
 

 

   

 

 

The University of Nottingham 

Nottingham Geospatial Institute 

 

Digital Images for Road Surface 

Monitoring 

 

Sarhat M. Adam 

 

Supervisors 

Dr. Martin Smith  

        Dr. Nikolaos Kokkas   

 Thesis submitted to the University of Nottingham for the degree of Doctor of 

Philosophy 

May 2015 



isxsmad
Typewritten Text
This Page is Intentionally left Blank



 

i 

 

DEDICATION  

 

 

 

 

 

 

 

“This thesis is dedicated to the soul of 1100 Peshmergas, who 

lost their life fighting ISIS and those who continue fighting 

them to make Iraqi-Kurdistan a better place to live in.” 

 
Source: http://rudaw.net/NewsDetails.aspx?pageid=112615 

 

 

 

 

 

Sarhat Mustafa Adam 

15/03/2015 



                                                                 Acknowledgement 

ii 

 

ABSTRACT 

 

Road networks are regarded as probably the most-important infrastructure in 

modern day travel. Regular assessment of their condition is necessary for implementing 

proper maintenance and minimizing the cost. For example, early crack detection and 

maintenance has proved to be an effective technique of prolonging the age of roads and 

maintaining safe travel conditions. Although, detection of the cracks has been the aim of 

a number of researches in recent years, many challenges still exist. For example, crack 

detection in rough texture surfaces needs more attention and investigation, as rough 

texture can make crack detection difficult in a digital image. In addition, the pavement 

surface texture can change rapidly within a few metres which affects the ride quality, 

skid resistance, and road safety. Existing traditional surface texture measurement 

techniques such as the Sand Patch Test (SPT) tend to be time consuming and of variable 

quality. Whereas, modern methods which include Mobile Laser Scanning Sensors 

(MLSS) can provide accurate results but are often regarded as too expensive.  

In this study an alternative method for measuring pavement surface texture will be 

investigated, with the aim of testing the potential of digital images for road surface 

monitoring and pavement evaluation. This method is based on the rapid advances in the 

field of image processing and image-based 3D modelling. This research is aimed to 

investigate the possibility of identifying road surface distresses due to cracks and 

potholes, as well as characterising surface texture depth. This project is split into two 

parts, the first part is to investigate or examine the use of digital images in video mode 

for identifying the cracks and potholes. In the second part, the project will concentrate on 

using digital still images for characterising the road surface texture in order to extract 

relevant safety parameters such as texture depth.    

This research showed that it is possible to measure the texture depth from digital 

images using different cameras with comparable results to SPT. A good accuracy and 

high correlation with SPT were achieved even with smartphone cameras. It has also been 

shown that it is possible to assemble a system with cost effective tools such as camera 

and hand-held GPS. Then, through algorithm development, it was possible to detect 

important road damages such as cracks and potholes with good accuracy when compared 

with measured trust data.                                                                        
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CHAPTER ONE: INTRODUCTION  

1.1 Introduction  

The road network is a vital part of the infrastructure for modern day living and 

subject to distresses after construction due to various factors such as aging, 

environment conditions such as temperature and frost action, loading and normal wear. 

The evaluation of road quality is an important task in many areas where harsh weather 

conditions are present such as in mountainous areas. The accurate assessment of road 

surface distress data is required as an essential input to any decision making process 

concerning the road surface management policy. This would help reduce the costs of 

maintenance and stop the distresses development. 

According to WarrantyDirect (2012) ,  road surface anomalies are estimated to 

cause many mechanical failures in UK’s roads and motorists face an estimated cost of 

£320 million every year. Furthermore, the United States (US) association of state 

highway and transportation officials reported that only half of major US roads are in 

good condition because of less effective monitoring. Also, there is damage claims raised 

against highway bodies and insurance companies worldwide. For example, the state of 

Michigan in 2005 faced more than 7,500 cases for pothole-related damage claims. This is 

in addition to more than 500,000 pothole-related claims annually received by insurance 

companies in the same state.  Therefore, periodic road assessments and collection of up-

to-date information about the road surface condition is considered to be the most 

effective way to conserve high road standards at minimum possible cost (Furness et al., 

2007; Eriksson et al., 2008).   

There are various methods and techniques adopted and available for measuring 

and evaluating the distress of the road surface. All the inspection that was available 

before 1980 was achieved manually creating long processing surveys. The importance of 

monitoring was addressed by many road authorities that led to develop effective methods 

of road health monitoring. From 1980 and onwards, the monitoring could be automated 

with the advancement in technology. Techniques for detecting the condition and the 

performance of roads are continuously being developed over time with the advent of new 

methods and improvements to the established equipment. Significant progress was made 

in the field and new approaches were proposed, many of which were designed based on 

slow speed Ground Penetrating Radar (GPR), or on the laser scanning detection system. 

Other approaches included the use of mobile sensors or accelerometers for detecting and 

http://academic.research.microsoft.com/Keyword/17020/ground-penetrating-radar
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reporting road surface anomalies based on integrated sensor equipped vehicles (Payne, 

1992; Forest and Utsi, 2004; Eriksson et al., 2008). 

From all the developed methods, digital images remain a dependable source and 

have been widely used in road surface monitoring. Advances in digital image technology 

created a chance to overcome some of the problems related to labour-intensive processes. 

The use of image techniques seems to be more promising and has advantages over other 

invasive methods such as laser based systems or Ground Penetrating Radar (GPR) 

approach. The acquisition technique using imagery is more cost effective, easier, more 

dense (each millimetre), and more precise in measuring the defect  (Sylvie and Jean-

Marc, 2011). 

There are many image acquisition techniques available nowadays. By comparing 

with other techniques such as satellite imagery or traditional aerial photography, the use 

of images from a consumer camera on a different platform such as a UAV (Unmanned 

Aerial Vehicle) or terrestrial based mobile system can be cost effective. On the one hand, 

satellite image is not preferred due to the cost and due to limited spatial resolution of the 

image. On the other hand, traditional aerial imagery could be an alternative choice, but 

the limited manoeuvrability of the platform to acquire the qualitative image data and the 

associated high costs are possible limitations. In contrast, UAVs and other mobile based 

systems are extremely flexible, low cost in collecting image data, faster and safer. 

Moreover, UAVs and mobile based systems are able to operate quite close to the scene 

and acquire images with few centimetre resolutions which provide details sufficient for 

identification and extraction of most distresses parameters, namely cracks and potholes 

(Zhang, 2008a).  

Although there has been substantial progress achieved in road monitoring 

techniques during recent years, there are still many challenges remaining in 

automatically generating other types of distress data, such as potholes or rutting. Despite 

the fact that other distress types can also contribute considerably to the pavement surface 

condition, the primary interest of all previous researchers was focused on the pavement 

surface cracking only without considering the texture roughness. Various types of 

distresses will be considered in this report through using multiple images and producing 

3D surface models.  

Not all the distresses developed on road surfaces are cracks; another important 

parameter related to safety of the road is skid resistance. It is related to how rough the 

http://academic.research.microsoft.com/Keyword/17020/ground-penetrating-radar
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texture is and how much friction is required to keep the car stopping safely while moving 

at high speeds. Skid resistance is related to the surface texture depth in high speed and in 

wet condition. Although there is a large amount of research work involved in skid 

resistance, there is less work dealing with the surface texture measurement using digital 

images.  

 This project aims to investigate the potential of using only a digital SLR camera 

and smartphone cameras as a tool for evaluating some problems in road surfaces. 

Roughness measurement, for example, is an important parameter which will be 

investigated using texture analysis techniques and 3D models as an easy alternative to 

the traditional sand patch test. Cracks are also considered as the most-frequent distresses 

that if detected and maintained can save some of the expected cost. Another important 

problem related to weather conditions is potholes. Using only digital images for road 

surface monitoring is challenging but is also important for some developing countries 

that cannot afford the high cost associated with special designed commercially available 

systems, with estimated costs up to $100k (Pavemetrics, 2012; Engineering, 2013; Fugro 

Roadware, 2013). 

1.2 Aims and Objectives 

1.2.1 Aims  

The aims of this research are to investigate the potential of using digital images for 

roughness (texture depth measurement) and detecting important road damages such as 

cracks and potholes using hand held and mobile vehicle devices.    

1.2.2 Objectives   

To meet the above aims, the following objectives have been set:  

1. Investigate highway maintenance problems by identifying the issues and 

present challenges and highlighting limitations in existing highway surveying 

maintenance and monitoring techniques.   

2. Examine the potential of digital images from a variety of cameras, smartphone 

cameras  and Digital Single-Lens Reflex (DSLR), for roughness or texture 

depth measurement on concrete and asphalt pavement surfaces through: 

- Use of different cameras with different lenses and comparison of the 

results. 



                                          Chapter One: Introduction 

4 

 

- Investigating the effect of intersection angle and the distance of the camera 

from the surface on the results. 

- Comparing the results of texture depth measured from both automated 3D 

models and the traditional Sand Patch Test (SPT). 

- Use of the proposed methodology on other materials such as concrete 

texture which is not part of a road surface. 

3. Investigate the potential of detecting the cracks on the road surface from digital 

SLR extracted video frames through:  

- Algorithm development of crack detection based on the edge operator 

detection. 

-  Time management of algorithm by applying exclusion criteria or decision 

making on the extracted frames based on statistical testing and Gaussian fit 

to exclude free of problem images or frames.   

- Examining the algorithm on different image sources (Web, Extracted from 

published papers, low resolution, and shadow existence) and with various 

texture roughness.  

- Examining and evaluating the algorithm for crack detection on video 

extracted images from mobile van.   

  

4. Investigate the potential of detecting potholes on road surfaces using the 

extracted frames from video DSLR images through: 

- Investigating different sources of 3D modelling and point cloud 

generation using open source and commercial software. 

- Investigating the best available digital matching algorithms. 

- Investigating, in terms of accuracy the open source and commercial 3D 

modelling software.  

- Testing the mobile vehicle based imagery system for potholes 

detection. 

 

 

 

1.3 Methodology  

In order to satisfy the above objectives, the following methodology was 

considered to be necessary for performing the research:     
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1. The first step in the methodology is to understand the pavement health, 

remaining life time, distress types, and what are the possible causes that could 

likely affect the pavement. This can be done through extensive reviewing of the 

distress types and classifying them according to the severity and frequency. To 

explore both the available methods and analysis techniques that perform the 

monitoring and maintenance of the highways, this can be done through 

literature reviewing and evaluating the previous methods.      

2. To investigate the potential of small format images,  

a- A set of practical trials were designed for testing the existing 

photogrammetric software and open source tools (examples are Leica 

Photogrammetric Suit (LPS), Photomodeler, Photosynth, Bundler, and 

AGISoft).  

b- Evaluating the existing technique for measuring roughness and comparing 

it with texture analysis technique. 

c- Developing an algorithm to detect and measure crack automatically. 

d- Developing an algorithm to detect and measure Potholes. This includes a 

comparison of various available techniques for point cloud generation.  

3. To test the proposed design system potential, a number of surveys were carried 

out using real world data and statistically evaluating and analysing the data for 

surface defect detection with manually measured values.    

1.4 Contribution to knowledge 

The contribution to knowledge is to investigate the possibility of using only one 

camera system for the road surface anomalies evaluation. The system will be used to 

detect cracks, potholes, and surface roughness or skid resistance. A novel approach for 

measuring the roughness of the texture is another important parameter that this project 

will consider. This project will aim to overcome some of the existing limitations of road 

surface monitoring; mainly, the detection of cracks in the rough texture that is often 

accompanied with lots of mis-interpretation due to the raising of aggregates to the 

surface. Moreover, the project will investigate the use of off-the-shelf cameras for the 

production of 3D surfaces from point clouds for surface anomaly detection and 

roughness measurements.  

An extensive review on the literature has not identified any previous study or 

research that dealt with automatic roughness measurement or depth calculation using 

smartphone cameras and digital SLR cameras. The rapid advancement in 3D automation 
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methods has opened the door for many applications and research questioning. Research 

into 3D method automation for roughness measurement has revealed no critical 

comparisons between the automated 3D surfaces of texture and the sand patch test SPT. 

The feasibility of the research is the fact that Smartphones with cameras are now widely 

available. A user only needs to capture images from different directions of the surface 

texture. The images can then be sent in real time to the office and a 3D automated 

program can be run to work out the texture depth while the user is still in the field. In 

order to get the scale of the model, specially designed targets were prepared and placed 

on the surface, with the distance measured between the different targets.    

The cost of available commercial systems is not affordable by many developing 

countries and local road authorities. Local authorities should have a monitoring process 

that is effective, easy to use, and in place across the road network to meet their 

obligations. Therefore, building a cost effective and reasonably accurate system will be a 

useful alternative. The alternative system will include on-board, a Digital SLR camera 

and hand-held global positioning system (GPS) device. An algorithm was developed to 

deal with the huge number of video frames. The extracted frames underwent different 

processes in order to effectively detect cracks and potholes. A semi-automated solution 

was then achieved in identifying both cracks and postholes with manual intervention. 

However, a fully-automated solution is possible through linking the different algorithms 

in one main program interface.   

1.5 Thesis Outline  

In this section, the outline of the thesis is displayed in such a way as to guide the 

reader for the contents of each chapter.  

Chapter 1 starts with an introduction to the subject through briefly describing the 

available techniques with their limitations, and the proposed solutions. The aims and 

objectives of the project are demonstrated after that. Project methodologies are described 

later. It is then followed by the contribution to the knowledge in order to show the main 

contribution of the author. Finally, the chapter is finalized by thesis outline. 

   Chapter 2 consists of an introduction to the chapter and then the literature review 

is presented to provide critical review on the previous methods of road surface 

monitoring and the developed techniques. It then provides a comprehensive review about 

road pavement designs, distresses, and monitoring methods. A brief introduction to 2D 
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image analysis is then presented and followed by point cloud generation techniques. 

Finally, a summary of the chapter contents is included.   

Chapter 3 concentrates on the developed methodology for roughness measurement 

or texture depth measurement using digital images that begins with an introduction to the 

chapter, followed by data sets and test site description. The material and methods 

required for conducting the tests are described. It then provides the procedures for 

performing the required trials. Results and analysis of this chapter are detailed before 

finalizing the chapter with a summary.   

Chapter 4 includes the developed algorithm and a new methodology for crack 

detection that starts first with the introduction to the chapter, followed by describing the 

used data sets and test site location. After that, a brief description to the problem 

definition of cracks and a trial of detection is presented. Then the chapter methodology 

or procedures follows. The results and analysis of the chapter are then presented. Finally, 

the summary is coming at the end of the chapter to give a brief description of the chapter 

outcomes.    

Chapter 5 focuses on the detection of potholes from video extracted digital frames 

and starts with an introduction to the chapter and then procedures, followed by results 

and analysis. Finally, the conclusion or summary of the chapter is highlighted.     

Chapter 6 concludes the project and recommends areas of possibility for further 

research study. 



                                          Chapter Two: Background and Theory 

8 

 

CHAPTER TWO: BACKGROUND AND THEORY 

2.1 Introduction  

This chapter presents a historical review of the theory of road surface monitoring 

and the available manual and automated methods. Moreover, it shows how each country 

uses different systems. It also presents the challenges existing in road surface 

monitoring, and the theory behind 2D image analysis and 3D based image modelling, 

and new advances in the techniques used for pavement measurement.   

2.2 Literature Review 

In transportation management systems, road pavement condition data are 

considered to be an essential part of road maintenance. Early detection of a crack on the 

road surface helps the maintenance to be performed before the crack distress develops 

into a more serious problem, such as a pothole. The detection and measurement of 

pavement cracking provides valuable information on the road network condition and can 

help to reduce the maintenance costs. Worldwide, several damage claims are annually 

raised against local authorities and insurance companies regarding potholes and other 

types of pavement distresses   (Eriksson et al., 2008). 

Over the last decades, significant progress has been made in using a variety of 

techniques for assessing the pavement road surfaces. For efficient collection of pavement 

condition data, different approaches have been proposed, and various automated systems 

developed worldwide since the 1980s. Previous approaches to pavement condition 

involved a labour-intensive, time consuming, and risky process of data collection (Zhang 

and Elaksher, 2012).  

Several systems have been designed based on different techniques such as slow 

speed Ground Penetrating Radar (GPR) (Forest and Utsi, 2004; Eriksson et al., 2008) or 

based on a laser scanning detection system (Payne, 1992). The data collection using a 

mobile vehicle with GPR remains a costly and disruptive method which will affect the 

frequency of the survey. It is also limited in terms of covering the road surface; as most 

of these instruments are only covering one lane. On the other hand, digital image 

processing is more preferable than those systems regarding the cost, coverage and 

frequency of the survey (Zhang, 2008b). 

http://academic.research.microsoft.com/Keyword/17020/ground-penetrating-radar
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Image processing technology plays a vital part in analysing and evaluating the 

pavement surface cracking. Several systems have been designed since 30 years ago, in an 

attempt to automate the process of recognition and classification of pavement surface 

distresses in an efficient and effective approach using engineer usable indices. Starting 

from the late 1980s, the first automated pavement distress survey system was produced 

by the Japanese consortium Komatsu (figure 2.1) comprising a survey vehicle with a 

data-processing system on board to measure simultaneously; cracking, rutting, and 

longitudinal profile. The system works only at night to control the lighting condition, and 

a maximum resolution of 2,048x 2,048 pixels is obtained at the speed of 10 km/h (Wang 

and Smadi, 2011).  

   

Figure 2.1: Komatsu Survey Vehicle (Wang, 2000) 

 

From the late 1980s to the early 1990s, Pavement Condition Evaluation Services 

(PCES), a research unit supported by Earth Technology Corporation (ETC), created the 

first automated system to manage line scan cameras at 512-pixel resolution to collect 

pavement data. As image capturing and processing technologies associated with the 

system were not mature enough at that time, no significant progress was made by PCES 

(Wang and Smadi, 2011).  

Several other commercial companies and scientific research have offered solutions 

for monitoring road surface condition such as Commonwealth Scientific and Industrial 

Research Organisation (CSIRO) and Fugro Roadware crack detection systems. CSIRO is 

the Australian Commonwealth Scientific and Industrial Research Organization that 

developed the first fully automated road crack detection system (RoadCrack) using a line 

scan camera. The system was capable of identifying any crack wider than 1 mm at 

highway traffic speed and served Australian highways for several years. Fugro 

Roadware’s Automatic Road Analyzer (ARAN) platform is most-broad system 
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employed in United States of America (USA) which utilises area scan cameras.  The 

system has configurations with the option of 2 mm resolution or 1mm ground sampling 

distance, with strobe or infrared lighting, respectively. The collected image data are rated 

visually (visual inspection) or through the Roadware automated crack detection software, 

WiseCrax (Gavilán et al., 2011). 

In Europe, especially in the Netherlands and Finland, the Automated Pavement 

Distress Analyzer (PAVUE) system has been used. In the UK, it is worth mentioning 

that the first shift toward automation was started in 2000, on the trunk road network, with 

the defining of TRAffic Speed Condition Surveys (TRACS) and SCANNER (Surface 

Condition Assessment for the National Network of Roads). A SCANNER survey vehicle 

is used to assess the condition of all motorways, and TRACS survey vehicle is used to 

assess the condition of Highways Agency owned motorways and trunk ‘A’ roads (the 

Strategic Road Network). The research was carried out on both systems in order to test 

the full capability of the two systems to be run on all road networks without disruption to 

traffic (Hawker, 2003; TRACS, 2006).  

The UK Transport Research Laboratory (TRL) which is the result of ten years of 

extensive research, has introduced the Highways Agency Road Research Information 

System (HARRIS). The main objective of HARRIS was to use the state-of-the-art 

technology for the assessment of road conditions at traffic highway speed. This system 

has been used to survey national and local roads using line scan cameras at 3.5 m survey 

width. With the rapid development to the methods and equipment, HARRIS1 and 

HARRIS2 were also defined. The HARRIS2 system has reached a full capability of 

assessing most of the distresses occurring on the street, such as cracks, other 

deformations, and roughness measurement or texture depth measurement, achieved by 

using the laser sensors (Transport Research Laboratory, 2014).    

Digital imaging is not the only solution for distresses identification. The GIE 

LaserVISION is an example of a laser-based system that utilizes four sensors of lasers 

and provides 3D measurements. The system has a low resolution 3 mm by 110 mm 

footprint, so it was limited to measure the transverse cracking (GIE Technology, 2009).  

Another promising developed survey system is to use the car as a sensor for detecting 

and reporting the surface conditions of roads (Eriksson et al., 2008). The system is called 

patrol pothole and uses the inherent mobility of a number of participating vehicles which 

could gather the data from vibration (accelerometers) and GPS sensors. The collected 

data was processed to evaluate road surface conditions. As the name of the system 
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suggests, it is only used for detection of the potholes. Moreover, the approach requires 

data training that seems to be a limitation in addition to utilizing a network of the cars. 

In accordance with the system development, there was also a pace in developing 

the algorithms of crack detection. In most automated systems, different algorithms have 

been developed and adapted. An investigation was undertaken by the TRL to assess five 

commercial systems that are used for crack identification including Fugro, TRACS, 

Waylink, HARRIS1and HARRIS2. Typical non-crack features (false-positives) or mis- 

interpretations, such as road markings, manhole covers, road edges, patches, and joints 

were all considered major problems and were reported more times than the reference 

data by all systems. The suggestion was to better understand the crack pixels and to 

develop more robust crack detection algorithms (Furness et al., 2007).   

  Extracting distresses, such as cracks on the road pavement, in images is rather 

complicated and in most of the research, only a single image was used. The threshold 

method used by Acosta et al. (1992) was the first popular and simple method for crack 

detection but contained lots of false-positive cracking. Neural network-based methods 

have also been proposed by (Kaseko and Ritchie, 1993) to improve the problems or 

reduce the false detection that usually occurred with thresholding methods. Filtering 

methods were also produced which are based on wavelet decomposition (Subirats et al., 

2006) or partial differential equations (Augereau et al., 2001). Finally, Shimamura et al. 

(2009) used a pattern recognition method for crack geometry to extract the quantitative 

data necessary for evaluating the extent and severity of cracking. 

There are some difficulties of using one image, such as illumination changes due 

to sunlight, objects on the road, artefacts due to the dynamic acquisition, and potential 

false identification of cracks such as shadows. Chambon (2010) proposed a solution by 

using multiple images from different points of view in order to overcome some of the 

problems associated with false crack candidates. This proposed methodology led to an 

increase in the performances of detecting the false results due to the use of redundant 

images, but did not totally detect all the false-positive candidates. 

A high-quality pavement image is not possible with the influence of sunlight and 

shadows or illumination changes. As a result, laser illumination based technology 

became available in late 2005, after two decades of struggle in acquiring high-quality 

pavement images without the influence of sunlight and shadows. The system was called 

Laser Road Imaging Systems (LRIS), which allows image acquisition without the 
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influence of sunlight and shadows. The advantage is that the system works at day or 

night, but the requirement of road pavement surface dryness and the cost of the system 

are limitations, and the working speed limits (0-100Km/h) are also considered as 

possible limitations, i.e for motorways but not residential roads. Although, a mobile 

platform with LRIS technology can capture a detailed image quality, it is still expensive, 

not efficient and time- consuming. Under consistent laser illumination, the images of 

LRIS are free from shadows. However, a significant amount of background noise caused 

by high contrast was observed from laser images. Therefore,  exploiting other systems or 

solutions was considered essential (Chambon, 2010; Wang and Smadi, 2011).   

Further research studies have looked at different sources and techniques such as 

satellite imaging and hyper-spectral data. Research has been carried out using remote 

sensing satellite to find a correlation between spectral reflectance and physical 

characteristics of road surfaces, such as rutting and cracking. This study showed that it 

was possible to describe general pavement age and surface distresses such as ravelling. 

However, other significant pavement quality parameters, such as rutting and cracking, 

were difficult to detect due to the limited spatial resolution of satellite sensors 

of>4m(Zhang, 2008b).  

In another study, the roads were sensed using sub-meter (50cm) hyper-spectral 

remote sensing data. Their eventual goal was to explore relationships between remotely 

sensed parameters (image ratios and spatial variance) and road condition parameters such 

as Pavement Condition Index (PCI). Although the results of this research were 

promising, it proved to show high levels of uncertainty in evaluating older roads and was 

only perfect for roads in good conditions. This study suggested the need for further 

research to develop a more effective strategy of mapping the road condition through 

exploring other hyper-spectral mapping techniques including the short-wave infrared and 

small absorption features (Herold et al., 2004). 

UAV based remote sensing system has also been proposed by Zhang, (2008a) 

for unpaved road surface image acquisition and road condition parameters, with Initial 

test results flew over a test area showing that the UAV images are suitable for extracting 

many of the parameters required for monitoring the condition of unpaved roads, and the 

development of image processing algorithms to detect and extract road defects from the 

UAV collected imagery. Various road distresses were detected from 2D imagery using 

the developed algorithm. Photogrammetric techniques were also used for analysing the 

inherent 3D geometry information in images and the fusion of 2D or 3D information to 
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derive road condition parameters. The current 2D image analysis uses image features 

(such as colour and edges), pattern recognition and image classification techniques. 

The crack on the road surface is not the only defect that most of the automated 

systems are used to measure. Potholes for example and texture depth measurements are 

two additional important parameters that require attention. 2D image analysis is not 

sufficient to detect the pothole, although many researchers have attempted to do so 

(Koch and Brilakis, 2011; Koch and Brilakis, 2012). A texture difference between the 

pothole and the background road is the main key behind the detection of potholes using 

2D image analysis. Therefore, the need for the third dimension proved to be necessary 

when the texture difference was not available. 3D laser scanners have also been utilized 

for pothole identification and detection. Many researchers starting from 2005 have used 

laser scanners for pothole measurement through reconstructing 3D point clouds (Liu et 

al., 2005; Perng et al., 2013). Other studies have used mobile sensors or vibration sensors 

for pothole detection (Eriksson et al., 2008; Mednis et al., 2011).    The cost of building a 

3D laser and the preliminary results of vibration sensors are the two main limitations of 

both existing pothole recognition and related assessment methods. 

The texture depth measurement is another important road surface characteristic 

that requires attention. There is a highly significant relationship between the skid 

resistance in wet conditions and high speed with the road surface texture depth (Viner 

and Britain, 2006). Texture depth measured using the historical approach which was 

through the use of a volumetric technique (DoP:Transport & Infrastructure, 2012). 

Limitations of this technique are the lack of access to all voids in the road surface, lack 

of accuracy in permeable asphalt surfaces and the fact that it can only be used for dry 

surfaces. Recent advances in technology have allowed the use of the laser sensor to be an 

alternative for classical volumetric approaches (Bitelli et al., 2012; Jahanshahi et al., 

2012; Sengoz et al., 2012). In addition to the cost of the laser sensors, the lack of 

information from only one profile is considered to be possible limitations.  

 This extensive study on literature has revealed that there is a wide range of 

automated systems that offer the monitoring of the road surface. However, the cost of 

these systems is a major limitation which is not affordable by many road authorities 

especially in developing countries. Therefore, the necessity for a cost effective 

alternative is critical. It has been noticed from literature that three characteristics of road 

defects, i.e. cracks, potholes and texture depth measurement, need further studies. 

Although, intensive studies were carried out on the crack detection, still some drawbacks 

http://www.ribaproductselector.com/Docs/8/27168/external/COL427168.pdf
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can be noticed. These drawbacks, such as shadow removal and roughness of texture need 

to be overcome. Roughness measurement or texture depth measurement is another area 

where a gap has been found. Based on author knowledge, no study has used images 

based on 3D modelling for texture depth measurement and pothole detection, so an 

alternative of using only digital images for texture depth measurement will be 

investigated. Finally, the reconstruction of 3D models from a digital image extracted 

from video files will be evaluated. The next sections will cover the road surface, sensors, 

platform, and the new processing techniques in more details. 

2.3 Road pavement design, distresses and monitoring 

A pavement can be defined as a horizontal structure supported by local available 

natural material with the purpose of transferring or distributing the applied traffic and 

other loads safely and reliably to the supporting soil. Acceptable riding quality and 

adequate skid resistance are more important characteristics that the pavement has to 

provide in addition to favourable light reflection and low noise pollution. A pavement 

can be classified by construction type into four different groups; unpaved, asphalt, 

concrete, and elemental. Unpaved road is either soil or gravel that may be sealed or 

unsealed. Elemental is a pavement with concrete blocks or bricks paver and may be 

natural stones. Asphalt is flexible in nature and called a flexible pavement due to the 

nature of distributing the loads beneath it. While concrete is a rigid structure, and the 

distribution of loads differs from the flexible pavement, figure 2.2 shows the differences 

between flexible and rigid pavement with regard to load distribution (Pearson, 2012).  

 

 

 

Figure 2.2: Flexible and rigid pavement load distribution (OSU, 2012) 

Typical flexible pavement structure consists of several layers of materials that can 

provide elastic nature to the load distribution. Due to its nature of load distribution, 

http://classes.engr.oregonstate.edu/cce/winter2012/ce492/Modules/02_pavement_types/02-2_body.htm#basic_structural_elements
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flexible pavement roads suffer from distresses more than rigid pavement roads. 

However, flexible pavement is more economic and easier to deal with in case of damage, 

besides that it is recyclable.  Policy and economy of most highway agencies can decide 

the selection of pavement type. Maintenance or rehabilitation generally requires every 10 

to 15 years for flexible pavements due to its life cycle, figure 2.3.  On the other hand, 

rigid pavements can usually serve longer than 20 and up to 40 years with slight or no 

maintenance or rehabilitation (OSU, 2012).  

   

Figure 2.3: Life cycle of flexible pavement and the cost of maintenance (Alex, 2011) 

2.3.1 Flexible pavement design  

 The wheel load acting on the pavement is distributed to a wider area of soil, and 

the pressure decreases with the increase in depth of the layer, as can be noticed from 

figure 2.2. The stress distribution characteristic becomes better when the flexible 

pavement has many layers. Therefore, the concept of a layered system is applied in the 

designing of the flexible pavement, and the top layer has to be of the best quality to 

withstand maximum compressive stress in addition to wear and tear. The top layer of 

flexible pavements is constructed using bituminous materials. This layer can be in the 

form of surface treatments such as that used in low volume traffic. Another type of top 

layer is asphalt concrete surface which can be generally used on high volume traffic. The 

top layer of the flexible pavement has to be designed in such a way in order to allow for 

water drainage from the surface. In the lower layers of the flexible pavement, the low-

quality material can be used due to the fact that it experiences smaller amount of stresses. 

Figure 2.4 shows a typical cross-section of a flexible pavement that is commonly built, 

for more information about the used materials in each layer, refer to (Mathew, 2009).  
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Figure 2.4: Typical cross section of a flexible pavement (Mathew, 2009) 

 

2.3.2 Modes of failure in flexible pavement  

According to Pearson (2012), failure in flexible pavement can be due to one of 

the following reasons:  

1- Inadequate bearing capacity of the formation, this happens when the load 

exceeds the formation design capacity.  

2- Failure due to frost damage, this happens when the water or moisture gets 

into the pavement either due to its permeability or due to lack of 

maintenance.  

3- Failure of the constituent material due to fatigue, the pavement by its nature 

is elastic and returns to its regular shape as the loads are removed. However, 

due to the existence of some plastic strains, the deformation is unrecovered 

and stays permanently. 

4- Failure of the constituent material due to environmental exposure. This is 

due to the effect of sunlight and oxygen as well as the effects of moisture in 

non-freezing conditions.  

5- Inadequate quality of structure that commonly take place when the 

construction is carried out in a time of year that severely affect the quality 

and longevity of flexible pavement. Also this may be due to the lack of 

experience and skills of artisans to deliver a good quality pavement in all 

weather conditions.  The failure in the road surface that takes many shapes 

and severities are presented in the next section. 

2.3.3 Distresses on the flexible pavement  

Road asphalt surface is subjected to distresses due to loading, environmental 

conditions and normal wear. Asphalt pavement distress represents a significant economic 
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and engineering concern. This distress is estimated to cause damage costing up to $10 

billion each year in the United States alone. Earlier reports in 1998 estimated that this 

figure was even more with the Federal Highway Administration stating that road surface 

maintenance costs peaked to $17 billion each year in the United States. One crucial step 

to overcome and manage this problem is by accurately assessing the pavement condition 

and its change over time. The effective assessment of the road surface is applied by 

categorizing and verifying cracks or distresses into different classes  (Cheng and 

Miyojim, 1998; Rababaah et al., 2005).  

The classification and quantification of the type, severity, and the amount of 

surface distress is the primary method for assessing the condition of road surface 

pavements. The Long-Term Pavement Performance (LTPP) program within a 20-year 

life time has been carried out by highway agencies in the Department of Transportation 

in the United States and in 15 other countries. They have collected data on pavement 

condition, climate, and traffic volumes and loads from more than 1,000 pavement test 

sections. This program focuses on three main types of road surfaces; asphalt concrete-

surface (or flexible pavement), joined Portland cement concrete (or rigid), and 

continuously reinforced Portland cement concrete (or rigid as well).  

Many types of distresses have been identified, and their characteristics were 

catalogued for the flexible pavement by LTPP. The focus of this project will be on the 

flexible pavement since this type of pavement forms a large part of transportation infra-

structure and is considered to be suffering more from distresses due to its nature of 

loading distribution. Distresses on flexible pavement can be divided into five generic 

types as can be seen from figure 2.5. Only two defect types of cracks and potholes are 

described in this thesis, for more information about other defects refer to (Miller and 

Bellinger, 2003; Rababaah et al., 2005).  
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Figure 2.5: Type of distresses on flexible pavement (Miller and Bellinger, 2003) 

 

2.3.3.1 Cracking distresses  

Cracks are fissures resulting from incomplete or complete fractures in the flexible 

pavement surface. Cracking distresses on the road pavement surface can occur in a 

variety of patterns, ranging from isolated single cracks to a connected pattern extending 

over the entire or part of the pavement surface. The types, quantities, and severities of 

cracks distresses in the asphalt pavement can also vary depending on the age of the crack 

and the load of traffic. The LTPP has introduced six types of cracks that are frequently 

found in flexible pavement, namely fatigue cracking, block cracking, edge cracking, 

longitudinal cracking, reflection cracking at joint and transverse cracking. According to 

severity, each type is classified into three severity levels of low, moderate, and high. 

These various types of cracks are listed in the figure 2.6.  
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2.3.3.2 Patching and Potholes  

Patches are parts of the pavement surface that were subjected to removal and 

replacement or adding extra material to the original surface after construction. Usually, 

this part of the surface is greater than 0.1 m
2
 and can takes three severity levels. Low 

level has a depth of less than 6 mm; moderate level has a depth of between 6-12 mm, and 

high level has depth of greater than (12 mm). Commonly, patches are the parts of the 

surface that has been previously treated; either during potholes maintenance or as part of 

the work conducted on the road. Potholes, on the other hand, are defects or holes in the 

surface that take the form of small bowl shape depressions of various sizes in the 

pavement surface that penetrate to the lowest surface through the asphalt layer. Also, a 

pothole has three levels of severity; low has depth of less than 25 mm, moderate has 

depth range between 25-50 mm, and high has depth of more than 50mm, figure 2.7 

shows a high severity sample of patch and pothole (Miller and Bellinger, 2003).   

There are four main causes of potholes occurrence according to Eaton et al. 

(1981):  

A. Insufficient thickness of the road to support the traffic load.  

B. Poor drainage that usually affects the thin pavement more than the thick. 

 

 

 

Figure 2.6: Distresses types on the asphalt road pavement, images adapted from 
(Asphalt Institute, 2009; Pavement Interactive, 2012) 

 

Fatigue
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C.  Failure at trench and casting utilities, examples are (manholes and drainage of 

water facilities). 

D. Various types of pavement defects and cracks that were left un-maintained or 

unsealed for a long time which led to crack development due to water penetration 

to the lower layers.    

 

 

 

Figure 2.7: High severity patch and pothole (Miller and Bellinger, 2003)  

 

2.3.4   Flexible pavement evaluation and data collection   

To insure that the money spent in maintaining pavements is used effectively, 

different types of information are required in order to maximise the likely contribution to 

the existing asset. It is required to assess the functional and structural conditions of the 

road network or a section of the road either for purposes of routine monitoring or for 

planned corrective actions. The primary concern of the functional process is to evaluate 

or measure the ride quality, skid resistance and characteristic of surface texture. On the 

other hand, layer thickness, structural capacity of the pavement (as measured by 

deflection) and material properties are concerned with the structural condition of the 

pavement (Lenz, 2011), Four main methods are available to measure the functional and 

structural conditions of the flexible pavement, which are described in the next sections.  

2.3.4.1 Non-destructive testing  

Non-destructive testing can be defined as a group of analysis techniques to assess 

the characteristics of the flexible pavement without causing damage. The collected data 

in the field are usually objective in nature using non-destructive testing but often 

subjectivity appears in the analysis techniques. Usually these types of tests are applied on 

the existing pavement structure without requiring maintenance work to bring back the 

pavement to its pre-testing state. Therefore, they are preferable due to their nature of 

minimizing the disruption to traffic and for determining the locations where selective 

material sampling should be conducted to evaluate the need for further “destructive” 

testing (Lenz, 2011).  
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Non-destructive testing is used to examine both the functional and structural 

properties of the pavement. Skid resistance and roughness of the texture are two 

examples of functional properties that can be measured through non-destructive tests. 

There are ranges of non-destructive tests that can be applied on the pavement in order to 

evaluate the health of the pavement. Examples of these tests are; falling weight 

deflectometer, seismic pavement analyzer, dynamic cone penetrometer, ground 

penetrating radar, nuclear density gauge and non-nuclear electrical gauges, for more 

information about each of these tests and their uses refer to (Pavement Interactive, 2012).  

2.3.4.2 Destructive testing 

As the name suggests, destructive testing includes several methods (coring, 

boring, and trenching) where a part of road pavement is taken away in order to provide 

more detailed data about the pavement that is not possible to obtain through non-

destructive testing. Such detailed data include, determining the laboratory mechanical 

properties, physical, and chemical properties. It can also provide a visual inspection of 

pavement layers through coring and trenching, refer to (Lenz, 2011) for more 

information.    

2.3.4.3 Visual condition surveys 

 Usually, visual condition surveys serve as a qualitative indicator of pavement 

overall condition which can include both functional and structural pavement condition 

aspects. Specific equipment is utilized to quantify characteristics of the pavement 

structure for both structural and functional tests. Pavement surface inspection is carried 

out visually by two or more evaluators. Both evaluators arrive at the same assessment 

location for testing the condition of the road section or travel along the highway for 

identifying the distress areas, stop the vehicle when one is detected, measure some 

parameters and record them on a specially designed sheet. This type of survey is highly 

subjective for many aspects of pavement evaluation and inconsistencies in distress detail 

are recorded over the space and across evaluations (Cheng and Miyojim, 1998; Lenz, 

2011).   

Different rating conditions were designed over the past period, starting from the 

1950s; the first rating procedure was the American Association of State Highway and 

Transportation Officials (AASHO) road test designed in Illinois. The test aim was to 

study the performance of known thickness of pavement structure under moving loads of 

known magnitude and frequency. The test was designed to study both rigid pavement 

http://en.wikipedia.org/wiki/American_Association_of_State_Highway_and_Transportation_Officials
http://en.wikipedia.org/wiki/American_Association_of_State_Highway_and_Transportation_Officials
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concrete and flexible pavement asphalt. The information obtained from these tests was 

useful to advance the knowledge in pavement structural design, load equivalencies, 

pavement performance, climate and environmental factors, and much more. The present 

serviceability rating (PSR) was the first rating designed by AASHO road test which is 

based on individual observation. The crew of observers usually ride around the test 

roadways and then will rate their ride quality using the measurable scale shown in figure  

2.8 (Pavement Interactive, 2012).  

   

Figure 2.8: Individual present serviceability rating form (Pavement Interactive, 2012) 

 

         PSR was soon replaced by the present serviceability index (PSI) due to 

necessity of a transition to a non-panel based system since PSR rating is not practical for 

large-scale pavement networks. To develop PSI equations, the real PSR measurement 

was correlated with various pavement measurements parameters such as cracks, slope 

variance, and profile, refer to Highway Research Board (1972)  for more information 

about the developed equations and the correlation with actual measurements. Many other 

rating systems were developed over time in different countries. In the UK, the United 

Kingdom Pavement Management System (UKPMS)  has not changed since 1974 (TRL, 

2012). In the United States, the PSI was replaced by a more advanced and easy to use 

numerical rating system called pavement condition index (PCI) which was developed by 

the United States Army Corps of Engineers (USACE), for more information on this 

numerical rating system refer to ASTM D 6433 – 07 (2007).    
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2.3.4.4 Automated condition survey  

In order to minimize the difficulties of manual data collection, a range of 

approaches and concepts for the automated pavement distress detection have evolved, 

with several technologies being developed. An example of these techniques, the 

pavement image data collection is the most-common approach. Survey vehicles are 

usually adapted which are capable of collecting and storing pavement surface images. 

Most of these survey vehicles are mounted with video camera or photographic camera 

that can record pavement surface images, with the complimentary use of laser-

illumination-based technology which became available in late 2005 as LRIS. Different 

commercial and research based systems were introduced in each country. The list of 

systems presented in table 2.1 shows some of the available automated systems and their 

capabilities. Please refer to the following references for more details about each of these 

systems (Wang and Elliott, 1999; Viner and Britain, 2006; CSIRO, 2010; Wang and 

Smadi, 2011; Pavemetrics, 2012).  

 

Table 2.1: Example of automated systems for pavement evaluation 

System Year Country Speed Features 
Distress 

types 

Komatsu 1980 Japan 10 km/h Working at night only 
Cracking, rutting, 
longitude profiles 

PCES 1990 USA traffic 
1

st
 to use line scan 

camera 
Cracking 

RoadWare 1995 Canada 
Up to 80 

km/h 

Two cameras sync. 
with a strobe 

illumination system 

cracking and other 
distresses 

TRACS 2000 UK 
traffic 

video, laser sensors 
All distresses, texture 

measurement 

SCANNER 2001 UK 
traffic Use Road Condition 

Indicator (RCI) 
All distresses, texture 

measurement 

HARRIS 2002 UK 
traffic 

line scan cameras and 
advanced lighting 

system over a 3.5m 

All distresses, texture 
measurement 

CSIRO 2008 Australia 
Up to 105 

km/h 

Detect cracks as fine as 
one millimetre in 

width 
Cracking only 

Pavemetrics 2009 Canada 
Up to 100 

km/h 
Laser Road Imaging 

System  
Most of distresses 
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2.3.4.4.1  SCANNER road condition indicator 

SCANNER (Surface Condition Assessment for the National NEtwork of Roads) is 

a survey system that provides a consistent measuring method of the road surface 

condition, and has been developed by the UK Roads Board. It is usually employed for 

road carriageways throughout the United Kingdom. SCANNER uses an automated 

machine in order to collect a range of road condition parameters that includes ride 

quality, rut depth, intensity of cracking, texture depth and edge condition. The 

SCANNER uses the collected road condition parameters to quantify the road distresses 

in terms of an indicator called Road Condition Indicator (RCI). RCI has been developed 

through a process of research and development, and testing and refinement by the UK 

Roads Board. The main aim of RCI is to identify the length of the road or section of a 

network that needs urgent inspection or soon planned maintenance. To obtain RCI, each 

of the collected road parameters is scored between two thresholds; a lower threshold 

which is equal or below usually do not require considering any maintenance. Whereas 

upper threshold limit requires a soon planned maintenance. The full process of 

calculating the RCI from each of the used parameters (Cracks, Texture depth, Ride 

quality and etc.) are available in Department of Transport, (2011). Samples of the 

threshold used in RCI are in figure 2.9.  

 

  

Figure 2.9: Samples of parameters and threshold used in RCI 

Threshold extracted from the provided tables in (Department of Transport, 2011)  
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2.3.5 Road surface texture roughness   

Roughness can be defined as a deficiency or lack of smoothness in the transverse 

profile of the road surface that potentially causes poor ride quality. Usually, roughness 

can be produced by exposing the surface of the road (or even subsurface) to distresses or 

by poor construction quality. An example of poor construction is the compaction process 

of sub base and the top of pavement layers as well as the grade control and poor bonding 

of the surface Hot Mixture Asphalt (HMA) layer to the underlying layers. The cause of 

roughness might be also attributed to shrinkage or swelling activity in the subgrade or 

soils fill  (Lenz, 2011). 

Roughness measurement of texture is important for many applications and 

commercial purposes as well as in the industry. In road surface monitoring, there is a 

highly significant relationship between depth of texture and the skid resistance which is 

linked to the accident rate. The tyre / asphalt interface, as stated by the World Road 

Association (WRA) in  World Road Association (2012), should be better understood and 

evaluated. Interaction between tyre and road surface affects not only the grip but also 

other important properties as well; such as rutting, cracking, ravelling, noise and long 

term durability, figure 2.10. In the concrete industry as well, the roughness of the texture 

plays an important role in when overlaying a new layer or lining with the required 

amount of painting. In addition, concrete surface roughness can play a crucial role in the 

bonding between the two layers (Leising, 2010).   

Texture detail at different scales is essential. At the micro level, the texture details 

are related to the aggregate surface properties. However, at the macro level, the textured 

details are related to the actual asphalt surface, figure 2.11. At the micro level, the 

characteristics of the aggregate are defined. The microscopic properties of the surface 

function of the aggregate gives the basic level of friction achievable between the tyre and 

the road and thus provides adequate skidding resistance. The properties that can be 

measured at micro level correspond to wavelengths less than 0.5 mm and peak-to-peak 

amplitudes of the profile ranging between 1 micron and 0.2 mm. Current laser scanner 

technology cannot provide direct measurement of these properties at such scale. The only 

available tools for measuring the roughness at micro level is through the use of the 

Portable Skid Resistance tester in the field and the Accelerated Polishing machine in the 

laboratory  (McQuaid et al., 2010; Airy, 2012).   
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2.3.5.1 Road surface texture and skid resistance 

Transmission of vertical, transversal and longitudinal forces mainly depends on 

the contact area between the road surface and the tyre. The contact area between the tyre 

and the surface texture available for both horizontal and vertical force transmission is 

insufficient due to flattening of the tyre surface in many cases. The limited contact area 

depends mainly on the tyre geometry, the load on the wheel and tyre pressure, and 

increases with lowering the tyre pressure. This contact area also decreases when a 

medium, such as water, separates the tyre from contacting with the road surface leading 

to a decrease in transmittable force and therefore skid resistance. The tyre/ pavement 

contact area also minimizes when increasing the texture depth or the roughness of the 

texture and vice versa as can be seen in figure 2.12. Therefore, the skid resistance is 

dependent on the texture depth in addition to the surface texture characteristic which is 

more closely related in wet weather condition and at high speed (Viner and Britain, 

2006; Nutz and Hoffmann, 2012).   

