

evidence of a-axis peaks in the X-ray diffraction pattern of this film.

Comparing the sputtering current with the critical temperatures did not reveal any 

relationship. The temperature of the substrate during the deposition did not appear to 

have a significant effect on the critical temperature.
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6.10 Summary of Chapter Six

From the results discussed in this chapter the SrTiO^llO) substrate was found 

to be the best for deposition of TOCO thin films. The difference in quality between 

films on SrTiOj and MgO is expected simply because of the considerable lattice 

mismatch between the MgO and TOCO. The difference in quality between YBCO on 

SrTiOj(llO) and SrTiO,(100) is however quite surprising. The results imply that the 

orientation is an important parameter in thin film production. Evidence has shown that 

the growth mechanism is dependent on orientation. It is thus likely therefore, that the 

results obtained here demonstiate that the growth mechanism varies between the (110) 

and (100) orientated SrTi03 substrates.

The quality of the thin Elm is dependent on the growth parameters as expected. 

What is interesting is that certain conditions exist which produce superconducting thin 

films on MgO and not on SrTiO3(110) and vice vetse. This can also be interpreted as 

further evidence for the idea of different growth mechanisms.

The most successful depositions were YRF67 and YRF68 on SrTiO3(110). The 

Elms were deposited off-axis in an ArO* 4:1. atmosphere at a pressure of 280 mTorr. 

The substrates were situated 8 cm from the centre of the target and were heated to a

temperature of 730 °C during deposition. The films were also post annealed in pure 

oxygen for 1 hour.

The X-ray diffraction patterns of the TOCO thin films revealed that film 

orientation was dependent on substrate material, orientation and deposition conditions. 

Films deposited on MgO(100) were all c-axis orientated, although the magnitude of the 

c-axis lattice constant did vary, ranging from 11.71 to 11.85 A. This corresponded to a 

change in critical temperature of 73 to 49 K respectively. I, thus appears that as the c- 

axis becomes elongated the superconductor phase deteriorates.
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The orientation of the films deposited on SrTiO3(100) were dependent on growth 

conditions. Structural analysis revealed that a mixture of the (aOO) and (00c) phases had 

been deposited. The films are however mainly a-axis orientated judging by the 

magnitude of the X-ray diffraction peaks i.e. the peaks due to the a-axis are greater than 

those of the c-axis. A later film deposited at a lower temperature (705 °C) was found to 

be c-axis orientated. It appears that the increase in deposition temperature enhances a- 

axis deposition in the films deposited on SrTiO3(100).

The majority of films deposited on SrTiO3(110) were (110/013) orientated as 

expected. It is not possible to distinguish between the peaks due to the (013) and (110) 

phases here. Since the films are anisotropic it may be possible to determine the degree 

of orientation from the resistivity and inductivity measurements. In several films there 

was also some evidence of a and c-axis orientation. The reason why these orientations 

have been deposited is unclear. The result is very interesting since the growth 

mechanism between a and c-axis deposition and (013/110) deposition are different, i.e. 

spiral growth and ridge growth respectively. It thus seems that in certain films both types 

of deposition are present.
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6.12 Figure Captions

Figure 6.1 : The variation of series inductance and resistance with temperature for a 

YBCO thin film deposited onto SrTiO3(110) on axis at 420°C measured at 13 MHz.

Figure 6.2 : The variation of series resistance for YBCO thin films deposited onto 

SrTiO3(110) on axis measured at 13 MHz. The increase in Tc is due to the post anneal.

Figure 6.3 : The effect of substrate position during deposition on the critical temperature 

of YBCO thin films deposited onto SrTiO3(110).

Figure 6.4 : The variation of series resistance for YBCO thin films deposited onto 

MgO(lOO) on axis measured at 13 MHz.

Figure 6.5 : The effect of off-axis substrate position during deposition on the critical 

temperature of the YBCO thin films deposited onto MgO(lOO)

Figure 6.6 : The problems with reproducibility are evident in films deposited on 

MgO(lOO). Note that although the films were deposited using the same conditions, the 

film in (b) was deposited over a 10 hour period.

Figure 6.7 : The effect of off axis substrate position during deposition on the critical 

temperature of the YBCO thin films deposited on SrTiO3(100)
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Figure 6.8 : T ie variation of series resistance for YBCO thin films deposited onto 

SrTi03 (100) and (110) on axis simultaneously.

Figure 6.9 : The variation of series resistance for YBCO thin films deposited onto 

ScTi03 (100) and MgO (1)0) on axis simultaneously.

Figure 6.10 : The X-ray diffraction pattern of a YBCO thin film deposited on 

SrTiO3(110) showing (013/110) orientation.

Figure 6.11 : The X-ray diffraction pattern of a c-axis orientated YBCO thin film 

deposited on MgO(lOO).

Figure 6.12 : The X-ray diffraction pattern of a mixed a and c-axis orientated YBCO 

thin film deposited on SrTiO3(100).
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Sub. P /
mTorr

Gas
Ratio

Dep.
T/°C

R F I  
/  mA

Dep.
/h i

T* Cositi
/K

Tcx/K 2 a / A

YRF56 S(llO ) 200 4:1 735 140 9 86 53

YRF57 S(llO ) 280 4:1 735 140 9.5 89 71

YRF59 M(IOO) 200 1:1 735 5 76 72
S(llO ) 76 32

YRF61 M(IOO) 200 1:1 735 140 5 68 59

YRF62 S(llO ) 280 4:1 735 140 6 87 77
S(IOO) 82 76

YRF63 M(IOO) 280 4:1 735 140 6 77 67 910

YRF65 M(IOO)
M(IOO)

280 2:1 730 140 6 60 49

YRF67 M(IOO) 280 4:1 735 140 6 86 82 680
S(llO) 93 87

YRF68 M(IOO) 280 4:1 735 140 10 81 75
S(llO) 93 87

YRF70 M(IOO) 280 4:1 735 120 6 83 76
S(llO) 91 85

YRF71 M(IOO) 280 4:1 735 120 12 .... 4500
S(llO) 91 84

YRF73 S(llO ) 280 4:1 735 130 7.5 86 81
S(IOO) 86 76

YRF74 S(llO) 280 4:1 715 130 6 86 76
S(IOO) 84 64

YRF75 M(IOO)
M(IOO)

280 4:1 735 130 6 60 46

YRF78 M(IOO) 280 4:1 735 130 6 73 65 2800

YRF79 M(IOO) 280 4:1 735 130 6 61 49

YRF80 M(IOO) 280 4:1 735 130 6 70 65
S(IOO) 82 70

YRF81 S(IOO) 280 4:1 735 130 6.3 88 72 2200

YRF82 S(llO) 280 4:1 735 120 6 — — 1200

YRF83 M(IOO) 280 4:1 735 120 6 59 52
S(IOO) 80 72

YRF84 M(IOO) 280 4:1 735 120 7.75 84 79 2000
S(llO) 75 37

YRF85 M(IOO) 280 4:1 750 120 8.5 78 68

YRF86 S(IOO) 280 4:1 735 130 6 83 68 2000
S(llO) 88 82

YRF87 M(IOO) 280 4:1 735 125 6 83 73

YFR91 S(llO ) 280 4:1 735 130 4 82 79 1100

YRF95 M(IOO) 280 4:1 735 140 6 76 72 2000



YRF106 S(110) 280 4:1 750 140 6.75 87 81 2160
YRF107 S(UO) 280 4:1

1920
YRF109 M(100)

S (U 0)
280 4:1 750 140 6 81 72 1900

YRF110 S(110)
S(110)

280 4:1 740 140 6 89
85

84
80

2000

YRF111 M(100) 280 4:1 750 140 6 83 73 2080
YRF113 M(100) 280 4:1 710 140 6 83 77 1700
YRF114 S(110) 280 4:1 730 130 6 87 83 1500

YRF116 S(100) 280 4:1 705 130 6 88 81 1000
YRF117 S(110) 280 4:1 705 130 4.50 800
YRF118 L(100) 280 4:1 695 130 6 88 84

YRF119 M(IOO) 280 4:1 705 130 6 82 79

YRF120 L(100) 280 4:1 705 130 6 91 88

Table 6.1

key: S(100) - SrTiO3(100), S(llO) - SrTiO3(110), M(IOO) - MgO(lGO), L(IOO) - 
LaA103(100). P /  mTorr - system pressure during deposition, Gas Ratio - ratio of Ar to 
oxygen. Dep. T - Temperature during deposition, RF 1/mA - sputtering current during 
deposition, Dep. / hr - deposition length in hours, 2a / A - film thickness.
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CHAPTER 7: TRANSPORT MEASUREMENTS, RESULTS AND DISCUSSION

7.1 Introduction

The following chapter is an investigation of the R.F. transport measurements of 

YBCO thin films. The results are interpreted using the theories reviewed in chapter 3. 

This chapter is divided into several sections investigating several aspects of resistivity. 

From the resistivity results it is possible to investigate the anisotropy of the thin films, 

the resonating valence bond theory by Anderson01, the paraconductivity theories of 

Aslamazov - Larkin® and Lawrence - Doniach'31, as well as the flux flow phenomena 

of the mixed phase. The paraconductivity measurements will be used to calculate the 

superconducting sheet thickness and coherence length of the YBCO thin films at 13 

MHz. These results will be compared with DC measurements reported here and 

elsewhere141. The flux flow is investigated in terms of the Anderson flux flow theory'51 

and the Kosterlitz-Thouless'61 and Berezinskii'71 theories.

7.2 Transport Measurements

The resistivity of the YBCO thin films was calculated from

where R is the low frequency measured resistance, A is the cross sectional area and d 

is the separation between the voltage contacts. A typical resistance temperature curve 

is shown in Figure 7.1. Resistivity measurements were taken for films deposited on 

MgO(lOO), SrTiO3(110) and SrTiO3(100). The resistivity was measured at 100 K and 

250 K, unless otherwise stated. Table 7.1 is a summary of these results along with the 

most probable orientation of the corresponding thin films.
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Sample Substrate P250K ! 
mficm

Piook ! 
miicm

Film
Orientation

T
1  C o n s e t

/K
T Co /  
K

YRF63 M(100) 0.249 0.135 (001) 77 67

YRF67 M(100) 0.334 0.204 (001) 86 82

YRF67 S(110) 1.18 0.672 (110/013) 93 87

YRF71 S(110) 0.865 (110/013) 91 84

YRF86 S(110) 3.022 1.567 (110/013) 91 82

YRF86 S(100) 1.593 0.864 (h00/001) 83 68

YRF91 M(100) 0.199T=150K 0.1275 (001) 82 79

M=MgO, S=SrTi03
Table 7.1

7.2.1 Film Anisotropy

It is clear from these results that the film resistivities at 13 MHz are anisotropic, 

as expected. The c-axis films deposited on MgO(lOO) and SrTiO3(100) have the smallest 

resistivities. The film deposited on SrTiO3(100) which was partially a-axis orientated had 

a larger resistivity than purely c-axis orientated films. The films deposited on 

SrTiO3(110) also demonstrated considerable differences in the resistivity. The ratio of 

the resistivity of YRF67:YRF86 for the thin films deposited on SrTiO3(110) was 1:2.33. 

Note that although the films deposited on MgO(lOO) substrates are c-axis orientated and 

have similar Tc’s (YRF67,91), they do have significant variations in resistivity. The 

reason for this is undoubtly due to the growth conditions. The cause of this shift is 

however a little unclear. A possible reason may be crystal twinning within the film, 

although this phenomena is more commonly observed in films deposited on LaA103. The 

reason why twinning occurs is due to the similarity in the a and b dimensions of YBCO. 

