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ABSTRACT 

The argument on the effectiveness of the Generalized Transfer Function (GTF) technique is 

currently ongoing. To resolve the dispute in experiment based studies, this thesis aims to use a well-

validated numerical model as an alternative to experimental studies to test the validity of the GTF 

method. This thesis divides the work into four main inter-disciplinary areas of research.  

Development of an existing non-linear one-dimensional (1-D) mathematical model that can 

comprehensively compute the propagation of blood in the human arterial network. The model 

developed was divided into large arteries and small arteries. The large arteries are based on 

physiological data while the small arteries were based on statistical relations. Instead of the more 

commonly used Windkessel model, the structured tree outflow boundary condition was used as the 

computation of pressure and flow in the small arteries provides a more dynamic and physiological 

boundary condition to the large arteries.  

A multi-level validation of the developed model was undertaken in order to demonstrate the 

robustness and the applicability of the developed 1-D model to real life situations. The model was 

used to simulate pulse wave propagation along a single vessel (aorta) and the results compared 

against in-vivo data. The in-vivo systolic and diastolic pressures were 16.8 ± 0.4 kPa and 9.5 ± 0.4 

kPa while the model estimated were 16.89 kPa and 10.94 kPa, respectively, showing excellent 

agreement. Simulation of pulse wave propagation in the entire arterial tree was then undertaken with 

two different geometries, from a 3-D model and physiological data. Comparison against the 3-D 

model showed a maximum percentage error of 2.5% while the excellent waveform amplitude and 

shape comparison with in-vivo data, confirmed the validity of the 1-D model. 

The multi-level validation confirmed the robustness of the 1-D model to accurately simulate pulse 

propagation under varying geometric, elastic and fluid properties.  This allowed the use of the 1-D 

model to create a database that recorded several different cardiovascular responses due to several 
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physiological and pathological conditions. The physiological conditions simulated were the 

variation in cardiac output and the variation in arterial stiffness while the pathological conditions 

simulated were abdominal aortic aneurysm and the coarctation of aorta. All physiological and 

pathological conditions agreed well with literature and were extremely well captured by the 1-D 

model.  

Half of the pressure response database was used to estimate the GTFs between the ascending aorta 

and four different peripheral anatomical locations namely, the carotid artery, brachial artery, radial 

artery and the femoral artery. The estimated GTFs were multiplied with pulse pressures (PP) from 

the respective locations of the remaining half of the database and the yielding GTF-estimated 

Central Aortic Pressure (CAP) were statistically compared with the known, model-generated CAP 

to evaluate the validity of the GTF technique. The Pearson’s r  values for the carotid, brachial, radial 

and femoral artery generated CAP of 0.991, 0.981, 0.978 and 0.873 (p < 0.001),  0.996, 0.996, 0.993 

and 0.971 (p < 0.001) and 0.999, 1.000, 1.000 and 0.934 (p < 0.001) for the systolic, diastolic and 

mean pressures, respectively, showed that the GTF technique is capable of estimating the CAP with 

extremely high accuracy. These results were further cemented by carrying out a Bland-Altman 

analysis as well as a linear regression which demonstrate that the GTF estimated CAP are highly 

correlated with model-generated CAP with the carotid artery being the most preferable and femoral 

artery being the least preferable site of PP measurement.  

This thesis, in addition to comprehensively validating the 1-D model with structured tree outflow 

condition and demonstrating disease modelling, uses an alternative to experimental studies, which 

is free from human and calibration errors, to exhibit the accuracy of the GTF technique.  The 

pressure response database created using the validated 1-D model for 194 physiological and 

pathological conditions introduces variations in PP as well as CAP. The GTFs estimated using half 

of these responses agrees well with GTFs found in literature and when put to test for CAP estimation 

using the remaining half of the responses, performs extremely well. 
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CHAPTER 1  

INTRODUCTION 

1.1  Background  

As per the World Health Organization, cardiovascular diseases are the leading cause of death 

globally [1]. Hypertension is now identified as the single most important cause of mortality 

worldwide [2] and by 2025 it is predicted that 1.56 billion people will suffer from hypertension [3]. 

30% of all deaths annually are due to cardiovascular diseases; the actual number of deaths lies 

somewhere between 17 to 18 million. This percentage is expected to increase in the future due to 

the lifestyle of the modern age. Indeed, the number of deaths annually due to cardiovascular diseases 

is estimated to be an alarming 23.6 million in 2030 [1], [4].  

In clinical diagnoses, a very important physiological index is blood pressure. The central aortic 

pressure (blood pressure at the aortic root) represents the systemic after load on the heart. However, 

measuring the central aortic pressure in routine clinical practice is tedious, expensive and invasive 

and has to be approximated using blood pressures measured non-invasively from peripheral 

locations. Some tools and techniques used include sphygmomanometer (Blood pressure cuff), 

carotid artery tonometry [5]–[7] and brachial oscillometry [8]–[11]. There has been an increased 

interest in measuring the relationship between the central aortic pressure and peripheral pressure 

(for instance brachial, radial, carotid, femoral arteries) due to systolic hypertension being recognized 

as a risk factor for cardiovascular diseases [12]–[16].  

Previous research has shown that the waveforms of peripherally measured pressure and central 

aortic pressures are significantly different in regards to the wave shapes as well as amplitude [17] 

and these differences are intensified in more critical, diseased conditions. This makes peripheral 

pressure an unreliable measurement of blood pressure in clinical diagnosis. It has been demonstrated 
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that the peripheral systolic pressure when compared to central aortic pressure is 11-22 mmHg higher 

[13]. It has also been shown that a number of blood pressure-lowering drugs have similar effects on 

the peripheral pressure but very different effects on the central aortic pressure [18], implying that 

central aortic pressure is a better indicator  physiologically for diagnosing diseases [19]–[21] making 

it’s measurement an absolute must. 

1.2 Problem statement 

In view of the findings described in the previous section, a statistics-based technique called the 

generalized transfer function (GTF) technique was proposed [13], [22]. This population-based 

technique allows estimation of central aortic pressure from peripheral pressure measured non-

invasively. Multiple central and peripheral pressures undergo a Fourier analysis and a generalized 

transfer function is calculated. The central pressures of individual patients can be estimated by 

simply multiplying this GTF with the peripheral pressures of these patients in the frequency domain 

and converting the result back to the time domain [23]–[28]. The patent to this technique [29] is in 

use of SphygmoCor® system (SphygmoCor®,AtCor Medical, West Ryde, NSW, Australia), a 

commercially available blood pressure measurement equipment. However, there has been some 

debate  that the general transfer function varies from person-to-person due to a variety of 

physiological differences, making the general transfer function an unreliable tool of choice in such 

analyses as it lacks adaptability [30]–[32]. Cloud et al. [31] undertook a study with 30 patients and 

found that the SphygmoCor® system underestimated the systolic central aortic pressure and 

overestimated the diastolic central aortic pressure by 13.3mmHg and 11.5mmHg, respectively. To 

put things into perspective, a blood pressure measuring equipment should not have a standard 

deviation greater than ±8mmHg [33]. Consequently, individualized transfer functions (ITF) were 

introduced to account for individual differences amongst patients [34]–[37], and although 

promising, they still lack complete personalization.   
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With the on-going disagreement between the research groups for and against the GTF technique, it 

is essential to use an independent method to test the GTF technique, which also serves as an 

alternative to experimental studies. Numerical modeling provides such an alternative research 

method. Pressure changes in arteries can be more accurately analyzed by deriving and solving the 

mathematical equations that govern the pressure wave dynamics in the arteries [38]. This can serve 

as the judging tool to check the validity of the transfer function method. 

Numerical modeling has been used comprehensively, to investigate a diverse range of problems in 

the study of cardiovascular dynamics. Research has already been carried out using numerical 

modelling of the pulse wave propagation to study the changes in flow as it goes from the heart 

towards the peripheral arteries. Stergiopulos et al.[39] used peripheral pressure and velocity to 

model the pulse wave transmission effect in a vessel segment. Based on the reflection coefficient in 

the periphery and the time taken for pulse wave transmission, a transfer function was defined that 

relates the central and peripheral pressures. Since the simulation is carried out on a vessel segment, 

it does not provide information about pressure in other parts of the arterial network.  Segers et al. 

[40] and Thore et al. [41] used transmission line models to simulate pulse wave dynamics. Another 

study conducted by Jiang et al [42] extends the electrical circuits analogy to the entire human arterial 

network to predict the central aortic pressure. Although the entire network is simulated, the analogy 

to electrical circuits does not represent wave propagation effects satisfactorily. Additionally, 

important parameters such as Young’s modulus, vascular thickness and cross sectional areas of the 

arteries are assumed constant, which is not the case in physiological conditions.  

All these studies use simplified models that either do not take into consideration material, geometric 

and flow non-linearities such as inhomogeneous vessel wall elasticity, vessel tapering etc. or 

consider stand-alone simulation cases. To our knowledge, a full-scale cardiovascular model that 

incorporates non-linearities as well, has not been used to systematically evaluate the GTF technique.  
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1.3 Aims and objectives 

The aim of this work is to conduct an independent evaluation of the GTF technique using a 

comprehensive numerical model that is well validated and can accurately represent blood flow in 

the arterial network under physiological conditions while incorporating non-linearities of blood flow 

propagation. The motivation behind using such a model is twofold. Firstly, to improve the evaluation 

of the GTF technique by using a comprehensive model rather than an isolated or simplified model. 

Secondly, majority of the previous researches conducted to evaluate the GTF technique were 

experimental, raising questions about the accuracy of the equipment used as well as the errors arising 

due to calibration procedures. This model provides an alternative to experimental studies for said 

evaluation.  

In order to achieve these aims, the work here was broken down into specific objectives which are 

as follows: 

 Mathematical Modelling (Chapter 4)- Developing a one-dimensional fluid dynamical 

model that takes into consideration realistic features of blood flow propagation such as 

vessel tapering, vessel branching, inhomogeneous vessel wall elasticity etc. 

 Numerical validation (Chapter 5) - Carrying out a systematic, multi-level validation against 

data published in literature to increase the reliability of the code and its capability to 

simulate various clinical conditions. 

 Parametric study (Chapter 6) - Conducting a parametric study of the one-dimensional 

model to simulate various physiological and pathological conditions, to create a pressure 

response data.  

 GTF estimation (Chapter 7) - Carrying out a Fourier analysis on half of the central and 

peripheral pressure response data to estimate transfer functions between ascending aorta 

and multiple physiological peripheral locations.  
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 CAP reconstruction (Chapter 7) - Using the estimated GTFs to estimate central aortic 

waveforms from multiple peripheral locations for the remaining half of the pressure 

response database. 

 Validity test (Chapter 7) - Carrying out a statistical analysis on the GTF estimated central 

aortic waveforms to test the validity of the GTF technique.  

1.4 Research scope 

The scope of this study is restricted to the deployment of a 1-D numerical model to simulate the 

propagation of blood flow in large systemic arteries. Downstream boundary conditions are defined 

using a structured tree outflow condition proposed by Olufsen et al [43]. This boundary condition 

solves linearized governing equations of blood flow in the tree of small arteries and finds the 

impedance at the root of this tree. This impedance then provides a physiological boundary condition 

at the distal ends of large arteries and represents the resistance to flow due to downstream 

vasculature. Blood is assumed as a Newtonian fluid throughout the study, which is justified in the 

large arteries as will be seen in later sections. The geometry of large systemic arteries is based on 

physiological data. Since the physiological geometric properties of capillaries and small arteries is 

hard to measure, the small arteries are based on statistical relations while the model does not 

encompass capillaries. Additionally, the blood in capillaries can not be assumed Newtonian. 

Considering that modelling capillaries and the entire arterial system is not computationally feasible 

and detailed data on their properties is still largely unknown, the model has to be truncated at some 

point which justifies the use of the given boundary condition. More importantly, the main aim of 

this work is to test the validity of the GTF technique, which is used only in systemic arteries to 

estimate CAP from peripheral pressures in large systemic arteries. Hence, the venous system, 

pulmonary circulation and cerebral circulations are not investigated/ included in this study. The GTF 

technique despite being a population based statistical technique is evaluated by using a virtual 



1-6 

 

database created using the 1-D model, the implication being that actual human patient is not used. 

However, a primary objective is to use an alternative to experimental studies to test the validity of 

the GTF technique, in doing so the inherent errors of experimental studies are removed.  

1.5 Organization of thesis 

This work is organized into eight chapters and two appendices. A summary is provided at the end 

of each chapter, reiterating the key points from each chapter. The outline of these chapters is as 

follows: 

Chapter 1: Introduction 

This chapter provides a formal background and general introduction to the problem and how the 

problem is addressed via specific aims and objectives. 

Chapter 2:  Physiological basis and mechanical idealization of the cardiovascular system 

This chapter provides a review of the anatomy and physiology of blood flow in the human 

cardiovascular system  

Chapter 3: Numerical modelling of the cardiovascular system: Review of one-dimensional 

modelling 

This chapter provides a critical review of the literature available on the numerical modelling of the 

cardiovascular system with special focus on 1-D modelling.  

Chapter 4: Mathematical model of the arterial network 

This chapter provides the details of the mathematical formulation used to simulate blood flow in the 

large and small arteries and modelling its interaction with the elastic walls of vessels. It also 

describes the boundary conditions used to extend the governing equations to an entire arterial 

network and the numerical method used to solve the equations. 
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Chapter 5: One-dimensional model validation 

This chapter provides an in-depth, multi-level validation of the 1-D model. The model results are 

compared with models published in literature as well as in-vivo data found in literature.  

Chapter 6: Physiological and pathological pressure response database 

This chapter provides the details of the parameters used for the 1-D model parametric study to 

simulate various physiological and pathological conditions. The results from each study are then 

used to create a pressure response database.  

Chapter 7: Generalized Transfer Function 

This chapter provides details of how the pressure response database is used to estimate GTFs 

between the central aortic waveforms and waveforms from multiple peripheral anatomical locations. 

The estimated GTFs are then used to estimate CAP waveforms. A statistical analysis is then carried 

out to test the validity of the GTF technique.  

Chapter 8: Conclusions and perspectives 

This chapter summarizes the achievements of this work and discusses the limitation of this study 

while recommending potential future work.  

Appendix A Fluid and Elastic parameters for the 1-D model 

Provides the parameters used to simulate various models. 

Appendix B Work flow of 1-D model simulations  

Provides a pseudocode for the simulations carried out to setup the arterial network. 

Appendix C Matlab routines for data extraction and GTF estimation 
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Provides the Matlab programs used to generate estimated central aortic waveforms via the GTF 

technique. 
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CHAPTER 2  

PHYSIOLOGICAL BASIS AND MECHANICAL 

IDEALIZATION OF THE CARDIOVASCULAR SYSTEM 

2.1 Introduction 

This chapter details the physiological description of the cardiovascular system. The workings of the 

heart (2.2.1) are explained followed by an elaboration of the hierarchy of blood vessels (2.2.3). 2.2.4 

pays special attention to the systemic arteries of the circulation, as these are the arteries of interest 

in this work. 2.2.5 presents the structure of blood and justifies the assumptions about blood. 2.3 

gives an overview of the propagation of blood and how the fluid and the structures interact during 

blood propagation. Finally, 2.4 summarizes the entire chapter and presents the research gap in a 

concise manner.    

2.2 Cardiovascular system 

At its core, the cardiovascular system consists of a cardiac pump (the heart), circulatory network 

(blood vessels) and the fluid (blood). This system is responsible for the transport of nutrients and 

Oxygen among the several organs of the mammalian body through the convective transport of blood. 

This convective transport of blood has two main purposes; the first is to allow for the diffusive 

transport of oxygen and other nutrients to the tissues and the second is to remove carbon dioxide 

and harmful waste products from the tissues. These waste products are a result of cell metabolism. 

Due to the large diffusional resistance, this interchange of nutrients would not be possible without 

the convective transport [44]. The cardiovascular system can be further divided into two systems; 

namely the systemic circulation and pulmonary circulation, with the heart being at the helm of both 

these systems. (Fig. 2-1) 
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The systemic circulation starts at the left ventricle and ends at the right atrium, while the pulmonary 

circulation originates at the right ventricle and ends at the left atrium. To fully comprehend these 

systems, it is first necessary to understand the basic functioning of the heart.  

 

Fig. 2-1: Schematic of the cardiovascular system. Red arrows represent vessels carrying oxygenated 

blood while blue arrows represent vessels carrying deoxygenated blood Taken from [45]. 

 

2.2.1 The heart  

The heart, essentially, consists of two synchronized pumps that are parallel to each other (the left 

and the right heart). Both of them comprise of two chambers each; the upper ones are called the atria 

(right and left atrium) while the lower chambers are called the ventricles (right and left ventricle).  
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At the end of each chamber, there is a valve. These valves regulate blood flow and ensure that the 

blood only flows in one direction [46]. All four chambers and their corresponding valves can be 

seen in Fig. 2-2 

Blood enters the right atrium (RA) via the Venae Cavae. This is the point of entry of the blood into 

the heart. The blood that enters the right atrium is deoxygenated blood, this is the blood that has 

transported its oxygen to the organs and is returning to the heart with the carbon dioxide it removed 

from these organs. From the right atrium, the blood goes into the right ventricle (RV) and from this 

point on, the pulmonary circulation begins. The objective of the pulmonary circulation is to transport 

deoxygenated blood to the lung tissues, where a gaseous exchange takes place; the blood picks up 

oxygen and the lungs remove the carbon dioxide from the blood. This gaseous exchange is known 

as respiration. Once the blood is oxygenated, it is transported to the left atrium (LA) via the 

pulmonary vein. The oxygenated blood is now ready to be transported from the left atrium to the 

rest of the body thus concluding the pulmonary circulation.  

 

Fig. 2-2: Schematic representation of the heart and the circulatory system [44]. 
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The blood flows from the left atrium to the left ventricle (LV) and at this point, the systemic 

circulation is put into motion. The blood flows from the left ventricle into the aorta and the rest of 

the body. The objective of the systemic circulation is to transport oxygen rich blood to all the organs 

and tissues. When the blood reaches an organ, it exchanges oxygen with carbon dioxide. Once the 

gaseous exchange with all the organs is complete, the deoxygenated blood goes back in the right 

atrium and the whole process starts again. This concludes one cardiac cycle or one cycle of systemic 

and pulmonary circulation.   

Fig. 2-3 is a diagrammatic representation of the route taken by the blood in one cardiac cycle.  

 

Fig. 2-3: Block diagram illustration of the route taken by the blood. 

2.2.2 Cardiac Cycle 

A single cardiac cycle comprises of two phases namely systole and diastole. When the blood is in 

the left atrium, the heart muscles contract causing the blood to flow from the left atrium to the left 

ventricle.  Once the blood flows into the left ventricle, the valve between the left atrium and 

ventricle, the mitral valve, closes so that none of the blood flows back into the left atrium. 

Consequently, the pressure in the left ventricle increases until a certain pressure level called the 

aortic pressure is reached. At this pressure, the valve between the left ventricle and ascending aorta, 

the aortic valve, opens and a large amount of blood is ejected into the aorta at a high flow rate. This 

is known as the systolic phase or simply systole.  
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When the pressure in the left ventricle falls below the aortic pressure, the aortic valve shuts and 

remains shut until the next cardiac cycle. This is known as the diastolic phase or simply diastole. 

During diastole, the heart muscles relax and the blood moves from the atrium into the ventricular 

cavity.  

The systole and diastole alternate and repeat periodically. This is what produces the “lub” “dub” 

sounds. The lub being systole and dub being diastole.  It is the periodic repetition of a high outflow 

and no outflow which in turn, leads to flow and pressure pulsations in the arteries [47]. Under resting 

conditions, systole constitutes one-third of the cardiac cycle (about 0.25s) while diastole contributes 

to the remaining two-thirds (about 0.55s) [48]. The systolic and diastolic pressure are the 

measurements taken in a routine blood pressure checkup. This cardiac cycle is better presented with 

the aid of Fig. 2-4.   

 

 

Fig. 2-4: A cardiac cycle representing the Systolic, Diastolic and Mean Pressures in the Aorta [49]. 
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Diastole takes approximately twice the time as systole. In a healthy human being, the cardiac cycle 

lasts about 0.8s, which equates to 75 beats per minute. In each stroke, the left ventricle ejects 

approximately 70ml of blood into the ascending aorta [50]. This is known as the stroke volume 

(SV). 

Based on these values, two important terms can be defined now; the heart rate (HR), which is the 

number of times the heart beats per minute and the cardiac output (CO), which is the amount of 

blood pumped by the heart per minute. It has already been established that the heart rate is 75 

beats/min which yields a cardiac output of 5 l/min (CO=SV x HR) [50]. 

2.2.3 Venous system 

The organization of systemic and pulmonary circulation is very similar, in that they both have an 

arterial part (arteries) and a venous part (veins). The arteries (with the exception of pulmonary 

artery) take oxygenated blood from the heart to the tissues while the veins (with the exception of 

pulmonary vein) take deoxygenated blood away from the tissues and into the heart.   

Branches and networks of vessels constitute and aid the cardiovascular system.  The size of these 

vessels and their geometrical properties vary [51]. The aorta is the largest artery. In order to 

understand how the nutrient exchange between the blood and the organ/tissue takes place, it is 

necessary to understand the hierarchy of these blood vessels. 

The large arteries branch repeatedly into smaller arteries that continue to branch further into even 

smaller vessels called arterioles. The arterioles branch into even smaller vessels called capillaries. 

Due to the branching of the arterial network, the number of vessels increases away from the heart, 

therefore the collective cross-sectional area increases downstream. The branching of the arterial 

network ensures the flow of blood is slowed down. Additionally, vascular resistance increases 

downstream to aid the slowing down of blood flow. 
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Capillaries are the smallest of the blood vessels and they merge into venules. The venules converge 

into small veins that ultimately converge into the larger vessels called veins.  

These vessels can be divided into the arterial system, capillary system and venous system. Table 

2-1 summarizes the functions of the different types of systems and the vessels in them [48], [52].   

Table 2-1: Different Vessels and their functions. 

System Vessels Function 

Arterial system Arteries 
Distribute oxygenated blood throughout body and 

maintain blood pressure between heartbeats 

Capillary system 

Arterioles Transport blood to capillary beds from arteries 

Capillaries Diffuse oxygen and nutrients to cells of the organ 

Venules Collect deoxygenated blood from capillaries 

Venous system Veins Return deoxygenated blood to the heart 

 

For the exchange of nutrients and oxygen to occur, the blood first goes from arteries to arterioles 

and from there on into a network of capillaries that cover all organs/tissues.  The arterioles act as 

control valves between the arteries and capillaries. The purpose of these control valves is to regulate 

the amount of blood flowing into the capillaries in response to the needs of a certain organ [47]. 

This is why the arterioles are theoretically resistance vessels [53], consequently they exhibit the 

largest pressure drop. 

The permeability of the capillary walls is enough to let small molecules diffuse across. Through the 

walls of the capillaries the oxygen, hormones and nutrients from the blood are diffused to the 

interstitial fluid of the cells of the organ while removing carbon dioxide and other waste products 

of cell metabolism. The blood that now contains the waste products and carbon dioxide is collected 

by the venules from the capillaries and is transported back to the heart via larger veins. The larger 
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veins take the deoxygenated blood to the heart and the pulmonary circulation begins. Fig. 2-5 shows 

how the exchange of nutrients takes place with a tissue.  

 

 

Fig. 2-5: The exchange of nutrients between the capillaries and the tissues. The artery brings oxygen 

and nutrient rich blood and to the capillaries. The vein takes waste products from the capillaries and 

transports them back to the heart [54]. 

 

It is abundantly clear that all the vessels need to be well adapted in order to carry out their function. 

This is the reason why the vessels in the arterial, capillary and venous system have varying 

geometrical and mechanical properties.  

From Fig. 2-6, it can be seen that the vessels of the capillary system have the smallest diameter Fig. 

2-6 (A) and the greatest cross-sectional areas Fig. 2-6 (B) to help in diffusing the nutrients and 

oxygen to the surrounding tissue. The large number of vessels in the capillary system Fig. 2-6 (E) 

is because these vessels need to be distributed in a structured way so that they can cover the tissue 
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evenly by minimizing their volume and maximizing their surface, again to facilitate the diffusion of 

oxygen and nutrients [55].  

 

Fig. 2-6: Rough estimates of the diameter, length and number of vessels, their total cross-section 

and volume and the pressure in the vascular system [44]. 

 

As mentioned before, the oxygenated blood ejected by the heart is transported to the organs via the 

arterial system. Naturally, the pressure in the systemic arteries is much higher as compared to the 

rest of the veins and capillaries.  The higher pressure in larger arteries can be seen in the Fig. 2-6 

(F) Lastly from the figure Fig. 2-6 (D) it can be seen that the large veins have the highest blood 

volume. This implies that veins, in addition to transporting deoxygenated blood back to the heart, 
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also act as a reservoir. Due to their size and abundance, veins and venules contain about two-thirds 

of the blood at any given instance.  

2.2.4 Systemic Arteries and their elastic properties 

Systemic arteries are the ones responsible for delivering oxygenated blood to all the organs. Larger 

arteries, smaller arteries and arterioles constitute the systemic arteries by forming a network of 

branching vessels (Fig. 2-8).  

Arterial walls consist of three layers (Fig. 2-7): 

The innermost layer is known as the tunica intima. This layer is composed of a thin basal lamina, a 

sub endothelial layer and a layer of endothelial cells. Smooth muscle cells, fibroblasts and collagen 

constitute the sub endothelial layer.  The circular cavity in which the blood flows is called the lumen. 

The purpose of this layer is to ensure plasma does not seep in through the wall of the vessel [52]. 

The middle layer is called the tunica media. This layer consists of smooth muscle and elastic (elastin 

and collagen) and is responsible for the ability to contract and the mechanical strength of the vessel 

[52].  

The strong outer covering is known as the tunica adventitia. This layer consists of fibro elastic 

tissues. This layer regulates the local flow by regulating the local resistance [52].   

Elastin is the primary factor in determining the dynamics of blood flow. It allows temporary blood 

storage in the large arteries in each heartbeat by expanding to accommodate the surge of blood from 

the heart. While expanding, elastin stores the mechanical energy. During diastole, when the heart 

stops ejecting blood, this stored mechanical energy is used to overcome the downstream resistance 

to keep the blood flowing in the smaller vessels while maintaining the blood pressure above the 

diastolic pressure (80 mmHg).   On the other hand, collagen is not as distensible as elastin and its 

purpose is to ensure the vessels do not expand excessively when the blood pressures increases.    
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Each layer of the arteries comprises of cells that serve different roles in order to accommodate the 

flow of blood in different parts of the body. The variation in the proportion of the three layers is 

dependent on the location and size of the vessel. Due to the varying amounts of elastic fibres and 

muscles, arteries are able to expand and contract to accommodate the pulsation of blood 

propagation. This complex composition of arterial walls  make its elastic properties non-linear [56]. 

The behavior of the arteries is not purely elastic, in fact, arteries exhibit some viscoelastic behavior 

[47]. However, the effects of viscoelasticity under physiological conditions are small [57]. 

 

 

Fig. 2-7: Cross section of an artery [58]. 
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Fig. 2-8: The systemic arteries [59]. 

The structure of the systemic arteries changes gradually from larger arteries to the smaller arterioles. 

According to Wheater et al, [60] as the arteries become smaller, the elastic tissues decrease, while 

the smooth muscles become more prominent. The implication being that elastin and collagen 

decrease downstream. Due to this, the arteries become stiffer (their Young’s modulus increases) as 
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the distance from the heart increases. These changes in stiffness regulate blood flow and are an 

important aspect to be considered while modelling blood flow.  

Aging leads to a decrease in elastin overtime and an increase in collagen build up. Therefore, 

collagen contributes more to the elastic properties of vessels with aging. As mentioned earlier, 

collagen is not as distensible as elastin (approximately 100 times lesser) hence with aging; vessels 

tend to become stiffer, a process known as arteriosclerosis. [61] 

2.2.5 Mechano-physical properties of the blood 

Blood is a fluid in which various nutrients, cells, waste materials and hormones are dissolved. All 

these are exchanged with various tissues in the body as the blood flows through the venous system, 

as discussed earlier. The fluid part of blood is plasma.  Blood has been consistently recognized as a 

non-Newtonian fluid because, although, plasma is Newtonian [62], red blood cells are suspended in 

plasma making blood non-Newtonian. This implies that the viscosity is dependent on shear rate  

[63], [64]. However, for flow in larger arteries (systemic circulation), the diameters of large arteries 

is large compared to the suspended particles in blood. Additionally, the viscosity is independent of 

the shear rates because the shear rates are high in larger vessels [47]. This makes the non-Newtonian 

behavior of blood inconsequential in larger vessels.  Hence, blood is treated as a Newtonian fluid in 

numerical modelling of systemic arteries. According to Pedley, [65] blood can be approximated as 

a homogeneous and incompressible fluid1 as 90% of plasma is water and the nutrients and cells in 

the plasma are much smaller than the diameter of the arteries.  Usually, the density of blood is taken 

as 𝜌 = 1055 𝐾𝑔/𝑚3 while the viscosity is 𝜇 = 4.0 𝑚𝑃𝑎𝑠. 

                                                           
1 Note: here that these assumptions are valid for large systematic arteries, which will be the only ones, being 

considered in this work.  
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2.3 Pressure and flow propagation of the blood  

As seen in earlier sections, flow waves are generated due to the ejection of blood from the left 

ventricle and the interaction of this ejection with the flexible (distensible) arterial walls.  Since blood 

is assumed as an incompressible fluid, it implies that the arteries have to be elastic to accommodate 

the flow of increased blood volume caused when the heart muscles contract. Due to the distension 

of the vessels, the pressure and flow of blood within the artery keeps changing. The vessels expand 

when blood pressure increases during systole and store elastic energy, and contract when they 

release the absorbed elastic energy during diastole when the pressure decreases. This contraction 

and expansion initiates a continuous and regular beating (pulse). These variations can be studied as 

flow and pressure waves running forwards and backwards. Backward waves are generated due to 

reflections of forward running waves. (Fig. 2-9) The speed of propagation is such that the pulse 

wave has ample time to travel to the peripheral arterioles from the aorta and be reflected back to the 

heart multiple times during a heartbeat.  

 

Fig. 2-9: Pressure at two different sites in the aorta [44]. 

It will be shown in future sections that the velocity of the pulse wave depends on the stiffness (Elastic 

Modulus or Young’s modulus) of the arterial wall. The cross sectional area of the vessel walls 
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depends on the pressure difference over the wall [44]. Due to the nonlinear anisotropic properties 

of the arterial walls, the relation between area and pressure is also nonlinear.  

The elasticity of the arteries also causes the pressure and flow to be smooth in the arterial system. 

Had these arteries been rigid, the blood flow rate into and out of the system would be equal hence 

during diastole the blood flow would be zero. This smoothing mechanism was first described by 

Reverend Stephen Hales (1677-1761) and is called the Windkessel effect [66]. Hales compared the 

arterial system and the heart to a medieval fire cart. In this comparison, the air-filled chamber is 

analogous to the compliance of the arteries and the fire hose nozzle represents the peripheral 

resistance (Fig. 2-10). 

 

 

Fig. 2-10: The Windkessel concept. Large arteries are analogous to the air chamber (acts as the 

Windkessel) [66]. 
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 When the blood reaches the capillaries, the flow is slow, smooth and fairly constant and this allows 

for efficient transference of nutrients and waste products to and fro the blood and the tissue. This is 

a result of the Windkessel effect.  

The shape and amplitude of pressure and flow waveforms varies throughout the arterial network. 

Fig. 2-11 shows the waveforms of pressure and flow velocity of a canine under normal conditions.  

 

Fig. 2-11: Pressure waveforms (top) and velocity waveforms (bottom) in various arteries of a 

canine. The systolic pressure increases away from the heart while the amplitude of the velocity 

waves decreases  [17]. 

 

From Fig. 2-11, it can be seen that during systole, the blood pressure increases and declines sharply 

until diastole. During diastole, the pressure rises forming a second peak, which forms the dicrotic 

notch, again followed by a smooth decrease in pressure. This second pressure peak disappears 

farther away from the heart.  
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The systolic pressure in large arteries increases as the distance from the heart increases however 

mean pressure decreases gradually. This increase in systolic pressure is due to wave reflections that 

occur because of the tapering and bifurcating nature of the arteries and most importantly due to the 

impedances at the terminal ends of the arteries where they branch into smaller arteries and arterioles 

[67]. Wave reflections also occur due to the shutting of the aortic valve at the end of diastole as well 

as due to structural changes of the vessel walls. The reflected waves superimpose on the pressure 

waves, hence increasing the systolic pressure.  

It can also be seen that the amplitude and mean value of the velocity wave decreases downstream. 

This decrease is due to flow division at the branching points, increase in the impedance to flow, a 

decrease in reverse flow and an increase in width [63]. 

2.4 Summary  

In this chapter, a summary of the workings of the cardiovascular system is provided, with special 

attention to systemic arteries, as these are the only arteries that are simulated using the one-

dimensional model in later sections.  

Key points from this chapter are as follows:  

 The cardiovascular system can be further divided into two systems; namely the systemic 

circulation and pulmonary circulation. The objective of the pulmonary circulation is to 

transport deoxygenated blood from the body to the lung tissues, where a gaseous exchange 

takes place; the blood picks up oxygen and the lungs remove the carbon dioxide from the 

blood. This oxygenated blood taken back to the heart and is now ready to be transported to 

all the organs. The objective of the systemic circulation is to transport oxygen rich blood 

to all the organs and tissues. 

 Pressure in the systemic circulation is much higher as compared to pulmonary circulation. 
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 A single cardiac cycle comprises of two phases namely systole and diastole. Systole occurs 

when the heart muscles contract to pump blood into the large arteries causing the “lub” 

sound. Diastole occurs when the heart muscles relax and the aortic valve shuts causing the 

“dub” sound. Pressure in large arteries is highest during systole and lowest during diastole. 

The systolic and diastolic pressure are the measurements taken in a routine blood pressure 

checkup.  In a healthy human being, the cardiac cycle lasts about 0.8s, which equates to 75 

beats per minute. In each stroke, the left ventricle ejects approximately 70ml of blood into 

the ascending aorta. 

 The arteries (with the exception of pulmonary artery) take oxygenated blood from the heart 

to the tissues while the veins (with the exception of pulmonary vein) take deoxygenated 

blood away from the tissues and into the heart. Capillaries allow the diffusion of oxygen 

and nutrient to the tissue and take carbon dioxide and other waste products away from the 

tissue. The size of these vessels and their geometrical properties vary in order to adapt to 

the pulsating flow. Changes include thicknesses, stiffness, and inlet and outlet radii of the 

vessels to name a few. 

 Large arteries branch into smaller arteries and arterioles, which further branch into the 

smallest vessels capillaries. The capillaries merge into venules and ultimately large veins. 

 The constituents of blood are plasma, various nutrients, cells, waste materials and 

hormones. For flow in larger arteries (systemic circulation), blood is considered a 

Newtonian fluid, homogeneous and incompressible fluid with density, 𝜌 = 1050 −

1055 𝐾𝑔/𝑚3 while the viscosity is 𝜇 = 4.0 − 5.0 𝑚𝑃𝑎𝑠. 

 Arteries have non-linear elastic behavior due to variation in their properties. This variation 

is necessary to provide a smoothing mechanism to the flow of blood as blood is 

incompressible.  
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 The systolic pressure in large arteries increases as the distance from the heart increases due 

to wave reflections that occur because of the tapering of vessels, bifurcations and 

impedances at the terminal ends of the arteries.  

