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ABSTRACT

The gap between low and high achievers  is  a worldwide concern in Education,
especially  when  it  comes  to  mathematics.  One  way  of  facing  this  issue  is  by
investigating the learning processes of those disadvantaged students at a classroom
level.  Bearing  this  in  mind,  I  started  my  research  by  observing  lessons  for  low
achieving students in an underperforming school in England. After getting acquainted
with the context, I designed lesson plans to teach fraction addition and subtraction
following  three  design  principles:  lessons  should  enable  students  to  build  their
knowledge  about  fractions  on  visual  representations,  students  should  have
opportunities to solve tasks without being told how to do it beforehand and lesson
plans should maintain some coherence with participant teachers’ current practices. The
first principle is the most relevant for my findings, and its choice was based on the
growing  evidence  pointing  out  the  relevance  of  visual  representations  for
mathematical learning and as a potential pathway to overcome some difficulties faced
by low achieving students. Three teachers enacted the lesson plans with a different
low achieving group each. Data was collected of the pupils’ working out, as registered
in the worksheets, and also in the form of audio recordings, taken during the lessons,
of my interactions with students about their thinking while solving the tasks. The data
analysis  revealed aspects  of  students’  learning  through visual  representations  that
were  grouped  into  two  major  findings.  Firstly,  the  lessons  were  successful  in
promoting  reasoning  anchored  in  visual  representations,  and  enabled  students  to
extend  their  knowledge  beyond  what  was  explicitly  taught  to  them.  Secondly,  an
apparent lack of visual skills  and prior knowledge on multiplication restricted their
engagement  with  some  tasks.  The  final  discussion  focuses  on  the  role  of  visual
representations in the learning of mathematics in general, but mainly for low achieving
students, and how this can be implemented in classrooms.
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 1  INTRODUCTION

 1.1  The researcher
My involvement with mathematics education started when I left computer science

and started my degree in mathematics teaching in Brazil. During this degree course, I
had the opportunity to get involved in research, and straight after that I started my
Master in Mathematics Education degree in a Brazilian university.

Following that, I became involved in a huge educational resource development
project that lasted for three years. During this period, I was teaching mathematics only
as a secondary activity.

As this project faded away, I focused more on my career as a teacher. That is when
I taught mathematics at Secondary and Higher Education and in courses related to
mathematics, education and computer science. However, I never had teaching as my
only  profession,  and  during  this  period  I  worked  on  some  initiatives  related  to
professional development for teachers at city and state level in Brazil.

Considering the six years since the end of my Master’s degree and the beginning
of my PhD studies, I experienced a very diverse range of activities related to teaching
mathematics, even though some of them were brief. At this point I felt that a PhD
degree could not only add a lot to my skills and knowledge, but also enable me to
reach higher positions when involved in such activities.

 1.2  Initial motivation for my research interest
The motivation for this research proposal came from my experience as a teacher

and  teacher  educator  in  Brazil,  combined  with  the  results  obtained  by  Brazilian
students in international and national assessment programs.

The last report from PISA  (OECD, 2012b) showed that the situation in Brazilian
education, especially in mathematics, is alarming to say the least. The report points out
that  around  67%  of  15  year  old  students  performed  below  level  2,  which  is  the
baseline for  students  at  this  age1.  In  other  words,  these students  “at  best  [...]  can

1 OECD countries' mean is 23% and general mean is 32%
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extract  relevant  information  from  a  single  source  and  can  use  basic  algorithms,
formulae,  procedures  or  conventions  to  solve  problems involving  whole  numbers”
(OECD, 2012b). This result is not isolated. In fact, the scenario is even worse if the
numbers from SAEB (Basic Education Assessment System, implemented nationwide in
Brazil) are considered. According to the most recent report, 83% of Year 9 students
(around  15  years  old)  achieved  lower  than  expected  for  their  age  (Todos  pela
Educação,  2012).  I  think it  is  important  to  stress  that  the severity  of  the Brazilian
situation arises not from comparisons with other countries, as is commonly done by
some  European  countries  in  relation  to  some  East  Asian  countries,  but  from  the
perception  that  most Brazilian  students  are  below  baseline  levels  according  to
international and national parameters.

Additionally,  PISA  and  SAEB  highlight  a  positive  correlation  between  socio-
economic status and achievement, which means that students from families with low
socio-economic status (SES) are in an even worse condition.

Since  the  70s,  when  the  movement  towards  the  universalisation  of  Basic
Education in Brazil started, Brazilian politicians have utilised mottos such as “school
for  everybody,”  or  “the  nation  of  Education,”  but  in  accordance  with  Penteado  &
Skovsmose (2009), I believe that “social inclusion is an attractive motto, but it could
easily remain no more than a motto if it is not considered how inclusion can be worked
on in practice” (p. 218).

From this point of view, classroom practices have to be central to any attempt to
address the issue of low achievement in Brazil. Although the country is the home of
renowned scholars such as Ubiratan D'Ambrósio and Paulo Freire, whose contributions
to  philosophical,  cultural  and  social  aspects  of  education  are  internationally
recognized,  my perception is  that  there is  a  lack of  classroom-based research and
interventions aimed at low-achieving students in Brazil.

This  was  the  starting  point  to  my research:  a  broad  interest  in  the  nature  of

classroom practices that could be used with low-achieving students in mathematics

in order to help them to succeed within the current educational system.
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 1.3  The choice of context
On one hand, the interest described before strongly suggests that my research

project should be carried out in Brazil,  while on the other,  my experience strongly
recommends the opposite.

As  highlighted  by  Valero  and Vithal  (1998),  usually  the reality  of  developing
countries is that they are not so stable and predictable as European countries. This
poses methodological challenges for researchers who intend to develop their research
in developing countries, such as Brazil. While the authors point out the need to face
these challenges,  in order to develop new and more adequate ways of developing
research in such contexts, due to limitations in terms of time and resources during PhD
research, I decided to carry out my research in the UK.

