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ABSTRACT 

A detailed investigation of benzimidazole resistance in field 

isolates and laboratory mutants of Pseudocercosporella 

herpotrichoides resulted in the description of four major 

resistance catagories, based on the sensitivity of isolates to 

carbendazim: high-level (MIC - >1000 pM), intermediate-level (MIC 

- 50 - 200 pM), low-level (MIC - 10 - 20 pM) and sensitive (MIC -

0.6 - 2.5 pM). Cross-resistance to other benzimidazole compounds, 

including thiabendazole, was observed in all cases, although the 

level of resistance to thiabendazole was not directly related to 

the level of resistance to carbendazi~ 

Strains from each resistance catagory were tested for 

sensitivity to two experimental !-phenylcarbamate fungicides, MOPC 

and S32165. Wild-type carbendazim-sensitive isolates were 

insensitive to both compounds, as were most low-level and 

intermediate-level carbendazim-resistant mutants. Many high-level 

carbendazim-resistant strains, including most of the carbendazim

resistant field isolates showed increased sensitivity to one or 

both phenylcarbamates. In addition, a fifth resistance phenotype 

was identified, showing increased sensitivity to MOPC and S32165 

but associated with only slightly reduced benzimidazole 

sensitivity. 

Spontaneous mutants from a high-level carbendazim-resistant 

strain, selected for reversion to insensitivity to Mope were 

readily obtained. Analysis of their fungicide response showed some 

to be back-mutations in which insensitivity to MOPC was associated 

with the loss of resistance to carbendazim, While others appeared 

to carry suppressor or modifier mutations producing a range of 

resistance phenotypes. 

A study of sensitivity to a range of ergosterol biosynthesis 

inhibiting (EBI) fungicides revealed considerable variation 



between different isolates. In general, BWR-type isolates were 

much less sensitive to the triazole compounds tested than BW

types, while the reverse relationship was found for the morpholine 

fungicide, fenpropimorph. Sensitivity to prochloraz showed much 

less variation. No correlation was found between benzimidazole 

resistance and reduced sensitivity to the EBI fungicides. 

Two pathotypes of ~ herpotrichoides, BW and BWR, 

usually distinguished on the basis of cultural morphology, are 

recognised. The morphological character, however, was found to be 

unstable, particularly in BWR-types, which readily sectored to 

give colonies typical of the other pathotype. 

Parasexual recombination in P. herpotrichoides was 

demonstrated using auxotrophic mutants isolated after UV

irradiation of conidia. Unstable heterokaryons were obtained 

following hyphal anastomosis between complementary strains. From 

these heterokaryons stable prototrophs were recovered both from 

spores and isolated protop1asts. Genetic evidence and DNA 

estimations indicated that these stable prototrophs were dip1oids. 

Recombinant types were isolated from diploids after treatment with 

5-fluorouracil. It was also shown that viable heterokaryons could 

be recovered following PEG-mediated fusion of protop1asts isolated 

from complementary strains. 

Heterokaryon incompatibility between unrelated field 

isolates was tested using auxotrophic mutants obtained by 

selection for resistance to chlorate and selenate. Vegetative 

incompatibility appeared to be widespread, few positive 

interactions being observed, suggesting that the potential for 

parasexual gene exchange in the field is low. Protoplast fusion 

may provide a method whereby this incompatibility can be overcome 

in the laboratory. 
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GENERAL IN'l'OOIXaION 

1.1 LITERATURE REVIEW 

1.1.1 Development of Fungicide Resistance 

The use of chemicals to control disease imposes a strong 

selective pressure upon the pathogen population towards the 

development of resistant forms. The appearance of resistant 

strains depends not only on the magnitude of the selection 

pressure, but also on the probability of resistance to the 

particular control agent occurring. The latter is, to a great 

extent, dictated by the mode of action, or more particularly on 

the site specificity, of the toxicant (wade, 1982). 

Before 1968 few examples of resistance to fungicides were 

kno..m, and fewer sti 11 gave cause for concem for loss of disease 

control in the field (Georgopoulos & Zaracovitis, 1967). The 

reason for this success lay in the nature of the antifungal 

compounds available at the time. Most were general metabolic 

inhibitors, affecting multiple sites within the cell, 

consequently mu1 tip1e simul taneous mutations would have been 

required for resistance to arise. Of the few instances of 

resistance to conventional fungicides, significant problems were 

encountered with the appearance of resistance to the aromatic 

hydrocarbons and to dodine (Georgopou10s, 1977: Dekker, 1977: 

Szkolnik & Gl1patrick, 1969: MacNei11 & Schoo1ey, 1973: Jones & 

walker, 1976; Jones, 1981: Gilpatrick & Blowers, 1974). 

The introduction of specific site inhibitors, many of which 

were systemic in the plant and so had curative or eradicant 
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properties, caused a revolution in the treatment of crop 

diseases. Very soon after their initial use the first reports of 

failure of disease control, due to resistance in the pathogen 

population, appeared and have continued to appear regularly ever 

since (Oelp, 1980: Oekker,1982). Indeed resistance has been 

reported to all the major groops of fungicide currently available 

(Oekker, 1977: Oelp, 1980: Georgopoulos, 1982: Staub & Sozzi, 

1984). Where genetic studies have been carried out resistance 

development to such fungicides has usually been shown to involve 

mutation in a single gene. Compared with resistance to the 

conventional fungicides, the development of resistance to site 

specific fungicides has often been far more dramatic. In general 

the mutation rate of individual loci is about 10-8 to 10-6 

(Fehrnann, 1976), so that resistant indi vidua Is probably exist 

natura lly in the population. As a resul t, the speed of resistance 

build-up can be surprisingly rapid: the foremost example of which 

involves the appearance of resistance to the benzimidazole 

fungicides. 

However, the isolation of resistant types either from wild 

populations or laboratory strains does not int'ly that resistance 

will cause problems for disease control in the field. The 

selection pressure on the population, the proportion of sensitive 

isolates which are removed from the population as a result of 

using the fungicide, the stability of the resistance and the 

characteristics of the resistant strains will all affect the 

extent to which resistance becomes a practical problem. The 

epidemiology and life cycle of the disease agent is also of prime 

, -, 
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significance. Pathogens in which a sexual stage is an integral 

part of the life cycle will have a greater potential for genetic 

recombination, decreasing the effects of reduced fitness by 

resorting resistance genes in potentially more successful 

combinations. Pleiotropic effects on fitness of resistance 

mutations will be considered later. Airborne pathogens, producing 

large amounts of inoculum will also show a more rapid build-up of 

resistant strains, and be capable of more rapid changes in 

population structure, than fungi in which inoculum dispersal is 

limited, temporally or spatially. 

1.1.1.1 Development of Resistance to Benziaddazoles 

Resistance to benomyl, the original benzimadazole fungicide, 

was first reported in Sphaerotheca fuliginia, in which it 
I 

appeared within the first year of use of this compound to control 

powdery mildew of cucurrber (Schroeder & Providenti, 1969). Rapid 

development of resistance also occurred in other species. 

Benomyl-resistant isolates of Botrytis cinerea were obtained from 

cyclamen which had received only three applications of the 

fungicide (Bollen & Schol ten, 1971). Simi larly widespread 

development of resistance in the sugar beet leafspot fungus, 

Cercospora beticola, was detected both in Greece and the U.S.A. 

within three years of the fungicide being released for use in 

this cr~ (Georgopoulos & Dovas, 1973: Ruppe1, 1975). In Venturia 

inaegua1is, resistant strains were isolated just two years after 

benomyl was first used on apple and resistant ascospores were 

even reported to have been detected the previous season (Jones, 

1981). 
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Occasionally, benzimidazole resistance is known to have 

occurred in the pathogen population even before these compounds 

were used for their control, reflecting the natural rate of 

mutation to resistance (Fehrmann, 1976). Examples include 

Verticillium mal thousei on Il1.lshrocm (Wuerst & Cole, 1970, Wuerst 

!! aI, 1974) and Septoria nodorum and Pseudocercosporella 

herpotrichoides on wheat (Fehrmann !! aI, 1977; Horsten & 

Fehrmann, 1980a, Bateman et aI, 1985). The rapid development of 

resistance in many of the species described above, strongly 

suggests that naturally occurring, resistant strains were present 

in these populations as well. 

1.1.1.2 Development of Resistance in Pseudocercospore11a 

herpotrichoides 

The benzimidazole fungicides, carbendazim and thiophanate

methyl, were used very successfully for the control of P. 

herpotrichoides for almost a decade. Resistance was first seen in 

German isolates of the pathogen from infected wheat plants 

(Rashid & Schlosser, 1975). Previous studies had not revealed any 

resistance in a screen of more than 7 x 107 conidia, possibly 

because the sarrple was relatively small (Chidarrbaram & Breuhl, 

1973). Further reports of the presence of resistant strains in 

cereal crops have since appeared, both fran fields subjected to 

regular benzimidazole treatment and non-treated fields (Rashid & 

Schlosser, 1977; Fehrmann et aI, 1977; Horsten & Fehrmann, 198Oa; 

Bateman ~ aI, 1985). 

Despite the occurrence of benzimidazole resistance in other 

genera, no loss of eyespot control by these fungicides through 
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resistance was anticipated during this period. This was 

undoubtedly the consequence of the low frequency of resistant 

spores in the population (Fehrmann !! aI, 1982~ Horsten & 

Fehnnann, 1980a), and the very localised spore dispersal observed 

in this fungus (Fehrmann & Schrodter, 1971). Indeed up to 1982 it 

was repeatedly concluded from field surveys and long term 

monitoring experiments, that there was little danger of 

widespread resistance in this pathogen. Up to two applications of 

carbendazim could be nade each season without fear of build-up of 

any economically important resistance (Fehnnann & weihofen, 1978~ 

Horsten & Fehrmann, 1980a: Fehrmann ~ aI, 1982). 

However, loss of chemical control was reported in the U.K. 

in 1981. Subsequent investigations showed that a high proportion 

of isolates from the affected sites were resistant to high levels 

of carbendazim and several other benzimidazole fungicides (Brown 

!! aI, 1984). It was suggested that where continuous cereal 

production was practised regular use of carbendazim to control 

eyespot was likely to encourage the development of resistance in 

the pathogen and result in the failure of the control measures. A 

recent survey of winter cereal crops in England and wales showed 

that 16 to 66% of the fields had resistant isolates, which 

accounted for between 37 and 52% of the pathogen population 

sarrpled. Economic losses due to resistance have been estinated to 

occur when between 7 and 30% of the fungal popUlation is 

resistant (King & Griffin, 1985). Obviously therefore, the 

frequent occurrence of benzimidazole resistance in the P. 

herpotrichoides field population is a cause for concern. 
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1.1.1.3 Pathogenicity and Fitness 

Pleiotropic reduction of pathogenicity in fungicide 

resistant mutants has been described in a variety of species 

(Fuchs & Viets-Verweij, 1975: van Toy1, 1977a: wa1ms1ey-Woodward 

et aI, 1979: Tezuka & Ishii, 1983). Mutational resistance to the 

benzimidazo1es is not usually associated with any alteration in 

pathogenicity, although some exceptions have been found (Meyer, 

1976: Stover, 1977b: Georgopoulos & Dovas, 1973: Brasier & 

Gibbs, 1975: Ishii & Yamaguchi, 1977: Shabi & Katan, 1979: Wild, 

1983). Similarly, resistance to carbendazim in ~ herpotricoides 

was not associated with a reduction in pathogenicity: resistant 

strains were found to be as pathogenic as sensitive isolates in 

glasshouse tests (Horsten & Fehrrcann, 1980b: Brown !!. aI, 1984). 

The survival of the resistant strains, in the absence of the 

fungicide, will obviously have an influence on the potential for 

failures in chemical control. Resistance to some fungicide groups 

is known to result in a reduction in the fitness of the fungus. 

Consequently the resistance allele involved nay be expected to be 

lost from the population when the selective advantage provided by 

the presence of the fungicide is removed. This phenomenon has 

been demonstrated on a small scale, with edifenphos-resistant 

strains of S. nodorum (Horsten, 1979). 

Reduced fitness, usually defined in ~ vitro tests by 

reduction in growth rate and sporulation, has been observed in 

isolates of various species resistant to the EBI's, carboximides, 

organophosphates or polyene antibiotics (Dekker, 1982: de waard 

~~, 1982: Barug & Kerkenaar, 1984). Resistance to the 

benzimidazo1es generally appears not to be linked with any 
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reduction in competitive ability. The existence of resistant 

isolates in populations, not previously exposed to these 

compounds, strongly suggests that these are at least as fit as 

sensitive forms in normal circumstances. Studies on the 

maintenance of resistance in populations where fungicide use has 

ceased, have confirmed that mutation to benomyl resistance 

usually has little effect 00 fitness (Dovas !! aI, 1976: Fletcher 

& Scholefield, 1976: McGee & Zuck, 1980: Shabi & Katan, 1980). In 

contrast, Ishii!! al (1985) found that the proportion of high

level carbendazim-resistant isolates of Venturia nashicola in the 

population decreased, while the nUIrber of weakly and moderately 

resistant strains increased in the five years after the use of 

these compounds was stopped. A similar degeneration of resistance 

was seen with benomyl-resistant strains of Mycosphaere11a 

fijiensis var. difformis (Stover, 1979). Thiabendazole-resistant 

isolates of Penici 11 ium expansum were shown to be slower than 

sensitive strains to cause decay of pome fruits and sporulate, 

characteristics which would lead to a reduction in the proportion 

of resistant strains in the absence of the fungicide (Prusky !! 

aI, 1985). 

Similar investigations with E:.. herpotrichoides have sha.m 

that in this species, fitness of benzimidazole-resistant isolates 

is comparable to that of sensitive strains (Horsten, 1979: 

Horsten & Fehrmann, 1980c: Cavelier & Leroux, 1983: Cave1ier & 

Lepage, 1985). As a result regular use of this group of 

fungicides without additional measures to reduce the frequency of 

resistant strains in the ~thogen population will inevitably lead 
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to further disease control failure in the future. 

1.1.2 Mechanism of Resistance to Fungicides 

Resistance to a particular toxicant may resu1 t from one of 

several mechanisms. Georgopoulos (1977) listed the major 

biochemical modifications leading to reduced drug sensitivity in 

micro-organisms: 

1) inactivation of the toxicant 

2) decreased conversion of non-toxic into a toxic corrpound 

3) modification of the site of action 

4) increased levels of the inhibited enzyme 

5) decreased requirement for the product of the inhibited 

reaction 

6) increased concentration of an antagonist to the toxicant 

7) increased reliance on an alternative pathway 

8) reduced uptake of the toxicant 

Various of these mechanisms have been implicated in 

resistance to fungicides in fungi. Resistance to the ergosterol 

biosynthesis inhibiting fungicides (EBI's) for example, may 

involve changes in uptake associated with an inducible, active 

efflux mechanism, decreased conversion of the fungicide into an 

active form or modification of the sterol biosynthetic pathway 

resul ting in alterations in the sterol corrposition of the cell 

membranes (Barug & Kerkenaar, 1984: Fuchs !! aI, 1984: Leroux & 

Gredt, 1984). 

Resistance to the benzimidazole fungicides, in different 

species, has also been shown to have more than one basis. 

Decreased uptake of l4C-labelled carbendazim by resistant cells 

...... 
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has been descibed in Sporobo10myces roseus (Nachmias & Barash, 

1976), while in Dictyoste1ium discoideum, cross- resistance 

between acriflavine, cycloheximide and benzimidazo1es was assumed 

to indicate altered me.mbrane permeability to these compounds 

(We1ker & Wi1liams, 1983). Extracellular acid production was 

associated with benomyl resistance in ~ malthousei: the precise 

mechanism of resistance was not fully clarified but resistant 

isolates of two other species, Sclerotinia homeocarpa and ~ 

cinerea, did not produce the same acidification of the cuI ture 

medium, suggesting that they had a different mode of resistance 

(Lambert & Wuerst, 1976). The main mechanism of resistance to 

these coopounds, however, appears to invol ve reduced 

affinity for the inhibitor at the target site (Davidse 1975a). 

1.1.2.1 Mode of Action of the Benzimidazole Fungicides 

Early investigations of the mechanism of toxicity of this 

group concentrated on the inhibition of respiration, protein 

synthesis and DNA and RNA synthesis (Clemons & Sis1er, 1971). It 

was soon recognised, however, that the major inhibitory effect of 

these compounds was on mitosis and nuclear division (Davidse, 

1973: Hammerschlag & Sisler, 1973), their effect on other 

cellular processes being secondary. Inhibition of respiration and 

the differences observed between benomyl and carbendazim in some 

organisms, could be related to the formation of butyl isocyanate 

during the spontaneous breakdown of benomyl to carbendazim, which 

occurs in aqueous solutions (Hammerschlag & Sis1er, 1972, 1973). 

The similarity in the anti-mitotic effects between the 

benzimidazole fungicides and colchicine, a known microtubule 
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inhibitor, lead to the suggestion that the site of action of 

these compounds was the same (Davidse, 1973). That the target 

protein for carbendazim was indeed identical with the microtubule 

subunit protein, tubulin, was confirmed by a comparison of their 

biochemical properties and co-polymerisation with porcine brain 

tubulin (Davidse, 1975b). Furthermore the antitumour drug 

oocodazole (syn. nocodazole), known to bind to animal tubulin (de 

Brabander ~ aI, 1975), was sho.m to have a high binding affinity 

for the carbendazim-binding protein from Aspergillus nidulans, 

and was even rrore fungitoxic for gro.rt.h than carbendazim (Davidse 

& Flach, 1977). In addition binding of 14C-labe11ed carbendazim 

to the fungal protein was sho.m to be competitively inhibited by 

this compound, strongly suggesting that they were both competing 

for the same site (Davidse & Flach, 1977). 

1.1.2.2 Mechanism of Benzimidazole Resistance 

Benzimidazole resistance was shown to be the result of 

lowered affinity of the fungal tubulin for these compounds in the 

resistant mutants. Mutation in the same ~A gene in ~ nidulans, 

could either cause increased binding affinity and hence increased 

sensitivity for carbendazim, or reduced affinity and consequently 

carbendazim resistance (Davidse, 1975a). Mutants resistant to 

thiabendazole but with negatively correlated cross-resistance to 

carbendazim (i.e. increased sensitivity to carbendazim) had 

tubulins with a correspondingly lower binding affinity for 

thiabendazole and increased affinity towards carbendazim. This 

locus was later identified as the structural gene for'~ -tubulin, 

nanyof the resistant mutants having electrophoretically abnormal 
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S-tubulins (Sheir-Neiss !! aI, 1978). 

Reduced binding of carbendazim to s-tubulin has also 

been demonstrated in resistant strains of ~ cinerea (Tripathi & 

Sch10sser, 1982). Reduced uptake by resistant strains was also 

observed, indicating a dual mechanism of resistance in this 

species. In contrast, no differences in uptake or metabolism of 

carbendazim were found in resistant isolates of ~ nidulans or v. 

inaequalis (Davidse & Flach, 1977: Gasztonyi & Josepovits, 1981). 

The mode of action of thiabendazole appears to be the same 

as that of carbendazim. 'l\.1bul in from thiabendazole-resistant P. 

expansum isolates, with increased sensitivity to caroondazim, had 

a reduced binding affinity for thiabendazole and increased 

affinity for carbendazim (Davidse & Flach, 1978). 

Alterations in the S-tubulin protein has also been sha.m to 

be the basis of benzimidazole resistance in Neurospora crassa 

(Orbach !! aI, 1986), Saccaromyces cerevisiae (Neff !! aI, 1983) 

and Physarum polycepha1um (Schedl !!!!, 1984: Roobal !!. !.!., 

1986). In N. crassa and ~ cerevisiae the equi va lent 8-tubul in 

structural genes from benzimidazole-resistant and wild-type 

strains have been cloned and sequenced (Thomas et aI, 1985: 

Orbach et a I, 1986). In each case a single base change causing 

amino acid substitution in the protein product was responsible 

for the resistance phenotype. The high degree of homology in 

these B-tubulin genes allows the two species to be compared 

directly. Both mutational changes occur in sequences that have 

been highly conserved but at different positions. Unfortunately 

the biochemical basis for the action of many of the resistance 

genes that have been identified has not yet been determined. 
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Consequently little can be said about the diversity of resistance 

mechanisms in these species. 

The cross-resistance to the other benzimidazole compounds 

regularly found in benomyl-resistant mutants, strongly suggests 

that they all affect the same site on the tubulin molecule. Many 

of the benzimidazoles used ~rcially as fungicides break down 

to yield carbendazim as the active component (Clemons & Sisler, 

1969: Courtney, 1977). Thiabendazole and fuberidazole (syn. 

furidazole) do not form carbendazim but are fungitoxic in their 

own right (Erwin, 1973). This distinction may explain why the 

lack of cross-resistance occasionally observed between 

carbendazim and thiabendazole or fuberidazole (van Tuyl, 1974: 

Bartels-Schooley & MacNeill, 1971), has not been found between 

carbendazim, benomyl and the thiophanates. Mutational changes at 

the active site in the 13 -tubulin molecule may resul t in altered 

affinity for carbendazim without affecting the binding affinity 

for thiabendazole or fuberidazole (Davidse & Flach, 1977). 

1.1~ Pleiotropic Effects of Resistance Loci 

Resistance mutations often produce pleiotropic effects, 

which mayor may not affect the survival of the mutant in the 

field. Pleiotropic alteration of pathogenicity in such mutants 

has been widely studied, since it has a direct bearing on the 

success or failure of the chemical control measures. This aspect 

is discussed in section 1.1.1.3. 

The most easily recognisable characters associated with 

resistance mutation invol ve changes in colony morphology and 

growth rate in vitro. Pleiotropic alteration of IIDrphology has 



-13-

been descibed in only a few instances (Beever & Bryde, 1982), but 

gr~h rate reduction has been reported to result from resistance 

mutations to a variety of fungicides (Bollen & Scholten, 1971: 

Fuchs & de Waard, 1982). Other developmental abnormalities, 

including altered cellular morphology and sporulation, have been 

described in resistance mutants (Toda !! aI, 1983: Welker & 

Williams, 1983: Ben-Yephet ~!!, 1975: de W6ard & Gieskes, 1977: 

Leroux !! aI, 1978). Many of the benzimidazole-resistant mutants 

of Beauvaria bassiana isolated by Yurchenko (1979) were 

asporogenic and such colonies regularly formed densely sparing 

sectors which proved to be back-mutations to benomyl sensitivity. 

These non-sporing, benomyl-resistant mutants were also unable to 

form heterokaryons. 

Mutation to fungicide resistance occasionally produces a 

concomitant temperature sensitivity for growth (van Tuyl, 1977b: 

Morris !! aI, 1979: Yamamoto, 1980). For instance, mutations in 

the imaG locus in A. nidulans, identified by van Tuyl (1977b), 

conferring resistance to imazalil, had several pleiotropic 

effects including cold-sensitivity and cross-resistance to 

cycloheximide, chloramphenicol and neanycin. Cold sensitivity was 

also found in Schizosaccharomyces 20mbe, associated with 

benzimidazole resistance (Yamamoto, 1980). Mutation at the ben-l 

locus generally resulted in high-level resistance, while ben-2 or 

ben-3 mutants had only low-level resistance and were unable to 

grow in the presence of the inhibitor at 260 C. The level of 

resistance expressed increased with the incubation temperature, 

so that at 36°C these mutants were able to grow on medium 
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containing 10 ~g carbendazim ml-l • 

Cold-sensitive nuclear division mutants in ~ pombe were 

shown to be produced predominantly by mutations in one of two 

loci, nda-2 and nda-3. Strains with mutations in nda-3 were 

either resistant or supersensitive to benzimidazoles (Umesono et 

aI, 1983). This locus was identical with ben-l described by 

Yamamoto (1980), who considered it to be the structural gene for 

B-tubulin, by analogy with A. nidulans benA mutants, which has 

since been found to be the case (Hiraoka et aI, 1984). Strains 

with nutations in the nda-2 gene were occasionally supersensitive 

to benomyl at the permissive temperature, 370 C (Umesono!! aI, 

1983). The nda-2 locus has been identified as one of the two 

structural genes for ex -tubulin in this species (Toda !! !!" 
1983). Strains in which both nda-2 and nda-3 were present were 

only slightly more sensitive than the wild-type, the two loci 

exhibiting mutual suppression (Toda et aI, 1983). --
An association between temperature sensitivity and 

benzimidazole resistance has also been found in ~ nidulans. 

Morris et a1 (1979) obtained three benA mutants resistant to -- --
benomyl and thiabendazole, which were unable to grow at 44°C. A 

further resistant ~ mutant, benA-33, was very heat sensitive, 

growth of this mutant was completely inhibited at 40°C and 

considerably reduced at 320 C (Oakley & Morris, 1981). Heat-

insensitive revertants were often found to contain extragenic 

suppressor mutations, two of which also suppressed fungicide 

resistance expression and conferred a cold sensitivity on the 

mutants. Of the other suppressors of heat sensitivity not 

affecting resistance to benomyl, one was identified as the 
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structural gene for a-tubu1in, (tubA), (Morris!! aI, 1979). This 

mutation like nda-2 in ~ pombe, confers supersensitivity to 

benzimidazo1es when combined with the wild-type S-tubu1in gene, 

benA (oakley & Morris, 1981). 

An explanation for the frequent association of temperature 

sensitivity and resistance was provided by Morris et a1 (1979): . --
heat sensitivity is characteristic of temperature-dependent 

protein destabilisation resulting from missense mutation. Since 

many of the benA mutants they studied had electrophoretica11y 

abnonnal S-tubulins, apparently due to missense mutations in the 

benA gene, the likelihood that some of these mutants would also -
be te~rature sensitive for grCMth was thought to be high. 

Another pleiotropic effect of resistance mutations 

involves cross-resistance to other fungitoxic compounds. Mutation 

to resistance to ooe benzimidazole compound usually results in 

cross-resistance to all the others. Exceptions do occur and have 

been dk:ussed (Section 1.1.2.2). Negative 1y-corre 1ated cross-

resistance to other compounds in benzimidazole-resistant isolates 

has been described in several species. Leroux and Gredt (1979, 

1983) observed that benzimidazole-resistant strains of Be cinerea 

and ~ expansum were more sensitive to the ~-pheny1carbamate 

herbicides propham, barban, chlorbufam and chlorpropham. A 

similar phenomenon has been described in ~ herpotrichoides 

(Leroux, 1984; Leroux ~!!" 1985). Conversely positi ve cross

resistance between benzimidazole fungicides and propham has been 

identified in benomy1-resistant strains of y=. inaequa1is 

(Gasztonyi & Josepovits, 1981). In ~ pombe, benomyl-
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supersensitive nda-2 mutants, with modified a-tubu1in, were more 

sensitive to ethyl !i-phenyl carbamate (EPC) than nda-2+ strains 

(Umesono ~ aI, 1983). 

These compounds have long been recognised to be mitotic 

poisons and are known to bind to plant tubu1ins (Ashton & Crafts, 

1981: Mizuno et aI, 1981). Although the actual binding site has --
not been identified, the studies of cross-resistance above, 

suggest that at least one of the sites of interference for these 

toxicants is at or near the benzimidazole binding site. 

Several related ~-phenylcarbamate compounds have been 

synthesised and assessed for fungitoxicity specifically towards 

benzimidazole-resistant strains of plant pathogens. One of these, 

methyl ~-(3,5-dichloropheny1)carbamate (MDPe) was much more 

effective against resistant isolates of ~ cinerea, ~ beticola, 

Fusarium nivale and Mycosphaerella melonis than the 

benzimidazole-sensitive wild-type strains (Kato!!. aI, 1984), 

while in Venturia nashicola and y:. pirina only those isolates 

with the highest levels of benomyl resistance showed increased 

sensitivity to MOPC (Ishii ~ aI, 1984). Benzimidazole-resistant 

field isolates of ~ herpotrichoides have also been shown to be 

extra-sensitive to MOPC (Nathaniels et aI, 1985). 

Cross-resistance to another mitotic inhibitor, £

f1uoropheny1a1anine (FPA), has also been shown to occur in some 

~ nidulans mutants (Morris & Oak1ey, 1979). In this instance 

benomy1 resistance, heat sensitivity and FPA resistance were all 

pleiotropic effects of the same mutation in the ~ locus. 

Mutational changes in membrane permeability often result in 

altered sensitivity to a group of toxicants and may form the 
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basis of resistance to rcany antifungal compotmds (Georgopoulos, 

1977). Uptake mutations, by their very nature, frequently exhibit 

pleiotropic cross-resistance to tmrelated compolD'lds. This feature 

was used to distinguish benomyl-resistant mutants of ~ 

discoideum with altered uptake mechanisms of resistance from 

those resulting from nutations specifically affecting microtubule 

function (Welker & Williams, 1983). Permeability mutants, 

resistant to benzimidazoles, exhibited cross-resistance to 

acriflavine and cycloheximide which do not affect tubulin. 

1.1.2.4 Physiological Effects of the Benzilddazoles 

Besides inhibiting nuclear division and movement by 

disrupting the process of microtubule asserrb1y (oakley & Morris, 

1980), benzimidazole compounds have other effects on fungi, which 

may indicate subsidiary sites of action. The cytokinin-like 

properties of benomy1 in plants is well documented (Beckerson & 

Ormrod, 1986). In fungi low concentrations of these compounds are 

frequently fOlD'ld to stimulate mycelial growth (Oros, 1981). The 

basis of this growth stimulation is not understood, it may be the 

result of a direct effect of these compounds on growth regulation 

or sirrply a general effect 00 metabolism. 

Enhancement of sporulation by carbendazim has been found 

in ~ herpotrichoides (Horsten, 1979). Some resistant isolates 

produced significantly more conidia on agar, in the presence of 

this fungicide than in its absence. Similar findings were 

reported for some benornyl-resistant strains of Botryotinia 

fuckeliana (Polach & Molin, 1975). 
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1.1.3 Genetic Control of Fungicide Resistance 

1.1.3.1 Genetic Analysis in FUngi 

An understanding of the genetic basis of resistance is 

obviously essential for the prediction and avoidance of potential 

disease control loss. Genetic studies in phytopathogenic fungi 

have often been seriously impeded by the poor suitability of the 

pathogen for traditional genetic analysis, since many are totally 

or predominantly asexual and many irrportant sexual species are 

obligate biotrophs. Consequently most genetic studies have 

concentrated on fungi in which sexual genetic recombination is 

readily manipulated ~ !~, amongst which the non

phytopathogenic species N. crassa, A. nidulans and S. cerevisiae 

are the best characterised. Plant pathogenic species which have 

received most interest from geneticists include Nectria 

haematococca, Ustilago maydis and V. inaequalis. Species able to 

cause plant disease, in which genes for resistance to fungicides 

have been identified are listed in Table 1.1. 

Genetic analysis using the parasexual cycle, first 

demonstrated by Pontecorvo !! aI, 1953: 1958) has made possible 

the study of the inheritance of various characters in asexual 

fungi (Caten, 1981). The parasexual cycle, invol ving mitotic 

segregation, has been manipulated in several species to study the 

inheritance of resistance to antifungal agents: particularly in 

~ nidulans, where it has often been used in conjunction with 

conventional sexual genetic techniques (van Tuyl, 1975: 1977a). 



-19-

Table 1.1 Genetic studies in fungi: plant pathogenic 

species in which genes for resistance to 

fungicides have been studied. 

ORGANISM 

Oomycetes 

Bremia lactucae 

ANTIFUNGAL OOMPOUND 

metalaxyl 
(acylalanines) 

REFERENCE 

Crute !! aI, 1985a,b 

Phytophthora drechsleri p-fluoropheny1alanine Khaki & Shaw, 1974 

~ capsici 

P. cactorum -----
Ascomycetes 

chlorarrphenicol 
(antibiotics) 

streptomycin 
(antibiotics) 

streptomycin 
(antibiotics) 

streptomycin 
(antibiotics) 

Cochliobolus carbonum cycloheximide 
(antibiotics) 

~ heterostrophus 

c. sativus 

Ceratocystis ulmi 

cadminate 
(cadmium 
succinate) 

cycloheximide 
(antibiotics) 

ethionine 
(S-ethy1-L
-hcmocysteine) 

anisomycin 
(antibiotics) 

carbendazim 
(benzimidazoles) 

Khaki & Shaw, 1974 

Khaki & Shaw, 1974 

Tirrarer !:.! aI, 1970 

Shaw & Elliott, 1968 

MacKenzie !!~, 1971 a,b 

Mackenzie et aI, 1971 a,b 

Fry et aI, 1984 
Leachet aI, 1982 

Leach et aI, 1982 

Tinline, 1961 

Brazier & Gibbs, 1975 
Webber et aI, 1986 --



Table 1.1 continued 

ORGANISM 
--------

Mycosphaere11a fijienis 
var. dHformis 

~ricu1aria oryzae 

Nectria haerratococca 

Venturia inequa1is 

V. nashico1a 

!:.. pirina 

BasidioITTjcetes 

Usti1ago hordei 
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ANTIFUNGAL COMPOUND 

benomy1 
(benzimidazo1es) 

kasugaITTjcin 
(antibiotics) 

PCNB, TCNB 
(aromatic 
hydroca rbons ) 

dodine 

antimycin A 
(antibiotics) 

dodine 

benzimidazo1es 

benomy1 
(benzimidazo1es) 

REFERENCE 

Stover, 1977a,b 
Stover, 1979 

Taga et aI, 1979 
Uesugr-&~tagiri, 1977 

Georgopou1os, 1970 
Georgopou1os & 
Panopou1os, 1966 

Kappas & Georgopou1os, 1970 

Leben etal, 1955 

Yoder & K1os, 1972 
Polach, 1973 

Jones & Ehret, 1976 

Kiebacher & Hoffman, 1981 

Martin et aI, 1981 
Shaki e~ar; 1983 
Katan et aI, 1983 
Stanis et aI, 1983 

benomy1, thiophanate- Ishii & Yanase, 1983 
methyl Ishii et aI, 1984 
(benzimidazo1es) 

carbendazim 
(benzimidazo1es) 

benemy1 
(benzimidazoles) 

carboxin 
(carboxamides) 

benomyl 
(benzimidazo1es) 

Shabi & Katan, 1979 

Shabi et aI, 1986 --

Ben-Yephet et aI, 1974, 
-1975 

Ben-Yephet et aI, 1974, 
-1975 



Table 1.1 continued 

ORGANISM 
------------

u. maydis 

!!:. violacea 

Deuteromycetes 

ASpergillus niger 
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ANTIFUNGAL COMPOUND REFERENCE 
---.--------.---

carboxin 
( ca rboxy lamides ) 

chloroneb 
(aromatic 
hydrocarbons) 

benomyl 
(benzimidazoles) 

chloroneb, botran 
(aromatic 
hydrocrbons) 

cycloheximide 
(antibiotics) 

carboxin 
(carboxamides) 

thiabendazole 
(benzimidazo1es) 

chloroneb 
(aromatic 
hydrocarbons) 

cycloheximide 
(antibiotics) 

oligomycin 
(antibiotics) 

acriflavine 
(antibiotics) 

pimaricin 
(antibiotics) 

benomyl 
(benzimidazoles) 

imazalil 
(imidazoles) 

Georgopoulos & Sis1er, 1970 
Georgopoulos & Ziogas, 1977 
Georgopoulos!! al 1972 

Tillman & Sis1er, 1973 
van Tuyl, 1977a 

van Tuyl, 1977a 

Garber et aI, 1982 --

Garber et aI, 1982 

Garber !! al, 1982 

Garber !! aI, 1982 

van Tuyl, 1977a 

van Tuyl, 1977a 

van Tuyl, 1977a 

van Tuyl, 1977a 

van Tuyl, 1977a 

van Tuy1, 1977a 

van Tuyl, 1977a 
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Table 1.1 continued 

ORGANISM ANTIFUNGAL C)MPOUND REFERENCE 

----,------------------------ ------------------ .-------
Cladosporium 

cucumerinum 
carboxin van Tuy1, 1977a 

Fusarium oxysporum 

Penicillium expansum 

!::.. italicum 

(carboxamides) 

benomy1 
(benzimidazo1es) 

benomy1 
(benzimidazo1es) 

o-pheny1phenate 
- (aromatic 

hydrocarbons) 

o-pheny1phenate 
- (aromatic 

hydrocarbons) 

thiabendazole 
(benzimidazo1es) 

van Tuy1, 1977a 

Molnar !:! a1, 1986 

Beraha & Garber, 1966 

Beraha & Garber, 1980 

Beraha & Garber, 1980 

--------_._---------------------_.-----------------------------------
However, the number of genera in which parasexual genetic 

analysis has been applied is still small and includes few 

important plant pathogenic species. As a result our knowledge of 

the genetic basis of resistance has been derived from a few, 

genetically we11-characterised fungi. 

1.1.3.2 Genetic Basis of Resistance 

Acquired resistance to antifungal corrpounds that is stably 

transmitted from one generation to the next, and maintained even 

in the absence of the fungicide must be genetic in origin, 

arising by mutation. Unstable resistance of a non-mutational 

nature does, hawever, occur and nay be responsible for quite high 

levels of resistance (Parry & Wood, 1959a,b). Georgopoulos (1982) 

termed· this "Phenotypic Resistance". Phenotypic fungicide 
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resistance can be induced in vitro in naturally sensitive strains 

by culturing on successively greater concentrations of the 

inhibitory compound. 

MacNeill and Schooley (1973) produced phenotypically 

resistant strains of ~ inaegua1is with levels of resistance to 

dodine comparable to those of strains with mutational resistance. 

In addition the level of resistance of one isolate exhibiting 

stable genetic resistance was further increased by continuous 

culturing in the presence of dodine until inhibition of growth by 

the fungicide was no longer detectable. In all instances this 

"transient" resistance was lost when strains were cultured 

briefly on medium lacking the fungicide. 

Phenotypic resistance is commonly observed in fungi 

exposed to the group of fungicides collectively known as the 

ergosterol biosynthesis inhibitors (EBI's). Fuchs and Viets-

Verweij (1975) induced phenotypic resistance to triforine in the 

Phytopathogenic fungi Ascochyta pisi, Ceratocystis firrbriata, C. 

ulmi, Cladosporium cucumerinum, Verticillium albo-atrum and V. 

dah1iae. Adapted strains were able to grow on medium containing 

up to 400 l1g triforine m1-l and the resistance was lost after 

culturing on triforine -free medium. Phenotypically resistant 

strains of ~ cucumerinum showed a degree of cross-resistance to 

triarimol, though only at a low level. 

Atterrpts to induce phenotypic resistance to benzimidazoles 

have invariably failed (Ben-Yephet !! aI, 1974: Meyer, 1976). 

Duinveld and Beijersbergen (1977) obtained highly benomyl-

resistant strains of Fusarium oxysporum f.sp. tu1ipae, a 

relatively insensitive species (ED 50 = 3-8 l1g m1-1) by 
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transferring mycelium to medium containing successi vely higher 

concentrations of benomyl. The resistance obtained was stable, 

did not show any reduction after cultivation for one year on 

benomyl-free medium and was presumably due to a nutationa 1 change 

in sensitivity. 

1.1.3.2.1 Extrachromoeooal Cootrol 

Extrachromosomal genes for resistance to various drugs are 

well known in bacteria, situated on plasmids transmissible 

between individuals of the same or unrelated species. Several 

species of plant pathogenic fungi have been shown to contain 

plasmid- or virus-like particles (Hollings, 1982), which, at 

least in SOl'!e cases, appear to be irrportant in the expressioo of 

pathogenicity and host specificity, usually inducing 

hypovirulence (Hollings, 1978; Hashiba ~~, 1984). Evidence for 

the invol vement of plasmids in resistance to antifunga 1 corrpounds 

in mycelial fungi is scarce, although a DNA plasmid in S. 

cerevisiae has been found to be associated with resistance to 

oligomycin (Guerineau !! aI, 1974). 

Fungi also contain mitochondrial DNA, which has been shown 

to be responsible for some cases of resistance to compounds 

inhibitory to mitochondrial processes. For example, resistance to 

triethyltin and other organotin compounds, which inhibit 

oxidative phosphorylation in ~ cerevisiae, has been shown to be 

under extrachromosomal control (Lancashire & Griffiths, 1971). 

Extrachromosoma1ly inherited resistance to oligomycin, which also 

inhibits phosphorylation, is controlled by two genes in this 

species, as is resistance to chloramphenicol, a mitochondrial 
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protein synthesis inhibitor (Georgopoulos, 1977). Similarly 

chloramphenicol resistance was caused by extrachromosomal 

mutation in the wood-rotting basidiomycete, Sistotrema 

brinkmannii (Anderson & Cenedese, 1984), while resistance to 

oligomycin or chloramphenicol in ~ nidulans can result from 

mutation in an extranuclear genetic element (Ro..rlands & Turner, 

1973) • 

Not all cases of resistance to inhibitors of mitochondrial 

function however, are due to extrachromosomal mutations, as 

examples of nuclear genes for both oligomycin and chloramphenicol 

resistance exist. Often such mutations result in a broader 

pattern of resistance, conferring cross-resistance to compounds 

of similar or even apparently unrelated mode of action. A nuclear 

mutation for oligomycin in ~ cerevisiae, for example, confers 

cross-resistance to eleven other mitochondrial inhibitors 

including chloramphenicol, antimycin A and triethyltin bromide 

(Rank & Beck-Ransen, 1973). 

Only one instance of apparent extranuclear inheritance of 

benzimidazole resistance has been reported (Stover, 1977a). 

Benomyl "tolerant" strains of ~ fijiensis var. difformis, 

causing black sigatoka disease of banana, were isolated from 

lesions from plantations which had been sprayed with benomyl or 

thiophanate-methyl regularly for 18 months. Resistant strains 

were rorphologically distinct, having an increased gro..rth rate in 

culture, 4 to 6 times that of the wild-type sensitive isolates, 

and were avirulent. The resistance to benomyl was not transmitted 

ei ther to conidia or ascospores, on ly being observed in hypha 1 
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isolates. The resistant strains were apparently stable in cuI ture 

and no sectors were formed. Stover (1977a) suggested that the 

basis of this resistance was an extranuclear inherited factor. 

Subsequently similar fast-growing, avirulent, benomyl-resistant 

isolates have been obtained from lesions caused by ~ musico1a, a 

closely related species, from other areas of Central America 

(Stover, 1977c). 

1.1.3.2.2 Huc 1ear Control 

Most genetic studies in fungi have revealed a chromosomal 

basis for fungicide resistance. In many cases resistance has been 

shown to be the result of a single mutational event and its 

inheritance is typical of a single Mendelian gene (van Tuyl, 

1977a). The number of genes that may be invol ved in the control 

of resistance depends, to a large extent, on the possible 

mechanisms of resistance. Resistance mechanisms which invo1 ve 

modification of the site of action are usually controlled by one 

or a few genes, as with carboxamide or benzimidazole resistance. 

Resistance which results from alteration in uptake or in the 

metabolism of the compound, frequently exhibits mUltigenic 

control, since many genes will affect either membrane 

permeability or the metabolic pathways involved in toxification 

or detoxification of the fungicide. Uptake mutants causing 

reduced sensitivity to e-fluorophenylalanine (FPA) have been 

studied in A. nidulans (Srivastava & Sinha, 1975). Ten loci have 

been identified, some altering the activity of a permease which 

concentrates FPA in the mycelium, others affecting regulatory 

enzymes responsible for the production of the permease proteins. 
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Similarly, Jund and Lacroute (1970) identified seven genes 

controlling resistance to 5-fluorq;Jyrimidines in ~ cerevisiae, 

two of which were shown to be associated with loss of specific 

permease activity. Mutations at the other loci affected the 

regulation of the pyrimidine pathway, and consequently the 

metabolism of the inhibitors. 