This similarity can result in the a and b orientations changing direction during film 

deposition. This will result in a change in the resistivity of the thin film due to
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anisotropy.

7.3 Resistivity and Anderson’s Resonating Valence Bond Model

A very common method for the examination of the normal electrical properties 

is the fitting equation given by

p = A T  + B  7 2

namely a straight line graph with a T=0K offset, B. It is thought that B is related to 

sample quality. This method was employed here to investigate the normal properties of 

the YBCO thin films. In this analysis the normal resistance RNC is calculated for the 

temperature range, T = 150 - 200 K using results from experiment and the ’least squares 

fit’ method. The curve obtained from the least squares fit is then extrapolated for lower 

temperatures, thus

r nc = R T  + R q 7 3

R is the resistance value given by the least square fit. is the zero temperature offset 

and T is the temperature. Thus by comparison with equation 7.2 above

P B-R0
2 ax 

d A^R 2 ax 
T~ 1A

where 2a, x and d are the film dimensions. This calculation was performed on YBCO 

thin films deposited on MgO(100), SrTiO3( 100) and (110) substrates. The results are 

summarised in table 7.2. These results will be compared with those given by the 

Anderson theory below. The theoiy giving the closest f„ will then be used to investigate 

the Lawrence Doniach and Aslamazov Larkin paraconductivity theories. The accuracy
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of the fitting curves are achieved using ’the least squares fit’ criterion (Easyplot 

program).

Sample Substrate A / 10'6 
Qcm/K

B / lO'3 
Qcm

Tco/K ZError2 !
io -9

YRF63 M(100) 0.725 0.068 67 5.99

YRF67 M(100) 1.22 0.089 82 12.1

YRF67 S(110) 3.03 0.461 87 60.9

YRF86 S(110) 7.59 1.22 82 101

YRF86 S(100) 4.77 0.414 68 795

YRF91* M(100) 1.69 0.13 79 43.1

YRF80 S(100) 4.78 1.859 68 372

Table 7.2
(* - etched film, M-MgO, S-SrTi03)

From the RVB model of superconductivity the resistivity of the YBCO is given 

by

p = A T  + —T  7-s

where A and B are constants for a given orientation and T>TC. Although this equation 

applies to D.C. it is interesting to see how well it fits for low frequency A.C. By 

multiplying equation 7.2 by T to give

p T  = A T 2 + B 7.6

and by plotting pT versus T2 the gradient will equal A and the intercept will equal B, 

see Figure 7.2. Note that the parameter B calculated here is different to that given by 

equation 7.3. The results quoted in table 7.4 and the discussion in sections 7.3.1 - 7,3.3
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are concerned with the value of B calculated from equation 7.6, not equation 7.3.

The calculation described by equation 7.6 was performed on films deposited on 

SrTiO3(110), SrTiO3(100) and MgO(lOO). The best fit was achieved using the least 

squares fit criterion (Easyplot program). The results are summarised in Table 7.3. While 

a reasonable fit can be achieved for the temperature range T>150 K, the curve becomes 

increasingly inaccurate as the temperature approaches the critical temperature.

By comparing the results obtain from this analysis with those from the linear 

analysis, over the same temperature range, T = 150 - 200 K, the linear analysis gives 

the closer fit. It is for this reason that the paraconductivity results given in section 7.4 

are calculated using the linear results obtained above.

Sample YRF63 YRF67 YRF67 YRF80 YRF86 YRF86
Substrate M(100) M(100) S(110) S(100) S(100) S(110)
A /  lO'6 
£2cm / K

0.921 1.48 4.35 6.116 5.94 11 .12

B / 10’3 
£2cm K

5.89 7.69 49.5 175 35.5 105.4

Tco /K 67 82 87 68 68 82
ZError2
n o 9

30.8 48.6 183.1 950 7940 1234

Table 7.3
.(M - MgO, S - SrTi03)

There is quite a spread of values, it is worthwhile therefore to compare these results 

with those obtained from D.C. experiments performed on single crystals(9), as given in 

Table 7.4.

Orientation ab c

A / 10'6 1.4 30
B 0.007 1.35

Table 7.4
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7.3.1 C-axis Orientated Thin Films

For c- axis orientated films, namely YRF63 and YRF67 on MgO(lOO), with 

current transport in the a-b plane, there is good agreement between the measured A from 

the thin films and the single crystal, YRF63 had the largest discrepancy with the single 

crystal and this is reflected in the lower critical temperature. The values of B for the thin

films on MgO(lOO) are also in good agreement with B from the single crystal.

7.3.2 Films Deposited on SrTiO3(110)

The values of A and B are greater in the films deposited on SrTiO3(110) than in 

films deposited on MgO(lOO). The X-ray diffraction pattern of the films deposited on 

SrTiO,(110) revealed that the orientation could be (110), (013) or a mixture of 

(110/013). Due to the anisotropic nature of YBCO the change in orientation is also 

accompanied by a change in the value of A and B. It is not possible to determine any 

information about the film orientation from these results.

7.3.3 Films Deposited on SrTiO3(100)

The X-ray diffraction patterns revealed that several of the films deposited on 

SrTiOj(lOO) were a mixture of a and c axis orientations. The degree of orientation is 

evident in the results, namely that the more a-axis orientated the film the larger A and 

B. The results from YRF80, YRF86 on SrTiOj(lOO) and YRF67 on MgO(lOO) are a 

good example of this. The YBCO (YRF67) on MgO(lOO) is entirely c-axis orientated 

and the values of A and B are 1.48x10* and 7.69x10* respectively, compared with 

1.4X10-6 and 7x10* for a single crystal. The films deposited in YRF80 and YRF86 are 

a mixed (h00/001) phase and this is reflected in the increase in the values of A and B. 

Assuming that the more a-axis phase present the larger the values of A and B it is 

possible to determine therefore that the thin film deposited on SrTiO,(10O) in YRF80
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is more a-axis orientated than the film in YRF86. The effect of a-axis orientation is also 

evident when comparing the films deposited on SrTiO3(100) and MgO(lOO), see Figure 

7.3.

7.4 Paraconductivity

The paraconductivity is given by (re. 3.2.9, p61)

o -lm PnP
PiTP

and from measurements

7.7

„ -i  _ D 2ax _ / rn R \ 2ax
7.8

R is the resistance, d is the distance between voltage contacts, x is the film width and 

2a is film thickness and RN is the normal resistance calculated using equation 7.3 

namely

r n  ~  r t  + R o 7 , 9

were RT is the resistance curve extrapolated from measurements taken between 150 - 

200 K and Ro is the T=0K offset. Equation 7.3 was used to calculate the 

paraconductivity, since it gave a closer fit to experimental results than equation 7 .6, see 

Figures 7.4, 7.5.

7.4.1 Interpretation of Paraconductivity Results

From Aslamazov Larkin (AL) theory the paraconductivity is given by

a -i = 8 she 
tee2 7.10

whereas for Lawrence Doniach (LD) theory the paraconductivity equation is
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O'1 = + [ i l i . (0)- ] e-l}l/2 7 n
7ie2 s ,A l

where s is the superconducting sheet thickness, h is Planck’s constant, e is the charge 

on an electron and ^ ( 0) is the zero temperature coherence length. The best fit was 

achieved using the LD theory as opposed to the AL theory. Using the LD equation it 

was possible to obtain a ’best fit’ as described elsewhere<3>. Briefly, this involves varying 

the values of coherence length, the sheet thickness and critical temperature in order to 

obtain the closest fit to the experimental results. The error in the linear measurements 

used to calculate the paraconductivity does introduce a degree of error in the values of 

the parameters listed below. The critical temperature does not appear to be effected, 

although the gradient of the paraconductivity curve is. For this reason the value of the 

Tc was determined first and the eiror is small. The sheet thickness and coherence length 

were determined for the ’best fit’, as described above. The results obtained were then 

compared with the results obtained when using the errors in the linear results. 

Fortunately the errors were small for each of the films investigated, except for one.

The calculation was performed on films deposited on MgO(lOO), YRF67, 

SrTiO3(110), YRF109, SrTiO3(100), YRF86, and a 1mm wide strip of YBCO (YRF91 

etched). The results are summarised in Table 7.5.

Deposition Substrate Tco/K $(0) / nm s / nm
YRF67 M(100) 79.2±0.2 410.5 1111.5
YRF86 S(100)

YRF109 S(110) 84.0±0.2 1212.0 5017
YRF91 (etched) M(100) 82.510.2 1.6510.4 23.415.

Table 7.5

From these results the sheet thickness of the film deposited on MgO(lOO) was
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found to be s= ll +/- 1.5 À. The zero temperature coherence length was 4 +/- .5 A. The 

film thickness was 680 A indicating that around 60 superconducting layers had been 

deposited. The film deposited on SrTi03(l 10) had a sheet thickness s=50 A with a zero 

temperature coherence length of 12 A. The film thickness was 1900 A, namely 38 

superconducting layers. It was not possible to obtain a good fit for the film deposited 

on SrTiO3(100) due to noise, which resulted in very large errors.

The coherence length and sheet thickness have anisotropic properties, as 

expected. It is also clear that the sheet thickness of the YBCO thin films is far smaller 

than the film thickness. When the coherence length of the YBCO thin film is greater 

than sA/2 the film ceases to behave as 2 dimensional and instead becomes 3 dimensional 

in nature. Given that s is a constant and that

f = M ° >

and furthermore, that the cross-over point is defined by

« >
■s

7.13

it is possible to rearrange the above equations to give

T2D/2D -  1 1 - ------- ---------- ] r c  7 . 1 4
s

Thus for temperatures above T!D(3D the films will be 3 dimensional. This - . i - . i - t . . , , was 

performed and the results for three samples are presented in Table 7.6

Deposition Substrate Tco/K 2̂D/3D ! K
YRF67 M(100) 79.2 58.3
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YRF91 M(100) 82.5 81.7
YRF109 S(110) 84.0 74.3

Table 7.6

For depositions YRF67 and YRF109 the ctoss over temperature is some way from the 

critical temperature and it is likely therefore that no 2 dimensional behaviour will be 

observable. For YRF91, however, the crossover temperature is less than 1 Kelvin below 

the critical temperature. The temperature dependence of the resistance below the critical 

temperature is examined in Figure 7.6. Note that the resistance scale is logarithmic. It 

is clear that the resistive properties of YRF91 do differ significantly to those of the other 

films. This behaviour is thought to be due to the flux unbinding and will be examined 

in more detail below. If it is assumed that the behaviour observed in YRF91 is due to 

flux flow and the films 2 dimensional behaviour then other films displaying similar 

behaviour must also be 2 dimensional, namely that they have a significantly smaller 

coherence length than sheet thickness. Examination of many films revealed that the 2 

D behaviour is present in films deposited on MgO(IOO), SrTiO,(100) and SrTiOj(llO) 

see Figures 7.7, 7.8 and 7.9. These results will be investigated below using the 

Kosterlitz-Thouless and Berezinskii theories.