This decision revealed itself to be very fruitful, due to a fact previously unknown
to me: the adoption of  ability setting for  Mathematics in British secondary schools
(Francis et al., 2016). The environment of a low set classroom in the UK is considerably
close  to  the  environment  of  a  classroom  in  a  Brazilian  public  school  (meaning
comprehensive) in several aspects: relatively low student engagement,  low teacher
expectations, a restricted curriculum, and a general feeling that the current approaches
for teaching do not work with these students (Boaler & Wiliam, 2001).

Of course my findings cannot be directly transferred to the Brazilian reality, but I
believe these similarities approximate the experience that I will face in the future back
in Brazil.

 1.4  Structure of the thesis
Instead of opening this document with a long literature review chapter about the

main  topics  of  my  research,  I  decided  to  structure  this  document  reflecting  the
temporal evolution of my research process. This decision was based on two factors.
Firstly, I believe the story behind the thesis will be easier to understand if I tell it this
way.

Secondly, my research is not based on any overarching theory of learning that
could  serve  as  a  basis  for  everything  that  will  be  discussed  in  the  final  chapters
(Analysis, Discussion and Conclusions); thus, I cannot think of a good reason to open
this text with a big chapter about theory or a literature review. Instead, it seems more
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sensible to introduce literature when it is necessary to explain terminology, to justify
the focus and relevance of my analysis, and to explain my decisions throughout the
research process.

For this reason, the first theoretical section appears after I present my pre-field
work stage (Chapter  2),  based on which I  was  able  to refine the research interest
presented  above.  Then,  after  reporting  the  preliminary  study  (Chapter  3),  some
theoretical sections are necessary before stating the research question (Chapter 4).

Throughout Chapters 5 (Design of the lessons) and 6 (Data collection), literature
is discussed, when necessary, to justify the methodological choices and clarify their
characteristics.  During  Data  Analysis  (Chapter  7)  some  theoretical  sections  are
necessary in order to clarify nomenclature and the focus of the analysis. Finally, during
Chapter 8, literature is used to locate the contributions of the research within the wider
mathematics education scientific community.

Finally,  the  lesson  plans  used  during  data  collection  are  available  at
http://dx.doi.org/10.17639/nott.353 instead of as appendices of this document. This
decision was made because, as the lesson plans are themselves text documents, they
would not fit  properly in here. Also, the navigation offered by the website referred
before seems more adequate for such a long list of documents (more than 40).

 1.5  Related publications
I would like to highlight that some sections of this document are very similar to

texts that I have published during the course of my PhD studies.

“Possible  parallels  between  visual  representations  and  informal  knowledge”
(Barichello, 2015), published in the informal proceedings of the Day Conference of the
British Society for Research into the Learning of Mathematics, was based on the data
collected during the preliminary study and reported on in Chapter 3.

“Implications  of  Giaquinto's  epistemology  of  visual  thinking  for  teaching  and
learning of fractions” (Barichello, 2017), also published in the informal proceedings of
the  Day  Conference  of  the  British  Society  for  Research  into  the  Learning  of
Mathematics, was inspired by the data collected during the main study, and the result
of my theoretical engagement with Giaquinto’s (2007) ideas.

18
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Finally, an early version of my findings, together with an overview of the lesson
plans,  were  presented  in  the  oral  session  “Learning  fractions  through  visual
representations: a PhD research with low-achieving secondary students” during the 9 th

British Congress of Mathematics Education in 2018.

 1.6  Regarding “low achieving” and “ability 
grouping”

The fact that I am using the expression “low achieving” to refer to a certain group
of  students  does  not  reflect  any  sort  of  agreement  with  the  methods  used  to
determine levels of achievement in the United Kingdom.

My decision to use this term is based on the fact that those methods exist, are
known by  the students,  and adopted throughout  the system,  by policy-makers  to
teachers, and to students. Since primary school, students are evaluated, and in general
they  know  that  they  are  being,  or  will  be  evaluated,  and  the  outcome  of  such
evaluations.

The same can be said about the use of the term “ability grouping”. By using it, I am
just  referring  to  the  practice  widely  adopted  in  this  country  of  grouping  students
according to their score in an exam, and not subscribing to any principle underlying its
adoption, such as a fixed view of mathematical ability or the identification of ability
with a score in an exam.
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 2  THE PRE-FIELDWORK STAGE

In the beginning of the 2013-2014 Academic Year, Dr. Peter Gates was looking
for secondary schools to develop a long term research project about supporting low-
achieving and disadvantaged learners of mathematics. The Head of the Mathematics
Department  at  Purple  Valley  (pseudonym)  showed  interest  in  taking  part  in  the
project. Besides him, another two mathematics teachers at that school accepted the
invitation, and Dr. Peter Gates started observing lessons taught by them. In October
2014, I and another PhD student, Rita Santos Guimarães, joined him in observing the
lessons.

This initiative can be thought of as an overarching research project encompassing
both  mine  and  Guimarães’  PhD  research  projects.  Although  focusing  on  different
aspects,  the three of  us  shared more than just  context,  but  also  interests,  such  as
teaching and learning of disadvantaged students. Thus, we could constantly discuss
impressions, plans for action and pieces of data.

This stage had two main aims. Firstly, it allowed me to get acquainted with the
new context of a British school. Secondly, it enabled me to refine my research interest
into “a set of questions to which an answer could be given” (Hammersley & Atkinson,
2007, p. 24). Not only did the experience itself contribute to these aims, but also the
opportunity to interact with other members of the research team.

The next sections are important, not only as a report of the pre-fieldwork stage,
but also as an introduction to the context of the actual data collection, since it took
place at the same school.

