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Abstract

Tissues, in both humans and animals, consist of cells embedded in a dynamic scaffold

known as the extracellular matrix (ECM). Cells interact with the ECM through the

process of cell–matrix adhesion, and these interactions, mediated by transmembrane

proteins called integrins, are fundamental in regulating a diverse range of physiolog-

ical processes. The focus of this thesis is on airway smooth muscle (ASM) cell–matrix

adhesion, which regulates the transmission of contractile forces generated within

ASM cells to the ECM. This is of particular importance in the context of asthma, where

contraction of ASM cells, and the subsequent transmission of contractile forces to the

surrounding tissue, leads to a narrowing of the airways called bronchoconstriction.

In this thesis, we develop mathematical models of ASM cell–matrix adhesion; our

objective is to investigate how integrin-mediated adhesions are affected by the dy-

namic mechanical environment of the in vivo airway. In particular, we aim to gain

insight into how integrins respond to tidal breathing and deep inspirations (DIs),

since changes in integrin dynamics may affect the extent of airway narrowing during

bronchoconstriction.

Firstly, we develop a discrete stochastic–elastic model and a multiscale continuum

model (Chapter 2), both able to account for detailed integrin binding kinetics along-

side material deformations at the cell level. With these models we observe two dis-

tinct adhesion regimes in response to oscillatory loading, where either adhesion for-

mation or adhesion rupture dominate (Chapter 3). For intermediate oscillation ampli-

tudes we observe bistability due to shared loading and, as a result, we find that per-

turbations in the loading amplitude, mimicking DIs, can lead to different outcomes

for the level of adhesion. This will affect the level of attainable force transmission dur-

ing ASM cell contraction, and we discuss the possible consequences for airway nar-

rowing. There is strong qualitative agreement between our discrete and continuum

model results, and we consider several extensions of the continuum model (Chapter

4) to allow for activation, diffusion and strain-dependent reinforcement of integrins.
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In addition to theoretical results, we present and analyse experimental data from

atomic force microscopy experiments (Chapter 5). In the experiments, cells were sub-

ject to vertical oscillatory loading of varying amplitudes. By extending the continuum

model to support vertical motion, we mimic the experimental protocol and, in agree-

ment with the data, we obtain two distinct temporal patterns in adhesion force. Our

simulations provide insight into the underlying integrin dynamics and the resulting

cell deformation; these cannot currently be measured by experiments but are pre-

dicted by the model. We use cluster analysis techniques to study force timecourses

from individual cells and, in some cases, we observe switching behaviours that could

be an indicator for bistability.

The integrin response to oscillatory loading affects how contractile forces are trans-

mitted from ASM cells to the ECM. However, it is also known that oscillatory loading

affects the generation of contractile force (which is mediated by actomyosin cross-

bridges within the cell). In order to fully understand the consequences for bron-

choconstriction, it is therefore important to consider how these processes interact.

To investigate this, we couple our model of cell–matrix adhesion to a well-established

model of contractile force generation (Chapter 6). Our results demonstrate a close me-

chanical coupling between the two processes and show that both force transmission

(via integrins) and force generation (via crossbridges) are modulated by oscillatory

loading. Moreover, there is feedback between the two processes and a regulatory

mechanism due to negative feedback. We observe two regions of bistability: one as

reported in our earlier results, due to shared loading between integrins, and a sec-

ond due to analogous mechanisms for the crossbridges. These both introduce hys-

teresis and can result, in each case, in reduced levels of total contractile force after

large amplitude oscillations. It is known from experiments that deep inspirations can

induce either transient or sustained bronchodilation, and that these responses dif-

fer in asthmatics and non-asthmatics. Because of the hysteresis in total contractile

force, we hypothesise that bistability could be an underlying mechanism by which

sustained bronchodilation occurs. Furthermore, we show that the bistability can be

lost for changes in the passive cell stiffness or in the relative crossbridge to integrin

strength; a loss of bistability would result in an inability to obtain sustained reduc-

tions in contractile force, which could correspond to the transient bronchodilation

seen in asthmatics.
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Chapter 1

Introduction

1.1 Asthma

Asthma is a chronic respiratory disease affecting over 300 million individuals world-

wide [11]. In the UK, over 5.4 million people are affected [7], equating to more than 1

in 12 of the population. There is currently no cure and treatments can only relieve the

symptoms. Common symptoms include chest tightness, shortness of breath, wheez-

ing and coughing [74], which can interfere with daily activities and significantly affect

quality of life. In severe asthmatics, whose symptoms are poorly controlled, asthma

is responsible for a large number of hospital admissions and over 250,000 deaths an-

nually [11]. Additionally, there are high costs associated with the management of

asthma. Directly, there are costs associated with hospital resources and care, esti-

mated to be in excess of £1.1 billion per year in the UK [7]. Indirectly, there is wider

impact due to increased absences from work; for the UK this reportedly reaches 20

million days per year [103].

Asthma has three defining characteristics: inflammation, airway hyperresponsive-

ness and airway remodelling. Inflammation of the airway tissue occurs in response

to inhaling allergens and leads to an obstruction of airflow. Additionally, a series of

biochemical responses are triggered, a result of which is the secretion of contractile ag-

onists such as histamine [21]. This causes further problems since contractile agonists

trigger airway smooth muscle (ASM) cell contraction, which results in bronchocon-

striction, a narrowing of the airways that further restricts airflow [113]. In addition

to inflammation, asthmatics also exhibit airway hyperresponsiveness, which is de-

fined as an increased sensitivity to contractile agonists; ASM cell contraction is more

1



CHAPTER 1: INTRODUCTION 2

severe and occurs at relatively low doses of agonist [113]. The third characteristic,

airway remodelling, constitutes the longer term structural changes seen in asthmatic

airways. These changes include excess collagen deposition and increased ASM mass

[22], and result in altered material properties such as changes in tissue stiffness and

contractility.

In this thesis we develop mathematical models to better understand cell-level mech-

anisms of relevance to asthma, with a particular focus on the mechanisms influenc-

ing bronchoconstriction. We begin by presenting an overview of respiratory and air-

way physiology before discussing the characteristics of asthmatic airways in more

detail. In Section 1.2 we then introduce an key process in regulating bronchoconstric-

tion, which is the process of cell–matrix adhesion. Cell–matrix adhesion regulates the

transmission of contractile forces generated by ASM cells to the surrounding tissue,

and is therefore an important area of study. In Section 1.3 we review the existing

modelling and experimental literature relevant to cell–matrix adhesion and to ASM

cell contraction, and in Section 1.4 we summarise the key objectives and structure of

this work.

1.1.1 Airway physiology

The lungs are the primary organs of the human respiratory system and are responsi-

ble for gas exchange during respiration. Specifically, they control the uptake of oxy-

gen and the removal of carbon dioxide from the bloodstream. To enable this, air enters

the respiratory system through either the nose or the mouth before passing through

the trachea and main bronchi (Fig. 1.1). The main bronchi divides into the left and

right bronchi, through which the air travels to reach each of the lungs. Within the

lungs the branching of airways continues; firstly with bronchi directed into each of

five lobes in the lungs (three in the right lung, two in the left) before dividing for a

further 21 generations [109]. At each division the airways become narrower and less

stiff.

The first 16 generations in the branched structure are known as the conducting zone,

where no gas exchange occurs. Further generations form the transitional and respi-

ratory zones, where bronchioles divide into smaller respiratory bronchioles, alveolar

ducts and alveolar sacs. Here the branched structures terminate in approximately 300

million alveoli, allowing for efficient gas exchange since it provides an extremely large
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surface area. Gas exchange occurs by diffusion between the alveoli and surrounding

capillaries.

Trachea

Left bronchiRight bronchi

Bronchiole

Alveolar sacs

Capillaries

Mouth

Nose

Figure 1.1: Schematic of the key components in the respiratory system. Air inhaled

through the nose or mouth travels through the trachea, bronchi, into one

of five lobes (coloured) and through the branched structure of airways

in the lungs. Gas exchange occurs in the smaller respiratory bronchioles

where oxygen and carbon dioxide diffuse between alveoli and capillaries.

(Image adapted from en.wikipedia.org/wiki/Respiratory_system).

1.1.2 Asthmatic airways

There are three defining characteristics of asthmatic airways: inflammation, airway

hyperresponsiveness and airway remodelling [21, 107]. Together, these factors con-

tribute to airway obstruction, reduced airflow and an overall decline in lung function.

Inflammation

In asthmatics, the inhalation of allergens induces an inflammatory response. As part

of the inflammatory response there is production, recruitment and activation of in-

flammatory cells [21, 79]. The activated inflammatory cells secrete proinflammatory

mediators such as histamine [75], a contractile agonist, triggering ASM cell contrac-

tion and bronchoconstriction. During the inflammatory response there is also an in-

creased secretion of mucus from goblet cells which line the airway walls [21], causing
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further obstruction of the airways. Inflammatory events additionally have long term

consequences for asthmatics by promoting airway remodelling. In particular, a type

of inflammatory cell called eosinophils can secrete growth factors, including the pro-

remodelling growth factor TGFβ [57].

Bronchoconstriction and airway hyperresponsiveness

Bronchoconstriction (Fig. 1.2), occurs in response to contractile agonists. Exposure

to agonists triggers the generation of contractile force within ASM cells, resulting in

contraction of individual cells (Fig. 1.3) [54]. These forces are transmitted to the sur-

rounding airway tissue by a type of transmembrane protein called integrins (Section

1.2.2) [153], and the combination of these two processes leads to narrowing of the

whole airway. A key characteristic of asthma is airway hyperresponsiveness, which

is an increased sensitivity to contractile agonist. This means that ASM cell contraction

(and the resulting bronchoconstriction) is triggered at relatively low exposures to ago-

nist. Furthermore, when subject to the same dose of agonist, the degree of contraction

is observed to increase with the severity of asthma [104].

Figure 1.2: Airway smooth muscle (ASM) is present in healthy airways (left). In

asthmatic airways (middle), the ASM mass is increased due to airway

remodelling. During bronchoconstriction (right), contractile force gen-

erated within ASM cells leads to airway narrowing. This restricts air-

flow through the airways and makes breathing difficult. (Image from

houstonlungclinic.com/bronchial-thermoplasty).

Contractile force is generated by intracellular proteins called actin and myosin [54].

Intracellular actin and myosin filaments slide over each other, when triggered, to

cause contraction of the whole ASM cell (Fig. 1.3). The thicker myosin filaments have
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protruding myosin heads that bind to sites on nearby actin filaments (F-actin), to form

crossbridges. Myosin heads bind at an angle and induce a small relative motion of the

actin filament, where the crossbridges repeatedly detach and rebind to actin sites fur-

ther along the filament. This cycle of unbinding and rebinding is called crossbridge

cycling, and produces the sliding motion behind all types of muscle contraction [118].

Within the cell, chains of actomyosin filaments form longer pathways along which

contractile force is transmitted (Fig. 1.3) [54]. Additionally, actin filaments adhere

to the surrounding extracellular matrix (ECM) via integrins, which will be described

in detail in Section 1.2.2. Due to integrin-mediated adhesion, the contractile force

generated within the cell by crossbridge cycling leads to ECM deformation [123]. In-

tegrins therefore regulate the transmission of contractile force between ASM cells and

the airway tissue, and will be an important factor to investigate in the study of bron-

choconstriction.

Figure 1.3: A representation of an ASM cell and the contractile machinery within the

cell. Chains of actomyosin filaments form force transmission pathways,

along which contractile force is transmitted during crossbridge cycling.

Contractile forces are transmitted to the ECM when ECM ligands are con-

nected to the cytoskeleton via integrin-mediated adhesions. In reality the

actomyosin network and integrins are far more dense than depicted. (Im-

age adapted from [54])

The lung provides an inherently dynamic environment for ASM cells due to breath-

ing. As well as regular ‘tidal breathing’, there are variations in breathing patterns over

time. A key example is the act of sighing which happens involuntarily approximately

12 times an hour. A sigh is a type of deep inspiration (DI), classified by a large in-

crease in the volume of air inhaled (approximately 2–5 times that of tidal volume) and

is a reflex that reinflates alveoli that may have collapsed during tidal breathing [93].
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There have been several experimental studies which look at the relationship between

taking deep inspirations (DIs) and the reversal of bronchoconstriction. In healthy

subjects DIs are known to promote bronchodilation, but this effect is either transient

or non-existent in asthmatics [33, 78, 125]. Further experimental studies show that

DIs are in fact a crucial mechanism for the regulation of normal lung function. This

is evidenced in several studies where healthy subjects purposely refrain from sighing

for a period of time [98, 129, 130]. In each of these studies, after withholding DIs,

healthy individuals were observed to experience airway hyperresponsiveness on a

similar level to asthmatic subjects. Withholding from DIs also results in reduced lung

compliance and increased airway resistance [93].

The reasons behind DI-induced bronchodilation are not fully understood, but a key

aspect to understand is how the fluctuating mechanical environment of the lung dur-

ing breathing affects contractile force generation and ASM cell–matrix adhesion dy-

namics. A common hypothesis is that DIs lead to the disruption of actin-myosin

crossbridges [125] which mediate contractile force generation within the cell. Under

this hypothesis, it becomes necessary to understand what can cause differences in

crossbridge dynamics in asthmatics and non-asthmatics, whose response to DIs dif-

fer [33, 78, 125]. However, since the transmission of intracellular contractile forces to

the extracellular domain is reliant on cell–matrix adhesions [123], the density and dy-

namics of adhesions in asthmatic and non-asthmatic cases could also play an impor-

tant role. The response of ASM cell–matrix adhesions to the oscillatory environment

in the lung has so far not been studied, and will be considered in this work.

Airway remodelling

A number of long term physiological and structural changes occur in asthmatic air-

ways due to a process known as airway remodelling; these changes are illustrated

and described in Fig. 1.4. In a healthy airway, the flow of air is unobstructed through

the lumen. In asthmatic airways, a number of factors lead to obstruction of airflow.

Firstly, there are abnormal increases in the number of goblet cells, which are inter-

spersed between epithelial cells and line the airway. These secrete excess mucus into

the lumen [116]. Due to remodelling, there is also an increase in the number of blood

vessels in the airway wall (through angiogenesis), with the new blood vessels re-

ported to be hyperpermeable. As a result, excess fluid can leak into the surrounding

tissue, known as edema, which results in swelling and further airway obstruction
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[21]. An important feature of airway remodelling is an increase in ASM mass [22].

There is also increased collagen deposition and thickening of the basement mem-

brane (Fig. 1.4), all of which result in a stiffening of the airway tissue. These structural

changes are thought to be irreversible and over time lead to permanently obstructed

airflow and a decline in lung function. The extent of airway remodelling will be

patient-specific and depend on the severity of the asthma.

Inflammatory events promote airway remodelling; however, they are not the sole

contributor. During bronchoconstriction, the contraction of ASM cells is known to

activate the growth factor TGFβ [51], which can induce changes in the epithelial layer

and increase the proliferation rate of ASM [57]. Activation of TGFβ, which other-

wise remains latent in the ECM, is triggered by local deformations generated by the

transmission of contractile forces to the surrounding ECM via integrin-mediated ad-

hesions [105, 136, 146]. This evidence provides further motivation to study integrins

and the transmission of contractile force to the ECM in the context of asthma.

1 2 3 4 51 2 3 4 5

Figure 1.4: Diagram of physiological changes that occur in an asthmatic airway com-

pared to a healthy airway. In a healthy airway (left), (1) Air flows through

the lumen. (2) There is a thin layer of mucus, secreted by goblet cells. (3)

Goblet cells (dark blue) are interspersed between epithelial cells (light

blue) which line the airway. (4) The basement membrane (orange) sepa-

rates the epithelial layer from the rest of the airway wall components,

which include collagen fibres, blood vessels and (5) a circumferential

layer of airway smooth muscle (ASM). In an asthmatic airway (right)

changes include a reduced diameter of the lumen and increased levels

of mucus due to goblet cell hyperplasia. There is also increased colla-

gen deposition and thickening of the basement membrane. Furthermore,

there is an increase in the number of blood vessels and an increased ASM

mass. (Image adapted from [116]).
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1.2 An overview of cell adhesion

In Section 1.2.1 we provide an overview of cell adhesion. Of particular importance to

this work is cell–matrix adhesion via integrins, which is discussed in detail in Section

1.2.2. Integrins transmit the contractile forces generated within airway smooth muscle

(ASM) cells to the surrounding airway tissue [153]; together with contractile force

generation, cell–matrix adhesion is therefore a key process to understand in the study

of bronchoconstriction. In Section 1.2.3 we discuss some experimental techniques that

are currently used for measuring cell adhesion in vitro. One such technique is atomic

force microscopy (AFM), and we will be considering data from AFM experiments in

Chapters 4 and 5.

1.2.1 Cell adhesion molecules

Interactions between cells, or between a cell and the extracellular matrix (ECM), are

mediated by the process of cell adhesion. These interactions regulate a diverse range

of physiological processes by affecting cell migration, shape and the cell cycle. As a

result, cell adhesion is central to the formation and maintenance of tissues [52], mor-

phogenesis [52, 134], tumour metastasis [15, 50], virus attachment to host cells [18]

and inflammation [39]. In addition to providing the necessary surface attachments for

these processes, transmembrane proteins associated with cell adhesion mediate bidi-

rectional chemical and mechanical signalling [5, 120, 124]. In the context of asthma

and ASM cells, cell–matrix adhesion between ASM cells and the surrounding ECM is

important in regulating the extent of airway narrowing during bronchoconstriction

(Section 1.1.2).

The transmembrane proteins that are essential for cell–cell or cell–matrix adhesion

are known as cell adhesion molecules (CAMs) and undergo specific binding by a lock

and key mechanism. The binding is either homophilic (to molecules of the same type)

or heterophilic (to molecules of a different type). CAMs are grouped into four main

superfamilies: cadherins, selectins, immunoglobulins and integrins. Cadherins are

homophilic and bind to the extracellular domain of other cadherins to mediate cell–

cell adhesion. Collectively they are able to form strong connections between neigh-

bouring cells, known as adherens junctions. Since CAMs are transmembrane proteins

they also have an intracellular domain. The intracellular domains of cadherins bind to

catenins, a family of proteins that further bind to the actin cytoskeleton of the cell [5].
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The selectin superfamily is made up of L-, E-, and P-selectins and mediates adhesion

involving leukocytes, endothelial cells and platelets respectively. Selectins initiate ad-

hesion by recognising and binding heterophilically to selected carbohydrate groups

on the surface of other cells [2]. The immunoglobulin superfamily are also involved

in cell–cell adhesion and use both homophilic and heterophilic binding. The final

superfamily, integrins, mediate cell–matrix adhesion and are the type of CAMs con-

sidered in this work. Their binding is heterophilic: the extracellular domain of inte-

grins bind to ligands in the ECM such as fibronectin, vitronectin, laminin or collagen

[111]. Integrins, and the large focal adhesions that they form, are capable of trans-

mitting and responding to mechanical forces between a cell and its environment and

are known to be highly dynamic structures due to their sensitivity to environmental

cues [67, 71, 123, 132, 148]. Their dynamic behaviour is most notably studied in the

context of cell migration, which is induced by traction generated by adhesions at the

leading edge of a cell. Due to their sensitivity to environmental cues, an important

aspect to understand is the response of ASM cell–matrix adhesions to the oscillatory

mechanical environment in the lung.

1.2.2 Integrin structure and focal adhesions

Integrins are heterodimeric and consist of an α and β subunit, each of which has an

extracellular, transmembrane, and cytoplasmic domain. In mammals there are 18

known α subunits, 8 known β subunits, and 24 recorded combinations and integrin

types. The specific subunits of an integrin depend on cell type, and additionally deter-

mine properties and functions of the integrin including binding affinity for particular

ligands in the ECM [71]. To enable signal transduction between the cell and the ECM,

a sequence of molecular events must take place to physically connect the integrin to

both the intracellular and extracellular regions of the cell; these events are described

below and sketched in Fig. 1.5.

In their inactive state, integrins take on a bent conformation which leaves them close

to the cell membrane and with a low-affinity for binding to ligands in the ECM (Fig.

1.5). Activation mechanisms involve a sequence of regulatory events within the cell

[9, 27, 60]. An important and final stage of this so-called ‘inside-out’ activation in-

volves the binding of adaptor proteins—commonly talin—to the β-subunit cytoplas-

mic tail [27]. The active integrin then extends into an upright high-affinity conforma-

tion where it is more readily available for binding to ligands in the ECM. The adaptor
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proteins additionally form the link between the integrin and the actin cytoskeletal

network within the cell. In some cases, integrins in the bent conformation can be ac-

tivated by binding to ligands in the ECM—in particular, Adair et al. [1] show that,

under certain biochemical conditions in the extracellular domain, an outside-in acti-

vation of integrins occurs.

When active integrins become bound to both adaptor proteins within the cell and

to ligands in the ECM they form a physical link between intra- and extracellular do-

mains. From this state bi-directional mechanical signals can be transduced, and larger

adhesive complexes may develop. At various stages in its development, the adhesive

complex can be roughly classified according to its size as well its the molecular com-

position. The diameter of a single integrin is 6-10nm. Small clusters of integrins are

considered to be nascent adhesions and typically have lifetimes of 10s of seconds.

If additional proteins are successfully recruited, nascent adhesions can mature into a

slightly larger focal complexes (of typical diameter 1µm) [106]. These focal complexes

survive for a few minutes and will either disassemble or form stable focal adhesions

(FAs) through additional protein recruitment; zyxin has been identified as a protein

present only in this final stage of FA maturation [152]. Stable FAs are typically 2µm

wide and 3-10µm in length, have lifetimes of tens of minutes, and consist of a large

protein complex within the cell. The formation of stable FAs is hierarchical and in-

volves the organised recruitment of over 100 proteins within the cell. Some important

components of the protein complex, in addition to talin, include focal adhesion kinase

(FAK), vinculin, α-actinin, paxillin, filamin and tensin [152]. FAs provide a stronger

attachment between the actin cytoskeleton and the ECM and allow for large mechani-

cal forces to be transferred between individual cells and the ECM. Even in this mature

state, there are still dynamic processes occuring within the FA—the integrins can cy-

cle between states and proteins are replaced.

As well as facilitating the transmission of mechanical forces, integrins are highly

mechanosensitive. In response to the extracellular environment, experiments have

shown that the substrate stiffness can influence the size and strength of integrin-

mediated adhesions [32, 76, 110]. In response to intracellular forces, which are gener-

ated by actomyosin filaments attached via talin to the integrin tail, adhesions can re-

cruit additional proteins to strengthen the adhesion. In this case, a conformal change

in the talin protein is induced under tension such that cryptic binding sites for vin-

culin are exposed [67]. Vinculin can then bind to talin and also to the actin cytoskele-
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ton to strengthen the adhesion (Fig. 1.5). Several other positive feedback mechanisms

related to the growth and strengthening of integrin adhesions have been identified

or hypothesised, including a mechanical advantage of integrin clustering due to co-

operativity [108, 151], and upregulation of integrin activation through biochemical

signalling pathways [26, 144, 149].

Actin

Plasma Membrane

Talin
Vinculin

Integrin

ECM

FAK, Paxillin, etc.

Activation Binding Clustering

Figure 1.5: Sketch of the key stages involved in cell–matrix adhesion. Inactive inte-

grins have a bent conformation with a low-affinity for binding to ligands

in the ECM. Adaptor proteins (commonly talin), bind to the cytoplasmic

tail and lead to integrin activation; the integrin then extends into an up-

right high-affinity conformation [27]. Additionally, adaptor proteins con-

nect the integrins to the actin cytoskeleton. In the active state, integrins

readily bind to ligands in the ECM, by which they create a physical link

between intracellular and extracellular domains. As adhesions mature,

integrins begin to cluster. Large protein complexes are formed within the

cell; this can involve over 100 proteins, including focal adhesion kinase

(FAK), vinculin, α-actinin, paxillin, filamin and tensin [152].

1.2.3 Experimental techniques for measuring cell adhesion

Detailed experimental study of cell adhesion requires high precision techniques that

are capable of measuring forces starting at the order of piconewtons. Force spec-

troscopy methods have been used to achieve this, and include the use of magnetic

tweezers, optical tweezers, microneedles, traction force microscopy and atomic force

microscopy [43, 99, 102, 135]. These techniques, amongst those reviewed recently by

Wu et al. [150], are able to provide force measurements at the level of single molecules,

as well as measuring adhesive properties at the whole cell level. For integrins, clus-

ters of adhesion molecules are known to reorganise and strengthen in response to

external forces [67, 119]. Single-molecule studies could therefore be beneficial when
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interested in quantifying individual integrin properties; the accuracy and implemen-

tation of single molecule force spectroscopy using optical and magnetic tweezers and

atomic force microscopy are reviewed in detail in [102]. In other cases it is the collec-

tive behaviour of adhesions that is of interest, such as during cell migration via trac-

tion forces [43, 99, 135] or the strength and dynamics of larger focal adhesions [133].

Cell adhesion molecules are load bearing and quantities that are often of interest to

measure include bond energies and lifetimes under an applied load, the distribution

of rupture forces, and total adhesion strength.

Atomic force microscopy (AFM) can exert a larger range of forces than optical or mag-

netic tweezers [102] and can be used to either study the rupture of single molecules

and bonds or to measure the collective behaviour of larger focal adhesions. AFM pro-

vides extremely high resolution measurements, and is able to detect forces as small

as 10−15N at room temperature [19]. The technology uses photodiode detectors and a

laser to track the deflection of a metal cantilever as it interacts with the surface of a cell

(illustrated in Fig. 1.6). The position of the cantilever relative to the cell is controlled

by a piezoelectric scanner (Fig. 1.6a), and the cantilever could either have a small tip

functionalised with ligands for integrins to bind to, be attached to a larger substrate-

coated microbead, or be attached to another cell. To measure adhesion dynamics, the

cantilever is lowered vertically to the cell surface where adhesion occurs. It is later

retracted, and the upward motion of the cantilever is resisted by the adhesions that

have formed, causing the cantilever to bend (Fig. 1.6b). The cantilever is of known

mechanical properties and its deflection can therefore be used to calculate adhesion

forces throughout the process. This information can be plotted in ‘approach-retract’

force curves (Fig. 1.6b), which are also used to detect events where individual bonds

rupture; when the bonds break there are abrupt changes in adhesion force, seen by

jumps in the retraction curve. The scanners are also able to move laterally and this

method is often used to produce images and high resolution information about cell

surface topography and to determine local mechanical properties such as variations

in cell elasticity [85, 90, 140].
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Figure 1.6: (a) Experimental set-up for atomic force microscopy (AFM) measure-

ments. The position of a metal cantilever relative to the cell is controlled

by a piezoelectric scanner which can move laterally or vertically. The

deflection of the cantilever as it interacts with the surface of a cell is

tracked by a laser and photodiode detectors. Deflection is used to cal-

culate adhesion forces since the mechanical properties of the cantilever

are known. (b) Sketch of the approach-retract curves obtained by mea-

suring cantilever deflection as the cantilever is first lowered to the cell

surface (blue curve) and then retracted (red curve) once adhesions have

formed. Cantilever deflection shows whether the force is repulsive (pos-

itive) or attractive (negative), and jumps in the retraction curve indicate

adhesion rupture events.
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1.3 Existing modelling approaches

Here we discuss some existing approaches to modelling cell–ECM adhesion. A com-

mon choice is to use stochastic, individual-based models due to the relative ease of

incorporating detailed binding kinetics for individual integrin–ligand pairs. Contin-

uum models accounting for integrin binding have also been developed; however,

capturing the detailed response of individual integrins to mechanical cues in this set-

ting remains a challenge.

1.3.1 Stochastic models of cell–ECM adhesion

A common modelling approach is to simulate the stochastic binding dynamics of

individual integrin–ligand bonds using Monte Carlo simulations. In the simplest de-

scription a bond can be described as open (not bound to the ligand) or closed (bound

to the ligand). Rupture and binding events are equivalent to transitions between the

two states and can therefore be modelled stochastically using master equations. Simi-

larly to the experimental methods used in force spectroscopy, the simulated bonds are

often subject to an applied load for which quantities such as bond lifetimes and rup-

ture forces are calculated. In order to simulate these responses, suitable rate functions

for the transition between closed and open bonds must be chosen.

An early model for bond rupture under constant force is the Bell model [14], where

the rupture rate of a bond is assumed to increase exponentially with force according

to

ko f f (F) = k0exp(γF/kT). (1.3.1)

The parameters k0, k, and T are the unstressed unbinding rate, the Boltzmann con-

stant and the absolute temperature respectively, and F is the total force on the bond.

The parameter γ is an empirical constant that depends on material properties. This re-

lationship originates from observations on the strength of macroscopic solids under

stress [154], but can also be derived theoretically, e.g. from the Arrhenius equation

[143] and as a low force approximation of Kramers theory [141]. Other forms for rup-

ture rates have since been suggested [40, 41, 83, 114], and precise measurements for

individual ligand-receptor bonds using single force spectroscopy [44, 102] remain an

area of ongoing research. Within stochastic models of cell adhesion, there is flexibility

to include and investigate these different force-dependent functions for bond rupture.

A number of studies use a stochastic implementation of the Bell model to investigate
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the stochastic rupture of parallel bonds under shared loading [36, 37, 126]. Erdmann

and Schwarz [36] consider a cluster of bonds between two parallel surfaces where a

constant, perpendicular, external loading is applied to one surface (Fig. 1.7). The clus-

ter lifetime is measured for different loading values and is seen to be dependent on the

initial number of closed bonds and the rebinding rate. It is shown that the rebinding

of ruptured bonds is necessary in order to obtain physiological cluster lifetimes. In a

later study, the same authors further investigate the properties of the bound and un-

bound adhesion states [37]. By modelling the individual bonds as Hookean springs

which can resist the external loading, two positive feedback mechanisms are seen.

There is a decrease in distance between the two surfaces due to binding events and

an increase in separation when unbinding occurs, which further promote binding

and unbinding respectively. Since the initial adhesion state influences the separation

of the two surfaces, these feedback mechanisms lead to the existence of bistability for

some loading values; the outcome could either be bound or unbound clusters. It is

hypothesised that this bistability could be related to the switch between transient and

firm adhesions seen in early adhesion formation. 

𝑘𝑜𝑛 

𝑘𝑜𝑓𝑓 

𝐹𝑇 

Figure 1.7: Figure adapted from [36], showing open and closed bonds under a con-

stant loading FT . Each bond experiences a force F = FT
NC

where NC is the

number of closed bonds. Stochastic transitions between open and closed

states occur with the rates kon and ko f f (F).

Since cell–matrix adhesions exert traction forces, studies considering friction gener-

ated by discrete bonds in more general contexts are also relevant. Filippov et al. [42]

consider stochastic transitions of discrete molecular bonds that form between two

rigid surfaces in the presence of a low and high relative motion of the surfaces. In

each of the two cases, known macroscopic friction properties are successfully simu-

lated. In contrast to the above studies, the motion that they apply is parallel (rather

than perpendicular) to the surface.
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Qian et al. [115] extend the initial studies of shared loading between parallel bonds by

considering bonds that experience stress non-uniformly due to the loading being ap-

plied at an angle. In addition to changing the loading angle, they couple the stochas-

tic integrin binding dynamics to a mechanistic model of the cell and the ECM. Within

the mechanistic model, they investigate the effect of different ECM and cytoskele-

tal stiffnesses and show, in agreement with previous experimental observation, that

with cytoskeletal stiffening and a low angle of applied load the adhesion lifetime is

significantly increased.

Due to the fluctuating mechanical environment of airways in vivo, studies that con-

sider the effect of dynamic, rather than static, loading on adhesion stability are of

particular relevance to the work in this thesis. Kong et al. [81] consider the stochastic

rupture of adhesion clusters under an oscillatory strain applied to the extracellular

substrate. In their model, stochastic binding dynamics are coupled to a viscoelastic

description of actin stress fibres, which are attached to the intracellular domain of the

focal adhesions. Starting from a high adhesion state, a threshold strain is observed

past which adhesions quickly rupture. Additionally it is seen that the oscillation fre-

quency, the stress fibre stiffness and the stress fibre relaxation time further influence

the threshold strains that adhesion clusters can withstand.

In addition to the rupture of bonds, the initial formation of focal adhesions is an area

of interest. In a related stochastic modelling framework, Paszek et al. [108] success-

fully use stochastic lattice spring models (LSMs) and a stochastic simulation algo-

rithm for modelling integrin–ligand bonds, called Adhesive Dynamics [58, 59], to

simulate the formation of integrin clusters. Spatial clustering of integrins is an im-

portant prerequisite for focal adhesion formation and it is shown that a mechanical

feedback due to resistance provided by the glycocalyx (an additional layer between

the membrane and ECM) can drive clustering by promoting cooperativity. The model

consists of a spring network to model the cell and ECM interface, separated by par-

allel springs representing the glycocalyx. They simulate stochastic binding and rup-

ture events between the cell and the ECM and the integrin distributions respond to

changes in the rest length of the glycocalyx springs. When the width of the glycoca-

lyx is larger than the integrin rest length a mechanical cooperativity is seen; binding

creates a local deformation that promotes further binding due to the reduced distance

between the integrins and their ligands. This study was not concerned with external

loading, but their discrete LSM approach can accommodate high levels of microscopic
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detail both in terms of binding kinetics and mechanics.

Other physical factors that have been observed experimentally to affect integrin dy-

namics include ECM stiffness, ligand density, and actin fibre orientation. The first

two of these factors have been tested in the computational model of Paszek et al. [108]

and in a number of other stochastic–elastic models that are reviewed further by Gao

et al. [48]. Chan and Odde [30] and Walcott et al. [142] both use stochastic models

to investigate differing adhesion dynamics on stiff and compliant ECM, and obtain

results in agreement with experimental studies. Walcott et al. [142] show that these

mechanosensitive adhesion properties emerge naturally with the inclusion of load

dependent reaction rates. It is evident that there are multiple factors capable of influ-

encing integrin dynamics, which are likely to be acting in combination. Their relative

importance and the full underlying mechanisms are still not clear, but these types

of models have been able to reproduce, and begin to help explain, a wide range of

experimental results.

1.3.2 Continuum models of cell–ECM adhesion

Despite their popularity, stochastic models quickly become prohibitive for larger scale

simulations given the potentially large number of integrins present on the cell surface

(densities have been reported to reach 900µm−2 in mature adhesions [147]). Contin-

uum models would therefore be beneficial in such cases, and additionally allow for

more efficient coupling to larger scale (e.g. cell and tissue level) models.

A model that couples a continuum description of integrin dynamics to a cell-level me-

chanical model is that of Alt et al. [4], who consider integrin clustering in the context

of cell migration. They consider integrins in one of 4 states (unbound, bound to the

ECM, bound to the cytoskeleton, and double-bound to both the ECM and cytoskele-

ton) and model integrin binding reactions as reversible state transitions using mass

action kinetics. Within the cell a two-phase flow model is used for the cytoskeleton

and the cytosol, and actin-bound integrins are advected with the cytoskeletal flow.

The advection-reaction-diffusion description of integrin binding dynamics is addi-

tionally coupled to force-balance equations at the leading edge of the cell, where

double-bound integrins produce a frictional force between the cell and the ECM,

enabling migration. In their study, the focus is on the resulting migration patterns,

rather than the detailed biochemical mechanisms behind cluster formation.
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Welf et al. [144] develop a more detailed continuum model for integrin binding and

the formation of integrin clusters by considering a reaction-diffusion system that in-

corporates biochemical feedback. A biochemical feedback loop in the activation of

talin is incorporated, which subsequently leads to positive feedback in the activation

of integrins. Their results show that this feedback is sufficient to induce a spatial clus-

tering of integrins, which are activated during a reaction of inactive integrins with

diffusing talin. In their model the actin cytoskeleton and mechanical effects are not

considered and the ECM is assumed stationary. Block et al. [20] also investigate clus-

ter formation using a reaction-diffusion model for integrin binding and, similarly to

Welf et al. [144], they model the changes between different integrin states using mass

action kinetics. However, due to the mechanosensitive nature of integrin-based ad-

hesion complexes [67, 71, 123, 132, 148] and the spatial constraints experienced by

each bond, it is necessary to develop descriptions and binding rate functions that can

also accommodate the response to local mechanical cues. In an effort to capture the

mechanosensitive nature of integrins, Cao et al. [28, 29] have developed continuum

models that allow for investigation of the effect of substrate and cell nucleus stiff-

ness on focal adhesion size. The timescale of interest in their studies (focal adhesion

growth, occuring over minutes) is relatively large compared to the timescale associ-

ated with individual integrin binding reactions, so a quasi-static approximation for

the density of integrins is used.

Motivated by the stochastic–elastic model of Paszek et al. [108], Yuan et al. [151] have

developed a mechanistic continuum model for integrin clustering. They model the

cell membrane as an infinitely extended elastic plate that is separated from the ECM

by a further elastic layer, representing the glycocalyx. Their results, in agreement

with Paszek et al. [108], demonstrate that such a repulsive layer promotes integrin

clustering since bound integrins (of length smaller than the width of the repulsive

layer) produce small deformations that make reductions in integrin separation ener-

getically favourable.

In a more general friction study, closely related to the stochastic model of Filippov et

al. [42], Srinivasan and Walcott [131] consider a continuum approximation to friction

generated by discrete bonds through the use of the Lacker–Peskin model [86]. This

model is formulated in terms of a local spatial variable that considers the bond dis-

placements from a reference alignment, rather than their individual positions. This

formulation allows for the inclusion of binding rates that incorporate local spatial
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constraints; Srinivasan and Walcott [131] use the Bell model for bond rupture, as com-

monly used in stochastic simulations. A necessary assumption in this study is that the

two surfaces are rigid and parallel so that the displacement of each bond is sufficient

to determine the total traction force. In the presence of a relative velocity between

the two layers, the distributions are then governed by advection–reaction equations.

Using this model, well-known macroscopic friction behaviours are successfully sim-

ulated.

1.3.3 Models of contractile force generation

In order to fully understand the tissue-level behaviour that occurs during bronchocon-

striction, models of contractile force transmission via integrins will need to be coupled

to models of contractile force generation within the cell. Models that incorporate both

cell–matrix adhesion and descriptions of the intracellular contractile machinery will

also be relevant to other applications, including cell migration, where dynamic inte-

grin turnover occurs alongside the motion of actin filaments [4].

For ASM cells an important factor is how a fluctuating environment due to tidal

breathing affects both the contractile force generation and the adhesion dynamics.

A number of experimental and theoretical studies have investigated the effect of a

dynamic environment on ASM contractile force generation [12, 13, 24, 46, 53, 88, 89].

In an experimental study, Gunst [53] applied length oscillations to bronchial and tra-

chealis tissue strips that are initially in different contractile states. Experimental mea-

surements show how force varies throughout the cycle and it is additionally observed

that the mean contractile force is reduced during dynamic stretching in comparison

to the isometric force obtained at equivalent static lengths. It has been proposed that

contractile force could be reduced due to disruptions in the binding of actin to myosin

during length fluctuations [89]. To more accurately quantify length and airway cal-

ibre changes that occur in an in vivo environment, Latourelle et al. [89] and LaPrad

et al. [88] applied force and pressure oscillations to tissue strips and isolated air-

ways respectively, rather than length oscillations. In this more recent experimental

framework the muscle length changes freely and the nonlinear response of length to

pressure oscillations can also be measured.

In theoretical models of contractile force generation, the sliding filament model of

Huxley [70] has been combined with the kinetic scheme of Hai and Murphy [55, 56]
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to investigate crossbridge cycling and the phosphorylation and dephosphorylation of

myosin crossbridges. This Huxley–Hai–Murphy (HHM) model developed by Fred-

berg et al. [47] and Mijailovich et al. [97] is able to capture the reduced contractile force

seen during ASM length oscillations, but does not explain all of the experimental ob-

servations on the behaviour of whole tissue strips. To address this, further studies

incorporate the HHM model into cell and tissue level models [24, 64, 65, 112]; Brook

[24] showed that the cell-level behaviour is likely to be further influenced by the reor-

ganisation of contractile units due to disruptions in the acto-myosin network during

the length oscillations.

The dynamic environment of the airway in vivo is known to affect contractile force

generation; however, since integrins are also sensitive to mechanical cues, we believe

that coupling of models of contractile force generation to models of contractile force

transmission (via integrins) is a necessary step towards fully understanding tissue-

level dynamics during bronchoconstriction.

1.4 Thesis overview and structure

The aim of this thesis is to investigate how airway smooth muscle (ASM) cell–matrix

adhesions are affected by dynamic mechanical environments. In particular, we aim

to understand how integrins respond to tidal breathing and deep inspirations. We

develop two mathematical models for this purpose in Chapter 2; a discrete stochastic–

elastic model and a multiscale continuum model. Both of these models are able to

support local spatial constraints in the descriptions of integrin binding and rupture,

allowing us to consider detailed binding kinetics at the integrin level alongside cell

level material deformations. In the multiscale formulation, the integrin level and cell

level are considered to be the microscale and macroscale respectively.

In Chapter 3, we present numerical results from the discrete and continuum models,

where we investigate how an oscillatory loading of the extracellular matrix (ECM) af-

fects integrin binding dynamics. We consider loading conditions that represent tidal

breathing and deep inspirations, and show the effect of varying parameters such as

material stiffnesses, oscillation frequency and binding affinities. There is strong qual-

itative agreement between our continuum and discrete results, and in Chapter 4 we

focus on extending the more tractable continuum model. We consider activation and
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diffusion of free integrins, and a strain-dependent reinforcement of integrins, occur-

ing due to vinculin binding to cryptic sites on talin.

In Chapters 2–4, we only consider horizontal motion between the cell and ECM. In

Chapter 5, we modify the microscale description to additionally allow for vertical

motion. We then couple this to a 3-spring description of the cell, integrins and ECM,

with which we replicate an experimental atomic force microscopy (AFM) protocol.

In the experiments, a cantilever (with substrate-coated bead attached) repeatedly ap-

proached and retracted from a cell whilst the adhesion forces were measured in time.

We compare our model results to the experimental data, provided by Prof. Gerald

Meininger and Huang Huang (University of Missouri), and use cluster analysis tech-

niques to identify differing patterns in adhesion force.