Mul tigenic resistance has been observed with other 

fungicide groups. Resistance to the ergosterol biosynthesis 

inhibitor imazalil, in ~ nidulans, is based on a multigenic 

system of eight loci (van Tuyl, 1977b). Genetic studies of 

resistance to other members of this group have not been reported 

but it seems highly probable that similar multiple gene systems 

are present, in view of the variation in resistance level and 

patterns of cross-resistance observed (Fuchs & de Waard, 1982: 

Barug· & Kerkenaar, 1984). 

Dodine resistance in ~ haematococca is based on at least 

four major genes, two of which have been shown to be influenced 

by modifiers (Kappas & GeOtgopoulos, 1970). In y.:.. inaequalis two 

or more genes are known to be involved in resistance to this 

compound (Yoder & K1os, 1972: Po1ach, 1973). Although the genetic 

basis of resistance has been elucidated and it is known that 

dodine affects the permeability of the plasma membrane (Kaars 

Sijpesteijn, 1982), the physiological mechanism of this 

res is tance is not known. 

The number of loci found to confer resistance to a 

fungicide group is often correlated with the number of mutants 

studied, since a larger sample of resistant strains increases the 

chances of isolating those mutations occurring at low 
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frequencies. Georgopoulos (1963) analysed twel ve mutants of !!:. 

haematococca exhibiting resistance to the aromatic hydrocarbons 

PCNB and TCNB and was able to assign them to three, freely 

segregating loci. ~en a further cne hundred nutants were studied 

two more loci were reco;Jnised (Georgopoulos & Panopoulos, 1966). 

Resistance resulting from a change in the site of action 

of the toxicant cannot only be caused by different alleles but 

a Iso by different genes, since the products of a number of loci 

can contribute to site modification. SUch a phenomenon has been 

observed in carboxamide-resistant mutants of ~ maydis. 

Georgopoulos and Sisler (1970) described two types of mutation 

leading to alteration in the sensitivity of succinate 

dehydrogenation, the site of inhibition by fungicides in this 

group (Ulrich & Mathre, 1972), to carboxin. The rrutations could 

be distinguished by their differential effects on antimycin A 

resistance, which inhibits a separate site in the electron 

transport system. One mutant had greatly increased sensiti vity to 

this antibiotic while the other had no pleiotropic effect. In A. 

nidulans three unlinked genes each reduced inhibition of three 

enzymes involved in succinate dehydro;Jenation caused by carboxin 

(Gunatilleke et aI, 1976). None of the carboxin resistance 

mutations in ~ maydis or A. nidulans has been found to al ter 

uptake of carboxin through the plasma membrane (Georgopoulos !! 

al , 1972: Gmatil1eke et aI, 1976). 
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1.1.3.2.3 Genetic Basis of Benzimidazole Resistance 

Since the first genetic studies of resistance in A. 

nidulans {Hastie & Georgopoulos, 1971}, many reports on the 

inheritance of benzimidazole resistance have appeared. In most 

cases a monogenic basis for resistance was found (Table 1.2), 

usually conferring a high level of resistance to a range of 

benzimidazole fungicides. Hastie and Georgopoulos (1971) 

identified two loci in ~ nidulans, one conferring a high level 

of resistance (ben-I) and the other a lower level ( ben-2). Van 

Tuyl (1975, 1977a) was able to identify three non-allelic 

resistance loci in ~ nidulans, again differing in the level of 

resistance conferred: one (~) producing mutants with a high 

level of resistance and the other two ( benB, ~) giving lower 

levels of resistance. benA was found to be allelic with the ben-l -
gene of Hastie and Georgopoulos, and it was suggested from a 

comparison of their linkage map positions, that benB was allelic 

with ben-2 (van Tuyl, 1977a). Lacava (1979) also identified a 

single gene for benomyl resistance (ben-I) in ~ nidulans, 

located at the same position as ~ of van Tuyl, and presumably 

allelic to it. This gene has been shown to be one of two 

structural genes for t3-tublin in A. nidulans, which code for two 

electrophoretically different 8-tubulin proteins (13 1 & B2). The 

other (~) codes for a species of tubulin apparently expressed 

only during conidiation (63). Mutation in ~ produces strains 

resistant to benzimidazoles for vegetative growth, but which are 

unable to sporulate in the presence of these compounds, while 

additional nrutation in the ~ gene restores conidiation under 
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these conditions (Sheir-Neiss !! aI, 1978: May!!!!, 1985: 

Morris, 1986). Altered sensitivity to benzimidazoles in A. 

nidulans could also result from mutation in the structural gene 

for a-tubulin (tubA). Strains carrying the tubA-l nutation were 

extra-sensitive to benomy1 (Morris ~ aI, 1979). The function of 

~ and ~ genes are as yet unknown, but do not appear to code 

for tubulin proteins. Furthermore the influence of a second Q-

tubulin structural gene (~) on benzimidazole sensitivity 

expression has yet to be determined (Morris, 1986). 

Table ~ Numbers of genes for benzimidazole resistance identified in 

different species. 

SPECIES NO. LOCI REFERENCE 

Aa~raillUS 3 Hastie & Georgopoulos, 
nidu ans van Tuyl, 1977a 

Lacava, 1979 

~ niger 1 van Tuyl, 1977a 

Ceratocystis 1 Brasier & Gibbs, 1975 
ulmi Webber ~ aI, 1986 

Dict:iostelium >5 Welker & Will iams, 1983 
dIscoideum 

Fusarium 2 Molnar ~~, 1986 
oxysporum 

~COSEhaerella 1 
hjiensis 

Stover, 1979 

var. difformis extrachromosomal Stover, 1977a 

Neuros~ra 1 BorCK & Braymer, 1974 
crassa 

Penicillium 2-3 Beraha & Glrber, 1980 
italicum 

1971 
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Table 1.2 continued 

SPECIES NO. LOCI REFERENCE 

~sarum 4 Bur1and et aI, 1984 
poycephalum Sched1 !!!!! 1984 

Saccharomyces 1 Neff et aI, 1983 
cerevisiae Thomaset aI, 1985 

SchizOBaccharomyces 5 Yamamoto, 1980 
porrbe Umesono et aI, 1983 

Ray & FanteB;" 1983 
Hiraoka et aI, 1984 
Toda ~ ay ,'-984 

Ta la romyces 1 Katan !!. aI, 1984 
flaws 

Usti1a~o 
hordei 

polygenic Ben-Yephet, 1974, 1975 

!!:. trByd i s 1 van Tuy1, 1977a 

U. vio1acea 1 Garber !! a 1, 1982 

Venturia inaequalis 1 Jones & Ehret, 1976 
Kiebacher & Hoffmann, 
Martin et aI, 1981 
Shabi eta 1, 1983 
Katan et aI, 1983 
Stanis~ Jones, 1984 

V. nashicola 1 Ishii & Yanase, 1983 
Ishii !!. aI, 1984 

~ eirina 1 Shabi & Katan, 1979 
Shabi !!.~, 1986 

Evidence for the potential involvement of a number of loci 

in benzimidazole resistance was strengthened by the study of 

resistance in ~ pombe (Yarnamoto, 1980). One gene (ben-I) 

conferred high-level resistance to both carbendazim and 

thiabendazole and the other two (ben-2, ben-3) a lower leve 1 of 

1981 
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resistance. ben-1 is identical with nda-3, the structural gene 

for frtubulin in this yeast (Umesono ~ aI, 1983: Hiraoka ~ aI, 

1984). Two genes for a-tubulins occur in ~ pombe, one (nda-2) 

has been shown to cause increased sensitivity to benzimidazoles 

and is essential for grCMth. The other, like tubB in A. nidulans 

is non-essential and its effect on benzimidazole sensitivity 

unknown (Umesono !! a I, 1983: Toda !! ~ 1984: Morris, 1986). 

Neither of the two low-level resistance genes, ben-2 and ben-3, 

have been shown to be tubu1in genes. Their homology to ~ and 

benC of A. nidulans remains uncertain, however, low-level ---- -- --------
resistance expression in ~ pombe appears to be temperature 

dependant, a characteristic which does not seem to have been 

described in A.. n~du lans (Yamamoto, 1980). An addi tiona 1 

benzimidazole resistance gene (ben-4) in ~ pombe was descibed by 

Roy and Fantes (1983), which was not allel ic wi th ei ther nda-2, 

nda-3, ben-2 or ben-3, or with the stuctural gene for the a2-

protein (Toda ~ aI, 1984). 

In the slime mould, Physarum polycephalum, four resistance 

loci have been identified, benA to benD (Bur1and et aI, 1984). - - --
benA and benC mutations confer benzimidazole resistance only to - -
the myxamoebic phase of this organism, while mutations in benB 

and benD result in resistance in both rnxyamoebae and plasmo:Ua. 

Sched1 ~ a1 (1984) showed that benD mutations were allelic to 

the ~ locus, a structura 1 gene for B-tubul in, one of at least 

three which have been fotmd. The e -tubu1in encoded by this gene 

(BI-B-tubulin), occurs in both myxamoebae and plasmodia. An 

electrophoretically identical B-tubulln (Sl-A.-tubulin), produced 
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only in myxamoebae, is coded for by the ~ locus. This gene was 

closely linked to the benA resistance locus and is probably 

allelic to it. Mutation in either betA (benA) or betB (benD) -- --
resul ts in benzimidazole resistance in myxarnoabae, showing that 

the resistance is epistatic. 

The resistance locus benC was shown to be 1 inked to the a -

tubulin structural gene altC, and {MY be allelic to it. In which 

case the altC gene product must be either specific to the 

rnyxamoebic phase, since ~ only confers resistance to 

benzimidazole cofll>Ounds to myxamoebae, or provide only a small 

proportion of the a-tubulin present in plasmodia, so that 

resistance is not expressed (Roobal ~ aI, 1984). The fourth 

resistance gene, ~, was not 1 inked with any of the known er or 

8-tubulin genes, and its mode of action remains unclear. In 

addition the function of the gene products of the remaining three 

a-tubulin genes and at least one 8 ,,:-tubu 1 in gene that have been 

identified and their role, if any, in the expression of 

resistance to benzimidazoles has yet to be determined. 

A similar model, involving the expression of two separate 

6-tubulin genes, was proposed by Molnar ~ al (1986) to explain 

the observed synergy between the two benzimidazole resistance 

genes in Fusarium oxysporum. If each of these genes coded a 

different 8-tubulin protein, either of which could support normal 

growth, mutation in one could lead to a moderate level of 

resistance to benzimidazole fungicides, since a proportion of the 

B-tubulin would be benzimidazole-sensitive. The presence of 

mutant alleles at both loci in the same cell, would then account 

for the increased level of resistance seen in the double mutants. 
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This hypothesis awaits confirmation by biochemical studies. 

Beraha and Garber (1980) used the parasexual cycle to study 

the inheritance of thiabendazole resistance in Penici1~ 

italicum. They produced evidence for the presence of either two 

or three closely linked genes, conferring different levels of 

resistance. 

Polygenic inheritance appears to be operating in Ustilago 

hordei (Ben-Yephet!! aI, 1975). However, genetic analysis was 

not straight forward, as the mutation to resistance was 

associated with a reduction in the proportion of te1iospores 

germinating to produce sporidia. Carboxin resistance also 

appeared to be under polygenic control in this species (Ben

Yephet !! a1, 1975). 

Ascospore-transmitted resistance to benomyl in M. fijiensis 

var. difformis was recognised by Stover (1977b). Previously only 

hyphal resistance had been recognised and thought to be of 

extranuclear genetic origin (Stover, 1977a). Strains carrying the 

resistance nutation \oIere able to grChT on [Mdium containing 200 f.1g 

benomyl ml-l • The level of resistance shown by field isolates, 

and also their frequency in the population decreased, however, 

once application of benomyl in the plantations ceased. This 

indicated that the resistance itself was unstable and that 

resistant strains competed poorly with sensitive isolates in the 

absence of a strong selective pressure (Stover, 1977b, 1979). 

Analysis of the resistance of ascospores from single asci 

indicated that a single nuclear gene was involved (Stover, 1979). 

....... 
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1.1.3.3 Mutation Frequency 

The frequency of spontaneous mutation will depend on the 

number of loci at which mutation can produce a resistant 

phenotype and on the mutability of the individual loci. 

Resistance which nay arise as a change in one of nany genes wi 11 

show a characterisically high mutation frequency. The rate of 

spontaneous mutation to FPA resistance in conidia of A. nidulans 

for instance, was calculated to be 2.6 x 10-3 (i.e. 1 in 3.8 x 

102 conidia) (Chatoo & Sinha, 1974). Spontaneous mutation 

frequencies for benzimidazole resistance have been reported for 

several fungal species (Table 1.3). Most estimates fa 11 within 

the range 1 x 10-6 to 1 x 10-7• Spontaneous mutation frequencies 

to carbendazim resistance in ~ herpotrichoides however, are 

sanewhat lower than those reported for nany of the other species • 

. Mutation rate in Septoria nodorum appears to depend on the 

level of resistance selected. Low-level resistance (MIC == 5 lJ g 

carbendazim ml-l ) occurring at a higher frequency than high-level 

resistance (no inhibition by 5 ~g carbendazim ml-l ). These 

findings have obvious irrp1 ications for the choice of fungicide 

concentra tion when screening for resistance (Borsten, 

1979: Borsten & Fehrrrann, 198~). 

1.2 Cbjecti ves 

For reasons that have been described, economic crop loss 

reSUlting from the development of benzimidazole resistance in ~ 

herpotrichoides was largely unexpected (Tra..r-Smith, 1982). This 

feature, together with the current confusion over the status of 

..... 
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~le 1.3 Spontaneous mutation frequencies for resistance to benzimidazole 
fungicides in fungi 

SPECIES MUTATION FREQUENCY 

Aspergillus 
nidulans 

Colletotrichum 
I indemuthianum 

Beauvaria 
bassiana 

Ceratocystis 
ulmi 

Fusarium 
oxysporum 
f.sp. melonis 

Pseudocercos~rella 
Fierpotrichoi ea 

Septoria· 
nodorum 

law-level 
high-level 

1 x 10-6 -
1 x 10-7 

1 x 10-6 

1.1 x 10-8 

1 x 10-7 -
4.2 x 10-10 

REFERENCE 

Lacava (1979) 

Meyer (1976) 

Yurchenko (1979) 

Brasier & 
Gibbs (1975) 

Bartela-Schooley & 
MacNeill (1971) 

Fehrmann et al 
(1977,1982) 

Fehrmann & 
weihoffen (198Oa) 

Horsten & 
Fehrmann (1980a) 

Horsten & 
Fehrmann (198Oa) 

the two major pathotypes within the population, suggested that 

futher analysis of the problem, using where possible a genetic 

approach, was required. Consequently the nein aims of the present 

work were: 

1) to characterise the expression of resistance to the 

benzimidazole fungicides in P. herpotrichoides, using both field 

isolates and laboratory mutants, 

2) to develop a system for genetic study in this pathogen, 

based on parasexuality. 



CHAPTER 2 
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In view of the interest in the structure of, and changes in, 

the field population of the eyespot fungus, it is perhaps 

pertinent to devote some time to a description of the taxonomic 

status and epidemiology of the pathogen, and its behaviour in 

culture. 

2.1 MATERIALS AND METIDDS 

2.1.1 Media 

The main solid medium used for the in vitro culture of P. 

herpotrichoides was malt extract-yeast extract-g1ucose agar (MYG: 

g 1 -1, malt extract,S: yeast extract, 2.5: glucose, 10: agar, 

20). Other corrp1ete media used included malt extract-g1ucose agar 

(MA: 9 1-1, malt extract, 10: glucose, 10), and potato-dextrose 

agar (POA). A defined medium, used for the identification of 

auxotrophic nutants and for selection of "hybrid" colonies, was a 

modified form of those described by Macer (1961a) and Deacon 

(1973 b) and contained (g 1-1) K2HP0 4 , 0.1: NaN0 3 , 0.2: 

MgS04.7H20, 0.5: KCl, 0.5: NaC1, 0.5: trace elements, 1 m1 

(Macer, 1961a): thiamin HC1, O.lmg: glucose, 10: agar (Difco

Bacto), 20. 

A nutrient-deficient medium, required for the production of 

conidia, consisted simply of water agar (TWA: agar, 20g 1-1 

dissolved in tap water). All media were sterilized by autoclaving 

at 121 °c for 30 min. 
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2.1.2 Strain lsolatioo 

P. herpotrichoides was isolated from infected wheat or barley 

straws as follows. Pieces of straw 1 to 2 cm long were surface 

sterilized by immersion in 25% chloros for 30 s and plated onto 

MYG agar containing 100 1-9 ml-l streptomycin sulphate and 50 lJg 

ml-l erythromycin or ampicillin to reduce bacterial gro.rth. ~ 

herpotrichoides mycelium grew out onto the agar surface within 2 

to 3 weeks at 190 C and was transferred to TWA medium to induce 

sporulation. Spores, scraped off the agar surface, were filtered 

through 2 to 3 layers of sterile muslin, to remove hyphal 

fragments, washed with sterile distilled water and plated onto 

MYG agar to give single colonies. 

Most strains from other sources were also induced to 

sporulate and colonies arising from single spores were isolated. 

This was done to reduce the chance of mixed cuI tures being used 

in subsequent experiments and to ensure genetic uniformity, as 

far as was possible, within each strain. 

The origin and characteristics of field and species-type 

isolates used, are listed in Appendix I. 

2.1.3 Maintenance. of Stock CUltures 

Isolates were maintained in several ways. Routinely used 

strains were kept on MYG agar plates and sub-cultured regularly 

every 2 to 3 months. MYG slant cultures were not successfully 

used for the storage of isolates, since the fungus rapidly lost 

viability when stored in this way. For long-term maintenance of 

field isolates and mutants, cultures were kept on straw. Pieces 

of internodal, whea t straw, approximately 2 to 3 cm long were 
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sterilized by autoclaving for 30 roin at 12loC in glass I oz 

bottles containing 3 rol of distilled water. After inoculation, 

the fungus was allowed to colonise the straw segments for 1 to 2 

months at 19°C. Straw stock cuI tures were then kept at 40 C unti I 

required. Isolates maintained in this way, remained viable for 

over 2 years without apparent loss of pathogenicity. Sporulating 

cuI tures, growing on TWA slants, could be stored at 4°C. 

Viability under these conditions was maintained for at least 6 

months. 

2.1.4 Spore Production 

Conidia were produced under nutrient-deficient conditions, on 

TWA plates at 190 C: the time required depended on the strain of 

the fungus and the inoculum density. When larger numbers of 

spores were required they were produced by a modification of the 

method described by Reinecke and Fokkema (1979). Plates 

containing MYG agar, were seeded with large nurrbers of spores and 

incubated at 190 C for 2 to 3 days. Abundant microcyclic conidia 

formation usually ensued, resulting in a slimy, cream-coloured 

layer of conidia on the surface of the agar. Conidia produced in 

this way could be repeatedly sub-cultured on fresh MYG agar for 

up to 3 cycles before reverting to the mycelial, non-sporing 

form. Spores were collected by suspension in sterile distilled 

water, and filtration through 3 layers of muslin to remove 

mycelial fragments. Conidia were washed twice in sterile 

distilled water, by centrifugation, before use. 
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2.1.5 Growth Studies 

Growth ra te studies were performed in vitro using ei ther 

MYG agar or POA. Colonies were grown from agar plug inocula, 3 to 

6 mm in diameter,at 190 C for up to 26 days. Colony diameters, 

taken at right angles, were measured and used to calculate radial 

growth rate (mm day-I). Spore production on TWA of colonies, 

grown from point inocula, was assessed visually with the aid of a 

microscope (Vickers, xlO objective) using phase contrast, and 

scored on a scale of increasing abundance (-, +, ++, +++). A 

quantitative assessment of spore production was made when 

cuI tures were grown on TWA from inoculum spread over the entire 

agar surface. Agar plugs (6 mm diameter) were taken from random 

points on the plate and vigorously shaken in 1 ml sterile 

distilled water. The number of spores in the resulting suspension 

was determined using a counting chamber. Colonies from single 

spores were obtained as described in Chapter 2 (Section 2.1..2). 

2.1.6 Chemicals and Media Ingredients 

Malt extract, yeast extract and PDA were rurchased from Oxoid 

Ltd., Basingstoke. All other chemicals were of analytical reagent 

grade and ei ther from BDH Chemicals Ltd., Poole, or Fisonsplc, 

Loughborough. 

2.2 TAXl:H>MIC HISTORY OF PS~ BERPOTRIClDIDES 

The history of the identification of the eyespot pathogen was 

thoroughly reviewed by Oavies (1970). Only a brief description, 

therefore, will be given here. 

---
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The syrrptoms of the disease caused by Pseudocercospore lla 

herpotrichoides (Fron) Deighton on cereals were first described 

in France by Pluchet in 1878. It was several decades later, 

however, before a formal identification was made. Fron (1912) 

described the fungus and provisionally named it Cercosporella 

herpotrichoides, since he considered it to be the perfect form of 

Leptosphaeria herpotrichoides. Attempts to induce the alternative 

form in either species were unsuccessful and led Foex (1914) to 

conclude that they were unrelated 

Much of the confusion about the identity of the eyespot 

pathogen stemmed from the difficulty of producing conidia in pure 

culture. Foex and Rosella (1930) isolated a sterile fungus with 

which they were able to induce symptoms typical of eyespot 

disease, in inoculated plants. Since no spores were produced they 

were unable to identify the pathogen and called it "Champignon 

x". Sprague (1931), working in the U.S.A., was the first to 

obtain spores in culture and so confirm that the eyespot pathogen 

was indeed ~ herpotrichoides. Using the same technique conidia 

were obtained from the cuI tures of "Champignon x" of Foex, and 

Shown to be identical with the American fungus (Sprague & 

Fellows, 1934). Subsequently the pathogen has been identified in 

most countries where wheat is cultivated (Davies, 1970). It was 

first reported in the U.K. in 1936 (G1ynne, 1936). 

Deighton (1973), reviewing Cercospora and related genera, 

reclassified the fungus on the basis of spore characteristics, as 

Pseudocercospore11a herpotrichoides, placing it in a new genus. 

In the most recent taxonomic review of the species, Nirenberg 

(1981) recognised two major varieties, f=..!!. var. herpotrichoides 
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and ~~. var. acuformis, on the basis of morphological 

differences, and identified two new species ~ anguioides and ~ 

aestiva. All were pathogenic on cereals. The two varieties of E:. 

herpotrichoides, var. herpotrichoides and var. acuformis, roughly 

corresponded to the two rrain pathogenic types, wheat (W) and rye 

(R), repectively, which had been recognised previously (Brown & 

Griffin, 1983). 

E:. herpotrichoides is an imperfect fungus, for which no 

sexual state has been found. Furthermore, although a diploid 

strain has been produced in vitro and mitotic reassortment of the 

genetic rraterial was presumed to occur (Davies & Jones, 1970a), a 

parasexual cycle has yet to be demonstrated. 

2.3 PATHOLOGY 

2.3.l. Host Range and Synptom Development 

There is a considerable literature on the phytopathology of 

~ herpotrichoides, covering all aspects of its epidemiology and 

disease control. The host range of this pathogen is quite 

extensive: in addition to the major cereals wheat and barley, and 

to a lesser extent cats, ~ herpotrichoides is also pathogenic on 

rye and many other members of the Gramineae (Booth & WaIler, 

1973: Cunningham, 1965: Hartz, 1969: McKay ~ aI, 1956: Scott et 

aI, 1975, 1976: Sprague & Fellows, 1934). 

Infection typically occurs at the stem base, usually below 

the first node, and an elongated lesion develops. The fungus 

successively penetrates the leaf sheaths ultimately filling the 



-43-

stem lumen with mycelium (Sprague & Fellows, 1934: Lange-de la 

Camp, 1966a). The lesion may girdle the stem, killing the phloem 

and inducing premature maturation and "whiteheads". Alternatively 

the stem is weakened leading to random lodging or "straggling" 

(Sprague & Fellows, 1934). The fungus also causes a post

emergence foot rot which may ki 11 seedl ing plants or ti llers. 

Reduction in yield results both from the direct effects of the 

pathogen on the host plant and indirectly by increasing lodging 

and storm damage (Ponchet, 1959). Infection in wheat and barley 

reduced both grain nurrber per ear and thousand grain weight and 

infected plants produced fewer tillers (Ponchet, 1959; Davies & 

Jones, 197Ob: Jordan ~ aI, 1979: C1arkson, 1981). 

2.3.2 ~ic1emlology 

The disease corresponds to the description of a simple 

interest disease (Rowe & Powelson, 1973b). Infection occurs 

during cool, wet periods in auturm and early spring, from spores 

produced on contaminated stubble debris from a previous crop 

(Sprague & Fellows, 1934: Ponchet, 1959: Diercks, 1966). Young 

lesions do not usually sporulate and so do not act as a source of 

inoculum for secondary infections, and spore production from 

stubble trash usually declines after the end of April, coinciding 

with a reduction in the incidence of new infections (Oiercks, 

1966; Hol1ins & Scott, 1980). Consequently the amount of disease 

present in a crop depends on the climatic conditions prevailing 

early in the season. Sporulation on infected straw, under 

controlled conditions, occurred between 0 and 200 C with the most 

consistent production within the range 1 - lSoC (Moritz & 
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Brockman, 1933: Glynne, 1953: Jorgensen, 1964: Rowe & Powelson, 

1973a). Glynne (l953) found that fluctuating temperatures between 

-3 and 13 °c increased spore formation from straw: while in pure 

cuI ture moderate temperatures (9 - l70 C) and exposure to near 

ultraviolet light enhanced sporulation by the fungus (Leach, 

1967: Ward & Friend, 1979: Reinecke & Fokkema, 1979). In all 

cases high humidity was essential, although excess moisture 

inhibited the sporing process (Glynne, 1953). 

The environmental conditions required for infection have been 

thoroughly investigated (Dickens, 1958: Defosse, 1966, 1967). 

Lange-de la Camp (1966b, 1967) found that the tenperature optimum 

for infection depended less on the particular isolate used, than 

on the cereal species and variety, infection of wheat plants 

decreased between 80C and l50C. Similarly Schrodter and Fehrmann 

(1971) identified an optimum of between 8 and 90 e for wheat 

infection, and found that a period of at least 15 h with over 80\ 

air humidity was also essential. In wheat seedlings the rate of 

penetration of successive leaf sheaths was found to increase over 

the range 6 to l80 e, coinciding with the increase in radial 

growth rate of the fungus, in vitro (Scott, 1971). The low 

temperature requirement for spore production and infection 

undoubtedly explains why most field infection occurs during the 

auturm and spring periods. 

Lesions develop throughout the summer, particularly in cool 

wet weather, and infected stubble remains in the field after 

harvest. Dense mats of polygonal cells, or stromata, are formed 

in the infected tissues (Ponchet, 1959), which serve as resting 
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structures, enabling the pathogen to survive for up to two years 

in the absence of a crop (Cox & Cock, 1962). The cellulolytic 

ability of P. herpotrichoides is limited, and as a result the 

rate of utilization of the nutrient resources of the straw is 1C1W 

(Hanss1er, 1972: Garrett, 1975). Consequently the mycelium can 

remain viable for relatively long periods during this saprophytic 

phase, retaining the ability to sporulate and thereby to initiate 

a new disease cycle (B1air, 1954: Macer, 1961a, b: Deacon, 

1973a). Spore dispersal occurs by rain splash and so is 

restricted to quite short distances (Fitt & Nijman, 1983). There 

is, therefore, little movement of inoculum between fields 

(Fehrrcann & Schrodter, 1971: RC1We & Powelson, 1973b). 

2.3.3 Caltro1 

Before the introduction of the systemic benzimidazole 

fungicides control of eyespot involved cultural rather than 

Chemical measures. Many chemicals were tested for efficacy against 

P. herpotrichoides, and al though some did cause a reduction in 

disease severity, none were commercially successful (Sprague & 

Fellows, 1934: Davies, 1970). 

Crop rotation, with at least two seasons between successive 

cereal crops, was recommended, since the fungus is able to 

survive in debris from previous crops for up to two years. 

Furthermore, because ~ herpotrichoides competes poorly with 

other soil micro-organisms (Macer, 1961a: Deacon, 1973b) and so 

is unable to infect plants by grC1Wing through the soil, farmers 

were encouraged to plough-in infected stubble, to prevent spore 

formation on exposed straw (Fehrrcann & Schrodter, 1971). Stubble 
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burning was found not to reduce the incidence of the disease 

presumably because most lesions occur at ground level and so 

escape destruction (Sprague & Fellows, 1934: Slope ~ aI, 1970). 

Sowing date also affects the rate of disease build-up, the 

earlier the time of sowing the more severe the level of infection 

the following season (Sprague & Fellows, 1934: Davies, 1970). 

Use of the growth-regulatory chemical Cycocel was found to 

reduce the loss of yield caused by' the disease. Investigation has 

shown that this was nainly due to the effect of this conpound on 

the plant, causing stem shortening and thickening of the haulm 

base. In consequence both the rate of penetration of the stem by 

the fungus, and the degree of lodging caused by the disease, was 

reduced (Slope ~!!" 1969). 

Host resistance to attack by P. herpotrichoides has been 

identified in wild cereal species and in some cultivars. In 

wheat, inherent resistance was first identified in cv. cappelle 

Desprez and has been used in breeding programmes to produce other 

resistant wheats (Bruehl, 1983). Resistance is polygenic, and 

appears to involve changes in the degree and timing of secondary 

cell wall thickening in the stem, as well as a hypersensitive 

reaction in the resistant plants (Law et aI, 1976: Hurray & --
Bruehl, 1983: Guillot-Salornon !! al, 1981: Bateman & Taylor, 

1976: Kahn & Bouriquet, 1984: Souilie ~ aI, 1985). 

The effectiveness of the benzimidazole fungicides for the 

control of P. herpotrichoides was soon recognised (Catling, 

1970). Benomyl, ca rbenda zt m, thiabendazole and thiophanate-methyl 

have all been used commercially against this pathogen (Taylor & 
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Waterhouse, 1975: Rule, 1975: Bruehl !! al, 1982). The usual 

method of application of these fungicides is by foliar sprays, 

although seed treatment has been sho,.m to give reasonable control 

(Lemaire !!!!" 1970: Davies, 1970). A single spray per season 

has usually been found to be sufficient for control, applied 

either in the late Autumn or in Spring, depending on the rate of 

infection in the irmature crcp (Jordan & Tarr, 1981). 

With the emergence of resistance to this group of fungicides in 

the eyespot pathogen (Rashid & Sch1osser, 1977), alternative 

antifungal agents were sought, amongst which the ergosterol 

biosynthesis inhibitor prochloraz has been found to be very 

effective. This compound is now marketed for use against eyespot 

in combination with carbendazim in an attempt to extend the 

useful life of these fungicides (Giffiths ~!,l, 1983). 

2.4 MORPm~ AND VARIATlOO IN!:. HEmUl'RICRlIDE'S 

2Al Cytology 

The hyphal diameter in ~ herpotrichoides is relatively 

small, hyphae often growing in close association, in parallel 

1 ines with many interhypha 1 connections (Fig 2.1a). Anastomosis 

between hyphae belonging to the same mycelium occurs frequently 

and nuclear migration through the interhyphal bridges has been 

observed (Lange~e la camp, 1964). The hyphae are ensheathed in a 

layer of mucilage (Reiss, 1971), which presumably aids their 

adherence to the substrate and leads to coherence of the mycelium 

in liquid cuI ture (Hanssler, 1972). 

The myce 1 ium of £.:. herpotrichoides is septate, each ce 11 

containing a single nucleus (Lange-de la Camp, 1964: Deacon, 
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Figure 2.1 a Regular hyphal anastomosis in P.herpotrichoides 

(Isolate 22-8) form bridges uetween neighbouring hyphae. Mycelium 

fixed with 70% ethanol was stained with tinopal (0.01% aqueous 

solution) and viewed under UV-fluorescence. Bar represents 20 pm. 

Figure 2.1 b Conidia of !=. herpotrichoides are typiC8:, 

multicellular, each cell containing a single nucleus. Cr~res fixed 

with 70\ ethanol, nuclei stained with chromomycin A3 and septa 

counterstained with tinopal. Bar represents 20 pm. 
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1973b). Apical cells, however, usually contain two or more 

nuclei, so a heterokaryotic mycelium could theoretically be 

maintained. The conidia are hyaline and multicellular, typically 

with 5-7 uninucleate cells (Fig 2.lb). The spores are formed from 

individual, intercalary mother cells, in consequence the nuclei 

are all derived from a single mother cell nucleus, and so, except 

for spontaneous mutational events during conidiogenesis, are 

genetically identical (Glynne, 1953: Davies, 1970). Conidia may 

also be produced by pseudoparenchymatous stromata cells, these 

are similarly uninucleate and so the conidia will also contain 

identical nuclei (Deacon, 1973b). 

2.4.2 CUltural Morphology 

Variation in colony morphology in ~ herpotrichoides, in plre 

culture, is well known. Various attempts have been made to 

categorise the different morphological types and associate them 

with other characteristics, particularly with pathogenicity 

(Lange-de la Camp, 1966b: Scott!! a1, 1975). Lange-de la Camp 

(1966a) recognised two major colonial forms in culture, one with 

a faster growth rate and even margin, the other with slower 

growth and an irregular colony edge (Fig 2.2). In pathogenicity 

studies of these strains, it was found that they corresponded to 

two virulence types; the fast growing, even-edged isolates were 

much less pathogenic to rye than wheat, while the slower, 

irregularly-edged isolates were equally pathogenic to rye and 

wheat. Consequently they were designated wheat types (W- or BW

types) and rye types (R- or BWR-types), respectively (Lange..oe la 

Canp, 1966b: Scott et aI, 1975). 
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The two varieties, !:.!!.. var. herpotrichoides and!:.!!.. var. 

acuformis, descdbed by Nirenberg (1981) display cultural 

morphologies which roughly correspond with the two pathogenicity 

types reported by previous authors. Whilst no corrparison of the 

virulence of the varieties on different cereal hosts has been 

made, physiological differences have been demonstrated 

(Nirenberg, 1984). For example, hyphal anastomoses occurred 

between isolates belonging to the same variety but were not seen 

between isolates of different varieties or between these 

varieties and either of the two new species, ~ aestiva and P. 

anguioides, identified l::1j Nirenberg (Fig. 2.2). 

Variation in sensitivity to carbendazim was also found 

between these taxonomic groups: isolates of ~ !!.. var. 

herpotrichoides were generally slightly more sensitive to this 

benzimidazole fungigide than those of ~!!. var. acuformis. The 

basis for these differences was not identified (Nirenberg, 1984). 

It is unlikely, however, that the observed variation in basal 

sensitivity alters the potential for aquired, mutational 

resistance to carbendazim, since Brown et al (1984) isolated 

both wheat and rye types of the eyespot pathogen with resistance 

to these conpounds. 

2.4.3 Growth Rate Studies 

The radial growth of four isolates, two BW-types and two 

BWR-types, on PDA is shown in Fig. 2.3, and demonstrates the 

difference between the rrorpho1ogica 1 types. The resul ts of a rrore 

extensive assessment of radial growth rate is presented in Table 

2.1. Significant differences were found in growth rate both 



Figure 2.2 Variation in colony morphology in Pseudocercosporella. 

Left to right: top row - 22-20, P. herpotrichoides BW-type: 22-119, 

P. herpotrichoides BWR-type: 24-1, P. anguoides. Middle row: 22-5, 

P. herpotrichoides BW-type: 22-17, ~ herpotrichoides BWR-type: 23-

I, ~ aesti va. Bottom row: 22-2, P. herpotrichoides BW-type: 22-4, 

~ herpotrichoides BWR-type: 22-116, ~ var. acuformis type

isolate. Colonies growing on MYG for 25 days at 19°C. 

Figure 2.4 Morphological instability in the BWR-type isolate 22-9. 

Colony grown on MYG for 25 days at 190 C. 
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Figure 2.3 Radial growth (mn) of tw:> BW-type isolates, 22-1 (. ) 

and 22-2 (D), and two BWR-type isolates, 22-3 (A) and 

22-4 (6) at 19°C on PDA (15 ml/9 an diameter Petri -dish) 
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within and between the two morphological types of ~ 

herpotrichoides. Excluding isolate 22-3, all BWR-types had a 

significantly slower rate of growth (p = 0.01) than the BW-type 

strains. Isolate 22-116, the P. h. var acuformis isolate, had a 

rate of growth equivalent to the fastest of the BWR-type 

isolates. The growth rate of the isolate of ~ anguoides, 24-1, 

was intermediate between the BW- and BWR-types of ~ 

herpotrichoides: while E:,.aestiva (23-1) was relatively slow 

growing, comparable with the slowest BWR-types. BWR-type isolate 

22-3 showed a considerable increase in growth rate in the 

interval between the two assessments (cf. Fig. 2.3 and Table 

2.1), even though cultures were recovered from straw stock 

culture for each test. This apparent instability will be 

discussed later. 

2.4.4 Spore production 

Great variation in the capacity of isolates to sporulate 

under controlled conditions was observed, some isolates failing 

to produce spores on TWA, even after prolonged incubated at 190 e 

in the dark. The stimulatory effect of near-UV light ("Black 

light") on spore formation in ~ herpotrichoides has been 

reported (Leach, 1967). In an attempt to improve conidial 

production, sporulation under near-UV light and dark conditions 

was compared. The effects of near-UV light on sporulation was 

investigated by incubating cultures, growing on TWA in plastic 

Petri dishes in a light-proof box, fitted with two near-UV light 

tubes, 30 cm above the plates. Spore numbers were determined 

after IS days under continuous near-UV I ight at 16 to lSoe, or 
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Table 2.1 Comparison of growth rates of Pseudocercosporella 

isolates. Colonies grown on MYG agar (20 m1 9 cm diameter 

plate-I) at 190 C, radial growth rates (nun day-I) determined 

after 8 days. 

IS::>LATE RADIAL GROWl'H 
NUMBER RATE (1TIl1 day-I) P = 0.05 P = 0.01 

w 22-21 1.40 a* a* 
w 22-1 1.22 b b 
w 22-5 0.98 c c 
w 22-118 0.97 c c 
w 22-20 0.94 c c 
w 22-22 0.88 d d 
w 22-18 0.87 d d 
w 22-2 0.86 d d 
x 22-3 0.79 e de 
y 24-1 0.79 e de 
z 22-8/1 0.79 e de 
y 22-116 0.74 e ef 
x 22-121 0.67 f fg 
x 22-183 0.66 f fg 
x 22-10 0.63 fg gh 
x 22-8 0.58 gh ghi 
x 22-12 0.55 hi hij 
x 22-7 0.54 hi hij 
x 22-16 0.50 ij ijk 
x 22-119 0.49 ij ijk 
x 22-120 0.48 ij ijk 
x 22-117 0.48 ij ijk 
x 22-4 0.48 ij jk 
Y 23-1 0.46 ij jk 
x 22-17 0.42 j k 

w P.herpotrichoides BW-type isolates. 
x ~ herpotrichoides BWR-type isolates. 
y P. h. var. acuformis (22-116): P. anguoides (24-1)1 

P. aestiva (23-1). -
z Sector of 22-8, with a fast, even-edged growth IOOrphology. 
* Isolates with the same letter not significantly different for 

growth rate at either the 5% (P = 0.05) or 1% (p = 0.01) 
levelcalculated using multiple range test (Duncan, 1955) 
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dark at 19 °C. The effect of transferring plates from near-UV to 

dark conditions or vice versa after 9 days was also assessed 

(Table 2.2). 

The five isolates studied varied greatly in their response to 

the different light and temperature regimes. Only one (22-16) 

showed significant stimulation of spore production by near-UV 

light. Under continuous near-UV light sporulation of all isolates 

except 22-20 was reduced. However, the use of al ternating dark 

and near-UV, possibly for shorter intervals may yet prove useful 

to induce spore formation in recalcitrant strains. 

Differential spore production may be important when 

preparing spore inocula from mixed cuI tures, as is often the case 

when screening for new antifungal compounds in plant tests. 

2.4.5 Instability 

Throughout the course of this work it was observed that 

BWR-type isolates had a tendency to produce fast-growing, even

edged sectors, more characteristic of BW-type growth, from 

colonies on agar medium. These sectors were frequently stable, 

retaining the new morphology when transferred successi ve ly to 

fresh plates (Fig 2.4). Since differences in cultural morphology 

have been widely used as an important characteristic 

distinguishing between the two pathogenic types of !:.. 

herpotrichoides, in stUdies of changes in field populations of 

the pathogen, this feature is disturbing. Consequently a number 

of these variants were studied further. 
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Table 2.2 Spore production under different regimes of dark and 

near-UV light. Spore nurrbers (mm-2 agar surface) are the mean 

three estimations for each treatment/isolate combination. 

ISOLATE LIGHT sro~ Nu-tBE~ 
NUMBER REGIME* (x10 nrn-) 

22-6 1 7.0 
2 4.1 
3 0.1 
4 2.6 

22-S 1 9.5 
2 2.2 
3 0.0 
4 2.4 

22-16 1 0.9 
2 0.4 
3 0.0 
4 4.9 

22-20 1 14.6 
2 lS.9 
3 16.0 
4 16.3 

22-116 1 6.9 
2 4.1 
3 0.0 
4 2.7 

* 1 Maintained at 19°C in the dark 
2 Exposed to near-UV light for 9 da6s at 16-1SoC, 

then tranferred to the dark at 19 C for 9 days. 
3 Maintained under continuous near-UV light at 

16-1SoC for IS days. 
4 Incubated at 19°C in the dark for 9 days, 

of 

then transferred under near-UV 1 ight at 16-1SoC for 9 days. 
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Table 2.2 continued 

Analysis of Variance 

SOURCE OF SS MS F 

!" 
Isolates 1 4 196.557 49,139 17.44 P = O.CX)! 

1 
Light regimes 1 15 42.275 2.818 2.36 P = 0.025 
wi thin isola tes 1 

1 
Replicates 1 40 47.724 1.193 
(residual) 1 

I 
1 

Totals 1 59 286.557 

2.4.5.1 Isolate 22-8 

One such faster-growing sector was obtained from the BWR-type 

isolate 22-8, and was designated 22-8/1. This variant differed in 

several respects from its progenitor isolate, including growth 

rate (Table 2.1), abundance of aerial mycelium and pigmentation 

(Fig. 2.5). The growth rate of 22-8/1, while significantly 

greater than 22-8 (p = 0.01), was equi va lent to that of isolate 

22-3 and the !:.!!.. var. acufonnis type-isolate 22-116. 

The obvious explanation for the appearance of this atypical 

form, that it is the resul t of contamination by one of the BW-

type isolates being used, can be readily discounted. The 

benzimidazole sensi ti vi ty of the "parental" isolate, 22-8, was 

quite characteristic, being highly resistant to carbendazim and 

only moderately resistant to thiabendazole (See Chapter 3.0). 

This phenotype was retained in 22-8/1, and did not occur in any 

of the benzimidazole-resistant SW-type isolates in the 

collection. 



Figure 2.5 Morphological instability in BWR-type !:. 

herpotrichoides isolates. Original colony types (left) and fast

growing, even-edged sectors (right) derived from them. 

a 22-8 & 22-8/1 

b 22-9 & 22-9 sector 

c 22-15 & 22-15 sector 

Colonies grown on MYG for 27 days at 190~ 
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While its sensitivity to benzimidazole fungicides was 

unchanged compared with 22-8, there was evidence that it was 

altered in its response to the ergosterol biosynthesis inhibitor, 

fenpropimorph (Table 2.3). However, faster growing variants of 

two other isolates, 22-9 and 22-15, did not show the same 

difference. Sensitivity to proch10raz, another EBI fungicide was 

unaltered. 