Macro-Texture 

Amp (0.2-20) mm 

Wave (0.5-50) mm 

 

  

Micro-Texture 

Amp (1µm-0.2mm) 

Wave < 0.5 mm 

 

  

Figure 2.11: Macro and Micro level properties of aggregates 

Figure 2.10: Relationship between texture and characteristics of the pavement surface 

(World Road Association, 2012) 
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2.3.5.2 Methods of characterising roughness of pavement texture  

In order to establish if a pavement surface texture has sufficient skid resistance, 

two parameters need to be evaluated and provided; they are micro-texture and macro-

texture, that both were described previously. Micro-texture provides the frictional forces 

required to bring a moving vehicle to stop at low speeds (less than 50 km/h). Macro-

texture, on the other hand, plays a critical role in wet conditions and at high speeds, refer 

to (Fwa, 2006) for more details. These two important parameters can be measured using 

different equipment as explained in the next two sections.    

2.3.5.2.1 Micro texture measurement techniques  

As previously explained, the micro-texture exists on the microscopic scale that has 

peak-to-peak amplitude in the range of 0.001 to 0.2mm and a wavelength of less than 

0.5mm. These properties are not feasible to be measured due to the microscopic nature of 

the aggregate. However, the primary interest of the pavement surface is the polishing 

vulnerability of a particular stone under the scrubbing action of tires at the tyre 

/pavement interaction area. Therefore, it is important to evaluate the so-called Polished 

Stone Value (PSV) which can be done in the field using the British Pendulum Tester 

(BPT). Some other tools do exist but are limited for use in the laboratory, an example of 

these tools are polishing machine and the Small-Wheel Circular Track Wheel (Fwa, 

2006) .    

Smooth texture 

  
Rough texture 

  

Figure 2.12: Tyre/Pavement contact area in rough and smooth texture (Nutz and 

Hoffmann, 2012) 
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2.3.5.2.2 Measurement of frictional forces  

The measurement of the resistance in the interaction area between the tyre and the 

pavement in the case of a car moving or braking is dependent on the friction coefficient. 

The forces resisting the motion (tyre/pavement contact area’s frictional forces) can be 

defined as the friction coefficient when divided by vertical forces. Increases in the 

friction coefficient can lead to increases in the mobilized force at the interface area to 

resist the vehicle movement and hence the vehicle can more rapidly be stopped or 

slowed (Fwa, 2006).  

Usually, the friction coefficient is not constant and depends on many factors that 

include tyre components properties, tread pattern and depth of the tyre, the micro and 

macro surface pavement textures, and the existence of water surface or other lubricants. 

The presence of water film in wet condition between the tyre and pavement surface 

significantly reduces the friction coefficient.  Moreover, the frictional resistance is also 

affected by the percent of slippage occurring between the tyre and pavement surface 

which can be define by the flowing equation (Fwa, 2006).  

 𝑆 =
𝑣 − 𝑣𝑟

𝑣
100% 2-1 

Where:   

 S=the percent slip 
 

 𝑣 =velocity of the test vehicle  
 

 𝑣𝑟= rotational velocity of the test tire 
 

The frictional measuring devices can be categorized into four types. The tools that 

are usually used to measure the skid resistance on the pavement surface are; locked 

wheel devices, fixed slip devices, variable slip devices, and sideway-force devices such 

as Sideway force Coefficient Routine Investigation Machine (SCRIM). For more details 

about each of these tools and their uses, please refer to (Fwa, 2006).         

2.3.5.2.3 Macro texture measurement techniques  

Two different techniques are now available to measure the macro texture of the 

pavement or texture depth. The first method is called Sand Patch Test (SPT) which uses 

a known volume of sand or glass beads spread evenly over the pavement surface to form 

a circle. The used sand or glass beads will normally fill the surface voids. The diameter 

of the circle is measured in four different directions using a ruler, and the value is 

averaged which is then used to calculate the Mean Texture Depth (MTD). 
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 𝑀𝑇𝐷 =
𝑣

𝑎𝑟𝑒𝑎
 2-2 

Where: 
  

MTD The mean texture depth  
 

𝑣 Volume of sand 
 

area Area of circular patch  
 

Many engineers have defined the texture of the road surface through the use of the 

SPT method, which has a traditional history. Through utilizing the mathematical formula 

listed in equation (2-2), the depth of road surface texture can be determined. The depth 

obtained from SPT then can be used for the process of the pavement evaluation. It is also 

worth to mention that this process is dependent to a large extent upon the operator. The 

limitation of SPT however, is the limited access all the voids in the surface and it has an 

uncertainty of measurements of about ± 230 µm for a confidence interval of 95% 

(Rasmussen et al., 2011). In addition, it is a slow and labour intensive process. As well as 

having safety issues when being undertaken on an operating road. All of mentioned 

limitations have been addressed through the use of automated processes utilizing laser 

scanner techniques. 

In a998, Nippo Sangyo Co., Ltd., Japan has introduced a new laser-based device, 

the Circular Texture Meter (CT Meter). A circular profile of 284 mm in diameter or 892 

mm in circumference is measured using the CT Meter laser sensors. The Mean Profile 

Depth (MPD) is then calculated from the measured profile (China and James, 2011). In 

addition to the cost and the difficulty of mobilization due to the weight, the disruption of 

the traffic is another limitation of CT Meter. So, the high-speed laser technique is 

currently being used for macro-texture measurement by many transportation agencies. 

The high-speed laser technique is another method that is used for texture depth 

measurement or macro-texture characterization. The method is used through utilizing the 

laser texture measurement devices which work by measuring the distance between the 

sensor and the road surface. As the sensor moves along the road, changes in distances 

due to the surface texture are recorded at short intervals, possibly 1mm. A profile of 

detailed surface texture is built up which requires further processing to interpret a 

valuable measuring index. Two techniques can be utilized for surface texture profile data 

processing which is Sensor Measured Texture Depth (SMTD) or Mean Profile Depth 

(MPD), for more information about both techniques refer to (Viner and Britain, 2006).  
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There are some limitations associated with high-speed laser and other laser profile 

measurement techniques such as lack of information particularly when trying to 

understand what is happening, and the data provided by these techniques is limited. 

Therefore, a precise 3D modelling surface of texture shaping is more important than the 

profiles in order to better understand surface characteristics. A new-developed technique 

is proposed in this project through digital imaging and 3D modelling which will be 

discussed in the next chapter. The following sections will concentrate on the image 

processing techniques and other processing techniques normally utilized for road surface 

monitoring.        

2.4 2D Image analysis  

Image analysis can be defined as a process of extracting meaningful information 

from images and mostly from digital images by automatic or semi-automatic methods. 

Image analysis can be divided into many tasks and processes such as edge detection, 

shape finding, object counting or measuring properties of an object through 

morphological tools. Image analysis algorithms are commonly comprised of edge 

detection, shape recognition, image segmentation based on colour, and thresholding. 

These image processing techniques can be combined with region analysis functions to 

obtain statistical details from images to support human analysis with extra qualitative 

and quantitative data (Matlab, 2014a).  

2.4.1 Image Segmentation  

Image segmentation in Computer Vision (CV) is a process of segmenting or 

partitioning the digital images into multiple parts or segments (sets of pixels). The aim of 

segmentation is to simplify or change the presentation of a digital image into more 

meaningful objects that can be easily analysed and dealt with. Normally, the 

segmentation process is utilized to locate objects and boundaries such as lines, curves 

and objects of interest within images. Pixels with the same characteristics are assigned 

with the same label and isolated from other pixels. The simplest process in image 

segmentation is the thresholding of image pixels (Roy, 2012).  

In thresholding, the grey level pixels are converted to a binary image by turning all 

pixels below a certain threshold (or level) to zero and above that level to one, see 

equation (2-3). The threshold level may be designed globally for the whole digital image 

or locally to overcome the global threshold limitation due to the changes in illumination 

across the scene that cause some parts to be darker or brighter than others. The major 

http://www.mathworks.co.uk/help/images/pixel-values-and-image-statistics.html
http://www.mathworks.co.uk/discovery/color-profile.html
http://www.mathworks.co.uk/discovery/image-thresholding.html
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problem with thresholding methods is that they only consider the pixel intensity values 

as border limits, and do not consider any other relationship between pixels such as the 

location of a pixel that might lead to erroneous segmentation. In thresholding the image 

is separated into two regions; dark and light which in consequence means a binary image 

is created  (Morse, 2000).  

 
𝐵(𝑥, 𝑦) = {

1  𝑖𝑓 𝑓(𝑥, 𝑦) ≥ 𝑇ℎ
0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
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Where: 
  

𝐵(𝑥, 𝑦) Converted binary pixel 
 

𝑓(𝑥, 𝑦) Original grey level pixel 
 

𝑇ℎ Global or local threshold  
 

Another process that segmentation includes is edge detection that provides more 

rigorous results than the thresholding method for image segmentation. Edge detection is 

the process in which the pixel in grey scale image undergoes a set of mathematical 

operations that aim at identifying sharp changes in brightness or identifying 

discontinuities in a digital image. Edges are typically occurring on the boundary between 

two different regions in a digital image. Edge detection was developed 30 years ago and 

passed through many stages. Over this period, two main methods have been apparent: the 

first approach is template matching (TM), and the second one is differential gradient 

(DG). Both approaches aim to search for the intensity gradient magnitude (g) for the 

sufficiently large values which can be reliably treated as an indicator of edge presence 

(Roy, 2012).  

The main differences between both methods (DG and TM) lie in the way that both 

methods estimate the gradient g value (the pixels with minimum and maximum intensity 

values) and determine local edge orientation. Both operators utilize suitable convolution 

masks to estimate the local intensity gradient. The TM approach usually utilizes up to 12 

convolution masks that are capable of calculating local gradient components in various 

directions which can be approximated by taking the maximum response of all 

components.  However, the DG operator type uses only two convolution masks, one in 

the x direction and another in the y direction. An example of the DG operator is Sobel 

edge detection that uses a pair of 3x3 convolution masks; see figure 2.13, one estimating 

the gradient in the x-direction and the other estimating the gradient in the y-direction. 

Then, the approximate absolute gradient magnitude (the strength of the edge) at each 

pixel can be found as shown in equation (2-4). The direction of the gradient is then easily 



                                          Chapter Two: Background and Theory 

32 

 

calculated once the gradients in the x and y directions are known, see equation (2-5). For 

different edge operations, their processing stages and the utilized convulsion masks, refer 

to (Roy, 2012).  

 

 

 

Figure 2.13: Convolution masks of Sobel edge operation 

 |𝐺| = |𝐺𝑥| + |𝐺𝑦| 
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Segmentation can also be done based on colour which is called colour based 

segmentation. A good example of colour based segmentation is K-mean clustering. K-

means is a least-squares partitioning method that aims at dividing or partitioning n 

observations in to k clusters in which each observation belongs to the cluster with the 

nearest mean. Clustering based on K-mean is done first through calculating the mean of 

each cluster and then assigning each observation to the nearest cluster by calculating the 

distance between each observation and the mean of each cluster. The previous two steps 

iterate until the sum of squared errors within each group cannot be minimized anymore. 

The created groups are geometrically as compact as possible around their respective 

means, see figure 2.14. 

 

 

 

 

Figure 2.14 :Diagram explain the K-mean clustering process   

 The K-mean clustering is more rigorous than other previous segmentation tools 

for some applications because it includes, in addition to the intensity values of pixels, the 

geometry  as well for image segmentation (UTAH, 2002; Lugade, 2011). After image 

segmentation, image filtration, is another important operation in image analysis, and will 

be reviewed in the next section.   

Cluster points into 3 

groups 

  

Find 3 random means and 
cluster closest points to it and 

calculate 3 new means  

  

Means calculated from previous 
step, now assign closest points 

and calculate 3 new means 

Repeat previous step until 
differences between calculated and 

previous means are close to zero 
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2.4.2 Image Filtering 

Image filtering is the process that deals with random variations in intensity, 

variations in illumination, and poor contrast (that may be associated with an imaging 

system). Image filtering is an image enhancement tool that acts as a noise removal 

through windowing operations that achieve a useful outcome, see figure  2.15 for the 

clear effect of image filtration (USF, 2014).   

 

 

 

 

 

 

 

      Figure 2.15: Demonstration of the effect of the neutral density filter (Wiki, 2014) 

There are many approaches of image filtration such as median, local mean, mode, 

low-pass, range, and Gaussian filter. Each of these filters has a special effect on image 

enhancement and pixel manipulation. For example, in the case of mean filtration, a 

window size such as 3x3 neighbourhood is selected for pixel manipulation. The mean 

filter is a simple linear filter which is implemented by local averaging operation in which 

the value of the central pixel is replaced by the mean of all neighbouring pixels. Figure 

2.16 shows the effect of the mean filter using different size windowing (Matlab, 2014b).  

 

 

 

 

 

Figure 2.16: Effect of mean filtration, original image, 3x3 filtering, 5x5 filtering 
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Each filter was designed for a special effect, for example, the ‘salt and pepper’ 

noise in digital image can be removed using median filtering as can be noticed from 

figure 2.17. As the name suggest, the median filtering works by selecting the median 

value in the (i-by-j) neighbourhood around the input pixel in the digital image as shown 

in figure 2.18.    

 

 

 

  

Image filtering can also be used for smoothing the image and reducing the effect 

of image sharpness. The task is especially important for some applications such as 

reducing the effect of sensitivity of edge detection. In this project, different filters with 

various smoothing effects were designed to reduce the effect of the texture roughness, 

please refer to section ‎4.8.3.2. It is important to note that the image filtering can be also 

used for image de-blurring when the image is blurred during the process of acquisition. 

More information is available in the following section.  

Figure 2.17: Example shows the effect of median filtering on salts and pepper noise 

(original image left and median filtered results right) 

 

Figure 2.18: An example illustrating the median filtering with 3x3 neighbourhood (USF, 2014) 
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2.4.3 Image de-blurring         

Image blurring or degradation can be caused by many factors such as movement 

during the image acquisition process, by capturing images with longer exposure time, 

when the camera optics is out of focus, or in light-limited situation. The captured image 

quality in some cases might degrade in various ways which urge the demand for image 

restoration, or restoration of image quality. Image restoration or image de-blurring is a 

process of restoring the original image by modelling the degradation or applying the 

inverse process which can only be done through the prior knowledge of the amount of 

degradation. Degradation or blurring can occur in two different ways; shift variant and 

shift invariant. The main differences between the two are the ways blurring affects on 

different parts of the image. The blurring can be approximately modelled as shown in the 

equation (2-6) (Vollmerhausen and Driggers, 2000).    

 𝑔(𝑥, 𝑦) = 𝐻[𝑓(𝑥, 𝑦)] + 𝑛(𝑥, 𝑦) 

 

2-6 

 

  

 
where 𝑔(𝑥, 𝑦) is the blurred pixel in the digital image.  

 𝐻 the distortion operator or point spread function  

 𝑓(𝑥, 𝑦) pixel of original or undistorted image or restored quality pixel   

 𝑛(𝑥, 𝑦) additive noise, introduced during image acquisition.   

In ideal image acquisition, any point from image space is captured in a digital 

image and projected to the image-plane as one point. However, due to many reasons this 

might not be the case and the object point spreads out over several points in the image 

plane. The spreading takes place when the object scene is blurred by a number of factors. 

The spreading of a point over the image plane is called Point Spread Function (PSF), 

examples shown in figure 2.19 (ibid).  

 

 

 

   

Figure 2.19: PSFs examples, original image, out of focus, and linear motion blur (ibid)    
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There are many algorithms that deal with image restoration or image de-blurring. 

An example of these algorithms is de-blurring an image using a blind deconvolution 

algorithm. In this technique, the image is restored using an initial PSF value. Many 

different methods were attempted to restore the original image without knowing the PSF, 

but most of them had very little success. Methods for estimating PSF are usually known 

as blind deconvolution because deconvolution is performed without knowledge of 

blurring function. As can be seen from equation (2-6), in addition to H or PSF there are 

two additional unknowns (original pixel and additive noise). In most blind deconvolution 

approaches, they assume the noise to be Gaussian (Levin et al., 2009). Using a blind 

image de-convolution approach is the approximate solution and is important when no 

prior information is available about PSF.  To further improve the accuracy, the initial 

PSF for example can be roughly measured using inexpensive gyroscopes and 

accelerometers to measure a camera’s acceleration and angular velocity during an 

exposure (Joshi et al., 2010). There are some available free tools such as SmartDeblur 

that can be used for image de-blurring based on blind de-convolution (Yuzhikov, 2014). 

For all other restoration and de-blurring algorithms, please refer to (Matlab, 2014a).   

2.5 Point cloud generation techniques  

The interest in 3D models is growing due to the rapid development of information 

technology, the availability of cheap high-quality digital cameras, the advancement in the 

survey instruments, and the computational power of personal computers. 3D surface 

models include Digital Terrain Model (DTM) generation from the filtered digital surface 

models or point cloud generation. Point clouds are groups of data points in any known 

coordinate system where each point has three-dimensional coordinates. These points are 

typically distinct by X, Y, and Z coordinates. A triangulated mesh and contour lines 

computation can be carried out on a point cloud to generate a DTM, or vice versa 

(computation can be carried out to produce a point cloud from a triangulated mesh). 

Many methods are available for the collection of point clouds, the first and the 

more traditional one is through the use of a total station, but many other techniques are 

available such as 3D modelling using images, laser scanning techniques, Global 

Navigation satellite systems (GNSS), and satellite radar interferometry. Total station and 

GNSS can produce accurate and comprehensive models through ‘walk over’ surveying 

techniques. However, dense surface modelling requires a substantial increase in the 

number of data points, which substantially delays the process of surveying. Laser 

scanner devices are able to generate highly accurate, high-resolution models using short 
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wavelength light pulses, but also remain expensive, large, heavy, and with low precision 

for texture measumrent. So, digital elevation models from photogrammetric techniques 

remain the most cost effective, rapid, and reliable method of obtaining more dense 

models than the other methods (Peng et al., 2009; Hudzietz and Saripalli, 2011; Neitzel 

and Klonowski, 2011). This section will cover the currently available techniques for 

point cloud generation.     

2.5.1 Total stations  

A total station is an efficient and accurate tool of measuring angles and distances. 

In the field, this instrument is capable of distance measurement through utilizing 

Electronic Distance Measurement (EDM) and angle measurement through utilizing an 

electronic theodolite. In addition, it has the ability to perform computations in the field 

and produce a 3D (X, Y, and Z) coordinates of points through utilizing microprocessor 

on-board. It works in most environments and both outdoors and indoors. Usually the 

collected points can make clouds, and the density of the point distribution is mainly 

based on the specifications required for particular purposes. This tool is capable of 

providing features in 3D space and making a DTM of the site. It is also very efficient at 

obtaining accurate target point locations and establishing datum points in a topographical 

survey (Leica, 2006b).  

There is a wide range of total stations that have different operation ranges and 

precisions which can seriously affect the price of a total station. The range of distance 

measurement can reach up to 3000 m, and an average cost of total station can range 

between £3,000 to £15,000 depending on the utilized features such as precision, 

measurement range, reflectorless characteristics, and data roaming and advance data 

communications. It can also be integrated with GNSS to provide positions with 

centimetre accuracy which can save time by avoiding the use of control points. Usually a 

total station survey is a two person operation, but recent advances in technology have 

allowed it to be used by one operator as in the case of the Leica icon robot 50 robotic 

total station (Leica Geosystem, 2014b).  

The accuracy of a total station is dependent on many sources of errors including 

blunders that can be avoided through careful handling. Collimation errors or line of sight 

errors (Horizontal and Vertical) are the main source of instrumental error which can be 

eliminated by observing on two face measurements. Other sources of errors that are 

related to atmospheric effects can be reduced, but not fully eliminated, as it depends on 

the temperature and water content over the distance range. The accuracy of distance 
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measurement of a total station is normally in the linear form of ± (α mm+ β ppm). The 

constant (α) is length independent and is the sum of instrument internal errors that are 

beyond the control of the user. β is the range dependent term which is based on parts per 

million, for example 1mm for every 1 km. Normal specifications of a total station vary 

from ± (2mm + 1ppm) to ± (5mm + 5ppm), and angular accuracy can range between 1” 

to 10” (Uren and Price, 2010).       

2.5.2 Global navigation satellite systems (GNSS)  

Global Positioning System (GPS) is an example of a GNSS and is a range based 

navigation system that offers operation in 24 hours and in all weather conditions.  GPS 

was designed to work fully in a constellation of 24 satellites distributed in 6-orbital 

planes in inclination of about 55° with the equator. The orbit of the GPS satellites is 

approximately 20200 km above the surface of the earth. The position of satellites in orbit 

is calculated through distribution of ground control station all over the world. The 

position (X, Y and Z) in addition to the clock offset of the user unit can be measured 

using triangulation to a minimum of four satellites (Kaplan and Hegarty, 2006).      

GPS positioning is based on measuring the transmitted time of radio wave signals 

emitted from satellites. For a receiver to compute its stand-alone position, it must be in 

view of at least four satellites. This method is widely used in navigation applications and 

has sub-metre accuracy, less than 15 m  at 95% confidence level in the simplest pseudo 

range operation (Garmin, 2004). However, with the current constellation and 

advancements in technology, the accuracy of positioning can be further improved to 

reach centimetres or millimetres level by either, relative to a known position by double 

differencing, or in precise point positioning (PPP) mode. The accuracy of GPS 

positioning can be affected by many parameters such as the surrounding environment, 

multipath, number of satellites, satellite geometry, distance from the reference station, 

ionosphere/ tropospheric condition in addition to the quality of GPS receivers.  For more 

information about each of GPS utilized techniques and the accuracy limits of each 

method, please refers to (Kaplan and Hegarty, 2006).  

2.5.3 Laser Scanners  

The use of total stations and GPS for point cloud generation is not sufficiently 

dense and for some application, such as a road surface’s texture depth measurement may 

not be practical. Therefore, other instruments and techniques should be investigated. In 

laser scanning, a laser beam is emitted and projected onto rotating mirrors whose 
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horizontal and vertical angles are recorded. The range that the emitted signal is projected 

and reflected from the object is calculated using either the time of flight or phase based 

measurement. For more information about the principle of laser scanning, please refer to  

Pfeifer and Briese (2007).  

Laser scanning can be classified in terms of method /concept of distance 

measurement into three categories; pulse round trip measurement (time of flight), phase 

based measurement, and a laser-based triangulation or laser profile. Most of the available 

terrestrial laser scanners utilize the time of flight or phase based measurement. The 

range, data rate, precision, and scanning speed are the main differences between the two 

techniques. Time of flight tends to be more suitable for longer ranges than the phase 

based methods but with low data rate productivity and scanning speed. Usually, the time 

of flight data tends to be noisier than the phase measurement. Although the resolution of 

point clouds obtained from the two techniques is very low, reaching 1mm or less 

depending on the range (Callieri et al., 2009),  it is not preferred for road surface 

monitoring and texture depth measurement due to the low precision of the laser scanning 

measurements being in the range of ±(0.4-10) mm (Leica Geosystem, 2014a) depending 

on the distance measurement technique, colour of the reflected surface, the available 

illumination, and many other parameters.  

As previously mentioned, there is another concept that laser systems work on 

which is called laser-based triangulation or laser triangulation sensors. These types have 

been used for application that requires the closer range and for small scenes that require a 

high precision. The triangulation laser technology may reach precision of ± 0.020mm 

(Faro, 2014). The basic idea of laser triangulation is the use of an active stereoscopic 

technique that is based on the principle of forward intersection for topographic creation. 

It is capable of determining the position of an object in space through projecting it to a 

Charge Couple Device (CCD), as can be seen from figure 2.20  (Bitelli et al., 2012). 

As figure 2.20 shows, the laser emitter produces a beam of energy which is 

projected to the mirror and emitted from the instrument at angle (α). The laser hits the 

object’s surface at the point (A) and is reflected back with a magnitude depending on the 

surface characteristic. The reflected laser signal is received by CCD/ Complementary 

Metal–Oxide–Semiconductor CMOS sensor at known distance (b) from the emitter. The 

angle (β) which is unknown can be calculated using the trigonometric formulas listed in 

equation (2-7). With the knowledge of focal length (c) and location (Px, Py) of point (A) 
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on CCD, the object space point (XA, YA, and, ZA) can be calculated from equation (2-

8).         

 

  

 

 

 

 

 

 

 

Although the laser profile has been extensively used in the industry sector, their 

uses in the real world are limited due to the difficulty of controlling its axial movement. 

There is also another limitation of using the laser triangulation which is the limited range 

of object measurement in some of the low-cost sensors which can only reach up to 

25mm, and the  cost of the sensors rises with the increases of the measurement range and 

precision (Micro-Epsilon, 2014). The texture depth measurement of the road surface is 

not possible with the use of laser sensors such as those shown in figure 2.20 due to the 

mentioned limitations. Therefore, the use of other more expensive alternatives is the 

solution such as FaroArm laser or Circular Texture Meter (CT Meter) as figure 2.21 

shows. For more information about these two instruments and their technical 

specifications refer to (Applied Pavement Technology, 2008; Faro, 2014). Due to the 
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Figure 2.20: Principle of laser triangulation (left), (Bitelli et al., 2012) and sample of 

laser sensor (A), (Micro-Epsilon, 2014)  
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limitations of the laser scanner and laser triangulation, other alternative method should 

be investigated which will be discussed in the next sections.  

  

 

 

 

 

 

 

 

 

 

 

 

 

2.5.4 Using Structure from Motion (SfM) in Computer Vision 

(CV) 

In computer vision (CV), Structure from motion (SfM) denotes to the process of 

finding out the three-dimensional structure of an object by analysing local motion signals 

over time. In CV, SfM refers to the general phenomenon by which humans can produce 

3D structure from the projected 2D motion field of a moving object. A very closely 

related technique to SfM is stereo vision. The latter is the most-distinguished process in 

the projective geometry technique applications in the CV field. In contrast to general 

motion, stereo vision assumes that there are only two shots of the scene (Jin-Tsong et al., 

2012).  

Figure 2.21: Circular Texture Meter (left) and FaroArm-Platinum (right) 

(Applied Pavement Technology, 2008; Faro, 2014) 
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SfM works by including consecutive scenes one at a time when the camera is 

moving, and each view is registered by using the Fundamental (F)-matrix that is based 

on the epipolar constrained resection. The F-matrix describes the epipolar geometry in 

the form of 3x3 matrix of rank two that relates a pair of image points and defines the 

rotation, translation and scale changes, equation (2-9). A partial reconstruction is 

extended by computing the positions of all 3D points that are observable in two or more 

images using a triangulation technique. The process is planned in a way to track the 

extracted points of interest by constantly matching the adjacent images (Fisher, 1997) as 

shown in figure 2.22.   

 

 

   

Figure 2.22: Merging images constantly using SfM (Michot, 2010) 

 
The SfM technique is used extensively for researching in the CV community. 

Although used in CV, however it is still similar to the stereo vision that uses parallax 

between two images to create 3D models (Hudzietz and Saripalli, 2011). The first 

successful demonstration of the SfM technique applied to a real-world image was by 

Snavely (2010), who used a 3D reconstruction model from SfM by applying it to a set of 

Google and Flicker tourist images. The images were typically captured from hundreds of 

different cameras, scales, resolutions, illumination, and different times of day or seasons, 

see figure 2.23. SfM has been explored enormously in recent years, and has led to the 

development of various products and web services that reconstruct the 3D scene or 

models from unordered or different set of images (Snavely, 2010; VisualSFM, 2011; 

Photosynth, 2012; VISICS, 2012).  
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𝑥′, 𝑦′ : the correspondence points or matching points of first image. 

 𝑥 , 𝑦 : the correspondence points or matching points of second image. 

 F : are 3x3 matrix elements  
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Figure2.23: Reconstruction of web photos (Google & Flicker) into 3D models (Snavely, 2010) 

 
Photosynth is one example that uses the SfM technique. It is a free internet 

processing tool run by Microsoft Live Labs and the University of Washington. This 

tool generates point clouds and the pose of a camera automatically from a series of 

unordered images. The two main processes of Photosynth include uploading the images 

to the service and then exporting the point cloud and the camera calibration parameters 

by using SynthExport. The procedures required for generating point cloud are shown in 

figure 2.24.  

 

 

 

 

 

 

 

 

Because the generated point clouds always contain outliers, the exported point 

clouds are recommended to be post-processed using a tool such as Geomagic studio. 

There are two main processing steps that are recommended to be applied to an exported 

point cloud. In the first step, the point clusters that are disconnected from the main body 

of the point cloud are removed. In the second step, the points that are not apart from the 

point cloud and further away with one standard error (66.667%) in z direction are 

removed. The final processed point clouds can then be used as a dependable source of 

DTM generation but with varying accuracy. This variation in accuracy might depend on 

many parameters that will be explained later in this project. Figure 2.25 shows the 
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Figure 2.24: Point cloud generation procedures (Jin-Tsong et al., 2012) 
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possible procedures required for processing of the exported point clouds from 

Photosynth web service. 

 

 

 

 

 

Figure 2.25: Overall processing of Photosynth point clouds using possible outlier removal tool 

2.5.5 Using a Photogrammetric-based approach  

The photogrammetric approach for the production of point clouds is not yet fully 

automated in most currently available commercial tools. The 3D point is determined 

based on defining interior and exterior orientation parameters and these parameters are 

then used with perspective geometry to produce object space point coordinates (X, Y, 

and Z) that appear in the overlapping areas between two or more images (Leica 

Geosystems., 2003).   

Photogrammetry over many decades dealt with the precise 3D reconstruction of 

objects from images. Suitable commercial packages (Australis, Canoma, ImageModeler, 

iWitness, PhotoGenesis, PhotoModeler, and ShapeCapture) are available for close range 

photogrammetric solutions. However, these tools still require precise calibration and 

orientation procedures, and most are based on manual or semi-automated measurements. 

Recently, a new feature was added to Photomodeler scanner called SmartMatch. The 

SmartMatch feature can help in generating 3D (XYZ) coordinates of points 

automatically through searching out natural feature points within images and then 

matching them. The automatic matching process can eliminate the use of coded targets 

for the production of the 3D models (Remondino and El-Hakim, 2006; PhotoModeler®, 

2009). 

The operator needs to define some parameters in order to extract point clouds from 

photogrammetric software. A minimum constraint is required in order to produce 3D 

point clouds based on the photogrammetric approach. If the matching points or 

correspondence points are known, the relative orientation can be built between two 

images using the coplanarity condition. In the coplanarity condition (see figure 2.26), the 

Exported point clouds 

from Photosynth 

Removing isolated 

points  
Removing 

Outliers  

Final processed 

points   

Ready for DTM 

generation   
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two perspective centres, image corresponding points, and any object space points all lie 

in a common plane. Theoretically, the b, R1 and R2 vectors should all be equal to zero, 

see equations (2-10) and (2-11). Each object point has one coplanarity equation and is 

independent of the object space coordinate system. At least five image points are 

required for solving the relative orientation between two images, for more information 

about the coplanarity condition refer to (Ghosh, 2005).  

 

 

 

Figure 2.26: Coplanarity condition and intersection for relative orientation  (Ghosh, 2005) 

 

 𝑏 ⃗⃗⃗   . 𝑅 ⃗⃗  ⃗
1 x 𝑅 ⃗⃗  ⃗

2 = 0 = F 
 

2-10 

 

 
F= [

𝑏𝑥 𝑏𝑦 𝑏𝑧

𝑋1 𝑌1 𝑍1

𝑋2 𝑌2 𝑍2

] 

 

2-11 

 

 Where   

𝑏 ⃗⃗⃗   Is the vector of baseline between perspective points (O1and O2)  

𝑅 ⃗⃗  ⃗
1 Is the vector between (O1 and  P)  

𝑅 ⃗⃗  ⃗
2 Is the vector between (O2 and P) 

bx, by, bz   
Are projection of baseline on X, Y, and Z coordinates  

X1, Y1, Z1 Image point p1 with reference to image 1 coordinate system.  Z1=focal length   

X2, Y2, Z2 Image point p2 with reference to image 2 coordinate system.  Z2=focal length   
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In Leica Photogrammetric Suite (LPS) for example, based on coplanarity 

condition equation and without knowledge of the exterior orientation parameters of the 

images, the operator needs to measure at least five tie points to solve for 5 unknowns (ω, 

ɸ, k, By, and Bz). This is required in order to obtain an approximate relative orientation 

before automatic tie point generation can be started. In addition to the minimum 

requirement for automatic tie point generation, Ground Control Points (GCPs) are also 

required for space point resection (Leica Geosystems., 2003). However, in the case of 

Australis and Photomodeler, there is no need for GCPs, and only tie points are required 

for the production of 3D point clouds, as a local coordinate system is adopted inside each 

of these tools.  

In photogrammetry, several techniques are available for the production of 3D 

surface models, with each having unique strength and weakness characteristics. Stereo 

vision is one of the techniques used for 3D generation modelling. Stereo vision uses the 

parallax between two images to generate a 3D model (much like human vision), and 

requires placing two cameras at a known distance apart. However, due to the difficulty of 

placing two cameras with a required distance apart, overlapping images using only one 

camera (the camera moves to produce parallax) for production of 3D models is widely 

utilized in photogrammetry. The process finds the similar points (common points) 

between two or more images. The 3D coordinates of ground points (object space) can 

then be computed from image matched points by using the principle of photogrammetry. 

The most widely used approach is known as Collinearity equations, which relates the 

projection centre or perspective points, the ground coordinates of an object and the 

image coordinates through a straight line. The collinearity equations for a metric camera 

are given in equations (2-12) and (2-13). Non metric or digital consumer cameras do not 

normally fulfil the collinearity equations listed on (2-12) and (2-13). These two 

mathematical model equations should be extended to include principal offset points (xp, 

yp) and can be further extended to include lens distortion parameters.      

Where x,y = image coordinates  

 X, Y, Z= ground or object coordinates 

X0, Y0, Z0=projection centres.  

And r11, r21, …., r33 are the elements of rotation matrix (Smith, 2009). 

 
𝒙 = 𝒇

[𝒓𝟏𝟏(𝑿 − 𝑿𝟎) + 𝒓𝟐𝟏(𝒀 − 𝒀𝟎) + 𝒓𝟑𝟏(𝒁 − 𝒁𝟎)]

[𝒓𝟏𝟑(𝑿 − 𝑿𝟎) + 𝒓𝟐𝟑(𝒀 − 𝒀𝟎) + 𝒓𝟑𝟑(𝒁 − 𝒁𝟎)]
 2-12 

 
𝒚 = 𝒇

[𝒓𝟏𝟐(𝑿 − 𝑿𝟎) + 𝒓𝟐𝟐(𝒀 − 𝒀𝟎) + 𝒓𝟑𝟐(𝒁 − 𝒁𝟎)]

[𝒓𝟏𝟑(𝑿 − 𝑿𝟎) + 𝒓𝟐𝟑(𝒀 − 𝒀𝟎) + 𝒓𝟑𝟑(𝒁 − 𝒁𝟎)]
 

 

2-13 

 

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&sqi=2&ved=0CC8QFjAC&url=http%3A%2F%2Fwordinfo.info%2Funit%2F1466&ei=9iGLVJziL8LU7AaK_4DABA&usg=AFQjCNEYY62lHTUvFrmWvo_em7pEeQ_Lhg&bvm=bv.81828268,d.ZGU
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Due to advances in technology, a photogrammetric one click solution for 3D 

reconstruction is available today from Vexcel by Microsoft. This web service is designed 

for the rapid production of digital surface and terrain models with high-density point 

clouds (see figure 2.27). This software is specially designed for the UltraCAM digital 

aerial camera systems. According to the web-seminar from the developer of UltraCAM, 

the accuracy of the point cloud (X, Y and Z) for 15 cm resolution or Ground Sample 

Distance (GSD) is 10cm and 10-15cm for position and vertical accuracies, respectively. 

A comparison was carried out by the developer between a Laser Imaging Detection and 

Ranging (LIDAR) system and UltraCAM Eagle, using UltraMap for the production of 

point clouds. The results were highly promising for UltraCAM Eagle; the results of the 

comparison are listed on table 2.2. Gatewing cloud solution is another web-based service 

from Trimble. This web service has the ability to create orthophotos and digital terrain 

models form UAV imagery. It builds a DTM through automatically processing the 

images based on the users’ requirements (UltraCAM, 2011; Questexmedia, 2012). The 

advances in technology have opened the possibilities for new photogrammetric 

acquisition techniques which will be explained in the next section.   

 

 

   

 

   

 

 

 

 

 

 

 

Figure 2.27: Screenshot of point clouds generated from UltraMap 3.0, (UltraCAM, 2011) 
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Table 2.2: Comparison between LIDAR system and UltrCAM Eagle, (UltraCAM, 2011) 

2.5.5.1 Image Acquisition  

In all photogrammetric projects, image acquisition is the most influential and 

expensive step. The primary aim for many photogrammetric researchers and practitioners 

was to develop flexible and efficient techniques to obtain high-resolution imagery with 

the minimum possible cost. The acquisition technique consists of a platform and a 

camera, which are described in more details in the following sub-sections.   

2.5.5.1.1 Platforms 

There are different photogrammetric measurement platforms available for image 

acquisition such as satellites, traditional aircraft, mobile vans, and UAV platforms. 

Remote sensing satellites have temporal and spatial resolution limitations. Traditional 

aerial platforms could be used to obtain high image quality, but the cost of using large 

and medium format cameras is a constraint which cannot be afforded for many 

applications. Mobile vans can be a reliable source but are also limited to close range 

applications. UAVs combine both aerial and terrestrial photogrammetry which can open 

various new applications in the close range domain, and also introduces low-cost 

alternatives to the classical manned aerial photogrammetry. Without endangering human 

life, UAVs can be used in high risk situation or harsh environment.  

There are several reasons that made a UAV an extremely useful source of 

platform for image acquisition in many situations. The capability of image and video 

acquisition in real-time, rapid response in a number of critical situations, ability to collect 

image data at a lower cost, in addition to the high-resolution imagery acquisition, are all 

considered to be significant advantages. However, UAVs, especially low-cost types and 

LIDAR System UltraCAM Eagle 

Effective pulse: 400 khz 

Scan rate: 200 scans/s, Speed <120 

kts 

Image GSD: 15 cm 

Speed > 400 kts 

Strip width 600m Strip width 3000m 

20% overlap 60% sidelap 

Used strip 480m Used strip 1200m 

Point density 10 pt/sqm Point density 300 pt/sqm 

Project 120 km
2 
, Length 40 km, Width 30 

km, Speed 120 kts
 

Project 120 km
2, 

Length 40 km, Width 

30 km, Speed 120 Kts 

63 flight Lines, 11 min per line, 3 min/turn 
25 flight lines, 9 min per line, and  3 min / turn 

882 mins, 15 hrs, 3 days 300 mins, 5 hrs, 1 day 
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those limited to the carrying payload, have low accuracy of defining their position & 

orientation. UAVs are normally not equipped with air traffic communication and 

collision avoidance systems. Another limitation might also be the small coverage 

footprint on the ground and the necessity of the presence of at least two persons for 

system manoeuvres and transportation. It can also be a real threat to the people on the 

ground in case of malfunction (Zhang, 2008b; Nagai et al., 2009; Agüera et al., 2011; 

Briese et al., 2011; Haala et al., 2011; Neitzel and Klonowski, 2011; Remondino et al., 

2011; Thamm, 2011).  

In the UK, according to the current regulations, UAVs must only be used in 

segregated airspace, which restricts them to fly below 400 feet and in a few designated 

areas for testing purposes only. It was anticipated that by the end of 2012 UAVs will be 

technically capable of flying in unsegregated airspace. This was due to the primary 

interest of ASTRAEA, which is a combination of leading aerospace companies 

supported by government technology strategy to permit UAVs to operate anywhere in 

the UK (ESS, 2011). However, the final regulations require obtaining permission from 

the Civil Aviation Authority (CAA) before commencing a flight within a congested 

area or in proximity to people or property (Civil Aviation  Authority, 2013). Due to the 

limitations of UAVs, mobile vans remain a very dependable source for image acquisition 

for close range applications, particularly for road surface monitoring.    

2.5.5.1.2 Camera  

 In road maintenance and crack detection, the camera has to be high resolution in 

order to be able to detect as thinner crack as possible. Some camera parameters can help 

to achieve higher resolution and produce excellent image acquisition. These parameters 

include Field of View (FoV), radiometry, exposure settings, and pixel size on the object 

(Ground Sample Distance (GSD)). The camera FoV defines how many scenes can be 

covered with the camera and this is a function of the focal length and the size of CCD or 

CMOS. The larger format sensor and smaller focal length have a larger FoV and vice 

versa. Different cameras with various camera focal lengths will be investigated in this 

project. Platforms with on-board sensors far away from their objects normally can view a 

larger area but cannot provide considerable details. The relationship between format size, 

focal length and the field of view is shown in figure 2.28.  

 

 

http://www.caa.co.uk/default.aspx?catid=1428&pageid=8165
http://www.caa.co.uk/default.aspx?catid=1428&pageid=8165
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The second parameter that can affect the quality of the image is radiometry. 

Radiometry is a critical parameter due to the fact that image matching process is 

dependent to a high extent on image radiometric quality. The major radiation 

components affecting the object and entering the sensor of a DSLR camera in a 

traditional aerial, low-altitude UAV, and mobile van are: the direct sun illumination, 

skylight, and illumination reflected from surrounding objects in the area. The radiation 

component dominating from objects is reliant on the state of the atmosphere and 

shadowing conditions. The amount of light reaching the CCD sensor or detector with 

consumer cameras is controlled by exposure time, f-stop, and International Standards 

Organization ISO sensitivity settings. Fundamental quality indicators of the camera are 

sensitivity to lighting, stability of the sensor, and the sensor effect by Signal-to-Noise 

Ratio (SNR) (Rosnell T et al., 2011). The exposure process includes the amount of light 

entering the CCD. Three elements are involved in exposure which makes a triangle 

called the exposure triangle, see figure 2.29. The high quality image acquisition is a 

balance or a wise selection of these three elements.   

 

 

 

 

 

                                                                    

 

 

Figure 2.29: Exposure Triangle (CiC, 2012) 
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Figure 2.28: Diagram showing the relationship between Field of View and focal length 
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The image resolution or GSD is another important parameter in the camera, 

especially for road surface monitoring, with the larger the GSD, the more details can be 

captured by the camera see table 2.3 (Wang and Smadi, 2011). Advances in technology 

have allowed for the advent of new instruments with powerful specifications. Recently, 

Nokia mobile phone has revealed its new state-of-the-art Nokia 808 purview phone with 

41 megapixel (MP) sensors. This new technology could be considered revolutionary, 

especially for micro drones because of their limited payload, using this new-light camera 

with a powerful resolution will further broaden their applications (BBC, 2012). 

Table 2.3: Image resolution and theoretical visible crack width(Wang and Smadi, 2011) 

2.5.6 Comparison between photogrammetry and Computer vision 

(CV) based 3D surface modelling  

In recent years, different solutions were available for automated processing of 

images for the derivation of 3D information or 3D models. Examples of automated 3D 

models generation are the open source Microsoft Photosynth, Bundler, Photofly, and 

ARC3D. These solutions are based on the SfM derived from CV. An investigation of the 

performance of these public sources is necessary in order to determine their reliability.  

Some data set images were used for making a comparison between both 

photogrammetric and vision approach for 3D surface modelling in this project. The 

procedures that both communities share are; calibration, image matching, and inverse 

triangulation with bundle adjustment for 3D point cloud generation. All of these 

processes were investigated separately in more detail in order to conclude the limitations 

of each method in creating the 3D surfaces. A comparison of different available tools 

from both communities was evaluated in this project. Both commercial photogrammetric 

software such as LPS, Photomodeler, Bundler, AGISoft StereoScan and open source tool 

(such as Microsoft Photosynth) were utilized for analysis evaluation in the next chapters.  

There are some problems associated with SfM or CV’s 3D reconstruction 

programs and solutions. Although, they are easy to operate and can provide a fascinating 

3D point cloud out of unordered images automatically, these solutions do not have 

photogrammetric mathematical rigour but are appropriate for visualisation purposes 

only. In contrast, for achieving high accuracy in addition to photorealism, user 

interaction is considered essential in order to provide scale, e.g. by measuring GCPs or 

introducing scale by the use of a scale bar. Using both communities, i.e. the best of the 

Traverse Resolution (pixel)/4m lane 1300 2048 4096 

Visible Crack Width (mm) 3 2 1 
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both photogrammetry and computer vision, it should be possible to have tools, fully 

automated and precise, allowing 3D modelling of the complex environment from digital 

images (Pierrot Deseilligny and Clery, 2011). The next section will cover the main 

differences between photogrammetry and computer vision techniques in some of most 

important parameters, such as camera calibration and image matching.  

2.5.6.1 Camera Calibration 

Accurate camera calibration is considered as a necessary prerequisite for the 

extraction of precise and reliable 3D metric information from images. The topic of 

camera calibration has been widely researched in photogrammetry (Abraham and Hau, 

1997; Clive S, 1997; Zhang, 2000; Läbe and Förstner, 2004; Remondino and Fraser, 

2006). The camera calibration is used to determine precise and accurate values, called 

interior orientation parameters. If the principal distance, principal point offset and lens 

distortion parameters are known, the camera is considered to be calibrated. In general, 

camera calibration methods may be classified into three primary classes; laboratory 

methods, field methods and stellar methods (Wolf and Dewitt, 2000). 

The number of existing low-cost digital consumer cameras has significantly 

increased over the last decade. The stability of consumer camera calibration parameters 

is crucial and needs to be considered due to the excessive use of camera features such as 

zoom or auto focus. The change of calibration parameters over time was investigated by 

Läbe and Förstner (2004). In their study, different camera types, which cover the 

spectrum of consumer cameras, were used. The calibration of cameras was repeated over 

a period of four months from three to seven times, and no systematic temporal increase 

or decrease of calibration parameters was observed. The study concluded that consumer 

cameras, under certain limited accuracy requirements, can be used for photogrammetric 

purposes but have to be calibrated periodically if camera features such as focusing were 

used  (Läbe and Förstner, 2004). 

In computer vision and many other applications, the calibration is only applied to 

recover the focal length as other parameters are neglected or assumed known. In 

photogrammetry, all calibration parameters are employed for precise photogrammetric 

measurements. The focus of treatment can be so different in each of these two 

communities regarding calibration approaches. In photogrammetry, the calibration 

requirement might be designed to sustain a successive object space measurement 

demanding say1:20,000 of the accuracy. On the other hand,  the prerequisite for a 
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structure from motion applications may require positioning object points to the accuracy 

of only 5% of the camera to object distance (Remondino and Fraser, 2006). 