In Chapter 6, we investigate the interacting dynamics of integrin-mediated adhesions

and actomyosin crossbridges by coupling our adhesion model to a description of in-

tracellular contractile force generation. The cell, previously modelled as a passive

material, is extended to include active contractile components that follow a 4-state

Huxley–Hai–Murphy model for crossbridge cycling and phosphorylation [97]. ASM

cells are subject to constant fluctuations in their mechanical environment, and both

contractile force generation and contractile force transmission could be modulated.

In our coupled model, we investigate the combined response of crossbridges and in-

tegrins when the cell is subject to oscillatory length fluctuations.

The conclusions drawn from these investigations are summarised in Chapter 7, where

we discuss our main findings and suggest directions for future work.



Chapter 2

Discrete and continuum models of

cell–matrix adhesion

In this chapter we introduce two models of cell–matrix adhesion. In the first model

(Section 2.1) we develop an example of a discrete stochastic model of integrins transi-

tioning between bound and unbound states. By using a stochastic-elastic framework

we additionally capture the local mechanical response to the binding reactions. A dis-

crete approach, however, is computationally intensive for large scale simulations and

the number of integrins on a cell surface is often high. We therefore develop a second,

multiscale, continuum model (Section 2.2), which aims to capture similar amounts of

integrin-level detail. By using a novel two-scale approach, our continuum framework

supports local spatial constraints for the integrins at the microscale and supports spa-

tial binding rate functions of the type typically implemented in discrete stochastic

simulations.

2.1 Discrete model formulation

The early stages of FA formation (see Section 1.2.2) can be summarised by reversible

state transitions where we classify integrins by the following states (Fig. 2.1):

(i) IU : Inactive, unbound, and freely diffusing in the plasma membrane

(ii) I: Active, unbound, and freely diffusing in the plasma membrane

(iii) IA: Active and bound, via adaptor proteins, to the intracellular actin cytoskeleton

(iv) IE: Active and bound to ligands in the ECM

(v) B: Bound to both the actin cytoskeleton and to ligands in the ECM.

22
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Figure 2.1: A representation of the five possible integrin states. Inactive (IU) and ac-

tive (I) integrins diffuse in the membrane. Active integrins may become

actin-bound (IA) via adaptor proteins, bound to ligands in the ECM (IE)

or double-bound to both the actin cytoskelton and the ECM (B).

In our discrete model we consider a simplified reaction scheme in which the integrin

activation processes are assumed to have already occurred. We therefore assume that

integrins are already attached to the actin cytoskeleton within the cell and undergo

reversible reactions to become bound to the ECM and able to transmit force (i.e. IA

binds reversibly to B; Fig. 2.1). We assume that the actin cytoskeleton, integrins and

ECM form an evolving spring network in which actin-bound integrins, IA, and ‘po-

tential binding sites’ on the ECM fibre, E, are modelled as individual nodes, indexed

by IAj and Ei, respectively (Fig. 2.2). We denote the number of ECM nodes by N

and the number of actin-bound integrin nodes by M, where N and M do not need

to be equal. Hookean springs between the neighbouring IA and E nodes represent

the cytoskeleton and ECM, respectively, and are each assigned a spring stiffness (κa

and κe, shown in blue and red). We additionally allow for stochastic binding reac-

tions (described below) between integrins and the ECM, dependent on the proximity

and availability of binding sites, where each node is considered to be an individual

species. This allows reaction propensities to depend on the pairwise distances be-

tween integrins and the ECM binding sites; pairs of compatible nodes may undergo

stochastic transitions to form double-bound integrins (B) according to the following

reaction

IA + E
k̂b(x̂)−−⇀↽−−
k̂u(x̂)

B, (2.1.1)

where x̂ is a spatial variable local to each integrin. The local variable x̂ measures the

horizontal distance between each pair of IA and E nodes (see Fig. 2.2) and is effec-

tively a measure of how far each integrin head is from its unstressed position, x̂ = 0.

Throughout, hats indicate dimensional quantities. In this model, every combination

of IA and E nodes are considered as a possible pair, and pairwise distances x̂ are
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stored in an N ×M distance matrix. Based on these distances, binding and unbind-

ing propensities are calculated for each pair (Eqs. 2.1.2, 2.1.3). There will therefore

be NM possible binding reactions and a further NM possible unbinding reactions.

In accordance with the chosen stochastic binding reactions we add or remove a third

spring-type (black), representing double-bound integrins with stiffness κb, between

the IA and E nodes selected to bind. We additionally include springs with stiffness

κr (green) from the IA nodes to a fixed configuration of ‘anchor’ nodes, as a represen-

tation of the restoring forces by, and attachments to, the cytoskeletal network within

the cell.

ECM

Membrane

Anchor nodes

x̂
E1 Ei−1 Ei Ei+1

IA1 IAj−1

EN

IAj+1 IAMIAj κa

κr

κb
κe

Figure 2.2: Structure of the discrete spring network. Actin-bound integrins (IA, blue)

and ECM binding sites (E, red) are considered as individual nodes, con-

nected to their neighbours by linear springs with stiffness constants κa

and κe respectively. Bound integrins (B, black) are represented by re-

movable springs between the two sets of nodes, with spring constant κb.

The local variable x̂ measures horizontal distances between each pair-

wise combination of integrin and ECM binding site nodes, to be stored

in an N × M distance matrix and used to inform binding propensities.

We additionally include horizontal restoring forces for the IA nodes to a

fixed configuration of anchor nodes via springs with stiffness κr (green).

In this model the vertical movement is constrained and we only consider

horizontal motion, imposed via displacement conditions on E1.

To simulate the reversible binding events in Eq. 2.1.1 we must first specify binding

and unbinding propensities, valid for each pair of IA and E nodes. Our chosen spatial

binding rates are piecewise linear functions (Fig. 2.3) given by

k̂b(x̂) =

 f̂1

(
1− |x̂|

ĥ

)
|x̂| ≤ ĥ,

0 otherwise,
(2.1.2)
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and

k̂u(x̂) =

ĝ1 +
ĝ2|x̂|

ĥ
|x̂| ≤ ŝ,

ĝ3 otherwise.
(2.1.3)

A maximum binding rate f̂1> 0 occurs at x̂ = 0, after which the binding propensity

decreases linearly to zero within a finite binding range, ĥ. The unbinding rate when

x̂ = 0 is given by ĝ1> 0, and increases linearly with x̂. Beyond a maximum horizon-

tal distance of ŝ> ĥ, any remaining bonds rupture quickly with a high rate ĝ3> 0. We

note that these rate functions approximate those which can be derived using detailed

balance (see e.g. [62], Fig. 9c and [131], Fig. 2), by which pairs of reaction rates are

constrained to ensure thermodynamic reversibility. Within this modelling framework

there is flexibility in the choice of rate functions, and alternative forms can easily be

accommodated.
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Figure 2.3: Sketch of the chosen form of piecewise linear binding (k̂b, Eq. 2.1.2) and

unbinding (k̂u, Eq. 2.1.3) functions. The local variable x̂ measures the

local distance between pairs of ECM and actin-bound integrin nodes (see

Fig. 2.2) and is therefore effectively a measure of how far each integrin

head is from its unstressed position, x̂ = 0.

After calculating the binding and unbinding propensities for each combination of IA

and E nodes (a total of 2NM reactions), we select the reaction that is to occur using

a stochastic first reaction algorithm [49]. The time, τ̂, until the next reaction occurs is
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found by calculating

τ̂ =
1
a0

ln
(

1
r1

)
, (2.1.4)

where r1 is a uniformly distributed random number drawn from (0, 1) and where a0

is the sum of all reaction propensities. The time between events is therefore exponen-

tially distributed with mean 1/a0, the accuracy of which is derived and discussed by

Gillespie [49] and further detailed by Erban et al. [35]. Next, we must identify which

reaction occured at this time. To do so, a second uniformly distributed random num-

ber r2 ∈ (0, 1) is generated. We select the reaction, indexed by an integer µ, such that

∑
µ−1
i=1 ai < a0r2 ≤ ∑

µ
i=1 ai is satisfied, where ai are the individual reaction propensities

and where 1 ≤ µ ≤ 2NM. This process can be thought of as dividing (0, a0) into

subintervals for each of the 2NM reactions. The length of each subinterval is given

by its reaction propensity, and a random point a0r2 ∈ (0, a0) has higher probability

of landing in the larger subintervals. This step therefore ensures that the probabil-

ity of choosing a given reaction is proportional to its propensity. Note that whilst a

node is already bound, further binding propensities for that node are set to be zero.

Additionally, if a node is not bound, the unbinding propensity is zero.

The stochastic reactions govern bond formation and rupture and are used to update

the structure of the mechanical spring network (Fig. 2.2). To then implement a posi-

tion update of the network we consider the net force acting on each node, F̂k. There

are contributions due to neighbouring springs, F̂Nk , and forces due to integrin bonds

between species, F̂Bk . In this model, electrostatic interactions and inertia are assumed

to be negligible. We therefore take F̂k = F̂Nk + F̂Bk and solve the equilibrium equation

ΣF̂k = 0 on the network at each timestep, to provide updates for node positions. We

also ensure that this equilibrium condition is satisfied in the initial configuration, in

which there are no bound integrins and where the IA and E nodes are equally spaced.

In order to investigate the effect of a dynamic environment, we allow for external

forcing to the ECM via time-dependent displacements of the boundary node

ÛE1(t̂) = f̂ (t̂), (2.1.5)

for a function f̂ (t̂) to be specified, and where ÛEi denotes the displacement of the ith

ECM node (see Fig. 2.2) from its rest position. Eq. 2.1.5 provides a Dirichlet bound-

ary condition for the force balance equations. We note that the first reaction algorithm

used to determine the binding reactions [49] generates an event-based timestep. As
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we also wish to allow for external forcing and time-dependent displacements, we in-

troduce a maximum timestep τ̂max such that, in the case that no reaction occurs within

this timestep, a position update of the network is induced and reaction propensities

are recalculated. We summarise the computational model in Algorithm 2.1.1.

Algorithm 2.1.1 Discrete stochastic–elastic model
1: Initialise actin and ECM spring networks and relax to mechanical equilibrium.

2: while t̂ < T̂ do

3: Calculate binding and unbinding propensities, ai, based on pairwise distances

(where i ∈ [1, ...n] and n denotes the number of possible reactions).

4: Generate a uniformly distributed random number, r1, from the interval (0, 1),

to calculate the time elapsed before the next reaction, τ̂ = 1
a0

ln(1/r1). The

constant a0 is the sum of all reaction propensities, a0 = ∑n
i=1 ai.

5: if τ̂ < τ̂max then

6: Generate a second uniformly distributed random number, r2 ∈ (0, 1), and se-

lect the reaction, indexed by µ, such that ∑
µ−1
i=1 ai < a0r2 ≤ ∑

µ
i=1 ai is satisfied.

7: Update the structure of the spring network according to chosen reaction.

8: end if

9: Set t̂ = t̂ + min{τ̂, τ̂max}. Calculate net forces acting on each point and update

positions by solving ΣF̂i = 0, subject to boundary constraints.

10: end while

This stochastic framework can easily be extended to allow for integrin diffusion and

integrin activation. Integrin diffusion via random walks can be incorporated into the

position update (Step 9) of Algorithm 2.1.1, and integrin activation can be included by

adding an additional set of pairwise reaction propensities between diffusing integrins

and actin nodes into Step 3.

We will show numerical results from the discrete model in Chapter 3, where we com-

pare the model to an analogous continuum model developed in Section 2.2. The two

models will be used to investigate the integrin response to an oscillatory displacement

of the ECM, representing the effect of tidal breathing in vivo.
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2.2 Continuum model formulation

We now develop a multiscale continuum model of cell–matrix adhesion which will

form the basis of the rest of the models in this thesis. Our multiscale approach allows

for the inclusion of local spatial constraints for the integrins at the microscale, and this

key feature allows us to capture detailed microscale binding kinetics and mechanics

in a manner similar to individual-based stochastic models. At the macroscale, we

model the cell and ECM as linearly elastic materials; however, the framework that

we develop can be generalised to support more complicated macroscale descriptions.

Our continuum approach to modelling cell–matrix adhesion will also allow for cou-

pling to other continuum models, such as those used for contractile force generation

(considered in Chapter 6). A continuum approach is also beneficial in terms of com-

putational efficiency, which will be especially important in larger scale simulations.

2.2.1 Microscale integrin binding dynamics

We begin by introducing the microscale model of integrin binding dynamics which

will later be extended and coupled to a macroscale model of cell deformation (Section

2.2.4). At the microscale we adapt the Huxley crossbridge model [70]. As in the dis-

crete model (Section 2.1), we consider a simplified reaction scheme where the integrin

activation processes described in Section 1.2.2 are assumed to have already occurred.

We therefore assume that integrins are attached to the actin cytoskeleton within the

cell and undergo reversible reactions to become bound to the ECM and able to trans-

mit force (i.e. IA binds reversibly to B, see Fig. 2.1). A microscale coordinate, x̂, that

is local to each double-bound integrin (B) and measures the horizontal distance be-

tween the points of cytoskeletal and ECM attachment (see Fig. 2.4); an integrin in a

vertical position therefore has a distance of x̂ = 0.

In order to study the collective behaviour of the integrins we consider a distribution,

b(x̂, t̂), which denotes the fraction of double-bound integrins that are bound with

horizontal distance x̂ at time t̂. As in the Huxley model [70], we assume that each

actin-bound integrin has a single ECM binding site within its binding range, which

means that integrins in the actin-bound (IA) state are also associated with a unique x̂–

distance measured to their nearest binding site. The actin-bound integrins can there-

fore also be described by a distribution, u(x̂, t̂), denoting the fraction of actin-bound

integrins with a distance x̂ to the nearest binding site at time t̂. In our model, integrins
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can be in only one of these two states, and therefore b(x̂, t̂) + u(x̂, t̂) = 1.

x̂ x̂x̂
V̂(t̂)

Cell

ECM

x̂ = 0

Figure 2.4: Sketch of the microscale formulation, based on the Huxley crossbridge

model [70]. The microscale variable x̂ is local to each integrin and mea-

sures horizontal distance from the point of cytoskeletal attachment to the

nearest ECM binding site. Cell and ECM layers have relative velocity V̂.

To derive the governing equations for the distributions, we consider the conservation

of double-bound integrins in an arbitrary region [x̂0, x̂0 + ∆x̂]. The total number of

double-bound integrins in this region is given by the integral
∫ x̂0+∆x̂

x̂0
ρ̂b(x̂, t̂)dx̂, where

ρ̂ denotes the total number of integrins per unit length, assumed constant with respect

to x̂. In the presence of a relative velocity between the ECM and cell membrane, V̂(t̂)

(Fig. 2.4), the conservation equation is

∂

∂t̂

∫ x̂0+∆x̂

x̂0

ρ̂b(x̂, t̂)dx̂ =ρ̂
∫ x̂0+∆x̂

x̂0

k̂b(x̂)u(x̂, t̂)dx̂− ρ̂
∫ x̂0+∆x̂

x̂0

k̂u(x̂)b(x̂, t̂)dx̂

+ ρ̂V̂(t̂)b(x̂0, t̂)− ρ̂V̂(t̂)b(x̂0 + ∆x̂, t̂).
(2.2.1)

The first two terms on the right hand side of Eq. 2.2.1 account for the binding and

unbinding of integrins from the ECM, via spatial binding and unbinding functions

k̂b(x̂) and k̂u(x̂) respectively. The functional form for k̂b(x̂) and k̂u(x̂) will be specified

later. The last two terms in Eq. 2.2.1 account for advection of double-bound integrins

into and out of the region, respectively, with relative velocity V̂(t̂). By using the

mean value theorem and taking the limit as ∆x̂ → 0 we obtain the advection–reaction

equation
∂b(x̂, t̂)

∂t̂
+ V̂(t̂)

∂b(x̂, t̂)
∂x̂

= k̂b(x̂)(1− b(x̂, t̂))− k̂u(x̂)b(x̂, t̂), (2.2.2)

where b(x̂, t̂) + u(x̂, t̂) = 1 has additionally been used.

Bound integrins are represented by linear springs, which act in parallel to generate a

drag force between the cell and the ECM, given by

F̂(t̂) = ρ̂λ̂b

∫ ∞

−∞
x̂b(x̂, t̂)dx̂, (2.2.3)

for the integrin spring constant λ̂b. We assume that the cell and ECM are rigid in the
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microscale model; however, we will later allow for macroscopic deformations in the

fully-coupled multiscale model (discussed in Section 2.2.4).

Binding rate functions

To evolve Eq. 2.2.2 the forms of the spatial binding and unbinding functions need to

be specified. In the original crossbridge model [70], asymmetric piecewise linear func-

tions are used where binding only occurs for positive x̂ and is biased toward the point

where the site first comes into range. This asymmetry does not apply to the integrin

model, and we use a maximum binding rate at x̂ = 0 which decreases symmetrically

to zero as |x̂| increases. This is enforced through the same binding function, k̂b(x̂), as

in the discrete model (Eq. 2.1.2). Similarly, we use the same unbinding rate function,

k̂u(x̂) (Eq. 2.1.3, Fig. 2.3). There is flexibility in the choice of rate functions, and alter-

natives will be discussed in Section 3.3. These piecewise-linear functions allow us to

obtain analytical results for Eq. 2.2.2 (shown in Section 2.2.2).

Nondimensionalisation

We nondimensionalise the microscale governing equation (Eq. 2.2.2) with the scalings

x = x̂/ĥ, t = f̂1 t̂, V = V̂/ f̂1ĥ, F = F̂/ρ̂ĥλ̂b, ρ = ρ̂ĥ. (2.2.4)

The dimensionless microscale governing equation is the advection–reaction equation

∂b(x, t)
∂t

+ V
∂b(x, t)

∂x
= kb(x)(1− b(x, t))− ku(x)b(x, t), (2.2.5)

where the dimensionless rate functions (from Eqs. 2.1.2–2.1.3) are

kb(x) =

1− |x| 0 ≤ |x| ≤ 1

0 otherwise
(2.2.6)

and

ku(x) =

h1 + h2|x| 0 ≤ |x| ≤ s

h3 otherwise.
(2.2.7)

The constants hi = ĝi/ f̂1 are ratios of the unbinding rates to the maximum binding

rate, and s = ŝ/ĥ. We assume that all rate constants are positive and that the un-

binding range (ŝ) is larger than the binding range (ĥ), giving hi > 0 and s > 1. The

dimensionless drag force generated by double-bound integrins is given by

F(t) =
∫ ∞

−∞
xb(x, t)dx. (2.2.8)
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Additionally, we note that the total fraction of double-bound integrins is given by

B =
∫ ∞

−∞
b(x, t)dx. (2.2.9)

2.2.2 Analytical results from the microscale formulation

Steady state distribution with a zero relative velocity

At first we consider the case when the relative velocity V = 0. The distribution of

double-bound integrins then varies according to

∂b(x, t)
∂t

= kb(x)(1− b(x, t))− ku(x)b(x, t). (2.2.10)

At steady state, denoted bs(x), we have the steady distribution

bs(x) =
kb(x)

kb(x) + ku(x)
. (2.2.11)

With use of Eqs. 2.2.6 and 2.2.7 we obtain

bs(x) =


1−|x|

(1+h1)−(1−h2)|x| |x| ≤ 1,

0 otherwise.
(2.2.12)

The steady distribution, plotted in Fig. 2.5, takes a maximum value of 1/(1 + h1) at

x = 0 and decreases symmetrically to zero at the maximum binding range, x = ±1.

This symmetry results in a zero net drag force generated by the integrins (see Eq. 2.2.8

and Fig. 2.5), consistent with a zero relative velocity, V = 0, between cell and ECM.
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Figure 2.5: (a) The symmetric steady distribution bs(x) when V = 0. (b) The function

xbs(x) is an odd function, meaning that the total drag force generated by

integrins (see Eq. 2.2.8) will be zero.
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Steady state distribution with a constant relative velocity

We now consider steady state solutions when V is a positive constant. The piecewise

linear binding and unbinding functions (Eqs. 2.2.6, 2.2.7) suggest consideration of Eq.

2.2.5 at steady state in each of the following six regions:

(i) x < −s, (ii) −s ≤ x < −1, (iii) −1 ≤ x < 0, (iv) 0 ≤ x ≤ 1, (v) 1 < x ≤ s,

(vi) x > s.

The resulting six ODEs for bs(x) are either separable (regions (i), (ii), (v), (vi)) or

solved using integrating factors (regions (iii), (iv)) to give

(i), (ii) bs(x) = 0, (2.2.13a)

(iii) bs(x) =
(

1− γ

2V

√
π

β
erfi(

√
β(x + γ)) + A

)
e−β(x+γ)2

+
1

2βV
, (2.2.13b)

(iv) bs(x) =
(

1− γ

2V

√
π

β
erf(

√
β(x− γ)) + B

)
eβ(x−γ)2

+
1

2βV
, (2.2.13c)

(v) bs(x) = Ce−
1
V

(
h1x+ h2

2 x2
)
, (2.2.13d)

(vi) bs(x) = De−
h3
V x, (2.2.13e)

in the regions (i)–(vi) respectively. Here β = (1−h2)
2V , γ = 1+h1

1−h2
, and the constants A–D,

determined by continuity of bs(x) at each interface, are given by

A =
γ− 1

2V

√
π

β
erfi(

√
β(γ− 1))− 1

2βV
eβ(γ−1)2

, (2.2.14a)

B =

(
1− γ

2V

√
π

β
erfi(

√
βγ) + A

)
e−2βγ2 − 1− γ

2V

√
π

β
erf(−

√
βγ), (2.2.14b)

C =

((
1− γ

2V

√
π

β
erf(

√
β(1− γ)) + B

)
eβ(1−γ)2

+
1

2βV

)
e

1
V

(
h1+

h2
2

)
, (2.2.14c)

D =

((
1− γ

2V

√
π

β
erf(

√
β(1− γ)) + B

)
eβ(1−γ)2

+
1

2βV

)
e

h3s2

V3

(
h1+

h2
2 s
)(

h1+
h2
2

)
.

(2.2.14d)

In the above, erf and erfi are the error function and imaginary error function respec-

tively, defined by

erf(z) =
2√
π

∫
e−z2

dz and erfi(z) =
2√
π

∫
ez2

dz. (2.2.15)

Full steps for obtaining these solutions are provided in Appendix A.1. The steady

state distributions corresponding to increasing relative velocities V are shown in Fig.

2.6(a). The bound integrin distributions become increasingly skewed as V increases,

with a sharp decrease to zero occuring at x = s due to the high (and discontinu-

ous) unbinding rate there (Eq. 2.2.7). As V increases, the position of the peak drag
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force (Fig. 2.6(b)) is also shifted. The corresponding total drag forces generated at

steady state are shown in Fig. 2.7, calculated from Eq. 2.2.8. For small velocities

the drag force increases as the relative velocity increases, as the distributions begin to

skew. As the relative velocity continues to increase there is a decrease in the total drag

force, due to the reduced number of integrins that remain bound (seen by decreasing

the height of the distributions in Fig. 2.6(a)). Note that the steady distributions (Eqs.

2.2.13, 2.2.14) are reflected symmetrically about x = 0 if V < 0.
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Figure 2.6: (a) Steady state distributions, bs(x), for increasing relative velocities V =

0.5, 1, 1.5, 2, 2.5. (b) Corresponding distributions of drag force; the total

drag force generated by integrins is given by the area under this curve

(see Eq. 2.2.8). The area increases between V = 0.5 and V = 1, before

reducing for larger V (see Fig. 2.7). Parameter values: h1 = 0.5, h2 =

0.4, h3 = 50, s = 1.5 (in Eqs. 2.2.13, 2.2.14).
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Figure 2.7: Total drag force, F (see Eq. 2.2.8), generated by double-bound integrins

at steady state as a function of the relative velocity V. Parameter values:

h1 = 0.5, h2 = 0.4, h3 = 50, s = 1.5 (in Eqs. 2.2.13, 2.2.14).
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Effect of varying the model parameters

We now consider the effect of varying the model parameters. We first vary the hor-

izontal distance, s (Eq. 2.2.7), at which the high unbinding of integrins occurs (Fig.

2.8). We see that by increasing s the integrins remain bound at larger displacements,

and will therefore generate a higher drag force. Next, we vary the rate, h3, of the high

unbinding in x > s (Fig. 2.9). As h3 increases, the survival rate of integrins in the

region x > s decreases, and the total drag force will decrease. From Eq. 2.2.13e, the

fraction of bound integrins with displacements x > s will approach zero as h3 → ∞.
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Figure 2.8: (a) Steady state distributions as the threshold for high unbinding, s (Eq.

2.2.7), increases (s = 1, 1.2, 1.4, 1.6, 1.8). (b) By examining the area under

this curve (see Eq. 2.2.8), an increase in s leads to an increase in the total

drag force generated by double-bound integrins. Parameter values: h1 =

0.5, h2 = 0.4, h3 = 50, V = 1.5 (in Eqs. 2.2.13, 2.2.14).
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Figure 2.9: (a) Steady state distributions as the high unbinding rate, h3 (Eq. 2.2.7),
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curve (see Eq. 2.2.8), an increase in h3 leads to an reduction in the to-

tal drag force generated by double-bound integrins. Parameter values:

h1 = 0.5, h2 = 0.4, s = 1.5, V = 1.5 (in Eqs. 2.2.13, 2.2.14).
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Time-dependent distributions for a zero relative velocity

We now consider the time-dependent solution for the double-bound integrin distri-

bution governed by Eq. 2.2.5. As in the previous section, we solve the governing

equation separately in each of six regions of x, corresponding to the ranges of the

piecewise linear binding and unbinding rates. We again begin by considering the

case where the relative velocity V is zero, which requires the solution of six first order

linear PDEs, subject to the initial condition b(x, 0) = b0(x). The general solutions are

b(x, t) = b0(x)e−h3t, x < −s, (2.2.16a)

b(x, t) = b0(x)e−(h1−h2x)t, − s ≤ x < −1, (2.2.16b)

b(x, t) =
(1 + x)

1 + h1 + (1− h2)x
+ C(x)e−(1+h1+(1−h2)x)t, − 1 ≤ x < 0, (2.2.16c)

b(x, t) =
(1− x)

1 + h1 − (1− h2)x
+ D(x)e−(1+h1−(1−h2)x)t, 0 ≤ x ≤ 1, (2.2.16d)

b(x, t) = b0(x)e−(h1+h2x)t, 1 < x ≤ s, (2.2.16e)

b(x, t) = b0(x)e−h3t, x > s, (2.2.16f)

where

C(x) = b0(x)− (1 + x)
1 + h1 + (1− h2)x

, (2.2.17a)

D(x) = b0(x)− (1− x)
1 + h1 − (1− h2)x

. (2.2.17b)

The spatio-temporal evolution of the double-bound integrin distribution from a zero

initial condition, b0(x) = 0, is shown in Fig. 2.10. From this initial condition, there is

binding of integrins to the ECM and, for all |x| < 1, we observe a monotonic increase

in the fraction of bound integrins until the symmetric steady state distribution seen

in Fig. 2.5 is reached. Due to the symmetry of b0(x, t) and of the rate functions (Eqs.

2.2.6, 2.2.7), the distributions are always symmetric about x = 0; the total drag force

F(t) (Eq. 2.2.8) is therefore zero throughout. If, instead, we start from a uniform

non-zero initial condition, b0(x) = 0.25 (Fig. 2.11), we see decay as well as growth to

obtain the steady state distribution, due to unbinding of integrins from the ECM when

|x| > 1. For 1 < |x| < s the rate of unbinding increases with |x|, and when |x| > s the

unbinding is extremely rapid. The distribution settles to the steady state distribution

of Fig. 2.10, producing a zero total drag force due to symmetry. Additionally, we

show that the total bound fraction, B (Eq. 2.2.9) converges to the same steady value

from both the zero (Fig. 2.10) and non-zero (Fig. 2.11) initial conditions (Fig. 2.12).
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Figure 2.10: (a) Time-dependent evolution of the double-bound integrin distribu-

tion, b(x, t), for V = 0, and b0(x, t) = 0. (b) Sample distributions at

t = 0.5, t = 1, and t = 2. By t = 2 the steady state distribution

(Fig. 2.5 and Eq. 2.2.12) has been obtained. Parameter values: V = 0,

h1 = 0.5, h2 = 0.4, h3 = 50, s = 1.5 (in Eqs. 2.2.16, 2.2.17).

Figure 2.11: (a) Time-dependent evolution of the double-bound integrin distribu-

tion, b(x, t), for V = 0, and b0(x, t) = 0.25. (b) Sample distributions

at t = 0.5, t = 1, and t = 3, which are converging to the steady state

distribution, shown in Fig. 2.5 and Eq. 2.2.12. Parameter values: V = 0,

h1 = 0.5, h2 = 0.4, h3 = 50, s = 1.5 (in Eqs. 2.2.16, 2.2.17).

Figure 2.12: Timecourses for the bound fraction, B (Eq. 2.2.9), for b0(x, t) = 0 and

b0(x, t) = 0.25 (Figs. 2.10 and 2.11), converge to a steady value, associ-

ated with the steady state distribution (Eq. 2.2.12, shown in Fig. 2.5).
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Time-dependent distributions for non-zero relative velocities

In the case where V is non-zero, time-dependent general solutions for Eq. 2.2.5 can,

in some cases, be obtained by using the method of characteristics. For our chosen

piecewise-linear reaction rates, it is possible to solve the PDEs in Eq. 2.2.5 for con-

stant values of V by partitioning the characteristic space into 21 regions (see Appendix

A.2), which take into account the changing forms of kb(x) and ku(x) and the regions

through which the solution has propagated. The solutions from each region must

then be matched on the boundaries. Solutions can also be obtained for some choices

of time-dependent V(t), discussed in Appendix A.2, and for which a simpler exam-

ple can be found in [8]. We provide the general solution of Eq. 2.2.5 for constant

relative velocities in Appendix A.2, and show the result for V = 1.5 and a zero ini-

tial condition, b0(x) = 0, in Fig. 2.13. We observe an increase in the distribution

of double-bound integrins to an asymmetric steady state, which is consistent with

the steady state distribution obtained in Fig. 2.6. The resulting drag force in time,

calculated from Eq. 2.2.8, increases from zero to a maximum steady state (Fig. 2.14).

(a) (b)

t increasing

b(x,t)

Figure 2.13: (a) Evolution of the double-bound integrin distribution, b(x, t), for V =

1.5, starting from a zero initial distribution. (b) Sample distributions at

t = 0.5, t = 1, and t = 2. By t = 2 the steady state distribution, shown

in Fig. 2.6 with V = 1.5, has been obtained. Parameter values: V = 1.5,

h1 = 0.5, h2 = 0.4, h3 = 50, s = 1.5 (in Eqs. 2.2.5 and 2.2.7).

Numerical simulation of the microscale advection–reaction equation

The microscale advection–reaction equation (Eq. 2.2.5) can also be evolved numeri-

cally by using an upwind finite difference scheme (described in Section 2.2.4). The

evolution of the bound integrin distributions, calculated numerically, is shown in Fig.

2.15(a) for V = 1.5 and a zero initial condition for bound integrins. The numerical re-
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Figure 2.14: Total drag force, F (Eq. 2.2.8), generated by the evolving distribution of

double-bound integrins in Fig. 2.13. A relative velocity leads to asym-

metric distributions and therefore a non-zero drag force. The steady

value obtained corresponds to the steady state distribution shown in

Fig. 2.6 with V = 1.5.

sult is in agreement with the analytical solution (Fig. 2.13(a)) and, since the two meth-

ods produce equivalent results, we use numerical simulations to solve Eq. 2.2.5 from

this point onwards. Numerical simulation will easily accommodate time-dependent

changes in V, whereas it is not always possible to obtain analytical solutions for V(t).

In the cases where it is possible, finding the solution via the method of characteristics

(Appendix A.2) is a long process.

(a) (b)
b(x,t)

Figure 2.15: (a) The evolution of the double-bound integrin distribution obtained

numerically for V = 1.5 is in agreement with the analytical solution

in Fig. 2.13. (b) There is also agreement between the analytical and

numerical solutions at steady state (t = 2). Parameter values: V = 1.5,

h1 = 0.5, h2 = 0.4, h3 = 50, s = 1.5 (in Eqs. 2.2.16a–2.2.17b).
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2.2.3 Multiple ECM binding sites

In Section 2.2.1, we made an assumption that each actin-bound integrin had a single

ECM binding site within its binding range. In the more general case there could be a

discrete set of N binding sites within range of each actin-bound integrin (Fig. 2.16),

and in this case the model is altered slightly.

x̂ x̂x̂ V̂(t̂)

Cell

ECM

x̂ = 0
Figure 2.16: Sketch of the microscale formulation when there is more than one ECM

binding site within range (determined by the binding function) of each

actin-bound integrin. The microscale variable x̂ is local to each integrin

and again measures horizontal distances from the point of cytoskeletal

attachment to the ECM binding sites. Cell and ECM layers have relative

velocity V̂.

The governing equation in Eq. 2.2.2 remains largely the same, except now the binding

term must take into account the sum of all of the possible binding reactions. The

governing equation becomes

∂b
∂t̂

+ V̂
∂b
∂x̂

= k̂b(x̂)

(
1−

∞

∑
i=−∞

b(x̂ + il̂, t̂)

)
− k̂u(x̂)b(x̂, t̂), (2.2.18)

where l̂, assumed constant, is the spacing between ECM binding sites. Note that,

although the sum is for i ∈ (−∞, ∞), there will only be N non-zero terms; once

|x̂ + il̂| is larger than the integrin range, the values of b are zero. If l̂ is large relative

to the binding range, so that there is only one binding site within range, then b(x̂, t̂)

will be the only non-zero term in the sum and the single-site model in Section 2.2.1

(and Eq. 2.2.2) is recovered. In the other extreme, referred to as the Lacker–Peskin

model [86], we assume that the ECM binding sites are abundant and continuously

distributed across the domain, which is the limit as l̂ → 0 (or N → ∞). To arrive

at the Lacker–Peskin model from the discrete binding site model, we first divide Eq.

2.2.18 by the binding site spacing, l̂, to obtain

∂(b/l̂)
∂t̂

+ V̂
∂(b/l̂)

∂x̂
=

k̂b(x̂)
l̂

(
1− l̂

∞

∑
i=−∞

(b(x̂ + il̂, t̂)/l̂)

)
− k̂u(x̂)(b/l̂). (2.2.19)
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For small l̂, the sum in Eq. 2.2.19 is approximated by an integral to obtain the advection–

reaction equation

∂b̂
∂t̂

+ V̂
∂b̂
∂x̂

=
k̂b(x̂)

l̂

(
1−

∫ ∞

−∞
b̂(x̂, t̂)dx̂

)
− k̂u(x̂)b̂(x̂, t̂). (2.2.20)

The distributions, b̂(x̂, t̂) = b(x̂, t̂)/l̂, in the Lacker–Peskin model are therefore di-

mensional quantities (with dimension 1/length), from which the fraction of integrins

bound with displacements in a range [x̂, x̂ + ∆x̂] at time t̂ is calculated via the integral∫ x̂+∆x̂
x̂ b̂(x̂, t̂)dx̂. The total bound fraction of integrins is given by

B =
∫ ∞

−∞
b̂(x̂, t̂)dx̂, (2.2.21)

where, as in the single-site model (Eq. 2.2.9), B ∈ [0, 1]. The extensions of the original

Huxley model [70] to discrete and continuous binding sites are well-established and

further discussions can be found in [80, 86, 131].

2.2.4 Coupling to a macroscale model of cell deformation

We now couple our microscale, integrin-level, description for bond formation and

rupture (Eq. 2.2.20) to a macroscale model of cell and ECM deformation. We con-

sider the cell and ECM to be linearly elastic materials, with deformations denoted by

ÛA(X̂, t̂) and ÛE(X̂, t̂), respectively. Here, X̂ is a macroscale spatial coordinate and t̂

is time. At each point in X̂, the deformation occurs as a result of the adhesive drag

force, F̂(X̂, t̂), which is generated by integrins cycling between bound and unbound

states at the microscale. An inherent assumption is that these two spatial scales are

well-separated. Here we choose to use the multiple ECM binding sites model (Eq.

2.2.20) and the microscale advection–reaction equations are now parameterised by

the macroscale coordinate X̂; the multiscale coupling is illustrated in Fig. 2.17.

Macroscale governing equations

The macroscale velocity of the ECM relative to the cell membrane can be written as

V̂(X̂, t̂) =
∂ÛE(X̂, t̂)

∂t̂
− ∂ÛA(X̂, t̂)

∂t̂
, (2.2.22)

which is coupled to the microscale distributions of bound integrins (see Fig. 2.17) via

Eq. 2.2.20.

We assume that the drag forces, F̂(X̂, t̂), due to bound integrins are body forces acting
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Figure 2.17: Schematic diagram of the multiscale coupling. A relative velocity

V̂(X̂, t̂), arising from macroscale deformation, influences the binding

dynamics and distribution of bonds, b̂(x̂, t̂; X̂), in a corresponding mi-

croscale problem (Eq. 2.2.20). The variable x̂ is local to each integrin

and measures the horizontal distance from the cytoskeletal attachment

to the binding site on the ECM, as shown. Microscale distributions de-

termine the horizontal drag force, F̂(X̂, t̂), which is used to update the

displacements ÛA and ÛE and thereby V̂(X̂, t̂) (via Eqs. 2.2.22–2.2.23).

in equal and opposite directions on the two materials and, as in the discrete model

(Algorithm 2.1.1), we assume that inertial effects are negligible. The macroscale gov-

erning equations are therefore the quasi-static equilibrium conditions

∂2ÛA

∂X̂
2 = − 1

K̂A
F̂,

∂2ÛE

∂X̂
2 =

1
K̂E

F̂, (2.2.23)

where the constants K̂A and K̂E are stiffness-like parameters for the cell layer and for

the ECM respectively.

Boundary Conditions

The cell displacement is assumed to be zero at X̂ = 0 and X̂ = L̂ so that

ÛA(0, t̂) = 0, ÛA(L̂, t̂) = 0. (2.2.24)

However, changes to these boundary conditions can easily be implemented in the

numerical solution of the model (discussed in Section 2.2.5). For the ECM, we apply

a time-dependent displacement at X̂ = 0 and zero strain at X̂ = L̂

ÛE(0, t̂) = f̂ (t̂),
∂ÛE(L̂, t̂)

∂X̂
= 0, (2.2.25)

where f̂ (t̂) is a function to be specified, as in the discrete model (Eq. 2.1.5). The zero

strain condition allows for unconstrained movement of the ECM at X̂ = L̂; alternative
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choices, such as fixed Dirichlet conditions for ÛE(L̂, t̂), are not shown here but are

easily implemented.

Nondimensionalisation

The governing equations and boundary conditions are nondimensionalised with the

scalings
x = x̂/ĥ, t = f̂1 t̂, UA = ÛA/L̂, UE = ÛE/L̂,

b = b̂ĥ, X = X̂/L̂, V = V̂/ f̂1 L̂, F = F̂/ρ̂ĥλ̂b,
(2.2.26)

where f̂1 is the maximum binding rate and ĥ is the integrin binding range. For sim-

plicity we assume that ρ̂ is uniform, but an extension to a non-uniform (but constant)

ρ̂(X̂) is easily incorporated. The dimensionless microscale governing equations are

∂b
∂t

+
V
δ

∂b
∂x

= ηkb(x)
(

1−
∫ ∞

−∞
b(x, t; X)dx

)
− ku(x)b(x, t; X), (2.2.27)

where the dimensionless parameters δ = ĥ/L̂ and η = ĥ/l̂ are the ratios of the inte-

grin binding range to the macroscale length scale and to the microscale binding site

separation, respectively. The microscale advection–reaction equations are coupled to

the macroscale equations via the macroscale velocity V(X, t).

The dimensionless binding rate functions are

kb(x) =

1− |x| |x| ≤ 1,

0 otherwise,
(2.2.28)

and

ku(x) =

h1 + h2|x| |x| ≤ s,

h3 otherwise,
(2.2.29)

where hi = ĝi/ f̂1 are the ratios of unbinding rates to the maximum binding rate, and

s = ŝ/ĥ. The dimensionless drag force

F(X, t) =
∫ ∞

−∞
xb(x, t; X)dx, (2.2.30)

features at the macroscale, where the dimensionless governing equations become

∂2UA

∂X2 = − 1
KA

F,
∂2UE

∂X2 =
1

KE
F, (2.2.31)
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where

KA = K̂A/ρ̂ĥλ̂b L̂ and KE = K̂E/ρ̂ĥλ̂b L̂. (2.2.32)

The dimensionless boundary conditions for the cell and ECM are

(i) UA(0, t) = 0, UA(1, t) = 0,

(ii) UE(0, t) = f (t), ∂UE(1,t)
∂X = 0,

(2.2.33)

respectively, for a time-dependent displacement condition, f (t), to be specified.

Implementation

To solve the advection–reaction system (Eq. 2.2.27), we differentiate the macroscale

governing equations (Eq. 2.2.31) with respect to time and use Eq. 2.2.22 to obtain

∂2V
∂X2 =

(
1

KE
+

1
KA

)
∂F
∂t

. (2.2.34)

From the definition of F(X, t) (Eq. 2.2.30),

∂F
∂t

=
∫ ∞

−∞
x

∂b
∂t

dx, (2.2.35)

and by substituting this into Eq. 2.2.34, using Eq. 2.2.27 and integrating the resulting

expression by parts, we arrive at the following second order PDE for V(X, t)

∂2V
∂X2 = γH +

γ

δ
VB, (2.2.36)

where

H =
∫ ∞

−∞
x f (b) dx, B =

∫ ∞

−∞
b dx, γ =

(
1

KE
+ 1

KA

)
, (2.2.37)

and

f (b) = ηkb(x) (1− B)− ku(x)b. (2.2.38)

To arrive at this final form, we must also note that xb → 0 as x → ±∞. The coupled

system of equations (Eqs. 2.2.27 and 2.2.36) are solved numerically, as detailed in

Section 2.2.5, below, subject to

V(0, t) = f ′(t),
∂V
∂X

(1, t) = 0, (2.2.39)

which are consistent with Eq. 2.2.33.

By integrating the macroscale governing equations (Eq. 2.2.31) twice and using the
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boundary conditions in Eq. 2.2.33, we obtain the cell and ECM deformation, UA(X, t)

and UE(X, t), respectively in terms of F(X, t), given by

UA = − 1
KA

∫ X

0

∫ ζ

0
Fdξdζ +

X
KA

∫ 1

0

∫ ζ

0
Fdξdζ, (2.2.40)

and

UE =
1

KE

∫ X

0

∫ ζ

0
Fdξdζ − X

KE

∫ 1

0
Fdξ + f (t). (2.2.41)

2.2.5 Numerical solution of the continuum model

In this section we describe the numerical solution of the multiscale continuum model,

which comprises a microscale advection–reaction system (Eq. 2.2.27) coupled to a

second order macroscale PDE (Eq. 2.2.36).