 2.1  The context

 2.1.1  School
Purple Valley is located in the East Midlands, in an area described by the staff of

the school as being a typical white working-class neighbourhood. According to official
statistics, the social classification of the residents in this area encompasses managerial,
technical and skilled occupations, both non-manual and manual.
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When I started visiting the school, in the 2014-2015 academic year, it was “under
special measures” by Ofsted (indeed most of the secondary schools in the city were
similarly  graded on the basis  of  the percentage of  pupils  gaining 5 or  more A*-C
grades at  GCSE).  In the following academic year the school was taken over by an
Academy Trust.

The majority of the students are of white British origin and around one fifth are
from minority ethnic groups. Less than 4% of the students speak English as a second
language. The percentage of students in receipt of free school meals (around 45%) is
significantly higher than the national average (28%). The Head of the Mathematics
Department  perceives  the  school  to  be  ethnically  homogeneous  in  comparison  to
other schools in which he had worked before. In terms of attainment, he stated that
the  school  receives  students  slightly  below  the  national  average,  and  just  before
leaving the school, they also perform slightly below national average at GCSE.

The school is considered to be average in size, attending to about 1000 students,
which means 5 or 6 groups in each Year. The Mathematics Department is composed of
6 teachers, with one being part-time. Each teacher has her/his own classroom, where
she/he  teaches  all  the  lessons.  This  room  also  serves  as  a  personal  office,  where
teachers  spend  time  preparing  lessons,  marking  exams  and  having  occasional
meetings.

In terms of infrastructure, the school is very well served. The buildings are quite
new and properly designed for their purpose. Every room in the building where the
mathematics  lessons  took  place  is  equipped  with  a  computer  for  the  teacher,  an
electronic  white  board,  a  regular  board  and a  desk  visualizer.  Although  not  often
utilized, the school also has sets of tablets and notebooks to be used during lessons.
Teachers never complain about lack of equipment or basic materials.

 2.1.2  Teachers
During this stage, I observed lessons from 3 different teachers: David, Julia and

Oscar (pseudonyms). 

David is the Head of the Mathematics Department. He is an experienced teacher
and has taught in different schools before moving to Purple Valley four years ago. He
is  respected  by  the  other  teachers,  and  has  no  trouble  with  discipline  during  his
lessons, even though he is not strict about behaviour. The students see him as relaxed
and approachable. Based on what I have observed during the time I visited the school,
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he is the teacher that interacts the most with students around issues not related to
mathematics and school.

Julia has taught in Purple Valley her whole career. She has 11 years of experience,
and says openly that she identifies herself with Purple Valley’s students and enjoys
teaching there. She has never assumed any managerial position and shows no interest
in doing so. Julia is more strict in terms of behaviour than David and her lessons are
rarely disrupted. According to her, she is consciously more strict with Years 7 and 8,
and tries to adopt a more relaxed attitude with the older students. She is considered
successful by the other teachers and is recurrently asked to take over “critical” groups,
such as challenging groups in terms of behaviour or middle achieving Year 11 groups
that are perceived to be achieving below their potential.

Oscar  is  an experienced teacher who recently moved to Purple Valley.  He has
worked in several different schools during his career and seems to be not as integrated
with the other teachers  in Purple Valley.  He is  very eloquent  during meetings and
informal talks. Short disruptions for behaviour management are common during his
lessons, and he seems more distant from the students in issues not related to school
than Julia and David.

Most of the lessons observed during this stage were for Year 7, 8 and 9 following
the recommendation of Dr. Peter Gates not to insist on observing lessons for Year 10
and 11, because as they are closer to the GCSE exams, both teachers and students are
under more pressure and the school could be less inclined to accept interventions with
these years.

 2.1.3  Ability setting at Purple Valley
At Purple Valley students are placed in sets (each Year group is divided into 5 or 6

sets,  depending  on  the  number  of  students)  according  to  prior  attainment  in
Mathematics from Year 7 to Year 11, and in English in Years 10 and 11. As my research
interest  involves  low  achieving  students,  I  progressively  concentrated  my
observations into the bottom sets.

In general,  lower sets are small  in terms of numbers of students. For instance,
David’s Year 8 was composed only of 12 students, while the top sets usually reach the
maximum that the classroom can hold: about 32 students. 

Lower sets also follow a restricted version of the curriculum, in alignment with the
curriculum expected by their final (external) evaluation by the end of Year 11.
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It is also common for teachers during lessons for low set groups to have a teacher
assistant available. In general, she/he will focus on students with specific needs, such
as autism, behavioural problems or extremely low results in exams. This might happen
just by sitting together with that particular student (or small group of students) and
helping them with regular activities throughout the lesson, or by taking them out of
the classroom to engage in other activities developed specifically for them.

Students are aware of the set in which they have been placed. From one academic
year to the next, it is common to have students being moved up or down to other sets.
Although I did not have access to official numbers, I would say that this happens to
one or two students on each extreme of the achievement spectrum per year group.

Finally, based on the time I spent at the school, there was no preference in terms
of teacher allocation to high or low sets. The only situation where this happened was
for Year 11: the teacher perceived as most effective would be allocated to the middle
sets,  which  were  decisive  for  the  school  to  reach  a  higher  proportion  of  students
achieving 5 or more A*-C grades on GCSE.

 2.2  Lesson observations
During my visits (usually once a week), I observed one or two lessons by one of

the three teachers. In total, about 25 lessons were observed from November 2014 to
July 2015.

Also,  I  usually  talked  to  the  teachers  between  lessons,  not  only  about  issues
observed during the lessons, but also about general topics regarding school practices,
professional habits and their views on the English educational system. For all these
observations I generated field notes during the lessons and complementary notes that
were written after the visits.