The photogrammetric community add more emphasis on the accuracy and 

reliability of the camera calibration than the CV community. Although the camera 

calibration is a necessary step in 3D modelling in order to extract metric information 

from 2D images, the automation of the 3D modelling is considered more important in 

CV. In photogrammetry, however, accurate camera calibration is an essential 

requirement for the extraction of precise and reliable 3D metrics without putting an 

emphasis on the automation. Much work has been done in the photogrammetric 

community and recently, full automation using target-less features has become available 

(Barazzetti et al., 2011).  Camera calibration can be classified roughly into two 

categories based on the used techniques of photogrammetric calibration and self-

calibration (Zhang, 2000; Remondino et al., 2012), table 2.4 shows the main differences 

between both communities for camera calibration.  

Table 2.4: Camera Calibration in Photogrammetry and CV (Remondino et al., 2012)  

item Photogrammetry Computer Vision 

Geometry Perspective Geometry Projective geometry 

Parameters 

Interior Orientation (IO): principal point (2 

parameters), principal distance (1), radial lens 

distortion (2-3), tangential distortion (2), affinity 

(1) and shearing (1). 

Interior Orientation (IO): are limited to 

the principal point (2), principal distance 

(1) and radial lens distortion (1-2) 

coefficients 

Calibration 

method 
Utilize all methods Self- calibration only 

Automation 
Manual and Automatic using coded or target-

less(recently)  
automated using SfM without target 

A camera model based on perspective projection considers the Interior Orientation 

parameters (IOPs) to be stable (at least for a given focal length setting) and that all 

departures from Collinearity, linear and non-linear, can be accommodated. Generally, the 

collinearity equation requires a minimum of five correspondence points within a multi-

image network. Moreover, approximations of parameter values for the least-squares 

bundle adjustment in which the calibration parameters are recovered are necessary due to 

its non-linear nature (Remondino and Fraser, 2006). On the other hand, the projective 

geometry is more supporting rather than Euclidean scene reconstruction with projective 

camera model. The Essential matrix and fundamental matrix models are characterized by 

such a model and can accommodate some variables, such as unknown focal lengths. This 

model requires a minimum of 6 - 8 correspondence points to enable a linear solution that 

is invariable although quite unstable. In such models, non-linear image distortion 

parameters, such as lens distortion, are not easily dealt with (Remondino and Fraser, 
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2006). Usually in CV, the self-calibration approach is utilized for defining the camera 

calibration parameters. However, not all parameters are considered important for the CV 

community (Pierrot Deseilligny and Clery, 2011). In some approaches like Photosynth, 

only focal length and two radial distortions (K1 and K2) are worked out.  

 In the photogrammetric approach, camera calibration is achieved by observing a 

calibration target with known geometric 3D spaces to a high precision. Examples of 

these high precision geometric observers are a flat sheet in case of PhotoModeler 

Scanner (PMS), LCD chessboard in case of AGISoft Lens, and the frame based coded 

target calibration in case of Australis. AGISoft lens is a free tool that allows for 

automatic calibration of cameras through utilizing LCD screen target as a calibration 

sheet. It provides a full assessment of camera calibration matrix, comprising coefficients 

of non-linear distortion by means of brown’s model (Agisoft, 2015). 

An example of CV camera calibration is Photosynth, which is easy to use and can 

produce an attractive 3D point clouds out of unordered images. However, the service is 

incomplete in terms of photogrammetric rigour in the formulation of equations, which 

may lead to unacceptable precision for some applications, for example, large blocks of 

images (Remondino et al., 2012).  Photosynth allows each image to have its focal length; 

this is traditionally the cause of imprecision. The proposed calibration model by 

Photosynth is relatively simple, as it is limited to three coefficients: focal length and 

radial distortion (K1 and K2). Some precise aero-triangulation of a large set of images 

acquired by consumer cameras from UAVs requires the possibility of more sophisticated 

distortion rather than the focal length and two radial distortions. For example, the de-

centric distortion and sometimes arbitrary polynomial distortion is necessary for these 

types of cameras (Pierrot Deseilligny and Clery, 2011).  

2.5.6.2 Feature Matching  

Digital image matching can be divided into three general categories that are 

feature-based, area based and symbolic or hybrid method. Image matching on area based 

methods is straightforward and achieved through numerically comparing the digital 

numbers in small sub-arrays of each image. On the other hand, feature-based methods 

are quite complicated and involve the extraction of features, which include edges at 

different scales (Wolf and Dewitt, 2000).  In recent years, in the photogrammetric field, 

interest in feature-based matching, which is widely used in computer vision, is increasing 

due to the availability of new acquisition techniques. The techniques that do not observe 

normal acquisition conditions are images acquired by UAVs, mobile mapping 
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technology, and oblique photogrammetric cameras. Examples of those image matching 

methods are the two operators Scale Invariant Feature Transform (SIFT) and Speeded 

Up Robust Features (SURF) or its newer version OpenSURF (Lingua et al., 2009).  

In the literature, a comparison between SIFT and SURF, the previous version of 

OpenSURF, was carried out by Juan and Gwun, (2009). The study used KNN (K-

Nearest Neighbour) for finding the matches and RAndom SAmple Consensus 

(RANSAC) to reject inconsistent matches of these two methods. The repeatability 

measurement was used to evaluate the performance of detection and was applied to 

compare the two methods for scale changes, rotation, blur, illumination changes and 

affine transformations. The overall conclusion of the study that was SIFT is slower than 

SURF and is not good at illumination changes. SURF is also not good in illumination 

changes, however, in time of processing SURF outperforms SIFT, see table 2.5. While 

SIFT is invariant to rotation, scale changes and affine transformations, SURF is not 

stable in rotation. The performance of both tests for rotation changes is shown in figure 

2.30. Overall process of both algorithms SIFTS and SURF is summarized in table 2.6.  

 

 

 

 

 

  

Table 2.5: SIFT and SURF general performance levels (Juan and Gwun, 2009)  

 

Figure 2.30: Rotation comparison between SIFT and SURF at different angles, repeatability 

or frequency vs rotation (above) and the used samples (below) (Juan and Gwun, 2009) 

 



                                          Chapter Two: Background and Theory 

56 

 

Table 2.6: SIFT and SURF workflow (Lowe, 2007; Bay et al., 2008)   
S

IF
T

 

D
et

ec
ti

o
n

 scale-

space,   

extrema  

detection 

Uses Difference of Gaussian (DOG) instead of Gaussian to improve the 

computation speed. This step is to detect the best candidate key-point. 

Laplacian: for region with rapid intensity change (edge detection).  

First been smoothed with something approximating (Gaussian) reduce its 

sensitivity to noise. 

Single grey level image as input and produces another grey level image 

as output.  

Key-point 

localization 

Too many candidates, discarding of low contrast key-points and 

eliminating edge responses. Interpolation of nearby data is used to 

accurately determine its position. 

D
es

cr
ip

ti
o

n
  

 

Orientation 

assignment 

In this step, each key-point is assigned one or more orientations based on 

local image gradient directions. Describe the key-point with respect to 

this orientation. 36 orientation bins (representing 10° increments) is 

computed. Largest bin is chosen as the key-point's orientation. 

Key-point 

descriptor 

The area around the Key-point is divided into 4 x 4 sub-regions, 

Build an orientation histogram with 8 bins for each sub-region. This 

results in a vector with 128 dimensions (4 x 4 x 8). 

S
U

R
F

 

D
et
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ti

o
n

 

scale-

space,   

extrema 

detection 

Fast Hessian 

Detector 

The Hessian matrix uses to classify local maximum 

of pixel intensities. Calculate the determinant of the 

Hessian for each pixel in the image and use the value 

to find interest points.  

Constructing the Scale-Space is a continuous function which can be used 

to find extrema across all possible scales. Different idea of scale space 

applied here. The SURF approach leaves the original image unchanged 

and varies only the filter size. Due to using integral images, filters of any 

size can be applied at exactly the same speed.  

Key-point 

localization 

Accurate Interest Point Localisation It done through three stages. 

The responses are thresholded by comparing each pixel in the scale-

space with 26 neighbours, and interpolating the nearby data to find the 

location in both space and scale to sub-pixel accuracy. 

D
es

cr
ip

ti
o

n
  

 Orientation 

assignment 

Haar wavelet responses of size 4 σ are calculated for set of pixels within a 

radius of 6σ of the detected point. σ is scale where interest point found. 

The dominant orientation is selected by rotating a circle segment 

covering an angle of 60° around the origin. Here the integral images is 

used with Haar wavelet to limit the computation steps to only 6 

Key-point 

descriptor 

Construct a square window around the interest point with 20σ and is 

oriented along the direction found on the previous step. As in SIFT, 

SURF uses 4x4 sub-regions, Within each of these Haar wavelets of size 2 

σ are calculated for 25 regularly distributed sample points. Each 

subregion contributes four values to the descriptor vector leading to an 

overall vector of length 4 x 4x 4 = 64. If use 128 as in SIFT will be more 

discriminatory.   

 
Much of the performance increase in SURF can be attributed to the use of an intermediate 

image representation known as the “Integral Image".  
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Dedicated area-based or feature-based algorithms with the extraction of points or 

regions of interest are used to identify the image correspondences on the overlapped 

area. Image matching is slightly different between the two communities. In CV, there are 

more interest in feature-based extraction using algorithms such as (SIFT and SURF) 

which provides highly distinctive features invariant to image scaling and rotations, figure 

2.31shows a possible extracted features and their scale in the image using SURF.  

 

Figure 2.31: Extracted features and their scale (SURF) 

 

By comparing the descriptors (64 or 128) for SURF and SIFT, respectively, the 

corresponding points can be found with an exhaustive analysis of all possible image 

combinations. Two different methods are available for comparing the descriptors, the 

first is rigorous but slow procedures (e.g. quadratic matching), and while the second is 

fast but approximate methods (e.g. kd-tree search) can be used. Therefore, it is normal to 

have lots of outlier in case of SURF and SIFT since they utilize the second approach.  

In photogrammetry however, the area-based matching approach is still adoptable 

through numerically comparing the digital numbers in small sub array of each image or 

area based matching. It is not invariant to large rotation and scale changes and also needs 

initial epipolar geometry to narrow down the search area and to increase the accuracy of 

matching. The most used method is cross-correlation (C) see equation (2-14) and the 

Least Square Matching techniques which have been implemented widely in commercial 

photogrammetric software. Many researches have demonstrated their high reliability as 

well as accuracy, which can reach up to sub-pixel level (Lingua et al., 2009). In the 

cross-correlation method, the correlation coefficient of the grey value is computed 

Feature of interest  

Scale and rotation 

differences  
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between the template window from the left image and the search window in the right as 

follow (Wolf and Dewitt, 2000). 

Least squares’ matching is closely related to the correlation method. Least 

squares estimate parameters that best fit a search window to a reference window. 

Because it is an iterative process, the least squares can generate a high positional 

accuracy to about 0.1 pixels. Cross correlation requires a prior less accurate position than 

the least square matching but usually limited in precision to about one pixel. Least square 

on other hand, requires more accurate prior positional accuracy to about 2 pixels but can 

achieve high precision. Therefore, in most practical  cases, cross correlation is first used 

for prior position estimation and then followed by least square for achieving high 

accuracy (Leica, 2006b). The least square uses the equation listed on (2-15) for 

estimating the position of search window to about 0.1 pixel.  

  

 𝒄 =
∑ ∑ [(𝑨𝒊𝒋 − 𝑨̅)(𝑩𝒊𝒋 − 𝑩̅)]𝒏

𝒋=𝟏
𝒎
𝒊=𝟏

√[∑ ∑ (𝑨𝒊𝒋 − 𝑨̅)
𝟐𝒏

𝒋=𝟏
𝒎
𝒊=𝟏 ][∑ ∑ (𝑩𝒊𝒋 − 𝑩̅)

𝟐
]𝒏

𝒋=𝟏
𝒎
𝒊=𝟏

 
2-14 

Where  

 C : the correlation coefficient. 

 
m,n : number of rows and columns respectively in the template window.           

 Aij, Bij : are the digital number from right and left image at row i, column j. 

 𝐴,̅ 𝐵̅ :are the average of all digital number in left and right image respectively.  

 

𝑔2(𝑥2, 𝑦2) =  ℎ0 + ℎ1 𝑔1(𝑥1, 𝑦1)  

𝑥2 = 𝑎0 + 𝑎1 𝑥1 + 𝑎2 𝑦1 

𝑦2 = 𝑏0 + 𝑏1 𝑥1 + 𝑏2 𝑦1 

 

2-15 

Where  

 
𝑥1, 𝑦1 The pixel coordinate in the reference window 

   𝑥2, 𝑦2 The pixel coordinate in the search window 

𝑔1(𝑥1, 𝑦1) The grey value of pixel  (𝑥1, 𝑦1) 

𝑔2(𝑥2, 𝑦2) The grey value of pixel  (𝑥2, 𝑦2) 

ℎ0, ℎ1  Linear grey value transformation parameters 

𝑎0, 𝑎1 , 𝑎2  Affine geometric transformation parameters 

𝑏0, 𝑏1 , 𝑏2  Affine geometric transformation parameters 
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Traditional feature extraction and matching techniques used in photogrammetric 

applications are generally inadequate for many new applications such as UAVs and low-

quality image acquired using mobile platforms. These algorithms fail to produce reliable 

results under extreme geometrical conditions of the new applications. Photogrammetric 

detection and description algorithm represented by cross-correlation is not invariant to to 

scale changes, rotation, blur, illumination changes and affine transformations (Lingua et 

al., 2009). Therefore, the needs for another alternative is vital in order to deal with the 

new acquisition techniques.   

Figure 2.32 shows possible scenes for which computer vision matching algorithms 

can work perfectly while photogrammetric ones could probably fail to do so. A and H 

are the affine transformed images, B and C are the scale changed images, D are the 

rotation images, E and F are the blurred images, G are the illumination changed images 

(Juan and Gwun, 2009).  For a comparison between the three different methods (SIFT, 

SURF, and cross-correlation with least square refinement), trials were designed for this 

project based on some available data sets to examine the accuracy of each method in 

terms of total RMSE, for more information refer to section (‎5.7.1).  

 

Figure 2.32: Possible Images that SIFT & SURF can Work with(Juan and Gwun, 2009)  
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2.5.6.3 Outlier Rejection in Feature matching 

There are many outliers in the matching solutions of both SIFT and SURF, since 

both uses the less rigorous matching classifiers, especially SURF. In order to remove 

possible outliers, robust estimators LMeds (Least Median of Squares), RANSAC 

(RANdom SAmple Consensus), and MSAC (M-estimator SAmple Consensus) are 

normally employed to validate the eppipolar constraint between pair of image. In the 

case of RANSAC, a model such as geometric transformation is built using a random 

sample of subsets (7 matches) through normalized 8 point algorithm. It then determines 

the inliers that are consistent with the model and outliers that are not. Finally, it is 

repeated to a predefined number of times or until the set of inliers is large enough, or by 

defining the distance threshold. Figure 2.33 shows the original SURF matching results 

and after applying RANSAC as the outlier rejection.  It can be visually concluded from 

the results presented in figure 2.33 that the accuracy of the matching is massively 

improved after applying the RANSAC outlier removal algorithm. This result was 

achieved using 5000 iterations and with projection error (distance threshold) equal to or 

less than 0.01.    

 

Figure 2.33: SURF only (left), SURF with RANSAC (Right)   
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2.6 Summary  

In this chapter, the literature review revealed that various automated systems are 

already developed for road surface monitoring. These automated systems were 

developed to overcome the previous approaches to assessing pavement condition which 

involved labour-intensive, time consuming, and risky processing of data collection. The 

review also showed that automated systems are different from one country to the other, 

but with all sharing one objective which is accurate data collection and monitoring. It has 

been discussed that the cost of these automated systems is not affordable by many 

developing countries and local road authorities. Therefore, the need for other cheap 

alternative methods should be investigated in this project, see (chapter 4 and 5).   

An extensive review on the literature has identified that previous techniques (sand 

patch testing (SPT) and Laser sensors) for characterising road surface texture have some 

limitations. Texture characterising is an important factor for assessing the ride quality, 

noise control and skid resistance. It has been proved that all previous techniques have 

limitations such as cost of the technique, limitations in providing satisfactory 

information, and limitation in the scanning range used to measure the surface. The most 

widely used classic approach for road surface texture depth measurement is SPT. It has 

been showed that this approach has a limitation in providing accuracy which is in the 

range of ± 0.227 mm of 95% confidence interval and is also a labour intensive process as 

well as having safety issues, in addition to the difficulty of using it in wet weather and 

windy conditions. The rapid advancement in 3D automation methods from digital images 

has opened the door for many applications that require precision such as roughness 

measurement. Research into 3D automation method for roughness measurement has 

revealed that no critical comparison between the automated 3D surfaces of texture and 

SPT are yet available. Therefore chapter 3 of this project deals with investigating this 

new approach for texture depth measurement and surface characterizing using digital 

images.  

It has also been showed that although many other monitoring techniques are 

available, the images remain the only dependable and affordable source. Images can be 

used successfully for crack and other road surface defect detection. The literature review 

revealed that although detection of the cracks has been the aim behind many researches 

in recent years, many problems still need to be solved. For example, crack detection in 

rough texture surfaces needs more attention and investigation, as rough texture can easily 

hide crack pixels, and the processed image may contain lots of false positives due to 
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raised up aggregates. The crack detection on rough texture is investigated further in 

chapter 4. 

  Review on literature also showed that keeping roads safe is a challenging process 

for many road authorities. Damages on the road surface such as potholes can be a serious 

problem for many local government and road agencies. Claims are rise annually against 

road authorities and insurance companies for the potholes related problems. Millions of 

pounds are spent annually in the UK and Wales for compensation of motorist and for 

repairing the potholes. Therefore, periodic road assessments and collection of up-to-date 

information about the road surface condition seems to be the most effective way to 

conserve high road standards at a minimum price.  

Many automated methods such as laser sensors, mobile network sensors, the use 

of accelerometers, and single digital image processing were developed, and reporting of 

potholes through a dedicated website is still available even in modern countries such as 

UK. Each of these developed methods have their advantage and disadvantages, for 

example, the pothole reporting method is mainly based on the users’ involvement. On 

other hand, 2D image-based methods are easy to use; however, challenges remain in the 

methods of processing, especially when texture differences do not exist between potholes 

and the background. To overcome the above problems, an alternative 3D surface 

modelling has been proposed which will be discussed in chapter 5 of this project. 
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CHAPTER THREE: NEW APPROACH FOR TEXTURE 

DEPTH MEASUREMENT 

         

Prepared using render tool in MeshLab 
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3.1 Introduction 

For pavement design and management, the measurement of pavement surface 

texture depth plays an important role. The pavement surface texture’s depth 

measurement determines many important parameters in road management, such as ride 

quality and pavement durability as well as skid resistance at high speed and in wet 

conditions. When the road surface is wet, the risk of accidents is increased as the 

breaking distance becomes longer. Therefore, a mass of accidents in wet weather 

conditions can be an indicator of friction deficiency. The skid resistance of a road 

pavement is an important road safety factor which needs further attention (Kennedy et 

al., 1990; Viner and Britain, 2006).  

Several methods are available for measuring the texture depth using different 

techniques. The sand patch test (SPT) is the most widely used and historic approach that 

determines mean texture depth (MTD) of pavement surfaces by applying and spreading a 

known volume of sand to cover a circular shape on the road pavement surface. Mean 

texture depth is calculated by measuring the area of the sand and dividing a known 

volume of sand by the area [ASTM E965]. More recent advances in technology have 

allowed for the use of laser sensors to calculate the depth through texture profiling. As an 

example, in the UK texture depth measurements made by laser systems are currently 

reported as Sensor Measured Texture Depth (SMTD) which is treated as an alternative to 

SPT (Viner and Britain, 2006). A few reported papers have used photogrammetric 

techniques for measurement of texture depth but these are limited to laboratory use only. 

Other papers work used the integration of laser measurement with photogrammetry for 

obtaining results (Gendy and Shalaby, 2007; McQuaid et al., 2010).         

In this chapter, a methodology has been developed to determine texture depth 

measurement to be an alternative method to the SPT. The new developed method is 

based on reconstructing the 3D texture of the road surface using digital images. Figure 

2.1 describes in details the workflow for the proposed methodology.  This chapter will 

investigate the use of digital images for texture depth measurement and compare it with 

SPT. Smartphone cameras and DSLR cameras were used for the 3D modelling generated 

from digital images. A comparison is carried out based on real data collected from 

different road surfaces with different texture depths and levels of deteriorations. The 

results presented in this chapter show the promising outcomes of an alternative method 

to SPT using only digital images.   
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3.2 New approach-description  

Extensive literature review showed that SPT tends to be time consuming and not 

always applicable, especially in wet and windy conditions. The review also showed that 

laser sensor system tend to be expensive and limited to a two-dimensional array that 

lacks some information (Bitelli et al., 2012;Jahanshahi et al., 2012a;Sengoz et al., 2012). 

Recent advances in technology have allowed for the introduction of a new imaging 

technique and a processing methodology based on a 3D automated method.   

In this approach, a camera will be used for capturing the texture of the road 

surface. Different cameras will be utilized in this project to examine the effect of pixel 

size, focal length, and CCD sensor size. It is well-known in photogrammetry that 

cameras in close range applications can achieve ‘mm accuracy’ if well calibrated. 

However, the challenges remain in automatic processing of the calibration and 3D model 

generation. New smartphone device technologies are available which have a very 

compact camera (CCD and focal length) which add additional challenges to close range 

photogrammetric applications. 3D model reconstruction communities have appreciated 

these limitations that led to development of new automated methods of camera 

calibration and 3D surface model reconstruction. These new automated methods are the 

core of processing in this project.  

Figure 3.1 shows a workflow diagram that describes in detail the proposed new 

method for surface texture depth measurement as follows:  

1. The camera is used to capture the surface texture for measuring the depth. 

Five cameras, 2 of DSLR with 3 lenses and 2 smartphone camera were 

utilized for the overall investigation in this chapter. 

2. Before image data capturing, specially designed markers were placed on the 

object to relate the image coordinate system to the real coordinate system. 

This was achieved through using a reflectorless total station.  

3. Two scenarios were investigated to generate surface models or texture 

recreation. 

a. Using stereo vision (AGISoft StereoScan) to reconstruct 3D surfaces from 

only two images, investigations were carried out to find out the optimum 

camera to object distance and intersection angle. 
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b. Using bundle adjustment through multiple images (AGISoft PhotoScan) 

to reconstruct 3D surfaces.  

4. Transformation (absolute orientation) is performed to transform the 3D 

reconstructed surface from the image coordinate system to the real world 

coordinate system. A minimum of 5 GCPs were utilized through the Cloud 

Compare (CC) free tool.  

5.  After transformation, a 10 cm circular sample is cropped from the 3D 

surface using CC. This was useful in comparison (SPT with 

photogrammetric) to be compatible and dependable.  

6. The circular 10 cm sample data (point cloud) is fitted with a mean plane in 

Matlab to measure the average depth of texture using the residuals that have 

been calculated between data and fitted plane. 

7.  Finally, different analysis approaches are carried out to assess the author’s 

developed approach through:  

a. Comparing the results of depth worked out from digital images using 

different cameras and materials (asphalt and concrete) with depth 

measured from SPT to report the differences, calculate RMSE from 

differences, and find out correlation degree using Matlab. 

b. Comparing the generated 3D surfaces from different cameras with the 3D 

reference data (generated from Canon 5D-50mm) to measure the 

reliability of the 3D automated tool (PhotoScan) as well as to measure the 

precision of each used camera using CC.        
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Figure 3.1: The workflow diagram for depth calculation from digital images  
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3.3 Aims and objectives of the trials  

The aim of the trials was to assess the potential of the new developed approach, 

achieved through the following objectives:  

1- To investigate image quality or image sharpness through testing different lenses 

and cameras (Trial 1). 

2- To investigate the accuracy of both stereo images and multiple images for the 

production of 3D models (Trial 2).  

3- To carry out an investigation of texture depth calculation from digital images 

and compare their results with SPT using two tools AGISoft StereoScan and 

PhotoScan (Trial 3). 

4- To examine different texture or material types (gravel rough, gravel smooth, 

soil, concrete tiles, grass and asphalt pavement both ,smooth and rough) for 

feature extraction and matching points production (Trial 4). 

5- To investigate the new approach of depth calculation from digital images on 

materials different to asphalt, such as concrete samples (Trial 5).  

6- To test the author’s developed method as a dependable measurement technique 

for use by other PhD studies in the Civil Engineering department (Trial 6).  

3.4 Methodology of the trials    

To fulfil the above objectives, the following methodology was adopted:   

i. Objective 1 : A lab image was prepared using the standard Koren 2003 lens 

test chart printed sheet (Koren, 2004), see data sets on figure 3.2.  

ii.  Objective 2: Two control samples, namely test 09 and test 10 rough and the 

smooth texture were used for evaluation, figure 3.4. 

iii. Objective 3: Ten samples of various texture depths were utilized, see data 

sets on figure 3.4. 

iv.  Objective 4: Different materials were utilized through the use of AGISoft 

StereoScan on a pair of images, see figure 3.5.  

v. Objective 5: Two samples of concrete material were used in order to validate 

the proposed methodology of depth calculation on this important material, 

figure 3.6.    

vi. Objective 6: Nine samples of fractured concrete structure were used, see 

figure 3.7.   
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3.5 Data sets and test sites  

A test location was prepared in the Visualisation and Digital Image Processing lab. 

An image sheet was printed and placed on the wall with the lighting condition as 

recommended by Imatest (2013), see figure 3.2. A variety of DSLR cameras available at 

the Nottingham Geospatial Institute (NGI) including Canon 5D-50mm (C50), Canon 5D-

28mm (C28), Canon 5D-Sigma-28mm (C28S), Nikon-D100 (D100), Nikon-D200 

(D200) and Nikon-D300 (D300) were used for this trial, utilizing different aperture 

modes. In order to avoid camera shaking, a tripod and remote controller or timer were 

employed; more details about the trial procedures are available in section ‎3.7.1. 

   

Figure 3.2: Testing lens quality of different cameras 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to study the depth calculated from the digital images, the Jubilee campus 

road network and the area around it was utilized. The Jubilee campus road network is 

newly built, and the surface texture of the road was found to be less than 1mm. 

Therefore, the area around the Jubilee campus has been used in order to understand the 

variation on texture depth. The selection of the test areas and the degree of roughness 

were based on visual inspection by eye. Ten road test sites were chosen, see figure 3.3. 

In each position, a minimum of 5 markers as Ground Control Points (GCPs) were placed 

on the surface to act as fixed points and measured to determine their 3D coordinates 

using a reflectorless total station.  

Having test sites with variations in texture depth is important as this relates to the 

real world situation. The test samples used in this examination ranged from very smooth 

to very rough texture, and the range was found to be between 0.5mm to 4mm.  The 

samples used for this investigation consisted of the macro level properties of actual 

asphalt with different wavelength and peak to peak amplitude. Moreover, the shape and 

size of aggregate textures varied from sample to sample, figure 3.4. Among these ten 
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samples, two samples, test 09 and test 10, were used as control samples for examining 

the effect of intersection angle and range on some output parameters of the free tool 

StereoScan.   

  

 

 

 

 

     

To carry out investigation on different texture or material types and to compare 

their results with each other, seven texture types were used, figure 3.5. The location of 

these texture samples were all around the Nottingham Geospatial Building (NGB). The 

time of the day was an afternoon and with full sunny conditions. The data collection for 

  

 

 

 

 

 

 

Figure 3.3: Test study area located near Jubilee Campus 

 

Figure 3.4: Used samples for texture depth evaluation 
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image capturing was conducted within one hour in order to minimize the variation in 

lighting conditions for these different textures.  

In addition to asphalt surface texture, two concrete surface tests were also carried 

out in this investigation which consisted of both very rough and smooth texture, see 

figure 3.6. The location of these samples was the University Park Campus in 

Nottingham. One of these samples, the rough concrete texture is a lab sample. The other 

sample is a real world sample. The aim of testing the concrete surface is to examine the 

methodology of depth calculation on a different texture rather than asphalt. Five cameras 

with different resolution and focal lengths were used to examine the potential 

methodology of texture depth measurement from digital images. 

Finally, data consisting of nine samples of fractured concrete structure, see figure 

3.7, were measured. Again, four markers were used as GCPs for conducting absolute 

orientation.  

 

 

 

 

 

 

 

 

Figure 3.5: Various texture or material types   

 

 

 
 

 

 

 

 

 

Figure 3.6: Concrete samples, rough texture (left) and smooth texture (right)  
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3.6 Material and modified methods   

3.6.1 Cameras used for the trials   

It has been reported that the camera in close camera to object distance 

measurement can provide better accuracy than a total station if it has been well calibrated 

(Luhmann et al., 2006; Luhmann, 2010). However, the challenge is in the automation 

process of calibrating the camera and generating the 3D model. Moreover, the use of 

smartphone digital cameras which are characterized by a very compact charge-coupled 

device (CCD) sensor and small focal length can add more challenges to the process of 

automatic 3D modelling. These challenges are related to the low image resolution and 

relatively inadequate lens sharpness. Both of these factors can affect the feature 

extraction and matching processes, as explained later in this chapter. Small focal length 

and CCD size can limit the image coverage, so more images need to be captured, leading 

to more processing time, or the camera to object distance needs to be increased, which 

subsequently affect the ground sample distance (GSD).  

For this project, several cameras (DSLR and smartphone cameras) were employed 

in order to generate 3D models on an automated basis without any intervention. Cameras 

with various focal lengths and CCD sizes, from full frame to the extremely compact size 

that are used in today’s smartphone market were used,  in order to assess the accuracy 

and reliability of digital images for the purpose of texture depth measurement. Table 3.1 

  

 

 

 

 

 

 

Figure 3.7: Nine concrete fractured sample from Civil Department 
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shows the calibration details and manufacturers specifications of each camera used. The 

calibration of DSLR cameras was conducted using the Australis AutoCal tool, while the 

smartphone camera calibrations were conducted using flat sheet in Photomodeler, as the 

calibration of smartphones cameras failed in Australis AutoCal. This failure in 

calibrating smartphone cameras using Australis AutoCAL might be attributed to the size 

of the calibration object (the utilized frame with coded targets in the visualization lab), 

which was too big in size for smartphone camera calibration. Overall Root Mean Squares 

errors (RMSE) were 0.129, 0.113, 0.145, 0.628, and 0.638 pixels for Canon 5D-50mm 

(C50), Canon 5D-28mm (C28), Nikon-D200 (D200), Samsung Galaxy Note (Note), and 

Samsung Wave (Wave) respectively.  

Table 3.1: Cameras specifications and calibration results  

3.6.2 Sand patch test apparatus  

The SPT for measuring texture depth is required in order to check the accuracy of 

3D models through measuring the texture depth through a 3D model. The sand patch test 

apparatus is a tool, figure 3.8, used for measuring pavement surface texture to determine 

the average macrotexture depth using a volumetric patch technique. It comprises the 

following tools and materials in addition to the sand that has specific characteristics, 

refer to (Matest, 2010) for more details:   

 Spreader disc with handle and rubber coated surface.  

  Wind shield. 

  Soft and wire brushes.  

  Screw-adjusted dividers. 

  300 mm graduated rule. 

  Metallic cylinder for sphere’s volume measurement. 

  Two glass pycnometers with metallic screw top and pouring hole. 

  Three graduated cylinders 10, 25 and 50 ml cap. 

  Knee-guard. 

 Carrying case. 

  Manufacturer Specifications Australis
1
 and Photomodeler

2
  

Camera 

Focal 

Length 

(mm) 

Sensor  

W*H 

(mm) 

Sensor 

Pixel 

Size(mm) 

Calibrated 

Focal 

length 

(mm) 

Calibrated 

Sensor Size 

W*H (mm) 

Calibrated 

Sensor 

pixel Size 

(mm) 

C50
1 50 36 *24 0.0064 53.7276 36.48*24.33 0.006497 

C28
1 28 36 *24 0.0064 29.2048 36.49*24.33 0.006498 

D200
1 28 23.6*15.8 0.00605 29.5330 23.99*16.06 0.006197 

Samsung Wave
2 4 3.7*2.8 0.00144 3.939206 3.765*2.823 0.00147 

Samsung Galaxy Note
2 4 4.4*3.3 0.00134 3.923945 4.419*3.310 0.00135 
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3.6.3 Total station for absolute orientation 

A total station is an effective and reliable tool of measuring angles and distances 

and for Ground Control Points (GCPs) collection. In order to transform the camera 

coordinate system (3D models) into the real world, the Leica smart station (TCR1201) 

total station was employed. Red colour targets with a black background that will be 

explained later were placed on the road surface texture, and the reflectorless mode was 

used for measuring the centre of the target. A local coordinate system was aimed for 

each particular test that wants to relate between the 3D model and SPT. Therefore, no 

attempt was made to reference the targets into the national grid system. The reflectorless 

mode was utilized in order to gain as accurate a result as possible within a small area of 

the road texture surface.  

Many parameters affect the accuracy of coordinating GCPs in the reflectorless 

mode, such as inclined angle, type of texture and colour of the reflecting surface. The 

mean square errors  in measuring the slope distance, based on the distance and the colour 

of the used surface, was carried out by Beshr and Abo Elnaga (2011). They concluded 

that increasing the distance between the total station and the target leads to increase in 

the errors in measuring slope distance for all colours. The distance range was up to 60 m, 

and the errors were in the range of 0.05-1.2 mm for different colours. Accuracy of the 

red marker which has been used in this project, is followed by both white and yellow 

markers. Based on the work done by Beshr and Abo Elnaga (2011), mean square errors 

of less than 0.2mm for the red marker based on a small range of less than 2m, and an 

inclination of less than 45° is expected for the tests carried out in this project.     

  

 

 

 

 

 

 

Figure 3.8: Sand Patch Test Apparatus  
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3.6.4 Sand patch test modification  

According to the ASTM E965 Standard, a volume of known sand (typically 50 

cm
3
) for texture depth ranged between 0.3-2 mm has to be poured into the road surface. 

The sand is spread out in order to make a circular shape, and a minimum diameter of 170 

mm is preferred. The quantity of the sand used for the texture depth measurement should 

cover the patch to keep the mentioned diameter, table 3.2 shows the recommended 

volume of sand for the range of texture depths (ASTM, 2004) . According to British 

Standard, BS598, Part 3, 1985, a known volume recommended to be used is 25 

cm
3
(HIGHWAYS DEPARTMENT, 1989). However, according to the modified British 

Standard BS598-105:1990, the recommended volume of sand is consistent with the 

American standard and it is 50 cm
3
.  

Table 3.2: Texture depth vs volume of sand (ASTM, 2004) 

Surface Texture Depth (mm) Volume of Sand (cm
3
) 

0.3 to~ 2.0 50 

~2.0 to~4.0 100 

~4.0 to~6.0 150 

~6.0 to~8.0 200 

~8.0 to~10.0 250 

If the known sample of 50 cm
3 

is used for the depth ranging from 0.3 to2.0 mm, 

the diameter of the patch will range from 46 cm to 17.8 cm for 0.3 and 2.0 mm depth 

respectively. To keep the comparison between 3D models and the SPT as compatible as 

possible, the volume of sand was modified in this project depending on the roughness of 

the texture in order to keep the diameter as close as possible to a 10 cm circular sample. 

The relationship of modified volume of sand and the texture depth are listed in table 3.3. 

Using the modified volume of sand showed that the sample diameter for most tests was 

in the range of 10-13cm, considered to be very close to the design sample of 10 cm and 

to have a little effect on the accuracy of the comparison.     

Table 3.3: Texture depth vs volume of sand (modified) 

Surface Texture Depth (mm) Volume of Sand (cm
3
) 

0.3 to~ 0.5 5 

 ~0.5 to~1.0 7 

~1.0 to~1.5 10 

~1.5 to~2.0 15 

~2.0 to~2.5 18 

~2.5 to~3.0 22 

~3.0 to~3.5 26 

 ~3.5 to~4.0 30 

~4.0 to~4.5 35 

~4.5 to~5.0 40 
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3.6.5 Texture depth calculation criteria 

This section aims to provide the theory behind depth calculation of the texture 

sample and the available methods for depth calculation. In the UK, laser systems provide 

texture depth measurement using Sensor Measured Texture Depth (SMTD), which are 

measured every 10m in the nearside wheel-track, the centre of the lane, or offside wheel-

track, depending on the highway authorities’ requirements. In Europe, however, the 

Mean Profile Depth (MPD) is an alternative method for  texture depth measurement  

(Viner and Britain, 2006).  

The laser sensors are fixed on the mobile platform. As the platform moves along 

the road, changes in the distance are measured between the laser sensors and the road 

surface. In order to record the small wavelength and amplitude in the texture, the 

sampling interval is typically 1mm. The main differences between both SMTD and MPD 

are in the way that the depth or height of the texture is calculated, figure 3.9. In the 

SMTD method, the root mean square (RMS) is measured both above and below the 

mean level of the texture, see equation (3-1). Whereas in MPD process, the highest peaks 

above the mean level are essentially estimated as the height of the texture. Mean level 

(ML) being the level positioned in such a way to minimize the residuals (ibid).  
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Where  𝒙𝟏 
𝟐 +𝒙𝟐

𝟐+𝒙𝟑
𝟐+⋯+ 𝒙𝟒

𝟐+𝒙𝒏
𝟐  = observations or residuals from ML 

Figure 3.9: Comparison between SMTD and MPD in depth calculation (ibid) 
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As can be noticed from figure 3.9, the calculated value of texture depth is different 

between both methods. The relationship between both methods calculated by Viner and 

Britain, (2006) for a sample of 42 km road was found to be approximately linear, see 

equation (3-2). The value of depth calculated from volumetric sand patch is the mean 

depth which is closely related to SMTD value, but it differs depending on the texture 

shape and size. In this project, the aim is to find out the most accurate depth that is closely 

related to the depth calculated from the sand patch test. For achieving this aim, the 

average texture depth was found to be more closely related to the sand patch depth and 

was used in this project, see section ‎3.7.2.2.4.  

 𝑀𝑃𝐷 = 1.42 𝑥 𝑆𝑀𝑇𝐷0.840 3-2 

In figure 3.10, a sample of rough concrete texture, discussed further in section 

 3.8.5, is tested for the texture depth calculation using SMTD, MPD and the author’s 

proposed approach. The whole procedure of depth calculation using the author approach 

includes the 3D model generation, best fitted plane and residual calculation, and can be 

found on section  3.7.2.2. The mean depth using sand is measured for this sample and 

found to be 5221µm using the average diameter of patch measured by ruler, see table 

3.15. The black line in figure 3.10 is the mean level or the best fitted plane, the green and 

red line are the root mean square from the mean level or fitted plane considered to be the 

SMTD value. The SMTD value was found to be 2657µm comparing with 5221µm in the 

case of sand patch test depth; the difference is -2564µm. On the other hand, the value of 

MPS was found to be 7781 µm; a difference of +2560 µm if compared with the sand patch 

test depth. For depth measured using the author’s proposed approach, please refer to 

section  3.8.5. The errors from both methods are clearly not acceptable considering that 

SPT can provide texture depth in the range of ± 230 µm for a confidence interval of 95% 

(Rasmussen et al., 2011).  

 

 

        

 

 

 

 

 

 

 

Figure 3.10: Sample shows the texture depth measurement using different approaches   
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3.6.6 Sand patch test area calculation  

Three different methods were used to calculate the area of the sand patch, the first 

method is recommended by ASTME965 which is based on taking the average 

measurement of 4-5 rulers. The ruler is used to measure the diameter of the patch on the 

road surface from 4-5 different directions in order to calculate the area of the sand 

coverage, figure 3.11. The second and third methods have been adopted in order to get 

more accurate results. These methods are utilizing digital images in order to calculate the 

area of the patch on the road surface. The second method is through utilizing the CAD 

tool to calculate the accurate area through taking a perpendicular image of the patch. 

This is followed by exporting the image into the AUTOCAD program in order to 

calculate the area of the patch. In the third method, the Photomodeler programme is 

utilized in order to measure the area through recreating the model using 5-6 images, 

figure 3.11. For results and differences among three methods, refer to section ‎3.8.3.1. 

The depth of the texture is calculated by dividing the known volume of the sand by the 

area, see section ‎2.3.5.2.3.     

3.7 Procedures  

3.7.1 For testing image quality or image sharpness (objective one)  

This section provides details about the methodology used in order to perform the 

image quality test. In order to select the camera that produces the sharpest images, a 

range of available DSLR cameras Canon 5D-50mm (C50), Canon 5D-28mm (C28), 

Nikon-D100 (D100), Nikon-D200 (D200)and Nikon-D300 (D300)) were considered. 

Although many internet sources can provide some excellent lens test results (Photozone, 

2013), carrying out these tests in the NGB gave direct control of the trials. The test 

followed the steps developed by Koren (2004) which describe the procedure in details.  

  

        

 

 

 

 

 

 

 

Figure 3.11: Three different methods of sand patch area calculation  
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3.7.1.1 Preparation 

A number of sine and bar pattern sheet were printed on a paper using the correct 

chart as recommended for laser jet printers. In addition, the ISO 12233 chart was added 

in case it is required, figure 3.12. The sine and bar pattern used for this procedure was a 

5mm chart magnified 50 times as recommended by the developer. The sheet was firmly 

fixed on the wall and placed horizontally using a spirit level. Modulation Transfer 

Function (MTF) or Spatial Frequency Response (SFR) of 50% contrast was aimed for 

comparing the sharpness of different lenses which is located in the middle of the sine or 

bar chart, see figure 3.12.      

 

 

  

 

 

 

 

 

The lighting condition and environment were used as recommended by Imatest 

(2013) in order for the light to be evenly distributed and free of glare illumination. Two 

sources of flood lights with 500 watt was used and placed with the degree of intersection 

as shown in figure 3.2 in section ‎3.5.  

3.7.1.2    Image data capturing 

Five DSLR cameras Canon 5D-50mm (C50), Canon 5D-28mm (C28), Nikon-D100 

(D100), Nikon-D200 (D200) and Nikon-D300 (D300) were used for the image sharpness 

examination. In order to avoid any vibration in image capture, a tripod and timer or 

remote controller were employed. A spirit level was also utilized to place the camera as 

horizontal as possible. All camera settings were set to ISO 500 option and the aperture 

Figure 3.12: Printed Sine pattern charts for testing Image quality   

Sine pattern chart 

ISO12233 chart 

Grade for distance calculation 
MTF50 
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was set to priority in order to test the lens sharpness at different apertures (2.8, 4.0, 7.1, 10 

and 13). The RAW camera formats (NEF and CR2) of an image were recorded in order to 

avoid loss in compression and to preserve the full size of images. 

3.7.1.3 Image data analysis  

There are many different commercial tools that can be used for testing a lens 

quality with different capabilities to carry out all or some of the tests (sharpness, 

distortion, contrast, flare, uniformity of illumination, colour rendition and bokeh (out of 

focus behaviour) and many others). Depending on the software capability, the prices start 

from $100 for conducting only the sharpness test (Avangate, 2013) to $2,200 which 

carry out all the tests required to measure the quality of lenses (Imatest, 2013). SFRCal is 

a free-open-source Matlab code which can be used for testing the sharpness of the image 

(Koren, 2004). It can be used in accordance with ImageJ (2013) the free-open-source 

tool that can be used to calculate the profile from images. These two free tools were 

utilized to measure the quality of the lenses in term of sharpness only and as follows: 

1- The ImageJ tool was used to prepare the profiles from the sine pattern by 

first scaling the image and then exporting the profiles, figure 3.13. 

   

Figure 3.13: ImageJ tool for scaling and plotting profiles from sine pattern chart 

 
 

2- Calculating the Spatial Frequency Response (SFR) graphs for the exported 

profiles by using the free Matlab tool SFRCal, figure 3.14. 

Line through Sine pattern for making profile  

(1) Line through Sine pattern for making profile  (2)Setting scale tool 

(3) Profile plotter & 

exporting 
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Figure 3.14: Exported profile (above) and calculated SFR vs lp/mm (below) 

 
 

3- At this stage, the graphs of SFR are not interpretable enough due to the noise or 

outliers in the solution, see figure 3.15. In order to represent these graphs, the 

CFtool from Matlab was utilized to fit the data into the best fit curve using the 5
th
 

degree polynomial with bisquare robust option to exclude outliers as shown in 

figure 3.15. Only 2-100 Line Pairs per millimetre (lp/mm) were used in order to 

minimize the curve smoothing due to the noisy data over the 100 lp/mm.    
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Figure 3.15: CFtool for making a best fit curve for SFR data 
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4- Finally, the output from the third process is the curve that is describing the SFR 

of the lens in lp /mm which can be used to test the quality of the lenses, figure 

3.16, more results and details are given in section  3.8.1.   
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Figure 3.16: Sample of SFR response of different cameras at F stop 4.0 
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3.7.2 Preparation for all other trials (all objectives)   

In this section, the overall methodology is described in detail of how the data was 

collected, processed, analysed and presented. The first step in the procedure is the data 

collection step that involves the methodology used for image capturing and SPT. For 

each sample test, the first step included cleaning the sample of road surface from any 

debris that exists on the surface that may affect the results. After that, a minimum of five 

specially designed markers were placed on the surface of the road. Finally, image 

capturing followed along with; processing and analysis, as covered in the next sections. 

A marker consisting of a red circle dot of (0.2cm diameter) covered in a black 

background of 1x1cm was used, see figure 3.17. The red dot colour was chosen for two 

reasons. First, it is expected that the mean square errors of less than 0.2mm will be 

achieved using the total station in reflectorless mode, see section  3.6.3. Second, it can be 

extracted and isolated from the road surface texture more easily, see section  3.7.2.2.2. 

The black colour background was used to separate the red dot from the road surface 

texture. These markers were used as Ground Control Points (GCPs) and Control Check 

Points (CCPs) and were measured using reflectorless total station, figure 3.17.  

 

  

 

 

 

  

Figure 3.17: Marker details and measurement procedures  
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3.7.2.1 Image data capturing 

After placing the targets onto the road surface and collecting GCPs using a 

reflectorless total station, the next step is image data collection for comparing 3D models 

with SPT; for this two methods were considered. 

3.7.2.1.1  Stereo pair image data collection  

 A stereo pair of images were captured with a convergence angle and with a 

suitable camera to object distance (this will be discussed further in section ‎3.8.2.1) for 

use in the free AGISoft StereoScan processing software. The results of texture depth 

measurement from different trials showed that the best possible intersection angle (IA) 

was found to be between 30 -50° and the distance from the camera to the surface was 

found to be as close to the surface as the camera will allow whilst remaining in focus, see 

section ‎3.8.2.1. Depending on the focal length of the camera and the CCD size, the 

camera to object distance can be between 25-35 cm, figure 3.18.  