7 J  Interpretation of the Intermediate Region in terms of the Kosterlitz Thouless 

Berezinskii Theory

It is clear from the results given above. Figures 7.7-9 that Anderson's flux flow 

model is not adequate in explaining all of the phenomena observed in the transition 

region. This is not vety surprising in light of the sheet thickness and coherence length 

measurements that imply that some thin films of YBCO will behave as 2 dimensional 

films within certain temperature regions. From the KTB theories discussed in chapter
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3 the temperature dependence of the resistance was given by

R -  AR*exp-2 L] Uz
' 1 l KTB>

Putting A=1 and taking logarithms of both sides and re-arranging this becomes

U n it )-» T-T,KTB
7.16

Thus plotting (In (R/R»))'2 vs T will enable us to determine the accuracy of this theory 

with respect to the thin films deposited here. Figures 7.10-13 represents the resistance 

of films thought to be 2 dimensional in nature. The intermediate region is due to flux 

flow in the thin films. In Figures 7.10-13 the temperature dependence of the flux flow 

is calculated using equation 7.16. It is quite clear that for each film the temperature 

dependence is that predicted by Kosterlitz Thouless and Berezinskii. Using these results 

it is possible to determine the Tktb temperature and the value of b, a non-universal 

constant. The results are summarised in Table 7.7.

Deposition Substrate Tco/K Tktb ! K b
YRF57 S(110) 65 40 6.6
YRF65 M(100) 47 23 2.8
YRF81 S(100) 59 43.5 3.99
YRF91* M(100) 82.5 75.5 2.4

* Etched thin film
Table 7.7

The values of Tktb vary significantly in these results and are often far smaller 

than the critical temperature. This may help explain some of the anomalies observed and 

investigated below. The values of b also vary. It is interesting to note that the largest
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value of b was for the film deposited on SrTiO3(110), were as the smallest value was 

for the film deposited on MgO(lOO). The value of b may be anisotropic, although there 

are not enough results here for a conclusive interpretation.

7.6 Dissipation due to the application of an external magnetic field

It is possible to examine the magnetic properties of ’3D’ YBCO thin films 

using the results obtained from the experiments performed by Y.M. Wan. Using R.F. 

sputtering a thin film of YBCO was deposited onto MgO. X-ray diffraction showed that 

the film was c-axis orientated. The zero resistance critical temperature of the film was 

79 Kelvin. Using several magnetic fields, the temperature of the sample was allowed to 

raise through the transition temperature. Using the 4 probe arrangement, with a small 

dc current source it was possible to obtain a series of curves representing the resistance 

of the thin film during the superconducting transition for each value of B. Figure 7.14 

shows the variation of resistance with B-field at several different temperatures.

7.6.1 Interpretation of the results using Anderson Flux Flow Model

In the flux flow theory, by Anderson, the dissipation due to flux movement 

within the thin film would increase with the application of a magnetic field. The 

increased dissipation is given by,

= i I £ £ e x p - ( l - 4 ) - i ^
<V - V

7.17

This equation predicts that the resistivity of the YBCO sample is directly proportional 

to the applied magnetic field. Results show that a linear relationship exists, namely that 

R is directly proportional to B, see Figure 7.15. If the resistance is extrapolated back to 

B=0 gauss, however, it does not tend to zero as predicted by equation 7.17. The most
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likely reason for this is thermal fluctuations and not KTB flux flow.

The logarithm of the dissipation due to flux flow is inversely proportional to 

temperature as shown below

ln p  = l n ~ °̂-a°g - J ^ L  7  jo
J  j J  kBT 7M

For log R vs 1/T for a constant B field, the above equation again predicts linear 

dependence. Figure 7.16 shows that this is true. It is interesting to note that by 

extrapolating the linear regions of the log(R) vs B graphs they all converge at a point, 

marked by A in Figure 7.16.
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7.7 Summary of Chapter 7

The a.c. resistivity results obtained from the YBCO thin films were anisotropic 

as expected. The a.c. resistivity of the films deposited on MgO(lOO), namely c-axis 

orientated films, were the lowest, ranging from 0.177 to 0.271 mficm at 100 K. The a.c. 

resistivity of the YBCO thin films deposited on SrTiOj(110) were found to vay  from 

0.627 to 1.567 milcm at 100 K. The reason for the large range of values is due to the 

degree of (110V(013) orientation. The exact relationship between the resistivity and 

orientation is still to be determined for films deposited on SrTiO3(110). The resistivities 

of the films deposited on SrTiO3(100) also varied. The lowest resistivity occurred in the 

a/c-axis orientated films deposited on SrTiO3(100).

The temperature dependence of the normal region was investigated using the 

Resonating Valence Bond theoiy. The films deposited on MgO(lOO), namely the c-axis 

orientated films were found to be similar in nature to c-axis orientated single crystals. 

The films deposited on SrTiO, gave results implying that mixed orientation had 

occurred, as expected.

The normal results were also investigated using paraconductivity theory. The 

results from experiment were found to be in good agreement with the Lawrence Doniach 

theory of paraconductivity. The theory is based on the film being either 2 or 3 

dimensional, depending on the temperature. Using the theory it was possible to calculate 

the coherence length and the superconducting sheet thickness. These were found to be 

anisotropic with values of $(0) from 1.65 to 12 A and s from 11  to 50 A respectively. 

The theory implies that the films are 2 dimensional except when T is close to Tc the 

critical temperature. Results demonstrated that certain films are 2 dimensional to within 

a few degrees of Tc. Examination of the superconductor region revealed that these films 

only became superconducting after passing through an intermediate mixed phase region.
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The intermediate region is not present in all the films deposited. Many films do not 

appear to pass through the intermediate stage and these are thought to be 3 dimensional 

except at low temperatures. The films displaying intermediate behaviour were 

investigated using 2 dimensional superconductor theories. Results demonstrated that the 

thin films were in good agreement with theory. A film displaying 3 dimensional 

behaviour was investigated using an externally applied magnetic field. The results were 

in agreement with existing 3 dimensional flux flow theory. The films also appear to be 

both 2 and 3 dimensional, depending on the temperature. The behaviour of the resistivity 

is in good agreement with existing theories.
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7 .9  Captions

Figure 7.1 : A typical resistance-temperature curve of an oxygen deficient YBCO thin 

film. S, I and N represent the superconducting, intermediate and normal regions 

respectively.

Figure 7.2 : Resistivity multiplied by temperature versus (temperature)2 for a YBCO thin 

film deposited on MgO(lOO). Using the curve and equation 7.6 it is possible to 

determine the values of A and B.

Figure 7.3 : Resistive-temperature curves for films deposited simultaneously onto 

substrates of MgO(lOO) and SrTiO3(100). The anisotropic nature of the YBCO is clear. 

The film deposited on MgO(lOO) is entirely c-axis orientated, where-as the film on 

SrTiO3(100) shows signs of mixed a and c-axis orientation.

Figure 7.4 : The resistivity and paraconductivity curves of a YBCO thin film deposited 

on MgO(lOO). The paraconductivity was calculated using equation 7.8. The extrapolated 

normal resistivity was calculated using equation 7.9. The theoretical paraconductivity 

curve is obtained from Lawrence Doniach theory, equation 7.10.

Figure 7.5 : The resistivity and paraconductivity curves of a YBCO thin film deposited 

on SrTiO3(110). The paraconductivity was calculated using equation 7.8. The 

extrapolated normal resistivity was calculated using equation 7.9. The theoretical 

paraconductivity curve is obtained from Lawrence Doniach theory, equation 7.10.
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Figure 7.6 : The logarithmic resistance versus temperature curves of 3 YBCO thin films. 

It is clear that the transition region of the YBCO thin films varies significantly, namely 

that although curves (a) and (c) have a different residual resistance, the curves are 

basically the same. Curve (b) is however, significantly different. The intermediate region

of the curve is thought to be due to flux flow as predicted by KTB theory, equation 

7.11.

Figure 7.7 : The flux flow region predicted by KTB theoiy is present in the oxygen 

deficient YBCO thin film deposited on MgO(lOO),

Figure 7.8 : The flux flow region predicted by KTB theory is present in the oxygen 

deficient YBCO thin film deposited on SrTiO3(100).

Figure 7.9 : The flux flow region predicted by KTB theoty is present in the oxygen 

deficient YBCO thin film deposited on SrTiO3(110).

Figure 7.10 : The flux flow region of the YBCO thin film deposited on SrTiO,(l 10) is

investigated using equation 7.16. A good fit is achieved over a large section of the flux 

flow region.

Figure 7.11 : The flux flow region of the YBCO thin film deposited on MgO(100) is 

investigated using equation 7.16.

Figure 7.12 : The flux flow region of the YBCO thin film deposited on SrTiO3(100) is 

investigated using equation 7.16.

171



Figure 7.13 : The flux flow region of an etched YBCO thin film deposited on MgOflOO)

is investigated using equation 7.16.

Figure 7.14 . The transition temperature from normal to superconducting phase is 

suppressed by the application of an external magnetic field. The effect of the 

suppression, although small, is visible.

Figure 7.15 . The film was 3 dimensional in nature. The magnetic properties are found 

to in agreement with existing flux flow theoiy, namely a linear response to an applied 

magnetic field, equation 7.17.

Figure 7.16 : The transition region of the 3 dimensional film is inversely proportional 

to the temperature as predicted in equation 7.18.
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CHAPTER 8: IMPEDANCE ANALYSIS

8.1 Inductance Measurements

This chapter concerns the results obtained from the R.F. impedance 

measurements. The impedance was measured using an impedance analyzer set in the 

series R-X mode as described earlier. Typical results for films deposited on MgO(lOO), 

StTiCyiOO) and (110) are shown in figures 8.1, 8.2 and 8.3. Note that although the 

temperature dependence of the reactive term is similar for each film the magnitudes are 

somewhat different.

8.1.1 Substrate Effects

The variation in the size of the reactance of the samples was initially assumed 

to be due to the substrate used. Analysis shows that this is not the case. Films deposited 

on SrTiO3(100) with c-axis orientation have a similar reactance curve to those films 

deposited on MgO(lOO), see figure 8.4. Since the relative permittivities of MgO(lOO) 

and SrTiO3(100) vary by over 70 at 77K it is clear that the substrate cannot be directly 

responsible for the differences observed in the other films.

The substrate can influence the orientation of the thin film deposited and it is 

thought that this difference in orientation may cause the changes observed in the 

reactance.

8.1.2 Stray Inductance

In the graphs given in figs 8.1-8.3 the reactance for T<TC is positive for each 

film investigated. This agrees with theory since the only terms influencing the reactance, 

below Tc are the geometric inductance, the kinetic inductance of the super electrons and 

the stray inductance due to the external wiring. It is assumed that when using this
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technique the kinetic inductance is vety small as T -» OK. Thus at absolute zero the 

inductance measured is due to the geometric and stray inductances. From theory the 

geometric inductance is given by ft,a!d/6aX (from equation 3.90). Thus taking the 

dimensions of a typical film, namely 2a=10’m. d=I0‘V  X=l(rtn and ^ = 4  A0'\ the 

stray inductance due to the geometry is of the order of 10 “H. This is 10’! times smaller 

than the inductance recorded as T -» OK. It is thus assumed that the geometric 

inductance is negligible. The only remaining term is therefore, the stray inductance due 

to the wiring. The magnitude of the stray inductance is similar in films deposited on the 

various substrates,. The T=0K value of the inductance, namely the stray inductance, is 

subtracted from the measured inductance to leave the inductance due to the film see 

section 8.3.1.

From this argument it now appears that each film has a positive reactance for 

T<TC and a negative reactance for T>TC. It seems therefore that irrespective of the film 

orientation and/or substrate the normal reactive properties are negative, i.e. capacitive. 