At  first,  the  complementary  notes  were  “accounts  of”  the  events  observed,
including  descriptions  of  what  was  observed  and  my  personal  impressions.
Progressively,  these notes moved towards “accounts  for”,  providing some tentative
explanations for what was observed and reflections on the events, as suggested by
Mason  (2002). This movement was also propelled by my increasing familiarity with
the practices in the school and with the British educational system in general, as well
as by my reading during this period.
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Along with this  movement,  the observations became more focused on specific
aspects of the lessons, such as the nature of tasks posed by the teachers, the language
used by teachers and students and the use of visual representations in general. These
topics came from my personal interest, from issues that interested Dr. Peter Gates and
from events observed in the school.

In terms of the balance between observer and participant, I take the view that
there is no such thing as a fully neutral observer in this context (Wragg, 1999). Bearing
this  in  mind,  I  was  open to  assume  the role  required  by  the teacher  according  to
his/her judgement.  For example,  the teachers often asked for my assistance during
specific  moments in  the lessons,  to  help  students  with doubts,  check  answers  and
distribute worksheets. Also, I regard this as a way to repay them for the fact that they
were opening their lessons to my presence.

During  this  period,  it  seemed  that  the  teachers  felt  comfortable  about  my
presence in  the classroom, to  the point  that  they would ask me to not  come to a
particular lesson if they had any reason to believe that it  could interfere with their
plan. Students also felt more comfortable in asking me questions and helping to solve
tasks.  I  can  safely  say  that  there  were no  incidents  in  this  period  to  suggest  that
teachers or students were changing their behaviour due to my presence, or that there
were any events that suggested I needed to take extra precautions in terms of ethical
clearance.

By  January,  due  to  my  observations  and  readings,  two  issues  attracted  my
attention  as  potential  points  of  focus  for  my  research.  They  are  the  relationship
between  socio-economic  status  and  achievement,  and  the  role  that  visual
representations could play in supporting low achieving students. Both issues will be
discussed in the next sections.

 2.3  Socio-economic status and achievement
As pointed out by West & Pennell (2003):

Whilst in any population of pupils some will perform less well than others,
there are links between achievement and a variety of different forms of
disadvantage and other factors. (p. 25)

This  statement  opens  space  for  several  questions  regarding  the  expected
distribution of achievement over a population: should teachers expect that within a
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group, achievement is normally, equally or homogeneously distributed? How should
teachers define what is normal, acceptable, or average achievement? Is it inevitable
that there will always be some students below this level? How much variability is it
reasonable to expect from one context to another?

Even  though  researchers  are  trying  to  tackle  these  questions  from  different
perspectives,  such  as  international  comparative  studies  (OECD,  2016),  or  by
investigating the genetic influence on achievement (Selzam et al., 2016), this is not the
focus of  the research.  My interest  is  in what  emerges  when one considers  not  the
expected distribution of achievement over a population, but the observed distribution,
the variables that are correlated to that, and the possible causal mechanisms behind
these  correlations.  There  is  much  literature  indicating  the  connection  between
achievement  and  some  socio-economic  variables,  such  as  household  income,
ethnicity, gender,  parental education, social  class, and so on,  at  local,  national and
international levels (Valero et al., 2012; Valero & Meaney, 2014). 

An interesting starting point from which to assess the influence of some of these
variables on achievement are the results from PISA. The country notes for the United
Kingdom based on the 2012 edition (the latest with a focus on mathematics), point out
that:

In  the  United  Kingdom,  equity  in  education  outcomes  is  at  the  OECD
average, with 13% of the variation in student performance in mathematics
attributed  to  differences  in  students’  socio-economic  status.  (OECD,
2012a, p. 4) 

In  order  to  make sense of  the relevance of  this  percentage,  it  is  necessary  to
compare it with similar figures related to other variables. OCDE (2012a) also considers
gender and immigrant status, where both figures are weaker than for socio-economic
status. The conclusion is the same if the data from the 2016 report is considered, even
though it is focused on science instead of mathematics. Also, as highlighted by Valero
& Meaney (2014), every large scale international comparative study reifies this same
finding.

It  is  worth  noting  that  recent  studies  investigating  the  relationship  between
genetics and educational achievement among the British population found that the
former can explain 9% of the latter  at  age 16  (Selzam et  al.,  2016).  Comparisons
between this percentage and the one reported by OCDE  (2012a) should be treated
very cautiously, since the methods applied differed greatly in nature. However, when
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taken  together,  they  suggested  that  the  effect  of  socio-economic  status  in
mathematics achievement is very relevant, if not the most relevant factor.

Dunne et al.  (2011, 2007) analysed the relationship between set placement and
social and economic variables and concluded that:

data on pupils’ allocation to groups confirms prior attainment as the main,
albeit  a  relatively  poor  predictor  of  set  placement  [...]  Social  class  is  a
significant predictor of set placement. Pupils from higher socio-economic
status (SES) backgrounds are more likely to be assigned to higher sets and
less likely to be assigned to lower sets. (Dunne et al., 2007, p. xii)

Although this relation seems to be well established in the educational literature
from a statistical perspective, pointing it out is not enough (Valero & Meaney, 2014). I
agree with Gates  (2015) when he suggests that “we probably can’t do much about
improving their social and economic backgrounds; we might however be able to do
something about enhancing some of the key skills,  which they have not previously
been required to focus on” (p.7). In order to do so, it is necessary to unveil the process
(or processes) behind these associations (West & Pennell, 2003).

Jorgensen, Gates, & Roper (2014) and Noyes (2007) used Pierre Bourdieu’s ideas
to  highlight  why  students  from  different  social  classes  experience  schooling
differently. The core of their argument is that the dispositions, habits and preferences
of certain social groups, namely the middle class, are more aligned with schools’ and
teachers’ expectations than the dispositions, habits and preferences of working class
children. As a result, students in these groups experience school in very different ways.
Bourdieu’s proposition is that these dispositions, habits and preferences, together with
explicit forms of capital, such as availability of material goods (books, for instance),
and financial capital (that could allow the family to hire private tuition, for instance),
also play  the role of  capital  that  “can  be exchanged for  success in  the classroom”
(Jorgensen et al., 2014, p. 227).