 

 

 

 

 

 

 

3.7.2.1.2  Multiple image data collection  

With the multi-image approach, 12 – 22 images were collected in two 

perpendicular rows as shown infigure figure 3.19. The distance from camera to the object 

is again as close to the surface as the camera can remain in focus, i.e. 25-35cm with 

different angles of convergence. AGISoft StereoScan tool can only allow for two images 

processing, therefore, the standard commercial version (AGISoft PhotoScan) was used for 

multi-image processing.   

Figure 3.18: Methodology of image collection for AGISoft StereoScan  
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 In addition to the comparison between the sand patch test and 3D modelling from 

digital images, other investigations were carried out in order to find out the optimum 

camera to object distance and intersection angle (IA) and are discussed in more details in 

the results section 3.8.2.1. Furthermore, the best camera settings (Aperture, ISO 

sensitivity and Shutter speed) are all examined in more detail in the next sections. 

However, the settings of the camera were found to have no real influences on the 3D 

geometry.  

3.7.2.2 Image processing and 3D model preparation 

3.7.2.2.1  3D model reconstruction  

In this stage, the collected images are processed using two techniques (pair of 

images and multiple images). AGISoft StereoScan is a graphical interface tool used to 

process individual pair of images in order to produce 3D models in a very short time, 

with full automation without manual intervention. Depending on the resolution of the 

used pair of images, the full process of image feature extracting, matching, calibrating 

and 3D model reconstructing takes less than a minute. A report of all procedures is listed 

on the output panel as part of the software, figure 3.20.  For more information about this 

software and its capabilities refer to Agisoft (2015).  Due to the commercial nature of the 

software, little information is available about utilized algorithms and only the basics of 

photogrammetry are provided with the software documentation.  

Figure 3.19: Multiple image data collection for 3D surface modelling using AGISoft PhotoScan  
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Figure 3.20: 3D reconstructed sample & output report (AGISoft StereoScan) 

 

On the other hand, AGISoft PhotoScan is a commercial version of the software 

that has some additional capabilities for processing more than two images. In addition to 

multiple images processing, PhotoScan has the capability of transforming the local 

coordinates system of images into the real world coordinate system through the use of 

GCPs.  Besides the 3D model automation, the AGISoft PhotoScan is capable of camera 

calibration and georeferenced orthophotos generation. Depending on the number and size 

of images and the settings used; the process of aligning, calibrating, and 3D 

reconstructing may take several hours. Reporting of all procedures in the output panel is 

another feature that this software offers for the users, figure 3.21. For more information 

about this software and it is capabilities refer to Agisoft (2015).  The next step is to 

transform the relative coordinate system of the 3D reconstructed model into the real 

world coordinate system using the provided GCPs data collected from designed target 

through the total station surveying. 
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Figure 3.21: Textured 3D model & output report description (AGISoft PhotoScan) 

 

3.7.2.2.2  3D model transformation  

Both of the available tools (the free StereoScan and the commercial standard 

version of PhotoScan) do not support the coordinate transformation or interacting with 

GCPs. Therefore, the need for alternative 3D transformation software was necessary. 

Cloud Compare (CC) is an open source project that allows users to edit and process point 

clouds. It has many capabilities of editing, viewing and analysing point clouds. It has 

many other capabilities of visualizing the 3D model based on colorization (the user 

chooses the display colour of the 3D points), high ramp (colour visualization based on Z 

value) and the scalar field (gradient, Gaussian filter, and many other useful process), as 

well as normal to plane calculation. It also has abilities to calculate roughness, curvature 

and density of the point clouds in addition to the cloud-to-cloud comparisons or cloud to  

mesh or TIN (Triangulated Irregular Network) comparison. For more information on this 

open source project refer to CloudCompare (2013).  

After point cloud generation from StereoScan and PhotoScan, the points are 

exported to the standard OBJ format. StereoScan and PhotoScan are both capable of 

exporting the 3D point clouds into different formats, such as OBJect (Wavefront) OBJ 
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models, Virtual Reality Modelling Language (VRML) models, and PoLYgon file format 

(PLY) models. However, StereoScan does not support the texture (coloured vertex or 

point with RGB) to be exported with 3D surface model on all the mentioned formats, 

figure 3.22. Therefore additional header information (mtllib 3d.mtl ) should be added to 

the OBJ file to inform the file about the material library file (3d.mtl) which contains the 

following information:   

Characters added to header  Meaning/explanation  
newmtl Textured Start a definition of a new material 

Ka  0.6 0.6 0.6 ambient color (r,g,b) 

Kd  0.6 0.6 0.6 diffuse color (r,g,b) 

Ks  0.9 0.9 0.9 specular color (r,g,b) 

d  1.0 the transparency of the material 1.0 (not transparent at all) 

Ns  0.0 shininess of the material 

illum 2 Define the illumination model: illum = 1 a flat material with no 

specular highlights, illum = 2 denotes the presence of specular 

highlights 
map_Kd 3d.jpg name of file containing a texture map, which should just be an ASCII 

of RGB values 

 

 

 

 

Figure 3.22: 3D model sample before and after adding material library (AGISoft StereoScan)  

 

 Standard PhotoScan version does not have this technical problem, and the 

exported 3D model already has the texture assigned with it. The textured 3D model plays 

an important role in identifying the position of the markers that will be used for 3D 

transformation in CC. A Matlab subroutine was designed in order to detect automatically 

and measure markers based on the intensities or Red, Green, and Blue (RGB) variation, 

figure 3.23.         

       

 

 

 

 
Figure 3.23: Matlab subroutine for markers extraction  
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The outcome of this process is not only the markers, but some identified objects 

(outliers) that have equal intensities to the extracted markers, figure 3.24. Therefore, the 

MeshLab (SourceForge, 2011) cluster extraction tool is used in order to separate the real 

markers from other outlier objects, see figure 3.25. The next step is to locate the centroid 

of these markers using Matlab, to be used as the centres of GCPs for the 3D 

transformation.   

  

 

 

 

 

Figure 3.24: Outcome from Matlab subroutine extraction tool 

  

 

 

 

Figure 3.25: Cluster Selection tool for extracting real markers  
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K-mean clustering (see section ‎2.4.1) is used in Matlab to cluster the markers 

(extracted from the previous stage) into 5 groups (number of GCPs) and find out the 

centroid (coordinate for local image system) of each cluster as shown in figure 3.26. 

These centroids are considered to be the centre of the marker cluster points and will be 

used for transformation (absolute orientation).  

 

 

 

Figure 3.26: K-mean Clustering for grouping and finding out the centroid  

 
At this stage, the centres of the markers are defined, and the real world coordinates 

of these markers collected via reflectorless total station instrument are also available. The 

next step is to use CC to convert from the 3D model imagery coordinate system into the 

real world coordinate system. Both the RMSE and transformation parameters of this 3D 

transformation process are provided by CC tool in the output report, see figure 3.27.    

   

Figure 3.27: 3D transformation from relative to real world system   
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3.7.2.2.3  3D model sample preparation or cropping  

The sample designed for the comparison with SPT was chose to be a circular 10 

cm diameter. The reason of choosing this sample is because the distance from camera to 

the object was found to be as close as possible with the camera not out of focus. This 

range was found to be between 25-35cm depending on the focal length of the used 

camera, see section ‎3.8.2.1.2. The 3D modelling footprint of the wider lens camera used 

in this experiment was found to be 15 cm by 12cm, see figure 3.28. To control the 

samples and to make the comparison as compatible as possible, the 10 cm diameter was 

found to be very suitable for processing, analysis, and comparison. 

 

 

 

 

Figure 3.28: 3D model sample cropping and sand patch (Canon 5D 50mm)  

 
 

The final stage in sample processing is to make a sample’s horizontal or vertical 

axis normal toward Z+ (this being defined by the real world coordinates from the total 

station). It is true that the 3D transformation will make the 3D sample Z axis toward 

normal Z+ but due to many reasons the Z axis of the sample might not be totally aligned 

with Z+; one cause being due to the tilt of the pavement where the sample was taken. In 

order to make the sample truly horizontal, the CC plane orientation tool was utilized, 

figure 3.29.  
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3.7.2.2.4  3D model sample depth calculation  

After the sample preparation stage, the sample is further processed in order to 

calculate the depth of the texture. This step involves calculating the depth of the texture 

based on fitting a mean plane to the point cloud. Most of the available depth calculation 

techniques (refer to section ‎3.6.5) are based on the surface profile (2D) measurement and 

do not include the volume of the texture, which is required if a comparison is to be made 

with SPT. As previously discussed, techniques based on 2D surface profile represented 

by SMTD and MPD are not accurate and showed lots of discrepancy when compared 

with the texture depth calculated by SPT. Therefore, the necessity for an algorithm 

development to deal with volume rather than surface profile was important.      

The author’s developed algorithm first fits a plane to the cloud of points defining 

the surface. Then the residuals from the plane to the point cloud surface are determined. 

The fitted plane is normal polynomial with xy axes set to first degree, positioned such 

that the sum of the upper and lower residuals is equal, figure 3.30. The residuals are 

divided into two parts; the upper residual parts, the positive residuals, that are located 

above the mean fitted plane and the lower residual parts, the negative residuals, which 

are located below the mean fitted plane. The sum of the absolute mean upper and mean 

lower residuals is considered to give the depth of the texture that is more closely related 

to the mean depth of the sand patch. Figure 3.31show the flowchart of the overall process 

of the algorithm using Matlab program.   

Transformation matrix that make the 

plane truly horizontal  

Plane orientation  

1 1.56E-08 -1.6E-08 0 

-1.6E-08 1 0 0 

1.56E-08 0 1 0 

0 0 0 1 

 

Figure 3.29: Plane orientation of 3D model sample 

Z+  
Z  
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Figure 3.30: Sample of Matlab fitted plane to surface tool  

 
.   

 

 

 

 

 

 

 

To demonstrate an example of a 3D model sample depth calculation, test 10 

asphalt rough sample (figure 3.4) was used. The cross section or profile sample was 

extracted from the centre of test10 asphalt circular sample, see figure 3.32. The profile 

cross section sample shown in this figure is only for the centre of the sample.  

Figure 3.31: Author’s Developed Algorithm for calculating depth of texture  

Fitted plane  Surface texture  

Results of fit  

Applied model and degree of power predictor 

variable  degree of degree   

Mathematical model 

and predicted 

Coefficient  

Fit point 

clouds to a 

mean plane  

Start Point clouds 

End 

 

Calculate the  

Residuals  

Calculate depth based 

on the residuals   

These are from the 

last process showed in 

section ‎3.7.2.2.3  

Fit clouds to a plane that 

minimize the residuals  

Subtract point clouds 

from the fitted surface  
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The fitted plane is shown in red colour; the texture surface is in black and the blue lines are the 

location of the mean upper and lower residuals. The fitted plane is positioned such that the upper and 

lower residuals are equal, see table 3.4. The depth of the texture is the sum of the two absolute mean 

residuals (upper and lower).    

The algorithm calculates the upper and lower residuals and from those upper and 

lower residuals a mean is calculated, equation (3-3). The mean lower residual was -1.032 

mm and the mean upper residual was +1.194 mm for this sample used. The depth of the 

texture is the sum of the absolute mean upper and lower residuals which is 2.226 mm. 

Results for the other two methods are also presented and as can be noticed from table 

3.4, the more closely related depth to the SPT depth is the average texture depth with 

about 0.2 mm differences. In the next sections, more results of comparison between SPT 

and average depth will be discussed.  

 

Table 3.4: Sample of results from texture depth calculation algorithm and two techniques 

(SMTD and MPD) (mm) 

Sum(-) Sum(+) Mean(-) Mean(+) Average 

Depth 

MPD (SMTD) SPT 

depth 

- 479.671 479.672 -1.032 +1.194 2.22 3.12 1.30 1.96 

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑝𝑡ℎ = {|
∑ −𝑟𝑛1

1

𝑛1
| + (

∑ +𝑟𝑛2
1

𝑛2
 )}    3-3 

Where  𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑝𝑡ℎ : depth of the texture   

 

 𝑛1: Number of points or responses of lower residuals 

 𝑛2: Number of points or responses of upper residuals 

 
 +𝑟,−𝑟  : Is upper and lower residuals response 

 

Surface texture  

Fitted Plane  Mean upper residuals  

Mean lower residuals  

Depth of texture 

Figure 3.32: Cross section on sample of rough texture illustrate the fitted plane, upper and lower 

residuals 
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3.7.2.2.5  Sand patch surface reconstruction  

Another method to test the accuracy of 3D models from images will be 

investigated through using the sand surface as a reference rather than using a mean fitted 

plane, which has been previously discussed. In order to validate the depth calculated 

from the 3D models, the surface of sand was recreated as it was in the field using the 

PhotoScan software. Multiple images were collected for the sand surface, after spreading 

out sand on the surface, and processed as previously discussed. Figure 3.33 shows a 

sample of recreated sand surface with the process of collection the images and sample 

preparation.  

 

 

 

 

 

 

The recreated sand surface is used as a reference surface to subtract from the 

texture model surface.  Then the absolute differences between the two surfaces 

(reference and model) are calculated. The absolute average distance is the average of all 

perpendicular distances between the two surfaces (TIN) at user defined intervals, or it 

might be point-to-point distance comparison, more details are in section ‎3.7.2.3.2. The 

average absolute distances should be very close to the sand patch test depth if the 

reconstructed sand patch and the road surface texture are accurate which will be 

investigated in the next sections. The SPT depth method can be also evaluated using the 

reconstructed sand surface which according to the specification should be a flat surface, 

and that has also been investigated. 

3.7.2.3 Data analysis approaches 

In order to carry out analysis, different approaches were considered; the statistical 

testing of the results was one option. Average texture depth is compared statistically with 

Figure 3.33: Multiple image data collection for reconstructing sand patch surface 

Image capturing  

3D modelling  

Sample preparation  
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SPT depth to find out the degree of correlation.  Another option included was comparing 

the results from different cameras with each other through surface-to-surface 

comparison. Also, the mean and standard deviation of each camera for different texture 

samples were worked out. Both precision and accuracy were studied, as explained in the 

following sections. It is also possible to evaluate the reliability of the 3D automated 

software through the use of comparisons between different samples of 3D models.     

3.7.2.3.1 Average texture depth calculation 

The results from the depth calculation Matlab algorithm for different cameras and 

samples were used to examine the accuracy of the texture depth calculated from 

generated point clouds, see section ‎3.7.2.2.4. These results were used to carry out a 

comparison between calculated depth from this method and SPT to find the regression or 

correlation between depth from digital images and SPT, see section ‎3.8.3. 

3.7.2.3.2 Comparison of 3D points or model (surface-to-surface or points-to-

points) 

This comparison is usually conducted to evaluate the similarity between two sets 

of 3D models or point clouds. For example, to compare between 3D models generated 

from different cameras or between laser and image clouds. One sample is set as a 

reference and the other one as a model; the model is subtracted from the reference. This 

comparison was used in this project in two different ways. In the first approach, the 

degree of similarity between point clouds generated using various cameras was tested 

(all cameras with reference to Canon 5D-50mm (C50)). In the second approach, the 

depth worked out between the sand reconstructed surface and the texture model.  

Most 3D point cloud and mesh processing commercial programs such as 

Geomagic Studio, Pointools, and VRMesh Studio (Geomagic, 2010; Bentley, 2014; 

VirtualGrid, 2014) have the ability of calculating and visualizing the differences between 

a set of models. They also have the capability of reporting the relative accuracy as well 

as the colour visualization of differences on the model. However, CC also has the same 

capability as the commercial tools, and it is a free to use software. Therefore, CC is used 

for comparing between surfaces or point clouds. Two approaches are available for 

comparison, the shortest distance or defined direction such as toward Z. By default, CC 

program utilizes the shortest distance for comparison. For each point on the model, CC 

searches for the closest point in the reference cloud or mesh and calculates their 
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(Euclidean) distance, see figure 3.34. Therefore, it is recommended for the reference 

cloud to be as dense as possible in order to increase the reliability of difference 

calculation by reducing interpolation (CloudCompare, 2013).      

  

 

 

 

All point clouds generated from AGISoft StereoScan and PhotoScan were dense 

enough, 1528 to 1910 points/cm
2
 or 65 to 52 µm resolution. Therefore, any local 

modelling options such as least square best fitting plane, or a 2D Delaunay triangulation, 

or a quadratic height function were not used for further intensifying the reference clouds. 

The result from comparing the surfaces is a colour based visualization (figure 3.35) 

ranging from blue as being minimum distances to red treated as maximum distances. 

Two surfaces for rough concrete texture from two different cameras, i.e. (Canon 5D-

50mm (C50) and Samsung Galaxy Note (Note)), see section ‎3.8.5, were used as an 

example in figure 3.35 for explanation.  

 Sample-to-sample comparison (test similarity of different cameras)   

Mean distances  

Figure 3.34: Distance computations between reference and model surfaces   

Figure 3.35: Typical result of a distance computation process with colour scale display parameters 

 

 

Sand-to-texture  
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Model clouds  
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Histograms 
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3µm 

928 µm  
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The calculated distances from comparing the two surfaces (reference and model) 

are stored as histograms for further analysis. From these histograms, many important 

parameters such as mean distances, standard deviation and the percentage of cut off 

point’s limit can be calculated, figure 3.36. Mean distances is considered to be texture 

depth or 3D deviation for both (sand-to-sample and sample-to-sample), respectively. 

Standard deviation is considered to be uncertainty in the mean distances of texture depth 

or 3D deviation. Cut off point at 1mm is a limit to show the degree of similarity between 

3D models (sample-to-sample) from different cameras compared with the Canon 5D-

50mm (C50).          

 

 

 

 

 

 

3.7.2.3.3AGISoft summary report  

AGISoft StereoScan provides a summary report of the 3D reconstruction process; 

this summary report includes a lot of important information on the outcomes from the 

analysis procedures of reconstructing the 3D models, refer to section ‎3.7.2.2.1 for more 

details. The outputs from this reports are feature points number on each image, inlier and 

outliers of matching points, 3D reconstructed points, RMSE of the process represented in 

image unit, and camera calibration results represented as a focal length and radial 

distortion. These output result parameters were used as a tool to measure or examine the 

accuracy and reliability of the 3D modelling automation solutions. These parameters 

were used in investigating the angle of intersection and camera to object distance of 

cameras on both smooth and rough texture of asphalt surface. The relationship of each of 

these parameters, for example, features, matches, and RMSE, were compared against the 

intersection angle (IA) and camera to object distance of cameras, refer to section ‎3.8.2 

for more details.    

Figure 3.36: Histograms of distance differences  

Mean = 160µm 

Std. =35 µm   

99.968% of 

observations have < 

1mm differences    
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3.8 Results and Analysis  

3.8.1 Trial 1: Investigate the effect of lenses and cameras on 

image quality or image sharpens   

In order to select the best available lenses with DSLR cameras Canon 5D-50mm 

(C50), Canon 5D-28mm (C28), Canon 5D-Sigma-28mm (C28S), Nikon-D100 (D100), 

Nikon-D200 (D200) and Nikon-D300 (D300) from the NGI; it was decided to test the 

available DSLR cameras for the important parameter which is the image sharpness. 

Smartphone cameras were not presented in the results due to a failure in processing them 

using the free SFRCal tool. Although, many internet sources can provide some excellent 

lens test results (Photozone, 2013), carrying out tests on lenses is important for many 

reason. For example, lenses may be different from the same product, and also to avoid 

using the old lenses which have been affected by shaking or wearing (loss elements) that 

may affect the accuracy. The tests followed the procedures developed by Koren (2004).  

The procedures of conducting this test are explained in procedure and 

methodology, section ‎3.7.1. Four cameras (Canon 5D Mark II, Nikon-D300, Nikon-

D200, and Nikon-D100) with a mixture of six lenses (Canon28mm, Canon-50mm, 

Sigma-28mm for Canon-5D, Nikon-28mm for D300,Nikon-28mm for D200 , and 

Nikon-28m for D100) were used in this test.  The test was conducted utilizing five 

aperture modes (F2.8, F4.0, F7.1, F10, and F13). Only up to of F13 was used because in 

the field further aperture settings will result in blurring of the picture as the shutter speed 

will reduce. Instead, the ISO sensitivity has to be increased to substitute for low light 

coming to the camera that will lead to noisy image.   

The results of the five aperture modes, figure 3.37, show that the spatial frequency 

response increases with minimising the aperture. The increase is due to the fact that the 

depth of field increases with decreasing the aperture. The trend for almost all cameras 

and in all aperture modes shows that the Canon 5D with a 50 mm lens (C50) outperforms 

all other lenses. This outperformance might be attributed to the fact the 50 mm lens was 

made with special care (more expensive) or might be due to its long focal length. 

However, it is worth to mention that equivalent distances with relation to the focal length 

were considered when the test was carried out. Using the Canon 5D with the other three 

lenses (C28, C28S), and the Nikon D200 recorded similar performance. Lastly, the D300 

gave the worst results which might be due to the wear process or excessive use. 
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Therefore, only 2 DSLR cameras (Canon-5D and Nikon-D200) with 3 lenses (Canon-

28mm, Canon-50mm, and Nikon-28mm for D200) were used in addition to both 

smartphone cameras Samsung Galaxy Note (Note) and Samsung Wave (Wave) in the 

remaining tests of this chapter.   
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Figure 3.37: Spatial Frequency Response for various cameras 
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3.8.2 Trial 2: Investigate the accuracy of Stereo and multiple 

images  

3.8.2.1 Effect of intersection angle (IA) or base to height ratio and object 

to camera distance on Stereo images 

The purpose of this section is to investigate the effect of the camera range, or the 

distance from the camera to the object, and intersection angle between the stereo pair 

using free software AGISoft StereoScan. To achieve this aim, a series of tests were 

carried out using the five cameras mentioned in section ‎3.6.1, i.e. 3 DSLAR cameras and 

2 smartphone cameras. Two controls sample rough and smooth texture (test09 & test10) 

shown previously on figure 3.4 were used for this trail. The surface texture in both test 

09 and test 10 is asphalt pavement. The depth of both textures was measured using the 

SPT and used as a reference for 3D model accuracy. 

3.8.2.1.1 Intersection angle (IA) effect 

Intersection angle (parallactic angle) can be defined as the angle between the two 

lines of sight from the camera position to the object; it also has a relation with the base to 

the height B/H ratio, figure 3.38. By increasing the base or decreasing the height, the 

intersection angle increases and vice versa. Table 3.5 shows the equivalent values in 

degree of intersection to the B/H ratio calculated using the CAD tool.   

 

 

 

 

 

 

 

 

 

Table 3.5: Equivalent values between B/H ratio and intersection angle 

B/H Intersection Angle~ ° B/H Intersection Angle~ ° 

1.9/1.0=1.9 87° 1.0/1.0= 1.0 53° 
1.8/1.0=1.8 84° 0.9/1.0= 0.9 48° 

1.7/1.0=1.7 81° 0.8/1.0=0.8 44° 

1.6/1.0=1.6 77° 0.7/1.0=0.7 39° 

1.5/1.0=1.5 74° 0.6/1.0=0.6 33° 

1.4/1.0=1.4 70° 0.5/1.0=0.5 28° 

1.3/1.0=1.3 66° 0.4/1.0=0.4 23° 

1.2/1.0=1.2 62° 0.3/1.0=0.3 17° 

1.1/1.0=1.1 58° 0.2/1.0=0.2 11° 

Figure 3.38: Base to height ratio and intersection angle  

Intersection 

Angle 

Base (b) 

Height (h) 

Texture Surface 
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It is well known in the basics of photogrammetry that the accuracy and reliability 

increase when the intersection angle increases. According to  Hasegawa et al (2000), 

height accuracy decreases as the B/H ratio decreases. However, height accuracy also 

decreases as the B/H ratio increases if B/H ratio becomes more than 1.0. So, they 

concluded that a B/H ratio ranging from 0.5 to 0.9 is the best value for automatic DEM 

generation from a stereo pair. B/H ratio ranging from 0.5 to 0.9 is equivalent to ~ 48 to ~ 

28 degrees, see table 3.5. Geodetic Systems (2013) recommend using a convergent 

image with the angle of intersection between 60 – 120°. This is not just to increase the 

base length but could also be to increase the area of stereo coverage.   

However, it is also well known that the increase of intersection angle can lead to a 

decrease in the digital matching points between overlapped images. As discussed latter, 

this is due to the fact that images become different to each other at higher IA. Therefore, 

in this investigation, the aim is to find the optimum angle of intersection that can be used 

with a stereo pair using AGISoft StereoScan to generate the textured 3D models from 

individual stereo pairs. In order to test the two samples (test09 and test10) with a 

different angle of intersection, the test was designed to read every 10 degrees from 10 to 

90 with the distance of object to the camera fixed to 90 cm for all tests. This means that 

the distance of object to the camera remains the same while the intersection angle 

changes, figure 3.39. 

  

 

 

 

 

The lowest Intersection Angle (IA) is 10° and it is then gradually increased every 

10° until it reaches 90° that was the final possible IA that allows for automatic matching 

between the two overlapped images. Each camera has a total of 18 samples for both 

rough and smooth textures (test09 and test10). The five cameras mentioned before were 

utilized in this investigation, so a total of 90 samples were subjected to processing and 

analyses. To test the designed intersection angle, Australis tool was used for each pair of 

Fixed Range  

(90cm) 

Change 

in (IA) 

Object 

Figure 3.39: Designed test to read IA every 10° with fixed range  
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images to work out the real intersection angle. The intersection angle calculated from 

Australis was found to be very close to the intersection angle acquired in the field for 

most samples and found to have less than 2.5 degree difference, except for some cases. 

Therefore, these differences were ignored and the overall calculation and analysis was 

based on the designed intersection angle, see table 3.6.  

Table 3.6: Difference between the required intersection angle at field and calculated from 

Australis, each camera smooth (above) and rough (below)  

 
Field I. A. degree 10 20 30 40 50 60 70 80 90 

C
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mm 
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A
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d
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e 

10.5 

11.1 

20.8 

20.5 

29.4 

31.2 

41.2 

40.3 

52.2 

51.5 

60.6 

59.1 

71.5 

68.1 

81.8 

82.3 

92.5 

90 

Nikon 

D200 

11 

7.0 

21.6 

18.8 

30.8 

29.8 

42.4 

41.0 

52.4 

48.0 

61.2 

62.6 

73 

69.5 

81.6 

81.8 

92 

89.5 

Samsung 

Wave 

11.5 

10.1 

22.4 

21.5 

31.2 

28.4 

43.6 

40.5 

51.6 

50.7 

61.8 

62.2 

71 

70.7 

81.4 

82.0 

93.5 

90.3 

Samsung 

Note 

12 

9.9 

22.2 

21.5 

31.6 

29.0 

44.8 

41.3 

51.8 

50.3 

62.4 

62.6 

72.8 

70.5 

81.2 

81.8 

91.5 

90.7 

Canon 5D 28 

mm 

10.2 

13.7 

20.8 

21.4 

30.8 

28.4 

41.8 

37 

50.9 

48.8 

61.2 

57.8 

70.4 

69.7 

81.8 

79.8 

91.3 

90.4 

The objectives that will be presented in the following sections are to test the 

number of features or interest point’s extraction, and tie points or matching point’s 

generation at different angles of intersection on both rough and smooth textures. In 

addition, another objective is to investigate the effect of intersection angle on RMSE of 

the image points with re-projected solution. Another important parameter which requires 

to be examined at different intersection angles is the level of details that both cameras 

from a different view can share. Lastly, 3D model accuracy in terms of texture depth will 

be tested for both surfaces with utilizing different cameras compared with the reference 

depth from the sand patch test. The first parameter that needs addressing is the feature 

extraction, which is explained in the next section.       

A) Number of feature points  

The first step in digital image matching is a feature or interest point’s extraction on 

both pair of images. Different techniques are available in order to extract important and 

significant features that can be visible on both images. The quality, but not the number, 

of features has influence on the matching process. A robust feature, in terms of scale and 

orientation, plays a significant role in finding out the relative orientation between the 

stereo pair. In this investigation, the number of features and their quality are studied 

using the rough and smooth texture tests at different intersection angles.  
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     The feature point’s extraction on both smartphones cameras, i.e. Samsung Note 

(Note) and Samsung Galaxy Wave (Wave), was different from DSLR cameras, the 

Nikon D200 (D200), the Canon 5D-50mm (C50) and Canon 5D-28mm (C28). On 

smooth texture, both DSLR cameras provided more feature points than on the rough 

texture. In contrast, smartphone cameras  provided more feature points on rough than 

smooth texture, figure 3.40 shows the trend of average feature points from both images 

against the intersection angle on both surfaces (rough and smooth).   

 

 

 

 

 

 

 

 

 

 

It can be concluded from figure 3.40 that the number of features is dependent on 

the texture type and image resolution. It was found that the number of features was not 

affected by intersection angle within the camera to object distance tested. The features at 

12 MP camera of Nikon D200 and 21.1 MP of Canon 5D are considerably different from 

those with 8 MP in the Samsung Note and 5 MP in in the Samsung Galaxy Wave. In 

order to visualize the differences between the generated features at different camera 

resolutions, ten strongest features from both smooth and rough textures were extracted 
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Figure 3.40: Average Feature Extraction Vs Intersection Angle for both rough and 

smooth texture, Smartphones (above) and DSLR Cameras (below)  
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using the SURF feature descriptor.  For the smooth texture, the Canon 5D with 21 MP 

and the Samsung Galaxy Wave with 5 MP were used. For the rough texture, the Nikon 

D200 of 12 MP and the Samsung Note of 8 MP were used, see figure 3.41. Whereas, the 

ten strongest features on the smooth texture were entirely different in terms of scale, 

orientation and the feature itself, the repetition of the same feature scale and orientation 

on rough texture showed an apparent similarity, which clearly indicates the effect of 

resolution, texture type or feature extraction robustness.  

 

It can be concluded from figure 3.41 that the size of features has a relation with the 

size of the pixel on the ground, with relatively bigger feature sizes on both smartphone 

cameras, i.e. the Samsung Note and Samsung Galaxy Wave when compared with the 

DSLR cameras, i.e. (the Canon 5D-50mm and Nikon D200). 

Figure 3.41: Ten strongest features at 70 intersection angle, smooth texture (above) and 

rough texture (below) 
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B) Matching points or automatic tie points  

After the feature extraction on each image, the next step is to match keypoint 

descriptors between the pair of images. This helps to find the same features on both 

images. There are many methods and techniques for finding the descriptor that both 

images share, one example being kd-tree (Muja and Lowe, 2009). The results of different 

cameras showed that the automatic matching is decreased dramatically between the two 

images with the increase of the intersection angle and the relationship had an exponential 

trend line for all camera samples with a minimum regression of 95%, figure 3.42. 

Difference in the number of matches between the two surfaces can be noticed on 

figure 3.42. In the previous section, both smartphone cameras (Samsung Note and Samsung 

Galaxy Wave)   provided more feature points on rough than smooth texture, whereas, DSLR 

cameras, Canon 5D-50mm (C50), Canon 5D-28mm (C28) and Nikon D200 (D200), provided 

more feature points on smooth texture, see figure 3.40. Interestingly, the same pattern was 

exactly noticed on the matching points; the DSLR cameras provided more matches on 

smooth than on the rough texture which is opposite to smartphone cameras.  

Another important conclusion is the degree of similarity between the data sets in the 

case of rough texture as can be noticed from figure 3.42. The t-test was used to find the 

probability of similarity between the mean of the smooth group and rough group data. Rough 

group data from both smartphone cameras registered probability of 0.9516; while that of the 

smooth group data from both smartphone cameras registered 0.8422. Average t-test 

probabilities from three DSLR camera sets were as follows; rough =0.8885 and Smooth 

=0.8012. These probability values support the conclusions drawn for the feature extraction 

which shows that the feature scale and orientation are almost same for the rough texture 

despite the camera resolution differences, see figure 3.41.  

The results from figure 3.42 prove that the rough texture can provide matches and 

produces 3D surfaces even in higher intersection angle greater than 70°; for example around 

90° that was not possible in the smooth texture. The maximum possible degree for 3D 

reconstruction in smooth texture was found to be 70°, despite the fact that the settings on the 

cameras remained constant and tests were carried out on the same day. These results revealed 

that the matching is not only dependent on the intersection angle, but also can be affected by 

texture type which can play an important role on the matching process. Different texture 

types can provide different features and subsequently affect the matching process using the 

same camera.  



                                          Chapter Three: New Approach for Texture Depth Measurement 

108 

 

 

AGISoft and most automated 3D models, such as ARC3D, PhotoSynth, Photo 

truism, Bundler, ATiPE, and AGISoft employ scale invariant feature transform 

algorithms such as SIFT and SURF for describing the point of interest (Barazzetti et al., 

2010; Photosynth, 2012; VISICS, 2012; Agisoft, 2015). Therefore, it is usual to have 

such a relationship that is shown on figure 3.42, because as the angle of intersection 

R² = 0.9744 

R² = 0.9815 
R² = 0.9944 

R² = 0.996 

0.001

0.01

0.1

1

10

M
at

ch
e

s 
(p

o
in

ts
) 

Lo
g1

0
, t

h
o

u
sa

n
d

s 

Rough Note

Smooth Note

Rough Wave

Smooth Wave

Expon. (Rough Note)

Expon. (Smooth Note)

Expon. (Rough Wave)

Expon. (Smooth Wave)

R² = 0.95 

R² = 0.9723 

R² = 0.9782 

R² = 0.9921 

R² = 0.9733 

R² = 0.982 

0.001

0.01

0.1

1

10

0 10 20 30 40 50 60 70 80 90 100

M
at

ch
e

s 
(p

o
in

ts
) 

Lo
g 

1
0

, t
h

o
u

sa
n

d
s 

Intersection Angles (Degrees) 

Rough C50

Rough C28

Rough ND200

Smooth C50

Smooth C28

Smooth ND200

Expon. (Rough C50)

Expon. (Rough C28)

Expon. (Rough ND200)

Expon. (Smooth C50)

Expon. (Smooth C28)

Expon. (Smooth ND200)

Figure 3.42: Relationship between intersection angle and number of matches for both smooth and 

rough textures (Smartphones above and DSLR Cameras below) 

 

Rough D200 
 

Smooth D200 
 

Expon.(Rough D200) 
 

Expon.(Smooth D200) 
 



                                          Chapter Three: New Approach for Texture Depth Measurement 

109 

 

increases, the affine transformation between the two images increases which results in 

less matching points. For more information about the affine transformation effect on 

matching points refer to Juan and Gwun (2009). The feature of interest’s shape and size 

are changing with increasing intersection angle resulting in a less accurate descriptor. 

Figure 3.43 shows a sample of a square target cropped from the Canon 5D, 50mm 

images at different intersection angles. It can be noticed from figure 3.43 that the size 

and shape of target changes as the intersection angle increases. This normally can happen 

with all features or keypoints at higher intersection angle. 

 

 

Results from this test were found to be compatible with the work carried out by 

Hasegawa et al. (2000) which was based on cross-correlation matching for aerial 

photography. Their results confirmed that the view angle differences between the left and the 

right images become larger as the B/H ratio increases. The highest possible B/H ratio for 

successfully producing matches was found to be 1.4 which is equivalent to 70°, see table 3.5. 

However, they proved that the correlation coefficient becomes smaller as undulation of 

terrain increases and that was not the case in this project. The same conclusions as stated in 

Hasegawa et al. (2000) can be applied to DSLR cameras but not to smartphone cameras . The 

results on this project showed that the smooth texture provides more points than rough 

texture in case of DSLR cameras but not smartphone cameras. The possible reasons might be 

due to the relative small size of pixel sensor size in smartphone cameras, which is about 1/6 

of DSLR cameras.  

 C) RMSe of image point residuals from reconstruction process for different IA  

RMSE is an indication of how large or small the residuals are from the solution, 

while in turn it can relate to how good the derived parameters are used for estimation. 

RMSE for all cameras (DSLR and smartphone cameras) and for both surfaces rough and 

smooth was found to increase with the increases of intersection angle, figure 3.44. The 

increases in RMSE might be attributed to the decrease in the number of matching points 

as the angle of intersection increases. The high number of matching points allows the 

Figure 3.43: change in the target size and shape due to intersection angle  

70° 60° 50° 40° 30° 20° 10° 
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least square solution to pick up the best available matches with low residuals that are not 

possible in case of limited available matching points in higher intersection angles. 

Therefore, it is necessary for any statistical process that a reasonable sample size is 

available (matching points) for all tests in order to get comparable results.     

The linear relationship is the best trend describing the RMSE data at different 

intersection angles for all DSLR cameras (C50, D200) and with a minimum regression of 

about 96% except for Nikon D200 (D200) in case of the smooth texture which is about 

80%. RMSE of rough texture data is smaller and more consistent than the RMSE of the 

smooth texture data. In addition, the minimum R
2
 (measure of consistency) value 

recorded for the rough texture is 96% that indicate the good consistency between the 

RMSE data at various intersection angles.  In contrast, RMSE for both smartphone 

cameras (Note and Wave) are inconsistent, and the R
2
 values tend to be lower than that 

of the DSLR cameras. The R
2
 value might be a good indication of the best camera that 

has a systematic trend relation, as in the case of Canon 5D-50mm (C50) and Canon 5D-

28mm (C28) that have both R
2
 value of more than 97%.  

 

 

 

 

 

 

 

 

Figure 3.44: RMSe vs Intersection angle (Smooth texture above and rough texture below) 
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D) 3D model level of details vs. intersection angle  

The increase in intersection angle in the rough texture leads to missing out of some 

part of the reconstructed surface, figure 3.45. When the angle of intersection becomes 

more than 50°, the 3D reconstructed model experiences some missed out parts on the 

rough texture due to non-availability of matching points on those parts (dead ground). 

The cameras from two different views observe different feature points due to raised up 

aggregate which results in hiding some of the details that are not shared between the two 

views.  

Figure 3.46 is made using CAD, and it shows how increase in intersection angle 

can hide some sharing features between the two views. The angle of intersection in this 

case is starting from 10°, 30°, 50° and up to 90°, and the cross section is made by using a 

plane passing horizontally through the centre of the rough texture (test10). The Z axis 

scale is exaggerated for demonstration purposes. The blue colour shows the shared area 

that both cameras can see from two different views and the red colour shows the areas 

that either only one camera can see or none of them. The details of data that can be 

shared between the two views are not only intersection angle dependant but also 

wavelength and peak-to- peak amplitude of the texture dependant (see section ‎2.3.5 for 

more details about these two characteristics), as figure 3.46 shows.  

  

 

 

 

 

 

 

Figure 3.45: Non complete 3D reconstruction due to increase of IA (50, 60  and 70°), left to right  

 

  

 

 

 

 

 

 

Figure 3.46: Share and non-share features vs. different angle of intersection in rough texture 
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It can be concluded from figure 3.46 that the vertical aggregate angle (the angle 

that is enclosed between the tangent to the aggregate surface and the vertical axis) should 

be more than the angle that the optical axis of the camera makes with the vertical axis in 

order for the area behind aggregate to be seen. Figure 3.47 shows some parts of the 

aggregate from the rough texture sample presented on figure 3.46.  

 

        

 

 

 

 

 

 

 

 

E) 3D reconstructed model accuracy vs. intersection angle  

The generated 3D model is registered, cropped and oriented to Z+ (see sections 

‎3.7.2.2.1, ‎3.7.2.2.2, and ‎3.7.2.2.3for more details about these procedures). The depth of 

the texture within the 10 cm sample is then compared against the intersection angle for 

both control areas, smooth and rough, see figure 3.48. Depths at different intersection 

angles were subtracted from the SPT depth that was treated as a mean value for standard 

deviation calculation. The depth calculated from SPT was found to be 670 µm and 1970 

µm for both smooth and rough texture, respectively. The differences between SPT depth 

and depths at different intersection angles for each camera is squared and summed and 

divided by the number of observations in order to calculate the standard deviation, see 

table 3.7. Standard deviation is a good indication of the camera and software reliability 

for providing consistent data with the mean value (SPT depth).   

The standard deviations listed in table 3.7 show that the best result of depth 

calculation was for the Canon 5D-50mm (C50) followed by the Canon 5D-28mm (C28), 

the Nikon D200 (D200) and the last two smartphone cameras (Note and Wave) and for 

both textures (smooth and rough). The relative high standard deviation of some cameras 

Figure3.47: Camera optical axis vs. aggregate vertical angle     
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is due to the distance of the camera to object (90cm) which will be explained later in 

section ‎3.8.2.1.2.  

Table 3.7: Standard deviation of different cameras at different intersection angles calculated 

using mean sand patch depth as true value 

Cameras 
Standard deviation 

Smooth Texture (µm)  Rough Texture (µm) 

Canon 5D-50mm 203 225 
Canon 5D-28mm 337 426 

Nikon D200 444 656 
Samsung Galaxy Wave 590 1400 

Samsung Note 490 1250 
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Figure 3.48: Texture depth vs intersection angle, smooth texture (above) and rough texture 

(below)  
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As can be noticed from figure 3.48 and the standard deviations listed in table 3.7, 

the Canon 5D-50mm (C50) recorded the best results. Many reasons are behind this. First 

of all is the camera geometry in the case of Canon 5D for both 28 mm (C28) and 50 mm 

(C50) which utilizes the full frame CCD size (36mm) and the lens quality as well. The 

focal length plays an important role in providing the best results as in case of 50mm. 

Both Canon 5D (C28) and Nikon D200 (D200) share the 28mm focal length property, 

however, the results of Canon-5D are more accurate than Nikon D200 (D200), which 

could be attributed to CCD size or the better quality of the lens in case of Canon 5D (see 

section ‎3.6.1 for details and specification about each used camera).   

  It is worth to mention that both smartphone cameras have provided less accurate 

results which could be attributed to their low focal length (4mm) and small CCD size. 

Regardless to the accuracy differences of each camera, DSLR cameras are showing that 

the best results of intersection angle is between 30-50°. This range is a balance between 

retaining the positional and depth accuracy with a successful matching and feature point 

generation. Therefore, the intersection angle of 45° was decided to be used for testing the 

distance of the camera to object, as explained in more detail in the next sections. Figure 

3.49 shows samples of rough textures with visual coded colours that describe the effect 

of intersection angles on geometry. The mid samples 30-50° represent the balance 

between sustaining accuracy and better reconstruction parameters such as the number of 

matching and reconstruction points that helps in 3D automation.   
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3.8.2.1.2 The effect of the distance from camera to object  

The two control textures (rough and smooth, test10 and test09, respectively for 

control samples shown in figure 3.4) were again examined to test for the effect of camera 

to object range on the accuracy of the 3D generated models. Again the five cameras 

presented on section ‎3.6.1 were used for investigating the distance of the camera to 

object and their effect on accuracy and results. In theory, the camera to object distance, 

or flying height in the case of aerial photography, has an influence on the ground sample 

distance (GSD) and hence on the accuracy. The closer the camera to the object, the 

smaller the GSD and the better the accuracy of positioning (Abdullah, 2010; Olivier 

Kung et al., 2011; Strecha, 2011) .  

In this study, the camera to object distance of the camera is variable from the 

minimum focusing distance and up to 120cm on a 10cm interval basis. The minimum 

focusing of camera to object distance for different cameras was found to be as follows 

(Canon 5D-50mm (C50)=35 cm, Canon 5D-28mm C(28)=20.8cm, Nikon D200 

(D200)=20.5cm, Samsung Wave (Wave)= 19,5cm and Samsung Galaxy Note 

(Note)=21cm). While the camera to object distance is changing, the intersection angle 

remains the same for all the tests and is fixed at 45° (figure 3.50), the best possible 

Figure 3.49: Samples of rough textures at different IA, (10-60°) left to right  
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intersection angle concluded from section ‎3.8.2.1.1. The camera to object distance of all 

cameras was started from 20cm up to 110cm except for the Canon 5D-50mm (C50) that 

started at 35cm and up to 125cm. Each camera has a total of 10 samples for each texture 

and so 20 samples for both rough and smooth surface textures. As mentioned before, 

four cameras with five lenses were utilized, making a total of 100 samples. All samples 

were generated and prepared using the methodology mentioned in previous sections. The 

aim of this test is to study the effect of the camera to object distance of the camera on 

each of feature, matches, RMSE or reprojection error, and the accuracy of 3D generated 

model using StereoScan software on a pair of images.   

 

 

 

 

 

 

 

  

Figure 3.50: Approach to find optimal camera range at constant intersection angle   
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A) Number of feature points vs camera to object distance 

 A relationship was drawn between the feature points or points of interest and the 

range for each of the mentioned cameras and for both textures (rough and smooth). The 

relationship found was different from the rough to smooth surface and from one camera 

to the other. Both smartphone cameras showed that the number of feature points decrease 

with the increase of camera to object distance for the smooth texture, figure 3.51. The 

decrease in the number of feature points in both smartphone cameras indicated that the 

size of extracted feature increases when the distance increases between the camera and 

the object.  
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Although the image is covering a greater area at 110 cm range than at 20 cm range 

(about 18 times bigger), the features extracted at 20cm  are much smaller in size than the 

features extracted at 110cm  as shown in figure 3.52. The size of the smaller feature at 20 

cm is a 10
th
 of the size of the feature at 110 cm and more features can be extracted at the 

shorter camera to object distance as can be seen in figure 3.51 for both smartphone 

cameras. However, with rough texture and in the case of smartphone cameras shows a 

steady decrease as the camera to object distance of the camera increases, see figure 3.51.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.52: Ten strongest features extracted from 20 cm (above) and 110 cm 

(below) using Samsung Note camera 
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The trend of DSLR cameras with regards to feature extraction and camera to object 

distance of the camera is totally different from smartphone cameras for both textures. While 

the camera to object distance increases, the features are also increased for all DSLR cameras, 

i.e. Canon 5D-50mm(50), Canon 5D-28mm (28) mm and Nikon D200 (D200), up to some 

limits then it starts to decreases, see figure 3.51. However, the only difference between both 

DSLR cameras is the limit of the peak range. With the peak of the Nikon D200 (D200) 

camera around 60 cm while for Canon 5D-28mm (C28) and Canon 5D-50mm (C28) it is 

around 60cm and 95 cm, respectively. In order to precisely relate the peak’s camera to object 

distance to the GSD, a table of GSD for each of the camera calculated against the camera to 

object distance, see table 3.8.  

