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Abstract

In this thesis, the Unstructured Transmission Line Modelling (UTLM) method is

used to study wire problems with various configurations and structures. The analysis

of multi-wire systems based upon local field solutions for wave equations is presented

for the understanding of propagation mode within a wire bundle. The derivation

of TLM scheme based upon unstructured triangular and tetrahedral meshes is pre-

sented, along with applications to the study of electromagnetic coupling and field

transmission of canonical single-wire models and junction structures. The impact

of wire configurations and positioning of wires within a bundle on the electromag-

netic coupling into wires is investigated. Moreover, the radiation patterns of a

Log-periodic dipole array (LPDA) antenna in different frequency bands is investi-

gated. The accuracy of results presented in this work is validated by self-convergence

with respect to sufficient simulation parameters and the efficiency of this method is

evaluated based upon computational expenses.
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1
Introduction

This chapter presents a brief introduction of the background of this thesis

and a short history of wire coupling and electromagnetic compatibility

(EMC) study. Different numerical modelling methods for modern Com-

putational Electromagnetics (CEM) are introduced and compared.

***

1.1 Background

Wire coupling study has been seen increasing interest in recent years for follow-

ing reasons. Wires are fundamental components in electromagnetic compatibility

(EMC) problems as they provide both signal and power transfer in electrical and

electronic systems. Although they are geometrically small features in an integrated

system such as aircraft or vehicles, their effect on electromagnetic responses to ex-

ternal sources such as external High Intensity Radio Frequency (HIRF) environment

and as a result the system performance is significant. Moreover, wires are usually

tied together as bundles to provide space flexibility in a system. Coupling in wires

due to close spacing between each other is non-negligible. Modern EMC studies

demand the investigation of such complex systems in the design stage and elimina-
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Chapter 1. Introduction

tion of unwanted electromagnetic interference (EMI) that fails demonstrating EMC

compliance.

The history of wire coupling study dates back to the 1830s when Faraday firstly

demonstrated the electromagnetic induction between two iron rings due to transient

current change in one coil [1.1]. In the 1860s Maxwell mathematically formulated the

time-evolving structure of electromagnetic fields based four important laws. With

dramatic increasing of the use of electrical appliances from communication to trans-

portation and living, EMI has been a common phenomena in people’s daily life,

unexpected noises from the earphone when you listening to music and a call comes

and lightning destroyed home electrical appliances. Recent researches show increas-

ing interest in wire coupling problems within integrated electrical platforms such as

aircraft to comply with the requirement for EMC of electrical and electronic systems

due to external HIRF environment [1.2–1.6].

1.2 Modelling methods

This section introduces and analyses methods that can be used for the modelling of

wire coupling and EMC problems.

1.2.1 Transmission line methods

There are a number of analytical and numerical methods developed to model wire

coupling and electromagnetic compatibility. Among them the multi-conductor trans-

mission line (MTL) method is one of the most popular and widely used meth-

ods. Transmission line (TL) Equations are derived based on the transverse elec-

tromagnetic (TEM) propagation mode of waves [1.7–1.11]. The per-unit-length

(p.u.l) parameters including inductance, capacitance, resistance and conductance

for the TL equation are introduced to govern the propagation of voltage and cur-

rents [1.12]. The method has been extensively developed for various applications

2



Chapter 1. Introduction

including homogeneous and inhomogeneous medium [1.13], lossy conductors [1.14],

shielded wires [1.15], twisted-wire pairs, field-to-wire coupling and crosstalk predic-

tion [1.16–1.18]. Moreover, the incorporation of the Green’s function allows time-

domain analysis of MTLs [1.19]

Although the simplicity and computational efficiency of the MTL method are ap-

preciated, there are few disadvantages of this method. Firstly, the method analyses

thin wires implicitly and ignores re-radiation from wires . Moreover, this method

sees difficulty in modedlling complex integrated systems [1.20].

1.2.2 Method of moments (MOM)

The method of moments (MOM) is an important numerical method for modelling

currents in thin wires. It is firstly developed by Harrington [1.21,1.22] as a special

form of Finite Element Method (FEM).

The fundamental rule of this method is to find solutions for a partial differential

equation [1.23]

L{f} = g (1.1)

where L is a linear operator, f is the unknown current function and g is the testing

function. Hallen’s integral equation and Pocklington’s integral equations for electric

fields are two popular sets of equations to describe the field operation. The unknowns

can be expanded into a set of basis functions such as pulse functions. The testing

function is in the same form of the basis function with specific weight to enforce the

boundary conditions. The continuous differential equation 1.1 can then be simplified

to a set of matrix equations of finite size and the unknown currents along a thin

wire is easily solved.

The advantage of the MOM is shown in its easy implementation in computers and
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Chapter 1. Introduction

highly accurate results. However there are also some limitations. The MOM is

widely used for solving integral equations in frequency domain. This would be

computationally expensive when the frequency response over a wide range is de-

sired. The choice of basis functions also has significant effect on the accuracy and

convergence of the method. Moreover, it is not very effective when applied to inho-

mogeneous environment and interior of conductive enclosures.

1.2.3 Finite Difference Time Domain (FDTD) method

The Finite Difference Time Domain (FDTD) method is a powerful time domain

numerical modelling method that differences Maxwell’s equations in both space

and time domain [1.24,1.25]. It is able to model full wave electromagnetic phe-

nomenon such as coupling, radiation and ground bounce in time domain and easily

transfer to frequency response via Fourier transform [1.26] Moreover, the method

shows its capability of modelling a variety of environment such non-linear mate-

rial properties and complex multi-scale structures naturally. Recent researches de-

velop thin wire formulations to incorporate analysis of thin wire features in FDTD

cells [1.27–1.32]

In FDTD method, electric and magnetic field points are sampled in two interleaved

grids, with a half space-step and a half time-step separation respectively. This

would be potential issue when modelling the propagation of fields in anisotropic

materials and describing the magneto-electric coupling as they need simultaneous

field processing [1.33] Besides, electric and magnetic fields are distributed throughout

the cells instead of localised at one point. This might cause potential ambiguities in

locating boundary and excitations.

1.2.4 Transmission Line Modelling (TLM) method

The Transmission Line Modelling (TLM) method is another widely used numerical

modelling method that solves Maxwell’s differential equations in the time domain.

4



Chapter 1. Introduction

The method is at first developed and introduced by Kron [1.34] based on the anal-

ogy between electrical circuits and Maxwell’s equations for electric and magnetic

fields. The method however had not been further developed until the 1970s when a

two-dimensional scattering problem was solved using the TLM method based upon

Huygen’s theory of wave propagation [1.35,1.36]. The development of modern com-

putational tools enables fast development of the TLM method in three dimensions

and various features. The symmetrical condensed node was introduced in the 1980s

for stable and accurate modelling in three-dimensional spaces. [1.37,1.38].

Due to its time domain operation, the TLM is able to model a large variety of prob-

lems, including multi-scale structures and non-linear problems over a wide band of

frequency range. Different from the FDTD method, electric and magnetic fields in

TLM are defined at the same space and time step, which makes it easier when mod-

elling problems with complex materials [1.33]. Although sampling for TLM models

normally requires full-volume discretisation in the space, which might requires sub-

stantial computational resources, it is able to model more complex structures and

inhomogeneous materials, which is crucial in today’s EMC investigation [1.39].

The MTL method has been studied to be embedded in coarse TLM schemes to study

wire coupling problems without truncation of mesh size [1.40–1.43]. An alternative

thin wire model based upon local field solutions has been developed for TLM sim-

ulations [1.44–1.47]. The advantage of this method is that it requires no empirical

factors and allows arbitrary placed thin wires in the mesh cell.

In recent years the Unstructured Transmission Line Modelling (UTLM) method is

introduced based upon unstructured triangular and tetrahedral meshes [1.48,1.49]

Although the conventional structured mesh based TLM has shown its versatility

and stability in modelling a diversity of problems, there is limitations existed in

describing curved boundaries such as aircraft and circular cross-sectioned wires.

Stair-casing error might be non-negligible if the the conducting boundary differs
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Chapter 1. Introduction

from the Cartesian coordinate axes [1.50].

A two-dimensional triangular or three-dimensional tetrahedral mesh easily resolves

such stair-casing problems. However it needs to be noticed that the shape and size

of each single mesh might differ to fit the geometry. This arises the computational

cost of simulation as information of each single node needs to be stored and more

attention needs to be taken to control the synchronism of time-stepping across the

mesh [1.39].

This is particularly true for modelling wiring problems due to their thin structures

and long lengths and that is why various thin-wire approximation methods de-

scribed above were developed instead of pursuing explicit meshing for precise wire

description [1.28] However, with increasing computational power in recent years and

improved algorithm of UTLM, it is now possible to model thin wires and wire bun-

dles by direct and explicit meshing of wire structures [1.51–1.53] It is the success of

UTLM in modelling generally arbitrarily shaped structures and the use of UTLM

in today EMC simulations of large and complicated systems has led to the work of

this thesis.

6



Chapter 1. Introduction

1.3 Thesis Outline

The outline of the thesis is provided as follows. Chapter 2 reviews fundamental

electromagnetic theories including Maxwell’s equations and wave equations. Chap-

ter 3 presents the study of propagation modes in multi-conductor wire systems

using local field solutions of wave equations and boundary conditions. The effects

of spatial relationship and dielectric coating are explored. Chapter 4 describes ba-

sic theory of the Transmission Line Modelling (TLM) method and extended to 2-D

Unstructured TLM (UTLM) based upon triangular meshes and 3-D UTLM based

upon tetrahedral meshes. Chapter 5 presents the simulation of several canonical

wiring models using UTLM method with direct modelling. Two different excitation

methods, the plane wave excitation from external and the modal excitation by direct

injection to the wire , are explored and junction structures are modelled. Chapter

6 presents the study of wire bundle coupling due to external plane wave excitations

using UTLM method by direct modelling. Various wire bundle configurations are

explored and the current induced in wires are observed and analysed for benchmark-

ing. Chapter 7 presents the study of an Log periodic dipole array (LPDA) antenna

in order to evaluate the capability of UTLM to model broadband wiring structure

antennas. The radiation pattern of the antenna for different frequency bands are

investigated.
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2
Fundamentals of Electromagnetic Theory

2.1 Maxwell’s Equations

The differential equation form of Maxwell’s equations is shown below [2.1–2.3]:

∇×E = −∂B
∂t

(2.1)

∇×H = J +
∂D

∂t
(2.2)

∇ ·D = ρ (2.3)

∇ ·B = 0 (2.4)

∇ · J = −∂ρ
∂t

(2.5)

D = εE (2.6)

B = µH (2.7)

where

• E is the electric field intensity

• H is the magnetic field intensity

• D is the electric flux density

• ρ the charge density
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• B is the magnetic flux density

• J is the current density

• σ is the conductivity

• ε is the electric permittivity

• µ is the magnetic permeability

The set of differential equations govern the electromagnetic field behaviour in forms

of space and time rates of change at a certain point in space and time. Equation

2.1 is the Faraday’s law of induction that expresses the generation of electric fields

by time-varying magnetic fields. Equation 2.2 refers to the Ampere’s law combin-

ing conduction and ldisplacement current components. Equation 2.3 and 2.4 refer

to Gauss’s law for electric and magnetic fields respectively. Equation 2.5 defines

conservation of charge. The electric permittivity ε and magnetic permeability µ are

defined to relate the electric flux density D to the electric field intensity E and

magnetic flux density B to the magnetic field intensity H by equations:

D = εE = εrε0E (2.8)

B = µH = µrµ0H (2.9)

where ε0 ≈ 8.854× 10−12 F/m is the permittivity of free space and εr refers to the

normalised material constant with respect to the free space; µ0 = 4π × 10−7 H/m

is the permeability of free space and µr refers to the relative permeability in the

medium.

While equations 2.1 to 2.7 describe explicitely field vectors at any point of space at

any time, Maxwell’s equations can also be expressed in integral form applicable to
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overall regions of space:

�

S

∇×E · dS =

∮
C

E · dl =

�

S

∂B

∂t
dS (2.10)

�

S

∇×H · dS =

∮
C

H · dl =

�

S

(J +
∂D

∂t
)dS (2.11)

�

S

D · dS =

�

V

ρ dV (2.12)

�

S

B · dS = 0 (2.13)

where equations 2.10 and 2.11 integrate equations 2.1 and 2.2 respectively over an

open surface S bounded by a countour C while equations 2.12 and 2.13 integrate

equations 2.3 and 2.4 respectively over a closed surface with an interior volume

V.

The complex spatial forms of electromagnetic field vectors are introduced to simplify

procedures when solving Maxwell’s equations as the time variations of Electromag-

netic waves are of consinusoidal forms

F (x, y, z; t) = Re
[
F (x, y, z) ejωt

]
(2.14)

where F refers to the field vectors and the term jω replaces ∂/∂t in equations 2.1 -

2.5 and equations 2.10 - 2.11 to represent the time variations.

2.2 The Wave Equation and wave solutions

In order to solve for the electric and magnetic field in Maxwell’s equations, it is nec-

essary to transform the coupling first order partial differential equations in (2.1) and

(2.2) to independent wave equations. First the phase form of Maxwell’s equations
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for E and H are expressed as below:

∇×E = −jωB (2.15)

∇×H = J + jωD (2.16)

Taking the curl of (2.15) and substitute the constitutive relationship forB gives:

∇×∇×E = −jωµ∇×H (2.17)

Substitute (2.16) on the right-hand side and use the constitutive relationship for D

and J :

∇×∇×E = ω2µεE − jωµσE (2.18)

The generalized form of wave equation for E is then obtained by applying the vector

identity ∇×∇×E = ∇∇·E−∇2E and substitute equations (2.3) and (2.8):

∇2E + k2E − jωµσE =
∇ρ
ε

(2.19)

where k = ω
√
µε represents the wavenumber that can also be obtained by k = 2π/λ.

The wave equation for H is derived in the similar way and:

∇2H + k2H − jωµσH = 0 (2.20)

The field vectors are therefore expressed independently and only related to the

property of the medium and the charge density. These sets can be further simplified

to homogeneous Helmholtz equations (2.21) and (2.22) by assuming a source-free,
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isotropic and homogeneous region, which is the main concern in this report.

∇2E + k2E = 0 (2.21)

∇2H + k2H = 0 (2.22)

The three-dimensional equations for E and H can be divided into two parts, one

in the transverse plane and the other in the axial direction:

∇2
tΨ = −(k2 − β2)Ψ (2.23)

∂2Ψ

∂z2
= −β2Ψ (2.24)

where Ψ is identified as E or H , assuming the propagation function e−jβz in the z

direction.

The solutions of equation (2.23) can be found by solving the z component of E

and H and other components can be derived from these two components. In this

report the local field solutions around cylindrical wires are concerned. Therefore

the cylindrical coordinate system based on the wire centre is considered, as shown

in Fig.2.1. In this case the transverse components of fields are Eφ and Er and same

Figure 2.1 Cylindrical coordinate system

17



Chapter 2. Fundamentals of Electromagnetic Theory

for H components. Using the separation of variables method, the z-component can

be derived in the form [2.2]:

Ez(r, φ) = e−jnφ(AJn(kcr) +BNn(kcr)) (2.25)

where Jn and Nn are nth-order Bessel functions of first kind and second kind and

A and B are the yet unknown coefficients. k2
c = k2 − β2 is the wave number in

transverse plane. Due to the singularity of Nn at r=0, B is usually chosen as 0 when

considering fields inside the cylinder. Hankel functions are the linear combinations

of Jn and Nn in the form:

H(1)
n (kcr) = Jn(kcr) + jNn(kcr) (2.26)

H(2)
n (kcr) = Jn(kcr)− jNn(kcr) (2.27)

which are used in this report to represent fields outside the wire.

The transverse components can directly derived from Ez and Hz [2.2]:

Er = − j

k2
c

(
β
∂Ez
∂r

+
ωµ

r

∂Hz

∂φ

)
(2.28)

Eφ =
j

k2
c

(
− β

r

∂Ez
∂φ

+ ωµ
∂Hz

∂r

)
(2.29)

Hr =
j

k2
c

(
ωε

r

∂Ez
∂φ
− β∂Hz

∂r

)
(2.30)

Hφ = − j

k2
c

(
ωε
∂Ez
∂r

+
β

r

∂Hz

∂φ

)
(2.31)

2.3 Boundary Conditions

In a region consisting of several media that have different material properties, which

is denoted as µ and ε, the boundary condition of field solution on the adjacent sides

of the boundary needs to be properly considered. Due to the fact that field functions
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and their derivatives are discontinuous across the boundary dividing two media, the

integral form of Maxwell’s equations stated previously is applied. An illustration

of a surface diving the space into two regions with different media properties and

field components is shown in Fig. (2.2). The integral form of Faraday’s Law in(2.10)

Figure 2.2 Field and flux components on both sides of boundary

indicates an line integral of electric field along the path from one side of the boundary

to the other and return with an infinitesimal distance ∆l:

∮
E · dl = (Et1 − Et2)∆l (2.32)

The infinitesimal length of ∆l indicates an zero area enclosed by the path hence the

magnetic flux change in the path can be regarded as zero. Therefore the change

of tangential electric field presented in (2.32) can be considered zero hence the

continuity of tangential components of electric field is confirmed:

Et1 − Et2 = 0 or n̂× (E1 −E2) = 0 (2.33)

Similarly the integral form of Ampere’s law shown in (2.11) provides a same result

for tangential components of magnetic fields since the current density J and the

rate of change of electric flux density ∂D
∂t

are finite:

Ht1 −Ht2 = 0 or n̂× (H1 −H2) = 0 (2.34)

19



Chapter 2. Fundamentals of Electromagnetic Theory

The integral form of Gauss’s Law in (2.12) presents the normal component of electric

flux density at both sides of the boundary in the form of:

Dn1 −Dn2 = ρS (2.35)

which indicates a discontinuity condition of normal components of electric flux den-

sity due to the presence of surface charge density. This can be modified to be

continuous in the case of charge-free boundary. Since the magnetic charge is as-

sumed zero in this report as shown in (2.13), the magnetic flux density is continuous

across the boundary:

Bn1 −Bn2 = 0 (2.36)

A special case of boundary conditions is emphasized here when perfect conductors

are involved in the problem space such as the presence of wires and metal compo-

nents. Perfect conductors imply infinite conductivity hence drive zero electric and

magnetic fields inside the conductor. Therefore to maintain the continuity at the

boundary, the tangential components of electric fields and magnetic fields converge

to zero at the boundary.
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3
Local Field Solutions for Multi-Wire Systems

This chapter presents the formulation of local field solutions for two-

dimensional multi-wire systems. This method solves wave propagation

problems in the presence of wires. Cylindrical harmonics in the form

of Bessel functions are employed to express general solutions for fields

scattered by multiple conductor and modes of propagation are found in

a numerical way. To start with, a two-wire system of perfect electric

conductors (PEC) in homogeneous medium is studied. The system then

extends to multiple conductors of various positions. Further more, the ef-

fect of dielectric coating around wires is considered. The method enables

analysis of wave propagation within multi-core wire bundles of arbitrary

shape and complex configurations.

***
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3.1 Introduction

Local field solutions for thin wires have been applied in Transmission Line Modelling

(TLM) method for modelling wire coupling problems in relatively coarse mesh en-

vironment [3.1–3.5]. In this thesis, the general approach for understanding wave

propagation within a multi-core wire bundle is considered and the presence of di-

electric coating is taken into consideration.

As is introduced in chapter (2), an electromagnetic wave can be divided into longi-

tudinal component and transverse components. This way makes it easier to analyse

the wave behaviour in the cross-sectional plane of multi-wire systems. The principle

approach of finding appropriate field solutions for a multi-wire system is to find the

correct longitudinal component of the wave number β and hence understand the

mode of propagation. A numerical searching method is introduced to find correct

values of β.