TABLE 2.3 Fungicide Sensitivity of isolates 22-8 and 22-8/1, and 

of variant types of two other moJR-type isolates. EO values (u.M) 

for growth inhibition determined after 8 days at 190C. 

FUNGICIDE RESPONSE 

FENPROPIroRPH PROCHLORAZ 

ISOLATE* ED50 ED75 ED90 ED50 ED75 ED90 

22-8 <10 39 140 <0.2 <0.2 <0.2 
22-8/1 39 162 197 <0.2 <0.2 <0.2 

22-15/1 <10 39 63 <0.2 <0.2 <0.2 
22-15/2 <10 32 52 <C.2 <0.2 <0.2 

22-9/1 11 100 155 <0.2 <0.2 0.2 
22-9/2 20 66 143 <0.2 <0.2 0.2 

* 22-15/1 and 22-15/2 were single spore derived colonies of the 
moJR-type isolate 22-15. The gra..rih rate of 22-15/1 on fungicide 
free MYG agar was 0.67 mm day- and that of 21-15/2 was 
significantly faster (p = 0.01) at 0.70 mm day-

22-9/1 and 22-9/2 were single spore derived colonies from 22-9. 
The gra..rth rate~ of which, on fungicide free medium, were 0.70 
and 0.6Omm day- respectively (p = 0.01). 
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2.4..5.2 Isolate 22-15 

Another SW-type isolate in which fast-growing sectors were 

isolated was 22-15 (Fig 2.5). Colonies arising from single spores 

of this isolate, which had itself originally been purified by 

single spore isolation, also exhibited considerable variation in 

appearance particularly on MYG agar. Some were dark brown in 

pigmentation with a more or less regular margin, while others 

were much lighter coloured with either an even or feathery edge 

(Fig. 2.6). These differing forms were initially obtained on MYG 

containing thiabendazole, however, the presence of this inhibitor 

did not appear to have induced the variation and did not affect 

the frequency with which they were recovered since they could be 

isolated on fungicide-free medium in the same relative 

proportions (Table 2.4). On TWA differences in sporing abi 1 i ty, 

abundance of aerial mycelium, pigrrentation and stroma development 

were apparent (Table 2.5), both between the white pigmented and 

brown pigmented types and within each of these groupings. 

Generally spore production was not observed in colonies showing 

abundant aerial mycelium, hyphal pigmentation or stroma 

development, while colonies derived from brown colonies 

sporulated more readily than those from white colonies. On MYG 

agar some indication of further instability was apparent, many of 

the brown pigmented colonies producing white sectors which, when 

transferred onto fresh medium, were identical to the white 

pigmented colonies previously obtained. Darker areas were seen 

within some of the white colonies but could not be isolated. 

Single spore isolates taken from several brown and white colonies 
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generally retained the phenotype of the original colony (Table 

2.6). Spores from one brown colony, however, produced brown and 

White colonies in equal proportion. 

TABLE 2.4 Frequency of isolation of morphological variants as 

single spore isolates from isolate 22-15. 

COLONY PHENO'lYPE 'roTAL NUMBER 
RECOVERY OF COLONIES 
MEDIUM WHITE* BroWN** UNCLASSIFIED SCREENED 

MYG AGAR 32 12 2 46 
O~TBZ (70)*** (26) ( 4) 

MYG AGAR 106 32 3 141 

llLMTBZ (75) (23) ( 2) 

MYG AGAR 109 24 7 140 
5~TBZ (78) (17) (5) 

'IDTALS 247 68 12 327 
(75) (21) (4) 

* White pigmented colonies with even or feathery margin. 
** Brown pigmented colonies with even margin 

*** Figures in parentheses indicate proportion of isolates 
catagory as a percentage of the total number screened 

in each 
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Table 2.5 Characteristics of 22-15 variQnt types 

Colonies assessed visually after 15 days growth at 190 C 

CHARACTER ASSESSMENT* 

COLONY 
TYPE ON 

MYG 

White, 
even or 
feathery-
edged 

Total 

Brown, 
even
ed;]ed 

Total 

SPORUL-
AT ION 

+/++ 

+ 
++/+++ 

MYCELIAL 
PIGMENT-

ATION 

+ 
+ 

+++ 
+ 

AERIAL 
MYCELIUM 

++ 
+++ 

++ 
++/+++ 

Total number of colonies screened 

* Characters scored visually as follows: 

STROMA 
DEVELOP-

MENT 

-/+ 
-/+ 
-/+ 

++/+++ 

no sporulation/pigmentation/aerial mycelium/stroma 
apparent. 
+ slight " 
++ modera te " 
+++ considerable " 

, , 
, , 
, , 

, , , , 
, , , , 
, , , , 

on TWA. 

NUMBER 
IN EACH 
GROUP 

4 
6 
6 
7 
4 

14 
41 

5 
1 

14 

20 

61 

development 

apparent 
a~rent 

apparent 
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Table 2.6 Stability of variant phenotypes from 22-15. Appearance 

of colonies derived from single spores of white- or brown-

pigmented variants. 

NUMBER OF RE-Is.JLATES 'lUTAL 
PARENTAL COLONY OF EACH TYPE NUMBER 
PHENOTYPE NUMBER WHITE BroWN SCREENED 

Brown, 1 0 104 104 
even- 2 0 104 104 

edged 3 0 104 104 
4 0 104 104 
5 0 104 104 
6 0 104 104 
7 49 55 104 
8 0 71 71 

~ite, 9 104 0 104 
even- or 10 78 0 78 
feathery- 11 104 0 104 
edged 12 104 0 104 

13 103 0 103 
14 104 0 104 
15 104 0 104 

2.5 ANTACDITSM 

Pseudocercosporella herpotrichoides is widely reported to be 

a poor competitor in the soil environment (Macer, 1961a, b: 

Garrett, 1975). The long term survival of the fungus in the soil 

has been related to the formation of resting stuctures (stromata) 

in contaminated straw, and the low cellulolytic rate of the 

pathogen (Macer, 1961b). In addition to these properties, the 

survival potential of this pathogen is increased by its ability 

to actively inhibit or antagonise other cereal foot rot fungi, 

particularly Rhizoctonia cerealis, the sharp eyespot pathogen 

(Kapoor & Hoffmann, 1984). Consequently applications of 
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benzimidazole fungicides to reduce the incidence of P. 

herpotrichoides can result in an increase in the frequency of the 

sharp eyespot fungus (Reinecke !!. al, 1979). 

In culture some isolates of ~ herpotrichoides show 

inhibition for growth of other strains of the fungus, resulting 

in a definite zone of inhibition on the side of the colony 

nearest the antagonistic isolate. This phenomenon is not 

exhibited by all ,strains and does not appear to affect all other 

isolates equally. The biochemical basis of the inhibition remains 

to be studied. 

2.6 D:rscn;sI~ 

The relationship between the two morphological types of P. 

herpotrichoides (SW and BWR) is not clear, both occur in the same 

fields, and can be isolated from the same lesion (M. Griffin, 

pers co~) Bateman !!. al (1985) failed to find mixed infections 

in a survey of wheat crops, possibly as a result of the isolation 

technique employed, which involved serial transfers of mycelium 

obtained from infected stems on agar medium and the isolation of 

hyphal tips. These rranipulations would preferentially select for 

the fastest growing mycelium, consequently mostly BW-type 

isolates were recovere~ 

The system most extensively used to differentiate the two 

pathotypes is based on the morphology of colonies in agar 

culture. The variation in growth rate and the phenomenon of 

instability, which was seen in almost all the BWR-types studied, 
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including 22-116 the ~ ~ var acuformis isolate, may 

considerably confuse this distinction. Obviously a greatly 

increased number of characters for the differentiation of these 

types is required, possibly involving biochemical 

characterisation. Furthermore the true status of the pathotypes 

in relation to each other, and to the described taxonomic 

varieties urgently needs further clarification. 

Strain instability, usually recognised as variation in 

cultural morphology but also affecting physiological 

characteristics and pathogenicity, is a common feature of many 

fungi (Hansen, 1938: Ou & Ayad, 1968: Grindle, 1979: Hastie & 

Heale, 1984). The basis of the strain instability observed in !:. 

herpotrichoides remains unclear. Various mechanisms for the 

origin of the variation, however, may be suggested including 

heterokaryosis, mutation and ploidy changes. 

Heterokaryosis has long been recognised as an important 

potential source of variation in fungi (navis, 1966). Changes in 

the ratio of the component nuclei in heterokaryons have been 

related to the "dual phenomenon" in Botrytis cinerea and other 

fungi, where repeated single spore isolation yields types with 

differing morphological characteristics as a result of selection 

for the component homokaryons (Hansen, 1938). Similarly, 

variation in the level of botran resistance in conidial progeny 

of resistant strains of ~ cinerea has been attributed to changes 

in the proportion of nuclei conferring resistance or sensitivity 

to the fungicide in heterokaryotic mycelium (Webster !! aI, 

1970) • 

Segregation of cytoplasmic factors can also result in 
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cuI tural variability. Jinks (1959) showed that in four wi Id-type 

isolates of Penicillium exhibiting morphological instability two 

were heterokaryons while the other two were heteroplasmons. 

Grind1e (1979) suggested that while some of the variation found 

in conidia 1 and hypha 1 deri vati ves of isolates of !:. cinerea 

could be due to the segregation of nuclei in heterokaryons, 

selection for cytoplasmic genetic elements may also be involve~ 

Furthermore, the loss of, or mutation in, a cytoplasmically 

inherited factor has been shown to be the basis of the 

spontaneous hyaline, non-sclerotia1 sectors readily obtained in 

dark-pigmented, sclerotial isolates of Verticillium albo-atrum 

and ~ dahliae (TypaS & Heale, 1976: Hastie, 1981). 

In Nectria haematococca two forms of morphological variation 

have been described: atypical hyphal growth occurring at the 

colony edge forms either V-shaped sectors as the colony grows or 

spreads around the perimeter to form a continuous ring. 

Interactions between six nuclear genes, two cytoplasmic factors 

of unknown molecular nature and environmental conditions have 

been implicated in the expression of this instability (Parisot 

~ aI, 1981). 

Apparent instability in culture may also result from 

mutation. Numerous mutations leading to modified colonial 

morphology have been induced in Neurospora crassa and Aspergillus 

nidulans (Fincham !! aI, 1979). Many of these affect hyphal 

branching pattern, and a few are associated with deficiencies for 

particular enzymes in carbon metabolism. Mutation may also lead 

to differences in pigmentation: most mutagenic programmes with 
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fungi readily generating colour mutants (Fincham!! aI, 1979). 

Such mutations may affect both the production of particular 

pigrrents or their intra- and extra-cellular distribution (Parisot 

!! aI, 1981, 1984: Hastie & Heale, 1984: Ava10s !! aI, 1985). 

Nasim & Auerbach (1967) investigated mutational instability in 

Schizosaccharornyces pombe in which a proportion of cells treated 

with one of a range of mutagens gave rise to mosaic colonies 

repeatedly on sub-cul ture. Mosaic colonies arireas a resu1 t of a 

mutational event affecting only one strand of the DNA duplex. 

Consequently DNA-replication and nuclear division produces 

daughter cells half of which are wild-type and half nutant. Sub

cuI ture of these daughter cells usually yields pure mutant or 

wild-type colonies, occasionally, however, roosaic colonies are 

generated persistently. The basis of this phenomenon appears to 

be instability of replication at specific sites in the DNA, 

though the mechanism is not fully understood (Fincham !! aI, 

1979) • 

Heteroploidy, the generation of aneuploid and euploid series 

from haploid or diploid nuclei, has been suggested as a 

significant source of variability in fungi (Tolmsoff, 1983). 

Ploidy changes, associated with cell differentiation or uneven 

nuclear division, may yield a great range of aneuploid and 

euploid types each with its own particular phenotype. The 

variation in colony morphology, pigrrentation and pathogenicity 

observed in haploid microsclerotial derivatives in y:. albo-atrum 

was assumed to result from chromosome reassortment and gene 

repression and derepression occurring in homozygous diploid 

microsc lerotial cells (To Imsoff, 1972). As the chromosomes of 
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most fungi are too small and diffuse for accurate determination 

of their number by cytological means, much of the evidence for 

heteroploidy in fungi relies on the variation in the DNA-content 

of nuclei. Not only are large differences observed between 

different wild strains but within individual isolates estimates 

of DNA-content may vary considerably, particularly between 

different cell types (To1msoff, 1983). In Pyricularia oryzae, a 

particularly variable species, both heteroploidy and parasexual 

recombination have been implicated in strain instability (Ou, 

1980: Tolmsoff, 1983: Genovesi & MaGill, 1976), although these 

two mechanisms are obviously not nutually exclusive. 

Heterokaryosis is unlikely to be the cause of strain 

instability in ~ herpotrichoides since the fungus is composed of 

predominantly uninucleate mycelium, and the original isolates 

were obtained as single spore-deri ved colonies in order to exclude 

the possibility of using mixed cultures. Furthermore, the 

benzimidazole response of variant sectors was identical to that 

of the progenitor colonies, and sectors from auxotrophica11y 

marked BWR-type strains retained the nutritional requirement of 

the "parent". The extent to which the other mechanisms described 

are involved remains to be investigated. 



CHAPTER 3 
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RESISTANCE "lO FU«rrCIDES IN ~ 

BERlUl'RIClDIDES 

3.1 Introduction 

To understand the potential risk of failure of disease 

control due to resistance development, and in order to develop 

new strategies for control information is required in several 

key areas. The ability of the pathogen to develop resistance, the 

nature of the resistant isolates and the potential variation in 

resistance expression rust be determined. Kn0..7ledge of the level 

of resistance and the expression of cross-resistance to other 

fungicides is also of vital importance. In addition, pleiotropic 

effects of resistance, particularly on fitness (viability, spore 

production and growth rate) and pathogenicity will allow some 

estimate of the likely persistence of resistant strains in the 

absence of the fungicide and hence the possibility of reducing 

the frequency of resistant isolates simply by reducing the use of 

the fungicide. 

The use of in vitro assays, usually involving measurement 

of growth, is the most common method by which fungicide 

sensitivity is determined. However, this technique does have a 

number of limitations, which must be considered when attempting 

to relate the findings of such studies to the practical 

application of disease control in the field. For example, the 

nature and availability of the toxicant may well be different in 

the plant than in agar or 1 iquid media, and the response of the 

pathogen correspondingly different. Furthermore, in vitro assays 

rarely allow any greater assessment of the ability of the 
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pathogen isolate to cause disease than the arbitrary estimate of 

fitness obtained from measurements of growth rate and spore 

production under the conditions of the test. 

Such tests do, however, permit the investigation of 

resistance expression in the pathogen under controlled 

conditions, information which may prove invaluable in the 

development of new disease control strategies in the field. 

Similarly the use of laboratory mutants to investigate aspects of 

resistance expression, enables not only an assessment of the 

potential for variation in the fungus, but also a comparison of 

fungicide sensitivities against a more homogeneous genetic 

background than is obtained by studying a necessari ly di verse 

collection of field isolates. 

Resistance to the benzimidazole fungicides in Ei 

herpotrichoides has led, since 1981, to loss of disease control 

with these chemicals in the UK (Brown!! aI, 1984). While many 

reports of resistance have been published little was known of the 

variation in the level of resistance or in the expression of 

cross-resistance to other mitotic inhibitors. Considerable 

interest has been shown in the phenomenon of negatively-

correlated cross-resistance between benzimidazole fungicides and 

N-phenylcarbamate compounds (Kato et al ,1984 Leroux et aI, 

1985b), but the sucessful use of these drugs to control 

benzimidazole-resistant forms of the pathogen will depend on the 

nature of the relationship between the two groups of compounds, 

and the extent to which the fungus is able to overcome either or 

both. In an attempt to answer some of these questions the 

benzimidazole and phenylcarbamate responses of a range of field 
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isolates and laboratory mutants were determined in vitro. The 

results of these investigations are presented in this chapter. 

The extensive use of ergosterol biosynthesis inhibiting (EBl) 

fungicides on cereal crops to control a variety of fo1iar 

diseases, and the increasing trend towards the cuI ti vation of 

winter barley have both been implicated in the recently observed 

shift in the proportions of the two ~ herpotrichoides pathotypes 

in field popu1ations (Griffin, 1985: Bateman et aI, 1985). This 

suggestion was supported by data showing a correlation between 

the frequency of particular pathotypes and the previous history 

of EBl useage (Griffin, 1985), and by in vitro tests of EBI 

sensitivity for a range of BW and BWR isolates from France 

(Griffin, 1985: Leroux & Gredt, 1985a,b). It was further 

suggested that the unequal distribution of carbendazim resistance 

between the two pathotypes, and the frequent predominance of BWR-

types insensitive to the benzimidazole fungicides may be due to 

reduced sensitivity of these forms to the EBI compounds. In order 

to clarify this position the sensitivities of a number of field 
isolates 

and laboratory to a range of commercial and experimental ESI 

fung ic ides was assessed. 

3.2 MATERIALS AND METIDDS 

3.2.1 Strains 

The origin and characteristics of the field and type 

isolates used are given in Appendix I. Laboratory-induced 

resistance mutants were derived from isolates 22-20 and 22-12. 
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3.2.2 Determination of Fungicide Sensitivities 

The sensitivity of isolates to a range of commercial and 

developnental fungicides was tested ~ vitro. Typically 3.5 to 

4.0 mm diameter agar plugs, cut from the edge of growing colonies 

were placed onto MYG agar containing appropriate concentrations 

of the compound. Colony diameters, taken at right angles, 

measured after 8 to 14 days growth at 190 C, were used to 

calculate radial growth rates and expressed as a percentage 

compared with a control grown in the absence of the toxicant. 

Dose response curves were used to calculate the concentration of 

fungicide which reduced the growth rate by 50, 75 or 90 percent 

(ED50, ED75 and ED90)' and the minimum concentration which 

completely inhibited growth (MIC). All determinations of 

sensitivity were performed at least in duplicate. 

Once the range of concentrations needed to determine the 

sensitivity of strains had been established a simpler method of 

assessment was adopted in which the degree of growth inhibition 

was scored visually after 7 to 10 days, as follows: 

No growth 

+ Growth restricted to the inoculum plug 

I Growth severely inhibited but mycelium in contact with 

the agar surface 

2 Growth reduced to approximately 50% of the control 

3 Growth rate corrparable with the control 
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3.2.3 Isolation of Fungicide-Resistant Mutants 

Mutants altered in their response to the benzimidazole fungicides 

were obtained both by selection for spontaneous mutants and after 

UV mutagenesis. Spontaneous resistance-mutants were isolated 

either by plating large nuniJers (>Sxl07 per plate) of conidia on 

MYG supplemented with an inhibitory concentration of the 

fungicide or as sectors of colonies from agar plugs on fungicide-

containing roodiurn. 

UV-induced mutants were produced by exposing conidia to 

far-UV light (Philipa Germicidal Lamp, 2.4 J m-2 a-I) for up to 

50 s. Irradiated spores were embedded or spread on medium 

containing either carbendazim or thiabendazole at an inhibitory 

concentration. Colonies appearing after 16 to 20 days were 

purified by fragroonting small quantities of mycelium in sterile 

water and plating onto fungicide-free MYG. Single colonies were 

tested for resistance to a range of benzimidazole and 

phenylcarbamate fungicides. 

3.2.4 Fungicidal ~s 

The benzimidazole corrpounds carbendazim (roothyl 

benzimidazol-2-ylcarbamate), benomyl (methyl l-{butylcarbamoyl) 

benzimidazol-2-ylcarbamate) and thiophanate-rnethyl (dimethyl-4,4-

(Q-Phenylene) bis{3-thioallophanate)were provided by Du Pont (UK) 

Ltd., Stevenage, and th iabendazo le (2-( th ia zo l-4-y 1 ) 

benzimidazole) by MSO Agvet. The !!-phenylcarbamate, MOPC (methyl 

!!-(3,5-dichlorophenyl)carbamate) was provided by Dr. D.W. 

Hollomon of Rothamsted Experimental Station and 532165 (1,1-
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dimethyl ethyl ~-(3,4-ethoxyphenyl)carbamate) was the generous 

gift of 5umitomo Chemical Corrpany of Japan via Dr I. Saturo. All 

were technical grade (95 to 99% pure). Carbendazim, 

thiabendazole, MDPC and 532165 were dissolved in ethanol, benomyl 

and thiophanate-methyl in acetone, prior to addition to agar 

medium. 

The EBI proch1oraz (N-propyl-~-[2-(2,4,6-trichlorophenoxy) 

ethyl ]imidazo1e-l-carboxamide: technica 1 c.97% ai.) was the kind 

gift of 5chering Agrochemicals, Chesterford Park, Cambridge. 

Fenpropimorph «±)~-4-[3-(4-tert-butylphenyl) -2-methylpropyl] 

-2, 6-dimethylmorphol ine: Mistral, 75% ai.) was from May & Baker 

Ltd. Dagenham. Propiconazole «±)-1-[2-(2,4-dichlorophenyl) -4-

propyl-l,3-dioxolan-2-ylmethyl] -.!!!-l,2,4-triazole: technica 1 88% 

ai.) was provided by Ciba-Geigy Agrochemicals, Cambridge and 

triadimeno1 (1-( 4-ch10rophenoxy) -3, 3-dimethy1-1-(1H-l, 2,4-

triazol-l-yl) butanol: Bayfidan, 25% ai.) came from Bayer UK 

Ltd., Bury st. Edmunds. The experimental Du Pont compound DPX 

H6573 (bis(4-fluoropheny1) methyl(~-1,2,4-triazo1-1-yl 

methyl)silane, 40% ai. EC) was obtained from Dr. W. Carlisle of 

Trent Polytechnic, Nottingham. 

Prochloraz and propiconazole were dissol ved in acetone. All 

stock solutions were prepared at 200 times the required 

concentration, so that the final concentration of solvent in the 

medium never exceeded 0.5% (v/v). 

Chemica I structures and ~M: ~g ml-l concentration 

conversion ratios for these fungicides are given in Appendix 11. 
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3.3 RESULTS 

3.3.1 Benzimidazole Sensitivity of Field Isolates 

The sensitivity of thirty isolates of ~ herpotrichoides, 

from various sources, to the benzimidazole fungicides 

carbendazim, benomyl, thiophanate-methy1 and thiabendazole was 

assessed. Isolates were classified as either sensitive or 

resistant on the basis of the MIC for the four compounds (Table 

3.1). Sensitive isolates were completely inhibited by 0.6 to 

2.5 ~M carbendazim, while the MIC for resistant isolates was 

greater than 1000 ~M, the highest concentration used. In each 

case, where tested, resistance to carbendazim was associated with 

cross-resistance to the other three corrpounds. While MIC values 

for thiophanate-methyl and benomyl were similar to those for 

carbendazim, differences in the dose-responses of resistant 

isolates to these conpounds were apparent (Figure 3.1). 

The response of benzimidazole-sensitive isolates to 

the fungicides was much less variable, as the EDSO (Table 3.2) 

and dose response data (Figure 3.2) show. Variation in MIC values 

was observed between isolates but the concentration range used 

makes these differences appear greater. 
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Table 3.1 Benzimidazole sensitivity of field isolates: minimum 

inhibitory concentrations for carbendazim (MBe), benomyl (BEN), 

thiophanate-methy1 (T-M) and thiabendazole (TBZ). 

lOOLATE IOOLATE MIC (I!M ) 
TYPE NUMBER MBe BEN T-M TBZ 

BW 22-1 2.5 5 5 5 
22-5 1.0 5 10 5 
22-18 2.5 5 5 5 
22-19 2.5 5 10 3.5 
22-20 2.5 5 10 3 
22-22 1.0 1 5 5 
22-21 1.0 5 5 5 

22-2 >1000 >1000 >1000 >1000 
22-118 >1000 NO NO >1000 

BWR 22-3 1.0 1 5 5 
22-12 0.6 1 5 2.5 
22-117 0.6 NO NO 1.3 
22-120 0.6 NO NO 2.5 
22-121 0.6 NO NO 1.3 

22-6 >1000 >1000 >1000 20 
22-119 >1000 NO NO 25 
22-4 >1000 >1000 >1000 50 
22-8 >1000 >1000 >1000 50 
22-13 >1000 >1000 >1000 50 
22-14 >1000 >1000 >1000 50 
22-17 >1000 >1000 >1000 50 
22-9 >1000 >1000 >1000 100 
22-7 >1000 >1000 >1000 500 
22-10 >1000 >1000 >1000 >1000 
22-11 >1000 >1000 >1000 >1000 
22-15 >1000 >1000 >1000 >1000 
22-16 >1000 >1000 >1000 >1000 
22-182 >1000 >1000 >1000 >1000 
22-183 >1000 >1000 >1000 >1000 

P.h. var. 22-116 0.6 NO NO 2.5 
acuformis 

P.aestiva 23-1 0.6 NO NO 1.3 
u 

P.an~?ides 24-1 0.5 NO NO <5.0 



Figure 3.l Dose response of three benzimidazole-resistant isolates 

to carbendazim (.), benomyl (A), thiophanate-methyl (0) and 

thiabendazole (.). Growth of colonies measured after eleven days 

incubation at 19°c., 
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Figure 3.2 Dose response of three benzimidazole-sensitive 

isolates to carbendazim (-) and thiabendazole (---). Growth of 

colonies measured after eleven days incubation at 19°C. ' 
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3.3.2 Benzimidazole Sensitivity of Laboratory Mutants 

To investigate the expression of benzimidazole resistance 

against a less variable genetic background than is obtained when 

corrparing field isolates, rwtants altered in their response to 

this group of fungicides were produced from two sensitive 

isolates: 22-20, a fast growing, BW-type isolate and 22-184, a 

sporulation mutant deri ved from 22-12, a slow growing, BWR-type 

isolate. 

Table 3.2 Benzimidazole sensitivity of field isolates: ED50 

values (PM) for growth inhibition by carbendazim (MOC), benomyl 

(BEN), thiophanate-methy1 (T-M) and thiabendazole (TBZ). 

ISOLATE EDSO (~) 
NUMBER MBC BEN T-M TBZ 

22-1 0.25 NO NO 1.12 
22-3 0.27 NO NO 1.32 
22-5 0.25 NO NO 1.16 
22-12 0.26 NO NO 1.50 
22-19 0.20 NO NO 1.32 

22-6 240 117 520 12 
22-8 370 234 >1000 17 
22-17 >1000 158 >1000 13 
22-10 >1000 295 >1000 224 
22-2 <1000 >1000 >1000 340 

3.3.2.1 Mutant Isolation 

Resistant, rwtant strains were produced by selecting either for 

spontaneous mutants or for induced mutants following uv-

irradiation of spores. Eight spontaneous resistance mutants were 

obtained as fast growing sectors from agar plug inocula on medium 

containing carbendazim, benomyl or thiophanate-methy1 at 
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concentrations around the MIC for the parent isolate (Table 3.3). 

Spontaneous resistance mutants were also isolated by plating 

conidia on MYG agar supplemented with inhibitory levels of 

carbendazim or thiabendazole. The nutation frequency (Table 3.4) 

was very low (4.0 x 10-9) which was consistent with the findings 

of previous workers (Fehrmann !! aI, 1977,1982). 

Seventy-one resistance mutants were produced from isolate 

22-20 and one hundred and ninety-eight from isolate 22-184 after TN

mutagenesis. The induced mutation frequency ranged from 5.0 x 10-5 

to 2.1 x 10-6 depending on the strain and the method of 

selection (Table 3.5). 

Table 3.3 Spontaneous resistance nutants derived as sectors from 

isolate 22-20 

ISJLATE 22-20 SELOCTIVE NUMBER 
SELOCTIVE MIC ED50 CONCENTRATION OF MUTANTS 
OOMPOUND (pM) ()lM) (uM) OBTAINED 

MOC 2.5 0.32 1 1 

BEN S.O NO 1 2 

T-M 10 NO 1 I 
5 1 

10 3 

3.3.2.2 Olaracterisatioo of resistant mtants 

The sensitivity of mutants produced from both 22-20 and 22-184 

to carbendazim and thiabendazole was assessed in vitro. --
Eighty-three benzimidazole resistant mutants derived from 

22-20 were categorised on the basis of carbendazim sensitivity 

(Table 3.6). Three distinct levels of resistance were observed: 
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Table 3.4 Spontaneous resistance mutants derived from spores of 

isolate 22-20 

EXPERIMENT 1 

EXPERIMENT 2 

SEL OCT ION 
SYSTEM 

5 JlM MBe 
5 JJ.M TBZ 

1 ~M MBC 
1.~l'M MBC 
4 ~M TBZ 

NUMBER 
OF MUTANTS 

OBTAINED 

2 
2 

o 
o 
o 

SPONTANEDUS 
MUTATION 

FREQUENCY 

<1.1 x 10-9 

<1.1 x 10-9 

<1.9 x 10-9 

Table 3.5 Frequency of induced mutation to benzimidazole 

resistance of spores following UV-irradiation 

PARENTAL SELOCTION EXPOSURE SURVIVAL NUMBER INDUCED 
ISOLATE SYSTEl't TIME: (t) OF MUTANTS MUTATION 

(s) OBTAINED FREQUENCY 

22-20 lJJ.M MSC 40 9.1 4 5.0 x 10-5 

2~M TBZ 40 7.4 3 2.1 x 10-6 

22-184 5~ TBZ 40 42.4 76 9.4 x 10-6 

high-level resistant mutants, which were able to grow even on 

1000 I..IM carbendazim, often with no apparent reduction in growth 

rate, intermediate-level resistant strains, where mycelial growth 

was prevented by concentrations of carbendazim above 50 to 200 J.LM 

and low-level resistant mutants in which complete inhibition of 

growth occurred between 5 and 20 J1M. Wi thin each of these 

groupings, variation was found in the precise level of 
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carbendazim resistance expressed, based on MIC and, to a greater 

extent, in the levels of resistance to thiabendazole. While all 

mutants showed cross resistance to both carbendazim and 

thiabendazole, the degree' of resistance to these two fungicides 

was not directly related (Table 3.6). Generally, hC7Wever, mutants 

with a high level of carbendazim resistance were more resistant 

to thiabendazole than those with low-level carbendazim 

resistance. 

The levels of resistance of one hundred and ninety-eight 

UV-induced mutants of the BWR-type isolate, 22-184, were 

similarly determined, and the strains arranged according to 

sensitivity to carbendazim (Table 3.7). Three resistance 

categories, equivalent to those identified for the 22-20 mutants, 

were found and, in addition, a group of strains exhibiting a very 

low level of carbendazim resistance (MIC = 1.25 !kM) but with a 

higher degree of resistance to thiabendazole. As before, all 

mutants were cross-resistant to thiabendazole, the level of 

thiabendazole resistance being quite variable. 

The frequency of isolation of particular resistance types 

from the two parental isolates showed some differences. A far 

greater proportion of 22-184 mutants were of the low-level 

carbendazim-resistant type than was obtained from isolate 22-20. 

This difference is probably due to the use of different selection 

systems for the isolation of mutants from the two strains. Most 

resistance mutants from 22-20 were selected with ei ther 10 ~ 

carbendazim or 20!k M thiabendazole, while those derived from 22-
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184, because of the greater sensitivity of the parental strain, 

were isolated on medium containing only 5 .~ thiabendazole. 

Table 3.6 Resistance expression in mutants derived from isolate 

22-20: mutants classified on the basis of the level of resistance 

to carbendazim (MOC) and thiabendazole (TBZ) 

MBe MIC (~) NUMBER 'roTAL 
RESISTAOCE OF MUTANTS NUMBER 

LEVEL MSC TBZ PER GROUP OF MUTANTS 

SENSITIVE 2.5 3 
(WILD TYPE) 

LOW 5 5 8 

10-20 "-20 11 36 

10-20 "'50 10 

10-20 >100 7 

INTERMEDIATE 50-200 >1000 18 18 

HIGH >1000 "-lOO 5 

>1000 >1000 24 29 

Total nurrber of mutants screened 83 
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Table 3.7 Resistance expression in rrutants derived from isolate 

22-184, classified on the basis of the level of resistance to 

carbendazim (MSC) and thiabendazole (TBZ). 

MBe MIC (PM) NUMBER TOTAL 
RESISTAN:E OF MtJrANTS NUMBER 

LEVEL MSC TBZ PER GROUP OF MUTANTS 

SENSITIVE 0.6 1.25 
(WILD TYPE) 

VERY IDW 1.25 10->10 <lOO 16 16 

LOW 5->10 <50 >10 <100 3 

1.25-10 2,5->10 <100 145 

10 >100 2 

>10 <50 >10 <100 6 

>10 <50 >100 10 166 

INTERMEDIATE <50 <1000 >100 4 4 

HIGH >1000 >100 12 12 

Total number of mutants screened 198 
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3.3.3 ~Phenylcarbamate Sensitivity Relationships 

To further characterise the expression of benzimidazole 

resistance in Pseudocercosporella, the response of field isolates 

and laboratory resistance mutants to the developmental N

phenylcarbarrate fungicides, MDPC and 532165, was corrpared. 

3.3.3.1 ~PhenylcarballBte Respoose of Field Isolates 

Determination of MIC values for MDPC and 532165 to a 

number of field isolates showed clear differences in sensitivity. 

Isolates could be identified as either sensitive or insensitive 

to MOPC and 532165 on the basis of their ability to grow at 

single diagnostic concentrations of the two compounds (50 and 

75 lJM, respectively). All fourteen benzimidazole-sensitive field 

isolates tested were insensitive to MDPC and 532165 (Table 3.8). 

Of the benzimidazole-resistant field isolates, fifteen were 

sensitive to MDPC and 532165, while two, 22-7 and 22-11, were 

sensitive only to MOPe. 'nle type isolates of P. !: var.acuformis, 

~ aUguoides and ~ aestiva, like the benzimidazole-sensitive P. 

herpotrichoides field isolates, were insensitive to the two 

phenylcarbamate& Complete negatively-correlated cross-resistance 

was therefore observed between carbendazim and MOPC, in the 

isolates tested, while the correlation between benzimidazole

resistance and sensitivity to 532165 was not complete. 

3.3.3.2 ~Phenylcarbamate Reaponae of laboratory DJtants 

Considerable variation in patterns of cross-resistance was 

found in the induced-resistance mutants (Table 3.9). Of those 

mutants derived from 22-20, negatively-correlated cross-
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resistance was almost exclusively limited to the mutants with 

high-level carbendazim-resistance. Within this group of twenty

nine mutants four (17\) showed increased sensitivity to both 

phenylcarbamates, t\tIenty-four(83\) had increased sensitivity only 

to MOPC and one ('\)3\) was insensitive to both MOPe and 532165. 

None of the eighteen intermediate-level resistant mutants and 

only one of the low-level resistant ITUtants was altered in its 

response to these compounds. This single mutant exhibited wild

type sensitivity to 532165 but was sensitive to 50 ~M MOPe. 

A slightly different pattern was observed with resistant 

mutants of isolate 22-184. While eight of the twelve high-level 

resistant mutants had increased Mope sensitivity, none showed any 

change in 532165 response. The absence of mutants with increased 

sensitivity to lx>th corrpounds may be due to the smaller nurrber of 

high-level resistant mutants obtained from this isolate. The 

phenylcarbamate sensitivity of all the intermediate-level 

resistant strains and most of the low-level resistant mutants was 

unchanged. The proportion of low-level resistant mutants with 

increased sensitivity to MOPC was similar to that found in the 

mutants of 22-20. 

However, the main difference between the resistance mutants 

obtained from isolates 22-20 and 22-184 was the identification of 

a group of 22-184 derived strains in which increased sensitivity 

to both the phenylcarbamate compounds was not associated with a 

high level of carbendazim or thiabendazole resistance. Initially 

these strains were classified as sensitive to both the 

phenylcarbamate and benzimidazole fungicides, however, closer 

examination revealed they were all altered, to a limited extent, 



-81-

Table 3.8 Negatively-correlated cross-resistance to the !

phenylcarbamate fungicides Mope and 532165 in field isolates of 

f:. herpotrichoides. 

BENZIMIDAZOLE lOOLATE lOOLATE MIC (UM) 
SENSITIVITY TYPE NUMBER MOPC 532165 

SENSITIVE SW 22-20 >100 >150 
22-22 >100 >75 
22-21 >100 >150 
22-1 >50 >75 
22-5 >50 >75 
22-18 >50 >75 
22-19 >50 >75 

22-12 >100 >150 
22-117 >100 >150 
22-120 >100 >150 
22-121 >100 >150 

RESISTANT BW 22-2 20 9 
22-118 10 19 

BWR 22-6 10 <5 
22-10 10 19 
22-11 10 >150 
22-15 10 NO 
22-119 10 9 
22-182 10 38 
22-183 20 9 
22-4 <50 <75 
22-8 <50 <75 
22-9 <50 <75 
22-13 <50 <75 
22-14 <50 <75 
22-16 <50 <75 
22-17 <50 <75 
22-7 <50 >75 

SENSITIVE P.h. var. 22-116 >100 >150 
acuIormis 

P.aestiva 23-1 >100 >150 

P .anguoides 24-1 >50 >75 
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in sensitivity to carbendazim and thiabendazole, and were 

accordingly classified as "very low-level" resistance nutants 

(Table 3.9). Mutants of this type were not described amongst 

those derived from isolate 22-20 possibly because the resistant 

mutants from 22-184 were selected on a significantly lower 

concentration of thiabendazole. Had the same level been used to 

obtain the 22-184 mutants that was errployed in the selection of 

the 22-20 mutants (201:1 M), it is unlikely that this group of 

mutants would ha ve been recovered. 

3.3.3.3 Reversion in flIDPC-eenaitive Dltants 

The relationship between carbendazim and thiabendazole 

sensitivity and MOPC and 532165 sensitivity is obviously complex 

and may involve mutations in more than one gene. This 

relationship can be further explored by examining the resistance 

profiles produced following spontaneous forward mutation to MOPC 

insens i t i vi ty. 

Spores from strain 22-49, a high-level carbendazim

resistant mutant derived from isolate 22-20, showing negatively

correlated cross-resistance to MDPe but not S32l65, were plated 

on MYG agar containing 50 ~M MOPe. After incubation at 19°C for 

14 to 21 days six fast growing and twelve slow growing, 

apparently resistant colonies were obtained. When screened for 

sensitivity to carbendazim, thiabendazole, MOPC and 532165 five 

distinct groups could be recognised. The first group were 

apparently direct back-mutations, exhibiting the wild-type 

benzimidazole sensitivity and concomitant phenylcarbamate 

insensitivity. The second group retained the high level 
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Table 3.9 ~-Pheny1carbamate sensitivity of benzimidazo1e-

resistant mutants derived from isolate 22-20 and 22-184 

MSC MIC (lJM) NUMBER 
PARENTAL RES I STAOC E OF MUTANTS 
ISOLATE LEVEL MOPC S32165 PER GROUP 

22-20 SENSITIVE >100 >150 
BW-TYPE 

<50 >75 1 
>50 >75 35 

IN1'ERMEDIATE >100 >150 18 

HIGH >5 <10 <5-9 4 
>20 <50 >150 24 

>100> 150 1 

22-184 SENSITIVE >100 >150 
BWR-TYPE 

VERY LOW <50 <0.6 16 

LOW <50 >150 3 
>50 >150 163 

INTERMED lATE >50 >150 4 

HIGH <50 >150 8 
>50 >150 4 

carbendazim resistance of the parental strain, had increased 

resistance to thiabendazole, being able to grow on 1000 JJ.M, and 

showed decreased MOPC-sensitivity, being able to grow at 50 ~ 

but not at 100 lJM MOPC. Group three strains also retained the 

carbendazlm resistance of the parent and showed a sma 11er, but 

significant increase in thiabendazole resistance. Sensitivity to 
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MOPC appeared unchanged. The fourth group had the benzimidazole 

resistance levels of the resistant parent and paradoxically 

showed slightly increased sensitivity to MOPC, the degree of 

growth inhibition observed at 2.5 to 10 IJ.M MOPC being greater 

than for the parent strain. The fifth and last group were altered 

in their response to carbendazim. Mycelial grCMth, while still 

produced at lOOO!J.M, was inhibited at coocentrations above S(}JJ.M 

carbendazim. Thiabendazole resistance was slightly increased 

compared with 22-49, but MOPC sensitivity was apparently 

unaltered. 

The carbendazim-resistant parental strain, 22-49, was 

insensitive to 532165. None of the mutants produced on MOPC 

shCMed any increase in sensitivity to this corrpound. Table 3.10 

summarises the fungicide-sensitivity profiles of these mutants. 

3.3.4 Sensitivity to Ergosterol Biosynthesis Inhibitors 

Dose-response data for a number of field and type isolates 

to various EBI fungicides was used to calculate the 

concentrations of each fungicide required to reduce mycelial 

grCMth by 50, 75 and 90%: the isolates were then ranked according 

to sensitivity to the canpounds (Table 3.11). 

Clear differences in sensitivity were seen between SW and BWR 

pathotypes, particularly in response to the triazole derivatives 

triadimenol, propiconazole, and OPX H6573. The BWR-type isolates 

were generally much less sensitive to these fungicides than were 

SW-types. In contrast, most BWR-type isolates were more sensitive 

to the morpholine fungicide, fenpropimorph, although this 

correlation was not absolute. Sensitivity to prochloraz, an 
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Table 3.10 Fungicide sensitivity profiles of strains derived 

from the MBe high-level resistance rrutant 22-49, by selection 00 

50 \l.M MDPe. Minimum inhibitory concentrations assessed after 10 

days at 190 C. 

MIC <lJM) NUMBER 
OF MUTANTS 

MBC TBZ MOPC 532165 PER GROUP 

22-20 2.5 5 >100 >150 
WILD TYPE 

22-49 >1000 >20 <50 >20 <50 >150 
RESISTANT 
MUTANl' 

GROUP 1 2.5 5 >100 >150 3 

GroUP 2 >1000 >1000 >50 <100 >150 3 

GROUP 3 >1000 100-1000 >20 <50 >150 7 

GroUP 4 >1000 >20 <50 'V20 >150 3 

GROUP 5 >1000* 'VlOO >20 <50 >150 2 

*growth rate significantly reduced at concentrations above 50 llM. 

imidazole compound, was much less variable. However, comparison 

of growth inhibition at 0.2 llM prochloraz suggested that BW 

isolates may be slightly less sensitive than BWR-types. BW 

isolate 22-21 and to a lesser extent 22-22, were frequently 

anooalous in their response to these corrpounds. Isolate 22-21 was 

originally isolated from oats and had a peculiar morphology, 

while isolate 22-22 was isolated from rye as a BW strain with 

very profuse aerial mycelium. Their responses to propiconazole, 

fenpropimorph and to a lesser degree triadimenol and DPX H6573, 

were rrore characteristic of the BWR-types tested. 
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Sensitivity of the ~ anguoides and ~ aestiva type

isolates (24-1 and 23-1 respectively) was different to that of 

either of the two ~ herpotrichoides pathotypes. The former were 

reasonably sensitive to both triadimenol and fenpropimorph (like 

22-21 and 22-22) but differed considerably in their responses to 

propiconazole, DPX 86573 and prochloraz. The sensitivity of ~ 

anguoides to this last compound was similar to most of the BWR

types, while ~ aestiva was relatively insensitive to prochloraz, 

50% growth inhibition not being attained even at 40 11 H, the 

highest concentration tested in this experimen~ 

No correlation was found between reduced sensitivity to EBl 

fungicides and resistance to benzimidazoles, either in field 

isolates or in carbendazim-resistant mutants derived from isolate 

22-184 (Table 3.12). 