Table 3.8: Ground sample distance vs camera to object distance of variety of cameras  

Cameras C50 C28 D200 Wave Note 

Camera to object  
distance (cm) 

Focal length(mm) 
50 28 28 4 4 

Sensor Pixel Size (mm) 
0.0064 0.0064 0.0061 0.0015 0.0014 

GSD (mm) 
20 0.026 0.046 0.044 0.075 0.070 

30 0.038 0.069 0.065 0.113 0.105 

40 0.051 0.091 0.087 0.150 0.140 

50 0.064 0.114 0.109 0.188 0.175 

55 0.070 0.125 0.120 0.206 0.192 

60 0.077 0.137 0.131 0.225 0.210 

70 0.090 0.160 0.153 0.263 0.245 

80 0.102 0.183 0.174 0.300 0.280 

90 0.115 0.206 0.196 0.338 0.315 

95 0.121 0.217 0.207 0.356 0.332 

100 0.128 0.229 0.218 0.375 0.350 

110 0.141 0.251 0.240 0.413 0.385 

120 0.154 0.274 0.261 0.450 0.420 

 As can be noticed from table 3.8, the GSD at 95 cm for the Canon 5D-50mm (C50) is 

about 0.12 mm. This value is the peak feature for Canon 5D-50mm (C50), and it is located 

between 50 and 60 cm for Canon 5D-28mm (C28) and Nikon D200 (D200), refer to figure 

3.51. On the other hand, the peak value for both smartphone cameras is located ‘between’ 20 

to 40 cm. In theory, the relationship for both smartphone cameras should be close to the 

DSLR cameras and the values should start increasing until it reaches the peak around 30-40 

cm. However, considering the camera calibration, the real camera to object distance of the 

camera from the ground, the quality of the lenses, the exposure settings differences and the 

oblique image acquisition, the relationship drawn in practice will be different from those in 

theory. 
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The peak of the extracted features also shows slight differences from the smooth to 

the rough texture. In order to investigate this fact, the strongest feature from both the 

rough and the smooth textures were extracted, figure 3.53. The extracted strongest 

feature is not in term of size only but it is in terms of how the feature is identical and 

robust to scale and rotation changes from all other features. As can be noticed from the 

extracted strongest features, the size of the feature is smaller in the smooth than in rough 

texture.  

To summarize, there is no fixed relationship that can be drawn between the 

features and the camera to object distance of the camera. The relationship is changing 

depending on many factors, for example the texture type, the feature distribution, and the 

size of features can all play an important role in this relationship. It is also important to 

bear in mind that there is a link between feature size and camera resolution. Different 

resolution cameras can extract different features at the same level due to the GSD size on 

the object. It can be concluded that feature extraction is dependent on many factors, such 

as camera to object distance of camera, focal length, camera’s resolution and texture 

type.     
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Figure 3.53: Strongest extracted feature at 20 cm Samsung Wave Camera (above) and 

Canon 5D (below), smooth (left), rough (right)   
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 B) Matching points or automatic tie points vs camera to object distance  

Not surprisingly, the relationship between the distance of the camera to object and 

the number of matching points is reversed. It shows that the matches decline with 

increasing the distance between the camera and the object for both smooth and rough 

textures, figure 3.54. These results confirm the theory that as the camera moves away 

from an object the GSD gets bigger, therefore, less matching points are observed 

(Abdullah, 2010; Olivier Kung et al., 2011; Strecha, 2011).  
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Figure 3.54: Matches vs camera to object distance for smooth texture (above) and rough (below) 
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Both surfaces, smooth and rough, showed that the number of matching points 

decreases with the increase in the distance of the camera from object. However, there is a 

difference in the number of matches for the two surfaces. Smooth texture provides very 

few matches compared with the rough texture. It is also worth mentioning that both tests 

were carried out on different days but with the same lighting condition (sunny days). It is 

clear that the texture type has a great influence on matching points as can be seen from 

figure 3.54.     

C)  RMSE of image points vs camera to object distance  

On first inspection, the RMSE of image points is not really influenced by the 

distance of the camera to object. The only conclusion is the apparent effect of the camera 

resolution on the RMSE or reprojection values. The Canon 5D-28mm (C28) provided 

better results if compared with other cameras, see figure 3.55. It is important to bear in 

mind that values in figure 3.55 are the outcome from AGISoft report and in units of 

pixels which need to be converted to mm to reflect the correct measurement units.  
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After converting units from pixels into mm, the relationship showed that the 

RMSE is increased with the increase of the camera range, see figure 3.56. As usual, the 

best accurate results are again for the Canon 5D-50mm (C50), followed by the Canon 

5D-28mm (C28), Nikon D200 (D200) and at last the two smartphone camera of 

Samsung Galaxy Note (Note) and Wave (Wave). It is worth to mention that these RMSE 

values are from reprojection of object points into the 2D image.  
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Figure 3.56: RMSe vs camera to object distance (mm units), smooth texture above, rough 

texture below 
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D) 3D reconstructed model accuracy vs. camera to object distance  

As it has been previously discussed, the 3D models of both surface textures (rough 

and smooth) were prepared as 10 cm circular samples considering different camera to 

object distances at fixed intersection angle. The depth for each of samples was calculated 

using the developed methodology for texture depth measurement explained in section 

‎3.7.2.2.4. The depths measured from 3D samples were all plotted against the camera to 

object distance, and the results present in figure 3.57.  

As it can be seen from figure 3.57, the trend of all cameras is showing that the 

depth is getting smaller as the distance of the camera to object increases. It is also proved 

that the rough texture is better in terms of 3D model generation as it was possible to 

create 3D models at different camera to object distances for both smartphone cameras, 

which was not the case for smooth texture. In the smooth texture, it was only possible to 

create the 3D models for both smartphone cameras when the camera was very close to 

the object (at 20cm). For all other ranges of the smooth texture in smartphone cameras, 

the free program AGISoft StereoScan was unable to produce 3D models. The failure in 

3D reconstruction for the smartphone cameras in the case of smooth texture could be 

attributed to the texture types and feature robustness which subsequently affect the 

matching process as showed previously.  

The standard deviation of all cameras for both textures was calculated with 

reference to the mean depth from SPT, see table 3.9. The mean depth of SPT from both 

surfaces was found to be 670 µm and 1970 µm for both smooth and rough textures, 

respectively. As the table shows, the standard deviation results revealed that the depth 

calculation using 3D models became better when different camera to object distances 

were considered at a fixed intersection angle of 45°, see table 3.7. Standard deviation 

from the rough texture showed much better improvement than the smooth texture, 

especially in the case of the Canon 5D-50mm (C50) that recorded ±93 µm only.  

Visual inspection of the rough texture samples in figure 3.58 reveals that Canon 

5D-50mm (C50) provides enough detail at different camera to object distances starting 

from 35cm on upper left and up to 135 cm on the lower right. As it can be noticed from 

figure 3.58 the selected area within the 3D model is showing a bump in its lower zone 

(circled). This bump starts to disappear on all the samples depending on the distance of 

the camera to object, except for the Canon 5D-50mm (C50) where it remained the same. 
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This is because the details disappear as GSD gets bigger as the camera moves away from 

the object. 

Table 3.9: Standard deviation of different cameras at different ranges calculated using mean 

sand patch depth as true value 

Cameras 
Standard deviation 

Smooth Texture (µm)  Rough Texture (µm) 

Canon 5D-50mm 200 93 
Canon 5D-28mm 291 338 

Nikon D200 281 347 
Samsung Galaxy Wave 303 785 

Samsung Note 350 740 
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Figure 3.57: Texture depth vs camera’s range (Smooth texture above and Rough texture below)  
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Figure 3.58: 3D samples of rough texture using colour as a height ramp 
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3.8.2.1.3 Outcomes from intersection angle (IA) and camera to object distance 

investigations   

A series of investigations were carried out in order to examine both intersection angle 

and the effect of the camera to object distance on a number of outcome parameters by using 

the free 3D automation tool (AGISoft). Investigations of both the camera to object distance 

and the intersection angles proved that the feature points are not affected by the intersection 

angle at all for both smooth and rough textures. Nevertheless, it was concluded that the 

distance of the camera to object has a considerable influences on the feature point extraction. 

The later was also shown to be affected by the texture type. The distance of the camera to 

object can affect the size of the features recorded, and thus plays an important role in 

determining the number of extracted feature points. The results also showed that the affine 

transformation does not affect the feature extraction techniques adopted by SIFT and SURF; 

however, the feature robustness was found to be decreased with an increase in the 

intersection angle.  

Matching points are affected by both intersection angle and distance of the camera to 

object. The tests proved that by increasing the intersection angles, the matching points were 

reduced dramatically. Such results could be best described by the exponential relationship. 

On the other hand, an opposite trend of a linear relationship was found between the distance 

of the camera to object and the number of matching points. Camera to object distance results 

revealed that there is a steady decrease in the number of matching points with increased 

range.  

Texture depth measurement showed that the intersection angles have significant 

influences on the measured depth. The best depth results were only possible with intersection 

angles between 30-50°. In addition, both smartphone cameras showed poor results even with 

intersection angle ranged between 30-50°. This could be attributed to their inefficient lenses, 

small CCD size or due to high distance of the camera to object (at 90cm). These results were 

found to be improved by fixing the intersection angle around 45° as trials from the distance 

of the camera to object proved. However, the tests showed that in order to reliably get better 

results, the camera is preferred to be as close as possible to the surface, refer to figure 3.57. 

Therefore, in order to use only two images for surface texture shaping, the camera to object 

distance of 20-35cm and intersection angles of between 30-50° are recommended to be used. 

Otherwise, an alternative method of using more than two images needs to be investigated, 

such as using a commercial version of AGISoft (PhotoScan) as discussed in the next section.    
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3.8.2.2 Investigation of depth accuracy from multiple images modelling  

The commercial version of AGISoft (PhotoScan) has the capability of producing 

3D models from multiple images on a fully automated basis. See section ‎3.7.2.1.2 to 

know how data are collected for multiple images. The five cameras (DSLR and 

smartphone cameras) mentioned in section ‎3.6.1 namely (Canon 5D-50mm (C50), Canon 

5D-28mm (C28), Nikon D200 (D200), Samsung Galaxy Note (Note), and Samsung 

Wave (Wave) were used again for both rough and smooth surface textures. A total of ten 

samples were processed for both surfaces and the methodology of sample preparation 

was applied as explained in section ‎3.7.2.2, see figure 3.59 for prepared 3D samples.  

 

 

 

 

 

The depths of all of these samples were calculated using the author’s developed 

methodology for texture depth measurement explained in section ‎3.7.2.2.4 and section 

‎3.7.2.3.1. The results of depth calculation showed a significant improvement especially 

for rough texture results. However, for smooth texture, the biggest error was reported for 

the Samsung Wave smartphone camera; see table 3.10. It is worth to mention that these 

results were compared with MTD calculated from the SPT; SPT might not necessarily to 

be accurate, but the aim of this study was to find a correlation between SPT and depth 

calculated from 3D models.    

Table 3.10: Depth results and error of different cameras (µm) 

Cameras Smooth Texture Rough Texture Error Smooth Error Rough 

C50 607 2063 -62 93 
C28 577 2044 -92 74 

D200 535 2008 -134 38 
Note 512 2005 -157 35 
Wave 456 1940 -213 -29 

Figure 3.59: 3D samples prepared using multiple images smooth texture 

(above) and rough texture (below)  

C50 C28 D200 Note Wave 
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In order to further investigate the degree of similarity between these surfaces with 

reference to Canon 5D-50mm (C50), the CC cloud-to-cloud distance tools were utilized. 

Canon 5D-50mm (C50) was selected as a reference for the other cameras after proving 

its improvement over other cameras during the investigation for angle of intersection and 

the distance of the camera to object; see section ‎3.8.2.1. For each camera, a comparison 

was carried out with reference to Canon 5D-50mm (C50). For each sample and each 

camera, analysis parameters such as colour visualization, histograms, mean and standard 

deviation of differences can be worked out. Figure 3.60 shows an example of a 

comparison of the Nikon D200 (D200) camera with reference to the Canon 5D-50mm 

(C50) for the smooth texture.     

Red colour distribution on 
edge due to point cloud 

missing on the reference 

(data), as utilizes shortest 
distance for comparison 

(model to reference), see 

section ‎3.7.2.3.2 

0.001811 

0.001552 

0.001294 

0.001036 

0.000777 

0.000519 

0.000261 

0.002069 

0.00000 

Figure 3.60: Cloud to Cloud distances and their statistical outcome between Nikon D200 

and Canon 5D-50mm for the smooth texture (colour visualization on top) 
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  As figure 3.60 shows, the colour visualization of differences represents the 

distribution of the distance frequencies. The blue colour on the bottom of the colour bar 

represents differences of 0.003mm, and the red colour on the top of the bar represents 

differences of about 2 mm. The histogram distribution of the differences on the lower left 

side of figure 3.60 shows the cut off red line that shows the percentage of included 

differences of less than 1mm. As can be noticed from figure 3.60, 99.373% of 

differences are less than 1mm. Through Gaussian curve fitting curve to the differences, 

the mean and standard deviation are also shown on the lower right of the figure 3.60 and 

both values are 137µm and 129 µm, respectively. For all other samples, comparisons 

were carried out using cloud-to-cloud distance calculation with reference to the Canon 

5D-50mm (C50) and all related information are extracted and presented in                            

tabletable 3.11. The visualizations of differences in the models are shown in figure 3.61.  

                           Table 3.11: cloud to cloud distance calculation results and statistics  

 
Samples % < 1mm Mean (µm) ±SD(µm) 

Smooth 

C28 to C50 100 93 38 

D200 to C50 99.373 137 129 

Note to C50 100 160 92 

Wave to C50 99.907 162 102 

Rough 

C28 to C50 100 119 64 

D200 to C50 99.929 111 81 

Note to C50 99.98 126 82 

Wave to C50 99.586 140 119 

 As table 3.11 shows, the results of the mean differences for both smooth and 

rough textures are within the camera to object distance of about 90 to 160 µm. These 

results revealed that the author’s methodology of texture depth measurement from 

multiple images is reliable, and the differences between the reference surface (C50) and 

other surfaces are acceptable. A visual inspection of the colour coded differences 

presented in figure 3.61, shows the consistency of the surface matches for both DSLR 

and smartphone cameras. Smartphone cameras show some of red colour distributions on 

both texture types which indicate the mismatch on those places. Moreover, the edge 

differences on some of the samples may affect the visual appearance which is due to 

missing points in the reference data. Finally, this test proved that it is possible to measure 

the texture depth using low quality smartphone cameras such as Samsung Wave and 

Note. The next step is to apply these two techniques (stereo and multiple) image based 

3D modelling and depth calculation in a wider range of texture variation which is 

discussed in the next section. 
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Figure 3.61: Cloud to cloud comparison of all samples with reference to C50, 

Smooth texture (above) and rough texture (below) 
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3.8.3 Trial 3: Comparison between depth calculated from 3D 

models and Sand Patch Test 

This test is designed to compare the 3D surfaces generated using both AGISoft 

StereoScan from two images and AGISoft PhotoScan from multiple images with 

reference to the 3D surface generated using the Canon 5D-50mm (C50). Another aim of 

this examination is to compare the depth calculated from 3D samples with the MTD 

calculated from the SPT. The methodology of depth calculation of the 3D samples is 

described in section ‎3.7.2.2.4 and section ‎3.7.2.3.1 in more details. The digital imagery 

data used for this examination is described in section ‎3.5 which contains 10 samples 

collected from different areas around the Jubilee campus, see figure 3.3.  

This test aimed at investigating the degree of correlation between the depth 

calculated from both StereoScan and PhotoScan and the depth calculated from SPT, 

using five different cameras, see section ‎3.6.1 for the used camera details. Therefore, it 

was necessary to include a range of various possible texture depths for the comparison. 

The texture depths calculated from SPT for each particular test were plotted against each 

sample, and the second order relation was found with about 98% regression which 

indicated a good variation on the tested samples, figure 3.62.  

Two methods were investigated using only a pair of images through the use of free 

tool AGISoft StereoScan and using multiple images through the use of the standard 

version of PhotoScan which will be explained in more details in the next sections.  

 

 

 

Figure 3.62: Texture depth variation on the used samples 
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3.8.3.1 Depth from Sand patch test as Mean Texture Depth (MTD)  

Mean Texture Depth (MTD) was calculated using a known volume of sand by 

dividing it by the area of the patch. The procedures usually followed for calculating the 

area of the patch is through the averaging of 4 to 5 ruler dimensions of the diameter of 

the patch. However, two other methods were designed in order to validate further the 

area of the patch through using CAD tool and Photomodeler, see section ‎3.6.6.  The 

results of the depth calculated from these three methods for all the tests are listed in table 

3.12.  

Table 3.12: Depth calculated from three different methods (µm) 

 
Tests 

 
Ruler 
Depth 

 
CAD 

depth 

 
Photomodeler 

Depth 

 
Average 
(Depth) 

 
Error 

(Ruler) 

 
Error 
(CAD) 

 
Error 

(Photomodeler) 

Test01 978 956 945 960 -18 4 15 

Test02 1729 1697 1706 1711 -18 14 5 

Test03 511 497 501 503 -8 6 2 

Test04 3205 3268 3241 3238 -33 30 3 

Test05 3724 3601 3622 3649 -75 48 27 

Test06 2160* 1821 1802 1812 348 9 -10 

Test07 1052 1075 1066 1064 12 -11 -2 

Test08 581 478 493 517 -64 39 24 

Test09 673 692 703 689 16 -3 -14 

Test10 1974 1954 1963 1964 -10 10 1 

The errors of the three methods were calculated from the average depth plotted 

against the tests and presented on figure 3.63. As can be noticed from figure 3.63, the 

errors from using CAD and Photomodeler showed better compatibility than the ruler 

measurement, see section ‎3.6.6 for more details about CAD, Photomodeler and Ruler 

area calculation and depth measurement. The differences or errors from the average 

depth for each method are less than 75 µm except for test06. The differences on test06 

showed that the depth from CAD and Photomodeler are compatible. However, the depth 

from the ruler showed a significant error that is much different from both other depths, 

and is found to be about 350 µm.  It can be concluded that a blunder error from the ruler 

might be due to taking a wrong reading. This can occur even if the average readings are 

considered and can seriously affect the depth as in the case of test06 that was excluded 

from calculations. For this reason, the depth measurement for sample 06 using ruler was 

excluded for the average depth measurement.     
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3.8.3.2 Depth from digital images (stereo pairs)  

As found from the camera to object distance and intersection angle investigation 

on section ‎3.8.2.1, the best degree of intersection is between 30 to 50 ° for both smooth 

and rough textures. The camera to object distance is as close to the object as the camera 

can be without being out of focus (20-35 cm). Therefore, for every sample (test01 to 

test10), two images were collected at different angles of intersection ranging from (30 to 

50°) depending on the degree of roughness. The procedures of data collection and 3D 

model reconstruction are described in section ‎3.7.2. The differences between depth from 

digital images for various tests and the average texture depth from three SPT methods 

(CAD, Photomodeler, and Ruler) were calculated and are presented on figure 3.64. The 

mean and the standard deviation from differences for each camera were calculated and 

included on figure 3.64.  

 

 

 

Figure 3.63: Tests vs error from three different method of  depth calculation  
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Not surprisingly, as can be seen from figure 3.64 and the mean with standard 

deviation, the best camera result was obtained for the Canon 5D-50mm (C50). The better 

result of the Canon 5D-50mm (C50) is due to the fact that it has a longer focal length 

with full CCD frame which provides more reliable results if compared with other 

cameras. The next two DSLR cameras, i.e. the Canon 5D-28mm (C28) and Nikon D200 

(D200), come after the Canon 5D-50mm (C50) with slightly worth results. However, the 

results from two smartphone cameras showed that the Samsung Wave (Wave)with about 

5.0 megapixels or lower resolution has recorded better accuracy when compared with the 

Samsung Galaxy Note (Note) that has 8 megapixels. Those adverse results from Note 

might be attributed to the smaller sensor pixel size that the Samsung Note utilizes, see 

section ‎3.6.1 for details of used cameras.  The next step was to find a degree of 

correlation between depths from 3D models and the average depth of the sand patch tests 

from three different methods for each particular camera. A simple linear correlation is 

applied as both depths showed a high degree of compatibility as can be seen from figure 

3.65.  
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Figure 3.64: Errors between depth from Stereo images and average of sand patch 

texture depth   

Camera Mean(µm) ± SD(µm) 

C50 141  ± 201 
C28 177   ±  235 

D200 186   ±  252 
Note 355   ±  422 
Wave 230   ±  273 
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Figure 3.65: Correlation between depth from Stereo and Sand 
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As figure 3.65 shows, highly significant correlations are found between depth 

from each of the used cameras and the depth from the sand patch test. The minimum 

correlation is about 0.83 which is for the Samsung Galaxy Note (Note) smartphone 

camera. The highest correlation is documented for Canon 5D-50mm (C50) DSLR 

camera with about 0.99. The slope from the equation for all cameras is near to 1.0 which 

indicates that both depths are increasing with the same rate. The other value at the end of 

each of the equation is describing the shift or the average error between the two data sets 

for the used camera. The shift is found to be about 50.0 (µm) in the case of Canon 5D-

50mm (C50) and the worst case was found to be about 270.0 (µm) for the Samsung Note 

(Note).   

The correlation shown in figure 3.65 revealed that there is a strong relationship 

between the depths calculated from a pair of stereo images using a free tool AGISoft 

StereoScan and the depth from the sand patch test that represented the mean texture 

depth. It is worth to mention that the correlation is made between 10 samples and that 

might not be enough especially due to the lack of information on some texture depths as 

can be noticed from the figure 3.62. Clearly in future, it would be better to add more 

samples to this correlation in order to cover as wide as possible samples, including the 

depths of 1100 to1600 µm and 2000 to 3000 µm.       

3.8.3.3  Depth from digital images (Multiple Images)  

As previously discussed, the use of multiple images will be considered using the 

standard version of AGISoft PhotoScan. The process of image collection, 3D modelling, 

processing and preparing the 10 cm sample for comparison is described in sections 

‎3.7.2.1.2, ‎3.7.2.2.1, ‎3.7.2.2.2, ‎3.7.2.2.3, and ‎3.7.2.2.4. The depth was calculated from the 

3D 10 cm samples for each camera using the author’s developed methodology. The 

depth from each camera and for each test is subtracted from the average depth of the 

sand patch test listed in table 3.12. The differences (errors) are plotted against each test 

for each of the camera and presented as figure 3.66. The errors are then averaged, and the 

standard deviation was calculated for each of the used cameras and included on figure 

3.66.  As can be seen from figure 3.66 and attached results, all cameras showed better 

improvement on the average errors and standard deviation when compared with the 

results from Stereo images that are listed in figure 3.64. The mean error for all cameras 

was less than 100 µm except for the Samsung Wave, which has mean errors of 114 µm. 

However, an error of 114 µm is still acceptable in texture depth measurement as no other 
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techniques can provide this in the field; e.g. it is well  known that 95% of SMTD is 

within ±0.25mm which is due to limited laser spot size of 0.25 mm diameter (Viner and 

Britain, 2006; Halloway, 2011).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The next step in the analysis was to find the correlation between mean texture 

depth from the sand patch test and the depth calculated from 3D models using multiple 

images. The correlation results from both methods (depth from multiple images and sand 

patch test) showed that both methods are in a high correlation with a percentage of as 

high as 0.99 and for all cameras, figure 3.67. Much improvement has occurred for 

smartphone cameras using multiple images as can be seen from both correlations (figure 

3.65  and figure 3.67) which might be attributed to better geometry, full coverage of the 

texture, and better camera self-calibration parameters, see figure 3.68 in case of multiple 

images. As can be seen from figure 3.68, the extracted focal length from multiple images 

is stable over different tests, whereas focal length in the case of stereo fluctuated. The 

high correlation from multiple images is a good indication that the author’s developed 

methodology of texture depth measurement from multiple images can be used reliably 

for measuring the surface texture depth of asphalt surfaces.   
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Figure 3.66: Errors between depth from multiple images and sand patch  

Camera Mean(µm) ± SD(µm) 

C50 56   ±  63 
C28 72   ±  80 

D200 55   ±  74 
Note 80   ±  103 
Wave 114 ±  140 
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Figure 3.67: Correlation between depth from multiple images and sand 
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Figure 3.68: comparison of focal lengths between both stereo and multiple images 
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3.8.4 Trial 4: Testing other materials for feature extraction, 

matching and RMSE  

Before testing on concrete, it was considered worth testing the author’s developed 

methodology on various types of materials for feature extraction, matching, and RMSE 

using stereo images.   The aim of this section is to examine same different types of 

materials (big gravel, small gravel, soil, concrete tiles, grass, and asphalt pavement both 

smooth and rough), figure 3.5 of section ‎3.5. The tests were carried out on the Jubilee 

campus using two different cameras the Nikon D200 (D200) and the Samsung Wave 

(Wave), mentioned in section ‎3.6.1. In order to get comparable results from different 

textures and cameras, the tests were carried out on the same day and with the same time 

span (only within one hour). In addition, the camera settings remained the same for all 

tests. Moreover, the intersection angle and the camera to object distance remained 

constant at 45° and 90 cm, respectively.  

The results of AGISoft StereoScan were used to make a comparison between these 

various materials. The comparison was in terms of the number of extracted features, 

matches and RMSE. The aim of this analysis is to find the best robust feature among 

these different textures which can affect the number of matches and reconstructed points 

and hence the RMSE value. The results of each of the stated parameters are presented in 

figure 3.69. The reconstruction results are not showing here because it did not show any 

differences from matching numbers, all correct matches are reconstructed. 

As figure 3.69 shows, the feature extraction in all materials was reasonably good. 

The least feature extracted in all materials was for big gravel texture with about 68 

thousand and 22 thousand for both Nikon D200 (D200) and the Samsung Wave (Wave), 

respectively. The matching relationship shows that the number of matches is not 

dependent on the feature number as demonstrated in previous sections (‎3.8.2.1.1-A, 

‎3.8.2.1.2-A). Although grass could provide as many features as concrete tiles, it 

produced very little matches compared with all other materials. The difference in the 

matching number between grass and concrete tiles might be due to the fact that grass 

features are repetitive or similar, but this might not be robust. The matching process 

might contain lots of outliers which were removed, figure 3.70. The grass can be 

classified as low textured imagery which is similar to forest textured imagery. Digital 

image matching often fails in low textured imagery materials such as in forest, desert and 

mountain areas as reported by Martin (2004).  
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Figure 3.69: Various materials vs reconstruction parameters   
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RMSE values are found to be high for small gravel due to fewer number of 

matching points. RMSE was found to be depending on the number of matches and found 

to be increased as the matches decreased, see section ‎3.8.2.1.1-C. However, points of 

matching on smooth asphalt are also as few as small gravel but little RMSE could be 

documented. The differences in RMSE between smooth asphalt and small gravel might 

only be due to the fact that the matching points in case of smooth asphalt are more 

accurate than small gravel. It can be concluded from this investigation that probably both 

the concrete tiles and rough asphalt textures provided robust features that led to 

production of reasonable matching points with small RMSE values which substantially 

helped in successful 3D modelling. The soil texture came as the third material in term of 

robust features and successful matching and 3D modelling on an automated basis. The 

smooth asphalt texture was found to rank fourth and came after soil texture as it was not 

possible to build a 3D model in the case of a low resolution camera such as Wave, see 

figure 3.71.     

     

 

 

  

Figure 3.70: Matching on Grass (Wave left and D200 right) 

Rough-asphalt Concrete tiles Soil Smooth-asphalt 

Figure 3.71: 3D reconstructed surface for various materials Wave (above) and D200 (below) 
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3.8.5 Trial 5: Investigating the method on concrete texture   

It was shown in previous sections that it is possible to use digital images for the 

measurement of roughness or texture depth on asphalt surfaces. The author’s developed 

methodology was successfully used for measuring texture depth with a highly significant 

correlation to sand patch test results. In this section, the aim will be to investigate the 

author’s proposed methodology of texture depth measurement on concrete texture. This 

is of particularly interest when adhesions or screeds are to be added to the concrete face 

or surface.  The depth from using multiple images will be utilized on two control 

surfaces of concrete, one considered to be smooth and the other to be rough, see section 

‎3.5 and figure 3.6 for more details about both surfaces. The five cameras (three DSLR 

and two smartphone cameras) were used when testing the concrete surface texture; see 

section ‎3.6.1 for details about used cameras.   

Ten samples of the circular 10cm 3D model prepared using the methodology 

described in sections ‎3.7.2.1.2, ‎3.7.2.2.1, ‎3.7.2.2.2, ‎3.7.2.2.3, and ‎3.7.2.2.4; figure  shows 

samples of prepared 3D models. The height ramp colour visualization on the models 

showed no real differences between the samples, see figure 3.73. This visualization is a 

good indication of the correct geometry of each sample and can also provide the degree 

of similarity of all cameras. Visual inspection of the colour coded ramps show no real 

differences between the 3D models. As can be seen from figure 3.73, the details from 

each camera appear exactly the same if compared with each other. For example, the 

green and red colour coded zones localized on the centre and edge of the rough texture 

are repeated for all models without any changes.     

  

Figure 3.72: 3D samples from 5 cameras, smooth texture (above) and rough texture (below) 
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Carrying out further analysis is useful in order to test for the degree of similarity 

between each sample with reference to the Canon 5D-50mm (C50), using the comparison of 

cloud-to-cloud distances in CC tool. The colour visualisation of the differences on the models 

were made for all samples with reference to the Canon 5D-50mm (C50) and presented as 

figure 3.74. As can be seen, the visual differences of the comparison between each model 

and the Canon 5D-50mm (C50) as reference show that all the samples are compatible with 

the Canon 5D-50mm (C50) for both smooth and rough texture. The blue and green colour 

zones visualized on the models are showing differences that are on average less than 100 µm. 

The upper limits of the differences for most cases are less than 1mm except for Samsung 

Wave in the rough texture which is about 1.84 mm.   

Histograms of these visual differences were also prepared with the mean and standard 

deviation extracted from each comparison and listed in table 3.13. As this table reveals, with 

the cut off limit set to 1mm almost all samples have more than 99 % of differences falling 

within 1mm. Mean and standard deviation of both smooth and rough textures showed that the 

results are within 140-180 µm and 65-90µm for the mean and standard deviation 

respectively. The worst result is documented for the Samsung Wave and for the rough texture 

which is 234 µm and 147 µm for mean and standard deviation, respectively. These results 

showed that the author’s developed methodology is working for concrete texture, and not 

much different from the asphalt pavement texture results listed in table 3.11. Another 

approach of analysing the similarity of the models will be considered through drawing a 

profile of differences and calculating mean and standard deviation.  

Figure 3.73: Colour visualisation of differences on 3D models, smooth (above) and rough (below) 
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Figure 3.74: Colour visualization of differences on concrete models, 

smooth (above) and rough (below)  
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Table 3.13: cloud-to-cloud distance comparison results   

 
Samples `% < 1mm Mean SD 

Smooth 

C28 to C50 100 140 66 
D200 to C50 100 158 76 
Note to C50 100 176 79 
Wave to C50 100 179 82 

Rough 

C28 to C50 99.855 150 91 
D200 to C50 99.998 139 64 
Note to C50 99.968 161 81 
Wave to C50 99.541 234 147 

 

As before, the profiles were drawn horizontally in the centre of both smooth and 

rough texture samples, figure 3.75. Then, differences of each sample profile with 

reference to the Canon 5D-50mm (C50) profile were reported at every 1mm of range, see 

figure 3.76. The RMSE of each sample is calculated from the differences and included in 

figure 3.76. 
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Figure 3.75: Horizontal profiles through centre of 10cm models, smooth texture (above) 

and rough (below)  
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As figure 3.76 and the RMSE values show, the differences at some intervals are 

too high. For example, in the case of rough texture at 740mm range, the differences 

reached about 1mm. These differences might be due to inadequate quality registration of 

the surfaces with GCPs collected using reflectorless total station. However, RMSE of 

registration of four GCPs from Cloud Compare results showed that the highest value was 

691 µm, recorded for the Samsung Galaxy Wave (Wave) in the rough texture, table 3.14. 

The results of RMSE listed in this table conclude that the errors are not only from 

registration but also from other sources, such as a mismatch of matching points, lens 

quality, focal length, and camera resolution as it is apparent from the RMSE results in 

figure 3.76, in the case of rough texture. Occlusion might also be another source of errors 

as the differences around ranges of 305mm and 650mm record the highest values in the 

smooth texture, figure 3.76.               
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Figure 3.76: Differences between all samples with reference to C50, smooth texture 

(above) and rough (below), RMSE (µm)  



                                          Chapter Three: New Approach for Texture Depth Measurement 

149 

 

Table 3.14: RMSE of 4GCPs from transformation between local camera and total station coordinates 

 
Samples RMSE(µm) from 4 GCPS 

Smooth 

C50 159 

C28 164 

D200 222 

Note 291 

Wave 401 

Rough 

C50 295 

C28 298 

D200 281 

Note 410 

Wave 691 

The texture depth from 10 cm circular samples was worked out, using the author’s 

developed methodology described in section ‎3.7.2.2.4. The differences between the sand 

patch test mean depth from three methods, and the depth from 3D models are apparent, 

especially in the case of rough texture. These differences are because errors from the 

sand patch test increase as the roughness of texture increases, due to the difficulty of 

spreading out the sand in a perfect circular shape and due to the slope that that sand 

makes at edges. In addition, some aggregate might not be covered with the sand, as can 

be seen from figure 3.77, where the sand surface is not flat, and some parts of the 

aggregate are uncovered by sand; in addition, the patch was not in a circular shape which 

can affect the sand depth results obtained using the other methods, particularly the ruler 

method. The recreated 3D sand patch test surface showed that the surface has a depth of 

810 µm in the rough texture and 326 µm in the smooth texture. The reason for making 

the comparison with SPT is that is an industry standard, although the results from SPT 

might not necessarily be better than the photogrammetric solutions.   

Table 3.15: Depth from 3D samples vs depth from sand patch for concrete samples (µm) 

 Samples Depth from 3D sample 
Depth from Sand Patch 

Ruler AutoCAD Photomodeler 

Smooth 

C50 1505 

1683 1570 1585 

C28 1502 

D200 1492 

Note 1478 

Wave 1444 

Rough 

C50 4155 

5221 5211 5181 

C28 4055 

D200 4105 

Note 4125 

Wave 4006 
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Differences between the depths from 3D models and depth from the sand patch 

test are apparent. Therefore, it was decided to use cloud-to-cloud distance calculation 

between the 3D samples and the sand patch test recreated surface as explained in section 

‎3.7.2.2.5. Figure  is an example of the cloud-to-cloud distances between the Canon 5D-

50mm (C50) and sand reconstructed surfaces for the smooth texture. The recreated sand 

surface is subtracted from the real texture samples and the mean distances with standard 

deviation are reported using cloud compare software, the results from all samples are 

listed in table 3.16.   

 

 

 

 

  

Figure 3.77: Sand Patch recreated surface (rough concrete texture)  

Uncovered aggregate by sand  
 Non flat sand surface  

 

Figure 3.78: Sample of cloud-to-cloud distance calculation (C50 with 

reference to sand smooth texture concrete) 
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Table 3.16: cloud-to-cloud distance calculation between sand recreated surfaces and 3D   

samples   

 

 

 

 

 

 

 

 

 

 

 

 

The results in table 3.16 showed that the mean distances calculated between the 10 

cm 3D samples and the recreated 3D surface of the sand is closely related to the depth 

calculation results. The differences from all cameras are within the range of about 6-289 

µm for both smooth and rough surfaces. These differences reveal the fact that the 3D 

models are accurate and reliable using multiple images. Although the depth calculated 

from 3D samples using the author’s developed methodology described in section 

‎3.7.2.2.4 showed significant discrepancy with the sand patch test as illustrated in table 

3.15, the variation is not due the miscalculation of the depth using the methodology 

explained in section ‎3.7.2.2.4, but it is probably due to non-flat surface of the sand as the 

results in table 3.16 proved.       

Multiple images based 3D surface modelling seems be work very good when the 

camera to object distance is close to the surface. In all of the above cases, the camera was 

close to the object, and the distance ranged between 20-35cm. Farther ranges were 

considered in this test in order to examine the effect of the camera to object distance on 

the texture depth. This was achieved by using only the smooth concrete texture for 

investigation. For this purpose, two cameras Nikon D200 and Wave were utilized with 

two ranges and used to capture photos at 60- 70cm and 90-110cm. In addition to the 

close distance of camera to object of 20-35cm which was already tested, four other 

samples were prepared making a total of six. The methodology of preparing circular 

10cm samples is explained in sections ‎3.7.2.1.2, ‎3.7.2.2.1, ‎3.7.2.2.2, ‎3.7.2.2.3, and 

‎3.7.2.2.4. The depth calculated from the 10 cm circular samples showed that the camera 

to object distance has the same effect as previously proved in section ‎3.8.2.1.2 for the 

stereo process. The increase in the camera to object distance decreases the depth of the 

 
Samples Mean distances(µm) Std. deviation(µm) 

Smooth 

C50 1557 688 

C28 1513 612 

D200 1563 608 

Note 1569 600 

Wave 1543 584 

Rough 

C50 4283 2029 

C28 4151 2028 

D200 4185 2028 

Note 4029 2042 

Wave 3999 2029 
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texture as visual inspection at figure 3.79 shows, with details starting to disappear as the 

camera moves away from the object and subsequently the texture depth get smoother. 

The stated depths are those calculated using the author’s developed methodology from 

multiple images illustrated in previous section (‎3.7.2).  

  

  

1444µm  1244µm  859µm  

1492µm  1305µm  933µm  

Figure 3.79: Visual height ramp of the smooth texture with the camera to object 

distance, Nikon D200 camera (above) and Samsung Wave (below)  

20-35 cm 60-70 cm  90-110 cm  
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3.8.6 Trial 6: Using the proposed method of depth calculation as a 

dependable measuring technique for fractured concrete  

The author’s proposed methodology of texture depth measurement and 

characterizing was also used to study the 3D surface modelling of fractured concrete 

samples. This was to quantify the fractured surfaces so they could be described in terms 

of fracture phenomenon of cementitious materials. One of the important parameters in 

the fractal analysis concept is the fractal dimension which can be calculated by cube 

counting method based in 3D analysis. The fractured surface should be first 

geometrically characterized by constructing a 3D surface prior to subsequent analysis. 

For more information about the analysis and characterization techniques of impact-

fractured concrete surfaces refers to  (Ahmed, 2012; Erdem et al., 2012; Erdem and 

Blankson, 2013; Santos and Júlio, 2013; Werner et al., 2013).  

To minimize the processing time and to help the extraction of the fractured 

surface, all sides from each sample were painted with white paint and placed on a white 

background and captured using Canon 5D-28mm (C28). Using the white paint on the 

sample sides and background will help the trimming process as it will be easier to extract 

the fractured surface from the white background. As it was previously discussed, nine 

concrete fractured samples were subjected to processing in order to reconstruct the 3D 

surfaces based on the digital image and 

photogrammetry. The procedures of reconstructing 

the 3D surfaces from the digital image based on 

photogrammetry were described in sections ‎3.7.2.1.2, 

and ‎3.7.2.2. Four markers with the size of (0.5x0.5 

cm) were placed on each of the used samples and 

surveyed using a reflectorless total station (refer to 

section ‎3.6.3, for accuracy of total station) in order 

to be used as GCPs for absolute orientation process; 

figure 3.80.   

The nine samples were reconstructed, see figure 3.81 and transformed to absolute 

orientation utilizing the aligning tool in CC which was described in detail in section 

‎3.7.2.2.2. Cloud compare provides details of the transformation process such as 

transformation matrix, RMSE of the transformation and the recovered scale. The RMSE 

values of transforming each sample from the image coordinate system to the local 

Figure 3.80: Fractured concrete 
 sample with markers 

Markers  
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coordinate system were recorded. The RMSE which can be treated as GCPs accuracy 

was worked out using four GCPs for each sample. Nine observations are usually utilized 

for 3D rigid transformation and in this processing, 12 observations were used in each 

sample. RMSE values for each sample are listed in table 3.17. For more information 

about the recovered scale and transformation matrix refer to appendix A.   

 

Table 3.17: RMSE of GCPs out from transformation process in CC  

As table 3.17 shows, the RMSE values for all samples fall within less than 1.0 

mm; the biggest RMSE was recorded for C5R45-1 as 0.88 mm. These RMSE values 

pointed to the presence of better consistency between the local coordinate system and the 

recreated surfaces represented in GCPs. To further analyse the accuracy or the precision 

of the reconstructed surfaces, the C5R5-1 sample was subjected to second recreation 

using the same camera C50 but with a different set of images. Two sets of images were 

collected for the C5R5-1 sample, each set consist of 17 images. However, the 

distribution and angle of acquisition of images was different from one set to the other. 

The reconstruction processes of 3D surfaces followed the procedures mentioned in the 

previous examples, and detailed in sections ‎3.7.2.1.2, ‎3.7.2.2.1, and ‎3.7.2.2.2.  The 

cloud-to-cloud distance calculation was then carried out on these two sets and the results 

of visualizing the differences on the model with colour coded bar scale are presented in 

figure 3.82.  

   

Figure 3.81: The reconstructed concrete fractured samples  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample 

IDs(C5--) 
R0-1 R0-2 R5-1 R15-1 R15-2 R30-1 R30-2 R45-1 R45-2 

RMSE 

(mm) 
0.54 0.20 0.61 0.68 0.44 0.84 0.82 0.88 0.73 
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As figure 3.82 shows, the overall differences between the two sets are in the range 

of less than 200 µm. In order to precisely work out the mean of the difference, the 

histogram of the differences is drawn with Gaussian fit, see figure 3.83. As can be seen 

from this figure, the mean and standard deviation differences are 157±100 µconcluding 

that the author’s proposed methodology can be used for the geometric characterization of 

a fractured concrete sample.       

 

 

 

 

 

 

 

   

Figure 3.82: visualization of differences of the two sets 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.83: Histograms of differences between two 
sets with Gaussian distribution fit results 

Units: meters  
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3.9 Summary and Conclusions  

The aim of this chapter was to examine the use of digital images for texture depth 

measurement of various materials, particularly, asphalt and concrete textures. A number 

of experiments were carried out in order to investigate the use of digital images for 

texture depth measurement. A mixture of DSLR cameras and smartphone cameras were 

investigated and used in all tests conducted in this chapter.    

 Testing DSLR cameras for lens quality was an objective of this chapter and many 

of the available cameras in NGB along with their lenses were tested. The results of this 

study showed that the image sharpness is mainly due to the lenses and it has been proved 

that some old lenses produced inadequate image sharpness, which could be due to 

excessive use or due to any source of accident that may degrade the quality of the lens, 

as in the case of Nikon D300 which showed unsatisfactory results when compared with 

other cameras. Based on this test, two DSLR cameras (Canon 5D, Nikon D200) with 

three lenses (Canon 50mm, Canon 28mm, and Nikon 28mm) were selected to be used in 

addition to the two smartphone cameras, for the trials in this chapter.  

Another objective of this chapter was to qualify the effect of the intersection angle 

and distance of the camera to object on many reconstruction parameters such as feature 

extraction, matching of correspondence points, RMSE of the least square solution, and 

the accuracy of the generated 3D surfaces. The aim was to find the optimum intersection 

angle and distance of the camera to object when only two images used, through utilizing 

the free tool AGISoft StereoScan. Two controls of asphalt texture, rough and smooth 

were employed for performing these trials. The findings from this examination revealed 

that the best intersection angle is between 30 to 50°. Testing the distance of the camera to 

object also showed that the depth of the texture minimized as the camera distance from 

the surface increased. The recommended distance of the camera to object was found to 

be as close as the camera can be while not being out of focus, that was found to be 

between 20 and 35cm.  

Results from AGISoft StereoScan with the use of two images showed some 

discrepancies. The reliability of the two images was proved to be low. This was found to 

be true especially for both smartphone cameras, i.e. Samsung Galaxy Note and Wave 

that reported a standard deviation of about 1250 µm and 1400µm, respectively when 

different intersection angles were used at a 90cm camera to object distance, while 
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standard deviations of about 740µm and 785µm, respectively were found when different 

distances of the camera to object where used with an intersection angle of 45°. The 

results of DSLR cameras were recorded better accuracy with 225µm, 426µm, and 

656µm for the Canon 5D-50mm, Canon 5D-28mm, and Nikon D200, respectively for 

different intersection angles at a 90cm camera to object distance. The results became 

even better when different distances of camera to object where used with an intersection 

angle of 45°, with 93µm, 338µm, and 347µm for the Canon 5D-50mm, Canon 5D-

28mm, and Nikon D200, respectively. Due to the large errors in the results, especially 

for smartphone cameras,   the proposed methodology of texture depth measurement was 

performed using multiple images. The results from testing two control textures, rough 

and smooth showed that the calculated texture depth was significantly improved to the 

largest error of about 210 µm recorded for the Samsung Wave and for smooth texture.  

The use of stereo and multiple images were considered for greater range of asphalt 

texture through including ten test areas. Different analysis was performed to validate the 

author’s developed methodology for texture depth measurement from images through 

using five cameras. The differences between depths from two images using the optimum 

camera to object distance and intersection angle revealed that the mean errors were 

141µm, 177µm, 186µm, 355µm, and 230µm for the Canon 5D-50mm, Canon 5D-28mm, 

Nikon D200, Samsung Galaxy Note, and Samsung Wave, respectively.. On the other 

hand, differences between depths from multiple images with the depth from SPT showed 

that the mean errors became better, with 56µm, 72µm, 55µm, 80µm, and 114µm for the 

Canon 5D-50mm, Canon 5D-28mm, Nikon D200, Samsung Galaxy Note, and Samsung 

Wave, respectively.  The experiments of measuring the correlation between depths from 

images and sand patch test were also considered. The outcome from these trials showed a 

highly significant correlation, with a minimum value of about 0.80 reported for the 

Samsung Galaxy Note and for stereo process.  

The testing of other materials rather than asphalt pavement was also included in 

this chapter. Many materials such as concrete tile, gravel, soil, and grass were examined 

for reconstruction parameters output from AGISoft StereoScan. The findings from this 

test proved that the concrete tile material outperforms other materials in terms of 

providing a sufficient number of features and low RMSE with highly significant 

matching points. The rough asphalt pavement texture also showed an outperformance as 

it comes after the concrete tile as a second best material for surface modelling on an 
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automated basis. Visual inspection of the generated 3D surfaces of various materials 

revealed that almost all the materials were successfully generated automatically except 

for both gravel sizes and grass which might be due to low textured imagery, see section 

 3.8.4.  

Two control concrete textures, rough and smooth were tested for texture depth 

measurement using multiple images for surface generation. Colour visualization of 

differences on concrete models revealed good consistency of different cameras with 

reference to the Canon 5D-50mm (C50) data. Cloud-to-cloud distance calculations 

showed that the largest error reported was for the Samsung Wave with the mean error of 

234 µm. Mean errors of other cameras with reference to the Canon 5D-50mm (C50) 

were 150µm, 139µm, and 161µm for the Canon 5D-28mm, Nikon D200, and Samsung 

Galaxy Note, respectively. Differences between depth from digital images and SPT were 

also calculated and found to be 295µm, 298µm, 281µm, 410µm, and 691µm for the 

Canon 5D-50mm, Canon 5D-28mm, Nikon D200, Samsung Galaxy Note, and Samsung 

Wave, respectively.  Due to the apparent differences between depth from the sand patch 

test and digital images especially for smartphone cameras, different analysis approaches 

were considered for this test using the recreated surface of sand as a subtraction layer. It 

was concluded that the apparent differences between the sand patch test and digital 

images were due to errors in the sand patch test method of depth calculation, see section 

 3.8.5 and table 3.16. 