As described in the previous chapter, the general wave solution for scattered fields

from wire conductors can be expressed as a series of Bessel or Hankel functions in the

cylindrical coordinate system centred on the wire origin. Three field components are

considered based on cylindrical coordinate system, Ψr the radial component, Ψφ the

azimuthal component and Ψz the axial component. Ψz is the fundamental variable

to be solved in the field solution and the other two components are able to be solved

in terms of Ψz [3.6].

Boundary conditions are imposed on the interface of each wire to solve the unknown

coefficients in the general solutions. For perfect electric conductors (PEC), due to the

fact that there is no electric field inside the conductor, the tangential components of

electric fields vanish on the conductor surface. When dielectric coating is presented,

the boundary condition need be extended to the interface between the dielectric layer

and the free space, thereby imposing the continuousness of tangential components of

both electric and magnetic fields. For imperfect conductors, fields penetrate into the
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conductor and vanish exponentially. This is usually referred to the skin depth. The

tangential electric and magnetic fields in such conductors also satisfy the continuous

condition on the conductor interface.

Fig. 3.1 shows a general process to find the local fields solution for a multi-wire

system. The boundary conditions for each wire form a square matrix corresponding

to the specific value of β. The singular value decomposition method will be em-

ployed to find the determinant of the matrix in order to solve the boundary value

problem. More details are discussed in subsequent sections regarding to different

situations.
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Start

Define wire parameters and frequency

Define start and end points of β

Define matrix elements and solve matrix

β > end point?

plot lowest order singular values versus β

Increment β

Find the minimum point and corresponding
solutions

Plot the EM field in the space

End

yes

no

Figure 3.1 Flow chart for local field solutions of a multi-wire system
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3.2 Perfect Electric Conductor in Homogeneous

medium

In this section, the general solution and formulations for PEC in homogeneous en-

vironment are introduced. Assuming that all wires have circular cross-section, the

cylindrical coordinate system is employed. The wire origin is considered to be the

origin of the coordinate system when looking at one specific wire. The general field

solution in the transverse plane is expressed as a series of Bessel and Hankel functions

related to the medium property and distance to the wire origin. A transformation

formula is also introduced in order to express all fields with respect to the same

coordinate system.

The axial component of electric and magnetic fields in the free space scattered by

a wire conductor can be expressed as a series of Hankel functions of second kind in

the cylindrical coordinate system centred on the wire origin:

Ψz =
∞∑

n=−∞

e−jnφ
H

(2)
n (kcr)

H
(2)
n (kca)

Xn =
∞∑

n=−∞

fnXn = fTX (3.1)

where Ψz is identified as Ez or Hz component along z-direction. fn = e−jnφ H
(2)
n (kcr)

H
(2)
n (kca)

and Xn is the unknown coefficient. k2
c = ω2µε − β2 is the wavenumber in the

transverse plane and r is the distance from the observation point to the wire centre.

The incident field is expressed as a series of Bessel functions of first kind centred on

the TLM node centre:

Fi =
∞∑

n=−∞

e−jnφ
Jn(kr)

Jn(ka)
= gT0X0 (3.2)

The total field inside a mesh cell in the presence of several wires can be generalized

as the superposition of total incident and scattered fields:

Ft = Fi + Fs (3.3)
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where t, i and s denote total, incident and scattered fields respectively. Fs is the sum

of fields scattered by each individual wire in the model. At this stage the incident

field and scattered fields are expressed with respect to their own coordinate system,

therefore necessary transformation process must be carried out to express the total

field in one coordinate system. The summation theorem for Bessel functions is

utilised to address the transformation of field from one wire system to the desired

coordinate system. Fig. 3.2 illustrates the relationship between two wires in cross

section and the parameters used to process the transformation. For simplicity the

example of two wires located arbitrarily in the x-y plane and off-site the centre are

presented.

Figure 3.2 TLM node embedding off-site thin wires

In Fig. 3.2 the reference wire is denoted as the wire p, and the transfer wire is denoted

as the wire q. OP denotes the observation point hence rp, rq and ro represent the

distance between OP and p’s centre, q’s centre and node centre respectively. The

radius of each wire is represented by ap and aq respectively. rqp is the length between

wire centres p and q and αqp is the angle from positive x axes to rqp. Γq and Γp

26



Chapter 3. Local Field Solutions for Multi-Wire Systems

represent the angle between rq, rp and rqp respectively. Therefore the field scattered

from wire q at OP centred in wire p’s coordinate system:

e−jnφq
H

(2)
m (krq)

H
(2)
m (kaq)

=
∞∑

n=−∞

e−j(m−n)αqp
Jn(krp)

Jn(kap)

H
(2)
m−n(krqp)

H
(2)
m (kaq)

Jn(kap)e
−jnφp

=
∞∑

m=−∞

e−jnφp
Jn(krp)

Jn(kap)
[Tqp]nm

(3.4)

where [Tqp] is called the transformation matrix with element

[Tqp]nm = e−j(m−n)αqp
Hm−n(krqp)

H
(2)
m (kaq)

Jn(kap)

Hence the total scattered field Fs in a multiconductor system can be expressed in

the form:

Fs = fTp Xp +
∑
q 6=p

fTq Xq

= fTp Xp +
∑
q 6=p

gTp TqpXq

(3.5)

where gn = e−jnφ Jn(krp)

Jn(kap)
. Similarly the incident field in equation 3.2 with respect to

the node centre is transformed to the coordinate system centred on the wire p:

Fi = gTpU0pX0 (3.6)

where

[U0p]nm = e−j(m−n)φpJm−n(kr0p)

The total z-directional field distributed in the cross-sectional plane with respect

to the cylindrical coordinate system centred on wire p can therefore be general-

ized:

Ft = gTpU0pX0 + fTp Xp +
∑
q 6=p

gTp TqpXq (3.7)
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In this report, the static field solution with a source free environment is the main

concern. Therefore the incident field, which is expressed as the first term in the

equation above, is negligible. Once Ez and Hz are obtained, the other field com-

ponents of electric and magnetic fields in the cylindrical coordinate can be solved

using a straightforward transformation [3.6]:

Er = − j

k2
c

(
β
∂Ez
∂r

+
ωµ

r

∂Hz

∂φ

)
(3.8)

Eφ =
j

k2
c

(
− β

r

∂Ez
∂φ

+ ωµ
∂Hz

∂r

)
(3.9)

Hr =
j

k2
c

(
ωε

r

∂Ez
∂φ
− β∂Hz

∂r

)
(3.10)

Hφ = − j

k2
c

(
ωε
∂Ez
∂r

+
β

r

∂Hz

∂φ

)
(3.11)

The next step is then to impose suitable boundary conditions in the model to char-

acterize unknown coefficients in the equation (3.1).

3.2.1 Boundary Conditions

The general solutions of field distributions in the transverse plane is further analysed

here to solve the fields around perfect electric conductors (PEC). Since the wave is

scattered by the wire conductors, the boundary conditions at the surface of wires

need to be specified. For perfect electric conductors (PEC), the tangential electric

field, which consists of axial component Ez and azimuthal component Eφ, vanishes

at the conductor surface. The azimuthal component of the electric field Eφ in

cylindrical coordinate system can be derived explicitly by longitudinal electric field

Ez and magnetic field Hz from equation (3.9) [3.6]:

Eφ =
j

k2
c

[
β

r

∂Ez
∂φ

+ ωµ
∂Hz

∂r

]
(3.12)
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where k2
c = k2

o − β2 is the propagation constant in transverse plane. Two equations

are imposed here to solve the unknown coefficients for Ez and Hz:

Ez = fTp Xp(ez) +
∑
q 6=p

gTp TqpXq(ez) = 0 (3.13)

Eφ =
j

k2
c

(
− β

r

∂

∂φ

(
fTp Xp(ez) +

∑
q 6=p

gTp TqpXq(ez)

)
+ ωµ

(
f ′Tp Xp(hz) +

∑
q 6=p

g′Tp TqpXq(hz)

))
= 0 (3.14)

Explicitly as a matrix,


fpn 0 gpnTpqnm 0

− j
k2c

β
r

∂fpn
∂φ

j
k2c
ωµf ′pn − j

k2c

β
r

∂gpn
∂φ
Tpqnm

j
k2c
ωµg′pnTpqnm

gqnTqpnm 0 fqn 0

− j
k2c

β
r

∂gqn
∂φ
Tqpnm

j
k2c
ωµg′qTqpnm − j

k2c

β
r

∂fqn
∂φ

j
k2c
ωµf ′qn




Xpn(ez)

Xpn(hz)

Xqn(ez)

Xqn(hz)

 = 0

(3.15)

where fpn = e−jnφp Hn(krp)

Hn(kap)
, gpn = Jn(krp)

Jn(kap)

The equation above can be solved when the matrix in equation 3.15 is singular. This

is done by computing the singular value decomposition of the matrix and find the

point of β when the singular value reaches minimum. The corresponding singular

vector is then the demanding coefficient vector. Using the calculated coefficient

vector, the field intensity at arbitrary point in the space can therefore be calculated

using equation (3.1).

3.2.2 Two cores wire loom evaluation

This section presents the evaluation of a two-core wire loom example as shown in

Fig. 3.3. Two cores with radius of 1mm are placed along x-axis in the transverse

plane, with a separation distance 4mm between core centres.
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The operating frequency for this model is chosen as f = 1 MHz, which gives an

operation wavenumber in the free space by:

k0 = ω
√
µ0ε0 = 2πf

√
µ0ε0

where µ0 = 4π−7H/m and ε0 ≈ 8.854× 10−12F/m.

Following the flow chart shown in Fig. 3.1, the varying range of β is chosen from

0.95k0 to 1.1k0. Fig. 3.4 shows the singular value plot against β/k0. The figure

clearly shows the decreasing trend of singular values from 0.95k0 and reaches the

minima near k0. This point is therefore considered to be the desired value of β

that solves the equation (3.15), and its corresponding singular vector is considered

solutions of the coefficient vector X. Once the coefficient vector in equation (3.15)

Figure 3.3 Modelling example of a two-conductor line

is solved, the unique field solution is obtained by substituting back the coefficients

to the general solution of axial field components Ez and Hz, which then derive the

transverse field components Eφ, Er, Hφ and Hr using equations (3.9), (3.8), (3.11)

and (3.10). Fig. 3.5a and 3.5b show respectively, the magnitude of transverse electric

field components and magnetic field components around wires.

For validation of the method, the characteristic impedance between to wires is cal-
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Figure 3.4 Computed lowest order singular value against transverse propagation

constant (β) normalised with respect to the wavenumber (k0) in the air
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Figure 3.5 Transverse electric and magnetic field distribution around wires in the cross-

sectional plane

culated by computing:

Z0 =
V

I

where the voltage is obtained from integral of electric fields along the path be-

tween two wires and the current is obtained by integral of magnetic fields along

the close path around each wire respectively. The theoretical value of characteristic
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impedance between two circular conductors can be calculated by [3.7]:

Ztheory =
η

π
acosh(

D

d
) = 157.9Ω

Fig. 3.6 shows the convergence of computed impedances with increasing numbers of

integration points for computing voltages and currents respectively. Although the

figure shows convergence achieved over 300 points, the difference between 50 and

300 integration points is only 0.05%.

Fig. 3.7 shows the change of characteristic impedances due to increase of harmonic

terms that describe the general field solution. It can be seen that the computational

result is slightly lower than the theoretical value, but the difference is negligible.

Besides, the convergence of impedance is obtained with more than 4 harmonic terms

that describe the general field solutions in expression (3.1).

157.72

157.73

157.74

157.75

157.76

157.77

0 100 200 300 400 500 600

Im
pe

da
nc

e 

Number of Integration points

Figure 3.6 Computed Impedance as a function of number of integration points for

calculating voltage and current

Furthermore, the evaluation of impedances with various distance-to-diameter ratio

and different frequencies is shown in Fig. 3.8 and 3.9. The accuracy of this method

is demonstrated compared to theoretical values and the stability over different fre-

quencies is observed.
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Figure 3.7 Computed Impedance as a function of number of harmonic terms for field
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Figure 3.8 Computed characteristic impedance (Z0) as a function of wire separation-

to-diameter (D/d) ratio
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3.2.3 Three cores wire loom evaluation

The modelling of multi-core wire looms becomes more complicated due to the cross

coupling between each conductor in the system, which increases the size of the

matrix in equation (3.15). In this report two models of three-conductor lines are

explored, one referred to the ribbon cable with three wires placed along the axis and

the other placed asymmetrically in the space.

Fig. 3.10 shows the position of three wires placed aligned along the x-axis of the

coordinate system, whose origin locates at the centre of the middle wire. The other

two wires are placed 3mm away from the middle wire on the x-axis. The three wires

have the same radius of 1mm.
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x

y

Figure 3.10 Cross section of three wires on x-axis
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Figure 3.11 Two sets of computed singular values against transverse propagation

constant (β) normalised with respect to the wavenumber (k0) in the air
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Figure 3.12 Transverse Field plot for the first mode
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Figure 3.13 Transverse Field plot for the second mode

The plot of singular values for the symmetrical model in Fig. 3.11 shows two curves

of singular values with same values of β at the minima. The corresponding coefficient

vectors obtained with respect two modes above provide two sets of field solutions

that fit the wave equation and boundary condition requirement. The field magnitude

distribution are shown in Fig. 3.12 and 3.13.
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Another example is three wires locating asymmetrically in the coordinate system,

with the cross section as shown in Fig. 3.14. Two wires sit on the x-axis, with

a distance of 3mm away from the coordinate origin and the third locates at the

coordinates (1,3).
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Figure 3.14 Cross section of three wires with asymmetrical position
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Figure 3.15 Singular value plot against the transverse propagation constant (β) normalised

with respect to the wavenumber in the air (k0)

The singular value plot in Fig. 3.15 shows again two curves that reaches the same

minima at β = k0, which are considered two modes of field solutions for this model.
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Figure 3.16 Transverse Field plot for the first mode
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Figure 3.17 Transverse Field plot for the second mode

The magnitude of transverse electric and magnetic fields are plot in Fig. 3.16 and

3.17 respectively.

It can be seen that for multi-core wire loom systems consisting of PECs in homo-

geneous medium, the longitudinal component of the propagation constant is same

as the wavenumber in that medium. This field propagation follows the Transverse

Electromagnetic (TEM) rule, with zero longitudinal electric and magnetic field com-

ponents and standing transverse field components. When more wire conductors

added to the system, it is expected to see more distribution modes of transverse

field components.
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3.3 PEC in Inhomogeneous Medium

The effect of dielectric coating surrounding wires is explored in this section, with the

inside conductor remaining PEC. Fig. 3.18 shows a basic two wire coupling model

with dielectric coating around each wire. Where ε0 denotes the electric permittivity

Figure 3.18 Wires with dielectric coating

in the free space and εd indicates the electric permittivity in the dielectric coating

layer. For such wires with inhomogeneous medium presented, boundary conditions

need to be imposed on any interface that exhibits different medium properties. The

field outside the wire is still expressed in terms of Hankel functions of second kind,

as presented in equation (3.1) and (3.5) for total scattered field. The field inside

the dielectric region imposes a different medium property, mainly the change of the

permittivity εd, which is shown in Fig. 3.18, and does not couple to the scattered

field from other wires. It can be expressed in terms of the sum of Bessel functions

of the first kind and the second kind:

Ψz =
∞∑

n=−∞

e−jnφ
(
Jn(kcdr)

Jn(kcda1)
An +

Nn(kcdr)

Nn(kcda1)
Bn

)
=

∞∑
n=−∞

gjnAn + gynBn = gjTA+ gyTB

(3.16)

where k2
cd = ω2µεd − β2. gjn = e−jnφ Jn(kcdr)

Jn(kcda1)
and gyn = e−jnφ Nn(kcdr)

Nn(kcda1)
. An and Bn

are the unknown coefficients.
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In general, the longitudinal field component at an arbitrary point in the cross-

sectional plane can be identified according to its medium material:

Ψz =


0 conductor

gjT Ap + gyT Bp dielectric

fTp Xp +
∑

q 6=p g
T
p TqpXq air

(3.17)

The transverse components in cylindrical coordinates are easily derived using equa-

tions (3.8 - 3.11).

3.3.1 Boundary Conditions

Due to the presence of the dielectric coating, the boundary condition and thereby

the equation for field solutions become more complicated. Each boundary in the

system needs to be evaluated. On the interface of the conductor and the dielectric

layer, the tangential electric field components, Ez along axial axis and Eφ in the

transverse plane, are enforced to vanish. Assuming the radius at the inner surface

is a1, the equation for the boundary condition at r = a1 is given by:

Ez = gjTpAp(ez) + gyTpBp(ez) = 0 (3.18)

Eφ =
j

k2
c

(
− β

a1

∂

∂φ

(
gjTpAp(ez) + gyTpBp(ez)

)
+ ωµ

(
gj ′Tp Ap(hz) + gy′Tp Bp(hz)

))
= 0

(3.19)

where Ap(ez)
, Bp(ez)

, Ap(hz)
, Bp(hz)

denote the coefficient vector of axial

field components from the pth wire for both electric (ez) and magnetic fields (hz)

respectively.

On the interface between the free space and the dielectric layer, the tangential

components of both electric and magnetic fields are required to be continuous across

the interface. This imposes four field continuity equations, assuming the radius of
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the outer layer of the wire is a2, expressed as:

Ez(kcda2) − Ez(kcoa2) = 0 (3.20)

Eφ(kcda2) − Eφ(kcoa2) = 0 (3.21)

Hz(kcda2) − Hz(kcoa2) = 0 (3.22)

Hφ(kcda2) − Hφ(kcoa2 = 0 (3.23)

where kcd and kco are the transverse wavenumber in the dielectric and the air respec-

tively. Ez and Hz are obtained from equation 3.17 and they are further utilised to

derive Eφ and Hφ components using equations (3.9) and (3.11). Consequently the

boundary equations become a series of equations related to longitudinal components

only:

{Ez} (gjTpAp(ez) + gyTpBp(ez)) − (fTp Xp(ez) +
∑
q 6=p

gTp TqpXq(ez)) = 0

(3.24)

{Eφ}
j

k2
cd

(
− β

a2

∂

∂φ

((
gjTpAp(ez) + gyTpBp(ez)

)
−

(
fTp Xp(ez) +

∑
q 6=p

gTp TqpXq(ez)

))

+ωµ

((
gj ′Tp Ap(hz) + gy′Tp Bp(hz)

)
−

(
f ′Tp Xp(hz) +

∑
q 6=p

g′Tp TqpXq(hz)

)))
= 0

(3.25)

{Hz} (gjTpAp(hz) + gyTpBp(hz)) − (fTp Xp(hz) +
∑
q 6=p

gTp TqpXq(hz)) = 0

(3.26)

{Hφ} − j

k2
cd

(
ωεd

(
gj ′Tp Ap(ez) + gy′Tp Bp(ez)

)
− ωεo

(
f ′Tp Xp(ez) +

∑
q 6=p

g′Tp TqpXq(ez)

)

+
β

a2

∂

∂φ

((
gjTpAp(hz) + gyTpBp(hz)

)
−

(
fTp Xp(hz) +

∑
q 6=p

gTp TqpXq(hz)

)))
= 0

(3.27)
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Combing equations above with equations for the first layer boundary in (3.18) and

(3.19), a matrix equation can be derived in the form:


Apn Tpqnm · · ·

Tqpnm Aqn · · ·
...

...
. . .



Xpn

Xqn

...