However,  as  posited  by  Noyes  (2007),  “although  Bourdieu’s  tools  offer  a
convincing theorisation of the way things are [...], they are not so useful in generating
emancipatory pathways” (p. 45). In order to do so, it is necessary to understand the
mechanisms through which these forms of capital benefit the group that possesses it in
school mathematics.

The authors  offer  some glimpses of  such mechanisms.  Jorgensen et  al.  (2014)
point  out  how  a  simple  habit,  such  as  walking  down  a  street  towards  the  school
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(something that is more common among middle class families, since the nature of their
jobs allows them to adjust their times with school times) pointing out the numbers of
the houses, could promote “some sense of what bigger numbers mean and perhaps an
intuitive sense of place value and a sense of odd and even numbers” (p.226). Noyes
(2007) shows how Edward, a middle class student, “mathematized” his coin collection
through  ordering,  categorizing  and  emphasizing  the  quantities  and  values  when
talking about it.

While both papers focused on a very fine grained analysis of single cases, that
may sound too specific for a general comprehension of the mechanisms behind the
phenomenon  under  discussion  here.  Other  researchers  have  investigated  broader
factors.

Zevenbergen (2001) focuses on how the different uses of language by working-
class  and  middle-class  families  influence  pupils'  experiences  in  schools  within  an
Australian  context.  She  relies  strongly  on  the  theories  of  the  sociologist  Basil
Bernstein to understand how “the language used by some students position[s] them as
marginal within the context of contemporary mathematics classrooms” (Zevenbergen,
2001, p. 40). She points out that the language can affect not only the understanding of
mathematical statements, explanations and questions, but also the comprehension of
the hidden rules of the classroom, concluding that in general:

[W]orking-class  children  encounter  forms  of  language  in  the  home
environment  different  from  that  which  they  encounter  in  the  school.
Hence, it is not valid to assume that problems in the levels of attainment of
working-class  students  arise  solely  from  any  deficiency  in  their
mathematical  ability.  Within  this  perspective,  it  becomes  important  to
recognise the difference in home-school languages and to build bridges in
order that students can access the mathematical language (p. 43).

An example is given in the classic paper by Labov (1969) when he compares the
discourse by an American working class black person to the discourse of an upper
middle class educated person. The former uses a non-standard version of the English
language, and gives the impression of being impulsive in his opinions, while the latter
sounds more tempered. However, when it comes to logic and semantics, the former is
richer,  and  the  latter  just  elongates  less  sophisticated  thoughts  that  could  be
expressed very concisely. This characteristic, that the author calls verbosity, is typical
of the middle class and is considered academically valuable, since according to Labov
(1969), it highlights that the speaker is educated. What the author is proposing is that
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middle class language is considered better, not because it is richer in form, content and
logic,  but  because  it  fits  a  standard  that  is  expected  in  certain  contexts,  such  as
schools.

Lubienski  (2002) brings  an  interesting  contribution  to  this  discussion  when
analysing adopting a reform-oriented approach during her lessons.

The use of open, contextualized problems seems sensible at many levels.
Rather than have students complete meaningless exercises and memorize
what the teacher tells them, why not have them learn key mathematical
ideas while solving interesting problems? (p. 172)

However,  instead  of  assuming  that  this  approach  would  benefit  all  students
equally,  she  specifically  observed  possible  differences  regarding  socio-economic
status. After implementing the new teaching style, she noticed that although some
previously  uninterested  students  presented  a  more  positive  attitude  towards
mathematics, students in different SES groups responded differently to key features of
the  approach.  In  general,  students  from  disadvantaged  low  SES  backgrounds,
especially the girls, felt lost with the lack of orientation in the open-ended questions
and focused only on a particular problem without seeing the general ideas connecting
various problems.

A similar conclusion was reached by Cooper  (2001), when analysing answers to
contextualized  and “realistic”  questions  in  a  national  exam in  England,  taking  into
account the socio-economic status of the students. The author is not suggesting that
disadvantaged students should be given only “work out” type of questions, but that
the solutions of contextualized questions might rely on skills that are more common
among students from more affluent backgrounds.

But  how could this be the case? In a classroom conversation,  as in any other
context, a lot is left unsaid, and a lot is assumed as “common ground”. For instance,
when asking “Could  you  do  the dishes  tonight?”  a  parent  is  not  actually  asking a
question, but suggesting that the person responsible for doing so, starts the action. By
giving the order in a question format, the parent sounds more tempered and polite
even though the actual content is different from what is said, just like the upper middle
class person discussed by Labov (1969). Returning to the issue of open and realistic
problems,  this  type of  task  is  (by  definition)  less  structured and prescriptive,  thus
demanding a better understanding of what is unsaid, and demanding more “common
ground” between teacher and students. Of course this can be achieved by the teacher
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during the lessons, but if not approached explicitly, could result in reinforcing social
differences between different groups.

Gates  (2015, 2018) builds on the argument presented by Zevenbergen  (2001)
regarding  language,  to  suggest  the  use  of  visual  representations,  which  are
particularly effective in reducing the achievement gap between students from more,
and less affluent backgrounds. His argument goes beyond the already desirable effect
of  reducing  the  reliance  on  verbal  communication  in  the  classroom  based  on  the
arguments  presented  above.  His  argument  is  based  on  three  key  points:  first,  the
growing corpus of evidence showing that visual skills are central to the learning of
mathematics; second, such skills are not part of the regular curriculum; and third, that
practices that promote such skills, as in playing with building blocks, reading maps and
playing with jigsaw puzzles, are more readily seen in middle class families.

The conclusion that visual representations could be especially beneficial for low
achieving students sounded quite compelling and, at the same time, not satisfactorily
explored at a classroom level. Therefore, it seemed to me at that stage of my research
project that it could occupy a significant role in my investigation. For that reason, I will
further develop the topic in the next sections.