The macroscale PDE is solved using a finite difference scheme, subject to the bound-

ary conditions in Eq. 2.2.39. We discretise the macroscale domain, X ∈ [0, 1], into

N points with an equal spacing of ∆X = 1/(N − 1). Macroscale variables V, H,

and B (defined in Eqs. 2.2.22, 2.2.37) are spatially discretised into the vectors v =

(V1, V2, ..., VN)
T, h = (H1, H2, ..., HN)

T, and b = (B1, B2, ..., BN)
T, respectively, where

the built-in MATLAB function trapz is used to calculate the elements of h and b from

microscale distributions (see Eq. 2.2.37). Using a second order central difference, we

approximate the macroscale spatial derivative in Eq. 2.2.36 by

∂2Vi

∂X2 =
Vi+1 − 2Vi + Vi−1

∆X2 (2.2.42)

and solve for v through a matrix equation of the form

v = A−1 p, (2.2.43)

where the vector p is given by

p =
(

f ′(t), γH2, ..., γHN
)T , (2.2.44)

and where the matrix A is

A =



1 0 0 0 0 . . . 0
1

∆X2 D2
1

∆X2 0 0 . . . 0

0 1
∆X2 D3

1
∆X2 0 . . . 0

...
. . . . . . . . . . . . . . .

...

0 . . . 0 1
∆X2 DN−2

1
∆X2 0

0 . . . 0 0 1
∆X2 DN−1

1
∆X2

0 . . . 0 0 0 2
∆X2 DN


. (2.2.45)
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The diagonal elements, D2, ..., DN , are given by Di = − 2
∆X2 − γ

δ Bi, for i ∈ {2, ..., N},
where Bi are elements of the discretised bound fraction vector, b, as defined above.

The first and last rows of A enforce the Dirichlet and zero strain boundary conditions

for V1 and VN (Eq. 2.2.39) respectively.

Eq. 2.2.43 is solved alongside the microscale advection–reaction system (Eq. 2.2.27),

for which we evolve spatially discretised microscale distributions, b(x, t; X), using

the method of lines [122] and the built-in MATLAB function ode15s. Since Eq. 2.2.27

is hyperbolic, the choice of finite difference approximation for the spatial derivative,
∂b
∂x , must be chosen adaptively at each timestep depending on the sign of V(X). This

is known as an upwind scheme [122], and is necessary due to propogation of the

solutions as a wave. Information must therefore be taken from the ‘upwind’ side of

the wave, and here we use the first order scheme

∂bi

∂x
=

(bi − bi−1)/∆x, V(X) > 0,

(bi+1 − bi)/∆x, V(X) < 0,
(2.2.46)

where a backward difference is taken if V(X) is positive and a forward difference is

taken if V(X) is negative.

To allow for more efficient computation, we discretise the microscale spatial domain

with a variable step size. A finer mesh (with step size ∆x1) is required in |x| ≤ s

(see Eq. 2.2.7), whereas a step size of ∆x2 = λ∆x1, where λ > 1, is used for |x| > s.

Microscale distributions are evolved at each of the N (macroscale) discretised points,

and distributions are coupled through the solution of v. The computational cost is

therefore dependent on the choice of N, ∆x1 and λ. In the simulations in Chapter 3,

we use N = 31, ∆x1 = 0.025 and λ = 10. To arrive at these choices, we considered

fixed reductions in mesh sizes and measured the Euclidean norm between successive

solution vectors. Solutions began to converge, detected by a point where this mea-

sure started to decrease monotonically toward zero. From here, discretisations were

chosen by selecting values where further reductions in mesh spacing produced neg-

ligible differences in the solution vectors. In general, this requires a decision to be

made based on the trade-off between numerical error and efficiency.
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2.3 Summary

In this chapter we introduced a discrete stochastic-elastic model (Section 2.1) and a

multiscale continuum model (Section 2.2) of cell–matrix adhesion. The discrete model

consists of an evolving network of linear springs, with stochastic reactions governing

binding and unbinding of integrins from the ECM. The individual-based nature of

the discrete model supports local spatial constraints on the integrin binding reac-

tions; additionally, the local mechanical response to the bound integrins is accounted

for. The stochastic simulation algorithm for this model is given in Algorithm 2.1.1.

Since large-scale discrete simulations are computationally intensive, we additionally

developed a novel multiscale continuum model that allows for similar consideration

of local spatial constraints in the integrin binding reactions. To achieve this we used

a two-scale approach, considering firstly a microscale model of the integrin binding

dynamics (Section 2.2.1). The microscale model is an adaptation of the Huxley cross-

bridge model [70], and we discussed the model derivation alongside some analytical

and numerical results. In Section 2.2.4, we then coupled the microscale formulation to

a macroscale description of cell and ECM deformation and presented the governing

equations, nondimensionalisation and numerical scheme required to solve the fully

coupled system. Numerical results from both the discrete and multiscale continuum

models will now be shown in Chapter 3.



Chapter 3

Effect of oscillatory loading on cell–matrix

adhesion

As a result of tidal breathing, ASM cells and the extracellular matrix are subjected to

regular mechanical fluctuations. Since it is well established that integrins are respon-

sive to mechanical and environmental cues (Section 1.2), an important consideration

is how the dynamic environment of an airway in vivo affects adhesion strength and

dynamics. We expect the resulting integrin dynamics to influence the level of con-

tractile force transmission attainable between ASM cells and the ECM during bron-

choconstriction, and hence to regulate the extent of airway narrowing.

In this chapter we use both the discrete (Section 2.1) and continuum models (Sec-

tion 2.2) to investigate integrin binding and adhesion dynamics in response to an

oscillatory loading of the ECM, representing tidal breathing. Firstly we consider the

discrete stochastic-elastic model and investigate how tidal breathing could influence

the formation and survival of adhesions. We then replicate these simulations with

the multiscale continuum model, which couples microscale binding reactions to the

macroscale mechanical environment. We find good qualitative agreement between

the continuum model and the stochastic simulations; with the more tractable contin-

uum model we investigate the importance of parameters of relevance to asthmatic

and non-asthmatic airways. These include material stiffnesses, oscillation frequency

and binding affinities. We also consider the effect of varying the waveform of the

oscillation and the ratio between inhalation and exhalation times. Motivated by ex-

perimental observations about the possible bronchodilatory effect of taking deep in-

spirations (DIs), we then investigate the effect of perturbations to the amplitude of

47
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oscillatory loading, representing DIs. The majority of the results in this chapter have

been published in Irons et al. [72].

3.1 Varying the amplitude of oscillation

Boundary conditions

In order to represent fluctuations that occur due to tidal breathing, we impose an ex-

ternal, oscillatory, loading to the ECM. In the discrete model this is imposed through

Eq. 2.1.5, where the chosen time-dependent displacement of the ECM boundary node

follows

ÛE1(t̂) = Âsin(ω̂t̂), (3.1.1)

for amplitude Â, frequency ω̂
2π , and where ÛEi denotes the displacement of the ith

ECM node from its rest position (see Fig. 2.2).

In the continuum model, we apply the same time-dependent displacement to the

ECM at X̂ = 0 and zero strain at X̂ = L̂. The boundary conditions are therefore

ÛE(0, t̂) = Âsin(ω̂t̂) and
∂ÛE(L̂, t̂)

∂X̂
= 0, (3.1.2)

or in dimensionless form

UE(0, t) = Asin(ωt) and
∂UE(1, t)

∂X
= 0, (3.1.3)

where the scalings in Eq 2.2.26, along with A = Â/L̂ and ω = ω̂/ f̂1, have been used.

In both models the cell membrane is constrained at X̂ = 0 and X̂ = L̂, as described in

Section 2.2.4, by using zero-displacement Dirichlet conditions (Eq. 2.2.24).

Initial conditions

In the simulations that follow we will consider two initial conditions: (i) a zero state

with no pre-existing bound integrins, and (ii) a saturated high steady state of bound

integrins, obtained in the absence of external forcing. In the discrete model, this satu-

rated state is found by running the simulation with A = 0 until the fraction of bound

integrins reaches an approximate steady state; in the continuum model the steady
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state is obtained by solving Eq. 2.2.27 with V = 0, and is given by

bs(x, 0) =
ηkb(x)
ku(x)

 1

1 +
∫ ∞
−∞

ηkb(x)
ku(x) dx

 . (3.1.4)

Numerical results

We first investigate the effect of varying the amplitude, A (Eq. 3.1.3), of the oscil-

latory loading in both the discrete and continuum models. We show representative

time courses from both models (Fig. 3.1) for the fraction of integrins that become

double-bound under low, intermediate and high amplitude oscillatory loading. In

the continuum model the total macroscale bound fraction is found from

Btot(t) =
∫ 1

0
B(X, t)dX, (3.1.5)

where B(X, t) is given by Eq. 2.2.37.
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Figure 3.1: Representative time courses from the discrete stochastic simulation (Sec-

tion 2.1) and continuum model (Section 2.2), shown in the left and right

columns respectively, illustrating the responses of bound integrins (Eq.

3.1.5) to (a) low, (b) intermediate and (c) high amplitude oscillatory load-

ing. Parameter values in Eqs. 3.1.1 or 3.1.3 are ω = 20 and the amplitudes

A = 0.1, A = 0.15, and A = 0.2 respectively. In each case we consider

zero (orange) and saturated (blue) initial conditions (Eq. 3.1.4). A full list

of parameter values is given in Appendix B.

For the lowest amplitude oscillation, in both models (Fig. 3.1(a)), we find that both the

zero and saturated initial conditions converge to a pattern of high adhesion subject to
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small fluctuations as a result of a low, sustainable, turnover of bound integrins. For

the highest amplitude loading (Fig. 3.1(c)), in both models and for both the zero and

saturated initial conditions, the result is a lower oscillatory state for the total bound

integrin fraction, in which significant bond rupture leads to a lower mean (approx-

imately 0.2–0.3) and larger amplitude fluctuations. For an intermediate oscillation

amplitude (Fig. 3.1(b)) we observe bistability, occuring due to mechanical cooperativ-

ity, where the initial condition determines which of these two adhesion states occur;

if adhesions are present when oscillations begin, then shared loading and increased

traction prevent high levels of rupture under applied strain. Due to the stochastic na-

ture of the discrete model, under high amplitude oscillations we sometimes observe

small variations in the time of collapse from the high to the low state (not shown).

Similarly, it is possible to observe stochastic switching (as shown in Fig. 3.2) between

the two adhesion states when bistable behaviour is present.
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Figure 3.2: Example timecourse from the discrete stochastic simulation (Section 2.1)

where stochastic switching from low to high adhesion states is observed.

The amplitude of oscillatory loading (Eq. 3.1.1) is A = 0.15, which ex-

hibits bistable behaviour (Fig. 3.1). A full list of parameter values is

given in Appendix B.

In each adhesion state, the different underlying behaviours of the bound integrins

can be seen by sampling microscale distributions from the continuum model. We

sample distributions across the macroscale domain for A = 0.1 and A = 0.15 from

a zero initial condition (Fig. 3.3). When A = 0.1 a high adhesion state occurs and

the integrins mostly remain bound with a low turnover. This is seen at X = 0.5 and

X = 1 (Fig. 3.3) where the bound fraction stays high but the local displacements, x,

of the bound integrins follow the applied oscillatory ECM displacement. At X = 1,

the bound fraction is highest and the amplitude of the oscillations decrease due to an

increased drag force. Since the oscillatory loading is applied at X = 0 (Eq. 3.1.3), the

disturbance is higher and here the integrins are seen to rupture and rebind at each
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cycle. In the low adhesion state (A = 0.15), this cyclic rupture and rebinding occurs

across the whole domain. However, a similar damping of the oscillatory loading is

still seen, shown by the increasing peak value and reduced width of b(x, t; X) as X

increases. The damping will be affected by material stiffnesses; the effect of varying

these (via γ, Eq. 2.2.37) on the bound integrin fraction is shown later.
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b(x,t;X)
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b(x,t;X)

Figure 3.3: Microscale bound integrin distributions, b(x, t; X), sampled at X = 0,

X = 0.5 and X = 1 for A = 0.1 and A = 0.15 from a zero initial condition.

These distributions show the underlying bound integrin behaviour cor-

responding to the high and low oscillatory adhesion states in Fig. 3.1(a)

and (b). Due to damping, the peak value of b(x, t; X) increases as X in-

creases; note the different scales on the colorbars.

As illustrated by the timecourses in Fig. 3.1, the discrete and continuum models dis-

play qualitatively similar behaviour, and we therefore exploit the deterministic nature

of the continuum model to comprehensively investigate the bistability. We present

the bound integrin densities obtained for a full range of oscillation amplitudes (Fig.

3.4), again using both the zero and saturated initial conditions. Since the states under

consideration are oscillatory, once the behaviour has converged to its periodic steady

state, we plot the time-averaged adhesion density given by

〈B(X)〉 = 1
T

∫ T
B(X, t)dt, (3.1.6)

where T = 2π/ω is the oscillation period. As shown by the microscale distributions

in Fig. 3.3, there is variation in 〈B(X)〉 across the macroscale domain, X ∈ [0, 1], and

we observe a significantly lower adhesion density near X = 0 where the oscillation is

applied.
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Figure 3.4: High (blue) and low (orange) solution surfaces across the macroscale do-

main, X, indicating stable states of the time-averaged adhesion density

〈B(X)〉 (Eq. 3.1.6) for a range of oscillation amplitudes, A (Eq. 3.1.3). So-

lutions were obtained by considering zero (orange) and saturated (blue)

initial conditions (Eq. 3.1.4) in the continuum model. For intermediate

amplitudes there is bistability. Parameters are as in Fig. 3.1 and Table S1.

The time-averaged adhesion density plotted in Fig. 3.4, 〈B(X)〉, is additionally av-

eraged over X to calculate the total time-averaged density 〈Btot〉 (Eq. 3.1.5), which

is used to generate a bifurcation diagram in Fig. 3.5. Stable branches, indicated by

the solid lines, confirm, as in Fig. 3.4, that for low amplitude oscillations we ex-

pect solutions to converge to a high averaged bound integrin state regardless of ini-

tial conditions, while for high amplitude oscillations the solutions converge to a low

bound integrin state. For an intermediate range of oscillation amplitudes we observe

a window of bistability where the initial condition, in relation to an unstable branch

(dashed line), determines which of the two stable outcomes occurs. The position of

the unstable branch is estimated as the mean of two points that are observed to con-

verge to the upper and lower solutions (green and red markers, respectively). The

unstable and stable branches appear to meet in a pair of saddle node bifurcations. As

marked in Fig. 3.5, when starting on the upper stable branch, an increase in A would

lead to a jump from the upper to the lower stable solution at the bifurcation point.

The value of A at this point corresponds to a threshold loading at which adhesions

quickly rupture. On the other hand a decrease in A from the lower branch leads to a

jump from the lower to upper branch at a different amplitude, following a different

path, thereby generating a hysteresis loop (blue dotted line).
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Figure 3.5: Bifurcation diagram indicating steady states of the time-averaged total

adhesion density 〈Btot〉 (Eqs. 3.1.5, 3.1.6) for a range of oscillation ampli-

tudes, A (Eq. 3.1.3). Stable branches are indicated by solid lines separated

by the dashed, unstable branch. The position of the unstable branch is

bounded by points known to converge to the upper and lower solutions,

in green and red respectively. Blue markers highlight example monos-

table ((a) A = 0.1, (d) A = 0.3) and bistable ((b) A = 0.125, (c) A = 0.15)

regimes, and a hysteresis loop is seen (blue dotted line). The path taken

as A increases ((a)→(b)i →(c)i→(d)) differs to the path followed as A

decreases ((d)→(c)ii→(b)ii→(a)).
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In addition to considering the bound integrin densities, we examine the spatio-temporal

cell deformation resulting from oscillatory loading. We show this for both the discrete

and continuum models in each stable regime (Fig. 3.6). In the high bound integrin

regime (i.e. low amplitude oscillations), adhesions persist and in both models there

are smooth transitions between positive and negative cell deformations across the do-

main (Figs. 3.6(a), (c)). These appear as wide bands that follow the movement of the

ECM. In the low bound integrin regime (high amplitude oscillations), the bands nar-

row and exhibit sharp boundaries due to greater numbers of rupture events at each

cycle (Figs. 3.6(b), (d)).
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Figure 3.6: Cell deformation, UA(X, t), (indicated by colour) plotted as functions of

the position in the cell domain, X, and time, t, obtained in the discrete

(a,b) and continuum (c,d) models in the cases where adhesion forma-

tion (a,c) and adhesion rupture (b,d) dominate under oscillatory loading.

Simulations are carried out from a zero initial condition, and oscillation

amplitudes are A = 0.1 and A = 0.2 in Eq. 3.1.1 and Eq. 3.1.3. Eq. 3.1.1

has been nondimensionalised using the scalings in Eqs. 2.2.26, 2.2.32. In

(a,b) the results have been averaged over 150 simulations, and the spatial

positions are presented on a scaled domain X ∈ [0, 1].

The differences in deformation that result from low and high amplitude oscillations

correspond to differences in the total drag force generated by bound integrins, shown

in Fig. 3.7. The total drag force in the continuum model, Ftot, is defined analogously

to Btot (Eq. 3.1.5). Note that, although the total drag forces are qualitatively similar

in both models, there are some significant differences in the spatial propagation of

the deformation applied at X = 0 (Fig. 3.6) arising due to differences between the

two modelling approaches. In particular, individual springs between each node in

the discrete model (Fig. 2.2) produce altered damping properties in comparison to



CHAPTER 3: EFFECT OF OSCILLATORY LOADING ON CELL–MATRIX ADHESION 55

the simplified formulation of the continuum model, where local rigidity is assumed

at the microscale (Section 2.2.1). Since bond rupture is directly affected by the level

of deformation, the total bound fractions (Fig. 3.1) also differ slightly in magnitude

between the two models; however, there is still a striking qualitative agreement for

the averaged macroscale quantities of interest (Btot, Ftot, in Figs. 3.1, 3.7). Since we are

primarily interested in the qualitative behaviour, in the following sections we con-

tinue to exploit the efficiency of the continuum model in place of discrete stochastic

simulations to investigate the dependence of the averaged bound integrin density,

Btot, on parameters of relevance to ASM cells and tidal breathing.
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Figure 3.7: Total adhesive drag forces, Ftot, in the discrete (a,b) and continuum (c,d)

models corresponding to the deformations in Fig. 3.6. (a,c). A = 0.1 in

Eq. 3.1.1 and Eq. 3.1.3 and adhesion formation dominates. (b,d). A = 0.2

and there is increased rupture and a constant turnover of bound integrins

under oscillatory loading. Eq. 3.1.1 has been nondimensionalised using

the scalings in Eqs. 2.2.26, 2.2.32. As in Fig. 3.6, simulations are carried

out from a zero initial condition. The results in (a,b) are from one sample

discrete simulation.

3.1.1 Effect of varying the model parameters

We now investigate the effect of varying parameters that could differ between indi-

viduals and between asthmatics and non-asthmatics. These include the frequency of

oscillations, material stiffnesses and binding affinities. An increase in the frequency

of applied oscillations is shown to result in a decrease in the averaged bound integrin

density, 〈Btot〉, on both stable branches (Fig. 3.8(a)). This is due to reduced con-

tact times for integrin binding. The most significant shift occurs in the lower branch

where rupture and rebinding must occur at each cycle; the increased frequency pre-
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vents significant binding. The location and size of the bistable window are also af-

fected; for higher frequencies the lower branch persists for lower amplitudes, A, and

the bistable region widens. The end points of the high and low branches have been

calculated to the nearest 0.005, giving the widths of the bistable region to be in the

ranges [0.03, 0.04], [0.045, 0.055], and [0.055, 0.065] for ω = 10, 20, and 30 respectively.

The material stiffnesses KA and KE influence the microscale distributions through the

parameter γ that appears in the macroscale relative velocity (Eqs. 2.2.36, 2.2.37). As

seen by Eq. 2.2.37, the value of γ decreases (increases) when either KA or KE are

increased (reduced). Without loss of generality, in Fig. 3.8(b) we present results cor-

responding to variations in the cell stiffness, KA. We observe that an increased cell

or ECM stiffness (i.e. reduced γ) leads to a narrowing of the bistable region and a

significant downward shift in the amplitude of forcing at which the saddle node bi-

furcations occur, and where the high branch exists. This is due to increased propaga-

tion of the forcing across the macroscale domain; increased material stiffnesses result

in a reduced attenuation of the oscillatory load. For stiffer cells a lower oscillation

amplitude can therefore result in the same degree of bond rupture.

Since binding affinities are specific to integrin type and can vary due to integrin ac-

tivation and intracellular signalling [69, 71], we also investigate how the stable adhe-

sion states respond to variations in binding affinities. In Eq. 2.2.29 the rupture rates

involve parameters h1, h2, h3, the ratios of unbinding rates ĝ1, ĝ2, ĝ3 to the maximum

binding rate f̂1 (see Eqs. 2.2.6, 2.2.7). Here we vary h1, the unbinding rate when in-

tegrins are at x = 0. We find that the magnitudes of the upper stable states decrease

with increased h1 (Fig. 3.8(c)), since this state is obtained when adhesion formation

and rupture balance, and when the system is subject to only small fluctuations. Since

deformation-induced rupture will occur under lower values of loading if the bound

fraction 〈Btot〉 is reduced, the bifurcation point on the upper branch shifts to a lower

value of A as h1 increases. Shifting of the stable branches is most notable in the up-

per branch since the high equilibrium bound state is more sensitive to h1 than the

low oscillatory rupture state; on the lower branch, the integrins are generally further

from x = 0 and the effect of h2 and h3, which control the unbinding of integrins in a

stressed state (see Eq. 15), are dominant. The separation of the lower branch becomes

more apparent when the frequency of oscillatory loading is reduced (see Fig. 3.9),

since the integrins will then spend more time near x = 0.
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Figure 3.8: Stable branches in the continuum model indicating the values of 〈Btot〉
(Eqs. 3.1.5, 3.1.6) for: (a) varying frequencies of the oscillatory loading,

ω = 10, 20, and 30 (Eq. 3.1.3); (b) varying cell stiffnesses, KA = 1, 2, and 4;

and (c) varying integrin binding affinities h1 = 0.25, 0.5 and 1 (Eq. 2.2.29)

with ω = 20. For increased frequencies, contact times for integrin bind-

ing are reduced, leading to lower averaged bound integrin densities. For

increased stiffnesses, there is a significant downward shift in the ampli-

tude of oscillation at which the saddle node bifurcations occur. Binding

affinities affect the magnitude of the stable adhesion states, most notably

the upper branch, as well as the position and width of the bistable region.

Unless otherwise stated, parameter values are as in Appendix B.
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Figure 3.9: Stable branches indicating the values of 〈Btot〉 (Eqs. 3.1.5) as a function

of oscillation amplitude, A, for different h1 = 0.25, 0.5 and 1 in Eq. 2.2.7

for ω = 10. The lower branches separate (compared to in Fig. 3.8(c) with

ω = 20) due to the lower frequency of oscillations.

3.1.2 Effect of varying the input waveform

Sinusoidal waveforms are commonly used to represent tidal breathing in both theo-

retical and experimental studies [13, 61, 95, 117]; however, breathing is not perfectly

sinusoidal with, for example, a longer time spent on exhalation than inhalation [145].

In this section we consider how an asymmetric waveform (accounting for physiolog-

ical differences in inhalation and exhalation times) may affect the bound integrins,

compared to the sinusoidal waveform used in the previous section. We implement

the asymmetry by replacing the sinusoidal displacement condition in Eq. 3.1.3 by a

boundary condition of the form

UE(0, t) = Asin(ωt + αsin(ωt)), (3.1.7)

where A and ω control the amplitude and frequency of oscillation, respectively, and

α is a skewness parameter. The waveform in Eq. 3.1.7 is shown in Fig. 3.10, where we

have chosen to use α = 0.4. Denoting the inhalation and exhalation times by tI and

tE, respectively, this gives tI/tE ≈ 0.62, which is within the range of ratios reported

during tidal breathing in [145]. Note that in the sinusoidal case presented previously

(Eq. 3.1.3), this ratio was tI/tE = 1.

Since the model is driven by the relative velocity at X = 0 (see Eq. 2.2.39), we differ-
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Figure 3.10: Plot of the asymmetric waveform used for UE(0, t), given by Eq. 3.1.7

with α = 0.4, A = 0.1 and ω = 20. The times tI and tE represent

inhalation and exhalation, respectively, and in this case tI/tE ≈ 0.62.

entiate Eq. 3.1.7 with respect to time to obtain the boundary condition

V(0, t) = Aω(1 + αcos(ωt))(cos(ωt + αsin(ωt))). (3.1.8)

The remaining boundary conditions for the cell and ECM are unchanged (Eq. 2.2.33).

Timecourses of the total bound fraction, Btot, (Eq. 3.1.5) are shown in Fig. 3.11 as the

oscillation amplitude, A, varies. For each amplitude of oscillation we consider a zero

(orange) and saturated (blue) initial condition (Eq. 3.1.4), as in Fig. 3.1. Since the oscil-

lations are now asymmetric (Fig. 3.10), the oscillations in the total bound fraction also

exhibit asymmetry; there is more adhesion formation during the longer exhalation

period, and the bound fraction therefore reaches a higher peak than during inhala-

tion. As the tI/tE value decreases from 1 (corresponding to the symmetric case), the

asymmetry in the bound fraction timecourses will become increasingly apparent. As

in Fig. 3.1, for low oscillation amplitudes we find that adhesion formation dominates

and a high bound integrin state is obtained. For high oscillation amplitudes, adhe-

sion rupture dominates, resulting in a lower bound integrin regime. For intermediate

oscillation amplitudes, bistability is again observed due to shared loading between

integrins; the outcome depends on the initial condition.

The stable solution surfaces for a range of amplitudes of oscillatory loading are shown

in Fig. 3.12, which we compare to the result from the symmetric case (Fig. 3.4). Since

the results are time-averaged over a full cycle, the symmetric and asymmetric cases

exhibit only slight differences. In the asymmetric case, the bistable window is slightly

wider (with a 12.5% increase).
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Figure 3.11: Timecourses illustrating the responses of total bound integrin fractions

(Eq. 3.1.5) to low (A = 0.1), intermediate (A = 0.15) and high (A = 0.2)

amplitude oscillatory loading for the boundary conditions in Eq. 3.1.8

with ω = 20 and α = 0.4. In each case we consider a zero (orange) and

a saturated (blue) initial condition (Eq. 3.1.4).
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Figure 3.12: Upper (blue) and lower (orange) stable solution surfaces for the asym-

metric waveform in Equation 3.1.7, with ω = 20 and α = 0.4, which

also exhibits bistability for intermediate values of A. The correspond-

ing result with a symmetric waveform is shown in Fig. 3.4; there are

only slight differences as 〈B(X)〉 is time-averaged over a full cycle.

3.2 Perturbations due to deep inspirations

In both non-asthmatics and asthmatics, breathing patterns exhibit variations over

time. Motivated by experimental observations about deep inspiration (DI)-induced

bronchodilation (Section 1.1.2 and [33, 78, 125]), we now investigate the effect of tran-

sient perturbations to the amplitude of oscillatory loading on the bound integrin dy-

namics. These perturbations are designed to mimic the strain imposed on ASM cells

and the ECM that may result from taking a DI during a period of regular breathing.

Starting from the saturated initial condition (Eq. 3.1.4), we allow the bound integrin

fraction to settle to its periodic high steady state before perturbing the amplitude of

the oscillation for one cycle. We now return to sinusoidal oscillations, and to replicate

a single DI we impose

UE(0, t) =

A2sin(ωt), 8π
ω < t < 10π

ω ,

A1sin(ωt), otherwise,
(3.2.1)
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for baseline oscillation amplitude A1, DI amplitude A2 (where A2 > A1) and oscilla-

tion frequency ω
2π (Fig. 3.13).

We consider two different baseline oscillation amplitudes (A1 = 0.1, A1 = 0.125,

marked by (a) and (b) in Fig. 3.5). This choice is motivated by variations in the ampli-

tude of tidal breathing that may arise between individuals; pressure-driven oscilla-

tions in vivo would lead to smaller strains for greater material stiffnesses [64, 88]. The

differences in A1 could therefore correspond to asthmatic (stiff) and healthy (compli-

ant) airways. We investigate the response to a small perturbation (A2 = 0.15, point

(c) in Fig. 3.5) and a DI that is large enough to induce significant rupture of adhesions

(A2 = 0.3, point (d) in Fig. 3.5), and find that for a starting amplitude A1 = 0.1, there

is recovery to the high adhesion state regardless of the amplitude of the perturbation

(Fig. 3.13(a)). For a starting amplitude A1 = 0.125 there are two possible responses

depending on the amplitude of the DI perturbation (Fig. 3.13(b)). As shown by the

blue markers in Fig. 3.5, for A1 = 0.1 the high adhesion state is the only stable so-

lution and a high density of bound integrins therefore persists after a perturbation.

In contrast, A1 = 0.125 lies within the bistable window and if the DI perturbation

is large enough to drive the system into the basin of attraction of the low adhesion

state, there is a transition to a low bound integrin density which persists even after

the oscillation returns to its initial amplitude. This behaviour can be observed for any

values of A1 within the bistable window.

These responses demonstrate the possible consequences of bistability and the impor-

tance of loading history, since an event such as a DI perturbation may alter the future

state of adhesion when bistability is present. Persistence of the previous state depends

on the amplitude of the DI and on where the bistable window (Fig. 3.5) lies in rela-

tion to the baseline oscillation amplitude, A1. Physiologically, this will be influenced

by differences in the amplitude of the baseline oscillatory displacement, representing

tidal breathing, and differences in parameters such as the oscillation frequency, mate-

rial stiffnesses and binding affinities. These factors could all vary between asthmatics

and non-asthmatics and are seen to shift the location of the bistable window (Fig. 3.8).
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Figure 3.13: Different amplitude baseline oscillations and DI-like perturbations may

lead to a switch in adhesion states. We show the applied oscillatory

displacement, UE(0, t), and the total bound fraction of integrins, Btot(t),

(see Eq. 3.2.1 and Eq. 3.1.5), when ω = 20. (a) For A1 = 0.1, A2 = 0.3

(solid line) and A1 = 0.1, A2 = 0.15 (dashed line), the high adhesion

state (red) persists after both DI perturbations, since for A1 = 0.1 this is

the only steady state. (b) For A1 = 0.125, A2 = 0.3 (solid line), there is a

transition to a low adhesion state (green), since A1 = 0.125 is within the

bistable window (see Fig. 3.5) and the DI is sufficiently large to drive

the system into the basin of attraction of the low state. For a smaller

amplitude perturbation, A2 = 0.15 (dashed line), the high fraction of

bound integrins persists.

(a)

(b)

Figure 3.14: Cell deformations, UA(X, t), and total drag forces, Ftot, corresponding

to two of the outcomes shown in Fig. 3.13. In (a) A1 = 0.1 and A2 = 0.3

and the DI results in a transient decrease in bound integrin fraction. This

has a temporary effect on the level of deformation and total drag force.

In (b) A1 = 0.125 and A2 = 0.3 and the reduction in bound integrin

fraction after a DI is sustained. Here there is a permanent switch in

adhesion states, with corresponding reductions in UA and Ftot.
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3.3 Conclusions

In this chapter we used the discrete stochastic-elastic model and the multiscale con-

tinuum model developed in Chapter 2 to investigate the effect of oscillatory loading,

representing deformations due to tidal breathing and deep inspirations (DIs), on the

dynamics of ASM cell–matrix adhesions. To date, the consideration of mechanical

ASM-ECM interactions via integrins has been neglected in investigations on the ef-

fect of tidal breathing and DIs in asthma. Our results indicate that the density of

adhesions can be heavily influenced by dynamic loading and also by the loading

history. In particular, we observe two distinct regimes where either adhesion forma-

tion or adhesion rupture dominate, resulting in large differences in the steady state

densities of bound integrins (Fig. 3.1). Moreover, a window of bistability exists for

intermediate loading amplitudes (Fig. 3.5) due to mechanical cooperativity; shared

loading between pre-existing adhesions allows the high density state to persist when

rupture would otherwise dominate. This bistability generates a hysteresis loop and

we see that the loading history and events such as perturbations representing deep

inspirations can significantly alter the future adhesion dynamics (Fig. 3.13). We have

investigated the effect of varying the model parameters (Fig. 3.8) and of varying

the input waveform (Fig. 3.11) and observe robustness of these dynamics. Due to

their role in transmitting mechanical strains, we expect the high and low adhesion

densities to significantly affect the level of contractile force that can be transmitted

between intracellular and extracellular domains during ASM cell contraction. This

could directly affect the extent of airway narrowing that occurs during bronchocon-

striction, and we hypothesise that the high and low adhesion states could correspond

to contracted and dilated airways respectively. In addition to the differences in bound

integrin densities seen in the two regimes, cell deformations and adhesive drag forces

also differ significantly in each case, both in terms of magnitude and dynamics (Figs.

3.6, 3.7).

In previous studies [108, 128], similar instances of mechanical integrin cooperativity

have been observed; shared loading between integrins aids initial cluster formation.

The existence of a threshold at which integrin rupture dominates over adhesion for-

mation is in agreement with the Monte Carlo simulations in a previous study [81],

where an oscillatory strain is applied to an initially fully-bound substrate. Our model

assumptions differ in some respects to those of Kong et al. [81], but sudden rupture

occurs in both when the oscillation amplitude is increased. In our model, we addition-
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ally observe bistability and hysteresis. The two adhesion states that we report appear

to behave similarly to transient and firm adhesions, observed in other contexts; the

high state exhibits persistence of bound integrins, whereas the low state shows cyclic

breaking and reattachment of a significant fraction of integrins. Integrin-mediated

adhesions can function as either dynamic or stable structures [67] and, in the context

of cell migration, switching between transient and firm adhesion states (mediated

by biochemical signalling) facilitates migration by altering the traction properties be-

tween cells and the ECM. Mechanical signals, in addition to biochemical signals, are

known to be able to modulate focal adhesion size and dynamics [100], making further

study into how the mechanical environment of ASM affects focal adhesions worth-

while.

Motivated by experimental observations about the bronchodilatory effect of DIs (Sec-

tion 1.1.2), we used the more tractable continuum model to investigate the effect of

transient perturbations to the amplitude of oscillations. After a large DI-like pertur-

bation, our results show either persistence of the high adhesion state or a transition

from the high to the low adhesion states (Fig. 3.13). This result provides a possible

mechanism for why the bronchodilatory effect after a DI is transient in asthmatics yet

sustained in non-asthmatic subjects [33, 78, 125]. The ability of a DI to induce a switch

between states is influenced by a difference in either: (i) the position of the bistable

region, which shifts in response to changes in material parameters such as oscillation

frequency, material stiffnesses and binding affinities (Fig. 3.8); (ii) the amplitude of

the unperturbed oscillatory displacement, which we use to represent the magnitude

of tidal breathing; or (iii) the magnitude of the DI. All of these factors could differ

between individuals, as well as between asthmatics and non-asthmatics. In particu-

lar, we expect asthmatics to have stiffer airways and to experience lower amplitude

displacements during both tidal breathing and DIs. As demonstrated in Fig. 3.13,

lower amplitudes of tidal breathing could lead to an inability to switch to a low adhe-

sion state after a DI. We hypothesise that this switch could correspond to recovering

from a contracted to a dilated state. To fully understand the bronchodilatory effect of

DIs, it will be crucial to consider the dynamics of actin-myosin crossbridges as well as

integrins; we expect them both to contribute, but their relative importance will only

become clear when considered together. Results in this vein are presented in Chapter

6, where we develop a coupled model of both integrin and crossbridge dynamics.

Our initial results were obtained in the stochastic-elastic computational model and
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then replicated in the multiscale continuum model. Due to the inclusion of detailed

microscale binding rates, we find that our continuum model produces similar quali-

tative behaviour to the discrete model. Whilst the discrete model is advantageous for

incorporating large amounts of individual detail, the continuum model is more effi-

cient for a large number of integrins. The continuum model can also more easily be

coupled to existing models of contractile force generation, for example [24], in which

crossbridge cycling and disruption to actin-myosin contractile units (in response to

cell length changes) are considered. Extending the model to include this will allow

for the investigation of the combined dynamics of crossbridges and integrins during

DIs. As discussed in Section 1.1.2, further motivation for understanding contractile

force transmission between ASM cells and the ECM in the context of asthma is to

understand the force-dependent activation of TGFβ, a growth factor which otherwise

remains latent in the ECM. In order to fully understand the consequence of differ-

ent adhesion states on the activation of TGFβ the extension to higher dimensions,

where the constraint on vertical motion can be relaxed, will again be needed. Within

the continuum framework, it is possible to address simplifications made during ini-

tial model development; in particular, one can consider nonlinear elastic materials

in order to accommodate large deformations, a more complete reaction sequence in-

cluding integrin diffusion and activation (Chapter 4), and different forms for spatial

binding and rupture rates. Instead of our simplified piecewise linear rates, a more

commonly used description for bond rupture under force is the Bell model [14], in

which rupture rates increase exponentially with force. A similar observation of bista-

bility due to mechanical cooperativity has been seen in a previous model with a Bell

rate for unbinding [37]. Other rate functions, including a power law relation, have

also been presented [40, 41], and obtaining precise measurements for individual inte-

grins, using techniques such as atomic force microscopy [44], remains an area of on-

going research. As we explicitly account for binding and unbinding rates that depend

on microscale distance, both our discrete and continuum models can accommodate

any of these choices.



Chapter 4

Modelling integrin activation, diffusion

and strengthening

In this chapter we extend the multiscale continuum model presented in Chapters 2

and 3. In the initial model we assumed that integrins were already activated and

actin-bound; we now consider diffusion and activation of free integrins, which are

processes that occur upstream of integrin binding to ECM. These processes are ac-

counted for in a macroscale reaction–diffusion system, presented in Section 4.1. Us-

ing this extended reaction sequence we investigate the different system behaviours

that occur when activation and deactivation rate constants are varied. We also ex-

plore the idea of a time-dependent activation rate to represent intracellular signalling

processes that occur during initial adhesion formation. AFM experiments show a

non-monotonic increase in adhesion strength during early adhesion formation and,

using the model, we find that a Hill function activation rate, chosen to represent a

delay in signalling, could explain these observations.

In Section 4.2 we further extend the model to allow for a force-dependent strength-

ening of adhesions, which is known to occur through additional protein recruitment

within the cell. Integrin-mediated adhesions can be reinforced through the binding

of the protein vinculin to cryptic binding sites on talin, which is the primary adaptor

protein bound to integrin tails (Section 1.2.2). These binding sites are only exposed

when the integrins and talin are under strain. We model this process by adapting the

microscale model; bound integrins can undergo an additional strengthening stage,

again dependent on a local spatial coordinate. The model is extended to include

vinculin-bound integrins as a separate species, and their dynamics are modelled by

67
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a second system of advection–reaction equations. These equations are coupled to the

binding reactions and advection–reaction system of the previous microscale formula-

tion (Chapter 2).

In Section 4.3, we explore whether our model extensions can account for behaviours

observed in a recent experimental study by Mailhot-Larouche et al. [95]. The in vitro

study was designed to investigate how the time between deep inspirations (DIs) af-

fects airway renarrowing following a DI. A reduced time interval between DIs was

observed to increase both the magnitude and the rate of recovery to the contractile

state.

4.1 Integrin diffusion and activation

In addition to the reversible binding of active actin-bound integrins (IA) to the ECM

to form double-bound integrins (B), we now consider the binding of integrins (I) to

adaptor proteins (A) within the cell. The notation for the different integrin states are

as shown in Fig. 4.1. The adaptor proteins, which include talin, connect the integrins

to the actin cytoskeleton and also facilitate inside-out integrin activation (see Section

1.2.2). Activation and binding reactions occur across the macroscale domain, where

the extended reaction sequence is now

I(X, t) + A(X, t)
kA−⇀↽−
kD

IA(X, t)
kon−−⇀↽−−
ko f f

B(X, t). (4.1.1)

Initially, the rates kA and kD in Eq. 4.1.1 will be treated as positive constants, but

there is freedom to include dependencies on time or on the macroscale variables.

The integrin binding reactions follow our previous microscale model (Section 2.2);

the macroscale reaction rates kon and ko f f are therefore to be determined by underly-

ing microscale bound integrin distributions and local rate functions, kb(x) and ku(x).

Within this formulation we will also allow for the diffusion of the unbound integrins

(I). The extended reaction sequence that we consider is sketched in Fig. 4.1.

To nondimensionalise the system, each macroscale species is scaled by the total adap-

tor protein concentration. This is conserved across the different states at each macroscale

point X, to give the dimensionless relation IA + A + B = 1. The dimensionless model
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X=0 X=1

I IA B

A Cell

ECM

Membrane

Figure 4.1: Sketch of the integrin states involved in the extended reaction sequence.

Freely diffusing integrins (I) bind to adaptor proteins (A) to form ac-

tive, actin-bound integrins (IA). These integrins bind to the ECM to form

double-bound integrins (B). The macroscale domain is defined as in Sec-

tion 2.2.4 and is far more dense than depicted (see Fig. 2.17).

equations are

∂A
∂t

= −kA IA + kD(1− A− B), (4.1.2)

∂I
∂t

= D∇2
X I − kA IA + kD(1− A− B), (4.1.3)

∂b(x, t; X)

∂t
+

V(X, t)
δ

∂b(x, t; X)

∂x
= ηkb(x)(1− A− B)− ku(x)b(x, t; X), (4.1.4)

where b(x, t; X) is the microscale distribution as defined in Section 2.2.3 and D is the

integrin diffusion constant. The nondimensionalisation uses identical scalings to the

previous model (as given in Eq. 2.2.26), with the additional scalings

kA = k̂A/ f̂1, kD = k̂D/ f̂1, D = D̂/ f̂1 L̂2, (4.1.5)

for the activation rate, deactivation rate and diffusion coefficient respectively. Here f̂1

and L̂ are the maximum integrin binding rate (Eq. 2.1.2) and macroscale length (Fig.