The magnitudes do differ however and this is thought to be due to the anisotropic nature 

of the YBCO. A valid explanation of this phenomena is difficult to find particularly in 

the films deposited on MgO(lOO) which are c-axis orientated. For the films deposited 

on SrTiO3(110) and (100) it may be argued that the capacitance may arise due to the 

"insulating layers" separating the CuO conducting layers, since the CuO layers are tilted 

in the (110/013) and (100) orientated films. This would not account for the measured 

inductance in the films deposited on MgO(lOO), although it may account for the small 

size. It may be that there is a small interlayer capacitance present in the films deposited 

on MgO(lOO), although it seems more likely that the capacitance may arise at the grain 

boundaries where semi conducting YBCO may exist.
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8.2 Normal Impedance Measurements

For the growths YFR67 and YRF62, YBCO was sputtered onto SrTiO3(110),

SrTiO3(100) and MgO(lOO). The resistivity and the reactance ratios, measured at 100 

K, are shown in Table 8.1.

Sample No. P 100k( 110VP|OOk(1 00) X,ooK(nO)/X1(X>K( 100)
YRF67 3.32 28.3
YRF62 4.5 31

Table 8.1

Resistivity (p) and Reactance (X) ratios for YBCO R.F. Sputtered 
simultaneously onto MgO(lOO) and SrTi03(l 10), (YRF67) and SrTiO3(100) 
and SrTiO3(110), (YRF62). p and X measured at 100K.

The film on SrTiO3(100), YRF62 was thought to be almost entirely c-axis 

orientated. The film deposited on SrTiO3(100) in YRF80 was a mixed phase and this is 

reflected in the ratio of the reactance of the films deposited on SrTiO3( 100) and 

MgO(lOO) which was 314:1. The reactance of the film on MgO(lOO) was almost zero. 

The ratio of the resistance between the films in YRF80 was 4.5:1 respectively.

8.3 Superconducting Inductance Measurements

For temperatures below the critical temperature the inductance change is 

considered to be due to the inertia of the superelectrons. Figure 8.2 is a typical 

inductance-temperature curve for temperatures below Tc. Besides curves of this nature 

there are also several anomalous results that cannot be explained by existing theory and 

these will be examined below. This first section is an interpretation of the curves using 

London theory.
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The equivalent series inductance Lm is obtained directly from equation 3.90

L -  ^  d  + ^  d  * 7
W U 4 (± )* 2aX 3 2aX W 8,1V

8.3.1 Kinetic Inductance and London Theory

where Lm is the measured inductance, 2a is the film thickness and X is the film width 

X is the penetration depth and 5 is the skin depth. Lw is the inductance due to the stray 

components, contact wires, silver paint etc., and the second term in the above equation 

is the inductance due to the geometry of the film. Assuming that the inductance term 

due to the film geometry is very small compared with the stray impedance then

M 2 d

1 +4(—)4 2aX 
Ô

+LC lc= ^ 1 j L
3 2aX

+LW « Lw 8.2

Thus at the frequencies concerned, f = 13MHz, S » \ ,  equation 8.2 simplifies to

L = M 2—  + L . 
n 0 2 aX . c 8.3

The penetration depth is given by

^ 0 8.4

where Le is the equivalent inductivity of the film (see reference 4 equation 4), co=2tif, 

f  is frequency of the a.c. signal, £=£,& is the permittivity and p0 is the permeability of 

free space. For T<TC the equivalent inductivity is assumed to be dominated by the 

kinetic inductance, L ^ p ,^ 2. Hence

X2 = m X2
a l

X2a l
8.5
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Assuming » ^ « 1 , then Substituting the Goner-Casimir equation for X,

equation 8.3 becomes

a
K  -  Mo—[ ! - ( r )4] 2aX 8.6

Taking equation 8.6 for T=0K gives

^t-ok ~ +̂ c ® Lc

Equation 8.7 is used to determine Lc. Thus taking = Lc gives

L -  Lfff C
Fo^o d

as T -> Tc. Defining

h  ^ 0^0
2 d

2 aX

8.7

8.8

8.9

and dividing 8.8 by 8.9 gives

Lm - L c _____i _ _

Lo l-(J -)*  8.10
l c

By plotting (Lra-Lc)/L0 against 1/(1-(T/TC)4) the results should give a straight line with 

gradient of 1. L0 is chosen to give the curve with the gradient closest to 1. The

penetration depth may be calculated from L,, using eq.8.9. The results are summarised 

in Table 8.2, see Figures 8.3,.4,.5.
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Deposition Substrate Lc /nH Lo/pH Tc / K ^(0) /  pm
YRF95 M(100) 16.73 29.67 71 4.86
YRF81 S(100) 11.63 128 57 10.58
YRF67 S(110) 8.35 18.47 86 2.24

Table 8.2

From these results it is clear that Lq«  Lc, the approximation in equation 8.7 is 

valid. The measured value of X(0) obtained from the films tested is far larger than 

expected. The values are not uniquely large however, and several groups have reported 

penetration depths of similar magnitude'1̂ . It is unfortunate that further work was not 

performed by others. As a result the reason for such observations is still unclear. The 

Ambegaokar-Baratoff (AB) theory predicts that the intergranular penetration depth can 

be far larger than the London penetration depth. The temperature dependence of the AB 

penetration depth is, in the region T>0.9TC, almost the same as that of the London 

penetration depth, hence the good fit of the results. Alternatively, if the superconductor 

is dirty then from Ginzburg-Landau theory the penetration depth will be given by

-  0 . 3 7 8 .
1 l Tc -T

Taking the T=0 kelvin London penetration depth V  = 0.15 pm for a c-axis orientated 

thin film (YRF95) and assuming the penetration depth value of 3.6 pm is the Ginzburg

Landau penetration depth, then I j l  is around 1524, i.e. £ »1  which is the condition for 

a dirty superconductor.

8.4 Anomalous behaviour in the YBCO Thin Films

Although the London Theory was found to give good agreement with experiment 

over certain temperature regions near Tc, marked deviations also occutred. These results
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are interpreted in terms of a 2D-3D cross-over as described below.

8.4.1 Anomalous Thin Films

An example of the anomalous behaviour is shown in a film deposited on 

MgO(lOO), YRF85, Figure 8.6. The stray inductance has been subtracted using the 

process described in section 8.1.2. The x-axis is the normalised temperature, given by

1
norm

i c

8.11

with Tc=68 K. For values of the normalised temperature, TnofTn>12, the inductance 

follows the normalised temperature linearly as T approaches Tc as expected. In the film 

shown in Figure 8.6 there is an agreement between London’s theory and the results for 

values of Tnorm>12 up to Tnonn=250, corresponding to T=0.997TC, i.e. to within about 0.25 

K of Tco. It is for values of Tnorm<12, corresponding to T=0.9 TC=61.K, that the 

anomalous behaviour occurs. In Figure 8.7, the area of interest has been expanded. The 

inductance decreases sharply at around Tnomi=12. At the same point there is a 

corresponding increase in the resistance. The resistance peaks and then decreases as the 

temperature is lowered. A film deposited on SrTiO3(110), (YRF70), also showed 

anomalous properties, as shown in Figure 8.8. Again the region of interest has been 

displayed. In this film the TC=85K and the anomaly occurred at Tnorm=3, corresponding 

to T=0.66TC=56.1 K.

The reason for this anomaly may be the 2D-3D cross-over point as previously 

discussed. In the section on paraconductivity, the sheet thickness and coherence length 

of a c-axis YBCO film deposited on MgO(lOO) were calculated to be s= 11 A and

5(0)=4 A respectively. The cross-over point from 2 D to 3D occurs when the coherence

length Given that
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8.12
l  = S c

(X -~ )112
Tc

men tor r=0.9Tc, §=

that for Tnorm=12 the film is 3 dimensional. If this is the correct interpretation of the 

behaviour then the film deposited on SrTiO3(110 ) becomes 3 dimensional when Tnorol>3, 

corresponding to T=56.1 K. This would explain the absence of an intermediate flux flow 

region observed in films deposited on SrTi0 3(l 10), i.e. the films are 3 dimensional and 

do not have a temperature region where spontaneous flux production takes place.

8.5 Film With a Resonance at 50 K

The film deposited in YRF117 was vety thin due to the reduced deposition lime. 

The gas ratio was 4:1, Ar:02, with a pressure of 280 mTorr. The substrate deposition 

temperature was 700°C. The deposition lasted around 4 hrs 50 min and the resulting film 

was approximately 800 A. The films resistance-temperature curve demonstrated that a 

superconducting films had been deposited, see Figure 8.9, The resistance and inductance 

curve was typical of that seen on many other films, namely negative normal reactance 

becoming positive ss the film becomes superconducting with a Tq>80 K The no 1 

behaviour of this film was similar to those discussed earlier. Around 70 K the behaviour 

deviated from that normally expected. Below 70 K the resistance and inductance became 

negative. For YRF117 the resistance and inductance pass through a resonant point at 

about 50 K, Figure 8.10. The resonant temperature was found to depend on the 

frequency of the applied current. The higher the frequency the lower the resonant 

temperature. The observed resonance can be modelled using the equation 

where
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R -  A
" 20(1 +Z2)

Lm = (-^ r+ l)7 .5x lO -10 
1+X2

8.13

X P +
1

<oLx 8.14

B and A are undetermined. From equations 8.13 and 8.14, the theoretical graph 

shown in Figure 8.11 was produced using

-4=' (1+^ ) 1 P = - |(375+1.3T> . _ L .2 4 ( 1 - ( Z ) ‘) .
A l c

By altering the values of the variables in the above equations it is relatively easy to get 

a very close match to that of experiment. The question is of course what the variables 

represent. Karim® carrying out microwave experiments reports anomalous results in this 

temperature region for single crystals of YBCO. Karim’s group report that the 

absorption of microwaves reaches a maximum between 39.5 and 52 K. They verified 

that the observed results were due to the YBCO sample alone. They go on to suggest 

that the anomalous behaviour may be a result of flux lattice melting. According to 

Nelson® this would take place at 28 K.

8.6 Investigation of Etched Thin Films

According to equation 3.90 the normal and superconducting resistance and 

inductance are dependent on film dimensions. The theory predicts that by reducing the 

cross sectional area of the thin film, the resistance and inductance will increase. This 

increase in resistance or inductance will make observations and changes more 

pronounced and this will allow for more accurate measurements. To test this theory it 

was necessary to produce films with varying dimensions. A film was deposited onto an 

MgO(lOO) substrate, YRF 91. The film was 110 0  A thick, W 84 K, Tco= 8 1  K. The
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resistivity was 5.48xl0'6 Qm at 250 K reducing to 2.82xl0'6 Qm at T=100 K. A further 

film was deposited onto an SrTiO3(110 ) substrate, YRF109. The film was 1900 A thick, 

TconSet=84 K and the Tco=82.6 K, the sharp transition implying that a high quality thin 

film had been deposited. The resistivity of the film at T=100 K was 1.942xl06i2m. The 

results of the etched films are shown in Figures 8.12, 8.13 and 8.14 respectively.

8.6.1 Normal region

The effect of etching, on the normal behaviour of the thin films, is quite clear. 