 = 0 (3.28)

where Apn is referred to the element block of the pth wire of the nth harmonic and

Tpqnm is referred to the transfer elements of the qth wire of the mth order transferred

to the cylindrical coordinate centred on the pth wire of the nth harmonic. More

explicitly,

[
Apn

]
=



gj gy 0 0 0 0

∂gj
∂φ

∂gy
∂φ

gj′ gy′ 0 0

gj gy 0 0 −f 0

0 0 gj gy 0 −f
∂gj
∂φ

∂gy
∂φ

gj′ gy′ −∂f
∂φ
−f ′

gj′ gy′ ∂gj
∂φ

∂gy
∂φ

−f ′ −∂f
∂φ


(3.29)

[
Tpqnm

]
=



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 −gTpqnm 0

0 0 0 0 0 −gTpqnm

0 0 0 0 − ∂g
∂φ
Tpqnm −g′Tpqnm

0 0 0 0 −g′Tpqnm − ∂g
∂φ
Tpqnm



[
Xpn

]
=



Ap(ez)

Bp(ez)

Ap(hz)

Bp(hz)

Xp(ez)

Xp(hz)


(3.30)

where gjpn = e−jnφ Jn(kc2r)
Jn(kc2a1)

, gypn = e−jnφ Nn(kc2r)
Nn(kc2a1)

, fpn = e−jnφ Hn(kcor)
Hn(kcoa2)

and gpn =

e−jnφ Jn(kcor)
Jn(kcoa2)

. The size of each block, according to the number of equations, is

6 × 6 = 36. Therefore the total size of the matrix in equation 3.28, depending on

the number of wires x in the system and the number of harmonic terms n for the

expression, can be found as (x× n× 6) by (x× n× 6) .
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3.3.2 Two cores wire loom evaluation

The mode searching and field solutions for a two-core wire loom with dielectric

coating is presented in this section. The operation frequency is set as 1 MHz. The

longitudinal propagation constant β with respect to the wave number k0 in the free

space is searched. The resultant field solutions are obtained from the computed β

and plot in the transverse plane. For the purpose of validating the modelling result,

the continuity condition at the boundary interface is explored. A straightforward

way is to plot εrEx along x-axis, where Ex denotes normal electric field along x-axis,

for the normal component of the electric flux density D = εE is continuous in a

charge free boundary according to section 2.3.

Similar to the homogeneous case, the wires are placed along x-axis in the cross-

sectional plane, with a separation distance 4 mm between two centres as shown in

Fig. 3.18. The conductor radius is set 1 mm and the coating thickness is set 0.2mm.

The relative permittivity in the dielectric layer is set as εd = 2.25.
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Figure 3.19 Singular value plot against β/ko

First the proper mode of the system is found by varying longitudinal propagation

constant β with respect to the overall wave number k0 in the free space and finding
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the minimum singular value point for the matrix equation 3.28. Fig. 3.19 illustrates

two local minimum in the search domain. One locates at the point β/k0 = 1 and the

other at the point β/k0 = 1.04874. Further study indicates that the first minimum

point is not a mode but a fact caused by the term 1/k2
c in the equations. Therefore

the second minimum point is found to be the only mode in a two-conductor wire

system. Compared to the homogeneous case in the previous section, the value of beta

shifts to the right of k0, but lower than kr for the dielectric medium. This addresses

the effect of dielectric coating around conductors on the wave propagation.
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Figure 3.20 Transverse Field plot for two cores wire loom with dielectric coating

Fig. 3.20 shows the transverse electric and magnetic field plot in the cross-sectional

plane. Due to the discontinuity of electric permittivity around two wires, the electric

field experiences discontinuity at the interface between the dielectric layer and the

air. However since the dielectric is not ferromagnetic and has a permeability of free

space, the magnetic field distribution shown in Fig. 3.20b does not see any boundary

of medium change. Fig. 3.21 demonstration the validation of the mode by showing

the continuity of normal electric flux components across the dielectric-air interface.
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Figure 3.21 Normal electric flux (Dn) along x axes
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3.4 Three cores wire loom evaluation

In this section two sets of three-core wire looms, with symmetrical and asymmetrical

positioning respectively, are explored. In the first model the three wires are placed

horizontally along the x axis, with a separation distance 3 cm between two adjacent

wires, as shown in Fig. 3.22a. The second model moves the middle wire to the

place (1,3) in the coordinate systemand keeps the other two wires unmoved, as

shown in Fig. 3.22b. Both cases have same wire radius 1 mm and perfect electric

conductivity. Dielectric coating is applied to each wire, with thickness 0.2 mm and

relative permittivity ε = 2.25

(a) Model 1 (b) Model 2

Figure 3.22 Cross section of three-wire system with a) horizontally placed, b) arbitrary

placed

Fig. 3.23 shows the lowest order singular value plot against the ratio of longitudinal

propagation constant (β) over the total propagation constant in the free space (k0).

It can be seen that three local minima are displayed in the figure. Again, the point

at β = k0 is found to be caused by the term 1/k2
c in equations when β = k0 and

therefore is not considered to be a solution. The other two minima indicate two

explicit modes at β = 1.068k0 and β = 1.095k0 respectively. It is observed that in

the presence of dielectric coating, the value of β exceeds k0 in order to achieve desired

boundary conditions at the surface between the dielectric layer and the air.
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Fig. 3.24 and 3.25 plots the electric and magnetic field around three wire in the

transverse plane for the two modes respectively. Similar results to the models with-

out dielectric coating in section (3.2.3) are found , apart from the discontinuity of

electric fields in different media due to change of electric permittivity.
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Figure 3.23 Singular value plot against β/ko
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Figure 3.24 Transverse Electric Field (Et) distribution in the space
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Figure 3.25 Transverse Magnetic Field (Ht) distribution in the space

Fig. 3.26 presents the lowest singular value plot of second three-wire loom model as

shown in Fig. 3.22b, Two modes of propagation with β = 1.035k0 and β = 1.057k0

respectively. It can be seen that the change of position of wires in the space affect the

propagation constant. Fig. 3.27 and 3.28 show the transverse electric and magnetic

fields for each mode respectively.
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Figure 3.26 Singular value plot against β/ko
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Figure 3.27 Transverse Electric Field (Et) distribution in the space
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Figure 3.28 Transverse Magnetic Field (Ht) distribution in the space
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3.5 Conclusion

This chapter presents the analysis of wave propagation and local field solutions in

multi-core wire systems in the cross-sectional plane. A numerical method is used to

find appropriate propagation constants of waves in the presence of multiple wires

with and without dielectric coatings. It is found that when the medium is homo-

geneous, the longitudinal propagation constant β is same as the total wave number

k0. This is referred to the Transverse Electromagnetic (TEM) mode of propaga-

tion. When more than two conductors presented, different modes of transverse field

distribution is based on same value of β.

In the situation of inhomogeneous surrounding medium, β is found slightly shift

from k0. This shift is usually small and the wave propagating in such system follows

quasi-TEM mode. When more than two conductors presented in the space, different

values of β that correspond to different modes of field solutions for transverse field

components are explicitly defined.
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4
Transmission Line Modelling (TLM) Method

This chapter introduces the working principles of the time-domain nu-

merical modelling method, the Transmission Line Modelling (TLM) method.

The TLM method and its derivative, the UTLM method is of important

role in current Electromagnetic Compatibility (EMC) simulation. It is

necessary to understand the operation principle before developing suit-

able thin-wire models to be embedded into the network. A more sys-

tematic description of the theory can be found in [4.1,4.2]. In addition

the theory of two-dimensional unstructured TLM (UTLM) is introduced

based on [4.2–4.4].

***
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4.1 Introduction to TLM

The history and background of the Transmission Line Modelling method have been

introduced in chapter (1). This chapter introduces fundamental theories of TLM

from One-dimensional space to Three-dimensional space, and further more, presents

theories of UTLM in unstructured meshing environment.

It is worth briefly discussing the analogy between transmission line network and

electromagnetic fields before introducing detailed theory of TLM. A simple one-

dimensional transmission line circuit is shown in Fig.4.1. The time dependent volt-

age v and current i along horizontal propagation direction in a transmission line

network follows Kirchhoff’s voltage (KVL) and current (KCL) laws [4.1]:

−∂v
∂x

∆x = L
∂i

∂t
, (4.1)

− ∂i
∂x

∆x = C
∂v

∂t
+
v

R
, (4.2)

Figure 4.1 Transmission Line Network

Equations (4.1) and (4.2) can then be manipulated to one variable form:

∂2i

∂x2
=

LC

(∆x)2

∂2i

∂t2
+

L

(∆x)2R

∂i

∂t
(4.3)

Similar equation form can be found in one-dimensional electromagnetic field prob-
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lem, for example the current density j in a lossy medium:

∂2j

∂x2
= µε

∂2j

∂t2
+ µσ

∂j

∂t
(4.4)

Where µ, ε and σ represent the magnetic permeability, electric permittivity and

electrical conductivity of the medium respectively. Similar results can also be found

for field components in three-dimensional models. This implies the similarity of

laws governing circuit behaviour and field behaviour. Therefore electromagnetic

field problems can be understood by studying proper models of transmission line

circuits.
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4.2 One-Dimensional TLM

A one-dimensional TLM network can be treated as a cascade of transmission line

segments where voltage and current only vary in one coordinate. A simple lossy

electric circuit segment can be seen in Fig.4.2(a), where R, G, L and C are the

per-segment length parameters that represent series resistance, shunt admittance,

series inductance and shunt capacitance respectively. The model can be transferred

to a transmission line equivalent with a characteristic impedance Zo =
√
L/C

representing the series inductance and shunt capacitance as shown in Fig.4.2(b).

A 1-D TLM network consists of several such segments with nodes connecting each

R L

C G

R

G

(a) (b)

Zo

Figure 4.2 (a)Basic electric circuit segment, (b)its transmission line model

other, as depicted in Fig. 4.3. kV L
i
n, kV L

r
n, kV R

i
n, kV R

r
n are voltage pulses incident

to and reflected from node n at time-step k, where i stands for incident pulses and

r represents reflected pulses. In this example it is assumed that the space-step ∆x

for each segment is same through the problem for simplicity. It is also assumed that

parameters for each segment are same, therefore the transit time for each segment

∆t =
√
LC is same. The Thevenin equivalent circuit in Fig. 4.4 shows the condition

Figure 4.3 One-dimensional TLM model
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Figure 4.4 Thevenin equivalent circuit for an arbitrary node in TLM model

for node n connecting two sections at times-step k. It can be seen clearly that the

total voltage at node n at time-step k is a result of voltage pulses incident from left

and right sections. According to Millman’s Theorem [4.1]:

kVn =
2kV L

i

Zo
+ 2kV R

i

Zo+R
1
Zo

+ 1
Zo+R

+G
(4.5)

Therefore the current at the node as well as the total voltage on the left of the node

and on the right are obtained through equations:

kIn =
kVn − 2kV R

i
n

R + Zo
(4.6)

kV Ln = kVn (4.7)

kV Rn = 2kV R
i
n +kInZo (4.8)

The total voltages on the left and right of the node is the sum of incident voltages

to the node and reflected voltages from the node. Therefore voltage pulses reflected

into line segments on both sides of the node are:

kV L
r
n = kV Ln −kV L

i
n (4.9)

kV R
r
n = kV Rn −kV R

i
n (4.10)
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Figure 4.5 Thevenin equivalent circuit for (a) source node, (b) load node in TLM model

The new incident voltage at time-step k+1 to the node is the same value of reflected

voltage from adjacent nodes at time-step k :

k+1V L
i
n = kV R

r
n−1 (4.11)

k+1V R
i
n = kV L

r
n+1 (4.12)

Equations above need to be modified for the first node and last node, because they

connect to source and load. For the source node, the Thevenin equivalent circuit is

shown in Fig.4.5(a). Therefore the total voltage at first node is a result of source

voltage and incident voltage from right side of first node:

kV1 =
Vs
Rs

+
2 kV R

i
1

R+Zo

1
Rs

+ 1
R+Zo

(4.13)

Therefore other pulses can be got as:

kI1 =
kV1 − 2 kV R

i
1

R + Zo
(4.14)

kV R1 = 2 kV R
i
1 + kI1 Zo (4.15)

kV R
r
1 = kV R1 − kV R

i
1 (4.16)

(4.17)

56



Chapter 4. Transmission Line Modelling (TLM) Method

And the incident voltage from right side of node 1 at time-step k+1 is same as the

reflected voltage from node 2 at time-step k :

k+1V R
i
1 = kV L

r
2 (4.18)

For the load node, the Thevenin equivalent circuit is shown in Fig.4.5(b). The load

inductance is replaced by a load impedance ZL = 2Lo/∆t where ∆t is the round

trip transit time at the load. The total voltage across load is therefore:

kVL =

2 kV L
i
L

Zo
+

2 kV R
i
L

RL+ZL

1
Zo

+ 1
RZ+ZL

+G
(4.19)

Therefore the load current and other voltages are:

kIL =
kVL − 2 kV R

i
L

RL + ZL
(4.20)

kV RL = 2 kV R
i
L + kIL ZL (4.21)

kV R
r
L = kV RL − kV R

i
L (4.22)

k+1V R
i
L = − kV R

r
L (4.23)

kV L
r
L = kVL − kV L

i
L (4.24)
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4.3 Two-Dimensional TLM

The 2D TLM is understood by analogy to Huygens theorem [4.1], which states that

the wave of a point on a wavefront propagates as an isotropic spherical radiator.

Therefore the new wavefront is created by the superposition of waves from all the

points on the previous wave, just like a little stone dropping to the surface of a calm

lake and causing the propagation of ripples.

There are basically two configurations in 2D TLM models representing the trans-

verse electric(TE) modes that contain Hz components only and the transverse mag-

netic(TM) modes that contain Ez components only, named as ”series” and ”shunt”

nodes respectively. The details of these two models will be discussed in following

sections.

4.3.1 Series TLM node

The series node models transverse electric (TE) mode fields in a 2D TLM problem,

hence only Ex, Ey, and Hz components exist in the model. Maxwell’s equations

therefore become:

∂Hz

∂y
= ε

∂Ex
∂t

(4.25)

−∂Hz

∂x
= ε

∂Ey
∂t

(4.26)

∂Ey
∂x
− ∂Ex

∂y
= −µ∂Hx

∂t
(4.27)

These equations can be manipulated to the wave equation with Hz components

only:

∂2Hz

∂x2
+
∂2Hz

∂y2
= µε

∂2Hz

∂t2
(4.28)

The structure of a series node can be modelled by four transmission line segments

with same characteristic impedance ZTL connected in series, as shown in Fig. 4.6.
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The meshing cell is assumed to be square, with both ∆x and ∆y equal to ∆l.

Figure 4.6 Structure of the series node for 2D-TLM model

The Thevenin Equivalent circuit of the series node at time-step k can be obtained by

replacing the transmission line segments by its Thevenin equivalent, which contains

a voltage source 2kV
i and an impedance ZTL, as shown in Fig. 4.7.

Figure 4.7 Thevenin equivalent circuit of the series node

From Fig. 4.7, the current in the circuit can be obtained by:

kI =
2 kV

i
1 + 2 kV

i
4 − 2 kV

i
2 − 2 kV

i
3

4ZTL
(4.29)

The electric and magnetic field components can be obtained from the voltages and
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current:

kEx = −kV
i

1 + kV
i

3

∆l
(4.30)

kEy = −kV
i

2 + kV
i

4

∆l
(4.31)

kHz =
2 kV

i
1 + 2 kV

i
4 − 2 kV

i
2 − 2 kV

i
3

4∆lZTL
(4.32)

Similar to the last section for 1D TLM, the reflected voltages can be obtained by

subtracting the incident voltage from the total voltage on the port:

kV
r
n = kVn − kV

i
n = 2 kV

i
n − kIZTL − kV

i
n = kV

i
n − kIZTL (4.33)

Therefore the reflected voltages on at all ports of one node can be expressed as an

incident voltage vector kV
i times a scattering matrix S:

kV
r = S kV

i (4.34)

where

kV
r = [ kV

r
1 kV

r
2 kV

r
3 kV

r
4 ]T (4.35)

kV
i = [ kV

i
1 kV

i
2 kV

i
3 kV

i
4 ]T (4.36)

S = 0.5



1 1 1 -1

1 1 -1 1

1 -1 1 1

-1 1 1 1


(4.37)

The incident voltages on the ports for next time-step are obtained by the reflected

voltages from adjacent nodes, same as in the 1D TLM model.
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4.3.2 Shunt TLM Node

The modelling procedure for shunt TLM node is similar to for series node, with TE

modes field becoming TM modes (Hx, Hy and Ez). This results in the Maxwell’s

equations reduced to:

∂Ez
∂y

= −µ∂Hx

∂t
(4.38)

−∂Ez
∂x

= −µ∂Hy

∂t
(4.39)

∂Hy

∂x
− ∂Hx

∂y
= ε

∂Ez
∂t

(4.40)

The wave equation for TM modes propagation can therefore be obtained by manip-

ulating these equations as:

∂2Ez
∂x2

+
∂2Ez
∂y2

= µε
∂2Ez
∂t2

(4.41)

Figure 4.8 Structure of the shunt node for 2D-TLM model

The Thevenin equivalent circuit for the shunt node is shown in Fig. 4.9.
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Vz

ZTL ZTL ZTL ZTL

2V1
i 2V2

i 2V3
i 2V4

i+ + + +

Figure 4.9 Thevenin equivalent circuit of the shunt node in for 2-D TLM

From Fig. the voltage at the node is given by:

Vz = 0.5(V i
1 + V i

2 + V i
3 + V i

4 ) (4.42)

And the current components are:

Ix =
V i

2 − V i
4

ZTL
(4.43)

Iy =
V i

1 − V i
3

ZTL
(4.44)

The field components are therefore obtained from the equivalence between field and

circuit:

Ez = −0.5
V i

1 + V i
2 + V i

3 + V i
4

∆z
(4.45)

Hy =
V i

2 − V i
4

ZTL∆y
(4.46)

Hx =
V i

3 − V i
1

ZTL∆x
(4.47)

The reflected voltages can be obtained by subtracting the incident voltages on the

port from the total voltage Vz:

kV
r
n = Vz − kV

i
n (4.48)
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Therefore the scattering matrix S becomes:

S = 0.5



-1 1 1 1

1 -1 1 1

1 1 -1 1

1 1 1 -1


The connection process for next time-step operates same as for the 1-D TLM.

4.4 Three-Dimensional TLM

The three-dimensional TLM is based upon the symmetrical condensed node(SCN)

[4.1,4.2,4.5]. The structure of a SCN model is shown in Fig. 4.10. The 3-D node

consists of six faces, each containing two ports that correspond to two set of incident

voltages of orthogonal polarisations respectively.

Figure 4.10 Structure of the 3D Symmetrical Condensed Node (SCN) model
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The scattering matrix that relates the reflected voltage to incident voltage kV
r =

S kV
i now becomes:

S = 0.5



0 1 1 0 0 0 0 0 1 0 -1 0

1 0 0 0 0 1 0 0 0 -1 0 1

1 0 0 1 0 0 0 1 0 0 0 -1

0 0 1 0 1 0 -1 0 0 0 1 0

0 0 0 1 0 1 0 -1 0 1 0 0

0 1 0 0 1 0 1 0 -1 0 0 0

0 0 0 -1 0 1 0 1 0 1 0 0

0 0 1 0 -1 0 1 0 0 0 1 0

1 0 0 0 0 -1 0 0 0 1 0 1

0 -1 0 0 1 0 1 0 1 0 0 0

-1 0 0 1 0 0 0 1 0 0 0 1

0 1 -1 0 0 0 0 0 1 0 1 0



The connection process is processed by directing reflected voltages toward adjacent

port of the adjacent node as the incident voltage for the next time step.
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4.5 Two-Dimensional Unstructured TLM

The demand for unstructured meshes in TLM simulation arises dramatically when

describing curved boundaries and material interfaces due to the apparent staircase

phenomenon caused by using Cartesian meshing [4.3]. The meshing method is based

upon the triangular mesh used regularly in the finite-element method (FEM) with

the requirement of satisfying Delaunay criteria [4.6]. The theory of two-dimensional

(2D) unstructured TLM (UTLM) is based on local field solutions of wave equa-

tions.