Isolate 
nLlllber 

7:'-121 
:1-120 
!?-Il ') 

2:!-IH 

:':'-6 
22-8 
!.2-ll -
:'2-11. 
22-15 
22-7 
22-22 
22-21 
2~-1 

23-1 
22-1 
22-2 
n-1l8 
22-20 

TRIADH£N(l. 

8050 E075 E090 

>400 >400 >400 
383 )400 )400 
310 )400 )400 

250 >400 )400 
211 )400 
192 )400 
178 >400 

100- 200 )400 

107 )400 
102 )400 

58 369 
49 282 
32 108 
16 46 
10 46 
10 19 

)400 

)400 

)400 
)400 
)400 

)400 
)400 
)400 

224 
66 

112 
27 

Isolate 
number 

• i-I.O 
•• _11 '1 

6 9 
<5 8 
<5 7 

12 I ~ .. -2 
11 _.-18 
9 22-20 

PROP ICOMZ(l.E 

EOSO E075 

6. 9 9. 8 
S.O 10. 2 

. 1 8. 1 
2. 6 12 . 9 
3. 
2. 
2.4 
1. 8 
1. 8 
1 . 3 
1. 2 
1. 2 
0 .9 
0. 9 
0. 9 
0. 7 
0. 5 
0.4 
0. 3 

6 . 7 
6. 8 
6 . 3 

. 6 

. 3 
4 . 

. 1 
3. 8 
2.4 
1.8 
1.7 
1 . 3 
0 . 9 
1.0 
0. 7 

Isolate 
8090 I nt..r:lber 

10. 8 _I 
13. 2 ~2-21 

10.2 !"!-~ 

33. 1 n_llcl 

10. 2 
11.7 
8 . 9 
8. 3 
7. 2 
8. 3 
7.4 
7. 4 
3. 8 
3. 4 
2. 5 
2. 6 
1 . 1 
1.9 
1.1 

22-11 
'!z- :) 

.. 2-1 

2!. - 1 
22-1 

22-117 

OPX H6573 

EDSO ED75 

0 . 9 14. 8 
1.3 6. 6 
0 . 7 1.7 
0. 6 1.1 
O. 
0 . 5 
0 . 3 
0. 3 
0 . 4 
0. 4 
0 . 4 
0 . 3 
0. 3 
0 . 3 
0 . 2 

<0 . 2 
<0 . 2 
<0. 2 
<0 . 2 
<0 . 2 
<0 . 2 
<0 . 2 
<0 . 2 
<0 . 2 
<0 . 2 

1.0 
0 .8 
1 . 3 
1.2 
0. 9 
0 . 9 
0 . 6 
0 .6 
0. 6 
0 .4 
0 . 5 
0. 5 
0. 5 
r..n 
0. 3 

<0 . 2 
<0 . 2 
<0 . 2 

r..n 
<0 . 2 

1'1> 

ED90 

21 . 9 
11 . 2 
2. 7 
1. 
1. 6 
1. 4 
1. 6 
1. 6 
1. 
-1.2 
0. 8 
0.9 
0. 9 
r..n 
0. 9 
0 . 8 
0. 7 
r..n 
0. 4 
0. 4 
0. 3 
r..n 
r..n 
NO 
M> 

FENPROPIKlRPH 

Isolate 
number 

- I . 

!Z-Ilb 
.':!-B 

I') 
22-7 
~!-16 

:>1 - 1 
~-18.s 

-\0 

ED50 

53 
31 
17 
15 

<10 
17 
11 
16 
19 
18 
21 

<10 
<10 
<10 
<10 
<10 

<10 
<10 

<10 
<10 
<10 
<10 
<10 
<10 
<10 
<la 

ED7S 

160 
13S 
11 
11 
89 

9 
100 

68 

62 
54 

5 
63 
39 
39 
30 
30 
28 
16 
13 
21 
16 
13 
la 

<10 
<10 
<10 

ED90 

'-I) 

'.J) 

~ 

>200 
)200 
180 
155 
138 
115 
104 
93 

tf) 

140 
63 
72 
66 
65 
4S 
45 
30 

tf) 

20 
/{) 

<10 
<10 
<10 

PROCHlORAZ 

ED50 

>40 
0. 3 

<0 . 2 
<0 . 2 
<0. 2 
<0 . 2 
<0 . 2 
<0 . 2 
<0. 2 
<0 . 2 
<0 . 2 
<0. 2 
<0 . 2 
<0 . 2 
<0 . 2 
<0 . 2 
<0 . 2 
<0 . 3 
<0.2 
<0 . 2 
<0 . 2 
<0 . 2 
<0 . 2 
<0 . 2 
<0 . 2 
<0 . 2 

EO,S 

)40 
0. 6 
0 . 4 
0 . 3 
0 . 3 
0 . 3 
0. 2 
O. 

<0 . 2 
<0 . 2 
<0 . 2 
<0 . 2 
<0 . 2 
<0 . 2 
<0 . 2 
<0 . 2 
<0 . 2 
<0 . 2 
<0 . 2 
<0 . 2 
<0 . 2 
<0 . 2 
<0 . 2 
<0 . 2 
<0.2 
<0 . 2 

E0
90 

) 40 
0. 8 
1.0 
O. B 
0. 5 
0 . 5 
0. 6 
0 . 3 
0 . 3 
NO 
NO 
~'O 

0. 2 
<0 . 2 
<0 . 2 
<0 . 2 
<0. 2 
<0 . 2 
<0 . 2 
<0 . 2 
<0 . 2 
<0 . 2 
<0 . 2 
<0 . 2 
<0 . 2 
<0 . 2 

Growth rate 
on 0. 2 ~ 

(~ control ) 

58 . 2 
56 . ~ 

35 . 1 
36.7 
34 . 1 
3B . 8 
26 . 7 
25 . 9 
21 . 9 
19. 1 
16. B 
12. 8 
12. 2 
7. 7 
6. 8 
6. 6 
6. 5 
4. 4 
4. 3 
2. 0 
1.8 
0. 4 
o 
o 
o 
o 

Tabl e 3.11 . Response of Pseudocercosporella field and type isolates to five ergosterol biosynthesis inhibiting fungicides . EO values expressed in ~ and ranked in 
order of increasing sensitivity . f . herpotrichoides SWR- type isolates shown in r~d , SW- type isolates in ~. f . aestiva (23- 1) and f . auguoides (24-1) shown in 
I) ri" 'n . (NO = not determined) . 

I 
(X) 
-..J 
I 



Table 3.12 Sensitivity to three ergosterol biosynthesis inhibiting fungicides of mutants, derived from the BWR-

type isolate 22-184, altered in their reponse to benzimidazole and phenylooroorrate fungicides. 

BENZIMIDAZOLE/PHENYLCARBAMATE TRIADIMENOL PROPICONAZOLE UK 200 
SENSITIVITIES (M.I.C.s in IJ.M) SENSITIVI'lY (uM) SENSITIVI'lY (W1) SENSITIVITY (uM) 

ISOLATE 
NUMBER MOC TBZ MOPC S32165 ED50 ED75 ED90 ED50 ED75 ED90 ED50 ED75 ED90 

22-184 0.6 1.25 >50 >150 72 304 NO 0.6 2.0 4.0 <5 17 68 
(wild 

type) I 

22-235 1.25 10 50 <0.6 64 251 NO 0.4 1.1 2.9 <5 16 21 ~ 
22-241 1.25 10 50 <0.6 98 293 ND 0.9 1.6 2.5 <5 7 33 I 

22-239 >1000 >100 50 >150 98 196 NO 0.6 1.0 1.7 <5 10 21 
22 240 >1000 >100 >50 >150 131 414 ND 1.0 1.6 2.1 5 12 19 

NO = no data 
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3.4 DISCUSSION 

The occu~nce of benzimidazole resistance in P. 

herpotrichoides is well documented (Brown ~a1, 1984: King & 

Griffin, 1985). In most published reports resistant isolates were 

capable of growth in the presence of extremely high 

concentrations of the fungicide (100 to 1000 pg ml-l ). Similarly 

all 17 carbendazim-resistant isolates tested in this study were 

able to produce rrrtce1ia1 grCMth at 1000 1;lM carbendazim. However, 

there was some variation in the dose-responses between resistant 

isolates. In all cases resistance to carbendazim was associated 

with resistance to the other fungicides in this group. Cross

resistance to benomyl and thiophanate-methyl was anticipated, 

since both these compounds generate carbendazim as the active 

component in aqueous solution (Clemons & Sisler, 1969: Courtney, 

1977). Differences in response to benomyl and thiophanate-methyl 

can be related to the rate of conversion to carbendazim of these 

compounds and to the production of the fungitoxic by-product, 

butyl isocyanate, during the hydrolysis of benomyl (Hammerschlag 

& Sis1er, 1972, 1973). 

Thiabendazole, however, is not converted into carbendazim 

but is fungitoxic in its original state (Davidse & Flach, 1978). 

Consequently, while cross-resistance to this compound is usual, 

the level of resistance expressed is not necessarily related to 

resistance to carbendazim. The variation in carbendazim and 

thiabendazole resistance observed in field isolates suggests that 

benzimidazole-resistance has arisen separately in this pathogen 

on several occasions, and that fungicide resistant isolates are 
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not clones of one progenitor strain. 

Analysis of induced mutants revealed three main 

recognisable levels of carbendazim resistance. In each case 

cross-resistance to thiabendazole was observed, a 1 though the 

levels of thiabendazole resistance were variable with many lo..r-

level carbendazim-resistant strains gro..ring on concentrations of 

thiabendazole in excess of 100lfM. In general, however, the higher 

the level of carbendazim resistance the greater the level of 

resistance to thiabendazole. 

The level of carbendazim-resistance observed in most field 

isolates was equivalent to that of the high-level resistance 

mutants produced in the laboratory. No reports have been 

published of strains exhibiting low-level carbendazim resistance 

being isolated from the field. However, Brown ~ al (1984) did 

describe one resistant isolate of ~ herpotrichoides which grew 

on carbendazim concentrations of up to 50 lJ<J m1-1 (~60 llM) but . . 

was inhibited at higher doses. This isolate would appear similar 

in response to mutants classified as showing intermediate level 

carbendazim resistance in this work. The absence of P. -
herpotrichoides isolates from field surveys with different levels 

of carbendazim resistance can be related, at least in part, to 

the methods used to screen field popu1ations for resistance to 

fungicides. Generally isolates are tested on only a single 

concentration of the fungicide, chosen because it is 

significantly greater than the highest dose tolerated by 

sensitive isolates (Bateman ~~, 1985: King & Griffin, 1985). 

As a result not only are strains with low-level resistance 

unlikely to be identified but the level 'of resistance shown by 
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resistance expression following mutagenesis. Similarly 

spontaneous resistant sectors were obtained more readily using 

thiophanate-methyl as the selective agent than with the more 

fungitoxic carbendazim. 

Negatively-correlated cross-resistance between 

benzimidazoles and the developmental !-pheny1carbamate 

fungicides, Mope and S32165, was found in both field isolates and 

laboratory mutants. All the carbendazim-resistant field isolates 

exhibited increased sensitivity to MOpe, while fourteen of the 

sixteen tested were extra-sensitive to S32165. The remaining two 

isolates were insensitive to S32l65 While showing increased 

sensiti vity to MOPe. 

The patterns of cross-resistance were more complicated for 

the laboratory produced mutants. In most cases increased 

pheny1carbamate sensitivity was only shown by high-level 

carbendazim-resistant mutants, intermediate- and low-level 

carbendazim-resistance usually being associated with wild-type 

pheny1carbamate sensitivity. However, not all the high-level 

resistant mutants exhibited negative-cross resistance, some were 

insensitive to S32165 and some were not inhibited by either 

compound. In addition four low-level resistance mutants, three 

derived from 22-184 and one from 22-20, had increased Mope 

sensitivity, although to a lesser degree than that found in high

level carbendazim-resistant mutants. 

The occurrence of strains with significant levels of 

benzimidazole resistance without altered phenylcarbamate 

sensitivity has obvious implications for the use of mixtures of 

these compounds to control carbendazim-resistant P. 
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herpotrichoides strains in the field, especially since the 

detection of naturally occurring S32165-insensitive, carbendazim

resistant isolates strongly suggests that this phenotype is not 

associated with reduced fitness. Furthermore, the ease with which 

strains exhibiting reduced Mope sensitivity, While retaining 

high-level carbendazim resistance, can be produced in the 

laboratory indicates that pheny1carbamate-insensitive strains may 

be selected within the present benzimidazole-resistant field 

population by using these compounds. 

The identifk3tion of so many resistance/sensitivity 

phenotypes in ~ herpotrichoides, including a group in which 

increased phenylcarbamate sensitivity is associated with a level 

of carbendazim sensitivity only slightly lower than the wild-

type, raises a number of important questions: 

1) are the different levels of resistance to carbendazim due to 

changes in the same gene? 

2) is phenylcarbamate sensitivity and bendimidazole resistance 

controlled by the same gene(s)? 

3) is the mechanism of resistance in the various rrutant types 

identical? 

4) if resistance is controlled by a number of different genes, 

do they interact? 

Some insight into these questions may be derived by comparison 

wi th other funga 1 species. 

Allelic variation in the level of benzimidazole 

resistance has been demonstrated in Venturia inaequalis (Katan ~ 

aI, 1983: Shabi et aI, 1983; Stanis & Jones, 1984), v. nashicola - -- ------
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(Ishii & Yanase, 1983), v. pirina (Shabi et aI, 1986), Ustilago 

maydie, Aspergil~ nidulans (~mutants) and ~ niger (van 

Tuyl, 1977), Neurospora crassa (Borck & Braymer, 1974), 

Talaromyces flavus (Katan !! aI, 1984) and Ceratocystis ~ 

(Webber!! aI, 1986). In several instances however, two or more 

interacting genes have been implicated in the expression of 

benzimidazole resistance. In A. nidulans, the most characterised 

species, two loci in addition to ~, were found to confer 

resistance to this group of fungicides. In each case the level of 

resistance was uniformly low, while nutations in ~ produced a 

range of resistance phenotypes from low to very high. Addi ti ve 

effects on resistance expression were found with combinations of 

~ with benB or ~ but no increase in resistance occurred 

when ~ and ~ were together. 

In Shizosaccharomyces pombe three genes were found to be 

involved in benzimidazole resistance expression. One (ben-I) 

conferred high-level, temperature-dependant resistance while the 

other two (ben-2 and ben-3) produced low-level resistance which 

was decreased at lower temperatures (Yamamoto, 1980: Yamamoto & 

Sakaguchi, 1982). Beraha and Garber (1980) showed that the 

development of intermediate- and high-level resistance to 

thiabendazole in Penicillium italicum occurred only in strains 

that had previously acquired low-level resistance and produced 

evidence for a system invol ving two or three closely linked genes 

controlling the expression of this resistance. A two gene system 

was recently described controlling benzimidazole resistance in 

Fusarium oxysporum (Molnar ~ aI, 1986). Higher levels of benomyl 

resistance were produced when the two mutant genes, ben-l and 
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ben-2, were both present. Separately they conferred only a 

JOOderate level of resistance. Polygenic control of benzimidazole 

resistance has also been described, in Ustilago hordei (Ben

Yephet ~ aI, 1975). 

Observations on the expression of negatively-correlated 

cross-resistance between benzimidazole and phenylcarbamate 

fungicides, similar to those for !:. herpotrichoides have been 

nade for y:. nashicola (Ishii !! aI, 1984). In this species three 

levels of carbendazim resistance were identified. Increased 

sensitivity to MOPC was associated only with the highest level of 

resistance. Similarly in !,:.pirina Mope extra-sensitivity was 

restricted to those isolates exhibiting very high-level 

resistance to benzimidazoles (Shabi !! aI, 1986). 

Leroux !! al (1985a) classified field isolates of P. 

herpotrichoides into four groups on the basis of benzimidazole 

and barban (4-chloro-2-yl-3-chlorophenylcarbamate) sensi ti vi ty. 

The first group (A) were benzimidazole sensitive isolates which 

were relatively insensitive to barban. The E050 for mycelial 

growth of these isolates was 0.06 rng ml-1 (0.31 VM) for 

carbendazim and 0.06 rng ml-l (1.0 lJM) for thiabendazole, which 

agree closely with the values produced for sensitive isolates in 

this work. The second group (B) consisted of resistant isolates 

with EDSO values for carbendazim and thiabendazole of 60 mg ml-l 

(314 ~M) and 2 rng ml-1 (10 ~M) respectively. These isolates 

showed increased sensitivity to barban. Isolates 22-6 and 22-8 in 

this study (Table 3.2) appear to of the same type with respect to 

their response to benzimidazoles and both showed negatively-



-96-

correlated cross-resistance to MDPC and 532165. The third group 

(C) were also extra sensitive to barban and had ED50 values in 

excess of 100 mg ml-1 (>523 II M) for carbendazim. The EDSO for 

thiabendazole for these strains was 40 mg m1-l (19911:M). These 

isolates are similar to 22-2 and 22-10 studied here. The final 

group (D) were highly resistant to the benzimidazoles, the EDSO 

for carbendazim was greater than 100 mg ml-l (>523 llM) and for 

thiabendazole was 8 mg ml-l (40 \,lM), but did not show increased 

sensitivity to barban. It would be of interest to compare these 

isolates, described as being rare in nature, with field isolates 

studied in this work which were highly benzimidazole-resistant 

but insensitive to 532165 (22-7 and 22-11, Table 3.8). 

Resistance to the benzimidazole fungicides in different 

species has been shown to ha ve more than one basis. Mechanisms 

include reduced uptake of the fungicide (Nachmias & Ba rash, 1976: 

Tripathi & Schlosser, 1982 ~ We lker & Will iams, 1983) and 

increased extracellular acid production (Larrbert & Wuerst, 1976). 

The main mechanism of resistance to these compounds, however, 

appears to involve modification of the site of action for these 

fungicides, the B-tubulin protein (Davidse & Flach, 1977, 1978: 

Sheir-Neiss et aI, 1978~ Tripathi & Schlosser, 1982: Neff ~ aI, 

1983: Orbach et aI, 1986: Roobal et aI, 1984). -- --
Van Tuy1 (1977a) showed by crossing mutants with differing 

resistance phenotypes that recoobination within the ~ nidulans 

benA gene was possible, demonstrating that mutations at a nurrber 

of points in this gene can result in altered fungicide response. 

By analogy it is quite possible that mutations at a number of 

points in one or more areas of the B-tubulin structural gene in 
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P. herpotrichoides could resul t in the diverse range of 

resistance phenotypes observeCL 

Alternatively a proportion, or indeed all, these resistance 

types may be the result of mutation in genes other than those 

coding for B-tubul in. In ~ porrbe, in addition to nutants for the 

B-tubulin structural gene (nda-3), al tered sensiti vity to 

benzimidazole compounds was found to resul t from changes in a-

tubulin, caused by mutation in the sbuctural gene for this 

protein (nda-2) (Toda !! aI, 1984: Hiraoka !!!!, 1984). The 

mechanism of action of the resistance controlled by the ~ and 

benC loci in A. nidulans has not yet been clarified, but does not - -----
seem to involve the tubulin proteins. Furthermore, the basis of 

resistance of several of the benzimidazole insensitive nutants of 

Dictyostelium discoideum studied by welker & Williams (1983) was 

assumed to involve altered membrane permeability since these 

strains were cross-resistant for the unrelated toxicants methanol 

and acriflavine. 

Reversion to MOPC insensitivity may be due either to back 

mutation or to intra- or extragenic suppressors of sensitivity. 

If carbendazim resistance and MOPC extra-sensitivity is due to 

the same mutation, MOPC-insensiti ve revertants, caused by back 

nutation, would be expected to resul t in the loss of carbendazim-

resistance. This was indeed the case with three of the eighteen 

revertants studied. The remaining mutants presumably carry 

supressor mutations. The presence of supressors did not 

necessarily lead to reduced benzimidazole resistance, in some 

cases thiabendazole resistance was actually increased. 
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Supressor mutations associated with the expression of the 

benA gene have been extensively studied in A. nidulans (Morris et - --
a I, 1979: Oakley et aI, 1985). benA mutants in which resistance - ---
to benzimidazoles was associated with heat sensitivity were used 

to select for temperature-insensitive revertants. Analyses of 

these revertant strains showed that a proportion were due to 

back-mutation in the ~ gene resulting in concomitant loss of 

benzimidazole resistance. Others carried extragenic suppressors 

some of which also caused a loss of resistance and cold 

sensitivity. One extragenic suppressor was later identified as 

the structural gene for a-tubulin, tubA (Morris!.!!!, 1979). 

Intragenic suppressors of heat sensitivity, selected in a ~ 

benomyl-resistant mutant often caused cold sensitivity and, at 

least in one case, loss of resistance. Most revertants, however, 

retained a significant degree of benomyl resistance. 

Seventeen of these intragenic supp~rs were subjected to 

fine structure mapping and shown to be closely linked to the 

original nutation. Eleven of these nutations were clustered at 

two sites which it was thought, represented regions of particular 

importance for the functioning of the fj-tubulin protein in this 

mutant. (Oakley !.!- aI, 1985). These stUdies clearly demonstrate 

the capacity for variation in the tubulin genes and the diversity 

of associated resistance phenotypes which can be produced. 

The variation in sensitivity to various inhibitors of 

ergosterol biosynthesis among ~ herpotrichoides field isolates 

is disturbing, since it implies that particular pathotypes nay be 

indirectly selected in the field by the use of these compounds to 

control unrelated fungal disease agents. Surveys of P. 
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herpotrichoides field populations, carried out at ADAS (Bristol), 

have demonstrated an association between the use of EBl 

fungicides (excluding morpholines) and the preponderance of BWR 

pathotypes, particularly in winter barley (Griffin, 1985). This 

effect was confirmed by Leroux and Gredt (1985a). Wheat plants 

inoculated with BW- or BWR-type strains and treated with 

triadimenol, had 20\ and 93\ infection respectively when assessed 

after two roonths. 

In the present work resistance to triadimenol was 

correlated with reduced sensitivity to the other triazole 

compounds, propiconazole and DPX H6573. An additional, 

experimental, triazole compound, supplied by Bayer UK Ltd., 

produced similar results (Data withheld by request). Leroox and 

Gredt (1985a, b) and Leroux ~ al (1985) found a similar 

relationship in triadimenol-insensitive isolates of the fungus 

from France, which also showed decreased sensitivity to the 

triazoles bitertanol, dichlobutrazole, propiconazole and 

triadimefon and also to the pyrimidine derivative fenarimol and 

the imidazole compounds imazalil and penconazole. Cross

resistance between EBI fungicides which inhibit the C-14 

demethylation step in sterol biosynthesis has frequently been 

reported in various species (de Waard & Gieskes, 1977: de Waard 

!! aI, 1982: Ho11omon, 1982: Schepers, 1983: Stanis & Jones, 

1985) • 

Data produced at ADAS (Bristol) suggested that carbendazim 

resistance may be associated in BWR-types with reduced 

sensitivity to several EBl fungicides (Griffin, 1985). In this 
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study however, while the nurrber of isolates was relatively small, 

no obvious correlation between carbendazim-sensitivity and 

response to the EB! compounds was seen. Similarly, corrparison of 

the EBr sensitivities of four benzimidazole-resistant mutants, 

derived from the miR-type isolate 22-184, failed to provide clear 

evidence for this association. 

Sensitivity to fenpropimorph was negatively correlated with 

triazole sensitivity for most isolates of ~ herpotrichoides 

screened. The relationship was not absolute however, isolate 22-

119 for example, was highly resistant to both fenpropimorph and 

the triazo1es studied. Leroux and Gredt (1985a, b) described the 

same phenomenon: most BW isolates were sensitive to triadimenol 

and other inhibitors of C-14 demethylation, and were also 

sensitive to fenpropimorph and fenpropidine, which act by 

inhibiting the C-l4 reductase and/or the ~-8-~-7 isomerase stages 

in sterol synthesis (Barug & Kerkenaar, 1984). BWR isolates were 

resistant to triadimenol and compounds of similar mode of action 

and sha.led increased sensitivity to the morpholines. Several BW

type isolates were less sensitive to triadimenol and were 

classified into two groups according to their degree of 

insensitivity. None were as resistant to triadimenol as the BWR 

strains and they did not show negatively-correlated cross

resistance to fenpropimorph. These strains appear similar in EB! 

response to the two m'l isolates, 22-21 and 22-22, with reduced 

sensitivity to triadimenol identified in this study. Both these 

strains, however, were highly sensiti ve to fenpropimorph. 

Nega ti ve 1 y-corre la ted cross-resistance between 

morphol ines and the other EBI fungicides has been reported in 
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fenarimol-resistant mutants of ~ italicum (de Waard !! ~, 

1982), while mutants of ~ maydis resistant to inhibitors of C-14 

demethylation have been isolated which variously show negative, 

POSitive and a lack of cross-resistance to the rrorpholines (Barug 

& Kerkenaar, 1984). 

The results obtained in this study confirm the findings of 

Leroux and Gredt (198Sa) that insensitivity to triadimenol and 

other C-14 demethylation inhibitors does not confer cross

resistance to prochloraz in ~ herpotrichoides. Similarly Brown 

et al (1984) found no difference in prochloraz response between --
the two pathotypes or between carbendazim-sensitive or -resistant 

isolates. By contrast, Erysiphe graminis isolates insensitive to 

triadimenol were also resistant to prochloraz (Butters !! aI, 

1984). The suggestion that BW isolates were slightly less 

sensitive to prochloraz is supported by the data of Leroux and 

Gredt (198Sa) who found that the EDSO for prochloraz of BW 

isolates was between 0.06 and 0.07 1:19 ml-l (0.16-0.19 lJM) while 

that of BWR-types was 0.03 lJg ml-l (0.08 lJ M). These differences 

are small and unlikely to have any effect at the level of the 

field population. The relative insensi ti vi ty of E.:.. aesti va to 

prochloraz has not previously been reported. 

While resistance to EBl fungicides has often been 

described, there are few instances in which the basis of 

resistance has been determined. Decreased uptake, associated with 

an energy-dependant efflux mechanism has been shown to be the 

basis of resistance to fenarimol in ~nidulans and ~italicum 

(de Waard & van Nistlerooy, 1979, 1980, 1984). Differential 
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sensitivity to triadimefon in Cladosporium cucumerinum and 

Stemphylium radicinum has been attributed to variation in the 

conversion of this compound into triadimenol, the active form 

(Gasztonyi & Josepovits, 1984: Fuchs & de Vries, 1984). 

Metabolism of triadimefon can result in the formation of two 

diastereomeric forms of triadimenol. The relative proportions of 

these produced and their relative toxicity to the transforming 

fungus determines the sensitivity of the fungus to triadimefon 

(Deas ~ aI, 1984, 1986). This mechanism may also be the basis of 

triademefon and triademeno1 sensi tivity in P. italicum (Fuchs et - -
aI, 1984), but it is unlikely to be the cause of EBI resistance 

in P. herpotrichoides since it would not result in cross

resistance for the other EBI compotmds. ~ italicum is uniformly 

sensitive to the remaining C-14 demethylation inhibiting 

fungicides (Fuchs ~ aI, 1984). 

Resistance to the EBI group of fungicides was considered 

unlikely to cause problems for disease control in practice 

because resistant rrutants generally were less fit or had reduced 

pathogenicity (Fuchs ~ aI, 1977: van Tuyl, 1977a: Fuchs & de 

Waard, 1982: de Waard & Fuchs, 1982). Whatever its caUSe, EBI 

insensitivity in ~ herpotrichoides was not associated with 

reduced pathogenicity since BWR-types often predominate in the 

pathogen population. Resistance to various EBI compounds not 

associated with reduced fitness or pathogenicity has been 

described in ~ italicum (de Waard !!!.!, 1982), !:. inaequalis 

(Stanis & Jones, 1985) and ~ graminis f.sp. hordei (Fletcher & 

Welfe, 1981: Butters !! aI, 1984) 

The occurrence of negative cross-resistance between 
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triadirreno1 and fenpropimorph in !::.. herpotrichoides, raises the 

possibility of using the latter compound to control, 

specifically, the BWR pathotype in the field. This strategy is 

unlikely to be successful, however, in view of the existence of 

strains with reduced sensitivity to both types of fungicide. On 

the other hand it may be possible that other morpholine 

derivatives can be synthesised that are more effective than 

fenpropimorph. The discovery of negatively-correlated cross

resistance to dodine in fenarimol-resistant strains of A. 

nidulans, c. cucumerinum, ~expansum, ~italicumand U. maydis 

(de W6ard & van Nistelrooy, 1983) suggests that other unrelated 

corrpounds may yet prove useful as control agents, specifically of 

fungicide-resistant strains. 
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4.l. IN'l'RDJCTION 

Readi ly recognisable strain markers are an obvious 

prerequisite both for genetic investigations and studies of 

population dynamics. In order to demonstrate and follow the 

events occurring in a parasexual cycle in P. herpotrichoides, the 

introduction of nutations in strains of the fungus was necessary. 

Auxotrophic nutations have been most widely used for this purpose 

in other fungi, since they permit the positive selection of any 

"hybrid" types by their ability to grow on a selective minimal 

medium. However, although exceptions have been reported, 

principally in Verticil~ albo-atrum (Clarkson & Heale, 

1985a,b) and in Venturia inaequalis, where the addition of the 

appropriate amino-acid or vitamin restored pathogenicity in 

auxotrophic strains (Wood, 1987), such mutations are generally 

deleterious for pathogenicity and consequently of little value in 

experiments invol ving colonisation of host plants by the fungus. 

Pigmentation and morphological mutants may be more appropriate 
are 

for such studies since these ITlltations"possibly less likely to 

affect pathogenicity. Many of these markers have another 

important use in studies of the population dynamics of plant 

pathogens. The existence of identifiable markers in a particular 

strain make it possible to follow its development and perforrmnce 

as part of a "field" population. This chapter descibes the 

isolation of mutants with auxotrophic, fungicide resistance, 

pigmentation and morphologica 1 phenotypes following mutagenic 
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treatment of conidia from wild-type isolates of P. 

herpotrichoides. 

4.2 MATmIALS AND METIDDS 

Mutants were obtained following UV-irradiation of conidia. 

Spore suspensions (105 to 106 spores ml -1) were exposed to far 

UV-light from a Philips Germicidal Larrp (2.4 J m-2 s -1 ) for up 

to 120 s (288 J m-2) with gentle stirring. Initial spore 

viability and survival after irradiation were estimated by 

plating dilutions of the spore suspensions onto MYG agar or the 

appropriate recovery medium. 

To determine the numbers of nuclei in conidia, spores were 

fixed in 70\ ethanol, stained with OAPI overnight at 40 c and 

viewed under UV-light (Vickers M17 Type C Fluorescence 

microscope.). The number of germ-tubes produced by germinating 

conidia was also determined. Spores from each irradiation period 

were allowed to germinate on sterile cellophane disks over ~ 

for 2 to 6 days at 190 C. Sections of the cellophane were 

excised, placed on glass slides and examined microscopically. 

Approximately 150 to 200 germinating spores were counted for each 

determination. 

Resistance mutants were obtained by direct selection. 

Irradiated spores were plated onto MYG agar containing an 
.... 

inhibitory concentration of either carbendazim or thiabendazole 

(5 - 20 ~M). Colonies appearing after 16 days at 190 C were 

purified as described and tested for altered fungicide response. 

Auxotrophic mutants were identified by transferring mycelium from 
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colonies growing on MYG onto MM. Strains failing to gro,,!, 

appreciably on MM were assumed to be auxotrophic. Nutritional 

requirements were identified by the method of Ho1liday (l956). 

Auxotrophic requirements which could not be determined by this 

procedure were identified using a modification of the method 

described for Streptomyces by Hopwood et a1 (1985). The system of --
diagnostic plates used for the identification of most of the 

auxotrophic mutants obtained is given in Appendix Ill. 

Various techniques were used in an attempt to increase the 

frequency of isolation of auxotrophic mutants. Filtration 

enrichment for auxotrophic mutants was performed as follows: 

irradiated conidia were pre-germinated in liquid MM for 3 days at 

19 °c and then filtered through either 4 layers of sterile muslin 

or lightly packed glass wool. Spores in the filtrate were plated 

on MYG agar and a sample of the resul ting co lonies tested for 

auxotrophy. The effect of liquid holding on the frequency of 

rutant isolation was also assessed. Spores were held in sterile 

distilled water for 24 to 72 h at 190C after mutagenesis before 

plating onto the recovery medium. The viability of spores was 

assessed at each stage, and the number of mutants obtained 

determined either by screening for auxotrophic mutants or by 

selection for resistance to thiabendazole (5 jJ..M). 

Auxotrophic mutants with the same nutritional requirement 

were tested for complementation by co-inoculation on MM. In this 

way most of the auxotrophic mutants could be classified into 

complementation groups. Auxotrophic mutants were further 

characterised by assessment of growth on MM supplemented with 

precursors in the Itlltant biosynthetic pathway. The enzyme assay 
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used to detect orni thine carbamyl transferase acti vi ty in the 

arginine-requiring mutant, arg-3, was adapted from that described 

by Barthelmess ~ al (1974). 

4.3 RESOLTS 

4.3.l. Survival and Mutation Frequency 

Spore survival following exposure to UV-light is shown in 

Figure 4.1. UV doses in excess of 160 J m-2 reduced spore survival 

to below 1\. A shoulder in the curve at lower doses (0 to 48 

J m-2), characteristic~survival of multinucleate propagules, was 

apparent. At higher doses spore viability was reduced 

logarithmically proportional to the irradiation dose. While 

Figure 4.1 represents this data from a single experiment, a 

similar pattern of spore survival was obtained in repeat 

experiments, although the precise levels of viability at each 

irradiation dose were found to vary (cf. Table 4.2). Non-

irradiated conidia produced between 1 and 5 germ-tubes (mean = 

2.6), mainly from the end cells. Following UV-irradiation, the 

nurcber of germ-tubes formed was considerably reduced, in parallel 

with decreasing survival (Table 4.1). Furthermore the germ-tubes 

were produced randomly, no longer principally from the apical 

cells, suggesting that the remaining cells in these conidia were 

non-viable. 

The frequency of induced mutation at each irradiation 

period was assessed by determination of the number of mutants 

produced resistant to the benzimidazole fungicides carbendazim or 

thiabendazole (Table 4.2). The highest mutation rates were 



Figure 4.1 Survival of conidia of P. herpotrichoides isolate 22-20 

after exposure to far UV-light (Phi lips Germicidal Lamp: 2.4 J m-2 
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Table 4.1 Germ-tube production by conidia of isolate 22-20, 

after exposure to UV-ligh~ Survival and numbers of germ-tubes 

determined after 2 to 6 days incubation at 19°C. 

UV NUMBER OF NUMBER OF GERM IN- MEAN SPORES / CLASS 
roSE 

(J m-2) 
GERMINATED NON-GERMIN- ATION NUMBER OF No. OF GERM-TUBES 

SPORES ATED SPORES (%) GERM-TUBES 1 2 3 4 5 

0 131 10 93.0 2.6 12 S3 45 16 5 
24 126 21 85.8 2.1 25 70 25 4 2 
48 105 55 65.8 1.8 41 5 12 0 1 
72 49 115 29.9 1.6 24 21 4 0 0 
96 15 151 9.1 1.3 10 5 0 0 0 

120 20 231 8.0 1.5 12 6 2 0 0 
144 4 163 2.4 1.3 3 1 0 0 0 
168 1 239 0.4 1 0 0 0 0 

~le 4.2 Frequency of mutation to benzimidazole resistance in conidia 

of isolate 22-20 following UV-irradiation (20 ml spore suspension 

containing 106 spores ml-l in a 90 nm diameter Petri dish). 

EXPERIMENT FUNGICIDE 
SELECTIOO 

1 

SuM MBC 

2 

lOIlM MBC 

2OJ,JM TBZ 

Survival (\)* 

Number of mutants 
Mutation frequency 

(x 10-6 )** 

Survival (t)* 

Number of mutants 
Mutation frequency 

(x 10-6 )** 

Number of mutants 
Mutation frequency 

(x 10-6 )** 

IRRADIATION OOSE (J m-2) 
o 24 48 72 96 120 144 

100 92 71 32 10 9 2 

o 0 0 
o 0 0 

o 4 0 0 
o 50.0 0 0 

100 100 77 63 24 8 2 

0012220 
o 0 0.5 1.2 3.1 10.0 0 

0144220 
o 0 0.5 2.3 6.3 10.0 0 

* Survival after UV-irradiation calculated as a percentage of the 
unirradiated control 
** Mutation frequency calculated as frequency of nutants per surviving 
conidium. 

· ; 
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produced with 96 and 120 J m-2 UV-irradiation. At these doses 

observation of the numbers of germ-tubes produced by individual 

conidia suggested that the majority of germinating spores had 

only single viable cells. Consequently a UV dose of 96 J m-2 was 

used in all subsequent experiments for the isolation of 

auxotrophic mutants. 

Maintaining irradiated spores in conditions unsuitable for 

growth for a period before plating onto the recovery medium to 

obtain colonies (liquid holding) has been reported to increase 

the frequency of isolation of mutant types (Rowlands, 1984). The 

effectiveness of this technique for increasing the number of 

resistance mutants in ~ herpotrichoides was assessed (Table 

4.3). Al thoogh more resistant nutants were obtained from isolate 

22-20 when irradiated spores were kept in sterile distilled water 

for 24 h, before plating on fungicide-containing medium, the 

mutation frequency was not increased. Longer periods of 1 iquid 

holding reduced the number of mutants obtained. Similarly mutant 

recovery from spores of isolate 22-184 was not greatly enhanced 

by this procedure. 

4.3.2 Isolation of Auxotrophic, Mcxphological and Pi<]lOOntation 

Mutants 

The experimental conditions under which auxotrophic 

mutations were induced are given for each fungal strain in 

Appendix IV. On average spores produced on TWA had more cell 

compartments, and so a greater number of nuclei, than those 

produced by microcycle conidiation on MYG agar (Table 4.4). These 
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Table 4.3 Effect of liquid holding on the frequency of mutation 

to thiabendazole resistance in conidia of 22-20 and 22-184. 

IN PERIOD OF NUMBER MUTATION 
OOSt LIQUID FUNGICIDE SURVIVAL OF FRElJUE~ 

IS:>LATE (J m- ) OOLDING (h) SELECTION (%) MUTANTS (xlO- ) 

22-20 0 0 20 IlM TBZ 100 0 <0.1 
96 0 20 IlM TBZ 7.4 3 2.1 
96 24 20 IlM TBZ 45.1 13 1.4 
96 48 20 IJ.M TBZ 20.6 3 0.7 
96 72 20 IlM TBZ 29.0 1 0.2 

22-184 96 0 5 ~ TBZ 42.4 76 9.4 
96 24 5 ~ TBZ 17.4 30 ll.O 

Table 4.4 Nuclear content of conidia of ~ herpotrichoides isolate 

22-20, produced on TWA or by microcyc1ic conidiation on MYG. Spores 

fixed with 70\ ethanol and stained with DAPI overnight at 4°C. 

PERCENTAGE OF SFQRES IN EACH ~UP 
AGAR NUMBER OF 

MEDIUM NUCLEI: 1 2 3 4 5 6 7 8 9 10 11 12 13 

4 6.5 12 13 17 27 12 4 3 0.5 0.5 0 0.5 

MYG Expt .. 1 ·7.5 24 15 19 14 12 5 1 2 0.5 0 0 0 

Expt.2 6 13 16 21 22 8 5 4 3 1 0.5 0.5 0 

differences obviously affect the precise level of survival 

obtained afterirradiation and may, in part, explain the variation 

in survi va 1 level for the different strains. Strains carrying 

more than one genetic marker were produced either by repeated 

cycles of mutagenesis, or in the case of some resistance markers, 
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by selection for spontaneous mutation. Auxotrophic mutants were 

isolated both by mass screening of surviving colonies following 

UV-mutagenesis and after enrichment by filtration. The frequency 

of recovery of auxotrophic rutants ranged between 0.1 and 1.3% of 

colonies screened, depending on the isolate used. Enrichment for 

auxotrophs by pre~ermination of irradiated conidia in liquid MM 

and filtration to remove prototrophic mycelium was not 

successful. Fi1 tration through severa 1 layers of mus 1 in 

(Experiment 1) was ineffective as this material permitted too 

many hypha1 fragments and germinated spores to pass through. 

Consequently the population of colonies screened was little 

different from the un-enriched population. The use of glass wool 

as a filtration medium was equally unsuccessful. Only 5\ of the 

total nurrber of conidia were recovered after filtration, of which 

11\ were viable compared with 34% of unfiltered spores. 

Obviously, not only were both germinated and ungerminated conidia 

removed f~ the suspension, but many prototrophic spores failed 

to germinate in the 1 iquid medium. 

Liquid holding of spores for 24 h at 19°C. also failed to 

increase the frequency with which auxotrophic mutants were 

isolated. Indeed the increased viability of spores after this 

treatment resulted in decreased rates of mutant isolation. 

Addition of specific supplements to the recovery medium did not 

lead to an increased number of auxotrophic mutants being 

identified, but did result in different classes of auxotrophic 

requirement in the mutants isolated. Mutants wi th nutritiona 1 

requirements for leucine, serine and nicotinic acid were obtained 

in this way. 
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Pigmentation and morphological mutants were readily 

identified amongst the colonies appearing on the recovery plates. 

Most common among mutants with altered colony colouration on MYG 

were those with red, yellow or white mycelium. A class of 

morphological mutants which was repeatedly isolated, both as 

spontaneous and UV-induced mutants, had spiral hyphal growth, 

resulting in colonies with curly mycelium (spi). On exposure to 

light these spiral mutants gradually aquired a deep red 

pignentation (Fig. 4.2). All of these colour nutants had normal, 

hya 1 ine conidia. 

Another class of mutants was regularly obtained in which 

initial grOlrth on MYG consisted exclusively of microcyclic spore 

fOl'lMtion (con), producing rrrjcelium only after several days. The 

conidia produced by these mutants, While appearing 

morphologically normal, became pignented at the same time as the 

mycelium (Fig. 4.3). On MM they appeared unable to form hyphae 

and remained as small sporulating colonies. Addition of amino 

acids, either individually or as casamino acids, or 

supplementation with any of the vitamins or bases failed to 

promote normal growth. Only when yeast extract was added to the 

MM was hyphal growth restored. These ~ nutants were recovered 

from many isolates of ~ herpotrichoides, from both pathotypes, 

often at high frequency (>10% surviving conidia in one experiment 

with UV-irradiated spores of isolate 22-12). 

The genealogies of mutants derived from isolates 22-20 and 

22-12 are presented in Figures 4.4 and 4.5 respectively. 



Figure 2.6 Colonies derived from single spores from the BWR-type 

isolate 22-15 showing variation in pigmentation on MYG. 

Figure 4.2 epi nutants obtained from isolate 22-20. When exposed 

to daylight these colonies aquire a deep red pigmentation. 

Figure 4.3 ~ nutant (22-184) derived from isolate 22-12 growing 

on MYG. The centre of this colony consists entirely of 

microcycllcally produced conidia, which eventually pigment dark 

brown. On minimal medium these mutants fail to develop normal 

mycelium. Bar represents 5 mn. 



4.2 



FIGURE 4.4. Genealogy of mutants derived from the BW-type 

isolate 22-20 (spontaneous mutations denoted by *). 