The low frequency resistance from equation 3.90 is

R =
2 aX 8.15

Since X represents the film width, any change in X can be observed by plotting 1/R 

against X, Figure 8.15. Repeating this calculation on the inductance

L 8.16

where p=M#r, \i is the permeability, p, is the permeability of free space, pr is the 

relative permeability and k, is a numerical constant, a similar result occurs as shown in 

Figure 8.15. It can be seen from Figure 8.15 that the results are in agreement with 

equations 8.15 an 8.16.

8.6.2 Temperature dependence of etched thin film

It is possible to use the above results to investigate the effect of etching on the 

temperature dependence of the normal behaviour. The uniformity of the thin film can 

be determined from these results. From Figure 8.14 the strips 1 and 2 are of slightly 

poorer quality than strips 3,4 and 5. Strips 1 and 2 are the thinnest strips. Strips 3-5
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have same critical temperature, this implies that a uniform film 

60 % of the substrate.
tnay existed on at least

8.6.3 Superconducting region

From the analysis of an alternating electric current in a superconducting thin 

film(4) it is possible to derive terms to represent both the resistance and inductance for 

the low temperature region, namely the region where T « T C. These are,

where X is penetration depth, to = 2ttf, f  is frequency of ac signal, p. is the normal state 

resistivity. Both equations predict a linear relationship with the inverse of X. The results 

were calculated using the method described in section 8.1.2. The results are shown in 

Figure 8.16. Fig 8.16 is the inverse of the inductance and resistance of each strip below 

the critical temperature. The results do not show the predicted linear behaviour. The 

most likely reason for this is the film inhomogeneity. Examination of the temperature 

curves reveals that strips 1 and 2 have a different critical temperature. This 

inhomogeneity will result in each of these strips having a different penetration depth. 

The magnitude of the penetration depth will not be constant for a given temperature. It 

seems likely that the film was not linear enough to investigate the equations for 

superconductivity given above. It is interesting to note that the in the normal temperature 

region, the results fitted the theoty well, as described in section 8.6.1 .

8.17

8.18
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8.6.4 Critical current measurements

The dc critical current measurements were carried out on YRF9I on MgO(lOO) 

and YRF109 on SrTiO,(100) using the thinnest strip available from the wet etching 

technique. The strip width was 140 pm for the film deposited on SrTiO,(l 10) and 230 

pm for the film on MgO(lOO). Using the criterion that the current required to produce 

a voltage of 1 pV across the voltage terminals represents the critical current, it was 

possible to determine the critical current for various temperatures for the film deposited 

on MgO(lOO). Figure 8.17 is the critical current measurements versus temperature.

8.6.4.1 Interpretation of the Critical Current Measurements

The temperature observed in Figure 8.17 has been observed on several occasions 

by different groups and is quite common for YBCO thin films. Using the Ambegaokar- 

Baratoff theory the critical current behaviour can be represented by

' f  -  m - f )  g. , 9
•*c

where K=0.081. and Tc is the critical temperature. Performing this calculation on the 

results shown in Figure 8.18, a relatively close fit occurs. This is a very interesting 

result since the behaviour described is that expected for Josephson junctions. This 

implies that the strip is made up from many Josephson junctions. This is supported by 

the measurements of penetration depth discussed above which also implied that the strip 

may be many Josephson junctions in the form of a two dimensional array.

For the film deposited on SrTiO3(110) the current carrying capabilities were far 

superior to those of the thin film on MgO. At 77 K the critical current of the thin film 

was Jc>3.76xl04 A/cm2, (note that this was the largest critical current available at the 

time of the experiment. Later experiments on other films demonstrated that the critical
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current was in excess of 3x10s A/cm2.)

8.7 A New Equivalent Model for YBCO thin films

It has become clear that it is possible to obtain a good fit for London’s theory 

for temperatures not to close to Tc, namely T<0.98TC. The investigation into the resistive 

behaviour, predicted by the same theory, clearly demonstrates that for values of T « T C 

we also obtain a reasonable fit as shown previously. Besides these results there is also 

anomalous behaviour within the thin films that is contrary to that expected from theory. 

The most peculiar results occurring in a very thin film, that under went a resonance 

effect approximately 30 K below the film’s critical temperature. In this next section 

these results are examined in terms of an equivalent model.

8.7.1 Equivalent Circuit Model

The model developed here is based on the Gorter Casimir (GC) two fluid theory. 

The present picture of the GC model is of a superconducting phase in parallel with the 

normal phase. The superconducting phase has no resistance, though it does exhibit an 

inductance in an alternating electrical or magnetic field. The inductance is due to the 

inertia of the superelectrons and is directly proportional to the number of superelectrons. 

This picture is not adequate for describing the present materials since it does not include 

flux flow phenomena. The model will be further complicated by the broadening of the 

phase transition, though this will be dealt with elsewhere. Results have shown that above 

T but below Tcrero there can exist a measurable resistance due to flux flow. This 

resistance is small in magnitude compared with the normal state resistance, i.e. the 

resistance when T » T C. Thus if the resistance due to the fluxons is given by Rf then an 

equivalent model is shown in Figure 8.19. The normal component is still in parallel with
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the ’super’ component. There is now however a flux flow term in series with the kinetic

inductance. Analysing this circuit in terms of a series equivalent circuit gives Z= R+jX, 

where

P .  820  

( V « /  *

8.7.2 Equivalent model for T<TKXB

With T < Tktb, the dissipation due to the fluxons is zero since R,=0 due to the 

flux pinning that takes place at these temperatures. Applying this to the equations 8.20 

and 8.2 1 ,

R = 8.22

and

X = j o ) L  -  M L tf+ < » 2LnLs(Ln+Ls)) 

R2n+<*2(Ln+L f
8.23

assuming that R„ »  co(Ln + Ls) this further simplifies to

R = o> % 2

R.
8.24

and
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8.25
R?

i . .m s

which are similar to the results given in Raven’s analysis.

8.7.3 Equivalent model with TKra<T<Tc

With the temperature of the thin film in excess of Tktb the flux present in the 

sample is free to move within the sample. This implies that Rf will no longer be zero. 

Assuming however that R, is very small and that Rn»  Rf, <o(L„ + Ls) namely that the 

temperature is only slightly greater than Tktb, but still significantly smaller than the 

critical temperature, then equations 8.20 and 8.21 become

R = Rf +
2j 2o rl,

8.26

and

L m B Ls  8.27

Thus the resistive behaviour will be altered by Rf, where-as the inductive term is, to a 

good approximation, unaltered. This has been bom out by the experimental results, 

namely that in using the London model to describe the results, a better fit exists for the 

inductive term than for the resistive term. Furthermore by rearranging equation 8.26 and 

substituting from equation 8.27 we obtain

R, = R -
R.

8.28

Since Lm and R are results from measurement and Rn can be calculated from 

extrapolating the normal resistance, as described in chapter 7 , we calculate the resistance
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due to the fluxons. As the temperature decreases the dissipation due to the flux flow also 

decreases and eventually falls to zero, this is the zero dissipation temperature.

8.7.4 AC Dissipation in a Magnetic Field

Using the solenoid described in chapter 5, a magnetic field was applied 

perpendicular to the thin films. By adjusting the current in the solenoid the magnitude 

of the applied magnetic field was varied from 0 to 300 gauss. Figure 8.20 shows the 

behaviour of the inductance for various magnetic fields.

According to the theory the inductance, which is approximately equal to the 

kinetic inductance does include a term representing the resistance due to the flux, as 

shown

Lr f * Lr t t u\L,(L.*L.) LJt}
8.29

where L, is the normal inductance, R, is the resistance due to the dux flow, R„ is the 

normal resistance, L, is the super inductance and L* is the measured inductance. The 

flux term is small and has little effect until the temperature approaches T„ namely, the 

point at which the kinetic inductance becomes large. As the temperature increases 

however and R, becomes large enough to influence L_ the inductance should decrease 

more rapidly as the field increases, since 1 ,  is negative in magnitude. Both predictions 

are examined in Figure 8.20. The graph shows that at 80 K the magnitude of the 

inductance increases with an increase in magnetic field. As the temperature rises and the 

flux begin to flow the inductance decreases as predicted. Since the magnitude of the flux

is dependent on magnetic field, the inductance decreases most rapidly for the largest

applied magnetic field.
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8.7.5 Simulated Results using the Model

A further test of the validity of this model is the simulated resistance and 

inductance predicted by the above equations. The various parameters were taken to be 

as close to real results has possible. For example, the normal resistance is linear 

dependent on temperature and has a small residual value at T=0 Kelvin. A similar linear 

dependency was used to calculate the normal inductance. The super kinetic inductance 

was calculated using London’s equation, namely, the temperature dependency was that 

given by Gorter and Casimir. The flux flow term was the most difficult to describe, 

since it is the most complicated and least understood of the four parameters. It is due 

to the complexity of the flux flow that in this model it has been represented initially as 

linear dependent. This is an approximation that can be improved on by using the 

temperature dependence for Rf given by the KTB theories. The immediate point to be 

made is that this model can be used as a fair representation of the behaviour of the 

inductance and the resistance.

Using a Tc=88 Kelvin, R„= 4 + 0.03T, Ln= 6e-llT - le-8, Rj= 0.5 (85-T) with 

R^O for T<85 K i.e. the film is considered to have zero dissipation due to flux for 

T<85K, for T>85K the flux increases linearly and L,= Lq/( 1 -tA4), where t=T/Te, 

equations 8.20 and 8.21 give the results shown in Figure 8.21. The sharpness of the 

transition compared with experiment is due to ignoring the broadening of the transition 

due to thermal fluctuations. Examining Figure 8.22, which represents the inductance and 

resistance below Tc, a similar behaviour from that given by experiment occurs. Namely 

the peak in the inductance and the reduction of the resistance to a very small value. 

Taking the model a step further by including broadening of the transition and by 

replacing the linear resistance with that predicted by Kosterlitz Thouless and Berezinskii 

it will be possible to obtain even better results. From the curves already shown it is
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possible to see the similarity between experiment and theory. Thus it seems that this is 

a reasonable model for representing the YBCO thin films in this type of electrical 

measurement.

203



R.F. contact experiments revealed that the reactive nature of the YBCO thin films 

was anisotropic. The reactance seems to be more sensitive to changes in the orientation 

than the resistivity. This may prove more useful for determining the orientation, or 

degree of orientation in the case of the mixed phase, of a thin film.

The inductance measurements were used to calculate the penetration depth. The 

penetration depth was found to be much larger than expected, having values ranging 

from 2.24-10.58 pm. The Ambegaokar and Baratoff theory suggests that this is due to 

the granular nature of the thin films, namely that the films may be similar to a 2 

dimensional array of Josephson Junctions. There is some evidence from the critical 

current, namely a I273 vs temperature dependency, that this may be the case. It is also 

possible however that the films measured were dirty superconductors i.e. £ » 1, this 

would also explain the large penetration depth.

The inductance measurements also revealed anomalous results in certain YBCO 

thin films. The anomaly was observed as a sharp deviation from the expected 

temperature dependence of the inductance. Examination of the resistivity revealed that 

the anomaly caused a temporary increase in the resistance as demonstrated in Figures 

8.7 ,8.8. The reason for the anomaly is not clear although the 2D-3D crossover may be 

the reason.

A thin film revealed a resonance effect at 48 K, previously unseen. The effect 

was easily modelled using dielectric theory equations, although an explanation for the 

behaviour as yet to be found. This phenomena is particularly interesting since Karim 

also reports absorption of microwaves around this temperature region.