 Amplitude and mean velocity/flow wave downstream. This decrease is due to flow division 

at the branching points, increase in the impedance to flow, a decrease in reverse flow and 

an increase in width.
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CHAPTER 3  

NUMERICAL MODELLING OF THE CARDIOVASCULAR 

SYSTEM: REVIEW OF ONE-DIMENSIONAL MODELLING 

3.1 Introduction 

The research into the cardiovascular system has come a long way over the years. An important 

research area in this field is the propagation of the pulse wave in the arterial network and how this 

propagation is affected by various factors ranging from the tapering of arteries to the reflections 

caused to the flow due to branching of the arteries. Even with state of the art technology, 

hemodynamical ailments of the arterial network are challenging to evaluate using clinical studies.     

Given the advancements in computational methods, numerical modelling of the cardiovascular 

system provides a viable alternative to invasive clinical studies.   

In this chapter, 3.2 provides a brief historical review of the main influences on the understanding of 

the cardiovascular system and how this understanding has evolved into mathematical models and 

numerical techniques. 3.3 justifies the choice of the 1-D model used to simulate blood propagation 

in this work followed by the types of the 1-D models currently available (3.4) and the applications 

of these models (3.5). 3.6, 3.7 justify and describe the choice of solution methods and boundary 

conditions. Finally, Section 3.9 summarizes the key take aways from this chapter. 

3.2 Brief historical review 

Although not a prerequisite in understanding the underlying physics of blood propagation, the 

knowledge of its historical background does provide insight into how the concept of blood 

propagation has evolved over a period that spans from the Common Era to the present day.  
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The first known writing which corrected some of the wrong understandings of blood propagation of 

the time came from a Roman Physician, Galen. (129 – 210 AD). He found that the arteries contained 

blood, rather than air which was the common belief at the time.  Additionally, he believed that there 

were two systems at work in the body, a venous system that provides nutrition and the arterial system 

that was the source of heat for the body [68], [69]. Like Greek physician Erasistratus (304 -250 BC), 

Galen falsely believed the blood originated in the Liver and was consumed by the organs instead of 

circulating periodically.  He also put forth the inaccurate idea that the heart has two chambers.  

Most of these beliefs were amazingly unquestioned for the next 1500 years. The first physician to 

actually oppose these beliefs was Ibn An-Nafis (1210 – 1288 AD) who was also responsible for the 

first ever description of pulmonary circulation [70]. Leonardo Da Vinci (1452 – 1519 AD) took 

great interest in human anatomy and produced numerous drawings of the visible anatomical 

features. In drawings of the heart, he used his knowledge of engineering to understand how the heart 

functions and correctly described the closure mechanism of the Aortic valve. Not long after, Andreas 

Vesalius (1514 – 1564) wrote one of the most influential books on human anatomy, “De Humani 

Corporis Fabrica” (On the Fabric of the Human Body) which questioned Galen’s universally 

accepted views.  

Gradually, Galen’s views started becoming less popular until William Harvey (1578-1657) 

completely deconstructed the incorrect views of blood circulation in his book “De motu Cordis et 

Sanguinis in Animalibius” (Movement of the heart and blood in Animals, an anatomical essay) [71]. 

Harvey deduced that the blood flows from the heart to the rest of the body and instead of the organs 

consuming the blood; the blood goes back to the heart. He put forth the idea that the pulsatile 

behavior of blood flow through the arterial network was due to the contraction of the heart. He also 

realized that the variations of the pulsation in an unhealthy body was due to the anomalies in the 

function of the heart and blood vessels which directly leads to the establishment of the effect wave 
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reflection has on the arterial pulse. Harvey was limited by the technology of his time, which did not 

allow him to conclusively discover capillaries. Nevertheless, he still deduced the existence of 

capillaries until Marcello Malpighi (1628 – 1694), Jacob van Swammerdam (1637-1680) and 

Anthony van Leeuwenhoek (1632 -1723) finally discovered them. They used a microscope to 

describe the capillary networks that connect the arterioles and venules and explained the shape of 

the red blood cells [69]. Actual measurement of pressure in the circulation system started with 

experiments of Reverend Stephen Hales (1677-1761) who is often credited with the first ever blood 

pressure measurement. Hales compared the arterial system and the heart to a medieval fire cart. In 

this comparison, the air-filled chamber is analogous to the compliance of the arteries and the fire 

hose nozzle represents the peripheral resistance. This idea came to be known as the Windkessel 

effect. 

Through his experiments, Hales showed that the greatest resistance to blood flow came from 

arterioles and capillaries [63]. A major contribution was made by Leonhart Euler (1707-1783), who 

derived the general equations of mass and momentum conservation of an inviscid fluid.  Euler was 

the first one to apply these equations to blood flow but failed to find a solution to these equations 

because he did not identify the wave like nature of blood flow [72]. Euler’s close friend, Daniel 

Bernoulli (1700-1782), although known for being a prominent mathematician, used his 

multidisciplinary knowledge to come up with the Bernoulli equation. This equation directly led to 

the conversion of pressure to potential and kinetic energy [73]. The first person to describe the wave 

like nature of blood flow scientifically was Thomas Young (1773 – 1829). Young is often described 

as “The last man who knew everything” [74]. He contributed immensely to the study of elasticity, 

with the modulus of elasticity (Young’s modulus) being a direct consequence of his work. His work 

in hemodynamics led him to propose a relationship between propagation velocity of the arterial 

pulse and elastic properties of the vessel walls [75]. Moens [76] and Korteweg [77] later formally 

formulated an equation that related propagation velocity and Young’s modulus. The Moens 
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Korteweg equation combined with the one-dimensional Navier-Stokes equations, which resemble 

the equations derived by Euler, form a mathematical model of pulse wave propagation. Bernhard 

Riemann (1826 – 1866) introduced a method in 1860, [78] that was vital in solving this mathematical 

model. The method is known as the method of characteristics, which finds characteristics, or curves 

along which the partial differential equation is reduced to an ordinary differential equation.  

Refererring back to Euler’s model, the non-linear equations he proposed become analogous to 

electrical transmission line equations once they are linearized. As a result, several studies were 

conducted in the frequency domain [17], [79]. Noordergraaf  and Westerhof [80] constructed the 

model for the large systemic human arteries, which, since the advent of computers have been 

improved upon by various researchers such as Avolio [81], Olufsen et al [82], Sherwin et al [83], 

and Stergiopulos [15] among others.  

3.3  Choice of model 

As it was seen earlier, in the cardiovascular system the blood vessels have a structure that resembles 

that of a tree, the vessels start off with larger vessels (arteries) and branch into smaller vessels 

(arterioles, capillaries and venules). While this branching occurs, not only does the size of the 

vessels change but other properties change as well. For instance, the diameters of the vessels 

decrease progressively while the area of the lumen along with the stiffness of the vessels increases 

downstream. The varying properties and the bifurcating nature of the arterial network, has an effect 

on the heart loading and coronary perfusion [38]. This in turn effects the aortic blood pressure 

waveform as well as the relationship of this waveform to peripheral blood pressure waveforms. 

These effects are yet to be fully investigated [84].  However, in-vivo and in-vitro studies to examine 

these factors are difficult, time consuming and costly to carry out. Therefore, numerical modelling 

offers an alternative to experimental studies as a non-invasive and feasible tool. Pressure changes in 

arteries can be more accurately analyzed by deriving and solving the mathematical equations that 
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govern the pressure wave dynamics in the arteries [38]. In most studies [15], [43], [82], [83], [85]–

[88], large arteries of the systemic circulation are solely simulated as the assumptions of blood 

propagation models are more applicable to large arteries. Additionally, the material properties and 

the geometric complexity of the smaller vessels are difficult to measure; hence, large arteries are 

simulated and truncated through various methods.       

Numerous modelling techniques (zero-dimensional, one-dimensional, two-dimensional or three-

dimensional models) have been put forth to study several physiological phenomenon. Each of these 

techniques has its own merits; however, the accuracy and aims of the research are the prerequisite 

to selecting which kind of model should be used to simulate propagation of pulse wave in the arterial 

network i.e., whether to use a zero-dimensional, one-dimensional, two-dimensional or three-

dimensional model. 

Zero-dimensional (0-D) models or lumped parameter models describe blood propagation using two 

ordinary differential equations (ODEs) and an algebraic equation. In 0-D models, the variable 

properties; pressure, flow and volume are assumed uniform. The two ODEs (conservation of mass 

and momentum) are only dependent on time. Since 0-D models do not depend on spatial variable, 

they do not consider spatial wave propagation effects. 0-D models are most suitable for evaluating 

hemodynamical interactions among organs and providing outflow boundary conditions for one-

dimensional [89] and three- dimensional [90] models.  

One-dimensional (1-D) models simulate blood propagation in the axial direction. Axial symmetry 

of the geometry is assumed. The 1-D models give rise to two non-linear hyperbolic partial 

differential equations (PDEs) that describe the conservation of mass and momentum (Navier-Stokes 

equations) which are dependent on time and axial distance. A third equilibrium equation is used to 

close the system. This third equation often referred to as the constitutive equation considers the 

mechanical properties of the arterial wall. In 1-D models radial velocity is neglected and local 
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pressure at cross sections is assumed constant. 1-D models are used to study wave propagation 

effects and are widely used for clinical applications (3.5). 

Two-dimensional (2-D) models are the least used models out of all the modelling techniques. 

Similar to 1-D models, two partial differential equations (PDEs) describe the conservation of mass 

and momentum and a third equilibrium equation is used to close the system. In 2-D models, axial 

and radial velocities are computed while circumferential velocity is neglected. The non-linear 

convective term is ignored and the solutions are computed in the frequency domain [64].  2-D 

models are most commonly used as an improved boundary condition to three-dimensional models 

for specific applications [38]. 

Three-dimensional (3-D) models describe blood propagation based on the full Navier-Stokes 

equations and the system of hyperbolic PDEs is closed off by an equilibrium equation. 3-D models 

compute complex flow patterns in any small region of the system [38]. 3-D models are 

computationally, the most expensive models and need several input parameters. They are most 

suitable for applications that consider flow in specific segments of the arterial network.  

Fig. 3-1 shows a diagrammatic illustration of the different scales of models used. 

Zero-dimensional models are suitable if the general distribution of the pressure, flow and volume of 

blood needs to be inspected. However, for a more specific research, higher models are used where 

these flow variables are assumed to be non-uniform. Another important difference between zero-

dimensional and higher models is that zero-dimensional models do not include the nonlinear 

convective acceleration term whereas other models do [38]. 

On the other hand, two-dimensional and three-dimensional models give more details about the 

distribution of variable properties in a small segment of the vascular system. For instance, these 

models can be used to reveal the meticulous pressure and flow distribution in a specific section of a 
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certain vessel. In order to simulate the entire systemic circulation, which is extremely vast, 

modelling the entire arterial tree using two-dimensional and three-dimensional models is 

impractical.  Additionally, the exact geometrical and material properties of the entire arterial tree 

are still unknown.  

Two-dimensional and three-dimensional modelling are not only costly but the computational times 

of simulations with these models for a few arteries takes far too long [91]–[94]. When using a one-

dimensional model in comparison to a three-dimensional model, the computation cost reduces by at 

least 1000 times [95]. According to Alastruey et al., [85] a simulation of one cardiac cycle for 

approximately 100 segments takes less than a minute. A detailed comparison of one-dimensional 

and three-dimensional formulations can be found in [95]. 

The various models used to simulate the cardiovascular system are shown in Fig. 3-1. 

 

 

Fig. 3-1: Various Cardiovascular computational models [38]. 
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Unlike higher order models, one-dimensional models cannot simulate intricate details of blood flow 

such as flow separation or vortex formation. However, in-vivo measurements [82], [87], [96]–[103], 

in-vitro experiments [85], [104]–[108] as well as three-dimensionally modelled numerical data [86], 

[95] demonstrate that one-dimensional models can successfully capture the main features of 

pressure, flow and area waveforms in the systemic circulation’s arterial network.  

Canic and Kim [109] investigated the characteristics of the governing equations of blood 

propagation. They demonstrated that the wavelengths of the pressure and flow waves from the heart 

are larger than the vessel diameters. Hence it is rational to consider the flow quasi one-dimensional 

[80], [110]–[112].  

Table 3-1 summarizes the comparison between the various degrees of models used to simulate the 

cardiovascular system.  

Table 3-1: General comparison of modelling techniques for cardiovascular dynamics studies 

Model 

Assumed 

distribution 

of variable 

properties. 

Types of Governing 

equations 
Applications of model 

0-D Uniform 

 2 ODE’s 

(Conservation of mass 

and momentum) 

 

 Algebraic equilibrium 

equation (relates 

volume to Pressure) 

Suitable for inspection of overall 

pressure distribution, flow and 

volume of blood. Can, at times, 

provide boundary conditions for 3-

D model 

1-D 
Non-

Uniform 

 2 PDE’s (Conservation 

of mass and 

momentum) 

 

 Equilibrium Equations 

Represents wave 

reflection/transmission effect 

which  allows for better boundary 

conditions for 3-D models 
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2-D 
Non-

Uniform 

 2 PDE’s (Conservation 

of mass and 

momentum) 

 Equilibrium Equations 

Represents radial variation of 

velocity in an axisymmetric tube 

allows for even improved  

boundary conditions for 3-D 

models but to a certain limit off 

applicability 

3-D 
Non-

Uniform 

 2 PDE’s (Conservation 

of mass and 

momentum) 

 Equilibrium Equations 

Compute complex flow patterns in 

any small region of the system. 

 

As seen in Chapter 2, the systemic circulation is constituted by a large network of branching vessels. 

This makes high dimensional modelling of the arterial network tedious, expensive and simply 

unfeasible.  Keeping in mind that the consideration of flow being quasi one-dimensional is justified, 

a 1-D model is sufficient to model the entire arterial tree, as it can easily represent the changes in 

the variable properties along the entire tree while being economically feasible at the same time. 

Additionally, it can easily take non-linearities such as vessel tapering, vessel branching and wave 

propagation effects into consideration making it the optimum model for this particular work.   

3.4 Types of one-dimensional models 

A number of one-dimensional models for pulse wave propagation in the arterial network have been 

developed previously for various applications. [55], [87], [110], [113]–[127]. The equations 

governing these models are alike, with differences arising in the types of methods used to solve 

these equations, the boundary conditions applied to these models, whether non-linear effects are 

considered and if they are, which non-linear effects are considered [38].   
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Modelling pulse wave propagation in an artery using a one-dimensional model is simulated as a 

fluid-structure interaction problem between the flow of blood and the displacement of the arterial 

wall. The axisymmetric form of the one-dimensional incompressible continuity and momentum 

equations (Navier-Stokes equations) govern the propagation of blood in a vessel (Section 4.2.1) 

while the motion of the arterial wall is governed by the equation of equilibrium. (Equation (4.4))  

Although intricate models exist [120], the much simpler linear or non-linear constitutive equations 

are most commonly used to describe the pressure/cross-sectional area relationship [55], [83], [87], 

[110], [113]–[119], [121]–[128].  

Details of other pressure-area relations used in previous research can be found here [86]. 

Other variations include the study of vessel tapering [83], [114], [116], [117], [122], [123] as well 

as vessel collapse [113], [116], [125]. The methods to include effects of blood viscosity also bring 

about slight variations in the model. Majority of authors assume Poiseuille flow (over a given cross 

section, the fully developed flow has a parabolic velocity profile) [123], [129]–[131]. Variations of 

these approximations can be found here [15], [111], [112]. There are some other models which 

simulate with the assumption that the blood is non-Newtonian, again introducing a slight variation 

in the formulation [132], [133]. 

The one-dimensional model used in this work is the one developed by Olufsen [43]. The propagation 

of blood in the systemic arteries is described by the Navier-Stokes equations. The equations are 

integrated over the cross-sectional area of an arterial segment to produce the one-dimensional 

model. Each vessel is modelled as an impermeable axisymmetric compliant cylinder and the blood 

is assumed as an incompressible, homogeneous and Newtonian fluid. 
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3.5 Where is the one-dimensional model used? 

One-dimensional models have been used for blood propagation in arterial segments [110], [121], 

[127] as well as entire arterial networks [43], [63], [82], [85], [87], [118], [119] as well as blood 

flow in the pulmonary circulation [53]. A variety of models have been used to study diseased vessels 

such as ones with stenosis or bypass grafts  [96], [114], [120], [122]–[124], [134]. Other studies 

have looked into animal arterial networks [116], [135], [136]. Wave Intensity Analysis (WIA), 

developed by Parker and Jones [121], helps in understanding forward and backward pulse 

propagation and is a direct application of one-dimensional models. WIA has been applied  to the 

left ventricle [137], [138], systemic arteries [139], coronary vessels [140] as well as  pulmonary 

arteries [141], [142] to study pulse wave propagation. One-dimensional models, as pointed out 

earlier, are also used as boundary conditions for three-dimensional models [91], [117], [143], [144]. 

3.6 Solution methods  

In order to solve the system of non-linear hyperbolic equations that govern the one-dimensional 

propagation of the pulse wave, several analytical and numerical methods have been used. 

Method of characteristics was used by Schaaf [111], Anliker et al [145], Stergiopulos [15], Parker 

and Jones [121], Bodley [127], Wang and Parker [118], Wang et al. [119], Stettler et al [146] and  

Steeter et al. [110]. In the method of characteristics, the governing equations (continuity and 

momentum) are transformed from partial differential equations to ordinary differential equations 

along the direction of certain curves called characteristic curves (or lines). These characteristic 

curves correspond to the two characteristic variables (Riemann invariants). Once they have been 

transformed, these ordinary differential equations can be easily solved.   

Finite difference methods (FDM) have also been used to discretize and solve the governing 

equations [15], [47], [87], [104], [113], [120], [125], [128], [130], [147], [148].  In FDM, the 

derivatives of the governing equations form the basis of the discretization. Each of these derivatives 
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is substituted with an approximate difference formula. Details of the finite difference method can 

be found in [149]–[152]. Within the finite difference method, the Lax-Wendroff scheme [82], [113], 

[125], [153]–[155] and MacCormack scheme [104], [125], [156]–[158]   have been used to 

discretize the governing equations.  

Recently, Finite volume methods (FVM)  have also been used to discretize and solve the governing 

equations [159], [160].  In FVM, the integrals of the governing equations form the basis of the 

discretization. The governing equations are first discretized into finite volumes after which they are 

solved in each of these finite volumes. For details about the finite volume method see [161]–[163]. 

Within the finite volume methods, the Godunov scheme is the most popularly used [116], [135]  

scheme to discretize the governing equations.  

Finite element methods (FEM) have also been a popular method to discretize the governing 

equations. In FEM, a piecewise representation of the solution in terms of specified basis functions 

forms the basis of the discretization. The domain where the computations is carried out is broken 

down into smaller domains or finite elements, see [164]–[166] for details on the finite element 

method. Comparison of the three methods is difficult, primarily due to the many variations of all 

three methods. FVM and FDM provide discrete solutions, while FEM provides a continuous 

solution. Generally, it is believed that FVM and FDM are easier to implement when compared to 

FEM however, FEM can handle irregular boundaries with relative ease when compared to FDM and 

FVM.  Within FEM, the Galerkin scheme [83], [85], [86], [99], [100], [122], [123], [167], [168], 

discontinuous Galerkin scheme [88], [114], [115], [134], Taylor-Galerkin scheme [114], [147], 

Galerkin Least Squares [129] and Yoshida projection scheme [117] have been used amongst others 

to discretize and solve the governing equations.  

Other solution methods include hybrids of one-dimensional models with Womersley flow (classic 

linear analytical solution) [80], [81], [169], [170]. These methods do not take into account the effects 
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of non-linearities. [114], [127], [131]. Details of these methods are beyond the scope this work but 

can be found here, [83], [171]. 

A comparative study was conducted by Boileau et al. [156] to compare the most popularly used 

numerical schemes for 1-D modelling. The models used were the finite difference MacCormack 

method, finite volume method, finite element methods and a simplified trapezium method. All the 

models demonstrated excellent abilities to capture the important features of blood flow in large 

arteries.  

Since, all these methods show good ability to capture the important aspects of blood flow 

propagation the choice of solution method chosen for this work is an explicit FDM schemes, more 

specifically the two-step Lax-Wendroff method. This method is easy to implement in order to 

discretize and solve the governing equations. 

3.7 Boundary conditions 

When modelling pulse wave propagation using a one-dimensional model in an arterial network or 

an artery (for simplicity), three boundary conditions have to be imposed, one at the proximal end, 

one at the distal end and one at the bifurcating end [73]. The one on the proximal end is a rather 

simple boundary condition where either pressure or flow (derived from experimental data or 

literature) can be specified. The one on the distal end, however, needs deliberation. 

In various arterial tree one-dimensional models [81], [114], [129], [172], the aorta has been used as 

the point for the initial boundary condition. A pressure wave is either imposed as the initial condition 

[114] or a derived function of flow rate is specified [79], [123], [173], [174]. This makes the 

formulation simpler as the values are prescribed instead of modelling the aortic valve. Additionally, 

reverse flow into the left ventricle is not considered.  
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Vessel branching is another boundary condition that needs consideration. A number of researchers 

have applied conservation of flow (i.e. the flow in the parent vessel must be equal to the sum of 

flows in the daughter vessels) and continuity of pressure (the pressure in the parent vessel is equal 

to the pressures in each of the daughter vessels) [55], [123], [134]. Some researchers, applied wave 

reflection coefficients to estimate changes in flow and pressure [87] [118]. 

Flow characteristics in the smaller vessels is not the same as that in the larger arteries as was pointed 

out earlier. The fluid properties as well as the material properties change which effects the 

characteristics of flow. This, in addition to the arterial tree’s branching structure means there is a 

necessity to truncate the model. Moreover, modelling each vessel from large arteries all the way to 

the capillaries is simply not feasible. This need for truncation of the one-dimensional model gives 

rise to boundary conditions at the distal ends of the vessels. Anything beyond the truncation point 

(i.e. smaller vessels) needs to be consolidated.  

Like the inlet condition, various researchers have prescribed a combination of pressure and flow 

rate [110], [113], [116], [121], [125], [127], [134] for the distal boundary condition. 

In an attempt to introduce boundary conditions that represent physiological downstream conditions, 

some researchers used purely resistive loads  [80], [81], [111], [114], [115], [118], [122]. However, 

there is no method available yet, that allows for the calculation of the values used for these loads. It 

has also been recognized that this method does not take into consideration the compliance of the 

vessels [130]. This results in a reflection coefficient, which depends on frequency (inversely 

proportional to any given harmonic of the pressure change). 

Another way to represent the distal end of vessels is to derive a model based on the impedance at 

the terminal end of a vessel. This is done by using a three-element Windkessel model [15], [87], 

[120], [123], [129], [130] as the boundary condition. The Windkessel model characterizes the 

compliance as well as the resistance of the vessels by using an electric analog model.  This model 
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immensely improves the distal representation. However, this model cannot capture wave 

propagation effects [55] which causes undulations in the input impedance. A solution to this problem 

is to directly prescribe the wave reflection coefficient at the terminals [114], [118], [124]  or  to use 

the structured tree outlet boundary condition [47], [55], [82], [175], [176] in which the impedance 

at the terminal is estimated by the linear form of the Navier-Stokes equations. In the structured tree 

outlet boundary condition model, the small arteries are joined to the distal ends of the large arteries 

and modelled as binary asymmetric structured trees. Similar to large arteries, the equations that 

govern blood propagation in small arteries can be derived from the axisymmetric form of Navier-

Stokes equations. However viscous effects are more prominent in small arteries as compared to 

inertial effects hence the Navier-Stokes equations can be linearized by neglecting the non-linear 

terms [82]. Once the equations are derived [82] they predict the flow 𝑄(𝑥, 𝜔) and pressure 𝑃(𝑥, 𝜔) 

in the frequency domain. A no-slip boundary condition is used to link the equations together. A 

convolution integral of the impedance and flow rate computes the pressure at each outlet providing 

a physiological outflow condition for the large arteries. This boundary condition can be used for 

one-dimensional, two-dimensional and three-dimensional models [89], [177], [178] and captures 

wave propagation effects well, however applying this type of boundary condition to a non-linear 

model is tedious [86] and the computation is costly especially for 3-D models [179]. 

For this work, the aorta has been used as the point for the initial boundary condition. A derived 

function of flow rate is specified to describe the ejection profile. This makes the formulation simpler 

as the values are prescribed instead of modelling the aortic valve.  

At bifurcations, it is assumed that there is no leakage, therefore, the flow going out of the parent 

vessel must be equal to the sum of the flow going into the two daughter vessels. At the bifurcation 

points, albeit minor, some energy is lost. This loss of energy can be accounted for by modelling it 

in terms of loss coefficients, however, these coefficients cannot be estimated analytically in a one-
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dimensional model [82]. A viable approximation of this energy loss is assuming continuity of 

pressure [15] at the bifurcation. 

For the outflow condition, the structured tree outlet condition is used.  Small arteries are joined to 

the terminal ends of the large arteries. These small arteries and arterioles are modelled as a structured 

tree and a semi analytical approach is used to express the root impedance of this tree. This in turn 

provides the outflow condition for the large arteries [43]. The need to use such a boundary condition 

lies in its advantage over lumped parameter models; structured tree outflow condition is a 

physiologically based boundary condition and may correctly account for the effect of the 

downstream vasculature on wave propagation in the arterial network.  

3.8 Arterial segments 

For one-dimensional modelling, the arterial network is broken down into smaller arterial sections 

that are connected to each other. The number of arterial segments used in one-dimensional modeling 

has increased in recent years from 29 to over 4 million [47], [81], [86], [87], [132], [172], [180]. 

Inherently, the greater the amount of arterial sections a network is broken down into, the more 

information required for the input parameters.  

 

Fig. 3-2:  A bifurcating artery 
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For instance, if a simple bifurcating artery is broken down into three segments, that is, the parent 

vessel and the two daughter vessels it bifurcates into (Fig. 3-2), parameters are required for each of 

these segments. The parameters include (but are not limited to) the lengths of each of these vessels 

(𝐿1, 𝐿2, 𝐿3), their inlet and outlet radii, the vessel thickness’ (ℎ1, ℎ2, ℎ3), the stiffness of each of 

these vessels, the inlet boundary condition (𝐼. 𝐶. ) for the parent vessel and the outlet boundary 

condition (𝐵. 𝐶. ) for the daughter vessels.  

If a multi-branched model is being made for the arterial network, it will have multiple bifurcations 

and with each generation of bifurcation, the input parameters needed increases. Moreover, these 

input parameters vary from person to person, making patient-specific multi branched modelling 

extremely tedious. A method is needed to minimize the arterial segments the network is broken 

down into, so that lesser input parameters are needed for patient-specific modelling [2]. Olufsen’s 

structured tree boundary condition [47] provides a viable option for this purpose and can be taken 

further to incorporate patient specific models.  

3.9 Summary  

In this chapter, an examination  is provided of the various existing one-dimensional models, their 

differences, the methods with which their governing equations are discretized and solved as well as 

the treatment of boundary conditions in these models.   

Key points from this chapter are as follows:  

 Owing to the lack of wide scale experimental studies, the limitations associated with it and 

the immense advances in computational technology, in recent years, numerical modelling 

of the cardiovascular system has gained popularity as a viable alternative.  
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 Since 0-D models do not depend on spatial variable, they do not consider spatial wave 

propagation effects. For a comprehensive model, wave propagation effects need to be 

considered, hence higher order models need to be used. 

 1-D models as compared to higher dimensional models provide a feasible and efficient 

means to study the dynamics of pulse wave propagation in order to increase the 

comprehension of circulatory physiology.  

 In a 1-D model, a system of hyperbolic PDEs (axisymmetric Navier-Stokes equations) and 

a state equation to close the system are used to describe flow of a fluid in a compliant 

vessel. 

 Various 1-D models are available based on the solution methods used, boundary conditions 

applied, consideration of geometrical features such as tapering  and whether non-linearities 

are included or not. This work uses a comprehensive model, hence non-linearities, vessel 

tapering, vessel branching, etc. have to be included.   

 In order to solve the system the governing equations several methods are available such as 

FDM, FVM, FEM, Method of characteristics, Spectral methods. Literature demonstrates 

that all these methods show good ability to capture the important aspects of blood flow 

propagation. Explicit FDM schemes are easy to implement, therefore for this work an FDM 

scheme (Lax-Wendroff method) is used to discretize and solve the governing equations.  

 For this work, the aorta has been used as the point for the initial boundary condition. A 

derived function of flow rate is specified to describe the ejection profile. 

 At bifurcations, it is assumed that there is no leakage pressure continuity is assumed. 

 For the outflow condition of large arteries, the structured tree outlet condition is used as it 

a physiologically based boundary condition and correctly accounts for the effect of the 

downstream vasculature on wave propagation in the arterial network
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CHAPTER 4  

MATHEMATICAL MODEL OF THE ARTERIAL NETWORK  

4.1 Introduction 

The one-dimensional model used in this thesis is the one developed by Olufsen [43]. The 

propagation of blood in the systemic arteries is described by the incompressible axisymmetric 

Navier-Stokes equations. The equations are integrated over the cross-sectional area of an arterial 

segment to produce the one-dimensional model. The blood flow is modelled in a bifurcating binary 

tree of 24 vessels where each vessel is modelled as an impermeable axisymmetric compliant 

cylinder and the blood is assumed as an incompressible, homogeneous and Newtonian fluid with 

density, 𝜌 and viscosity, 𝜇. The geometry of the arterial tree is based on the paper by Olufsen [82] 

and imitates the geometry of physiological arteries (Table 2-1).  This model permits all the 

important aspects of physiological fluid-structure interaction to be captured accurately without 

increasing the computational load. Additionally, more vessels can be easily simulated but the arterial 

tree has been simplified for this study as the aim is to study the application of one-dimensional 

modelling rather than the blood flow itself.  

The model is divided into two parts; the large arteries and the small arteries. The large arteries 

originate at the heart and are truncated after a maximum of two generations. The small arteries and 

arterioles are joined at the distal ends of the large arteries and modelled as binary asymmetric 

structured trees. The small arteries do not imitate physiologically accurate data instead are based on 

statistical relationships estimated from literature [82]. 
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4.2 Large arteries 

The blood flow in large arteries is modelled as a bifurcating binary tree where each vessel is 

modelled as an impermeable axisymmetric compliant cylinder and the blood is assumed as an 

incompressible, homogeneous and Newtonian fluid with density, 𝜌 and viscosity, 𝜇. Each arterial 

segment is assumed to taper exponentially and the radius, 𝑟(𝑥) is modelled via the following 

equation  

 𝑟(𝑥) = 𝑟𝑖𝑛 𝑒
log(

𝑟𝑜𝑢𝑡
𝑟𝑖𝑛

)(
𝑥
𝐿

)
= 𝑟𝑖𝑛 (

𝑟𝑜𝑢𝑡

𝑟𝑖𝑛

)

𝑥
𝐿
 (4.1) 

Where, 𝑥 is the position along the vessel, 𝑟𝑖𝑛 is the inlet (or proximal) radius, 𝑟𝑜𝑢𝑡  is the outlet (or 

distal) radius of the vessel and 𝐿 is the length of the vessel [82]. For a complete description of the 

artery it is necessary to define 𝐿, 𝑟𝑖𝑛 and 𝑟𝑜𝑢𝑡 . 

The arterial wall described in section is known to be constituted by various layers to give it its elastic 

properties. The volume compliance 𝐶 can be mathematically modelled as follows: 

 𝐶 =
𝑑𝑉

𝑑𝑝
≈

3𝐴0𝐿

2

𝑟0

𝐸ℎ
 

(4.2) 

Where 𝑉 is the volume of the artery under consideration, 𝑝 is the pressure in this artery, 𝐴0 is the 

cross sectional area and it is equal to 𝜋𝑟0
2, 𝑟0 being the unstressed radius, 𝐿 is the length of the artery, 

𝐸 is the Young’s modulus and ℎ is the thickness of the arterial wall.  

The elastic properties in this study are evaluated using a relationship (Equation (4.3)) of the Young’s 

modulus, the radius of the artery and thickness of the arterial wall.  
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𝐸ℎ

𝑟0

= 𝑘1𝑒𝑘2𝑟0 + 𝑘3 

 

(4.3) 

Where 𝑘1 = 2 × 107 𝑔/𝑠2𝑐𝑚, 𝑘2 = −22.53 𝑐𝑚−1𝑎𝑛𝑑 𝑘3 = 8.65 × 105 𝑔/𝑠2𝑐𝑚.  A plot of this 

relationship as a function of 𝑟0 is fitted to the elastic data from Stergiopulos [15] demonstrating the 

relationship between the 𝐸, ℎ and 𝑟0.  

 

Fig.4-1: Graph of Eh/r0  as a function of r0 [47] 

A few discrepancies seen between the fitted and observed data are due to variable compliance 

throughout the arterial network. Some vessels with the same radii may have dissimilar compliance 

leading to different values of the relationship between 𝐸, ℎ and 𝑟0. 
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4.2.1 Fluid dynamics in large arteries 

Now that the geometrical and structural properties of large arteries have been considered, a fluid 

dynamical model can be built. The 1-D model uses three equation to describe the flow of blood in 

an artery. The continuity and momentum equations (Navier-Stokes equations) and a state equation. 

These equations describe the flow of blood in the axial direction in a compliant tube, the motion of 

the walls of the compliant tube and the fluid structure interaction of blood and the walls of the 

compliant tube. The distensible properties of the walls are incorporated in the state equation.   

In order to reduce the complex 3-D problem to a 1-D problem, the necessary assumptions are : 

 The flow is axisymmetric and the all the vessels modelled have a circular cross section. 

 If the velocity profile is known, it can be integrated over the cross sectional area to give a 

1-D model. It is assumed that the velocity profile of blood is parabolic across the cross-

sectional area of the vessel, therefore a relationship between the cross-sectional area of the 

vessel, 𝐴(𝑥, 𝑡) and pressure, 𝑝(𝑥, 𝑡) exerted on the arterial wall can be defined as the 

following:  

𝑝(𝑥, 𝑡) − 𝑝0 =
4

3

𝐸ℎ

𝑟0

(1 − √
𝐴0(𝑥)

𝐴(𝑥, 𝑡)
) (4.4) 

Where 𝑝0 is the diastolic (nominal) pressure, 𝑟0is the equilibrium radius (the radius when the 

pressure is nominal) 

Equations (4.5) and (4.6) are the continuity and momentum equations that govern the one-

dimensional flow in large arteries, respectively. A detailed derivation of these equations can be 

found here [47], [82], [181]  
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𝜕𝐴

𝜕𝑡
+

𝜕𝑞

𝜕𝑥
= 0 (4.5) 

𝜕𝑞

𝜕𝑡
+

𝜕

𝜕𝑥
(

𝑞2

𝐴
) +

𝐴

𝜌

𝜕𝑝

𝜕𝑥
= −

2𝜋𝑣 𝑟

𝛿

𝑞

𝐴
 (4.6) 

Where, 𝑣 is the kinematic viscosity (
𝜇

𝜌
) and 𝛿 is the thickness of the boundary layer. Equations 

(4.3)-(4.6) are used to calculate the pressure 𝑝(𝑥, 𝑡) and flow 𝑞(𝑥, 𝑡) in each arterial segment.  

4.2.2 Boundary conditions for large arteries 

The equations described in the previous section are applicable to a single artery. In order to extend 

the equations introduced in the previous section to an entire arterial network, three boundary 

conditions are imposed. Firstly, to the inlet of the arterial tree (inflow condition), secondly, at each 

vessel bifurcation in which a parent vessel bifurcates into two daughter vessels and lastly a boundary 

condition is imposed at the terminal ends of the tree (outflow condition).  

For the inflow condition, an ejection profile acquired through clinical measurement or derived 

using simple relationships of flow in the ascending aorta [82] is imposed. The ejection profile as a 

function of time is shown in Fig. 4-2, enforced using  

 𝑄𝑖𝑛(𝑡) = {  𝑄0sin (
πt

τ
)

0

                     𝑖𝑓 𝑡 < 𝜏
                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.7) 
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Fig. 4-2: Ejection profile used as the inflow boundary condition for the one-dimensional model. 