2.17), respectively. The dimensionless parameters δ = ĥ/L̂ and η = ĥ/l̂ are defined

as before (Section 2.2.3) and B(X, t) =
∫ ∞
−∞ b(x, t; X)dx denotes the bound fraction of

integrins at each macroscale point. As in the earlier model, kb(x) and ku(x) are local

binding and unbinding rates and, throughout this chapter, these will be defined as in

Eqs. 2.2.6 and 2.2.7.

We note that there are two equivalent ways of writing the system of governing equa-

tions; Eq. 4.1.4 could also be written as the following macroscale reaction equation

∂B
∂t

= kon IA − ko f f B, (4.1.6)

where

kon = η
∫ ∞

−∞
kb(x)dx and ko f f (X) =

∫ ∞
−∞ ku(x)b(x, t; X)dx∫ ∞
−∞ b(x, t; X)dx

. (4.1.7)
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This alternative form is obtained by integrating Eq. 4.1.4 over x ∈ (−∞, ∞), where

we note that the advection term disappears since the bound integrin distributions,

b(x, t; X), are always zero at the tails. Since kon and ko f f depend on the microscale dis-

tributions, this cannot be solved independently of the microscale advection–reaction

system (Eq. 4.1.4); we therefore solve the system as given in Eqs. 4.1.2–4.1.4.

In all of the numerical simulations that follow, we impose zero flux boundary condi-

tions for the diffusing integrins at X = 0 and X = 1; the total number of integrins is

therefore conserved over the macroscale domain. The zero flux conditions are

∂I
∂X

(0, t) = 0,
∂I
∂X

(1, t) = 0. (4.1.8)

An alternative could be to consider periodic boundary conditions. Since we consider

the macroscale domain to be a section of the cell membrane, both zero flux and peri-

odic boundary conditions are simplifications. In reality, integrins could diffuse away

from (and into) this region, and conservation is not guaranteed. We have also not

included source and sink terms for I and A elsewhere across the domain. The num-

ber of integrins expressed on the cell surface could vary due to delivery of integrins

to and from the membrane [148] and adaptor proteins are known to be continually

replaced; however, we assume here that there is a balance between production and

decay.

The numerical implementation and discretisation are the same as in Chapter 3 (dis-

cussed in Section 2.2.5), with the addition of two vectors, I = (I1, I2, ...IN)
T and

A = (A1, A2, ...AN)
T for the macroscale variables. The spatial derivative for dif-

fusion is approximated with a second order central difference (analogously to Eq.

2.2.42), and the discretised reaction equations are evolved alongside the microscale

advection–reaction system.

Numerical results: no external forcing

We first consider the evolution of each of the 4 species when there is no external

forcing applied to the cell or to the ECM, and for the case where the activation rate,

kA, is higher than the deactivation rate, kD (Fig. 4.2). The initial conditions for the

adaptor proteins, actin-bound integrins and double-bound integrins are chosen to be

the uniform distributions

A(X, 0) = 1, IA(X, 0) = 0, B(X, 0) = 0. (4.1.9)



CHAPTER 4: MODELLING ACTIVATION, DIFFUSION AND STRENGTHENING 71

For the unbound integrins, which freely diffuse, we use a Gaussian initial condition

I(X, 0) = exp
(
− (X− µ)2

2σ2

)
, (4.1.10)

with mean µ and standard deviation σ. We see a sequential activation and then bind-

ing of integrins (which transition from I to IA to B states). Over time, the remaining

free integrins diffuse to a near-zero, spatially uniform, state (Fig. 4.2(a)); however, the

bound integrins (Fig. 4.2(d)) remain most concentrated near the centre of the domain,

X = 0.5, where the integrin density was initially highest.

Figure 4.2: Spatiotemporal evolutions of each of the macroscale species (Eqs. 4.1.2–

4.1.4) when D = 0.05, kA = 10 and kD = 0.1. Free integrins (I) are firstly

activated and actin-bound (IA) and then become double-bound (B). In

the initial Gaussian distribution of unbound integrins (Eq. 4.1.10), the

mean and standard deviation are µ = 0.5 and σ = 0.2 respectively.

Next we sample three corresponding microscale distributions of bound integrins at

X = 0, X = 0.5 and X = 1 (Fig. 4.3). The microscale bound-integrin distributions

exhibit the same spatial inhomogeneity seen in the macroscale variables, as indicated

by distributions that peak at higher values at X = 0.5.

In the case where the deactivation rate is higher than the activation rate (Fig. 4.4),

we obtain a very low concentration of actin-bound and double-bound integrins (Fig.

4.4(c), (d)). A low, rather than zero, density of bound integrins occurs since there is
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Figure 4.3: Sample microscale bound integrin distributions corresponding to the

macroscale system in Fig. 4.2. Due to the initial Gaussian distribution

of integrins, bound integrins have a higher density at X = 0.5.

a balance between the binding of actin-bound (IA) integrins and deactivation: due

to the ordered reaction sequence considered here, if actin-bound integrins become

double-bound then they must unbind from the ECM before deactivation. Due to

the low value of bound integrins, the density of freely diffusing integrins, I, (Fig.

4.4(a)) is much higher than in Fig. 4.2(a) (where the activation rate is higher than the

deactivation rate) but has again become spatially uniform.

Figure 4.4: Spatiotemporal evolutions of each of the macroscale species (Eqs. 4.1.2–

4.1.4) when D = 0.05, kA = 0.1 and kD = 10. In the initial distribution

of unbound integrins (Eq. 4.1.10), we use µ = 0.5 and σ = 0.2. A low

density of integrins achieve the actin-bound and double-bound states.
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It may be more realistic to consider an initial condition where some of the integrins

are already active and actin-bound (IA). We examine the case where deactivation

dominates (Fig. 4.5), but with the following initial conditions

A(X, 0) = 0.5, IA(X, 0) = 0.5, B(X, 0) = 0, (4.1.11)

and with I(X, 0) as in Eq. 4.1.10. The outcome is similar to Fig. 4.4; however, in

this case, there is an initial growth of B (due to an initial uptake of IA integrins) be-

fore decay to a low bound state. The four species settle towards a state with a low

concentration of both types of bound integrins (Fig. 4.5(c),(d)) and a uniformly high

concentration of unbound integrins and adaptor proteins (Fig. 4.5(a),(b)). These dif-

fer slightly in magnitude to the steady distributions in Fig. 4.4 due to the increased

number of integrins introduced by the initial conditions in Eq. 4.1.11 (Fig. 4.5).

Figure 4.5: Spatiotemporal evolutions of each of the macroscale species (Eqs. 4.1.2–

4.1.4) when D = 0.05, kA = 0.1 and kD = 10. With a non-zero initial

concentration of IA (Eq. 4.1.11) the bound integrins decay rather than

grow to a low state (cf. Fig. 4.4).

Time-dependent integrin activation

The formation of mature focal adhesions is a complex process, involving numerous

signalling cascades and a heirarchical recruitment of intracellular proteins [152]. Here

we consider a recent experimental result (provided by Prof. Gerald Meininger, Dr.
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Leike Xie and Dr. Vladislav Glinsky, University of Missouri) obtained using atomic

force microscopy (AFM) techniques (Section 1.2.3) which showed a non-monotonic

increase in adhesion strength between an endothelial cell and AFM probe in vitro

(Fig. 4.6). In the experiments, a coated bead (described below) was lowered to the cell

and held stationary for a range of contact times. By then retracting the AFM probe,

adhesion strengths were measured (by tracking the deflection of the probe, see Sec-

tion 1.2.3) for four different bead coatings. The coatings were chosen such that they

would allow for different amounts of integrin binding. Firstly, the beads were coated

in polyethylene glycol (PEG), which is strongly adhesive and, as such, has previously

been used as a linker protein to attach different substrates (e.g. fibronectin) to the

glass beads [68]. Following this, beads were either coated with an anti-Galectin-3 an-

tibody (Gal-3 Ab, the base case), bovine serum albumin (BSA, a negative control), or

left as PEG (a positive control, since PEG binds both to integrins and non-specifically

to other proteins on the cell surface). For a further negative control, an uncoated bead

was used. In general, adhesion strength increased with contact time; however, for

each of four coatings there was a consistent ‘dip’ in measured adhesion force, occur-

ing at approximately the same contact times early in the adhesion formation (Fig. 4.6).

A hypothesis for this behaviour is that intracellular signalling, triggered by mechan-

ical or biochemical cues upon initial bond formation, has an intrinsic delay before

inducing reinforcement and commitment to firm adhesion. During this delay, initial

bonds could begin to disassociate. In support of the observed behaviour being related

to intracellular signalling (rather than, for example, external mechanical factors) the

dip appears to be systematic: it occurs at the same timepoint for each bead coating.

Here we will investigate this behaviour phenomenologically by incorporating a delay

in integrin activation, modelling the activation rate as a Hill function (Eq. 4.1.12 and

Fig. 4.7).

A possible choice to represent a delay in intracellular signalling is the time-dependent

activation rate

kA(t) = κA +
αt3

t3 + 100
, (4.1.12)

which is shown in Fig. 4.7. The constant κA denotes a background activation rate,

which will increase to the value κA + α as t → ∞. The key species of interest are

the double-bound integrins, B, (Fig. 4.8) which we expect to correlate with adhesion

strength. In the model, we can measure this quantity directly. In the AFM experi-

ments, the number of bound integrins cannot be measured and retraction of the AFM

probe is required to infer the adhesion strength indirectly. We observe that, while the
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† p< 0.05; †† p< 0.01, Anova analysis on every coated group, n ≥ 6.
* p< 0.05; ** p< 0.01, vs uncoated. There are no sta�s�cal differences between BSA coated
group and the uncoated group at all contact-�me points.
 

Figure 4.6: Experimental AFM data of the maximum adhesion force obtained be-

tween cells and coated microbeads. Adhesion force is measured for a

range of contact times for 4 bead coatings: anti-Galectin-3 antibody (Gal-

3 Ab), polyethylene glycol (PEG, a positive control), bovine serum albu-

min (BSA, a negative control), and uncoated. Data was provided by Prof.

Gerald Meininger, Dr. Leike Xie and Dr. Vladislav Glinsky, University of

Missouri.
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activation rate is near zero, the number of bound integrins begins to decrease after an

initial uptake (Fig. 4.8). However, as the activation rate increases, inactive integrins

are encouraged to transition to an active state, allowing for rebinding and thereby

increasing the fraction of double-bound integrins. In these simulations, we have used

the uniform initial conditions in Eq. 4.1.11; before contact with the substrate-coated

bead we expect integrins to be in either the inactive or active, actin-bound state. In

the in vitro set-up, the bead is initially far away from the cell; the initial double-bound

distribution will therefore be zero. Due to the uniform initial conditions, we do not

see spatial variation in the solution.
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Figure 4.7: The time-dependent activation rate, kA(t), given by Eq. 4.1.12 with κA =

0.1 and α = 6.

Since the activation rate is low at early times, the ‘dip’ behaviour resulting from a

delay in integrin activation rate (Eq. 4.1.12) can be understood by comparing Fig. 4.8

to the behaviour that occurs when deactivation dominates (Fig. 4.5). We compare

timecourses for the IA and B integrins in Fig. 4.9. In the case where deactivation

dominates, after the same initial binding of actin-bound integrins to the ECM, the

majority of IA integrins transition to an inactive state. As the concentration of IA

integrins decreases, the equilibrium between IA and B integrins is affected; there is

then a corresponding decrease in the number of double-bound integrins. In contrast,

the delayed increase in activation rate triggers the reactivation of unbound integrins,

which can then recover to a high bound state (similar to Fig. 4.2). Non-monotonic

behaviour can therefore arise from a transition between regimes where deactivation

and then activation of integrins dominate.
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Figure 4.8: Spatiotemporal evolution of the macroscale bound integrins, B, when

D = 0.05, kD = 5 and kA is a Hill function, defined in Eq. 4.1.12 and

Fig. 4.7. There is a non-monotonic increase in the double-bound inte-

grins (B), due to a temporary ‘dip’ occuring when the activation rate is

low. This is similar to behaviour seen during early adhesion formation in

experiments (Fig. 4.6).
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Figure 4.9: Total actin-bound fraction, IAtot(t), and double-bound integrin fraction,

Btot(t) (Eq. 3.1.5), when (solid line) kD = 5 and kA is a Hill function,

defined in Eq. 4.1.12 and (dashed line) when kD = 10 and kA = 0.1.

These correspond to Figs 4.5 and 4.8.
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In this model we have extended the previous reaction sequence to allow for the ac-

tivation and deactivation of integrins. For kD 6= 0, our results show that a constant

background rate of activation or reinforcement in a time-dependent manner (for ex-

ample due to intracellular signalling), leads to a high density of bound integrins. Dif-

ferent behaviours are seen depending on whether activation or deactivation of inte-

grins dominate (Figs. 4.2, 4.4, 4.5) and a non-monotonic increase in the number of

bound integrins is obtained when there is a time-dependent transition between the

two cases via a Hill function for the activation rate (Fig. 4.8). Similar non-monotonic

trends in the adhesion strength have been observed in early adhesion formation in

experiments (Fig. 4.6), and consistent experimental results for different substrates

support the idea that this behaviour could be related to intracellular signalling. Fur-

thermore, in a previous study of chemokine-triggered inside-out integrin activation

[17], the transition of integrins from low to high affinity (active) states was measured

both experimentally and simulated with a model of the relevant signalling pathways.

A rapid increase of high affinity integrins was observed at ∼20 seconds (Fig. 2B in

[17]). In the experimental data in Fig. 4.6, the dip in adhesion strength occurs at ∼10

seconds, which we hypothesised to occur during a delay during signalling. Taken

together, this further suggests that inside-out signalling could be a relevant consider-

ation at this timescale. Within our model framework, models of signalling pathways

can in future be incorporated, which could be used to inform the activation rates

and to more thoroughly investigate mechanisms behind a delay. In addition to con-

sidering integrin activation, this model supports macroscale integrin diffusion and

non-uniform initial conditions for the distribution of integrins across X. In many

contexts, spatial clustering of integrins is a phenomenon of interest, and extensions

of this framework could also be used to investigate mechanisms and consequences of

spatial patterning.

Numerical results: oscillatory loading

We now briefly consider the same oscillatory loading as investigated in Chapter 3

(imposed through the boundary conditions in Eq. 3.1.3) to see if the results are af-

fected by the additional reactions. Initial conditions for the free integrins and adaptor

proteins were chosen to be the uniform distributions

A(X, 0) = 0.5, I(X, 0) = 0.5, (4.1.13)

and for each (high and zero) initial condition of B, the initial distribution of single-

bound integrins was calculated from IA = 1− A− B. It remains the case that there
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are two distinct adhesion states and a region of bistability, within which the eventual

number of bound integrins Btot (Eq. 3.1.5) depends on the initial condition. An ex-

ample of bistable behaviour, obtained when the amplitude of oscillation is A = 0.1,

is shown in Fig. 4.10. Timecourses for the double-bound integrins (B) and the corre-

sponding behaviour of the single-bound integrins (IA), free integrins (I) and adaptor

proteins (A) are shown when starting from zero and high initial conditions. In the

case of the low adhesion state (following from the zero initial condition on B), we ob-

serve increased concentrations of both I and A at steady state (Fig. 4.10(a),(b)). This

results from increased rupture and therefore an increased concentration of single-

bound integrins, IA, which may then become inactive. In both adhesion states, there

is an oscillatory cycling between IA and B integrins, with the amplitude of these os-

cillations corresponding to the amount of force-induced rupture that occurs.

4.2 Force-dependent strengthening

In addition to biochemical signalling within the cell, adhesion maturation is known to

be facilitated by a force-dependent strengthening process. When integrins and talin

undergo strain, cryptic binding sites on talin are exposed (Section 1.2.2). Vinculin,

which is a key focal adhesion protein, can bind to these cryptic sites and also to the

actin cytoskeleton, thereby reinforcing the link between integrins and the intracellular

domain. This reinforcement is illustrated in Fig. 4.11 and discussed, for example, in

[16, 66, 67].

To model this process we now consider two subpopulations of double-bound inte-

grins. As in our previous model, there are double-bound integrins that are not re-

inforced by vinculin, represented by microscale distributions b(x, t; X). Additionally

we will consider microscale distributions of reinforced integrins, bv(x, t; X), which

obey a second set of microscale advection–reaction equations. Since transitions be-

tween the two subpopulations depend on individual strains, we again use the local

coordinate x to represent the displacement of reinforced integrins from a zero stress

position. At the macroscale, the reinforced integrins are denoted by BV(X, t), defined

by

BV(X, t) =
∫ ∞

−∞
bv(x, t; X)dx. (4.2.1)
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Figure 4.10: Timecourses for each of the 4 species: (a) free integrins, I, (b) adaptor

proteins, A, (c) single-bound integrins, IA, and (d) double-bound in-

tegrins, B, under an oscillatory loading with amplitude A = 0.1 (Eq.

3.1.3). The behaviours resulting from high and zero initial conditions

for the number of double-bound integrins (B) are shown in blue and

orange respectively, and bistability is observed. Total concentrations of

each species are defined analogously to Btot in Eq. 3.1.5, and model pa-

rameters are given in full in Appendix B.
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Figure 4.11: The adaptor protein talin connects integrin tails to actin. Under tension,

talin unfolding takes place and cryptic binding sites are exposed. Vin-

culin can then bind to talin and to the actin cytoskeleton, reinforcing the

link between integrins and the actin cytoskeleton.

The reaction schematic (cf. Eq. 4.1.1) is now

I + A
kA

kD
IA

kon

ko f f
B

k
str

k
w

eak

BV

k
o f f

(4.2.2)

where the reaction rates kon, ko f f , kstr and kweak all depend on microscale binding

reactions, which have spatial rates kb(x), ku(x), ks(x) and kw(x) respectively. The first

two of these are as described in Chapter 2; the remaining two will be described below.

The governing equations in dimensionless form are

∂A
∂t

= −kA IA + kD(1− A− B− BV), (4.2.3)

∂I
∂t

= D∇2
X I − kA IA + kD(1− A− B− BV), (4.2.4)

∂b
∂t

+
V(X, t)

δ

∂b
∂x

= ηkb(x)(1− A− B− BV)− ku(x)b− ks(x)b + kw(x)bv, (4.2.5)

∂bv

∂t
+

V(X, t)
δ

∂bv

∂x
= ks(x)b− kw(x)bv − ku(x)bv, (4.2.6)

where ks(x) denotes the rate function (at the microscale) for transitions from b to bv-

type integrins, and kw(x) regulates the reverse rate. The transition terms cancel when

considering the distribution of all double-bound integrins, given by btot(x, t; X) =

b(x, t; X) + bv(x, t; X), which results in btot obeying the previous governing equation

in Eq. 4.1.4. The nondimensionalisation is similar to previous models; we have used

the scalings in Eq. 2.2.26 and Eq. 4.1.5 along with

ks = k̂s/ f̂1, kw = k̂w/ f̂1, (4.2.7)
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for the maximum integrin binding rate f̂1 (Eq. 2.1.2). Even though the bv-type inte-

grins have a reinforced connection to the actin cytoskeleton via vinculin, they are still

able to unbind from the ECM. We model this by the same spatial unbinding function

ku(x) as used for the b-type integrins (Eq. 2.2.7) and allow bv-type integrins to transi-

tion directly to IA integrins. This introduces the simplification that vinculin can only

be attached to double-bound integrins; after the unbinding of bv to IA-type integrins

the reinforcement is therefore lost. The conservation of adaptor proteins now requires

IA + A + B + BV = 1.

To represent the strain-dependent adhesion strengthening as cryptic binding sites are

exposed, we use the piecewise linear function

ks(x) =

s1 (|x| − 1) , |x| > 1,

0, otherwise.
(4.2.8)

Within the integrin binding range (see Eq. 2.2.6), there is no additional strengthening.

However, the strengthening rate increases linearly at rate s1 > 0 as the extension |x|
exceeds this binding range and cryptic sites are revealed. In reality this rate will not

increase indefinitely, but since bound integrins unbind at a finite maximum extension

(Eq. 2.2.7) we do not enforce an extra condition for large |x|.

For the reverse transition (bv to b-type integrins) we assume a low uniform degrada-

tion rate

kw(x) = w1, (4.2.9)

for rate constant w1 > 0.

In our model formulation, the bound integrin population at each macroscale point

X behaves as a linear spring that connects the actin cytoskeleton to the ECM. The

effective spring constant of this linear spring changes with the bound integrin distri-

bution, b(x, t; X). Since vinculin binding leads to an additional physical link between

integrins and the cytoskeleton (Fig. 4.11), the reinforced integrin complexes will have

an increased effective stiffness and generate an increased drag force between the cy-

toskeleton and the ECM. We therefore define a spring constant, κλb, for individual

integrins of bv-type where λb is the spring constant for individual b-type integrins

(without vinculin-reinforcement) and κ > 1 is a constant scale factor. The dimension-
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less equation for the drag force (cf. Eq. 2.2.30) is therefore

F(X, t) =
∫ ∞

−∞
x (b(x, t; X) + κbv(x, t; X)) dx, (4.2.10)

which will replace Eq. 2.2.30 in the solution of the macroscale governing equations

(Eq. 2.2.31). The solution of the macroscale system otherwise remains the same.

Response to shear

Due to the strain-dependent strengthening rate (Eq. 4.2.8), vinculin binding cannot

occur without some external forcing. Numerical tests confirm that this is the case;

in the absence of external forcing the results (not shown) are identical to those in the

previous section. In order to investigate force-dependent strengthening, we therefore

must impose a relative motion between the cell and the ECM. To begin with, we in-

vestigate the effect of a simple shear. This is imposed through the boundary condition

UE(0, t) = αt, (4.2.11)

where α controls the magnitude of the shear. The temporal evolution of microscale

distributions of the b- and bv-type integrins (Fig. 4.12), sampled at X = 0.5 when α =

0.2 (Eq. 4.2.11) show that both distributions are skewed towards positive x values;

however, the distribution of b(x, t; 0.5) decreases in height within the range 1 < x <

1.5 as the integrins undergo strain and transition into bv- type integrins.

Steady state microscale distributions of the b- and bv-type integrins, sampled at X = 1

(Fig. 4.13), show that both types of distributions become increasingly skewed for in-

creasing shear magnitude. Although the double-bound integrin distributions, b(x, t),

decrease monotonically in height as α increases, the vinculin-reinforced integrin dis-

tributions, bv(x, t), initially increase and then decrease in height. Strengthening of

integrins is induced under small strains. These then begin to rupture after an opti-

mum (or threshold) strain is reached. This behaviour is mirrored in the macroscale

vinculin-bound integrin density, BVtot (defined analogously to Eq. 3.1.5), shown in Fig.

4.14. The non-monotonic behaviour is reminiscent of catch bond behaviour, where

adhesions have been observed to first strengthen and then rupture under force [83].
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Figure 4.12: Evolution of the microscale distributions of b- and bv-type integrins,

sampled at X = 0.5 with a shear amplitude α = 0.2 (Eq. 4.2.11). The

relative stiffness of bv-type integrins was set to κ = 2 (Eq. 4.2.10).
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Figure 4.13: Steady state microscale distributions of the b- and bv-type integrins,

sampled at X = 1, for varying amplitudes, α, of shear (Eq. 4.2.11). Here

the relative stiffness of bv- and b-type integrins is κ = 2 (Eq. 4.2.10).
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Figure 4.14: Macroscale vinculin-bound integrin density, BVtot (defined analogously

to Eq. 3.1.5), for α increasing from 0 to 0.5 in steps of 0.1 (Eq. 4.2.11).

Under small strains, there is first an increase in density due to strength-

ening of integrins. For larger strains, these begin to rupture and the

densities decrease. Full parameter values are given in Appendix B.
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Response to oscillatory loading

We now reintroduce tidal oscillations of the ECM using the boundary conditions in

Eq. 3.1.3. We will examine the behaviour of both subpopulations of double-bound

integrins as the amplitude, A, of oscillation varies. In addition to the bound integrin

response, the effect of oscillations on each of the species in the extended reaction

sequence (Section 4.1) is shown.

Due to the oscillations, there is some low amplitude oscillatory cycling between actin-

bound (IA) and double-bound (B) integrin states (Fig. 4.15). The Gaussian initial

distribution of unbound integrins (Eq. 4.1.10) we have used produces an increased

density of bound integrins near the centre of the domain (as in Fig. 4.2). However,

since the binding of vinculin to cryptic talin binding sites is strain-dependent, the

reinforced bound integrins (BV) are concentrated close to X = 0, where the load is

applied. The peak concentration of BV occurs at approximately X = 0.2, rather than

at X = 0, as a result of a trade-off between strain-dependent bond strengthening and

bond rupture.

Microscale distributions of the reinforced integrins, bv(x, t), at X = 0, X = 0.5 and

X = 1 (Fig. 4.16) show that they initially bind in the range 1 < |x| < s (see Eqs.

4.2.8, 2.2.7). At X = 0 the relative motion of the cell and ECM is the highest. There

is a large amount of rupture, and the low number of remaining bonds are advected

back-and-forth across the full range of |x| ≤ s values. At X = 0.5, damping of the

oscillatory load allows for a higher survival of bv-type integrins. Unlike at X = 0,

the distributions no longer span the full range of |x| ≤ s; two distinct peaks in the

distributions are seen for positive and negative x and these remain separated due to

reduced advection. At X = 1 there is further damping, which continues to reduce

the advection of the distribution. This time, however, the damping results in a lower

density of bv-type integrins because of the smaller strain. We see that there is a trade-

off between the amount of strain required for the formation and for the survival of

bv-type integrins; in this case the optimum, seen in Fig. 4.15, occurs at approximately

X = 0.2.

Under high amplitude oscillatory loading of the ECM (Fig. 4.17) we observe the rup-

ture regime, rather than the high adhesion regime (Chapter 3). This results in much

clearer cycling between IA and B integrin states. Even though there is damping of the
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Figure 4.15: Spatiotemporal evolutions of each of the macroscale species (Eqs. 4.2.3–

4.2.6) with κ = 2, s1 = 50, kA = 2, kD = 0.1, D = 0.05 and a low

amplitude oscillatory loading of the ECM (A = 0.05 in Eq. 3.1.3). In the

initial Gaussian distribution of unbound integrins (Eq. 4.1.10), µ = 0.5

and σ = 0.2. In Eq. 2.2.7, we have used s = 1.5.
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Figure 4.16: Microscale distributions of reinforced integrins, bv(x, t; X), sampled at

X = 0, X = 0.5 and X = 1 under low amplitude oscillatory load-

ing, A = 0.05, of the ECM. Distributions correspond to the macroscale

species BV in Fig. 4.15; lower values of bv(x, t; X) are seen as X increases.

oscillatory load across X, cycling between IA and B states occurs throughout the do-

main, indicating that high amounts of force are experienced across X. There is there-

fore no longer a higher concentration of reinforced integrins (BV) near X = 0, and

the macroscale distribution of BV(X, t) is instead approximately proportional to the

macroscale distribution of bound integrins, B(X, t). A slight asymmetry is observed,

with increased survival of integrins for larger X, due to an increase in damping (and

therefore reduced rupture) with X.

The corresponding microscale distributions of the reinforced integrins, bv(x, t), (Fig.

4.18) show that the concentrations of reinforced integrins are highest within the range

1 < |x| < s, where vinculin binding occurs (see Eqs. 4.2.8, 2.2.7). However, due to

larger amplitude oscillations, there is now advection of bonds across the whole range

of |x| ≤ s values. These distributions therefore no longer exhibit two distinct peaks

(e.g. as seen in the distributions in Fig. 4.16), and a separation between positive and

negative x values is not seen.

The level of strain experienced by integrins will be affected by material parameters

such as cell and substrate stiffnesses. We therefore investigate the effect of substrate

stiffness on the averaged density, 〈BVtot〉 (defined analogously to 〈Btot〉 in Eqs. 3.1.5,

3.1.6), of vinculin-reinforced integrins at steady state for a range of oscillation ampli-

tudes, A (Fig. 4.19). We find that increased substrate stiffness increases the density of
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Figure 4.17: Spatiotemporal evolutions of each of the macroscale species (Eqs. 4.2.3–

4.2.6) with κ = 2, s1 = 50, kA = 2, kD = 0.1 and D = 0.05 and an

oscillatory loading of the ECM (Eq. 3.1.3 with A = 0.15). In the initial

Gaussian distribution of unbound integrins (Eq. 4.1.10), µ = 0.5 and

σ = 0.2 respectively. In Eq. 2.2.7, s = 1.5.
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Figure 4.18: Microscale distributions of reinforced integrins, bv(x, t; X), sampled at

X = 0, X = 0.5 and X = 1 under higher amplitude oscillatory loading,

A = 0.15. Distributions correspond to BV in Fig. 4.17.

vinculin-bound integrins for low oscillation amplitudes, since enhanced propagation

of the oscillatory load leads to increased strain. Cryptic binding sites will therefore be

revealed at lower values of A compared to the case with a more compliant substrate.

Also due to increased force propagation, the threshold for rupture occurs at a lower

value of A for stiff substrates.
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Figure 4.19: Averaged density, 〈BVtot〉, of vinculin-reinforced integrins at steady state

for a range of oscillation amplitudes, A, from a zero initial condition.

We consider two substrate stiffnesses: KE = 4 (solid line) and KE = 1

(dashed). The quantity 〈BVtot〉 is defined analogously to 〈Btot〉 in Eqs.

3.1.5 and 3.1.6. Full parameter values are detailed in Appendix B.

In this section, we have shown that, with the inclusion of the vinculin-mediated force-

dependent strengthening mechanism, more complex behaviours are observed in re-

sponse to deformation. Due to competition between adhesion rupture and reinforce-

ment, small amounts of deformation can now encourage the persistence of adhesions
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(Fig. 4.14). This non-monotonic response to load is well-known to occur [67, 83] and

is an example of the mechanosensitive (as well as mechanotransductive) nature of in-

tegrins. With this mechanism present, integrins are sensitive to environmental factors

such as cell and substrate stiffness (Fig. 4.19). These types of phenomena can be stud-

ied further in our multiscale framework due to the ability to include strain-dependent

integrin dynamics in the microscale description. In the context of the lung, deforma-

tions and material properties will vary spatially as well as temporally at both the cell

and tissue level. Additionally there will be differences in material stiffnesses between

healthy and asthmatic airways. As demonstrated in these preliminary results, adhe-

sions will be sensitive to these changes, highlighting the need for future consideration

of microscale adhesion dynamics in tissue-level mechanical models.

4.3 Investigating the duration between DIs and integrin re-

covery rate

In this section, we discuss a recent experimental result by Mailhot-Larouche et al. [95]

from an in vitro study designed to investigate how the duration between deep inspi-

rations (DIs) affects the rate of airway renarrowing after a DI (Section 1.1.2). We then

explore whether our existing modelling frameworks can account for the observed

behaviours or if further model extensions are required.

4.3.1 Experimental protocol and results

In the in vitro study of Mailhot-Larouche et al. [95], sinusoidal length oscillations

were applied to isolated guinea pig bronchi to mimic tidal breathing and DIs. The

goal of their study was to investigate how the time between large amplitude oscil-

lations representing DIs affected the return of ASM to its initial contractile state. To

initialise the experiment, three large amplitude oscillations were administered, which

were described to correct for any history effects. Following this, lower amplitude os-

cillations representing tidal breathing were applied for a period of time, T1, before

a further large amplitude oscillation representing a DI. After this, the procedure (of

simulating tidal breathing and then a single DI) was repeated for three further time

intervals, T2–T4 of tidal breathing. The time intervals T1–T4 were chosen in a random

order from T = 2, 5, 10 and 30 minutes. Length changes for tidal breathing and DIs

were chosen as 6% and 36% of the original length respectively and, throughout the

process, the contractile force generated by ASM was recorded. A schematic of the
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oscillation protocol is shown in Fig. 4.20.
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Figure 4.20: Schematic of the length oscillations applied in the experimental protocol

of Mailhot-Larouche et al. [95]. Sinusoidal oscillations have frequency

0.2Hz and tidal breathing and DIs are represented by length changes of

6% and 36% respectively. Times, T1–T4, between DIs (shown here with

T1 = 2 minutes) were chosen in a random order from T = 2, 5, 10 and

30 minutes.

For the experiment described above, two differing contractile states induced by ei-

ther methacholine (a contractile agonist) or isoproterenol (a relaxant) were used. In

each contractile state, the bronchodilatory ability of the DI was observed to be unaf-

fected by the interval, T, between DIs (Fig. 4.20). However, in the contracted state,

the interval between DIs did have an effect on the rate of recovery of contractile force

post-DI. Interestingly, and perhaps counterintuitively, a faster return to the initial con-

tractile state was observed when the interval between DIs was reduced, suggesting

that more frequent DIs provide shorter periods of bronchodilatory relief compared

to those taken further apart. In addition to a faster recovery to a contracted state,

the extent of force recovery was also higher. The authors emphasise that the mecha-

nisms behind this result cannot be identified from their study; however, they suggest

that both the actomyosin contractile units responsible for force generation and the

physical link responsible for transmitting these forces to the ECM (i.e. cell–matrix

adhesions) could play a role. They suggest that any of these components could be

disrupted during DIs and that their rate of repair would correlate with the rate of

return to the contractile state. The authors further hypothesise that the relevant ma-

chinery for repair may still be active shortly after DIs, thereby leading to faster force

recovery when there is a shorter duration between subsequent DIs.

In our Chapter 3 results, simulated DIs induced adhesion rupture to a low bound

integrin state followed by a recovery to a high bound state (Fig. 3.13(a)). Motivated

by the experimental observations of Mailhot-Larouche et al. [95], we now investigate

if any factors in our models can influence the rate at which this recovery occurs.



CHAPTER 4: MODELLING ACTIVATION, DIFFUSION AND STRENGTHENING 92

4.3.2 Numerical experiments

In the following simulations, we use the 4 species model introduced in Section 4.1. We

replicate the protocol for the first DI in Fig. 4.20 by applying the boundary condition

UE(0, t) =


α2sin(ωt) t < 6π

ω ,

α2sin(ωt) 2βπ
ω < t ≤ 2(β+1)π

ω ,

α1sin(ωt) otherwise,

(4.3.1)

where α1 and α2 are amplitudes simulating tidal breathing and DIs respectively, and

ω/2π is the frequency of the oscillations. The DIs are applied for the first 3 cycles

and then for one further cycle at a later time, controlled by the parameter β. The

time interval before the DI is given by T = 2(β−3)π
ω . In the experiments, further DIs

are applied for a sequence of time intervals, selected in a random order (Fig. 4.20).

Their results are treated independently of order; we therefore simulate the first DI

only, for varying times T. For the initial conditions we assume that the double-bound

integrins, B(X, 0), are uniform and at a saturated steady state, corresponding to the

steady state distribution in Eq. 3.1.4. We set IA(X, 0) = 0 and, to ensure conservation

of adaptor proteins, A(X, 0) is then calculated from A = 1− IA − B.

In the first instance we consider the case where the activation and deactivation rates,

kA and kD, are zero. This reduces the model to the continuum model of Chapter 2,

where there are transitions between actin-bound (IA) and double-bound (B) integrins

only. The response of both of these species to the boundary condition in Eq. 4.3.1

when β = 12, 18 and 24 (Fig. 4.21) shows unbinding of bound integrins after DIs (seen

by increases in the concentration of IAtot and reductions in Btot) followed by a return

to the pre-DI (oscillatory) steady state. For each of the three values of β the behaviour

appears to be very similar. Overlaying each of the timecourses post-DI (Fig. 4.22)

shows that the recovery is in fact identical in both rate and amplitude. This can be

understood from Fig. 4.21 since the IA and B integrins are seen to have reached an

equilibrium long before the β = 12 DI is applied. DIs at any subsequent times would

therefore have the same initial condition and induce the same response. In this model,

the conservation law A + IA + B = 1 holds. Since A is constant when kA = kD = 0,

there is also conservation of IA + B. After the DI-induced transition of B to IA, the

actin-bound integrins IA are therefore readily available for rebinding, which is seen

here to occur over just a few cycles. This conservation means that the magnitude of

bound integrin recovery cannot differ. Due to the lack of activation or deactivation
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in the 2-state model, differing recovery rates via the type of mechanism proposed by

Mailhot-Larouche et al. [95] cannot be achieved; we therefore now consider the effect

of including activation and deactivation of the integrins.
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Figure 4.21: Timecourses for the total concentrations of actin-bound (IA) and double-

bound (B) integrins when the ECM is subject to the boundary conditions

in Eq. 4.3.1 and there is no activation or deactivation (kA = kD = 0).
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Figure 4.22: Overlayed timecourses of Btot (shifted by time 2βπ/ω) from Fig. 4.21,

showing identical recoveries of double-bound integrins after a DI.

For a non-zero deactivation rate, kD, some of the IA integrins created during the ini-

tial DIs are deactivated instead of being readily available for rebinding. Timecourses

of Atot, IAtot and Btot for kA = 1 and kD = 4 show a slowed recovery of Btot after the
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initial DIs (Fig. 4.23) compared to Fig. 4.21. If subsequent DIs are taken during this

initial recovery (Fig. 4.24), differing behaviours are seen for each value of β. This

occurs since the system has not reached equilibrium as it had in Fig. 4.21, but we in

fact see the opposite effect on recovery rate to that observed by Mailhot-Larouche et

al. [95]. At earlier times (e.g. β=12), the total amount of IA + B is lower (reflected in

higher A, where A = 1− IA − B) and rebinding is therefore slower. The differences

we observe are only small; however, this effect will become more pronounced for

more dramatic changes in A. In the overlayed timecourses (Fig. 4.24), the magnitude

of recovery appears to be the same.0 1 2 3 4 5 6 7 8
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Figure 4.23: Timecourses for the total concentrations of adaptor proteins (A), actin-

bound integrins (IA) and double-bound (B) integrins when the ECM

is subject to the boundary conditions in Eq. 4.3.1 and when kA = 1,

kD = 4.
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Figure 4.24: Overlayed timecourses of Btot (shifted by time 2βπ/ω) from Fig. 4.23,

showing a slightly faster recovery of Btot with an increased time interval

between DIs.

By increasing the activation rate, kA, for a fixed time interval (β = 12) between DIs

(Fig 4.25), we observe that increased availability of IA integrins allows for a faster

recovery of Btot. Direct comparison for two different values of kA (Fig. 4.25) shows

that the magnitude of the steady bound-integrin state also changes if this is modified.

Alongside a faster recovery rate, a higher fraction of bound integrins is obtained when

kA is larger.
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Figure 4.25: Timecourses for the total concentrations of actin-bound integrins (IA)

and double-bound (B) integrins when the ECM is subject to the bound-

ary conditions in Eq. 4.3.1 with β = 12. The activation rate is kA = 2

(blue) or kA = 4 (orange), and deactivation is fixed at kD = 1.
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In the experimental results, the magnitude and rate of force recovery increased as

the time interval, T, between DIs was reduced. Based on the results in Fig. 4.25

we hypothesise that a transient increase in activation rate, which then decays, could

therefore produce this behaviour. As a simple test of this concept we consider a tem-

porary increase in integrin activation rate, which could perhaps be triggered by the

initial DIs (force can trigger inside-out integrin activation [3] and can also drive the

recruitment and binding of adaptor proteins [84]). We use a time-dependent rate of

the form

kA(t) = 2 + c
(

bata−1e−bt

Γ(a)

)
(4.3.2)

where Γ(a) is the Gamma function, defined by Γ(a) = (a − 1)!, and a Gamma dis-

tribution is added to a baseline level of kA = 2. This is shown in Fig. 4.26 for the

parameters a = 2.1, b = 1.5 and c = 12, which yield a peak shortly after the initial

DIs with a subsequent decay.
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Figure 4.26: Time-dependent activation rate, given by Eq. 4.3.2 with a = 2.1, b = 1.5

and c = 12 .

Timecourses of Atot, IAtot and Btot (Fig. 4.27) show a dip in Atot due to the increased

activation, which then slowly recovers. DIs taken during this time therefore have

increased access to IA integrins, and moreso at earlier times. The bound integrin frac-

tion therefore recovers more quickly for smaller time intervals (Fig. 4.28). The mag-

nitude of bound integrin recovery is also greater at earlier times during this transient

period. However, since there is a decay back to baseline (Fig. 4.26), the difference

in the magnitudes of bound integrin recovery are reduced for β = 18 and β = 24;

we additionally see that the magnitudes are approaching the same steady value over

time. This is because the density of IA integrins eventually settles back to its baseline

steady state, and once at a steady state (e.g. Fig. 4.22), changes in recovery cannot

be obtained. Taken together, these results show that transient changes in the activa-

tion rate are a possible mechanism by which the experimentally observed behaviour

can be explained. Moreover, if this is indeed a viable mechanism, the decay back
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to a baseline activation rate would need to exceed 30 minutes for the experimental

observations to be fully recapitulated.0 1 2 3 4 5 6 7 8
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Figure 4.27: Timecourses for the total concentrations of adaptor proteins (A), actin-

bound integrins (IA) and double-bound (B) integrins with kD = 1 and

the time-dependent activation rate in Fig. 4.26.
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Figure 4.28: Overlayed timecourses of Btot (shifted by time 2βπ/ω) from Fig. 4.27,

showing slightly faster recovery of Btot with an reduced time interval

between DIs.
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4.4 Conclusions

In this chapter, we considered the activation, diffusion and strain-dependent rein-

forcement of integrins. This allowed us to investigate a wider range of adhesion be-

haviours, and demonstrates that our multiscale continuum framework (developed in

Chapter 2) is amenable to both macroscale and microscale extensions.

Firstly, in Section 4.1, we extended the macroscale kinetic scheme (Fig. 4.1) to ac-

count for activation and diffusion of free integrins. We investigated the behaviour

resulting from constant activation and deactivation rates and we further considered

a time-dependent (Hill-type) activation rate, chosen as a phenomenological represen-

tation of intracellular signalling processes (Fig. 4.7). We observed that a transition

between regimes where deactivation and then activation dominate can lead to a non-

monotonic increase in adhesion strength (Fig. 4.8), which is behaviour that was ob-

served to occur in experimental AFM data provided by Prof. Gerald Meininger, Dr.