The resistive behaviour in a magnetic field was investigated for a thin film 

thought to be 3 dimensional in nature. The results were in good agreement with

8.8 Summary of Chapter 8
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Anderson's flux flow theory. The behaviour of the inductance in a magnetic field was

found to be in qualitative agreement with theory.

An etching technique using ferric nitrate was successfully used to produce thin 

strips of YBCO. Examination of the normal region was in agreement with theory. The 

transition region revealed that after etching 60% of the film was uniform having the 

same critical temperature. The other region was degraded slightly resulting in a Tc 1 K 

lower. It was not possible to investigate the the superconducting region of the thin strips 

accurately because of the contact inductance and resistance. The reason for this is not 

clear although the most likely reason is changes in film structure across the film.

Critical current measurements revealed that some films deposited on MgO(lOO) 

did have an v T dependency. This is predicted by the Ambegaokar Baratoff theory 

and is in agreement with the penetration depth measurements mentioned above. The 

largest critical current measurements were taken from films deposited on SrTiO3( 110 ) 

At 77 K the Jc>3xl05 A/cm2.
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8.10 Captions

Figure 8.1 . A typical resistance/inductance versus temperature curve of a YBCO thin 

film. L100 is taken as the inductance at 100 K.

Figure 8.2 : A typical inductance temperature curve around the critical temperature 

region. This film is a slightly oxygen deficient form of YBCO. Tc is taken as the peak 

of the inductance curve.

Figure 8.3 . The normalised inductance vs normalised temperature curve of a YBCO 

thin film deposited on MgO(lOO), obtained using equation 8.10, Lc=16.73 nH, L =29.67 

pH.

Figure 8.4 : The normalised inductance vs normalised temperature curve of a YBCO 

thin film deposited on SrTiO3(100), obtained using equation 8.10, Lc=l 1.63 nH, L0=128 

pH.

Figure 8.5 . The normalised inductance vs normalised temperature curve of a YBCO 

thin film deposited on SrTi03(l 10), obtained using equation 8.10, Lc=8.35 nH, L0=18 47 

pH.

Figure 8.6 : Anomalous inductance behaviour occurred in a YBCO thin film deposited 

on MgO(lOO). Note that the temperature as been normalised using equation 8.11. The 

inductance is given by 8.9.
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Figure 8.7 : The anomalous region of fig 8.6 is expanded. Notice that the resistance is 

also anomalous in its behaviour.

Figure 8.8 : The anomalous behaviour is also visible in thin films deposited on 

SrTiO3(110). This film as a TC=85K, the anomaly occurs at around 56 K.

Figure 8.9 : The resistance-inductance of a very thin film deposited on SrTiO3(110). 

Notice the anomalous behaviour between 40-60 Kelvin.

Figure 8.10 : The anomalous region of fig 8.9 as been expanded. The resonance 

behaviour is clearly visible.

Figure 8.11 : Fig 8.10 is modelled using equations 8.13 and 8.14. The results are very 

similar to the theory.

Figure 8.12: The resistance-temperature curves of a series of YBCO strips deposited on 

MgO(lOO). The widest strip is slightly better that the rest of the strips. This may be due 

to a slight change in film structure, namely a slight non uniformity in the film. The film 

dimensions where

Figure 8.13 : The inductance-temperature curves of a series of YBCO strips deposited 

on MgO(lOO). The tiniest strip was destroyed during the etching process.

Figure 8.14 : The inductance-temperature curves of a series of YBCO strips deposited 

on SrTiO3(100). The film widths are 140, 230, 370, 660 and 1000 pm.
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Figure 8.15 : (Resistance)'1 and (inductance)'1 as a function of film width. The 

measurements where taken at 100K.

Figure 8.16 : (Resistance)'1 and (inductance)'1 as a function of film width. The 

measurements where taken at 79 K

Figure 8.17 : A typical critical current versus temperature curve of a c-axis orientated 

YBCO thin film deposited on MgO(lOO). The YBCO thin film was oxygen deficient 

resulting in a low Tc.

Figure 8.18 : The critical current behaviour was found to be in good agreement with the 

Ambegaokar Baratoff theory. This implies that the film may in fact be made from many 

Josephson Junctions.

Figure 8.19 : Equivalent model for a thin film of YBCO. The main feature is the flux 

flow in series with the Kinetic Inductance due to the superelectrons.

Figure 8.20 : The inductive behaviour of a thin film is investigated using an applied 

magnetic field. The behaviour is found to be in qualitative agreement with equation 

8.29.

Figure 8.21 : The theoretical temperature dependence of the resistance and inductance 

produced using equations 8.20 and 8.21.

Figure 8.22 : The theoretical temperature dependence of the superconducting and
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intermediate regions of a YBCO thin film.
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CHAPTER 9: SUMMARY AND FUTURE WORK

An R.F. sputtering technique has been used to deposit thin films of YBCO. The 

technique involving a deposition off axis at temperatures between 700-750 °C, followed 

by a low temperature post anneal in pure oxygen. The method was found to be 

reproducible and enabled thin films to be deposited onto SrTiO3(110), SrTiO3(100) and 

MgO(lOO). The films deposited on SrTiO3(110) were found to be the best having Tcq's 

in excess of 87 Kelvin. The conditions used here enhance ridge growth on SrTiO3(110) 

over spiral growth. The films deposited on SrTiO3(100) were generally of a poorer 

quality than those on SrTiO3(110). The films were however superior to the films 

deposited on MgO(lOO). The films deposited on MgO(lOO) were consistently 4-7 Kelvin 

lower than the films deposited on SrTiO3(100). Further investigation into deposition on 

MgO(lOO) is required.

Analysis using X-ray diffraction revealed that the orientation of the YBCO was 

dependent on the substrate material, substrate orientation as well as growth conditions. 

Films deposited on SrTiO3(110) were found to be either (110), (013) or a mixture of 

(013/110) orientations. There was also some evidence of a and c-axis orientated regions 

deposited on the SrTiO3(110) substrates. This is interesting since it implies that both 

ridge and spiral growth may have occurred, alternatively it may be that the a and c-axis 

orientations can results from ridge growth. The films deposited on SrTiO3(100) were 

(aOO), (00c) or a mixture of the two. The films deposited on SrTiO3(100) gave evidence 

of a mixture of a and c-axis orientations. The a-axis phase seemed the more dominant 

from the X-ray diffraction results, although the electrical measurements seemed to imply 

that the current transport took place in the a-b plane, namely metallic as opposed to 

semiconductive behaviour. The X-ray diffraction patterns were used to calculate the a- 

and c-axis lattice parameters and these were found to be in close agreement with bulk 

YBCO. The orientation was also dependent on growth conditions. The films deposited 

on MgO(lOO) were all c-axis orientated. It was possible to determine the c-axis lattice
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values of the films deposited on MgO(lOO) they ranged from 11.71-11.85A- This change 

in the c-axis lattice values resulted in a change in the critical temperature of the films 

ranging from 73 - 49 Kelvin respectively. It appears that the larger the c-axis lattice 

value the lower the critical temperature of the YBCO thin film.

Transport measurements revealed that the films deposited on MgO(lOO) had the 

lowest resistivities, ranging from 0.177 to 0.271 mQcm at 100 K. The films deposited 

on SrTiO3(100) had slightly larger resistivities and this is due to the a-axis orientated 

YBCO that was deposited. The films deposited on SrTiO3(110) were found to have the 

largest resistivities, ranging from 0.627 to 1.567 mQcm at 100 Kelvin. The degree of 

(013) or (110) orientation present in the thin film influences the magnitude of the 

resistivity. This is of course due to the anisotropic nature of YBCO.

The resistive behaviour was investigated using Anderson's RVB theory. Although 

the theory is used to investigated D.C. resistive properties, here it was used to determine 

the low radio frequency resistive properties of the YBCO thin films. The c-axis orientate 

thin films gave results which were in good agreement with results from d.c. experiments 

performed on single crystals. Using Lawrence Doniach 2D-3D theory of paraconductivity 

the R.F. paraconductivity was determined. Once again this theory was generally used for 

D.C. experiments. It was possible to determine the coherence length and sheet thickness 

of the YBCO thin films. For a c-axis orientated thin film the coherence length for T=0K 

was 4 A and the sheet thickness was calculated to be 11 A, almost equal to the c-axis 

lattice constant. The LD theory was also use to interpret certain anomalous transitions 

first observed by Dubson(1). Results obtained from the thin films revealed that some films 

were 2 D to within a few degrees of Tc. These films were investigated using the 

Kosterlitz Thouless and Berezinskii theories for 2 dimensional superconductors. The 

results were found to be in good agreement with theory for films deposited on 

MgO(lOO), SrTiO3(110) and SrTiO3(100). The results indicate that the non universal 

constant b in the KTB theory may be anisotropic, having values ranging from 2.4 for c-
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axis films to 6.6 for films with (013/110) orientation.

The R.F. contact experiments were also used to investigate the reactive nature of 

the YBCO thin films. The reactance was anisotropic and was more sensitive to changes 

in film orientation than the resistivity. Films deposited on MgO(lOO), namely c-axis 

orientated thin films had almost zero reactance whereas films deposited on SrTiO3(110) 

had a significant measurable reactance. It is possible to conclude that the inter sheet 

space acts as a capacitor.

Using the reactive results it was possible to calculate the penetration depth. The 

values of the penetration depth varied from 2.24 to 10.58 pm. The values of penetration 

depth were larger than the London Penetration depth reported elsewhere(2,3,4). Theory by 

Ambegaokar and Baratoff predicts that for films with granular properties, namely a film 

similar to a 2 dimensional array of Josephson junctions the penetration depth measured 

can be significantly larger than initially expected. The argument for Ambegaokar and 

Baratoff s theory is further strengthened by the critical current experiments, namely the 

l2'3 vs temperature dependency, that as been observed in some thin films.

The inductive properties of the thin films were also found to be anomalous in 

certain cases. The anomaly appeared as a sharp deviation in the inductance from the 

temperature dependence predicted by London. Theory predicts that an anomaly of the 

type described can occur in 2 dimensional superconductors upon reaching the Kosterlitz 

Thouless Berezinskii temperature. Examination of the resistive properties reveal however 

that the anomaly causes a temporary decrease in resistance, see figure 8.15. This is not 

the resistive behaviour predicted by KT and B. Another explanation for the anomaly is 

that the observed effect is the film changing from 2 D to 3 D. If this is the case then the 

resistance behaviour observed can be interpreted as follows. Firstly the vortex/anti-vortex 

pairs dissociate and move freely throughout the conduction sheets dissipating energy. On 

reaching the cross over temperature the vortices are forced to align one on top of the 

other in stacks. If the stack is pinned in any of the sheets then the entire flux bundle will
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no longer be able to move. Thus vortices that were initially free to move can once again 

become pinned at a lattice point. Since the vortices are pinned they cannot dissipate 

energy hence the temporary reduction in resistance as the temperature increases. Once 

the temperature rises above a certain point the entire flux bundle will be able to move 

and the resistance will increase as expected and as observed. This explanation does not 

explain measurements taken from a very thin film in which both the reactance and 

resistance underwent a resonance at 48 Kelvin. Examination revealed that the resonance 

temperature was frequency dependent although a comprehensive study of the behaviour 

as yet to be performed. The behaviour observed was easily modelled using equations 

originating from dielectric theory. It is not thought that it is a dielectric effect however 

because the film is in a superconducting state. The behaviour is particularly interesting 

since an anomaly as been reported within the same temperature region by Karim®. The 

experiments carried out using microwaves clearly show absorption between 39 and 52 

Kelvin. Karim does put forward the idea that this may be due to flux melting, this would 

not explain the negative resistance observed. It would be interesting to examine the I-V 

characteristics of these films in the 2D-3D regions described above.