At the bifurcations (Fig. 4-3), it is assumed that there is no leakage, therefore, the flow going out of 

the parent vessel (𝑃) must be equal to the sum of the flow going into the two daughter vessels 

(𝑑1, 𝑑2) 

 𝑞𝑃(L, t) = 𝑞𝑑1
(0, t) + 𝑞𝑑2

(0, 𝑡) (4.8) 

At the bifurcation points, albeit minor, some energy is lost. This loss of energy can be accounted for 

by modelling it in terms of loss coefficients, however, these coefficients cannot be estimated 

analytically in a one-dimensional model [82]. A viable approximation of this energy loss is assuming 

continuity of pressure [15] at the bifurcation.  

 𝑝𝑃(L, t) = 𝑝𝑑1
(0, t) = 𝑝𝑑2

(0, t) (4.9) 
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Fig. 4-3: A bifurcating artery 

For the outflow condition, small arteries are joined to the terminal ends of the large arteries. These 

small arteries and arterioles are modelled as a structured tree and a semi analytical approach is used 

to express the root impedance of this tree. This in turn provides the outflow condition for the large 

arteries [43]. The frequency dependent impedance 𝑍(𝑥, 𝜔) determined from the model of small 

arteries is a relation between the Pressure 𝑃(𝑥, 𝜔) and flow 𝑄(𝑥, 𝜔) in the small arteries. This 

impedance (analogous to 𝑅 =
𝑉

𝐼
 in electrical circuits) is given as follows:  

 

𝑍(𝑥, 𝜔) =
𝑃(𝑥, 𝜔)

𝑄(𝑥, 𝜔)
 

 

(4.10) 

Where, 𝑃(𝑥, 𝜔) is analogous to voltage, 𝑉 and 𝑄(𝑥, 𝜔) is analogous to current, 𝐼 in electric circuits. 

Given that the inflow profile is periodic, it can be assumed that 𝑃(𝑥, 𝜔) and 𝑄(𝑥, 𝜔) can be 

expressed as a complex periodic Fourier series. This allows separate determination of any feature 

of the system response.  

𝒅𝟐 

𝑷 

𝒅𝟏 
𝑰𝒏𝒇𝒍𝒐𝒘 
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 𝑝(𝑥, 𝑡) = ∑ 𝑃(𝑥, 𝜔𝑘)𝑒𝑖𝜔𝑘𝑡  

∞

𝑘=−∞

 (4.11) 

 

 

𝑞(𝑥, 𝑡) = ∑ 𝑄(𝑥, 𝜔𝑘)𝑒𝑖𝜔𝑘𝑡

∞

𝑘=−∞

 

 

(4.12) 

Where, 𝜔𝑘 = 2𝜋𝑘/𝑇 is the angular frequency,  𝑃(𝑥, 𝜔𝑘) and 𝑄(𝑥, 𝜔𝑘) are 

𝑃(𝑥, 𝜔𝑘) =
1

𝑇
 ∫ 𝑝(𝑥, 𝑡)𝑒−𝑖𝜔𝑘𝑡𝑑𝑡

𝑇/2

−𝑇/2

 

𝑄(𝑥, 𝜔𝑘) =
1

𝑇
 ∫ 𝑞(𝑥, 𝑡)𝑒−𝑖𝜔𝑘𝑡𝑑𝑡

𝑇/2

−𝑇/2

 

The impedance calculated in the frequency domain 𝑍(𝑥, 𝜔)  can be transformed to the time domain 

representation of impedance 𝑧(𝑥, 𝑡) using an inverse Fourier transform. Further, a convolution 

theorem provides an analytical relation between 𝑝(𝑥, 𝑡) and 𝑞(𝑥, 𝑡) as follows: 

 𝑝(𝑥, 𝑡) = ∫ 𝑞(𝑥, 𝜏)𝑧(𝑥, 𝑡 − 𝜏)𝑑𝜏
𝑡

𝑡−𝑇

 (4.13) 

This analytical relation is the outflow boundary condition applied at the terminal of the large arteries.  

4.3 Small Arteries  

The small arteries and arterioles attached to the ends of the large arteries are modelled separately as 

binary asymmetric structured trees. Similar to large arteries, the equations that govern blood 

propagation in small arteries can be derived from the axisymmetric form of Navier-Stokes 



4-9 

 

equations. However viscous effects are more prominent in small arteries as compared to inertial 

effects hence the Navier-stokes equations can be linearized by neglecting the non-linear terms [82]. 

In the binary asymmetric structured tree model of small arteries, each of these small arteries keep 

bifurcating into generations of even smaller arteries until a specified radius, 𝑟𝑚𝑖𝑛  has been reached. 

The value of 𝑟𝑚𝑖𝑛  can be the same for all arteries or variable hence the generation of the structured 

tree vary. The radii of the daughter vessels, 𝑟𝑑1
𝑎𝑛𝑑 𝑟𝑑2

 are linearly scaled, relative to the radius of 

the parent vessel, 𝑟𝑃 via constants that characterize the asymmetry of the tree, 𝛼 𝑎𝑛𝑑 𝛽 (Fig. 4-4) 

 

Fig. 4-4: Diagrammatic description of the binary asymmetric tree model of the small arteries [47] 

 

The bifurcations of the small arteries in the structured tree are administered using a power law 

derived by Uylings [182] based on the principle of minimum work. This law assumes flow in 

cylindrical vessels.  

 𝑟𝑃
𝜉

= 𝑟𝑑1

𝜉
+ 𝑟𝑑2

𝜉
, (4.14) 

Where, 𝜉 = 3 is used for laminar flows and 𝜉 = 2.33 is used for turbulent flows. 
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In addition to the power law described in equation (4.14), creating an asymmetric tree requires two 

other relations. These are: 

 A ratio relating the cross sectional areas of the daughter vessels  to the parent vessel, 𝜂  

 𝜂 =
𝑟𝑑1

2 + 𝑟𝑑2

2

𝑟𝑃
2  (4.15) 

 

 A ratio relating the areas of the daughter vessels, 

 𝛾 =
𝑟𝑑1

𝑟𝑑2

 (4.16) 

The three equations, equations (4.14)-(4.16) describe the structured tree. The three relations, 

𝜉, 𝜂 and 𝛾 are related to each other by equation (4.17)  

 𝜂 =
1 + 𝛾

(1 + 𝛾𝜉/2)2/𝜉
 (4.17) 

Based on these equations, the scaling parameters 𝛼 and 𝛽 can now be defined as:  

 𝛼 =
𝑟𝑑1

𝑟𝑃

= (1 + 𝜂𝜉/2)
−1/𝜉

 (4.18) 

 

 𝛽 =
𝑟𝑑2

𝑟𝑃

= 𝛼√𝛾 (4.19) 

In order to find the values of 𝛼 and 𝛽, the values of 𝜉, 𝜂 and 𝛾 need to be defined.  The values used 

are 𝜉 = 2.76 , 𝜂 = 1.16  and 𝛾 = 0.41. These values are the most well documented values from 

literature [82], [182]–[185]. These values yield the values of the scaling parameters, 𝛼 𝑎𝑛𝑑 𝛽 as 0.9 

and 0.6, respectively.  
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Equations (4.14)-(4.19) and the values used in these equations set up the structured tree for the small 

arteries. One last equation is necessary for this structure, the length of each segment within the 

structured tree. In order to find the length of each vessel, a length to radius ratio has been used as 

follows:  

 𝑙𝑟𝑟 =
𝐿

𝑟0

 (4.20) 

Again, the value of the length to radius ratio is taken from literature as 𝑙𝑟𝑟 ≈ 50 [47], [82]. 

Once the equations are derived, they predict the flow 𝑄(𝑥, 𝜔) and pressure 𝑃(𝑥, 𝜔) in the frequency 

domain. A no-slip boundary condition is used to link the equations together.  

4.3.1 Fluid dynamics in small arteries 

As mentioned earlier, for the small arteries, a linear model is used to govern the propagation of 

blood. This method is based on Womersley’s linearized theory [79] which has been used in past by 

a number of researchers [65], [186], [187] to study flow in distensible vessels. More recently it has 

been used by Qureshi et al [53], Vaughan [188] and Clipp & Steele [189], [190].  For this work, the 

approach proposed by Olufsen [43], [47], [82] is used. In this work, a brief description of the 

equations governing blood flow in small vessels is provided. Detailed derivations of these equations 

can be found in [47]. 

Similar to large arteries, three equations describe changes in pressure, flow and area for small 

arteries. However, implementing a non-linear model in small vessels is not computationally feasible. 

Additionally, the non-linear model does not describe wall shear stresses well [47]. Therefore a few 

assumptions are made in order to  linearize the governing equations for small arteries as follows: 

 In small arteries, the viscous forces are more dominant as compared to inertial forces [47]. 
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 Small vessels have uniform cross sectional areas 𝐴0, that is, they do not taper along their 

lengths unlike the large arteries. 

 The flow in small vessels again is assumed to be axisymmetric. 

Owing to these assumptions, the axial momentum equation is reduced to equation (4.21) 

 
𝜕𝑢𝑥

𝜕𝑡
+

1

𝜌

𝜕𝑝

𝜕𝑥
=

𝑣

𝑟

𝜕

𝜕𝑟
 (𝑟

𝜕𝑢𝑥

𝜕𝑟
) (4.21) 

Where 𝑢𝑥 is the longitudinal flow velocity in a small artery. With the assumption that all variables 

are periodic with a time period 𝑇, using complex Fourier series, the pressure and flow can be stated 

in the frequency domain as   

  

𝑝(𝑥, 𝑡) = ∑ 𝑃(𝑥, 𝜔𝑘)𝑒𝑖𝜔𝑘𝑡  

∞

𝑘=−∞

 

𝑞(𝑥, 𝑡) = ∑ 𝑃(𝑥, 𝜔𝑘)𝑒𝑖𝜔𝑘𝑡  

∞

𝑘=−∞

= 2𝜋 ∫ 𝑢(𝑟, 𝑥, 𝑡)𝑟𝑑𝑟
𝑟0

0

 

Where,  

𝑢(𝑟, 𝑥, 𝑡) = ∑ 𝑈(𝑟, 𝑥, 𝜔𝑘)𝑒𝑖𝜔𝑘𝑡  

∞

𝑘=−∞

 

and 𝜔𝑘 = 2𝜋𝑘/𝑇 is the angular frequency,  𝑃(𝑥, 𝜔𝑘), 𝑄(𝑥, 𝜔𝑘) and  𝑈(𝑟, 𝑥, 𝜔𝑘)are 

𝑃(𝑥, 𝜔𝑘) =
1

𝑇
 ∫ 𝑝(𝑥, 𝑡)𝑒−𝑖𝜔𝑘𝑡𝑑𝑡

𝑇/2

−𝑇/2

 

𝑄(𝑥, 𝜔𝑘) =
1

𝑇
 ∫ 𝑞(𝑥, 𝑡)𝑒−𝑖𝜔𝑘𝑡𝑑𝑡

𝑇/2

−𝑇/2
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𝑈(𝑟, 𝑥, 𝜔𝑘) =
1

𝑇
 ∫ 𝑢(𝑟, 𝑥, 𝜔𝑘)𝑒−𝑖𝜔𝑘𝑡

𝑇
2

−
𝑇
2

 

Putting these back in equation (4.21) yields, 

 𝑖𝜔𝑈𝑥 +
1

𝜌

𝜕𝑃

𝜕𝑥
=

𝑣

𝑟

𝜕

𝜕𝑟
 (𝑟

𝜕𝑢𝑥

𝜕𝑟
) (4.22) 

With the assumption that the vessels do not taper, the solution to equation (4.22) is,  

𝑈𝑥 =
1

𝑖𝜔𝜌

𝜕𝑃

𝜕𝑥
 (1 −

𝐽0(𝑟𝑤0/𝑟0)

𝐽0(𝑤0)
) 

Where, 𝑤0
2 = 𝑖3𝑤2, and 𝑤2 =

𝑟0
2𝜔

𝑣
 is the squared Womersley number and 𝐽0(𝑥) is the Bessel 

function of the first kind and zero order. 

The volumetric flow rate as a function of velocity can be stated in the frequency domain as  

𝑄 = 2𝜋 ∫ 𝑈𝑥𝑟𝑑𝑟,
∞

0

 

Which yields the momentum equation of small arteries as the following: 

 𝑖𝜔𝑄 +
𝐴0

𝜌

𝜕𝑃

𝜕𝑥
(1 − 𝐹𝐽) = 0 (4.23) 

Where, 𝐹𝐽 =
2𝐽1(𝑤0)

𝑤0𝐽0(𝑤0)
 and 𝐽1(𝑥) is a Bessel function of the first kind and first order.  

The continuity equation for larger arteries is stated again  

𝜕𝑞

𝜕𝑥
+

𝜕𝐴

𝜕𝑡
= 0,  

Using the state equation (equation (4.4(4.3 )), the continuity equation can be re-written as  
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 𝐶
𝜕𝑝

𝜕𝑡
+

𝜕𝑞

𝜕𝑥
= 0 (4.24) 

Where C is the compliance or distensibilty of the vessel and can be written as,  

𝐶 =
𝜕𝐴

𝜕𝑝
=

3𝐴0𝑟0

2𝐸ℎ
(1 −

3𝑝𝑟0

4𝐸ℎ
)

−3

≈
3𝐴0𝑟0

2𝐸ℎ
 

Again, assuming periodicity and using Fourier expansions, the continuity equation for the small 

arteries becomes 

 
𝑖𝜔𝐶𝑃 +

𝜕𝑄

𝜕𝑥
= 0 

(4.25) 

Differentiating the continuity equation (Equation (4.25)) with respect to 𝑥 and substituting it back 

into the momentum equation (Equation (4.23)) yields a wave equation of the form  

 
𝜔2

𝑐2
𝑄 +

𝜕2𝑄

𝜕𝑥2
= 0,    𝑜𝑟     

𝜔2

𝑐2
𝑃 +

𝜕2𝑃

𝜕𝑥2
= 0, (4.26) 

Where, 𝑐 is the wave propagation velocity and is given as  

 𝑐 = √
𝐴0(1 − 𝐹𝐽)

𝜌𝐶
 (4.27) 

 Solution to equation (4.26) yields the frequency domain representations of pressure 𝑃(𝑥, 𝜔) and 

flow 𝑄(𝑥, 𝜔) as 

 𝑄(𝑥, 𝜔) = 𝑎 cos(𝜔𝑥/𝑐) + 𝑏 sin(𝜔𝑥/𝑐) (4.28) 

 

 𝑃(𝑥, 𝜔) = 𝑖√
𝜌

𝐶𝐴0(1 − 𝐹𝐽)
 (−𝑎 cos(𝜔𝑥/𝑐) + 𝑏 sin(𝜔𝑥/𝑐)) (4.29) 
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Where, 𝑎 and 𝑏 are arbitrary constants of integration. It was stated in Equation (4.10) that the 

frequency dependent impedance 𝑍(𝑥, 𝜔) can be defined as  

𝑍(𝑥, 𝜔) =
𝑃(𝑥, 𝜔)

𝑄(𝑥, 𝜔)
 

Substituting equations (4.28) and (4.29) into equation (4.10) yields 

 𝑍(𝑥, 𝜔) =
𝑖𝑔−1(𝑏 cos(𝜔𝑥/𝑐) − 𝑎 sin(𝜔𝑥/𝑐))

𝑎 cos(𝜔𝑥/𝑐) + 𝑏 sin (𝜔𝑥/𝑐)
 (4.30) 

𝑤ℎ𝑒𝑟𝑒,  𝑔 = √𝐶𝐴0(1 − 𝐹𝐽)/𝜌, 

At the distal end of the vessel, 𝑥 = 𝐿 

 𝑍(𝐿, 𝜔) =
𝑖𝑔−1(𝑏 cos(𝜔𝐿/𝑐) − 𝑎 sin(𝜔𝐿/𝑐))

𝑎 cos(𝜔𝐿/𝑐) + 𝑏 sin (𝜔𝐿/𝑐)
 (4.31) 

At the proximal end of the vessel, 𝑥 = 0 

 𝑍(0, 𝜔) =
𝑖

𝑔

𝑏

𝑎
 (4.32) 

With the assumption that the impedance at the distal end 𝑍(𝐿, 𝜔) is known, 
𝑏

𝑎
 can be found as 

𝑏

𝑎
=

sin(𝜔𝐿/𝑐) + 𝑖𝑔𝑍(𝐿, 𝜔) cos(𝜔𝐿/𝑐)

cos(𝜔𝐿/𝑐) + 𝑖𝑔𝑍(𝐿, 𝜔) sin(𝜔𝐿/𝑐)
 

Substituting  
𝑏

𝑎
 into equation (4.32) yields the proximal impedance or the root impedance of any 

vessel as a function of its distal (terminal) impedance 

 𝑍(0, 𝜔) =
𝑖𝑔−1 sin(𝜔𝐿/𝑐) + 𝑍(𝐿, 𝜔) cos(𝜔𝐿/𝑐)

cos(𝜔𝐿/𝑐) + 𝑖𝑔𝑍(𝐿, 𝜔) sin(𝜔𝐿/𝑐)
 (4.33) 

For any given vessel, the proximal (terminal) impedance for zero frequency is, 
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 𝑍(0,0) = lim
𝜔→0

𝑍(0, 𝜔) =
8𝜇𝑙𝑟𝑟

𝜋𝑟0
3 + 𝑍(𝐿, 0) (4.34) 

4.3.2 Boundary conditions for small arteries 

Similar to large arteries, the governing equations of the small arteries can be solved by implementing 

suitable boundary conditions. This allows pressure and flow to be computed at any point in the small 

arteries. It must be noted, however, that the aim for this work is not to compute pressure and flow 

in the small arteries; rather, it is to use the small arteries to provide a physiological outflow condition 

for the large arteries. Consequently, the impedances computed in the previous section are of utmost 

importance with special focus on the root impedance as that provides the outflow condition for the 

large arteries. 

The inflow to the small arteries is the flow coming in from the large arteries. 

For the bifurcations in the small arteries, the assumptions remain the same as that of the large arteries 

(section 4.2.2). These are 

 Pressure continuity  

 There is no leakage; the flow going out of the parent vessel must be equal to the sum of the 

flow going into the two daughter vessels. 

Bifurcation conditions for small arteries, analogous to of impedances in electrical take the form of  

 
1

𝑍𝑃

=
1

𝑍𝑑1

+
1

𝑍𝑑2

 (4.35) 

Where, 𝑍𝑃 is the impedance of the parent vessel while 𝑍𝑑1
 and 𝑍𝑑2

 are the impedances of the 

daughter vessels. 

It has been stated before, that viscous forces dominate flow in the smaller arteries. In the fluid 

dynamical model of small arteries, viscosity has already been accounted for; hence, inclusion of 
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lumped resistance elements at the terminals of small arteries becomes redundant. Consequently the 

terminal resistance (𝑍𝑡) can be set to zero. It must be noted that the peripheral resistance from 

various parts of the body is not the same, which can be taken into account by using different values 

of 𝑟𝑚𝑖𝑛 [47]. 

The boundary conditions described discussed in this section, the definition of 𝑟𝑚𝑖𝑛  and the known 

values of the terminal impedance allow the impedance at the root of the structured tree be computed 

using equation (32) which provides a physiological outflow to the 1-D model of the larger arteries.  

4.4 Numerical Method 

The governing equations namely the continuity equation (Equation (4.5)), the momentum equation 

(Equation (4.6)) and the state equation (Equation (4.4)) need to be solved numerically as analytical 

solutions are not possible. Before numerically solving them, it is useful to represent the equations 

in their non-dimensional form. The non-dimensional quantities can be defined as  

�̃� =
𝑥

𝑟𝑐

�̃� =
𝑡𝑞𝑐

𝑟𝑐
3

𝑟0̃ =
𝑟0

𝑟𝑐

�̃� =
𝐴

𝑟𝑐
2

�̃� =
𝑞

𝑞𝑐

𝑝 =
𝑝𝑟𝐶

4

𝜌𝑞𝑐
2

𝛿 =
𝛿

𝑟𝑐

ℎ̃ =
ℎ

𝑟𝑐

    �̃� =
𝐸

𝜌𝑔𝑟𝑐

 

Where, 𝑟𝑐  is the characteristic radius of the vessels. 𝑞𝑐 is the characteristic flow in the Aorta, 𝜌 is 

the density of blood and 𝑔 is the acceleration due to gravity. The values chosen for 𝑟𝑐 , 𝜌, 𝑔 and 𝑞𝑐 

are 1 𝑐𝑚, 1.055 𝑔/𝑐𝑚3,  981 𝑐𝑚/𝑠2 and 10 𝑐𝑚3/𝑠, respectively [47][191]. Using the non-

dimensional quantities in the continuity gives us the dimensionless continuity equation 

 
𝜕�̃�

𝜕�̃�
+

𝜕�̃�

𝜕�̃�
= 0 (4.36) 
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While the dimensionless momentum equations is 

 
𝜕�̃�

𝜕�̃�
+

𝜕

𝜕�̃�
(

�̃�2

�̃�
) + �̃�

𝜕𝑝

𝜕�̃�
= −

2𝜋�̃�

𝛿ℛ

�̃�

�̃�
 (4.37) 

 

Where ℛ =
𝑞𝑐

𝑣𝑟𝑐
 is the Reynold’s number.  

The dimensionless state equation is  

 𝑝(�̃�) =
4

3

�̃�ℎ̃

𝑟0̃

 (1 − √
�̃�0

�̃�
) (4.38) 

 

For simplicity, the tildes can be dropped from the non-dimensional equations from this point on 

To numerically solve the system, the Lax-Wendroff method is adopted as mentioned earlier. 

Following Olufsen [47] and Qureshi [191], the governing equations have to be first expressed in the 

conservation form. In order to do so a function, 𝐵 is introduced in its dimensionless form as 

 𝐵(𝑟0(𝑥), 𝑝(𝑥, 𝑡)) =
1

𝜌
∫ 𝐴[𝑟0(𝑥), 𝑝′]𝑑𝑝′

𝑝(𝑥,𝑡)

𝑝0

 (4.39) 

Makin 𝐴(𝑥, 𝑡) the subject of the formula in the state equation,  

 𝐴(𝑥, 𝑡) = 𝐴0 (1 −
𝑝(𝑥, 𝑡)

𝑓(𝑟0)
)

−2

 (4.40) 

where, 𝑓(𝑟0) =
4

3

𝐸ℎ

𝑟0
 

Substituting equation (4.40) into equation (4.39) and differentiating the resulting equation with 

respect to 𝑥 gives 
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𝐵 = 𝑓(𝑟0)√𝐴0𝐴  

𝜕𝐵

𝜕𝑥
=

𝜕𝐵

𝜕𝐴

𝜕𝐴

𝜕𝑝

𝜕𝑝

𝜕𝑥
+

𝜕𝐵

𝜕𝑟0

𝑑𝑟0

𝑑𝑥
= 𝐴

𝜕𝑝

𝜕𝑥
+

𝜕𝐵

𝜕𝑟0

𝑑𝑟0

𝑑𝑥
  

The momentum equation can now be re-written as  

 
𝜕𝑞

𝜕𝑡
+

𝜕

𝜕𝑥
 (

𝑞2

𝐴
+ 𝐵) = −

2𝜋𝜈𝑞𝑅

𝛿𝐴
+

𝜕𝐵

𝜕𝑟0

𝑑𝑟0

𝑑𝑥
 (4.41) 

Coupling the dimensionless state equation (equation (4.38)) with the dimensionless momentum 

equation (equation (4.37)), 
𝜕𝐵

𝜕𝑟0

𝑑𝑟0

𝑑𝑥
 can be evaluated as  

 

Substituting (4.42) in equation (4.37) and combining it with equation (4.36), the system in the 

conservation form  ( 
𝜕

𝜕𝑡
 𝑈 +

𝜕

𝜕𝑥
 𝑅 = 𝑆) can be expressed as  

𝜕

𝜕𝑡
(

𝐴
𝑞

) +
𝜕

𝜕𝑥
 (

𝑞

𝑞2

𝐴
+ 𝑓 √𝐴0𝐴

)

= (

0

−
2𝜋𝑟

𝛿ℛ

𝑞

𝐴
+ (2√𝐴 ( √𝜋 𝑓 + √𝐴0

𝑑𝑓

𝑑𝑟0

) − 𝐴
𝑑𝑓

𝑑𝑟0

 )
𝑑𝑟0

𝑑𝑥
 
) 

 

(4.43) 

 

4.4.1 Lax-Wendroff Scheme 

This section details the explicit scheme used to solve the governing equations in the arterial tree, 

namely the Richtmeyer’s two-step Lax-Wendroff scheme. This is a second-order method and 

 
𝜕𝐵

𝜕𝑟0

𝑑𝑟0

𝑑𝑥
= (2√𝐴 (√𝜋 𝑓 + √𝐴0

𝑑𝑓

𝑑𝑟0

) −
𝑑𝑓

𝑑𝑟0

)
𝑑𝑟0

𝑑𝑥
, (4.42) 



4-20 

 

requires the system of governing equations be expressed in the conservation form (Equation (4.43)). 

A basic scheme for each of the following is required  

 The interior of the arteries 

 Inflow 

 Outflow 

 Bifurcation 

4.4.1.1 Interior  

Some intermediate values need to be determined before finding the solution of all the interior points. 

The intermediate values are computed at steps (𝑚 +
1

2
, 𝑛 +

1

2
) shown in Fig. 4-5.  

The conservation form as shown in equation (4.43) is of the form 

𝜕

𝜕𝑡
𝑈 +

𝜕

𝜕𝑥
𝑅 = 𝑆 

Where, 𝑈 represent the dependant variables, 𝑅 is the system flux while 𝑆 represents the right hand 

side of the system of equations. Equation (4.43) 

 

Fig. 4-5: In order to determine values at 𝑛 + 1, intermediate values must be determined [47] 

 

0 
1

2
 1 𝑀 −

1

2
 𝑀 − 1 𝑀 

𝒙 

𝑛 +
1

2
 

𝑛 + 1 

𝑛 

𝒕 
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Let 𝑈𝑚
𝑛+1 = 𝑈(𝑚Δ𝑥, 𝑛Δ𝑡) and using the same convention for 𝑅 and 𝑆. By means of a uniform grid, 

a four point formula can be derived which predicts the flow at time-level (𝑛 + 1) as 

 
𝑈𝑚

𝑛+1 = 𝑈𝑚
𝑛 =

Δ𝑡

Δ𝑥
 (𝑅𝑚+1/2

𝑛+1/2
− 𝑅𝑚−1/2

𝑛+1/2
) +

Δ𝑡

2
 (𝑆𝑚+1/2

𝑛+1/2
− 𝑆𝑚−1/2

𝑛+1/2
) 

 

(4.44) 

 

By means of two intermediate points at time-level, (𝑛 + 1) the following can be determined 

𝑅𝑚+1/2
𝑛+1/2

𝑆𝑚+1/2
𝑛+1/2

𝑅𝑚−1/2
𝑛+1/2

𝑆𝑚−1/2
𝑛+1/2

 

Using the flux and right hand side of the system of equations via the definition  

 𝑈𝑗
𝑛+1/2

=
𝑈𝑗+1/2

𝑛 + 𝑈𝑗−1/2
𝑛

2
+ 𝛾 (−

𝑅𝑗+1/2
𝑛 − 𝑅𝑗−1/2

𝑛

ℎ
+

𝑆𝑗+1/2
𝑛 − 𝑆𝑗−1/2

𝑛

2
) (4.45) 

 

Where 𝑗 = 𝑚 +
1

2
 and 𝑗 = 𝑚 −

1

2
 

4.4.1.2 Inflow 

 

As mentioned earlier, the inflow to the system is defined using a periodic function given by equation 

(4.7). Along with the flow, 𝑄 , the area, 𝐴 is also computed using the boundary condition for 𝑞. For 

the purpose of finding 𝐴, a ghost point is introduced (Fig. 4-6) that will evaluate  𝑞−1/2
𝑛+1/2

 as follows  

 
𝑞0

𝑛+1/2
=

1

2
 (𝑞−1/2

𝑛+1/2
+ 𝑞1/2

𝑛+1/2
) ⟺ 

𝑞−1/2
𝑛+1/2

= 2𝑞0
𝑛+1/2

− 𝑞−1/2
𝑛+1/2

 

 

 

 

(4.46) 

From equation (4.44) 
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𝐴0
𝑛+1 = 𝐴0

𝑛 −
Δ𝑥

Δ𝑡
 ((𝑅1)1/2

𝑛+1/2
− (𝑅1)−1/2

𝑛+1/2
) +

Δ𝑡

2
 ((𝑆1)1/2

𝑛+1/2
− (𝑆1)−1/2

𝑛+1/2
) 

Where, 

(𝑅1)−1/2
𝑛+1/2

= 𝑞−1/2
𝑛+1/2

        𝑎𝑛𝑑        (𝑆1)−1/2
𝑛+1/2

= 0 

 

Fig. 4-6: Left boundary: Ghost point a half step (−1/2) before the opening of the vessel and at 

time-step 𝑛 + 1/2  is marked with a circle.  Points specified with a cross are known and the point 

marked with a square is found by finding the average between adjacent time-steps. 

4.4.1.3 Outflow 

 

The convolution integral at the right boundary is expressed and further discretized as  

𝑞(𝑀Δ𝑥, 𝑡) = ∫ 𝑝(𝑀Δ𝑥, 𝑡 − 𝜏)𝑞(𝑀𝛿𝑥, 𝜏)𝑑𝜏
𝑇

0

 

𝑞𝑀
𝑛 = 𝑝(M, 𝐴𝑀

𝑛 )𝑦𝑀
0 Δ𝑡 + (𝑞𝑡𝑚𝑠)𝑀

𝑛  

Where, 𝑡 = 𝑛Δ𝑡 and (𝑞𝑡𝑚𝑠)𝑀
𝑛 = ∑ 𝑝𝑀

<𝑛−𝑘>𝑁𝑁−1
𝑘=1 𝑦𝑀

𝑘 Δ𝑡.  In this term, N signifies the number of time 

steps per period and the power of 𝑃𝑀 represents the modulo operator. This boundary condition 

requires more deliberation as 𝑞(𝑥𝑀 , 𝑡) is known only as a function of 𝑝 (or 𝐴). From equation (4.44), 

𝑛 +
1

2
 

𝑛 + 1 

𝑛 

0 
1

2
 1 −

1

2
 

𝒙 

𝒕 
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𝐴𝑀
𝑛+1 = 𝐴𝑀

𝑛 −
Δ𝑥

Δ𝑡
((𝑅1)𝑀+1/2

𝑛+1/2
− (𝑅1)𝑀−1/2

𝑛+1/2
) +

Δ𝑡

2
 ((𝑆1)𝑀+1/2

𝑛+1/2
− (𝑆1)𝑀−1/2

𝑛+1/2
) 

 = 𝐴𝑀
𝑛 −

Δ𝑥

Δ𝑡
((𝑅1)𝑀+1/2

𝑛+1/2
− (𝑅1)𝑀−1/2

𝑛+1/2
) (4.47) 

 

𝑆1 = 0 and  

𝑞𝑀
𝑛+1 = 𝑞𝑀

𝑛 −
Δ𝑥

Δ𝑡
((𝑅2)

𝑀+1/2
𝑛+1/2

− (𝑅2)
𝑀−1/2
𝑛+1/2

) +
Δ𝑡

2
 ((𝑆2)

𝑀+1/2
𝑛+1/2

+ (𝑆2)
𝑀−1/2
𝑛+1/2

) (4.48) 

 

The unknown variable from these equations are 

𝑞𝑀
𝑛+1 𝐴𝑀

𝑛+1

𝑅(𝑞𝑀+1/2
𝑛+1/2

, 𝐴𝑀+1/2
𝑛+1/2

) 𝑆2(𝑞𝑀+1/2
𝑛+1/2

, 𝐴𝑀+1/2
𝑛+1/2

)
 

For the right boundary, a ghost point is established as shown  

 

Fig. 4-7: Right boundary: Ghost point a half step (𝑀 + 1/2) after the end of the vessel and at time-

step 𝑛 + 1/2  is marked with a circle.  Points specified with a cross are known and the point marked 

with a square is found by finding the average between adjacent time-steps. 

Using the ghost point, 

𝑛 +
1

2
 

𝑛 + 1 

𝑛 

𝑀 𝑀 +
1

2
 𝑀 −

1

2
 

𝒙 

𝒕 

𝑀 − 1 
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 𝑞𝑀
𝑛+1/2

=
𝑞𝑀−1/2

𝑛+1/2
+ 𝑞𝑀+1/2

𝑛+1/2

2
 (4.49) 

 

 𝐴𝑀
𝑛+1/2

=
𝐴𝑀−1/2

𝑛+1/2
+ 𝐴𝑀+1/2

𝑛+1/2

2
 (4.50) 

 

The two unknown variables from the equations (4.49) & (4.50) can be determined using the 

boundary condition at the time-interval (𝑛 + 1/2) and (𝑛 + 1) as follows 

 𝑞𝑀
𝑛+1/2

= 𝑝(M, 𝐴𝑀
𝑛+1/2

)𝑦𝑀
0 Δ𝑡 + (𝑞𝑡𝑚𝑠)𝑀

𝑛+1/2
 (4.51) 

 

 𝑞𝑀
𝑛+1 = 𝑝(M, 𝐴𝑀

𝑛+1)𝑦𝑀
0 Δ𝑡 + (𝑞𝑡𝑚𝑠)𝑀

𝑛+1 (4.52) 

The equations (4.51) & (4.52) have the following unknowns 

𝑞𝑀
𝑛+1 𝐴𝑀

𝑛+1 𝑞𝑀
𝑛+1/2

𝐴𝑀
𝑛+1/2

𝑞𝑀+1/2
𝑛+1/2

𝐴𝑀+1/2
𝑛+1/2  

For simplicity, equations (4.49) and (4.50) are substituted into equation (4.51) to give 

 
𝑞𝑀−1/2

𝑛+1/2
+ 𝑞𝑀+1/2

𝑛+1/2

2
= 𝑝 (M,

𝐴𝑀−1/2
𝑛+1/2

+ 𝐴𝑀+1/2
𝑛+1/2

2
) 𝑦𝑀

0 Δ𝑡 + (𝑞𝑡𝑚𝑠)𝑀
𝑛+1/2

 (4.53) 

Signifying that equations (4.47), (4.48), (4.52) and (4.53) need to be solved and the unknowns 

from these equations are 

𝑥1 = 𝑞𝑀+1/2
𝑛+1/2

𝑥2 = 𝐴𝑀+1/2
𝑛+1/2

𝑥3 = 𝑞𝑀
𝑛+1 𝑥4 = 𝐴𝑀

𝑛+1
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4.5 Summary  

In this chapter, the one-dimensional model used to simulate blood flow in the arterial network has 

been set up. The governing equations of the fluid-structure interaction problem in large and small 

arteries has been comprehensively described. In order to extend the governing equations to the 

systemic arteries, appropriate boundary conditions have also been prescribed and discussed.  

Key points from this chapter are as follows: 

 The propagation of blood in the systemic arteries is described by the incompressible 

axisymmetric Navier-Stokes equations. 

 The blood flow is modelled in a bifurcating binary tree of 24 vessels where each vessel is 

modelled as an impermeable axisymmetric compliant cylinder and the blood is assumed as 

an incompressible, homogeneous and Newtonian fluid with density, 𝜌 and viscosity, 𝜇.  

 The model is divided into two parts; the large arteries and the small arteries. The large 

arteries originate at the heart and are truncated after a maximum of two generations. The 

small arteries and arterioles are joined at the distal ends of the large arteries and modelled 

as binary asymmetric structured trees. 

 The elastic properties are evaluated using a relationship of the Young’s modulus, the radius 

of the artery and thickness of the arterial wall. 