GENE SYMBOLS 

ade adenine requiring 

arg arginine requiring 

asn as~aragine requiring 

aux unidentified auxotrophic requirement 

ben benzimidazole resistant 

con microcycle sporulation 

fwn fawn pigmentation 

his histidine requiring 

ilv isoleucine + valine requiring 

leu leucine requiring 

lys 
, <I-

lysine requiring 

met methionine requ~ring 

nic nicotinic acid requiring 

orn ornithine requiring 

pnk pink pigmentation 

red red pigmentation 

s reduced sulphur requiring 

ser serine requiring 

spi . spiral growth habit 

trp tryptophan requiring 

tyr tyrosine requiring 

ura uracil requiring 

whi white pigmentation 

yel yellow pigmentation 



adeA-l 22-109 ---r-'adeA-2, ben-117 22-233 
adeA-2 22-112 
adeB-3 22-123 ---1t: argA-l, llvA-l 22-195 
ars;A-l 22-111 argA-1, red-1 22-139 
asnA-l 22-311 argA-1, whi-1 22-140 __ lJargA_1, ~, asnA-2 22-312 

t. herpotrichoides asnA-3 22-313 hisA-1, argB-3 22-136 ben-116 22-232 
BW-pathotype asnB-4 22-314 hisA-1, argA-4 22-187 
22-20 ilvA-2 22-316 hisA-1, aux-4 22-194 

llsA-1 22-107 hisA-1, IeUii='1 22-189 
lls-2 22-110 hisA-1, leuA-2 22-190 
lls-3 22-122 hisA-1, metB-2 22-133 
lysl-6 22-310 hisA-1, metC-3 22-309 
hisA-l 22-108 hisA-1, nic-1 22-191 
metD-4 22-315 hisA-1, ornC-5 22-308 
sA-1 22-125 hisA-l, sC-6 22-135 
tF-1 22-106 hisA-1, serA-72 22-193 

'spi-l 22-32 hisA-l, uraA-l 22-134 
spi-2 22-39 hisA-1, uraB-3 22-198 
con-1 22-68 hisA-1, spi-4 22-227 

hisA-l, red-4 22-22 
hisA-1, yel-5 22-226 

ben-17, arg-2 22-128 
ben-17, hisB-2 22-137 
hen-17 , lpB-4 22-127 

'ben-l1 22-29 ben-17, metA-1 22-130 
ben-17, sB-2 22-126 
ben-17, S1i':'3 22-129 
ben-17 , yel-4 22-216 

ben-21, adeC-4 22-202 
ben-21, adeA-5 22-203 

ben-21 22-49 ben-21, hisC-3 22-138 
ben-21, pnk-2 22-210 

numerous additional ben-21, sC-4 22-131 
benzimidazole- ben-21, sC-5 22-132 
resistant mutants ben-21, trp-1 22-212 

ben-21, yel-3 22-211 



FIGURE 4.5. Genealogy of mutants derived from the BWR-type 

isolate 22-12 (see Fig. 4.4 for gene symbols) 

lys-5 22-186 

nlcA-2 22-219 

nicA-3 22-220 

nlcA-4 22-218 

P. - herpotricholdes nlcA-5 22-229 

BWR-pathotype nicA-6 22-217 con-2, ben-118 22-234 

22-12 s-71 22-228 con-2, ben-119 22-235 

, . con-2 22-184 con-2, ben-120 22-236 

spi-3 22-206 con-2, ben-121 22-231 

whi-3 2~-204 con-2, ben-122 22-238 

whi-4 22-205 con-2, ben-123 22-239 

fwn-1 22-201 numerous additional 

benzimidazole-resistant 

mutants 
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4.3.3 Characterisatim of Auxotrophic Mutants 

The auxotrophic mutants identified belonged to eleven main 

nutritional categories with requirements for: adenine, arginine, 

asparagine, histidine, isoleucine + valine, leucine, lysine, 

methionine, nicotinic acid, aromatic amino acids and uracil. The 

ability to differentiate between non-allelic mutants with the 

same requirement would increase the nurrber of markers that could 

be used in genetic analyses. Consequently mutants of the same 

type were tested for their ability to complement each other, and 

the characteristics of each mutant assessed by growth on MM 

containing alternative supplements. Since no biochemical studies 

of metabolism in ~ herpotrichoides have been done, conclusions 

about the nature of the enzymatic deficiences in these mutants 

were based on the assumption that the bioaynthetic processes in P. 

herpotrichoides are comparable with those of ~ nidulans and ~ 

crassa (Smith & Paternan, 1977: Fincham ~!!, 1979: Lehninger, 

1978) • 

4.3.3.1 Adenine-requiring Mutants 

Five adenine-requiring auxotrophic mutants were obtained in 

isolate 22-20. All were slightly leaky for growth on MM in the 

absence of adenine, and four of the mutants were able to utilise 

hypoxanthine instead of adenine. Complementation studies revealed 

three complementation groups (Table 4.5). 
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~le 4.5 Comp1ementation and repair of adenine-requiring auxotrophic 

nrutants. 

COMPLEMENTATION MUTANT 
MUTATION GROUP* NUMBER 

ade-1 A 22-109 
ade-2 A 22-112 
Slde-5 A 22-203 

ade-3 B 22-123 

~ C 22-202 

GROWTH ON MM PLUS**: 
ADENINE HYPOXANTHINE 

+ 
+ 
+ 

+ 

+ 

+ 
+ 
+ 

+ 

* Mutants in different groups corrplement each other when 
co-inoculated on MM, while rrutants in the same group did not. 

** - = no repair of growth: + = normal growth 

The ability of the rrutants carrying adeA-l, adeA-2, adeA-5 

and adeC-4 to grow in the presence hypoxanthine indicates that 

the biochemica 1 deficiencies causing auxotrophy in these nutants, 

occur in the pathway leading to the formation of inosinic acid 

(IMP). On this basis nrutant 22-123 (adeB-3) is likely to be 

blocked in the conversion of IMP to adenylic acid (AMP: Fig 4.6). 

4.3.3.2 Arginine- and Ornithine-requiring Mutants 

Fi ve arginine-requiring mutants were isolated from 22-20. 

One, arg-2 (22-128), was very leaky for growth on MM and was 

subsequently discarded. The remainder were classified on the 

basis of rrutual complementation into three groups (Table 4.6). 



Figure 4.6 Biochemical pathway for purine metabolism. Putative 

positions of metabolic blocks caused by specific auxotrophic 

mutations in P. herpotrichoides indicated where kn~ 

Enzymes: 

1 adenylosuccinate synthetase 

2 adeny10succinate lyase 

3 AMP deaminase 

4 nuc1eosidemonophosphate kinase 

5 nuc1eosidediphosphase kinase 

6 adenine phosphoribosyl transferase 

7 ribonucleoside diphosphate reductase 

8 adenosine kinase 

9 adenosine deamlnase 

10 adenine deaminase 

11 hydrolase 

12 5'-nuc 1 eot ida se 

13 IMP dehydrogenase 

14 GMP synthetase 

15 purine rllc1eoside phosphorylase 

16 hypoxanthine phosphoribosyl transferase 

17 guanlne deaminase 

18 xanthine dehydrogenase 



:=~ ::r purine biosynthetic 
pathway 

3 • INOSINIC ACID (IMP) 

~, ~ 
• adenylosuccinate adeB-3? / xanthosine-5-phosphate 

~ /12 ~~ 
adenylic acid adeB-3? inosine 16 xanthosine 12 guanylic acid 

(AMP)\~ ~ \1 A) (GMP) 
adenosine guanosine 

6 . ~5 16 

4 _ HYPOXANTHINE "'" 14 

ADENINE 10 l18 - GUANINE 

XANFNE'~ /f: 
urate dGDP GTP ATP 

ADP 

t5~ 
dADP 

I 
urea +glyoxylate 
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Table 4.6 Comp1ementation of arginine or ornithine-requiring 

auxotrophic mutants. 

COMPLEl'1ENTATION MUTANT GROWTH 00 MM PLUS*: 
MUTATICN GROUP NUMBER N-AG1u N-AOrn ORN CIT ASucc ARG PRO 

A 22-111 

A 22-187 

B 22-136 + 

orn-5 C 22-308 + + 

* N-AG1u = N-acetylglutamate; N-AOrn = N-acetlyornithine; ORN = 
ornithine; CIT = citrulline: ASucc = argininosuccinate: ARG = 
arginine: PRO = proline: - = no repair of growth: (+) = slightly 
improved growth: + = norma 1 growth. 

Since none of the mutants were able to grow on 

argininosuccinate, the intermediate between citrulline and 

arginine, presumably due to poor uptake (Fincham ~!.!., 1979), it 

is not possible to say which of these biosynthetic steps is 

likely to be blocked in strains with the argA-l or argA-4 

mutations. Similarly the inability of strain 22-308 to grow on 

either of the ornithine precursors does not allow a more precise 

location of the ornC-5 mutation. The argB-3 mutation did not 

result in a loss of OTC-ase activity, consequently this mutation 

must block the formation of carbamoyl phosphate, required for the 

conversion of ornithine to citrulline (Fig 4.7). 

4.3.3.3 Asparagine- and HistidIne-requiring Mutants 

+ 

+ 

+ 

+ (+) 

Three histidine- and four asparagine- requiring mutants were 

identified. All three histidine mutants were coot>lementary. The 



Figure 4.7 Metabolic pathway for arginine and proline 

biosynthesis. Putative positions of metabolic blocks caused by 

specific auxotrophic mutations in ~ herpotrichoides indicated 

where known. 

Enzymes: 

1 acetylornithine glutamate transacylase 

2 acety1glutamate kinase 

3 N-acetyl-F-glutamyl phosphate reductase 

4 acetylornithine transaminase 

5 ornithine carbamoyl transferase 

6 carbamoyl phosphate synthetase (arginine specific) 

7 argininosuccinate synthetase 

8 argininosuccinate lyase 

9 arginase 

10 ornithine transaminase 

11 glutamic-J!-semia1dehyde dehydrogenase 

12 glutamate kinase 

13 glutamate dehydrogenase 

14 spontaneous reaction 

15 pyrroline-S-carboxylate reductase 

16 proline oxidase 
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asparagine-requiring mutants formed two oomplementation groups, 

and were also complementary to the his- mutants. hisA-1 appeared 

to result in the inability to perform the final step in histidine 

biosynthesis, since this mutant was unable to utilise histidinol, 

the imnediate precursor of histidine (Table 4.7). The other his-

mutations must block histidine biosynthesis at different steps 

before the formation of histidinol phosphate (Fig.4.8). 

Table 4.7 Complementation and repair of histidine- and asparagine-

requiring mutants 

AUXOTROPHIC COMPLEMENTATION MUTANT GROWTH ON MM PLUS**: 
CLASS MUTATION GROUP* NUMBER HIS HIS-ol HIS-P ASN ASP 

his-l A 22-108 + 

his-2 B 22-137 + + + 

his-3 C 22-138 + + + 

asn-1 A 22-311 + + + 
asn::2 A 22-312 + + + 
asn-3 A 22-313 + + + 

asn-4 B 22-314 + + 

* Grouping based on complementation between mutants in the same 
class 

** HIS = histidine; HIS-ol = histidinol; HIS-P = histidinol 
phosphate; ASN = asparagine; ASP ~ aspartate; - = no repair of 
growth; 
+ = norma 1 growth. 

The pattern of growth repair in the asparagine-requiring 

mutants was ditficul t to interpret. asnA-I, asnA-2 and asnA-3, 

were able to grow on MM in the absence ot asparagine when 

supplied with either of the two histidine precursors, but not 

when given histidine itself. asnB-4, on the other hand, was able 

to grow on histidine or asparagine but not when provided with 



Figure 4.8 Metabolic pathways for asparagine and histidine 

biosynthesis. Putative positions of metabolic blocks caused by 

specific auxotrophic mutations in ~ herpotrichoides indicated 

where known. 

Enzymes: 

1 glutamate-oxaloacetate aminotransferase 

2 asparagine synthetase 

3 phosphoribosy l-ATP pyrophosphory lase 

4 phosphoribosyl-AMP cyclohydrolase 

5 phosphoribosyl formimino-5-aminoimidazole 

6 glutamine amidotransferase 

7 imidazoleglycerol phosphate dehydratase 

8 histidinol phosphate transaminase 

9 histidinol phosphate 

10 histidinol dehydrogenase 
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histidinol or histidinol phosphate. The reasons for these 

responses remains unclear. The possibility that the asaragine was 

contaminated with histidine, so allowing growth of the asnB-4 

mutant, which would therefore be a histidine-requiring mutant, 

was not supported by the growth responses of the three his

mutants, none of which produced any growth on asparagine. 

Conversely the histidinol and histidinol phosphate may have 

contained asparagine, enabling the other ~- mutants to grow. 

However, in this case, strain 22-314 (asnB-4) should have been 

able to grow on these supplements. An alternative theory, that 

22-314 was a mixed culture, did not appear to be the case either. 

No heterokaryotic growth was produced by this strain and repeated 

Plrification bf single spore isolation fai led to revea 1 differing 

phenotypes. 

4.3.3.4 Lysine-requiring Mutants 

Six lysine-requiring mutants were produced, five from 

isolate 22-20, one of which (lys-2) was too leaky on MM to be 

useful, and one from isolate 22-12. Three mutants from 22-20 were 

found to be complementary, the fourth could not be assigned to 

any comp1ementation group (Table 4.8). Similarly the mutant 

deri ved from 22-12 (1ys-5) did not complement any of the other 

mutants, this will be discussed at greater length in Chapter 7. 

None of the lysine-requiring mutants was able to utilise a

aminoadipate in place of lysine, though whether this was due to 

irrpaired uptake or the location of the biochemical blocks was not 

clear. 
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4.3.3.5 Plethionine-, Reduced Sulphur- and Serine-requiring 

Mutants 

The most frequently recovered class of auxotrophs 

consisted of mutants deficient in sulphur metabolism. These could 

be classified as methionine-requiring or as reduced su1phur

requiring, depending on their growth on various sulphur sources 

(Table 4.9). Additionally, one mutant (22-193) appeared to be 

deficient for serine biosynthesi& This mutant was able to grow 

normally when provided with serine, cysteine or methionine, and 

was leaky on MM. 

Table 4.8 Complementation and repair of lysine-requiring mutants. 

PARENTAL 
lroLATE 

22-20· 

22-12 

COMPLEl"IENTATION 
MUTATION GROUP 

lys-l A 

1ys-4 B 

ly's-6 C 

1ys-3 ? 

1ys-5 ? 

MUTANT 
NUMBER 

22-107 

22-127 

22-310 

22-122 

22-186 

GROWTH ON MM PLUS.: 
LYS AAA 

+ 

+ 

+ 

+ 

+ 

* LYS = lysine; AAA = alpha-aminoadipate; - = no repair of grCMth; + 
= normal growth. 

All four methionine-requiring mutants were cross 

compatible. On the basis of growth on the various su1phur-

containing amino acids and their intermediates, the metA-1 

mutation appears to block the conversion of cystathione into 

homocysteine (Fig. 4.9). metB-2 may cause a block in the last 

step in methionine synthesis, while metC-3 seems to prevent the 

conversion of cystathione into homocysteine. The basis of the 



Figure 4.9 Metabolic pathway for cysteine and methionine 

biosynthesis. Putative positions of metabolic blocks caused by 

specific auxotrophic mutations in ~ herpotrichoides indicated 

where known. 

Enzymes: 

1 su 1 pha te permease 

2 sulphate adenyl transferase 

3 adenyl sulphate kinase 

4 PAPS reductase 

5 sulphite reductase 

6 acetylserine sulphydrilase 

7 cystathionine-J~thetase 

8 cystathionine-~-lyase 

9 homocysteine methyl transferase 

10 methionine adenosyltransferase 

11 methyl transferase 

12 adenosyl homocysteinease 

13 cystathionine-~-eynthetase 

- 14 cystathionine-}~lyase 

15 serine aoetyltransferase 

16 aspartate kinase 

17 aspartate-~-semia1dehyde dehydrogenase 

18 homoserine dehydrogenase 

19 homoserine acyl transferase 
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methionine auxotrophy caused by rretD-4 is less obvious, but may 

involve altered synthesis of homoserine, since supplementation 

with this compound did allow some growth on MM. Three 

complementation groups were recognised amongst the reduced 

sulphur-requiring mutants, but little can be said about the basis 

of the auxotrophy in these strains. All produced leaky growth on 

Table 4.9 Complementation and repair of methionine- and reduced 

sulphur-requiring mutants. 

COMPLEMENTATION MUTANT GROWTH ON MM PLUS**: 
MTJl'ATION GRJUP* NUMBER S03 -- 52°3- CY5 CYT HCys MET 5ER HSer 

met-l A 22-130 (+) + 

met-2 B 22-133 + 

met-3 C 22-309 + (+) + 

met-4 D 22-315 - ( +) (+) + 

s-l A 22-125 + + NT + + 

s-2 B 22-126 + + NT (+) + 
s-3 B 22-129 + + NT + + 

s-4 C 22-131 + + NT (+) + 
s-5 C' 22-132 + + NT + + 
s-6 C 22-135 + + NT + + 

***~ ? 22-228 + + NT + + 

ser-72 A 22-193 + NT (+) + + 

* Grouping based on corrplerrentation between ITIltants of the same 
class 
** 503- = sodium sulphite: S203- = sodium thiosulphate: CYS = 
cysteine: CYT = cystathione: HCys = homocysteine: MET = 
methionine: 5ER = serine: HSer = homoserine: - = no or leaky 
growth: Slight or moderate growth: + = normal growth. 
*** Mutant derived from isolate 22-12. 

( +) 
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MM. None, however, resulted in resistance to se1enate, an 

inhibitor of sulphate metabolism (See Chapter 7). Mutant 22-193, 

carrying serA-72, COI'l'plemented all the s- mutants, with the sole 

exception of s-71. This mutation occurred in a strain derived 

from isolate 22-12, and did not complement any of the other 

sulphur mutations. 

4.3.3.6 Leucine- and Isoleucine + valine-requiring Mutants 

Two leucine and two isoleucine + valine auxotrophs were 

isolated. No complementation was found between ei ther pair of 

mutants, although leucine-requiring strains complemented the ilv

mutants. No repair of auxotrophy was produced when isoleucine and 

valine were replaced by their irrmediate precursors (Table 4.10). 

Either these compounds are not taken up, or the ilv- mutants are 

deficient for the enzyme valine transaminase, which catalyses the 

final step in the biosynthesis of these two amino acids (Fig. 4. 

10) • 

4.3.3.7 Uracil-, Nicotinic acid-, 'l'yroeine- and Tryptophan

requiring Mutants 

Both pyrimidine-requiring mutants obtained were sI ightly 

leaky on MM, and were corrplementary (Table 4.11). Even more leaky 

growth was exhibited by the tyrosine- and tryptophan-requiring 

mutants. On MM lacking the appropriate supplements the growth 

rates of these two mutants were approximately half that when the 

supplements were added. 

Five nicotinic acid requiring mutants were recovered from 

isolate 22-12, and one from isolate 22-20. No complementation was 



Figure 4.10 Metabolic pathway for valine, isoleucine and leucine 

biosynthesis. Putative positions of metabolic blocks caused by 

specific auxotrophic mutations in ~ herpotrichoides indicated 

where known. 

Enzymes: 

1 threonine dehydratase 

2 acetolactate synthase 

3 acetolactate mutase 

4 reductase 

5 dihydroxy acid dehydratase 

6 va line transaminase 

7 a-isopropylmalate synthase 

8 a-isopropylmalate dehydratase 

9 isopropylmalate dehydrogenase 

10 leucine transaminase 
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seen between any of these six mutants, and none were repaired by 

tryptophan. 

Table 4.10 Complementation and repair of leucine- and isoleucine + 

isoleucine-requiring mutants. 

GROWTH ON MM PLUS**: 
COMPLEMENTATION MUTANT LEU ILE VAL ILE ILE VAL KIV 

Ml1l'ATION GROUP* NUMBER +VAL +KIV +KMV +KMV 

leu-1 
leu-~ 

ilv-1 
ilv-2 

A 
A 

A 
A 

22-189 + 
22-190 + 

22-195 + 
22-316 + 

* Grouping based on comp1ementation between mutants of the same 
class. 
** LEU = leucine: ILE = isoleucine: VAt = valine: KIV = a
keto- iso-valeric acid: KMV = a-keto- 6-methy1-valeric acid: - = 
no repair of growth: + = normal growth. 

Table 4.11 Comp1ementation and repair of pyrimidine-requiring 

rrutants. 

COMPLF.MENTATION Ml1l'ANT GRowm ON MM PLUS*: 
MUTATION GROUP NUMBER ORA URID CYTO 

ura-l A 22-134 + + + 
ura-3 B 22-198 + + + 

THY 

. -

* ORA = uracil: URID = uridine: CY'ro = cytosine: THY = tyhmine: - = no 
repair of growth: + = normal growth. 
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4.4 DISC(JSSlOO 

Initial doubts about the use of multicellular spores for 

the isolation of mutants were unfounded. Mutation frequency, 

assessed by selection for benzimidazole resistance was greatest 

at UV doses of 96 to 120 J m-2s-l • However, the optimum 

irradiation dose for the isolation of auxotrophic mutants may not 

be the same as that for resistance mutants, as the presence of 

viable prototrophic nuclei in the conidium will preclude the 

isolation of the auxotroph, whereas the occurrence of fungicide 

sensitive nuclei in the same mycelium is unlikely to prevent the 

identification of dominant resistant mutants. Despite this 

auxotrophic mutants were successfully isolated at frequencies 

comparable with those recorded for other fungal species (Bertoldi 

& Caten, 1975; Hastie & Heale, 1984). 

The types of auxotrophic mutants isolated were similar to 

those described for other species (Bertoldi & Caten, 1975: 

Churchill & Mills, 1984: Hastie & Hea le, 1984). The range of 

requirements obtained may be more the result of the experimental 

procedure than the mutability of any particular locus, since 

alteration of the composition of the recovery medium enabled a 

different spectrum of requirements to be recovered. On the other 

hand the large number of nicotinic acid-requiring mutants derived 

from isolate 22-12 may indicate differential mutability of loci 

in this strain. Puha Ila (1980) reported a high frequency of nic

mutants amongst auxotrophs induced in Verticillium dahliae. 

Microcylic sporulation has been described in several species 
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(Smith et aI, 198Ia,b), usually in response to some environmental 

or nutritional factor. In Fusarium solani f.sp. pisi mutants with 

a stable microcycle were produced by a two-step mutagenic 

procedure (Kolmark, 1984), the first step blocking the formation 

of macroconidia, and the second eliminating the need for hyphal 

development before production of the microconidia. The con 

mutants of P. herpotrichoides were readily isolated after 

mutagenic treatnent and were occasionally obtained as spontaneous 

mutants, in many of the field isolates. The high frequency with 

which they appeared after UV-irradiation of spores suggests a 

particularly mutable genetic "switch" controlling morphogenesis. 

In addition, the observations that ~ nutants are unable to form 

normal mycelium on MM, and that microcyclic spore formation in 

wild-type isolates on MYG agar is sustainable for 2 to 3 

generations at the most before reversion to the mycelial form, 

strongly indicate that nutrition plays an important role in the 

control of microcyclic conidiation in this fungu~ 
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IOOLATIOO AND ~OO OF POO'IDPLAS'l'S 

5.1 INTOOOOCTION 

Fusion of fungal protoplasts provides a method whereby gene 

exchange can be artifica11y induced. Following the successful 

application of protoplast techniques to the genetic study and 

manipulation of industrially important species (Kevei & Peberdy, 

1977,1979: Ke11er !!!!., 1980: Peberdy, 1980: Ferenczy, 1981: 

Ferenczy & Pesti, 1982: Toyama !! aI, 1984: Yoo et aI, 1984, 

1985: Birkett & Hamlyn, 1985: Hamlyn ~ aI, 1985: Magae !! aI, 

1985, 1986: Reymond & Fevre, 1986: Reymond, Veau & Fevre, 1986), 

considerable interest has been shown in the use of these 

techniques with plant pathogenic fungi (Garcia-Acha ~ aI, 1966: 

Bartnicld-Garcia & Lippman, 1966: Lopez-Belmonte !! aI, 1966: de 

Waard, 1976: Harris, 1982: Hashiba & Yamada, 1982, 1984: Typas, 

1983: Levitin et aI, 1984: Lynch et aI, 1985a, b: Mo1nar et aI, -- -- --
1985: Morehart !! aI, 1985: Newton & Caten, 1985: Zhemchuzhina & 

Dzhavakhiya, 1985: Gwinn & Daub, 1986). In many facultative 

biotrophic fungi naturally occurring sexual gene exchange is 

either absent (Hashiba & Yamada, 1982: Typas, 1983) or 

recalcitrant and therefore not amenable to manipulation in the 

laboratory (Harris, 1982: Leslie, 1983). 

Protoplast fusion also allows the basis of heterokaryon 

incompatibility to be investigated. Mechanisms of vegetative 

incompatibility which are based in the cell wall can be overcome 

by this method, enabling strains to be crossed which would not be 

possible using orthodox proc·edures (Dales & Croft, 1977: Typas, 
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1983: Jackson & Heale, 1983: Hastie & Heale, 1984: Zhemchuzhina 

~ aI, 1985). In addition fungal protoplasts are widely used in 

molecular biology, both as a source of genetic material and for 

transformation with cloned DNA (Hynes, 1986). 

This chapter describes the development of a protoplast 

isolation and regeneration system for !:. herpotrichoides. The 

main factors affecting protoplast release, including mycelial 

age, lytic enzyme combination and choice of osmotic stabilizer 

have all been optimised, and conditions for high frequency 

protoplast regeneration determined. 

5.2 MATERIALS AND "ETEDDS 

S.2.l Strains 

Isolate 22-20, a fast-growing BW-type strain, was used 

throughout for the development of a protoplast cuI ture system. 

The origin of this isolate is given in Appendix 1. 

5.2.2 Production of "ycelium for Protoplast Isolation 

For the initial screen of commercial enzymes for lytic 

activity against !:. herpotrichoides, mycelium was produced on 

sterile cellophane sheets spread over malt extract-glucose agar. 

Cellophane cultures were grown for 4 days at 190 C from small agar 

plug inocula. In all subsequent experiments mycelium grown in 

shake culture was used. The liquid medium (MYG liquid) was 

cOl'lt>Osed as follows: (g 1-1) malt extract, 5: yeast extract, 2.5; 

glucose, 10: and adjusted to pH 4J) prior to sterilisation in 25 

ml volumes in 250 m1 flask& Media were autoclaved at l2loC for 

30 min before use. At first mycelium was grown from an inoculum 
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of 2 x 104 spores m1-1 and cultured for up to 90 h. Once a 

suitable enzyme combination had been found the inoculum 

concentration was increased to 105 spores ml-l , and cultures 

naintained for up to 44 h. All flask cultures were incubated on 

an orbital shaker at 190 C and lOO rpm. 

5.2.3 Enzyme SolutiOl'l8 

Unless stated otherwise all enzymes were dissolved in 0.05 

M sodium maleate buffer (pH 5.8) containing 0.6 M KCl as the 

osmotic stabilizer. Stock solutions were prepared with 15 mg 

enzyme ml-l and diluted with sterile buffered stabilizer where 

required, or by combination with other enzyme solutions, to give 

a final concentration of 5 mg ml-l for each enzyme. Enzyme 

solutions were sterilized by centrifugation at 30000 x g and 40 C 

for 30 min, and stored frozen at _20oC. 

5~ Protoplast Formation 

When cellophane~rown mycelium was used single colonies were 

excised, washed by immersion in stabilizer and placed in the 

appropriate enzyme solution (0.6 ml volumes in sterile Eppendorf 

tubes). Mycelium ft·om shake cultures was harvested aseptically by 

vacuum fil tration, washed twice with distilled water and once 

wi th osmotic stabi I iser. Where a specific quanti ty of myce I ium 

was required, the mycelial rrat was press~ried, weighed and then 

resuspended at the appropriate concentration in the enzyme 

solution. Otherwise 1 ml aliquots of mycelial suspension were 

transferred to centrifuge tubes and the mycelium recovered by 

centrifugation at 3000 x g for 5 min. The lytic mixtures were 
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incubated at 280 C with gentle shaking for at least 3 h. 

Protoplast numbers were determined using a Neubauer counting 

charrber. 

5.2.5 Protoplast Regeneratioo 

Protoplast regeneration was compared on complete and 

minil\'Sl medimn using various compounds as osmotic stabi 1 isers. 

Glucose and osmotic stabilizer were autoc1aved separately and 

added to the medium prior to use. Protop1asts produced after 3 to 

24 h digestion in the enzyme solution were recovered by 

filtration through sinter glass filters (porosity 2), followed by 

centrifugation at 3000 x g for 5 mine After removal of the enzyme 

solution protoplasts were suspended in the stabilizer solution 

and diluted to give 104 protoplasts m1-l • One hundred ul portions 

of the protoplast suspension were spread on corrplete or miniml 

medium containing an appropriate concentration of stabilizer. 

Regenerating protoplasts were incubated at 190 C. Regeneration 

frequency was expressed as the percentage of protoplasts, of the 

total microscopic count, that formed colonies after 4-28 days of 

culture. Control p1atings of lysed protoplast suspensions were 

also made. 

5.2.6 Enzyme Assays 

Enzyme activities were determined under conditions similar 

to those used for protoplast release: enzymes and substrates were 

dissol ved in 0.5 M sodium Ita lea te ooffer, and assays were carried 

out at 28 °C, except for chitinase which was determined at 370C • 

Stabilizer, however, was not included In case its presence 

interfered with the detection of the products of hydrolysis. 
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Chitinase activity was determined using acid-swollen 

chitin (prepared as described by Ham1yn, 1982) as substrate. The 

liberated 2-acetamido-2-deoxy-D-g1ucose (N-acetylglucosamine) was 

measured by the method of Reissig et al (1955) using N--- -
acetylglucosamine (Sigma) as standard. 

,L3-D-glucanase activity was determined using laminarin (Koch

Light) as the substrate. a-D-glucanase activity was measured 

using nigeran (Koch-Light) and mutan (Novo Industries) as the 

substrate. Bakers' yeast (Sigma) mannan was used as the substrate 

to determine (l'-D-mannanase activity. In each case the liberation 

of reducing sugars was measured by the 3,5-dinitrosalicylic acid 

method (Mi ller !! aI, 1960) using D-glucose as standard. 

Protease activity expressed as trypsin equivalents, was 

determined by the method of de Vries (1974) with Hammarsten 

casein, denatured by boiling for 15 min, as substrate. 

5.2.7 Protein Determination 

The protein content of the enzyme preparations was assessed 

with the Folin-Ciocalteau phenol reagent by the method of Lcwry 

et al (1951). Bovine serum albumen (Sigma) was used as the 

standard. 

5.2.8 Enzymes and Chemicals 

The enzymes tested for lytic ac t i vi ty aga i nst .!::. 

herpotrichoides are listed in Table 5.1 with details of the 

supplier and, where known, the source organism from which they 

were obtained. 

Laminarin and nigeran were obtained from Koch-Light 

Laboratories, Colnbrook. Brewers' yeast mannan, chitin, bovine 
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serum albumin and N-acetylglucosamine were purchased from the 

Sigma, London Chemical Company Ltd., Poole. Folin-Ciocalteau 

phenol reagent, 3,S-dinitrosalicylic acid and Harrmarsten casein 

were from SOH Chemicals Ltd., Poole. All other chemicals were of 

analytical reagent grade and either from BDH Chemicals Ltd., 

Poole, or Fisons plc, Loughborough. 

Table 5.1 Enzymes screened for protoplast production from P. 

herpotrichoides 

ENZYME PREPARATION SOURCE ORGANISM MANUFACTURER/SUPPLIER* 
-------------------------------------------------------------------------
Cellulase CP Penicillium funiculosum John & E. Stur~e Ltd., 

Selby, North Yorkshire 

Cellulase "onozuka" R-IO Trichoderma vi ride 
Cellulase RS ne 

Macerozyme R-lO Rhizopus ap. 

Cellulase (Mayvil) Aspergillus niger 

Cellulase (Boehringer) T. vlride 

Cellulysin T. viride 

Driselase ~ lacteus 

Yakult Ronsha co. Ltd, 
8-21 Sln~ikancho, 

Nlshlnomlya Hyo~o 
T662, Japan. 

*Cenetic Research 
Instrumentation Ltd. 
Lynton, Parsonage Rd. 
Takeley, Bishops 
Stortford, Hert. CM22 610 

Mayvil Chemical. Ltd., 
Rookery Bridge, Sandbach, 
Cheshire CWIl 9QZ 

*BCL. The Soehringer 
Corporation (London) Ltd. 
Bell Lane, Level. Ealt 
Sussex BN7 lLC. 

*Calbiochem-Behring 
Corporation. c-p 
Laboratories Ltd., P.O. 
Box 22, Bishops Stortford, 
Herts. 

Kyowa Hakko Klogo Co. Ltd. 

Ohtemachi Building. Ohtemachi, 
Chiyoda-Ku, Tokvo, Japan. 

*Cenetic Research 
Instrumentation. Ltd. 
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Table 5.1 continued 

Drisc lasc ~ lacteus 

8-Glucanase P. eme raon 11 
J.yt 1 c Enzyme L 1 

Relicase Re 11 x poma t ia 

Heicelase P T. viride 

Novozym 234 T. harzianum 

Pectinase 

Pecto lyase Y23 ~ japonicus 

Rhozyme HPISO Unknown 

Rolament P Unknown 

SM il Enz yme lie 1 I x pomat la 

*Fluka, A.r.. Fluorochem. Ltd. 
Park Dale Road, GlosBoP, 
Oforbyshire. 

*Sigma Chemical Co. Ltd. 
Fllncy Road, Poole. nnrset. 
RH17 7NH 

*BDH Chemicals Ltd. 
Fourways, Carlyon Ind. Est. 
Atherstone, Warwicks, 
"CV9 lJG. 

l'lnduBtrie Biologique 
francaise, Clichy, France. 

Heiji Seika Kaisha Ltd., 
Pharmaceutical Division, 
8,2 Chome Kyob .... 
Chuo-ko. Tokyo, _.an • 
.. c..enet le Resea:- ;,. 
Instrumentation Ltd. 

Novo lndustri A/S. 
Enzyme Oiv1s1nn. 
Rng~vAard, Oenmllrk. 

*Serva feinbiochemica 
Unisclence Ltd •• Uniscience 
House. 8 Jesus Lane. 
Cambridge CB~ RBA 

Seishin Pharmaceutical 
Co. Ltd., 4-13 Knami-cho. 
Nlchonbashi. Chwo.ko, 
Tokyo, Japan. 
*Genetic Research 
Instrumentation Ltd. 

Rohm & Haas co •• 
Independence Hall West. 
Philadelphia, PA 19105, 
U.S.A. 
*Pollock & Poole Ltd. 
Ladbroke Close. Woodley, 
Reading, Re5 4DX. 

Rohm GmbH Chemishe Fabrlk, 
Postfach 4242, 
6100 Darmstadt, Germany. 

Ocpt. of Microhiologv, 
University of Sze~ed, 
Szeged, MunRary. 
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5.3 RESULTS 

5.3.l. Protoplast Formtion 

5.3.1.1 CcIIpariSal of Enzyme Mixtures 

Eighteen commercially available polysaccharase enzyme 

preparations were screened for their lytic activity against ~ 

herpotrichoides. Novozym 234, found to ha ve some lytic effect, 

was used in paired combinations with the other enzymes to screen 

for increased activity. These enzymes were also tested 

individually. Enzymes giving increased yields of protoplasts 

were then tested in novel corrbinations of two or three enzymes at 

a concentration of S rrg ml-1 of each. 

Cellulase (Boehringer), Cellulysin, Helicase, Lytic enzyme 

Ll, Macerozyme R-lO, Meicelase P, Pectinase (Serva), Pectolyase, 

Rolament P and snail enzyme (Szeged) were ineffective for 

protoplast release either singly or in combination. The most 

active mixtures were those that included Driselase and Rhozyrne 

HP150. The addition of a third enzyme to a combination of these 

two enhanced protoplast release if the extra enzyme was one of 

the following: Cellulase RS, Cellulase (Mayvil), Cellulase CP, 

Cellulase "onozuka" R-lO or J3-Glucanase (Fig. 5.1). Rhozyme HP150 

was essential for the production of large numbers of protoplasts. 

A 1 iquid form of this enzyme, Rhozyme HPlSOL, was not as 

effective. A combination of Driselase, Rhozyme HPlS0 and 

Cellulase CP was used as the standard enzyme mixture for the 

subsequent evaluation of other factors affecting protoplast 

release. This combination of enzymes has been used repeatedly, 
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Figure 5.1 Comparison of lytic activity of combinations of 

various commercial enzymes, against ~ herpotrichoides. 

Protoplast numbers determined after 3 h incubation at 2aoC. 

Enzymes dissolved in buffer containing KCl. 
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yields of protoplasts consistently being of the same order as 

given in the data presented. 

5.3.l.2 Mycel lal Age 

To determine the optimum age of mycelium for protoplast 

release, shake cultures inoculated with 105 spores ml- l were 

harvested at intervals up to 120 h incubation, and the wet and 

dry weights of the mycelium measured. Mycelium recovered at each 

time interval was assessed for susceptibility to protoplast 

release by resuspending at 10 mg fresh weight ml-l in the 

standard enzyme mixture. Fig. 5.2 shows the increase in dry 

weight of the mycelium during the experiment and the yield of 

protoplasts obtained at each stage. Maximum yields were achieved 

with mycelium grown for 44 h, which coincided with the early 

exponential phase of growth. Protoplast release from mycelium 

cultured for longer than 44 h was much reduced, illustrating the 

importance of the physiological age of the mycelium for 

protoplast isolation. This pattern of protoplast formation is a 

common feature of protoplast release in fungi, possibly 

reflecting changes. in cell wall composition (Peberdy, 1979). 

5.3.1.3 Osmotic Stabilizer 

Five inorganic salts (NH4Cl, (NH4)2S04' MgC1 2, MgS04, KCl, 

0.4 to 0.8 M) were compared for their efficacy as osmotic 

stabi lizers for protoplast re lease. The number of protoplasts 

liberated by each enzyme-stabilizer solution was determined after 

6 and 22 h incubation. Large numbers of protoplasts were obtained 

with 0.4 M MgCl 2 and 0.8 M KCl (Fig. 5.3). In both instances 
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Figure 5.2 Protoplast release from mycelium of £.:. 

herpotrichoides at different stages of growth. • = dry weight of 

mycelium: 0 = protoplast yield. 
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protoplast yields increased three-fold between 6 and 22 h 

incubation in the lytic mixture, reaching a maximum of almost 2 x 

107 protoplasts ml -1. When magnesium sulphate was used as the 

osmotic stabilizer the protoplasts released showed the 

characteristic buoyancy associated with this salt (Peberdy, 

1979). Neither MgS04.7H20, (NH 4)2S04 or NH4Cl were suitable as 

stabilizers for protoplast support with this species. Yields of 

protoplasts with all three salts were much reduced by 22 h 

incubation. 

5.3.1.4 Enzyme Concentration 

The yield of protoplasts obtained with 0.4 M MgCl 2 or 0.8 

M KCI could be increased further by raising the amount of 

mycelium in the lytic mixture to 50 rrg (fresh weight) ml-l (Table· 

5.2). However, the incubation time required to obtain these high 

yields was considerable. In addition, protoplasts recovered after 

24 h incubation in the enzyme solution had reduced viability when 

permitted to regenerate on osmotically stabilized MYG. In an 

attempt to reduce the incubation period the effect of adjusting 

the relative proportions and concentrations of the three enzymes 

in the lytic mixture was assessed (Table 5.3). Used singly, both 

Driselase and Cellulase CP produced significant numbers of 

protoplasts after 3h incubation, the number of protoplasts 

released increasing with enzyme concentration. Rhozyme HP150, 

while inacti ve against f:. herpotrichoides mycel ium when used 

alone, greatly increased the yields of protoplasts produced with 
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Figure 5.3 Effect of osmotic stabilizer on the yield of 

protoplasts from mycelium of ~ herpotrichoides using the 

standard enzyme mixture. 0 = lytic digests incubated for 6 h:. 

= lytic digests incubated for 22 h. 
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either of the other two enzymes. In combination with Driselase 

Table 5.2 Effect of mycelium concentration on protoplast 

isolation with two osmotic stabilizers (Protoplast numbers ± 

standard error). 

PRQ'IDPLAST YIELD (x 106 ml-l ). 
OSIDTIC MYCELIUM 

STABILIZER CONCENTRAIION AFTER 3 h AFTER 24 h 
(rrg ml- ) INCUBATION INCUBATION 

0.4M MgC12 10 0.5 ± 0.1 2.9 ± 0.2 

30 5.9 ± 0.4 8.1 ± 0.5 

50 B.2 ± 0.4 36.3 ± 1.2 

O.BM KCl 10 3.1 ± 0.2 4.2 ± 0.3 

30 6.4 ± 0.2 3.5 ± 0.1 

50 11.0 ± 0.5 30.1 ± 1.3 

• Mycelium grown for 42 h in shake cuI ture, protoplasts produced in 
enzyme mixtu1: containing Rhozyme HP150 + Driselase + Cellulase 
CP (5 mg ml- each). 

the number of protoplasts obtained was increased 7- to 10-fold 

compared with the yields for Driselase alone. Similarly the 

yields when Rhozyme HP150 and Cellulase CP were used together 

were 4 to 14 times greater than those obtained with Cellulase CP 

alone. Clearly Rhozyme HP150 must contribute activities which 

complement those of the other components of the mixture. 

Increasing the concentration of all the enzymes in the lytic 

mixture to 10 rrg ml-l resul ted in a doubling of the protoplast 

yield (Table 5.3). However, only a small increase was obtained 

when each enzyme was increased to 15 ng ml-l • 
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Table 5.3 Protoplast yields with different combinations of 

Rhozyme HP150, Driselase and Cellulase CP. Protoplast numbers 

determined after 3 h incubation in the digestion mixture. 