An arbitrary 2D UTLM node consisting of three ports is shown in Fig. 4.3. The

ports connect to adjacent nodes with a distance ∆i between two node centres. φi

denotes the angle between two ports. By inspection the fields around the node can

be described by a set of cylindrical harmonics, which are solutions of the 2D wave-

equation, centred on the node centre. For the triangular mesh of sufficiently small

size, it is suggested that first three order harmonics are accurate to represent the

solution [4.3]:

Ez = J0(kr)Xc0 + cos(θ)J1(kr)
2Xc1

k
+ sin(θ)J1(kr)

2Xs1

k
(4.49)

−jωµoHθ =
∂Ez
∂r

(4.50)

Figure 4.11 2D UTLM node structure
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Where k is the wave number in the medium and k = 2π/λ where λ is the wavelength

in the medium. Xs are the coefficients of the three terms that sample the tangential

fields at the ports. The Ez and Hθ fields can therefore be expressed in matrix form

with respect to the nodal ports:

E = T
e
X (4.51)

jωµ0∆DHθ = T
h
X (4.52)

Where ∆D = diag{∆1 ∆2 ∆0}. When the node size is considerably small, typ-

ically less than one tenth of the wavelength, the small argument approximation of

the Bessel function can be applied [4.3]:

J0(kr)|kr<<1 = 1 (4.53)

J1(kr)|kr<<1 =
kr

2
(4.54)

∂J0(kr)

∂r
|kr<<1 =

k2r

2
(4.55)

∂J1(kr)

∂r
|kr<<1 =

k

2
(4.56)

Therefore T
e
andT˙h in equations (4.51) and (4.52) can be expressed as:

T
e

=


1 ∆1 0

1 ∆2cos(φ0) ∆2sin(φ0)

1 ∆0cos(φ0 + φ1) ∆0sin(φ0 + φ1)

 (4.57)

T
h

=


−k2∆2

1/2 ∆1 0

−k2∆2
2/2 ∆2cos(φ0) ∆2sin(φ0)

−k2∆2
0/2 ∆0cos(φ0 + φ1) ∆0sin(φ0 + φ1)

 (4.58)

The expressions for Ez and Hφ indicates an admittance relationship between them
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in the matrix form:

jωµo∆
D


Hθ1

Hθ2

Hθ0

 = T
h
T−
e

1


Ez1

Ez2

Ez0

 (4.59)

A detailed expression of equation (4.59) can be derived by substituting the inversion

of equation (4.57) and (4.58) [4.2,4.3]:

(4.60)


Hθ1

Hθ2

Hθ0

 =
jωεo

2


∆2∆0∆1s1 ∆0∆1∆1s2 ∆2∆1∆1s0

∆2∆0∆2s1 ∆0∆1∆2s2 ∆2∆1∆2s0

∆2∆0∆0s1 ∆0∆1∆0s2 ∆2∆1∆0s0


∆2∆0s1 + ∆1∆0s2 + ∆2∆1s0


Ez1

Ez2

Ez0



+
1

jωµo


∆0s2 + ∆2s0 −∆0s2 −∆2s0

−∆0s1 ∆0s1 + ∆1s0 −∆1s0

−∆2s1 −∆1s2 ∆1s2 + ∆2s1


∆2∆0s1 + ∆1∆0s2 + ∆2∆1s0


Ez1

Ez2

Ez0



Where si is short for sin(φi). The port voltages are related to the electric field while

the currents are related to the magnetic field scaled by as yet arbitrary factor αsi

for each port:


Ez1

Ez2

Ez0

 =


V1

V2

V0



αs1 0 0

0 αs2 0

0 0 αs0



Hθ1

Hθ2

Hθ0

 =


I1

I2

I0

 (4.61)

Therefore the admittance relationship between voltages and currents can be directly
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obtained:

(4.62)I =
jωεoα

2


∆2∆0∆1s1s1 ∆0∆1∆1s2s1 ∆2∆1∆1s0s1

∆2∆0∆2s1s2 ∆0∆1∆2s2s2 ∆2∆1∆2s0s2

∆2∆0∆0s1s0 ∆0∆1∆0s2s0 ∆2∆1∆0s0s0


∆2∆0s1 + ∆1∆0s2 + ∆2∆1s0

V

+
α

jωµo


∆0s2s1 + ∆2s0s1 −∆0s2s1 −∆2s0s1

−∆0s1s2 ∆0s2s1 + ∆1s0s2 −∆1s0s2

−∆2s1s2 −∆1s2s0 ∆1s2s0 + ∆2s1s0


∆2∆0s1 + ∆1∆0s2 + ∆2∆1s0

V

It can be inspected that the first term in (4.62) contributes to the capacitive part

of the admittance and the second to the inductive part. By assuming low frequency

the first matrix in equation (4.62 ) can be simplified to a diagonal matrix form:


∆1s1 0 0

0 ∆2s2 0

0 0 ∆0s0

 (4.63)

Consequently both capacitive and inductive terms of the admittance are reciprocal

hence the electrical circuit is able to generate. Fig. 4.12 shows the equivalent circuit

of a UTLM shut node model relating the port voltages and currents as well as its

TLM model. The inductive stubs provide complete link-line impedance needed for

the circuit while the open-circuit capacitive stubs ensure the synchronization of pulse

propagation in the whole mesh space. The inductor and capacitor values for each

port are obtained from:

Li =
µo∆i

αsi
(4.64)

Ci =
αεosi∆i

2
(4.65)
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(a) (b)

Figure 4.12 (a)The equivalent circuit of a 2D UTLM mesh and (b) transmission line circuit

The transmission line component values in (4.64) and (4.65) has not yet been explic-

itly defined, due to the arbitrary choice of the node centre. Although the voltages

and currents at the port between two nodes are already continuous due to its nature

and the continuity of the voltages implies the continuity of the electric fields from

(4.61), the continuity of the currents does not guarantee that the magnetic field to

be continuous automatically due to the undefined scalar factor αsi.

This can be achieved by choosing appropriate value of α and the node centre. In this

case the node centre is chosen as the circumcentre of the triangle. From triangle

characteristics the edge length li opposite the angle φi can be obtained by li =

2R sinφi where R is the circumradius. Therefore the value of α can be chosen as

2R for each node so that αsi = li hence Ii = liHi. As a result the continuity of the

currents between adjacent nodes that share the same side li ensures the continuity

of the magnetic fields.

The admittance of the link line and the stub line in Fig. 4.12 (b) are obtained in

time domain by:

Ylinki =
la∆t

2µ∆i

(4.66)

Ystubi =
εli∆i

∆t

− li∆t

2µ∆i

(4.67)
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Ystub3(b)

a
b c
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Figure 4.13 2-D UTLM network of 3 nodes

where ∆t refers to the time step and is constrained by the minimum link length in

the mesh.

Fig. 4.13 shows the network of three 2-D UTLM nodes connected together. The

reflected voltages at time step k of node b are calculated separately for the link line

and the stub line:

kV
r
linkn = kVb −k V i

linkn (4.68)

kV
r
stubn = kV

i
stubn (4.69)

where

kVb =
2
∑3

n=1 kV
i
linkn

Ylinkn∑3
n=1 Ylinkn

The total voltage at the connection between node a port 3 and node b port 2 is:

kVa,b =
2
[
kV

r
link3

(a)Ylink3(a) + kV
r
stub3

(a)Ystub3(a) + kV
r
link2

(b)Ylink2(b) + kV
r
stub2

(b)Ystub2(b)
]

Ylink3(a) + Ystub3(a) + Ylink2(b) + Ystub2(b)

(4.70)

Therefore the incident voltages for the next time steps are:

k+1V
i
link3

(a) = kVa,b − kV
r
link2

(b) (4.71)

k+1V
i
stub3

(a) = kVa,b − kV
r
stub2

(b) (4.72)
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4.6 Three-Dimensional UTLM

This section extends the theory of two-dimenstional UTLM to three dimensions.

Tetrahedral meshes are used to discretise the simulation space. Fig. 4.14 shows an

arbitrary tetrahedral mesh as a UTLM node with four port notation. The distance

from the node centre to the ith port surface is denoted as ∆i and the unit directional

vector is denoted as n̂. The node centre is defined as the circumcentre of a tetrahedral

mesh, and the reason will be described subsequently.

The basic algorithm of this approach is to map the impedance relationship of sam-

pled tangential electric and magnetic fields at the ports to an analogous voltage

and current relationship in a passive electrical circuit model. This analogue only

holds when the impedance relationship is reciprocal and the continuity of electric

and magnetic field at the ports between adjacent nodes is guaranteed.

Figure 4.14 Arbitrary four-port UTLM node

In order to develop such relationship, the local field solutions in the form of spherical

harmonics centred upon the node is used to express the tangential electric and

magnetic fields at ith port:

Ei = (I − n̂in̂i) ·
∑
n

enXn (4.73)

n̂i ×Hi = (I − n̂in̂i) ·
∑
n

hnXn (4.74)
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where en and hn are the nth term in the spherical expansions [4.4]. I is the identity

dyadic and hence I−n̂in̂i enforces tangential field components at the ith port.

In practical, the spherical harmonics in expression en and hn can be truncated to

eight independent terms that correspond to eight field components at four ports of

the node and keep sufficient accuracy [4.4]. The three sets of first-order transverse

magnetic (TM) fields with superscript (e) and transverse electric (TE) fields with

superscript (h) at port i (∆in̂i) are expressed by:

e
(e)
mi = 2um (4.75)

h
(e)
mi = jY0k∆ium (4.76)

e
(h)
mi = −k∆in̂i × um (4.77)

h
(h)
mi = 2jY0n̂i × um (4.78)

where um being mth term independent vectors, k being the wave number at the

specific frequency and Y0 being the admittance.

The other two terms, chosen as a superposition of second-order expansion terms,

with superscript (q) at ports i are expressed by:

e
(q)
mi = −k2∆2

i (n̂i · um) n̂i × um (4.79)

h
(q)
mi = 2jY0k∆i (n̂i · um) n̂i × um (4.80)

These expressions above are sufficiently accurate if sets of em and hn are orthogonal,
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as expressed below:

〈
e(e)
m ,hhn

〉
= 4jY0

3∑
i=0

Sium · (I − n̂in̂i) · n̂i × un

= 4jY0un × um ·
3∑
i=0

Sin̂i

= 0

(4.81)

〈
e(e)
m ,hen

〉
= 2jY0k

3∑
i=0

Si∆ium · (I − n̂in̂i) · un

= 2jY0kλnδmn

(4.82)

〈
e(e)
m ,hqn

〉
= 4jY0

3∑
i=0

Sium · (I − n̂in̂i) ·∆j (n̂i · un) n̂i × un

= 4jY0k ·
3∑
i=0

Sin̂i∆iun · n̂jun × um

= 0

(4.83)

These are true as the node centre is chosen as the circumcentre of the tetrahedral

mesh, which makes
∑3

i=0 Sin̂i = 0 when Si is the area of ith port surface. In

addition, the vector terms un is chosen as eigensolutions of

3∑
i=0

Si∆i · (I − n̂in̂i) · un = λnZ0

∑
Yi (I − n̂in̂i) · un (4.84)

Combining equations (4.75 - 4.80 ) gives the reciprocal impedance relationship:

Ei =
3∑
j=0

(
jωµ∆i

2Si
δij +

2∑
m=0

(
2

jωε
− jωµ∆2

i

2

)
(I − n̂in̂i)

· umλ−1
m um · (I − n̂jn̂j)

)
· (Sjn̂j ×Hj) (4.85)
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An equivalent relationship between voltage and current can therefore be derived:

Vi =
3∑
j=0

(
jωµ∆i

2Si
δij +

2∑
m=0

(I − n̂in̂i) ·
2umum
jωελm

· (I − n̂jn̂j)

)
· Ij (4.86)

Equation (4.86) can be implemented into an equivalent circuit consisting of four

ports as shown in Fig. 4.15. The incident electric and magnetic field at each port

of a UTLM node is mimicked by the incident voltage (Vi) and current (Ii) at each

port of the circuit. The inductor (Li = µ∆i

2Si
) mimics the inductive response of fields

and the shunt capacitor (Cm = ελm
2

) mimics the capacitive response of fields in the

node respectively. The transformer in the circuit relates stub voltages to incident

voltages on the link lines and is defined as:

Vim = (I − n̂in̂i) · umVm (4.87)

Iim = um · (I − n̂in̂i) · Ii (4.88)

where m=0, 1, 2.

C
mVim

Vi

Port i
Li

Vm

IimIi

Port Port

Port

Figure 4.15 Equivalent circuit for the 3-D UTLM node [4.4]

Equation (4.86) is rearranged to the form of incident and reflected voltages on the
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link lines:

3∑
j=0

(
δij − jωLjYjδij −

2∑
m=0

Yj(I − n̂in̂i) ·
umum
jωCm

· (I − n̂jn̂j)

)
· V i

j

= −
3∑
j=0

(
δij + jωLjYjδij +

2∑
m=0

Yj(I − n̂in̂i) ·
umum
jωCm

· (I − n̂jn̂j)

)
· V r

j (4.89)

This equation can be decoupled to two equations that related to the scattering for

the inductive link line and capacitive stube respectively:

{L} (I − jωLiYj)V i
j = −(I + jωLjYj)V

r
j (4.90)

{C}
3∑
j=0

(
δij −

2∑
m=0

Yj(I − n̂in̂i) ·
umum
jωCm

· (I − n̂jn̂j)

)
· V i

j

= −
3∑
j=0

(
δij +

2∑
m=0

Yj(I − n̂in̂i) ·
umum
jωCm

· (I − n̂jn̂j)

)
· V r

j (4.91)

Finally the scattering operation can be summarised for the ith port link line and

mth stub:

V r
il = −V i

i +
2∑

m=0

(I − n̂in̂i) · um(V r
m + V i

m) (4.92)

V r
ms = (1 +Rm)V i

m −RmV
i
ms (4.93)

where:

V i
m = Z0

3∑
j=0

um · (I − n̂in̂i) · YjV ij (4.94)

V r
m = RmV

i
m + (1−Rm)V i

ms (4.95)

1−Rm

1 +Rm

=
2Z0Cm −∆t

∆t

(4.96)

The choice of the time step ∆t must not exceed the minimum time delay in the

capacitive stub (Z0Cm).

75



Chapter 4. Transmission Line Modelling (TLM) Method

4.7 Conclusion

This chapter presents the basic theory of the Transmission Line Modelling (TLM)

method and its implementation in conventional structured meshes and newly de-

veloped unstructred meshes. The governing of wave propagation in electromagnetic

problems is mimicked by inductive and capavitive responses of voltage and currents

in transmission line networks. The field experiences scattering process in the node

and connecting process between neighbouring nodes to ensure field continuity. This

is easily done in structured TLM by circuit analysis at each node as each port has

same impedance. In unstructured TLM specific impedance relationship between

electric and magnetic fields for each port of the node is established based on node

dimensions to ensure continuous field propagation at each port. Finally the UTLM

method will be applied to numerous wiring models in the subsequent chapters to

evaluate its capability and accuracy.
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5
Canonical problems simulation

This chapter uses the UTLM method to model wave propagation and

coupling along single wires, a T-junction model and a crossed-junction

model. The accuracy of the direct meshing is achieved by introducing

mesh refinement around the wire. Different meshing parameters and ge-

ometry descriptions are investigated in order to obtain result convergence

and computational efficiency.

***

5.1 Introduction

This chapter investigates some canonical wire problems using the Unstructured

Transmission Line Modelling (UTLM) method introduced in chapter (4). A canoni-

cal single wire model is first tested in two different excitation ways. One is to expose

the wire to a plane-wave excitation; the resonant frequency of the induced current is

investigated using different mesh strategies and geometrical descriptions in order to

investigate the influence of simulation parameters on convergence. The influence of

different radii is then investigated based upon simulation parameters obtained. The

other set-up is to impose a modal excitation at the end of the wire and to investigate
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wave propagation along the wire section by means of S-parameters.

In terms of the meshing strategies used in this chapter tetrahedral meshes of good

quality, which is controlled by the parameter quality factor (Q) in the meshing stage,

but coarse sizes are first generated and then refined by cubic or tetrahedral meshes

of size λ/10n where n increases from 1 until convergence and λ corresponds to the

wavelength of interest. Then a local mesh refinement technique is employed around

the wire, in order to eliminate the impact of dramatic mesh change in the near

field region. The local mesh refinement is controlled by a cylindrical region that

surrounds the wire with a target volume in the region; this will explained more in

subsequent sections. Once these parameters are decided, the number of segments

that describes the cross section of the wire itself is investigated.

This chapter also explores the ability of the UTLM method to build and model

canonical junction models. The first junction studied is a T-junction model that

consists of three conductors with the third conductor extruded from a single-wire

model. The second junction studied is formed by extruding another conductor at

the other side of the wire hence forming a crossed-junction model. The behaviour

of these junctions is investigated by evaluating the wave propagation through the

section using the meshing parameters and geometrical descriptions suggested by the

single wire model.
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5.2 Single Wire Model excited by a Plane Wave

This section focuses on investigating a short single wire model illuminated by a plane

wave. Different meshing methods are first explored in order to evaluate the influence

on convergence and efficiency. The geometrical description, specifically the number

of segments that discretises the wire cross section, is then investigated. Finally the

single wire model is investigated with different wire radii.

5.2.1 Problem definition

The geometry used for the simulation of the single wire is built as follows. A

straight wire is placed in free space as shown in Fig.5.1. The wire has a length

l = 0.5 m, with radius a normalised to the wavelength λ at 300 MHz. The shape

of the wire is constructed as an M-sided polygonal tube. A larger value of M gives

a better description of the circular cross section of the wire. The distance of the

computational space boundary to the wire is defined as D.

(a) (b)

l a

D

z

y
x

kx

Ez

Plane wave

Figure 5.1 Single wire model set-up a) in the computational space and b) the representation

of the cross-section as an M-sided polygon

A plane wave with a frequency bandwidth 100 MHz to 500 MHz is activated at the

broad side of the wire with the field polarisation in the direction of +z, as shown in

the inset to Fig.5.1. Both ends of the wire are open-circuited; therefore the current

evaluated, as an integration of magnetic fields surrounding wire surface, is evaluated
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at the middle of the wire where the peak value is obtained.

5.2.2 Global mesh evaluation

A convergence test with mesh size is first performed for a wire with length l = 0.5m

and radius r = 1mm. The wire cross section is constructed using a 30-segmented

polygon to provide visibly smooth circular configuration. The length corresponds to

an analytic first resonant frequency at 300MHz of a half wave dipole antenna. The

wire is placed in an empty space whose boundary is placed 0.5m away from the wire

in all dimensions in order to provide an adequate simulation space.

The model is first coarsely meshed with good quality (quality of tetrahedral cells

and triangular surfaces set less than or equal to 2 in the UTLM mesher) tetrahedral

elements as shown in Fig. 5.2. It can be seen that without any size constraints in the

(a) (b)

Figure 5.2 Single wire model mesh plot with a) Coarsely sized tetrahedral mesh plot of the

single-wire model with well shaped elements and b)mesh details of the wire surface

free space, meshes in the free space and around the wire are on two different scales.

The mesh statistics show that the volume of the majority of the meshes in the empty

space is larger than 10−3m3. In contrast, the region near the wire model is meshed

with tetrahedra whose volume is below 10−8m3 in order to describe accurately the

wire cross-section.