Leike Xie and Dr. Vladislav Glinsky, University of Missouri (Fig. 4.6). Within this

modelling framework, detailed models of intracellular signalling pathways could

be considered in future studies, allowing for more thorough investigations of these

types of phenomena and the underlying mechanisms. Additionally, by including

the diffusion of free integrins, our model now permits a wider range of macroscale

spatio-temporal dynamics. Spatial patterning and integrin clustering are topics of

wide interest and with a number of applications, such as in cell migration and tis-

sue morphogenesis [4, 52]; this model could therefore be used and further developed

to investigate these phenomena within a framework that also incorporates detailed

microscale dynamics.

In Section 4.2 we extended the local microscale description to incorporate a known

strain-dependent strengthening mechanism, occuring due to vinculin binding to cryp-

tic sites on talin and reinforcing the integrin–cytoskeletal connection (Fig. 4.11). With

the inclusion of this strengthening mechanism, we investigated the bound integrin

response to both shear and oscillatory loading. In response to oscillatory loading we

observed distinct high and low adhesion states (as seen in Chapter 3) and in each

case, both the microscale and macroscale distributions exhibited qualitative differ-

ences (Figs. 4.15–4.18). Due to competition between adhesion rupture and reinforce-

ment, we found that small amounts of deformation now encourage the persistence

of adhesions (Fig. 4.14); there is a non-monotonic response to load, where adhe-
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sions exhibit catch-bond like behaviour. Integrin-mediated adhesions are known to

be sensitive to external environments and to develop differently on stiff and com-

pliant substrates [32, 123]. Mechanosensitivity of integrins emerges naturally when

strain-dependent strengthening is considered since matrix stiffness affects the trans-

mission of load; for low amplitudes of load, we observe increased strengthening on

stiffer substrates (Fig. 4.19). This is a factor likely to be relevant when comparing

integrin dynamics in healthy and (stiffer) asthmatic airways.

An interesting area for future study would be whether the small fluctuations in the

airway from tidal breathing can encourage a strengthening response, and thereby

drive the system into a state of stronger adhesion. In Chapter 3, we discussed the

bronchodilatory effect of DIs and how it differs in asthmatics and asthmatics. De-

pending on where the amplitudes of tidal breathing and DIs were in relation to the

bistable window (Fig. 3.5), we observed either no change in adhesion state or tran-

sient or sustained switches from high to low adhesion states after a DI (Fig. 3.13).

With the presence of force-dependent strengthening, it may be possible to observe a

further outcome, in which a smaller DI (which is not sufficient to induce adhesion

rupture) instead encourages adhesion strengthening. We previously hypothesised

that the magnitude of the adhesion state could correlate with the extent of airway

narrowing, and in some experimental studies DIs have in fact been observed to make

bronchoconstriction worse [25, 94]. Furthermore, the absence of DIs is known to in-

duce airway hyperresponsiveness in healthy subjects (Section 1.1.2), showing that

regular, involuntary DIs (i.e. sighing) are crucial for maintaining normal lung func-

tion; the healthy airway is in a dynamic equilibrium [45]. If the fluctuations from

tidal breathing can indeed drive the system toward a stronger adhesion state, it may

be that regular DIs reset the balance by periodically initiating adhesion rupture. Al-

though these ideas are speculative, it is worth considering how the force-dependent

strengthening of integrin-mediated adhesions could factor into the airway response to

DIs. The bronchodilatory ability of DIs has previously been attributed to disruptions

in actomyosin crossbridges [47]; however, there are a number of unanswered ques-

tions under this hypothesis. We believe that both crossbridges and integrins could

play a part. The force-dependent strengthening mechanism may be able to account

for some of the more complicated dynamics, and could also be helpful in distinguish-

ing between crossbridge and integrin contributions, since only the integrins have this

trait.
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The use of a local coordinate in the microscale model is crucial to capturing strain

dependent reactions at the integrin level. As demonstrated by the results in this

chapter, these reactions can introduce some interesting behaviours and can help to

capture the known mechanosensing ability of integrins. This mechanosensitivity will

be important when considering the effect of different material properties in healthy

and asthmatic airways and of spatial variations in deformations across the lung; the

multiscale model therefore provides a useful framework for future investigations.

In Section 4.3, we discussed an experimental result by Mailhot-Larouche et al. [95]. In

their in vitro study they observed that a reduced duration between length oscillations

representing deep inspirations (DIs) increased the rate and magnitude of contractile

force recovery after a bronchodilatory DI. We simulated their oscillation protocol in

some numerical experiments, where we explored different possible qualitative out-

comes in the 4 species model (Section 4.1) as the activation rates were varied. Al-

though there are likely to be many further mechanisms at play (such as crossbridge

dynamics, intracellular signalling, diffusion and recruitment of adaptor proteins) this

exploration highlighted some key points. The first is that, for the duration between

DIs to have differing effects, the system cannot obtain steady state during the time

period under investigation (such as occured in Fig. 4.21). This provides some infor-

mation about the timescales involved with binding and activation reactions; we show

that transient changes must be occuring over the full range of time intervals consid-

ered, which reached 30 minutes in the experiments. Secondly, increased rates and

magnitudes of bound integrins required increased availability of IA integrins. In our

model, there is conservation of the species A + IA + B = 1, so this was only possible

via an increased activation (or, equivalently, reduced deactivation) rate. In general,

conservation is not guaranteed and recruitment via intracellular signalling and dif-

fusion could yield the same result. The experimentally observed effect was captured

using a transient increase in activation which then slowly decayed (Figs. 4.26, 4.28);

this could perhaps be triggered by the initial DIs. Integrins respond to mechanical

cues in many different ways; force can trigger inside-out integrin activation [3] and

can also drive the recruitment and binding of adaptor proteins [84]. Both of these

would have similar effects on the availability of IA integrins. Regardless of the un-

derlying mechanism, our key observation is that, for the magnitude of recovery to be

modulated, the change must be ongoing over the 30 minute time interval (Fig. 4.25).



Chapter 5

Vertical oscillations: models and

experimental data

In this chapter we develop a model that allows for vertical motion between the cell

and the ECM in order to replicate an experimental protocol where substrate-coated

atomic force microscopy (AFM) probes are used to repeatedly approach and retract

from the surface of a cell. The inclusion of vertical components will also be impor-

tant in coupling our model of adhesion dynamics to descriptions of contractile force

generation within the cell (Chapter 6). The model formulation is introduced in Sec-

tion 5.1 and has two parts: a 3-spring model for material deformations, coupled to

an adapted Lacker–Peskin model for the microscale integrin binding dynamics. The

model for the integrin dynamics is similar to the microscale formulation introduced

in Chapter 2, but has now been extended to allow for vertical separation between the

cell and the ECM. The coupling to a 3-spring model for material deformations allows

us to capture the two-way relation between cell-scale deformations and individual

integrin binding and rupture events.

After some initial numerical tests, we use our model to simulate vertical oscillations

applied to the ECM, replicating the AFM experiments described above. The experi-

mental protocol is introduced fully in Section 5.2, and our model results are then com-

pared to experimental data, provided by Prof. Gerald Meininger and Huang Huang

(University of Missouri). In analysing the experimental data, we use cluster analysis

techniques to classify different temporal patterns in force.

101
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5.1 Model formulation

5.1.1 A 3-spring model for material deformations

We represent the cell, integrins and ECM by linear springs with spring constants k̂A,

k̂ I(t̂) and k̂E, respectively, as depicted in Fig. 5.1. The cell and ECM spring constants,

k̂A and k̂E, are constant; however, the integrin spring constant, k̂ I(t̂), is designed to

account for the collective strength of the bound integrins. It is therefore calculated as

k̂ I(t̂) = ρλ̂bB(t̂), (5.1.1)

where ρ is the total number of integrins expressed on the cell surface, λ̂b is the indi-

vidual integrin spring constant and B(t̂) ∈ [0, 1] is the fraction of integrins that are

bound to both the cell and the ECM. The underlying integrin dynamics evolve in time

and B(t̂) is calculated via a separate model, presented in Section 5.1.2. As in our pre-

vious models, the cell and ECM surfaces (green and red, respectively, in Fig. 5.1) that

the integrins bind to are assumed to be locally rigid.

In the 3-spring model, each spring (representing the cell, integrins and ECM respec-

tively) has a rest length of L̂A, L̂I , and L̂E (Fig. 5.1(a)) and time-dependent deformed

length of L̂
′
A(t̂), L̂

′
I(t̂), and L̂

′
E(t̂) (Fig. 5.1(b)) respectively. We apply a displacement

condition, Ŷ = L̂
′
T(t̂), to the top of the ECM and use force-balance equations to deter-

mine the resulting deformed spring lengths. To carry out force balances, we consider

separate cases depending on whether the fraction of bound integrins, B, is zero or

non-zero, and whether the cell is under compression or tension. We assume integrins

to be incompressible, meaning that when L̂
′
T < L̂T they behave as rigid beams (i.e.

we enforce L̂′I = L̂I).

Case 1: B 6= 0

In the case where some integrins are bound to the cell and the ECM (B 6= 0) and

L̂
′
T > L̂T, force balance requires that the force in each spring at any point in time is

given by

F̂Ŷ = k̂ I(L̂
′
I − L̂I) = k̂E(L̂

′
E − L̂E) = k̂A(L̂

′
A − L̂A), (5.1.2)

where the rest lengths L̂I , L̂E, and L̂A are known parameters.
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Figure 5.1: Schematic of the 3-spring model in (a) the rest configuration and (b) a

deformed configuration. Hookean springs in series represent the cell,

bound integrins and the ECM with spring constants k̂A, k̂I(t̂) and k̂E re-

spectively. The cell, integrin, and ECM springs have rest lengths L̂A, L̂I ,

and L̂E and time-dependent deformed lengths L̂
′
A, L̂

′
I , and L̂

′
E respec-

tively. The total deformed length is given by L̂
′
T(t̂) = L̂

′
A(t̂) + L̂

′
I(t̂) +

L̂
′
E(t̂). The collective integrin spring constant, k̂I(t̂), evolves in time ac-

cording to the underlying distribution of integrins, b̂(x̂, t̂), calculated us-

ing a separate model (Section 5.1.2), and is proportional to the fraction of

double-bound integrins, B ∈ [0, 1].

Non-dimensionalisation

To non-dimensionalise the model equations, all lengths (L̂T, L̂
′
T, L̂E, L̂

′
E, L̂I , L̂

′
I , L̂A, L̂

′
A)

are scaled by ĥ, the integrin binding range (Section 2.1). The spring constants (k̂E, k̂A

and k̂ I) are scaled by ρλ̂b to obtain the dimensionless force balance equations

FY = k I(L′I − LI) = kE(L′E − LE) = kA(L′A − LA), (5.1.3)

where

kE = k̂E/ρλ̂b, kA = k̂A/ρλ̂b, (5.1.4)

and

k I = B. (5.1.5)

The dimensionless force balance (Eq. 5.1.3) can be rewritten as two simultaneous

equations

L′I − LI =
kE

k I
(L′E − LE) and

kE

k I
(L′E − LE) =

kA

k I
(L′A − LA). (5.1.6)

Since L′T is known, we use the fact that the total length at any time is given by L′T =

L′A + L′I + L′E to eliminate L′E. This leaves two equations with two unknowns (L′I and

L′A), which can be solved to give
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L′I =
LI

1 + σ1σ2
+

σ1σ2

1 + σ1σ2

(
L′T − LE − LA

)
, (5.1.7)

and

L′A =
kE(L′T − L′I − LE) + kALA

(kA + kE)
, (5.1.8)

where

σ1 =
kA

k I
and σ2 =

kE

kA + kE
. (5.1.9)

Using Eqs. 5.1.7 and 5.1.8, the deformed lengths of all three springs can be calculated

for any applied time-dependent length fluctuation, L′T, in terms of known parameters.

In the case where L′T ≤ LT (compression) we assume rigidity of the integrins (L′I = LI)

and instead obtain

FY = kE(L′E − LE) = kA(L′A − LA). (5.1.10)

We now have the relation L′T = L′A + LI + L′E which gives

L′A =
kE(L′T − LI − LE) + kALA

(kA + kE)
. (5.1.11)

Case 2: B = 0

When B = 0 there are no integrins bound to both the cell and the ECM; therefore the

middle spring is no longer present (or, equivalently, k I = 0 using Eq. 5.1.5). When

L′T − L′E > L′A there is no contact between the cell and ECM; in this case there is no

deformation and we simply have L′E = LE and L′A = LA. This can also be obtained

by considering Eqs. 5.1.7–5.1.9 in the limit as B→ 0 (i.e. as σ1 → ∞).

When L′T − L′E ≤ LA there is contact and compression of the cell. We again consider

dimensionless force balances to obtain the force in each spring

FY = kE(L′E − LE) = kA(L′A − LA). (5.1.12)

This time we have L′T = L′E + L′A, which gives

L′A =
kE(L′T − LE) + kALA

(kA + kE)
, (5.1.13)

and

L′E = L′T − L′A. (5.1.14)
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In each of the above cases the three unknown spring deformations (L′A, L′I and L′E)

can be calculated directly for any applied deformation, L′T.

5.1.2 Model of integrin binding dynamics

The solution to the 3-spring model depends on knowing the fraction of bound inte-

grins, B, via Eq. 5.1.5. In this section we present the dimensionless model for mi-

croscale integrin binding dynamics, which is an adaptation of the microscale model

in Chapter 2, and employs the same scalings as in Eq. 2.2.26 and Section 5.1. Impor-

tantly, for the model to capture the two-way coupling between cell-scale deformations

and integrin dynamics, the binding and rupture of integrins depends on the vertical

extension L = L′I − LI of the integrins, calculated from the 3-spring model. This in-

troduces a coupling that is similar to our multiscale approach in Chapter 2.

As in previous sections, we model integrin binding and rupture events by consider-

ing state transitions of the integrins between actin-bound (IA) and double-bound (B)

states. Each integrin may therefore undergo the reactions

IA
kb(d)−−⇀↽−−
ku(d)

B, (5.1.15)

where kb(d) and ku(d) are binding and unbinding rate functions respectively. These

rates depend on a distance, d ≥ 0, which is the distance from an unstressed position,

given by d =
√

x2 + L2, for horizontal and vertical extensions of the integrin, x and

L, respectively. These rates are chosen so that the binding rate, kb(d), is highest when

the distance from rest, d, is zero, and rupture rate, ku(d), increases as d increases. The

chosen rates in dimensionless form are

kb(d) =

(1− d) 0 < d ≤ 1

0 otherwise,
(5.1.16)

and

ku(d) =

h1 + h2d 0 < d ≤ s

h3 otherwise,
(5.1.17)

where h1, h2 and h3 are dimensionless parameters as defined in Eq. 2.2.7. Here we use

piecewise linear rates (similar to Eqs. 2.2.6, 2.2.7), and the rupture rate (ku) increases

with a linear gradient h2 as the integrin extension increases. Furthermore, after a

maximum extension of s, any remaining bound integrins are forced to unbind with a

high rate h3. The form of these rate functions is shown in Fig. 5.2.
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Figure 5.2: 2D reaction rates, indicated by colour, for binding (kb(x, L)) and unbind-

ing (ku(x, L)). The binding propensity is highest at (0,0), when the inte-

grin is in its rest position, whereas the unbinding propensity increases as

distances increase. In Eq. 5.1.17, s =
√

1.5.

Since the vertical distance, L, is known at all times from the 3-spring model, we can

adapt the Lacker–Peskin model [86], and track the horizontal extensions, x, of the

integrins. This will allow us to determine the horizontal component of the traction

forces generated by bound integrins. As in Chapter 2, we denote the fraction of bound

integrins with horizontal extension x by a distribution b(x, t). If we only apply a

vertical displacement to either surface, and if the binding and unbinding rates are

symmetric in x, there is no horizontal relative velocity of the cell and the ECM. The

equation for the distribution of integrins in this case has no advection term and is

∂b(x, t)
∂t

= ηkb(d) (1− B)− ku(d)b(x, t), (5.1.18)

which is the Lacker–Peskin model [86] with zero relative velocity between the two

layers. This model originally only accounted for binding rates that are functions of the

horizontal extensions, x, but since the distance L is known from the 3-spring model,

the binding rates can be rewritten as time-dependent functions of x by using d =
√

x2 + L2 in Eqs. 5.1.16, 5.1.17. Note that, if the motion is not purely vertical, i.e.

there is a non-zero horizontal component of relative velocity, an advection term is also

needed in Eq. 5.1.18 (see Section 2.2.3). This is easily incorporated in the above, but

is not considered here. In Eq. 5.1.18, the parameter η is a dimensionless parameter

which arises in the derivation of the model to allow for multiple binding sites (Eq.

2.2.27), and B measures the bound fraction of integrins. As before, this is defined by

B(t) =
∫ ∞

−∞
b(x, t)dx, (5.1.19)

and takes a value between 0 and 1. The derivation of the original Lacker–Peskin

model is discussed in detail in Chapter 2.
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As previously, we treat the integrins as linear springs, each with spring constant λb.

By Hooke’s Law, we can calculate the total horizontal component of the force gener-

ated by integrins, which in dimensionless form is

FX(t) =
∫ ∞

−∞
xb(x, t)dx. (5.1.20)

Since the binding rates are symmetric in x, if there is no imposed horizontal motion

between the cell and the ECM then the distribution b(x, t) will also be symmetric in

x. In this case the integral, and therefore the horizontal force, will always be zero.

The vertical component of the force is found by using the vertical extensions, and

since each of the integrins has the same extension, L = L′I − LI , this is given in di-

mensionless form by

FY(t) = BL. (5.1.21)

This force is used in the 3-spring model, consistent with the definition of the integrin

spring (k I , Eq. 5.1.5) as k I = B.

Summary and implementation

In summary, the equations to be evolved are a reaction equation for the integrin bind-

ing dynamics (Eq. 5.1.18) coupled to the deformed spring lengths (L′E, L′I and L′A). For

a given displacement condition, Y = L′T(t), we have derived algebraic expressions for

each of the deformed lengths, which take different forms determined by conditions

on B and L′T. The different cases depend on whether there are a zero or non-zero

bound fraction of integrins, and whether the cell is under tension or compression. To

implement the model, we use the numerical techniques described in Section 2.2.4 to

evolve the governing equation for the integrin distribution. Within this equation, we

calculate the integrin extension, L = L′I − LI , based on the algebraic expressions for

the deformed spring lengths. This is used in the modified binding rates (Eqs. 5.1.16

and 5.1.17) which, in contrast to the previous model, are now time-dependent.

5.1.3 Numerical results

To demonstrate the effect of vertical separation, we first consider some fixed displace-

ments L′T > LT that result in different integrin extensions, L, from their vertical rest

length. The steady state distributions for bound integrins are shown in Fig. 5.3 for a
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range of extensions and, as expected from the binding rates (Fig. 5.2), distributions

decrease in both height and width as L increases.

x
-5 -4 -3 -2 -1 0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1
b(x,5;L) for L=[0:0.1:1]

L increasingb
s(

x,
t;

L)

x

L increasing

Figure 5.3: Steady states distributions, bs(x, t; L), of bound integrins for different ex-

tensions, L, of the integrins from their vertical rest length. As L increases,

the distributions decrease in both height and width. Here the value of L

is increased from 0 to 1 in steps of 0.1.

To further test our model, we replicate a common atomic force microscopy (AFM)

experiment for measuring adhesion properties of cells (Section 1.2.3). Deflection of a

metal cantilever is tracked as it approaches, indents and retracts from the surface of

a cell (Fig. 1.6). The cantilever may be functionalised with ligands for the integrins

to bind to, or be attached to a substrate-coated bead; its deflection is then used to

calculate the adhesion force, commonly presented in ‘approach–retract’ curves (Fig.

1.6(b)). Experimental retraction curves contain information about the total adhesion

force and also show individual rupture events via jumps in the retraction curve. Our

equivalent model output, generated by imposing a linear time-dependent decrease

and increase in L′T (Fig. 5.4), captures experimental adhesion characteristics well (Fig.

5.5). However, since the model is deterministic, a smooth retraction curve (Fig. 5.5(a))

is obtained rather than one that shows individual (stochastic) rupture events. Below

the rest height (L′T < LT, i.e. when the cell is indented), we allow adhesions to form

for a contact period, c, before retraction begins (Fig. 5.4). We can directly measure

the adhesion force using Eq. 5.1.21 and find that the forces obtained in the retraction

curves become larger and saturate (Fig. 5.5(a)) with increasing contact times. This has

been observed in previous experimental studies for cell–ECM adhesion [137]; we also

obtained this behaviour in a previous joint AFM and modelling study for the similar
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process of cell–cell adhesion [73]. Our model shows that the change in adhesion force

corresponds to an increasing bound fraction of integrins (Fig. 5.5); we do not consider

activation mechanisms, and obtain a monotonic increase. We note that the similar

experimental result presented by Taubenberger et al. [137] does not contradict the

result we presented in Fig. 4.6. Their study considered contact times between 5 and

600 seconds, with relatively sparse timepoints, whereas the non-monotonic behaviour

in Fig. 4.6 was detected during early adhesion formation, with several data points

between 0.5 and 20 seconds.
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Figure 5.4: Schematic of the applied displacement to the ECM, L′T , representing ap-

proach and retraction of an AFM probe from a cell. Adhesion forces are

measured as the contact time before retraction, c, varies. There is inden-

tation during the contact period, since L′T < LT for rest length LT = 2.5.
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Figure 5.5: (a) Approach curve (black) and retraction curves for varying contact

times, c, increasing from 0 to 0.8 in steps of 0.2. Retraction curves show

an increase and saturation in maximum adhesion force. The rest length

LT = 2.5 and for L′T < LT there is a positive (compressive) force. (b) As c

increases, the bound fraction of integrins reaches a higher maximum and

saturates. The green line (c = 0.8) corresponds to the schematic for L′T in

Fig. 5.4. Parameter values are provided in Appendix B.
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Vertical oscillatory loading

Motivated by the need to understand the integrin response to dynamic environments,

we now consider an oscillatory loading of the ECM. This is similar to the loading

considered in Chapter 3 but there are some key differences when the oscillations are

perpendicular rather than parallel to the surface of the cell. Notably, in this verti-

cal oscillation case, there can be times when the cell–ECM separation is larger than

the integrin binding range, resulting in a zero bound fraction. In contrast, lateral os-

cillations (Chapter 3) allowed for continuous rebinding of integrins, even when the

amplitude of oscillation was high. Vertical oscillations can therefore strongly affect

the binding, as well as rupture, dynamics.

To match the experimental protocol, which will be presented in Section 5.2, we apply

a vertical triangle-wave displacement (Fig. 5.6) to the top of the ECM. This is applied

via L′T(t) (see Fig. 5.1), which is defined as

L′T(t) = LT − D + A
(

1
2
+ (−1)b2ωt+1c

(
1
2
+ 2ωt− b2ωt + 1c

))
, (5.1.22)

where A is the magnitude of the oscillation, LT − D is the minimum height of the

top of the ECM (i.e. when the approach is complete, chosen to be independent of A),

and ω is the frequency of oscillation. We refer to D as the indentation depth, as this

controls the amount of compression experienced. For extension to occur during the

retraction phase, A must be chosen so that A > D. As in Chapter 3, we will consider

both zero and saturated initial conditions (Eq. 2.2.12) for the bound integrin distri-

butions. In the case where the saturated initial condition is used the simulation is

started at time t = −1/2ω (where L′T is at a minimum) instead of t = 0; the fully sat-

urated condition is only applicable when the cell and ECM are in close proximity and

simulating an initial ‘retraction’ period gives us the relevant initial distribution for

when the first approach cycle begins at t = 0. Additionally, this is consistent with the

experimental approach that will be presented in Section 5.2. In the numerical simula-

tions, we track the timecourses of the fraction of bound integrins, B (Eq. 5.1.19), and

vertical adhesion forces (Eq. 5.1.21) as the amplitude A varies. In addition, we can

continuously track how each of the three layers deform. In the results that follow, we

use parameter values as listed in Appendix B (unless otherwise stated in captions) to

explore the possible qualitative model behaviours. Although here we use a triangular

waveform, very similar model behaviours are obtained with a sinusoidal waveform

(as will be used in Chapter 6).
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Figure 5.6: Triangular waveform used for L′T (Eq. 5.1.22), the vertical displacement

applied to the top of the ECM. Here, the minimum height of the ECM

is LT − D = 1.5, the frequency is ω = 5 and the amplitude is A = 4.

The rest length LT = 2.5 and the indentation depth is D = 1. Cycles of

approach and retraction from the cell begin at time t = 0.

Applying low amplitude approach–retract oscillations (Fig. 5.7) results in an increase

in the bound fraction from the zero initial condition (blue line) to a high steady state

(Fig. 5.7(a)). The same steady state is reached when starting from a saturated initial

condition (red line). Negative and positive values of force (Fig. 5.7(b)) correspond

to adhesion and compression forces respectively, and the maximum adhesion forces

at each cycle (i.e. the values at t = 0, 0.2, . . .) are seen to saturate at the same rate

as the bound fraction. The corresponding heights of each of the three layers for the

zero initial condition are shown in Fig. 5.8. During the first approach (t ∈ [0, 0.1]),

we observe a reduction in cell height (green line) due to indentation. As retraction

(t ∈ [0.1, 0.2]) begins, the cell height increases. Due to adhesions that have formed,

the cell is stretched upwards and closely follows the applied triangular waveform

(black line). Later in the retraction (t ≈ 0.16), a small number of bonds rupture and

there is a slight rounding of the cell height.

Timecourses for the bound integrin fractions (for each initial condition) and the cor-

responding adhesion forces under high amplitude vertical oscillations, representing

larger excursions being made in the approach–retract cycles, are shown in Fig. 5.9. In

this case the zero and saturated initial conditions produce identical timecourses since

all bonds have ruptured during the initial retraction (before t = 0) in the saturated

case. Timecourses for the heights of each of the three layers, illustrate the correspond-

ing cell deformations (Fig. 5.10). In contrast to Fig. 5.8, the cell deformation no longer

closely follows the applied triangular waveform throughout the oscillation: there are

small upward deformations during the initial phase of each retraction cycle, but once

the bound fraction reaches zero the cell returns to its rest height.
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Figure 5.7: Timecourses for (a) the bound integrin fraction and (b) adhesion force in

the presence of low amplitude (A = 2) approach–retract cycles. The red

and blue lines show timecourses for saturated (Eq. 2.2.12) and zero initial

conditions respectively.
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Figure 5.8: Timecourses for the heights of each of the three layers (Cell, ECM and

L′T), showing the deformations that occur under low amplitude (A = 2)

approach–retract cycles when a zero initial bound fraction was used.
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Figure 5.9: Timecourses for (a) the bound integrin fraction and (b) the corresponding

adhesion force in the presence of high amplitude (A = 4) approach–

retract cycles. Both the saturated (Eq. 2.2.12) and zero initial conditions

produce these results.
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Figure 5.10: Timecourses for the heights of each of the three layers (Cell, ECM and

L′T), showing the deformations that occur under high amplitude (A = 4)

approach–retract cycles. In this case a zero initial condition of bound

integrins was used.



CHAPTER 5: VERTICAL OSCILLATIONS: MODELS AND EXPERIMENTAL DATA 114

Bound fraction and adhesion force timecourses for an intermediate amplitude vertical

oscillation (Fig. 5.11) suggest the existence of bistable behaviour due to mechanical

cooperativity, similar to the lateral oscillation cases in Chapter 3. Since we also track

the cell height as a function of time in this model (Fig. 5.12), the effect of mechani-

cal cooperativity can be more clearly seen. With a saturated initial condition, the cell

height (which is directly influenced by adhesion force, Fig. 5.11(b)) is increased dur-

ing the retraction phase, which leads to reduced separation between the cell and ECM

and allows the integrins to remain bound. This result shows that the bistability seen

and analysed in Chapter 3 is a phenomenon that can be observed with vertical oscil-

lations. Additionally it highlights the role of material stiffnesses: for cooperativity to

be effective there must be sufficient deformation of the cell or ECM.
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Figure 5.11: Timecourses for (a) the bound integrin fraction and (b) adhesion force

in the presence of intermediate amplitude (A = 2.5) approach–retract

cycles. Red and blue lines show timecourses for saturated (Eq. 2.2.12)

and zero initial conditions respectively.

Although the bound fraction timecourses clearly show whether adhesion or rupture

dominate, this information is not available in AFM experiments. However, in the two

cases of adhesion and rupture, we also observed qualitative differences in the force

timecourses, which can be measured by AFM. We will therefore focus on this aspect

and use the force curves as a means of comparing model and experimental data.
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Figure 5.12: Timecourses for the cell height, showing the deformations that occur

under intermediate amplitude (A = 2.5) approach–retract cycles with

saturated (red line) and zero (blue line) initial conditions.

To show the typical behaviour of the adhesion force for each initial condition and for

a range of oscillation amplitudes, we average the curves over each approach–retract

cycle (Fig. 5.13). Additionally, the force curves have been normalised so that they

all take values between 0 and 1. As the amplitude, A, increases there is a gradual

narrowing of the force curves due to the increased speed of approach and retraction;

this occurs in order to cover an increased distance within a fixed period of oscillation.

More significantly, there is a change in the shape of the curves due to the transition

between adhesion and rupture states. In the case of adhesion, the curves are approxi-

mately triangular with non-zero gradients throughout the approach (t ∈ [0, 0.1]) and

retraction (t ∈ [0.1, 0.2]) phases. When there is rupture, the force curves exhibit re-

gions of zero gradient due to periods of zero force when no bonds are present. In

this case, the force curves are not symmetric about the turning point at t = 0.1. For

A = 2.2, A = 2.25 and A = 2.3, which exhibit bistable behaviour, there are qualitative

differences in the force curves for each initial condition due to the presence of both

adhesion (red) and rupture (blue) states.

5.2 Experimental protocol for vertical oscillations

5.2.1 Vascular smooth muscle cells

In the experimental data we present in the next section, the experiments were car-

ried out on aortic vascular smooth muscle cells (VSMCs). There are many similarities

between vascular and airway smooth muscle cells, and integrins also have an impor-

tant role in regulating mechanotransduction between VSMCs and the ECM. Changes

in integrin signalling and expression are known to lead to altered vascular function
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Figure 5.13: Force curves, normalised to take values between 0 and 1, and aver-

aged over each approach–retract cycle. These show the typical be-

haviours of the adhesion force during approach (t ∈ [0, 0.1]) and retrac-

tion (t ∈ [0.1, 0.2]) for each amplitude, A, when using a saturated (red)

and zero (blue) initial condition.
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and have been associated with a range of cardiovascular diseases [23, 31, 63, 87]. A

further similarity is that both smooth muscle cell types (airway and vascular) reside

in, and must adapt to, dynamic environments. VSMCs are contained within the walls

of blood vessels; they are affected by fluctuating mechanical forces due to both contin-

uous blood flow and due to pulsatile changes in blood pressure and vessel diameter.

As with ASM cells, the VSMC integrin response to dynamic environments is therefore

an important area of study.

5.2.2 Experimental methods

The experimental data was obtained using atomic force microscopy (AFM) techniques

and provided by Prof. Gerald Meininger and Huang Huang (University of Mis-

souri). A vertical oscillatory displacement of varying amplitudes was applied to a

fibronectin (FN)-coated AFM probe, which was used to repeatedly indent and retract

from the surface of single live aortic VSMCs. For each experiment, force curves from

60 approach–retract cycles (at a frequency of 0.1Hz) were recorded as an indication of

the time-dependent adhesion strength and dynamics.

In order to determine the effect of different amplitude oscillations on the adhesion

characteristics between FN and the VSMCs, measurements were made with oscilla-

tion amplitudes varying between 200nm and 2000nm. In total, 13 oscillation ampli-

tudes were applied and two protocols were followed for each amplitude: prebind and

non-prebind. For the prebind protocol, the FN-coated beads were kept in contact with

the cell surface for 20 minutes prior to the approach and retraction to allow stable fo-

cal adhesions to form. For the non-prebind protocol, approach and retraction cycles

began immediately after the AFM probe engaged with the cell membrane. These two

protocols correspond to the saturated and zero initial conditions considered in the

model (Section 5.1.3).

For each amplitude and initial condition, repeat experiments were performed on be-

tween 5 and 9 cells. In total we have data from 173 cells: 84 from the non-prebind

protocol and 89 from the prebind protocol. The raw data for each cell consisted of

three continuously measured quantities: time, vertical displacement applied to the

probe, and deflection of the probe. The force was calculated by multiplying the probe

deflection by the known stiffness of the cantilever (18.1pN/nm). Note that the num-

ber (or bound fraction) of integrins cannot be measured in AFM experiments and the
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cell deformation is not known continuously in time. For this reason we will analyse

the force data, which is the output that is common to both model and experiment.

A schematic for the initial approach for the non-prebind protocol is shown in Fig.

5.14, where A denotes the amplitude of oscillation and z = C denotes the height of

the cantilever when contact with the cell is made, measured from a reference height,

z = 0. This is the minimum height of the end of the cantilever (occuring at the trough

of the oscillation), which is controlled by the piezoelectric scanner (Fig. 1.6) and is

fixed for each cell.

Figure 5.14: Schematic of the AFM protocol with no prebinding. (a) The cantilever

begins to approach the cell from a height of z = A. (b) At z = C, contact

with the cell is made. (c) Indentation of the cell occurs, and the can-

tilever continues to be lowered until a minimum height, z = 0. From

this point, the process is reversed and then repeated for 60 cycles. The

height, z, of the cantilever is controlled by a piezoelectric scanner (Fig.

1.6), and z = 0 is fixed for each cell.

5.2.3 Experimental results

We first show force data for a cell with no prebinding, which was subject to vertical

oscillations with amplitude 400nm (Fig. 5.15). The triangular shape (Fig. 5.15(b))

follows the form of the applied displacement which, as in the model results, is be-

haviour indicative of adhesion (Figs. 5.7(b), 5.13). Note that here we plot the raw

data; however, to obtain accurate values for the magnitude of force this measurement

needs to be corrected to account for the initial deflection of the cantilever. In the ex-

periments the cantilever is not guaranteed to be perfectly horizontal at the beginning

of the experiment, meaning that there is initially a non-zero value of deflection even

though there is no adhesion force. The correction is simple to make in this case since

we know that at t = 0 the force should be identically zero due to the fact that there is

no adhesion and no contact with the cell before the approach occurs; the force should

therefore be shifted by its initial value. However, in the corresponding data with

prebinding, correcting the force data is problematic since we do not have a point of
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reference where force is known to be zero (or any other value). Since we cannot ac-

count for this shift consistently with prebinding, we focus on the qualitative aspects

of the force data by considering the shape rather than the magnitude of the curves.
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Figure 5.15: Raw AFM data for a cell with no prebinding, measured whilst the AFM

probe was subject to vertical oscillations (with a triangular waveform)

of amplitude 400nm over (a) 10 minutes and (b) the first 6 approach–

retract cycles.

For larger amplitude oscillations (1400nm), we observe force curves (Fig. 5.16) qual-

itatively similar to our model results obtained in the rupture regime (cf. Fig. 5.16(b),

Fig. 5.9(b)). The width of the curves appear narrower, and flat sections indicate full

rupture and zero force. Before this occurs, there are adhesion formation and rupture

events; however, this is less apparent than in Fig. 5.9(b) due to the relatively high

magnitude of the compressive forces in the experiments. By focussing only on the

bottom of the curves (Fig. 5.16(c)) rupture can be seen more clearly.

For a wider range of amplitudes, the normalised force curves, averaged over 60 cy-

cles, over each cell (Fig. 5.17) show qualitatively similar behaviours to our model

results (Fig. 5.13). As before, we observe a narrowing of force curves as the ampli-

tude increases, and flattening at the ends as the behaviour transitions from adhesion

to rupture. In extreme low and high amplitude cases there is very little difference in

the non-prebind (blue) and prebind (red) data; however, we observe noticeable dif-

ferences between the two protocols for A = 1200nm, A = 1400nm and A = 1800nm.

We expect to see slight discrepancies due to the presence of noise in the experimental

data, but since differences in the model indicated bistability we will examine these
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Figure 5.16: Raw AFM data for a cell with no prebinding, measured whilst the AFM

probe was subject to vertical oscillations (with a triangular waveform)

of amplitude 1400nm. We show the force over (a) 10 minutes, (b) the first

6 approach–retract cycles and (c) a limited range of force that allows us

to see the rupture behaviour more clearly.
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cases in more detail. For A = 1400nm and A = 1800nm, prebinding appears to en-

courage some increased adhesion. This is shown by an increased width of the prebind

(red) curves, which indicates that contact between the bead and cell is sustained for a

longer period. However, the overall shape of the curves (in particular, flatness at the

ends) indicates that rupture still eventually occurs in both cases. For A = 1200nm, it

is not clear if this is the case, and we examine this further below.
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Figure 5.17: Force curves, normalised to take values between 0 and 1, and averaged

over each approach–retract cycle and cell. These show the typical be-

haviours of the adhesion force during approach (t ∈ [0, 5]) and retrac-

tion (t ∈ [5, 10]) for amplitudes, A, with the prebind (red) and nonpre-

bind (blue) protocols.

For 1200nm oscillations, from the complete force data for the individual cells (Figs.

5.18 and 5.19) we observe that, with no prebinding (Fig. 5.18), the behaviour is char-

acteristic of rupture in all cases except for Cell 4. On the other hand, with prebinding

(Fig. 5.19), for all cells except for Cell 2, we observe the wider, more triangular curves

that are characteristic of adhesion. This is consistent with the model observations at

intermediate amplitudes, where saturated and zero initial conditions resulted in ad-

hesion or rupture states respectively (Fig. 5.11); however, there are still a number of

factors (such as noise and intercellular variation) to consider in the experimental case

before arriving at a conclusion about bistability.
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Figure 5.18: Normalised force curves for each cycle and each cell subject to 1200nm

oscillations under the no-prebind protocol. Full rupture occurs in most

cells, seen by the narrow width and flatness at the ends of the force

curves (similarly to Fig. 5.16(b)). The more triangular force curve in

Cell 4 differs, indicating adhesion (Fig. 5.15(b)).

Figure 5.19: Normalised force curves for each cycle and each cell subject to 1200nm

oscillations under the prebind protocol. Most of the force curves indi-

cate adhesion, with a similar triangular shape to Fig. 5.15(b)). A larger

amount of rupture is seen in Cell 2, which is similar in shape to Fig.

5.16(b)).
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We now analyse the non-prebind data to see if the reason behind the different be-

haviour of Cell 4 can be identified. Although only the cantilever height and deflection

over time are measured in the experiments, a number of quantities can be inferred.

For example, the height of the cell can sometimes be estimated by analysis of the

force curve. In the case where there is initially no adhesion and no contact between

the bead and cell, the force starts at 0pN and increases sharply when contact is made.

We estimate this contact point (z = C, Fig. 5.14) by calculating the height at which

a 5% change in force occurs during the first approach cycle. We calculated this for

each cell in Fig. 5.18 (Table 5.1), measured from a reference height of z = 0, which is

the controlled height of the cantilever at the trough of the oscillation (see Fig. 5.14),

and where maximum indentation of the cell occurs. Firstly we observe that there is a

wide variation between these estimated heights, with a range spanning several hun-

dred nanometres. The reference height, z = 0, is fixed between cells, which highlights

that there must be variation in the cell heights, which had not been considered in the

design of the experiment. This variation introduces limitations that will be discussed

below. A further observation is that the 5% change in force occurs at a much larger

height for Cell 4, meaning that there was a significantly reduced distance from the

contact height to the peak of the oscillation (given by A− C, Fig. 5.14) for this cell.

This reduced distance provides a likely reason for why this cell exhibited adhesion

whilst the others showed rupture (Fig. 5.18).

Cell index 1 2 3 4 5 6

5% 673nm 493nm 637nm 875nm 455nm 289nm

Table 5.1: The height (to the nearest nm) at which a 5% change in force occurs dur-

ing the first approach cycle for each cell in Fig. 5.18. This height is relative

to the point of maximum indentation (z = 0, Fig. 5.14) from which oscil-

lations of amplitude 1.2µm are applied. The 5% change in force occurs at

a significantly higher value for Cell 4 (red).

The same measure of height for the prebind data (Table 5.2) shows increased values

(on average) compared to the non-prebind data. With prebinding, there is a possibil-

ity of adhesions being present at t = 0, meaning that the force does not necessarily

start at 0pN. In these cases, a 5% change will occur relatively quickly since the force

will begin to increase instantly, with no period of flatness due to a zero force. We

observe that this does not occur for Cell 2, where the height is lower than for any of
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the other cells. This means that an increased distance is travelled between the point

of contact and the peak of the oscillation, which would again provide an explanation

for the differing behaviour of Cell 2, where rupture was seen to occur rather than ad-

hesion (Fig. 5.19).

Cell index 1 2 3 4 5 6

5% 854nm 368nm 851nm 801nm 883nm 1169nm

Table 5.2: The z−height (to the nearest nm) at which a 5% change in force occurs

during the first approach cycle for each cell in Fig. 5.19. This height is

relative to the point of maximum indentation (z = 0) from which oscilla-

tions of amplitude 1.2µm are applied. The 5% change in force occurs at a

significantly lower z−value for Cell 2 (red).

The variation detected between cells (Tables 5.1 and 5.2) highlights an important is-

sue: each cell undergoes a different indentation depth, depending on its height. As a

result, for cells originally classified under the same ‘amplitude’ category, there could

be variation of up to several hundred nanometres in the distance between the cell

surface and the peak of the oscillation. Classifying the data in this way therefore has

limited use, since when comparing categories of e.g. 1100nm and 1200nm, individ-

ual cells could exhibit variations in height that negate the difference in amplitude.

Moreover, the cell height can only be estimated in cases where the initial force during

the approach is zero, which is not always the case in the prebind data. This means

that we cannot always know, or correct for, the error. To improve accuracy, future

experimental studies would ideally need to account for variations in cell height from

the outset. This could either be through a carefully controlled selection of cells, or

through adapting the amplitude applied by the piezoelectric scanner so that the dis-

tance from the cell surface to the peak of the oscillation (rather than the total distance)

is the preserved quantity. In the prebind data, this would require using the initial

approach data (i.e. from before the 20 minute period of prebinding) to infer the initial

cell height. Currently, we do not have a record of this data, which would be needed

in order to retrospectively correct for the intercellular variation.