ENZYME Pro'IDP~AST IIELD 
mzyf1E COOCENTRAllOO (x 10 ml-) 
SYSTEl1 (ng ml- ) (mean ± standard error) 

Rhozyme HP150] 5 0 
10 0 
15 0 

Driselase 5 0.52 ± 0.03 
10 1.82 ± 0.27 
15 5.49 ± 0.34 

Cellulase CP 5 0.28 ± 0.02 
10 2.05 ± 0.16 
15 4.61 ± 0.40 

Rhozyme HP150 10 } 5.11 ± 0.62 
+ Driselase] 5 

5 } 12.59 ± 1.04 
10 

Rhozyme HP150 10 } 4.07 ± 0.29 
+ Cellulase CP 5 

5 } 8.67 ± 0.49 
10 

Rhozyme HP150 5 } + Driselase 5 22.29 ± 0.92 
+ Cellulase CP 5 

10 } 10 44.00 ± 2.36 
10 

15 } 15 48.38 ± 2.51 
15 
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5~~ Enzyme Activities 

To help interpret the results presented in Table 5.3 

specific hydrolytic activities of the three enzyme preparations 

were assayed (Table 5.4). Chitinase and ()'- and j3-D-glucanase 

activities were determined both for the individual enzymes and 

for all possible canbinations of them. D-mannanase and protease 

activities were determined only for the individual enzymes. The 

pattern of activities exhibited varied considerably between the 

enzymes. The hydrolytic activities shown by enzyme mixtures do 

little to explain the enhancement of protoplast release observed 

with these enzyme combinations. Of the three main enzyme 

activities determined only the a-D-glucanase component of 

Cellulase CP detected against nrutan, was increased by corrbination 

with the other enzymes. j3-D-g1ucanase activities for enzyme 

mixtures were similar to those estimated from the values for the 

individual enzymes, suggesting an absence of interaction between 

the enzymes for this corrponent. Chitinase activities determined 

for mixtures of the enzymes were generally much less than 

expected from the individual levels ot activity. This reduction 

may be due to the presence of chitinase inhibitors in one or more 

of the enzymes, or possibly the result of proteolytic activity 

against the chitinase component of Cellulase CP. Both Driselase 

and Rhozyme HP150 had significantly higher levels of protease 

than Cellulase CP. 
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~le 5.4 Comparison ot selected enzyme activities shown by different combinations of the lytic enzymes, 
Rhozyme HP150, Driselase and Cellulase CP. (mean ± standard error) 

x10-3 xlO-2 xlO-2 xlO-2 

PROTEIN CHITINASE B-D-GLOCANASE a-D-GLOCANASE p-D-GLOCANASE D-MANNANASE 
(LAMlNARIN) (NlGERAN) (MUTAN) 

(~9 ml-l 
SPECIFIC SPECIFIC SPECIFIC SPECIFIC 
ACTIVITY 1 ACTIVIT1 ACTIVIT1 ACTIVIT1 ACTIVIT1

l ENZYME (lJm:>l 1113-1 (lJIlOl 1113-1 {lJlOOl ng-1 enzyme (lJITlOl ng- (lJ-Tno1 ~-
SYSTEM preparation) protein min-1 ) protein min-I ) protein min-l ) protein min-l ) min- ) 

ROOlYME HP150 3lH4 5.ll±O.08 4.72=0.11 (0) (0) (0) 

DRISELASE 134±6 (0) 33. 58:tO.43 (0) (0) (0) 

CEWLASE CP 545±12 24. 39:tO.44 72.48=0.69 (0) 0.55±0.08 (0) 

RIDZYME + 
DRISELASE 222 5.09.±0.05 11.56=0.30 (0) (0) 
(calculated) (3.69)* (13.51 ) (0) 

RlDZYME + 
CELLULASE CP 428 2. 62±0.13 40.73=0.34 (0) 0.57=0.02 
(calculated) (17.38) (47.90 ) (0.35) 

PROTEASE 

(equiva~ent ~£ 
I ~ trypsln nq I-' 

enzyme) W 
~ 
I 

83 8 

127 5 

19 3 



~le 5.4 continued 

ORISELASE + 
CELLULASE CP 340 3.82± 0.16 S2.4S±0.20 (0) 0.S7±0.04 
(calculated) (19.62) (64.71) (0.44) 

Rl[)ZYME + 
ORISELASE + 330 2.61±O.13 4S.S6±0.10 (0) 1. 16±0.11 
CELLULASE CP (15.06) (46.10) (0.30) 
(calculated) 

(0) No activity detected under the conditions of assay 

- Not tested 

... Estimated activities for caOOinations of enzymes, calculated from ·,.dues for the individual enzymes, 
shown in parenthesis below actual activities. 

I --lA) 

ex> 
I 
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S.3.2 Protoplast Rec}eneratioo 

The ability of protoplasts to regenerate a cell wall and 

form normal co lonies was ini tia lly assessed by plating on MYG 

agar medium containing either 0.4 M MgCl 2 or 0.8 M KCI. 

Regeneration on medium stabilised with KCI was very low «2%): on 

medium containing magnesium chloride as the osmotic stabi I iser, 

only 15 to 20% of the protoplasts formed viable colonies. To 

increase the plating efficiency several compounds were compared 

for their suitability as osmotic stabilisers in the regeneration 

medium (Table 5.5). When the osmoticum was a sugar or sugar 

alcohol, glucose was omitted from the medium. Very rapid 

regeneration occurred in the presence of sucrose, visible 

colonies appearing within just 3 days on both complete and 

minima 1 media (Fig.5.4a). On media stabi 1 ised by sodium chloride 

or magnesium chloride reasonable regeneration frequencies were 

obtained but a prolonged incubation period (3 to 4 weeks) was 

required, particularly for protoplasts cuI tured on minima I medium 

(Fig 5.4b). Sorbose and mannitol were unsuitable osmotica for 

high frequency protoplast regeneration. 



Table 5.5 Regeneration frequency of protoplasts on complete (CM) 

and minimal (MM) medium in the presence of different osmotic 

stabilizers. Protoplasts were obtained after 3 h incubation in an 

enzyme mixture containing Rhozyme HP150 + Driselase + Cellulase 

CP (10 ng ml-l each), stabilized with 0.4M MgC1 2• Colony nurrbers 

were determined after 4 to 28 days incubation at 19°C. 

REGENERATION FREQUENCY (\ ± SE) 

STABILIZER MOLARITY CM MM 

0.4 50.6 ± 2.1 38.8 ± 6.8 

0.6 44.4 ± 2.4 53.6 ± 1.3 

0.8 3.6 ± 2.5 0.0 

SUCROSE 0.4 26.0 ± 1.1 40.5 ± 1.3 

0.6 43.8 ± 4.1 46.2 ± 0.3 

0.8 57.5 ± 3.8 43.9 ± 0.5 

NaCl 0.4 38.5 ± 2.5 65.8 ± 4.0 

0.6 45.6 ± 2.4 63.3 ± 2.2 

0.8 22.2 ± 0.9 54.1 ± 3.4 

1.0 0.0 0.0 

OORroSE 0.4 0.0 0.0 

0.6 0.2 ± 0.1 0.0 

0.8 0.7 ± 0.2 6.2 ± 2.0 

1.0 1.2 ± 0.4 4.8 ± 1.1 

MANNITOL 0.4 0.0 0.0 

0.6 0.0 0.8 ± 0.2 

0.8 3.6 ± 1.3 10.6 ± 3.4 



Figure 5.4 Protoplast regeneration in isolate 22-20 (Bars 
/ 

represent 75 pm). 

a Regenerant after 3 days on MMR stabilized with 0.6 M 

sucrose. 

b Regenerant after 3 days on MMR stabilized with 0.4 M MgC12• 

c Spore fonnation by 3 day old protoplast regenerant on MMR 

stabilized with 0.6 M sucrose. 
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5.4 DlSO:JSSlOO 

The use of commercial polysaccharase enzymes for 

protoplast isolation from filamentous fungi is now commonplace 

(Davis, 1985). While most of these enzyme preparations consist of 

a mixture of several hydrolytic components, they have usually 

been used in corrbinations of two or three to achieve the optinum 

effect (Hamlyn !! aI, 1981: Harris, 1982: Hashita & Yamada, 1982: 

Leslie, 1983: Yabuki !! aI, 1984: Yanagi !! aI, 1985). 

A mixture of three lytic preparations Rhozyme HP150, 

Driselase and Cellulase CP was found to be the most effective for 

~ herpotrichoides. Cellulase CP has been widely used for 

protoplast isolation from filamentous fungi, often in corrbination 

with Novozym 234 (Bradshaw !! aI, 1983). Driselase, an enzyme 

regularly used to isolate plant protoplasts (Davey, 1983), has 

been successfully used for protoplast isolation from a few fungal 

species (Hashida & Yamada, 1982: Schafrick & Horgen, 1978). 

However, this enzyme could not be used in place of Cellulase 

"Onozuka" R-lO for the isolation of Ustilago maydis protoplasts 

(de Waard, 1976). Rhozyme HP150, also used routinely for plant 

protoplast production, has not apparently been used previously to 

produce fungal protoplasts. It is interesting that this enzyme 

was only effective when used in corrbination with other enzyme~ 

The reason for this is not clear but presumably relates to 

additional side activities not tested in the enzyme assays 

described above. Rhozyme HP150 has been marketed commercially for 

the hydrolysis of vegetable gums and mucilages. Since the hyphae 
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of P. herpotrichoides are known to be ensheathed in mucilage 

(Reiss, 1971),the stimulatory effect of this enzyme for 

protoplast release may relate to the removal of this mucilage 

layer, permitting a greater accessibility of cell wall to the 

other enzymes in the preparation. 

Chitinase activity was not essential for protoplast release 

in P. herpotrichoides, since protoplasts were obtained, although 

In reduced numbers, using Driselase a lone. Chitinase acti vity 

could not be detected in this enzyme under the conditions of the 

assay. This observation suggests that chitin is absent or is only 

a minor component of the cell wall in this fungus, at least in 

the early stages of growth. It is reasonable to suppose that f3-
glucanase is a necessary corrponent in the lytic mixture since all 

three enzymes used had significant levels of ~-glucanase 

activity. The role of the a-glucanase component in the enzyme 

mixture is more difficult to assess since the detectable levels 

of activity were low, possibly as a result of poor solubility of 

the substra tes used. 

High frequency regeneration of protoplasts was obtained 

with three of the osmotica tested. Sucrose was the preferred 

stabiliser for regeneration since the growth rate of regenerant 

colonies was much greater with this than with either magnesium 

chloride or sodium chloride. In Cephalosporium acremonium sodium 

chloride was preferred to sucrose as the stabiliser for 

protoplast regeneration because auxotrophic strains were prone to 

cross feeding when sucrose was used (Hamlyn, 1982). Whether this 

is also true for ~ herpotrichoides remains to be determined. 
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Regeneration usually involved the formation of hyphae 

directly from the protoplasts, rather than after repeated 

"budding", which was rarely observed. The conditions under which 

regeneration occurs may play a major role in determining the 

morphology of reversion to hyphal growth. In Rhizoctonia solani 

and Pyricularia oryzae direct production of a germ-tube by 

regenerant protoplasts occurred more frequently on solid media, 

while in liquid regeneration media the budding form of growth was 

more common (Hashiba & Yamada, 1982: Kobayashi !! al, 1985). A 

proportion of the regenerating protoplasts from !.:. 

herpotrichoides did not give rise to mycelial colonies but 

underwent microcyclic conidiation (Fig. 5.4c). A similar 

phenomenon was described for regenerating protoplasts in 

Aspergillus awamori (Bobbitt & Douglas, 1982). 



CHAPTER 6 
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6.1 IN'l'RJIXJCTION 

Prior to the early 1950's, genetic studies in fungi were 

restricted to those species with a perfect stage. The discovery 

and description of a parasexual cycle in Aspergil~ nidulans 

made the genetic analysis of asexual species possible for the 

first time (Pontecorvo et aI, 1953). Since then many reports of 

parasexual phenomena in a wide range of fungi have been 

published, suggesting that the system may be a feature common to 

all fungal groups (Pontecorvo, 1956; Pontecorvo & Kafer, 1958; 

Brad1ey, 1962; Tinl1ne & MacNei11, 1969; eaten, 1981). 

The sequence of events occurring in A. nidulans, and shown 

to occur in several other species, is considered the standard 

parasexual cycle (Fig. 6.1) (Pontecorvo, 1956; Fincham !! aI, 

1979; Hastie, 1981; eaten, 1981). Briefly, hyphal anastomosis (or 

protoplast fusion) between two strains , establishes 

heterokaryosis with the presence of unlike nuclei in the same 

mycelium. Chance nuclear fusions, or karyogamy, may occur to 

produce diploid nuclei. If karyogamy occurs between unlike nuclei 

the resul ting diploid nucleus wi 11 be heterozygous at a 11 the 

loci for which the parental strains differed. 

Two processes may take place in such nuclei to yield novel 

genotypes. In the first, mitotic recombination (Fig. 6.2), 

crossing-over occurs between homologous, non-sister chromatids. 

The subsequent migration of the recombinant chromatids to the 

sare or opposite poles at mitosis, leads to daughter nuclei that 
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are either homozygous for all loci distal to the point of cross

over, or heterozygous but with altered linkage relationships for 

the parental markers. In the latter case the incidence of mitotic 

recombination will only be apparent after hap10idization and 

analysis of the haploid genotypes. In the former, all recessive 

markers distal to the point of recorrbination will be expressed in 

the diploid. Consequently, the position of the cross-over 

relative to the markers on the same chromosome arm can be readily 

determined by examining the phenotype of the recombinant diploid 

(Pontecorvo !! aI, 1953: Pontecorvo & Kafer, 1958). 

The second process leading to the formation of new genotypes 

is non-disjunction, in which mitotic division is unequal. Sister 

chromatids, of one or more chromosomes, both pass to the same 

pole and are included in the same nucleus. As a resul t, one of 

the daughter nuclei contains three copies of the chromosome and 

is hyperdiploid (2n + l), whi le the other contains on ly one and 

consequently hypodiploid (2n - 1). In subsequent nuclear 

divisions the additional chrornosorm in hyperdiploid nuclei may be 

lost, regenerating the diploid chromosome corrplement: which is 

generally more stable than the aneuploid state. Depending upon 

which two of the three copies of the trisomic chromosome are 

retained the resulting diploid nucleus may be either identical to 

the original diploid, and heterozygous for all chromosomes, or 

homozygous for the 1 inkage group in question (Fig. 6.3). In this 

latter case any recessive markers carried on this chomosorne would 

be expressed. 

Non-disjunctional nuclei containing less than the full 

diploid corrplermnt (ie. 2n - 1, 2n - 2, etc.), may yield haploid 



) 
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Figure 6.1 The standard parasexual cycle in Aspergillus nidulans. 

Plasmogamy, or hyphal fusion, between different parental strains (. 

0) produces a hetero~otic mycelium in which heterozygous diploid 

nuclei (Cl) may arise by random nuclear fusion. Recombinant 

diploids ( ~ ) can be produced by mitotic croasing-over, while non

disjunction can yield recorrbinant haploids (~~) and diploids ($) 

as well as aneuploid types (~). 
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Figure 6.2 Mitotic recombination in Aspergillus nidulans: cross

over between homo logous non-sister chromatids resul ts in novel 

linkage relationships. Depending on the subsequent migration of 

chromatids during division, the daughter nuclei may be h~ygous 

for all markers distal to the point of cross-over: any recessive 

alleles carried in that region will consequently be expressed in 

the recombinant diploid. 

Figure 6.3 Non-disjunction in Aspergillus nidulans: fai lure of 

sister chromatids to migrate to opposite poles during mitosis in a 

diploid nucleus produces aneuploid daughter nuclei. Sequential loss 

of additional chromosomes, or haploidization, in hypodiploid nuclei 

(2n-l) ultimately yield stable haploids. A second non-disjuctional 

event in the hyperdiploid nucleus (2n+1) may generate recornbinant 

diploids as well as nuclei with higher ploidy levels. 
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nuclei as a result of the progressive loss of additional 

chromosomes: a process called haploidization (Fig. 6.3). Since 

this loss is genera lly a random process the resul tant haploid 

nuclei will contain genetic material derived from either parent. 

As might be expected, not all fungal species conform exactly 

to this format. Variations in the extent and duration of each 

stage occur, which have consequences not only for the 

manipulation of the process in the laboratory, but also for the 

likely occurrence of the cycle in the natural environment. 

The first stage in the cycle, heterokaryon formation, is 

considerably influenced t:rj the cytology of the fungus. SpeCies in 

which the mycelium is composed primarily of multinucleate cells, 

such as A. nidulans, can readily accommodate the heterokaryotic 

condition. The majority of the vegetative cells will contain 

nuclei of both parents, and the relative proportions of the 

different nuclei will generally be stable and characteristic of 

the heterokaryon. Where conidia produced by such heterokaryons 

are multinucleate, as in ~ sojae, the heterokaryon may be 

transmitted via the spores (Bradley, 1962). In ~ nidulans, 

however, the conidia are uninucleate. Consequently, unless 

karyogamy has produced diploid nuclei which can be included in 

the conidia, plating spores from a heterokaryon of this fungus 

will produce ooly parental types. 

Species in which uninucleate vegetative cells predominate 

may still show heterokaryotic growth, as a result of hyphal 

anastomosis forming bridges between individual cell& Nuclear 

migration may occur along the bridge to yield isolated, 
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heterokaryotic cells embedded in a mycelium of monokaryotic 

cells. The term "mosaic heterokaryon" has been used to describe 

this type of growth, typified by heterokaryons in Verticillium 

dahliae (Puhalla & Mayfield, 1974) and !:. albo-atrum (Typas & 

Heale, 1976a). Where the parental strains carry complementary 

nutritional requirements, this limited degree of heterokaryosis 

is often sufficient, under selective conditions, to support the 

growth of the surrounding homokaryotic mycelium. Conidia from 

such heterokaryons will generally have been derived from 

uninucleate cells, and hence of parental type (Hastie & Heale, 

1984). Mosaic heterokaryons are maintained by the formation of 

new hyphal bridges and their growth is dependent on the rate at 

which this process occurs. In !:. dahliae hyphal anastomoses are 

formed relatively frequently at 2loC, but rarely at 300 c (Puhalla 

& Mayfield, 1974). As a result, heterokaryotic growth ceases when 

colonies are transferred to the higher temperature. Growth of 

diploid mycelium, produced by the fusion of nuclei in anastomosed 

cells, is not dependent upon temperature. Consequently, diploid 

mycelium may be isolated directly, as faster growing sectors, 

from the edge of heterokaryotic colonies, incubated at the 

restricti ve temperature. 

Heterokaryosis appears to be even more restricted in a 

Humicola sp., where somatic diploids were obtained directly from 

mixed cultures of auxotrophic strains (De Bertoldi & Caten, 

1975). The heterokaryotic phase was assumed to be confined to the 

original fused cell, further growth being dependent upon nuclear 

fusion and the formation of a heterozygous diploid. A similar 

type of heterokaryon organisation has been reported in FUsarium 
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moniliforme, although no diploids were recovered (Puhalla & 

Speith, 1983). 

Diploid nuclei can arise in a number of ways: either by 

nuclear fusion or as a result of mitotic or meiotic malfunction. 

Mitotic malfunction, unless accOlT'()anied by nutation, will produce 

only homozygous diploids: phenotypically identical to the haploid 

in respect of auxotrophic and pigmentation markers. Such diploids 

can be distinguished from the haploid form on the basis of 

increased nuclear and cell volume, elevated DNA content and by 

their reduced sensitivity to rnutagens such as UV-light (Caten & 

Day, 1977: Hastie & Hea le, 1984). Homozygous diploid nuclei can 

also be produced by nuclear fusion and meiotic malfunction. In 

addition, these latter mechanisms have the potential to produce 

heterozygous somatic diploid nuclei, thereby enabling parasexual 

reassortment of the genetic material. In Neurospora crassa 

attempts to isolate somatic diploids or their recombinant 

products from heterokaryons have failed. Diploid ascospores, 

however, are occasionally produced by a failure of meiosis, and 

the products of mitotic crossing-over and hap1oidization can be 

isolated from the resulting mycelium. 

In asexual species somatic nuclear fusion renains the nain 

way In which heterozygous diploid nuclei can be generated. 

Estination of the frequency with which nuclear fusions occur is 

technically difficult and is generally based on the frequency of 

isolation of diploid conidia from a heterokaryon. However, the 

recovery of diploid conidia will depend, amongst other factors, 

on the relative rates of division of diploid and haploid nuclei 
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and the degree of sporulation by diploid and haploid hyphae 

(Caten & Day, 1977: Caten, 1981). In addition, the stabi 1 i ty of 

diploid nuclei will directly affect the frequency with which they 

are identified. The existence of diploid nuclei is often inferred 

from the occurrence of parasexual recombinants in the spore 

population, rather than from the direct isolation of the diploid 

itself. In Cephalosporium acremonium, for exarrple, the diploid 

stage is presumed to be transient: recombinant haploid and 

unstable heterozygotes are obtained by plating heterokaryons 

directly onto selective media (Nuesch!! aI, 1973: Hamlyn & Ball, 

1979: Hamlyn et aI, 1985). 

The frequency of diploid formation in heterokaryons nay be 

affected by various factors, including heat treatment (Alikhanian 

et aI, 1960), UV-irradiation (Day & Jones, 1968: C1ements et aI, -- --
1969: Day & Day, 1974: Caten & Day, 1977), camphor treatment 

(Pontecorvo et aI, 1953: Ishitani et aI, 1956: Day & Day, 1974), -- --
incubation temperature and carbon-source (Ingle & Hastie, 1974). 

The frequency of mitotic recombination or crossing-over also 

varies between species (Day, 1971). In ~ nidulans the frequency 

is about 0.03 per genome per di vision (Kafer, 1977). In other 

species the frequency is much higher- >0.4 in V. a1bo-atrum 

(Hastie, 1967). The frequency of crossing-over is not uniform 

along the length of the chromosome. In ~ nidu1ans the occurrence 

of both a sexual and a parasexual cycle allows the frequency of 

cross-over between linked rrarkers during meiosis and mitosis to 

be corrpared (Pontecorvo & Kafer, 1958: Kafer, 1977). Considerable 

differences in mitotic and meiotic map distances were found. In 

mitotic recombination most cross-over events occurred close to 
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the centromere, presumably reflecting a close association of 

centromeres between homologous chomosomes in sorratic diploids and 

little association between the dista1 ends of homologous 

chromatids. Similar observations have been made for Usti1ago 

vio1acea (Garber & Day, 1985). Little meiotic recombination 

occurs between the narkers and centromere for either the mating

type locus (Linkage group VI), or the colour mutation complex 

(Linkage group VII). By contrast, spontaneous mitotic crossing

over in these intervals occcurs at high frequency (Garber & Day, 

1985) • 

A number of agents ha ve been shown to increase the 

frequency of mitotic cross-overs. These include UV-irradiation 

(Ho11iday, 1961: Day & Jones, 1968: Wood & Kafer, 1969: 

Zinmerman, 1971: Tanabe & Garber, 1980; Amirkhanian !! aI, 1985), 

heat treatment (Tanabe & Garber,· 1980) and Chemical 

"recombinogens" such as benomy l, 5-f 1 uorodeoxyuridine, 5-

fluorouracil, sulphur mustard, nitrogen mustard, ethyl methane 

sulphonate and mitomycin C (Holliday, 1964; Eposito & Hol1iday, 

1964: Beccari et aI, 1967: Yost et aI, 1967: Hastie, 1970: Tanabe --
& Garber, 1980:. Kokontis & Garber, 1983). Since many of these 

are likely to cause damage to the DNA it is thought that they 

induce crossing-over by stimulating the DNA-repair mechanisms of 

the cell. 

Hap1oidization can also be artificially induced by both 

chemical and physical agents (Barron, 1962: Bignami ~ aI, 1974: 

Kafer ~ ~!, 1986). The hap10idizing affect of p

f1uorophenyla1anine (FPA) and the benzimidazole fungicide benomy1 
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have long been recognised (Morpugo, 1961: Lhoas, 1961: Hastie, 

1970) and are routinely used to induce haploidization of diploids 

for genetic analysis (McCully & Forbes, 1965: Fincham ~ aI, 

1979). Beno!t¥l, or rather its breakdONn product ca rbendazim, is 

known to bind to B -tubulin, and consequently interferes with 

normal microtubule formation and function (Davidse & Flach, 

1977). Disruption of the mitotic spindle would be expected to 

increase the frequency of non-disjunction and hence the 

production of aneuploid nuclei. As some benomyl-resistant mutants 

in A. nidulans are cross-resistant to FPA, and FPA has been shown 

to bind to tubulin, it is highly likely that FPA works in the 

same way as beno!t¥l (Morris & Oakley, 1979). 

Aneuploid colonies are generally considered to be 

mitotically unstable, generating faster-growing, euploid sectors 

at high frequency (Kafer, 1960: Day & Jones, 1971). However, the 

stability of particular aneuploids may vary considerably. Of the 

possible monosomic and trisomic aneuploids in ~ nidulans those 

invol ving chromosomes IV, VI and VII are the most stable, and 

produce colonies with large central aneuploid regions. Aneuploids 

involving chromosomes 11 or VIII on the other hand are much less 

viable, forming very slow growing and unstable colonies (Kafer & 

Upshall, 1973). Interestingly each of the aneuploids had a 

different, characteristic phenotype, independent of the 

particular markers present (Upshall, 1971). Genes affecting 

aneuploid stability at elevated terrperatures have been identified 

in A. nidulans. One class of mutations (hfa: high frequency of - -
aneuploids) generated nuclei aneuploid for several linkage groups 

at high frequency at the sub-restrictive tefll)erature of 37°C. The 
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second class of nutations (~: stabi1ization of disomy) allowed 

the stable maintenance of colonies disomic for one particular 

chromosome at the elevated temperature (Upsha11 & Mortimore, 

1984: O'Donne11 !!. aI, 1986). 

Differential stability of particular aneuploids has also 

been described in Usti1ago violacea (Day & Jones, 1971). 

Haploidization of heterozygous dip10ids using p

f1uoropheny1a1anine yielded only 1-5% haploids. Approxinately 30% 

of the rest of the colonies were stable aneuploids, monosomic for 

one of two linkage groops (IX or X). In this instance aneuploidy 

was associated with mutation to resistance to the haploidizing 

agent (Day & Jones, 1971: Garher & Day, 1985). In Bremia lactucae 

, secondary homotha1lic strains were found to be trisomic for one 

chromosome, associated with, and presumably stabilized by, a 

reciprocal translocation (MichellOOre & Ingram, 1982). 

Parasexual recombination has been demonstrated in many 

different species of fungi under laboratory conditions (Day & 

Jones, 1968: Tin1ine & McNei11, 1969: Hastie, 1981). In most 

instances complementary nutritional requirements have been used 

to select forcibly for the products of "hybridisation". Such 

systems impose an artificial selection for the processes of the 

parasexual cycle and do not necessarily show that equivalent 

events occur naturally in the absence of selection (eaten & 

Jinks, 1966). Neutral genetic markers, such as roorphological or 

pigmentation differences have been used in an attempt to avoid 

this criticism (Grindle, 1963a, b: Puhalla, 1979, 1984a). Non

selecti ve markers can reveal differences in heterokaryon 
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formation: combinations of strains that appear c~tible using 

auxotrophic mutants may prove not to be when colour mutants are 

used (Hastie & Heale, 1984). The nein difficul ty in demonstrating 

parasexuality in the field is one of identification of the 

products of such processes: heterokaryons, diploids and 

recombinants in the absence of selection. However, naturally 

occurring, diploid strains of some species have been isolated in 

V. dahl iae (Ingram, 1968), ~ niger (Nga !!!,!, 1975), V. a 1 bo

atrum , ~ nidulans and with greater frequency from the smut 

fungi !!:. maydis and !!:. violacea ( Caten & Day, 1977: Caten, 1981: 

Hastie & Heale, 1984). The diploid strains of ~ dahliae and some 

of those of ~ nidulans were homozygous, and therefore with 

limited potential for genetic reassortment. Those of ~ niger, ~ 

albo-atrum, and the remaining ~ nidulans diploids were at least 

partially heterozygous, and segregated in the presence of a 

haploidizing agen~ The widespread occurrence of incompatibility 

for heterokaryon formation in fungi further reduces the potential 

for genetic exchange in populations (Leach & Yoder, 1983: Hastie 

& Healer 1984: Puhalla, 1984b, 1985: Clarkson & Heale, 1985a; 

Newton & Caten, 1985; Correll ~ aI, 1986). Caten and Jinks 

(1966) have suggested that the role of parasexual recombination 

in wild populations may have been over-estimated by a failure to 

recognise the extent of heterokaryon incompatibility. Vegetative 

incompatibility in P. herpotrichoides will be considered in 

Chapter 7. 

No detai led genetic studies have been undertaken wi th P. 

herpotrichoides. However, a diploid strain was synthesized from 

two independent, prototrophic isolates differing in pigmentation 
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by Da vies and Jones (l970a). The diploid was identi fled on the 

basis of altered pigmentation and showed approximately twice the 

amount of DNA per nucleus compared with the parent strains. FPA 

was used to induce haploidization, and both parental types were 

recovered. Since no other recognisable characters were present in 

the parent isolates parasexual reassortment of markers could not 

be demonstrated, and no genetic analysis was possible. 

Interestingly the diploid had a faster growth rate than the 

parental isolates, on agar medium, suggesting a selective 

advantage for the diploid over its parent isolates. In 

pathogenicity tests the diploid caused disease syrrptans in barley 

plants, although the severity of the symptoms was less than 

produced by either parent strain, possibly reflecting the diverse 

origin of these isolates (navies & Jones, 197Ob) 

The following chapter describes attempts to demonstrate 

parasexual events in ~ herpotrichoides, using genetically marked 

strains. Two techniques were used to obtain heterokaryons: 

orthodox procedures, involving hyphal anastorrosis, and protoplast 

fusion. The latter technique has proved usefu 1 to produce 

heterokaryons between vegetatively inconpatible isolates in other 

species (Dales & Croft, 1977: Typas, 1983: Zhemchuzhina !!. aI, 

1985) • 
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6.2 MATERIALS AND KETIDDS 

6.2.l Strains 

Strains were derived from isolates 22-20 (SW-type) and 22-12 

(BWR-type). Gene symbols and the origin and characteristics of 

the auxotrophic nutants are described in Chapter 4.0. The rrutants 

derived from 22-20 were as follows: 

22-133 (hisA-1, metB-2): 

22-134 (hisA-l, uraA-l): 

22-135 (hisA-l, ~): 

22-136 (hisA-1, argB-3): 

22-137 (hisB-2, ben-17). 

22-139 (arg-A-l, red-I) 

22-127 (lysB-4, ben-17): 

Strain 22-184 (con-2) was produced from isolate 22-12. 

6.2.2 Orthodox Crosses 

6.2.2.1 HeterOkaryon Formation 

Heterokaryons were established by hyphal anastomosis. 

Conidia of the parental strains were co-inoculated into 2-5 ml of 

liquid minima 1 nedium (MML) supplemented with 0.6 ng ml-l yeast 

extract, in screw-capped glass tubes (105 spores of each strain). 

After incubation for 19 days at 190 C, the resultant mycelial 

suspension was washed with sterile distilled water by 

centrifugation and resuspended in 5 ml water. One hundred ~l 

aliquots of suspension were spread on plates of minimal agar (MM) 

with a sterile glass spreader. Ten plates were inoculated for 

each parent combination, wi th the exception of 22-137 x 22-184 
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for which twenty plates were used. Control suspensions of the 

individual parental strains were similarly treated. 

Regions of dark-pigmented, prototrophic mycelium were 

visible after 16 days at 190~ Prototrophic mycelium was picked 

off and point inoculated onto fresh MM. The growth of these 

colonies was visually assessed after 11 days. 

6.2.2.2 Stability of Prototrq>hic Colonies 

The stability of the prototrophic colonies was assessed in 

two ways. In the first, spores and hyphal fragments were scraped 

off the surface of the colonies growing on MM, suspended in 

sterile distilled water and plated onto MM and MYG. The number of 

colonies appearing on the two media was compared. In addition, 

samples of those colonies appearing on MYG were tested for 

auxotrophic requirements and carbendazim resistance by direct 

transfer onto appropriate diagnostic media. 

The second method, by which prototroph stability was 

assessed, invol ved the cuI ture of protoplasts on MMR and MYR. 

Agar blocks (approximately 1 mm3) were cut from the prototrophic 

colonies growing on MM and placed on cellophane sheets over MYG 

or MM. Plates were incubated for 4 to 14 days at 190 C. For 

protoplast formation eight colonies, were excised and suspended 

in 1 ml of a lytic enzyme mixture containing Rhozyme HPl50, 

Driselase and Cellulase CP in 0.05M sodium maleate buffer and 0.4 

M MgCl2 as described in Chapter 5.0. After 3 to 4 h digestion the 

protoplasts were harvested by fil tration through sinter glass 

(porosity 2) and recovered by centrifugation (10 min, 3000 x g). 

Protoplasts resuspended in osmotic stabilizer were plated onto 
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minimal (MMR) and complete (MYR) regeneration media to give 

between 150 and 210 protop1asts per plate. Lysed suspensions 

prepared in sterile water were also plated, to detect the 

presence of spores or hypha 1 fragrrents. As for the spore-deri ved 

material, samples of the colonies, growing on MYR, were tested 

for nutritional requirements and carbendazim resistance. 

6.2.2.3 IrdJoed Segregatioo and lsolatioo of Reooobinants 

Stable prototrophic colonies and parental types were point 

inoculated onto MYG containing either 100 ~ M carbendazim, 50 ~M 

Mope or 100 and 200 lJ-g ml-1 5-fluorouracil and allowed to grow 

for 21 days. On complete medium few conidia are produced, so 

mycelium from each colony was transferred to ~ containing the 

appropriate supplements. After 8 weeks, blocks of agar 

(approximately 1 cm2) were excised and shaken in 5 m1 of sterile 

distilled water to dislodge the conidia. Single drops of the 

spore suspensions were then plated onto MYG. The morphology, 

pigmentation, size and stability of the resulting colonies was 

visually assessed after 14 days. Samples were screened for 

auxotrophic and resistance markers as follows: master plates 

containing 16 colonies per plate were constructed on MYG. After 

10 to 14 days the colonies were mu1tipoint replicated onto the 

appropriate diagnostic media. 

Slow-growing, unstable colonies were "purified" by 

ITBcerating a small quantity of mycelium in water and plating the 

homogenate onto MYG. The colonies produced were characterised as 

described. 
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6.2.2.4 DNA Estimation 

Colorimetric estimates of DNA were performed using the 

method of Richards (1974). As few spores were produced by the 

proto-trophic products of hypha1 anastanosis, lysed protoplast 

preparations were used to provide the DNA samples. Protoplasts 

produced from mycelium grown on cellophanes over MYG were 

resuspended in 1 ml sterile distilled water with 37.5 ijl of 55% 

trichloroacetic acid. The DNA was hydrolysed for 10 min at 900 C 

and the sarrple cooled to room terrperature. Insoluble rrateria1 was 

rerooved by centrifugation at 11,600 x g for 10 min. To 0.75 ml of 

the supernatant was added 0.25 ml of 60 % perchloric acid and 0.6 

m1 of diphenylamine reagent (4% diphenylamine in glacial acetic 

acid containing 0.01% paraldehyde). Colouration was allowed to 

develop for 24 h at 2SoC and the absorbance measured at 595 nm. A 

standard curve was constructed using calf thymus DNA. 

6.2.2.5 Estimation of Nunber of Nuclei in Protoplasta 

Protop1asts were fixed with glutaraldehyde. Minimal 

distortion and lysis was achieved by increasing the 

glutaraldehyde concentration in three stages (1.25%, 2.5~ 5%), 

allowing 20 minutes at each concentration. Nuclei were stained 

wi th chromomycin A3 (Sigma: 0.4 mg ml-l prepared in 50\ aqueous 

ethanol containing 30 mM MgC12) on the slide and viewed under UV

fluorescence • 

6.2.3 Pr:ot:q>last Fusion 

Protoplasts were prepared from mycelium grown in shake 

cuI ture as decribed in Chapter 5.0. Fusion was performed 
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according to the protocol described by Hamlyn (1982), for 

Cephalosporium acremonium. Protop1asts (107 per strain) of each 

of the two parental strains were mixed and pe11eted by 

centrifugation. The pellet was resuspended in 2 ml of 30% 

po1yethylene glycol (PEG, MW 6000: Sigma) in 0.05 M glycine 

buffer containing 0.01 M caC1 2 (adjusted to pH 7.5 with NaOH) and 

left for 10 min at room temperature. The PEG was diluted by the 

addi tion of 6 ml 0.4 M MgC1 2 and the mixture washed with 

osmoticum by centrifugation. f\Jsed protop1asts were resuspended 

in 2 m1 stabilizer and serial dilutions plated on MYR and MMR. 

Control p1atings of PEG-treated and untreated protop1asts of the 

individual parents were made, as well as untreated mixtures of 

the two strains. 

Fusion frequency was calculated as the proportion of 

colonies appearing on MMR compared with MYR, after 12 days. 

Prototrophic regenerants on MMR were transferred to MM and 

treated in the same way as the products of the orthodox crosses 

described above. 

6.4 Chemicals 

Diphenylamine and trichloroacetic acid were purchased from 

Sigma Chemical Co. calf thymus DNA, paraldehyde, perchloric acid 

and glacial acetic acid were from BDH Ltd., Poole. 
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6.3 R&SOLTS 

~ Orthodox Crosses 

6.3.1.1 Beterokaxyal Formtioo 

Conidia of the auxotrophic parental strains were co

inoculated into MML in the following corrbinations: 

22-127 (lys&-4, ben-17) x 22-133 (hisA-l, metB-2) 

22-127 ( 1ys&-4, ben-17) x 22-134 (hisA-1, uraA-l) 

22-127 (lys&-4, ben-17) x 22-135 (hisA-l, sC-6) 

22-127 (lys&-4, ben-17) x 22-136 (hisA-l, argB-3) 

22-133 (hisA-l, metB-2) x 22-139 (argA-l, red-I) 

22-137 (hisB-2, ben-17) x 22-184 (con-2) 

When rrrjcelium fran these cultures was plated onto MM areas 

of dark-pigrcented, prototrophic growth ~re obtained. The nUnDer 

and appearance of these colonies is given 1n Table 6.1. Most 

colonies were slow-growing and irregular, while a proportion ~re 

faster-growing and had an even colony margin. In addition to 

dark-pigmented colonies the corrbination involving strain 22-134 

also produced a nuni::>er of slow-growing, non-pigrcented colonies, 

which reserrbled the leaky growth obtained by plating this mutant 

separately on MM. Leaky, background growth was also observed for 

strain 22-139. Most of the growth on the MM plates inoculated 

with mycelium from the combination 22-137 x 22-184 was typical of 

strain 22-184, .... hich formed small, red-brown, sporulating 

colonies on MM. However, a fe .... non-sporlng regions with profuse, 

grey, aerial mycelium were produced on these plates. 
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Table 6.1 N\.mt)er of fast-even edged and slow-irregularly edged, 

dark pigmented, prototrophic colonies appearing on MM after 

plating mycelium from mixtures of auxotrophic strains. Plates 

incubated for 16 days at 19CC. 

PARENT COMBINATION 

22-127 x 22-133 
22-127 x 22-134 
22-127 x 22-135 
22-127 x 22-136 
22-133 x 22-139 
22-137 x 22-184 

22-127 
22-133 
22-134 
22-135 
22-136 
22-137 
22-139 
22-184 

NUMBER OF COLONIES 00 MM 
FAST SLOW 
DARK DARK 'roTAL 
EVEN IRRmJLAR 

13 36 49 
3 45 48* 

14 53 67 
14 139 153 
1 8 9* 
0 4 4** 

0 
0 

28*** 
0 
0 
0 

220*** 
»**** 

* Leaky background growth of one of the parental strain also 
observed. 

** Considerable background growth of strain 22-184 (con-2) also 
produced. 

*** All characteristic of leaky growth of this mutant. 
**** All very small sporing colonies, typical of 22-184. 

Prototrophic mycelium from three of the mutant combinations 

(22-127 x 22-133: 22-127 x 22-135: 22-137 x 22-184) was point 

inoculated onto fresh MM for further analysiS. All 60 of the 

colonies from 22-127 x 22-135 and 43 of the 60 colonies from 22-

127 x 22-133 tested were successfully transferred and formed 

colonies on MM. While all the prototrophs formed dark-pigmented 

colonies, some were slow and irregular while others were faster 

and had a regular margin. On prolonged incubation all colonies 
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eventually formed a relatively fast-growing and regular edge. 

Of the 114 sub-cu1tures of the combination 22-137 x 22-184 

on MM only 4 formed colonies that differed from those normally 

produced by the conidiating parent 22-184. These four colonies 

were relatively slow growing with abundant aerial mycelium. 

6.3.1.2 Prototroph Stability 

The stability of a number of the prototrophic colonies, 

differing in appearance on MM, was tested by plating spores and 

hypha1 fragments onto corrp1ete and minimal media. The nunber of 

colonies obtained on the different media is presented in Table 

6.2. Interestingly, conidia from those colonies producing the 

greatest proportion of stable prototrophs also showed the highest 

viability on MYG, though why this should be so is not clear • 

. A sample of colonies appearing on the MYG plates was 

characterised with respect to auxotrophic and resistance markers 

(Tables 6.3, 6.4). For each of the crosses 22-127 x 22-133 and 

22-127 x 22-135 two of the three colonies on MM yielded 

predominantly auxotrophic colonies with the parental phenotypes. 

The third prototroph in each case produced a significant 

proportion of prototrophic, non-parenta1 types. 

Of the colonies tested from the 22-137 x 22-184 combination 

two gave colonies typical of the 22-184 parent, while the third 

yielded, in addition to 22-184-types, a number of non-parental 

colonies (Fig. 6.4). 

The stability of prototrophs when propagated via protoplasts 

was also assessed (Table 6.5). Protoplasts were readily obtained 
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Table 6.2 Stability of prototrophic colonies: Proportion of 

spores, taken from prototrophic colonies growing on MM, producing 

colonies when plated on complete (MYG) and minima 1 (MM) media. 

Colonies were counted after 18 days at 19°C. 

NUMBER PROPORTION 
'IDTAL OF OF SPORES 

PARENTAL PRO'IDTOOPH SPORES RE IOOLATION OOLONIES FORMING 
STRAINS NUMBER PLATED MEDIUM PRODUCED COLONIES 

( \) 

22-127 x 1 224 MYG 60 27 
22-133 2600 MM 2 0.07 

2 200 MYG 144 72 
1100 MM 263 24 

3 280 MYG 82 29 
3220 MM 3 0.09 

22-127 x 1 230 MYG 28 12 
22-135 45650 MM 1 0.002 

2 400 MYG 252 63 
600 MM 447 75 

3 230 MYG 44 19 
45600 MM 1 0.002 

22-137 x 1 200 MYG 143 72 
22-184 300 MM 105 35 

2 200 MYG 149 (31)* 75 (16) 
300 MM 130 (43) 43 (14) 

3 260 MYG 198 76 
390 MM 191 49 

* numbers in parentheses denote the number of dark-pigmented, 
non-sporing colonies produced. All other colonies ded ved from 
this cross were characteristic of the 22-184 (con-2) parent. 
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from mycelium of prototrophs from 22-127 x 22-133 and 22-127 x 

22-135, grown on cellophanes over MYG, and regenerated with 

frequencies between 8 and 24% on M~ As with the spore progeny, 

the nurrber of colonies produced on minim1 medium was variable. 

Only 12% of the viable protoplasts from three of the prototrophs 

regenerated as prototrophic colonies While the other three 

prototrophs tested gave between 36 and 89% prototrophic 

regenerants. The absence of colonies on MYR from platings of 

lysed protoplast suspensions indicated that none of the 

prototrophic colonies were derived from mycelial debris in the 

protoplast preparations. Samples of protop1sts from parental 

strains and prototrophs were fixed and the nuclei stained with 

chromomycin. Between 36% and 50% of the protop1asts were 

nucleate, the vast majority having a single nucleus. 

The phenotypes of samples of the regenerant co lonies 

produced on MYR are also presented in Tables 6.3 and 6.4. In each 

cross one of the three original prototrophic colonies tested gave 

a substantial proportion of prototrophic colonies from 

protoplasts. The remaining colonies yielded predominantly 

parental phenotypes. The preponderance of 22-127 parental types 

among the regenerant colonies from protoplasts produced from the 

cross with strain 22-133, was probably due to the lower viability 

of the latter strain, associated with the metB-2 mutation. 

Due to the profuse sporulation of strains carrying the con-2 

mutation it was not possible to produce protoplasts from the 

cross 22-137 x 22-184 without considerable contamination with 

conidia. Attempts to separate protoplasts from the conidia using 
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Table 6.3 Stability of prototrophic colonies: colony phenotypes 

produced from platings of spores and hyphal fragments or 

protoplasts of prototrophs derived from 22-127 (lysB-4, ben-17) x 

22-133 (hisA-1, metB-2) on MYG and MYR respectively. 

NUM BER OF COLONIES IN EACH CLASS. 
PRO'IDTROPH roURCE 

MATERIAL NUMBER his- 1ys; PRO'lO"m:)PHS OTHER 'roTAL 
met- ben 

Spores + 1 14 33 2 2 51 
hypha 1 
fragments 2 0 24 33 3 60 

3 0 59 1 0 60 

Protoplasts 3 7 33 5 1 46 

4 0 40 19 1 69 

5 8 50 2 0 60 

* b1§- = histidine-r~iring: ~- = methionine-requiring: lys -
= lysine-requiring: ~ = carbendazim-resistant. 