A film in the 3 dimensional temperature region was investigated using an applied 

magnetic field. The results were in agreement with traditional flux flow theory, namely 

that the temperature and B-field dependency were as expected for a 3D superconductor. 

The reactance behaviour was also examined within a magnetic field and was found to 

be in agreement qualitatively with theory.

Some thin films were etched into strips of different dimensions using a 

photolithographic technique. The etchant was ferric III nitrate which proved to be a very 

successful etchant. The strips were of different widths and were used to investigate the 

inductance and resistance in greater detail. The results demonstrated that the inductance 

and resistance properties in the normal region were as expected. The resistance 

temperature graphs revealed that 60 % of the film was unaltered by the etching i.e. 3
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strips having the same critical temperature. The remaining two strips were of slightly 

poorer quality having a Tc 1 Kelvin lower. The behaviour expected in the 

superconducting region was not observed. The problem with the contact resistance and 

inductance made it impossible to determine the required results accurately.

The thin strips were also used to investigate the current carrying capabilities of 

certain YBCO thin films. The results revealed that for some films deposited on 

MgO(lOO) did have an lm vs temperature dependency, as predicted by the Ambegaokar 

Baratoff theory. Films deposited on SrTiO3(110) had the largest critical currents. At 77 

Kelvin the YBCO thin films had critical currents in excess of 3x10s A/cm2.

233



9.2 Future Work

The continued examination of the RF contact technique, since it shows some 

interesting results that are yet to be resolved entirely satisfactorily. No other research, 

giving results similar to those achieved by this method have been reported. More recent 

experiments for measuring penetration depth have used more conventional experiments, 

muon resonance, induction coils etc. It would be worth while attempting to carry out 

more traditional experiments to determine the penetration depth. These results could then 

be compared with those obtained from the RF contact experiments. The double coil 

experiments are normally conducted in the kHz region. The equipment necessary to 

produce a signal is available. The most pressing task would actually be fitting the coils 

into the cryostat. If it was not possible to carry out traditional penetration depth 

experiments within the department, it would be advantageous to the understanding of the 

RF contact technique to obtain films with known penetration depths and coherence 

lengths from elsewhere.

A re-examination of the theory used in this thesis could be conducted, 

particularly the approximations employed, see equations 8.2 and 8.3. It has been 

assumed in this thesis, that the skin depth is considerably larger than the penetration 

depth. This is true if we are indeed measuring the London penetration depth of say 0.14 

|im. If however the penetration depth is considerably larger, then the approximations 

may not be strictly valid particularly around Tc. It is interesting to note that if the 

penetration depth is considerably larger than the skin depth, then a quick analysis 

appears to point to the theory giving a similar result to equation 8.6, namely the London 

penetration depth but this time multiplied by a larger number than )!<,. If this is the 

correct then penetration depth measured by this technique may be the Josephson 

penetration depth, which is likely to be considerably larger than the London penetration 

depth in these films. This would be resolved by the re-examination mentioned above.

A closer examination of the transition temperature region would be very useful.
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particularly if results could be obtained every 0.01 or 0.02 K. It would be necessary to 

extend the existing programs which presently take readings every 0.1 K. Furthermore 

a method of delaying the heating of the substrate would have to be developed. Presently, 

when the compressor is disengaged the substrate begins to heat up. The rate of warming 

is too quick to obtain accurate readings of 0.01 K. This could prove considerably 

difficult to achieve. The actual reprogramming for recording the data would not be 

particularly difficult, although it could prove time consuming, since it would be 

necessary to store large amount of data. The results would allow the user to investigate 

the transition region in excellent detail. Detailed examination of the 2D/3D crossover 

point, and investigation of flux flow phenomena would then be possible. This would in 

turn allow a far closer examination of some of the theories mentioned in this thesis. 

Furthermore with the use of software such as Harvard Graphics 3, which can process 

1000 points, it would be possible to investigate a 10-20 K region of the transition in far 

superior detail.

There was some problems with film uniformity, particularly if a good thermal 

contact was not maintained throughout deposition. This as been largely reduced with the 

introduction of the silver paint adhesive. An investigation into different forms of high 

temperature adhesive would of interest. It would be important to obtain an adhesive that 

does not contaminate the system. The quality of uniformity could be tested with a 

simple mask, similar to that described in section 8.6.1. The strips however could be 

made equal, for example, 10 strips, each 0.75 mm wide, 8 mm long. The production of 

the mask would be a relatively easy job since the technology as already be tested and 

found to be adequate. The etching of the film could be carried out using the method 

already described in this thesis. It would not be necessary to test every film, testing 

every tenth film initially would probably be sufficient. The film deposited using a new 

adhesive should be tested. This would give a clear indication of the quality of the thin 

films, and therefore the quality of the adhesive.
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For the RF sputtering experiments, a further series of experiments to improve the 

oxygen content of the films is necessary. Many of the films reviewed in this thesis were 

probably oxygen deficient. Experiments should include a series of post anneal 

treatments, for example, altering the substrate temperature during post anneal, the 

oxygen content and pressure etc.

It would then be interesting to perform a series of experiments specifically aimed 

at improving the thin films deposited on MgO and SrTiO3(100) or other, low 

permittivity, substrates. The majority of the depositions reported here were performed 

to obtain the best film possible on SrTi03. there was some evidence that films could be 

deposited on MgO using significantly different deposition parameters, this may result 

in a different form of deposition. A starting point would be a lower pressure, namely 

200 mTorr, with a r i l  ratio of Ar:02, a substrate temperature of 700° C, and a 1 hour 

post anneal in pure oxygen at 400° C. Superconducting films can be deposited on MgO 

using these conditions, where as films deposited on SrTiO3(110) can not. It would be 

interesting to perform experiments at several temperatures from 700 - 800° C to 

determine the effect this temperature shift has on the orientation. The majority of the 

films deposited on MgO(lOO) and investigated in this thesis were c-axis orientated 

perpendicular to the substrate. It may be possible to produce a-axis by deposition at 

different temperatures.

For the electrical experiments, there are again several lines of investigation open. 

For films deposited on MgO (100) which are known to be C-axis, it would be 

interesting to investigate the anisotropy in the a-b directions. This could be achieved by 

evaporating 16 dots, in the form of 4 x 4 onto the film. It would then be possible to 

measure the resistivity horizontally, vertically and diagonally on the film. It would be 

necessary to make the dots reasonably large to avoid the problem of making good 

contacts. A mask already exists to perform this task, although the dots were too small, 

it was not possible therefore to obtain quality Ohmic contacts. If a-axis films could be
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deposited on MgO(lOO) using the sputtering technique it would interesting to repeat the 

electrical experiments described above to determine the effect of the orientation change. 

This has been investigated a little in this thesis for films deposited on SrTiO3(100),

Each of these experiments described above do not apply strictly to YBCO and 

the substrates used throughout this thesis. The experiments can be used for any substrate 

and any high temperature superconducting material that can, or is to, be sputtered and 

tested using electrical means.
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APPENDIX

Program: RLFREQ

10 REM RLFREQ 
20 DEF SEG=0
30 DRIVER 1 =PEEK(&H4F0)+256*PEEK(&H4F 1)
40 DRTVER2=PEEK(&H4F4)+256*PEEK(&H4F5)
50 DEF SEG=DRIVER1: REM SELECT CARD #1
60 INIT=3: ABORTIO=6: DEVCLEAR=9: LOCAL=12
70 LOCALLOCKOUT =15: REMOTE=18: IRESUME=21: TRIGGER=24
80 OUTPUT=27: ENTER=30: STATUS=33: SETTERMINATOR=36
90 SETTIMEOUT=39: SERIALPOLL=42: SRQCHECK=45: ERRCHECK=48
100 SETEOI=51: SETTERM=54: PARALLELPOLL=57: SRVREQ=60
110 NCINIT=63: BLOCKOUT=66: BLOCKIN=69: BYTESWAP=72
120 TRANSFER=75: TALK=78: UNTALK=81: LISTEN=84
130 UNLISTEN=87: ATTN=90: MTA=93: MLA=96
140 DIM NM$(1000)
150 DIM TF$(1000)
160 PRINT"Input start frequency (MHz)";
170 INPUT TF
180 PRINT'Tnput stop frequency (MHz)";
190 INPUT PF
200 PRINT'Tnput step frequency (kHz)";
210 INPUT SF
220 TF=TF*1000:PF=PF*1000
230 TF$=STR$(TF):PF$=STR$(PF):SF$=STR$(SF)
240 FR$=TF$
250 CALL INIT 
260 LCR=19
270 FR$="FR+"+FR$+"EN"
280 TF$="TF+"+TF$+"EN"
290 PF$="PF+"+PF$+"EN"
300 SF$="SF+"+SF$+"EN"
310 CALL OUTPUT (FR$,LCR)
320 CALL OUTPUT(TF$,LCR)
330 CALL OUTPUT(PF$,LCR)
340 CALL OUTPUT(SF$,LCR)
350 DATA "A3","B3","V1","C1","F0","W1","W2"
360 FOR 1=1 TO 7 
370 READ CMD$



380 CALL OUTPUT(CMD$,LCR)
390 NEXT I
400 FO$=SPACE$(31 )
410 TS=TF/1000 
420 1=0
430 CALL ENTER(FO$,LCR)
440 F1 $=MID$(FO$, 1,1)
450 IF F1$="N" THEN 460 ELSE 430 
460 CLS
470 PRINT FO$,I 
480 A$=INKEY$
490 IF A$=CHR$(32) THEN 560
500 PRINT:PRINT"Press <space> to interupt"
510 NM$(I)=FO$: TF$(I)=STR$(TS)
520 1=1+1
530 TS=TS+(SF/1000)
540 TS=CINT(TS* 100):TS=TS/100
550 IF TS<=PF/1000 THEN 430
560 CMD$="W3": CALL OUTPUT(CMD$,LCR)
570 CLS: INPUT"Save data Y/N";S$
580 IF S$="N" THEN 720
590 Al$="Frequency":A2$="Inductance";A3$="Resistance" 
600 INPUT'Filename" ;NA$
610 NA$="C:VBRYAN\RLFT\TEMP\"+NA$+" .HG1"
620 0PEN"0",#1,NA$
630 PRINT#1,A1$;" ",A2$;" ",A3$
640 FOR J=0 TO I
650 NM1$=MID4(NM$(J),5,11)
660 NM2$=MID$(NM$(J),21,11)
670 TF$(J)=MID$(TF$(J), 1,6)
680 PRINT #1,TF$(J);" ",NM1$;" ",NM2$
690 PRINT TF$(J),NM 1 $,NM2$
700 NEXT J 
710 CLOSE# 1 
720 END