 The methodology of reconstruction of a 3D surface was utilized for 

characterization of fractured concrete. Nine fractured concrete samples were 

reconstructed. Four GCPs were utilized in each sample and collected using total station 

via reflectorless mode. RMSE of transformation (absolute orientation) values revealed 

that the reconstructed surfaces were accurate and in the range of less than 1mm. The 

precision was also considered and resulted in utilizing one of the used samples through 

reconstructing two repeated measurement. Trial of comparing the respective 

measurement suggested that the precision of the characterized concrete sample via 

Cloud-to-cloud distance calculation is in the range of (157±100) µm, see section  3.8.6.  

Finally, it can be concluded that the author’s developed methodology of texture 

depth measurement from digital images showed promising results, especially for 

multiple images as an alternative method for SPT with which a highly significant 

correlation was achieved.  



                   Chapter Four: A developed method of crack detection on rough texture  

159 

 

CHAPTER FOUR: A DEVELOPED METHOD OF CRACK 

DETECTION ON ROUGH TEXTURE  

4.1 Introduction  

Cracks on the road surface after construction are due to loading, environmental 

condition, ordinary wear and structure aging. It has been proved that early detection of 

cracks and maintenance can prolong the age of the road and minimize the expected cost. 

There has been a lot of research into crack detection on the road surface but very limited 

work has been conducted when it occurs on rough texture. Different techniques have 

been developed for crack detection. Some of them use image thresholding with image 

filtration to remove the noise, others use morphological tools while some use Neural 

networks (Chambon et al., 2009). In this project, a combination of methods of image 

thresholding, image filtering and morphological tools were used in order to detect cracks 

on the road surface efficiently.   

The novelty of this method is focused on the automatic detection of cracks on the 

rough texture which is usually accompanied by lots of mis- interpretations due to raised 

aggregates. Most previous researchers have used only one image filtration technique for 

smoothing images (Subirats et al., 2006; Chambon et al., 2009). This is considered to be 

less useful because various texture roughnesses are available in the real world. The 

purpose of this chapter is to investigate crack detection using digital images. The main 

aim is to develop an algorithm that can deal with different image sizes, sources and 

lighting conditions. To fulfil this aim, many trials were conducted in order to assess the 

algorithm on different image sources (web, extracted from published papers, low 

resolution, and shadow existence) and with various texture roughnesses.  

      The development of the algorithm was carried out in this project because 

extensive literature reviewing revealed that:   

 No particular study concentrates on the detection of cracks on the rough texture. 

 Most of image filtration designed used only one filter for all types of textures. 

 No open source online or commercially developed algorithms for crack detection 

were available that could be used for this investigation.   

This chapter starts with describing the developed method for crack detection, 

followed by data set collection and test site location with different experiments for 
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identifying and locating cracks on the road surface. The problem of crack identification 

will be reviewed, and a trial of crack identification will be presented by using a 

thresholding method. Then the used materials are presented, followed by the automation 

procedures of the design concept. Finally, the results and analysis of different 

experiments will be discussed before presenting the summary and conclusions.  

4.2 Design of a crack detection method 

Over decades, many methods have been developed to deal with crack detection on 

asphalt road pavements. Some of the developed methods are based on radar penetration 

or laser scanning techniques, while almost all of the established methods were based on 

images for identifying and quantifying the crack on the road surface. This was because it 

was showed that images are cost effective and more competitive than other systems. For 

images based methods, many of the algorithms were developed based on different 

techniques. Most of these techniques used 2D image analysis for segmenting or isolating 

the crack pixels from the rest of the image background.   

In this project, a method was developed based on a digital image as a source of 

acquisition. The Canon 5D camera was utilized to capture the data of the road using 

video mode while on a moving van. The camera was fixed (2 m) on a mobile van over 

the road surface. As the van was moving, the video frames were recording the scene 

below the camera. A hand-held GPS and data logger were assembled with the camera in 

order for each particular frame to be geolocated.  The processing stage started with the 

extraction of the video frames which was done through the use of feature based matching 

algorithms in order to include the required frames only. Later, the extracted frames were 

geotagged using the GPS log to assign the position and GPS time.   

After the frame extraction and geotagging steps, the frames were subjected to the 

process of shadow detection and removal. Then the pre-processing stage started with 

image filtration and morphological operations to smooth the image, strengthen the crack 

signal and remove the noises. Different image filters were applied based on roughness 

modelling using 2D image analysis. Next, image segmentation based on edge detection 

was started to identify possible cracks, followed by a post-processing stage to connect 

crack candidates using a minimum cost path (locate the minimum intensity path that 

connects between two crack objects) and remove mis- interpretations based on crack 
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candidate statistics. This process is described in the workflow diagram presented in 

figure 4.1.   

 

 

 

  

           Box containing the developed algorithm processes 

Figure 4.1: Workflow diagram for developed method of crack detection 
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4.3 Aims and Objectives of trials  

The aim of this chapter is to design and assess a crack detection algorithm and to 

test each processing stage, which will be achieved through the following objectives: 

1. Investigating video frame extraction using the invariant feature matching 

algorithm (SURF).  

2.  Investigating the use of hand-held GPS for defining the location of the 

extracted frames.  

3. Investigating the use of statistics for identifying the frames where problems 

exist (potholes, manholes, shadow, cracks and other unusual objects of road 

surface).   

4. Investigating the use of a 2D analysis method for identifying the roughness 

of the texture on image.  

5. Investigating the crack detection algorithms for different sources of images.  

6. Investigating the crack detection algorithm on video images captured from a 

mobile van. 

4.4 Methodology of trials  

To fulfil the above objectives, following methodology was considered: 

1. Objective 1: Video files listed in table 4.1 were used for testing the 

developed methods of frame extraction. 

2. Objective 2: Extracted frames from the junction points from the conducted 

survey path were used, see figure 4.5.  

3. All frames extracted from objective 1 were used for analysis and statistical 

testing.  

4. Ten samples of texture with known texture depth were used, see figure 4.4. 

5. Different source of images were used for testing the crack detection rate, see 

figure 4.3.  

6. Some samples of extracted frames from video files with different problems 

were utilized, see figure 4.47.  
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4.5 Data sets and test site description 

The research investigated the possibility of detecting cracks on close range images 

through developing an algorithm based on thresholding, image filtration, and 

morphological operations.  For this purpose, the first data set was acquired using a Nikon 

D100 camera in a mobile car with average traffic speed. The vehicle moved over 

different street areas in Nottingham, starting from the Nottingham Geospatial Building to 

the Northgate Primary School, figure 4.2. The camera was held obliquely by hand and at 

about 1.2m height over the road surface.  Camera exposure settings were fixed, with the 

aperture priority used to maintain a sharply focused image of the road surface, and the 

ISO sensitivity was set to 200. The shutter speed changes accordingly to compensate for 

both aperture and ISO sensitivity fixed values; a sample of images is given in appendix 

B. The collected images were visually checked for the presence of cracks to be used as 

trial images. This set of images was used for developing the algorithm, testing for the 

crack detection as well as for the texture analysis or roughness measurement. 

  

Figure 4.2: Path of collected data set for crack detection algorithm development  
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In order to investigate the potential of the author’s developed crack detection 

algorithm, different sources of images (web net, extracted from published papers, low 

resolution, shadow existence, Laser Road Imaging System (LRIS) and collected from the 

real world) were examined. There are different sources of images available online which 

have different types of crack extension and levels of severity and with different 

resolutions. More information regarding these images is available in the results and 

analysis (section ‎4.9). Images of cracks were also extracted from some published papers 

using the cut option and the low resolution available on the presented figures. Image 

pyramid reduction techniques were applied on some images in order to test the algorithm 

on the low-quality resolution images. Figure 4.3 shows some samples of the images 

extracted from published articles, downloaded from the net or from LRIS (Sy et al., 

2008; Pavemetrics, 2012; Zou et al., 2012). 

 

 

  

Net Published papers 

Published papers 

Net 

LRIS Published papers 

Figure 4.3: Samples of crack images from variety of sources  
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Another set of data was collected for investigating the author’s developed crack 

detection algorithm using video mode. This set was obtained using a designed system 

which consisted of a Canon-5D camera with hand-held GPS mounted on the top of the 

NGI’s mobile van. The camera was mounted with its optical axis perpendicular to the 

road surface at a height of about 2m, figure 4.4. The camera used on this system was a 

Canon 5D, which was fixed on the end of a wooden frame.  Along with the camera, 

different sensors (GPS receivers and data logger) were also assembled on the mobile 

van.   

 

 

 

 

 

 

 

 

 

The data collected from this system was used for three purposes. First, to test the 

possibility of acquiring quality images without blurring effects under different traffic 

speeds, see section ‎4.9.3. Second, for assessing the author’s developed crack detection 

algorithm on the extracted video frames by comparing it with manually measured values, 

see section ‎4.9.3. Finally, to examine the video extracted frames for the detection and 

extraction of potholes using 3D based image modelling techniques on a fully automated 

basis, see section ‎5.7.4. More details about the collected data and the proposed system 

are described in the next sections. The extracted frames were tested for both 2D image 

analysis and 3D image-based modelling. A method was developed to deal with frame 

extraction and handling of extensive data which will be explained in the following 

sections.   

Figure 4.4: System for image data collection on mobile van  
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Adequate images were obtained from different roads at various traffic speeds 

using the video mode of the Canon 5D camera. A total length of about (27 km) of data 

was gathered for different roads and during different times of day (morning, noon and 

afternoon) under day lighting conditions. Some of these images were overlapped for the 

same road surface, see figure 4.5 for the path of collected data and refer to table 4.1 for 

details about individual video files and the total number of frames.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.1: Video files detail for the data collected  

Video Files Time 

(min.sec) 

Length 

(Km) 

Total number of 

frames 

MVI_4512 8.26 2.6 15280 

MVI_4513 1.52 0.5 3360 

MVI_4514 13.17 4.16 23910 

MVI_4517 4.13 2.20 8760 

MVI_4522 10.27 1.94 19783 

MVI_4523 14.30 4.1 27029 

MVI_4539 11.00 3.6 19800 

MVI_4540 10.08 3.2 20700 

MVI_4541,42,43 17.52 5.3 32160 

Figure 4.5: the path of all collected data from Radford area on mobile van  

Paths of survey 

Main roads 
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4.6  Problem definition and trial with crack detection   

A crack is considered difficult in the context of road surface evaluation by using 

image techniques because it is weakly represented (about 1.5% of the whole image) and 

weakly contrasted (easily hidden by road surface texture). Many methods have shown 

limitations because the detected results contained lots of mis- interpretations due to 

variations in the road texture (Sylvie and Jean-Marc, 2011). Rough texture can also cause 

slight variations in the average intensity of local pixel regions even if the image is 

without cracks; figure 4.6 shows a sample of texture variations and the effect of texture 

on blending the crack pixels. 

   

Figure 4.6: Some available texture in the road pavement 

 

 

 

 

 

 

 

 

 

 

 

Conventionally, methods of crack detection can be divided into four major groups 

based on using Thresholding, Morphology, Neural Networks or Transformation 

techniques (Chambon et al., 2009). The general approach developed in this research for 

crack detection was based on combining segmentation using edge operations with image 

filtration and morphology methods. For the same sample used, the morphology operation 

was applied to the  RGB image in order to enhance the image , reduce noise and remove 

unwanted objects from the image, such as lanes or marks on the road; whereas, the 

thresholding method was used to identify the crack pixel candidates. The threshold 

method is a simple and effective method; however, because the aim was to use automatic 

detection of cracks, automatic thresholding was required. 

 A trial was carried out to detect cracks based on intensity variation through local 

thresholding definition.  
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Crack detection is mainly based on 

intensity variations, because the crack 

pixels are darker than their neighbours, 

figure 4.7 shows a sample of crack 

pixels. The segmentation of a crack 

pixel from the background texture is 

considered as a challenging process due 

to the variation of illumination around 

the image. The variation in intensities 

between crack pixels and neighbouring 

pixels can help the segmentation process 

by setting threshold values which can be 

chosen automatically or manually. 

However, the limitation of the threshold method is the variability of the intensity values 

due to the change of illumination around the image, see figure 4.8.  

 

 

 

Figure 4.8: Intensity profiles and curve fitting through image     

    Crack candidates,              Profile intensities,                      fitted curve 

 

 

Figure 4.7: Intensity variations   of crack pixel and  
Its neighbours 
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Based on these profiles and the fitted curve, the mean and standard deviation of 

intensities can be calculated. The crack candidate pixels can be identified along the 

profile based on the mean and standard deviation of intensities. The deep dark pixel 

values were considered to be crack pixels if they had 3- sigma values away from the 

mean value. From these profiles, the threshold limits used for segmenting the crack 

pixels from the whole image can be calculated. 

 This process will identify crack seeds but not the whole crack pixels. Moreover, 

the fitted curve and the crack detection idea based on the 3-sigma criteria might in some 

cases detect non-crack seeds, or mis- interpretations. As shown in figure 4.9, although 

there are no cracks along the profiles, this process identified cracks based on the 3-sigma 

criteria, however these can be avoided through removing the effect of bright objects. The 

results from this method showed many mis- interpretations after testing the sample as 

shown in figure 4.10.    

 

  

Figure 4.10: Results from thresholding method based on profile intensities 

original image (left) and results (right)  

Figure 4.9: False positives (identifying non-crack pixel as a crack)  

                                  x= pixel location along profile, y=intensities  
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4.7 Materials and methods  

 The camera had a primary contribution in this study through the use of a Canon 

5D and Nikon D100 (for details about Canon 5D refer to section ‎3.6.1). The Canon 5D 

was used in this project through using the video mode for the collection of road surface 

imagery under day lighting conditions. The Canon 5D was chosen because it can offer a 

1080*1920 pixels image resolution with about 0.018 µm sensor pixel size in video mode. 

Over 2m height and with a 28mm focal length, the pixel size (GSD) on the ground will 

be about 1.3 mm. Tests of the author’s developed crack detection algorithm proved that 

detection of crack was successful  in most cases if the crack width is more than 3 

pixels(see section ‎4.9.2 and ‎4.9.3). Therefore, it is expected that the Canon 5D camera 

can detect cracks with about 4 mm width. The Ground Sample Distance (GSD) in the 

recent LRIS system is in the range of 0.5-1mm for the 8000 and 4000 pixel options, 

respectively (Pavemetrics, 2012). Therefore, the pixel resolution in the case of the Canon 

5D camera is sufficient if compared with the LRIS system.  

      Other cameras were also utilized for still image collection. For example, the 

Nikon D100 was used to collect some imagery data for algorithm development purposes. 

The Nikon D100 has a 28 mm focal length with 23.7*15.5 mm CMOS frame size and 

0.0079 µm effective sensor pixel size, with a total of 6.1 effective megapixels.   

Another sensor, a hand-held GPS receiver (GPS 76) was also used with the camera 

to measure roughly the location of the video frame when the camera was moving. 

Theoretically, it is estimated that the accuracy of hand-held GPS (GPS 76) is always less 

than 15m with RMS 95% for standalone and less than 5m with RMS 95% for 

Differential GPS (DGPS). The cost of this hand-held GPS receiver on the day of 

production was about  £200 (Yeazel and Birch, 2002). For more information regarding 

the GPS 76 and the accuracy of the positioning refer to  Garmin (2004). A precise time 

measurement tool data logger, Precise Time Data Logger (PTDL1), was assembled with 

the camera in order to calculate the start time of when the camera was triggered with 

regards to GPS time. The data logger was used for all video files for the purpose of 

synchronisation between camera time and GPS time. For more information about the 
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used data logger PTDL1, please refer to the manual at Barnsdale K.P. and Andreotti 

(2008).    

The author’s developed crack detection method used in this project was based on 

detecting the crack automatically and involves:-  

1- Image noise reduction through applying a designed filter based on measuring 

the degree of roughness of the texture. 

2- Segmentation based on Roberts edge detection for identifying crack objects. 

3- Crack object identification based on geometry. 

4- Crack objects connection based on a designed method of minimum path 

identification.  

5- Morphological tool for pre-processing the image and post-processing the 

results in order to remove or mitigate the outliers (more details are discussed 

in the following sections).     
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4.8 Semi-automatic procedures for crack detection  

This chapter presents the work or procedures followed to identify cracks on the 

road surface. The methodology described here is to show the algorithm details in each 

step progressively. The algorithm called crack detection was developed using the Matlab 

program. The goal of the algorithm was to successfully identify crack candidate pixels 

and non-crack pixels within the image frame. To achieve this aim, a number of 

operations were designed to detect the crack with the minimum amount of noise or mis- 

interpretations. The concept of the algorithm can be summarized in the following flow 

chart, figure 4.11.         

 

 

 

 

 

 

 

 

Procedures shown in figure 4.11 were developed using a variety of available or 

developed tools. For example, at the image preparation stage, the video frame extraction 

methods are available in Matlab toolbox. However, the process in Matlab was not 

enough to remove unwanted frames that overlapped when the car was fully stopped. 

Therefore, a methodology was developed to remove unwanted frames that significantly 

reduced the time of processing. It is also worth to mention that at each of these stages, a 

mixture of thresholding, filtration, and morphological operations were used which will 

be described in more details in the following sections. The first stage in algorithm 

development was image preparation that will be discussed in the next section.  

Figure 4.11: Concept of crack detection algorithm 
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4.8.1 Image preparation     

The objective is to detect a crack on the video extracted frames obtained using the 

Canon 5D camera which records 30 frames per second with full HD resolution 

(1080*1920 pixels). Plenty of unwanted data was recorded especially when the car was 

fully stopped in a traffic light control zone or when the car was in a traffic jam. The 

image preparation stage involved two principle processes; the first one was frame 

extraction with motion estimation. A motion estimation routine was developed to remove 

unwanted images of the fully overlapped areas or with a range that is less than the 

required distance, which will be explained later. In the second operation, the extracted 

frame was geotagged which involved assigning GPS position to the extracted frames. 

These two operations are described in the following sections.   

4.8.1.1 Frame extraction with motion estimation 

In this section, a method of extracting the video frames and removing frames that 

shared areas with other frames is presented. As mentioned before, the Canon 5D camera 

in video mode records 30 frames per second. With the car travelling on an average traffic 

speed of about 30 mph which is equivalent to 13.41m/s, 1 km of data will provide about 

2237 frames, which is an enormous amount of data and could be more if the car was 

fully stopped at any time or was travelling at a slower speed. In order to manage this vast 

number of frames, a subroutine algorithm was developed based on the feature matching 

algorithm (SURF). SURF was used to estimate the motion between a pair of images. The 

first frame is compared with the next frames until finding the required shift distance 

which shared about 20%, or the shift distance of more than or equal to 800 pixels, figure 

4.12 shows the procedures or flowchart of the subroutine.   

  

Figure 4.12: Frame extraction and motion estimation flow chart 
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After extracting frames from video files, the first frame was compared with the 

following frames by matching the two images and then calculating the transformation 

matrix between successive pair of images. In the sample shown in figure 4.13, the 

matching and 2D transformation matrix (TM) results are shown comparing the first with 

second and fourth frames successively.  

 

 

 

 

 

 

 

 

 

 

 

The transformation matrix is computed using the inlier matches calculated through 

a RANSAC outlier removal algorithm. The model parameter is estimated from seven 

matches and then applied on the rest of matches. The residuals calculated from each 

model and the small registered amount through required iterations was chosen. As can be 

noticed from figure 4.13, the transformation matrix provides information such as 

(rotation, scale and translation) between two frames. From this information, the proper 

image frame was selected, and all other frames in between were removed. More details 

about the results of this method and their effects on frame reduction percentage are 

available in section ‎4.9.1.1.      

Figure 4.13: Sample of motion estimation through transformation matrix calculation 
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4.8.1.2 Frame Geo-tagging 

At this stage, the GPS log is used to position each extracted frame after the motion 

estimation phase. As mentioned before, the GPS receiver (GPS 76) was mounted with 

the Canon 5D camera to register the position every second. The time of starting the GPS 

log and the camera shooting was recorded through the PTDL1 data logger which uses 

GPS time to record all actions occurring at the same time. When pressing the recording 

mode on the camera, it sends a pulse through the flash connection point to the data 

logger and the GPS time is attached with this pulse. This time is then synchronised with 

the time from GPS log recorded through the GPS 76 receiver, figure 4.14.    

 

 

 

 

The Canon 5D camera, and most cameras, record only the beginning of the video 

file time. When the video file was extracted to frames, the timestamp of the frame was 

changed to the time when the frame was created using a Matlab program (it uses the 

clock time of the computer to assign time to the frames). This time needs to be corrected 

using the start time of the recording video file which was synchronized with the GPS 

time, and adding it to the frame number which is attached to the file name as can be 

noticed in figure 4.15.   
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Figure 4.15: Extracted frames from video file (MVI_4514.MOV)  

Figure 4.14: The system concept of recording time of starting camera  
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For assigning the correct timestamp to the extracted frames, the ExifTool (Harvey, 

2013) was installed on the system so that it can be recalled inside the Matlab program. 

The Exiftool has the capability of assigning a timestamp to the image frame. However, 

the frame rate is 30 per seconds, and this time fraction cannot be assigned to the Exif 

header, which required another solution. To overcome the problem, track of GPS time 

and position required interpolation.   

The GPX file format was converted into a tab delimited file format (txt) in order to 

be dealt with more easily. All the latitudes and longitudes were transformed into Eastings 

and Northings Ordnance Survey Great Britain 1936 (OSGB36) system using Grid InQuest 

coordinate transformation tool (Ordnance Survey, 2014), see a sample in table 4.2. The 

time of frames is more frequent than the epoch of the GPS. One second GPS time is 

equal to 30 frames of images. Therefore, in order to assign the correct positions to the 

proper frames, two GPS positions with one second-time span were interpolated to 30 

positions in between, figure 4.16.   

Table 4.2: Sample of GPS positions (WGS84) transformed to OSGB36 

Index Time (Hourse) Position (Lat, Lon)  Easting Northing 

120 15:44:43 N52 57.116 W1 10.997 454969.1 339704.6 

121 15:44:45 N52 57.109 W1 10.997 454969.2 339691.6 

122 15:44:47 N52 57.108 W1 11.003 454962.6 339689.7 

123 15:44:49 N52 57.106 W1 11.010 454954.8 339685.9 

124 15:44:51 N52 57.107 W1 11.020 454943.5 339687.6 

125 15:44:53 N52 57.105 W1 11.028 454934.6 339683.8 

126 15:44:55 N52 57.103 W1 11.035 454926.8 339680 

127 15:44:56 N52 57.102 W1 11.037 454924.6 339678.1 

128 15:44:58 N52 57.099 W1 11.044 454916.8 339672.5 

129 15:44:59 N52 57.098 W1 11.045 454915.7 339670.6 

130 15:45:00 N52 57.097 W1 11.046 454914.6 339668.7 

 

 

 

 

 

 

 

   

Figure 4.16: sample of GPS track and interpolation points 
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4.8.2 Exclusion of problem free images based on statistics   

The processing time of the author’s developed crack detection algorithm is mainly 

dependent on the number of candidate objects. The time required for pre-processing and 

post-processing is within less than five seconds for almost all image types. However, the 

time required for the post-processing stage is 300 times longer than the two other stages, 

table 4.3 shows the time required to process only one frame of the image.   

Table 4.3: sample of time processing for a one frame of image 

Process Time required(sec) 

Pre-Processing 2.5 

Processing 1.53 

Post Processing 1510 

It is obvious from table 4.3 that the post-processing stage is very time-consuming 

and this needs to be carefully considered. This time was only required for processing one 

frame, and it was mainly due to the use of the iteration process or for-loops in Matlab. 

The candidate objects for post-processing were 2316, which means that the program had 

to iterate 2316 loops. However, it is only necessary to run the program for the frames 

that contain problems or distresses (lane painting, cracks, shadows, and potholes).  

The basic method for this was to examine histogram distributions. It was found 

that clear road pavement images will follow the Gaussian pattern, figure 4.17. The 

residuals from the data and the fitted curve were calculated, and the RMSE from the 

residuals was designed as a limit to include or exclude the frame in the next processes. 

The algorithm starts by converting the true colour image RGB to the grayscale intensity 

image, eliminating hue and saturation information while retaining luminance. The next 

step is to calculate the histogram for the intensity image or grayscale image by defining 

the number of bins and saving a plot of the histogram. Fit Gaussian is then applied to the 

histograms utilizing the try/catch statement to cause the program not to encounter any 

error if the Gaussian fit is not working (in case data are not normally distributed). The 

residuals are finally calculated, and the RMSE from the residuals calculated, which helps 

for decision making, see figure 4.18.    
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Figure 4.17: Histogram and fitted Gaussian curve for sample of images  
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In addition to RMSE from residuals, the statistical t-testing was applied as well in 

order to compare the similarity of the two data sets (data and fitted curve). T-test is 

usually used to determine if two sets of data are significantly different from each other.  

T-test is commonly applied when the two sets of data follow a Normal distribution. The 

null hypothesis is that the two sets of data are from equal means. The probability (p)-

value calculated from the outputs of the T-test to measure the strength of null hypothesis. 

A p-value of one indicates that both sets of data are in identical (accept null hypothesis 

with 100% confidence interval), whereas a p-value of zero indicates that the sets of data 

are entirely different (reject null hypothesis with 100% confidence interval) (GraphPad, 

2014; Matlab, 2014d).  

 Figure 4.17 shows a sample of images that were either rated as free of problems, 

or clears, or containing different sources of problems, such as shadow, lane painting and 

crack existence. As can be noticed from figure 4.17, the p-value output from the t-test 

calculated between the two sets of data (data and fitted curve) and RMSE from residuals 

are changing from one sample to the other according to the source of the problem. The 

hypothesis that a p-value of less than 0.90 and an RMSE value of greater than 0.1% 

indicated an existing problem was applied. The RMSE values from data and fitted curve 

were calculated as pixel counts from the residual calculation. In order to eliminate the 

size of image effect on the RMSE value, the residuals in pixel counts number was 

divided by the total count of pixels and then converted into a percentage. This method 

was evaluated based on testing the methodology on various types of images, and the 

results are presented on section ‎4.9.1.3.     

Figure 4.18: Flowchart describing the methodology of Gaussian best fit and image histograms  
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4.8.3 Image pre-processing     

After frames were extracted and geotagged using interpolated GPS position logs 

and statistically evaluated for problem existence, the next step was image pre-processing. 

This process involved a number of operations in order to remove shadows, enhance the 

image, mitigate noise, and remove unwanted objects, was will be explained in the 

following sections.  

4.8.3.1 Shadow detection and removal  

 The first step in the pre-processing stage is to examine the video frame or still 

image for shadow existence. This step was important because the author utilized natural 

lighting for image collection, as this was considerd to be a cost effictive process 

compared with LRIS. The process of shadow detection and removal was applied through 

two main steps. In the first step, the image or frame was subjected to a process of 

examination for shadow existence that could be achieved via K-mean clustering 

algorithm. This process was conducted using the K-mean clustering algorithm with pre-

defined detection groups of ten colour space objects. Then, the correct number of clusters 

is defined using Silhouette tool, for more information refer to (Matlab, 2014c). The 

procedures of all steps are described in the flow chart presented as figure 4.19.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19: Flow chart shows the use of K-mean clustering for shadow detection 
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After the frame was tested for shadow existence, the next step was to remove the 

effect of the shadow in order for the segmentation process to be as correct as possible. 

For shadow removal, the work by  Blajovici et al. (2011)  was adapted. The central idea 

of their work was based on statistical analysis of the intensities of images converted to 

colour space objects. This algorithm has been successfully tested on many applications 

such as segmentation, object detection, stereo, and tracking, and the authors provide lots 

of examples at http://www.inf.u-szeged.hu/projectdirs/ssip2011/teamF/. A binary 

shadow core mask is prepared as part of algorithm procedures which could be used as a 

reference for mis-interpretations removal.   

The outputs from the shadow removal algorithm are free shadow image and 

shadow core mask which were both used as input for the author’s developed crack 

detection algorithm, see figure 4.20. The free shadow image is directly used as input for 

the algorithm, and the whole process of crack detection is running on this image. The 

shadow core mask represents the output from statistics of intensities. It is modified 

before it can be used successfully for removal of outliers in the final stage of crack 

detection. The shadow core mask can then undergo two further processes in order to be 

successfully used for mis-interpretations removal. The first step in preparing the mask 

removal includes filling the holes. In the second step, small objects such as crack pixels 

which treated as a shadow mask are removed, as these removed crack objects have equal 

intensities to the shadow but have much smaller sizes.   

     

  

Original Image Free Shadow Image 

Shadow Core Mask Remove of fake shadow  

Figure 4.20: Results from Shadow removal algorithm and post processed shadow core mask 

Crack pixels treated as 

shadow 
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4.8.3.2 Morphological erosion and image filtration 

It was shown in the previous section how a frame or image can be examined for 

shadow existence and removal. In this stage, the image undergoes two operations in 

order to enhance the image and strengthen the crack signal. In the first operation, the 

grey scale image is applied with the structure element in order to remove paints or 

markers on the road surface. This procedure is called morphological erosion and it is 

used to remove the effect of bright pixels, such as the painting on the street. The mark on 

the street is considered as a foreground pixel because the intensity of these markers is 

always bright. The structuring element used with this process is highly dependent on the 

size of the mark. A disk shape with the size of (0.12%)
2
 pixels from the image size was 

found to be appropriate for reducing the effect of the marking with different sizes. Refer 

to appendix C  for more details about the effect of using different structuring element 

size. After erosion, the image is reconstructed using the original grey scale image as a 

mask and the result of these two steps is shown in figure 4.21.  

 

 

 

 

 

After reconstruction of the eroded image, a further pre-processing operation, 

which is image filtrating, was applied in order to smooth the image. The purpose of 

filtration is to enhance and remove any noise in the original image before trying to locate 

and detect the edges. For this purpose, the image filtering can be computed using a well-

studied simple multidimensional linear mask or filter (H). From different trials, the size 

of a 7*7 filter mask was found to be in a midpoint between both sensitive and non-

sensitive edge percentage, figure 4.22.  

The mask of filter (H) is usually much smaller than the actual image size. As a 

result, the mask window is shifted over the image, amending a square of pixels at each 

pixel location. Therefore, the larger the size of the mask or filter, the lesser is the 

Figure 4.21: Original image (left), eroded and reconstructed image (right)  
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detector's sensitivity to noise, (figure 4.22 shows the effect of size and smoothing on 

edge detection percentage for the image shown in figure 4.21). As can be seen from 

figure 4.22, the edge rate calculated from the total area dramatically decreases with the 

size of the mask.  

 

   

 

 

  

 

 

 

 

Due to the availability of various types of roughness of textures in the real world, 

five filters with the same size window (7*7) were designed, from very smooth to very 

rough. It can be noticed from figure 4.23 that the sensitivity increases with the increasing 

roughness of texture. The manipulation of pixels for a very smooth texture is slight but 

increases when increasing the roughness of the texture. After defining different filters, it 

was necessary to test the image for roughness. This was important to decide which filter 

is to be used for each tested image.     
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Figure 4.23: Designed filters for different texture roughness 

Figure 4.22: Percentage of detected edges (cracks and non-cracks) vs size of the mask 

for a sample of image showed in figure  
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4.8.3.3 Modelling the roughness of the texture using 2D image analysis  

    The image filtration process is mainly based on the type of texture and 

roughness degree as explained in the previous section. A method was developed for 

modelling the roughness of the texture. This method, which can be named as Objects 

Repetition (OR) included subjecting the original image to different operations in order to 

calculate the number of all objects, see figure 4.24. This process can be summarized as 

follows:   

a- Range filtering operation on the original image. Range filtering operation is 

carried out on a 3-by-3 neighbourhood around the corresponding pixel in the 

input image in order to work out the range (maximum value - minimum value) 

as the output pixel. The range filtering is usually used to identify raised up 

aggregates and texture features in the image texture samples. 

b-  Edge operation on the range filtered image. The Canny edge process is 

utilised in order to locate the edges of possible objects on the texture such as 

small features and raised up aggregates.    

c- Morphological operation for object geometry definition. This action includes 

closing the edges and isolating the closed objects for area calculation.  

d-  Calculating the number of total objects with various sizes using the prop 

region tool used extensively in Matlab. 

 

 

 

 

 

 

  

Figure 4.24: Texture modelling based on small object repetition  
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4.8.4 Image processing or segmentation (edge detection)     

After smoothing the image and eliminating the noise using the designed filter 

(depending on the texture type), the next process was to identify and locate sharp 

discontinuities in images or calculate significant changes in image intensities. Edges are 

typically occurring on the boundary between two different regions such as a crack object 

and the background texture. For the purpose of edge detection, there are some available 

algorithms such as Canny, Roberts, Laplacian of Gaussian (LoG), Sobel, and Prewitt 

edge detection (MathWorks, 2014). 

In order to test the best edge detection operator for the road pavement surface, 

trials were carried out on different images, table 4.4. The optimal detector must minimize 

the probability of false-positives (detecting non-crack edges caused by noise), as well as 

that of false-negatives (missing real cracks). The results were all carried out using the 

default threshold values without any changes, which is useful for automating the process 

without human intervention.   

Table 4.4: Results of Crack and non-Crack Edges 

Operator False-Positive % False-Negative % Crack Detected 

Canny 7.887 0.0334 0.2652 

LoG 8.0788 0.0356 0.263 

Roberts 6.5632 0.0211 0.2775 

Prewitt 6.6749 0.0234 0.2752 

Sobel 5.8304 0.0225 0.2761 

Each of these algorithms was tested with different image types and different 

texture sizes. The results shown in table 4.4 are the mean results of the different images 

presented in appendix D. It can be noticed that Sobel, Prewitt and Roberts detected about 

the same number of crack features, whereas, Canny and LoG detected slightly less crack 

features. LoG is more sensitive to noise as it differentiates twice, and that is apparent 

from the slightly higher percentage of false positives. The lowest false-positive rate was 

for Roberts, and the second lowest was for Sobel. However, the false-negative 

percentage of Sobel is more than that for Roberts. Therefore, the Roberts edge operator 

was selected and decided to be used in this project. As long as the crack candidate was 

detected, the next stage is to connect the crack objects and remove any non-crack 

objects, which was achieved by developing a Matlab subroutine as explained in the next 

section.  
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4.8.5 Image post-processing     

The post-processing consists of connecting disconnected crack objects, and false-

positive crack eliminating process and real crack measurement. For the connection stage, 

the required processes are as follows: 

1- The end points or extremes of crack and non-crack objects are defined. 

2- The minimum average cost path intensity between the nearest points is 

calculated and then compared with the mean value of the two connecting objects, 

figure 4.25, (for details about minimum average cost path intensity, refer to 

appendix E). If the average cost path intensity was equal to or less than the 

average intensity value of the two connected areas the connection path was treated 

as a single crack, otherwise it was treated as disconnected cracks.    

 

 

 

 

 

 

 

In the false-positive crack eliminating stage, some statistic characteristics such as 

length, area, numbers of pixels, orientation were calculated for every connective area. 

Connective areas with fewer pixels were treated as fake-crack objects and were 

eliminated. After that, the crack objects underwent the operation of removal of crack 

objects due to shadow and other unusual things such as manhole cover objects; the latter 

having intensity of more than crack intensity. In shadow false removal, the output 

shadow mask from shadow removal algorithm (which is described in section ‎4.8.3.1) 

was used. The final result is obtained with only real cracks left and a small percentage of 

false-positives. More details about the results of false-positive and real cracks are 

available in the results and analysis section 4.9.        

Figure 4.25: Sample of disconnected objects and the minimum path 
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4.9 Results and analysis  

This section shows the results from the author’s developed crack detection 

algorithms and their operations used in each step. The sections are outlined as follows: 

first start with presenting the results from each algorithm step then followed by the 

results of crack detection from various image sources and finally presenting the results 

from video extracted frames.   

4.9.1 The Author’s Developed Crack detection algorithm results 

evaluation  

4.9.1.1 Motion estimation for frame extraction  

As previously explained, the aim of a motion estimation algorithm is to extract the 

frames that share about 20% with the next successive frame, which is achieved by 

defining the distance shift in pixels. The objective was to reduce the number of frames 

dramatically in order to save processing time. The developed method was described in 

section ‎4.8.1.1. In the current section, the results from a set of video frames will be 

presented.   

As discussed previously in section ‎4.3, the Canon 5D camera was mounted on the 

top of NGI’s van for the purpose of road surface data collection. Sufficient data were 

collected for the road surface using the video mode. The total numbers of frames were 

presented on table 4.1. The aim of motion estimation was to reduce the total number of 

frames by only including the frames that share the required area with successive frames 

which achieved as can be seen from figure 4.26.   

 

  

Figure 4.26: Motion estimation between samples of frames (1494 to 1501) 
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 Figure 4.26 shows a sample of frames for the video file named (MVI_4517). As 

can be seen, the results of each frame with the next successive frames are calculated 

using the transformation matrix. From this matrix, the scale and rotation between two 

frames can be recovered. The distance of the shift that matches with the criteria is 

between frames1494 and 1501. Therefore, all frames in between are excluded as they are 

effectively repeating the same scene. After a frame was selected, it will again be 

compared with the next following frames to include the required frame and exclude 

others and so on, figure 4.27.  

 

The video file MVI_4517 was processed and the number of frames are reduced 

dramatically from a total of 8760 frames to only 1271 frames (the data reduces by about 

85 %). The frames extracted and excluded were from the starting of the path; traffic 

lights control zone, priorities for other cars, and at the end of the road when the car had 

fully stopped. For example on the start of video file MVI_4517, a total of 840 frames 

were excluded because the car had not yet moved. Another example was when the car 

was fully stopped in a traffic control zone, wherein a total of 1050 frames was excluded. 

All included frames from the used video file were visually checked to see if any errors 

occurred and only two out of 1271 frames were found to be erroneously included that 

due to wrong matching or mismatching. During the processing of different video files, 

some problems occurred, when the algorithm was not working efficiently. For example, 

when there was a sharp turn of the van (and the camera), the recovered scale is equal to 

zero because frames are sharing limited area, figure 4.28. To overcome this problem, the 

distance shift for this case was decreased to 500 pixels instead of 800 pixels.         

Figure 4.27: Motion estimation between samples of frames (1501 to 1507)  
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The results from processing of all the video files showed the success of the 

developed methodology for motion estimation, based on SURF matching algorithm. All 

the results were checked visually to identify any erroneously included frames (which 

were not found). The percentage of the included extracted frames differed from one 

video file to the other. The percentage difference was dependent on whether the car had 

fully stopped due to traffic. Table 4.5 shows the results of excluded and included frames 

from each video file used in this study. 

Table 4.5: Number of included and exlcuded frames using motion estimation  

Video Files Total number 

of frames 

Included 

frames 

Excluded 

frames 

Percentage  

Excluded 

MVI_4512 15280 3612 11668 76% 

MVI_4513 3360 697 2663 79% 

MVI_4514 23910 4585 19325 80% 

MVI_4517 8760 1271 7489 85% 

MVI_4522 19783 3198 16585 83% 

MVI_4523 27029 4794 22235 82% 

MVI_4539 19800 3211 16589 83% 

MVI_4540 20700 3912 15740 85% 

MVI_4541 9000 1526 7474 83% 

MVI_4542 14340 1799 12541 87% 

MVI_4543 9031 1109 7922 87% 

 

As can be noticed from table 4.5, the percentage of excluded frames in some cases 

is 87%, as the stopping time is bigger than other cases. After repeated frames were 

excluded, the next stage was to present geotag results of the image frames by using the 

GPS log path in order to relate the position (Latitude and Longitude) to each particular 

frame.     

Figure 4.28: Frames sharing area at sharp turn locations.   
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4.9.1.2 Results of frames Geotagging  

The methodology of geotagging the GPS position to single frame images can be 

performed using available ‘free tools ‘ such as Geosetter, ExifTool, and PhotoME 

(Duttke, 2009; Schmidt, 2011; Harvey, 2013). However, geotagging the extracted video 

frames is not available in these tagging tools due to the fact that they are working based 

on time synchronisation between the GPS log and the time the image was captured. All 

ExifTool editor tools only read the seconds but not the fraction of the seconds required 

for videos. Therefore, a method was designed and described in section ‎4.8.1.2 in order to 

assign the position of the GPS log to the extracted frames. This has been tested on all 

video files mentioned in section ‎4.5, table 4.1. All road junction points were analysed 

and presented, as it was difficult to present all the data frames, see figure 4.29. The 

images of junction points were all projected into Google Earth, and the position of image 

centre was compared to the image centre of the junction point and the differences were 

reported. Figure 4.30 shows all junction points projected to Google Earth with the 

difference in metres for video file MVI_4512. For all other video file results and their 

graphical presentation, please refer to appendix F. All the errors from junction points 

were reported and presented in table 4.6.  

Figure 4.29: Road junction points used to check the accuracy of Geotagging   
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Figure 4.30: MVI-4512 video turn points frame and geo-tagging differences 
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Table 4.6: Accuracy of GPS frames at turning points  

Turn 

Points 

Video Files (Difference of frame position with Google Earth in meters)  

MVI_4512 MVI_4514 MVI_4522 MVI_4539 MVI_4541 
MVI_4543 

MVI_4513 MVI_4517 MVI_4523 MVI_4540 MVI_4542 

Out In Out In Out In Out In Out In Out In 

A ----- ----- 9.92 10.20 ----- ----- ----- ----- ----- ----- ----- ----- 

B ----- ----- ----- 12.34 ----- 4.38 ----- ----- ----- ----- ----- ----- 

C ----- ----- ----- ----- 3.85 3.75 ----- ----- ----- ----- ----- ----- 

D ----- ----- ----- ----- ----- 24.29 3.08 4.79 5.78 3.48 ----- ----- 

E ----- ----- ----- ----- ----- ----- ----- ----- ----- 1.79 ----- ----- 

F ----- ----- ----- ----- ----- ----- ----- ----- ----- 2.40 ----- ----- 

G ----- ----- ----- ----- ----- ----- ----- ----- 4.87 ----- ----- ----- 

H ----- ----- ----- ----- ----- ----- ----- ----- 5.77 ----- ----- ----- 

I ----- ----- ----- ----- ----- ----- ----- ----- ----- 2.18 ----- ----- 

J ----- ----- ----- ----- ----- ----- ----- ----- ----- 15.32 ----- ----- 

K ----- ----- ----- ----- ----- ----- ----- ----- ----- 4.21 ----- ----- 

L ----- ----- ----- ----- ----- ----- ----- ----- 2.65 ----- ----- ----- 

M ----- ----- ----- 5.66 ----- ----- ----- ----- ----- ----- ----- ----- 

N 3.44 ----- ----- 3.56 8.14 5.22 4.39 3.46 ----- ----- ----- ----- 

O 
3.37 5.61 4.74 

----- ----- 9.12 8.09 ----- ----- ----- 11.31 2.82 
7.71 ----- 3.27 

P ----- ----- ----- 
5.13 

1.83 ----- ----- ----- ----- ----- ----- ----- 
4.58 

Q ----- ----- 
4.97 

----- 3.11 ----- ----- ----- ----- ----- ----- ----- 
4.13 

R ----- ----- ----- ----- 1.16 1.93 ----- ----- ----- ----- ----- ----- 

S ----- ----- ----- 11.56 ----- ----- ----- ----- ----- ----- ----- ----- 

T 5.30 4.53 ----- 3.37 ----- ----- ----- ----- ----- ----- ----- ----- 

U ----- ----- ----- 11.03 ----- ----- ----- ----- ----- ----- ----- ----- 

V ----- ----- 4.95 ----- ----- ----- 2.87 8.63 ----- ----- ----- ----- 

W ----- ----- 5.72 ----- 7.83 ----- ----- ----- ----- ----- ----- ----- 

X ----- ----- ----- 1.86  ----- ----- ----- 4.00 ----- ----- ----- 

Y 1.34 ----- ----- 10.57 4.62 ----- ----- ----- ----- ----- ----- ----- 

Z 1.62 ----- 6.96 ----- ----- 5.04 ----- ----- ----- ----- ----- ----- 

AB  -----  ----- ----- 7.00 ----- ----- 22.15 ----- ----- ----- 

AC ----- ----- ----- ----- ----- 2.21 ----- ----- 25.83 ----- ----- ----- 

AD ----- ----- ----- ----- ----- 5.46 ----- ----- ----- ----- ----- ----- 

AE ----- ----- ----- ----- 3.09 ----- ----- ----- ----- ----- ----- ----- 

AF ----- ----- ----- ----- ----- 8.56 ----- ----- ----- ----- ----- ----- 

AG ----- ----- ----- ----- 3.58 ----- ----- ----- ----- ----- ----- ----- 

AH ----- ----- ----- ----- 9.75 ----- ----- ----- ----- ----- ----- ----- 

AI ----- ----- ----- ----- ----- ----- 5.16 4.47 ----- ----- ----- ----- 

AJ ----- ----- ----- ----- ----- ----- 2.79 2.54 ----- ----- ----- ----- 

AK ----- ----- ----- ----- ----- ----- 2.98 2.77 ----- ----- ----- ----- 

AL ----- ----- ----- ----- ----- ----- ----- ----- 21.20 ----- ----- ----- 

AM ----- ----- ----- ----- ----- ----- ----- ----- 19.61 ----- ----- ----- 

 

Out: from Local to Main Street (Double lines) 

In: from Main to Local (one line)  
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Table 4.6 shows that the largest error recorded was about 26 m for junction point 

AC for video file MVI_4541.  In total, 72 out of 78 positions were less than the claimed 

positional error of 15 m, and the RMSE percentage was about 92% which is 3% percent 

less than the claimed RMSE percentage. These differences might be due to the fact that 

the author was not aiming at measuring the absolute error of position rather than 

depending on Google Earth. Although the claimed accuracy of hand-held GPS 

standalone single-frequency code positioning is less than 15 m; however, errors of as big 

as 26 m were reported which might be attributed to one of the following reasons:  

- The urban environment which can obstruct some satellites and full geometry 

cannot be seen.  

- Multipath errors  

- The errors with reference to Google map which might also contribute some 

sources of errors. 

- The shift between the synchronized times of GPS and camera.  

- For start points only, when the GPS receiver has not found enough satellites yet, 

which can be overcame by waiting as long as possible to allow the GPS to log all 

available satellites. Figure 4.31 shows the drift of the GPS path due to the starting 

of the GPS receiver.    