0.6 M MgS04 were unsuccessful. Consequently no data for 

prototroph stability via protoplasts for this cross are 

available. Similarly insufficient protoplasts were obtained from 

all colonies grown a1 cellophane sheets laid over MM. 

Studies were continued with stable prototrophs derived from 

the cross between 22-127 and 22-135. Several of these colonies, 

together with the parental strains are shown in Fig 6.5, growing 

on diagnostic media. The appearance of the stable prototrophs on 

MYG differs from either of the parents, having a yellow-brown 

pigmentation, While the colours of the parent strains 22-127 and 

22-135 are blaCK and grey, respectively. 
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Table 6.4 Stability of prototrophic colonies: colony phenotypes 

produced from platlngs of spores and hyphal fragments or 

protop1asts of prototrophs derived from 22-127 (lys9-4, ben-17) x 

22-135 (hisA-l, sC-6) on MYG and MYR respectively. 

NUMBER OF COLONIES IN EACH CLASS* 

roURCE PR:>'!OTOOPH his- lys; PRO'IDTROPHS OTHER 'roTAL 
NUMBER -MATERIAL s ben 

Spores + 1 19 7 1 0 27 
hypha I 
fragments 2 6 0 66 1 73 

3 14 24 2 0 40 

Protoplasts 4 32 16 4 8 60 

5 0 1 59 0 60 

6 22 27 6 5 60 

* his- = hlstidlne-r~iring; s- = cysteine-requiring: !l!!- = 
lysine-requiring: benR = carbendazim-resistant. 

The ben-17 mutation carried by 22-127, in addition to 

conferring a high level of resistance to carbendazim, is 

associated with increased sensitivity to the phenylcarbamate, 

MO~ In contrast to the parent strains the prototrophic colonies 

produced from 22-127 and 22-135 (ben+) were resistant to both 10 

~M carbendazim and 50 ~M MOPC, when tested separate1y.However, the 

rate of growth was less than the resistant parent on the same 

concentration of the fungicide. 



Figure 6.4 Colonies derived from spores and hyphal fragments from 

the cross of 22-137 (hisB-2, ben-17) x 22-184 (con-2) growing on 

complete (MYG) and minimal (MM) media. Colonies characteristic of 

the con-2 parent are indicated by arrows. 

Figure 6.5 Stable prototrophic (P) colonies from the orthodox 

cross of 22-127 (lysB-4, ben-17: LB) x 22-135 (hisA-l, sC-6: HS) 

and the parental strains growing on diagnostic media. Colonies were 

arranged as follows: 

HS LB 

HS HS LB HS 

MIXED p 

p HS p p .. 
P p 

p p p p 

p p 



6.4 

MM MYG 

6.5 

MYG MM MBC 

HIS,LYS LYS,CYS HIS ,CYS 
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Table 6.5 Stability of prototrophic colonies: Proportion of 

protoplasts, isolated from prototrophic products of two crosses, 

producing colonies on complete (MYR) and minimal (MMR) 

regeneration roodium. Each figure represents the mean regeneration 

frequency of five replicates ± standard error. 

REGENERATION FREQUENCY (\) FRmUrnCY OF 
PARENTAL PRO'ID'l'OOPH PRO'ID'rOOPHIC 
STRAINS NUMBER Mm MMR REGENERANTS 

22-127 x 3 8.3 ± 1.9 1.0 ± 0.4 12.0 
22-133 

4 23.6 ± 2.3 8.5 ± 0.8 36.0 

5 20.6 ± 0.8 2.5 ± 0.4 12.1 

22-127 x 4 11.8 ± 2.1 5.5 ± 0.9 46.6 
22-135 

5 18.5 ± 1.5 16.4 ± 2.1 88.6 

6 17.1 ± 1.6 2.0 ± 1.3 11.7 

6.3.1.3 DNA Estimations 

Estimation of the DNA content of protoplasts indicated an 

elevated average DNA content for the nuclei of the prototrophic 

colonies compared with their parental strains (Table 6.6). While 

the number of nucleate protoplasts in the samples was relatively 

small, and the assay consequently at the lower limit for accurate 

DNA estimation, a repeat experiroont confirrood the increased DNA 

content of the prototrophs. 
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Table 6.6 Estimated DNA content of protoplasts isolated from 22-

127 (lysB-4, ben-17), 22-135 (hisA-l, sC-6) and two stable 

prototrophs (11-13 and 11-17) produced by hyphal anastomosis of 

these strains. 

NUMBER OF PROPORTION DNA ESTIMATED 
PRO'roPLASTS OF NUCLEATE ESTIMATf DNA OONTENT 

STRAIN IN SAMPLE PRO'roPLASTS (~g ml- ) (l-Ig/nucleus) 

22-121 3.9lxl06 47.1\ 4.17 2.26xlO-6 

22-135 7.35xl06 50.3\ 5.17 1.4OxlO-6 

11-13 2.79xlO6 37.0\ 4.61 4.S2xlO-6 

11-17 3.97xlO6 44.7\ 5.33 3.01xlO-6 

6.3.l..4 Irdlced Segregation and Isolation of Recod:>inants 

Twelve of the stable prototrophs from cross 22-127 x 22-135 

and the parent strains were point inoculated onto MYG containing 

100 l-IM ca rbendazim, 50 l-IM MOpe, 100 ~g ml-l fluorouracil or 200 

l-Ig ml -1 fluorouracil, in an attempt to induce segregation. Four 

repl icates of each colony were made on each of the media. 

Colonies were also inoculated onto unsupplemented MYG. 

All co lonies grew on these media but no sectors were 

observed after 21 days incubation. Consequently mycelium from 

each colony was transferred to TWA, containing all the 

nutritional supplements required by the parental strains, to 

a llow sporulation. After 2 months, spores from these cuI tures 

were plated onto MYG and the resulting colonies classified on the 

basis of morphology and pigmentation. 

Regardless of previous treatment parental strains gave rise 

only to colonies with the identical phenotype. Conidia from 
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prototrophs, previously grown on MYG, produced colonies with a 

range of pigmentation types. Forty-six of the forty-eight 

independent cultures produced colonies that were variously dark 

grey-brown, brown-yellow or ye11ow-white, while the remaining 

two, in addition to producing colonies of these types, gave a 

srea11 nurrber (1 to 2 per plate) of slow-growing, unstable, white 

colonies. 

A sample of fast-growing colonies of each pigmentation type 

was characterised for markers (Table 6.7). Most of the seventy

five colonies tested, from twenty-four separate cultures, were 

prototrophic and resistant to both fungicldes. Fifteen 

prototrophic colonies, representing twel ve separate cultures, 

were resistant to Mope and sensitive to carbendazim, while one 

showed the opposite fungicide response. Six colonies, all of 

separate origin, expressed one of the parental nutritional 

requirements. Four required lysine, of which three were resistant 

to both fungicides, while one was sensitive to carbendazim and 

resistant to Mope. The remaining two colonies were histidine 

auxotrophs, one being doubly resistant, the other resistant only 

to MOpe. 

The colonies derived from prototrophs exposed to 100 ~M 

carbendazim showed a similar range of pigmentation types to those 

from MYG. However, thirty of the forty-seven separate cultures 

also yielded slow-growing, unstable, white colonies. A sample of 

one hundred and nine fast-growing, colonies, from twenty-five 

separate plates, tested for parental markers showed that most 

(106) were prototrophic, While three, all originating from the 
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same plate had a requirement for histidine (Table 6.7). All 

colonies from prototrophs grown on carbendazim were carbendazim-

resistant and sensitive to MOPe. 

Table 6.7 Phenotypes of fast-growing colonies derived from spores 

of prototrophs previously grown on MYG containing carbendazim 

(MBe), MOpe or 5-fluorouracil (FU). Stable prototrophs, produced 

by hyphal anastomosis between 22-127 (lysB-4, ben-17) and 22-135 

(hisA-l, sC-6), were cultured on MYG containing the "compounds for 

21 days, prior to transfer to TWA + supplements for spore 

production. Numbers in parentheses denote the number of 

independent cultures from which colonies were tested. 

PRE
TREAT

MENT 
MEDIUM 

MYG 

lO~ 
MOC 

5().1M 
MOPe 

10~ 
ng 

FU 

200tJ 
ml-

FU 

FREQUENCY 
OF 

UNSTABLE 
COLONIES·· 

4/48 

30/47 

2/46 

24/26 

37/43 

NUMBER OF COLONIES WITH EACH PHENYl"lPE* 

P H L S HS 
++ +- -+ ++ +- -+ ++ -+ ++ -+ 'roTAL 

53 15 1 1 0 1 3 1 0 0 75 

o 106 0 0 3 0 0 0 0 0 109 

0 0 46 0 0 0 0 0 0 5 51 

NT NT NT NT NT NT 

113 28 1 1 0 0 5 0 1 1 157 

(24) 

(25) 

(19) 

(40) 

* P = prototrophic: H = histidine-requiring: L = lysine-requiring: S -
cysteine-requiring: ++ = resistant to both carbendazim (MBe) and MOPC: 
+- = resistant to carbendazim, sensitive to MOPC: -+ = sensitive to 
carbendazim, resistant to MOPC: NT = colonies not tested for parental 
markers. 
•• Proportion of plates containing slow-growing, unstable colonies. 
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Conversly all the fast-growing colonies tested from the 

MOPC-exposed prototrophs were MOPC-resistant and sensitive to 

carbendazim (Table 6.7). Most of these colonies were 

prototrophic, the few auxotrophs obtained being identical to the 

his- !.- parent (22-135). 

A greater range of colony types was obtained from spores of 

prototrophs exposed to fluorouracil. Most of the cultures 

produced the slow-growing, unstable, white colony type, a few 

almost exclusi vely. The remaining fast-growing colonies were 

variously coloured black or grey-brown to yellO\o1 or white. Two of 

these plates are shown in Figures 6.6 and 6.7, one conSisting 

predominantly of slO\o1, unstable colonies, the other containing a 

nurrber of colony types. 

A sample of one hundred and fifty-seven fast-growing 

colonies, from forty separate plates, were characterised further 

(Table 6.7). As was found for the other treatments, the majority 

of these colonies were prototrophic and resistant to both 

fungicides. Only seven colonies had nutritional requirements, of 

which all but the !!.!!- s- colonies were doubly resistant. 

6.3.1.5 Purification of Sl~, tb3table Colooies 

Thirty-two of the slow-growing, unstable colonies, from 

eleven separate cultures, obtained following fluorouracil 

exposure, were 'purified' by plating a suspension of macerated 

mycelium onto fresh MY'G. A great variety of colony types were 

recovered, differing in growth rate, pigmentation and stability 

(Fig. 6.8). Samples of colonies taken from these purification 

plates were tested for auxotrophic and resistance markers. 



Figure 6.6 Slow-growing, unstable co lonies on MYG deri ved from 

spores and hyphal fragments of the stable prototroph Number 389 

(22-127: lysB-4, ben-17 x 22-135: hisA-l, ~). Conidia were 

produced on TWA plus supplements from mycelium previously grown on 

MYG containing 200 pg m-I 5-f1uorouracil. Plate photographed after 

14 days incubation. 

Pigure 6.7 Range of colony types obtained on MYG from spores and 

hypha 1 fragments of the stable prototroph Nurrber 395. Conidia were 

produced on TWA plus supplements from mycelium previously grown on 

MYG containing 200 pg m-I 5-fluorouracil. Plate photographed after 

14 days incubation. Slow-growing colonies near top of plate 

indicated by an arrow. 





Figure 6.8 Colonies obtained by purification of three separate 

slow-growing, unstable colonies derived from stable prototroph 

Number 393 after exposure to 5-fluorouracil. Plates photographed 

after 18 days growth. 
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Although many of the colonies proved to be prototrophic, with a 

range of resistance phenotypes, several plates yielded colonies 

with ooe or [tore nutritional requirements. Many of the colonies 

were repurified and retested on the diagnostic media. Since the 

genealogy of these colonies becomes increasingly complex, only a 

few will be described in more detail as exarrt>les. 

Of the forty-nine colonies obtained by plating spores of 

one prototroph (No. 397), previously exposed to 200 :PIg ml-l 

fluorouracil, twelve were slow-grCMing and white. Five of these 

small colonies (397-1,2,3,4,5) were purified by plating on MYG 

(Fig. 6.9). One (397-2) produced many yellow-white, unstable 

colonies (Fig. 6.10). 'l\.'enty-three of these colonies were tested 

for parental markers, all were prototrophic and all but three 

resistant to both fungicides. Nine of the yellow-lJhite colonies 

were repurified by plating on MYG. Most of the resul ting colonies 

characterised were prototrophic and doubly resistant. A few were 

ca~ndazim-sensitive and one prototrophic colony was sensitive 

to both carbendazim and MOPC. A single reduced sulphur-requiring 

colony was recovered, which was sensitive to carbendazim and 

resistant to MOPC. 

Three of the other colonies purified on MYG (379-3,4,5) 

produced slow-growing, unstable, brCMn, densely-sporing colonies 

(Fig. 6.11). Characterisation of samples of these co lonies and 

their sectors revealed that most were prototrophic and resistant 

to both fungicides (Fig. 6.9). A proportion of the colonies 

derived from 397-3 were auxotrophic, two requiring cysteine and 

one lysine. All three were resistant to Mope and sensi ti ve to 



Figure 6.9 Re-purification of five slow~rowing, unstable colonies 

derived from prototroph number 397. Colonies obtained on MYG were 

either directly transferred to MYG master plates for phenotype 

characterisation or re-purified by plating on MYG and the resulting 

colonies tested for parental marker segregation. 



397-1 

PROTOTROPH 
NUMBER 

397 ! spor •• pla.ed on "YG 

Five slow-growing, 
unstable, white colonies 

repurified by plating on MYG 

/ + "-397-2 397-3 397-4 397-5 

slow, 
unstable 

brown 
colonies 

slow, 
unstable 
yellow 

colonies 

slow, 
unstable 

brown 
colonies 

slow, 
unstable 

brown 
colonies 

slow, 
unstable 

brown 

C:~i .. (set 11\ A A 
1 2 

Fig. 6.11) (Fig. 6.10) 

1 MYG MASTER PLATES ----tl~.. PHENOTYPE 
CHARACTERIZATION 

PHENOTYPES· 
MBC MOPC 

Number of colonies with each phenotype 
397-2 397-3 397-4 397-5 

----------------------------------------------------------
P 
P 
P 
S 
L 

+ + 20 12 13 14 
+ 0 0 0 0 

+ 3 0 2 1 
+ 0 2 0 0 
+ 0 1 0 0 

TOTAL 23 IS IS 15 

2 REPURIFICATION ON MYG~MASTER PLATES -.... PHENOTYPE 
CHARACTERIZATION 

PHENOTYPES· 
MBC MOPC 

Number of colonies with each phenotype 
397-2 397-3 397-4 397-5 

---------------------------------------------------------
P + + 37 33 29 27 
P + 0 0 1 1 
P + 5 3 3 1 
P 1 0 0 0 
S + 1 6 0 0 
L + 0 0 0 1 
L + 0 14 0 0 
LS - + 0 3 0 1 

TOTAL 44 56 33 31 

• 

(9 )** (IS) (8) (7) 

P • Prototrophic, S • !-, L • !l!-, + • resistant to 
carbendazim (MBC) or MOPC, - • sensitive to carbendazim 
(MBC) or MOPC. 

*. Figures in parentheses denote number of separate cultures 
from which colonies were tested. 



, " 

Figure 6.10 Yellow-white, unstable colonies obtained by 

purification of the slow-growing, unstable colony Number 397-2 'on 

MYG. Bar represents 2 rrrn. 

Figure 6.11 Dark, unstable, sporing colonies obtained by 

purification of the slow-growing, unstable colony Number 397-1 on 

MYG. Bar represents 2 rrrn. 
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carbendazim. A greater range of auxotrophic phenotypes was 

obtained after repurification of some of the colonies on MYG 

(Fig. 6.9). 

This feature of increasing numbers of recombinant 

auxotrophic types being recovered after repeated purification is 

best illustrated by the derivatives from 397-1 (Fig. 6.12). The 

colonies produced on MYG from plating hyphal fragments of this 

colony were s1ow~r(1,oling, brOtolO~rey and sectored readily to gi ve 

white, brCMll or black areas. Fourteen of these colonies and their 

sectors were transferred to MYG master plates for 

characterisation and, at the same time, twelve were repurified by 

plating on MYG. A number of the colonies on the master plates 

formed new sectors prior to transfer to the diagnostic plates. 

These sectors and their colony centres were again repurified on 

MYG. As can be seen from Figure 6.12, the colonies grCMing on the 

original master plates were all prototrophic and most doubly 

resistant. By contrast, a range of auxotrophic recombinant 

phenotypes was recovered from the repurified progeny. 

Purifications of sectors generally produced fast-growing 

colonies of the same type, although different sectors gave rise 

to colonies with very different morphologies. The repurified 

centres of such sectoring colonies, however, usually produced 

many slow-growing equally unstable colonies. Some of these 

purified colonies and sectors are sham in Figure 6.13. 

Conidia from a different prototroph (356), plated on MYG 

yielded only four fast~r(1,oling colonies. These were shOtolO to be 

double auxotrophs, requiring both histidine and cysteine, and 

carbendazim sensitive. In addition, three very slow-growing, 



,1'1, 

Figure 6.12 Re-purificatioo of slow-growing, unstable colony, 397-

1, derived fran prototroph nunner 397. Colonies and sectors growing 

on MYG were either directly transferred to MYG master plates or re

plrified by plating on MYG. Colonies sectoring on rraster plates re

purified again before phenotype characterisation. 



PRO'IDTROPH 
NUMBER 

397 

~ spores plated on MYG 

one slow-growing, 
unstable, White colony 

repurified by plating on MYG 

many st, •• -qro,"Ii"9' 
brown-grey colonies 
forming brown, black 
or white sectors 

14 colonies 
and sectors 
transferred 
to master 

plates 

12 colonies transferred replicated 
and sectors ~ to master ____ onto 
repurified plates diagnostic 

on MYG media 

~ 
replicated 9 colonies transferred 

onto and sectors ~ to master 
diagnostic repurlfied plates 

media on MYG ~ 

replicated 
onto 

diagnostic 
media 

PH ENYl'YPES * 
MBC MOPe 

p + + 
p + 
P + 
S + 
S + 
L + 
L + 
LS + 
LS - + 

'IDTAL 

't 
Number of colonies with each phenotype 

10 7 
3 8 
2 7 
0 0 
0 6 
0 4 
0 0 
0 0 
0 0 

15 32 

3 
14 
12 

1 
2 
0 
0 
1 
2 

35 

* p. protoptrohic: S • !-: L = !1!-: + = resistant to 
carbendazim (MOC) or MDPC: - = sensitive to carbendazim (MOC) or 
MDPe. 



Figure 6.13 Re-purification of slow-growing, unstable colonies: 

colonies producing sectors on MYG were re-purified by plating 

macerated mycelium on MYG. Mycelium was taken from the colony 

centres (left) and sectors (right), and plates were incubated for 

16 days before photographing. 

a re-purification of sectoring colony from 397-1. 

b re-purification of sectoring colony from 368-2. 

c re-purification of sectoring colony from 397-2. 
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unstable, white colonies were obtained, two of which (356-1,2) 

were purified by plating on MYG (Fig. 6.14). In both cases a 

small nurrber of slow-growing, white colonies were produced, which 

sectored to give cream-white, pink, brown or black regions. 

Colonies and sectors were transferred to master plates for 

phenotype characterisation. At the same time mycelium from the 

same colonies was plated 00 MYG for repurification. 

The range of phenotypes recovered is presented in Figure 

6.14. All derivatives of the slow-growing colony 356-1 were 

auxotrophic with requirement genotypes for either his-, his- s-- --
or his- !- lys-. After repurification only the double and triple 

auxotrophs were recovered. 

Most of the colonies derived from 356-2 were single 

auxotrophs requiring histidine. After repurification a small 

number of colonies was obtained requiring both histidine and 

cysteine, all from the same purification plate. The fungicide 

response of the najority of colonies was typical of one or other 

of the original parents, 22-127 or 22-135. Several, ho..rever, were 

either resistant or sensitive to both compounds. 

Segregation of auxotrophic markers is most clearly 

illustrated by the colony shown in Figure 6.15. This unstable 

colony, derived from 356-1, produced two morphologically 

dissimilar sectors 00 MYG. After purification of both sectors and 

the colony centre the resulting progeny were tested for parental 

markers. All the colonies deri ved from one sector were double 

auxotrophs (his-,,!-), while those from the other required all 

three supplements ( his-, ,!-, !I.!!-). Colonies originating from 

the central region were of either type. 



Figure 6.14 Re-purification of two slow~rowing, unstable colonies 

derived from prototroph 356. Colonies and sectors produced on MYG 

were either directly transferred to MYG master plates for phenotype 

characterisation or re-purified again by plating on MYG prior to 

testing for parental IMrker segregation. 



PRO'IDTROPH 
NUMBER 

356 

~ spores plated on MYG 

2 slow-growing, 
unstable, white colonies 

repurified by plating on MYG 

14 small colonies, 
forming cream, 
red or black 

9 small colonies, 
forming cream, 
pink or pale 
bro.m sectors sectors 

transferred to 
master plates 

l 
replicated 

onto 
diagnostic 

media 

a 

PHrnOTYP&S* 
MOC MOPe 

H + + 
H + 
H + 
H 
HS + + 
HS + 
HS - + 
HS -
HLS + + 
HLS + 
HLS - + 

'IDTAL 

repurification 
on MYG 

traniferred to 
master plates 

rePlicated 
onto 

diagnostic 
media 

b 

~ 
transferred to repurification 
master plates on MYG 

I traniferred to 
, master plates 

replicated rePlIcated 
onto onto 

diagnostic diagnostic 
media media 

c d 

~\; 
NUrtDer of colonies ""i th each phenotype 

356-1 356-2 
a b c d 

2 0 I 6 29 
0 0 , 3 27 
0 0 7 31 
0 0 0 2 
3 2 0 0 
3 27 0 6 
3 23 0 0 
1 4 0 0 
1 1 0 0 
1 23 0 0 
2 1 0 0 

16 81 (8)** 16 95 (11) 

* P = prototrophic: H = his-: S = s-: L _ lys-: + = resistant to 
carbendazim (MSC) or MOPC::: = sensItive to carbendazim (MSC) or 
MOPC. 
** Numbers in parentheses denote number of separate cultures 
from which colonies were tested. 



Figure 6.15 Segregation of auxotrophic markers in a single 

unstable colony by purification of colony 356-1. Sectors and 

colony centre were repurified by plating on MYG and tested for 

parental mrkers. 



REPURIFICATION 
OF 356-1 

PURIFICATION OF SEC'IDRS AND CENTRE ON MYG 

SAMPLE OF COLONIES TRANSFERRED TO MASTER PLATES 

REPLICATED ONTO DIAGNOSTIC MEDIA 
FOR PHENOTYPE CHARACTERISATION 

~\\ 
a b c 

PH ENOTYPES* Number of colonies with each phenotype 
MBC MDPC a b c 

HS + 0 2 7 

HLS + 20 2 0 

'IDTAL 20 4 7 

* H = his-; S = s-; L = 1ys-; + = resistant to carbendazim (MBC) 
or MDPC; - = sensitive to carbendazim (MBC) or MDPC. 
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6.3.1.6 Resistance Expression 

It was observed that many purified colonies appeared 

doubly resistant, and a few doubly sensitive, to the two 

fungicides. Often the growth on one or both fungicides was slow 

and the colonies formed were small and irregular (Fig. 6.16). To 

establish whether these were recombinant phenotypes rather than 

simply derived from heterogeneous colonies a proportion were 

repurified by plating mycelial fragments on MYG, and the 

resulting colonies re-tested on the fungicide-containing media. 

In addition, mycelium from colonies growing on the fungicide

containing plates was directly re-tested for response to both 

corrpounds. 

In almost all instances, re-purification of colonies, 

apparently resistant to both fungicides, yielded a proportion 

which were sensitive to one or other compound. Mycelium taken 

from the original diagnostic plates and re-tested, usually showed 

resistance only to the fungicide on which the original was 

grOWing (Table 6.8). Some irrportant ex-ceptions were found. Many 

colonies grew slowly on one or both fungicides, producing 

colonies similar in morphology to the original unstable, slow

grOWing forms. Mycelium taken from these colonies and re-tested 

for resistance to the two corrpounds, occasionally produced growth 

on both fungicide plates (Table 6.8: numbers 356-3, 397-6 and 

332-1). Similarly colonies initially with slow irregular growth 

onMYG containing MDPe, and which ultimately sectored to give a 

faster growing colony margin, were shown to be heterogeneous with 

respect to fungicide response (Table 6.8: nurrbers 332-1 and 393-

1). Mycelium re-tested from the central region of these colonies 



Figure 6.16 Purification products of 356-1 growing on diagnostic 

plates showing segregation of resistance markers. Some colonies 

(e.g. Second row, far left) grew normally on one fungicide but 

fonned small lurrpy colonies on the other, while a few others (e.g. 

Middle row, second left) appeared sensitive to both fungicides. 
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Table 6.8 Fungicide response of mycelium taken from co lonies 

growing on fungicide-containing plates. All colonies were derived 

from fluorouraci1-exposed prototrophs and had been repurified at 

least once by plating on MYG prior to the original resistance 

phenotype assessment 

FUNGICIDE RESPONSE* ON RETESTING 
ORIGINAL OF MYCELIUM TAKEN FROM: 

COLONY TEST FUNGICIDE 
NUMBER FUNGICIDE RESPONSE MYG MBC MOPC 

331-1 0 + + + + 
MBC + + + 
MDPC + + + 

338-1 0 + + + + 
MBC (+) + + 
MDPC + + + 

338-2 0 + + + + 
MBC (+) + + 
MDPC + + + 

338-3 0 + + 
MBC + NT NT 
MOPC + 

372-1 0 + + (+) + 
MBC (+) + (+) 
MDPC + + + 

372-2 0 + + + 
MBC + NT (+) 
MOPC + + + 

356-3 0 + + + + 
MBC + (+) + (+) 
MDPC (+) + + 

397-6 0 + + (+) 
MBC ( +) NT ( +) 
MOPC (+) + ( +) 
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7able 6.8 continued 

FUNGICIDE RESPONSE* ON RETESTING 
ORIGINAL OF MYCELIUM TAKEN FROM: 

COLONY TEST FUNGICIDE 
NUMBER FUNGICIDE RESPONSE MYG MSC MOPC 

" centre edge 
332-1 0 + + + + + 

MBe (+) + + (+) 
MDPC +*** + + + 

,.. 

393-1 0 + + + + + 
MBC +** + + (+) 
MOPC +*** + + + 

* + = resistant: - = sensitive: (+) = resistant but colony 
snaIl and lurrpy: NT = not tested. 

** Colony margin irregular. 
*** Colony slow-growing, with white centre and darker margin. 

produced growth on either compound, while that from the colony 

margin grew only al MDPC. 

A small nUnDer of colonies were apparently sensitive to 

both carbendazim and MOPe. Mycelium taken from these colonies, 

growing on fungicide-free medium, however, invariably showed 

resistance to one or both compounds when re-tested (Table 6.8: 

nunber 338-3). FUrthermore, resistant types were always recovered 

after re-purification of such colonies. 

6.3.2 Protq>last Fusion 

An alternative method to hyphal anastomosis for the 

recovery of heterokaryons involves the fusion of isolated 

protoplasts of the parental strains. This technique has been used 

in several species of fungi to overcome vegetative 

incompatibility systems which preclude orthodox mating procedures 

(Dales & Croft, 1977: Typas, 1983: Zhemchuzhina et aI, 1985). --
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Furthermore the technique makes possible various novel selection 

systems, such as the use of dead donors, which avoid the need for 

auxotrophic markers in both parental strains. 

To establish whether viable heterokaryons could be 

produced by protoplast fusion in ~ herpotrichoides, protoplasts 

were prepared from two compatible strains with complementary 

auxotrophic markers (22-133, hisA-1, metB-2: 22-139, argA-l, ~ 

l). The protoplasts were mixed, induced to fuse using PEG in the 

presence of Ca++ ions, and plated onto MMR and CMR. Control 

platings included un-fused mixtures of protoplasts and PEG 

treated and un-treated protop1asts of the individual parents. 

Rapidly-growing, prototrophic colonies appeared on the 

plates inoculated with fused mixtures of protoplasts after 14 to 

21 days (Fig. 6.17). The frequency of recovery of these "fusion 

products", together with the regeneration rates of the parental 

strains are given in Table 6.9. 

Ninety dark pigmented fusion products were transferred to 

fresh MM. After 9 days the growth and appearance of the colonies 

was visually assessed. All of the sub-cuI tures produced 

prototrophic mycelium on MM. The colonies were dark brown with a 

less heavily pigmented nargin (Fig. 6.18). 

A background growth of hyaline slow growing mycelium was 

discernible on all plates inoculated with protoplasts of 22-139 

(Fig. 6.17). One hundred and twenty of these colonies were 

transferred to MM. In each case slow, non-pigmented growth, 

characteristic of strain 22-139 was obtained. Protoplasts of the 

other strain in the cross, 22-133, only produced colonies on CMR 
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Table 6.9 Protoplast regeneration and fusion frequency for 

strains 22-133 and 22-139. Colony numbers counted after 16 days 

incubation at 190 C. Each figure represents the mean of five 

replicate platings on cOltplete (MYR) or minimal (MMR) regeneration 

medium ± standard error. 

REGENERATION FREQUmCY (%) 

STRAIN 
(X)MBINATION 

22-133 

22-139 

22-133 
x 

22-139 

PEG 
TREATMENT 

UNTREATED 
PEG-TREATED 

UNTREATED 
PEG-TREATED 

UNTREATED 

PEG-TREATED 

OJMPLETE 
MEDIUM 

83.5 ± 3.3 
1.9 ± 0.2 

82.4 ± 12.7 
2.4 ± 0.2 

2.1 ± 0.1 

FUSION FREQUmCY = 5.7% 

* Colonies small, slow-growing and hyaline 

MINIMAL 
MEDIUM 

o 

38.5 ± 4.3* 

0.04 ± 0.01 

0.12 ± 0.02 

or MMR supplemented with histidine and methionine. All of the 60 

regenerant colonies of this strain, tested on MM, were 

auxotrophic •. A small number of prototrophic colonies were 

obtained from mixed platings of protoplasts not treated with PE~ 

These colonies presumably resulted from hyphal anastomosis 

between the two parents from protoplasts regenerating in close 

prOximity. 

Demonstration of the heterokaryotic nature of the fusion 

products requires the re-isolation of both parental types from 

these colonies. Two methods, isolation of single hyphal tips and 

plating of conidia and hypha1 fragments taken from the surface of 
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the colonies, were used to recover the parental strains from the 

prototrophs. Sixteen separate hypha1 tips were taken from the 

rrargins of five different prototrophic colonies, growing on MM 

and transferred to MM. In each case slow-growing hyaline colonies 

resulted, which produced normal colonies when inoculated ooto MM 

supplemented with arginine. 

Suspensions of hyphal fragments and conidia from the 

surface of eight prototrophic colonies were plated onto MYG and 

MM. A sample of the colonies produced on MYG were tested for 

parental auxotrophic markers (Table 6.10). Both parental types 

were recovered from seven of the platings, although the rrajority 

of the auxotrophic colonies were of the 22-139 parental type. In 

addition, prototrophic colonies were obtained. Many of these were 

visibly heterogeneous, presumably originating from heterokaryotic 

mycelium. However several apparently stable, prototrophic 

colonies were recovered: these were unlike either parent strain 

in awearance, having grey aerial mycelium and, when veiwed from 

below, a bright orange colouration. Unfortunately, insufficient 

time was available to allow further analysis of these colonies. 



Figure 6.17 Prototrophic colonies, produced by protoplast fusion 

between 22-133 (hisA-l, metB-2) and 22-139 (argA-l, red-I), growing 

on osmotically stabil ized minimal medium. Plate photographed 28 

days after inoculatio~ 

Figure 7.3 Vegetative inccxnpatibility in ~ herpotrichoides. Dark 

bands of heterokaryotic growth produced at the junction of 

unrelated compatible strains, carrying complementary auxotrophic 

markers, are indicated by arrows. 



6.17 

7.3 



Figure 6.18 Protoplast fusion in ~ herpotrichoides: parental 

strains on complete (top) and minimal (middle) medium. Left: 22-133 

(hisA-l, metB-2): right: 22-139 (argA-l, red-I). Bottom row: fusion 

products on minima 1 medium. 
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Table 6.10 Phenotypes of colonies recovered after plating spores 

and hypha1 fragments from eight prototrophs, obtained as fusion 

products of 22-133 (hisA-1, metB-2) and 22-139 (argA-1, red-I). 

NtlttBER OF COLONIES WITH EACH PHEN.'>TYPE 
POO'roTROPH 

NUMBER arg his-met- PRO'IDTOOPHS OTHER 'roTAL --
I 14 1 0 0 15 

2 13 0 3* 0 16 

3 14 2 0 0 16 

4 10 5 0 0 15 

5 7 2 2 4 15 

6 4 1 7 4 16 

7 5 3 7 1 16 

8 7 1 4* 1 12 

*These prototrophic colonies included some which were apparently 
homogeneous and pigmented orange-grey. 

6.4 DISCrnSlOO 

A parasexual cycle, amenable to manipulation in the 

laboratory, clearly does occur in ~ herpotrichoides. This 

demonstration confirms the report of Davies and Jones (l970a) of 

the isolation of a stable diploid "hybrid" produced by hyphal 

anastomosis beyween two isolates and the recovery of the parental 

types after treatment with FPA. 

The first stage in the cycle, heterokaryon formation, can be 

induced either by hyphal anastomosis or via protoplast fusion. 

The heterokaryotic stage does not seem to have a stable, balanced 
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organisation like heterokaryons of Aspergillus spp., but appears 

to be similar to that described first for Verticillium dahliae 

(Puhal1a & Mayfie1d, 1974). Most of the vegetative cells of P. 

herpotrichoides are uninucleate, the heterokaryotic phase is 

presumably restricted, as with V. dahliae, to individual 

anastomosed cells. Such anastomosis bridges are readily formed 

between neighbouring hyphae in Pseudocercospore1la. This view of 

heterokaryon structure is supported by the observation that 

hyphal tips, isolated from heterokaryotic mycelium, give rise 

only to parental type colonies. 

Three lines of evidence suggest that the stable prototrophic 

colonies derived from strains 22-127 and 22-135 are dip1oids: 

1) stable transmission via single spores and hyphal fragments 

and, more particularly, via uninucleate protoplasts 

2) co1orimetric estimations indicate an increased DNA content of 

the nuclei of prototrophs, COIt{)ared with the parental strains 

3) progeny with new combinations of the parental markers were 

isolated from these colonies. 

Additional criteria for identification of diploid colonies 

in fungi include differences in spore size and in the ratio of 

cell volume to nuclear nurrber of apical cells (Pontecorvo, 1956: 

Clutterbuck, 1969). Spore formation by the stable prototrophs was 

poor, the conidia produced, however, did not appear significantly 

larger than those formed by the parental isolates and contained a 

comparable number of cell compartments. Liquid cuI ture-grown 

mycelium of both prototrophs and parental strains was examined 

for differences in apical cell size and nuclear content. While 

. great variation in cell length was observed in all preparations, 
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m::>Bt cells contained only a single nucleus. 

Recombinant progeny were obtained after exposure of stable 

prototrophs to 5-f1uorouraci1. This agent is prinarily a promoter 

of mitotic crossing-over. Consequently many of the segregants 

obtained may have been the result of mitotic cross-over events, 

followed by segregation of the recombinant chromatids, as 

described in the introduction to this chapter. Since mitotic 

recombination is unlikely to alter the euploid chromosome 

complement, segregant colonies produced by this process will 

appear identical to the original diploid, provided no mutants 

affecting colony morphology are located on the recombinant 

chromosome arm. Several of the fast-grCMing colonies recovered 

from stable prototrophs differed from the original colonies 

either in fungicide response or nutritional requirement, while 

resembling the original "dip10ids" in colony appearance. It is 

possible that these segregant colonies were mitotic recombinant 

types, retaining the diploid chromosome complement. Similarly 

colonies from prototrq>hs gr<::Mn on high levels of carbendazim or 

MDPC, While retaining the overall appearance of the original 

colonies, were all segregant for fungicide response. Prolonged 

exposure to the inhibitor presumably selected for nuclei 

homozygous for the appropriate resistance allele. 

HCMever, the morphology and behaviour of the unstable, slow

growing colonies obtained from nany of the cuI tures, including 

some not treated with fluorouracil, is strongly suggestive of the 

aneuploid colonies in ~ nidu1ans (Upsha11, 1971) and the 

unstable heterozygotes in ~ acremonium (Ham1yn, 1982: Birkett & 
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Hamlyn, 1985). 

Aneuploid nuclei are produced as a result of non-disjuction 

of sister chromatids during nuclear division. If this process 

occurs in a diploid nucleus one of the daughter nuclei wi 11 be 

trisomic for the non-disjunctiona1 chromosome (2n+l), while the 

other will be roonosanic for that chromosome (2n-1). Hyperdiploid 

nuclei may lose the additional chromosome by a second non

disjunctional event, regenerating the balanced diploid state. 

Depending on which of the three homologues is lost, the 

regenerated diploid may be homozygous or heterozygous for the 

segregating chromosome. Hypodiploid nuclei can generate haploid 

progeny by repeated non-disjunction, or haploidization. 

Furthermore, a high frequency of mitotic reconbination, such as 

would be induced by treatment with fluorouracil, may also have 

resulted in the segregant progeny obtained. In which case the 

recorrt>inant colonies would necessarily be diploid. 

Since the ploidy level of the recombinant auxotrophic 

progeny obtained in this study has not been determined, and the 

linkage relationships of the markers used are unknown, it is not 

possible to state which of these processes are responsible for 

their production. In several instances, however, colonies already 

expressing one or rrore parental markers were found to segregate 

for the remaining markers in the cross. 

Resistance to carbendazim or MDPe appears to beha ve as a 

semi-dominant character, selection on a high concentration of 

either compound favouring the appropriate resistance gene. Re

testing mycelium taken from recombinant auxotrophic colonies, 

apparently doubly resistant to carbendazim and MDPe, often 
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yielded colonies sensitive to one or other fungicide. This 

suggests that such doubly resistant colonies may actually be 

heterogeneous, containing mycelium with nuclei conferring either 

parental resistance phenotype, with culture in the presence of 

one or other coopound selecting for the resistant population (fig 

6.19) • 

This theory, however, does not explain the slow, irregular 

growth of some colonies on fungicide-containing medium, nor the 

occasional recovery of colonies seemingly sensitive to both 

inhibitors. Consequently, although reversion studies and much of 

the genetic evidence supports the idea of a single gene 

conferring reciprocal resistance and sensitivity to carbendazim 

and MOPC, further study is required before firm conclusions can 

be drawn. 



Figure 6.19 Diagramma t ic representa tion of parasexua 1 

recont>inatioo in P. herpotrichoides. Anastomosis bridges support 

the growth of heterokaryotic mycelium on a selective medium. Random 

nuclear fusion between dissimilar nuclei produces heterozygous 

diploid nuclei, which may divied to produce diploid mycelium. 

Segregation of parental markers occurs as a result of mitotic 

recombination and/or non-dis-junction in diploid nuclei, and 

produces "mixed" colonies with nuclear heterogeneity. If the 

parental strains differed in fungicide respoonse, transfer of 

heterogeneous mycelium to fungicide-containing medium will select 

for the resistant nuclear population. 
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~ nn:JIIPATABILl'lY IN ~ 

Gene exchange between different individuals in a 

population can only occur when the genetic material of those 

strains is brought together in the same cytoplasm. Hyphal 

anastomosis is naturally the first step in this process. Any 

system which prevents hyphal fusions between particular isolates 

will obviously limit the extent to which natural genetic 

reassortment can take place. Vegetative or heterokaryon 

incompatibility has been described in a number of fungi including 

some important plant pathogens (eaten & Jinks, 1966; Tinline & 

MacNei 11, 1969: Genovesi & MaGi 11, 1976; Anderson, 1982: Leach & 

Yoder, 1983; Sidhu, 1983; Hastie & Heale, 1984). 

Compatible hyphal fusion events have usually been detected 

using complementary recessive genetic characters, typically 

auxotrophic or pigmentation mutants: complemented heterokaryotic 

growth having a non-parental phenotype (Anagnostakis, 1982: 

Anagnostakis !E aI, 1986: Puhalla, 1984a, b). However, the 

introduction of appropriate markers in the large number of 

isolates necessary to assess the diversity of compatibility 

relationships is time-consuming. To circumvent this problem 

positive selection systems for the isolation of suitable 

auxotrophic nutants ha ve been used in several studies. In these 

systems spontaneous mutations for resistance to a particular drug 

(chlorate, selenate, fluoroacetate, p-fluorophenylalanine) is 
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often associated with an auxotrophic requirement (Apirion, 1962, 

1965; Arst, 1968; Cove, 1976a, b; Teow & Upshall, 1983). 

Selection for resistance, which is easi ly performed, can 

therefore be used for the rapid isolation of spontaneous, 

auxotrophic mutants from field isolate~ 

Complementary auxotrophic strains, obtained by selection 

for resistance to chlorate, have been used to test for vegetative 

incorrpatibi1ity in Fusarium oxysporum (Puha11a 1985; Correl1 !!. 

aI, 1986,), Gibberella fugikuroi (Puhalla & Speith, 1985; Sidhu, 

1986) and Septoria nodorum (Newton & Caten, 1985). These mutants 

require a source of reduced nitrogen for normal growth on a 

defined medium. Three classes of auxotroph are obtained by this 

method, as a result of mutation in four genes involved in stages 

of the nitrate reduction pathway (Fig. 7.1). These are nia 

mutants, deficient in nitrate reductase, 

cnx mutants deficient for a"mo1ybdenum co

factor required by the nitrate reductase enzyme, and nir mutants 

in which both reductase enzymes are deficient as a result of 

mutation in a regulatory gene. All three types are mutually 

complementary (Cove, 1976a, b; Birkett & Rowlands, 1981). 

Reduced sulphur-requiring auxotrophs can be produced by 

selection for resistance to sodium selenate (Arst, 1968). These 

may result from mutation in one of four loci in ~ nidulans, 

associated with uptake and reduction of sulphate to sulphite 

(Fig. 7.2). 

Both selection systems were used to isolate auxotrophic 

mutants from a range of Pseudocercosporella isolates. These 

mutants were then tested for their ability to produce 



Figure 7.1 Mutations obtained by selection for resistance to 

chlorate affecting nitrogen metabolism in Aspergillus nidulans 

(After Cove 1976a,b). 

Enzymes: 

1 nitrate reductase 

2 nitrite reductase 

3 xanthine dehydrogenase 
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Figure 7.2 Mutations obtained by selection for resistance to 

selenate affecting sulphur metabolism in Aspergillus nidulans 

(After Arst, 1968). 

Enzymes: 

1 sulphate permease 

2 sulphate adenyl transferase 

3 adenyl sulphate kinase 

4 PAPS reductase 

.. ' ..... ~ .... 
"', -:."' 
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heterokaryotic growth on MM. In this way a picture of the 

vegetative compatibility relationships in this fungus was 

constructed. 