Although there is a large variation between the individual cells in Tables 5.1 and 5.2,

it appears that the mean height for the prebind cells is significantly increased. An

increase in this measure seems to correlate with adhesion occuring over rupture, but



CHAPTER 5: VERTICAL OSCILLATIONS: MODELS AND EXPERIMENTAL DATA 125

the key question is whether this a cause or an effect of the different adhesion out-

comes. On the one hand, there is a relatively low number of cells, and it could be

argued that an increase in cell height occurred by chance for the prebind cells, and

that this led to increased adhesion due to a reduced distance between cell surface and

peak of the oscillation. On the other hand, our model results (Fig. 5.12) show that an

increase in cell height is to be expected in a bistable case with prebinding. The initial

adhesions lead to an upward cell deformation during the initial retraction, and if the

bead and cell stay attached, the cell height remains elevated (sketched in Fig. 5.20).

Without a record of the initial cell heights, which would need to be measured from

the approach before the 20 minutes of prebinding, we cannot identify which of these

two cases occurred. It is therefore currently inconclusive whether or not bistability is

behind the different observations in the prebind and non-prebind data.

Figure 5.20: Schematic of possible cell deformation occuring during the prebind pro-

tocol. (a) Before the oscillations begin, the cantilever is lowered to the

cell. (b) contact is maintained for 20 minutes to allow adhesions to form.

(c) The cantilever is retracted upwards before the oscillation protocol be-

gins (Section 5.2). Our model results (Fig. 5.12) show that prebinding

leads to an upward cell deformation if the adhesions persist during re-

traction. This provides an explanation for the higher mean height for

the prebind cells in Table 5.2; however, without further data, we cannot

rule out the possibility of the increased mean being due to noise.

We now plot distributions of the z−height at which a 5% change in force occurs dur-

ing the first approach for all cells in either the non-prebind and prebind protocols (Fig.

5.21); this consists of data points for 84 non-prebind cells and 89 prebind cells, which

have been fitted to normal density functions using the MATLAB function histfit.

If the differences were purely due to noise, we might expect the variations in cell

heights to be similar over a larger number of cells, and for the distributions to there-

fore be similar in the prebind and non-prebind cases. However, we again observe a

higher mean for the prebind cells, suggesting that prebinding could be influencing

(rather than just coinciding with) the result. In addition, we carried out a two-sample

Kolmorogov–Smirnov test on the two datasets, which tests the null hypothesis that

they are drawn from the same distribution. The null hypothesis was rejected, with
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p-value 0.0404. These results suggest that, whilst there is random variation in the cell

heights, the variation is not independent of the prebind or non-prebind protocols. It

is still not clear how we should account for this in the analysis of the data.
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Figure 5.21: Fitted distributions of the z−height at which a 5% change in force oc-

curs during the first approach, for 84 and 89 cells in the non-prebind

(solid line) and prebind (dashed line) protocols respectively. The mean

for the prebind cells is approximately 100nm higher than for the non-

prebind cells. A two-sample Kolmorogov–Smirnov test on the original

data rejects the null hypothesis (that the two datasets are drawn from

the same distribution) with p-value 0.0404.

Due to the intercellular variability (discussed above), it is difficult to make direct com-

parisions between cells with any certainty. We therefore now examine some force data

for individual cells. In several cases, timecourses from single experiments exhibit dra-

matic switches in behaviour. Switching is a phenomena associated with bistability in

a stochastic system (see e.g. [96, 138] and our discrete model, Fig. 3.2); investigating

these cases could therefore provide alternative evidence in support of bistability. In

an example of such a force timecourse, for a cell subject to oscillations of amplitude

1000nm under the prebind protocol (Fig. 5.22), a sudden large drop in the amplitude

of force appears to occur after 160 seconds. There are also qualitative differences, as

seen in the normalised force curves overlayed for each cycle (Fig. 5.23(a)). We ob-

serve two distinct types of curves; wider curves that are characteristic of adhesion

(Fig. 5.15) and narrower curves characteristic of rupture (Fig. 5.16). The reduced

width corresponds to a reduced time with the bead and cell in contact. The same nor-

malised force data as a surface plot (Fig. 5.23(b)) indicates that the change in width of

the curves occurs at the same time as the switch in the timecourse (Fig. 5.22).

In a similar example (Fig. 5.24), the cell subject to oscillations of amplitude 1000nm

again appears to undergo a transition from adhesion to rupture. In a contrasting
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Cell 2, Amplitude=1000nm, Frequency=0.1Hz, Prebinding
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Figure 5.22: Example force timecourse that appears to undergo a sudden change at

t = 160s. The cell was subject to oscillations of amplitude 1000nm under

the prebind protocol. At earlier times, the force curves are characteristic

of adhesion curves (Fig. 5.15). At later times, there is more rupture,

characteristic of full detachment curves (Fig. 5.16).
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Figure 5.23: Normalised force curves from the timecourse in Fig. 5.22, shown (a)

overlayed for each cycle and (b) in a surface plot. We observe two dis-

tinct types of curves, where a reduced width corresponds to a reduced

time with the bead and cell in contact. A switch between the two types

occurs suddenly after the 16th cycle.
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example, for a cell subject to oscillations of amplitude 1150nm (Fig. 5.25) the switch

appears to be in the opposite direction (i.e. to stronger adhesion).Cell 106, Amplitude=1000nm, Prebinding
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Figure 5.24: A further example of a force timecourse that appears to undergo a sud-

den change at t = 180s. This cell was also subject to oscillations of am-

plitude 1000nm under the prebind protocol (Fig. 5.22). At earlier times,

the force curves are characteristic of adhesion curves (Fig. 5.15). At later

times, there is increased rupture (Fig. 5.16) and a drop in magnitude.
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Figure 5.25: A force timecourse for a cell subject to oscillations of amplitude 1150nm

under the prebind protocol. After t = 300s, there appears to be a switch

in the opposite direction to Figs. 5.22 and 5.24, resulting in increased,

rather than reduced, adhesion.
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The above examples were identified by eye; however, if dealing with larger datasets

in future, it may be useful to detect switches in the force curves automatically. Using

the data in Fig. 5.22 as an example, we now show some possible approaches for quan-

tifying and classifying the shape of the force curves. Firstly, we fit each normalised

force curve in Fig. 5.23(a) to Gaussian functions of the form

f (t) = a1exp
(
− (t− µ)2

σ2

)
, (5.2.1)

where a1, µ and σ influence the peak height and position and the standard deviation

respectively (Fig. 5.26). This fitting (Fig. 5.26(a)) only provides a coarse approxima-

tion of the shape of the curves in Fig. 5.23(a); however, the three parameters capture

several key features that allow us to separate the data into two distinct families of

curves. Visualising the [a1, µ, σ] triplet that represents each fit (Fig. 5.26(b)), we ob-

serve a clear separation in the data points, and two distinct clusters of points.
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Figure 5.26: (a) Each normalised force curve in Fig. 5.23 has been fitted to a Gaus-

sian function. (b) The three parameters uniquely defining the Gaussian

(Eq. 5.2.1) can be plotted as points in R3. Two distinct clusters are seen,

corresponding to the two distinct types of curves in (a).

Using the above technique, each force timecourse (consisting of 60 approach–retract

cycles) is reduced to 60 points in R3 (Fig. 5.26), and we use standard cluster analy-

sis techniques to detect cases where switching occurs. One of the simplest clustering

methods is k–means clustering, which partitions the data points into k clusters for a

given value of k. Points are assigned to one of the clusters such that the within-cluster

variances are minimised. A result of using the kmeans function in MATLAB, which

relies on a k–means++ algorithm [6], applied to the data with k = 2 is shown in Fig.

5.27. The algorithm correctly separates the data into the two visible clusters, and pro-

vides positions for the centroids of each cluster (shown by blue and orange diamonds

for the adhesion and rupture clusters, respectively). Typically, if the true number of
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clusters is not known, this algorithm can be applied to the data for a range of k values,

and the optimal k can be determined by analysis of the resulting partitions. An ex-

ample would be to calculate ‘silhouettes’ of the data [121], which are measures based

on within- and inter-cluster distances that quantify how well each data point fits into

its given cluster. Further methods for selecting the optimal k–value are discussed in

[139], but we find that these all require k ≥ 2, so are not appropriate for determining

whether our data exhibits a switch (k = 2) or not (k = 1).
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Figure 5.27: The result of a k–means algorithm applied to the data in Fig. 5.26(b)

with k = 2. Centroids for the adhesion and rupture clusters are shown

by the blue and orange diamonds respectively.

To overcome this, algorithms that do not require the number of clusters to be specified

a priori could be considered. A possible alternative is a density-based approach called

DBSCAN [38]. This algorithm requires two parameters to be specified: a minimum

number of points, m, that is considered as a cluster and a maximum distance, ε, al-

lowed between an element in a cluster and any other element. The advantage of this

algorithm is that it can also classify points as outliers, depending on the minimum

point specification, which is useful for noisy experimental data. The disadvantage,

however, is that choosing ε requires careful tuning if there is no intuitive threshold

for what this value should be. We demonstrate the dependence of the output on

these two parameters in Fig. 5.28. Using m = 3 and ε = 0.4 (Fig. 5.28(a)) we find that

the data is grouped into one cluster. Reducing ε (Fig. 5.28) generates two separate

clusters as in Fig. 5.27; however, if ε is reduced further (Fig. 5.28(c)), three clusters are

formed. Depending on the choice of m, these further clusters could be disregarded

as noise (Fig. 5.28(d)). The need for careful fitting of m and ε is a strong limitation;

without a better understanding of what the correct choices should be, we find that



CHAPTER 5: VERTICAL OSCILLATIONS: MODELS AND EXPERIMENTAL DATA 131

each result needs to be inspected individually anyway. Further work or alternative

clustering algorithms should be considered for automatic classification of the data for

a large collection of cells.
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Figure 5.28: The result of a DBSCAN algorithm applied to the data in Fig. 5.26(b),

with 4 different parameter combinations. In (a), m = 3 and ε = 0.4 and

one cluster is detected (blue). (b) With a smaller radius, ε = 0.2, the

data is partitioned into two clusters (blue and orange) as in Fig. 5.27.

(c) If ε is reduced further, e.g. ε = 0.05, the data is partitioned into

three clusters (blue, orange, yellow) and additionally some points are

identified as noise (black). (d) With an increase in m, the orange cluster

in (c) is identified as noise.

An alternative to analysing fitted curves, that does not require transforming the data,

could be to exploit the asymmetry of the rupture curves. From observations and

model results (Fig. 5.13), force curves with strong adhesion are near-symmetric. How-

ever, when rupture dominates, the curves become increasingly asymmetric due to

differences during approach and retraction. For each cycle, we have a vector of force

values recorded at each timepoint, F(t) = (F1, . . . , Fn). A skewness parameter, S, can

be calculated from this via

S =
1
n ∑n

i=1 (Fi − µ)3(
1

n−1 ∑n
i=1 (Fi − µ)2

)3/2 , (5.2.2)
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where n is the number of data points and µ is the mean value of force. This measure

is the normalised third central moment [77], and will be zero for symmetric data. We

again consider the switching cell shown in Fig. 5.22 and determine S for each cycle,

tracking the change in skewness over time (Fig. 5.29). We find that each curve has a

positive skew, due to higher values of force being obtained during the approach (first)

half than the retraction (second) half. After the 16th cycle, where the switch in curve

types was previously observed to occur (Fig. 5.23(b)), we see a corresponding sud-

den increase in skewness. The data points are centered around two distinct means,

and the skewness parameter could perhaps provide a one-dimensional alternative for

cluster analysis. As in the analysis of the fitted curves, however, we find the need to

specify (subjectively) a threshold value of separation that defines distinct clusters.
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Figure 5.29: Skewness parameter (Eq. 5.2.2) calculated for each normalised force

curve in Fig. 5.23(a). There is a sudden increase in skewness occurring at

the transition (after Cycle 16) from adhesion to rupture curves, reflecting

the more noticeable asymmetry of the rupture curves.

Whilst the above measures can visibly separate the data for the cell in Fig. 5.22 into

two classes (one for cycles 1-16 and one for later times), quantifying the number of

clusters via clustering algorithms requires careful tuning to the data. As part of this,

the results must be verified by inspecting the original data and, for this reason, these

methods are not yet any more efficient than simply inspecting each timecourse from

the outset. We applied the DBSCAN algorithm to timecourses from other cells (results

not shown), but did not find a consistent m and ε pairing to use to correctly predict

the number of clusters for all cells. The examples of switching (Figs. 5.22–5.25) were

therefore obtained simply by inspection; however, future refinement of the above

ideas could perhaps provide a way of automating the detection of timecourses that

exhibit switches. This would be useful in larger datasets, where it could be of interest

to study the range of amplitudes in which switching behaviour occurs. If a stochastic

switch occurs due to bistability, we would expect these amplitudes to lie near, and to
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be especially likely near the boundaries of, the bistable region.

5.3 Conclusions

In this chapter, we extended the continuum integrin binding model introduced in

Chapter 2 to allow for vertical motion between the cell and the ECM. We then incor-

porated this into a 3-spring model for the cell, integrins and ECM, which we used

to simulate vertical oscillations applied to the ECM. The results are similar to those

obtained for lateral oscillations in Chapter 3; low amplitude oscillations resulted in a

high bound fraction of integrins (Fig. 5.9), and high amplitude oscillations resulted in

a low bound fraction of integrins (Fig. 5.7). For intermediate amplitude oscillations,

we observed bistability (Fig. 5.11) due to a mechanical cooperativity, showing that

the result from Chapter 3 holds for vertical motion.

In Section 5.2 we presented experimental AFM data, which was provided by Prof.

Gerald Meininger and Huang Huang (University of Missouri), and in which verti-

cal oscillations were applied to vascular smooth muscle cells (VSMCs). To mimic the

zero and saturated initial conditions used in the model, cells were either subjected

to a ‘prebind’ procedure before the oscillations began, or not. For both low and high

oscillation amplitudes, which produced distinct patterns in force, the experimentally

measured force qualitatively matched the model force. The model therefore provided

insight into the mechanisms behind these two distinct behaviours by revealing the

corresponding patterns in bound integrin fractions and cell deformations. These are

factors that cannot be measured by the experiments. For some amplitudes of oscilla-

tion, such as 1200nm (Fig. 5.17), prebinding appeared to make a qualitative difference

to the shape of the force curves. When investigating this further (Figs. 5.18, 5.19), we

observed behaviour mostly characteristic of adhesion when prebinding occured and

behaviour mostly characteristic of rupture when there was no prebinding. However,

we also noticed that individual cell heights could vary significantly (Table 5.1), and

that this had not been considered in the design of the experiments. Due to this, there

is a large amount of uncertainty when directly comparing cells, and we cannot know

for sure if the differences seen in the prebind cells are due to bistability or due to inter-

cellular variation. This result highlighted that the variation in cell heights is essential

to consider in future AFM studies of this type.
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Due to the difficulty in making direct comparisons between cells, we also analysed

force timecourses from single cells. Several of these exhibited some interesting be-

haviour, where a sudden switch in both the magnitude and shape of the force curves

were seen (Figs. 5.22–5.25). Although these examples were originally detected by

inspecting the raw force data, we demonstrated the use of some data analysis meth-

ods that could be used and refined to classify force curves and detect switches au-

tomatically. One method was to fit the data to Gaussian functions (5.26), defined

uniquely by three parameters. Plotting these parameters in three-dimensional space

produces two visible and distinct clusters of points, corresponding to the adhesion-

and rupture-type curves. To determine whether the data forms one or two clusters,

and therefore whether a timecourse contains one or two types of curve, cluster anal-

ysis can be performed on these parameter sets. Note that different functions could

also be used for fitting the data, such as polynomials. Many clustering algorithms

can be used with high dimensional data, and would therefore still work for more

than three parameters. Here we considered k–means clustering and a density-based

clustering algorithm, DBSCAN, which provided a method for partitioning the data

into clusters without first having to specify the number of clusters. DBSCAN requires

two parameters to be carefully tuned to the data to ensure accuracy of the results. An

alternative to fitting the data to Gaussian functions is to consider the skewness of the

force curves (Fig. 5.29), which produces a single parameter for each curve. However,

cluster analysis on this parameter still requires careful tuning. Both of these methods

require validation by inspecting the original data; further work is therefore needed

for automatic detection of the number of clusters for a large number of cells.

The combination of model and experimental data provides some strong evidence for

bistability. The difference in prebind and non-prebind data in Figs. 5.18 and 5.19

could form a promising example if we were able to access information about the ini-

tial cell heights. This would allow us to infer whether the increased heights in the

prebind data (Table 5.2) were a cause or effect of different adhesion states. Although

this is currently undetermined, switching behaviour within individual experiments

also provides a possible indicator of bistability since, in stochastic systems, bistabil-

ity often results in switches. Further work is needed to conclusively determine if the

bistability predicted by the model is present in cells in vitro; however, we have still

gained insight through our model results. Our analysis also allowed us to highlight

key factors that should be controlled or recorded in future experiments.



Chapter 6

Coupling cell–matrix adhesion to

contractile force generation

We have so far been investigating the integrin response to oscillatory loading, which

affects the transmission of contractile forces, generated by actomyosin crossbridges

within ASM cells (Section 1.1.2), to the extracellular matrix. However, it is also known

that the generation of contractile force itself can be modulated by oscillatory strain

(Section 1.3.3). To fully understand the consequences for bronchoconstriction, there is

therefore a need to consider both of these processes together and to couple models of

integrin-mediated force transmission to descriptions of intracellular contractile force

generation. In this chapter we address this by extending the 3-spring model intro-

duced in Chapter 5. In our previous model, the cell was modelled as a passive mate-

rial (Fig. 5.1); here we account for active processes within the cell by incorporating a

well-established continuum model of contractile force generation. Using our coupled

model, which accounts for actomyosin crossbridge dynamics within the cell, we in-

vestigate the interacting crossbridge and integrin dynamics that occur in response to

oscillatory length fluctuations (Section 6.3).

6.1 Huxley–Hai–Murphy (HHM) model

To model intracellular crossbridge dynamics and the resultant contractile force gen-

eration, we use the Huxley–Hai–Murphy (HHM) model [47, 97]. This model extends

the original Huxley crossbridge model [70] and has previously been incorporated into

cell and airway level models [24, 64, 65, 112]. The HHM model accounts for myosin

crossbridges as they transition between 4 possible states (illustrated in Fig. 6.1): un-

135
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phosphorylated and unattached to actin (M), phosphorylated and unattached (Mp),

phosphorylated and attached to actin (AMp) and unphosphorylated and attached to

actin (AM). As depicted in the reaction schematic in Fig. 6.1, phosphorylation reac-

tions are assigned constant reaction rates. However, following Huxley [70], the reac-

tion rates for binding and unbinding from actin depend on a local spatial coordinate,

ŷ, measuring a local displacement of the myosin head from its unstressed position.

(nA) (nB)

(nD) (nC)

Figure 6.1: Myosin crossbridges transition between 4 possible states: unphospho-

rylated and unattached to actin (M), phosphorylated and unattached to

actin (Mp), unphosphorylated and attached to actin (AM) and phospho-

rylated and attached to actin (AMp). The phosphorylation reactions are

assigned constant reaction rates (k̂1–k̂4) whilst the binding and unbind-

ing reactions rates ( f̂ , ĝ1, ĝ2) are modelled as in the Huxley model [70]

and depend on a local coordinate, ŷ. The four states will be represented

by distributions, nA(ŷ, t̂)–nD(ŷ, t̂), respectively.

Following a similar formulation to the model in Section 2.2.1, we consider distribu-

tions of each species: nA(ŷ, t̂), nB(ŷ, t̂), nC(ŷ, t̂) and nD(ŷ, t̂), which correspond to the

fractions of crossbridges in the states M, Mp, AMp and AM respectively. As in our

previous models, the governing equations are a system of advection–reaction equa-

tions given by

∂nA

∂t̂
+ v̂(t̂)

∂nA

∂ŷ
= k̂2nB − k̂1nA + ĝ2(ŷ)nD, (6.1.1)

∂nB

∂t̂
+ v̂(t̂)

∂nB

∂ŷ
= −k̂2nB + k̂1nA − f̂ (ŷ)nB + ĝ1(ŷ)nC, (6.1.2)

∂nC

∂t̂
+ v̂(t̂)

∂nC

∂ŷ
= f̂ (ŷ)nB − ĝ1(ŷ)nC − k̂3nC + k̂4nD, (6.1.3)

∂nD

∂t̂
+ v̂(t̂)

∂nD

∂ŷ
= k̂3nc − k̂4nD − ĝ2(ŷ)nD, (6.1.4)

where v̂(t̂) is the relative velocity of the actin and myosin filaments and the reaction
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terms correspond to the state transitions shown in Fig. 6.1. Note that, in the original

HHM model, v̂(t̂) (referred to as the shortening velocity) was defined to be positive

in the direction of contraction. However, to ensure consistency with the directionality

used in the 3-spring model, we choose to define v̂(t̂) to be negative in the direction of

contraction as the two models will later be coupled. This results in a positive, rather

than negative, advection term here. In this model the single-site binding assumption

is used (discussed in Section 2.2.1), meaning that the conservation law nA + nB + nC +

nD = 1 holds. We can therefore eliminate one variable and consider a reduced set of

equations. In the simulations that follow, we evolve Eqs. 6.1.2–6.1.4.

Following the Huxley model [70, 97], the spatial binding rate functions, f̂ (ŷ), ĝ1(ŷ)

and ĝ2(ŷ), are defined as

f̂ (ŷ) =

 f̂Aŷ/ĥc 0 ≤ ŷ ≤ ĥc

0 otherwise,
(6.1.5)

where ĥc is the crossbridge binding range and f̂A> 0 is the maximum binding rate,

obtained at ŷ = ĥc;

ĝ1(ŷ) =


ĝA ŷ < 0

ĝBŷ/ĥc 0 ≤ ŷ ≤ ĥc

(ĝB + ĝC)ŷ/ĥc ŷ > ĥc,

(6.1.6)

where ĝA, ĝB and ĝC are positive unbinding rate constants; and

ĝ2(ŷ) =


ˆ̃gA ŷ < 0

ˆ̃gBŷ/ĥc 0 ≤ ŷ ≤ ĥc

( ˆ̃gB + ˆ̃gC)ŷ/ĥc ŷ > ĥc,

(6.1.7)

where ˆ̃gA, ˆ̃gB and ˆ̃gC (all positive) are modified unbinding rate constants for the un-

phosphorylated crossbridges (Fig. 6.1). In contrast to the binding rates in our integrin

model (Eqs. 5.1.16 and 5.1.17), these rates are asymmetric: crossbridges bind prefer-

entially at positive distances, ŷ. The form of the rate functions are shown in Fig. 6.2.

Contractile force is generated by crossbridges in the attached (AM and AMp) states.

We assume that crossbridges have the same stiffness in both of these states; the force

in each contractile unit is therefore given by

F̂cu(t̂) = ρ̂cλ̂c

∫ ∞

−∞
ŷ(nC + nD)dŷ, (6.1.8)
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Figure 6.2: Sketch of the functional forms of the spatial binding rate function f̂ (ŷ)

(Eq. 6.1.5) and the unbinding rate function ĝ1(ŷ) (Eq. 6.1.6) for phospho-

rylated crossbridges. The modified unbinding rate function for unphos-

phorylated crossbridges, ĝ2(ŷ) (Eq. 6.1.7), is of the same form as ĝ1(ŷ)

but with different rate constants (Appendix B).

where ρ̂c is the total number of crossbridges (bound and unbound) per unit length of

the contractile unit, and where λ̂c is the crossbridge spring constant. The derivation

of Eqs. 6.1.1–6.1.8 uses the methods presented in Section 2.2.1, and full details can be

found in [47, 70, 97].

6.2 Coupling to the 3-spring framework

In this section we modify the 3-spring framework presented in Chapter 5 by extend-

ing the linear spring representation of the cell (Fig. 5.1) to include active contractile

components, following the HHM description overviewed in Section 6.1. Contractile

units are considered to act in parallel with the original spring (see schematic in Fig.

6.3); we therefore now account for both passive cytoskeletal stiffness and active con-

tractile force generation via actomyosin crossbridges.

The HHM model introduced in Section 6.1 is used to model each of the contractile

units. Since the contractile units are positioned in parallel, and the cell surface (green,

Fig. 6.3) is assumed locally rigid (Section 5.1.1), the relative velocity, v̂(t̂), is identical

for each of them; the governing equations for the crossbridge distributions are there-

fore the same in each contractile unit. The resulting coupled system is a system of five

advection–reaction equations: four for the crossbridge distributions nA(ŷ, t̂)–nD(ŷ, t̂)

(Eqs. 6.1.1–6.1.4) and one for the integrin distribution b̂(x̂, t̂) (Eq. 5.1.18). To account

for the force generated by parallel contractile units, the total contractile force is given
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Figure 6.3: Schematic of the modified 3-spring model in (a) the rest configuration

and (b) a deformed configuration. Hookean springs in series represent

the (passive) cytoskeleton, bound integrins and the ECM with spring

constants k̂A, k̂I(t̂) and k̂E respectively. Additional intracellular contrac-

tile units act in parallel to account for active contractile force generation,

F̂C(t̂), within the cell (Section 6.1). The cytoskeletal, integrin and ECM

springs have rest lengths L̂A, L̂I and L̂E and time-dependent deformed

lengths L̂
′
A(t̂), L̂

′
I(t̂) and L̂

′
E(t̂) respectively. The collective integrin spring

constant, k̂I(t̂), evolves in time according to the underlying distribution

of integrins, b̂(x̂, t̂) (Section 5.1.2), and is proportional to the fraction of

double-bound integrins, B ∈ [0, 1].
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by

F̂C(t̂) = ρ̂cλ̂cNCU

∫ ∞

−∞
ŷ(nC + nD)dŷ, (6.2.1)

where NCU is the number of parallel contractile units. At each point in time, we

assume all components are in equilibrium so that forces balance in a similar manner

to Chapter 5. We define the relative velocity in the HHM model (Eqs. 6.1.1–6.1.4) to

be

v̂(t̂) =
∂L̂′A
∂t̂

, (6.2.2)

where L̂′A is the deformed height of the cell (Fig. 6.3). As in the 3-spring model, L̂′E is

the deformed ECM length (with rest length L̂E) and L̂′I is the deformed integrin length

(with rest length L̂I).

Nondimensionalisation

We nondimensionalise the ECM and integrin equations as in Chapter 5 (Section 5.1);

all lengths are scaled by the integrin binding range, ĥ (Eq. 2.1.2), and the spring

constants are scaled by ρλ̂b, where ρ and λ̂b are the number and spring constant of in-

dividual integrins, respectively (Eq. 5.1.1). The dimensionless total deformed length

is given by

L′T(t) = L′E(t) + L′I(t) + L′A(t). (6.2.3)

The HHM model equations and binding rate functions (Eqs. 6.1.1–6.1.8) are nondi-

mensionalised with the scalings

y =
ŷ
ĥ

, v =
v̂

f̂1ĥ
, FC =

F̂C

ĥρλ̂b
, hc =

ĥc

ĥ
, ki =

k̂i

f̂1
, t = t̂ f̂1 , (6.2.4)

where i ∈ [1, ..., 4] and f̂1 is the maximum integrin binding rate (Eq. 2.1.2). This

choice of scalings ensures consistency when coupling to the model of integrin binding

dynamics (Eq. 5.1.18).

The dimensionless HHM model equations are

∂nA

∂t
+ v(t)

∂nA

∂y
= k2nB − k1nA + g2(y)nD, (6.2.5)

∂nB

∂t
+ v(t)

∂nB

∂y
= −k2nB + k1nA − f (y)nB + g1(y)nC, (6.2.6)

∂nC

∂t
+ v(t)

∂nC

∂y
= f (y)nB − g1(y)nC − k3nC + k4nD, (6.2.7)

∂nD

∂t
+ v(t)

∂nD

∂y
= k3nc − k4nD − g2(y)nD, (6.2.8)
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where

v(t) =
∂L′A
∂t

. (6.2.9)

The dimensionless contractile force is

FC(t) = β
∫ ∞

−∞
y(nC + nD)dy, (6.2.10)

for dimensionless parameter β = ρcλcNCU , and where ρc = ρ̂cĥ and λc = λ̂c/ρλ̂b.

Additionally we scale each of the binding rates ( f̂ , ĝ1, ĝ2) by f̂1 (Eq. 2.1.2), giving the

dimensionless rate functions as

f (y) =

 fAy/γ 0 ≤ y ≤ γ

0 otherwise,
(6.2.11)

g1(y) =


gA y < 0

gBy/γ 0 ≤ y ≤ γ

(gB + gC)y/γ y > γ,

(6.2.12)

g2(y) =


g̃A y < 0

g̃By/γ 0 ≤ y ≤ γ

(g̃B + g̃C)y/γ y > γ,

(6.2.13)

where γ = ĥc/ĥ is the ratio of crossbridge and integrin binding ranges (Eq. 6.1.5 and

Eq. 2.1.2).

Implementation

As in Chapter 5, we mimic length changes due to tidal breathing by applying a dis-

placement condition, Y = L′T(t), to the top of the ECM. To solve the system of equa-

tions, we need to be able to determine the three resulting deformed spring lengths (L′E,

L′I , L′A), the crossbridge distributions, nA(y, t)–nD(y, t), the relative velocity, v(t), and

the integrin distribution, b(x, t; L). From the above, we find that we currently have 7

equations (Eqs. 6.1.1–6.1.4, Eq. 5.1.18, Eq. 6.2.3 and Eq. 6.2.9) for 9 unknowns. As in

Chapter 5, the remaining two equations are obtained by considering force balances.

To carry out force balances, we are required to consider separate cases (Fig. 6.4) de-

pending on a number of factors. Firstly, in the presence of bound integrins we con-

sider two cases depending on whether the system is under tension (Case 1A) or com-

pression (Case 1B). The transition between tension and compression occurs when the
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force in each component is zero, i.e. when

kE(L′E − LE) = B(L′I − LI) = kA(L′A − LA) + FC = 0. (6.2.14)

This requires L′E = LE, L′I = LI and L′A = LA − FC/kA, which sum (using Eq. 6.2.3)

to give

L′T = LT − FC/kA. (6.2.15)

The conditions for the two cases are therefore

Case 1A: B 6= 0, L′T > LT − FC/kA

Case 1B: B 6= 0, L′T ≤ LT − FC/kA.
(6.2.16)

We assume that under compression (Case 1B) integrins are incompressible, meaning

that they behave as rigid beams (i.e. we enforce L′I = LI). If there are no bound

integrins, we consider two further cases: when there is separation between the cell

and ECM (Case 2A) and when there is contact (Case 2B). The transition occurs when

Eq. 6.2.14 holds and when L′T = L′E + L′A. This gives

Case 2A: B = 0, L′T − LE > LA − FC/kA

Case 2B: B = 0, L′T − LE ≤ LA − FC/kA.
(6.2.17)

These four cases are illustrated in Fig. 6.4, and we now consider each of them in

turn. In each case, we state the corresponding force balance conditions, and use these

to find expressions for the unknowns L′E, L′I , L′E and v(t). This closes the system of

equations and allows us to evolve the model for any given displacement L′T(t).
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Case 2A: Zero B, separation Case 2B: Zero B, contact

Figure 6.4: Illustration of the four cases considered when carrying out force balances.

The cases are determined by the conditions in Eqs. 6.2.16 and 6.2.17,

which account for a non-zero or zero fraction of bound integrins, respec-

tively. We consider tension or compression (where integrins are assumed

rigid) and separation or contact between the ECM and cell.
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Case 1A: Non-zero B and tension

The dimensionless force balance equations are

kE(L′E − LE) = B(L′I − LI) = kA(L′A − LA) + β
∫ ∞

−∞
y(nC + nD)dy, (6.2.18)

which is Eq. 5.1.3 (from the 3-spring model) with an added term for the force gen-

erated in the HHM model (Eq. 6.2.10). These are used together with the Eq. 6.2.3 to

calculate the deformed lengths. Eliminating L′I we obtain

L′E =
B(L′T − L′A − LI) + kELE

kE + B
, (6.2.19)

which is substituted into Eq. 6.2.18 to give

L′A =
kEB(L′T − LI − LE) + kALA(kE + B)− β(kE + B)

∫ ∞
−∞ y(nC + nD)dy

kA(kE + B) + kEB
. (6.2.20)

At a given point in time, each of the terms on the right hand side of Eq. 6.2.20 are

known, allowing L′E and L′I to be calculated via Eq. 6.2.19 and Eq. 6.2.3, respectively.

To evolve the HHM governing equations, we additionally require an expression for

v(t) = ∂L′A/∂t, which is found by differentiating Eq. 6.2.20 with respect to time. We

then use Eqs. 5.1.18, 6.2.7 and 6.2.8 to eliminate the resulting time derivatives. The

final expression is

v(t) =
∂L′A
∂t

=
σF1 − (kA + kE)F2

∫ ∞
−∞ (ηkb(1− B)− kub) dx

σ2 + β (kE + B) σNatt
, (6.2.21)

where

F1 = kEB
∂L′T
∂t
− β (kE + B)

∫ ∞

−∞
y ( f nB − g1nC − g2nD) dy

+
(
kE(L′T − LI − LE) + kALA − FC

) ∫ ∞

−∞
(ηkb(1− B)− kub) dx,

(6.2.22)

F2 = kEB(L′T − LI − LE) + kALA(kE + B)− (kE + B)FC, (6.2.23)

and

σ = kA(kE + B) + kEB. (6.2.24)

In addition, we have defined Natt = NC + ND where (as in the definition for the bound

fraction of integrins, B in Eq. 5.1.19),

NC =
∫ ∞

−∞
nC(y, t)dy, ND =

∫ ∞

−∞
nD(y, t)dy. (6.2.25)
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The expression for v(t) can now be substituted into the HHM governing equations

(Eqs. 6.1.1–6.1.4), where we approximate the integrals numerically using the built-in

MATLAB function, trapz.

Case 1B: Non-zero B and compression

Since we assume that integrins are incompressible we now assume rigidity of inte-

grins and solve

F = kE(L′E − LE) = kA(L′A − LA) + β
∫ ∞

−∞
y(nC + nD)dy. (6.2.26)

This is solved alongside Eq. 6.2.3, leading to

L′A =
kE(L′T − LE − LI)− β

∫ ∞
−∞ y(nC + nD)dy + kALA

kA + kE
, (6.2.27)

L′I = LI , (6.2.28)

L′E = L′T − LI − L′A. (6.2.29)

As in Case 1A, differentiating Eq. 6.2.27 with respect to time and using Eqs. 6.2.7 and

6.2.8 gives the velocity

v(t) =
∂L′A
∂t

=
kE

∂L′T
∂t − β

∫ ∞
−∞ y ( f nB − g1nC − g2nD) dy
kA + kE + βNatt

, (6.2.30)

which is substituted into the HHM governing equations (Eqs. 6.1.1–6.1.4).

Case 2A: Zero B and separation

In this case the intermediate connection between cell and ECM is removed (Fig. 6.4).

If there is no contact between cell and ECM we obtain

F = kE(L′E − LE) = 0 = kA(L′A − LA) + β
∫ ∞

−∞
y(nC + nD)dy. (6.2.31)

This is satisfied when L′E = LE and

L′A = LA −
β

kA

∫ ∞

−∞
y(nC + nD)dy, (6.2.32)

which, with the use of Eqs. 6.2.7 and 6.2.8, gives

v(t) =
∂L′A
∂t

= −
β
∫ ∞
−∞ y ( f nB − g1nC − g2nD) dy

kA + βNatt
. (6.2.33)

Case 2B: Zero B and contact
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If there are no bound integrins but there is contact between the ECM and cell (Fig.

6.4), we require

F = kE(L′E − LE) = kA(L′A − LA) + β
∫ ∞

−∞
y(nC + nD)dy. (6.2.34)

We use the relation L′E = L′T − L′A to obtain

L′A =
kE(L′T − LE) + kALA − β

∫ ∞
−∞ y(nC + nD)dy

kA + kE
, (6.2.35)

which is differentiated with respect to time to give

v(t) =
∂L′A
∂t

=
kE

∂L′T
∂t − β

∫ ∞
−∞ y ( f nB − g1nC − g2nD) dy
kA + kE + βNatt

, (6.2.36)

where substitutions from Eqs. 6.2.7 and 6.2.8 have again been used.

Summary

In summary, the model is solved by evolving the system of advection–reaction equa-

tions in Eqs. 6.2.5–6.2.8 and Eq. 5.1.18. To do so, we additionally make use of algebraic

expressions for the deformed spring lengths (L′E, L′I , L′A) and a relative velocity v(t).

The expressions for these vary according to the four cases described above (illustrated

in Fig. 6.4), and are determined by conditions on the bound fraction of integrins, B,

and the applied displacement, L′T. In Cases 2A and 2B, the length L′I is not required.

To implement the model, we use the numerical techniques described in Section 2.2.4

to evolve the advection–reaction equations; the crossbridge distributions, nA(y, t)–

nD(y, t), are treated analogously to the integrin distribution, b(x, t). We find that the

explicit solver ode45 provides sufficient stability for this model, and more efficiently

produces the same results.

6.3 Coupled crossbridge and integrin dynamics

In this section, we present numerical results from the model introduced in Section

6.2. As in Section 5.1.3, we apply vertical oscillations to the ECM, and are now able to

study the resulting actomyosin crossbridge dynamics and their interactions with the

integrins. The relative importance of contractile force generation (via crossbridges)

and contractile force transmission (via integrins) is key to understanding bronchocon-

striction, and in Section 6.3.2 we conduct a parameter study to investigate this.
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6.3.1 Crossbridge response to oscillatory loading

Throughout, we have been interested in how contractile force transmission (via inte-

grins) is affected by dynamic loading, representing breathing. We now consider how

the generation of those contractile forces is affected. To demonstrate the crossbridge

response to oscillatory load, we first isolate the crossbridge dynamics from the adhe-

sion dynamics by using a saturated initial condition for B (Eq. 2.2.12) and setting the

integrin binding rates, kb(d) and ku(d), to zero. The effective stiffness of the integrin

springs therefore remains constant. We impose sinusoidal vertical oscillations via

L′T(t) = LT − D + A
(

1 + sin
(

ωt− 3π

2

))
, (6.3.1)

where the constants A, LT − D and ω are the amplitude, minimum height and fre-

quency of oscillation, respectively.

The initial conditions for the crossbridges in each of the four states (Fig. 6.1) are

nA(y, t) = 1, nB(y, t) = 0, nC(y, t) = 0, nD(y, t) = 0, (6.3.2)

and for the rate functions (Eqs. 6.1.5–6.1.7) we use the parameters given by Mi-

jailovich et al. [97] (and listed here in Appendix B). In the following simulations,

we use β = 0.3 as the dimensionless parameter that scales the contractile force (Eq.

6.2.10); we will demonstrate the effect of varying this in Section 6.3.2.

We first show timecourses for the fractions of the attached crossbridges (NC, ND, Eq.

6.2.25) for varying amplitudes of oscillatory loading (Fig. 6.5). As the amplitude in-

creases, there is a rapid decrease in both types of attached crossbridges, which then

converge to non-zero oscillatory states. The oscillations are more pronounced in NC

(the AMp crossbridges, Fig. 6.1) since both binding and unbinding are directly influ-

enced by the spatial binding rates f (y) and g1(y) (Eqs. 6.2.11 and 6.2.12).

We next examine the spatial distributions for each of the crossbridge states (Fig. 6.1)

for A = 1 (Fig. 6.6) and for A = 8 (Fig. 6.7). Due to the form of the binding rates

in Eq. 6.2.11, crossbridges attach at positive displacements, y. Distributions are then

advected back and forth, with the attached crossbridges (nC(y, t) and nD(y, t)) span-

ning a wider range of displacements as A increases. As in Fig. 6.5, the peak heights of

nC(y, t) and nD(y, t) are lower for A = 8 (Fig. 6.7(c, d)) compared to A = 1 (Fig. 6.6(c,

d)), showing that there is greater disruption to attached crossbridges as A increases.
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Figure 6.5: Timecourses for the densities of attached crossbridges (NC, ND; Eq.

6.2.25) as the amplitude, A, of oscillatory loading (Eq. 6.3.1) increases

in integer values from A = 0 to A = 8. In Eq. 6.3.1, D = 0 and ω = 20.

A full list of parameter values is in Appendix B.

Figure 6.6: Spatial distributions of the crossbridge states, nA(y, t)–nD(y, t) (Fig. 6.1),

for A = 1 (Eq. 6.3.1). A full list of parameter values is in Appendix B.
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Figure 6.7: Spatial distributions of the crossbridge states, nA(y, t)–nD(y, t) (Fig. 6.1),

for A = 8 (Eq. 6.3.1). A full list of parameter values is in Appendix B.
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The modified crossbridge distributions result in different total contractile forces (Eq.

6.2.10) generated for A = 1 (Fig. 6.6) cf. A = 8 (Fig. 6.7). Timecourses for the

contractile force in each case (Fig. 6.8) confirm that lower peak and mean contractile

forces are obtained for A = 8. We note also that the peak forces occur at earlier times

for A = 8, and that there is an asymmetry in the shape of the oscillations. Although

the frequency of oscillation is the same in each case, the shifted peak forces for A = 8

are a result of rupture occuring at earlier times. This also affects the shape of the

oscillations, which deviate from the applied sinusoidal waveform.
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Figure 6.8: Timecourses for the contractile force generated by crossbridges when

A = 1 (blue) and A = 8 (orange) in Eq. 6.3.1. These correspond to

the crossbridge distributions in Fig. 6.6 and 6.7 respectively.

The results in this section (with constant bound fraction B) are consistent with previ-

ous studies using the HHM model, where length oscillations resulted in disruption of

attached crossbridges and reduced mean contractile force [97]. Having recapitulated

this behaviour, we will now consider our fully coupled system (Section 6.2) in which

the crossbridges and integrins interact.

6.3.2 Interacting crossbridge and integrin dynamics

We now investigate the coupled crossbridge and integrin response to changes in the

amplitude, A (Eq. 6.3.1), which is increased and then decreased in gradual steps

within the range A = [0, 2]. Timecourses for (a) the applied displacement, (b) the

bound integrin fraction, (c) the attached crossbridge fraction and (d) the resulting cell

height, are shown in Fig. 6.9, where different colours indicate changes in amplitude.