 In order to extend the incompressible axisymmetric Navier-Stokes equations to an entire 

arterial network, three boundary conditions are imposed. Firstly, to the inlet of the arterial 

tree (inflow condition), secondly, at each vessel bifurcation in which a parent vessel 

bifurcates into two daughter vessels and lastly a boundary condition is imposed at the 

terminal ends of the tree (outflow condition).  

 For the inflow condition, an ejection profile derived using simple relationships of flow in 

the ascending aorta is imposed. At the bifurcations, pressure continuity and no flow leakage 
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is assumed. For the outflow condition, small arteries are joined to the terminal ends of the 

large arteries. 

 The small arteries and arterioles attached to the ends of the large arteries are modelled 

separately as binary asymmetric structured trees. Similar to large arteries, the equations 

that govern blood propagation in small arteries can be derived from the axisymmetric form 

of Navier-Stokes equations. However viscous effects are more prominent in small arteries 

as compared to inertial effects hence the Navier-stokes equations can be linearized by 

neglecting the non-linear terms. 

 In the binary asymmetric structured tree model of small arteries, each of these small arteries 

keep bifurcating into generations of even smaller arteries until a specified radius, 𝑟𝑚𝑖𝑛  has 

been reached. 

 For the bifurcations in the small arteries, the assumptions remain the same as that of the 

large arteries. 

 The boundary conditions described for small arteries, the definition of 𝑟𝑚𝑖𝑛 and the known 

values of the terminal impedance allow the impedance at the root of the structured tree be 

computed which provides a physiological outflow to the 1-D model of the larger arteries.  

 To numerically solve the system, an explicit scheme, namely the Richtmeyer’s two-step 

Lax-Wendroff scheme is used. This is a second-order method and requires the system of 

governing equations be expressed in the conservation form. 

 A basic scheme is required for the interior of the arteries, the inflow and outflow as well 

as the bifurcations.



5-1 

 

CHAPTER 5  

ONE-DIMENSIONAL MODEL VALIDATION 

5.1 Introduction  

In order for a numerical model to be applicable to real life phenomenon, it has to be well validated 

against real time data. A 1-D cardiovascular model can be quantitatively validated using numerous 

techniques such as a single vessel [171] or multiple vessels connected to each other to form an 

arterial network [192]. In the former, the single vessel was a tapered vessel and the simulated and 

measured waveforms showed excellent agreement. The latter consisted of a silicone experimental 

model mimicking the arterial network. Again, the 1-D model showed excellent agreement with 

measured data and demonstrated that 1-D models are capable of capturing the main features of wave 

propagation in the arterial network of the systemic circulation, the prerequisite being that the 

geometrical, material and fluid properties are measured properly along with the proper 

implementation of suitable boundary conditions. These two cases are examples of in vitro validation, 

however 1-D models can also be validated using in vivo data. These in vivo validations can be 

further classified into qualitative validation and quantitative validation.  

Avolio [81] carried out a qualitative validation, in which the data predicted by the model was 

compared to pressure and flow data found in literature. In a quantitative validation, the simulated 

data is compared to measured data from a specific subject (s). Examples of quantitative validation 

of the 1-D model include the studies by Olufsen et al. [53], Stettler et al. [146] and Reymond et al 

[193]. In these studies, results from a 1-D model of the arterial network were compared to measured 

data and showed excellent agreement. 

An alternative to experimental studies is using data from a 3-D model and comparing it with the 

data acquired using a 1-D model. However it must be noted that 3-D models are generally used for 
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local geometries rather than entire arterial networks due to their computational cost. The implication 

being, 3-D models need reduced order models to represent downstream vasculature. Usually this is 

done using compartment or 0-D models to represent the downstream capillaries and smaller vessels 

[117], [194]–[196]. The models simulate geometries with smaller resistances and lesser outlets. In 

the case of more complex geometries, numerical instability is introduced which can be reduced at 

the expense of a higher computational cost.  

It is noteworthy that validating a 1-D model against physiological data is tedious because the 

geometrical and elastic properties of physiological vessels is very difficult to quantify. Additionally, 

the geometrical, fluid and elastic properties of one subject are not necessarily the same as another 

subject. A study conducted by Mulder et al. [197] concluded that the geometrical properties and 

boundary conditions have an enormous impact on the propagation of blood flow in the arterial 

network, therefore, these geometrical properties and boundary conditions should be patient-specific.  

The model in use for this work allows variation of geometric, elastic and fluid properties with much 

ease as well the variation of boundary conditions to simulate a multitude of pathophysiological 

conditions as will be seen in the next chapter. In this chapter, the results of the current model are 

compared with previous 1-D/3-D models as well as in-vivo data, in order to assess the validity of 

the model before using it to simulate physiological and pathophysiological conditions. 

In this study, three case studies are presented for numerical validation. The first comparison is with 

the pulse wave propagation along a single vessel (section 5.2). The next comparison is with a 3-D 

model that has several branches (section 5.3) and finally the model is compared with a full-scale 

arterial network, which has been validated against in-vivo flow data (section 5.4).    
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5.2 Pulse propagation along the aorta (single vessel) 

5.2.1 Introduction 

In this section, the propagation along a single vessel namely the aorta is simulated. The vessel 

parameters are taken from literature [63]. The parameters used in [63] are for a healthy, young adult 

and the parameters were originally taken from the data published by  Westerhof et al [80]. A 1-D 

model was used by Alastruey to simulate the aorta in [63] however, in that model the downstream 

vasculature (distal end of the vessel) is represented using a three-element Windkessel model. As 

mentioned before, the Windkessel model characterizes the compliance as well as the resistance of 

the vessels by using an electric analog model. Also known as, an RCR lumped parameter model, in 

the Windkessel model, two values of resistances are defined and a value of capacitance is defined. 

It extends upon the concept of a two-element Windkessel model in which a single resistance and 

capacitance are defined. The resistance in the two-element model describes the peripheral resistance 

which is the resistance to flow encountered by blood as it flows through the systemic circulation 

while capacitance describes the arterial compliance [38]. However, in the two-element CR model 

(Fig. 5-1, left), pressure and flow undulations are produced which can be reduced greatly by simply 

adding another resistor in series with the CR model [63]. This added resistor (Fig. 5-1, right) 

represents the characteristic impedance of the aorta, that is, it accounts for the resistance to flow due 

the aortic valve. Fig. 5-1 shows the representations of the CR and RCR models, where 𝑅𝜇1
 is the 

added resistor in the three-element model while 𝑅𝜇2
 and 𝐶 represent the peripheral resistance and 

arterial compliance, respectively and 𝑄 and 𝑃 represent the flow rate and time-varying pressure, 

respectively.  
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Fig. 5-1: Representation of Lumped parameter models as electric circuit analogues. The circuit of 

the left is a two-element (CR) model where the capacitor represents arterial compliance while the 

resistor represents peripheral resistance. The circuit on the right is the three-element (RCR) model 

where the second resistor represents the characteristic impedance of the aorta. 𝑄 and 𝑃 represent the 

flow rate and time-varying pressure, respectively. [63] 

 

The results from the current model are compared with simulation results of the model used by 

Alastruey [63]. The model used by Alastruey was validated against the data published by Simon et 

al. [198] and showed excellent capability of the model to approximate key hemodynamic features. 

Detailed validation can be found here: [63]. 

The geometric, elastic, fluid and RCR parameters used in Alastruey’s model can be summarized in 

the Table 5-1: 

 

Table 5-1: Geometric, elastic, fluid and boundary condition (RCR) parameter definition by 

Alastruey [63] to simulate pulse wave propagataion along the aorta (single vessel) 

Parameter Value 

Length of aorta, 𝑳 

(𝒎) 
0.40 

Radius of aorta at diastolic pressure, 𝒓𝟎 

(𝒎) 
0.01 
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Young’s Modulus of aorta, 𝑬 

(𝑷𝒂) 
4.0 × 105 

Wall thickness, 𝒉 

(𝒎) 
0.0015 

Blood density, 𝝆 

(𝒌𝒈/𝒎𝟑) 
1050 

Blood viscosity, 𝝁 

(𝒎𝑷𝒂 𝒔) 
4.0 

Sum of the resistances of the RCR mode, 𝑹𝝁𝟏
+ 𝑹𝝁𝟐

 

(𝑷𝒂 𝒔 𝒎−𝟑) 

 

1.89 × 108 

Peripheral compliance, 𝑪 

(𝒎𝟑/𝑷𝒂) 
6.31 × 10−9 

 

5.2.2 Methodology 

At the inlet of the aorta, an ejection profile is prescribed, 𝑄𝑖𝑛. This ejection profile is periodic with 

a period, 𝑇 = 0.8𝑠 ensuring a heart rate of 75 beats/min.  The ejection flow profile is enforced via 

the equation: 

 𝑄𝑖𝑛(𝑡) = {  𝑄0sin (
πt

τ
)

0

                     𝑖𝑓 𝑡 < 𝜏
                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.1) 

Where, 𝑄0 is the peak value and 𝜏 = 0.25𝑠 marks the end of systole and hence the beginning of 

diastole, whereby the aortic valve shuts and no more blood flows into the aorta. 𝑄0 has a value of 

311.5 𝑚𝑙/𝑠. This value is used to ensure the cardiac output is 3.8 𝑙/𝑚𝑖𝑛 which is the measured 

cardiac output in the validation data from Simon et al. [198].  The ejection profile is shown in Fig. 

5-2. 
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Fig. 5-2: Ejection profile used as the inflow boundary condition for the one-dimensional model 

 

Using the parameters given in Appendix A and the 1D model described in the previous chapter, 

implemented via the algorithms given in Appendix B, the aorta was simulated. The variables were 

measured at 3 different locations by dividing the aorta into 3 main locations namely the inlet 

(proximal end), mid of the aorta and the outlet (distal end) of the aorta. This division is shown in 

Fig. 5-3. 

 

 

Proximal  (𝒙 = 𝟎. 𝟎 𝐦) Mid (𝒙 = 𝟎. 𝟐 𝐦) Distal (𝒙 = 𝟎. 𝟒 𝒎) 

𝒍 = 𝟎. 𝟒 𝒎 

Fig. 5-3: Division of the human Aorta into three sections for the purpose of simulation 
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5.2.3 Results 

Fig. 5-4 shows the comparison of the flow and pressure waveforms of the current 1-D model and 

Alastruey’s 1-D model. The flow waveforms are taken from the mid and distal ends of the aorta. 

Fig. 5-4 (a) and (c) show the flow and pressure waveform comparison at the mid of the aorta, 

respectively, while Fig. 5-4 (b) and (d)  show the flow and pressure waveform comparison at the 

distal end of the aorta, respectively. 
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Fig. 5-4: Structured tree outflow model for a single aorta results (solid) compared with the results 

of Alastruey’s RCR outflow model for a single aorta (dashed). (a) Flow comparison at mid-section 

(𝑥 = 0.2 𝑚) of the aorta (b) Flow comparison at the distal end (𝑥 = 0.4 𝑚) of the aorta (c) Pressure 

comparison at mid-section (𝑥 = 0.2 𝑚) of the aorta (b) Pressure comparison at the distal end 

(𝑥 = 0.4 𝑚) of the aorta. 
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Towards the distal end, it can be seen that the flow rate for both models, decreases. At the inlet, 𝑄0 

has a value of 311.5 𝑚𝑙/𝑠, but by the time the flow reaches the mid of the aorta, the flow decreases 

to approximately 280 𝑚𝑙/𝑠  in Alastruey’s model and 293 𝑚𝑙/𝑠 in the current 1-D model. The flow 

rate keeps decreasing downstream and by the time the distal end is reached the flow has decreased 

to 223 𝑚𝑙/𝑠 in Alastruey’s model and 255 𝑚𝑙/𝑠 in the current 1-D model. This decrease in flow 

downstream is better presented in Fig. 5-5. Downstream, during diastole the flow does not go to 

zero; instead, the flow increases slightly and decreases again. The  delay in each flow waveform due 

to the distance of the waveform from the inlet can be clearly seen. 
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Fig. 5-5: Flow rate time histories at three locations along the aorta- Proximal (solid), mid (dashed) 

and distal (dotted). In terms of spatial dimension, the proximal, mid and distal sections are 𝑥 =
0.0 𝑚, 𝑥 = 0.2 𝑚 𝑎𝑛𝑑 𝑥 = 0.4 𝑚. 
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The pressure increases downstream. The pressure in the mid of the aorta for Alastruey’s model 

peaks at 16.70 𝑘𝑃𝑎 while in the current model, the pressure in the mid of aorta peaks at 16.68 𝑘𝑃𝑎. 

At the distal end Alastruey’s model and the currents model, pressure peaks at 17.30 𝑘𝑃𝑎 

and 17.44 𝑘𝑃𝑎, respectively. The dicrotic notch; a second peak in the pressure waveform which 

signifies the closure of the aortic valve is also observed. At the mid-section, the second peak, reaches 

its maximum value of 14.34 𝑘𝑃𝑎 and 14.32 𝑘𝑃𝑎 for Alastruey’s and the current model, 

respectively. The same secondary peaks take the peak value of 14.10 𝑘𝑃𝑎 and 13.93 𝑘𝑃𝑎, at the 

distal ends for Alastruey’s model and the current model, respectively. Downstream, although 

pressure increases, the second pressure peak decreases. 

 This can be clearly seen again, from Fig. 5-4 (c) and (d).  

The pressure results obtained are compared quantitatively with Alastruey’s model at the mid-section 

of the aorta as well as the distal end of the aorta (Table 5-2).  The table summarizes the systolic 

pressure, 𝑃𝑆 and the diastolic pressure, 𝑃𝐷 in the mid and distal sections of the aorta for both the 

models. In both models, the  𝑃𝑆 increases towards the distal end of the vessel. However, 𝑃𝐷 reduces 

towards the distal end in both models. The percentage error is also provided between each value and 

is calculated via equation (5.2), 

 % 𝑒𝑟𝑟𝑜𝑟 =
|𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 − 𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒|

𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒
× 100 (5.2) 

In this equation the experimental value is the one simulated using the 1-D model while the accepted 

value is the one taken from the data published by Alastruey [63]. 
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Table 5-2: Summary of the comparison of systolic pressure, 𝑃𝑆 and the diastolic pressure, 𝑃𝐷 in the 

mid and distal sections of the aorta for both the models. 

Location Mid Distal 

Variable 

Alastruey’s 

Model 

Current 

Model 

%  

error 

Alastruey’s 

Model 

Current 

Model 

%  

error 

𝑷𝑺 (kPa) 16.70 16.68 0.12 17.30 17.44 0.81 

𝑷𝑫 (kPa) 11.00 10.95 0.45 10.80 10.87 0.65 

 

The simulated results are compared with in-vivo data from Simon et al. [198] as well as Alastruey’s 

model [63] in  Table 5-3. The current 1-D model’s mean systolic and diastolic pressures correspond 

well with the model used by Alastruey and the 𝑃𝑆 lies well within the range of the in-vivo data. 𝑃𝐷 

does not fall within the range of the in-vivo data, but fares well when compared to the model used 

by Alastruey.  

Table 5-3: Comparison of the mean systolic, 𝑃𝑆 and diastolic, 𝑃𝐷  pressures between data measured 

in-vivo by Simon et al. [198], results from Alastruey’s RCR outflow model [63] and the current 1-

D model with structured outflow condition. 

 In-Vivo Alastruey’s Model Current 1-D model 

Mean 𝑷𝑺 (kPa) 16.8 ± 0.4 16.63 16.89 

Mean 𝑷𝑫 (kPa) 9.5 ± 0.4 11.0 10.94 
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5.2.4 Discussion 

In section 5.2.2, the computed pressure and flow waveforms from the 1-D model were compared 

with a 1-D model from literature that uses an RCR model as it’s boundary condition [63] as well as 

in-vivo data from literature [198]. The waveform shapes and amplitudes were compared to 

conclusively validate the model for a single vessel, both qualitatively as well as quantitatively. The 

simulation results showed excellent agreement with the model (Fig. 5-4) as well as the in-vivo data 

(Table 5-3). As mentioned in section earlier, in the systemic circulation, systolic pressure increases 

as the distance from the heart increases due to wave reflections and impedance at the terminal ends 

of the arteries. Additionally, the amplitude and mean flow rate decreases downstream. This decrease 

is due to the increase in the impedance to flow. These features are captured extremely well by the 

current 1-D model (Fig. 5-4 and Fig. 5-5). Other key features of the pressure waveforms namely 

the dicrotic notch and the diastolic delay are also observed. The dicrotic notch signifies the closure 

of the aortic valve or simply the start of the diastolic phase. In this phase, no more blood enters the 

aorta. This is simulated by the inflow profile (Fig. 5-2). After 0.25𝑠, for the model used in this 

section, the flow goes to zero and there is a slight backflow, which gives rise to the dicrotic notch 

or the second peaking of the pressure waveforms. Downstream, the effect of the closure of the valve 

has reduced effect on the pressure waveforms, due to the distance from the heart, which explains 

why the amplitude of the second peak decreases downstream. The current 1-D model excellently 

captures this feature (Fig. 5-4).   

The mean pressure decreases slightly towards the distal ends in both models. In Alastruey’s model, 

the decrease is 0.01 𝑚𝑚𝐻𝑔 while in the current model the decrease is 0.05 𝑚𝑚𝐻𝑔. This slight 

decrease in mean pressure is because the fluid viscosity introduces resistance to flow. The resistance 

due to viscous dissipation is much smaller as compared to peripheral resistance, hence the mean 

pressure decrease very slightly.  
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Table 5-2 and Table 5-3 summarized and compared the results of the 1-D model with that of 

Alastruey [63] and the data published by Simon et al. [198]. The percentage errors between the two 

models being compared remain under 1% signifying excellent agreement of the results between the 

two models despite having different outlet conditions. Both the numerical models perform well 

when compared to in-vivo data. Overall, the agreement of the results with the validation data was 

excellent and the exhibition of the key features of the pressure and flow waveforms ensures the 

capability of the model with structure tree outflow condition, to simulate blood flow in a single 

vessel.  

The minimal discrepancies between the 1-D model and Alastruey’s model can be explained by the 

choice of the downstream boundary conditions. In section 5.2, it was shown that the downstream 

boundary condition used by Alastruey is an RCR, three element Windkessel model while the 

downstream boundary condition used in the current model is a structured tree outflow condition. In 

the RCR models, values of resistances and capacitance define the resistance to flow and the arterial 

distensibilty, respectively. However, in the structured tree outflow condition, the governing 

equations explained in section 4.3 are used to simulate blood flow in smaller vessels providing a 

physiological boundary condition, which captures wave propagation/reflection effects very well. On 

the other hand, RCR models are known to lack the ability to capture wave reflection effects, well 

enough. From Fig. 5-4 and Fig. 5-5, it can be clearly seen the flow rates of the current model tend 

to have undulations in the mid-section as well as the distal end due to the incorporation of wave 

propagation effects. In contrast, Alastruey’s models flow rates noticeably have minimal undulations.  

Another important difference is that in Alastruey’s model, the Young’s modulus is defined 

explicitly. In the current model, the elastic properties are evaluated using a relationship (Equation 

(4.4)) of the Young’s modulus, the radius of the artery and thickness of the arterial wall. The 

parameters used to define such a relationship have been reported in Appendix A. Due to the 
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difference in the method of describing the stiffness of the vessel, the vessel used in Alastruey’s 

model does not have the same stiffness as the vessel used in the current 1-D model.  

 

5.3 Pulse propagation in the arterial network- Comparison with a 3-D 

model 

5.3.1 Introduction 

In this section, the current 1-D model is compared with a 3-D model developed by Kim et al. [199]. 

The model used by Kim et al. is a 3-D finite-element model of the aorta.  The model outputs pressure 

and flow waveforms in the descending aorta, more specifically the thoracic aorta. In their work, the 

heart is modelled as a lumped parameter model and coupled to the 3-D model to provide the inflow 

to the 3-D model. By modelling the heart, as such, provides physiologically realistic aortic flow 

waveforms [199]. The model is used to simulate a normal human thoracic aorta under rest and 

exercise conditions as well as a diseased thoracic aorta in the form of an aortic coarctation 

(narrowing of the aorta), present in the descending thoracic aorta.  The parameters used for the 3-D 

simulation of the aorta under healthy conditions are summarized in Table 2-1: 

Table 5-4: Elastic and fluid parameter definition by Kim et al. [199] to simulate pulse wave 

propagataion a 3-D model of the aorta and it’s main branches. 

Parameter Value 

Young’s Modulus, 𝑬 

(𝒅𝒚𝒏𝒆𝒔/𝒄𝒎𝟐) 
6.0 × 106 

Wall thickness, 𝒉 

(𝒄𝒎) 
0.1 

Blood density, 𝝆 

(𝒈/𝒄𝒎𝟑) 
1.06 
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Blood viscosity, 𝝁 

(𝒅𝒚𝒏𝒆𝒔/𝒄𝒎𝟐 𝒔) 
0.04 

 

The 3-D model starts at the root of the aorta, the inlet of the blood into the systemic circulation. The 

3-D model includes the main upper branches, which are the right and left subclavian as well as left 

and right carotid arteries. The downstream vasculature as well as the terminal ends of the upper 

arteries are represented using a three-element Windkessel model (RCR) [199]. The RCR model was 

described in the previous section. RCR models are commonly coupled to 3-D computational 

domains to reduce the computational cost and to make the model simulations time efficient. This 

was seen earlier in section 5.2.1. The flow distribution to each of the outlets of the 3-D model is 

based on data from literature as well as data measured using cine phase contrast magnetic resonance 

imaging (cine PC-MRI) [199]. The 3-D model of the aorta with the main upper branches is shown 

in Fig. 5-6. The description of the RCR models at different outlets is also shown in Fig. 5-6 (inset) 

along with the illustration of the RCR model. 
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Fig. 5-6: Diagrammatic representation of the 3-D model of the aorta and its main upper branches 

used by Kim et al. [199]. The inset on the right shows the parameters used for the RCR model to 

represent the downstream vasculature as well as the terminal ends of the upper arteries while the 

inset on the left illustrates the RCR model used by Kim et al.  

 

5.3.1 Methodology 

Since the 3-D model represents the entire arterial network in a lumped manner, the model for a 

single vessel, validated in the previous section, is extended to simulate an entire arterial network. 

This arterial network is the one used in the next chapters, with a few variations in its parameters. 

Details of the boundary conditions and the mathematical formulation of such a model were given in 

chapter 4.  Using the parameters given in Appendix A and the 1D model described in the previous 

chapter, implemented via the algorithms given in Appendix B, the entire arterial network was 

simulated. 
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The geometry of the arterial tree is based on the data published by Olufsen et al. [82] and imitates 

the geometry of physiological arteries (Table 5-5).  This model has been validated qualitatively as 

well as quantitatively by comparing it with data measured using Magnetic resonance techniques. 

The model permits all the important aspects of physiological fluid-structure interaction to be 

captured accurately without increasing the computational load. The arterial tree is illustrated in Fig. 

5-7 while the geometry of the arterial tree is given in Table 5-5. 

 

 

Fig. 5-7: Schematic of the arterial tree network taken from Olufsen et al. [82]. This arterial tree is 

used to simulate blood flow in the large arteries of the systemic circulation. The trees highlighted in 

grey at the terminal (outlet) ends of the arteries represent the structured tree of small arteries.  
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Table 5-5: Geometrical data for the one-dimensional model. Parameters 𝐿, 𝑟𝑖𝑛  and 𝑟𝑜𝑢𝑡   are the 

length, inlet radius and outlet radius of the artery. 𝑟𝑚𝑖𝑛  is the  truncation radius of the structured 

trees while R and L denote right and left. 𝑟𝑚𝑖𝑛 is defined for only terminal arteries. (Taken from 

[82]) 

 Artery 
𝑳  

(𝒄𝒎) 

𝒓𝒊𝒏  

(𝒄𝒎) 

𝒓𝒐𝒖𝒕  

(𝒄𝒎) 

𝒓𝒎𝒊𝒏  

(𝒄𝒎) 

1 Ascending aorta 7.0 1.25 1.14 - 

2 Anonyma 3.5 0.7 0.7 - 

3,8 R, L Subclavian and Brachial 43.0 0.44 0.28 0.01 

4 Right common carotid 17.0 0.29 0.28 0.02 

5 Aortic arch I 1.8 1.14 1.11 - 

6 Left common carotid 19.0 0.29 0.28 0.03 

7 Aortic arch II 1.0 1.11 1.09 - 

9 Thoracic aorta 18.8 1.09 0.85 - 

10 Celiac axis 3.0 0.33 0.30 0.02 

11 Abdominal aorta I 2.0 0.85 0.83 - 

12 Superior Mesenteric 5.0 0.33 0.33 0.02 

13 Abdominal aorta II 2.0 0.83 0.80 - 

14,16 R, L Renal 3.0 0.28 0.25 0.02 

15 Abdominal aorta III 1.0 0.80 0.79 - 

18 Inferior Mesenteric 4.0 0.20 0.18 0.01 

17 Abdominal aorta IV 6.0 0.79 0.73 - 

20 External Iliac 6.5 0.45 0.43 - 

19 Abdominal aorta V 3.0 0.73 0.70 - 
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21 Femoral I 13.0 0.43 0.40 - 

22 Internal Iliac 4.5 0.20 0.20 0.01 

23 Deep femoral 11.0 0.20 0.20 0.01 

24 R, L Femoral II 44.0 0.40 0.30 0.01 

 

For the purpose of this validation, simulated results from the arterial network is compared with the 

data from the 3-D model for a healthy human aorta under rest conditions. As mentioned earlier, in 

the 3-D model, a lumped model of the heart is coupled to the 3-D model to provide the inflow. To 

make the simulations simpler, the inflow profile from the data published by Kim et al. [199] is taken 

instead of modelling the heart separately. Additionally, instead of attempting to model the exact 

inflow of the 3-D model through curve fitting, equation (5.1) is used again to provide the inflow for 

the 1-D model used here. By using a simple equation, a consistent and generic inflow profile is 

produced which reduces the complexity of modelling and at the same time reduces the number of 

subject-specific parameters required for the inflow profile. However, in order to make sure the 

inflow profile approximates the inflow taken from literature well enough, the parameters of the 

inflow equation are adjusted, accordingly. Fig. 5-8 shows the aortic inflow taken from Kim et al. 

[199] and the inflow profile used for the 1-D model by using equation (5.1). For ease of access, the 

equation is stated again, 

𝑄𝑖𝑛(𝑡) = {  𝑄0sin (
πt

τ
)

0

                     𝑖𝑓 𝑡 < 𝜏
                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Where, 𝑄0 is the peak value and 𝜏 = 0.28𝑠 marks the end of systole and hence the beginning of 

diastole, whereby the aortic valve shuts and no more blood flows into the aorta. 𝑄0 has a value of 
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305 𝑚𝑙/𝑠. The values of 𝑄0 and 𝜏 have been adjusted to approximate the inflow from the 3-D model 

as closely as possible as seen in Fig. 5-8.  
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Fig. 5-8: Comparison between the inflow ejection profile used for 1-D model (Solid) and the 

inflow ejection profile used for the 3-D model (Dashed). The time period used for the 3-D model 

is 𝑇 = 0.952 𝑠, the time period for the 1-D model is 𝑇 = 1.0 𝑠.  

 

5.3.2 Results  

Using the geometrical properties defined in Table 5-5 and the inflow profile described via Fig. 5-8, 

the arterial network of a healthy human subject was simulated. Additional parameter definition of 

the arterial network can be found in Appendix A. The computed pressures from this model at 

different locations are compared with the pressure data published by Kim et al. [199] in Fig. 5-9. 

The locations used for the pressure validation are the ascending aorta, Fig. 5-9 (a), the thoracic aorta 

Fig. 5-9 (b), the left subclavian Fig. 5-9 (c) and left carotid artery Fig. 5-9 (d)  and finally the right 
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subclavian Fig. 5-9 (e), and right carotid artery Fig. 5-9 (f). The shape of the waveforms show 

extremely good agreement along with excellent computation of the systolic and diastolic pressures 

in all the locations.  
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Fig. 5-9: Comparison between the pressure waveform time histories obtained from the 1-D model 

of the entire arterial network (solid) and the pressure waveform time histories obtained from the 3-
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D model (dashed). The measurements locations are (a) ascending aorta (b) thoracic aorta (c) left 

subclavian artery (d) left carotid artery (e) right subclavian artery (f) right carotid artery.   

 

Table 5-6 summarizes the systolic pressures, 𝑃𝑆, the diastolic pressures, 𝑃𝐷 and the mean pressures, 

𝑃𝑚 measured at the six different locations for the 3-D and 1-D model and compared by calculating 

the percentage error. The percentage error is calculated via equation (5.2), 

Table 5-6: Summary of the values of systolic pressure, 𝑃𝑆, the diastolic pressure, 𝑃𝐷 and the mean 

pressure, 𝑃𝑚 obtained from the 1-D model and the 3-D model at different anatomical locations. 

The comparison is quantified by finding the percentage error between the results obtained from the 

two models.  

Location 

𝑷𝑺 

(𝒎𝒎𝑯𝒈) 

𝑷𝑫 

(𝒎𝒎𝑯𝒈) 

𝑷𝒎 

(𝒎𝒎𝑯𝒈) 

3-D 1-D 
% 

error 
3-D 1-D 

% 

error 
3-D 1-D 

% 

error 

Ascending aorta (a) 102.6 102.1 0.5 62.9 62.9 0 82.8 82.5 0.3 

Thoracic aorta (b) 105.3 105.6 0.3 63.4 62.6 1.3 84.4 84.1 0.3 

Left subclavian (c) 102.7 104.3 1.5 63.5 62.6 1.4 83.1 83.5 0.4 

Left carotid  (d) 106.1 103.5 2.5 63.5 62.5 1.6 84.8 83.0 2.1 

Right subclavian (e) 102.5 104.2 1.6 62.5 62.6 0.2 82.5 83.4 1.1 

Right carotid  (f) 105.6 103.8 1.7 63.5 62.6 1.4 84.6 83.2 1.6 

 

The percentage errors lie in the range of 0% to 2.5%. The highest errors for 𝑃𝑆 , 𝑃𝐷 and 𝑃𝑚 occur for 

the left carotid artery. The pressures tend to increase away from the heart. This increase is most 

prominent in the thoracic aorta. 



5-22 

 

The flow rates at different locations are not used for any applications of the 1-D model in the 

following chapters. However, for the purpose of completeness, the flow rates computed at the left 

subclavian and thoracic aorta by the 1-D model are compared to the flow rates published by Kim et 

al. [199]. Fig. 5-10 (a) shows the comparison of 1-D model computed flow rate with the 3-D model 

computed flow rate in the thoracic aorta while Fig. 5-10 (b) shows the computed flow rates in the 

left subclavian artery. The profiles of the waveforms show excellent agreement with the 1-D 

computed flow rates peaking at 180.1 𝑚𝑙/𝑠 and 29.1 𝑚𝑙/𝑠 for the thoracic and left subclavian 

arteries, respectively. In comparison, the 3-D model flow rates peak at 172 𝑚𝑙/𝑠 and 30.3 𝑚𝑙/𝑠 for 

the thoracic and left subclavian arteries, respectively. 
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Fig. 5-10: Comparison of the periodic flow rate time histories between the 1-D model (solid) and 

the 3-D model (dashed) at two locations; (a) thoracic aorta (b) left subclavian artery 

 

Fig. 5-11 shows the pressure in the right brachial artery simulated using the 1-D model. The pressure 

is measured approximately at the mid-section of the upper arm where the routine blood pressure 

measurements are made. The published data did not include the brachial waveform however; it did 

include the measured systolic and diastolic pressures in the brachial artery.  
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Fig. 5-11: Pressure waveform obtained from the 1-D model in the right brachial artery 

 

This brachial pressure is compared with the brachial pressure simulated using the 3-D model as well 

as the brachial pressure data measured for a human subject under rest conditions by Kim et al. [199] 

in Table 5-7: 

Table 5-7: Comparison of the systolic, 𝑃𝑆 and diastolic, 𝑃𝐷  pressures in the brachial artery 

between the 1-D model, the 3-D model and an actual human subject. Data for the 3-D model and 

the in-vivo measurement is taken from [199] 

 Human subject 3-D Model 1-D Model 

𝑃𝑆 (𝑚𝑚𝐻𝑔) 106 106 105.1 

𝑃𝐷 (𝑚𝑚𝐻𝑔) 63 62 62.4 
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The corresponding values of the 1-D model show excellent agreement with both the human subject 

as well as the 3-D model. 

5.3.3 Discussion 

In section 5.3.1, the 1-D model is compared with a 3-D model. The 3-D model represents the entire 

arterial network in a lumped manner. Again, the outflow boundary conditions are described using 

an RCR model for the 3-D model. For this section, instead of using a single vessel or a group of a 

few branching vessels, the 1-D model is used to simulate the entire arterial tree (Fig. 5-7) with 

geometrical properties defined in Table 5-5. The comparison between the simulated results of the 

1-D model and 3-D model are quite satisfactory. Not only is the 1-D model capable of reproducing 

the results attained from the 3-D model quantitatively but also qualitatively. The wave shape is 

preserved and the systolic and diastolic pressures are reproduced with excellent accuracy. The error 

analysis carried out in Table 5-6 testifies to the extent of accuracy of the 1-D model. The percentage 

errors lie in the range of 0% to 2.5%. Keeping in mind that a 1-D model being compared to a 3-D 

model has such a low percentage error, increases confidence in the robustness of the 1-D model.  

Again, the model shows an increase in pressure downstream which agrees well with literature. The 

brachial pressure simulated using the 1-D model (Fig. 5-11) shows excellent agreement with the 

data measured for an actual human subject by Kim et al. [199] further cementing the capability of 

the 1-D model with a structured tree outflow condition.  

The profiles of the flow waveforms also show excellent agreement with a decrease in flow 

downstream, which again, is in good agreement with literature.  

Although the discrepancies are small, they can be explained again by the difference in the outflow 

boundary condition as well as the explicit definition of the Young’s modulus in the 3-D model. 

These differences were explained in the previous section. 



5-25 

 

The geometry of the 3-D model is not the same as the arterial network used here. In an attempt to 

simplify modelling, the same arterial network is used for most of the simulations with variations 

arising only in the parameters that define arterial stiffness or the peripheral resistance. Owing to the 

difference in geometries between the 3-D and the 1-D model, discrepancies arise.   

Lastly, as mentioned earlier, instead of modelling inflows iteratively, the inflow is modelled using 

a  simple half-sinusoidal equation that approximates the inflow profiles taken from literature. The 

difference in inflow profile is another source of discrepancy.  

 

5.4 Pulse propagation in the arterial network- Comparison with 

measured data and Olufsen’s model 

5.4.1 Introduction  

 In this section, the current 1-D model is compared with the model proposed by Olufsen et al. [43], 

[47], [82] with the data published by Olufsen et al [82]. Olufsen et al. compared their 1-D model 

with structured tree outflow condition with flow data measured using magnetic resonance 

techniques. Details of the subject used for the measurements are given in Table 5-8.  

Table 5-8: Details of the subject used for the in-vivo measurement to compare the numerical results 

against. 

Age (𝒚𝒆𝒂𝒓𝒔) 32 

Height (𝒄𝒎) 178 

Weight (𝒌𝒈) 65 

Average heart rate (𝒃𝒑𝒎) 51 
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5.4.2 Methodology 

Fig. 5-12 shows the aortic inflow taken from Olufsen et al. [82] and the inflow profile used for the 

1-D model by using equation (5.1). Olufsen’s inflow profile is the one measured in the ascending 

aorta for the human subject. For the inflow used in the current model, 𝑄0 has a value of 428 𝑚𝑙/𝑠 

while 𝜏 = 0.37𝑠. The period lasts 1.1𝑠.  The values of 𝑄0 and 𝜏 have been adjusted to approximate 

the inflow from the taken from the published data as closely as possible as seen in Fig. 5-12. 
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Fig. 5-12: Comparison between the inflow ejection profile used for 1-D model (solid) and the inflow 

ejection profile measured in-vivo (dashed). The time period is 𝑇 = 1.1 𝑠. 