Program: RLTEMP

5 REM RLTEMP 
10 DEF SEG=0
20 DRIVER 1 =PEEK(&H4F0)+256*PEEK(&H4F 1)
30 DRIVER2=PEEK(&H4F4)+256*PEEK(&H4F5)
40 DEF SEG=DRIVER1: REM SELECT CARD #1
50 INIT=3: ABORTIO=6: DEVCLEAR=9: LOCAL=12
60 LOCALLOCKOUT =15: REMOTE=18: IRESUME=21: TRIGGER=24
70 OUTPUT=27: ENTER=30: STATUS=33: SETTERMINATOR=36
80 SETTIMEOUT=39: SERIALPOLL=42: SRQCHECK=45: ERRCHECK=48
90 SETEOI=51: SETTERM=54: PARALLELPOLL=57: SRVREQ=60
100 NCINIT=63: BLOCKOUT=66: BLOCKIN=69: BYTESWAP=72
110 TRANSFER=75: TALK=78: UNTALK=81: LISTEN=84
120 UNLISTEN=87: ATTN=90: MTA=93: MLA=96
130 TF=0
140 DIM NM$(2500),TF$(2500)
150 DIM VCHART(25)
160 DIM TCHART(25)
170DATA0.09032,0.12536,0.18696,0.31180,0.42238,0.56707,0.68580,0.76717,0.8354 
1,0.89082,0.94455,0.98574,1.02044,1.05277,1.08105,1.09477,1.10465,1.11202,1.1151 
7,1.11896,1.12463,1.13598,1.21555,1.24928,1.36687
180DATA475,460,435,385,340,280,230,195,165,140,115,95,77.4,60,44,36,31,28,27,26
,25,24,20,18,12
190 RESTORE 170
200 FOR LOOP=l TO 25
210 READ V CHART (LOOP)
220 NEXT
230 FOR LOOP=l TO 25 
240 READ TCHART(LOOP)
250 NEXT 
260 KEITH=27 
270 CALL INIT
280 CMD$="FOX": CALL OUTPUT(CMD$,KEITH)
290 CMD$="COX": CALL OUTPUT(CMD$,KEITH)
300 CMD$="ROX": CALL OUTPUT(CMD$,KEITH)
310 LCR=19
320 PRINT'Tnput test frequency (MHz)";
330 INPUT FR
340 FR=FR*1000: FR$=STR$(FR)
350 FRl$="FR+"+FR$+"EN"



360 CALL OUTPUT(FR1 $,LCR)
370 DATA "A3","B3","VT7'C1","F0"
380 FOR 1=1 TO 5 
390 READ CMD$
400 CALL OUPUT(CMD$,LCR)
410 NEXT
420 ST1=320:1=0
430 F$=SPACE$(31)
440 F1$=SPACE$(31)
450 CALL ENTER(F 1 $,LCR)
460 CALL ENTER(F$,LCR)
470 A$=INKEY$:IF A$=CHR$(32) THEN GOSUB 1040
480 GOSUB 760
490 IF T=ST1 THEN 450
500 ST1=T
510 1=1+1
520 CLS
530 PRINT T,ST1,I,F1$
540 PRINT:PRINT"Press <space> to interupt"
550 NM$(I)=F1$: TF$(I)=STR$(T)
560 IF T>10 THEN 450
570 CALL UNTALK
580 CLS:INPUT"Save Data Y/N ";S$
590 IF S$="N" THEN 1030 
600 INPUT"Filename" ; NA$
640 LET FR$="Frequency="+FR$
650 OPEN" O" ,#1 ,NA$
660 A1 $="Temperature" : A2$="Inductance" : A3 $="Resistance" 
670 PRINT#1,FR$
680 PRINT#1,A1$;" ",A2$;" ",A3$
690 FOR ZX=0 TO I
700 NM1 $=MID$(NM$(ZX),5,11)
710 NM2$=MID$(NM$(ZX),21,11)
720 PRINT#1,TF$(ZX);" ",NM1$;" ",NM2$
730 NEXT ZX 
740 CLOSE# 1 
750 GOTO 1030 
760 V$=SPACE$(30)
770 CALL ENTER(V$,KEITH)
780 V=VAL(MID$(V$,5,12)
790 BP=0



800 BP=BP+1
810 V1=VCHART(BP)
820 IF V1>=V THEN 830 ELSE 800 
830 V2=VCHART(BP-1)
840 T 1 =TCHART(BP)
850 T2=TCHART(BP-1)
860 T=(((V-V1 )/(V2-V1))*(T2-T1 ))+T 1
870 IF T<10 THEN 910
880 IF T-INT(T)<.5 THEN T=INT(T)
890 IF T-INT(T)>=.5 THEN T=INT(T)+1
900 RETURN
910 IF T<95 THEN 880
920 IF T>INT(T)+.95 THEN T=INT(T)+1
930 IF T>INT(T)+.85 AND T<INT(T)+.95 THEN T=INT(T)+.9
940 IF T>INT(T)+.75 AND T<INT(T)+.85 THEN T=INT(T)+.8
950 IF T>INT(T)+.65 AND T<INT(T)+.75 THEN T=INT(T)+.7
960 IF T>INT(T)+.55 AND T<INT(T)+.65 THEN T=INT(T)+.6
970 IF T>INT(T)+.45 AND T<INT(T)+.55 THEN T=INT(T)+.5
980 IF T>INT(T)+.35 AND T<INT(T)+.45 THEN T=INT(T)+.4
990 IF T>INT(T)+.25 AND T<INT(T)+-35 THEN T=INT(T)+.3
1000 IF T>INT(T)+.15 AND T<INT(T)+.25 THEN T=INT(T)+.2
1010 IF T>INT(T)+.05 AND T<INT(T)+.15 THEN T=INT(T)+.l
1015 IF T>INT(T)+0 AND T<INT(T)+.05 THEN T=INT(T)+0
1020 RETURN
1030 END
1040 PRESTTPaused"
1050 PRINT'press ’A’ to continue"
1060 PRINT" ’B’ to interupt"
1070 LET B$=INKEY$
1080 IF B$=CHR$(65) THEN RETURN 
1090 IF B$=CHR$(66) THEN 570 
1100 GOTO 1070



Program: DCTEMP

5 REM DCTEMP 
10 DEF SEG=0
20 DRIVER 1=PEEK(&H4F0)+256*PEEK(&H4F 1 )
30 DRIVER2=PEEK(&H4F4)+256*PEEK(&H4F5)
40 DEF SEG=DRIVER1: REM SELECT CARD #1
50 INIT=3: ABORTIO=6: DEVCLEAR=9: LOCAL=12
60 LOCALLOCKOUT =15: REMOTE=18: IRESUME=21: TRIGGER=24
70 OUTPUT=27: ENTER=30: STATUS=33: SETTERMINATOR=36
80 SETTIMEOUT=39: SERIALPOLL=42: SRQCHECK=45: ERRCHECK=48
90 SETEOI=51 : SETTERM=54: PARALLELPOLL=57: SRVREQ=60
100 NCINn=63: BLOCKOUT=66: BLOCKIN=69: BYTESWAP=72
110 TRANSFER=75: TALK=78: UNTALK=81: LISTEN=84
120 UNLISTEN=87: ATTN=90: MTA=93: MLA=96
130 TF=0
140 DIM NM$(2500),TF$(2500)
150 DIM VCHART(25)
160 DIM TCHART(25)
170DATA0.09032,0.12536,0.18696,0.31180,0.42238,0.56707,0.68580,0.76717,0.8354 
1,0.89082,0.94455,0.98574,1.02044,1.05277,1.08105,1.09477,1.10465,1.11202,1.1151 
7,1.11896,1.12463,1.13598,1.21555,1.24928,1.36687
180DATA475,460,435,385,340,280,230,195,165,140,115,95,77.4,60,44,36,31,28,27,26
,25,24,20,18,12
190 RESTORE 170
200 FOR LOOP=l TO 25
210 READ V CHART (LOOP)
220 NEXT
230 FOR LOOP=l TO 25 
240 READ TCHART(LOOP)
250 NEXT
251 INPUT'Input current ";CURRENT 
260 KEITH=27
270 CALL INIT
280 CMD$="FOX": CALL OUTPUT(CMD$,KEITH)
290 CMD$="COX": CALL OUTPUT(CMD$,KEITH)
300 CMD$="ROX": CALL OUTPUT(CMD$,KEITH)
310 KE12=7 
320 CALL INIT
330 CMD$="F0X": CALL OUTPUT(CMD$,KE12)
340 CMD$=’’R0X": CALL OUTPUT(CMD$,KE12)



350 CMD$="P20X": CALL OUTPUT(CMD$,KE12)
360 ST1=320:1=0 
370 F$=SPACE$(31)
380 F1 $=SPACE$(31 )
390 CALL ENTER(F 1 $,KE 12)
400 CALL ENTER(F$,KE12)
410 A$=INKEY$:IF A$=CHR$(32) THEN GOSUB 960
420 GOSUB 680
430 IF T=ST1 THEN 390
440 ST1=T
450 1=1+1
460 CLS
470 PRINT T,ST1,I,F1$
480 PRINT:PRINT"Press <space> to interapt"
490 NM$(I)=F1$: TF$(I)=STR$(T)
500 IF T>10 THEN 390
510 CALL UNTALK
520 CLS:INPUT"Save Data Y/N ";S$
530 IF S$="N" THEN 950 
540 INPUT'Filename" ; NA$
550 NA$="C:\BRYAN\RLFTMBMDATA\" +NA$+" .HP 1 " 
570 0PEN"0",#1,NA$
610 FOR ZX=0 TO I
620 NM1$=MID$(NM$(ZX),5,11)
630 NM2$=MID$(NM$(ZX),21,11)
640 PRINT# 1,TF$(ZX);" ",NM1$;M ",NM2$
650 NEXT ZX 
660 CLOSE# 1 
670 GOTO 950 
680 V$=SPACE$(30)
690 CALL ENTER(V$,KEITH)
700 V=VAL(MID$(V$,5,12)
710 BP=0
720 BP=BP+1
730 V1=VCHART(BP)
740 IF V1>=V THEN 750 ELSE 720 
750 V2=VCHART(BP-1)
760 T1 =TCHART(BP)
770 T2=TCH ART (BP-1 )
780 T=(((V-V1 )/(V2-V1 ))*(T2-T1 ))+T 1 
790 IF T<10 THEN 830



800 IF T-INT(T)<.5 THEN T=INT(T)
810 IF T-INT(T)>=.5 THEN T=INT(T)+1
820 RETURN
830 IF T<95 THEN 800
840 IF T>INT(T)+.95 THEN T=INT(T)+1
850 IF T>INT(T)+.85 AND T<INT(T)+.95 THEN T=INT(T)+.9
860 IF T>INT(T)+.75 AND T<INT(T)+.85 THEN T=INT(T)+.8
870 IF T>INT(T)+.65 AND T<LNT(T)+.75 THEN T=INT(T)+.7
880 IF T>INT(T)+.55 AND T<INT(T)+.65 THEN T=INT(T)+.6
890 IF T>INT(T)+.45 AND T<INT(T)+.55 THEN T=INT(T)+.5
900 IF T>INT(T)+.35 AND T<INT(T)+.45 THEN T=INT(T)+.4
910 IF T>INT(T)+.25 AND T<INT(T)+.35 THEN T=INT(T)+.3
920 IF T>INT(T)+.15 AND T<INT(T)+.25 THEN T=INT(T)+.2
930 IF T>INT(T)+.05 AND T<INT(T)+.15 THEN T=INT(T)+.l
935 IF T>INT(T)+0 AND T<INT(T)+.05 THEN T=INT(T)+0
940 RETURN
950 END
960 PRINT'Paused"
970 PRINT"press ’A’ to continue"
980 PRINT" ’B’ to interupt"
990 LET B$=INKEY$
1000 IF B$=CHR$(65) THEN RETURN 
1010 IF B$=CHR$(66) THEN 510 
1020 GOTO 990
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