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.31: Drift of GPS path due to the start of the GPS receiver 

Drift of GPS path  
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4.9.1.3 Statistical testing for problems identification   

After the frames were geotagged in the previous step, all frames were subjected to 

a further process in order to identify whether they have any distresses or objects (such as 

paints on road, cracks, potholes, and manhole covers) in the image. This operation aimed 

to roughly identify the existence of problems through the use of histogram curve fitting 

for residuals calculation (Gaussian fitted curve). The method includes the statistical 

testing for identification of the problems (see section ‎4.8.2 for more details). The idea of 

this methodology was based on identifying the texture differences between any sources 

of problems and the image background. 

This method was tested and applied on a group of images (extracted from 

published papers, downloaded from the web, taken with Nikon D100 camera, form the 

LRIS system) as shown in figure 4.32 and the results of statistical testing presented on 

table 4.7.  As can be noticed from the table, the p-value of most images was equal to or 

less than 0.9, and %RMSE was greater than 0.1% which indicated that the image has a 

problem existence and will be passed to the next stage for further analysis. Hence, 

considering that only 6 images were selected erroneously, the correct rate of problem 

identification was found to be about 87% for this group of images. Out of 45 images 

tested, the resulted identification showed that 6 were selected erroneously as problem 

free, 6 selected correctly as problem free, 33 were selected with existing problems, while 

none were erroneously selected with problem existence.       
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Figure 4.32: Sample of images for testing statistically the problem identification 
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Table 4.7: Results of statistical testing of comparing data and fitted curve 

ImageID % RMSE RMSE R^2 P-value 

Adaptive-2011 0.036397 126.7836 0.99611 0.85536 
Adaptive(2011)1 0.13221 725.9363 0.85162 0.36695 
Adaptive(2011)2 0.092415 856.759 0.97061 0.57252 

Aligator1 0.07381 706.8004 0.96412 0.43955 
Aligator2 0.10147 1948.283 0.92805 0.31417 
Aligator3 0.14838 169.1512 0.93748 0.40179 
Aligator4 0.12382 62.2133 0.97505 0.87198 

Aligator5_H 0.082767 211.4274 0.97929 0.52315 
Aligator6 0.15731 253.9392 0.93635 0.16733 
Aligator7 0.095692 1202.608 0.96273 0.39646 

Cra01 0.52097 2700.712 0.26836 0.0152 
Cra02 0.5229 2710.694 0.23343 0.00125 

 Cra03 0.41117 2131.494 0.4121 0.24549 
Cra04 0.32791 1699.871 0.53886 0.27893 
Cra05 0.28537 1481.423 0.6115 0.29455 
Cra06 0.29923 1553.341 0.58983 0.32615 
Cra07 0.33115 1719.089 0.53113 0.33001 
Cra08 0.1915 994.0931 0.81 0.39893 
Cra09 0.22158 1150.286 0.77373 0.3924 
Cra10 0.54431 2825.596 -0.07836 0.0024 
Crack2 0.11984 150.0408 0.96358 0.51287 
Crack3 0.069422 1037.161 0.96453 0.56024 

Crack4C 0.053929 74.8436 0.99346 0.76868 
CrackTree(1) 0.15083 190.9381 0.97388 0.64024 

CrackTree 0.14046 848.8861 0.87094 0.81846 
Detection-2008 0.10889 559.8046 0.86161 0.26949 

I3 0.063072 3100.109 0.99228 0.90658 
I4 0.049009 2408.904 0.9968 0.96481 
I5 0.1146 5141.094 0.98557 0.9742 

IMG1 0.18009 3407.844 0.92353 0.1669 
IMG10 0.029733 562.625 0.99857 0.97755 
IMG11 0.10826 2048.522 0.97516 0.94857 
IMG12 0.086479 1636.399 0.98297 0.97998 
IMG13 0.033703 637.7458 0.99807 0.9198 
IMG2 0.034275 882.7292 0.99838 0.94354 
IMG3 0.16913 4355.956 0.93387 0.29671 
IMG4 0.041826 791.4465 0.99777 0.90116 
IMG5 0.023359 442.0196 0.9986 0.97498 
IMG7 0.18685 3535.707 0.93095 0.40946 
IMG8 0.12331 2333.343 0.96695 0.86645 
IMG9 0.065359 1236.755 0.99068 0.8759 
crack1 0.020142 68.0405 0.9989 0.98259 
crack4 0.051228 71.0948 0.99379 0.76825 
crack5 0.09213 70.7555 0.98136 0.33878 
crack6 0.15062 116.1585 0.97697 0.67507 
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As stated previously, from testing the above group of images, it is clear that the 

method has a success rate of about 87% in identifying the existing problem images. So, it 

was applied on all the included the frames from motion estimation for frame exclusion 

stage, refer to table 4.5. The results of this operation (Gaussian fitted curve with 

statistical t-testing) proved that it was possible to identify frames with existing problems 

with success rate of about 73% to 87%, see table 4.8. This method was ‘not so 

successful’ in very dark intensities, very bright intensities, ravelling texture, with 

blended cracks on the rough texture or when the crack was very thin. It was also found 

that most of potholes that do not show texture differences from the background were not 

identified as existing problems by this method. However, the method of problem 

identification was significantly useful in reducing the processing time and proved to be 

time saving by more than 73%.         

Table 4.8: Results of problem identification for video files  

Video File ID  True False ~ % of correct identification 

MVI_4512 
Problem Free 1228 270 

78% 
Problem Exist 1589 573 

MVI_4513 
Problem Free 184 23 

85% 
Problem Exist 411 81 

MVI_4514 
Problem Free 1185 356 

80% 
Problem Exist 863 183 

MVI_4517 
Problem Free 656 145 

78% 
Problem Exist 368 138 

MVI_4522 
Problem Free 1379 323 

84% 
Problem Exist 1310 187 

MVI_4523 
Problem Free 3735 687 

82% 
Problem Exist 1198 173 

MVI_4539 
Problem Free 1736 404 

83% 
Problem Exist 926 154 

MVI_4540 
Problem Free 2878 502 

84% 
Problem Exist 430 94 

MVI_4541 
Problem Free 1109 179 

87% 
Problem Exist 426 63 

MVI_4542 
Problem Free 1151 258 

83% 
Problem Exist 538 71 

MVI_4543 
Problem Free 54 21 

73% 
Problem Exist 763 271 
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4.9.1.4 Testing road roughness modelling using images   

As previously discussed in the procedures section, the principle of crack detection 

is based on image filtering. Therefore, it was necessary to design a proper filter based on 

the texture roughness of the tested image, see section ‎4.8.3.3. The method of object 

repetition was examined in a number of known texture depth images previously used in 

chapter 3 of this project. Ten texture samples from different areas around the Jubilee 

campus were investigated for roughness measurement using the author’s developed 

method. From these, 120 images at different ranges were obtained, which could be 

divided into five groups based on the degree of roughness (very smooth to very rough), 

(see section ‎3.5 and figure 3.4 for a sample of these images) and were used later to 

measure the success rate of the proposed method of object repetition.    

The object repetition method was investigated using the images collected for 

roughness measurement (Test01 to Test10), see section ‎3.5 and figure 4.4. For each test, 

twelve images at different ranges (20 to 130 cm) were obtained with the camera 

perpendicular to the road surface texture. The texture depth was calculated previously for 

this set of tests, see section ‎3.8. The camera used for this data collection was the Nikon 

D200 with its optical axis perpendicular to the texture. Images at various ranges (20-130 

cm) were captured and cropped to be of a 20 cm range, see figure 4.33. Cropping images 

of different ranges makes the investigation more reliable and comparable, as there are 

more objects observed as the area increases which will make the results less dependable.  

 

 

 

 

 

 

 

  
         Figure 4.33: Sample at range 130cm cropped to be same size of 20cm (Test01) 

Image at 20 cm range  

Image at 130 cm range  

Cropping only interested area for comparison 

between different ranges =20cm covering area  
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        The method of object repetition was run on the total of 120 images (test01 to test10), 

and the results are presented on figure 4.34.  The figure shows the relationship between 

the degree of roughness or texture depth and the number of repeated objects. The 

maximum number of repeated objects was recorded for the smoothest texture or the 

minimum depth test (test03, 511 µm). Also, the minimum number of objects was recorded 

for roughest texture or the maximum texture depth (test05, 3724 µm), see section ‎3.8.3.1 

for more details about the calculated texture depth.  

 

 

 

 

 

 

 

 

 

 

As figure 4.34 shows, the object repetition method proved that it is dependent on 

the distance or range of the camera. All samples showed that object repetition decreases 

as the camera range increases. The decrease in the object repetition is due to the fact that 

the pixel size on the ground decreases as the camera becomes further from the surface 

texture. It is worth to mention that object repetition for all texture samples at different 

ranges was calibrated to the correct pixel size on the ground. For example, using the 

Nikon D200 over 20cm can produce a GSD of about 0.044mm, refer to table 4.8. So, any 

value of object repetition at a different range for all samples was corrected to be 

compatible with the sample on the ground, in order for the investigation and comparison 

of different textures to be more reliable.  

Figure 4.34: Results of object repetition vs measured depth at different ranges   

Texture depths 

calculated using SPT  
3724 

3205 

2160 

1974 

1729 

1052 

978 

673 

581 

511 

1000

10000

20 30 40 50 60 70 80 90 100 110 120 130

R
e

p
e

at
e

d
 O

b
je

ct
s 

(n
u

m
b

e
rs

) 

Range (cm) 

Test05

Test04

Test06

Test10

Test02

Test07

Test01

Test09

Test08

Test03



                   Chapter Four: A developed method of crack detection on rough texture  

200 

 

As figure 4.34 shows, there is some degree of correlation between object repetition 

and texture depth. However, some tests (test09 and test06) showed that the results from 

object repetition are not correlated with texture depth. To find out how much correlation 

existed between both methods a linear correlation was drawn for all tests between texture 

depths and objects repetition at various ranges (20-130) cm and some samples are 

presented in figure 4.35. 
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Figure 4.35: Samples of linear correlation between objects repetition and texture depth  
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As shown in figure 4.35, the minimum correlation was found to be 0.66 which was 

recorded for the range 100cm while the maximum correlation was found to be 0.77 

which was recorded for the range 50cm. The average correlation from different ranges 

and samples was found to be about 0.67. The average correlation showed that there is 

some evidence of a relationship between texture depth and object repetition As an 

example, figure 4.34 shows that by using SPT method for calculated depth, texture 

roughness was highest for test05, then 04 followed by 06. However, by using the 

repeated object method, the order of texture roughness changed into test 05, 06 then 04 

(highest to lowest). This exaggeration of roughness on test 06 might be due to the nature 

of the feature and aggregate distribution as can be noticed from figure 4.36.   

 

 

Although, texture depth on test 04 was more than that on test 06, the repetition of 

objects on test 04 were more than test 06 as can be noticed from figure 4.34. The raised 

of aggregates on the surface occupy more space of image in case of test 06 than that of 

test04. It is true that no significant correlation was found between the object repetition 

and texture depth, but object repetition gives a good indication of how smooth or rough 

the texture is in order to apply the proper filter. The rough texture needs more 

manipulation than the smooth texture in order to minimize the effect of the raised 

aggregate edges. 

      

 

Figure 4.36: Sample of texture (test04 left and test06 right) 
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4.9.2 Testing various sources of images   

In order to investigate the success rate of the author’s developed crack detection 

algorithm, different sources of images (web net, extracted from published papers, low 

resolution, shadow existence, LRIS and collected from the real world) were examined. 

The aim of this section is to provide the outcome of testing the algorithm on each of the 

particular samples. As previously discussed in section ‎4.3, images were prepared from 

different sources. A total of ten images were used for investigating the success rate of the 

proposed algorithm, figure 4.37 shows the images with different lighting condition, 

roughness, texture’s type and crack extent being available in this collection.  

 

 

 

 

 

 

 

 

For figure 4.37, image sets 1(1L and 1R) and 02 (2L and 2R) were extracted from 

published papers (Sy et al., 2008; Zou et al., 2012), respectively. Both sets were 

extracted with low resolution and shadow problem existence.  The first set was 

considered to be a high texture which can easily hide cracks and the second one is where 

shadows exist in the images.   The third set (3L and 3R) of images were extracted with 

low resolution from a laser imaging systems available at the website of Pavemetrics 

(2012). The real pixel resolution was 4000 but reduced to 720 pixels due to extraction 

from video file. The fourth set (4L and 4R) was downloaded from Google images (Wolf, 

2014) and contained two images, one has marker existence and the other has acquired 

obliquely. The last set of images (5L and 5R) was collected from a real road surface data 

and captured using the Nikon D100 camera.      

Figure 4.37: Collection of images for evaluation of crack detection algorithm  
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All samples were processed using the pre-processing and processing stages 

mentioned in section ‎4.8. In order to examine the effects of filtering on the texture, all 

five filtering techniques presented in figure 4.23 were applied; see figure 4.38 for a 

sample of pre-processing and processing stage results. As figure 4.38 shows, the effect of 

correct filtering is apparent, as bounded by green boxes. This figure shows how crack 

pixel candidates and false-positives change with the filtering technique. As an example, 

the results on the 3R image showed that the correct filter can even detect the thinner 

crack which is not possible when using different filters. Other examples are in the case of 

2L and 3R where nothing was detected when using very rough texture filtration. 

However, detection of cracks failed in shadow cases even if the correct filter was chosen, 

as in case 2L.       

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.38: Samples of images after pre-processing and processing stages with applying the 

five filtrations (very rough left to very smooth right), green boxes are correct filters 
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In the previous paragraph, it was shown how proper filtration can improve the 

crack detection and reduce noise. The improvement is not only due to image filtration 

but due to other image enhancement processes applied in the author’s developed crack 

detection algorithm before running the edge operation (which was discussed in section 

‎4.8.3). All samples shown in figure 4.38 were processed again but this time without the 

pre-processing stage in order to see the effect of image enhancement and pre-the 

processing stage. Results from this trial showed that the pre-processing stage is very 

important in identifying and strengthening the crack signal and reducing the noise as can 

be seen from figure 4.39 by comparing it with figure 4.38.  As figure 4.39 shows, no 

signs of cracks are visible on the images and all the samples are noisy. These results 

prove the importance of applying a pre-processing step on the images before running the 

edge operation, which leads to much improvement in identifying cracks and reducing the 

noise.  

  
Figure 4.39: Image processing using only edge operation without pre-processing stage 
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After the pre-processing and processing stages, the final post-processing stages, it 

is required to connect crack objects utilizing the developed subroutine and removing the 

noise (refer to section ‎4.8.5 for more information). The success rate of the author’s 

developed crack detection algorithm is different from sample to sample depending on 

many parameters such as degree of roughness, texture type, image resolution, lighting 

condition and shadow existence. For example, it was not possible to detect the thin 

cracks on shadow areas due to difficulties of connecting the crack objects using the 

minimum path method. The path between the crack objects in most shadow cases is 

inaccessible as sample shown in figure 4.40. The success rate and rate of false-positive 

crack objects were calculated for the samples shown in figure 4.40. The success rate was 

calculated by comparing with the real crack measured from CAD tool as a reference and 

from the algorithm as a data value and presented as a percentage. The success and false-

positive rates were found to be 90.4% and 15.4% for the left image and 65.4% and 0% 

for the right image, respectively. 

         

  

2L  2R  

Figure 4.40: Crack detection in shadow existence samples  
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Although the 1L and 1R images were extracted from published papers with low 

resolution, the success rate of both samples was high, as can be noticed from figure 4.41. 

The success rate of crack detection was found to be 98.2% for the left image and 96.5% 

for the right image, and the false-positive rate was found to be 11.6% and 7.7% for left 

and right images, respectively. This high-success rate can be attributed to the crack 

features, like width and objects with low intensity. Thus, such crack objects can still be 

clearly visible despite the fact that the type of texture can easily hide the crack object. In 

addition, the low resolution imagery can add more detection challenges as it minimizes 

crack visibility.  

 

 

 

 

 

 

 

LRIS imagery samples were also examined for the success rate of the author’s 

developed crack detection algorithm. It is well known that LRIS can minimize the effects 

caused by variations in lighting conditions and shadows cast by roadside objects. 

Another important feature of LRIS is the increase in crack visibility through the 

formation of shadows in thin cracks by the incident illumination angle of the laser 

(Pavemetrics, 2012). The success rate of LRIS images 3L and 3R was found to be 88.4% 

and 58.7 % for left and right images, respectively, with a false-positive rate of 0% and 

3.1% for left and right images, respectively, see figure 4.42. As the figure shows, the 

success rate of the right image sample is low which is due to the fact that the crack was 

very thin, i.e. the author’s developed crack detection algorithm is not capable of 

detecting cracks that are less than three pixels width, as was the case in the 3R sample.  

With regards to set 4 of data, downloaded from Goggle images, the final post-

processing results showed that the correct crack rate was around 62% for the left image 

1R  1L  

Figure 4.41: Final results of crack detection on samples extracted from published papers 
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and 86% for the right image, figure 4.43. Although the left image was downloaded from 

the net with the resolution and more than three pixels width of crack all over the image, 

the dark texture of the background blended the crack which reduced the chance of 

detection to about 62%. The false-positive rate for both images was found to be 0%.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.42: Final results of crack detection for LRIS imaging samples 
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Figure 4.43: Final crack detection results on Google downloaded images  
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The final 5L and 5R of images were captured via a Nikon D100 camera and both 

images were captured using natural lighting condition for a real world pavement. The 

author’s developed crack detection algorithm was run on this set of images and the final 

results are presented on figure 4.44. The results from this set were different from all 

previous sets. It showed that the false-positive rate was higher than all other previous 

samples with about 48% for the left image and 55% for the right image. This high rate of 

false-positives in both images might be attributed to the raised aggregate in the surface 

texture which casted a shadow on the image. The correct detection rate on both images 

was found to be 92.7% and 98.9% for left and right images, respectively.    

 

 

 

 

 

 

 

The false and correct detection rates were different from one sample to the other. 

The detection of cracks and other false-positive objects depends on many parameters as 

the above examples showed. Degree of roughness, texture type, illumination condition, 

crack width, image resolution and crack intensity can all play an important role in the 

detection process. The average crack detection and false-positive rates for all samples 

were calculated and found to be 83.72 % and 14.08 %, respectively. These two average 

values can be used as limits for the author’s developed crack detection algorithm which 

is based on morphological tools to pre-process images and threshold limits using edge 

operation. The author’s developed crack detection algorithm also needs to be validated 

on video extracted frames which will be examined in the following section. 

5R  5L 

Figure 4.44: Crack detection results for rough and moderate texture image  
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4.9.3 Testing the author’s developed crack detection algorithm on 

video images captured from a mobile van  

The aim of this test was to investigate the possibility of using video images to 

analyse and detect cracks through a fully automated mode using the author’s developed 

crack detection algorithm. To achieve this aim, a Canon 5D camera was used for data 

collection along different paths which were shown in section ‎4.3 and figure 4.5. The 

camera was held vertically at about 2m height over the road surface through utilizing a 

designed wooden frame as discussed previously. The camera was in video mode and in 

shutter speed priority to avoid blurring.  

The car was moved with traffic speed, and the shutter was changed to test the 

possibility of blurring occurrence. According to Fricker and Pacey (2005), blurring does 

not occur if the pixel size on the ground is bigger than the translation due to the car 

movement or forward motion. They concluded that in order to overcome the effects of 

blurring, the time of exposure has to be shorter (or equal to the pixel size), the focal 

plane has to be moved mechanically, or a time delay integration solution has to be 

applied. Due to the difficulty of using the last two methods, the first one (exposure time) 

was utilized in acquiring video imagery with the fact of accepting the radiometric loss. If 

the shift and direction of blurring are well known, the image can be de-blurred utilizing 

different available methods, refer to Matlab (2014a) documentation for more information 

about the utilized algorithms and methods.  

A relationship was derived between the shutter speed and the traffic speed based 

on the pixel size and the height from the ground. At a 2 m height above the road surface, 

the pixel size on the ground is 0.458 mm which is more than the shift due to forward 

motion. Therefore, no blurring will occur even if the used shutter speed is 1/500, as can 

be noticed from figure 4.45. Visual inspection of video files at different traffic speeds 

and utilizing different shutter speeds showed that no blurring occurred.  However, when 

using a camera at a 1 m height, the pixel size on the ground becomes 0.229 mm, which is 

less than the shift due to forward motion, and in some occasions with lower shutter 

speeds blurring will occur according to the relationship shown in figure 4.46.  



                   Chapter Four: A developed method of crack detection on rough texture  

210 

 

 

Figure 4.45: Relationship between Shutter speed and Traffic speed (2m height)   

 

 

 

Quality images with high radiometric dynamism contrast are not possible to 

acquire using the video mode at high speed.  The lack of radiometry in the video images 

at high speed is probably due to the reduction of the exposure trying to avoid blurring. 

However, this can counterbalance the lack of incoming light that enters to CCD leading 

to radiometric loss. The aim from this section was to evaluate the author’s developed 

crack detection algorithm on video extracted frames. Video extracted frames were 

checked visually for the presence of cracks, and some examples were used for evaluation 

of the algorithm. The used examples are presented in figure 4.47. 
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Figure 4.47: Video extracted frames with crack detection results 
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Figure 4.47 includes a wide range of real world problem images that contain shadows, 

texture differences, different crack widths, illumination changes, manhole existence and paint 

existence. The author’s developed crack detection algorithm was tested on these samples of 

the extracted frames, and the results from each separate step (Roberts edge detection only, 

pre-processing, and post-processing) are shown in figure 4.47. As the figure shows, the pre-

processing stage can greatly reduce the marker or paint effects and maximizes the effect of 

crack objects. The results from all samples were noisy and without any trace of crack objects; 

however, when applying the Roberts edge operation tool, the improvements can be attributed 

to the utilized image analysis tools and image filtrations which were described in section 

‎4.8.3.  

   The correct and false-positive crack rates were calculated for each sample using a 

CAD tool. As it was previously stated in section ‎4.9.2, the correct and false crack rates were 

found to be different from one sample to the other, and depend on many parameters such as 

crack width, crack intensity values, shadow existence, texture type, and the degree roughness. 

The minimum correct rate was recorded for sample 9 which was found to be 44.5% followed 

by sample 12 which was found to be 48.6%. The lower correct rate in the sample 9 was 

recorded due to the existence of thin cracks which were not detected by the algorithm as 

figure  shows.  

 

 

   For any shadow detected image, the shadow removal algorithm mentioned in section 

‎4.8.3.1 was utilized. The outputs from the shadow algorithm were used as input for the crack 

detection algorithm. All shadow existence images were subjected to the operation of shadow 

removal, and the image free of shadow was used for crack detection. Due to the differences 

between the lit and the shadow area, the crack detection algorithm treats the connection area 

as crack candidates. In the post-processing stage, the shadow core mask was used to 

differentiate the false-positive from the border area (between the lit and shadow area). The 

shadow mask is undergoing the process of edge detection which will be used as a search area 

Figure 4.48: Undetectable cracks due to the width of crack (original image left and crack 

detection results on right, detectable are in green and undetectable on red) 

 



                               Chapter Four: A developed method for crack detection on rough texture   

213 

 

for false-positive detection and removal in the crack detection results. A square disk shape 

with 5*5 pixels will be used for searching any false-positive cracks and will be removed as 

figure 4.49 shows.   

. 

 

 

 

 

 

 

The maximum false positive rate was recorded for sample 6 which treated the manhole 

existence on the road as crack pixels, followed by sample 12 that applied a smooth instead of 

a rough filter. The false-positive rate was found to be 75.15%, and 65.9% for samples 6 and 

12, respectively. The false-positives were effectively reduced using some statistical properties 

of crack objects such as straightness of crack candidate and shadow detection algorithms to 

remove the effects of the shadow. The manhole cover effect was reduced through testing the 

intensity value as it is clear from figure 4.50. However, crack pixels from sample 6 were 

merged with manhole pixels which had not been removed by intensity values checking and 

were treated as false-positives.  

   

Figure 4.49: process of identifying the shadow and removing its effect on crack detection algorithm  

Search 

path  

Figure 4.50: Manhole cover false positives removed using value intensities   
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For all 12 samples of HD video frames tested, the average false-positive and success 

rates were calculated and found to be 38.9% and 68.15 %, respectively. The success rate of 

crack detection for video digital images was dropped if compared with the other image 

sources in previous test, which was about 83.72%, see section ‎4.9.2. The decrease in the 

success rate of the author’s developed crack detection algorithm can be attributed to the 

quality of digital image in case of video file. As mentioned before, the quality of image is 

dropping with video filming in order to avoid blurring, which can reduce the radiometry of the 

image. The other reason for this low success rate can also be attributed to utilizing real world 

images with various sources of problems such as shadow and manhole existence as well as 

different degrees of roughness. 

Finally, the tests showed that the HD video resolution is adequate for the purpose of 

crack identification. The success of the author’s developed crack detection algorithm might be 

further improved by utilizing different overlapped frames which can be used to merge the 

outcome from each frame. Utilizing different frames with different views might improve the 

detection rate of cracks. Figure 4.51 shows an example of crack from four different views. 

The four results were merged in a CAD tool and the results showed the possibility of 

increasing the crack detection rate by carefully calibrating images and applying appropriate 

transformation between frames which could be the basis of future research.   

 

 

 

 

 

 

 

 

 

 

Figure 4.51: Sample of extracted frames (shutter 1/1000 at about 35 km/hr) original images (red box), 

processing results (blue box) and result from four views merged in CAD tool (green box) 
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4.10  From Semi towards full automation of crack detection  

The main aim of chapter 4 was to build an automated system for crack detection at a 

reasonable price to be affordable by many local authorities, especially in developing 

countries. The overall cost of the system is in the range of £3000-4000. A Canon 5D camera 

with 28mm focal length was utilized for video image capturing of the road surface using a 

mobile van. The camera was chosen because enough GSD was possible over 2m, and also the 

user can control the exposure setting in video mode. It has been shown through different trials 

that the maximum possible speed that the system can reach without affecting the image 

quality (blurring) is 30 mph. 16GB of memory was used for data capturing which offers a 

continuous 4 hours of image storing at HD quality. The user can download the captured image 

directly to a PC utilizing the image acquisition toolbox from Matlab. This option can allow for 

performing image analysis on live-feed of images. 

It is worth mentioning that after data collection, the processing stage was started by 

analysing the images for detecting cracks. This process involved the use of an algorithm to 

deal with different analysis approaches. In crack detection, the semi-automatic approach was 

achieved and full automation would be under focus in near future. For example in crack 

detection, different procedures were developed for each stage of pre-processing, processing 

and post processing. Images with a crack existence were visually checked and the output from 

each process was used as an input for other. Clearly, it is possible to link all of these 

procedures through one main program interface to make the process fully automated.  

The main key stages in crack detection can be summarised as below, see figure 4.52: 

1- Image preparation phase, which involved two main stages  

a. Frame extraction, where images were extracted from video files using the 

author’s developed motion estimation algorithm which is based on feature 

matching.  

i. Input for this process: video files collected via a mobile van (a 

link is required if real time processing in the field, utilizing the 

image acquisition toolbox for downloading the captured image 

directly to a PC).  

ii. Output from this process: frames extracted with non-repeated 

scenes. 
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b. Frame Geotagging, where a GPS log is used to assign location to each 

extracted frame from the first stage.  

i. Input: Extracted frames from previous stage (a link is required to 

use 1.a.ii data).  

ii. Output: Geotagged frames (position assigned to each frame).     

2- Reduction of image percentage: this process involved the use of statistics to 

identify images with problem existence such as manholes, cracks, potholes, paint, 

etc. 

a. Input for this process: images from the first stage (alink is required to use 

1.b.ii data).  

b. Output from this process: images with problem existence. 

3- Shadow detection and removal, where images were tested for shadow existence and 

removal. 

a. Input to this process:  images from the second stage (a link is required to 

use 2.b data) 

b. Output from this process:  

i. Images with shadows removed.  

ii. A searchable shadow path (border between lit and shadow) for post 

processing stage. 

4- Image pre-processing stage, where images underwent a process of enhancement, 

noise minimization, minimizing the effect of marking paint and strengthening the 

crack signal.   

a. Input for this process, images from third stage (a link is required to use 

3.b.i data)   

b. Output from this process, enhanced images with noise minimizing and 

strengthening crack signal.   

5- Image processing stage which involved two procedures  

a. Image filtering, where  images underwent a process of filtering based on 

image roughness measurement 

i. Input for this step were images from fourth stage (a link is 

available for using 4.b data) 

ii. Output from this process was filtered image.  

b. Roberts edge operation, where image segmentation was used to detect 

crack candidates 
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i. Input for this step were filtered images (a link is available for 

using 5.a.i data) 

ii. Output from this process was crack candidates 

6- . Image post-processing stage, which involved the process of false crack detection 

and removal through the author’s developed crack connection algorithm (minimum 

path intensity) and removal of non-crack pixels. 

a. Input for this process were  

i. crack candidates from fifth step (a link is available for using 5.b.ii) 

ii. Searchable shadow path to remove false crack due to shadow effect 

(a link is required to use 3.b.ii data). 

b. Output from this process: detected crack pixels and the remaining non-

crack pixels.  

The term link refers to a subroutine that need to be designed in Matlab linking each step 

with a manual interface were required. It is possible in the future work to design a main 

program that can do all the procedures fully automatically without human intervention. It is 

worth mentioning that all codes and subroutines were designed using Matlab programme.  
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Figure 4.52: Main key stages in crack detection (toward fully automation)  
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4.11  Summary and Conclusions  

This chapter started with the definition of the crack detection problem and showed that 

the classic approach of crack identification through thresholding was not sufficient with rough 

texture. The thresholding method is not efficient due to the availability of quite a large amount 

of false-positives, even if the local weighted limits are utilized through making profiles. The 

necessity for developing an algorithm to deal with cracks in the rough texture was critical due 

to the non-availability of any open source or commercial software to deal with crack analysis, 

especially for the rough texture.   

It was also shown that it is possible to assemble low-cost tools of camera and cheap 

sensors for monitoring and detecting the cracks on the road surface. The results proved that by 

developing an algorithm, the cracks pixels could be detected and isolated from other image 

pixels. The author’s developed crack detection algorithm was developed using thresholding 

and morphological operation tools and through image filtration. The algorithm was developed 

based on the roughness measurement in order to smooth images depending on the degree of 

roughness. The algorithm for crack detection also considered the large amount of data and a 

subroutine was designed to deal with this challenge.   

Data handling was an important part of the algorithm development in this chapter. Due 

to the large amount of data and processing time for each particular frame, the author decided 

to handle this amount of data by only including the frames that share a certain percent (about 

20%) of the area between successive frames. This aim was achieved by developing an 

algorithm named as motion estimation. It was shown that the motion estimation can estimate 

the translation between two frames accurately through utilizing the SURF matching 

algorithm. Further time management was achieved through statistical testing.  

Due to the time consuming nature of running the algorithm, statistical testing was used 

to minimize the amount of frames and to include only the frames that have a real problem 

such as shadow, manhole, paint, cracks, and pothole existence. Statistical testing showed that 

is possible to identify the source of the problem through Gaussian normal distribution curve 

fitting to histograms. The results of this operation (Gaussian fitted curve with statistical t-

testing) proved that it was possible to roughly identify the video frames with problem 

existence, with an average success of about 81%.  
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 This chapter has also showed that video frame geotagging is possible through 

accurately calculating the starting time of the video camera trigger with regard to GPS time. 

Experiments showed that it was possible to locate the video frame 92% of the time with 

RMSE of less than 15m, which is 3% percent less than the claimed RMSE percentage. It is 

worth to mention that errors of as large as 26m were recorded in the current project but only 

8% of the data had an error of less than 26 m and more than 15m.  

  A method was developed to deal with roughness measurement using only a single 

image. The method called object repetition was developed using a mixture of image and 

texture analysis tools. The method was tested on a number of predefined texture depths which 

included a total of ten samples. Trials showed that the method of object repetition is 

dependent on GSD. The farther away the camera was, the smoother the look of the texture 

was. Tests proved that there was no significant correlation found between object repetition 

and texture depth. However, object repetition could be correlated with a better prediction of 

the roughness of the texture. As the roughness of the texture increased, the more manipulation 

of pixels was required in order to smooth the image.  

Tests of examining the success rate of the developed algorithm on different sources of 

images revealed that the success rate of crack detection reached up to 98.9% in one example 

of the image, but the lower rate was found to be about 58%. The average success rate of crack 

detection was found to be about 83% for all image samples. The reason behind recording 

different success rates was discussed for each particular sample and found to be dependent on 

many parameters, such as illumination changes, shadow existence, texture type, crack width 

and intensity limits. It was also shown that the author’s developed crack detection algorithm 

can sometimes erroneously identify non-crack pixels and treat them as crack candidates, with 

an average false-positive for all samples of about 14%. 

The success rate of the author’s developed crack detection algorithm was also tested 

using video extracted frames of real world data. It could be proved that the success rate 

declined due to low radiometric and contrast qualities of the video images. The low quality of 

the video frame could be attributed to the camera exposure settings at traffic speed.  A relation 

was drawn from theory between the speed of the vehicle and the forward motion for various 

exposure times and this showed that it changes with the height of the camera from the ground. 

Testing twelve extracted frames with various problem existences showed that the average 

success rate of the algorithm dropped from about 83% to about 70%, while the average false-

positive increased from 14% to about 39% when using video extracted frames.  
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CHAPTER FIVE: POTHOLE DETECTION FROM VIDEO 

IMAGES 

5.1 Introduction 

A pothole is a serious type of failure in an asphalt pavement caused by many factors. 

According to Paige et al. (2011), water is the primary recognized source of pothole 

development. However, many other factors can seriously affect pothole development such as 

crack growth, poor road design over certain subgrade, and insufficient pavement thickness to 

support traffic. Also, other non-structural causes exist such as falling rocks, spillage of diesel 

or any chemical, and even animal hooves in hot weather.  

Keeping roads safe is a challenging process for many road authorities. Many pothole 

claims against road authorities and insurance companies have risen annually. In the year 

2012, in the UK and Wales, in addition to the cost of repairing the potholes motorists were 

paid more than £22 million in compensation for pothole damage (Massey, 2013). The pothole 

problem is worldwide, for example, the state of Michigan in 2005 faced more than 7,500 

cases for pothole-related damage claims. This is in addition to more than 500,000 pothole-

related claims annually received by insurance companies. Therefore, periodic road 

assessments and collection of up-to-date information about the road surface condition seems 

to be the most effective way to conserve high road standards at a minimum price (Furness et 

al., 2007; Eriksson et al., 2008).   

Many methods have been developed for the identification of potholes using different 

techniques such as laser sensors, mobile network sensors, the use of accelerometers, and 

through digital images (Eriksson et al., 2008; Koch and Brilakis, 2011; Mednis et al., 2011; 

Jahanshahi et al., 2012; Koch and Brilakis, 2012). Each method has their pros and cons, for 

example, 2D image-based methods are easy to use; however, challenges remains in the 

methods of processing, especially when the texture differences do not exist between potholes 

and the background. Existing methods such as high-maintenance range sensors tend to be 

expensive. Acceleration data on the other hand, are only providing preliminary and rough 

condition surveys. Thus, it is essential to provide an alternative method that is both accurate 

and easy to use.  

In this chapter, a method was developed based on using digital images for pothole 

detection through 3D based image modelling. Potholes or any deviated objects on the 

road surface will be investigated using an automated method through the use of video 
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imaging using a Canon 5D camera. This chapter will first describe the pothole detection 

method followed by a presentation of the data sets and test site. Then, procedures will be 

described, followed by the results and analysis, which will first evaluate available open 

source matching algorithms by comparing them with the traditional cross-correlation. 

Another objective included assessing the automated open source 3D models such as 

(AGISoft, Bundler, and Photosynth) and commercial photogrammetric programs in 

terms of accuracy and potentiality of detecting potholes and bumps. Lastly, the use of 

extracted digital frames from video files for pothole identification will be examined and 

followed by assessing the system for possibility of achieving full automation of pothole 

detection.  

5.2 Design of a pothole detection method  

Many existing road monitoring systems use laser scanning based techniques for 

pothole identification. However, the manual reporting of potholes is still widely used in 

most countries across the world, even in the UK, where potholes can be reported in 

specific websites related to local agencies (GOV.UK, 2014). This method depends 

mainly on the users’ contribution and attention. Other monitoring techniques such as 

digital images, mobile sensing systems, and networks of accelerometer sensors are also 

available.  The limitations of these methods were previously discussed in the 

introduction of this thesis.  

In this study, a new approach was developed to deal with pothole detection. The 

method relies on digital images extracted from video files for creating 3D surfaces based 

on photogrammetry. The preference of 3D models over existing 2D image analysis is 

due to the ability of the first to identify the potholes even without differences between 

the texture of pothole and the surrounded area, as trials have proved. This method 

showed that potholes as small as 2.5 cm depth can be recognized. The method relies on 

developing a cost effective system that consists of a camera (with the capability of video 

recording in HD quality such as the Canon 5D), cheap GPS and data logger. The system 

was discussed previously in chapter 4 of this project. The purpose of the system is to 

provide image frames with GPS position and time. The extracted frames can then be 

used as an input for the processes of 3D model generation. Figure 5.1 shows the overall 

process of the used system and the developed method.      
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Figure 5.1: Workflow diagram for developed method of pothole detection 
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5.3 Aims and Objectives of trials  

The aim of this chapter is to assess the use of extracted video frames for pothole 

identification which will be achieved through the following objectives:  

1. Trial 1: Investigating the potential of new feature matching algorithms such 

as SIFT and SURF adapted in many available automated 3D models by 

comparing them with a traditional cross-correlation algorithm.  

2. Trial 2: Investigating open source and commercial software for 3D point 

cloud generation and bump detection. 

3. Trial 3: Investigating the possibility of detecting a small hole using open 

source and commercial software 

4. Trial 4: Investigating the use of video extracted images from a mobile system 

for pothole detection 

5.4 Methodology of trials  

In order to fulfil the above mentioned objectives, the following methodologies 

were carried out:  

1. Objective 1: To investigate the potential of new feature matching algorithms, 

two sets of totally overlapping images were prepared by firmly fixing two 

Nikon D200 cameras on a trolley, see figure 5.2. 

2. Objective 2:  To investigate open source and commercial software for 3D 

point cloud generation and bump detection, a bump on the road surface was 

used for the evaluation using four images from a Canon 5D camera. 

3. Objective 3: To investigate the possibility of detecting a small hole using 

open source and commercial software, a hole with approximately (5 cm
3
) in 

the asphalt road surface was utilized and captured using three images from a 

Nikon D200 camera.    

4. Objective 4: To investigate the use of video extracted images from a mobile 

system for pothole detection, a special system was designed which consists 

of a camera, GPS and data logger assembled in a mobile van. Nine samples of 

pothole existence images were extracted from different videos with various 

shapes and sizes that will be used for the purpose.    
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5.5 Data sets and test sites  

Two sources of data were used for this project; the first source was still image 

collection for assessing different tools of 3D model generation, while the second is the 

use of video images to test the proposed methodology of pothole detection. The first sets 

of data which are still images were divided into the following sources: 

1. Two Nikon D200 cameras were fixed on a trolley, figure 5.2. The digital 

cameras were tilted from the nadir by about 12 degrees in the y-axis direction 

in order to have a 100% lateral overlap. The height over the road surface was 

approximately 1.2 m. The overlapped digital images from this set will be 

used for making a comparison between the matching algorithms namely 

cross-correlation, SIFT, and SURF.  

   

Figure 5.2: Trolley for 100% overlap multiple image acquisition 

 

2. A Canon 5D-28mm camera was used for collecting a set of still images for a 

bump on the road surface, for more details about the data and the results of 

this refer to section ‎5.7.2. The purpose of this trial was to evaluate, in terms 

of accuracy, point cloud density and processing time of 3D automated open 

source and commercial photogrammetric software.  

3. The last source of still digital images was used to test the potential of open 

source automated 3D modelling tools and available photogrammetric 

applications for identification of a pothole as small as 5cm
3
.
 
Three images 

were used with a sufficient amount of overlap. The camera used for image 

capturing was Nikon D200; more details are available in section ‎5.7.3. 

The second set of data is the image frames extracted from video files. A special 

system was designed which consisted of a camera, GPS and data logger, all assembled in 

a mobile van. This data set was discussed previously in section ‎4.3. The aim of using this 
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data set was to evaluate the video extracted frames for pothole detection using automated 

3D surfaces.    

5.6 Procedures 

5.6.1 Methodology of testing matching algorithms (Trial 1)   

As described in section ‎5.5, a trolley was used to acquire a pair of images with 

100% overlap. Two Nikon D200 cameras were used to capture images simultaneously 

for the road surface texture. The two cameras were assembled with a data logger and 

distribution box in order to control the timing of taking pictures at 1 second epochs. The 

exposure setting on both cameras was set to manual setting with aperture priority of 

F8.0, ISO sensitivity of 500, and shutter speed at 1/2000 seconds in order to guarantee 

that the quality of images acquired was not affected by blurring. Thirty-two images were 

obtained from each of the used cameras for a road near to NGBon the Jubilee campus; 

figure 5.3 shows samples of collected images. Only two pairs of the 32 images were used 

for making the comparison between different matching algorithms. The trolley was 

utilized in this trial in order to accurately determine the Exterior Orientation Parameters 

(EOPs) of both cameras that will be needed for conducting the rest of the procedures in 

the Leica Photogrammetric Suit (LPS).  

 

 

 

 

 

 

 

 

 

Figure 5.3: Sample of images acquired at 100% lateral overlap using the trolley   
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     The comparison of different matching algorithms was carried out using LPS 

through utilizing the aerial triangulation tool. The first step in making the comparison 

was to accurately recover the position and orientation of the two cameras as well as the 

camera calibration parameters. There are different programs capable of camera 

calibration, such as Australis, PMS, and AGISoft Lens. Each program has its unique 

calibration method and model. Australis, PMS, and AGISoft Lens were all used to model 

the calibration parameters of the two Nikon D200 cameras, and the average results of 

these three programs are shown in table 5.1. Only the average of the two cameras was 

used because LPS only allows for calibration parameters of a single camera to be 

entered.  Differences are apparent between the three programs which might be due to the 

fact that each program utilizes a different network of targets, calibration models or 

methods.  Flat sheet and LCD screen were used in the case of Photomodeler and 

AGISoft Lens, respectively which do not account for differences in z direction (limited 

to 2D). Whereas, 3D target frames were used in the case of Australis that consider 3D 

object observation. The 2D targets are geometrically weak which might lead to 

instabilities in the least-squares estimation (Remondino and Fraser, 2006). For this 

reason, the calibration parameters of Australis were used in section 5.7.1.1.   

                             Table 5.1: Average Camera Calibration parameters  

Program F(mm) xp(mm) yp(mm) K1 K2 K3 

Australis 28.7065 -0.0704 0.0233 -8.8E-05 4.15E-06 -2E-08 

PMS 29.533 -0.0367 0.0057 1.4E-04 -1.5E-07 0 

AGIsoft 29.77 -0.1  -0.15 6.88E-04 8.66E-06 3.38E-07 

The next step was to calculate accurately the relative orientation between the two 

cameras that are fixed in the trolley. For this purpose, a calibrated bar and several ground 

control points (GCPs) were used, figure 5.4. Three different photogrammetric programs 

were used for working out the EOPs, table 5.2, see appendix G for accuracy results of 

these three programs. The differences between 

the three programs used for location of the two 

cameras were less than ± 0.015m indicating 

accurate location recovery. However, for the 

rotation values, the largest error recorded was 

for Omega which is about 0.22 °. The mean 

value from the three programs was used for 

testing the matching algorithms inside LPS.  
Figure 5.4: GCPS distribution and scale bar 

used for EO calculation 
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Table 5.2: EO parameters using different software 

software X(m) Y(m) Z (m) Omega Phi Kapa 

Australis* 
454896.406 339696.554 32.232 -12.415 4.159 -115.894 

454896.141 339695.962 32.231 14.449 -6.746 -112.992 

LPS** 
454896.406 339696.548 32.247 -12.021 4.123 -115.914 

454896.138 339695.96 32.242 14.423 -6.888 -112.932 

PMS 
454896.387 339696.545 32.254 -12.437 4.282 -115.934 

454896.114 339695.937 32.253 14.699 -6.811 -112.99 

Differences 
± 0.011 ± 0.004 ± 0.011 ± 0.234 ± 0.083 ± 0.020 

± 0.015 ± 0.014 ± 0.011 ± 0.153 ± 0.071 ± 0.034 

 

At this stage, the EOPs and IOPs were defined from utilizing different programs as 

explained previously. The next step was to generate matching points using three 

algorithms (SIFT, SURF and cross-correlation).  Open source SIFT and SURF 

algorithms for research purposes were used in the Matlab program (Lowe, 2007; Bay et 

al., 2008) to generate matching points. Cross-correlation is the implemented algorithm in 

LPS, which was used to generate points using automatic tie point’s generation. Two 

separate projects for first and second pairs in LPS were created using the values of EOPs 

and IOPs worked out in the previous steps, figure 5.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     *: transformed from Azimuth, Elevation and roll to Omega, Phi, Kapa. 

      ** : GCPs: 11, (0.02m ) same weighted values, IOP : fixed. No AP and Blunder check. 

Figure 5.5: New project in LPS showing IOPs and EOPs, first pair 
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Points generated from both SIFT and SURF were imported into the LPS project 

through point measurement, import/export points tool as shown in figure 5.6 in addition 

to the points that were already produced 

using cross-correlation. In LPS, the point 

measurement tool provided control on the 

tie points to be active or de-active through 

the active column tab. From the point 

measurement tool, followed the aerial 

triangulation (AT) process for every ten 

points until reaches 150 points. For 

example, the LPS points’ generated using 

cross-correlation needed to be processed 15 

times for each pair. A total of 270 trials 

were processed for all matching points using 

the three matching algorithms and for the 

two pairs of images, refer to section ‎5.7.1 

for more details.  

5.6.2 Pothole and bump detection (trial 2, 3 & 4) 

Potholes and bumps are considered to be highly visible defects on road pavement 

surfaces. Severe weather conditions are regarded as the main cause of pothole 

development. However, there are many other causes that can lead to pothole 

development. One of these causes is water penetration through cracks to the sub-base, 

and thus expanding the cracks from the base to the surface and eventually leading to a 

pothole . On the other hand, bumps in asphalt pavements are objects that are formed due 

to many reasons. A common example of bump formation in developing countries, such 

as Iraq, is when concrete is spilled onto the road surface due to poor transportation.   