As the applied displacement (Fig. 6.9(a)) increases, we observe a decreasing density of

bound integrins (Fig. 6.9(b)) and, at t ≈ 25, there is a sudden collapse from high to low
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oscillatory states. The applied displacement is reduced symmetrically; however, the

bound integrin timecourse shows asymmetry in its response. The system therefore

exhibits hysteresis, and we find that the behaviours for A = 1 (yellow) and A = 1.25

(purple) demonstrate bistability. This is behaviour that we previously observed in

our discrete and continuum models with lateral oscillations (Figs. 3.1 and 3.5) and

our 3-spring model for vertical oscillations, in the absence of crossbridge dynamics

(Fig. 5.11). We now examine the corresponding crossbridge behaviour (Fig. 6.9(c)).

Initially, whilst the integrins are in the highly bound oscillatory state, the attached

crossbridge density, Natt, also decreases with increasing A. However, as the bound

integrin fraction continues to decrease, we observe an increase in Natt. We note that,

when displaced vertically, bound integrins induce deformation of the cell. For a high

bound integrin fraction, the cell deformation is large, thus transmitting a large strain

to the crossbridges. However, when the bound integrin fraction is reduced, there is

less cell deformation which results in less disruption to the crossbridges. The system

therefore demonstrates negative feedback, where changes in force transmission or

force generation (via integrins or crossbridges, respectively) may be compensated in

some way by an opposing response. This could have interesting consequences for the

total contractile force, as it provides a mechanism for regulating the minimum and

maximum attainable force.

We next examine the timecourse for the cell height (Fig. 6.9(d)). When the fraction

of bound integrins is high (e.g. t < 25), the cell height closely follows the applied

displacement, L′T. When B is low (e.g. 30 < t < 55), the effect of the crossbridges

can be more clearly seen. The cell height reaches its minimum value when A = 2

(light blue, t ≈ 35) as a result of the high Natt and correspondingly large contractile

force generated by the crossbridges. Note, however, that this minimum does not

coincide with the maximum value of Natt over the entire timecourse, which occurs at

A = 0 (dark blue) since, in this case, there is also a high fraction of bound integrins

(Fig. 6.9(b)) which resists the contractile motion. This observation highlights that the

crossbridges and integrins have a competing effect on cell height.

By repeating the procedure shown in Fig. 6.9, we now investigate the dependence of

the dynamics on oscillation amplitude in more detail. We examine the time-averaged

steady state densities of the bound integrins, attached crossbridges and total force

(Fig. 6.10) and show these in bifurcation diagrams for the parameter A. In order to

ensure the solutions were at their oscillatory steady state, we applied each oscillation
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Figure 6.9: Timecourses for (a) the applied displacement, L′T , (b) the bound integrin

fraction, B, (c) the attached crossbridge fraction, Natt, and (d) the cell

height, L′A, in response to step changes in the amplitude, A, of oscillation

(Eq. 6.3.1). Amplitudes are A = 0 (dark blue), 0.5 (orange), 1 (yellow),

1.25 (purple), 1.5 (green) and 2 (light blue), each applied for 20 cycles, in

increasing and then decreasing order. A full list of parameter values is

given in Appendix B.
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amplitude for 20 cycles and averaged over the final cycle (shown by the points in

Fig. 6.10). We observe bistable regions (shaded) and hysteresis loops (dashed lines)

in each of these three variables.
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Figure 6.10: Time-averaged steady state densities of (a) the bound integrins, 〈Btot〉,
(b) the attached crossbridges, 〈Natttot〉, and (c) the total force, 〈Ftot〉,
for different amplitudes of oscillation, A. We observe hysteresis loops

(dashed lines) due to bistability (shaded regions).

As with the timecourses in Fig. 6.9, the density of bound integrins (Fig. 6.10(a))

decreases continually with increasing A until a sudden transition from high to low

adhesion states at A = 1.35. The corresponding crossbridge behaviour (Fig. 6.10(b))
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as A increases is non-monotonic. At first, there is a decrease in the density of attached

crossbridges, but after A = 1.35 there is an increase in the attached crossbridges due

to a reduction in cell deformation (as a result of fewer bound integrins). The corre-

sponding force, determined via the tension in the ECM spring (Ftot = kE(L′E − LE)),

is shown in Fig. 6.10(c). Due to increased extension of the springs when larger dis-

placements are applied, the force initially increases with A. However, as a result of

the rupture of integrins and attached crossbridges, this increase in non-linear. Ad-

ditionally, at the switch from high to low adhesion states (A = 1.35) the force drops

significantly. After A = 1.35, the averaged force continues to decrease, showing that

the reduction in bound integrin fraction has a more significant effect here than the

increasing density of attached crossbridges. In the next section, we investigate how

the dynamics change as the relative significance of integrins and crossbridges varies.

Effect of varying β and the passive cell stiffness

In the previous results, the scale factor for the contractile force (Eq. 6.2.10) was cho-

sen as β = 0.3. This dimensionless parameter, given by β = ρ̂cλ̂cNCU ĥ/ρλ̂b, is a ra-

tio involving both the total number and the stiffnesses of integrins and crossbridges,

thereby determining their relative strength. In the case where β = 0, we recover the

model with passive cell stiffness only (Chapter 5). There is a natural variability in the

dimensional parameter values involved; in particular, the relative numbers of cross-

bridges and integrins could vary significantly according to both the integrin density

and the number and length of actin filaments connected (via adaptor proteins) to the

integrin complexes. The ratios that these take are not known and, to account for this

variability, we now vary β through a range that allows us to observe the dynamics

when integrins dominate (small β) through to where crossbridges dominate (large β).

We apply the same simulation protocol as in the previous section (Fig. 6.9), where the

amplitude of oscillation is gradually increased and then decreased. First, we consider

the time-averaged steady state densities of the bound integrins, attached crossbridges

and total force for A ∈ [0, 4]. We show bifurcation diagrams (analogous to Fig. 3.5,

where we considered bound integrins only) for each of these variables, for five differ-

ent values of β (Fig. 6.11). Discrete steps in amplitude were taken, each represented

by a single point. For the lowest value of β (Fig. 6.11(a)), we obtain similar behaviour

to Fig. 6.10; increases in A lead to a transition between high and low adhesion states

and a decrease in attached crossbridges. We observe hysteresis, and a different path
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is followed as A is reduced. For larger β (Fig. 6.11(b)), we observe a narrowing of

the bistable window (shaded), which eventually disappears (Fig. 6.11(c)). This is

consistent with the notion that we previously proposed (Chapters 3 and 5), that me-

chanical cooperativity is responsible for the bistability: as the cell stiffens, there is no

longer sufficient cell deformation to enable a cooperative effect. Interestingly, as β

increases further (Fig. 6.11(d, e)), we observe a new type of bistable behaviour. Here

the attached crossbridges initially sustain a high density and, during this period, we

observe a decrease in bound integrins. When the attached crossbridge density drops,

the bound integrin density temporarily increases, and the force drops. In contrast to

the results for low β (Fig. 6.10), in this case the decrease in attached crossbridges,

rather than the increase in integrins, therefore dominates the contribution to the total

force. Due to the hysteresis, each variable follows a different path for decreasing A;

there is a lower density of attached crossbridges, the bound integrins reach higher

values and the total force, 〈Ftot〉, is reduced. Note that, although the crossbridge and

integrin behaviours change in each bistable regime (β small or β large), an interesting

observation is that the total contractile force is reduced in both.

We now consider the time-averaged steady state densities for the bound integrins in

a 2-parameter bifurcation diagram for β and A (Fig. 6.12(a)). Due to the bistability,

there are areas where two steady state densities coexist; these regions are shown in

white and illustrate the width of the bistable region. In addition, we show the dif-

ference, Bdiff between the value of 〈Btot〉 obtained during the step increases and step

decreases in A (Fig. 6.12(b)); non-zero values highlight the regions of bistable be-

haviour, with the amplitude of Bdiff showing the difference in height of the two stable

surfaces. As β increases from zero, the first region of bistable behaviour gradually

narrows and eventually collapses so that the transition between high and low bound

integrin regimes becomes smooth (Fig. 6.12(a)). For large β (as in Fig. 6.11(d)), we see

the appearance of an additional bistable region for low amplitudes of oscillation.

The feedback between adhesion and contractile force generation (Fig. 6.11) is due

to their competing effects on cell deformation; when under tension, integrins pro-

duce an upward force on the cell, whereas the crossbridges resist this motion with a

downward contractile force. In both the very low or very high β case, the bistability

we observe (Figs. 6.11 and 6.12) is a result of mechanical cooperativity: a high initial

density of either integrins or crossbridges can encourage their subsequent persistence

by increasing cell deformation in the direction of the dominant force. Because of the
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Figure 6.11: Time-averaged steady state densities of the bound integrins, attached

crossbridges and total force for increasing values of β (Eq. 6.2.10).
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Figure 6.12: (a) Time-averaged steady state densities for the bound integrins for a

range of amplitudes and β values. Two steady state densities coexist

in the bistable regions, and these regions are shaded in white. (b) The

difference, Bdiff between 〈Btot〉 for increasing and decreasing A. Non-

zero values correspond to bistable regions and show the difference in

height of the two stable surfaces. The passive cell stiffness is kA = 0.5,

and the remaining parameter values are given in Appendix B.

role of cell deformation in both the feedback and mechanical cooperativity, we expect

the passive cell stiffness to also be important. We previously used the cell stiffness

kA = 0.5 (Fig. 6.12), and we now consider the equivalent result for a more compliant

cell, kA = 0.25 (Fig. 6.13). We firstly observe a widening of the first bistable window

(for low β). In addition, the high bound integrin state persists for larger amplitudes

than it did for the stiffer cell (Fig. 6.12). We further observe a decrease in the value of

β at which the transition between bistable and smooth behaviour occurs (Fig. 6.13(a)).

When the passive cell stiffness is low, there is less resistance to the contractile force.

As a result, the crossbridges begin to dominate at lower values of β. As a conse-

quence of this, we see more extreme behaviour for large β than we did in Fig. 6.12.

At β = 1.5 we see that the bistable region spans the full range of A, indicating that

the trend of the bistable region widening (seen in Figs. 6.11(d, e)) continues. The dip

in bound integrins as A increases also becomes progressively larger, and for β > 1.8

(Fig. 6.13(a)) we see that the bound fraction of integrins reaches zero. We show this

in more detail for β = 1.8 in Fig. 6.14, where we observe that once 〈Btot〉 reaches zero

(Fig. 6.14(a)) there is no rebinding. Instead, the crossbridges reach a higher steady

state (Fig. 6.14(b)) and, with no resistance from integrins, the cell height drops (Fig.

6.14(d)). This causes a separation between the cell and ECM that is larger than the

integrin binding range. The height of the cell in this case is given by Eq. 6.2.32, which



CHAPTER 6: CELL–MATRIX ADHESION AND CONTRACTILE FORCE GENERATION 157

will decrease for larger β; this behaviour will therefore continue for any β > 1.8. Fi-

nally we observe that, with no bound integrins, there is no transmission of contractile

force (Fig. 6.14(c)). A complete separation of the cell and ECM does not occur in vivo,

but could be relevant to consider in the in vitro studies we described in Section 5.2.
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Figure 6.13: (a) Time-averaged steady state densities for the bound integrins for a

range of amplitudes and β values. Two steady state densities coexist

in the bistable regions, and these regions are shaded in white. (b) The

difference, Bdiff between 〈Btot〉 for increasing and decreasing A. Non-

zero values correspond to bistable regions and show the difference in

height of the two stable surfaces. The passive cell stiffness is kA = 0.25,

and the remaining parameter values are given in Appendix B.
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and β = 1.8; remaining parameter values are given in Appendix B.
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6.4 Conclusions

In this chapter, we modified our 3-spring model from Chapter 5 to account for intra-

cellular contractile force generation, mediated by actomyosin crossbridges. In paral-

lel with a passive stiffness, we considered active contractile units within the cell, in

which the crossbridge dynamics were governed by a Huxley–Hai–Murphy (HHM)

description [97]. The HHM model is an advection–reaction system where cross-

bridges can undergo transitions between four states, accounting for attachment and

detachment of myosin crossbridges to actin filaments, and phosphorylation and de-

phosphorylation of the crossbridges. We couple this to our model of material de-

formations through the advection term, which is driven by the cell deformation. By

extending our previous model to include a HHM description, we are able to investi-

gate the interacting dynamics of crossbridges and integrins in response to oscillatory

length fluctuations. To our knowledge, the detailed interaction of contractile force

generation and adhesion has not been investigated before.

The crossbridge dynamics in the absence of integrin dynamics recapitulated results

from previous theoretical studies using the HHM model; we find that, for a fixed den-

sity of integrins (Section 6.3.1), increasing the amplitude of the oscillations leads to a

strictly decreasing density of attached crossbridges (Fig. 6.5) with a corresponding

decrease in mean and peak contractile force (Fig. 6.8). For the fully coupled system

(Section 6.3.2) the crossbridges and integrins interact, and we see more complex be-

haviours. We find that, as a result of mechanical feedback between the integrins and

the crossbridges, the density of attached crossbridges no longer strictly decreases with

increasing oscillation amplitude (Fig. 6.9). For large amplitude oscillations, we ob-

serve negative feedback where a reduced density of bound integrins promotes cross-

bridge attachment (Fig. 6.10). This could provide a regulatory mechanism for the

minimum and maximum attainable contractile force, as changes in integrin densities

are compensated by opposing changes in the crossbridge attachment. Additionally,

this result highlights the role of integrins in transmitting force bidirectionally; in addi-

tion to transmitting contractile force outwards to the ECM, they mediate the amount

of force (due to environmental fluctuations) transmitted inwards to the crossbridges.

In the previous model (Chapter 5), where the cell was modelled as a passive material,

we observed bistability in the bound fraction of integrins. In this chapter, we discover

that this phenomenon persists in our extended model. Moreover, we observe corre-
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sponding bistable behaviour in the attached crossbridges and total force (Fig. 6.10).

We characterise this in detail via a 2-parameter bifurcation study for the parameter β,

which controls the relative strength of the crossbridges and the integrins, and A, the

oscillation amplitude. Consistent with the notion that bistability arises from mechan-

ical cooperativity, we observe a narrowing of the bistable region as β increases. With

increased relative strength of the crossbridges, the downward contractile force that

they generate resists the upward cell deformation required for integrin cooperativity,

and we eventually lose bistability, resulting in a smooth transition between high and

low adhesion states (Fig. 6.12(a)). Interestingly, as β is increased further, we observe

a second region of bistability. This is due to an analogous mechanism in which the

crossbridges are cooperative: with a high initial condition of attached crossbridges,

there is sufficient strength to deform the cell in favour of the crossbridges. As a result,

the high attached state persists for larger amplitudes (Fig. 6.11(d,e)).

In the context of bronchoconstriction, it is important to quantify how the different

integrin and crossbridge dynamics affect the total contractile force transmitted to the

ECM. In Chapter 3, we showed how perturbations representing deep inspirations

could result in a transition from high to low bound integrin states (Fig. 3.13). Al-

though we have not simulated DIs specifically in this chapter, the identical bifurcation

structure in e.g. Figs. 3.5 and 6.10 indicates that we will obtain the same behaviours

for low β. Additionally, switches and hysteresis of this type were seen in Fig. 6.9

for gradual changes in amplitude. In Chapter 3, we hypothesised that the low bound

integrin state could correspond to bronchodilation, and we have now shown that con-

tractile force is indeed reduced in this state (Fig. 6.10). A further key observation is

that a reduced contractile force can also be obtained in the second bistable region (for

large β). In this case, the bound integrin density is increased after a large perturba-

tion; however, due to the dominance of crossbridges, which are reduced, the net result

is again a decrease in contractile force. This can be seen in the bifurcation diagrams

for 〈Ftot〉 (Fig. 6.11). DIs are experimentally known to be able to induce bronchodi-

lation in healthy individuals, but not in asthmatics, and we previously hypothesised

that bistability could be the underlying mechanism behind sustained switches in be-

haviour. Our extended model provides further support for this hypothesis, as we

now consider both of the key processes involved in regulating contractile force, and

show that the bistability persists (and is in fact present for a large range of β). This is

further strengthened by calculating that the total contractile force (in addition to just

the density of bound integrins, cf. Fig. 3.13) is reduced (Fig. 6.11). The dominance of
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crossbridges or integrins (and therefore the value of β) is currently unknown, but our

model provides two plausible bistable regions.

Because of the importance of cell deformation in supporting mechanical coopera-

tivity, we considered the effect of a reduced passive cell stiffness. This results in

less resistance to the contractile force, meaning that the transition between integrin

and crossbridge dominance, and the corresponding changes in behaviour (described

above) occur at smaller values of β (Fig. 6.13). For a fixed value of β, variations in cell

stiffness could therefore result in different dynamics. As an example, taking β = 1.3 in

Figs. 6.12 and 6.13, we observe bistability for the compliant cell (Fig. 6.13) but not for

the stiffer cell (Fig. 6.12). A loss of bistability could be another factor to investigate

when considering the different responses to DIs in non-asthmatics and asthmatics

(who may have contracted cells at baseline and therefore stiffer cells). Under the hy-

pothesis that the sustained reductions we observe in contractile force correspond to

bronchodilation, a loss of bistability could have negative consequences for asthmatics

as it would result in an inability of DIs to induce bronchodilation.

In future work, it will be crucial to gain better estimates for the model parameters and

to validate the model predictions in experimental studies. In an in vitro set-up, it is

possible to modulate cell contractility. An interesting AFM study could be to repeat

the vertical oscillation protocol for cells in different contractile states. As in Chapter

5, there is a direct correspondence between our model set-up and the existing experi-

mental protocol. We could therefore make use of this to investigate if the behaviours

predicted by the model occur as cell contractility varies. Single cell studies could also

be useful for estimating unknown parameters, as these cannot currently be measured

in vivo.



Chapter 7

Conclusions

In this thesis, we have developed a series of mathematical models of airway smooth

muscle (ASM) cell–matrix adhesion. The study was motivated by asthma, and in

particular by the associated narrowing of the airways known as bronchoconstriction.

Because of their role in transmitting contractile forces (which are generated within

ASM cells), integrin-mediated adhesions play a pivotal role in regulating the extent

of airway narrowing during bronchoconstriction. Our aim was to investigate how the

dynamic mechanical environment of the in vivo airway could affect integrin dynamics

and hence force transmission from ASM cells to the tissue. We used our mathematical

models to investigate the integrin response to oscillatory loading, which represented

mechanical fluctuations due to tidal breathing and deep inspirations (DIs). The ef-

fect of tidal breathing and DIs on contractile force generation has previously been

well-studied; however, their effect on contractile force transmission, via integrins,

had been neglected. The interacting dynamics of cell–matrix adhesion and contractile

force generation had also not been studied in detail before, and we investigated this

here. In addition to theoretical results from our models, we presented and analysed

experimental data from atomic force microscopy experiments (with data provided by

Prof. Gerald Meininger, University of Missouri). We summarise our main findings in

Section 7.1, and discuss potential areas for future work in Section 7.2.

7.1 Summary of main findings

In Chapter 1, we reviewed the biological background and the existing modelling lit-

erature relevant to cell–matrix adhesion. We found stochastic simulations to be a

common approach for modelling cell–matrix adhesion as these methods allow for

161
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detailed consideration of individual integrin binding kinetics. Some continuum mod-

els accounting for integrin binding had previously been developed [20, 28, 29, 144];

however, there remained a need to capture the detailed response of the integrins to

local mechanical cues. Continuum models provide computational advantages over

large-scale stochastic simulations. Developing continuum frameworks that are capa-

ble of accurately capturing integrin binding kinetics therefore allow for more efficient

consideration of integrin dynamics in higher scale (e.g. tissue level) models.

In Chapter 2, we began by developing a discrete stochastic–elastic model of cell–

matrix adhesion (Section 2.1). Our discrete approach consisted of an evolving net-

work of linear springs, in which the binding and unbinding of integrins from the

ECM (modelled by the addition and removal of springs in the network) were gov-

erned by stochastic reactions. Within this framework, we enforced local spatial con-

straints on the integrin binding reactions; in addition, the mechanical response of the

cell and the ECM to the bound integrins was captured. To model this in a more effi-

cient manner, we then developed a novel multiscale model (Section 2.2). In order to

capture the integrin-level detail described by our discrete model, we used a two-scale

approach. At the microscale, we adapted the Huxley crossbridge model [70], which

allowed us to define integrin binding and rupture rates based on a spatial coordinate,

local to each integrin. We then coupled this description to a macroscale model of

cell and ECM deformation. Our multiscale formulation allowed us to account for de-

tailed integrin binding rate functions (of the type typically implemented in stochastic

simulations) alongside material deformations at the cell level.

In Chapter 3, we used both the discrete model and the multiscale continuum model

to investigate the effect of a lateral oscillatory loading of the ECM, representing me-

chanical fluctuations due to tidal breathing and DIs, on the adhesion dynamics. There

was strong qualitative agreement between our discrete and continuum model results,

and our results illustrated that strain transmission (via integrins) could be a highly

dynamic process. We observed two distinct regimes where either adhesion formation

or adhesion rupture dominated; these depended on the amplitude of loading and re-

sulted in large differences in the steady state densities of bound integrins (Fig. 3.1).

Furthermore, we observed a region of bistability for intermediate loading amplitudes

(Fig. 3.5), which occured due to mechanical cooperativity; shared loading between

pre-existing adhesions allowed the high density state to persist when rupture would

otherwise dominate. This behaviour generated a hysteresis loop, meaning that the
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loading history could significantly alter the future adhesion dynamics.

Using our continuum model, we demonstrated the importance of loading history by

considering perturbations in the amplitude of oscillatory loading, representing DIs

(Fig. 3.13). After large DI-like perturbations, our results showed either persistence of

the high adhesion state or a transition from the high to the low adhesion states. We

expect these high and low adhesion densities to significantly affect the level of con-

tractile force that can be transmitted between intracellular and extracellular domains

during ASM cell contraction. Our model therefore suggests a possible mechanism

underlying experimental observations, in which the bronchodilatory effect after a DI

is transient in asthmatics yet sustained in non-asthmatic subjects [33, 78, 125]. We

found that the ability of a DI to induce a switch between states was influenced by

differences in either: (i) the position of the bistable region, which shifted in response

to changes in material parameters such as oscillation frequency, material stiffnesses

and binding affinities (Fig. 3.8); (ii) the amplitude of the unperturbed oscillatory dis-

placement, which we used to represent the magnitude of tidal breathing; or (iii) the

magnitude of the DI. All of these are factors that could differ between individuals,

as well as between asthmatics and non-asthmatics. We observed robustness of these

dynamics when investigating the effect of varying the model parameters (Fig. 3.8)

and of varying the input waveform (Fig. 3.11).

In Chapter 4, we considered both macroscale and microscale extensions of the mul-

tiscale continuum model. At the macroscale, we used a reaction–diffusion scheme

to incorporate the activation and diffusion of free integrins (Section 4.1). In atomic

force microscopy (AFM) experiments, a non-monotonic increase in adhesion strength

had been observed (Fig. 4.6). We showed that a transition between regimes where

deactivation and then activation dominated (through the use of a time-dependent ac-

tivation rate) could lead to similar non-monotonic behaviour in the bound integrin

fraction (Fig. 4.8). The time-dependent activation rate represented a delay due to

intracellular signalling processes. We then extended the microscale integrin model

(Section 4.2) to account for a known strain-dependent strengthening mechanism, oc-

curing due to vinculin binding to cryptic sites on talin. By including this reaction,

which reinforces the connection between integrins and the actin cytoskeleton, we ob-

served that small deformations could encourage the persistence of adhesions (Fig.

4.14); there is competition between strengthening and rupture that introduces a non-

monotonic response to load and the adhesions exhibit catch-bond like behaviour. In
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response to oscillatory loading, we again observed distinct high and low adhesion

states (Figs. 4.15–4.18). In addition to qualitative differences in the microscale bound

integrin distributions, the strain-dependent strengthening resulted in differences in

the spatial distributions of the macroscale species due to the differing propagations

of load across the macroscale domain. Since the strengthening is strain dependent,

and since matrix stiffness affects the transmission of load, we also considered the ad-

hesion response for different substrate stiffnesses (Fig. 4.19). For low amplitudes of

oscillatory load, we observed increased strengthening on stiffer substrates. Integrin-

mediated adhesions are known to be mechanosensitive, and to develop differently on

stiff and compliant substrates [32, 123]. This is likely to be relevant in the context of

asthma, where healthy and asthmatic airways exhibit different stiffnesses; our ability

to model these mechanisms is therefore useful for future studies.

In Section 4.3 we discussed an experimental observation by Mailhot-Larouche et al.

[95], where a reduced time interval between large length oscillations (representing

DIs) of isolated bronchi increased both the rate and magnitude of contractile force re-

covery. The mechanism behind this result is unknown. We simulated their oscillation

protocol in our model, where we explored the different possible qualitative outcomes

as activation and deactivation rates varied (Section 4.1). Our exploration highlighted

that, for the time between DIs to have differing effects on bound integrin recovery,

the macroscale species cannot obtain a steady state during the time period under

investigation (Fig. 4.21). We also observed that increased recovery rates and magni-

tudes required increased availability of active, unbound integrins. In our model, this

was only possible via an increased activation (or reduced deactivation) rate, due to

conservation of integrins and adaptor proteins. However, in general, the increased

availability of active integrins could also be induced by recruitment (via intracellular

signalling) or diffusion of integrins and adaptor proteins. Regardless of the under-

lying mechanism, we found that, if the magnitude of recovery is to be affected, the

change must be ongoing over the time intervals considered (Fig. 4.26), which reached

30 minutes in the experiments. The experimentally observed effect was captured us-

ing a transient increase in activation, with a slow decay to baseline (Figs. 4.26, 4.28).

Increases in activation could perhaps be triggered by mechanical cues from the DIs;

force can induce integrin activation and conformal changes [3], or the recruitment and

binding of adaptor proteins [84]. The model therefore gives candidate mechanisms to

be investigated; a particular consideration will be the timescales involved.
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In Chapter 5, we extended our microscale model to allow for vertical motion. We cou-

pled this to a ‘3-spring’ description of material deformations, in which an effective

spring (with time-dependent stiffness determined by the underlying integrin dynam-

ics) represented the integrins and connected the cell to the ECM. We simulated verti-

cal oscillations applied to the ECM and, as we found for lateral oscillations in Chapter

3, distinct high and low adhesion states were obtained for low and high amplitude

oscillations, respectively (Figs. 5.7 and 5.9). For intermediate amplitude oscillations,

we observed bistability (Fig. 5.11) due to a mechanical cooperativity, showing that

the theoretical result from Chapter 3 holds for vertical motion. We then presented

experimental data from AFM experiments, provided by Prof. Gerald Meininger and

Huang Huang (University of Missouri), where a substrate-coated bead was repeat-

edly lowered and retracted from a cell. The amplitude of these vertical oscillations

was varied under two experimental protocols. In the first, the cell and bead were ini-

tially separated so that no adhesions between the substrate and cell existed; in the sec-

ond, cells were allowed a period of ‘prebinding’ to the bead prior to the oscillations.

We interpreted these as zero and high initial conditions for the number of adhesions,

analogous to the zero and saturated initial conditions used in the model. In both

the model and experimental data, we obtained two qualitatively distinct patterns in

adhesion force, corresponding to the high and low adhesion states. The model pro-

vided insight into the underlying integrin dynamics, as well as illustrating the tem-

poral changes in cell height, which cannot be measured with the current technology.

For the amplitude of 1200nm (Fig. 5.17), prebinding appeared to change the qualita-

tive form of the force curves. When investigating this further (Figs. 5.18 and 5.19),

we observed behaviour mostly characteristic of adhesion in the prebinding protocol,

and behaviour mostly characteristic of rupture when there was no prebinding. How-

ever, we also noticed that individual cell heights could vary significantly (Table 5.1),

making it difficult to compare cells directly. We therefore could not determine for

sure whether the differences seen in the prebind cells were due to bistability or due

to intercellular variation. This result highlighted that the variation in cell heights is

essential to consider in the future design of AFM studies of this type. Since cells were

difficult to compare directly, we also analysed force timecourses from single cells.

Several of these exhibited a sudden switch in both the magnitude and shape of the

force curves (Figs. 5.22–5.25). Although we identified these examples by inspection

of the original force data, we discussed several approaches that could be developed

to classify force curves and detect switches automatically. These relied on techniques

from cluster analysis, where we considered separating curves into clusters according
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to their shape (e.g. Figs. 5.26 and 5.29). Togther with our model results, the effect

of prebinding and the switching behaviour in individual cells provided some strong

indication of bistability. However, to conclusively determine whether this is the case,

further experimental data is needed. In particular, further investigation into whether

differences in initial cell heights (Tables 5.1 and 5.2) are a cause or effect of different

adhesion states (Figs. 5.18 and 5.19) is essential.

Finally, in Chapter 6, we extended the model from Chapter 5 to account for contractile

force generation occuring within the cell. The cell was previously modelled as a pas-

sive material and here we include active contractile components to describe contrac-

tile force generation via actomyosin crossbridges. The contractile components were

modelled using the Huxley–Hai–Murphy (HHM) model [97], which accounts for at-

tachment and detachment of myosin crossbridges to actin filaments, and phospho-

rylation and dephosphorylation of the crossbridges. The successful coupling of the

two models allowed us to investigate the interacting dynamics of integrins and cross-

bridges, which has not been considered at this level of detail before. We considered

the effect of applying length fluctuations and found that both force transmission (via

integrins) and force generation (via crossbridges) were modulated. Moreover, we ob-

served feedback between the two processes (Fig. 6.9); for large oscillation amplitudes

we observed a regulatory mechanism due to negative feedback, where reductions in

the bound integrin density induced an opposing change in the attached crossbridge

density (Fig. 6.10). In addition to this, we observed two bistable regions with hys-

teresis in the bound fraction of integrins, attached crossbridges and total force (Fig.

6.10). As we increased the parameter β, which controls the relative strength of the

crossbridges and the integrins, the first bistable region began to narrow until there

was a smooth transition between high and low adhesion states (Fig. 6.12(a)). Fur-

ther increases in β lead to the emergence of a new region of bistability. A high ini-

tial condition of attached crossbridges induced a cooperative effect in favour of the

crossbridges, and allowed the high attached state to persist for a larger range of am-

plitudes. There was a resulting decrease in bound integrins and a larger total force

(Fig. 6.11(d, e)). For both cases of bistability (small and large values of β), the bista-

bility occured due to mechanical cooperativity, where high initial conditions induced

cell deformation in favour of the dominant process. In the two bistable regions we

found that, after large amplitude oscillations, the bound integrin density could either

be reduced (small β) or increased (large β). A crucial observation, however, is that in

both of these cases the net result was a decrease in total contractile force (Fig. 6.11).
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In extension to the results in Chapter 3 we therefore see that large perturbations, such

as those mimicking DIs, have the ability to induce a switch to a lower contractile state

(rather than just to a lower density of integrins, cf. Fig. 3.13). For intermediate values

of β, and as the passive cell stiffness varies, we observed that the bistability could

be lost. Under our proposed hypothesis, this could have negative consequences for

asthmatics as it would result in an inability of DIs to induce sustained reductions in

contractile force.

7.2 Scope for future work

There are many potential directions for future work, which we divide into three areas:

model validation, model extensions and alternative applications. Each of these are

discussed below. To conclude, we discuss the importance of our models and results

for the future study of asthma.

An important area for future work is model validation. Our models predict a num-

ber of qualitative behaviours, but experimental studies are now needed to determine

which of these are physiologically relevant. At the level of single cells, we compared

our model results to data from AFM experiments (Chapter 5). The preliminary re-

sults are promising, and further use of these techniques could verify whether all of

the behaviours predicted by the model occur in vitro. In particular, a priority would

be to investigate the existence of bistability due to mechanical cooperativity, since this

could have interesting physiological consequences. AFM experiments provide high

precision measurements of adhesion forces and mechanical properties of the cell. In

future studies, these techniques could perhaps be used to provide parameter values

to be used in the models. This could either be through direct calculation (of e.g. cell

stiffness) or through parameter inference (e.g. to estimate the integrin binding and

rupture rate functions) by fitting our model to the data. After obtaining estimates

for unknown or uncertain parameters, a subsequent challenge is to validate model

predictions against tissue-level in vitro measurements (such as measurements of con-

tractile force obtained during length oscillations applied to ASM tissue strips) and,

eventually, in vivo observations. Integrin dynamics cannot be measured for these ex-

periments, so this will require predicting emergent behaviours. A possible starting

point is our coupled model of integrin and crossbridge dynamics, with which we can

calculate the total contractile force from a single cell when the cell is subject to length
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fluctuations.

There is plenty of scope to extend the current models, and this should be considered

in parallel with model validation. The multiscale continuum model is amenable to

both macroscale and microscale extensions, as demonstrated in Chapter 4. From a

mechanical point of view, there are several simplifications in this model that could

be addressed. Notably, we model the cell and ECM as linearly elastic materials. In

order to accurately study the effect of larger deformations, nonlinear or viscoelastic

descriptions at the macroscale could be considered. At the microscale, there is flexibil-

ity to investigate different functional forms for the integrin binding and rupture rates.

There is also a vast amount of physiological detail that could be included, for example

by explicitly modelling the signalling pathways involved in integrin activation, or by

including additional diffusible species for the various adaptor proteins. For the pur-

poses of understanding the mechanical effects relevant to bronchoconstriction, when

a suitable level of detail has been obtained in the cell level models, a primary focus

should be on incorporating these models into tissue-level descriptions.

Additionally, our modelling frameworks could be used in a number of other contexts.

Cell–matrix adhesion plays an important role in a wide range of processes, and it is

often important to understand and account for the local integrin behaviour (such as

binding kinetics and conformal changes of integrins). This level of detail has been

lacking in previous continuum models; however, our multiscale framework provides

a way of accounting for them. A particularly interesting trait that integrins exhibit is

the ability to detect and induce cellular changes in response to environmental stimuli.

Based on the properties of the ECM, these so-called mechanosensing abilities allow

integrins to send the appropriate mechanical and chemical signals to components

within the cell, acting to regulate processes such as cell migration and tissue remod-

elling and development. Failures in mechanosensing have previously been suggested

to lead to abnormalities in tissue-level properties and function; understanding cell–

matrix interactions, and the mechanisms behind their mechanosensing abilities (at a

level local to the integrins), is therefore relevant to many diseases and tissue types.

Furthermore, the interest in tissue-level effects in these contexts means that contin-

uum models will be beneficial.

Finally, our models highlight the need to consider ASM cell–matrix adhesion as a dy-
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namic process in future studies of asthma and bronchoconstriction. We have demon-

strated that integrin–mediated adhesion can be modulated by oscillatory loading, and

that this has a significant effect on the total contractile force transmitted from ASM

cells to the tissue. This should be acknowledged in future tissue level models if we

are to fully understand experimental observations. Subcellular crossbridge dynamics

have previously been considered in airway models via coupling to the HHM model

[64, 65], and we propose that future work should aim to incorporate the interacting

crossbridge and integrin dynamics. Here we have developed such a model of this

crossbridge–integrin interaction.

Important future work will be to more fully investigate how the material properties

of the airways influence adhesion dynamics. Much is still to be understood about the

mechanosensitive nature of integrins; however, understanding how integrin dynam-

ics depend on substrate stiffness will be relevant to modelling healthy (compliant)

and asthmatic (stiffer) airways.



Appendix A

Analytical solutions for the single-site

microscale model

A.1 Steady state distributions with a constant relative veloc-

ity

At steady state, the piecewise linear binding and unbinding functions (Eqs. 2.2.6,

2.2.7) suggest consideration of Eq. 2.2.5 in each of six regions. For a non-zero, constant

and positive V(X, t), the steady state is obtained by solving

(i) x < −s
db
dx

= −h3

V
b, (A.1.1)

(ii) − s ≤ x < −1
db
dx

= − (h1 − h2x)
V

, (A.1.2)

(iii) − 1 ≤ x < 0 V
db
dx

= (1 + x)− (1 + h1 + (1− h2)x)b, (A.1.3)

(iv) 0 ≤ x ≤ 1 V
db
dx

= (1− x)− (1 + h1 − (1− h2)x)b, (A.1.4)

(v) 1 < x ≤ s
db
dx

= − (h1 + h2x)
V

b, (A.1.5)

(vi) x > s
db
dx

= −h3

V
b. (A.1.6)

In regions (i) and (vi) there is no binding and a constant high unbinding rate, h3. The

ODEs are separable and can be solved to give

(i) x < −s b(x) = Ae−
h3
V x, (A.1.7)

(vi) x > s b(x) = Be−
h3
V x, (A.1.8)

for constants A and B.

170
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For regions (ii) and (v) there is linear unbinding (Eq. 2.2.7) but no binding. The

equations are again separable and we find

(ii) − s ≤ x < −1 b(x) = Ce−
1
V

(
h1x− h2

2 x2
)
, (A.1.9)

(v) 1 < x ≤ s b(x) = De−
1
V

(
h1x+ h2

2 x2
)
, (A.1.10)

for constants C and D to be determined.

In regions (iii) and (iv), there is both binding and unbinding (Eqs. 2.2.6, 2.2.7). Rear-

ranging, in region (iii) we have

db
dx

+
1
V

((1 + h1)− (1− h2)x) b =
1
V
(1 + x). (A.1.11)

Using an integrating factor e
1
V

∫
((1+h1)+(1−h2)x) dx = e

1
V

(
(1+h1)x+ 1−h2

2 x2
)

this becomes

d
dx

(
be

1
V

(
(1+h1)x+ 1−h2

2 x2
))

=
1
V

e
1
V

(
(1+h1)x+ 1−h2

2 x2
)
(1 + x). (A.1.12)

We integrate both sides to obtain

b(x)exp
((

(1 + h1)

V
x +

1− h2

2V
x2
))

=
1
V

∫
exp

((
(1 + h1)

V
x +

1− h2

2V
x2
))

dx

+
1
V

∫
x exp

((
(1 + h1)

V
x +

1− h2

2V
x2
))

dx,

(A.1.13)

where we will rewrite the exponentials as

exp
((

(1 + h1)

V
x +

1− h2

2V
x2
))

= exp
(

1− h2

2V

(
x2 + 2

1 + h1

1− h2
x
))

= exp

(
1− h2

2V

((
x +

1 + h1

1− h2

)2

−
(

1 + h1

1− h2

)2
))

= α1 exp

(
β

(
x +

1 + h1

1− h2

)2
)

,

(A.1.14)

where α1 = exp
(
−(1+h1)

2

2V(1−h2)

)
and β = 1−h2

2V . Using a substitution u = x + 1+h1
1−h2

, the first

integral on the right hand side of Eq. A.1.13 is then

1
V

∫
α1eβ

(
x+ 1+h1

1−h2

)2

dx =
α1

V

∫
eβu2

du =
α1

2V

√
π

β
erfi(

√
βu) + c1, (A.1.15)

where c1 is a constant and erfi(
√

βu) is the imaginary error function, a standard inte-

gral defined by

erfi(z) =
2√
π

∫
ez2

dz. (A.1.16)
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The second integral on the right hand side of Eq. A.1.13 is

1
V

∫
α1xeβ

(
x− 1+h1

1−h2

)2

dx =
α1

V

∫ (
u− 1 + h1

1− h2

)
eβu2

du

=
α1

V

∫
ueβu2

du− α1

V

(
1 + h1

1− h2

) ∫
eβu2

du

=
α1

2βV
eβu2 − α1

2V

(
1 + h1

1− h2

)√
π

β
erfi(

√
βu) + c2

(A.1.17)

where c2 is a constant. Combining these and dividing through by α1eβu2
gives the

steady solution in (iii) to be

b(x) =
1

2V

(
1− 1 + h1

1− h2

)√
π

β
erfi(

√
βu) e−βu2

+ Ee−βu2
+

1
2βV

(A.1.18)

where E is a constant, β = 1−h2
2V and u = x + 1+h1

1−h2
.

In terms of the original variables we have

b(x) =
1− γ

2V

√
π

β
erfi(

√
β(x + γ))e−β(x+γ)2

+ Ee−β(x+γ)2
+

1
2βV

, (A.1.19)

where γ = 1+h1
1−h2

and E is a constant to be determined. Note that here we have assumed

β to be positive, i.e. h2 = g2/ f1 < 1. If this is not the case, some minor modifications

will be needed and the imaginary error function, erfi(z), will be replaced by the error

function, defined by

erf(z) =
2√
π

∫
e−z2

dz. (A.1.20)

The solution for region (iv) is similar; the steady state ODE is

V
db
dx

= (1− x)− (1 + h1 − (1− h2)x)b, (A.1.21)

which is rearranged to

db
dx

+
1
V
(1 + h1 − (1− h2)x)b =

1
V
(1− x). (A.1.22)

The integrating factor is e
1
V

∫
((1+h1)−(1−h2)x) dx = e

1
V

(
(1+h1)x− 1−h2

2 x2
)

and gives

d
dx

(
b(x)e

1
V

(
(1+h1)x− 1−h2

2 x2
))

=
1
V

e
1
V

(
(1+h1)x− 1−h2

2 x2
)
(1− x). (A.1.23)

Integrating both sides leads to

b(x)e
1
V

(
(1+h1)x− 1−h2

2 x2
)
=

1
V

∫
e

1
V

(
(1+h1)x− 1−h2

2 x2
)

dx− 1
V

∫
xe

1
V

(
(1+h1)x− 1−h2

2 x2
)

dx,

(A.1.24)
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where we now use

exp
(

1
V

(
(1 + h1)x− 1− h2

2
x2
))

= α2 exp

(
−β

(
x− 1 + h1

1− h2

)2
)

, (A.1.25)

for α2 = exp
(

(1+h1)
2

2V(1−h2)

)
and β = 1−h2

2V > 0 as before. A similar substitution u =

x− 1+h1
1−h2

is made and the first integral on the right hand side of A.1.24 becomes

1
V

∫
α2e−β

(
x− 1+h1

1−h2

)2

dx =
α2

V

∫
e−βu2

du =
α2

2V

√
π

β
erf(

√
βu) + d1, (A.1.26)

where d1 is a constant and erf(
√

βu) the error function (Eq. A.1.20). The second

integral on the right hand side of Eq. A.1.24 is

1
V

∫
α2xe−β

(
x− 1+h1

1−h2

)2

dx =
α2

V

∫ (
u +

1 + h1

1− h2

)
e−βu2

du

=
α2

V

∫
ue−βu2

du +
α2

V

(
1 + h1

1− h2

) ∫
e−βu2

du

= − α2

2βV
e−βu2

+
α2

2V

(
1 + h1

1− h2

)√
π

β
erf(

√
βu) + d2

(A.1.27)

where d2 is a constant. Combining these and dividing through by α2e−βu2
gives the

steady solution in (iv) to be

b(x) =
1

2V

(
1− 1 + h1

1− h2

)√
π

β
erf(

√
βu)eβu2

+ Feβu2
+

1
2βV

(A.1.28)

where F is a constant, β = 1−h2
2V and u = x− 1+h1

1−h2
.