Fig. 5.3 shows the simulation result for the coarsely sized mesh model. It illustrates

the general behaviour of the induced current at the middle section of the wire up

81



Chapter 5. Canonical problems simulation

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Frequency / GHz

-200

-190

-180

-170

-160

-150

-140

-130

-120

Figure 5.3 Frequency response of the normalised current on the single-wire model with

coarse mesh

to 400MHz and the resonant frequency at 240MHz. However it also shows unstable

behaviour after 400 MHz and the resonant frequency is far away from the expected

300 MHz. This may be explained by two aspects. Firstly the mesh in the empty

space is too large to accurately capture the frequency response at higher frequencies.

Secondly there is a dramatic difference in mesh sizes between the free space and the

region around the wire.

The meshing method above is now modified by inserting in the free space uniform

cubic cells with a mesh size λ/N , where N is a multiple of 10. Fig.5.4a shows

the meshed model with cubic meshes of size λ/10, which is usually the rule-of-

thumb choice for accurate TLM simulation, inserted in the free space and Fig.5.4b

shows details around the wire surface. Compared to Fig.5.2, it can be seen that

the free space region is refined with uniform cubic meshes of the demanded size

while the centre region remains unaffected. One advantage of this approach is to

ensure that the size of each mesh in the whole problem satisfies the maximum mesh

size guidance of one tenth minimum wavelength of interest for the transmission line

modelling (TLM) method [5.2,5.3].

Fig.5.5 shows the frequency response of the wire for different values of N , i.e. for

different discretisation lengths as a fraction of λ applied in the empty space. A
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(a) (b)

Figure 5.4 Single wire model mesh plot with a) cubic cells of size λ/10 inserted in the

background and b)mesh details on the wire surface

Figure 5.5 Frequency response of the induced current on the single wire model with different

mesh sizes

more stable higher frequency response is observed once the finer sized cubic meshes

are inserted in the free space region. The figure also shows the improvement of

the result as the resonant frequency shifts with decreasing mesh sizes from λ/10

to λ/100. The frequency at resonance as a function of the fraction number N , as

plotted in Fig.5.6, indicates numerical convergence as N is increased. The result

does not not converge to the expected 300 MHz due to two reasons. First, the

open-circuit set-up causes unavoidable edge effects at the end of the wire and these

result in a resonant frequency shift. Secondly, with the minimum mesh size used,

λ/100, corresponding to a 0.01 m length of the cubic cell at 300 MHz, there are still

big differences of meshes sizes between the free space region and around the wire.
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Figure 5.6 Resonant frequency of the single wire model as a function of fraction number N

of the meshing size

Figure 5.7 Computational expense of the single wire model as a function of fraction number

N of the meshing size

It is however difficult to further refine the meshes in the whole problem if the simula-

tion efficiency is taken into consideration. Fig.5.7 plots the total number of meshes,

the memory occupied and the total simulation time taken for a two-million-step

simulation versus value of N that corresponds to λ/10N mesh sizes; all plots are

normalised with respect to the coarse mesh case. It is impressive that the λ/10 re-

fined mesh shows approximately similar amount of meshes, memory occupation and

time cost to the coarse mesh case with significant simulation accuracy improvement.

These computational resource factors increase gradually for the first three cases but

the rate of increase with N soon gets faster for N > 50. The number of meshes

curve sees most significant increase and its ratio reaches 40 for a λ/100 mesh. Both

the memory occupation and time cost are found to be around 10 times bigger at

N = 100. These computational requirements would be greater if larger simulation

space were applied because the number of global meshes increases as the volume

of the computational space increases. It is usually the case to use large simulation
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spaces when modelling practical large electrical systems such as air-planes and cars.

It is therefore suggested to apply a mesh size λ/20 or λ/30 as they are fine enough

to capture the first order accuracy while keeping simulation efficiency.

5.2.3 Localised mesh refinement evaluation

It is noticed from simulations above that a significant difference in mesh sizes be-

tween the wire region and the free space may affect the result convergence due to

the dispersion error. Although refining the whole model is impractical because of

the huge computational cost, the 3D-UTLM is able to provide an alternative, which

is to refine only the desired region with specific volume constraints as described in

(signpost). This region acts as a buffer area that refines meshes in the region and

smooths the huge different in sizes between meshes around the wire surface and in

the free space. In order to apply this method to a single-wire model, a cylindrical

region centred on the wire centre with an expanding radius R is defined as shown in

Fig. A minimum volume size v is applied in the region, with meshes near the centre

more refined and near the boundary less refined.

R
wire

Figure 5.8 Localised mesh refinement region defined as a cylinder centred on the wire wire

centre

Fig.5.9 shows the cross-sectional view of the meshed model for decreasing volume

target from a) a normal mesh of size λ/20 without localised refinement to b) v =

10−7m3, c) v = 10−−8m3 and d) v = 10−9m3 in the region R = 0.02 m while keeping

the mesh size outside the region λ/20. These figures indicate a good structured cubic

mesh of relatively large size in the outer space in yellow and small unstructured

elements in the inner space in blue. Comparing Fig.5.9 a) and b), there is little

difference visible between a non-local refined model with λ/20 mesh and a local
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refined mesh model with volume constraints v = 10−7m3. There is improvement

a) b)

c) d)

Figure 5.9 Mesh cross-sectional plot for a) normal mesh of size λ/20; b)localised mesh

refinement in R = 0.02 m, v = 10−7 m3; c) R = 0.02 m, v = 10−8 m3; d) R = 0.02 m,

v = 10−9 m3

found when a finer volume size restriction is used as shown in Fig.5.9 c) and d). As

the inner region gets descretised more finely it shows more a more even mesh size

distribution and smoother connection to the outer region. This can be observed more

clearly from the mesh statistics chart shown in Fig.5.10. It illustrates a significant

increase in the number of meshes with a volume between 4.55× 10−10m3 and 1.22×

10−8m3, especially for the model in Fig.5.9 d) with v = 10−9m3.

The simulation result shown in Fig.5.11 indicates the resonance shift with decreasing
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Figure 5.10 Mesh stats for different volume constraints in Fig.5.9

volume constraints in the local refinement region. For the first two cases with v =

10−6m3 and v = 10−7m3, the frequency response shows indistinguishable difference

from the the case without local mesh refinement. The frequency at resonance is

shown increased from about 250 MHz for non-local model to 260 MHz for v =

10−8m3 and 270 MHz for v = 10−9m3, in a region of size R = 0.02 m. The normalised

computational expenses with respect to different v is also shown in Fig.5.12, which

illustrates comparable results to the mesh statistics and simulation results. It seems

that although with 10−9m3 minimum volume constraints higher resonant frequency

is obtained, dramatic increase of computational resources is required compared to

the case v = 10−8m3. This leads to further investigations that expands the radius

of the local refinement region while maintaining the minimum volume size as v =

10−8m3.

Fig.5.13 shows the cross-sectional plots of the meshed model with increasing refine-

ment region radius R from 0.02m to 0.05m, keeping outer region meshed by cubic

cells of size λ/20 and the volume target inside the region 10−8 m3. Comparing to the

noticeable boundary that differentiates large crude meshes in the yellow region and

fine meshes in the blue region in Fig.5.13 a) and b), Fig.5.13 c) and d) are seen to

improve the dramatic connection boundary. It is also noted that in Fig.5.13 c) and

d) who have a bigger blue region than Fig.5.13 a) and b), meshes grow slower hence

more small sized tetrahedral meshes are generated. This observation is supported

by the mesh statistics shown in Fig.5.14, where the number of meshes whose volume
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Figure 5.11 Frequency response of the induced current on the single-wire model for different

volume constraints in the refinement region R=0.02 m

Figure 5.12 Computational data for different volume constraints in mesh refinement region

R=0.02 m,normalised to the case without local mesh refinement

is in the range 2.35× 10−9m3 to 6.28× 10−8m3 is observed to increase as the region

expands. The simulated frequency response for expanding local refinement region

is shown in Fig.5.15, compared to the case without refinement. The resonant fre-

quency is observed shifting from 260 MHz for R = 0.02 m to 270 MHz for R = 0.05

m and quickly convergences as the region expands.

Fig.5.16 shows the computational requirements as a function of refinement region

R, normalised with respect to the case without localised mesh refinement. The

three factors, memory occupation, number of meshes and simulation time cost are

observed increasing accumulatively as the refinement region expands. Compared
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a) b)

c) d)

Figure 5.13 Mesh cross-section view for different local refinement regions with volume

constraints v = 10−9m3

to the previous meshing method that applies local mesh refinement in the region

R = 0.02 m and minimum volume constraints v = 10−9m3, using R = 0.05 m

and v = 10−8m3 achieves same result of 270 MHz while requiring lower computa-

tional expenses, typically 28% less time consumption and memory occupation. It is

therefore more efficient to adopt the latter as the meshing strategy.
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Figure 5.14 Mesh stats for different different local refinement regions in Fig.5.13

Figure 5.15 Frequency response of the induced current on the single-wire model with in-

creasing region size for local mesh refinement

Figure 5.16 Computational data for different mesh refinement regions, normalised to the

case without local mesh refinement
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5.2.4 Geometrical description of the wire

In addition to the proper meshing strategies, it is also desired to explore the effect

of geometry description on both the frequency response and computational require-

ments. Specially in this model, the description of the single-wire model is principally

controlled by the number of segments that discretises the cross-section of the wire.

Increasing the number of segments delivers a polygon that more closely represents

the circular cross-section of the practical wire. However increasing the number of

segments produces small edges and this requires meshing of small features. Con-

sequently a larger number of small meshes is produced . Fig.5.17 shows the cross-

section view of a discretised wire that has 6, 10, 20 and 30 segments respectively. It

(a) (b) (c) (d)

Figure 5.17 Cross section of the wire geometry with a) 6 segments, b) 10 segments, c) 20

segments and d) 30 segments.

is observed that using 20 and 30 segments to describe the wire cross-section is able

to generate polygons that are visibly better representing of the circular cross-section

of the wire than 6 or 10 segments. In contrast, obvious edges are found to define the

cross-section when using 6 or 10 segments as shown in Fig.5.17 (a) and (b).

The simulated result presented in Fig.5.18 shows fast convergence with the number of

segments used to define the wire cross-sections. Although there is a minor magnitude

drop, from the 6-segmented model to the 30-segmented model at the resonance,

as shown in Fig.5.18, the effect on the resonant frequency is seen to very small.

The computational expense with respect to the number of segments shown in Fig.

5.19 shows that 6 - 10 segments generate almost 20% less meshes, cost 35% to 40

% less memory and take 10% less simulation time compared to the 30-segmented
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model. As a result, reducing the number of segments of the wire cross-section helps

reduce geometrical complexity while maintaining sufficient accuracy. It is therefore

recommended to use 6 or 10 segments to describe the wire cross-section in the

geometry construction.
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Figure 5.18 Frequency response of the induced current on the single-wire model for different

numbers of segments
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5.2.5 Resonance for different wire radii

After exploring necessary parameters, it is desired to investigate the effect of ra-

dius on the resonant frequencies of the single wire model exposed to the plane-wire

excitation. Previously, different meshing strategies and geometrical description are

explored on a wire of radius r = 1 mm, or 0.001λ at 300 MHz. This section evaluates

wire models of radius 0.5mm, 2mm, 4mm, 6mm, 8mm and 10mm, which correspond

to 0.0005λ, 0.002λ, 0.004λ, 0.006λ, 0.008λ and 0.01λ respectively. Based on the

guidelines found in the previous subsections, these wires are meshed using a global

mesh size λ/20 and local mesh refinement in the region 0.05m around the wire

with volume target v = 10−8m3. These wires are constructed using 30 segments to

discretise the cross-section.

Figure 5.20 Frequency response of the induced current on the single-wire model with varying

wire radii

The frequency response obtained for the different radii is shown in Fig.5.20 and

the corresponding resonant frequency as a function of the wire radius is shown

in Fig.5.21. It is observed in Fig.5.20 that the magnitude of the induced current

declines as the radius increases. The declining rate is found faster for radius below

0.004 λ than for radius above. Fig.5.21 illustrates a monotonically decreasing trend

of the resonant frequency. The rate of decrease is very small once the radius is less
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Figure 5.21 Resonant frequency as a function of radius of wire, normalised to wavelength

than 0.002 λ. When the wire radius increases, the edge effects are seen to shift the

resonant frequency at the ends of the wire.

5.2.6 Section summary

This section performs the general procedure of the UTLM simulation on a single-wire

model of length 0.5m under a plane wave excitation. Different meshing strategies

were investigated in order to find sufficient simulation parameters. It is found that

using a background mesh of size λ/20 combining localised mesh refinement strategy

in the region 0.05m around the wire with minimum volume restraints of 10−8m3

presents convergent results of the resonant frequency at 270MHz with efficient com-

putational cost. It needs to be recognised that the resonant frequency of the wire

cannot reach the expected half wave resonant resonant frequency of 300 MHz, due

to the open-circuit treatment at both ends and the method of the excitation. Dif-

ferent numbers of segments of the wire cross-section are shown to have minor effect

on the resonance behaviour but less segments show decreasing computational costs

compared to large number of segments. Further simulations show the decreasing of

resonant frequencies and current magnitudes when the wire radius increases.
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5.3 Evaluation of a Single Wire Model and Junc-

tions with Modal Excitation

The previous section investigates the general behaviour of single wire models to a

plane-wave excitation and obtains some generic simulating parameters for further

simulations. It is also desired to see the behaviour of the wire model as a transmission

line section to propagate waves. In this case the wire is excited from one end and

the observation is made in terms of S-parameters. In addition, the capability of the

UTLM method to model complex structures such as junctions is evaluated. Similar

to the section 5.2, the convergence of S11 and S21 parameters on a single wire model

is investigated, exploring various meshing strategies and geometrical descriptions.

Then the way making the junction model is described and simulations are performed

to investigate the effect of the junction on the wave propagation.

5.3.1 Problem description

In the first model, a single wire model is built similar to the previous section. The

wire has a length of 0.3m, radius of 1mm and is placed 0.1m above a U-shape ground

plane, as shown in Fig. 5.22 Each end of the wire is connected to a coaxial probe

in order to support a Transverse Electromagnetic (TEM) mode wave. The coaxial

probes have an outer radius of 3mm, a length of 5mm and a relative dielectric

1 2

Figure 5.22 Geometry of a single wire model above the ground plane, with coaxial probe

details on the right
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constant εr = 1 that corresponds to air as the dielectric layer. These two coaxial

probes are then connected the side boards of the U-shape ground plane as shown on

the right of Fig. 5.22 The wire is excited from port 1 by a TEM mode wave solved

at 400MHz with a bandwidth from 100MHz to 500MHz The S11 and S21 parameters

are observed from port 1 and port 2 respectively.

5.3.2 Global mesh evaluation

(a) (b)

Figure 5.23 Coarsely sized tetrahedral mesh of the single wire model with b) meshes around

the wire surface

(a) (b)

Figure 5.24 Volume refined tetrahedral mesh of the single wire model with b) meshes around

the wire surface

The simulation is first performed on the single wire model with varying mesh sizes in

the computational space. Similar to section 5.2, the model is first coarsely meshed

with good quality (Q = 2) tetrahedral cells. That means that the cell shape of meshes

is restricted by a quality factor less than 2, but there is no mesh size constraints in
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the computational space. Fig.5.23 (a) and (b) shows meshes in the background and
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Figure 5.25 Number of meshes in log scale as a function of cell volume in m3 for decreasing

meshing command with respect to wavelength

around the wire surface respectively. It can be seen that while both regions near the

wire surface and in the background meshed with good quality tetrahedral elements,

meshes around the wire surface see a much finer size.

In comparison to Fig.5.23, Fig.5.24 plots the model meshed with a maximum vol-

ume 1.56 × 10−5 m3 that corresponds to a cubic cell size λ/20 (2.5 cm) , where λ

corresponds to the maximum frequency of interest. Meshes in the background are

found refined with demanded mesh size, although they are still in very large scale

compared to meshes around the wire surface. In contrast, meshes near the wire sur-

face are in very similar scale to the coarsely sized mesh model, as they are already

in very fine size.

This can be demonstrated using the mesh statistics chart shown in Fig.5.25 for

different mesh refinement targets in terms of volume constraints that correspond to

cubic cells of the size λ/10 (5 cm), λ/20 (2.5 cm), λ/30 (1.667 cm) and λ/50 (1 cm)

respectively. Most meshes near the wire surface are below 10−5 m3. It can be seen

that meshes in the simulation space with coarsely meshed method are found larger

than 10−5 m3 and therefore replaced by smaller sized grades.

The simulation results of S11 and S21 for various meshing constraints are plot in Fig.

5.26 and Fig. 5.27 respectively, illustrating the general behaviour of wave through
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a single wire model above a ground plane. Due to the impedance mismatching

between the coaxial probe and the wire section, the wave is only able to propagate

at the resonance. From the simulation result, the coarsely sized mesh model is able

to plot the general shape of the wave behaviour for both S11 and S21, however it sees

the limit resolving accuracies at higher frequencies due to its large mesh cells in the

free space. On the other hand,as the mesh size is reduced from λ/10 to λ/50, the

frequency at the resonance is found shifting from around 450 MHz to around 475

MHz. There is no deterministic pattern to describe the magnitude change of S11 at

the resonance with respect to different meshes, however they are all below -20 dB.

Figure 5.26 Comparison of S11 for a coarsely sized mesh (runtime: 18586 s, memory: 551

MB), λ/10 (runtime: 5.21 h, memory: 556 MB), λ/20 (runtime: 5.54 h, memory: 556 MB),

λ/30 (runtime: 6.49 h, memory: 621 MB), λ/50 (runtime: 11.28 h, memory: 787 MB)

The computational requirements are shown in the caption for Fig.5.26, which shows

rapid increase of simulation time between λ/30 and λ/50. In order to get expected

convergence of resonant frequency around 500 MHz, it can be predicted that further

mesh refinement is required in the simulation space. This requires dramatic increase

of computational resources according to the trend. As for the plane wave excitation

case described in section (5.2), this calls for a change of meshing strategy that keeps

outer region relatively crudely meshed and refines only a specific region around the

wire.
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Figure 5.27 Comparison of S21 for a coarsely sized mesh, λ/10, λ/20, λ/30 and λ/50

5.3.3 Localised mesh refinement evaluation

This section focuses on investigation of S-parameters with the utilisation of local

mesh refinement. Similar to section (5.2), the local refinement technique is con-

trolled by the region radius R and minimum volume size v that grows gradually

from inside outwards. It is noted from the previous section that the majority of

meshes around the wire is below 10−9 m3, therefore volume constraints of 10−9 m3

is selected in increasing refinement regions R = 0.01 m, R = 0.02 m and R = 0.03 m

respectively. Fig. 5.28 compares the meshed model without local mesh refinement

(a) (b)

Figure 5.28 Cross-sectional plot of meshed single wire model with a) no local mesh re-

finement, b) local mesh refinement of R = 0.02 m, v = 10−9 m3; both in global mesh that

correspond to λ/20

and with volume constraint v = 10−9 m3 in the region R = 0.02 m respectively, in

a background mesh v = 1.56× 10−5 m3 that corresponds to cubic cells of size λ/20
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at 600 MHz. It clearly shows the expansion of fine meshes near the wire model, as

well as a smoother connection between fine meshes inside and crude meshes outside

for the case with local refinement.

Figure 5.29 Comparison of S11 for tetrahedral meshes of size λ/20 (runtime: 5.55 h,

memory: 556 MB) and with local refinement of target volume 10−9 m3 in the region R = 0.01

m (runtime: 8.24 h, memory: 670 MB), R = 0.02 (runtime: 14.94 h, memory: 1083 MB)

and R = 0.03 m (runtime: 33.39 h, memory: 1797 MB)

Figure 5.30 Comparison of S21 for a coarsely sized mesh, λ/10, λ/20 , λ/30 and λ/50

Figs. 5.29 and Fig. 5.30 shows the S11 and S21 for expanding local mesh refinement

regions from 0.01 m to 0.03 m respectively, all with mesh volume constraint of 10−9

m3 inside. The computational requirement are seen to the caption of Fig. 5.29.