It is possible to identify both potholes and bumps on the road surface using 2D 

image analysis but with a limited level of accuracy. Due to this limited accuracy, using 

2D image analysis is not sufficient, and to accurately locate potholes and bumps, the 3D 

surface model generation was required. In order to create a 3D surface of the pavement, 

the image has to overlap with a sufficient amount in order to reconstruct the scene using 

the stereo-matching technique, based either on photogrammetry or computer vision 

Figure 5.6: Tool for importing tie points    

from SIFT and SURF into LPS 
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system, or a merger between the two techniques. The methodology used in this project 

for reconstructing 3D models from different sources is described in the next section  

5.6.2.1 Point clouds generation 

Open source web services such as Microsoft Photosynth are designed to offer the 

user a free service to turn images into 3D point clouds (Photosynth, 2012). This web 

service has been used in this project to investigate the generated point clouds for the 

purpose of bump and pothole detection. Each user after registration with this web service 

is provided with 25 GB of free space in order to upload images and to convert them into 

3D point clouds and panoramic scenes. The first step in using this service is to upload the 

images into the service through Photosynth desktop tool shown in figure 5.7. After 

uploading images into the service, the processing may take minutes to several hours 

depending on the size and number of images. After this processing stage is finished, a 

link to the processed images is prepared and through the provided link, the point clouds 

and camera calibration can be exported using the SynthExport tool. Different formats are 

offered for point cloud exportation such as ply, vrml, obj, and x3d.  

 
 

 

Figure 5.7: Microsoft Photosynth desktop tool for image uploading  

 

Another free tool such as AGISoft StereoScan was also utilized in this project for 

the aim of detecting potholes and bumps. For more information about this free tool, refer 

to section ‎3.7.2.2.1. Bundler 3D is another free, open source tool that was investigated in 

this project which takes a set of images, image features, and image matches as input. As 

a result, it produces a 3D reconstruction of camera and (sparse) scene geometry as 
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output. For more information about Bundler 3D and the procedures of 3D reconstruction 

from images, refer to the documentation of Snavely (2010).    

  Two commercial tools, Photomodeler and LPS were also used for producing 

point clouds for investigating pothole and bump detection throughout this chapter. 

Photomodeler® (2009) was developed by Eos Systems Inc., Vancouver, Canada, and can 

be used for the production of 3D models from plane images including all other processes 

such as calibration and image matching. Camera calibration is an essential part of 

Photomodeler, and all photogrammetric tools, due to the capacity of the calibration 

function to improve the accuracy. The camera calibration parameters in Photomodeler 

usually include the focal length, lens distortion, format aspect ratio, and the principal 

point.  

The camera calibration in Photomodeler (PhotoModeler®, 2009) is 

straightforward and fully automated; calibration photos can be acquired as recommended 

by the system developer, based on a flat pattern. The flat sheet can be positioned onto the 

floor, and three images can be collected from each side of the sheet’s four sides. Figure 

5.8 shows the flat sheet calibration from Photomodeler that is usually utilized for the 

calibration of the camera. As recommended by the developer, the focal length has to be 

first put on auto focus then fixed. With the focus fixed, the images were captured in the 

standard way. The camera position has to be close to 45° from the horizontal and vertical 

axes and the camera was rotated at each position.  

 

 

 

 

      

 

The calibration results can be further improved by considering two procedures; 

firstly, taking the calibration images at a range similar to the camera / object working 

Figure 5.8: Photomodeler calibration sheet 
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range in the project. The second procedure includes utilizing a field of 3D targets instead 

of a flat plane. It is expected that self-calibration bundle adjustment utilizing a field of 

3D targets might increase the accuracy. This is due to the fact that they account for the 

changes in camera zooming and focusing. The camera also changes with temperature or 

by changing the camera settings. The field calibration in photomodeler was not carried 

out in this project due to unavailability of 3D coded targets (PhotoModeler®, 2009).  

Image matching in Photomodeler can be performed using coded targets to speed 

up the process of referencing and matching the photos. Coded targets are used in 

Photomodeler to automate the process of 3D point extraction and/or the project setup 

(initial marking, referencing and orientation of photos). There are different shapes and 

types of coded targets available in Photomodeler which can be printed to a printer or to a 

postscript file; figure 5.9 shows a sample of coded targets.    

 
 

 

Figure 5.9: Types of automation coded targets in Photomodeler 

In the absence of coded targets, the user needs to mark points in the processing of 

the photographs and then cross-reference them in different photographs that were taken 

from different directions. However, the latest available image matching techniques can 

eliminate the use of coded targets. In the most recent version of Photomodeler, there is a 

new feature available called SmartMatch. It searches out natural feature points in images 

as a replacement for coded targets in certain scenes, and then matches them between 

photos and generates 3D coordinates automatically.  

After image matching and running the bundle block adjustment, the next step is 

image idealization or re-mapping (pixel by pixel). Image idealization will remove any 

lens distortion, non-centred principal point and any non-square pixels. The next and final 

process in Photomodeler is to produce point clouds via running the 3D dens surface at 

the required sampling distance. On the other hand, turning digital images into usable 3D 

data or point clouds for extracted features in LPS core can be found in Leica (2006a).  
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5.6.2.2 Algorithm designed for surface anomalies detection  

In the previous steps, it was shown how point clouds can be produced using a 

mixture of open sources, free tools, and commercial photogrammetric software. The 

generated 3D point clouds will be used as input for detecting potholes or any deviations 

from the street surface, such as bumps. An algorithm was developed as part of this 

project to fit the xyz data (point clouds) onto a surface plane using a Locally Weighted 

Scatterplot Smoothing (LOWESS) fitted function. After the point clouds were fitted with 

the best plane that minimizes the residuals, the residuals in z-direction from the fitted 

surface plane are calculated using the curve fitting tool in Matlab. Any residuals greater 

than 3-sigma (standard deviation) were then considered to be a part of a pothole or 

bump. Image frames with the pothole detected can then be isolated for further analysis 

by the user; figure 5.10 shows the overall procedure.  

 

 

 

 

 

 

 

 

 

  

 

 

 

 
Figure 5.10: Procedures for detecting the Potholes or bumps on the road surface 
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5.7 Results and Analysis 

A number of trials were designed in order to evaluate the proposed objectives. The 

first test was designed to evaluate the matching algorithm that is used in commercial 

photogrammetric software and the available open source software. Another point 

considered for testing was how likely it is to improve the results of the feature interest 

matching algorithms. The second test was designed to compare between computer vision 

and photogrammetric software in terms of visually inspecting the resultant 3D object 

coordinates, processing time and the resultant point cloud density. The potential of the 

available point cloud generation tools for detecting small objects was investigated in the 

following section in the third trial. The possibility of using video images for the purpose 

of analysing and detection of potholes through 3D point cloud generation with 

acceptable accuracy will then be presented last.   

5.7.1 Trial 1: Comparison of various matching algorithms     

The aim of this experiment was to make a comparison between a traditional 

feature matching algorithm such as cross-correlation that is used in LPS and the feature 

interest approach represented by SIFTS and SURF. Most of the common automated 3D 

systems are employing SIFT or SURF in their digital matching processes. An example of 

an automated system that utilizes SIFT in the matching between images is open source 

web services Photosynth. The comparison will be carried out using two pairs of collected 

images as shown in figure 5.11 through employing a trolley mounted with two Nikon 

D200 cameras, as explained in section ‎5.5. The comparison will be in terms of the 

resultant total image unit-weight RMSE from the aerial triangulation process in LPS 

core. Two different scenarios were considered, the first was with no attempt to remove 

outliers and the second was with outlier rejection algorithms.     

 

 

 

 

Figure ‎05.11: First pair of tested images above and second below 
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5.7.1.1 Implementing the test without outlier detection on both SIFT and 

SURF     

A new project and two separate projects were created in LPS, with the first and second 

pair of images (Left and Right) shown in figure 5.11. As LPS does not allow for different 

camera parameters, the IOPs were set to the known and fixed option using the average 

camera calibration parameters from Australis (see table 5.1). The EOPs are also fixed using 

the average EOPs from the three programs as shown in table 5.3. Using EOPs as fixed values 

will allow the errors to propagate to the tie or matching points and give a good indication of 

the investigated matching point accuracy.  

Table 5.3: Mean Result of EOP using three programs  

ID X (m)  Y(m)  Z(m)  Omega  Phi Kapa  

Left  454896.406 339697.325 32.25 -12.02 4.123 -115.91 
Right  454896.138 339696.412 32.24 14.423 -6.89 -112.93 

In LPS, since the EOPs are set to fixed values, tie points can be extracted and 

generated automatically using cross-correlation algorithms (Leica, 2006b). Alternatively, the 

two open source matching algorithms based on feature extraction (SIFT and SURF) were 

also used to generate the tie points using the Matlab programme. The three algorithms 

produced about 150 points that were sufficient for making the comparison. Both algorithms, 

SIFT and SURF, generated matching points using the original implemented algorithm 

without any aim to exclude outliers. 

It is worth mentioning, that the generation of tie or matching points in LPS was 

conducted using the calibration parameters (IOPs) calculated from Australis. While, for both 

SURF and SIFT, the matching point’s generation were conducted on non-calibrated images. 

The location of matching points has systematic errors (lens distortion) which subsequently 

can affect the accuracy of both SURF and SIFT matching results. However, the 

improvements were possible in both SURF and SIFT matching results through using outlier 

rejection algorithms as explained later.       

The results of these three algorithms were tested every ten tie points and drawn against 

the total image unit-weight RMSE values that result from aerial triangulation, figure 5.12. 

The results from the three algorithms showed that as the number of tie point increased the 

total image unit-weight RMSE decreased. These results are as expected as long as the 

observations are free from outliers. The results from LPS were found to be the best as LPS 

has a filter for detecting and removing the mismatched points in the automatic tie point 

generation process. The trend for LPS is a steady decrease with no jump in the total image 

unit-weight RMSE. However, both matching algorithms SIFT and SURF showed that 
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outliers were feeding into the bundle solution as points were added to the aerial triangulation 

process, as can be noticed from figure 5.12.  

 

 

 

    Figure 5.12: Aerial Triangulation Results, three algorithms, 1st pair (above) & 2nd (below) 

 

   It can be concluded from the two samples that the total image unit-weight RMSE is 

decreased with increasing the number of tie points. However, the incorrect matches that are 

feeding to the solution can increase the RMSE. LPS can provide tie points with outstanding 

accuracy estimated from a robust outlier detection technique using automated gross error 

checking or a bundler checking model.  The measured image coordinates were analysed to 

determine the erroneous input data contributing to the overall instability of output aerial 

triangulation results and thus were removed in the next least squares iteration (Leica, 2006b). 

Whereas, an outlier rejection algorithm needs to be used to detect the incorrect matches from 

both SIFT and SURF results which will be covered in the next section.     
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5.7.1.2 Implementing the test with outlier detection on both SIFT and 

SURF     

The generated points from both algorithms (SIFT and SURF) were tested for the 

effect of outlier detection algorithms. Different outlier detection algorithms are available; 

examples are LMeds (Least Median of Squares), RANSAC (RANdom SAmple 

Consensus), and MSAC (M-estimator SAmple Consensus). The results from different 

outlier detection algorithms showed that the total image unit-weight RMSE value 

decreased for both sets of images (first and second pair) and for both matching 

algorithms (SIFT and SURF) as the number of the points is increased, see  figure 5.13 

and figure 5.14.      
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In the SIFT case, the best results were obtained using the RANSAC outlier 

detection and removal algorithm. In the SURF case, however, the RANSAC is working 

fine as well but the number of inlier or correct matches is always less than the SIFT case, 

which might be due to the fact that SURF contains more outliers than SIFT. In this case, 

LMeds was found to be better for working with SURF as can be noticed from figure 

5.14. The final result of outlier rejection algorithms showed that the best accuracy 

achieved, especially for SIFT is with RANSAC. The result of total image unit-weight 

RMSE for SIFT with RANSAC nearly achieved the same accuracy as in LPS core, see 

figure 5.15.  
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These results revealed that SIFT outperformed SURF in providing accurate 

matching points, that are as accurate as the tie points produced from LPS. The lowest 

total image unit-weight RMSE is about one pixel. There are many reasons that could be 

behind this comparable total image unit-weight RMSE. First of all is the IOPs that are set 

to the average and fixed. The second cause might be due to the number of used images 

(two) in the bundle solution. Another factor might be constraints used in the bundle 

solution, both IOPs and EOPs fixed with no standard deviation; the errors from both 

EOPs and IOPs might propagate into the total image unit weight RMSE. It is worth to 

mention that in the case of SIFT and SURF; no prior information was required of camera 

pose and the points are generated on a fully automated basis. However, in the case of 

LPS, minimum constraints were required which are six tie points or three GCPs, or direct 

geo-referencing with known EOPs values. The next sections were designed to compare 

between different programs for anomalies detection using the previously-investigated 

algorithms for digital image matching.     
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5.7.2 Trial 2: Comparison between open source and commercial 

software for 3D point cloud generation and a bump 

detection 

The aim of this trial is to compare between the available open source and 

commercial photogrammetric software in terms of inspecting visually the resultant 3D 

object coordinates, processing time and the resultant point cloud density. The test site 

showed a bump on a surface of the road; the bump is excess asphalt which forms a hard 

solid object on the road surface. The size of the bump is 0.3227m, 0.5066m, 0.0600m for 

width, length, and maximum height, respectively. Four images were collected using the 

Canon 5D camera from different views, figure 5.16. The camera positions were close to 

about 45° from the horizontal and vertical axes. The average pixel size on the ground 

was about 3.5*3.5 mm.  

The four images were processed using different commercial photogrammetric 

software and open source software, such as Bundler, Photosynth, LPS and AGISoft 

StereoScan. Refer to section ‎5.6.2.1 for the procedures of point clouds generation from 

each of the used softwares. Appendix H shows the processing accuracies and output 

results for the used commercial software and AGISoft StereoScan.  

 

 

 

 

 

 

 

 

Figure 5.16: Four shots showing the bump on the street 

The results from the different set of softwares showed that the best available 

option for automatic point cloud generation was through using AGISoft StereoScan, 

which produce more than enough points for geometrically recognizing a pothole or a 

bump in the street, see figure 5.17 for visual inspection. In terms of point cloud 
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generation density, once more AGISoft StereoScan could provide a highly dense number 

of points in a very short time, within less than 20 seconds. LPS on the other hand, 

showed lots of outliers which are not forming a part of the bumps as can be seen from 

figure 5.17. Here it should be noted that LPS is designed for aerial applications, although 

the manufacturer claims that it can also be used in close range applications. However, the 

test showed that it is not accurate for point cloud generation in close range applications, 

despite an adequate number of GCPs (11), accurate calibration, and adequate 

triangulation results, see appendix H and Appendix I.  The main reason of LPS giving 

low quality results might be due to the use of cross-correlation for matching between 

images that cannot handle the big rotation and scale changes as in this case.   

 

 

 

 

 

 

 

 

 

Figure 5.17: Visual analysis of the achieved 3D points clouds results 

Resultant point clouds from Photomodeler, Photosynth and AGISoft StereoScan, 

can be used for identifying the bump using an algorithm developed as part of this project 

and explained in section ‎5.6.2.2. The results showed that it is possible to identify such an 

anomaly on the road surface using the automatically generated point clouds from 

Photosynth and AGISoft StereoScan or semi-automated point clouds from 

Photomodeler, figure 5.18 and figure 5.19. AGISoft StereoScan can precisely detect the 

bump and isolate it from other parts of the point cloud at the three different sigmas away 

from the fitted curve. The next section is to investigate the methodology on a smaller 

object than the one examined in this trial.     

StereoScan    
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Figure 5.18: Fitted Surface (above) and residuals (down)  

 

Figure 5.19: Bump detected using exclusion criteria at different sigma’s  

Stereo
Scan
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5.7.3 Trial 3: Investigating the use of 3D models for small object 

detection 

   The aim of this test was to investigate whether it will be possible to detect a 

small hole of approximately 5 cm
3
 size and with a depth of about 1.5 cm. As previously 

mentioned, the aim again was to make a comparison between the 3D point clouds 

generated from different software packages. Three images were collected using Nikon 

D200 with the camera plane perpendicular to the road surface for the middle image and 

low oblique for other two images, figure 5.20. The base to height ratio for successive 

pairs was ranging from 0.40 to 0.60. 

 

Figure ‎05.20: Location of Cameras and used images for analysis 

The results from this test showed that Photosynth and Bundler produced less point 

clouds when compared with other softwares.  LPS and Photomodeler produces the 

highest density of point clouds, but contained lots of outliers, which might be due to one 

of the following reasons: 

1- Bad exterior orientation parameters (both).  

Small hole 
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2- Mismatch of correspondence points (both). 

3- Not being designed for close range applications, especially in this case where 

the camera was perpendicular to the ground, and assumed as aerial 

photographs (LPS).  

4- The base to height ratio was less than what is required in LPS; the accuracy 

increases with the increase of the base to depth ratio (Remondino and El-

Hakim, 2006).   

The best results achieved were through using AGISoft StereoScan, despite the fact 

that only two images have been used for the production of 3D points. The produced 

points were not as dense as in Photomodeler and LPS, but were more accurate and 

contain no outliers, even the hole could be clearly visible, figure 5.21.  LPS and 

Photomodeler point clouds cannot be edited and outliers cannot be removed and 

excluded from further investigation. The remaining point clouds from Photosynth, 

Bundler, and AGISoft StereoScan were investigated using the designed algorithm for 

surface anomalies detection, see section ‎5.6.2.2. The point clouds from these three tools 

were exported to Matlab for detecting the small hole on the road using one, two, and 

three standard deviation or sigma exclusion criteria. 

 

Figure 5.21: Visual analysis of the achieved 3D points clouds results 

StereoScan    
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The results from the three exported point clouds revealed that neither Photosynth 

nor Bundler can be used to detect such a small size of pothole on the road surface. The 

reason is that both softwares are designed to generate sparse point clouds. However, the 

results from AGISoft StereoScan showed that this size of the hole can be detected using 

all exclusion criteria but with some amount of errors, especially on the edge of the point 

clusters, as can be noticed from figure 5.22.  Therefore, it can be concluded that the 

algorithm can detect such a size of deformation on the road surface using the merging of 

technology from photogrammetry and computer vision represented by AGISoft 

StereoScan software, and through only two images. In the next section, the methodology 

of pothole detection will be tested using AGISoft StereoScan on some real video images 

collected from different road asphalt surfaces around the Jubilee campus, see section ‎3.5 

for details about mobile van that was used for data collection, and for a list of video files 

see table 4.1 and for the video paths see figure 4.5.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.22: 3 sigma, 2 sigma, and 1 sigma exclusion criteria from (top to bottom) 

StereoScan    
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5.7.4 Trial 4: Investigating the use of video images for pothole 

detection 

In previous sections, it was shown that a bump or a hole as small as 5 cm
3 

can be 

detected using AGISoft StereoScan software. In this section, the AGISoft StereoScan 

software will be tested for digital images extracted from video files. The data used for this 

experiment were the video files listed in table 4.1. The procedure of video files collection, 

handling and image extraction were all extensively discussed in section ‎4.8.1. Due to the 

huge number of extracted images from video files, the extracted video frames with existing 

potholes were visually checked for further investigations. Nine samples of pothole existence 

images were extracted from the different videos, with various shapes and sizes that were used 

for the purpose of testing the 3D modelling for anomalies detection, as shown in figure 5.23.  

 

 

 

 

 

 

 

 

 

5.7.4.1 Using only two images  

The process of reconstructing 3D models from two images using AGISoft 

StereoScan is described in section ‎3.7.2.2.1. Two samples (8 and 9) from the samples 

shown in figure 5.23 were used for testing the effect of intersection angle or the base to 

height b/h ratio effect on the accuracy of the 3D reconstructed surface. All frames that 

share the pothole were used for testing the intersection angles, as can be seen from figure 

5.24. The results from the two groups showed that as the baseline between the two image 

frames increased, the geometry of the 3D models accuracy was improved. The results 

Figure 5.23: Extracted frames from video files with pothole existence 

1 2 3 

4 5 6 

7 8 9 
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showed that it is possible to detect the pothole when the baseline between the two is 

about 60 cm or more.    

 

 

 

 

 

 

 

 

 

 

 

 

 

A visual inspection of the results showed that there is a change in the geometry of 

the 3D models as the baseline increased. As figure 5.25 shows, the 3D models with low 

baseline between frames are showing that the geometry is not correct. These results 

revealed that the best baseline to be used when utilizing two images in AGISoft 

StereoScan is more than 60 cm. All results from these 3D models (prepared with 

different baselines) were processed in the Cloud Compare (CC) to build models with the 

colour visualization of ramp height differences, figure 5.26 and figure 5.27. As can be 

noticed from both figures, the details of the potholes become clearer as the translation 

between frames become bigger. This result further confirms that the geometry of 3D 

models can become better with the increasing baseline between the pair of images.     

Figure 5.24: samples used for testing the effect of base to height ratio on the results  

8 

9 
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It is important to bear in mind that enough translation between the frames is 

necessary in order to reconstruct dependable and accurate 3D models. However, figure 

5.26 and figure 5.27 show that the reconstructed area between the two frames was 

reduced as the translation increased. Matching points as well decreased with the increase 

in translation or shift between the two images which led to an increase in the RMSE 

value as can be noticed from figure 5.28. Therefore, it is recommended to use frames that 

provide enough translation that make a balance between accuracy and provide enough 

matching points with adequate reconstructed area, which is possible using the first 

extracted frame with the fifth or the sixth which means that the distance or shift range 

between 50 to 70 cm.    

Figure 5.25: 3D modells generated from processing 1st frame with the next following frames 

(1st with 2nd on top and 1st with 8th on bottom)   
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Figure 5.26: Height ramp colour visualization on 3D models frames (1st with 

3rd  on top and 1st with 8th on bottom)   
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Figure 5.27: Height ramp colour visualization on 3D models frames (1st 

with 2nd  on top and 1st with 8th on bottom)   
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Figure 5.28: Matching and RMSe vs base line or translation between 

two frames  
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As trials showed, the methodology of detecting potholes on the road surface using 

a generated 3D surface from only on pair of images was successful. Therefore, all nine 

samples shown in figure 5.23 were used for generating 3D models based on two frames 

that provided sufficient translation.  The translation between frames has to be between 50 

to 70 cm which can be calculated using the motion estimation algorithm that was 

developed as part of this project; for more information about this algorithm and its 

results refer to sections ‎4.8.1.1 and ‎4.9.1.1.   

Colour visualization of height or depth on the 3D samples was prepared and 

showed the possibility of detecting the potholes on all the tested samples. As figure 5.29 

shows, the red colour is an indication of the pothole’s existence which can be detected 

using the developed methodology of pothole detection. The fitted LOWESS planes to 3D 

models were all done using a Matlab developed algorithm mentioned on section ‎5.6.2.2. 

The results from the fitted plane and the calculated residuals at 3-sigmas with cluster 

checking showed that each sample has at least one cluster of object that is treated as a 

pothole, figure 5.30. These results revealed that the methodology of pothole detection 

using 3D automated modelling from two images and the fitted LOWESS plane can be 

used successfully. However, it is possible that these results can be further improved by 

using multiple images rather than just a stereo pair as will be explained in the next 

section.     
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Figure 5.29: Colour visualization of ramp height on 3D models generated using two frames only   



                               Chapter Five: Pothole detection from video images   

254 

 

 

 

 

  

1 

2 

3 

4 

6 

7 

5 

8 

9 

Figure 5.30: 3 sigma criteria for pothole detection on all samples using only two frames 
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5.7.4.2 Using multiple images  

In the previous section, the possibility of detecting the potholes using only two 

images was shown. In this section, the aim is to examine the potential of including all of 

the frames that share the pothole instead of just two frames. For achieving this purpose, 

the commercial standard version of AGISoft PhotoScan was utilized for two samples (8 

and 9). The procedures of reconstructing 3D models from multiple images using 

AGISoft PhotoScan is described in section ‎3.7.2.2.1. Two samples (8 and 9) showed in 

figure 5.24 were again tested for the effect of multiple images, examining the accuracy 

of 3D modelling and possibility of pothole detection.  

     The results of 3D models from both samples were processed in Cloud Compare 

(CC) for visualization of height or depth on 3D models as can be noticed from figure 

5.31. The results of height ramp visualization on the models showed much improvement 

when compared with the two images results. More geometrical details can be noticed in 

the case of multiple images that were not possible in the case of stereo pair 

reconstruction. However, the aim was to detect the pothole on the road surface, which 

was successfully done in case of two images. Testing the methodology of pothole 

detection described in section ‎5.6.2.2 on these two models showed the possibility of 

detecting the potholes in both samples at three sigmas exclusion criteria as can be 

noticed from figure 5.32.  

   

Figure 5.31: Height ramp visualization on 3D models using multiple images  

8 

9 



                               Chapter Five: Pothole detection from video images   

256 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.8 From semi towards full automation of pothole 

detection   

As previously discussed in section ‎4.10, the main aim of the thesis was to build a 

cost effective system to automatically detect road damages such as cracks and potholes. 

The system was useful in collecting road images at HD quality covering a lane as 

previously mentioned. An algorithm was developed by author to extract images from 

video files; details are available on chapter 4. Due to limited time, the aim of full 

automation was not achieved for both crack and pothole detection. However, as 

discussed in section 4.10, it is possible to make the detection process fully automatic for 

both crack and pothole through linking different code and algorithms.      

In pothole detection, the main key stages can be summarized below, see figure 

5.33:  

1- AGISoft StereoScan was used to generate 3D surfaces (using stereo process 

on pair of frames with enough base length)  

Figure 5.32: potholes detected at 3 sigmas away from mean plane  

8 
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a. Input to this process were extracted video frames with pothole 

existence, images with pothole existence were visually checked to 

save the processing time, otherwise a link is required to use the 

images with pothole existence through 2D image analysis for rough 

identification of images or frames with potholes.   

b. Output from this process is point clouds   

2- Fit point clouds to a plane to minimize the residuals between point clouds and 

fitted plane. 

a. Input: point clouds from first step (a link is required to use 1.b data). 

b. Output: residuals calculated between point clouds and fitted plane.  

3- Detection of potholes or any deviation using 3-sigmas away criteria  

a. Input: residuals from second step (a link is available). 

b. Output: cluster of points that are possibly potholes or bumps.  

The term link refers to a subroutine that need to be designed in Matlab linking 

each step with a manual interface were required. It is possible in the future work to 

design a main program that can do all the procedures fully automatically without human 

intervention. It is worth mentioning that all algorithms were designed using Matlab 

except for AGISoft StereoScan. An executable version of the program is required in 

order to be used in the computer system which can be called in Matlab whenever needed. 

It is worth mentioning that the aim of this project was to design a survey tool for crack 

and pothole detection, the quantification of crack and potholes were not aimed in this 

project. However, it may be possible to quantify the detected crack and pothole to a 

usable measuring unit such as the severity in term of three categories (good, moderate, 

and bad) and assign each of them with a specific colour (green, orange, and red), 

respectively. The quantification could be in terms of road condition index (RCI) which is 

usually used in UK, more details can be found on section ‎2.3.4.4.1.     
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Figure 5.33: Main key stages in pothole detection (toward fully automation)  
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5.9 Summary and conclusions  

Recently, different digital image matching algorithms have been developed and 

adapted in many 3D automated image modelling applications. Both SIFT and SURF are 

two matching algorithms that are invariant to scale and rotation changes. In the current 

study, these two digital matching algorithms were tested and compared with a cross- 

correlation matching algorithm that is utilized by LPS. Tests showed that both SIFT and 

SURF can produce enough matching points, comparable with cross-correlation 

matching. However, it was also proved that using SIFT and SURF for simply matching 

between the features of interest was not accurate enough, as it was found that lots of 

outliers fed into the solution as the number of tie points included in the bundle solution 

was increases. The accuracy of tie points using SIFT and SURF was subsequently 

improved through employing outlier rejection algorithms, such as RANSAC and LMeds, 

and  it was shown that accurate matching points could be achieved that were comparable 

with the case of cross-correlation.   

Many image-based automated 3D modelling tools and open source softwares are 

utilizing SIFT and SURF in matching between a pair of images. A trial was carried out in 

order to make a comparison between these open source and available commercial 

photogrammetric softwares for bump detection. Experiments proved that AGISoft 

StereoScan and Photosynth are sufficiently accurate in identifying a bump with about 6.0 

cm height. It was demonstrated that AGISoft StereoScan tool can provide an enormous 

number of cloud points in less than a minute of processing time, with only using two 

images.  LPS, with the use of plenty number of GCPs and good triangulation results, was 

not capable of providing accurate point clouds, which might be attributed to the cross-

correlation algorithms not being able to handle big rotation changes.  

Examination was carried out in this chapter to test the possibilities of detecting 

holes as small as 5 cm3 in the road surface, using again the open source and commercial 

softwares. Experiments showed that it was possible to successfully detect such a small 

hole, but only by using AGISoft StereoScan. Other tools such as Photosynth and 

Photomodeler proved lacking in being able to identify such a small object. This test 

revealed that AGISoft StereoScan outperformed all other softwares in providing accurate 

and reliable results from using only two images, in a very short processing time which is 

less than a minute, and in a fully automated basis. This outperformance might be 
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attributed to the use of SIFT with RANSAC for matching between two images, knowing 

that the used images have angle of tilt of about 13°.       

 In the last trials, an investigation was carried out to test the method of pothole 

detection using frames extracted from video files. Extracted video frames were 

considered to be low in resolution and of low radiometric quality. Nine samples with 

various pothole shapes and sizes were visually identified and extracted for further 

analysis. Both height ramp visualization and fitted plane with residuals calculations were 

considered for analysis. The inspection was carried out on two samples to examine the 

effects of intersection angle, or the base to height ratio, on the geometry of 3D 

reconstructed surfaces. It was possible to prove that low baseline or distance between 

extracted images may affect the accuracy of the resultant 3D models. The results also 

revealed that AGISoft PhotoScan used to generate 3D surfaces through the processing of 

multiple images can further improve the detection results. 

Lastly, it is worth to mention that it is possible to automatically identify any 

source of problems such as potholes or bumps in the road surface using extracted video 

frames. However, it is also worth to mention that the potholes detected, based on three 

sigmas criteria did not consider measuring the pothole size. In future work, it is 

recommended to quantify the size of the potholes to a usable engineering index. 
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CHAPTER SIX: CONCLUSIONS AND 

RECOMMENDATIONS FOR FUTURE WORK  

 

This chapter summarizes the research presented in the thesis, providing 

conclusions about the results that were obtained, and presenting the research outcomes. It 

also provides recommendations for possible useful future work in the field of digital 

image processing for road surface monitoring. As stated in the introductory chapter, the 

aims of this study were to investigate the potential of using digital images for roughness 

or texture depth measurement and for detecting significant road damages such as cracks 

and potholes using a mobile vehicle. A number of objectives were carried out in order to 

achieve the primary aims of the research. The outcomes and findings from each objective 

are described and summarized in the next sections. 

6.1  Investigating highway maintenance problems and 

highlighting limitations of monitoring techniques  

Road surface monitoring is essential in order to keep this infrastructure in the best 

operational order. The previous approaches that considered evaluation of pavement 

conditions were found to be time consuming, labour-intensive, and hazardous (during the 

process of data collection). The manual process involved a team of trained technicians to 

walk over the road and record the defects in specifically designed forms. Assessment of 

pavement conditions seems to be a serious challenge in different countries all over the 

world that raised the demand for developing automated systems to overcome the limitations 

of previous approaches. Current automated systems are different from one country to the 

other but are still sharing one objective that is precise data collection and monitoring.  

Despite the advancement in technologies and the introduction of new automated systems, 

the walk over survey is still used in many areas around the world due to the high cost of the 

automated systems, the importance of a cheap alternative system was, therefore, addressed 

and investigated.   

Among all available monitoring techniques, such as laser scanners and penetrating 

radar, it was concluded from the literature that digital images remain are a dependable and 

affordable source. Defects, such as cracks, can be successfully recognized using digital 

images. However, despite the fact that the detection of the cracks has been the aim behind 

many researches in recent years, many problems still need to be addressed. Further 
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consideration and exploration of crack detection in rough texture surfaces is required 

because rough texture can easily hide crack pixels. The processed images in the rough 

texture may contain lots of mis- interpretations due to raised aggregates. Digital images can 

also be a useful tool for identification of other damages on the road surface, such as 

potholes. Many authors have used a single digital image for pothole detection based on 2D 

image analysis processing. The success rate of pothole identification by using individual 

image processing is based on the variation of both textures (pothole and surrounded areas). 

The inclusion of the third dimension may increase the chance of detection as investigated in 

this research.   

An extensive review on the literature also addressed some gaps in the area dealing 

with measurement of road surface texture depth or roughness. It has been shown that no 

applicable and cost effective measuring technique was available for road surface texture 

characterising in the field. Texture characterising is an important factor for assessing the 

ride quality, noise control and skid resistance. It has been revealed that all previous 

approaches for texture analysis have limitations such as cost, providing enough information 

and the range measurement of the object. An example of the most widely used traditional 

approach used for texture depth measurement is the sand patch test (SPT). However, this 

method lacks accuracy (that is in the range of ± 0.227 mm), is a labour intensive process 

and can only be used on dry surfaces.  

 The rapid advancement in 3D automation methods from digital images has opened 

the door for many applications that require precision, such as texture characterizing or 

roughness measurement and pothole identification. Research into the automation of a 3D 

method for roughness measurement has revealed that no critical study compared between 

texture depth measured using digital images and SPT are available. A number of trials were 

designed to test the author’s developed method of texture depth measurement and texture 

characterization exploiting advancements in the area of 3D automated methods based on 

digital images   

In the area of pothole detection, 3D based image modelling could be a useful 

alternative tool. Using 3D models can overcome the limitations of single image analysis, as 

single image lacks recognition and cannot provide enough information about the pothole; 

especially in cases were no real differences exist between pothole and non-pothole textures. 

Different trials were proposed for assessing the 3D automated technique of pothole 

detection on real data collected via a mobile van using digital images.     
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6.2 Examine the potential of digital images from a variety 

of cameras for texture depth measurement  

The second objective was to assess the texture depth measurement using a variety 

of cameras and sensors. Recent technology has allowed for 5 MP cameras to be 

integrated with smartphones that can possibly help in the acquisition of better images. 

Smartphone cameras are an essential part of every individual in the society and are 

almost always with user. Due to the availability of smartphone cameras, these were 

investigated along with other DLSR cameras for texture depth measurement. Five 

cameras, two DSLR cameras with three lenses and two smartphone cameras were used 

as a part of investigations; see section 3.6.1 for details of the used cameras.  The 

objective was to examine texture depth measurement from digital images for various 

materials, particularly the asphalt and concrete textures. Experiments were carried out in 

order to inspect the use of digital images for texture depth measurement.  

Many of the DSLR cameras with their lenses available in NGI shelves were tested 

for lens quality as the first objective. It was concluded that image sharpness is mainly 

due to the lens quality and it was also proved that some old lenses provided poor results. 

Inadequate image sharpness possibly being due to sensor excessive use or due to any 

source of accident that may degrade the quality of the lens.  

Finding the optimum intersection angle and the camera to object distance through 

the stereo process was another objective. Two controls of asphalt texture (rough and 

smooth) were employed for performing these trials. The findings from this inspection 

revealed that the best intersection angle is between 30-50° and the distance of the camera 

to object was found to be as close as possible with the camera not being out of focus. 

Due to the low-quality results from the stereo process, a method of texture depth 

measurement was examined using multiple images. The reliability of the stereo method 

was found to be low, especially for both smartphone cameras. Therefore,   the author’s 

developed method of texture depth measurement was performed using multiple images. 

The results from testing two control textures (rough and smooth) showed that the 

calculated texture depth was significantly improved to the largest error of about 200 µm, 

see section  3.8.2.2.  

For further validation of the author’s developed texture depth measurement 

method, wider depths of asphalt texture including ten test areas were examined using 
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both the stereo and multiple images processes. Using the recommended optimum camera 

to object distance and intersection angle via stereo process, mean errors as large as 355 

µm were reported.  Whereas, the multiple images process exposed that the largest mean 

error became about 110 µm.  Trials of measuring the correlation between depths from 

images and the sand patch test were also considered. The outcome from these 

experiments showed a high significant correlation with a minimum value of about 0.80. 

Another objective of this study was to examine other materials rather than asphalt 

pavements. Reconstruction parameters such as the number of extracted features, 

matches, RMSE of the least square solution and visual inspection of generated 3D 

surfaces were considered as examination parameters. These parameters were used for 

testing different materials such as a concrete tile, gravel with two sizes, soil, grass, and 

asphalt pavement. It was found from these trials that the process of 3D automation is 

mainly based on the feature characterises of the material. Repetitive features such as 

gravel and grass texture can lead to failure in the 3D automation process.  Based on these 

results, it was decided to investigate the author’s developed texture depth measurement 

method on concrete texture. The multiple image process for surface generation was used 

on two control samples of concrete texture (rough and smooth). Different analysis 

approaches were used on the generated surfaces to investigate the quality of the 

technique. The outcome from this trial showed that the method is successful with 

concrete as well as asphalt.  

 Finally, it can be concluded that the author’s developed methodology of texture 

depth measurement and surface characterization from digital images is showing 

promising results, especially for the multiple image process. An alternative method for 

SPT is therefore proposed, and results of highly significant correlation were obtained.   

6.3 Investigate the potential of detecting the cracks on the 

road surface from digital SLR extracted video frames 

A methodology was proposed to be an alternative for commercial non-affordable 

systems based on low-cost materials to collect images from the road surfaces. The approach 

was established to extract the desired frames from video files using image matching 

techniques. Subsequent steps included geotagging of the frames using a GPS log and 

detecting the cracks from the extracted frames using the author’s developed crack detection 

algorithm. The method is based on roughness modelling using 2D image and texture 
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analysis of the extracted frame in order to apply the proper smoothing filter. Roughness 

measurement trials were carried out on samples with known surface texture depths in order 

to evaluate the process of roughness modelling. The author’s developed crack detection 

algorithm was tested on still digital image data collected from the real world, the net source 

and published articles. Finally, the algorithm was used for a number of frames with 

different problem existences such as shadows, manholes, different illumination and lighting 

conditions.               

Through algorithm development, it was possible to show that detection of cracks and 

the isolation of non-crack pixels is possible using 2D image analysis. Thresholding, 

morphological operation and image filtration were the tools used to develop the author’s 

crack detection algorithm. Applying the proper image filtering was based on the roughness 

measurement of the image. Data handling was an important part of the algorithm in order to 

reduce the time of processing efficiently. Motion estimation based on image matching was 

used effectively to predict the distance between the frames. Further time management was 

achieved through statistical testing to minimize the amount of frames and to include only 

the frames that have a real problem such as a shadow, manhole, paint, cracks, and pothole 

existence. 

Tests for examining the success rate of the developed algorithm on different sources 

of images revealed that the success rate of crack detection reached up to 98.9% on one 

example of the image, with the lower rate detected to be as low as about 58% on other 

images. The average success rate of crack detection was found to be about 83% for all 

tested image samples. However, it was demonstrated that the author’s developed crack 

detection algorithm can erroneously identify non-crack pixels and treat them as crack 

candidates, but the average false-positive for all samples was found to be about 14%. The 

crack detection success rate of the developed algorithm was also tested using video 

extracted frames from real world data. The study proved that the success rate declined due 

to the low quality of radiometric and contrasts of video images. Testing twelve extracted 

frames with various problem existences showed that the average success rate of the 

algorithm dropped from about 83% to about 70% and that the average false-positive was 

increased from 14% to about 39% when using video not still images.  

In summary, the trials showed that it is possible to assemble a series of low-cost tools 

of camera and cheap sensors for monitoring and detecting the cracks on the road surface. It 

was also possible to prove that using small format images for road surface monitoring has 
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some potential. For example, the cracks on the road surface can be identified using a semi-

automated crack detection algorithm from still images, and even from images extracted 

from video-sequences with low resolution quality, albeit with a slight degradation in 

performance.       

6.4 Investigate the potential of detecting potholes on the 

road surface using the extracted frames from video 

DSLR images 

 The use of low-contrast and radiometry digital video images for road surface 

monitoring made the work with commercial photogrammetric tools more complicated. 

This could be attributed to the fact that these tools were designed for terrestrial or 

standard aerial photogrammetric applications. Trials showed that Leica Photogrammetric 

Suit (LPS) and Photomodeler are not working well when the camera is close to an object 

or when a small rotation is available. LPS, Australis, and Photomodeler require camera 

calibration parameters, and LPS requires at least 3 ground control points GCPs to run 

aerial triangulation (AT). In LPS, the setup of the block file and camera calibration 

requires time, and the process depends on the number of images. Without knowledge of 

the exterior orientation parameters (EOPs) in LPS, the operator needs to include 

manually at least five tie points for each image pair in order to achieve approximately the 

relative-orientation and thus help in automatic tie point generation.  

AGISoft StereoScan and Photosynth however allow running the triangulation 

procedure without any manual intervention at all. The success behind that is the use of 

invariant feature matching such as SIFT and SURF; although outlier removal such as 

RANSAC was important to ensure the correct matches are in the final solution. Trials 

showed that using AGISoft StereoScan software and Photosynth can detect the defect 

and the developed mythology of pothole detection showed that a minimum depth of 

pothole of 1.5cm could be found using the idea of 3D based image modelling from 

images.         

6.5  Recommendations for future work  

As discussed before, correlations between SPT and texture depth measurement 

from digital images were significantly high. The correlation was carried out using only 

ten samples collected from real world data while considering as different a range of 
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texture depths as possible.  However, using only ten samples might not be enough for 

correlation measurement. It is recommended to include a further extensive range of 

texture depths, especially for depths of 1100 to1600 µm and 2000 to 3000 µm to cover 

the whole range of depths in order for the results to be more reliable.  

It was possible to show that the small and compact cameras integrated with current 

smartphones can provide average texture depth results with as good as 100µm if 

compared with SPT. Therefore, software needs to be developed for the smartphone 

cameras to measure and characterize the road surface texture on a fully automated basis 

without requiring intervention from the users. Targets can be designed and placed with a 

known distance in order to ease the process of scaling the 3D surface into a usable 

engineer index or units.   

  Currently, the pothole areas are manually identified by an operator using the 

exported point clouds generated from the 3D automated tools. An automated method 

needs to be developed in order to integrate the generated 3D surface model with image 

analysis data to detect, extract, and measure surface distresses. Firstly, image analysis 

technique should be used to identify roughly the video image frames with pothole 

existence, and then the successive frames with potholes should be extracted and used for 

point cloud generation using AGISoft StereoScan. The extraction and measurement of 

the defect would be then based on an automated basis without the needs for operator 

intervention.  

It could be shown that new feature matching algorithms such as SIFT and SURF, 

with outlier rejection such as RANSAC, can reach the accuracy of the traditional cross-

correlation commonly used in current photogrammetric softwares such as LPS. It is 

recommended to use these new feature matching algorithms (SIFT and SURF) instead of 

the traditional area based matching used in traditional photogrammetric softwares such 

as LPS, Australis, and Photomodeler. This might help to increase the productivity, 

reduce the processing time and automate the relative-orientation process. A merge 

between computer vision and photogrammetry is also required in order to take advantage 

of both.      

Finally, it was shown that a semi-automatic approach was achieved in both crack 

and pothole detection, in which man intervention was required in some processing 

stages. However, it was discussed that full automation of the processes would be possible 
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through linking different algorithms and tools in to one main program. It is 

recommended in the future to develop a main interface program using Matlab to connect 

between the different stages of procedures. It may also possible to speed up the 

processing time of the crack and pothole detection programmes through translating it to 

C code using the C++ library.   
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APPENDICES 

Appendix A: Transformation parameters from CC aligning tool 
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Appendix B: Samples of data set images collected using Nikon 

D100  
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Appendix C: different size of Structuring Elements effect  

C1: Effect of increasing size of structuring elements

 
C2: A sample of disk shape structuring element=5 
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Appendix D: Samples for different edge operations testing    
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Appendix E: Minimum Average Cost Path Intensity  
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Appendix F: Frame Geo-tagging results  

F01:MVI-4513 
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F02:MVI-4514-B 
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F05:MVI-4523-A 
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F08: MVI-4541 
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F09: MVI-4542 
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Appendix G: Results of Triangulation 

G1: Estimated accuracy results of Australis  
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G2: Estimated accuracy results of PMS  

 
G3: Estimated accuracy results of LPS (pixels) 
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Appendix H: Results of Accuracies for Bump Test 

H1: LPS triangulation results         

 

 

 

 

 

                           

Using 11 GCPs (0.025m plan, 0.04m Z), Interior orientation parameters fixed, 

Jacobsen’s simple model 
H2: GCPs accuracy and quality from Photomodeler  

GCPs X precision Y precision Z precision 

1 0.00093 0.000924 0.003267 

2 0.001282 0.001268 0.00154 

3 0.001319 0.001299 0.001753 
4 0.001073 0.001062 0.001166 

5 0.001065 0.001056 0.001173 
6 0.001029 0.001023 0.00118 

7 0.000783 0.000784 0.000884 
8 0.001473 0.001438 0.001908 

9 0.001491 0.001474 0.001808 

10 0.001221 0.00119 0.001401 
11 0.001068 0.001043 0.001161 

12 0.000824 0.000827 0.001022 
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H3: Output report from AGISoft StereoScan   
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Appendix I: Canon 5D Camera calibration report   

 

Focal Length Point Marking Residuals 

Value: 29.293731 mm Overall RMS: 0.093 pixels 

Deviation: Focal: 0.001 mm Maximum: 0.381 pixels 

Xp - principal point x Point 281 on Photo 2 

Value: 18.094230 mm Minimum: 0.067 pixels 

Deviation: Xp: 6.2e-004 mm Point 63 on Photo 6 

Yp - principal point y Maximum RMS: 0.236 pixels 

Value: 12.191040 mm Point 281 

Deviation: Yp: 7.2e-004 mm Minimum RMS: 0.045 pixels 

Fw - format width Point 63 

Value: 36.503023 mm Point Tightness 

Deviation: Fw: 1.9e-004 mm Maximum: 0.0003 m 

Fh - format height Point 281 

Value: 24.333200 mm Minimum: 5.3e-005 m 

K1 - radial distortion 1 Point 63 

Value: 1.340e-004 Point Precisions 

Deviation: K1: 2.4e-007 Overall RMS Vector Length: 2.95e-005 m 

K2 - radial distortion 2 Maximum Vector Length: 3.74e-005 m 

Value: -1.555e-007 Point 281 

Deviation: K2: 7.7e-010 Minimum Vector Length: 2.87e-005 m 

K3 - radial distortion 3 Point 73 

Value: 0.000e+000 Maximum X: 1.65e-005 m 

P1 - decentering distortion 1 Maximum Y: 1.69e-005 m 

Value: -1.876e-005 Maximum Z: 2.92e-005 m 

Deviation: P1: 2.6e-007 Minimum X: 1.1e-005 m 

P2 - decentering distortion 2 Minimum Y: 1.09e-005 m 

Value: 1.892e-005 Minimum Z: 2.36e-005 m 

Deviation: P2: 2.6e-007 
 

 
 