 

The measured inflow peaks at 428 𝑚𝑙/𝑠 and the diastole starts around 0.38𝑠. It can be noticed that 

the inflow has a slight undulation during diastole. In contrast, the half sinusoid used in the 1-D 

model has no such undulations. The peak flow rate is the same as the measured inflow profile while 
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diastole starts at 0.37𝑠. An important feature in Fig. 5-12 is the delay in the peeking of the flow rate. 

The measured data is physiological; hence, it is not based on a mathematical relation while our 

inflow is based on a mathematical equation (equation (5.1)). Using the parameters given in 

Appendix A and the 1D model described in the previous chapter, implemented via the algorithms 

given in Appendix B, the entire arterial network was simulated again. 

The arterial tree used for this section for the 1-D model is illustrated in Fig. 5-7 while the geometry 

of the arterial tree is given in Table 5-5.  

5.4.3 Results 

Fig. 5-13 (a), (b), (c), (d) and (e) show the comparison of the model predicted waveforms and data 

measured using Magnetic resonance imaging (MRI) at the aortic arch, thoracic aorta, abdominal 

aorta, external iliac and femoral artery, respectively. The shape of the waveforms show extremely 

good agreement along with excellent computation of the peak flowrates in all the locations. The 

slight deviation in the wave shape is due to different inflow used in the 1-D model. Nevertheless, 

majority of the peaks and nadirs do coincide which complement the overall agreement of the 

simulated data with measured data.  

From the flow waveforms, it is obvious that away from the heart, the flow rate decreases gradually. 

Of all the measurement locations, the femoral artery is farthest away and demonstrates a very low 

flow rate as compared to locations near or around the heart such as the aortic arch or the thoracic 

aorta. To put this decrease into perspective, the flow rate in the 1-D model peaks at 345 𝑚𝑙/𝑠 in the 

aortic arch, however by the time the flow rate reaches the femoral artery, the peak value is 

only 46.5 𝑚𝑙/𝑠, implying a loss of approximately 300 𝑚𝑙/𝑠 between the two locations. 

Additionally, the flow rate peaks at approximately 0.19 s in the aortic arch. While the peeking in 

flow rate in the femoral artery is seen at 0.28s. The delay is due to the distance of the two locations 

from the heart. Since the femoral artery is farther away, the peeking occurs later.  
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No measured pressure data was provided in the locations where the flow waveforms were validated. 

However, since pressure waveforms are of utmost importance as will be seen the next chapters, the 

pressure waveforms of the current 1-D model are compared with the validated 1-D model of Olufsen 

et al. [82].  

Fig. 5-14 (a), (b), (c), (d) and (e) show the comparison of the 1-D model predicted pressure 

waveforms with the pressure waveforms from the 1-D model used by Olufsen et al to validate the 

flow data.  The locations of measurement remain the same, that is, the aortic arch, thoracic aorta, 

abdominal aorta, external iliac and femoral artery, respectively.  
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Fig. 5-13: Comparison between the flow waveform time histories obtained from the 1-D model of 

the entire arterial network (solid) and the flow waveform time histories measured in-vivo using MRI 

(dashed). The measurements locations are (a) aortic arch (b) thoracic aorta (c) abdominal aorta (d) 

external iliac (e) femoral artery. 
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Fig. 5-14: Comparison between the pressure waveform time histories obtained from the 1-D model 

of the entire arterial network (solid) and the pressure waveform time histories obtained from the 1-

D model of the entire arterial network used by Olufsen (dashed). The measurements locations are 

(a) aortic arch (b) thoracic aorta (c) abdominal aorta (d) external iliac (e) femoral artery. 
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The pressure waveforms of the current 1-D model show excellent agreement with the model output 

of Olufsen et al. Despite using different inflow profiles, the pressures peaks and nadirs align with 

near perfection. The percentage error is also provided (Table 5-9) between each value and is 

calculated via equation (5.2). In this equation the experimental value is the one simulated using the 

1-D model while the accepted value is the one taken from the data published by Olufsen et al. [82]. 

Due to the flow rate peeking delay seen in the ejection profile, Fig. 5-12, there is some deviation in 

the pressure waveforms, however, it is very minimal. The delay becomes most obvious in the lower 

body, that is, in the external iliac and femoral artery.  

Table 5-9: Summary of the values of systolic pressure,𝑃𝑆  and  the diastolic pressure, 𝑃𝐷 from the 

current 1-D model and the 1-D model used by Olufsen et al [82] at different anatomical locations. 

The comparison is quantified by finding the percentage error between the results obtained from the 

two models. 

Location 

𝑷𝑺 

(𝒎𝒎𝑯𝒈) 

𝑷𝑫 

(𝒎𝒎𝑯𝒈) 

Olufsen’s 

Model 

Current 

Model 

%  

error 

Olufsen’s 

Model 

Current 

Model 

%  

error 

Aortic Arch (a) 118.15 119.38 1.04 86.16 86.12 0.05 

Thoracic Aorta 

(b) 

118.74 121.16 2.04 85.86 85.40 0.54 

Abdominal 

Aorta (c)  

123.03 123.18 0.12 82.51 84.04 1.85 

External Iliac 

(d) 

123.06 122.97 0.07 82.78 83.75 1.17 
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Femoral (e)  122.34 122.05 0.24 81.71 83.13 1.74 

 

The pressure increases as the distance from the heart increases. The dicrotic notch reduces with the 

distance from heart. This reduction in the second peeking was demonstrated in section 5.2.2 as well. 

Again, due to the distance from the heart, downstream, the peeking of the pressure is slightly delayed 

just as it was for the flow rate. 

5.4.4 Discussion 

In section 5.4.2, the 1-D model is compared with flow data measured experimentally. The data is 

taken from literature [82] and was measured using MRI for a human subject at various anatomical 

locations.  

Olufsen et al. [43], [47], [82] proposed a model with a structured tree outflow boundary condition 

rather than using the more commonly used Windkessel model. In this model, the smaller vessels are 

modelled separately and the equations governing the fluid structure interaction are solved to 

simulate blood flow in the tree of smaller vessel, which provides the impedance for the large 

systemic arteries. This boundary condition, being physiological in nature, allows wave propagation 

effects to be incorporated in the 1-D model unlike the electrical models used to describe the 

downstream vasculature. 

The model used in this work, is the one proposed by Olufsen et al, justifying the need to validate 

the current model against the simulated data of Olufsen’s model as well. The comparison with in-

vivo data as well as the original model conclusively validates the 1-D model, especially before using 

it to simulate various physiological and patho-physiological conditions as will be seen in the next 

chapter.  
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When compared to the measured flow data, the shape of the computed flow waveforms show 

extremely good agreement along with excellent computation of the peak flowrates in all the 

locations (Fig. 5-13). Majority of the peaks and nadirs coincide which reflect the overall agreement 

of the simulated data with measured data. Again, the flow rate decreases with increasing distance 

from the heart. 

Since the pressure data for the locations of flow validation was not available, the current 1-D 

model’s results are compared results from Olufsen’s model that validates the flow waveforms. The 

pressure predictions when compared with Olufsen’s model show excellent agreement (Fig. 5-14). 

The pressure increases away from the heart while the dicrotic notch decreases. From Fig. 5-14 it 

can be seen that the pressure predictions are extremely close to the pressures predicted by Olufsen’s 

model despite using a different inflow profile as well as using slightly different parameters 

(Appendix A). The percentage errors (Table 5-9) all lie within a minimum value of 0.05% and a 

maximum value of 2.04%, conclusively validating the model developed here for the arterial 

network. 

5.5 Summary  

In this chapter, the one-dimensional model used in this work is validated. The validation is carried 

out by first simulating blood flow in a single vessel that mimics the human aorta, followed by a 

comparison with a 3-D model with several main upper body branches and finally the entire human 

arterial network. In each of these models, found in literature, in-vivo data has been provided as a 

benchmark. The 1-D model used here fares extremely well against the models as well as the in-vivo 

data. The significance of this multi-level validation is to demonstrate the robustness as well as the 

ability of the 1-D model with a structured tree outflow condition to simulate simple vessels as well 

as more complicated entire arterial networks. This increases confidence in the clinical applications 

of 1-D modelling.  
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Key points from this chapter are as follows: 

 1-D cardiovascular models have to be validated against in-vitro and in-vivo data before 

using them to simulate real world phenomenon. 

 Validating a 1-D model against physiological data is tedious because the geometrical and 

elastic properties of all physiological vessels is very difficult to quantify. 

 The current model is validated against the pulse wave propagation along a single vessel, a 

3-D model that has several branches and finally a full-scale arterial network, which has 

been validated against in-vivo flow data. 

 For the single vessel and 3-D models, the downstream vasculature (distal end of the vessel) 

is represented using a three-element Windkessel model while the full-scale model’s 

downstream conditions are governed using the structured tree outflow boundary condition.  

 The one-dimensional model shows excellent agreement with in-vivo data as well as the 

results from various models found in literature. The qualitative as well as quantitative 

validation is extremely satisfactory. 

 Other key features of the pressure waveforms namely the dicrotic notch and the diastolic 

delay are also observed. 

 The discrepancies between the one-dimensional model, Alastruey’s model and the 3-D 

model can be explained by the difference in the treatment of the downstream vasculature 

In the RCR models, values of resistances and capacitance define the resistance to flow and 

the arterial distensibilty, respectively. However, in the structured tree outflow condition, 

flow is simulated in smaller arteries providing a physiological boundary condition, which 

captures wave propagation/reflection effects very well 

 Another important difference is that in Alastruey’s model and 3-D model, the Young’s 

modulus is defined explicitly. In the current model, the elastic properties are evaluated 
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using a relationship of the Young’s modulus, the radius of the artery and thickness of the 

arterial wall.  

 A source of discrepancy between the 3-D model, the full-scale model and the current model 

is the inflow profile used in the current model. However, due to the proximity of the inflow 

profile used to the inflow profile compared against, the discrepancies are minimal.  
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CHAPTER 6  

PHYSIOLOGICAL AND PATHOLOGICAL PRESSURE 

RESPONSE DATABASE  

6.1 Introduction 

1-D models allow modelling various physiological and pathological conditions making them 

extremely attractive as research tools. In addition to exhibiting key features of blood propagation in 

the cardiovascular system, 1-D models, if properly implemented, are flexible enough to allow 

variation of parameters, individually. The parameters can be broadly sub-categorized into 

geometrical, elastic and fluid parameters.  

In this chapter, variations of these parameters is carried out to simulate a range of cardiovascular 

responses under different degrees of healthy and vascular disease conditions. From the simulated 

response data, the arterial pressure data is specifically collected to form a database for the next 

chapter, which is the estimation of the GTF. The flow responses from the simulated results are used 

to assist the interpretation of the pressure variations simulated. 

6.2 Variation of cardiac output  

6.2.1 Physiological implications and significance of cardiac output 

The cardiac output (CO), is the amount of blood pumped by the heart per minute and is calculated 

via the equation [50] 

 𝐶𝑂 = 𝑆𝑡𝑟𝑜𝑘𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 × ℎ𝑒𝑎𝑟𝑡 𝑟𝑎𝑡𝑒 (6.1) 

where, the stroke volume is given in 𝑙𝑖𝑡𝑒𝑟𝑠/𝑏𝑒𝑎𝑡 and the heart rate is given in 𝑏𝑒𝑎𝑡𝑠/𝑚𝑖𝑛. The 

physiological range of the cardiac output lies in the range of 4 –  8 𝐿/𝑚𝑖𝑛 [200], depending on the 
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cardiovascular needs of an individual. However lower cardiac inputs have been observed [198]. The 

mean average CO is approximately 5 𝐿/𝑚𝑖𝑛. In order to comprehensively take the range of the COs 

and the corresponding pressure responses of the cardiovascular system into account, simulations for 

thirteen cases are carried out. In these cases, the CO is increased from a minimum value of 

3.1 𝐿/𝑚𝑖𝑛 to a maximum value of 6.83 𝐿/𝑚𝑖𝑛. The mean CO of this range then becomes 

4.97 𝐿/𝑚𝑖𝑛  which is approximately the mean average CO.  

6.2.2 Parametric study of cardiac output simulation  

The inflow ejection profiles are enforced via equation (5.1). Using the generic inflow, it is much 

simpler to manipulate the cardiac output. For the uniformity of the database, the heart rate is not 

changed hence, the time period is kept constant at 𝑇 = 1.1 𝑠. However, in order to change the 

cardiac output, the peak value 𝑄0 is changed for each of the thirteen cases. Table 6-1 shows the peak 

values used and the corresponding mean CO obtained. Fig. 6-1 (a-d) show the flow and pressure 

waveforms in the ascending aorta, brachial artery, abdominal aorta V (right before the iliac 

bifurcation) and the femoral artery, respectively for selected cardiac outputs. 

Table 6-1: Various peak values, 𝑄0 used to simulate varying cardiac outputs. 

Case 
Peak value, 𝑸𝟎 

(𝒎𝒍/𝒔) 

Cardiac Output, 𝑪𝑶 

(𝒍/𝐦𝐢𝐧) 

𝟏 250 3.10 

𝟐 275 3.41 

𝟑 300 3.73 

𝟒 325 4.04 

𝟓 350 4.35 

𝟔 375 4.66 

𝟕 400 4.97 

𝟖 425 5.31 
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𝟗 450 5.59 

𝟏𝟎 475 5.90 

𝟏𝟏 500 6.21 

𝟏𝟐 525 6.52 

𝟏𝟑 550 6.83 
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Fig. 6-1: Comparison of the flow (left) and pressure (right) waveform time histories obtained from 

the 1-D model by increasing cardiac outputs, when the peak flow values are 250𝑚𝑙/𝑠 (black), 

400𝑚𝑙/𝑠 (red) and 550𝑚𝑙/𝑠 (blue). The anatomical measurement locations are (a) ascending aorta 

(b) brachial artery (c) abdominal aorta V (d) femoral artery 
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6.2.3 Discussion 

It can be very clearly seen from Fig. 6-1, with each increment in the CO, the flow in the entire 

system increases causing pressure to increase in all arteries. However, the shape of the waveforms 

is preserved. The reason for the perseverance is because the variation brought about in the system 

is a physiological one rather than a pathological one. The increase in the system’s flow and hence 

the pressure is because the size of the cardiovascular system has been kept constant while increasing 

the CO. The different COs used here allow enough variation of the CO in the pressure response 

database.   

Although the flow rates described here represent physiological conditions, an increase or decrease 

of flow rate can also represent pathological conditions. For instance, severe dehydration or loss of 

blood through injury causes less availability of blood for pumping via the heart [201], hence 

reducing CO. On the other hand, waste removal diseases such as kidney failure, do not allow waste 

products to be expelled efficiently from the body, leading to an increase in the volume of blood, 

thereby increasing CO [201]. However, it has to be pointed out that under such a scenario, blood 

rich in waste materials would have the behavior of a Non-Newtonian fluid and the assumptions used 

here would fail to characterize the behavior of blood.   

Quantifying the increase or decrease in blood volume under such circumstances is very complicated. 

Since GTF estimation needs a pressure response database with physiological and pathological 

conditions, quantification of the volume of blood is rendered trivial. 
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6.3 Variation of arterial stiffness 

6.3.1 Physiological implications and significance of arterial stiffness 

Arterial stiffening is the modification of the medial characteristics of an artery which cause a 

reduction in the compliance of the arterial wall causing a decrease in the buffering capability of the 

artery to the periodic pulsation of blood through it [202], [203]. The reduced compliance of the 

arterial walls results in arterial stiffening, which inevitably reduces the storage capacity of the artery 

and at the same time, increases the pulse wave velocity. The reduced storage capacity means the 

absorption of energy becomes inefficient, giving rise to increased  pulse pressure [204]. The effects 

of arterial stiffening are the same as vasoconstriction, which is the narrowing of blood vessels due 

to the contraction of muscles in the arterial walls [205]. However, vasoconstriction is a natural 

response of the cardiovascular system to an external stimuli such as exposure to severe cold, to 

maintain mean arterial pressure. Vasoconstriction causes a loss in blood flow, increase in peripheral 

resistance and an increase in blood pressure. Vasoconstriction is also brought about via the use of 

blood pressure increasing medication. 

Increase in pulse pressure over a long period of time due to damage to structural integrity of arteries 

caused by ageing and other pathological conditions, increase the risk factor for cardiovascular 

diseases (CVDs). The progression of  risk of CVDs is worsened with progressing age [204], [206], 

[207]. Such diseases include (but are not limited to) diabetes, hypertension and renal disease [208], 

[209]. These conditions pose a cardiovascular risk as they cause symptoms characteristic of 

cardiovascular failure such as restriction of blood supply to tissues (ischaemia), increased stiffness 

of arteries and increased pulse pressure which are aggravated in severity with age [210]. 

The increase in arterial stiffening due to age is well documented, across different sex and ethnic 

groups [211]. The stiffening of arteries brings about an alteration to the response of the 

cardiovascular system to physiological needs such as changes in volume and pressure loading [208]. 
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It has also been shown that the stiffness of the ventricles in the heart also increases with age [212]. 

Ageing leads to the widening of the arterial pulse that signifies stiffening of arteries [208] which is 

a risk factor for several CVDs [213], [214].  

One such disease is hypertension, which is perhaps the most frequently recorded chronic disease in 

the world. 1 out of 4 people in the US have hypertension [215] and the prevalence increases 

drastically with age. It has been reported, between the ages of 18-39, 7.2% of people have 

hypertension while 30.1% of people, aged between 40-59 years are hypertensive. For people over 

65 years, the prevalence is 65.4%. The lifetime risk of hypertension for individuals that are  55 years 

old is approximately 90% [215], [216]. After the age of 55 years, the systolic pressure progressively 

increases while the diastolic pressure decreases hence increasing the pulse pressure leading to the 

development of isolated systolic hypertension (ISH). Owing to this, ISH is the most prevalent form 

of hypertension in the older population [217], [218]. ISH can be easily characterized by  the increase 

in the systolic pressure and a decrease in the diastolic pressure [219]. Studies have revealed that an 

increase in the systolic pressure increases the risk of CVDs significantly as compared to an increase 

in diastolic pressure [220]. 

There are various factors that contribute to ISH but the most important ones are arterial stiffening 

due to age as well as reduced compliance of the systemic arteries [218]. The decreased compliance 

leads to a less prominent cushioning of the volume ejected into the ascending aorta leading to a 

higher systolic pressure [221], [222]. As mentioned earlier, the bifurcating nature of arteries and the 

tapering of arteries along their respective length as well as the impedance at terminal sites, give rise 

to reflected waves. These waves superimpose on the incoming pressure waves and cause an increase 

in the systolic pressure. When arteries get stiffer, the wave reflections take place earlier in a cardiac 

cycle because of the increase in the pulse wave velocity [218], hence reaching  the root of the aorta 

before the occurrence of the dicrotic notch. Thus increasing the systolic pressure and pulse pressure 
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further, especially at the root of the aorta [218]. This predictably strongly correlates hypertension 

with arterial stiffening [223].   

Another extremely important contributor to CVDs and arterial stiffening is obesity. In a correlational 

study [224], it was shown that arterial stiffness was strongly correlated with higher body weight as 

well as hip and waist circumference. Interestingly, the study was independent of sex, age, ethnicity 

and the systolic blood pressure, making the correlation stronger. A key finding in the study is that 

the relationship between arterial stiffness and obesity becomes apparent at an early age. 

Another disease associated with arterial stiffening is diabetes. It has been shown that impaired 

glucose metabolism or failing glucose tolerance as seen in type-2 diabetes causes a decrease in 

arterial distensibilty, thus an increase in arterial stiffness [225].  

With the conclusive evidence presented here of how arterial stiffness increases with age and is the 

key contributor to several CVDs, this chapter seeks to use the 1-D model to simulate pressure/flow 

waveforms under the effects of increased stiffness. Due to a number of diseases associated with 

arterial stiffening and the common features seen in them (the recurring increase in arterial stiffness), 

classifying increased stiffness under one disease would do injustice to the characterization of the 

disease as well as the modelling capability of the 1-D model. Hence, this section is simply referred 

to as variation of arterial stiffness and can be seen under a multitude of perspectives such as ageing, 

hypertension, peripheral vasoconstriction, peripheral vasodilation and/or obesity. 

6.3.2 Parametric study of arterial stiffness simulation 

In order to comprehensively take arterial stiffness as well the increase in peripheral resistance into 

account for the generation of the pressure response database, the stiffness of the arteries is increased 

gradually.  



6-9 

 

In order to simulate arterial stiffening, the stiffness of the arteries is increased by changing the 

parameters of the stiffness relation (Equation (4.3)). The stiffness is increased from normal stiffness, 

which was validated in section 5.4, to a 100% increase in stiffness, that is, the stiffness is doubled. 

The incremental increase in stiffness is taken as 10% in order to take a wide range of stiffness’ into 

consideration. Ten simulations are carried out, generating ten different stiffness cases for the 

pressure response database. 

Fig. 6-2 shows the comparison of a healthy subject and the subjects with stiffness’ increased by 50 

and 100%. Fig. 6-2 (a-d) show the flow and pressure waveforms in multiple anatomical location, 

namely the ascending aorta, brachial artery, thoracic aorta and the femoral artery, respectively for 

selected incremental arterial stiffness’. The locations have been chosen arbitrarily in order to 

encompass parts of the body that lie in the upper body as well as the lower body.   
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Fig. 6-2: Comparison of the flow (left) and pressure (right) waveform time histories obtained from 

the 1-D model by increasing arterial stiffness. Selected increments 50% (red) and 100% (blue) in 

arterial stiffness are compared with a healthy human subject (black-dashed).  The anatomical 

measurement locations are (a) ascending aorta (b) brachial artery (c) abdominal aorta V (d) femoral 

artery. 

 

So far, cases where the arterial stiffness increases have been considered and they pertain to 

vasoconstriction. It is assumed that the validated model represents a healthy human subject, but the 

arterial stiffness of each individual is not the same. Since the validated model represents the arterial 

network for a 32 year old, subjects younger than this or more appropriately, subjects who have a 

lower arterial stiffness have not been considered.  Keeping this in mind and reiterating the objective, 

that a comprehensive pressure response database is required for numerous subjects; it is only logical 

to reduce the arterial stiffness so that the database contains data from subjects having low arterial 

stiffness as well.  

In order to encompass subjects with lower arterial stiffness’, the stiffness is reduced by a maximum 

of 50% with decrements in stiffness by 10%. Five simulations are carried out, generating five 

different stiffness cases for the pressure response database. 

Fig. 6-3 shows the comparison of a healthy subject and the subjects with stiffness’ reduced by 30 

and 50%. Fig. 6-3 (a-d) show the flow and pressure waveforms in multiple anatomical location, 

namely the ascending aorta, brachial artery, thoracic aorta and the femoral artery, respectively. The 

locations have been chosen arbitrarily in order to encompass parts of the body that lie in the upper 

body as well as the lower body.   
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Fig. 6-3: Comparison of the flow (left) and pressure (right) waveform time histories obtained from 

the 1-D model by decreasing arterial stiffness. Selected decrements 30% (red) and 50% (blue) in 

arterial stiffness are compared with a healthy human subject (black-dashed).  The anatomical 

measurement locations are (a) ascending aorta (b) brachial artery (c) abdominal aorta V (d) femoral 

artery. 

 

To create a full range of pressure response data, the effects of increasing or decreasing the minimum 

radius, 𝑟𝑚𝑖𝑛 are also included. It was seen in section 4.3, that a minimum radius is prescribed for 

each terminal artery, 𝑟𝑚𝑖𝑛. This acts as a termination criterion. The small vessels keep bifurcating 

until this minimum radius is achieved after which the arteries terminate. However, in an actual 

cardiovascular system, the small vessels do not simply terminate. They keep branching further into 

smaller vessels until branching into capillaries after which the vessels merge again to become veins. 

In actuality, there are no terminal vessels [175]. Due to this reason 𝑟𝑚𝑖𝑛 is a rather artificial 

parameter [175], hence making it’s selection tedious. Sensitivity analyses carried out for the value 

of 𝑟𝑚𝑖𝑛 in previous studies [47], [175] show that a decrease in the value of 𝑟𝑚𝑖𝑛 increases the total 

impedance while an increased value of 𝑟𝑚𝑖𝑛 decreases the total impedance at the terminal. Since 

there is no rule of thumb to determine the value of 𝑟𝑚𝑖𝑛, multiple values of 𝑟𝑚𝑖𝑛 are incorporated in 

the 1-D model. For each change in stiffness and even under normal stiffness conditions, simulations 

are carried out for a range of 𝑟𝑚𝑖𝑛  values that range from 0.09cm to 0.001cm (0.01cm is the generic 

value used for validation).  

6.3.3 Discussion 

At the ascending aorta or the inlet to the system, the flow waveforms coincide which signifies that 

the inlet conditions are the same for all the different stiffness models. It can be clearly seen from 

Fig. 6-2, in all the arteries, increasing the stiffness not only increases the systolic pressure but also 

decreases the diastolic pressure. This causes an increase in pulse pressure, as expected. The greater 

the increase in stiffness, the greater the increase in pulse pressure. This is physiologically sound, as 
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pointed out earlier in the description of arterial stiffening. Due to the increase in the stiffness of the 

arteries, the buffering or cushioning capability of the arteries has been reduced, which gives rise to 

an increased pulse pressure.  

Due to the increased stiffness of the vessels, the diameters of the vessels are constricted from the 

lack of compliance. This causes a reduction in flow, which signifies an increase in vascular 

resistance. Fig. 6-2 shows that in all the locations the flow rate does, indeed decrease showing that 

the vascular resistance increases. The increase in vascular resistance can also be seen by simply 

comparing the peaking of both the flow and pressure waveforms. It is evident that the peaking at 

increased stiffness’ occurs a little earlier as compared to a healthy subject. This early peaking is 

most obvious in the femoral artery. From Fig. 6-2 (d), it is obvious that the pressure waveform for 

100% increased stiffness peaks at 0.34s, while the pressure waveform for a healthy subject peaks at 

0.39s. This delay of 0.05s is what signifies the increase in vascular resistance and increase in the 

pulse wave velocity. As mentioned earlier,  increase in vascular resistance and the reduced arterial 

distensibilty increases pulse wave velocity [17], [67], [226], which means the reflected waves from 

peripheral sites return earlier and superimpose on the systolic section of the pulse. What is also 

evident from all the arteries is that the dicrotic notch or the second peaking lasts for a smaller amount 

of time. When arteries get stiffer, the wave reflections take place earlier in a cardiac cycle because 

of the increase in the pulse wave velocity [218], hence reaching  the root of the aorta before the 

occurrence of the dicrotic notch.  

Decreasing the stiffness on the other hand as demonstrated by Fig. 6-3 has the exact opposite effect, 

as expected. For all the arteries it can be clearly seen that the systolic pressure decreases, the diastolic 

pressures increases while the mean pressure decreases. There are two important things to consider 

here; decreased stiffness as compared to the validated ‘healthy’ subject does not necessarily mean 

the stiffness reduces due to a pathological conditions. It simply represents a subject with lower 
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arterial stiffness and the results of the increased and decreased stiffness can be seen as a 

concatenation. However, if it is assumed that the validated model is descriptive for a healthy human 

subject, the decreased stiffness can be seen as vasodilation. 

In the simplest terms, vasodilation occurs when the smooth muscles cells in the arterial walls relax, 

causing an increase in the arterial diameter [227]. This increase in area causes the blood flow to 

increase due to increased compliance or decreased arterial stiffness [228]. The increase in 

compliance also leads to a decrease in the blood pressure [229]. The objective of vasodilation is to 

reduce the total peripheral resistance by increasing the compliance through relaxation of the smooth 

muscle cells [230], [231]. The vasodilator response usually comes about when the ambient 

temperature is high and via vasodilation, the heated blood is taken to the skin [232], where the heat 

can be expelled to the atmosphere [233]. Ageing and other CVDs do not usually cause vasodilation 

however, the increased blood pressure due to arterial stiffening, triggers vasodilation in the 

cardiovascular system in order to contribute to the flow reserve [208]. The original finding that 

increasing flow pulsatility causes vasodilation in vivo was carried out in an experiment which was 

analyzing effects of arterial stiffening on mechanoenergetics [234]. Additionally, vasodilation 

occurs due to administration of certain drugs, especially blood pressure lowering drugs [235].  

The reduced stiffness means increased compliance and decreased pulse wave velocity. The decrease 

in pulse wave velocity means the reflected waves now travel back slower. This causes in a more 

prominent and longer dicrotic notch because the second peeking is now effects by the reflected 

waves. The most obvious effect on the dicrotic notch can be seen for the femoral artery in the Fig. 

6-3 (d).  
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6.4 Abdominal aortic aneurysm 

6.4.1 Physiological problems associated with abdominal aortic aneurysm  

The word aneurysm is derived from the Greek word, aneurusma, which means widening. In the 

medical world, an aneurysm can be broadly defined as an irreversible and permanent dilation of a 

vessel [236]. Although any dilation occurring in any section of the aorta below the diaphragm could 

be called an abdominal aortic aneurysm (AAA), an aneurysm is classified an AAA if it occurs in 

the infrarenal aorta (the section of aorta below the kidneys) (Fig. 6-4).  

Under normal conditions, the diameter of the infrarenal aorta cannot be generalized as it  is different 

for various age groups, sex and people with different bodyweight [237]. However, as a benchmark, 

diameter values of 1.5𝑐𝑚 for women and 1.7𝑐𝑚 for men are considered normal, for subjects older 

than 50 years [238]. This diameter of the infrarenal aorta decreases gradually from the point of its 

entry into the abdominal cavity to the point of its exit, the iliac bifurcation [236] (Fig. 6-4).  

Conventionally, if the diameter of the infrarenal aorta dilates to 3𝑐𝑚 or larger, it is deemed 

aneurysmal [239]. According to the criterion defined by The Society for Vascular Surgery and the 

International Society for Cardiovascular Surgery Ad Hoc Committee on Standards in Reporting, if 

the infrarenal diameter becomes 1.5 times the normal diameter, it is considered aneurysmal [240].   
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Fig. 6-4: Diagrammatic representation of an abdominal aortic aneurysm [241]. 

 

The most important risk factor for AAA is cigarette smoking [242]. Smoking  causes an 

inflammatory reaction within the aortic wall [243] which leads to vessel dilation. Increase in 

biomechanical wall stress also causes aneurysms and at times, cause the aneurysms to rupture [244]. 

Genetics also contribute to the developments of AAAs, especially in first degree relatives [245]. 

AAA is a fairly common and usually fatal condition, especially in older patients. Owing to the 

increased number of smokers and ageing of the population, incidences of AAAs have increased over 

the last 20 years [236].  AAA is more common in men as compared to women, with prevalence rates 

estimated between 1.3% − 8.9% in men and between 1.0% − 2.2% in women [246]–[248]. 

However, as mentioned earlier, smoking is one of the most important risk factors for AAA [242]. 
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With the increase in female smokers [249], the prevalence rates of AAA in women is expected to 

change in the near future [248], [250].  

Although, a few patients have reported equivocal symptoms, most AAAs do not show symptoms 

and the methods of physical examinations are not sensitive enough to identify an aneurysm [251]. 

Of these asymptomatic aneurysms, a majority of aneurysms remain asymptomatic until they rupture 

[252]. The aneurysms that are identified by screening are usually small and do not require immediate 

surgical intervention [253]–[255]. However, untreated AAAs can become enlarged. The 

enlargement is usually very slow initially, but increases exponentially, later [256]. This enlargement 

increases the risk of rupture [249], [257]. Patients with a ruptured AAA have a mortality rate of 

65% −  85% [252], [258], amongst which 50% of the ruptures occur before the patient even 

reaches the surgical room [259].  

AAAs and aortic dissections cause approximately over 15,000 deaths annually in the USA and 8000 

deaths annually in the UK [258], [260]. In 2000, these ranked 10th in the list of  leading causes of 

death in white men, aged between 65 and 74 years in the USA [261].  

Presence of AAA affects the blood propagation in the aorta and causes changes in blood pressure 

and flow waveforms. According to Swillens et al. [262], if these changes in pressure and flow 

waveforms are identified through arteries which are close to the aneurysm while being accessible at 

the same time,  AAAs can be detected well before they can rupture. Such arteries are the thoracic 

aorta and the common iliac arteries. It has been shown that the presence of an AAA causes pulse 

pressures to increases from the thoracic aorta towards the abdominal aorta [263]. 

In the following sections, an AAA is introduced in the arterial network and its effects on the pressure 

and flow waveforms in different anatomical locations are investigated. First, the AAA is introduced 

with normal stiffness parameters and then the stiffness of the AAA is gradually changed to quantify 

the effects of the different stiffness’ on the pressure and flow waveforms. It is important to note here 
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that the AAA is introduced to simulate a pathophysiological condition for the creation of a pressure 

database, rather than studying the effects of the AAA. This database is used for GTF estimation, as 

will be seen in the next chapter. Nonetheless, the effects are still quantified to test the applicability 

and the robustness of the 1-D model to simulate a diseased arterial network.  

6.4.2 Parametric study of AAA simulation 

In this section an AAA is introduced and its effects on arterial hemodynamics are investigated. The 

AAA is introduced by increasing the diameter and hence the area of the infrarenal aorta (abdominal 

aorta V in Table 6-2). The diameter of a healthy infrarenal aorta defined in Table 6-2 is 1.46𝑐𝑚 

(𝑟 = 0.73𝑐𝑚). This value is increased gradually to a maximum value of 7 𝑐𝑚. Table 6-2 shows the 

range of diameters of the aneurysm used.  

Table 6-2: Various AAA introduced into the 1-D model by increasing the diameter. 

Diameter 

(cm) 

1.46 

(normal infrarenal diameter) 

3.0 

4.0 

4.5 

5.0 

5.5 

6.0 

6.5 

7 
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For simplicity and clarity of graphical representation, only three different conditions are compared. 

The first is a healthy human infrarenal aorta. The second condition is an AAA with a diameter of 5 

cm and the third condition is an AAA with a diameter of 7cm. In addition to different diameters, the 

wall properties of an AAA also change.  These changes in wall properties over time cause the 

dilation or enlargement of the infrarenal aorta. Most commonly the weakening of the arterial walls 

is the main reason for the dilation [264]. This is incorporated in the model by reducing the stiffness 

of the aneurysm to a maximum of 50% reduction, in increments of 10%.  

The variation in diameter of the aneurysm remains the same for each incremental reduction of the 

aneurysmal stiffness. This give 54 different simulations considering that 9 different diameters are 

used for 6 different stiffness’ which includes normal stiffness. For comprehension, a sample Table 

6-3 is given to explain the structure of the 54 simulations. This table only describes one case of 

normal stiffness. This case generates 9 simulations.    

Table 6-3: Description of the diamter variation of the AAA introduced in the 1-D model for an 

AAA with normal stiffness. 

Stiffness of aneurysm Diameter of aneurysm 

Normal stiffness (0% reduction in stiffness) 

 

1.46 

(normal infrarenal diameter) 

3.0 

4.0 

4.5 

5.0 

5.5 

6.0 

6.5 

7 
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According to the data published by Swillens et al. [262], the key features to observe in the flow and 

pressure waveforms in the presence of an AAA are: 

 A decrease in pulse pressure in the in the Iiiac artery, infrarenal aorta and the thoracic aorta. 

 Increase in flow in the arteries above the AAA, while a decrease in flow in the external 

iliac artery. 

 Inflection points in the pulse pressure in the thoracic aorta. 

 More oscillations in the flow profile with larger amplitudes.  