It can be seen that with local mesh refinement, both S11 and S21 gets apparent

improvement and reach 500 MHz at resonance for R=0.03m. However it still needs

to be noted that computational expenses increase dramatically, almost 6 times longer
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time taken for the R=0.03 m case compared to the non-local-refinement case.

5.3.4 Geometry description of the wire and probe

The effect of the description of the wire geometry, that is the number of segments

that discretises the wire cross section in the model is now evaluated. Fig.5.31 shows

the cross sections of the coaxial probe used in this simulation with 6, 10, 20 and 30

piece-wire linear segments respectively. All models are meshed using a tetrahedral

mesh of maximum volume 1.56 × 10−6 m3 that corresponds to a cubic cell of size

λ/20 at 600 MHz. The number of segments that discretises the cross section is

(a) (b) (c) (d)

Figure 5.31 Cross section of the coaxial probe with a) 6 segments, b) 10 segments, c) 20

segments and d) 30 segments
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Figure 5.32 Mode effective index of the coaxial probe as a function of number of segments

used to describe in the model

first found affecting the sampled mode profiles that propagates in the cross section

due to the change of the shape. (signpost to previous chapter for introducing the

mode solving) Fig.5.32 shows the mode effect index (neff) that is solved to sample

the transverse electromagnetic (TEM) mode wave propagating through the cross

section. The value of neff can be seen converging to 1 as the number of segments

increases.
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Figure 5.33 Comparison of S11 for 6 segments runtime: 14.02 h, memory: 591 MB), 10

segments (runtime: 14.56 h, memory: 630 MB), 20 segments (runtime: 16.47 h, memory:

871 MB) and 30 segments (runtime: 18.48 h, memory: 1083 MB) in the cross section

Figure 5.34 Comparison of S21 for 6, 10, 20 and 30 segments of the cross section respectively

Fig.5.29 and 5.30 shows the S11 and S21 parameters with respect to different number

of segments. The insets to both figures show the extracted mode profiles of the

coaxial cable for each number of segments. It is found that the frequency of S11 at

the resonance shows convergence for all cases. Although the magnitude of S11 at

the resonance varies for different cases and there is about 15 dB drop between the

10-segment case and the 30-segment case, all of them are observed below 20 dB at

the resonance hence are acceptable The S21 parameters are shown convergent above

10 segments for both frequency and magnitudes. Combining these observation and

the computational expenses seen to the caption of Fig.5.29, It is suggested to use

10 segments to describe the coaxial probe as it provides both good accuracy and

simulation efficiency.
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5.3.5 T-junction model

The T-junction model is built by inserting a second wire on the middle of the first

wire. There is however difficulties if direct merging of two wires is used when building

the model. Fig. 5.35 shows the geometry output when one polygonal tube merged

directly onto the limb of another polygonal tube. On the interface of two conductors,

a sharp angle and curve edge are formed. This would increase meshing stress near

the junction as very small meshes are required in order to discretise fine features.

As a result, not only overall mesh amount increases, but also the time step needs to

compromise to the size of the smallest tetrahedron. In order to overcome this, the

Figure 5.35 Normal T-junction model with sharp angle and curve edges when two wires

merged directly

(a) (b)

Figure 5.36 Stretched bottom face of the first wire for merging a second with a) bottom

view, b) side view

cross-sections of the first wire, at the position where the second wire is merged, is

modified to produce a flat circular bottom face toward the second wire as shown in

Fig.5.36. The second wire is then extruded based upon the cross-section created from
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the first wire as shown in Fig.5.37. The end of the second wire is connected to the

ground plane through another coaxial probe to enable consistent wire termination.

In this simulation, the T-junction model is formed by two wires with the first wire

(a) (b)

Figure 5.37 Modified T-junction geometry with a) top view of the whole model, b) geometry

details of the junction

of length 0.3m and the second wire of length 0.15m inserted to the middle of the

first wire as shown in Fig.5.37. Both conductors are constructed by cross sections

of 10 segments, which is demonstrated to provide adequate geometrical description

by the previous subsection.

Based on guidelines obtained from the single wire model simulation, the model is

meshed by a tetrahedral mesh of volume 1.5625× 10−5m3 that corresponds to λ/20

at 600 MHz with localised mesh refinement in two regions centred each wire respec-

tively, with a radius R = 0.03m for each region and volume constraints 10−9m3.

Fig.5.38 shows the surface mesh of the T-junction model for both background and

wire surface. It is highlighted that meshes at the junction area as shown in Fig.5.38

(b) are in similar scale to meshes around the wire section, therefore the approach

used to construct the junction is acceptable. Fig.5.39a (a) shows more visually the

mesh size distribution from the cross-sectional view of model, where a T-shape area

is shown occupied by very fine meshes while remaining the out side region crudely

meshed. This is supported by the mesh statistics shown in Fig.5.39a (b) which

indicates a majority distribution of meshes in the volume range 3.26 × 10−10m3 to
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(a) (b)

Figure 5.38 Mesh plot of the T-junction model with b) details around the junction for a

λ/20 tetrahedral mesh and localised mesh refinement with R = 0.03m, v = 10−9m3
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Figure 5.39 a) T-junction tetrahedral mesh plot in the cross-sectional plane with b) mesh

size distribution as a function of cell volume

6.77× 10−9m3.

The model is excited from port 1 at the frequency of 400 MHz with a bandwidth

from 100 MHz to 500 MHz. The S11, S21 and S31 are extracted at three ports

respectively, as labelled in Fig.5.37 (a). The simulated result in Fig5.40 shows the

frequency response of wave propagation through the T-junction. Due to the presence

of the junction, it is found that both resonant frequency and wave transmission are

affected. First, two resonances for S11 S21 and S31 are found, one at about 520MHz

and the other at about 550MHz. This can be explained by the cross coupling due
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Figure 5.40 S-parameters of the T-junction model

to the additional port presented in the middle of the first wire. Additionally, due

to the unsymmetrical structure of the model with the first wire as the centre, a

second resonance is presented. Secondly, both S21 and S31 show about 3dB to 5dB

magnitude drop at the resonance. This is as expected due to the fact that the wave

incident from port 1 split to two ports.
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5.3.6 Cross-junction model evaluation

The construction of the crossed-junction model follows the same approach as the

T-junction model, with another wire extruded on the other side of the main wire,

as shown in Fig.5.41, with port numbers labelled in the figure. Each cable port is

connected to a coaxial probe which then connects to the ground plane. The model

has a length of 0.15m from each port to the junction, with radius 1mm for each

limb. The cross-section of the wire is formed by a 10-segmented polygon, same as

the T-junction model.

(a) (b)

Figure 5.41 Cross-junction model with a) top view of the whole model, b) geometry details

of the junction

The meshing method adopted for the cross-junction model is a globally tetrahedral

mesh of λ/20 at 600 MHz with a localised mesh refinement in a region radius R =

0.03 and target volume v = 10−9m3. Two refinement regions are used in order to

cover four limbs.

The generated mesh output presented in Fig.5.42 show a relatively large size mesh

in the background compared to meshes around the wire surface. This is supported

by the mesh distribution in the cross-section plane of the model in Fig.5.43 (a)

and the corresponding statistics as a function of cell volume. Due to the utilisa-
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(a) (b)

Figure 5.42 Mesh plot of the cross-junction model with b) details around the junction for

a λ/20 tetrahedral mesh and localised mesh refinement with R = 0.03m, v = 10−9m3

0

200000

400000

600000

800000

1000000

1200000

N
u
m

b
er

 o
f 

m
es

h
es

Volume / m³

(a) (b)

1 2

3

4

Figure 5.43 a) Mesh plot of the cross-junction model in cross-sectional view and b) the

volume distribution of mesh elements

tion of localised mesh refinement, a large number of meshes in the volume range

1.76× 10−10m3 to 2.99× 10−9m3 are generated and distributed around the junction

limbs.

The simulated result in Fig.5.44 shows the wave transmission and reflection at four

ports of the cross-junction. The effect of the junction is indicated by the frequency

shift of the resonance from 500MHz for the single wire model to 580 MHz for the

cross-junction model. Due to the symmetrical configuration of the model structure,

only one resonance is found, compared to the T-junction model. The wave excited

from port 1 is transmitted evenly to the other three ports. S-parameters close to
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-6dB is observed at the resonance for all ports.

Figure 5.44 S-parameters of the cross-junction model

5.4 Conclusion

This chapter has presented two simulation set-ups for canonical wiring problems

and explored different meshing strategies and geometrical description. In the first

section, a single wire model of length 0.5m is excited by a plane wave and the in-

duced current is evaluated in the middle of the wire. The region around the wire is

found finely meshed and the free space region is coarsely meshed. Decreasing mesh-

ing sizes in the free space increases resonant frequency from 240MHz for a coarse

mesh to 263MHz for a λ/100 mesh. The rate of increase is found slowing down for

mesh sizes less than λ/50. Due to the open-circuit termination of both ends of the

wire, it is difficult for the model reaching a theoretical 300MHz at the resonance.

The computational requirements however increases significantly for mesh sizes be-

low λ/50 and is not desired. Faster frequency increase is observed when localised

mesh refinement is applied around the wire region. It is found that refining mesh

in the region R = 0.02m with volume v = 10−9m3 and R = 0.05m with volume

v = 10−8m3 illustrates convergence of the resonant frequency at 270MHz but the

latter shows 28% less time consumption and memory occupation. In terms of geo-

metrical description, 6 and 10 segments of the wire cross section shows small effect
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on the resonant frequency compared to the 30 segments model but 10% less time

consumption and 40% less memory cost. For different radii, both frequency and

magnitude at the resonance drops as the radius increases. The resonant frequency

shows slow decreasing rate for a radius less than 0.002λ and then decreases mono-

tonically. The magnitude however reduces fast from 0.0005λ to 0.002λ and then

slows down.

In the second section, the single wire model of length 0.3m is applied to modal

excitation and observation. Similar findings are obtained for decreasing mesh sizes

globally and locally. It is found that applying a global mesh size λ/20 and localised

mesh refinement in the region R = 0.02 or R = 0.03 with volume target v = 10−9,

the resonant frequency reaches expected 500MHz for a 0.3m long wire. Decreas-

ing number of segments of the cross section is found minor effect on the resonant

frequency but reducing the computational expenses. The T-junction model and

cross-junction model are also investigated based on obtained from the single wire

model. The effect of the T-junction is found to shift the resonant frequency to

520MHz and 550MHz and split the wave from the excitation port to two ports. The

cross-junction shifts the resonant frequency further to 580MHz and split the wave

to three ports.
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6
Benchmarking problems simulation

This chapter presents a set of test cases to study the impact of coupling

in cables due to external electromagnetic fields using the Unstructured

Transmission Line modelling method (UTLM). Computational calcula-

tions of induced currents on wires are carried out for various cable bundle

configurations with respect to simple structures. The analysis considers

a set of test looms where the number of cores and spatial relationship

are varied.

***
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6.1 Introduction

Chapter (5) has presented the investigation of canonical single wire models and

junctions. In this chapter, more complicated configurations of wire bundles based

upon a relatively simple structure are investigated. The aim is to directly study the

effect of external field coupling into wire bundles using UTLM method explicitly

meshing the wire.

Similar to chapter (5), a single-core cable loom is first modelled in order to obtain

sufficient meshing parameters. The core length in this chapter is extended and the

cable loom is placed above a finite size metal board as the ground plane with metal

bulkheads at two ends to terminate the wire. Such set-up has been widely used in

literature due to its easy installation and feasibility [6.1–6.7]

The effect of spatial relationship between cores is then investigated on a two-core

cable loom by varying spacings between two cores. The number of cores within

the loom gradually increases in order to investigate the impact of such variation

and resultant shielding effect. The analysis also considers the situation when cores

separate along the route of the cable loom.

6.1.1 Plane wave excitation expression

The uniform plane wave excitation is applied in this chapter to model external

coupling in cables of varying configurations. A general phasor form expression for

the plane wavein the rectangular coordinate system can be written as [6.8]

Einc = E0 [exnx + eyny + eznz] e
−jβxxe−jβyye−jβyy (6.1)

where E0 denotes the amplitude of the incident field, e2
x + e2

y + e2
z = 1 describes the

electric field polarisation direction and β = ω
√
µε defines the phase of the wave.

A special case of plane wave excitation called broadside excitation is shown in Fig.
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6.1. In this case

ex = 0 βx = β (6.2)

ey = 1 βy = 0 (6.3)

ez = 0 βz = 0 (6.4)

Einc

z

y

x

Figure 6.1 Broadside plane wave excitation
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6.2 One-core cable loom

This section presents simulations of a single-core cable loom above the ground plane.

Sufficient simulation parameters, especially the meshing requirements are obtained

for further simulations of more complicated cable models.

0.5m

2m
0.1m0.04m

z

x
y

Figure 6.2 Single wire model set-up in the computational space and

6.2.1 Problem description

Fig. 6.2 shows a one-core cable loom of length 2m and radius 1mm placed above a

ground plane. The ends of the core are connected to a bulkhead that connects to

the ground plane. The ground plane is 2m long and 0.5m wide and the bulkhead is

9cm high and 8cm wide. The cable is placed 4cm above the ground plane as shown

in Fig. 6.2.

A plane wave electric field is excited from the broad side of the cable with its

polarisation in the direction of +y and propagating in the direction of +x The

induced current is observed at two ends of the cable by integrating surface magnetic

fields around the core.

6.2.2 Meshing parameters evaluation - global mesh

Similar to chapter 5, the model is first investigated using global mesh discretisation.

In this way a hybrid mesh is generated, with fine tetrahedral cells discretising the

wire geometry and coarse Cartesian grids discretising the free space based on wave-

length of interest. Due to the small radius of the wire compared to the wavelength
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of interest, very fine tetrahedral meshes are generated to discretise the wire surface,

as shown in Fig. 6.3, whilst the free space region is discretised by 2.5 cm grids,

which corresponds to λ/20 at 600 MHz.

The mesh statistics in Fig 6.4 shows clearly the variation of mesh sizes due to the

presence of the wire. A significant number of meshes is shown in 10−6m3 grade,

which contributes to grids in the free space. Meanwhile, a large number of meshes

is shown in 10−11m3 and 10−10m3 grades, which contribute to the discretisation of

the wire surface and the region near the wire. There is also moderate number of

meshes generated in middle grades as connection between fine and coarse meshes.

(a) (b)

Figure 6.3 Mesh of one-core cable loom of cell size λ/20 with a) whole space, b) around

wire surface

Figure 6.4 Number of meshes in different mesh size range for λ/20 mesh
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Descreasing global mesh size results in rapid increase of total mesh amount, espe-

cially in the coarse mesh grades as shown in Fig. 6.5. For a 1.67 cm mesh that

corresponds to λ/30 and 1 cm mesh that corresponds to λ/50, significant increase

of mesh amount is observed in 10−7m3 grade. On the other hand, meshes below

volume 10−9m3 remain same amount level as the λ/20 mesh.

Figure 6.5 Number of meshes in different mesh size range for λ/30 mesh

Figure 6.6 Number of meshes in different mesh size range for λ/50 mesh

Figure 6.7 Number of meshes as a function of cell volume for (a) λ/30 mesh, (b)λ/50 mesh

The simulation result of the induced current at the front end of the cable with varying

mesh sizes is shown in Fig. 6.8. It is noted that all three cases show convergent

result for the first resonance at 75 MHz, whose wavelength corresponds to double

length of the cable. However at higher frequencies the resonances are not converging

as the peak shifts with decreasing mesh size. Meanwhile, more simulation time and

computation memory cost are required for a finer global mesh, as shown in table

6.1.
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Table 6.1 Computaional expenses for different global mesh sizes based on 4-core Xeon CPUs

with 35 GB available RAM

λ/20 λ/30 λ/50

Number of meshes 890549 4988650 9217750

Memory (MB) 2285 6135 10010

Simulation time (h) 29.20 70.88 99.48

Figure 6.8 Frequency response of the induced current at the front end of the cable with

different global meshing sizes

One reason that causes the slow convergence of the result is the large difference of

mesh sizes between cells in the free space region and near the wire region even λ/50

mesh is applied. Higher accuracy results would require further mesh refinment in

order to achieve mesh uniformity. This is however limited by the resctricted compu-

tational resources as both simulation time and memory occupation rise rapidly. This

brings up the strategy of using local mesh refinement in the subsequent section.
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6.2.3 Meshing parameters evaluation - local mesh refine-

ment

The local mesh refinement method is applied to the model in this section for two

purposes. One is to reduce cell sizes in the near-field region around the wire. The

other is to smooth connection between meshes in the near-field region and the free

space region. As introduced in chapter 5, a cylindrical region with transverse radiu

R and horizontal length l is introduced as shown in Fig. 6.9. In the refinement

R
wire

l

Figure 6.9 Localised mesh refinement region definition

region, a minimum cell volume v is defined to restrict the cell size. The cell size

grows gradually from centre outward and becomes similar to large cells outside the

region. Table 6.2 lists four different ways of localised mesh refinement applied, with

different region radii and cell volume limit. The background area is meshed by 2.5

cm cells, corresponding to λ/20 at 600 MHz. Based on the observation of mesh

statistics in the above section, the refinement volume limit is set to be 10−8m3 or

10−9m3.

Table 6.2 Localised mesh refinement parameters

case 1 case 2 case 3 case 4

R (cm) 2 5 2 3

v (m3) 10−8 10−8 10−9 10−9

An expansion of fine mesh area around the wire region is observed in the resultant

cross-sectional view of the model in Fig. 6.10. Although Fig. 6.10 (b) and (d)
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Figure 6.10 Mesh cross-sectional view for a) without localised mesh refinement, b) case 1,

c) case 2, d) case3

are set with same refinement radius, the latter shows a wider area of fine meshes

due to its lower size limit. Fig. 6.10 (c) presents a larger buffer area and sees a

smooth connection to the outside meshes. Fig. 6.11 reveals the change of mesh cell

distribution with respect to their sizes. For the 10−8m3 mesh, increasing amount of

meshes in 10−9m3 and 10−8m3 grades is observed. When the volume limit is set to

10−9m3, more meshes in 10−9m3 and 10−10m3 grades are generated.

The simulated current observation of cases listed in table 6.2 is shown in Fig. 6.12

and the corresponding computational expenses are listed in table 6.3. It indicates

that by using local mesh refinement, a faster convergence of higher order resonances

is obtained compared to cases without local mesh refinement shown in Fig.6.8. Ap-
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(d) case 3

Figure 6.11 Mesh statistics as a function of cell volume for different localised mesh refine-

ment parameters used compared to a) without localised mesh refinement

plying 10−8m3 mesh refinement in the region 2 cm around the wire generates more

convergent result with approximately half the simulation time and one third of the

memory occupation compared to a λ/50 mesh applied in the previous section.

Further increasing the refinement region or applying finer volume limit would gener-

ate slightly better results but compromises much more for computational efficiency.

Compare to the first mesh refinement case, it takes 2.23 times simulation time and

2.16 times memory usage for the same size limit applied in the region 5 cm around

the wire. When a 10−9m3 mesh limit is applied in the 2 cm region, 1.68 times more

simulation time and 2.65 times more memory usage are required for the same test.