In terms of the original variables

b(x) =
1− γ

2V

√
π

β
erf(

√
β(x− γ))eβ(x−γ)2

+ Feβ(x−γ)2
+

1
2βV

, (A.1.29)

where γ = 1+h1
1−h2

and F is a constant to be determined.

In summary there are six general solutions, given above, with one for each of the

regions defined by the binding and unbinding rate functions (Eqs. 2.2.6, 2.2.7). In

each solution there is a constant to be determined by enforcing continuity at each

boundary.

Determining the constants

With V > 0 advection is to the right. In this case the solution in (i) requires A = 0.

Continuity is enforced at the boundaries, starting with x = −s to give C = 0. This
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then means that at x = −1 we need b(−1) = 0, giving

E =
γ− 1

2V

√
π

β
erfi(

√
β(γ− 1))− 1

2βV
eβ(γ−1)2

. (A.1.30)

Equating the solutions to (iii) and (iv) at x = 0 gives

F =
1− γ

2V

√
π

β
erfi(

√
βγ)e−2βγ2

+ Ee−2βγ2 − 1− γ

2V

√
π

β
erf(−

√
βγ). (A.1.31)

Continuity at b = 1 requires

De−
1
V (h1+

h2
2 ) =

1− γ

2V

√
π

β
erf(

√
β(1− γ)) eβ(1−γ)2

+ Feβ(1−γ)2
+

1
2βV

, (A.1.32)

which gives

D =

(
1− γ

2V

√
π

β
erf(

√
β(1− γ)) eβ(1−γ)2

+ Feβ(1−γ)2
+

1
2βV

)
e

1
V (h1+

h2
2 ), (A.1.33)

where F is as above.

At the final boundary, x = s, we have

De
1
V (h1s+ h2

2 )s2
= Be−

h3
V s, (A.1.34)

which leads to

B = De
h3s
V2 (h1s+ h2

2 s2). (A.1.35)

Note that the problem switches symmetrically if instead V < 0, where the process

starts from B = 0.
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A.2 Method of characteristics for piecewise-linear binding rates

In this section we present the time-dependent solutions of the single-site microscale

model (Eq. 2.2.5) when there is a constant, positive, non-zero relative velocity, V.

Using piecewise-linear binding rates (Eqs. 2.2.6, 2.2.7), the method of characteristics

can be used to find analytical solutions for b(x, t). The governing equations must first

be considered in each of six regions of x, dictated by the choice of rate functions and

denoted by the regions (i)–(vi) below. The six PDEs to be solved are

(i) x < −s
∂b(x, t)

∂t
+ V

∂b(x, t)
∂x

= −h3b(x, t),

(ii) − s ≤ x < −1
∂b(x, t)

∂t
+ V

∂b(x, t)
∂x

= −(h1 − h2x)b(x, t),

(iii) − 1 ≤ x < 0
∂b(x, t)

∂t
+ V

∂b(x, t)
∂x

= (1 + x)− (1 + h1 + (1− h2)x)b(x, t),

(iv) 0 ≤ x ≤ 1
∂b(x, t)

∂t
+ V

∂b(x, t)
∂x

= (1− x)− (1 + h1 − (1− h2)x)b(x, t),

(v) 1 < x ≤ s
∂b(x, t)

∂t
+ V

∂b(x, t)
∂x

= −(h1 + h2x)b(x, t),

(vi) x > s
∂b(x, t)

∂t
+ V

∂b(x, t)
∂x

= −h3b(x, t).

Since there is an advection term, we must also take into account the regions that

the solution has previously propagated through. After determining the characteristic

curves, we will need to further partition the solution space as will be shown and

explained in Fig. A.1. A simpler example of this technique (for binding rates with

three piecewise-linear regions) can be found in [8].

To find the characteristic curves, we let b(x, t) = b(x(r), t(r)) and look for curves

(x(r), t(r)), parameterised by r, along which the solutions to the above PDEs can be

represented by ODEs. Using the chain rule on b(x(r), t(r)):

db
dr

=
∂b
∂x

dx
dr

+
∂b
∂t

dt
dr

,

and we find that the characteristics are defined by the following three ODEs

db
dr

= f (x, b(x, t)),
dx
dr

= V,
dt
dr

= 1.

The function f (x, b(x, t)) varies according to which region ((i)–(vi)) is being consid-

ered, and is found by comparison to the six PDEs above.
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In each region we have the same solutions for x and t: the solutions are t = t0 + r = r

and x = x0 + V(t − t0), giving the characteristics in x − t space as straight lines of

gradient V. The behaviour along them is determined by integrating f (x, b(x, t)) and

applying initial data:

b(x, t) =
∫ t−t0

0
f (x, b(x, t′))dt′ + b0(x0, t0).

In each region, we will state f (x, b(x, t)) and perform the above integral.

When sketching the characteristic curves (Fig. A.1), we find that further regions in

characteristic space need to be considered to properly track the behaviour as distri-

butions propagate from one region to the next. The origin of the data as well as it’s

position in x will define its evolution. Considering constant, strictly positive V pro-

duces 21 distinct regions (Fig. A.1).

Figure A.1: The 21 distinct regions in x − t space, where propogation of character-

istics need to be carefully tracked. Vertical dotted lines separate the re-

gions (i) to (vi). Diagonal dotted lines have gradient 1/V and subparti-

tion these regions further.

The governing equations in regions (i) to (vi) do not change in the subpartitions but

the initial data will. As an example, characteristics in region IIb (Fig. A.1) are in-
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formed by initial data b0(x0, 0) from region (ii): b0(x, 0) for −s ≤ x < −1, but for IIa

the information entering the region comes instead from the initial data of region (i),

b0(x, 0) for x < −s, after it has been propagated along the characteristics in Ia to reach

x = −s. As V is positive and constant and the distances in x are known we can define

exactly where these transistions occur.

We will begin by solving the characteristic equations for the regions informed by the

initial data at t = 0, which is the bottom row in Fig. A.1, and then work upwards

through the diagram. A table giving the explicit boundaries in x− t space that define

these 21 regions is included in Table A.1 at the end of the section.

Regions Ia and VIf

Here, the ODEs are

db
dr

= −h3b,
dx
dr

= V,
dt
dr

= 1.

Integrating directly, with respect to r, gives

b = b0e−h3r, x = x0 + Vr, t = t0 + r,

where t0 = 0 means that t = r and the solutions can be written as

b(x, t) = b0(x−Vt, 0)e−h3t,

for the initial distribution b0(x0, 0) = b0(x−Vt, 0). The distribution therefore travels

as a wave from the initial condition, damped exponentially in time.

Region IIb

In this region, characteristic curves are given by

db
dr

= −(h1 − h2x)b,
dx
dr

= V,
dt
dr

= 1,

Integrating gives as before gives t = r and x = x0 + Vt. We substitute these into the

equation for b to obtain
db
dt

= −(h1 − h2(x0 + Vt))b,

which is solved by separation of variables to give

b(x, t) = b0(x−Vt, 0)e−
(
(h1−h2x0)t−

Vh2
2 t2

)
,
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for the initial distribution b0(x0, 0).

Region Ve

The characteristic equations are very similar to in region IIb, and are given by

db
dr

= −(h1 + h2x)b,
dx
dr

= V,
dt
dr

= 1.

Similarly to the previous section, we arrive at t = r, x = x0 + Vt and

b(x, t) = b0(x−Vt, 0)e−
(
(h1+h2x0)t+

Vh2
2 t2

)
,

for the initial distribution b0(x0, 0) and where x0 = x−Vt.

Region IIIc

The characteristic equations are

db
dr

= (1 + x)− (1 + h1 + (1− h2)x)b,
dx
dr

= V,
dt
dr

= 1.

Using t = r, x = x0 + Vt in the first equation gives

db
dt

= (1 + x0) + Vt− (1 + h1 + (1− h2)x0)b− (1− h2)Vtb,

which can be rearranged to

db
dt

+ ((1 + h1 + (1− h2)x0) + (1− h2)Vt)b = (1 + x0) + Vt.

We define the constant α1 = 1+ h1 +(1− h2)x0 and use an integrating factor to obtain

d
dt

(
beα1t+ (1−h2)V

2 t2
)
= ((1 + x0) + Vt)eα1t+ (1−h2)V

2 t2
.

Integrating both sides leads to

beα1t+ (1−h2)V
2 t2

= (1 + x0)
∫

eα1t+ (1−h2)V
2 t2

dt + V
∫

teα1t+ (1−h2)V
2 t2

dt,

where the exponentials can be expressed as

exp
(

α1t +
(1− h2)V

2
t2
)
= exp

(
(1− h2)V

2

(
t2 +

2α1

(1− h2)V
t
))

= exp

(
(1− h2)V

2

((
t +

α1

(1− h2)V

)2

−
(

α1

(1− h2)V

)2
))

= δ1 exp

(
β

(
t +

α1

(1− h2)V

)2
)

,
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where δ1 = exp
(
− α2

1
2(1−h2)V

)
and β = (1−h2)V

2 . We can then use the substitution

u = t + α1
(1−h2)V

, which leaves the equation to be solved, after some rearranging, as

beβu2
=

(
(1 + x0)−

α1

1− h2

) ∫
eβu2

du + V
∫

ueβu2
du.

Integrating yields

beβu2
=

1
2

(
(1 + x0)−

α1

1− h2

)√
π

β
erfi(

√
βu) +

V
2β

eβu2
+ c1,

for constant c1 which will be determined by b0. Dividing by the exponential, substi-

tuting in the original variables and with γ1 = 1
2

(
− h1+h2

1−h2

)
, a constant, the solution in

IIIc is given by

b(x, t) = γ1

√
π

β
erfi

(√
β

(
t +

α1

(1− h2)V

))
e−β

(
t+ α1

(1−h2)V

)2

+
V
2β

+ c1e−β
(

t+ α1
(1−h2)V

)2

,

where c1 is determined by setting t = 0 and satisfying the initial condition b(x0, t0) =

b0(x−Vt, 0). This gives

c1 = b0(x−Vt, 0)eβ
(

α1
(1−h2)V

)2

− γ1

√
π

β
erfi

(√
β

(
α1

(1− h2)V

))
− V

2β
eβ
(

α1
(1−h2)V

)2

.

Region IVd

In the final region on the bottom layer (Fig. A.1) the characteristic equations are

db
dr

= (1− x)− (1 + h1 − (1− h2)x)b,
dx
dr

= V,
dt
dr

= 1.

Using t = r, x = x0 + Vt in the first equation

db
dt

= (1− x0 −Vt)− (1 + h1 − (1− h2)(x0 + Vt))b.

The process for solving this is very similar to the steps in region IIIc (shown above),

and requires an integrating factor and then a substitution. The resulting solution is

b(x, t) = γ2

√
π

β
erf
(√

β

(
t− α2

(1− h2)V

))
eβ
(

t− α2
(1−h2)V

)2

+
V
2β

+ c2eβ
(

t− α2
(1−h2)V

)2

,

where α2 = 1 + h1 − (1− h2)x0, β = (1−h2)V
2 and γ2 = 1

2

(
− h1+h2

1−h2

)
. The constant c2

is determined by setting t = 0 and satisfying the initial condition b(x0, t0) = b0(x −
Vt, 0), and is defined as

c2 = b0(x−Vt, 0)e−β
(
− α2

(1−h2)V

)2

− γ2

√
π

β
erf
(√

β

(
− α2

(1− h2)V

))
− V

2β
e−β

(
− α2

(1−h2)V

)2

.
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Higher layer partitions

For the other partitions the general solutions will be of a similar form to the above (for

their respective regions (i)–(vi), but initial data will need to be replaced by the data

entering the regions from the left (lowest value of x) border. This will result in increas-

ingly nested solutions. Taking region IIa as an example, the solution is calculated as

follows.

Region IIa

Using the general solution from solving the characteristic equations in region IIb, we

know that the information in region IIa propagates according to

b = B0(−s, t1a)e
−
(
(h1−h2x1a )(t−t1a )−

Vh2
2 (t−t1a )

2
)
,

where B0(−s, t1a) is now the information arriving at the left hand boundary, x1a = −s,

rather than the initial data at t = 0. This occurs at a time t1a(x0) ≥ 0, dependent on

the initial x0 in region (i). As V is constant, t1a is given by t1a = (−s − x0)/V. The

data arriving into IIa all originates from the initial distribution b0 at time t = 0, so

we know that B0(−s, t1a) = b0(x − Vt, 0)e−h3t1a . It is then propagated according to

the same rules as in IIb, but with the need to replace t by t− t1a and x0 by x1a in the

exponential. Combining these results we have

b(x, t) = b0(x−Vt, 0)e−h3t1a e−
(
(h1−h2x0)(t−t1a )−

Vh2
2 (t−t1a )

2
)
.

This replacement of t by t− t1a and x0 by x1a is seen by considering the characteris-

tics. Integrating gives t = r + t1a and x = x1a + Vr. The x equation reduces back to

x = x0 + Vt, but as we are integrating for b with respect to r (=t− t1a ) rather than t,

the x0 from the IIb solution is replaced by x1a .

The remaining solutions for IIIb, IVc, Vd and VIe use the same method and are listed

in their final form. As a general rule, we will use the solution from the six above re-

gions for the region (k) under consideration, but with t replaced by t− tk, where tk(x0)

is the time that the region is entered, and with x0 replaced by xk, the left boundary

coordinate at time tk. The initial condition Bk is determined by continuity and by

propagating b0(x− Vt, 0) according to the region (k-1) solution for a time tk. We see

that as we progress upwards in the diagram these solutions will become increasingly

nested.
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Region IIIb

Distributions enter IIIb from IIb after a time t1b = −1−x0
V . They propagate according

to:

b(x, t) =
(

γ1

√
π

β
erfi

(√
β

(
(t− t1b) +

α̂1

(1− h2)V

))
+ ĉ1

)
e−β

(
(t−t1b

)+
α̂1

(1−h2)V

)2

+
V
2β

,

where ĉ1 is given by

ĉ1 = B1b(−1, t1b)e
β
(

α̂1
(1−h2)V

)2

− γ1

√
π

β
erfi

(√
β

(
α̂1

(1− h2)V

))
− V

2β
eβ
(

α̂1
(1−h2)V

)2

.

for initial condition B1b(−1, t1b). This comes from region IIb after time t1b and is de-

fined as

B1b(−1, t1b) = b0(x−Vt, 0)e−
(
(h1−h2x0)t1b

− Vh2
2 t2

1b

)
.

The constants β and γ1 are as defined as before (region IIIc), and α̂1 = h1 + h2 is

similar to α1 but with x0 replaced by x1b = −1.

Region IVc

Distributions enter IVc from region IIIc after a time t1c =
−x0

V and are governed by

b(x, t) =
(

γ2

√
π

β
erf
(√

β

(
(t− t1c)−

α̂2

(1− h2)V

))
+ ĉ2

)
eβ
(
(t−t1c )−

α̂2
(1−h2)V

)2

+
V
2β

,

where ĉ2 is:

ĉ2 = B1c(0, t1c)e
−β
(
− α̂2

(1−h2)V

)2

− γ2

√
π

β
erf
(√

β

(
− α̂2

(1− h2)V

))
− V

2β
e−β

(
− α̂2

(1−h2)V

)2

.

The constant α̂2 = 1+ h1 is found similarly to α2 in region IVd, but where x0 has been

replaced by x1c = 0. The initial condition B1c is given by the IIIc solution after time t1c

and is

B1c(0, t1c) =

(
γ1

√
π

β
erfi

(√
β

(
t1c +

α1

(1− h2)V

))
+ c1

)
e−β

(
t1c+

α1
(1−h2)V

)2

+
V
2β

where c1 is as defined previously in the calculations for region IIIc.

Region Vd

Initial data from IVd enters Vd at time t1d =
1−x0

V . It then propagates according to

b(x, t) = B1d(1, t1d)e
−
(
(h1+h2xv)(t−t1d

)+
Vh2

2 (t−t1d
)2
)
,
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where xv = 1 is the initial value at the boundary (at time t1d ) and B1d(1, t1d) is given

by

B1d(1, t1d) = γ2

√
π

β
erf
(√

β

(
t1d −

α2

(1− h2)V

))
eβ
(

t1d
− α2

(1−h2)V

)2

+
V
2β

+ c2eβ
(

t1d
− α2

(1−h2)V

)2

,

for the constants c2, α2, β and γ2 as previously defined (region IVd) and where x0 =

x−Vt.

Region VIe

In this region initial data from Ve enters VIe at time t1e = s−x0
V . It then propagates

according to

b(x, t) = b0(x−Vt, 0)e−((h1+h2x0)t1e+
Vh2

2 t2
1e )e−h3(t−t1e ).

For the next layer (IIIa, IVb, Vc, VId) the initial condition will be informed by the two

previous regions by using the last six solutions evaluated at times t2a to t2d . As the

width of the intervals are fixed, the t2 − t1 terms can be evaluated exactly and used

to simplify the result. The solutions to the characteristic equations with a non-zero

initial time will give terms involving t− t2, similarly to before.

Region IIIa

This region is relevant after time t2a , given by t2a = t1a +
s−1
V . Using x0 = x−Vt, the

solution follows

b(x, t) =
(

γ1

√
π

β
erfi

(√
β

(
(t− t2a) +

α̂1

(1− h2)V

))
+ c̃1

)
e−β

(
(t−t2a )+

α̂1
(1−h2)V

)2

+
V
2β

,

where c̃1 is

c̃1 = B2a(−1, t2a)e
β
(

α̂1
(1−h2)V

)2

− γ1

√
π

β
erfi

(√
β

(
α̂1

(1− h2)V

))
− V

2β
eβ
(

α̂1
(1−h2)V

)2

,

and

B2a(−1, t2a) = b0(x−Vt, 0)e−h3t1a exp
(
−
(
(s− 1)(h1 − h2xii)

V
− h2(s− 1)2

2V

))
.

The constant α̂1 is defined as before (IIIb) and xii = −s is the position of the boundary

that is crossed at time t2a . To simplify the solution, t2a − t1a =
s−1
V has been used.

Region IVb
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Distributions enter IVb from region IIIb after a time t2b = t1b +
1
V . They are governed

by

b(x, t) =
(

γ2

√
π

β
erf
(√

β

(
(t− t2b)−

α̂2

(1− h2)V

))
+ c̃2

)
eβ
(
(t−t2b )−

α̂2
(1−h2)V

)2

+
V
2β

,

where c̃2 is

c̃2 = B2b(0, t2b)e
−β
(
− α̂2

(1−h2)V

)2

− γ2

√
π

β
erf
(√

β

(
− α̂2

(1− h2)V

))
− V

2β
e−β

(
− α̂2

(1−h2)V

)2

.

The initial condition B2b is given by the IIIb solution after time t2b

B2b(0, t2b) =

(
γ1

√
π

β
erfi

(√
β

(
1
V

+
α̂1

(1− h2)V

))
+ ĉ1

)
e−β

(
1
V +

α̂1
(1−h2)V

)2

+
V
2β

,

where ĉ1 is as defined in region IIIb. Additionally we have used t2b − t1b = 1
V and

x0 = x−Vt.

Region Vc

The distribution from IVc enters Vc at time t2c = t1c +
1
V . It then propagates according

to

b(x, t) = B2c(1, t2c)e
−
(
(h1+h2xv)(t−t2c )+

Vh2
2 (t−t2c )

2
)
,

where B2c(1, t2c) is given by

B2c(1, t2c) =

(
γ2

√
π

β
erf
(√

β

(
1
V
− α̂2

(1− h2)V

))
+ ĉ2

)
eβ
(

1
V−

α̂2
(1−h2)V

)2

+
V
2β

.

The constant ĉ2 is as given previously, by the solution in region IVc. The difference

t2c − t1c =
1
V has also been used and x0 = x−Vt.

Region VId

In region VId the distribution (propogating from region Vd) is considered after a time

t2d = t1d +
s−1
V . It evolves according to

b(x, t) = B2d(s, t1d)e
−h3(t−t2d ),

where B2d is from Vd at time t2d

B2d = B1d(1, t1d)e
−
(

(s−1)(h1+h2xv)
V +

h2(s−1)2

2V

)
,
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and B1d(1, t1d) is as defined previously (region Vd) and x0 = x − Vt. We have also

used t2d − t1d =
s−1
V to simplify the expression for B2d .

The next layer (regions IVa, Vb, VIc) consists of regions that have passed through

three regions already. Initial conditions will come from the solutions above (IIIa, IVb,

Vc), evaluated at times t3a to t3c that correspond to arrival at x = 0, x = 1 and x = s,

respectively.

Region IVa

In this region, we look for solutions at times t − t3a. At time t = t3a we denote the

initial condition by B3a , which is found by evaluating the IIIa solution at t = t3a and

x = 0. The evolution of the distribution is governed by

b(x, t) =
(

γ2

√
π

β
erf
(√

β

(
(t− t3a)−

α̂2

(1− h2)V

))
+ c∗2

)
eβ
(
(t−t3a )−

α̂2
(1−h2)V

)2

+
V
2β

,

where c∗2 is

c∗2 = B3a(0, t3a)e
−β
(
− α̂2

(1−h2)V

)2

− γ2

√
π

β
erf
(√

β

(
− α̂2

(1− h2)V

))
− V

2β
e−β

(
− α̂2

(1−h2)V

)2

.

The initial condition is calculated as

B3a(0, t3a) =

(
γ1

√
π

β
erfi

(√
β

(
1
V

+
α̂1

(1− h2)V

))
+ c̃1

)
e−β

(
( 1

V +
α̂1

(1−h2)V

)2

+
V
2β

,

where c̃1 and B2a are as defined in region IIIa. The relations t2a − t1a = s−1
V and

t3a − t2a =
1
V have also been used.

Region Vb

In this region, solutions are for the times t − t3b . At time t3b , we denote the initial

condition by B3b . This gives

b(x, t) = B3b(1, t3b)e
−
(
(h1+h2xv)(t−t3b )+

Vh2
2 (t−t3b )

2
)
,

with initial condition

B3b(1, t3b) =

(
γ2

√
π

β
erf
(√

β

(
1
V
− α̂2

(1− h2)V

))
+ c̃2

)
eβ
(

1
V−

α̂2
(1−h2)V

)2

+
V
2β

.

The constant c̃2 is as defined in region IVb. Additionally t2b − t1b = t3b − t2b =
1
V have

been used.
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Region VIc

This region begins at time t3c = t1c +
s
V , and has solution

b(x, t) = B3c(s, t3c)e
−h3(t−t3c ),

for B3c(s, t3c) given by

B3c(s, t3c) = B2c(1, t2c)e
−
(

(s−1)(h1+h2xv)
V +

(s−1)2h2
2V

)
.

The initial condition B2c(1, t2c) is defined as in region Vc. Relations including t3c −
t2c =

s−1
V and t2c − t1c =

1
V have also been used.

Initial conditions for the penultimate layer (regions Va, VIb) will come from evalua-

tion the IVa and Vb solutions at x = 1 and x = s respectively, at corresponding times

t4a(x0) and t4b(x0).

Region Va

The solution in Va is given by

b(x, t) = B4a(1, t4a)e
−
(
(h1+h2xv)(t−t4a )+

Vh2
2 (t−t4a )

2
)
,

for

B4a(1, t4a) =

(
γ2

√
π

β
erf
(√

β

(
1
V
− α̂2

(1− h2)V

))
+ c∗2

)
eβ
(

1
V−

α̂2
(1−h2)V

)2

+
V
2β

,

where c∗2 is given in region IVa. The relations t2a − t1a =
s−1
V and t3a − t2a = t4a − t3a =

1
V have been used.

Region VIb

The solution in VIb is

b(x, t) = B4b(s, t4b)e
−h3(t−t4b

),

where

B4b(s, t4b) = B3b(1, t3b)e
−
(

(s−1)(h1+h2xv)
V +

h2(s−1)2

2V

)
,

and the initial condition B3b(1, t3b) has been defined in region Vb. Additionally t2b −
t1b = t3b − t2b =

1
V and t4b − t3b =

s−1
V have been used.
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The final region, VIa, tracks initial data from Ia after it has passed through each of the

other five ‘a’ regions. The initial condition is determined by requiring continuity with

the solution of region Va evaluated at x = s and time t5a(x0) .

Region VIa

The solution in VIa is given by

b(x, t) = B5a(s, t5a)e
−h3(t−t5a ),

where

B5(s, t5a) = B4a(1, t4a)e
−
(

(h1+h2xv)(s−1)
V +

h2(s−1)2

2V

)
,

and where B4a(1, t4a) is defined as in region Va. This solution contains information

that has propagated through each of the other five ‘a’ regions; the general solutions

for regions (i)–(vi) have therefore all been used and are nested within this result.

The boundaries of each of the 21 regions in characteristic space (Fig. A.1), which give

the constraints for where the above solutions are valid, are listed in Table A.1.

Time-dependent relative velocities, V(t)

In the above solutions we assumed that V was constant in time, which led to char-

acteristics that were straight lines. If V = V(t) now varies in time, this is no longer

the case, and the relation x = x0 + Vt from the previous section must be replaced by

x = x0 +
∫ t

t0
V(t)dt. An example of this method, applied to a problem with 3 (rather

than 6) piecewise linear regions, is found in [8].

In our example, the solutions in regions Ia and VIf will remain the same (except for

this replacement of Vt by
∫ t

t0
V(t)dt), but the boundaries and the solutions in the

remaining regions will need to be reconsidered. For some choices of time-dependent

V(t) it will be possible to use a similar method as above; however, the partitions in

characteristic space will become more difficult to track since the characteristics are no

longer straight lines. A further consideration, if choosing the form of the function

V(t), is that V(t) will appear in several of the integrals (and sometimes as products

with other functions of t) and these will therefore need to be integrable. A simpler

possibility could be to choose a piecewise constant function for V, and make repeated

use of the above solutions. Alternatively, as shown in Fig. 2.15, numerical solutions

can be sufficiently accurate and in many cases may be the preferred approach.



CHAPAPP A: ANALYTICAL SOLUTIONS FOR THE SINGLE-SITE MODEL 187

Region x-domain t-domain

Ia x < −s t ≥ 0

IIb −s ≤ x < −1, 0 ≤ t < s+x
V

IIa −s ≤ x < −1, t ≥ s+x
V

IIIc −1 ≤ x < 0, 0 ≤ t < 1+x
V

IIIb −1 ≤ x < 0, 1+x
V ≤ t < s+x

V

IIIa −1 ≤ x < 0, t ≥ s+x
V

IVd 0 ≤ x < 1 0 ≤ t < x
V

IVc 0 ≤ x < 1 x
V ≤ t < 1+x

V

IVb 0 ≤ x < 1 1+x
V ≤ t < s+x

V

IVa 0 ≤ x < 1 t ≥ s+x
V

Ve 1 ≤ x < s 0 ≤ t < x−1
V

Vd 1 ≤ x < s x−1
V ≤ t < x

V

Vc 1 ≤ x < s x
V ≤ t < 1+x

V

Vb 1 ≤ x < s 1+x
V ≤ t < s+x

V

Va 1 ≤ x < s t ≥ s+x
V

VIf x ≥ s 0 ≤ t < x−s
V

VIe x ≥ s x−s
V ≤ t < x−1

V

VId x ≥ s x−1
V ≤ t < x

V

VIc x ≥ s x
V ≤ t < 1+x

V

VIb x ≥ s 1+x
V ≤ t < s+x

V

VIa x ≥ s t ≥ s+x
V

Table A.1: The x− t values corresponding to the 21 partitions in characteristic space,

where the above solutions are valid, and as shown in Fig. A.1.



Appendix B

Parameter values

B.1 Parameter values for Chapter 3

B.1.1 Dimensionless parameter values

The dimensionless parameter values used in the continuum and discrete simulations,

unless otherwise stated in figure captions, are given below.

Parameter Description Value

KA Cell Stiffness 2

KE ECM Stiffness 4

h Integrin binding range 1

s Maximum integrin range 1.5

h1 Dimensionless unbinding parameter (Eq. 2.2.7) 0.5

h2 Dimensionless unbinding parameter (Eq. 2.2.7) 0.4

h3 Dimensionless unbinding parameter (Eq. 2.2.7) 5000

δ
Ratio of microscale binding range, ĥ, to macroscale

lengthscale L̂
0.05

ν
Ratio of microscale binding range, ĥ, to microscale

characteristic length, l̂.
5

ω Frequency of oscillatory loading 20

Table B.1: Dimensionless parameter values for the continuum simulations in Chap-

ter 3, unless otherwise stated in figure captions.
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Parameter Description Value

NIA Number of IA nodes 300

NE Number of E nodes 500

κa Cell Spring Constant 2(NIA -1)

κr Restoring Spring Constant 2(NIA -1)

κe ECM Spring Constant 4(NE-1)

κb Integrin Spring Constant 1.8

h Integrin binding range 1

s Maximum integrin range 1.5

h1 Dimensionless unbinding parameter (Eq. 2.2.7) 0.5

h2 Dimensionless unbinding parameter (Eq. 2.2.7) 0.4

h3 Dimensionless unbinding parameter (Eq. 2.2.7) 5000

δ
Ratio of microscale binding range, ĥ, to macroscale

lengthscale L̂
0.05

ω Frequency of oscillatory loading 20

Table B.2: Parameter values for the discrete simulations in Chapter 3, unless other-

wise stated in figures. Note that the cell and ECM spring constants are

scaled by (NIA -1) and (NE-1), respectively, which are the number of cell

and ECM springs that act in series between X = 0 and X = 1 (see Fig.

2.2).

B.1.2 Dimensional parameter values

The above dimensionless parameters were obtained, where possible, by using dimen-

sional values from the literature (see below). Some parameters were unknown or

widely variable in the literature (denoted by ∗∗) and are discussed further below.

Parameter Description Range of values Sources
Chosen

value

T̂
Breathing cycle

duration
2.7− 5.8s [145] 3.9s

ω̂
Frequency (angular) of

oscillatory loading
1.08− 2.33s−1

ω̂ =

2π/T̂
1.6s−1

ĝ1
Unstressed unbinding

rate
0.012− 0.04s−1

[92],

[127]
0.04s−1
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ĝ2 Unbinding parameter 0.032s−1∗∗

ĝ3 Forced unbinding rate Instantaneous
Model

choice
400s−1

f̂1
Unstressed binding

rate
0.015− 1.5s−1

[127],

[144]
0.08s−1∗∗

ĥ Integrin binding range 0− 28nm [101] 20nm

ŝ

Maximum integrin

range before

unbinding

28nm+ [101] 30nm

λ̂b
Integrin spring

constant
0.15− 2pN/nm

[34], [48],

[108] 0.15pN/nm

ρ̂
Number of integrins

per unit length
0− 0.2nm−1 [91] 0.1nm−1∗∗

l̂ Characteristic length 4nm

L̂ Characteristic length 400nm

Table B.3: Dimensional parameter values used to obtain the dimensionless values

in Table B.1. Parameters that were unknown or widely variable in the

literature are denoted by ∗∗ and are discussed further below.

The unstressed binding rate f̂1 varies widely in the literature, as it depends on a num-

ber of factors including integrin affinity, integrin density and ligand density. Here we

have chosen a rate based on [127, 144]; however, higher values have also been used in

the simulations of [82, 108]. The unbinding parameter, ĝ2, used in the piecewise linear

rates (Eq. 2.1.3) does not have an equivalent in the literature, and was chosen to be

of the same order of magnitude as the other reaction rates, ĝ1 and f̂1. Some parame-

ter values were estimated from known properties of integrins. The integrin binding

ranges, ĥ and ŝ are estimates based on the length of integrins. An upper bound for

ρ̂ is estimated based on integrin diameters, which are typically between 5-10nm [91].

This suggests a maximum value of ρ̂ = 0.2nm−1; however, the integrin density will

vary up to this value depending on the extent of integrin clustering.

The constants K̂A and K̂E in Eq. 2.2.23 are given values (240pN and 480pN respec-

tively) such that the dimensionless stiffness parameters, KA and KE in Eq. 2.2.31, are

O(1). We make this choice so that the drag arising from bound integrins, F(X, t), in-

fluences the macroscale dynamics via Eq. 2.2.31, since integrins are known to be able



CHAPAPP B: PARAMETER VALUES 191

to influence cell and ECM deformation.

Naturally there is some uncertainty associated with the above parameters, and we

have investigated the effect of varying some of these (Chapter 3). We find that the

qualitative behaviours remain similar for a range of parameter values.

B.2 Parameter values for Chapter 4

B.2.1 Integrin diffusion and activation

In Section 4.1 we considered an extended reaction sequence to include integrin dif-

fusion and activation reactions. The dimensionless governing equations are given in

Eqs. 4.1.2–4.1.4, along with Eqs. 2.2.28, 2.2.29 and 2.2.31. To nondimensionalise the

system we employ the scalings of Eq. 2.2.26. In addition, we have obtained dimen-

sionless activation and deactivation rates, kA and kD respectively, and a dimensionless

diffusion constant, D, through the scalings

kA = k̂A/ f̂1, kD = k̂D/ f̂1, D = D̂/ f̂1 L̂2. (B.2.1)

Each macroscale species has been scaled by the total adaptor protein concentration,

Âtot, which is conserved across it’s different states to give the dimensionless relation

IA + A + B = 1.

The dimensionless parameter values used in Section 4.1, unless otherwise stated, are

Parameter Description Value

KA Cell Stiffness 2

KE ECM Stiffness 4

h Integrin binding range 1

s Maximum integrin range 1.5

h1 Dimensionless unbinding parameter (Eq. 2.2.7) 0.5

h2 Dimensionless unbinding parameter (Eq. 2.2.7) 0.4

h3 Dimensionless unbinding parameter (Eq. 2.2.7) 5000

δ
Ratio of microscale binding range, ĥ, to macroscale

lengthscale L̂
0.05

ν
Ratio of microscale binding range, ĥ, to microscale

characteristic length, l̂.
5
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ω Frequency of oscillatory loading 20

kA Dimensionless activation rate 2

kD Dimensionless deactivation rate 0.1

D Dimensionless diffusion constant 0.05

Table B.4: Dimensionless parameter values for simulations in Section 4.1, unless

otherwise stated in figure captions

B.2.2 Force-dependent strengthening

In Section 4.2 we considered the extended reaction sequence, which includes integrin

diffusion and activation reactions, and a strain-dependent strengthening of integrins

due to reinforcement by vinculin. The dimensionless governing equations are given

in Eqs. 4.2.3–4.2.6, along with Eqs. 2.2.28, 2.2.29, 2.2.31, 4.2.8 and 4.2.9. To nondi-

mensionalise the system we employ the scalings of Eq. 2.2.26. In addition, we have

obtained dimensionless activation and deactivation rates, kA and kD respectively, and

a dimensionless diffusion constant, D, through the scalings

kA = k̂A/ f̂1, kD = k̂D/ f̂1, D = D̂/ f̂1 L̂2. (B.2.2)

Dimensionless strengthening and weakening rate parameters (in ks(x) and kw(x) re-

spectively) are obtained from the scalings

s1 = ŝ1/ f̂1, w1 = ŵ1/ f̂1. (B.2.3)

Each macroscale species has been scaled by the total adaptor protein concentration,

Âtot, which is conserved across it’s different states to give the dimensionless relation

IA + A + B + BV = 1.

The dimensionless parameter values used in Section 4.1, unless otherwise stated, are

Parameter Description Value

KA Cell Stiffness 2

KE ECM Stiffness 4

h Integrin binding range 1

s Maximum integrin range 1.5

h1 Dimensionless unbinding parameter (Eq. 2.2.7) 0.5

h2 Dimensionless unbinding parameter (Eq. 2.2.7) 0.4
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h3 Dimensionless unbinding parameter (Eq. 2.2.7) 5000

δ
Ratio of microscale binding range, ĥ, to macroscale

lengthscale L̂
0.05

ν
Ratio of microscale binding range, ĥ, to microscale

characteristic length, l̂.
5

ω Frequency of oscillatory loading 20

kA Dimensionless activation rate 2

kD Dimensionless deactivation rate 0.1

D Dimensionless diffusion constant 0.05

s1 Dimensionless strengthening parameter (Eq. 4.2.8) 50

w1 Dimensionless weakening parameter (Eq. 4.2.9) 0.05

κ Relative strength of bv spring constant (Eq. 4.2.10) 2

Table B.5: Dimensionless parameter values for simulations in Section 4.2, unless

otherwise stated in figure captions.

B.3 Parameter values for Chapter 5

B.3.1 Retraction curves

The dimensionless parameter values used in the approach–retraction curves (repli-

cating a common AFM protocol) are given below. These correspond to the results in

Figs. 5.4 and 5.5.

Parameter Description Value

LA Dimensionless cell rest length 1

LI Dimensionless integrin rest length 0.5

LE Dimensionless ECM rest length 1

kA Dimensionless cell stiffness 2

kE Dimensionless ECM stiffness 4

h Dimensionless integrin binding range 1

s Dimensionless maximum integrin range
√

1.5

h1 Dimensionless unbinding parameter (Eq. 2.2.7) 0.5

h2 Dimensionless unbinding parameter (Eq. 2.2.7) 0.4

h3 Dimensionless unbinding parameter (Eq. 2.2.7) 1000
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ν
Ratio of microscale binding range, ĥ, to microscale

characteristic length, l̂.
5

D Dimensionless indentation depth 1.25

Table B.6: Dimensionless parameter values for the approach–retraction study in

Figs. 5.4 and 5.5

B.3.2 Vertical oscillations: qualitative study

The dimensionless parameter values used in the qualitative study (Section 5.1.3) for

vertical oscillations are given below.

Parameter Description Value

LA Dimensionless cell rest length 1

LI Dimensionless integrin rest length 0.5

LE Dimensionless ECM rest length 1

kA Dimensionless cell stiffness 2

kE Dimensionless ECM stiffness 4

h Dimensionless integrin binding range 1

s Dimensionless maximum integrin range
√

1.5

h1 Dimensionless unbinding parameter (Eq. 2.2.7) 0.5

h2 Dimensionless unbinding parameter (Eq. 2.2.7) 0.4

h3 Dimensionless unbinding parameter (Eq. 2.2.7) 1000

ν
Ratio of microscale binding range, ĥ, to microscale

characteristic length, l̂.
5

ω Dimensionless frequency of oscillatory loading 5

D Dimensionless indentation depth 1

Table B.7: Dimensionless parameter values for the qualitative study in Section 5.1.3,

unless otherwise stated in figure captions

B.4 Parameter values for Chapter 6

The dimensional parameter values for the spatial rates functions in the HHM model

(Eqs. 6.1.5–6.1.7) are listed below.
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Parameter f̂A ĝA ĝB ĝC ˆ̃gA ˆ̃gB ˆ̃gC

Value 0.88 4.4 0.22 0.66 0.2 0.1 0.03

Table B.8: Dimensional rate constants used spatial rate functions (Eqs. 6.1.5–6.1.7) in

the HHM model. Values are taken from Mijailovich et al. [97] and Hiorns

et al. [65].

For the remaining rate constants, k̂1−4 (Fig. 6.1), we use k̂2=k̂3=0.1 and either k̂1=k̂4=0.35

(t<5) or k̂1=k̂4=0.06 (t>5). All of these have units s−1, and follow Mijailovich et al. [97]

with one exception; for ˆ̃gB we follow Hiorns et al. [65] and use 0.1s−1 instead of

0.01s−1. In addition to rate parameters, the crossbridge binding range must be spec-

ified. We use ĥc = 15.6nm [70, 97]. These parameters are nondimensionalised using

the scalings in Eq. 6.2.4; each of the rate parameters is scaled by the dimensional

integrin binding rate, f̂1 (Eq. 2.1.2), where f̂1 = 0.08s−1.

The remaining dimensionless parameter values used in Section 6.3.1 and Section 6.3.2

are given below. Note that, in Section 6.3.1, we first consider the case where there is

no integrin binding or rupture. In this case, the rate parameters h1–h3 are zero. In

Section 6.3.1, we additionally use an indentation depth (Eq. 6.3.1) of D = 0.

Parameter Description Value

LA Dimensionless cell rest length 10

LI Dimensionless integrin rest length 0.5

LE Dimensionless ECM rest length 1

kA Dimensionless passive cell stiffness 0.5

kE Dimensionless ECM stiffness 4

h Dimensionless integrin binding range 1

s Dimensionless maximum integrin range
√

1.5

h1 Dimensionless integrin unbinding parameter (Eq. 2.2.7) 0.5

h2 Dimensionless integrin unbinding parameter (Eq. 2.2.7) 0.4

h3 Dimensionless integrin unbinding parameter (Eq. 2.2.7) 1000

ν
Ratio of microscale binding range, ĥ, to microscale

characteristic length, l̂.
5

ω Dimensionless frequency of oscillatory loading 20

D Dimensionless indentation depth (Eq. 6.3.1) 2
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β
Dimensionless scale factor for contractile force (Eq.

6.2.10)
0.3

γ Dimensionless crossbridge binding range 1.56

Table B.9: Dimensionless parameter values for Section 6.3.1 and Section 6.3.2, unless

otherwise stated in figure captions

The dimensionless parameter β (Eq. 6.2.10) is defined as β = ρ̂cλ̂cĥNCU/ρλ̂b, where

ρ̂c is the number of crossbridges per unit length of a contractile unit, λ̂c is the individ-

ual crossbridge stiffness, ĥ is the integrin binding range, NCU is the number of parallel

contractile units, ρ is the number of integrins (bound and unbound) and λ̂b is the indi-

vidual integrin spring constant. Overall, this parameter controls the relative strength

of the crossbridges to integrins. From the literature we have a range of 1 < λ̂c <

2.2pN/nm for the dimensional crossbridge stiffness [10] and 0.15 < λ̂b < 2pN/nm

for the dimensional integrin stiffness [34], [48], [108]. There could be wide variability

in the relative numbers of integrins and crossbridges, due to changes both the in-

tegrin density and the number and length of actin filaments connected (via adaptor

proteins) to the integrin complexes. The values that these take are not known, and our

approach in Section 6.3 is to vary β through a range that allows us to observe the full

range of dynamics, from when integrins dominate to when crossbridges dominate.

Estimating or measuring these parameters will be important in future work.
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