Fig. 6-5 shows the flow waveform and the pressure waveforms obtained from the 1-D simulation 

for three different diameters of the aneurysm with normal stiffness. Fig. 6-5 (a) represents the flow 

and pressure waveforms in the thoracic aorta while Fig. 6-5 (b) and (c) represent the waveforms in 

the infrarenal aorta and the external iliac artery, respectively. 

Fig.6-6 shows the flow and the pressure waveforms obtained from the 1-D simulation for a healthy 

subject and a subject with an AAA. The AAA in this figure has a diameter of 7 cm for all the cases.  

The stiffness of the AAA changes from normal to a reduction of 50%. Fig.6-6 (a) represents the 

flow and pressure waveforms in the thoracic aorta, while Fig.6-6 (b) and (c) represent the waveforms 

in the infrarenal aorta and the external iliac artery, respectively. 
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Fig. 6-5: Comparison of the flow (left) and pressure (right) waveform time histories obtained from 

the 1-D model by increasing AAA diameter. Selected increments 5𝑐𝑚 (red) and 7𝑐𝑚 (blue) in AAA 

diameter are compared with a healthy human subject without an AAA (black-dashed).  The 

anatomical measurement locations are (a) thoracic aorta (b) infrarenal aorta (c) external iliac artery. 
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Fig.6-6: Comparison of the flow (left) and pressure (right) waveform time histories obtained from 

the 1-D model by decreasing the stiffness of AAA with a diameter of 7cm. Selected decrements of 

30% (red) and  50% (blue) in AAA stiffness are compared with a healthy human subject without 

an AAA (black-dashed) as well as human subject with an AAA with diameter 7cm and normal 

stiffness (green).  The anatomical measurement locations are (a) thoracic aorta (b) infrarenal aorta 

(c) external iliac artery. 
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6.4.3 Discussion 

From the simulated results of increasing the size of an aneurysm without changing the stiffness (Fig. 

6-5), it is observed that the flow rate increases in the thoracic aorta and in the infrarenal aorta  while 

the flow decreases in the external iliac artery, which agrees well with literature [262]. 

Additionally, it is observed that each peak and nadir for the thoracic aorta as well as the abdominal 

aorta is amplified. The peak gets much higher as compared to a healthy patient and the nadir falls 

much lower when compared to a healthy patient. It has been mentioned earlier that wave reflections 

occur due to the tapering and bifurcating nature of the arteries. At discontinuities such as these, the 

impedance changes, which produces wave reflections. Hence, the amplification of the peaks and 

nadirs is the result of the sudden widening of the aneurysm which causes strong reflections. Once 

the flow exits the aneurysm, it enters the external iliac artery where the compliance returns to normal 

and hence , the flow decreases. 

The pressure on the other hand decreases in all three arteries. Due to the presence of an aneurysm, 

the compliance of the system increases [262], this in turn reduces the pressure in the system. The 

greater the aneurysm, the greater the compliance leading to a greater decrease in pressure. The 

pressure contour of the thoracic aorta (Figure Fig. 6-5  (a)) also shows inflection points with the 

introduction of the aneurysm. This again shows complete agreement with literature [262]. These 

inflection points are, again, a result of the wave reflections due to the presence of an aneurysm.  The 

aneurysm acts as a filter, which leads to reduced pressure in the iliac artery. 

The 1-D model simulated results show excellent agreement with literature as to how the pressure 

and flow waveforms are affected due to the presence of an AAA. As mentioned earlier, the aim of 

this work is not to study AAA, rather to show the capability of the 1-D model with structured tree 

outflow condition to model an AAA. This capability has been demonstrated in this section.  
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On the other hand, when the aneurysmal stiffness is changed while keeping the diameter of the 

aneurysm constant (Fig.6-6), the flow again increases in the thoracic aorta and the infrarenal aorta. 

However, the increase in flow with the change in stiffness is much higher because not only a 

compliance has been introduced in the system via an aneurysm, but the stiffness of the aneurysm is 

further reduced which further increases the compliance. In the iliac artery, the flow decreases again 

and decreases further with increased reduction in stiffness.   

As with the case of an aneurysm with normal stiffness, reduced stiffness further decreases the pulse 

pressure in the infrarenal aorta as well in the iliac artery. The mean pressure also, very obviously 

decreases due to the increased compliance of the AAA. However, the pressure upstream, in the 

thoracic aorta starts increasing with decreasing stiffness. In the presence of an aneurysm with normal 

stiffness, the systolic pressure in the thoracic aorta decreases due to increased compliance because 

of the increase in volume of the infrarenal aorta. However, when the stiffness of this increased 

volume (AAA) is reduced, the pulse pressure starts increasing again. Without a comprehensive wave 

intensity analysis (WIA), it can only be assumed at this point that this increase in pulse pressure is 

due to a massive increase in wave reflections caused by the change in compliance. The reflected 

waves superimpose on the pressure waves, hence increasing the systolic pressure. It is emphasized 

again here that the AAA is introduced for the creation of the database rather than to study the AAA 

itself.  However, the observations made here, open a new door of opportunities into the development 

and simulation of AAA using 1-D models to improve early detection of an AAA (reduced flow in 

the iliac artery). A WIA can be done from this point on to quantify the effects of wave reflections 

of the pulse pressure, upstream, due to the presence of an AAA with reduced stiffness. Such analysis 

has already been done [265] preliminarily and can be built upon further. The study undertaken here 

contributes 54 cases to the pressure database that is used in the next chapter for GTF estimation and 

validation. 
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6.5 Aortic Coarctation 

6.5.1 Physiological problems associated with aortic coarctation  

Coarctation is derived from the Latin word, coarctatio, which means narrowing. Clinically, a 

coarctation is narrowing of the lumen in a blood vessel, which in turn causes a hindrance to flow. If 

the narrowing of a vessel is focal, that is, concentrated at a specific point, it is termed a coarctation. 

In the case of a narrowing that is more diffused and covers more than a specific point, it is called 

tubular hypoplasia [266].   

 Aortic coarctation or coarctation of the aorta (CoA) is sometimes referred to congenital aortic 

stenosis and is a relatively common cardiovascular condition. The first observation of CoA goes 

back to 1750, where it was observed during an autopsy [267]. Although a series of 200 postmortems 

was published in 1928 [268], it was not until 1933 that CoA started being diagnosed more commonly 

[266]. 

COA comes under the umbrella of congenital heart diseases, which means it is a birth defect. The 

most common characteristic description of CoA is the narrowing of the segment of the descending 

aorta distal to the origin of the left subclavian artery [269] (Fig. 6-7). At times, CoA is simply 

defined as a systolic pressure gradient, greater than or equal to 20mm Hg, between the arm and leg 

[270].  
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Fig. 6-7: Diagrammatic representation of an aortic coarctation [271]. 

 

CoA contributes 5–10% of all congenital heart diseases and signifies 7% of all critically ill infants 

with heart disease [266]. It is found in 1 in 1550 patients at necropsy [272] and is roughly three 

times more common in men [273].  Male-to-female predominance of CoA is in the range of 1.3–2.1 

in most studies [266]. Additionally, females are in particular jeopardy during pregnancy and 

childbirth [274]. 

The set of causes of CoA are still unclear. CoA cases associated with bicuspid aortic valve lie in the 

range of 60% −  85% [266], [275] which support the theory that either, both these malformations 

have a similar cause [276] or the presence of a bicuspid aortic valve causes the development of CoA 

[266]. 50% of the patients with CoA have several other defects such as hypoplastic left-side heart 

syndrome, ventricular septal defects and obstructive defects [266].  3% −  10% patients with CoA 

also develop intracranial aneurysms [266], [277]. Rosenquist et al. suggest CoA is a caused by 

abnormal development in the embryonic stages [277]. The higher prevalence in men of CoA 

suggests a relationship between X-chromosome defects and abnormal development of the aorta  

[276]. 

Aortic Coarctation 
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CoA can to lead to systemic hypertension, aortic insufficiency and secondary left ventricular 

hypertrophy with heart failure and if left untreated, the average life expectancy is 34 years [278]. 

CoA is one of the first successfully, surgically treated congenital heart diseases. However the 

surgical treatment does not solve the underlying vascular problem [279]. Long-term studies after 

the surgical repair of CoA have associated it with several late cardiovascular diseases such as aortic 

valve abnormalities, cerebral vascular mishaps, aneurysms in the aorta, coronary artery disease and 

hypertension [280]–[283]. Although, it has been shown that early repair of CoA reduces future 

morbidity [270], [284], all patients having undergone CoA repair need lifelong follow up [285], 

[286] as a lack of following up could lead to complications which might go undetected.  

6.5.2 Parametric study of CoA simulation 

As mentioned earlier, CoA is most common in the segment of the descending aorta distal to the 

origin of the left subclavian artery. A CoA is introduced into the 1-D model by reducing the diameter 

and hence the area of the descending aorta (thoracic aorta). The reduction is gradual, in order to 

comprehensively create a pressure database of mild CoA to severe CoA. Table 6-4 shows the cases 

simulated and their respective reduction in area. A 0% reduction in area signifies a healthy human 

subject at rest. 

Table 6-4: Various degrees of aortic coarctation introduced into the 1-D model by reducing the 

area. 

Reduction in area 

(%) 

0 

10 

19 

29 
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38 

48 

57 

67 

76.5 

 

According to the data published in literature by various medical research groups and general 

practitioners [287]–[290], the key features to observe in the flow and pressure waveforms in the 

presence of CoA are: 

 Abnormal flow and pressure in the femoral artery [288]. 

 Decreased pressure after the point of coarctation (decreased pressure in lower body) [287]. 

 Increased pressure before the point of coarctation. [287]. 

 Increased pressure in the upper limbs (upper limb hypertension) [288], [289]. 

 Weak or absent pulses in the femoral artery [289]. 

 Systolic pressure ≥  20 𝑚𝑚𝐻𝑔 higher in the arms as compared to legs (pressure gradient) 

[290]. 

Fig. 6-8 is a diagrammatic representation of effects of the CoA on pressure before and after the point 

of CoA.  
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Fig. 6-8: Diagrammatic representation of effects of the aortic coarctation on pressure before and 

after the point of coarctation in the aorta [287]. 

 

The results for the CoA model are given in Fig. 6-9, Fig. 6-10 and Table 6-5. Fig. 6-9 shows the 

pressure waveforms in six different anatomical locations for various degrees of CoA. Each reduction 

in area signifies an increase in coarctation. At each location, the dotted line signifies a healthy human 

subject with no coarctation or any other pathological condition. Fig. 6-9 (a-d) show the pressure 

waveforms in the upper body, before the point of coarctation while Fig. 6-9 (e & f) show the pressure 

waveforms in the lower body, after the point of coarctation. More specifically, Fig. 6-9 (a-f), 

represent the waveforms in the ascending aorta (root of aorta), aortic arch II, brachial artery, radial 

artery, abdominal aorta I and the femoral artery, respectively. Aortic arch II is the segment of the 

aortic arch right before the origin of the subclavian artery while abdominal aorta I is the section of 

the aorta located right after the descending aorta where the coarctation is situated. The brachial 

artery is situated in the upper arm, where pressure measurements are routinely taken using a cuff 

while the radial artery follows the brachial artery. Measurements for the radial artery have been 
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taken near the wrist. The femoral artery resides in the leg.
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Fig. 6-9: Comparison of pressure waveform time histories obtained from the 1-D model by 

introducing various degrees of aortic coarctation. Selected increments 38% (red), 57% (green) and 

76.5% (blue) in area reduction are compared with a healthy human subject without aortic 
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coarctation (black-dashed).  The anatomical measurement locations are (a) ascending aorta (b) aortic 

arch (c) brachial artery (d) radial artery (e) abdominal aorta (f) femoral artery, 

 

From Fig. 6-9, it can be observed that increasing the degree of CoA, the systolic pressure in all the 

locations before the coarctation increases, while the systolic pressure in all the locations after the 

coarctation decreases. The increase (or decrease, depending on the location) of pressure is highly 

related to the degree of coarctation. Greater the reduction in area (greater the coarctation), the greater 

the change in pressure.  

Table 6-5 shows the comparison of the peak (systolic) pressure, 𝑃𝑆, in the brachial and femoral 

arteries. An increase in the systolic pressure in the brachial artery while a decrease in systolic 

pressure in the femoral artery is with the increase in coarctation. The pressure gradient is simply the 

difference between the systolic pressures in the brachial and femoral arteries. The pressure gradient 

keeps increasing with the increase in coarctation and is well above 20𝑚𝑚𝐻𝑔 when the area of the 

descending aorta is reduced by 57%.  

Table 6-5: Comparison of the peak (systolic) pressure, 𝑃𝑆, in the brachial and femoral arteries. 

The pressure gradient, 𝛥𝑃𝑆 is the difference in the peak pressures at the two locations. 

Reduction 

(%) 

Brachial artery, 𝑷𝑺 

(𝒎𝒎𝑯𝒈) 

Femoral artery, 𝑷𝑺 

(𝒎𝒎𝑯𝒈) 

Pressure gradient, 𝚫𝑷𝑺 

(𝒎𝒎𝑯𝒈) 

0 125.98 122.20 3.78 

38 135.05 120.09 14.96 

57 144.12 111.37 32.75 

76.5 162.69 90.86 71.83 
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Fig. 6-10 shows the flow in the femoral artery. A significant decrease in flow with decreasing area 

of the descending aorta is observed. Along with a decrease in flow, the secondary undulations of 

flow also decrease, clearly seen by the decrease in the nadir following the initial peeking.  
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Fig. 6-10: Comparison of flow rate waveform time histories in the femoral artery at varios degrees 

of CoA. Selected increments 38% (red), 57% (green) and 76.5% (blue) in area reduction are 

compared with a healthy human subject without aortic coarctation (black-dashed).   

6.5.3 Discussion 

The simulation results show excellent agreement with literature. Due to the obstruction to flow 

caused by the decreasing area of the descending aorta, increased pressure in the upper limbs is 

observed (Fig. 6-9). Under normal circumstances, a healthy subject demonstrates systolic pressures 

of approximately 120 mmHg in the arms (brachial artery), however, when the area of the descending 

aorta is reduced by 50% or more, the systolic pressure exceeds 140mmHg in the arms while 

maintaining a normal diastolic pressure. This signifies hypertension in the upper limbs caused by 
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the coarctation. If the coarctation is increased further, the diastolic pressure also increases. The 

overall increase in pressure in the upper body is in complete agreement with literature [287]–[289] 

Due to the obstruction introduced, flow is reduced to the lower body or more accurately the arteries 

beyond the point of coarctation [287]. This is again, excellently exhibited by the results of the 

simulation. A significant decrease in the pressure and flow to the lower body is seen. The decrease 

in flow was shown in Fig. 6-10. The pressure decrease was seen in Fig. 6-9. The flow and pressure 

decrease in the femoral artery has been shown to be a characteristic of CoA [289] and was 

excellently demonstrated using the model. An interesting finding, is that the as long as the 

coarctation is a 38% reduction in the descending aorta, the pressure in the arms at this point still 

hasn’t exceeded 140mmHg (Fig. 6-9). Even the pressure gradient as seen in Table 6-5, is 

approximately 15 mmHg between the arm and the leg.  However, a further reduction in the area of 

the descending aorta, say a 58% reduction not only causes the systolic pressure in the arms to exceed 

140 mmHg (Fig. 6-9) but also causes a pressure gradient of 32.75 mmHg (Table 6-5) between the 

arm and the leg. This not only signifies upper body hypertension but also exhibits the characteristic 

description of a clinically relevant CoA [290]. This finding is reinforced by observing the flow in 

the femoral artery (Fig. 6-10). Up until a 38% area reduction, the flow is reduced; however, it still 

has a secondary undulation with a nadir resembling that of a healthy patient. When the area reduction 

is at 58%, the oscillation stabilizes somewhat with a decreased amplitude of the nadir.  The 

implication being, that the coarctation has to be in the range of 38% −  58% of area reduction of 

the descending aorta for it to have a pressure gradient ≥ 20 𝑚𝑚𝐻𝑔, thus requiring clinical 

intervention. 

Although these findings are clinically significant, conclusive investigation of CoA still needs 

deliberation. It is emphasized yet again; the aim of this work is to simply prove the reliability of a 

1-D model with structured tree outflow condition to simulate pathological conditions. The results 
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obtained from physiological and pathological conditions are used to create a pressure response 

database, which is used in the next chapter for GTF estimation and validation. Nonetheless, it has 

been demonstrated quite satisfactorily, that the 1-D model with a structured tree outlet condition can 

capture the key features and effects of CoA and can be further used to analyze these effects in greater 

depth. 

6.6 Summary  

In this chapter, the parameters of the one-dimensional model are varied to simulate a variety of 

physiological and pathological conditions. From the simulated response data of the cardiovascular 

system, the arterial pressure data is collected from various locations to form a pressure database for 

the next step, that is, GTF estimation. A variety of diseases are modelled such as Abdominal Aortic 

aneurysms, Aortic coarctation and arterial stiffening as in the case of hypertension and ageing. In 

addition to creating a pressure database for the next chapter, this chapter demonstrates the robustness 

of the 1-D model to capture the response of the cardiovascular system under the effects of these 

diseases or varied physiological parameters. 

Key points from this chapter are as follows: 

 1-D models allow modelling various physiological and pathological conditions making 

them extremely attractive as research tools. 

 In order to comprehensively take the range of the COs and the corresponding pressure 

responses of the cardiovascular system into account, simulations for thirteen cases are 

carried out. In these cases, the CO is increased from a minimum value of 3.1 𝐿/𝑚𝑖𝑛 to a 

maximum value of 6.83 𝐿/𝑚𝑖𝑛. 

 In order to simulate arterial stiffening, stiffness of the arteries is increased by changing the 

parameters of the stiffness relation. The stiffness is increased from normal stiffness, which 
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to a 100% increase in stiffness. Ten simulations are carried out, generating ten different 

stiffness cases for the pressure response database. 

 In order to consider subjects with lower arterial stiffness’, the stiffness is reduced to a 

maximum of 50%. Five simulations are carried out, generating five different stiffness cases 

for the pressure response database. 

 The AAA is introduced by increasing the diameter and hence the area of the infrarenal 

aorta. The diameter of a healthy infrarenal aorta is 1.46𝑐𝑚 (𝑟 = 0.73𝑐𝑚). This value is 

increased gradually to a maximum value of 7 𝑐𝑚. 

 Arterial wall weakening leading to arterial dilation is incorporated in the model by reducing 

the stiffness of the aneurysm to a maximum of 50% reduction, in increments of 10%. 

 CoA is most common in the segment of the descending aorta distal to the origin of the left 

subclavian artery. A  CoA is introduced into the 1-D model by reducing the diameter and 

hence the area of the descending aorta (thoracic aorta). The reduction is gradual, in order 

to comprehensively create a pressure database of mild CoA to severe CoA.
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CHAPTER 7  

GENERALIZED TRANSFER FUNCTION 

7.1 Introduction 

In clinical diagnoses, a very important physiological index is blood pressure at the aortic root. Initial 

reports of invasive blood pressure measurement date as far back as 1733. Hales made an opening in 

a horse’s artery and inserted a glass tube in the opening. The force generated due to the pulsatile 

pumping of the heart caused the level of blood in the tube to rise. Such a technique, however, is 

dangerous for human subjects as it could lead to infection, injury and severe blood loss. Nowadays, 

blood pressure in human subjects is measured invasively in catheterization laboratories. There are 

various methods available for invasive blood pressure measurements among which using high 

fidelity catheter micro-tip pressure transducers is considered the most accurate. However, there are 

a number of limitations in measuring blood pressure using these methods. Due to their invasive 

nature, they can’t be used for large scale clinical studies for instance for subjects who are healthy or 

even patients with hypertension, therefore these methods are deployed in subjects that are critically 

ill or already undergoing an invasive procedure such as a cardiopulmonary bypass [291]. 

Additionally, system damping leads to slower response times making it tedious to identify pressure 

wave features other than the systolic and diastolic pressure [291].  

Owing to the limitations of the applicability of invasive blood pressure measurement techniques, 

the blood pressure is routinely measured at peripheral locations such the upper arm (brachial artery) 

or the wrist (radial artery). The measurements are carried out using a cuff sphygmomanometer in 

most instances. Introduced first in 1881, the sphygmomanometer has become readily available since.  

However, blood pressure measured at peripheral locations does not represent the blood pressure at 

the aortic root or the carotid arteries. As shown in section 2.2, arterial pulse is produced when the 
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heart muscles contract and blood is ejected into the aorta. This pulse wave travels from the  central 

aorta to peripheral arteries [32], [202]. While the arterial pulse is transmitted, the features of the 

pulse wave change progressively due to wave reflections from the vascular beds and arterial tapering 

and bifurcation. The central aortic blood pressure, is modified by the effects of the contraction of 

the left ventricle, the wave reflections from the entire arterial tree as well as the total compliance of 

the arterial tree [292]. On the other hand, peripheral blood pressure waves such as the pressure waves 

in the brachial artery, are effected by local wave reflections coming from its own terminal ends [32], 

[293]. Indeed, previous research has shown that the waveforms of peripherally measured pressure 

and central aortic pressures are significantly different in regards to the wave shapes as well as 

amplitude [17], [202], [294]. It has been shown that the peripheral systolic pressure such as the one 

in brachial and radial arteries, when compared to central aortic pressure is 11-22 mmHg higher [13] 

whereas mean blood pressure and diastolic blood pressure vary slightly (0.2 mmHg [295]). This 

amplification of the systolic pressure in the peripheral arteries is more prominent in young, healthy 

subjects [202], [296]–[300]. 

Research has also shown that administration of drugs [18], [301] and nutritional interventions [302]–

[305] have different impacts on central and peripheral pressures.   

Due to these reasons, it is believed that the central aortic pressure is a better representation of 

hemodynamic load and stress to the heart and large vessels at rest, during pharmacological 

intervention, and after exercise [27], [306]–[308]. There is substantial research demonstrating 

independent and additional clinical importance of central blood pressure as compared to peripherally 

measured blood pressure [18], [19], [21], [298], [309], [310] and that central aortic pressure is a 

better indicator  physiologically for diagnosing diseases [19]–[21]. 

The last two decades have attracted a lot of research and interest from a clinical point of view into 

the central aortic blood pressure, which has been boosted by the development of non-invasive 
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techniques currently available for their estimation. The central aortic pressure can be assessed 

noninvasively by a number of techniques [291], [311]. In most of these techniques, peripheral 

pressure waveforms are acquired via arterial tonometry and are then transformed into the central 

pressure or directly analyzed to produce the central pressure [291], [311] (Fig. 7-1). Noninvasively 

estimated central aortic pressure has previously demonstrated its ability to forecast cardiovascular 

events better than peripherally measured pressures [21], [307], [308], [312], [313]. 

Central aortic pressure can be estimated non-invasively mainly using three methods [291]: 

1. Recording the pressure in central arteries for instance the carotid artery and using that as a 

representation of the central aortic pressure. 

2. Recording the pressure waveform at a peripheral location such as the brachial artery and 

deriving statistical relations using regression models between the peripheral pressure 

waveform and the central pressure waveform. 

3. Recording pressure waveforms in peripheral arteries and estimating the central aortic 

pressure using transfer functions. 
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Fig. 7-1:  Methods for the estimation of central blood pressures [291]. 

 

The evidence of the central aortic pressure being clinically more relevant as compared to peripheral 

pressure is still debatable [20], [21], [314], however, from a physiological point of view central 

pressures still forms the true afterload on the heart. The real problem lies in estimating the central 

aortic pressure and the limitations of the methods used to do that. One solution is to assess the 
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pressure in a location closest to the heart such as the carotid artery [315] using applanation 

tonometry. However, tonometry requires a stiff or bony structure to flatten the artery wall and a lean 

skin to avoid cushioning of the pressure pulse. Consequently, high quality waveforms are tedious to 

acquire especially in obese subjects, due to the physiological location of the carotid artery. 

Tonometry is also operator dependent and needs specialists [316]. Additionally, even though the 

carotid is close to the aorta, there still will be some amplification [202], [317], [318]. 

Therefore, the alternative is to measure blood pressure peripherally and to use a so-called transfer 

function (TF) to synthesize central pressure waveforms from the peripherally measured blood 

pressure [13], [22]. 

7.1.1 What is the generalized transfer function? 

Transfer functions are mathematical functions that  describe the behavior of a system by relating the 

input and output signals. Transfer functions (TFs) in cardiovascular studies, mathematically relate 

pressure waveforms at different arterial sites with each other  [13], [22], [23], [40], [319]–[325] and 

are usually represented in the frequency domain [13], [22]. The pressure waveform is treated  as  a 

sum of a steady part and a sum of sinusoidal waves with increasing frequency [202].  The TF 

expressed in terms of modulus and phase [25] expresses the relationship between sine waves for a 

given frequency (also called harmonics) [326].  

If the input is a flow waveform and the output is a pressure waveform from the same location, the 

TF between the two waveforms represents the impedance of the system [202], [327].  However, if 

the input and output signals are pressure waveforms from different locations but measured at the 

same time, the TF is the ratio of the frequency (𝜔) components of the output and input signal [328]. 

TFs are complex quantities, hence they are represented by the modulus and phase as a function of 

frequency [328].   
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In recent years, Generalized transfer functions (GTF) have been used to estimate central aortic 

pressure waveforms from peripherally measured waveforms obtained using non-invasive [13], [22], 

[329]. This GTF technique allows estimation of central aortic pressure from peripheral pressure 

measured non-invasively. Multiple central and peripheral pressures undergo a Fourier analysis and 

a generalized transfer function is calculated. This GTF relates the central and peripheral pressures. 

The central pressures of individual patients can be estimated by simply multiplying this GTF to 

peripheral pressures of these patients in the frequency domain and converting the results back to the 

time domain. [23]–[28] The patent to this technique [29] is in use of SphygmoCor® system 

(SphygmoCor®,AtCor Medical, West Ryde, NSW, Australia), a commercially available blood 

pressure measurement equipment. Table 7-1 summarizes a selection of the reported models. 

Table 7-1: Tabulation of the reported models 

Author 

(year) 

Peripheral measurement 

location 
Reference 

Karamanoglu 

(1993) 
Brachial & Radial artery [13] 

Fetics 

(1999) 
Radial artery [23] 

Pauca 

(2001) 
Radial artery [24] 

Söderström 

(2002) 
Radial artery [25] 

Gallagher 

(2004) 
Radial artery [330] 

Sharman 

(2006) 
Radial artery [27] 

Cheng Brachial artery [306] 
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(2010) 

Weber 

(2011) 
Brachial & Radial artery [28] 

Shih 

(2013) 
Brachial artery [331] 

Wassertheurer 

(2010) 
Brachial artery [332] 

Climie 

(2012) 
Brachial artery [11] 

Brett 

(2012) 
Brachial artery [333] 

Verberk 

(2016) 
Brachial artery [8] 

 

7.1.2 GTF calculation 

Each pressure wave comprises of harmonic waves at multiples of the frequency of the heart rate 

[27]. The generalized transfer function recreates the central aortic waveform from peripherally 

measured pressure waveform. Essentially, it is a ratio of the amplitudes and phase of the peripheral 

pressure waveform and the central pressure waveform [27]. A generalized transfer function of 

pressure waveforms between two sites is defined [13] as 

 𝐻(𝐴−𝐵) =
𝑃𝐵(𝜔)

𝑃𝐴(𝜔)
 (7.1) 

where, 𝑃𝐴(𝜔) 𝑎𝑛𝑑 𝑃𝐵(𝜔) are the pressure waveforms represented in the frequency domain at 

sites 𝐴 and 𝐵, respectively and 𝜔 is the angular frequency. If the moduli are denoted as 
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𝑀𝐴(𝜔) 𝑎𝑛𝑑 𝑀𝐵(𝜔) and phases denoted as 𝜑𝐴(𝜔) 𝑎𝑛𝑑 𝜑𝐵(𝜔) , the pressure waveforms can be 

written as  𝑃𝐴(𝜔) = 𝑀𝐴(𝜔)𝑒𝑖𝜑 𝑎𝑛𝑑 𝑃𝐵(𝜔) = 𝑀𝐵(𝜔)𝑒𝑖𝜑 for sites 𝐴 and 𝐵, respectively.  

Prior studies have shown that physiologically relevant data is contained within the first 15 harmonics 

[17], [23]. There is no fixed value for the magnitude (amplification) or phase of the transfer function 

estimated between the aorta and a peripheral location due to the variations in the arterial networks 

in each human subject and effects of cardiovascular dynamics due to dissimilarities of physiological 

and pathological conditions. However, most studies found in literature validate their transfer 

function by ensuring the magnitudes and the minimum phase angles stay within a certain range. 

Most studies simply compare the transfer function up to 4Hz after which a scatter is seen which can 

be attributed to the reduced power of frequency components of the pressure contours [13]. 

Approximately 96% of the power of the pressure pulse wave of the ascending aorta is confined in 

between the 0.8 and 4 Hz [17], [27]. For the current study, the benchmark for GTF validation are 

the GTFs estimated by Gallagher et al. [26]  and Karamanoglu et al. for human subjects [13]. Fig. 

7-2 shows the GTF estimated and validated by Gallagher et al. [26]. Out of the three TF 

amplifications, two are of significance in this work; the amplification at the top (AA-RA) and the 

amplification at the bottom (AA-CA). The top amplification is the amplification of the GTF 

estimated between the radial artery and the ascending aorta while the bottom amplification is for the 

GTF estimated between the carotid artery and the ascending aorta.  
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Fig. 7-2: Transfer functions estimated by Gallagher et al. between the ascending aorta and the radial 

artery (top) and between the ascending aorta and the carotid artery (bottom). The extracted figure 

also contains the transfer function between the carotid and radial artery. [330] 

  

A summary of the amplification is shown in Table 7-2. For both the peripheral locations, the 

characteristic peeking occurs at 4 Hz, which has been to a certain extent, standardized as the optimal 

peaking frequency as demonstrated by multiple previous researchers [13], [16], [23], [26], [315], 

[334].  

Table 7-2: Peak amplification and minimum phase of the GTFs estimated between the ascending 

aorta and the carotid and radial arteries by Gallagher et al. [330] 

Peripheral location Peak amplification 

Carotid artery 1.431 

Radial artery 2.658 

 

Fig. 7-3 shows the GTF estimated and validated by Karamanoglu et al.[13]. The plots on the top 

depict the amplification and phase of the GTF estimated via the brachial artery while the bottom 
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plots depict the amplification and phase of the GTF estimated via the radial artery. The plots on 

the left are the control group, that is, under normal circumstances and the plots of the right depict 

the group under the influence of nitroglycerin. For the current study, the GTF amplitude and phase 

values of significance are from the plots on the left. The characteristic peaking, again, occurs at 4 

Hz while the minimum phase takes place at 9Hz.These values are summarized in Table 7-3.   

Table 7-3: Peak amplification and minimum phase of the GTFs estimated between the ascending 

aorta and the brachial and radial arteries by Karamanoglu et al. [13] 

Peripheral location Peak amplification Minimum Phase (rad) 

Brachial artery 2.572 -3.627 

Radial artery 3.049 -6.450 

 

Fig. 7-3: Transfer function estimated by Karamanoglu et al. between the ascending aorta and the 

brachial artery under normal conditions (top-left) and under the influence of Nitroglycerin (top-

right). The estimated transfer function between the ascending aorta and the radial artery under 
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normal conditions (bottom-left) and under the influence of Nitroglycerin (bottom-right) are shown 

here as well. [13] 

 

The brachial and radial artery are by far, the most common peripheral locations used for GTF 

estimation. Femoral artery has mostly been used in studies conducting blind identification of the 

central aortic waveform [34]–[36], [335]–[337] rather that GTF estimation so it is tedious to 

generalize the characteristic peaking of the GTF estimated using the femoral artery.  

7.1.3 Limitations of GTF 

There has been some debate that the general transfer function varies from person-to-person due to 

a variety of physiological differences, making the general transfer function an unreliable tool of 

choice in such analyses as it lacks adaptability [30]–[32]. Cloud et al. [31] undertook a study with 

30 patients and found that the SphygmoCor® system underestimated the systolic central aortic 

pressure and overestimated the diastolic central aortic pressure by 13.3mmHg and 11.5mmHg, 

respectively. To put things into perspective, a blood pressure measuring equipment should not have 

a standard deviation greater than ±8mmHg [33]. Consequently, individualized transfer functions 

(ITF) were introduced to account for individual differences amongst patients [34]–[37], and 

although promising, they still lack personalization.   

With the on-going disagreement between the research groups for and against the GTF technique, it 

is essential to use an independent method to test the GTF technique, which also serves as an 

alternative to experimental studies. Numerical modeling provides such an alternative research 

method. Pressure changes in arteries can be more accurately analyzed by deriving and solving the 

mathematical equations that govern the pressure wave dynamics in the arteries [38]. This can serve 

as the judging tool to check the validity of the transfer function method. 
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Numerical modeling has been used comprehensively, to investigate a diverse range of problems in 

the study of cardiovascular dynamics. Research has already been carried out using numerical 

modelling of the pulse wave propagation to study the changes in flow as it goes from the heart 

towards the peripheral arteries. Stergiopulos et al.[39] used peripheral pressure and velocity to 

model the pulse wave transmission effect in a vessel segment. Based on the reflection coefficient in 

the periphery and the time taken for pulse wave transmission, a transfer function was defined that 

relates the central and peripheral pressures. Since the simulation is carried out on a vessel segment, 

it does not provide information about pressure in other parts of the arterial network.  Segers et al. 

[40] and Thore et al. [41] used transmission line models to simulate pulse wave dynamics. Another 

study conducted by Jiang et al [42] extends the electrical circuits analogy to the entire human arterial 

network to predict the central aortic pressure. Although the entire network is simulated, the analogy 

to electrical circuits does not represent wave propagation effects satisfactorily. Additionally, 

important parameters such as Young’s modulus, vascular thickness and cross-sectional areas of the 

arteries are assumed constant, which is not the case in physiological conditions.  

All these studies use simplified models that either do not take into consideration non-linearities such 

as inhomogeneous vessel wall elasticity, vessel tapering etc. or consider stand-alone simulation 

cases. To our knowledge, a full-scale cardiovascular model that incorporates non-linearities as well, 

has not been used to systematically evaluate the GTF technique.  

In this chapter, the pressure response database created in chapter 6 using the 1-D model is used to 

estimate, validate as well as study the GTF technique.  The following section provides the protocol 

of the study followed by the results and the discussion of those results in sections 7.3 and 7.4. 

7.2 Methods 

This section reports the methodology of deriving the GTF as well as testing its validity. The 

approach adopted is summarized in a systematic manner as follows: 
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Step 1: Extracting the pressure waveforms from the response database for 5 anatomical locations, 

the ascending aorta, brachial artery, radial artery, common carotid artery and femoral artery. 

Step 2: Dividing the database in half, randomly. One half forms the derivation database (97 datasets) 

while the other half forms the validation database (97 datasets). All the extracted waveforms are 

transformed into the frequency domain. 

Step 3: Using the derivation half of the database to derive TFs between the aorta and each of the 

peripheral locations. Each of these TFs are averaged in order to generalize them. 

Step 4: Using the validation half of the database to reconstruct the central aortic pressures of the 

validation database by multiplying the peripheral pressures with their respective GTFs obtained in 

the previous step. The reconstructed aortic pressure waveforms are transformed back into the time 

domain. 

Steps 5: Comparing the reconstructed and model simulated central aortic pressure to test the validity 

of the transfer function. 

These steps are further elaborated in the section that follows. 

7.2.1 GTF Estimation 

In order to estimate the GTF, the pressure response database created in the previous chapter is used. 