Moreover, when 10−9m3 mesh is applied in a 3 cm region around the wire, 5.6 times

longer simulation and 6.3 times more memory are required compared to the first

case. Therefore it is not efficient to apply more strict mesh refinement around the

wire in order to achive complete convergence. However this technique is beneficial

when applied to large electrical systems where wires are comparably thin.
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Figure 6.12 Frequency response of the induced current at the front end of the cable with

different local mesh refinement

Table 6.3 Computaional expenses for different local mesh refinement parameters based on

a 4-core Xeon 2.27 GHz CPU with 35 GB available RAM

R (cm) 2 5 2 3

v (m3) 10−8 10−8 10−9 10−9

Number of meshes 885153 2730460 3810780 7989290

Memory (MB) 3036 6560 11079 22174

Simulation time (h) 49.25 109.92 132.14 324.68
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6.3 One-core cable loom with wooden spacer

Previous section evaluates a one-core cable loom model above the ground plane and

obtains sufficient meshing parameters for further simulations. However pratically,

there is spacer presented to support the loom, such as a wooden board. The effect

of the wooden board on the electromagnetic behaviour of the wire to the plane-wave

excitation needs to be found out. Pratical wooden material has rather complicated

electromagnetic properties due to its complicated composition. However for sim-

plicity, in this thesis, the wood material is considered as a lossless dielectric medium

with a real and constant dielectric constants.

Fig. 6.13 shows the geometry set-up of the same model in 6.2 with a wooden spacer

placed beneath the loom. The spacer is 1.8 m long, 0.06 m wide and 0.02 m high.

The wood material is set by a relative permittivity εr = 4 and relative permeability

µr = 1.

1.8 m

6 cm

Ground plane

Wooden spacer 0.1m

Figure 6.13 One-core cable loom geometry above the ground plane with wooden spacer

beneath the cable

The whole model is meshed by 2.5 cm grids, which correspond to λ/20 mesh at 600

MHz. Meanwhile local mesh refinement is applied in the region R = 5 cm around the

wire with a cell volume limit v = 10−8m3. The meshed model is then investigated

under the same plane wave excitation as the case without the wooden spacer.

Fig. 6.14 illustrates the effect of the wooden spacer on the currents induced on the

wire. At the first resonance, the frequency of the model with wooden spacer is 4.2
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MHz lower than the model without wooden spacer. And at higher order resonances,

this difference of resonant frequencies between two models gets bigger. This holds

true as the electric permittivity of the medium increases due to the wooden spacer

beneath the wire, thereby reducing the wave velocity.
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Figure 6.14 Currents induced on the single-core wire loom with and without wooden spacer

6.4 Two-core cable loom

In this section, induced currents in two-core cable looms are modelled upon a plane

wave excitation. This case evaluates the influence of separation distances between

two wires on the coupling.

Fig. 6.15 shows the cross-sectional view of two-core cable looms with their cores

placed h = 4cm above the ground plane and core radius r = 1mm respectively. The

centre-to-centre spacing between two cores is denoted by s. Fig. 6.16 shows the

constructed model geometry. The two cores are placed in parallel in the horizontal

plane. Both ends of two cores are connected to the ground plane via bulkheads at

each side and terminated by short circuit.

The meshing strategy used in the single core model is adopped here; that is λ/20

mesh size in the global space, with local mesh refinement of size 10−8m3 applied in

the 5 cm region centred on the middle point between two cores. Fig. 6.17 shows
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the meshed model and its cross-sectional view, which shows the growing mesh size

from middle outwards. A plane wave with bandwidth of 1 MHz to 500 MHz is

illuminated in the form of broadside excitation, with the electric field polarized

in the +x direction and propagating in the −y direction. The induced current is

observed at both ends of two wires.

Ground plane

r s

h

r

1 2

Figure 6.15 The cross section of two core cable looms

Figure 6.16 Geometry of two core cable loom

Figure 6.17 Meshed two core cable loom model with global mesh size λ/20 and local mesh

refinement 10−8m3 in 5 cm region

In this section, a two-core cable loom model with their centre-to-centre spacing s =

10r is first investigated. Fig. 6.18 shows the frequency response of induced currents

in two wires and as a comparison, a single-core model that is placed in the middle

position of two cores. The current induced in wire 1 is same as the current in wire 2

as the structure and positions of two wires are symmetric above the ground plane.

It is observed that the resonant frequencies of currents induced in the two-core cable
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Figure 6.18 Comparison of currents in two cores model with core spacing of 10r and the

single core model
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Figure 6.19 Currents induced in two cores cable looms with core spacings as multiples of

core radius

loom are split for the single core model at higher order resonances, and the degree of

separation is seen growing as the frequency increases. This illustrates the occurance

of cross coupling between two cores and its resultant secondary resonances. The

secondary resonance is observed to locate at lower frequencies than the dominant

resonance. The magnitude of currents at secondary resonances is smaller than the

current at resonances due to the plane wave coupling, but it increases at higher order

resonances. Besides, the magnitude of currents induced in two-core cable looms is

slightly lower than current induced in the single-core model.
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Fig. 6.19 compares currents s induced at the left end of wire 1 of two-core models

with spacing between two cores increasing from 5r to 50r. The result shows similar

behaviour for the first resonance of all five models. Wider spacing between two

cores shows narrower split of resonant frequencies but higher amplitude of currents

at secondary resonances. This indicates the decreasing of coupling between two cores

as the spacing between two cores increases. For models with 30r and 50r spacing

between two cores, the coupling between two cores and its resultant resonances are

negligible.

6.5 Y-shape two-core cable loom

This section models currents induced in Y-shape two-core cable looms upon plane

wave excitations. As is common in practical electrical systems, wires and cable

looms exhibite various routes along the platform to provide structure flexibility. A

typical model is that one of the two parallel cables in the previous section separates

in the middle along the route and forms a Y-shape junction. This case investigates

the influence of the shape of the junction and changes of distances between two cores

on the coupling of electromagnetic fields into each wire.

Fig. 6.20 shows the structure of a y-shape two-core model and its details at the

junction. The axial length of the model is 2 m, with radius of both cores being r=1

mm. The spacings between two cores at two ends of the junction are denoted as s1

and s2 respectively. This case s1 and s2 are chosen 10r and 30r respectively. The

transition length of the junction is denoted as d. Two cases of the connection length

are modelled, one with d = 6cm and the other with d = 0cm which thereby forms a

right angle separation.

The global space of the model is meshed by λ/20 cells where λ refers to the wave-

length at 600 MHz. A cylindrical region of radius R = 5 cm that covers the whole

model is defined for localised mesh refinement, with cell size limited by volume target
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Figure 6.20 Geometry of the Y-shape two core cable loom

10−8m3. Same plane wave excitation is applied into the model; that is with band-

width 1 - 500 MHz, polarised in the direction +x and propagating in the direction

−y. Currents induced in four ends of the model is observed and plot.
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Figure 6.21 Induced currents in four ends of Y-shape cable models of connection length d

= 6 and 0 cm respectively

Fig. 6.21 shows currents induced in Y-shape cable models of two different connection

lengths. Similar behaviour is observed for both models. It is therefore concluded that

the change of transition length in the junction shows little influence on the induced

current. Because the Y-shape cable model has 10r spacing before the junction and
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Figure 6.22 Induced currents in the Y-shape two-core model compared to parallel cable

model of 10r spacing and 30r spacing

30r after, Fig. 6.22 compares the result of wire 1 with parallel two-core models with

10r and 30r spacings. Additional spikes at frequencies between original peaks are

observed. This can be explained by the asymmetric strucutre of the model due to

the change of spacing between two cores before and after the connection. Besides,

the degree of split of resonant frequencies is shown similar to the parallel two-core

model with 30r spacing.

6.6 Twisted-wire pair

In this section, induced currents in twisted-wire pair models are investigated upon

a plane wave excitation. This case evaluates the effect of twisting on the coupling

of external fields and between each other.

Fig. 6.23 shows the geometry of the twisted-wire pair model and details at the

termination and near a complete twist. Similar to preceding cases, the front-to-back

length of the model is 2 m and the radius of both cores is 1 mm. The centre-to-centre

spacing between two cores is 1cm. The twisting centre is 0.04m above the ground

plane. The effect of twisting is evluated by exploring different number of twists in

the model.
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The model is meshed by λ/20 cells globally, and is further refined by 10−8m3 volume

target in the cylindrical region centred on the middle point between two cores with

cross section radius R = 5cm. The incident field is a plane wave of frequency

bandwidth 1- 500 MHz with field polarization in the +x direction and propagating

in the −y direction. Induced currents are observed at both ends of two cores.

s

Figure 6.23 Geometry of the twisted-wire pair model

Fig. 6.24 and 6.25 shows induced currents in twisted-wire pairs with 10 and 20

twists respectively. With increasing number of twists, it is obvious that the actual

length of the wire increases, whilst the horizontal front-to-back length remains same.

This explains the slight decreasing of resonant frequencies of the 20-twist model at

higher order resonances compared to the 10-twist model and the non-twist model,

as shown in Fig. 6.26. Additional spikes are observed between original resonances

due to the variation of vertical height of cores due to twsiting.

0 0.1 0.2 0.3 0.4 0.5 0.6

Frequency (GHz)

-220

-200

-180

-160

-140

-120

-100

C
u
rr

en
t

(d
B

)

Wire 1 front

Wire 1 back

Wire 2 front

Wire 2 back

Figure 6.24 Induced currents in twisted-wire pair model of 10 twists
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Figure 6.25 Induced currents in twisted-wire pair model of 20 twists
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Figure 6.26 Comparison of induced currents in twisted-wire pair models of different number

of twists and parallel non-twist model
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6.7 Four-wire separation

This section investigates the coupling of a four core cable loom to a plane wave

excitation. This case explores the situation of a cable loom when close spaced cores

separate apart along the route. The model geometry is shown in Fig. 6.27. The

axial length of the cable loom is 2 m and the radius of four cores is 1 mm. The

initial position of each core is shown in Fig. 6.28. Core 1 bends 5 cm in the +y

direction at 0.5 m point. Core 2 bends 2 cm in the −y direction at 1 m point. Core

3 travels straightly along the route without any change. Core 4 bends 10 cm in the

−y direction at 1.5 m point.

Again, λ/20 mesh is applied in the global space and local mesh refinement of target

volume 10−8m3 is applied in regions that surrounding all cores. The tetrahedral

mesh not only resolves issue when discretising fine wire features, but also shows good

quality mesh when discretising the curve routes when the core route is deflected. The

meshed model is simulated in a 4-core Sandy CPU platform with 35 GB available

RAM.

z
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4

Figure 6.27 Geometry of four cores cable loom

y (cm)

x (cm)

-2-3 2 3

41 2 3 4

Figure 6.28 Front cross section of the four cores cable loom
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Fig. 6.29 shows the frequency response of induced currents in four wires of the loom

respectively. The magnitude of currents in four cables are in generally similar level.

Currents in back ends of cables show lower minima than current in front ends as a

result of their wider separations. Increasing number of frequency splits are found at

resonances due to additional mutual coupling between cores.
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Figure 6.29 Currents induced in two ends of four cables

132



Chapter 6. Benchmarking problems simulation

6.8 Seven cores cable loom

In this section, the investigation of induced currents in seven cores cable looms upon

plane wave excitations is presented. The cross section of seven cores in a cable loom

is shown in Fig. 6.30. Six wires are placed evenly surrounding a seventh wire in

the middle of the loom. The centre-to-centre spacing between neighbouring cores is

denoted by s and the radius of cores is denoted by r.

The simulation set-up of the wire bundle is same as the one-core cable loom, as

shown in Fig. 6.13, where both ends of cores connect to the ground plane via metal

bulkheads and a wooden spacer is placed beneath the loom. The length of the cable

loom is 2 m and the height of the loom centre above the ground plane is 4 cm. The

wooden spacer placed to support the loom is 1.8 m long, 6 cm wide and 2 cm high

with relative electric permittivity εr = 4.

7
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6 s

r

s

Figure 6.30 Cross section of seven cores cable loom

Three sets of loom configurations are built and modelled in order to evaluate the

effect of various core spacings within the loom and core radius on the electromagnetic

coupling into cables. The model is meshed by λ/20 grids in the global space where

λ correspond to the wavelength at 600 MHz. Meanwhile a cylindrical region centred

on wire 7 with radius 5 cm is defined for localised mesh refinement with target

cell volume 10−8m3. A broadside plane wave of frequency band 1 - 500 MHz is

illuminated with the field polarised in the +x direction and propagating in the −y
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direction.
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Figure 6.31 Induced currents in the seven cores cable loom with core separation 1.5 cm and

radius 1 mm
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Figure 6.32 Induced currents in the seven cores cable loom with core separation 1.5 cm and

radius 3 mm

In the first model, the spacing between adjacent cores is set as s = 1.5 cm and the

core radius is r = 1 mm. This presents a s/r ratio being 15. Currents induced at

the end of cores are observed. Fig. 6.31 plots the frequency response of currents

induced at the left end of seven cores respectively. The result shows resonances of

incduced currents due to the plane wave coupling and coupling from other wires in

the loom. The frequency at resonances due to cross coupling between neighbouring

wires is shown slightly lower than that due to plane wave coupling and this difference
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Figure 6.33 Induced currents in the seven cores cable loom with core separation 0.5 cm and

radius 1 mm

increases as frequency increases. It is also observed that the magnitude of currents

in wire 1 and wire 4 due to the plane wave coupling are highest compared to other

wires as they are less shielded toward the plane wave. Slight frequency shift at the

resonance is observed due to their different heights.

The effect of height is more significant on currents due to cross coupling as wire 4

exhibits highest current than other wires. In contrast, current in wire 1 due to cross

coupling is 20 dB lower than that in wire 4. Wire 2 has the same response as wire

6 and wire 3 has the same response as wire 5. Both these two cases show lower

magnitudes of induced currents due to other wires than current induced in wire 4.

The shieding effect is observed on wire 7 as it shows generally lower magnitude than

other wires that surround it. The magnitude of the current in wire 7 due to plane

wave coupling is 10 dB lower than the current in wire 1. However they show similar

current level due to cross coupling between neighbouring wires.

In the second configuration, the spacing between cores remains 1.5cm while the

radius of cores is set to 3 mm. This presents a s/r ratio being 5. Fig. 6.32 shows

the induced currents at the left end of seven cores respectively. Similar behaviour is

observed while wire 4 shows more distortion induced at higher frequencies. This is
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due to its conducting surface reaching closer to the wooden spacer. It can be seen

that the effect of shielding from surrounding wires is more significant on currents

induced in wire 7. The magnitude of the current in wire 7 due to plane wave

coupling is shown 15 dB lower than the current induced in wire 1. Meanwhile, less

currents is induced in wire 7 due to cross coupling from other wires than the first

configuration.

In the last configuration, the radius of cores is kept the same as the first configuration

while the distance between adjacent core centres is changed to 0.5 cm. This gives

a s/r ratio being same as the second configuration. Fig. 6.33 shows the resultant

currents in seven wires respectively. The magnitude of the current in wire 7 is about

10 dB lower than that in wire 1 for the plane wave coupling and 20 dB lower than

that in wire 4 for the cross coupling. On the other hand, the difference of resonant

frequencies between two types of coupling is reduced, due to their closer spacing.

Compared to the second configuration which has the s/r ratio, the former shows

less distortions due to the larger spacing between the wire bundle and the wooden

spacer.
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6.9 Single core wire bundle variational analysis

This section and following sections extend the length of wire bundle from 2 m to

8 m to explore more features at higher frequencies. The impact of the position of

a single core within in the wire bundle on the plane wave coupling is investigated.

The geometrical configuration of the model is similar to section 6.2, as shown in Fig.

6.34. The wire bunlde has a virtual radius of R=2 cm and is placed on the top of

the wooden spacer that is 2 cm high. The radius of the core is 1 mm. Both ends of

the bundle are connected to the metal bulkhead by short circuit termination. The

position of the single core varies inside the wire bundle as shown in Fig. 6.35. Fig.

Wooden spacer
2 cm

R=2 cm

Cable bundle

PEC Ground plane

7 m 0.5 m0.5 m
y

+
z

Figure 6.34 Wire bundle geometrical set up above a ground plane

6.35 (a) is the wire bundle with its core at the centre of the bunle. Fig. 6.35 (b)

places the core R/2 above the bundle centre. Fig. 6.35 (c) moves the core in bundle

2 R/2 right. Fig. 6.35 (d) moves the core in bundle 1 R/2 right. Fig. 6.35 (e)

moves the core in bundle 4 R/2 down. Fig. 6.35 (f) moves the core in bundle 1 R/2

down.

The geometry is meshed by 10−5m3 tetrahedral mesh that corresponds to λ/30 mesh

at 400 MHz, which is sufficiently small for result convergence as stated in section 6.2.

A broadside plane wave of frequency 1 - 400 MHz is excited with field polarisation

in the +y direction and propagating in the −x direction.
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Figure 6.35 Cross section of six single core wire bundle configurations

The currents induced in six wire bundles are shown in Fig. 6.36 respectively. It

can be seen that the vertical position of the single core within the bundle affects

the resonant frequencies of currents in the wire but the horizontal position has

little effect. Bundle 5 and 6 show lowest resonant frequencies while bundle 2 and

3 show highest frequencies. A further investigation of bundle 2 and 6 without the

wooden spacer in Fig. 6.37 explains the shift of reosonant frequencies of the induced

current. It can be seen that when the wooden spacer is removed between the bundle

and the ground plane hence presenting a homogeneous medium, the shift in resonant

frequencies due to the vertical position is eliminated.
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Figure 6.36 Induced currents in the single core wire bundle of different position
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Figure 6.37 Comparison of currents induced in bundle 2 and 6 with and without the wooden

spacer
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6.10 Three cores wire bundle variational analy-

sis

This section presents the investigation of induced currents in three cores wire bundles

upon plane wave excitations. Fig. 6.38 shows four different configurations of three

wires within the bundle. In Fig. 6.38 (a) wire 1 is placed in the centre of the bundle,

while wire 2 and wire 3 placed on the right top and right bottom of wire1 with a

separation distance R = 1 cm from wire 1. Fig. 6.38 (b), (c) and (d) are cross

sections of bundle 2, 3 and 4, formed by bundle 1 rotated by 45◦, 90◦ and 135◦

respectively.

(a) Bundle 1 (b) Bundle 2 (c) Bundle 3 (d) Bundle 4

Figure 6.38 The cross section of three cores wire bundles of diffenrent wire positions

The model is meshed and excited in the same way as section 6.9. The induced

currents in all three wires in the bundle upon the plane wave excitation are evaluated.

Fig. 6.39 shows currents induced at the left end of three wires respectively. It can

be seen that three wires show similar behaviour of frequency response, but the

magnitude of currents in the centre wire is relatively lower than the other two wires.

The effect of shielding on the centre wire is more clearly demonstrated in Fig. 6.40,

where the current induced in the centre wire of bundle 1 is compared to the single

core wire bundle 1 in Fig. 6.35 (a). These two models are in the same position in

the wire bundle but the second model is surrounded by two other wires. There are

about 15 dB difference of the magnitude of currents at the resonance between the

single core model and the three cores model. Meanwhile, due to the cross coupling
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between neighbouring wires, the resonant frequencies in the current of three core

bundle 1 wire 1 are split.
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Figure 6.39 Induced currents in the three cores wire bundle 1

In order to analysis generally the effect of positions of three cores on the wire cou-

pling, it is more clear to calculate the maximum, average and minimum currents in

the three cores wire bundle. Fig. 6.41 shows the maximum, average and minimum

current of the three cores wire bundle 1 in Fig. 6.38 (a). Such results are then

processed to bundle 2, 3 and 4 in Fig. 6.38 (b), (c) and (d) respectively. Fig. 6.42

shows the maximum current in four sets of three cores wire bundles. It can be seen

that the position of cores affect the resonant frequencies of maximum currents in

wire bundles. It is also noted that in bundle 3 as shown in Fig. 6.38 (c) where

three wires in the bundle are placed at the same height, three is no split of resonant

frequencies of maximum current in the bundle. Same behaviour is also obeserved

in the plot for average and minimum current responses in Fig. 6.43 and 6.44. It

is however noted that wire bundle 3 shows slightly higher magnitude of minimum

currents in three cores wire bundles.
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Figure 6.40 Induced currents in the single core wire bundle 1 in Fig. 6.35 (a) and three

core wire bundle 1 wire1 (centre)
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Figure 6.41 Maximum, average and minimum currents at the left end of three cores wire

bundle 1 as shown in Fig. 6.38 (a)
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Figure 6.42 Maximum currents at the left end of four sets of three cores wire bundles as

shown in Fig. 6.38
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Figure 6.43 Average currents at the left end of four sets of three cores wire bundles as

shown in Fig. 6.38
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Figure 6.44 Minumum currents at the left end of four sets of three cores wire bundles as

shown in Fig. 6.38
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6.11 Ten cores wire bundles variational analysis

The purpose of this section is to model and investigate currents induced in ten cores

wire bundles upon plane wave excitations. It needs to be mentioned that when

there are many cores in a wire bundle, it is more efficient to evaluate the maximum,

average and minimum current induced in the bundle than evaluating currents in

each single core.