 2.4  Visual representations come into play
As emphasized by Bruce et al.  (2017), the topic of visual representations has a

long  history,  and  is  of  interest  to  at  least  three  big  fields  of  study,  Psychology,
Education and Mathematics. Consequently, terminology varies hugely. The goal of the
next section is to set  the vocabulary,  and results that will  be used throughout my
thesis regarding visual representations.

 2.4.1  Visual representations
The term visualisation is  associated with a  wide range of  expressions,  such as

visual  skills,  spatial  ability,  representations,  diagrams,  and  even  imagination  and
insight  (Bruce et al., 2017; Macnab, Phillips, & Norris, 2012; Reed, 2013). Thus, it is
necessary to clarify the meaning of visual representations in this paper.

First, it is important to distinguish between internal and external representations.
The latter refers to representations (or signs) produced by human beings and available
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publicly  to  others,  while  the  former  refers  to  products  of  our  cognition,  therefore
available only “inside people's heads”. According to Larkin & Simon (1987):

When  they  are  solving  problems,  human  beings  use  both  internal
representations,  stored  in  their  brains,  and  external  representations,
recorded on a paper, on a blackboard, or on some other medium. (p. 66)

The concreteness and availability of the external representations not only make
their existence obvious, but make it possible to identify, classify, measure and discuss
their features. On the other hand, internal representations are not directly tangible and
can be discussed only through models, such as the dual coding model by Paivio (1986)
or Baddeley's (2000) working memory model. Both models assume that our cognition
needs  some  kind  of  representation  in  order  to  manage  the  cognitive  processes
available  to  human  beings,  and  that  those  internal  representations  are  somehow
similar to external representations. Paivio (1986) assumes explicitly that:

internal  (mental)  representations  have  their  developmental  origins  in
perceptual,  motor,  and  affective  experience  and  that  they  retain  those
experientially derived characteristics (p. 55).

It is beyond the scope of this paper to engage in the debate about similarities
between  internal  and  external  representations,  but  I  share  this  assumption.
Consequently, there is no need to use the adjectives internal and external to qualify
the representations.

The second distinction refers to visual and textual representations and is key to
my work.  Although it  is  difficult  to  establish a set  of  precise criteria to distinguish
them,  due  to  the  fluidity  between  the  extremes,  it  is  possible  to  identify  in  the
literature  some  characteristics  that  are  commonly  used  to  define  the extremes,  as
shown in the table below.

31



The pre-fieldwork stage

Textual representations Visual representations

Symbolic Iconic

Based on natural language Based on topological disposition of elements in a 
2D or 3D space

Manifested through speaking and writing Manifested through some kind of drawing, concrete
objects and gestures.

Captured through viewing and hearing Captured through seeing

Essentially sequential The disposition of the elements is not sequential, 
but carries meanings in terms of the relationship 
between them.

Table 1: Differences between visual and textual representations

This duality may appear under different names in the literature, such as textual-
visual,  linguistic-graphic,  sequential-spatial,  and digital-analog  (Shimojima,  2001),
but the characteristics listed above are almost universally consensual, and if not, are
the characteristics that I am adopting to define what, in this document, I call visual
representations.

In  the  specific  context  of  mathematics  education,  Skemp  (1987) suggests  the
distinction  between  verbal-algebraic,  and  visual,  and  offers  the  table  below  to
characterize them.

Visual Verbal-algebraic

Abstracts spatial properties, such as shape, position Abstracts  properties  that  are  independent  of
spatial configuration, such as number

Harder to communicate Easier to communicate

May represent more individual thinking May represent more socialized thinking

Integrative, showing structure Analytic, showing detail

Simultaneous Sequential

Intuitive Logical

Table 2: Distinction offered by Skemp (1987).

Even  though  the  characteristics  given  above  are  of  a  speculative  nature  (no
empirical evidence is provided), Skemp’s proposal resonates not only with Table 1, but
also with other researchers who try to understand the apparently wide spread “gut
feeling”  among  mathematicians  that  suggests  that  visual  representations  are
fundamental to create and understand mathematics.
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The distinction becomes relevant when you take into account experiments usually
conducted by researchers in cognitive sciences  (Baddeley, 2000; Paivio, 1986; Reed,
2013), showing that stimuli  generated by visual or textual external representations
are apparently treated differently by the brain.

The most general assumption in dual coding theory is that there are two
classes of phenomena handled cognitively by separate subsystems: one
specialized  for  the  representation  and  processing  of  information
concerning nonverbal objects and events, the other specialized for dealing
with language (Paivio, 1986, p. 53)

The  same  is  perceived  in  the  working  memory  model  proposed  by  Baddeley
(2000), in which there are two different components that deal separately with visual
and  textual  representation:  the  visuospatial  sketchpad,  and  the  phonologic  loop,
respectively. Although presented as an assumption by Paivio (1986), this distinction is
reinforced by extensive experimental results, as discussed by Reed (2013).

Larkin & Simon (1987) adopt an equivalent distinction between diagrammatic and
sentential representations. According to the authors:

The  fundamental  difference  between  [...]  diagrammatic  and  sentential
representations  is  that  the  diagrammatic  representation  preserves
explicitly the information about the topological and geometric relations
among  the  components  of  the  problem,  while  the  sentential
representation  does  not.  A  sentential  representation  may,  of  course,
preserve  other  kinds  of  relations,  for  example,  temporal  or  logical
sequence. (p. 66)

The reference to geometry and topology should not restrict the use of the term
visual representation to refer to certain components of the mathematics curriculum.
The definition adopted in this thesis includes geometric structures, as well as what are
ordinarily  called  pictures,  graphs,  drawings,  manipulatives,  diagrams,  and  even
particular ways to arrange the solution of a problem that take advantage of the space
in the paper to suggest the order of the steps or relationships between them. Also, the
category  of  textual  representations  includes,  as  suggested  by  Paivio  (1986),
representations composed by symbolic logic, computer languages and mathematical
formal writing (such as equations).