7.2.1 Strains 

Reduced nitrate- and reduced sulphur-requiring mutants 

were induced in 3 BW-type isolates (22.20, 22-22, 22-115) and 9 

BWR-type isolates (22-6, 22-7, 22-8, 22-9, 22-13, 22-14, 22-15, 

22-16, 22-120). Other isolates included 22-8/1, a fast growing 

strain deri ved as a morpho1ogica 1 variant sector fran 22-8, £:.!!:. 

var acuformis isolate 22-116 and £:. aestiva isolate 23-1. 

Isolates with other auxotrophic or morphological markers were 22-

109 (adeA-1) and 22-126 (s8-2), auxotrophic mutants derived fran 

the BW-type isolate 22-20: 22-186 (1 ys-5) and 22-228 (s-71), 

auxotrophic mutants from the BWR-type isolate 22-12, and 22-256 

(spi-5) a spontaneous, morphological nutant with spiral growth of 

isolate 22-22. In addition, marked strains were tested in 

combination with 22-1, a BW-type isolate with a naturally 

occurring auxotrophic requirement. 

7.2.2 lsolatioo of auxotI'q)hic resistance DIltants. 

Se1enate-resistant mutants were obtained by plating a 

mixture of spores and hypha1 fragments, produced on TWA, on MM 

containing 25 mM sodium selenate. A proportion of the plates were 

supplemented with hanocysteine thiolactone (0.05 ng m1-l ), as an 

al ternati ve sulphur source. Colonies appeared over a period of 59 
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days on both series of plates. These were purified in the usual 

way and single colonies tested for auxotrophy by plating on MM 

and MM supplemented with cysteine. Auxotrophic mutants were 

tested for intra-isolate complementation on MM, in order to 

differentiate different s- mutations. Those isolated in 22-20 

were also tested against the other s- mutants of this isolate 

(Chapter 4.0). 

Reduced nitrogen-requiring mutants were produced by 

plating on MM containing 245 mM potassium chlorate, with or 

without arginine 0.05 rrg ml-l as an alternative nitrogen source. 

Chlorate-resistant colonies were more difficult to identify. 

Addition of arginine resulted in considerable background growth 

which prevented the recognition of possible resistant form~ On 

chlorate-containing MM without arginine, resistant mutants formed 

small dense colonies that differed from the background growth 

principally in pigmentation, appearing grey rather than reddish

brown. These colonies were purified on MYG agar and indi vidual 

colonies assessed for growth on MM supplemented with or without 

arginine. Chlorate-resistant auxotrophs were classified as nia, 

~ or ~ on the basis of their growth on nitrite, hypoxanthine 

and ammonium (Table 7.1). Auxotrophic mutants produced by both 

selection systems were leaky for growth on MM. Pigmentation 00 MM 

was generally poorly developed and mycelial growth relatively 

sparse. 

7.2.3 Assessment of compatibility for heterOkaryon formation. 

Mutants with potentially cOll'{>lementary requirements were 

assessed for their ability to produce heterokaryotic growth on 
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Table 7.1 Classification of chlorate-resistant auxotrophic 

mutants as mutations in nitrate reductase (~), nitrate 

regulatory (ni~.) or molybdenum co-factor (cnx) genes. 

GROWTH ON MM PLUS*: 

GENOTYPE NO- NO- HPX - + 
3 2 N02 +NH4 

Wild-type + + + + 
nia + + + 
nrr + 
cnx + + 

* N03- = ~odium nitrate, O.S mg ml-l : N02- i sodium nitrite, 
O.OSmg rnI- : HPX = h~xanthine, 0.05 rrg rnI- : NH4+ = amnonium 
sulphate, 0.005 rrg ml- : - = poor growth: + = normal growth. 

MM. Where markers permitted intra- as well as inter-isolate 

corrbinations were tested. Auxotrophs of each isolate were point 

inoculated on MM, 10 mm apart. The plates were incubated at 190 C 

for up to 46 days, to allow the hyphal fronts of the mutants to 

meet: heterokaryotic growth was clearly recognisable as zones of 

darkly pigmented mycelium at junction of corrplementary colonies. 

Non-complementary combinations did not produce these zones, 

suggesting that there was no significant cross-feeding between 

incompatible isolates. 

7.2.4 Chemicals 

Potassium chlorate and sodium selenate were purchased from 

SOH. Both were prepared as stock solutions in water, sterilized 

by filtration through cellulose nitrate merrbranes (Pore size = 

0.02 !~m), and added to the molten agar medium, after autoclaving. 
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7.3 RESULTS 

7.3.1 Mutant Isolation and Characterisation 

Se1enate-resistant, reduced sulphur-requiring 

auxotrophic mutants were obtained from 14 isolates and chlorate-

resistant auxotrophs from 4 isolates, including 22-8/1 (Table 

7.2). Within each isolate none of the se1enate selected mutants 

obtained were ~lementary, suggesting that they all belonged to 

Table 7.2 Auxotrophic mutants obtained by selenate and chlorate 

selection of wild-type isolates. 

Nurrt>er of auxotrophs selected on: 
ISOLATE SELENATE CHLORATE 
TYPE NUMBER s- nia- nir- cnx 

BWR 22-6 8 -* 
22-7 I 
22-8 6 8 0 2 
22-9 3 
22-13 1 
22-14 3 0 1 
22-15 I 
22-16 8 
22-120 1 1 0 

BW 22-20 12 
22-22 1 
22-115 1 

BWR variant 22-8/1 1 4 0 1 

P.h. var 
acuformis 22-116 7 

P.aestiva 23-1 14 

* Not selected on this compound 

the same mutant class. The chlorate selected auxotrophs were 

readily classified as nia, nir or ~: most were of the first 

type. Since no complementation tests between mutants of similar 
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phenotype were conducted the number of loci involved is not 

known. 

7.3.2 Inter-5train Compatability 

Most combinations of isolates failed to produce 

cornp1enented growth on MM (Table 7.3). In some cases there was no 

contact between the hyphal fronts of the paired colonies, 

presumably due either to competition for nutrients or 

antagonistic interactions. For the majority of combinations 

Table 7.3 Heterokaryon compatibility in isolates of 

Pseudocercospore1la. Pairs of strains with auxotrophic markers 

were tested for comp1ementation on MM after 59 days at 190 c. 

ISJLATE NUMBER 
ISOLATE 
NUMBER 22-20 22-1222-8 22-8/1 22-14 22-120 22-1 22-22 

22-20 
22-12 
22-8 
22-8/1 
22-14 
22-120 
22-1 
22-22 
22-6 
22-7 
22-9 
22-13 
22-15 
22-16 
22-115 
22-116 
23-1 

+ 

? 
? 

+ 
+ 
+ 

? 

? 

+ + 
+ + 
+ + 

? 
? 

? 
? 

? 

NA 
+ 

+ 

- = no comp1ementation; + = complementation for growth; NA = not 
tested: ? = no contact between hyphae of different isolates. 
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hypha1 contact was observed, and fai lure to produce 

heterokaryotic growth was taken to indicate vegetative 

incompatibility between the two isolates. 

Compatible interactions were seen between mutants derived 

fran the same isolate and also between certain unrelated isolates 

(Fig. 7.3). Corrpatib1e inter-strain interactions occurred between 

the BW-types 22-22 and 22-115, and between the BWR-types 22-12 

and 22-8. Heterokaryon compatibility was also seen between 22-8 

and the Jrorpho1ogica1 variant of this isolate 22-8/1, and between 

22-8/1 and isolate 22-12. 

7.3 DISCUSSIOO 

The large number of non-complementary interactions 

suggests that heterokaryon incompatibility is widespread in P. 

herpotrichoides. If this phenomenon also occurs under natural 

conditions these findings have obvious implications for potential 

genetic exchange in the field. 

Vegetative incompatibility is common in Septoria nodorum, most 

pairs of isolates tested were unable to form heterokaryons in 

culture (Newton & Caten, 1985). Compatible reactions were only 

found amongst strains origin~ting from the same fields, and 

therefore possibly clones. Two pieces of evidence suggest that 

the compatible interactions observed in ~ herpotrichoides in 

this study were between unrelated field isolates. Firstly they 

originated from different cereal hosts and isolates 22-22 and 22-

115 were obtained at different times. Secondly the benzimidazole 

sensitivities of 22-12 and 22-8 were different, 22-12 being 
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carbendazim-sensi ti ve and 22-8 highly carbendazim-resistant. In 

addition, when cultured on MYG agar all four strains were 

morphologically dissimilar. 

The positive reaction of isolate 22-12 with 22-8/1 

confirms that this variant was derived from isolate 22-8. 

Unfortunately because of the similarity of markers carried by 

ITBny of the strains a full corctarison of corrpatibi1ity between 

all isolates was not possible. However, none of the other BWR

types was able to complement either 22-12, 22-8 or 22-8/1. 

Whether these isolates form a single mutually compatible group 

awaits the isolation and testing of further mutants. 

No compatible reactions were observed between any of the 

~ herpotrichoides strains and 23-1, the P. aestiva isolate. 

These results confirm the findings of Nirenberg (1984), who was 

unable to detect hyphal anastomosis between ~ herpotrichoides 

strains and the other Pseudocercosporel1a species, or between the 

two taxonomic varieties of !::. herpotrichoides. 



CHAPTER 8 
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PA'l'IJJGBNICl'lY STODIES 

8.1 IN"l'IOlOCTION 

Numerous methods have been devised to measure 

pathogenicity of fungal pathogens. These vary depending on the 

nature of the disease and the syrrptans that are produced, and may 

be direct (eg. leaf area infected, lesion size, number of 

infections) or indirect (eg. degree of stunting, yield reduction) 

assessments. Where quantitative assessments are difficult to 

make, as for example with wilting or epinasty, severity of 

syrrptom developm,mt may be estimated. 

Eyespot disease, caused by ~ herpotrichoides, has been 

assessed in several ways. In seedling tests mean penetration 

scores, calculated from the number of leaf sheaths infected by 

the fungus, have been widely used (Scott, 1971: Law !! aI, 1976: 

Scott !! aI, 1976: Bateman !! al: 1985). Assessment of lesion 

development is generally preformed 4 to 12 weeks after 

inoculation. In mature plants simpler scoring systems, based on 

the degree of stem girdling, have been devised (Lange-de la Camp, 

1966b: Bruehl & Cunfer, 1972: Scott & Hollins, 1974: Bruehl et 

aI, 1982: Murray & Bruehl; 1983). In which case disease 

assessments are made at the end of the gr~ing season, normally 6 

to 7 months for winter cereal cultivars. These scores are usually 

converted into a disease index in which more severe infections 

are given greater weighting. Higgins and Fitt (1984, 1985) 

attempted to combine the two approaches by including both 

penetration and girdling scores in a single disease index, while 
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the prq>ortion of tillers affected in each plant was reflected in 

the penetration and severity indicies of Higgins !Eo!!. (1986). 

Yield components, including total harvestable yield, yield per 

head and 1000 grain weight, have been measured to determine the 

econanic irrpact of infection (Davies & Jones, 1970). In addition, 

the disease incidence (ie. the percentage of plants and/or 

tillers infected) has been used to estimate the amount rather 

than the severity of disease present (Oavies & Jones, 1970; 

Hollins & Scott, 1980). 

All these systems are time consuming and laborious. More 

rapid tests involving microscopic examination of in ~ mycelial 

growth, appressoria formation, the number of penetration sites 

and papillae formation by the host have been used to investigate 

host resistance to infection (Gul110t-SalOOlon ~ aI, 1981: Kahn & 

Bouriquet, 1984; Kahn !Eo aI, 1986; Murray & Ye, 1986). However, 

these methods do not appear to have been appl ied to the 

compar-ison of different fungal isolates. De Virville !Eo al 

(1982) described a technique for the rapid determination of 

pathogenicity and host resistance in which the level of 

respiration of host tissue was measured. Clear differences in 

response were observed between an eyespot-suseptible and an 

eyespot-resistant whea t cuI ti var inoculated with pathogenic or 

non-pathogenic isolates of the fungus. The ability of this test 

to disciminate between isolates differing only slightly in 

pathogenicity requires further study. 

Inoculation proceedures have been equally diverse. Spores 
I 

are the usual source of infection in the field, produced on 

debris frOOl previous crops. Se vera 1 methoos have been used which 
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attempt to mimic these events. Stra .... s or oat kernals, infested 

.... ith the fungus and placed on the soil surface .... here they 

generate conidia during cool, wet .... eather, are the usual source 

of inoculum in long term pathogenicity tests (Bruehl & Cunfer, 

1972: Scott & Hollins, 1974; Guillot-Salomon ~ aI, 1981: Bruehl 

et aI, 1982: Murray & Brueh1, 1983, 1986: Higgins & Fi tt, 1984: 

Higgins!! aI, 1986). Alternatively, suspensions of spores or 

homogenised mycelium can be sp3yed onto the plants, although 

inoculum applied in this way is more susceptible to dessication 

(Lange-de la Camp, 1966b; Davis & Jones, 1970: Murray & Bruehl, 

1983: Hoare ,1986). 

A different approach, .... hich has often been used to 

inoculate plants in seedling tests, .... as described by Macer 

(1966). Stra .... segments infested .... ith the fungus are placed over 

the emergent coleoptile, and covered .... ith either sand or soil to 

maintain humidity, mycelium from the stra .... is then able to infect 

the plant tissues directly. Modifications of this technique 

include the use of agar collars in .... hich mycelium has been 

embedded, in place of stra .... , thereby reducing the time required 

for production of the inoculum (Bateman !! aI, 1985). Filter 

paper disks containing either mYcelium or conidia have also been 

successfully substituted for stra .... collars (Evans & Ra .... linson, 

1975: Kahn & Bouriquet, 1984: Higgins & Fitt, 1984, 1985). 

Comparisons of the pathogenicities of various isolates of 

P. herpotrichoides to different cereal hosts identified t .... o main 

pathogenicity types of the fungus (Lange-de la Carrp, 1966b: Scott 

!!~, 1975). These pathotypes (W or BW and R or BWR) .... ere 
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equally pathogenic to wheat plants but differed in their 

pathogenicity to rye, BWR-types being more pathogenic to this 

host. The association of pathotype with cultural morphology is 

used generally as a character to differentiate BW- and BWR-type 

isolates in field surveys of the fungus. Such studies have 

revealed that changes in the relative proportions of the two 

types occur in field populations of the pathogen, both during the 

season and with different crop species (Griffin, 1985; Bateman et 

aI, 1985). However, many isolates are difficul t to classify as 

belonging to either morphological type. This together with the 

instability of the BWR growth form in culture makes precise 

monitoring of these changes difficul t. 

Readily recognisable characters, which do not seriously 

irrpair pathogenicity, are required. Most auxotrophic mutations 

may be expected to reduce pathogenicity. Pigmentation and 

resistance mutations, however, may be less deleterious and so 

suitable for use as markers in pathogenicity studies. The 

pathogenicity of isolates with differing cultural morphology to a 

range of cereal hosts was determined. In addition, the effect on 

pathogenicity of various mutations was assessed. 

8.2 MA'J.'FRIALS AND METlI>DS 

8.2.1 Strains 

The origin and details of the field isolates used in 

pathogenicity tests are given in Appendix 1. The BW-type isolates 

assessed were 22-2 and 22-20, BWR-type isolates were 22-8, 22-10, 

22-12 and 22-117. In addition the pathogenicities of the P. h. 
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var. acuformis isolate, 22-116, and the P. aestiva isolate were 

determined. Lysine-requiring auxotrophic mutants deri ved from 

isolates 22-20 (22-127: lysB-4, ben-17) and 22-12 (22-186: lys

~), and a sporulation mutant (22-184: con-2) deri ved from 22-12 

were a Iso screened. 

8.2.2 Host Plants 

Five cereal cultivars were used to screen pathogenicity 

of P. herpotrichoides isolates: two cuI ti vars of winter wheat, 

'Armada', an eyespot-susceptible cultivar (NIAB resistance rating 

4), and 'Rendezvous', a relatively resistant cultivar containing 

eyespot resistance derived fran Aegilops ventricosa (T.W. Hollins 

pers. comm.), one winter barley cultivar, 'Pirate': a winter rye 

cultivar, 'Animo' and 'Newton, a cultivar of triticale. All 

cereals were obtained from the National Institute for 

Agricul tura 1 Botany (NIAB), Cambridge except 'Rende2llous' which 

was provided by Dr. T.W. Hollins of the Plant Breeding Institute, 

Cant>ridge. 

8.2.3 Inoculation Protocol 

The inoculation procedure was similar to that described by 

Macer (1966). Fungal strains were grown on 2 to 3 cm internodal 

pieces of wheat straw, in Woods flasks, for approximately 4 weeks 

at 190c. Straw cultures were kept damp by the periodic addition 

of 5 ml liquid MM, supplemented, in the case of auxotrophic 

mutants, with 0.4 rrq ml-l yeast extract. 

Cereal grains were presoaked for 2 h and germinated on 

damp blotting paper in a moist chamber for 3 to 7 days. 

Germinated seeds were transferred to 9 cm pots containing peat-
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based compost, sterilised by autoclaving at 12ft for 30 min. 

Pots were filled to within 2 cm of the top. Straw collars, 

infested with the fungus, 1 cm long, were placed over the 

emergent coleoptiles, and the inoculated pots filled with sterile 

sand. Four seedl ings were placed in each pot, and four pots were 

inoculated with each isolate. Control pots of each cereal were 

left uninoculated 

Pots containing seedlings were randomly arranged and 

maintained in a cool glasshouse for 15 weeks (Experiment 1 - 10th 

January to 29th April, 1986: Experiment 2 - 27th January to 13th 

May, 1986). Compost was kept damp by regular watering, and the 

plants fed twice with Hoaglands nutrient solution (Hoagland, 

1944). Disease syIr()toms were assessed according to the system of 

Scott (1971) as follows: 

o = no infection 

1 = co1eopti1e infected 

2 = co1eoptile penetrated 

3 = first leaf sheath infected 

4 = first leaf sheath penetrated 

5 = second leaf sheath infected 

6 = second leaf sheath penetrated 

etc. 

Mean penetration figures were calculated as the average of 

the disease scores for each host-isolate combination. 
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8.3 RESULTS 

Two separate experiments to compare pathogenicity of 

isolates were performed. In the first, four strains of the 

fungus, two SW-types and two BWR-types, were screened against the 

five cerea 1 hosts. Nine isolates, including three rrutant strains, 

were tested in the second experiment. Disease assessments for 

both experiments were conducted 15 weeks after inoculation. This 

extended period, compared with the duration of most seedling 

tests, was necessary because of the unusually prolonged cold 

weather during February 1986. 

Assessment of the extent of infection by the fungus of the 

wheat cultivar Rendezvous was precluded by extensive browning of 

the base of the stem, unre la ted to the presence of the eyespot 

fungu~ This dicolouration was exhibited by the majority of the 

seedlings of this cultivar, including most of the uninoculated 

control plants (Fig 8.1). As a resu1 t, the mean disease scores 

obtained were similar for the inoculated and the control plants. 

Consequently the resul ts for 'Rendezvous' were olmlitted from the 

analysis of the data from the other cereal hosts. Attempts to 

reisolate the eyespot pathogen from the inoculated 'Rendezvous' 

plants were unsuccessful. A fast-growing, unidentified fungus was 

recovered from most surface sterilised, leaf sheath segments, 

though whether the presence of this fungus was the cause of the 

discolouration of the stem bases is not known. 
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8.3.1 Field Isolates 

Significant differences in pathogenicity were found 

between isolates in both experiments (Fig. 8.4). In addition host 

cultivars were infected to differing extents and statistical 

ana lysis revea led a significant degree of interaction between 

isolates and hosts (Tables 8.1, 8.2). 

Table 8.1 Ana I ys is of va riance of pa thogen lc i ty resu 1 ts from 

experiment 1. Four isolates, 22-2, 22-10, 22-12 and 22-20 were 

screened for differences in pathogenicity against 'Armada' wheat, 

'Pirate' barley, 'Animo' rye and 'Newton' Triticale. 

OOURCE 1 OF SS MS F 
1 
1 

Isolates 1 3 441.359 147.120 29.73 P = 0.001 
1 

Cu1tivars 1 3 2191.591 730.530 147.61 P = 0.001 
1 

Interaction 9 158.340 17.593 3.55 P = 0.001 

Residual 223 1103.654 4.949 

Totals 238 4373.155 

On the winter wheat cultivar Arnada only small differences 

in pathCX]enicity were observed between most isolates. Isolate 22-

117, morphologically a BWR-type, was significantly less 

pathogenic (p = 0.001) than all other field strains tested in 

experiment 2, this difference was also apparent on the other host 

species. 'Animo', the rye cultivar, was relatively resistant to 

infection by the fungus, consequently differentiation of BW- and 

BWR-type isolates on the basis of pathogenicity to rye was not 

reliable. However, in both experiments, the highest penetration 



Figure 8.1 Wheat 'Rendezvous' plants showing stem browning not 

associated with Pseudocercosporella infection. Left to right: 

uninocu1ated control, inoculated with 22-8 (BWR), inoculated with 

22-20 (BW). 

Figure 8.2 Barley 'Pirate' plants sh0..7ing differential severity of 

infection. Left to right: uninoculated control, 22-2 (BW), 22-8 

(BWR), 22-20 (BW), 22-116 (P.h. var. acuformis). 

Figure 8.3 Wheat 'Armada' plants inoculated with different 

Pseudocercospore1la isolates. Left to right: uninocu1ated control, 

22-2 (BW), 22-8 (BWR), 22-20 (BW), 22-116 (BWR), 22-184 (con-2), 

23-1 (~aestiva). 





Figure 8.4 Mean penetration scores for isolates on a range of 

cereal hosts. Plants assessed 15 weeks after inoculation with 

straw infested with the fungus. Standard error for differences 

between two values calculated for each experiment, omitting data 

for wheat cultivar Rendezvous. = 'Armada' wheat; = 

'Rendezvous' wheat; = 'Pirate' barley; 

'Newton' triticale. 

= 'Animo' rye; 
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figures for this cereal were produced by BWR-type strains. 

Table 8.2 Analysis of variance of pathogenicity resul ts from 

experiment 2. Nine isolates, 22-2, 22-8, 22-20, 22-116, 22-117, 

. 22-127, 22-184, 22-186 and 23-1 were screened for differences in 

pathogenicity against 'Armada' wheat, 'Pirate' barley, 'Animo' 

rye and 'Newton' Triticale. 

SOURCE 1 OF SS MS F 
1 
1 

Isolates 1 8 6916.935 864.617 127.65 P = 0.001 
1 

Cu1tivars 1 3 2503.895 834.632 123.22 P = 0.001 
! 

Interaction 1 24 1408.567 58.690 3.55 P = 0.001 

Residual 525 3555.971 6.773 

Totals 560 14385.368 

Greater differences in pathogenicity were obtained with 

_ 'Pirat~' winter barley. In both experiroonts significantly higher 

(p = 0.001) levels of infection were produced by BWR-type 

isolates than by BW-type isolates. In addition to penetrating a 

greater number of leaf sheaths, BWR-type isolates tended to 

produce larger lesions with more extensive disco1ouration of host 

tissues (Fig 8.2). The cuI tivar of triticale, 'Newton', was 

equally susceptible to BW- and BWR-type isolatesof the pathogen. 

While the penetration figures with this cereal were not greatly 

different to those obtained for 'Armada', the extent of the 

browning of host tissues was generally less severe. 

The ~aestiva isolate (23-1), was not pathogenic to the 

barley, rye or triticale cultivars used. Of the wheat seedlings 
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inoculated with this isolate few had visible signs of infection, 

characteristic eyespot lesions were, however, produced on a 

proportion of the plants (Fig. 8.3). 

8.3.2 Mutant strains 

The pathogenicity of the lysine auxotrophs, 22-127 and 22-

186, was much reduced. Slight infection by both strains was 

observed on 'Armada', and 22-127 caused some disease on 'Pirate' 

barley. The levels of infection, however, were significantly less 

than the isolates from which they were derived (fig. 8.4). No 

lesion development was observed with these strains on either 

Triticale or rye. 

In contrast 22-184, the sporulation mutant derived from 

isolate 22-12, retained the ability to cause typical disease 

symptoms. On 'Armada' the penetration score for this mutant was 

not significantly different (p = 0.05) to those obtained with the 

four field isolates tested, While the level of infection of 

barley was equivalent to that produced by isolate 22-2. 

Pathogenicity to triticale was also equal to that of the wild 

type isolates. This mutant was non-pathogenic on the rye 

cuI tivar, 'Animo'. The pathogenicity of isolate 22-12 on rye, 

however, was only slight. 

8.4 DISCUSSlOO 

The use of straw segments infested with the fungus to 

inoculate cereal seedl ings successfully produced lesions 

characteristic of eyespot disease. Scott (197l) calculated that 

to reduce the experimental error inherent in seedl ing tests of 
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The use of straw segments infested with the fungus to 
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characteristic of eyespot disease. Scott (1971) calculated that 

to reduce the experimental error inherent in seedling tests of 
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this type to a level which allowed accurate detection of 

differences in host response, at least fifty-two plants would be 

required for each isolate-host combination. This degree of 

replication was not possible in the experiments conducted in the 

present study, due to a lack of sufficient glasshouse space. 

Nevertheless, clear differences in pathogenicity between isolates 

were detected. 

The'rye cultivar, 'Animo', was not a suitable host for the 

differentiation of the two pathotypes. Although the BWR-type 

isolates produced higher disease scores than BW-types, the levels 

of infection were generally very low. The two types could, 

however, be ditinguished by their differential pathogenicity to 

'Pirate' barley. BWR-type isolates being substantially more 

pathogenic on this host than BW-types. These results are similar 

to the findings of King & Griffin (1985), and may explain the 

increaSing preponderance of BWR-type isolates in areas where 

barley is grCMl as an alternative to Wheat. 

Isolate 22-116, the ~ h. var. acuformis isolate, was 

similar in pathogenicity response to the BWR-type isolates 

tested. While caution is obviously necessary when drawing 

conclusions based on so few isolates, this finding supports the 

identification of this taxonomic group with the BWR pathotype 

(King & Griffin, 1985). ~ aestiva (23-1) was relatively non

pathogenic to the cereal cultivars tested. Nirenberg (1985) 

reported that this was the least frequently isolated species of 

Pseudocercosporella in Germany. Whi le the low incidence of P. 

aestiva in the field may be due to its relatively low 
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pathogenicity, a larger number of isolates need to be tested 

before definite conclusions can be drawn. 

The use of genetically marked strains to monitor 

population changes in the field necessarily requires rrarkers that 

do not reduce pathogenicity. Neither of the two auxotrophically 

narked mutants tested in experiment 2 retained significant leve Is 

of pathogenicity compared with the isolates from which they were 

obtained. While many auxotrophic mutations may have a deleterioos 

effect on pathogenicity, the association is not absolute. Some 

auxotrophic mutants of Verticillium albo-atrum were shown to be 

equally as pathogenic as wild-type strains (Clarkson & Heale, 

1985b), while pathogenicity of auxotrophic mutants of Venturia 

inaequa1is was restored by the addition of the appropriate 

exogenoos amino acids or vitamins (Wood, 1967). Furthennore the 

identification of an auxotrophic 

requirement in one of the ~ herpotrichoides field isolates (22-

1), strongly suggests that nutritional requirements which do not 

affect pathogenicity in this fungus can be produced. 

Morphological mutations such as con-2, which did not 

greatly reduce pathogenicity in this study, may also prove useful 

in studies where identification of particular isolates is needed. 

This mutation has the added advantage of allowing large 

quantities of spore inoculum to be prepared with relative ease. 

In addition, such strains may be used to demonstrate parasexual 

genetic exchange between different strains in vivo. 
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GENERAL DISClJSSlOO 

Several aspects of the biology of the eyespot pathogen, 

P. herpotrichoides are particularly interesting and merit further 

investigation. Pathogenicity and host specificity differences 

between isolates of the fungus have been correlated with 

differences in in cultural morphology (Lange-de la Camp, 1966: 

Scott ~ al 1975). Instability of the ITOrphological character, 

particularly noticeable in BWR-type strains, raises important 

questions about the status of the two major pathogenic forms and 

their inter-relationship. Since much emphasis has been placed on 

this morphological distinction between the two pathotypes, in 

field surveys of both fungicide resistance and seasonal changes 

in the population structure (Ho11ins ~ aI, 1985: King & Griffin, 

1985), it is vital that the significance and extent of the 

cuI tura 1 variation in the pathogen be clarified. In this task 

additional characters including biochemical markers (total 

protein profifes, isozyme differences, restriction fragment 

length polymorphisms) may be particularly useful. 

The genetic basis of the instabil ity is as yet unclea r. 

However, the use of heterokaryon tests and manipulation of the 

parasexual cycle should enable the possible involvement of 

cytoplasmic and nuclear factors to be investigated. In addition 

it is important that the faster growing variants obtained from 

BWR-type isolates are screened for changes in pathogenicity 

against a range of cerea 1 hosts. 

Resistance to the benzimidazole fungicides has now 

become widespread in the eyespot pathogen population. The range 
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of resistance phenotypes obtainable in the laboratory, has not 

been observed in resistant forms from the field. This is possibly 

a consequence of the selection methods used to isolate resistant 

mutants, but may also be the result of the way field surveys of 

resistant strains are conducted. The ease with which mutants 

resistant to both carbendazim and Mope can be produced in the 

laboratory, from benzimidazole-sensitive or resistant strains, 

suggests that the use of phenylcarbamate fungicides, specifically 

to reduce the frequency of benzimidazole resistant forms in the 

field, is unlikely to be successful, at least in P. 

herpotrichoides. A better understanding of the target site of the 

fungicide and the mechanism of resistance in this fungus, may yet 

lead to the development of compounds capable of inhibiting 

carbendazim-resistant strains without the associated risk of dual 

resistance. 

Resistance to the benzimidazole group of fungicides 

in several species of fungi is known to be altered ~tubulin, 

the main target site of these compounds. The basis of resistance 

in ~ herpotrichoides is not known but is assumed also to be the 

resul t of changes in the tubul in protein structure. This 

assumption requires confirmation by screening resistance mutants 

for electrophoretically abnormal tubulin proteins. In this 

respect, the resistance mutants generated in the course of this 

study, with the wide range of phenotypes described, wi 11 prove 

particularly useful. 

Altered membrane permeability has been shown to be the 

basis of benzimidazole resistance in some species {Tripathi & 
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Sch1osser, 1982: We1ker & Wi11iams, 1983). It is possible that 

mutants with different levels of resistance identified in the 

present work represent different resistance mechanisms: the high

and intermediate-level resistance mutants for example, having 

altered tubulin protein while the low-level resistance mutants 

result from reduced uptake of the fungicides. It should be 

possible to differentiate these two classes on the basis of 

cross-resistance to unrelated inhibitors, as has been shown for 

Dict¥ost!l~ ~!.!.~~~ (We1ker & Wi11iams, 1983). 

Alternatively, culture of the resistance mutants in the presence 

of compounds known to affect membrane permeability, such as 

nystatin or the triazole compound miconazole, should eliminate 

benzimadazole resistance due to decreased uptake while not 

affecting- tubu1in-based resistance. 

Genetic analysis in ~ herpotrichoides is now possible by 

rranipu1ation of the parasexual cycle, demonstated in this work. 

The time required for the production of dip10ids and the recovery 

of recombinant progeny can be considerably shortened from that 

described in Chapter 6.0. Heterokaryon formation between 

compatible strains can be acheived by co-inOCUlation of the 

parental strains directly onto the selective medium, either as a 

mixed conidial suspension or blocks of agar placed in contact on 

the agar surface. Induced segregation using a haploidizing agent 

such as p-f1uoropheny1alanine, rather than fluorouracil, on a 

medium favourable for spore production, would ensure the rapid 

recovery of haploid progeny from heterozygous diploid strains , 

which can then be tested for reassortment of rrarkers in the usual 

way. 
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This system of genetic analysis will allow the genetic 

basis of fungicide resistance to be elucidated. Crosses between 

strains with different resistance phenotypes will enable the 

number of genes involoved to be determined and interactions 

between the phenotypes to be investigated. A fuller examination 

of suppressor and modifier mutations may prove particularly 

valuable. Genetic investigation of mutations obtained by 

selection for revertants in negati vely cross-resistant strains 

should allow additional loci affecting resistance expression to 

be identified. 

The construction of a multiply marked "master strain" 

would greatly facilitate the mapping of resistance loci. Such a 

strain could readily be produced by selection for spontaneous 

resistance to a variety of inhibitors in a strain already 

carrying auxotrophic narkers: thereby avoiding the repeated use 

of mutagenic agents which can induce major structural chromosome 

alterations. 

Vegetative incompatibility between unrelated strains 

appears to be common in !:. herpotrichoides. Few isolates 

producing heterokaryotic growth even under selective conditions. 

Further work, screening a larger number of isolates, is required 

to establish the extent of this incompatibility and to determine 

if compatible reactions are resticted to within each pathotype. 

Protoplast fusion may provide a way by which viable diploids can 

be produced between vegetatively incompatible isolates. If this 

is possible, genetic studies of differences in pathogenicity and 

their association with morphological variation and differential 
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EBI sensitivity, will greatly assist in the overall 

characterisation of the organism. 

This study of resistance expression and variation in P. 

herpotrichoides has inevitably raised l1\:my rcore questions than it 

has answered. The parasexual system described in this work and 

the collection of mutant strains constructed, however, provide a 

strong base from which future work can continue. 
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Appendix I Origin and characteristics of Pseudocercosporella 

field and type isolates 

BOON OTHER CARBENDAZ IM 
NUMBER 1 NUMBERS ORIGIN TYPE SENSITIVITY 

! 
1 

22-1 ! Sl(MD 9) ADAS BW* S** 
1 (Barpenden) 
1 

22-2 1 S2(PBI 265) " BW R 
! 

22-3 ! S3( 170') " BWR S 
1 

22-4 1 S4(MD 7) " BWR R 
! 

22-5 ! Wheat 'Rapier' BW S 
1 (0)*** 
1 

22-6 1 wheat 'Rapier' BWR R 
! (0) 
1 

22-7 ! wheat 'Rapier' BWR R 
! (2) 
1 

22-8 1 wheat' Ava1on' BWR R 
! (1) 
! 

22-9 1 whea t' Ava1on' BWR R 
! (2) 
! 

22-10 ! barley'Fene11a' BWR R 
1 (0) 
! 

22-11 ! wheat 'Rapier' BWR R 
! (0) 
1 

22-12 1 wheat 'Rapier' BWR S 
1 (0) 
1 

22-13 1 wheat 'Rapier' BWR R 
! (2) 
! 

22-14 ! wheat 'Rapier' BWR R 
! (1) 
! 

22-15 ! wheat 'Rapier' BWR R 
! (1) 
1 

22-16 I wheat 'Rapier' BWR R 
! (1) 
! 

22-17 ! wheat 'Rapier' BWR R 
! (1) 
! 

22-18 I B71/2 Rothamsted BW S 
I Expt1. Stn. 
! (wheat) 
1 
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Appendix I continued 

BDUN OTHER CARBENDAZIM 
NUMBER NUMBERS ORIGIN TYPE SENSITIVITY' 

22-19 C71/3 Rothw11 Plant BW S 
Breeders Lincs. 
(wheat) 

22-20 C71/8 NIAB, Cockle BW S 
! Park, 
! (wheat) 
I 

22-21 I C71/67 PBI, carrbridge BW S 
! (oats) 
! 

22-22 1 C71/73 PBI, carrbridge BW S 
! (rye) 
! 

22-115 1 15-4 Rothamsted BW S**** 
! Exptl. Stn. 
I 

22-117 1 BK 45 Rothamsted BWR S 
I Expt1. Stn. 
! 

22-118 I PBI 265 ADAS (Bristol) BW R 
! 

22-119 ! PCB85/ ADAS (Bristol)] BW R 
1 382/2 
1 

22-120 1 PBI 275 ADAS (Bristol) BWR S 
1 

22-121 1 170(1) ADAS (Bristol) BWR S 
I 

22-182 1 wheat BWR R 
! 

22-183 ! Wheat BWR R 
1 
1 

22-116 I Manchester P. h. var. 
I University acuformis S 
1 

23-1 1 64002 Manchester P. aestiva S 
1 University 
1 

24-1 I FOC Ltd. f.!- anguoides S 
1 Chesterford Park 
I 
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Appendix I continued 

Isolates 22-19 to 22-22 and infected whea t and barley straw 
from which isolates 22-5 to 22-17 were isolated were provided 
by Dr. W. Carlisle, Trent Polytechnic. 

* BW Fast-growing, even-edged colony type isolates, 
pathogenic on barley and wheat. 

BWR Slow-growing, irregular1y-edged colony type isolates, 
pathogenic on barley, wheat and rye. 

** S Isolates sensitive to carbendazim 
R Isolates resistant to carbendazim 

*** Previous fungicide history of field: 
(0) No previous use of benzimidazole fungicides 
(1) Field sprayed only once with benzimidazole fungicides 
(2) Field sprayed two or more times with benzimidazole 

fungicides 

**** Spontaneous MOPC-insensitive revertant selected from a 
carbendazim-resistant field isolate 
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-1 
Appendix II Chemical group, structural fODmllae and J.1.M : IJ.g ml 

concentration conversion tables for fungicides used in this work 

Microtubule Inhibitors 

Benzimidazoles and Thiophanates 

carbendazim mol wt 191.2 

10.0: 1.91 

52.3 : 10.0 

benomyl mol wt 290.3 

10.0 2.90 

34.4 10.0 

thiophanate- methyl mol wt 342.4 

S g 11 

(XNH-C-NH- -O-CH3 

~I 
NH-C-NH-C-o-CH 

11 11 3 

10.0: 3.42 

29.2 : 10.0 

S 0 
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thiabendazole mol wt 201.25 

0-~ r-S 

~N/-'-.N) 
H 

~ -phenyl carbama tes 

Mope mol wt 220 

S-32165 mol wt 281.3 

Ergosterol Biosynthesis Inhibitors 

Triazoles 

triadimenol molwt 295.8 

pM : pg ml-1 

10.0 2.01 

49.7 10.0 

10.0: 2.20 

45.5 : 10.0 

10.0: 2.81 

35.5 : 10.0 

10.0 2.96 

33.8 10.0 



-217-

propiconazole mol wt 342.2 

10.0 : 3.42 

29.2 : 10.0 

j Cl 

Cl 

DPX H6573 mol wt 315.4 

IH
3 

10.0 3.15 H-Si-H 

F001~-\ }F 
0 

31.7 10.0 

Imidazoles 

prochloraz mol wt 376.7 

C 
10.0 : 3.17 

D° 26.5 : -8-r-CH:rCH2"0 \-j 10.0 
Cl 

C3H7 C 

Morpholines 

fenpropi morph mol wt 303.5 

10.0: 3.04 
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Appendix III Diagnostic media used for the identification of 

auxotrophic mutants. Most supplements prepared as 1 to 2\ 

stock solutions and added to give a final concentration of 0.1 

mg ml-l • Vitamin-free casamino acids (Oxoid) was used at a 

final concentration of 1.25 fig ml-l 

Nutritional Supplement Symbols: 

ADE adenine LED leucine 

ALA alanine LYS lysine 

ARG arginine MET methionine 

ASN asparagine NIC nicotinic acid 

ASP aspartate ORN ornitnine 

BIO biotin PABA ~minobenzioc acid 

CID choline PAN'IO pantothenic acid 

CIT citrulline POX pyridoxin 

CYS cysteine PHE phenylalinine 

CYTP cytosine PRO proline 

FOLATE folic acid RIB) riboflavine 

GLO glutamic acid SER serine 

GLY glycine THR threonine 

GUA guanine 'mY thymine 

HIS histidine TRP tryptophan 

OOl'DCYS homocysteine 'lYR tyrosine 

ILE isoleucine URA uracil 

ILE inositol VAL valine 



-219-

Series A 

PLATE NUMBER 

1 2 3 4 5 6 7 8 

1 ADE 

2 CYS SUl 

a: 3 TYR CIT THY 
w 
co 
~ 4 GLU RI80 MET URA 
::l z 
w 5 PHE CHO PUl liS CnD 
~ 
...J 
0-

6 FOLlTE ILE VU NIC LYS ORN 

7 PRO SER POX ASN SLY ALA TRP 

8 BID ASP HIS THR LEU HOMDCYS PANTO INO 

10 VITAMII- fREE CASlMIHO ACIDS 

Series B 

1 US URA PRO 

2 TYR rHE TRP 

3 VAL LEU /lE a: w 
co 
~ 4 MET THR cn 
::l z 
w 5 SER 
~ 

SLY SLU ALA 
...J 
0- 6 HIS LYS ASP ASH 

7 ADE URA THY 

8 BID CHO INO HIC PlBA PANTO RI80 
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APPENDIX IV. UV-mutagenesis and selection of auxotrophic 

mutants in P. herpotrichoides: experimental 

conditions, isolation frequency and nutritional 

requirements of auxotrophs. 

(SMYG = MYG supplemented with a range of vitamins, 

aminoacids and nucleic bases. 

SMM = MM supplemented with casamino acids, vitamins, 

adenine and uracil. All supplements were used at the 

standard concentrations). 

t . 



EXPERIMENT NUMBER 1 2 3 4 5 6 7 8 9 

STRAIN NUMBER 22-20 22-20 22-29 22-49 22-108 22-111 22-108 22-6 22-12 
PARENTAL MARKERS Bioi-type BW-type ben-17 ~ hisA-l argA-l hisA-1 BWR-type BWR-type 

UV DOSE (Jm-2s-1) 96 96 96 96 96 96 96 96 96 
SPORE CO~~NTRATION 

(ml ) 106 106 106 106 106 106 106 
105 105 

SUSPENSION VOLUME 
(mll 20 20 6 6 20 20 20 6 6 

INITIAL SPORE 
VIABILITY (~) 60.0 98.0 66.0 40.8 81.2 78.2 66.7 59.0 68.7 

RECOVERY MEDIUM HYe HYe HYe HYC HYG mc mc SMYC SI'H MYG SMYG SI'H S~'YG SI'H 
rIlTRATION ENRICHMENT + + + - + + 

I 
I\) 

lIQUID HOLDING (24h) + + I\) 

SURVIVAL or VIABLE -" 
I 

SPORES (~) 6.7 6.7 0.8 0.8 9.6 9.6 0.3 0.3 34.4 11.0 19.6 16.9 9.4 22.4 27.3 27.3 27.0 45.0 30.0 92.1 76.3 
NUMBER or COLONIES 

TESTED ON MM 112 256 96 256 432 256 240 624 1312 1040 1024 1136 1104 443 484 976 384 44B 4AO 416 
NUMBER or AUXOTROPHS 1 1 1 3 4 1 0 5 1 6 6 7 1 2 4 0 5 1 1 0 
rREQU£NCY or 

AUXOTROPHS (~) 0.9 0.4 1.0 1.2 0.9 0.4 <0.4 O.B 0.1 0.6 0.6 0.6 0.1 0.5 O.B <0.1 1.3 0.2 0.2 <0.2 
INDUCED AUXOTRCPHIC 

REOUIREMENTS adeA-l tyr-l lys-2 IvsA-l argA-I hisA-l asnA-3 sA-l s8-2 sC-4 metB-2 ~ argA-4 ~ nicA-2 nicA-5 lys-5 
esnA-l adeA-2 / lys-3 sB-3 sC-5 ~ mc-l leuA-2 ~ 
asnA-2 asnB-.!. adeB-3 met A-I ~ uraA-l serA-72 nicA-4 

ilvA-2 lysC-6 ~ adeA-5 uraB-3 aux-4 nicA-6 
metD-4 ~ ~ sC-6 s-71 

arg-2 trp-l ornC-5 
argB-3 
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