A total of 194 cases were simulated which give 194 different physiological and pathological 

responses of the cardiovascular system. Each of these 194 datasets, generates pressure and flow 

waveforms throughout the systemic arterial network which are measured at specific anatomical 

locations. For this particular study, pressure waveforms from 5 locations are of interest. These 

locations are the ascending aorta (root of the aorta), the brachial artery (upper arm), radial artery 

(wrist), the common carotid artery (neck) and the femoral artery (thigh).  
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As seen in the literature review for the GTF, for GTF estimation, the locations most commonly used 

for peripheral pressure measurement are the brachial and radial arteries. However, other locations 

have been used such as the carotid artery [6], [322] and the femoral artery [324], [338]. Numerical 

modelling allows pressure measurements in all these locations simultaneously, allowing the 

flexibility to generate a GTF for 4 different peripheral pressure measurement locations at the same 

time. It is noteworthy that other locations can be used to generate a GTF but for this study the GTFs 

between the ascending aorta and the main stream peripheral locations found in literature are 

estimated.  

For GTF derivation, the pressure response database created in the previous chapter is randomly 

divided in half, that is, 97 cases are picked randomly. These 97 cases form the derivation database 

for the GTF. Each of these 97 cases consists of pressure waveforms from the 5 different locations. 

The pressure waveforms at the ascending aorta are termed derivation central aortic pressure (DCAP) 

while the pressure waveforms from peripheral locations (brachial, radial, carotid and femoral 

arteries) are termed derivation peripheral pressure (DPP). DPPS represent site B in equation (7.1) 

while DAPs represent site A.  

The DPPs for each of these 97 datasets are used in conjunction with the DCAPs to estimate a transfer 

function for each of the respective sites. This is done by first transforming the DCAPs and the DPPs 

into the frequency domain by using a discrete Fourier transform (DFT). Once the pressure 

waveforms have been transformed, equation (7.1) is applied to estimate the transfer function for 

each of these locations. This yields 388 TFs (97 TFs per site B, yielding 4 × 97 = 388 TFs). The 

individual TFs are then averaged in order to estimate the GTF for each site. 

A diagrammatic representation of the DPPs and the DCAPs is shown in Fig. 7-4. The DPPs are the 

pressure waveforms form the peripheral measurement locations while the DCAPs are the pressure 

waveforms from a single location, the aortic root which is of interest for this study.  
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The averaged TFs derived can now be used to reconstruct the central aortic pressure by from 

peripherally measured pressures. This is covered in the next section. 

 

 

Fig. 7-4: Central and peripheral sites of GTF estimation. 

7.2.2 Reconstruction of central aortic pressure 

In order to test the validity and performance of the derived GTF, the other half of the database (the 

remaining 97 cases out the 194 cases simulated) is used.  For the reconstruction, only peripherally 
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measured pressures are required. The peripherally measured pressures (pressures measured at the 

brachial, radial, carotid and femoral arteries) of the remaining database are now termed as the 

validation peripheral pressures (VPP) for simplicity.  

The VPPs are first converted into the frequency domain, again, using a DFT. The VPPs expressed 

in the frequency domain are then multiplied with their respective GTF. For instance, if a VPP in 

consideration is taken from the brachial artery, it is multiplied with the GTF derived using the DPPs 

from the brachial artery. This product yields the estimated central aortic pressure (ECAP) in the 

frequency domain. The ECAP in the frequency domain is transformed to the time domain using an 

inverse DFT, which gives the reconstructed central aortic pressure waveform.  

Since the database was created using the 1-D model, the central aortic pressures for the remaining 

97 cases are already known. These are compared to the ECAP, hence they are called validation 

central aortic pressure (VCAP). This comparison is carried out to test the validity of the estimated 

transfer functions. Section 7.3 details the statistical analysis carried out to compare the ECAPs and 

the VCAPs to judge the effectiveness of the GTFs.   

7.2.3 Statistical Analysis 

Statistical analysis was carried out using GraphPad Prism version 7.0 (GraphPad Software Inc.). 

Pearson correlation coefficient (r) was used to determine the correlation between the pressure 

responses, which were estimated using GTF as well as pressure responses produced using the 1-D 

model. A linear regression was then performed to investigate the relationship between the pressure 

responses that were estimated (using GTF) and the pressure responses from the 1-D model. Bland-

Altman plots were used to assess the agreement between the two chosen methods. Data was 

expressed as mean± SD and significance was taken at p < 0.05.  
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7.3  Results 

Fig. 7-5 shows examples of the comparison of the reconstructed central aortic waveforms using the 

GTF and the model-generated waveforms. It is tedious to quantify the similarity by just looking at 

the figure; hence a detailed statistical analysis is carried out in the sections that follow. However, 

by inspection of Fig. 7-5, it can be clearly seen that the estimated waveforms correspond well with 

the model generated waveforms even though the peripheral pressure contours differ significantly 

when compared to the central aortic pressure waveforms.  

0 1 2 3 4 5

8 0

9 0

1 0 0

1 1 0

1 2 0

T im e  (s )

P
r
e

s
s

u
r
e

 (
m

m
H

g
)

G T F  E s t im a te dM o d e l G e n e r a te d
 

Fig. 7-5: Comparison of model generated central aortic pressure waveforms (black) and GTF 

estimated central aortic pressure waveforms (red) from 5 randomly chosen subjects. 

 

One such example of the difference in pressure contours is shown in Fig. 7-6. The pressure 

waveform from the femoral artery is compared with the central aortic waveform from a randomly 

selected subject. The dicrotic notch is evidently diminished in the pressure contour of the femoral 

artery and the systolic pressure is markedly different. The initial time delay between the waveforms 
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signifies the distance between the two measurement locations which is also demonstrated by the 

delayed peeking of the pressure contour of the femoral artery.  
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Fig. 7-6: Comparison of model generated pressure waveforms in the ascending aorta (dotted) and 

the femoral artery (solid).  

 

As mentioned earlier, the TF is expressed in terms of modulus and phase expresses the relationship 

between sine waves for a given frequency (also called harmonics). The pressure transfer functions 

between the carotid artery, brachial artery, radial artery, femoral artery and the ascending aorta peak 

at 1.567, 2.114, 3.018 and 1.112, respectively while the minimum phase angles are -3.012, -3.747, 

-6.569 and -6.874 rad, respectively (Fig. 7-7).  
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Fig. 7-7: Averaged transfer functions estimated between the ascending aorta and (a) carotid artery, 

(b) brachial artery, (c) radial artery and (d) femoral artery. 

 

The data from the GTF plots can be summarized as follows: 

 

Table 7-4: Summary of the peak amplification and minimum phase of the GTFs estimated between 

the ascending aorta and the four peripheral locations. 

Peripheral location Peak amplification Minimum Phase (rad) 

Carotid artery 1.567 -3.012 

Brachial artery 2.114 -3.747 

Radial artery 3.018 -6.594 

Femoral artery 1.112 -6.874 
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7.3.1 Correlation of model generated and estimated central waveforms 

Pearson’s correlation coefficients were calculated for the systolic, diastolic and mean pressures at 

the root of aorta (ascending aorta), between the pressures estimated using GTF and the pressures 

predicted by the model for the remaining 97 cases. Table 7-5 shows the correlation coefficient 

values calculated along with the mean pressure values (systolic, diastolic and mean pressures) from 

each of the arteries, including the p values for each location.   

For the systolic pressure, the model generated mean value was 116.700 ± 8.996 mmHg while the 

mean values estimated using GTF from the carotid artery was 117.600 ± 8.151 mmHg, from the 

brachial artery was 117.700 ± 7.309 mmHg, from the radial artery was 117.600 ± 7.176 mmHg and 

the femoral artery was 118.600 ± 9.175 mmHg. It can be seen from these mean values that GTF 

estimated values from each location slightly overestimates the systolic pressure at the root of the 

aorta as compared to the mean systolic pressure values generated by the 1-D model. The Pearson’s 

r values are 0.991, 0.981, 0.978 and 0.873 (p < 0.001) for the carotid, brachial, radial and femoral 

arteries, respectively. These r values indicate that the highest correlation is between the values 

estimated from the carotid artery followed closely by the brachial and radial arteries. The least 

correlated value was the one estimated using the femoral artery.  

For the diastolic pressure, the model generated mean value was 86.560 ± 4.995 mmHg while the 

mean values estimated using GTF from the carotid artery was 87.130 ± 4.983 mmHg, from the 

brachial artery was 86.860 ± 5.132 mmHg, from the radial artery was 86.390 ± 5.056 mmHg and 

the femoral artery was 84.250 ± 5.928 mmHg. It can be seen from these mean values that GTF 

estimated values from the carotid and brachial arteries slightly overestimates the diastolic pressure 

while the values estimated from the radial and femoral arteries underestimates the diastolic pressure 

at the root of the aorta when compared to the mean diastolic pressure values generated by the 1-D 

model. The Pearson’s r values for the carotid, brachial, radial and femoral arteries are 0.996, 0.996, 
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0.993 and 0.971 (p < 0.001), respectively. These r values indicate that the highest correlation is 

between the values estimated from the carotid and brachial arteries followed closely by the radial 

and femoral arteries. The least correlated value was the one estimated using the femoral artery.  

For the mean pressure, the model generated mean value was 101.800 ± 5.495 mmHg while the mean 

values estimated using GTF from the carotid artery was 102.800 ± 5.401 mmHg, from the brachial 

artery was 102.800 ± 5.522 mmHg, from the radial artery was 102.800 ± 5.457 mmHg and the 

femoral artery was 103.100 ± 5.563 mmHg. As seen from these mean values, the GTF estimated 

values from each location slightly overestimates the mean pressure at the root of the aorta as 

compared to the mean pressure values generated by the 1-D model. The Pearson’s r values are 0.999, 

1.000, 1.000 and 0.934 (p < 0.001) for the carotid, brachial, radial and femoral arteries, respectively. 

These r values indicate that the mean pressure values estimated from the carotid, brachial and radial 

arteries are highly correlated with the mean pressures generated from the 1-D model.  As seen with 

the mean systolic and diastolic pressure values, the lowest correlation was found from the pressure 

values estimated using the femoral artery.  
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Table 7-5: Comparison of the model generated and GTF estimated central aortic systolic, diastolic 

and mean pressures from the four locations. 

Variable 𝑷𝑺 𝑷𝑫 𝑷𝒎 

Model Generated 

(mmHg) 
116.700 ± 8.996 86.560 ± 4.995 101.800 ± 5.495 

Carotid 

GTF estimated 

(mmHg) 
117.600 ± 8.151 87.130 ± 4.983 102.800 ± 5.401 

Pearson’s r value 

 
0.991 0.996 0.999 

Brachial 

GTF estimated 

(mmHg) 
117.70 ± 7.309 86.860 ± 5.132 102.800 ± 5.522 

Pearson’s r value 

 
0.981 0.996 1.000 

Radial 

GTF estimated 

(mmHg) 
117.600 ± 7.176 86.390 ± 5.056 102.800 ± 5.457 

Pearson’s r value 

 
0.978 0.993 1.000 

Femoral 

GTF estimated 

(mmHg) 
118.600 ± 9.175 84.250 ± 5.928 103.100 ± 5.563 

Pearson’s r value 

 
0.873 0.971 0.934 

p for association 

 
< 0.001 < 0.001 < 0.001 
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7.3.2 Linear regression 

Fig. 7-8, Fig. 7-9 and Fig. 7-10 show the relationship between the systolic, diastolic and mean 

pressures estimated using GTF from multiple locations and the systolic, diastolic and mean 

pressures generated by the 1-D model for the remaining 97 cases of the database.  

Estimated systolic pressures (ESP) from the (a) carotid, (b) brachial, (c) radial and (d) femoral 

arteries are shown in figure Fig. 7-8.  The figure shows the data points with the regression line. 

There was a significant difference between the systolic pressures estimated using the femoral artery 

and the model generated systolic pressures (𝑦 = 0.8902 𝑥 + 14.79, 𝑟2 = 0.762, p < 0.001). 

However, there is little difference between the systolic pressures estimated using the carotid 

artery (𝑦 = 0.8982 𝑥 + 12.85, 𝑟2 = 0.983, 𝑝 <  0.001), brachial artery ( 𝑦 = 0.7971 𝑥 +

24.68, 𝑟2 = 0.963, 𝑝 <  0.001), radial artery (𝑦 = 0.7800 𝑥 + 26.57, 𝑟2 = 0.956, 𝑝 <  0.001) 

and the model-generated systolic pressures (VSP). 
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Fig. 7-8: Relationship between the model generated (validated) central systolic pressures (VSP) and 

GTF estimated central systolic pressures (ESP) associated with (a) carotid artery, (b) brachial artery, 

(c) radial artery and (d) femoral artery. The dotted line is the line of best fit. 

 

Estimated diastolic pressures (EDP) from the (a) carotid, (b) brachial, (c) radial and (d) femoral 

arteries are shown in Fig. 7-9. There is little difference between the systolic pressures estimated 

using the carotid artery  (𝑦 = 0.9935 𝑥 + 1.13, 𝑟2 = 0.992, 𝑝 <  0.001), brachial artery ( 𝑦 =

1.023 𝑥 − 1.728, 𝑟2 = 0.992, 𝑝 <  0.001), radial artery (𝑦 = 1.005 𝑥 − 0.5894, 𝑟2 = 0.985,

𝑝 <  0.001), femoral artery (𝑦 = 1.153 𝑥 − 15.55, 𝑟2 = 0.944, 𝑝 <  0.001) and the model 

generated diastolic pressures (VDP). 

Estimated mean pressures (EMP) from the (a) carotid, (b) brachial, (c) radial and (d) femoral arteries 

are shown in Fig. 7-10.  The figure shows the data points with the regression line. There was a 

significant difference between the mean pressures estimated using the femoral artery and the model 
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generated mean pressures (𝑦 = 0.9454 𝑥 + 6.829, 𝑟2 = 0.872, 𝑝 <  0.001). However, there is 

little difference between the mean pressures estimated using the carotid artery (𝑦 = 0.9819 𝑥 +

2.876, 𝑟2 = 0.998, 𝑝 <  0.001), brachial artery ( 𝑦 = 1.005 𝑥 + 05462, 𝑟2 = 1.000, 𝑝 <

 0.001), radial artery (𝑦 = 0.9928 𝑥 + 1.776, 𝑟2 = 1.000, 𝑝 <  0.001) and the model generated 

mean pressures (VMP). 
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Fig. 7-9: Relationship between the model generated (validated) central diastolic pressures (VDP) 

and GTF estimated central diastolic pressures (EDP) associated with (a) carotid artery, (b) brachial 

artery, (c) radial artery and (d) femoral artery. The dotted line is the line of best fit. 
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Fig. 7-10: Relationship between the model generated (validated) central mean pressures (VMP) and 

GTF estimated central mean pressures (EMP) associated with (a) carotid artery, (b) brachial artery, 

(c) radial artery and (d) femoral artery. The dotted line is the line of best fit. 

 

7.3.3 Bland-Altman analysis 

The relative performance of the GTF estimated pressure responses can be visually comprehended 

with relative ease using the Bland-Altman plots depicted in Fig. 7-11, Fig. 7-12 and Fig. 7-13 for 

the systolic, diastolic and mean pressures. The y-axis represents the mean difference (bias) of 

measures between the model generated and GTF estimated pressure responses (systolic, diastolic or 

mean) while the x-axis represents the average of the measures from the two method [339].  

Fig. 7-11 depicts the Bland-Altman plot of the central aortic systolic pressures generated using the 

1-D model and estimated using the GTF technique. Bland-Altman analysis showed that the bias was 
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0.9733 mmHg (95% limits of agreement: -1.78 to 3.727), 1.006 mmHg (95% limits of agreement: -

3.521 to 5.532), 0.896 mmHg (95% limits of agreement: -3.976 to 5.769), and 1.974 mmHg (95% 

limits of agreement: -7.013 to 10.96) for the estimation carried out using the carotid artery, brachial 

artery, radial artery and femoral artery, respectively.  
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Fig. 7-11: Bland Altman plots for the model generated and GTF estimated central systolic pressures 

(SP) associated with (a) carotid artery, (b) brachial artery, (c) radial artery and (d) femoral artery. 

The solid blue line represents the mean difference (bias) and the dotted red lines represent the 95% 

limits of agreement.  

 

Fig. 7-12 shows the Bland-Altman plot of the central aortic diastolic pressures generated using the 

1-D model and estimated using the GTF technique. Bland-Altman analysis showed that the bias was 

0.569 mmHg (95% limits of agreement: -0.321 to 1.459), 0.3002 mmHg (95% limits of agreement: 

-0.618 to 1.218), -0.1674 mmHg (95% limits of agreement: -1.364 to 1.029), and -2.311 mmHg 
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(95% limits of agreement: -5.449 to 0.826) for the estimation carried out using the carotid artery, 

brachial artery, radial artery and femoral artery, respectively. 
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Fig. 7-12: Bland Altman plots for the model generated and GTF estimated central diastolic pressures 

(DP) associated with (a) carotid artery, (b) brachial artery, (c) radial artery and (d) femoral artery. 

The solid blue line represents the mean difference (bias) and the dotted red lines represent the 95% 

limits of agreement. 

Fig. 7-13 depicts the Bland-Altman plot of the central aortic mean pressures generated using the 1-

D model and estimated using the GTF technique. Bland-Altman analysis showed that the bias was 

1.03 mmHg (95% limits of agreement: 0.501 to 1.559), 1.045 mmHg (95% limits of agreement: -

0.929 to 1.160), 1.039 mmHg (95% limits of agreement: 0.778 to 1.300), and 1.275 mmHg (95% 

limits of agreement: -2.670 to 5.219) for the estimation carried out using the carotid artery, brachial 

artery, radial artery and femoral artery, respectively. 
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Fig. 7-13: Bland Altman plots for the model generated and GTF estimated central mean pressures 

(MP) associated with (a) carotid artery, (b) brachial artery, (c) radial artery and (d) femoral artery. 

The solid blue line represents the mean difference (bias) and the dotted red lines represent the 95% 

limits of agreement. 

7.4 Discussion  

It has been previously shown that the waveforms in the ascending aorta and the waveforms in 

peripheral locations are markedly different [13], [17], [18].  The systolic pressure in the peripheral 

location is higher due to wave reflections that occur because of the tapering and bifurcating nature 

of the arteries and most importantly due to the impedances at the terminal ends of the arteries due 

to arterioles [67]. The reflected waves superimpose on the pressure waves, hence increasing the 

systolic pressure. The diastolic wave is also more prominent and due to the distance from the heart, 

the foot of the wave is delayed in peripheral locations. [340]. This is demonstrated in Fig. 7-6 and 

shows the difference in pressure contours [17], [202], [294]. This difference is one of many reasons 
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that makes peripheral blood pressure measurement a less than preferable indicator of cardiac 

function/abnormality leading to a need for central aortic pressure estimation [18], [19], [21], [298], 

[309], [310].  

For this study, TFs between the carotid, brachial, radial, femoral arteries and the ascending aorta 

were estimated (Fig. 7-7) for half the database created in the previous chapter and used to reconstruct 

the aortic waveforms for the remaining half of the database from each of these locations (Fig. 7-4). 

The results discussed in the previous section show that the transfer function reconstructs the aortic 

waveform with good accuracy. However, the accuracy decreases the farther away the peripheral site 

is from the heart. The best estimation comes from the carotid artery because it is closest to the heart 

hence the waveform has not been modified as much as the other peripheral sites [341].  

In order to validate the GTFs estimated from the various locations, the peak amplification and 

minimum phase of each GTF is compared with GTFs validated in literature using human subjects. 

Table 7-4 shows the peak amplification and minimum phase of each of the estimated GTF, which 

can also be seen in Fig. 7-7. Karamanoglu et al. [13] used two separate GTFs, one for the radial 

artery and the other for the brachial artery. The peak amplification for the brachial GTF they used 

(Fig. 7-3 & Table 7-3) occurred at 4 Hz and the value of the amplitude was 2.572, while the peak 

amplification for the radial GTF they used occurred at 4 Hz and the value of the amplitude was 

3.049. In comparison, the GTFs estimated in the current study (Fig. 7-7) had a peak amplification 

at 4 Hz and had values of 2.114 and 3.018 for the brachial GTF and the radial artery GTF, 

respectively. These values showed extremely good agreement with the values used by Karamanoglu 

et al. The minimum phase’ Karamanoglu et al. reported occurred at 9 Hz and had a value of -3.627 

rad and -6.450 rad for the brachial artery and radial artery GTF, respectively. In this study, the 

minimum phase at the same frequency had a value of -3.747 rad and -6.594 rad for the brachial and 

radial artery GTFs, respectively. The phase values show satisfactory agreement as well.  
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As for the GTF estimated for the carotid artery waveforms, a separate study conducted by Gallagher 

et al. [330] is used as a benchmark. In their review, Gallagher et al. report a peak amplification of 

1.431 occurring at 4 Hz for the GTF estimated via the carotid artery (Fig. 7-2 & Table 7-2). In 

comparison, the GTF estimated via the carotid artery in the current study demonstrates characteristic 

peaking at 4 Hz and has an amplitude of 1.567, which agrees well with the value reported by 

Gallagher et al.  

The phase’ for all the arteries are negative as there is a delay between the frequency components of 

the pressure waves in the aorta and the respective arteries. All the phase’ tend to reach an asymptotic 

values representing a constant group delay [13]. 

For the systolic pressure generated by the model and estimated using GTF, the Bland-Altman plots 

shown in Fig. 7-11 reveal that most of the data points lie within the 95% limits of agreement for all 

four locations. This indicates that by enlarge all the arteries are capable enough to estimate the CAP 

with good accuracy. However, the limits of agreement for the femoral artery (Fig. 7-11) are wider 

as compared to the rest of the arteries signifying femoral artery to be the least preferable site of CAP 

estimation using GTF. The narrowest limits of agreement are for the carotid artery (Fig. 7-11), 

signifying that the most preferable peripheral location to estimate CAP is the carotid artery. This 

agrees well with literature [291] and is due to the proximity of the carotid artery to the ascending 

aorta. Looking at the bias, it can be concluded that the four locations lead to a slight over estimation 

of the systolic pressure. The carotid artery by 0.9733 mmHg, the brachial artery by 1.006 mmHg, 

the radial artery by 0.896 mmHg and the femoral artery by 1.974 mmHg. This data is tabulated in 

Table 7-6.  

These finding are further complimented by the linear regression (Fig. 7-8) and Pearson’s r values 

(Table 7-5) calculated for the systolic pressures. The CAP waveforms estimated from the carotid 

artery waveforms have the highest correlation (Table 7-5) with the model generated CAP 



7-32 

 

waveforms (r=0.991) while the least correlated are the waveforms estimated via the femoral artery 

(r = 0.873). The 𝑟2 values from the linear regression (Fig. 7-8) cements that the carotid artery is the 

most preferable site for estimating systolic CAP as the highest 𝑟2 value (𝑟2 =0.983) are for the 

systolic CAP waveforms estimated via the carotid artery. The femoral artery estimated CAP 

waveforms have the lowest 𝑟2 value (𝑟2=0.762) confirming that the femoral artery is the least 

preferable site. The brachial and radial arteries establish excellent statistical relevance and 

demonstrate that these locations are excellent choices for systolic CAP estimation.  

As for the diastolic and mean pressures, the same reasoning applied for the systolic pressures can 

be used to justify that the best estimation site is the carotid artery  and the least preferable site is the 

femoral artery (Fig. 7-9, Fig. 7-10, Fig. 7-12 and Fig. 7-13). It must be noted that the diastolic 

pressure is estimated with excellent accuracy (r > 0.9, 𝑟2>0.9) from all the four locations (Fig. 7-9) 

but in purely quantitative terms, the carotid, brachial and radial arteries have higher r and 𝑟2 values, 

making them relatively preferable in comparison to the femoral artery. Also noteworthy, by looking 

at the bias via the Bland-Altman plot (Fig. 7-12) and Table 7-6, is that the CAP waveforms 

estimated via carotid and brachial arteries slightly overestimate the diastolic pressure by 0.569 

mmHg and 0.3002 mmHg, respectively. The radial and femoral arteries on the other hand 

underestimate the diastolic pressure by 0.167 mmHg and 2.311 mmHg, respectively. The mean 

pressure of the estimated CAP waveforms (Fig. 7-13) is overestimated slightly. 1.03 mmHg from 

the waveforms via the carotid artery, 1.045 mmHg via the brachial artery, 1.039 mmHg via the 

radial artery and 1.275 mmHg via the femoral artery.  

For the GTFs derived via the four locations, the mean difference between the estimated and model 

generated systolic, diastolic and mean pressures are given in Table 7-6. The mean systolic 

differences lie in a range of 0.9 to 1.9 mmHg while the mean diastolic difference lies in the range 
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of -2.31 to 0.57 mmHg. These differences are similar to the mean differences reported in literature 

[13], [22], [334]. 

 

Table 7-6: Summary of the mean differences between GTF estimated and model generated central 

systolic, diastolic and mean pressures. 

Artery 

Mean Difference 

(mmHg) 

𝑷𝑺 𝑷𝑫 𝑷𝒎 

Carotid 0.973 0.569 1.030 

Brachial 1.006 0.300 1.045 

Radial 0.896 −0.167 1.039 

Femoral 1.974 −2.311 1.275 

 

Since the evaluation method used here, that is, evaluation of the GTF technique using a 

comprehensive model, is novel and independent, it is not comparable to results from literature. In 

the majority of past studies conducted to evaluate the GTF technique [11], [13], [342]–[344], [23], 

[24], [27], [31], [315], [329], [330], [334], the subjects used have been human patients and the study 

protocols have been much different to the ones used here. In the mentioned clinical studies, there is 

loss of high-frequency information due to the fluid-filled catheter used for invasive measurements 

[334]. Another source of error reported in most of  these studies is that, due to the nature of catheter-

recorded waveforms from the various arteries (peripheral and aortic), and the further study protocols 

such as applanation of the radial artery, there is an introduction of a variation in the time-interval 

between the estimated and measured waveforms. This means the estimated and measured 

waveforms are not actually measured simultaneously [31]. A further source of error reported in these 

clinical studies is the calibration of the peripheral pressures to central pressures by assuming that 

the diastolic and (or) mean pressures in the peripheral sites is the same as the diastolic and (or) mean 

pressure in the ascending aorta [334].  
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Much of the criticism directed towards the GTF technique pertains to the inaccurate methods used 

to measure waveforms peripherally and the calibration/time-interval errors associated with them 

[330]. However, these issues are a separate entity and the GTF technique in itself is simply confined 

to the manipulation of peripheral waveforms to estimate central waveforms rather than rectifying 

these errors [330]. The evaluation method used in this study does not use clinically measured values, 

nor needs calibration assumptions. This reduces a significant amount of the errors associated with 

central and peripheral waveform measurement.   
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7.5 Summary 

In this chapter, the pressure response database for various physiological and pathological conditions, 

created in chapter 6, is used to evaluate the GTF technique. Half of the database is used to estimate 

and validate the GTF between the ascending aorta and four peripheral locations, namely the carotid 

artery, brachial artery, radial artery and the femoral artery. The remaining half of the database is 

used to reconstruct central aortic pressure waveforms in order to compare them with model 

generated central waveforms. A statistical analysis is carried out to test the validity of the GTF 

technique.  

Key points from this chapter are as follows: 

 Nowadays, blood pressure in human subjects is measured invasively in catheterization 

laboratories. There are various methods available for invasive blood pressure measurements 

among which using high fidelity catheter micro-tip pressure transducers is considered the most 

accurate. 

 There are a number of limitations in measuring blood pressure using these methods. Due to 

their invasive nature, they can’t be used for large scale clinical studies for instance subject who 

are healthy or even patients with hypertension, therefore these methods are deployed in subjects 

that are critically ill or already undergoing an invasive procedure such as a cardiopulmonary 

bypass 

 Waveforms of peripherally measured pressure and central aortic pressures are significantly 

different in regards to the wave shapes as well as amplitude. It is believed that the central aortic 

pressure is a better representation of hemodynamic load and stress to the heart and large vessels 

at rest 
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 Noninvasively estimated central aortic pressure has previously demonstrated its ability to 

forecast cardiovascular events better than peripherally measured pressures 

 Transfer functions are mathematical functions that  describe the behavior of a system by relating 

the input and output signals. The transfer function is expressed in terms of modulus and phase. 

Prior studies have shown that physiologically relevant data is contained within the first 15 

harmonics 

 There has been some debate that the general transfer function varies from person-to-person due 

to a variety of physiological differences, making the general transfer function an unreliable tool 

of choice in such analyses as it lacks adaptability 

 With the on-going disagreement between the research groups for and against the GTF 

technique, it is essential to use an independent method to test the GTF technique, which also 

serves as an alternative to experimental studies. While numerical modeling provides such an 

alternative research method, a full-scale cardiovascular model that incorporates non-linearities 

as well, has not been used to systematically evaluate the GTF technique. 

 In this chapter, GTFs are estimated and used to re-synthesize central waveforms, which have 

already been generated from a comprehensive 1-D model. Correlation, linear regression and 

Bland Altman analyses are then carried out to test the validity of GTFs.
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CHAPTER 8  

CONCLUSIONS AND PERSPECTIVES 

 

8.1 Conclusions 

The work carried out in this thesis aimed to test the validity of the GTF technique by using a well-

validated and comprehensive numerical model of the human arterial network as an alternative to 

experimental studies. In order to achieve the primary objective, certain aims and objectives had to 

be met successfully which were described in section.  

In this chapter, the achievement of these objectives as well as the conclusions from each of the 

working chapters is outlined. In the following sections, summary of important observations made 

while achieving these objectives, followed by the some of the limitations of the current study that 

pave way for the future directions in this area of study are provided. The chapter is concluded with 

the significant contributions to literature of this work.  

 

Objective 1: Developing a one-dimensional fluid dynamical model that takes into consideration 

realistic features of blood flow propagation such as vessel tapering, vessel branching, 

inhomogeneous vessel wall elasticity etc. 

A 1-D based on physiological principles, which simulates blood propagation in the human arterial 

network, is developed in chapter 4. This model can predict flow and pressure in the large systemic 

arteries of the human cardiovascular system. The objective has been successfully achieved by 

further developing the fluid dynamical model developed by Olufsen et al [43]. The model includes 

both large arteries as well as smaller arteries.  
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The geometrical properties of the large arteries is based on actual data for each vessel in the arterial 

network. The non-linear, incompressible, axisymmetric form of the Navier-Stokes equations govern 

blood flow in the large arteries while the state or constitutive equation governs the elastic properties 

of the vessels. The coupling of these equations predicts the pressure and flow in the large arteries.  

The smaller arteries on the other hand, are modelled as asymmetric structured trees, where a 

specified minimum radius governs the number of bifurcations, 𝑟min. The fluid flow and fluid-

structure interaction in smaller arteries is governed by the linearized form of the Navier-Stokes 

equations coupled with the constitutive equation used for the large arteries. These equations predict 

the ratio of pressure to flow to give the impedance in the smaller arteries, which forms the outlet 

boundary condition for large arteries. This boundary condition allows a more dynamical impedance 

to be calculated which is physiological in nature.  

Through the development of the mathematical model, new insights into the variation of parameters 

has been achieved. These insights proved immensely important in disease modelling which is an 

integral part of this work.  

Objective 2: Carrying out a systematic, multi-level validation against data published in literature 

to increase the reliability of the code and its capability to simulate various clinical conditions. 

The objective has been successfully achieved by validating the numerical model developed in 

chapter 4 against data published in literature. The validation carried out is a multi-level one, in that, 

the model is altered in each of the validation case to test its robustness and the general agreement of 

model predictions with a variety of published literature. The first of its kind, a multi-level validation 

of a 1-D model with structured tree outflow condition, provides a significant contribution to the 

research community, at large, as it demonstrates the reliability of the model to simulate simple cases 

such as pulse wave propagation in a single vessel to more complex cases such as the pulse wave 

propagation in an entire arterial network.  
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The simplest validation carried out is the propagation of blood flow in a single vessel. For this case, 

propagation along the aorta is simulated. The vessel parameters are for a healthy and young adult, 

taken from literature [63], [80]. The RCR model used by Alastruey [2] is used as the benchmark for 

the validation along with in-vivo data published by Simon et al [198]. The simulation results showed 

excellent agreement with the model (Fig. 5-4) as well as the in-vivo data (Table 5-3). Key features 

of the pressure waveforms namely the dicrotic notch and the diastolic delay are captured excellently 

by the model, as well. Overall, the agreement of the results with the validation data is excellent and 

the exhibition of the key features of the pressure and flow waveforms ensures the capability of the 

model with structured tree outflow condition, to simulate blood flow in a single vessel.   

A second level of validation is carried out by comparing the current 1-D model to a 3-D model 

developed by Kim et al. [199]. The 3-D model starts at the root of the aorta and includes the main 

upper body branches. This 3-D model (Fig. 5-6) is significantly more complex when compared to 

the first validation case as the vessels branch into other vessels. Since the 3-D model represents the 

entire arterial network in a lumped manner (RCR), the model for a single vessel, used in the first 

validation was extended to simulate an entire arterial network with a few variations in elastic 

parameters to match the parameters used for the 3-D model. Not only is the 1-D model capable of 

reproducing the results achieved from the 3-D model quantitatively but also qualitatively. The error 

analysis carried out in Table 5-6 shows that the percentage errors lie in the range of 0% to 2.5%.  

Noting that a 1-D model being compared to a 3-D model has such a low percentage error, increases 

confidence in the robustness of the 1-D model.  The brachial pressure simulated using the 1-D model 

(Fig. 5-11) shows excellent agreement with the data measured for an actual human subject by Kim 

et al. [199] further reinforcing the competence of the 1-D model with a structured tree outflow 

condition. 
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A final validation is carried out by simulating the pulse wave propagation in an entire arterial 

network, the same as the second validation. However, the validation data used in the third validation 

are flow waveforms at multiple physiological locations in an actual human subject. The validation 

data was measured using MRI and was reported by Olufsen et al. [82]. The model used here is the 

same model developed by Olufsen et al. [43], [47], [82], mitigating the need to validate the current 

model against the simulated data of Olufsen’s model as well. The only difference in the two models 

is the ejection profile used. By using a simple equation (half sinusoid equation), a consistent and 

generic inflow profile for all cases is produced which reduces the complexity of modelling and at 

the same time reduces the number of subject-specific parameters required for the inflow profile. 

When the model predictions are compared to the measured flow data, the shape of the computed 

flow waveforms show extremely good agreement along with excellent computation of the peak 

flowrates in all the locations (Fig. 5-13), conclusively validating the 1-D model at each level of 

validation. 

Objective 3: Conducting a parametric study of the one-dimensional model to simulate various 

physiological and pathological conditions, to create a pressure response data.  

An added advantage of mathematically modelling the cardiovascular system using the formulation 

presented in chapter 4 is the flexibility with which the parameters of the model can be varied. This 

variation allows disease modelling with relative ease and the reliability of such a model has been 

tested at multiple levels in chapter 5. The fulfillment of this particular objective has a substantial 

contribution to the research community; it demonstrates the effectiveness and the robustness of the 

1-D model with structured outflow condition to simulate pathological as well as variations of 

physiological conditions. 

In chapter 6, the parameters of the 1-D model (geometric, elastic and boundary parameters) are 

varied to simulate a variety of physiological and pathological conditions. These include 
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hypertension, varying heart ejection profiles, arterial stiffening, vasodilation, abdominal aortic 

aneurysms and coarctation of the aorta. Key findings from these variations is as follows: 

 From Fig. 6-1, with each increment in the cardiac output, the flow in the entire system 

increases causing pressure to increase in all arteries. However, the shape of the waveforms 

is preserved. 

 From Fig. 6-2, in all the arteries, increasing the stiffness not only increases the systolic 

pressure but also decreases the diastolic pressure. The greater the increase in stiffness, the 

greater the increase in pulse pressure. Decreased stiffness has the opposite effect (Fig. 6-3). 