For the sake of clarity, the expression “visual representation” will always be used
to refer to an external representation that matches the characteristics of the second
column  of  Table  1.  However,  as  pointed  out  by  Goldin  &  Kaput  (1996),
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“representations do not occur in isolation [...] They usually belong to highly structured
systems, either personal and idiosyncratic or cultural and conventional” (p. 398). These
systems that govern representations (either textual or visual) encompass not only the
signs, but also the properties that allow a user to decide if a particular sign belongs to
that particular system, the rules that enable the translation of signs in a system to
another,  and the actions  that  can  be carried  out  in  its  symbols.  As  Goldin  (2014)
explains:

An essential feature of mathematical representations is that not only do
they have signification, but they belong to or are situated within structured
systems of representation within which other configurations have similar
signifying relationships. This is analogous to the way words and sentences
occur,  not  as  discrete  entities  in  isolation  from  each  other,  but  within
natural  languages  endowed  with  grammar,  syntax,  and  networks  of
semantic relationships. (p. 410)

Once the meaning of visual representations is established, it is important to clarify
the meaning of  another expression very common in  works related to visualization:
visual (or spatial) ability.

In  order  to  do  so,  let  us  consider  Macnab  et  al.’s  (2012) distinction  between
visualisation objects,  introspective visualisation and interpretative visualisation. The
first  two  concepts  are  similar  to  what  was  defined  previously  as  visual  external
representations  and  visual  internal  representations  respectively,  and  the  third  is
defined  as  the  “cognitive  functions  in  visual  perception,  manipulation  and
transformation of visual representations by the mind”  (Macnab et al., 2012, p. 114).
This is the definition of visual ability adopted in this thesis.

Although using different names, such as competencies (Goldin, 1998) and visual
thinking (Reed, 2013), authors would typically include in this set of cognitive functions
a  range  of  abilities  (also  called  visual  skills),  such  as  rotating an  image  mentally,
picturing  an  arrangement  of  objects  described  verbally,  identifying  patterns,
decomposing a given object into simpler objects, transforming a geometric figure into
a  new  equivalent  figure,  capturing  the  properties  of  a  3D  object  drawn  on  a  2D
surface, identifying the relevant features of a diagram, etc.

These  abilities  are  a  common  object  of  interest  for  cognitive  researchers.  For
instance, Wai, Lubinski & Benbow (2009) used four components to create a measure
they  called  spatial  ability:  folding  of  a  two-dimensional  image  into  a  three-
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dimensional  object,  performing  mental  rotational  and  reflection,  visualizing  the
consequences of mechanical forces and movements, and identifying figure patterns.

There  is  one  final  distinction  that  is  important  for  this  thesis,  and  it  refers  to
expressions,  such as  visual  and spatial  reasoning.  Although some authors  may use
them  as  synonyms  for  visual  ability,  I  will  use  visual  reasoning  to  refer  to  any
reasoning  based  on elements  or  properties  of  a  visual  representation,  as  used  by
Watanabe (2015).

After establishing the basic concepts regarding visualisation, the next subsection
discusses how this issue is approached in the field of mathematics education.

 2.4.2  Visualisation in mathematics teaching and learning
Any  person  involved  with  mathematics,  from  mathematicians  to  teachers  and

enthusiasts,  would  recognize  the important  role  that  visualisation plays  within the
field (Newcombe, 2010). In fact, it is easy to find emblematic quotations from famous
characters, such as the physicist Albert Einstein and the mathematician Henry Poincare
testifying to the claim that visualisation is more important than rigour and formalism in
this field.

When it comes to educational research, researchers have repeatedly reinforced
the importance of visualisation to cognition in general  (Larkin & Simon, 1987; Reed,
2013) and in mathematics education in particular (Arcavi, 2003; Presmeg, 2006). Not
surprisingly, when Bruce et al.  (2017) traced the historical emergence of a concept
related to  this  field,  namely  spatial  reasoning,  it  was  possible  to  identify  research
reaching back to the 16th century in different scientific and philosophical fields, as well
as the utilisation of a huge variety of nomenclature.

Similarly,  it  is  difficult  to  conceive  of  a  teacher  who  would  not  recognise  the
importance of elements related to visualisation, such as spatial abilities and diagrams.
However, the use teachers make of visual representations may reveal a very different
scenario. Dreher, Kuntze, & Lerman (2015) concluded from a sample of more than 300
German and English teachers that teachers were “mostly not able to recognise the
learning potential of tasks focusing on conversions of representations, in comparison
with tasks including rather unhelpful pictorial representations” (p. 8). Morgan (1991)
showed that  even though teachers  say  visual  representations  are  important,  when
judging the quality of solutions with and without diagrams, the latter is usually better
assessed. Stylianou (2010) reached a similar conclusion after interviewing 18 middle
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school American teachers about their views on visual representations. She concluded
that:

symbolic notation is not regarded as one of the ways in which a concept is
represented, but is the concept itself. Other representations (often visual)
are informal objects that assist in the actual work of doing mathematics.
This  idea  of  separating  visual  representations  of  a  concept  from  the
concept itself brings to the forefront teachers’ tendency to attach value to
representations. That is, certain representations (most notably symbolic or
numeric)  are  considered  more  central  to  the  learning  of  and  doing
mathematics, while graphic and visual representations are only secondary
(p. 335)

Beyond the realization that teachers generally have a restricted view of the role of
visual representations,  Sinclair,  Mamolo & Whiteley  (2011) point out that teachers
also “have substantial anxiety about working with these approaches” (p. 137). In fact,
Verdine et al.  (2014) report a study showing that among several career paths, those
who ended up in education presented the lowest  level  of  visual  abilities  11 years
before, when they were high school students.