Fig. 6.45 shows the cross section of ten sets of 10 core wire bundles to be evaluated.

Wire bundle 1 in Fig. 6.45 (a) consist of 10 cores placed symmetrically in the

bundle. Each core has radius 1 mm and adjacent cores are set equally spaced by

7 mm. Wire bundle 2, 3, 4 and 5 are then obtained by rotating bundle 1 by 45◦,

90◦, 135◦ and 180◦ respectively, as shown in Fig. 6.45 (b), (c), (d) and (e). Cores

in Wire bundle 6 in Fig. 6.45 (f) are however placed more randomly. Table 6.4

lists the cross-sectional coordinates of all 10 cores in the bundle 6. Wire bundle

7, 8, 9 and 10 are then obtained by rotating bundle 6 by 45◦, 90◦, 135◦ and 180◦

respectively, as shown in Fig. 6.45 (g), (h), (i) and (j). Fig. 6.46, 6.47 and 6.48 show

(a) Bundle 1 (b) Bundle 2 (c) Bundle 3 (d) Bundle 4 (e) Bundle 5

(f) Bundle 6 (g) Bundle 7 (h) Bundle 8 (i) Bundle 9 (j) Bundle 10

Figure 6.45 The cross section of ten cores wire bundles of diffenrent wire positions

the maximum, average and minimum current induced at the left end of ten cores

wire bundles respectively. It is observed that the resonant frequencies for maximum,

average and minimum currents change with different wire positions in the bundle,

145



Chapter 6. Benchmarking problems simulation

especially at higher frequencies. Besides, there are approximately 10 dB differences

between the magnitude of maximum and minimum currents.

Table 6.4 Cross-sectional coordinate of 10 cores of wire bundle 6 in Fig. 6.45 (f)

Coordinates
Wire

1

Wire

2

Wire

3

Wire

4

Wire

5

Wire

6

Wire

7

Wire

8

Wire

9

Wire

10

X (cm) 0 0 0 0 0 -0.5 0.6 -1.0 1.2 -0.8

Y(cm) 0 1.0 -1.2 0.5 0.6 0 0 0 0 -0.8

Figure 6.46 Maximum currents in ten cores wire bundles for 10 sets of configurations
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Figure 6.47 Average currents in ten cores wire bundles for 10 sets of configurations

Figure 6.48 Minimum currents in ten cores wire bundles for 10 sets of configurations
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6.12 Conclusion

This chapter has presented simulations of wire bundles with different configura-

tions upon plane wave excitations. Sufficient simulation results were obtained using

localised mesh refinement whilst remaining outer region coarsely discretised. The

effect of spatial variation of a single-core cable loom has shown to be small in a ho-

mogeneous environment, but shift resonant frequencies with a wooden spacer placed

above the ground plane. The current induced in a two-core wire bundle has shown

increased cross coupling between cores as the spatial distance between two cores de-

creased. The separation of wires along the route has shown to increase the number

of resonances. The effect of shielding was shown in wires within multi-core wire

bundles where the outer cores prevent the field coupling into inner cores. The vari-

ation of spatial relationship of cores within a multi-core cable loom has shown to

affect the resonant frequency of maximum, average and minimum induced currents

in the loom, especially in the higher frequency range.
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7
Log-periodic Dipole Array (LPDA) Antenna

This chapter presents the modelling of Log periodic dipole array (LPDA)

antenna using UTLM. Background theory and design prodcedure of LPDA

is introduced. An example from textbook is built and simulated and the

resultant radiation pattern is compared to the theory.

***
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7.1 Introduction

In chapter (5) and (6) the Unstructured Transmission Line (UTLM) method was

applied to various wiring models to investigate the electromagnetic behaviour of

them to external field coupling. These canonical and benchmark problems estab-

lished the application, self-convergence and accuracy of the UTLM method. A wide

frequency coverage of incident electromagnetic fields is needed in modern electro-

magnetic susceptibility testing and verification. This requires a broadband antenna

as the source of these fields. The log-periodic dipole array (LPDA) is a common

broadband antenna that is constructed by a sequence of parallel linear dipoles to

cover different frequency bands. Due to its low construction cost and linear polar-

ization, it is preferred over other broadband antennas such as the spiral antenna

and the TEM horn [7.1,7.2] In this chapter the UTLM method is used to simulate

LPDA antennas to further demonstrate its practical application.

This chapter is outlined as follows. First the background theory of the LPDA an-

tenna and a theoretical design procedure is introduced. This procedure is used to

specify an example design with designated requirements on directivity and band-

width, which is then modelled using the UTLM method. A detailed description

of how to build and model this structure is then given. Numerical and analytical

results are compared and the capability of the UTLM to provide far field data is

described.
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7.2 Background theory and Design of the LPDA

7.2.1 Theories of Log-periodic dipole array (LPDA) antenna

The basic structure of a log-periodic dipole array antenna is formed by a number

of parallel dipole elements with the size of each element reduced progressively from

back to the front. The maximum radiation is directed from largest element toward

smallest element. Fig.7.1 shows a typical structure of a LPDA whose end points at

either side form a straight line and join to a virtual apex. The half apex angle α

is introduced to define the angle between the end point and the centre line. The

element dimension notations Ln, Rn, Dn, dn represent the dipole length, distance

to the apex, diameter of the nth element and distance between adjacent elements

respectively, starting from the largest one. One key feature of these parameters is

that they share same scaling constant τ for adjacent elements [7.1–7.3]:

Ln
Ln+1

=
Rn

Rn+1

=
dn
dn+1

=
Dn

Dn+1

=
Sn
Sn+1

=
1

τ
(7.1)

Another spacing constant σ is defined to relate the element length and the spacing

R1

L1

R2

R3

R4

L2
Virtual 

Apex

L3 L4

S1
S2

S3
S4

2

d1

d2

d3

Rn

Sn

Dn

Figure 7.1 LPDA structure and dimensions [7.1]

between adjacent elements:

σ =
dn

2Ln
(7.2)
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Due to such structure, the LPDA is able to operate over a wide band frequency

range; the lower cut-off frequency is determined by the electrical length of the longest

element and the higher cut-off frequency determined by the shortest. These elements

are mainly divided by three regions, which are the active region, loaded transmission

line region and the reflective region respectively. For different operating frequencies,

different regions along the array are activated. These regions are located at positions

where element lengths are near or slightly smaller than half of the wavelength of

operation. As the operation frequency increases, the active region passes from the

back largest elements to the front smaller elements. In the loaded transmission line

region, dipoles are shorter than a half-wave length at the operation frequency and

act capacitively as directors [7.3]. The longer elements that locate behind the active

region appear inductive and acts as reflectors.

Figure 7.2 Two dipole elements connection methods on the feeder line

All elements of an LPDA are connected and fed through the centre terminal of each

element by a balanced and constant impedance feeder from the smallest dipole.

An unsuccessful excitation method like would result in phase progression along the

array, due to the same phase relationship between adjacent elements as shown in

Fig. 7.2 (a), and unwanted beam toward the back of the array. In order to minimise

this effect, it is suggested to alternately connect each element and therefore add a

180◦ phase to the neighbouring elements as shown in Fig. 7.2 (b).
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7.2.2 LPDA design procedure

There are various methods developed to design LPDA antennas based upon certain

specifications. In this chapter the method by [7.1] is adopted to calculate antenna

configurations. First of all, the scaling factor τ and the relative spacing factor

σ are obtained. This can be done by specifying desired directivity and finding

approximated τ for optimised σ from Fig. 7.3

Figure 7.3 Directivity versus scale factor τ and spacing factor σ [7.1]

The halr-apex angle α of the LPDA can then be obtained from:

α = tan−1

[
1− τ

4σ

]
(7.3)

The bandwidth of the active region Bar is related to α and τ by

Bar = 1.1 + 7.7(1− τ)2 cotα (7.4)

This indicates a slightly larger bandwidth than the requirement in order to operate

at lowest and highest desired frequencies. The distance between the longest and
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s

d

s

w

(a) Two wire line (b) Parallel plate

Figure 7.4 Two types of feeder line for LPDA

shortest elements is calculated from:

L =
λmax

4
(1− 1

BBar

) cotα (7.5)

where λmax refers to the wavelength at lower cut-off frequency. Besides, the to-

tal number of elements is determined by the designed bandwidth and the scaling

constant:

N = 1 +
ln(BBar)

ln(1/τ)
(7.6)

The spacing sn between the feeder lines is assumed constant along the array, as

it shows negligible effect on results [7.1]. For a two-wire transmission line of di-

ameter d, s refers to the centre-to-centre spacing between two lines as shown in

Fig.7.4(a).

s = d cosh

(
Z0π

η

)
(7.7)

For a parallel plate line of width w, s refers to the separation distance between two

plates as shown in Fig.7.4(b):

s =
Z0w

η
(7.8)

In both equations Z0 refers to the characteristic impedance of the feeder line, which

is determined from the average characteristic impedance of dipole elements Za, the

desired input impedance and a relateve mean spacing σ′ = σ√
τ

.
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7.3 Modelling example

This section models an example design of LPDA antenna presented in [7.1] in order

to investigate the capability and performance of the UTLM method. The example

provides sufficient design parameters and derives the detailed antenna dimensions to

construct. The simulation focuses on finding far-field radiation patterns and VSWR

for different frequencies.

7.3.1 Antenna design requirement

The detailed antenna design specifications are listed in table 7.1.

Higher Bandwidth Limit (MHz) 216

Lower Bandwidth Limit (MHz) 54

Directivity (dB) 8

Input Impedance ( Ω) 50

Diameter of largest feeder line (cm) 1.9

Table 7.1 LPDA Design requirements for example 11.1, Antenna theory [7.1]

Based on equations presented in section 7.2.2 and parameters provided in table 7.1,

one is able to derive the spacing parameters and dimensions of the first elements.

Subsequent elements are then obtained based on the scaling factor The designing

and derivation steps are presented in [7.1], therefore are not detailed here. Table 7.2

lists values of design parameters and dimensions of the first element, with notations

labeled in Fig. 7.1. Dimensions of subsequent elements are then obtained according

to equation (7.1).

7.3.2 Geometry construction

The geometrical model is constructed as shown in Fig.7.5. The antenna is placed 6

m above the ground plane using a support post mounted at the centre of the feeder
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half-apex angle (α) 12◦

relative spacing factor (σ) 0.157

scaling factor (τ) 0.865

Number of elements (n) 14

R1 −Rn (m) 5.541

L1 (m) 2.7759

D1 (cm) 1.9

d1 (m) 0.8786

s1 (cm) 0.32

Table 7.2 Geometry parameters for the LPDA

line. The feeder line is formed by a parallel-plate line of width 2cm and separation

distance 0.32cm in order to provide the desired 60 Ω impedance. As stated in [7.1],

the effect of separation distance between feeder lines is small on the performance

of the antenna, therefore it is set to be constant in this work for the ease of model

construction.

A coaxial cable that connects to the ground plane rises along the post and excites

the antenna from the front end as shown in the insets of Fig.7.5 (b). The outer

conductor of the coaxial cable connects to a hollow metal pad, which has a hole on

the upper side, and the pad connects to the lower conductor of the feeder line while

the inner goes through the hole and connects to the upper feeder line. In this way

currents from the inner conductor of the coaxial cable goes to the upper feeder line

and currents from the outer conductor goes to the lower feeder. The coaxial cable

has an outer radius 5mm and inner radius 1mm with a relative dielectric permittivity

ε = 3.723 in the middle in order to provide 50 Ω characteristic impedance for the

coaxial cable according to equation:

Z0 = (138/
√
εr )× log10(R/r)
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where R is the outer radius and r is the inner radius.

The dipole elements are connected alternately to the upper and lower feeder line to

achieve 180◦ phase shift between adjacent elements as shown in the inset of Fig. 7.5.

The dimensions of each element are obtained according to the first element and the

scaling factor τ .
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(b)

6m

2.78m

0.88m

5.54m
(a)

Figure 7.5 Geometry structure and dimensions
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7.3.3 Simulation

The convergence test of the constructed model with mesh size is firstly performed.

The antenna is excited from the bottom side of the coaxial cable by a transverse

eletromagnetic (TEM) mode wave at 60 MHz with a frequency range from 55 MHz

to 65 MHz. The far field patterns are measured 1λ away from the antenna, with E-

plane referring to the horizontal plane that contains dipole elements and the H-plane

referring to the plane perpendicular to the E-plane.

(a) (b)

Figure 7.6 Mesh plot of the LPDA model of cell size 0.5m with a) the whole model and b)

details around the front end
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Figure 7.7 Mesh distribution of the model by mesh size λ/10 with a) cross-sectional view

and b) number of meshes as a function of cell volume

The model is meshed with good quality tetrahedral cells (Q=5; y=5) of maximum

cubic cell size 0.5m which corresponds to λ/10 at 60 MHz; where Q and y refer to

quality factors of tetrahedral cells and triangular faces respectively. Fig.7.6 shows
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meshes of the whole model and around the antenna respectively. Due to the thin

and circular features of antenna elements, fine sized tetrahedral elements are used

around the antenna while crude meshes used in the free space region. The cross-

sectional view of the meshed model in Fig.7.7 (a) and statistics chart in Fig. 7.7 (b)

show clearly mesh distribution of different cell sizes. Fig. 7.7 shows that meshes of

size below volume 10−6m3 are generated around antenna elements and have larger

amount than those generated in the free space.
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Figure 7.8 Far fields at 60MHz for mesh size of λ/10
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Figure 7.9 Far field radiation for different mesh sizes

The far fields in the E-plane and H-plane for the λ/10 mesh observed one λ away

from the front end are shown in Fig.7.8, It is observed that the far field radiation

is not accurately resolved due to coarse sampling of the free space region. Smaller

meshes are then used in the free space region and the main lobe of far fields converge

for cell sizes below λ/20 as shown in Fig.7.10. λ/50 mesh shows approximately 5dB

higher back lobe radiation than coarser meshes.
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(a) E-plane 60 MHz
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Figure 7.10 Far field radiation pattern 60 MHz

The theoretical radiation pattern of the designed antenna based upon current dis-

tribution approximation is derived from [7.1] and compared to the results obtained

from the UTLM simulation using λ/50 mesh, as shown in Fig. 7.10a. The simulated

results in both E- and H-planes show good agreement with the theoretical pattern

on the main radiation direction. The simulated result shows slightly higher back

lobe radiation, but is in acceptable level.

The radiation pattern at different frequencies in the desired bandwidth are then

simulated. In order to obtain accurate results, the model is discretised by λ/30

tetrahedral meshes with λ corresponding to the wavelength at 200 MHz. Fig. 7.11

shows observed far-field radiation patterns for frequencies 80 MHz, 120 MHz, 160

MHz and 200 MHz respectively, and compared with theoretical patterns obtained

from [7.1]. For low frequencies like 60 MHz and 80 MHz, the simulated result

show approximately 10 dB higher back lobe radiation levels. This is because at low

frequencies, the active region is at the back of the antenna and is highly affected by

the termination load. It is also found that with the operation frequency increasing,

both simulation and analysis show more side lobes and back lobe levels in both E and

H-plane. The UTLM simulation shows generally good agreement with benchmarking

patterns at different frequencies.
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(a) E-plane 80 MHz
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(b) H-plane 80 MHz
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(c) E-plane 120 MHz
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(d) H-plane 120 MHz
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(e) E-plane 160 MHz
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(f) H-plane 160 MHz
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(g) E-plane 200 MHz
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(h) H-plane 200 MHz

Figure 7.11 Far field radiation pattern for different frequencies
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7.4 Conclusion

In general, the capability of UTLM in modelling LPDA antenna is demonstrated in

this chapter. The use of thin and long wire structures in the antenna construction

and in wideband operation frequencies decide its difficulty to model using full-wave

time domain electromagnetic solvers, as their particular requirement of volume mesh

in the whole simulation space. Nevertheless, the UTLM method demonstrates its ro-

bustness in such background using sufficient meshing sizes and acceptable geometry

constraints.
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8
Conclusion

8.1 Overview of the work presented

The aim of this work was to study the Electromagnetic Compatibility (EMC) of

wiring problems in modern Comupational Electromagnetic (EMC) environment and

demonstrate the capability of Unstructured Transmission Line Modelling method to

directly modelling wire structures using explicit unstructured tetrahedral meshing

techniques.

The work has presented the UTLM method, as a novel powerful CEM method which

is unconditionally stable, is capable to solve various wiring problems without decou-

pling into two-step process that solves the wire model and field-to-wire separately.

The UTLM resolved the issue of curved boundary of circular wires using tetrahedral

meshes and implicit mesh clustering method to increase time step. The local mesh

refinement has been used to resolve the dispersion error due to mesh size inconsis-

tency in the near-field area around the wire without compromising meshing sizes in

the whole simulation space and achieves fast convergence of simulation results. This

also provided the capability of UTLM in modelling multi-scale complex electrical

systems, where free spaces can be modelled using relatively coarse meshes and fine

meshes are kept near wire models.
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This work has presented the study of various wire bundles of different configurations

upon external field excitation. A simple straight wire model upon a plane wave exci-

tation presented resonances according to its length. When multiple wires presented

in a wire bundle with close space, more resonances were shown due to cross coupling

between cores, and resonant frequencies were shown related to spatial relationship

of wires within the bundle. In addition, wires in the inner region of a bundle were

shown less current induced due to shielding from wires in the outer regions. However,

more wires within a bundle did not show affecting the overall system performance

which is decided by the maximum induced current in the bundle.

The UTLM method has also shown the capability to model an Log-periodic dipole

array (LPDA) antenna which consists of 14 dipole pairs with maximum length 2.78

m and minimum diameter 1 mm. The radiation pattern at different frequency bands

were shown good agreement to the theories.

Although UTLM has shown its feasibility in modelling multi-scale features, the

computational expenses is still the main concern. In a simple simulation set-up of a

wire bundle above a ground plane with truncated simulation space, wire structures

contributed to the most number of meshes with apparent smaller size compared to

the outer space. When number of wires increases or wires with curved routes, the

computational cost increased accordingly. Nevertheless, the significance of the work

presented in this thesis is the presence of a straightforward method without a priori

simplification and approximation and the capability of extending this work to more

complicated studies.

8.2 Future Work Consideration

In this contribution, various wire bundles were directly modelled and studied using

the UTLM method. This work might be extended in the future for more complicated

structures such as wire bundles not parallel to the structure, non-straight wire bun-
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dles and more complicated simulation environment such as the inclusion of carbon

fibre reinforced plastics fuselages.

Meanwhile, embedding thin wire approximations in UTLM is still desired as it re-

duces more computational costs. The local field solutions for multi-wire systems

presented in chapter 3 could be further developed to be embedded into unstructured

tetrahedral meshes as well as mesh clusters. In addition, combining the method of

moment for thin-wire approximation could be an alternative approach as it presents

accurate results for wiring models.
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