 The 1-D model simulated results of abdominal aortic aneurysm show excellent agreement 

with literature as to how the pressure and flow waveforms are affected due to the presence 

of an AAA. Increasing the size of an aneurysm (Fig. 6-5), the flow rate increases in the 

thoracic aorta and in the infrarenal aorta  but decreases in the external iliac artery, which 

agrees well with literature [262]. The peaks and nadirs are amplified due to the sudden 

widening of the aneurysm, which causes strong reflections. The pressure on the other hand 

decreases in all three arteries due to increased compliance as a result of the introduction of 

the AAA. The greater the aneurysm, the greater the compliance leading to a greater 

decrease in pressure. Reducing the stiffness of the AAA increases the flow in the thoracic 

aorta and the infrarenal aorta (Fig.6-6). The increase in flow with the reduction in stiffness 

is much higher because not only a compliance has been introduced in the system via an 

aneurysm, but the stiffness of the aneurysm is further reduced which further increases the 

compliance. 

 The simulation results of the coarctation of aorta show excellent agreement with literature 

[287]–[289]. As a results of CoA, an obstruction to flow is introduced which causes the 

pressure in the upper limbs to decrease and the opposite in the lower body (Fig. 6-9). A 
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50% CoA (50% reduction in area of the descending aorta) causes the systolic pressure in 

the arm to exceed 140 mmHg.  As long as the coarctation is a 38% reduction in the 

descending aorta, the pressure in the arms at this point still doesn’t exceeded 140mmHg 

(Fig. 6-9). A further reduction (58%) causes upper body hypertension and a pressure 

gradient of 32.75 mmHg between the upper and lower body.  

It is of utmost importance to note that the purpose of disease modelling is to create a pressure 

response database to study the GTF technique rather than to study the disease itself. Conclusions 

were drawn based on literature on the behavior of modelled diseases and it has been demonstrated 

that the 1-D model with structured tree outflow condition is extremely robust in accurately 

modelling these diseases. 

Objective 4: Carrying out a Fourier analysis on half of the central and peripheral pressure 

response data to estimate transfer functions between ascending aorta and multiple physiological 

peripheral locations.  

This objective has been successfully achieved by using the pressure response database created in 

chapter 6. 194 physiological and pathological cases are simulated, out of which half of them (97 

cases) are used to estimate the GTFs. The 97 cases are selected at random and waveforms from only 

five arteries are taken into consideration, the ascending aorta, carotid artery, brachial artery, radial 

artery and femoral artery. The ascending aorta is where the central pressure is measured while the 

four other arteries are peripheral sites from which the central pressure is estimated via separate 

GTFs. Other locations can be used to generate a GTF but for this study, the GTFs between the 

ascending aorta and the mainstream peripheral locations found in literature are estimated. The 

waveforms from each of these locations is first transformed into the frequency domain using discrete 

Fourier transform after which equation (7.1) is applied to estimate the TF between the central 
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waveform (ascending aorta) and a peripheral location. The individual TFs are then averaged in order 

to estimate the GTF for each site (Fig. 7-4).  

In order to validate the GTFs estimated from the various locations, the peak amplification and 

minimum phase of each GTF is compared with GTFs validated in literature using human subjects. 

The peak amplification for the brachial and radial GTFs used by Karamanoglu et al. [13] occurred 

at 4 Hz with amplitude values of 2.572 and 3.049, respectively. Gallagher et al. [330]  report a peak 

amplification of 1.431 occurring at 4 Hz for the GTF estimated via the carotid artery.  In contrast, 

the carotid, brachial and radial GTFs estimated in the current study had a peak amplification at 4 Hz 

and had values of 1.567, 2.114 and 3.018, respectively. These values show extremely good 

agreement with the values used by Karamanoglu et al. and Gallagher et al.   

The minimum phase’ for the GTFs estimated via the brachial and radial artery occurred at 9 Hz and 

had a value of -3.627 rad and -6.450 rad, respectively in the study conducted by Karamanoglu et al 

[13]. In this study, the minimum phase at the same frequency had a value of -3.747 rad and -6.594 

rad for the brachial and radial artery GTFs, respectively. The phase values show excellent agreement 

as well.  

The GTF from the femoral artery can not as yet be validated as most studies using the femoral artery 

use blind identification of the central aortic waveform [34]–[36], [335]–[337] rather that GTF 

estimation.  

The validation of the GTFs means that they can be used to estimate the central aortic waveforms 

with the same or higher accuracy as the studies found in literature. More importantly, the 

amplification and phase values demonstrate that the GTFs estimated using the 1-D model and the 

GTFs estimated in literature using human subjects are in extremely close agreement. This cements 

the applicability of the mathematical models as independent alternatives to in-vitro and in-vivo 
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studies especially because mathematical model measurements do not need to be calibrated as 

opposed their experimental counterparts.  

Objective 5: Using the estimated GTFs to estimate central aortic waveforms from multiple 

peripheral locations for the remaining half of the pressure response database. 

This objective has been successfully achieved by using the GTFs estimated from the four peripheral 

locations. The remaining half of the pressure response database (97 cases) is used for this particular 

objective. 

 Each of the averaged GTFs is multiplied with the waveforms (in frequency domain) from their 

respective peripheral location. This product between a particular peripheral waveform and its GTF 

yields the central aortic waveform in the frequency domain. Since there are four peripheral locations 

(therefore four GTFs), a total of 388 central waveforms (97 from each peripheral site) are estimated. 

These central aortic waveforms are transformed back in the time domain using the inverse discrete 

Fourier transform.  

As the central aortic pressure waveforms of the remaining database is known as well, these estimated 

waveforms can be statistically compared with the known central aortic pressures (model generated) 

to test the validity of the GTF technique and its performance from each peripheral location. 

Objective 6: Carrying out a statistical analysis on the GTF estimated central aortic waveforms to 

test the validity of the GTF technique.  

Chapter 7 details the statistical analysis carried out to test the validity of the GTF technique. The 

methods used to analyze and compare the estimated and model generated waveforms are Pearson’s 

correlation coefficient, linear regression and the Bland-Altman method. The ultimate aim of this 

study is to test the validity of the GTF technique with the use of a comprehensive numerical method. 
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The estimated accuracy of the systolic, diastolic and mean pressures are evaluated separately for the 

four peripheral locations.  

For the systolic pressure generated by the model and estimated using GTF, the Bland-Altman plots 

reveal that all the arteries are adept enough to estimate the CAP with good accuracy. The bias, 

0.9733 mmHg, 1.006 mmHg, 0.896 mmHg and 1.974 mmHg of the carotid, brachial, radial and 

femoral arteries, respectively demonstrates a slight over estimation. The 𝑟2 values from the linear 

regression of 0.983, 0.963, 0.956 and 0.762 and the Pearson’s r values of 0.991, 0.981, 0.978 and 

0.873 (p < 0.001) for the carotid, brachial, radial and femoral arteries, respectively establish carotid 

artery as the most preferable site for systolic pressure estimation while femoral artery as the least 

preferable site. The brachial and radial arteries show extremely satisfactory estimation results as 

well. Overall, the strong significance shown statistically confirms the GTF technique as an excellent 

estimator of the central aortic systolic pressure, especially from the carotid, brachial and radial 

arteries.  

The diastolic pressure is estimated with excellent accuracy (r > 0.9, 𝑟2>0.9) from all the four 

locations. With 𝑟2 values from the linear regression of 0.992, 0.992, 0.985 and 0.944 and the 

Pearson’s r values of 0.996, 0.996, 0.993 and 0.971 (p < 0.001) for the carotid, brachial, radial and 

femoral arteries, respectively, the diastolic pressure is predicted with an even higher accuracy as 

compared to the systolic pressure from all arteries. The brachial and carotid arteries are the most 

preferable sites followed by the radial and femoral arteries. Bias values of 0.569 mmHg, 0.3002 

mmHg, -0.1674 mmHg and -2.311 mmHg reveal that the carotid and brachial arteries overestimate 

the diastolic pressures slightly while the radial and femoral arteries underestimate the diastolic 

pressure slightly. Again, the high correlation between the estimated and model generated values 

demonstrate GTF as an excellent estimator of central aortic diastolic pressure.  
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Finally, the mean pressure bias of 1.03 mmHg, 1.045 mmHg, 1.039 mmHg and 1.275 mmHg for 

the carotid, brachial, radial and femoral arteries, respectively, shows a slight overestimation by all 

four locations. 𝑟2 values from the linear regression of 0.998, 1.000, 1.000 and 0.872 and the 

Pearson’s r values of 0.999, 1.000, 1.000 and 0.934 (p < 0.001) for the carotid, brachial, radial and 

femoral arteries, respectively, reveal that the central aortic mean pressure is estimated most 

accurately by the GTF technique.  

The high correlation and minimal bias’s with narrow 95% limits of agreement make it evident that 

the GTF technique is extremely accurate in predicting central aortic pressure from peripheral 

locations. The order of preference of the peripheral location from the statistical analysis is the carotid 

artery followed by the brachial artery, trailed closely by the radial artery with femoral artery as the 

least preferable site. The mean differences in the central aortic pressures shown in Table 7-5 and 

the extensive statistical analysis testifies to this conclusion. These preferences are in complete 

agreement with literature as well since carotid artery is the closest to the aorta. However, due to the 

ease with which the brachial and radial waveforms can be acquired as compared to the carotid artery 

and factually having almost the same estimation capabilities, the brachial and (or) the radial arteries 

are recommended as the preferable peripheral sites.  

The study conducted here is unique, in that, it has used a full-scale numerical model to replace data 

acquisition from human subjects. The numerical model acts as human subject, so to speak and the 

flexibility of parameter variation allows modelling of various pathological and physiological 

conditions. The GTFs estimated using this comprehensive model resemble the GTFs estimated 

using human subjects which supplement the already comprehensive validation carried out. The 

performance of these GTFs demonstrate the accuracy of the GTF technique and acts as a rebuttal to 

the criticism of the GTF technique. In doing so, it also reiterates the importance of errors that are 

inherent in waveform acquisition from human subjects and the further manipulation of these 
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waveforms (such as calibration) before carrying out the GTF estimation of the central aortic 

pressures.    

A summary of the major findings of the study is stated as follows: 

 Structured tree outflow boundary condition is capable of modelling blood flow in a single 

vessel with improved accuracy as compared to the RCR model. 

 The 1-D model with structured tree outflow condition is capable of quantitatively and 

qualitatively produce results attained from a 3-D model (Percentage errors lie in the range 

of 0% to 2.5%). 

 Generic inflow profile reduces the complexity of modelling, that is, the number of subject-

specific parameters are reduced without compromising much on the accuracy of the results 

achieved. 

 With each increment in the cardiac output, the flow in the entire system increases causing 

pressure to increase in all arteries. 

 The greater the increase in stiffness, the greater the increase in pulse pressure. Decreased 

stiffness has the opposite effect. 

 Increasing the size of an aneurysm causes the flow rate to increase in the thoracic aorta and 

in the infrarenal aorta but decrease in the external iliac artery. 

 The greater the aneurysm, the greater the compliance leading to a greater decrease in 

pressure 

 Reducing the stiffness of the AAA increases the flow in the thoracic aorta and the infrarenal 

aorta  

 As a results of CoA, an obstruction to flow is introduced which causes the pressure in the 

upper limbs to decrease and the opposite in the lower body  
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 A coarctation greater than 38% but less than 57% causes upper body hypertension and a 

pressure gradient ≥  20 mmHg between the upper and lower body.  

 1-D model with structured tree outflow condition is extremely robust in accurately 

modelling these diseases.  

 GTFs estimated using the 1-D model generated pressure response database and the GTFs 

estimated in literature using human subjects are in extremely close agreement.  

 The bias between model generated and GTF estimated 𝑃𝑆 demonstrates a slight over 

estimation using the GTF technique (0.896 mmHg to 1.974 mmHg).  

 Bias values of 0.569 mmHg, 0.3002 mmHg, -0.1674 mmHg and -2.311 mmHg reveal that 

for 𝑃𝐷 estimated using GTFs from the carotid and brachial arteries, it is overestimated 

slightly while the 𝑃𝐷  estimated using GTFs from radial and femoral arteries underestimate 

it slightly.  

 Finally, 𝑃𝑀 bias of 1.03 mmHg, 1.045 mmHg, 1.039 mmHg and 1.275 mmHg between 

model generated and GTF estimated CSAP from carotid, brachial, radial and femoral 

arteries, respectively, shows a slight overestimation by all four locations. 

 The high correlation and minimal bias’s with narrow 95% limits of agreement make it 

evident that the GTF technique is extremely accurate in predicting central aortic pressure 

from peripheral locations. 

 The order of preference of the peripheral location from the statistical analysis is the carotid 

artery, brachial artery, radial artery and femoral artery as the least preferable site. 

8.2 Study limitations and future work 

The work conducted here shows the capabilities and robustness of the 1-D numerical model as well 

as how it can be used to test the validity of the GTF technique. However, before integrating these 
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systems in real life applications, there is still significant room for improvement and further 

investigations.  

The validations carried out in this work have been using studies published in literature. Although 

comparisons were drawn from models/in-vivo data already found in literature, it is recommended 

that the current validation studies be taken a step forward and in-house in-vivo analyses be 

introduced as an additional validation. In addition to a complete MRI study to measure flow rates 

in different anatomical location, pressure waveforms from that specific subject should be acquired. 

Before the experiment is conducted, the geometrical properties of the said subject should be 

measured/approximated. It has been well established that the geometry of arteries in the network 

have a great impact on hemodynamics. Knowing the geometry of the arteries of the validation 

subject as well as the flow and pressure waveforms and validating the current model against such 

data would make the model a truly subject-specific model.  

The structured tree used in the current model terminates at a certain minimum radius. This minimum 

radius coincides with the resistance from a certain organ. The minimum radii used here should be 

adjusted depending on where the specific artery terminates. Alteration of other parameters of the 

structured tree such as the radius exponent and the asymmetry ratio enhances model predictions as 

these parameters reveal the true impedance within the vascular beds.    

In this work, a generic inflow profile has been used. The inflow profile works well as seen when 

compared with data published in literature. However, physiological ejection profile are more 

complicated than the one model here. More so because physiologically, there is a slight backflow 

into the ventricle from the aorta as the aortic valves close. The inflow profile should include this 

effect to provide more information on the wave reflections introduced due to this backflow. Another 

possible solution to this is making a separate heart model and integrating it with the current model.  
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It has been shown in this work that the vessels in the human cardiovascular system change gradually 

downstream. The elasticity of the arteries in this work has been defined using a state equation that 

is based on linear elasticity. Depending on the function of the vessel, the elastic properties vary and 

the model needs to reflect this. The model is flexible enough to allow elastic parameters to be varied 

according to function, which should be taken into consideration in future studies. An empirically 

based relation that allows elastic properties to be altered depending on the artery can be introduced 

[43]. 

For the pressure response database, although the geometric properties were varied slightly, 

physiologically each individual subject does not necessarily have the same geometrical/ elastic 

properties. This should be taken into consideration. Although tedious and time consuming, 

geometrical and elastic properties from a large enough human subject sample can be used to create 

a virtual database that can be implemented in the model.  

Addition of the venous circulation such as that modelled by Vaughan  and Qureshi et al. [53], [188]. 

This expands the scope of study of the cardiovascular system and the non-linearities introduced due 

to the venous system can be taken into consideration. 

Integrating the pulmonary, coronary and cerebral circulations in the current model will further 

enhance the real life applicability of the model. 

Since the GTF technique estimates the central aortic waveforms, a simple but significant study can 

be conducted by using a subject specific model. In that, the model will use parameters that reflect 

physiological geometry and elastic properties of a particular subject. The GTFs estimated from the 

database created here can then be used in the validated subject specific model to estimate the central 

aortic pressure. The central aortic waveforms from the said subject can be used to test the validity 

of the GTF estimated central waveforms.   



8-15 

 

 

8.3 Scientific achievements 

 Demonstration of the structured tree outflow condition to provide a dynamic and 

physiological downstream boundary condition in the simulation of a single vessel. Data 

published in literature indicates that the structured tree outflow condition has been used for 

full scale arterial networks and (or) networks comprising of more than a few vessels. In 

this work, simulation for a single vessel has been carried out and validated against a single 

vessel model with RCR downstream condition. An additional, in-vivo validation further 

cements the applicability of the structured tree outflow condition in a single vessel model. 

The significant contribution to literature is the demonstration that such a model can be used 

to study hemodynamics in a specific vessel, given that the geometric, elastic and 

downstream parameters can be defined accurately.  

 A multi-level validation of the 1-D model with structured tree outflow boundary condition. 

This validation ensures the capability of the code and demonstrates the robustness of the 

1-D numerical model of the cardiovascular system with structured tree outflow condition 

to accurately model extremely simple cases with only a single vessel to more complex 

arterial networks. The 1-D model is validated against in-vivo data, previous 1-D model 

data as well as 3-D model data, which increases confidence in the 1-D numerical model. 

The significant scientific achievement here is the factual identification of 1-D model with 

structured tree outflow conditions as an alternative to experimental studies and higher 

dimension models to study pressure and flow waveforms.  

 The validated 1-D model has been used to model a variety of arterial stiffness’. 

Vasoconstriction as well as vasodilation with varying peripheral resistances have been 

modelled to good effect. Effects of stiffness variations which range from low to high 

stiffness’ have been added to literature. 
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 The 1-D model is used to model two relatively common diseases, abdominal aortic 

aneurysm and coarctation of the aorta. The modelling demonstrates the robustness of the 

1-D model with structured tree outflow condition to model both of these diseases with 

accuracy. The results are compared with published literature and show excellent 

agreement. The effects of increasing the size of the aneurysm, decreasing the aneurysm 

diameter and increasing the coarctation of the aorta are studied with the ultimate aim to 

create a pressure response database. This demonstration of disease modelling and effects 

of disease variation has a significant contribution to literature as it carves way for 1-D 

model to be used for an in-depth analysis of diseases to improve diagnostics. 

 A pressure response database has been created which includes cardiovascular responses to 

physiological and pathological conditions. The next obvious step is to make this database 

public and add more diseases to increase the size of the database and provide a 

comprehensive database for future research. 

 The ultimate novelty and goal of this work is to use an alternative approach to in-vivo and 

in-vitro studies to evaluate the GTF technique. This has been successfully achieved by 

using a numerical model in lieu of experimental studies to create a database of different 

cardiovascular responses to varying physiological and pathological conditions which is 

then used to evaluate the GTF technique. The numerical method and measurement is free 

from calibration and human errors and provides an excellent platform to test the validity of 

the GTF technique. A significant finding added to literature is the accuracy of the GTF 

without the inherent errors involved in experiment studies. 
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APPENDIX A  FLUID AND ELASTIC PARAMETERS FOR 

THE 1-D MODEL  

 

Table A-1: Elastic, fluid and boundary condition parameter definition for the 1-D model to 

simulate pulse wave propagation for various cases. 

Model 

𝝆 

(
𝒈

𝒄𝒎𝟑
) 

𝝁 

(
𝒈

𝒄𝒎 𝒔
 ) 

𝒌𝟏 

(
𝒈

𝒔𝟐𝒄𝒎
) 

𝒌𝟏 

(𝒄𝒎−𝟏) 

𝒌𝟑 

(
𝒈

𝒔𝟐𝒄𝒎
 

𝒓𝒎𝒊𝒏 

(𝒄𝒎) 

Aorta model 

 (Single 

Vessel) 

1.050 0.040 2 × 107 −22.53 8.0 × 105 0.001 

3-D model 

1.055 0.0488 2 × 107 −22.53 8.0 × 105 0.01 

Full arterial 

network 

1.055 0.0488 2 × 107 −22.53 8.65 × 105 0.01 
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APPENDIX B  WORK FLOW OF 1-D MODEL SIMULATIONS  

The work flow of simulations has been adapted from the pseudocode presented by Olufsen et al 

[82]. A total of 4 algorithms are used that setup the arterial network, solve the governing equations 

in large arteries, solve the equations in small arteries and find the root impedance.  

Algorithm 1: The arterial tree 

 Define number of vessels in the arterial network (arteries=A) 

 Define starting time of simulation (𝑇𝑆 = 𝐵) 

 Define ending (final) time of simulation (𝑇𝐹 = 𝐶) 

 Initialize the arterial tree (arterialtree= newvessel[arteries]) 

 Artery[1]=newvessel [𝐿, 𝑟𝑖𝑛 , 𝑟𝑜𝑢𝑡 , 𝐴𝑟𝑡𝑒𝑟𝑦[2], 𝐴𝑟𝑡𝑒𝑟𝑦[3], 𝑟𝑚𝑖𝑛 , #, 𝑘1, 𝑘2, 𝑘3, 𝐾1, 𝐾2] 

For each artery, the parameter specification in the order given is as follows: 

 Length, 𝐿 

 Proximal or inlet radius, 𝑟𝑖𝑛 

 Distal or outlet radius, 𝑟𝑜𝑢𝑡 

 Left daughter and right daughters (if they exist, that is, it is a bifurcating artery) otherwise 

a value of 0 is set as it is a terminal vessel. In the pseudocode the left and right daughters 

are 𝐴𝑟𝑡𝑒𝑟𝑦[2] & 𝐴𝑟𝑡𝑒𝑟𝑦[3], respectively 

 If it a terminal vessel, the truncation criteria of the structured tree has to be specified, 

𝑟𝑚𝑖𝑛 . Otherwise, if it is a bifurcating artery, 𝑟𝑚𝑖𝑛 is set as 0. 

  Number of points per vessel, # 

 Parameters that define the stiffness of vessel, 𝑘1, 𝑘2, 𝑘3 

 Loss coefficients where necessary, 𝐾1, 𝐾2 

Algorithm 2: Solving governing equations for large arteries 

 While 𝑡 < 𝑇𝐹 

o For all arteries do 
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 Check application of CFL condition. 

 Use Lax-Wendroff scheme in order to solve governing equations for 

the interior points. 

 Update 𝑄𝑖𝑛 for artery next to inlet (heart). 

 Apply bifurcation conditions if the artery is bifurcating (has daughters) 

otherwise apply structured tree outflow condition as the artery is 

terminal. 

The following algorithm compute the root impedance recursively. Assumptions made here for the 

algorithm to run are number of time steps, 𝑁, the truncation or minimum radius, 𝑟𝑚𝑖𝑛 and the root 

radius, 𝑟𝑟𝑜𝑜𝑡  have been given. 

Algorithm 3: Determination of the impedance at the root of the structured tree 𝒁(𝒙 = 𝟎, 𝝎) 

 Compute root impedance for all frequencies. Compute the impedance for 𝑁 values of 𝜔. 

Impedance can be computed using two steps as follows: 

o For 𝑘 = 𝑁/2 + 1, 𝑁 + 1 do 

 Reset all computed results and store results temporarily. 

 Compute 𝑍(𝑥 = 0, 𝜔) recursively using 𝑍0 from algorithm 4. 

o Apply self-adjointness (𝑍(0, 𝜔𝑘) = 𝑍(0, 𝜔𝑘+𝑁/2) ) 

 Use IFT to transform root impedance from frequency domain to time domain.  

Algorithm 4: Recursive computation of impedance 

 Compute all parameters for the vessel  

o 𝑟0 = 𝛼𝑛𝛼𝛽𝑛𝛽𝑟𝑟𝑜𝑜𝑡 . 

o 𝐴0 = 𝜋𝑟0
2 

o 𝑓(𝑟0) = 4𝐸ℎ/3𝑟0 
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o 𝐿 = 𝑟0𝑙𝑟𝑟  

 Compute 𝑐 (wave propagation velocity) and 𝑔 (equation). Both these values depend of  𝐹𝐽 

(and hence on the womersley number) 

 Run recursive algorithm 

o If 𝑟0 < 𝑟𝑚𝑖𝑛 then 

 𝑍𝐿(𝜔𝑘 , 𝑛𝛼 , 𝑛𝛽) = 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

o else 

 If root impedance of left daughter has been computed, store it in a 

temporary array. 

 Else 

 Compute root impedance of left daughter 

 If root impedance root impedance of right daughter has been computed, 

store it in a temporary array. 

 Else 

 Compute root impedance of right daughter 

 𝑍𝐿(𝜔𝑘 , 𝑛𝛼 , 𝑛𝛽) = 1/[𝑍0
−1(𝜔𝑘 , 𝑛𝛼 + 1, 𝑛𝛽) + 𝑍0

−1(𝜔𝑘 , 𝑛𝛼 , 𝑛𝛽 + 1) 

 If 𝜔𝑘 ≠ 0  

o 𝑍0(𝜔𝑘, 𝑛𝛼 , 𝑛𝛽) =
𝑖𝑔−1 sin(𝜔𝐿/𝑐)+𝑍(𝐿,𝜔) cos(𝜔𝐿/𝑐)

cos(𝜔𝐿/𝑐)+𝑖𝑔𝑍(𝐿,𝜔) sin(𝜔𝐿/𝑐)
 

 Else if 𝜔𝑘 = 0 

o 𝑍0(𝜔𝑘, 𝑛𝛼 , 𝑛𝛽) =
8𝜇𝑙𝑟𝑟

𝜋𝑟0
3 + 𝑍𝐿(𝜔𝑘 , 𝑛𝛼 , 𝑛𝛽) 

 Update the temporary array  
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APPENDIX C MATLAB ROUTINES FOR DATA 

EXTRACTION AND GTF ESTIMATION 

Matlab program that reads data from arteries of diseased subject  

The diseased subject used in this sample code has an AAA. 

 

clear % clears all variables in workspace 

 

base_dir='C:\sample_directory\ Abdominal Aortic Aneurysm'; 

% Define path of directory containing AAA files  

 

stiff_dir={'\normal stiffness',    

    '\Reduced stiffness 10%', 

    '\Reduced stiffness 20%', 

    '\Reduced stiffness 30%', 

    '\Reduced stiffness 40%', 

    '\Reduced stiffness 50%'};  

% Define path of directory containing files of varying stiffness' 

of AAA 

 

dis_dir={'\Diseased 1.5cm\',  

    '\Diseased 2.5cm\', 

    '\Diseased 2.25cm\', 

    '\Diseased 2.75cm\', 

    '\Diseased 2cm\', 

    '\Diseased 3.5cm\', 

    '\Diseased 3.25cm\', 

    '\Diseased 3cm\', 

    '\Healthy\'};  

% Define path of directory containing files of varying radii of 

AAA  

  

art_dir={'artery1.2d', 'artery2.2d', 'artery3.2d' ,'artery4.2d',  

    'artery5.2d','artery6.2d', 'artery7.2d', 'artery8.2d' 

,'artery9.2d',  

    'artery10.2d', 'artery11.2d', 'artery12.2d', 'artery13.2d' 

,'artery14.2d',  

    'artery15.2d','artery16.2d', 'artery17.2d', 'artery18.2d' 

,'artery19.2d',  

    'artery20.2d','artery21.2d', 'artery22.2d' ,'artery23.2d', 

'artery24.2d'};   

% Define content of directory that needs to be extracted 

  

  

 for s=1:1:length(stiff_dir)  
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% For loop to go through all stiffness' directories 

  

    for d=1:1:length(dis_dir)  

% For loop to go through all radii directories 

         

         

        for a=1:1:length(art_dir)  

% For loop to go through all arteries in current directory 

            temp_dir=strcat(base_dir,stiff_dir(s),dis_dir(d)) % 

create a temporary directory  

             

cd(temp_dir{1}); % Moving into the current directory  

             

                 

out=art_dir{a}; % Creating a new variable 'out' that reads the 

data inside a specific artery 

         

             

dataV1 = load (out); % Loads a specific artery onto the workspace 

             

[t1,x1,p1,q1,A1,C1] = datacontainer(dataV1);  % Calls out 

'datacontainer' which defines the columns of each file called      

             

P_p1 = p1(:,1);  % Defines range of proximal pressures 

             

P_m1 = p1(:,floor((end)/2)); % Defines range of mid pressures 

             

P_d1 = p1(:,end);  % Defines range of distal pressures 

             

Q_p1 = q1(:,1); % Defines range of proximal flow rates 

             

Q_m1 = q1(:,floor((end)/2)); % Defines range of mid flow rates 

             

Q_d1 = q1(:,end); % Defines range of distal flow rates 

             

A=[P_p1 P_m1 P_d1 Q_p1 Q_m1 Q_d1]; % Creates a generic array 'A' 

that contains all the pressures and flow rates 

           

                 

save(['artery' num2str(a) '.mat'],'A') % Saves array 'A' as a mat 

file in the current directory 

             

        end % end of artery directory for loop  

    

    end % end of radii directory for loop  

  

 end % end of stiffness' directory for loop  

 

%------------------ End of Program -----------------% 
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Matlab program that estimates the GTF between ascending aorta 

and peripheral site pressure waveforms. 

 
clear % clears all variables from workspace  

 

clc % clears everything on command window 

 

base_dir='C:\Sample_directory\Aorta\';  

% Define path of directory containing Ascending Aorta files  

 

base_dir2='C:\Sample_directory\Brachial\';  

% Define path of directory containing peripheral pressure 

measurement site (carotid/brachial/radial/femoral) files 

 

GTF_A_B=[];  

% Create empty array for GTF (GTF estimated between aorta and 

brachial pressure waveforms in this example) 

 

j=1; % Define value of counter starting value 

 

for i=1:2:194  

% Counter of the for loop (Half of the database) 

 

    cd(base_dir);  

% Moving into ascending aorta files directory  

 

aorta = strcat(base_dir,'artery1-',' ',num2str(i),'')  

% Extract artery 1-1/2/3/4... (ascending aorta)- The second 

number i.e. 1/2/3/4 is the definition of case number so 

artery 1-24 means the first artery (ascending aorta) and case 

24  

 

    load(aorta); % Load artery onto workspace 

 

A= A(:,1);  

% A is the generic name of the mat files for each artery 

 

    X=fft(A); % DFT of ascending aorta waveform data 

     

     

cd(base_dir2);    

% Moving into peripheral artery files directory  

 

brachial = strcat(base_dir2,'artery4-',' ',num2str(i),'')  

% Extract artery 4-1/2/3/4... 

(carotid/radial/brachial/femoral)-Brachial in this example 

 



C-4 

 

    load(brachial); % Load artery onto workspace 

 

    A= A(:,2); 

 

    Y=fft(A); % DFT of peripheral waveform data 

     

TF=Y./X;  

% Find transfer function according to equation (7.1), See 

Thesis Chapter 7- GTF calculation 

 

GTF_A_B(:,j)=TF;  

% Redefine GTF name (A_B represents Aorta-Brachial) 

 

    j=j+1; % Increment in counter 

 

end % End of for loop  

 

clc  % clear everything on command window 

  

GTF_A_B=sum(GTF_A_B,2); % Sum of GTFs 

 

GTF_A_B=GTF_A_B/j; % Avergae of GTFs 

 

save('C:\Sample_directory\GTF_A_B.mat','GTF_A_B')  

% Save GTF file as mat file in a specific directory to use in 

estimating CAPs 

 

%------------------ End of Program -----------------% 

 

 

Matlab program that estimates CAP waveforms from peripheral 

waveforms using the GTF estimated in the previous program. 
 

clear % clears all variables from workspace  

 

clc % clears everything on command window 

 

base_dir='C:Sample_directory\Aorta\';  

% Define path of directory containing Ascending Aorta files  

 

base_dir2='C:\Sample_directory\Brachial\';  

% Define path of directory containing peripheral pressure 

measurement site (carotid/brachial/radial/femoral) files 

  

ECAP=[];  

% Create empty array for estimated central aortic pressure (GTF 

estimated pressures) 

 

VCAP=[];  
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% Create empty array for validated central aortic pressure (model 

generated pressures) 

 

maxECAP=[];  

% Create empty array for maximum estimated central aortic 

pressure values 

 

minECAP=[];   

% Create empty array for minimum estimated central aortic 

pressure values 

 

meanECAP=[];  

% Create empty array for mean estimated central aortic pressure 

values 

 

maxVCAP=[];   

% Create empty array for maximum validated central aortic 

pressure values 

 

minVCAP=[];  

% Create empty array for minimum validated central aortic 

pressure values 

 

meanVCAP=[];   

% Create empty array for mean validated central aortic pressure 

values 

 

similarity=[];  

% Create empty array for similarity (between ECAP and VCAP) 

  

j=1; % Define value of counter starting value 

 

for i=2:2:194  

% Counter of the for loop (remaining half of the database) 

 

    cd(base_dir);  

% Moving into ascending aorta files directory  

 

aorta = strcat(base_dir,'artery1-',' ',num2str(i),'');  

% Extract artery 1-1/2/3/4... (ascending aorta)- The second 

number i.e. 1/2/3/4 is the definition of case number so 

artery 1-24 means the first artery (ascending aorta) and case 

24 

 

 

    load(aorta); % Load artery onto workspace 

 

A= A(:,1);  

% A is the generic name of the mat files for each artery 
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    VCAP(:,j)=A;  

% create an array with incremental VCAPs  

    

cd(base_dir2);  

% Moving into peripheral artery files directory  

 

 

radial = strcat(base_dir2,'artery4-',' ',num2str(i),'');  

% Extract artery 4-1/2/3/4... 

(carotid/radial/brachial/femoral)-Brachial in this example 

 

    load(radial); % Load artery onto workspace 

  

    A= A(:,2); 

  

    Y=fft(A); % DFT of waveform data 

 

cd 'C:\Sample_directory\GTF_A_B'   

% Moving into directory where the GTF is saved as a mat file 

 

    load ('GTF_A_B'); % Load GTF onto workspace 

     

GTF_B_A=1./GTF_A_B;  

% Find the GTF from peripheral to central direction 

 

ECAP_frequency=Y.*GTF_B_A;  

% Multiply GTF with peripheral waveform in the frequency 

domain (Example, Brachial data (in frequency) X 

GTF_Brachial_aorta) 

 

ECAP_time=ifft(ECAP_frequency);  

% Inverse DFT to convert estimated freqeuncy domain waveform 

to time domain 

     

ECAP(:,j)= ECAP_time;  

% Define the estimated time domain data as ECAP 

     

maxECAP(:,j)=max(ECAP(:,j));  

% Find max (systolic) pressure values of ECAP 

 

minECAP(:,j)=min(ECAP(:,j));  

% Find min (diastolic) pressure values of ECAP 

 

meanECAP(:,j)=mean(ECAP(:,j));  

% Find mean pressure values of ECAP 

     

maxVCAP(:,j)=max(VCAP(:,j));  

% Find max (systolic) pressure values of VCAP 

 

minVCAP(:,j)=min(VCAP(:,j));  
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% Find min (diastolic) pressure     values of VCAP 

 

meanVCAP(:,j)=mean(VCAP(:,j));  

% Find mean pressure values of VCAP 

 

  

similarity(:,j)=corr(ECAP(:,j),VCAP(:,j));  

%Find 2-D correlation coefficient between VCAP and ECAP 

 

    j=j+1; % Increment in counter 

 

end % End of for loop  

 

 

% Transpose all arrays for ease 

    similarity=similarity'; 

 

    maxECAP=maxECAP'; 

 

    minECAP=minECAP'; 

 

    meanECAP=meanECAP'; 

     

    maxVCAP=maxVCAP'; 

 

    minVCAP=minVCAP'; 

 

    meanVCAP=meanVCAP'; 

     

% Save all files in a directory as matfiles 

  

save('C:\Sample_directory\Similarity.mat','similarity') 

 

save('C:\Sample_directory\maxVCAP.mat','maxVCAP') 

 

save('C:\Sample_directory\meanVCAP.mat','meanVCAP') 

 

save('C:\Sample_directory\minVCAP.mat','minVCAP') 

 

save('C:\Sample_directory\maxECAP.mat','maxECAP') 

 

save('C:\Sample_directory\meanECAP.mat','meanECAP') 

 

save('C:\Sample_directory\minECAP.mat','minECAP')  

       

save('C:\Sample_directory\ECAP.mat','ECAP')  

      

save('C:\Sample_directory\VCAP.mat','VCAP')  

 

%------------------ End of Program -----------------% 