When it  comes to students, Arcavi  (2003) lists three sources of challenge that
have  to  be  considered:  a)  cultural,  which  refers  to  beliefs  and  values  about
mathematics; b) cognitive,  which refers to the high cognitive demand of visualising
conceptually rich images; and c) sociological, which refers to the cultural diversity of
students' backgrounds in a classroom.

Moyer  (2001) highlights the cultural challenge when she shows teachers’ views
on working with manipulatives. After following 10 teachers for a year trying to use
manipulatives, she reported that they saw it as “little more than a diversion” (p. 175). 

The cognitive challenge can be illustrated by the research conducted by Steenpaß
& Steinbring (2014). The authors analysed the answers given by a primary student to a
question that asked her to associate number lines to sums that could be represented
by that diagram. The question was asked before and after a classroom intervention
focused on that type of visual representation. Their analysis showed that the student
interpreted the elements  of  the representation  as  concrete  single  objects,  isolated
from  the  other  elements.  The  authors  highlight  the  cognitive  challenge  behind
teaching and learning using visual representations by concluding that:

the 'effect' of the intervention depends not only on the intervention tasks
themselves.  Rather,  Sonja’s  learning  process  arises  from  an  individual
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sense-making interpretation background (Steenpaß & Steinbring, 2014, p.
13) 

Finally,  the  sociological  challenge  can  be  illustrated  by  exemplary  research
discussed by Reed (2013). After analysing 4 year old children engaged in a task that
consisted  of  placing  whole  numbers  in  a  0  to  10  line,  the  authors  observed  that
children from low-income families did worse than children from high-income families.
In  further  studies,  they  found  that  this  gap  could  be  overcome  by  providing
experiences,  such as playing board games that require moving tokens in numbered
squares. This study shows that the social  background can affect how students deal
with visual resources, such as a number line, even in early ages. This is not surprising
after the discussion presented in Section 4.1 about the conflicts between schools and
different forms of knowledge  (Bourdieu, 1986; Gates & Noyes, 2014; Zevenbergen,
2001). 

Besides those challenges listed by Arcavi (2003), there are challenges related to
the lack of understanding about the actual mechanisms behind the benefits that visual
representations can bring to cognition. As pointed out by Glenberg & Langston (1992):

The literature is overflowing with work investigating the facilitative effects
of pictures on text comprehension. And yet, no one has a clear idea of the
cognitive processes underlying these effects (p. 129)

Although the statement refers to a more specific aspect of visualisation, it seems
reasonable to  generalise  and claim that  it  holds for  visualisation and mathematics
education. An interesting example to illustrate this state of affairs is  also given by
Reed  (2013) in an experiment where the subjects are expected to decide if a pair of
words, such as mouth and nose, are related in meaning. Precise measures of response
time showed that people need more time to make a decision if the pair mouth-nose
are shown as in the right alignment.

37

Illustration 1: Options for the response time experiment



The pre-fieldwork stage

The hypothesis that the authors suggested as an explanation to this phenomenon
is that, somehow, human perception is facilitated if the position of the words matches
the usual visual arrangement of the body parts. The argument behind this example is
that  there  is  still  much  to  know  regarding  visual  representations,  how  they  are
processed by the brain, and how they affect human cognition.

All  examples  presented  above  were  chosen  to  highlight  the  challenge  of
incorporating  visual  resources  into  mathematics  classroom  practices,  even  though
most people recognise them as an important part of this subject.  Despite all  these
challenges, Gates  (2015) points to evidence suggesting that a more visual approach
could  not  only  be  beneficial  for  mathematics  students,  but  also  could  be  more
effective in closing the gap due to social background than verbal approaches. A similar
claim is  made by Mayer  (1997) to  explain the greater  gain exhibited by low-prior
knowledge students in relation to their peers when images are combined with text in
multimedia educational material. This assertion lies at the core of this research project
and it will be further explored in the next section.

 2.4.3  Visual representations and achievement in mathematics
Before  talking  about  the  relationship  between  visual  representations  and

achievement  in  mathematics,  it  is  important  to  highlight  the  well-established
relationship between visual ability and achievement in mathematics.

On one hand, as stated by Mix & Cheng  (2012),  “the relation between spatial
ability and mathematics is so well established that it no longer makes sense to ask
whether they are related” (p. 206). On the other, when it comes to causal mechanisms,
the scenario  is  not  so clear.  However,  constructs  such  as  number  sense  (Dehaene,
2011), evidence generated by brain imaging techniques  (Amalric & Dehaene, 2016;
Dehaene,  Spelke,  Pinel,  Stanescu,  &  Tsivkin,  1999),  and  longitudinal  studies
(Gunderson,  Ramirez,  Beilock,  &  Levine,  2012) are  shedding  some  light  on  these
mechanisms.

In summary, these studies suggest that our brain uses visual representations to
represent some basic  mathematical  objects and visual  abilities  to manipulate them
mentally. For instance, Gunderson et al.  (2012) say that their  results “are consistent
with the hypothesis that spatial skill can improve children's development of numerical
knowledge by helping them to acquire a linear spatial representation of numbers” (p.
1229).
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From  these  results,  it  seems  natural  to  conclude  that  the  use  of  visual
representations would be beneficial for the learning of mathematics. After all, the use
of visual representations should promote the practice of visual skills. For instance, by
representing  a  fraction  in  the  rectangular  area  model,  a  student  would  need  to
mentally  decompose  the whole  into  pieces,  practising  this  particular  visual  skill.  I
agree with this view: visual representations may naturally promote the use of visual
skills, while textual representations (by definition based on abstract symbols instead
of intuitive icons) do not necessarily promote it because these representations can be
treated by means of abstract transformations.

But the benefits of using some visual representations may go beyond practising
visual skills. As said in Section  2.4.1, evidence suggests that mental representations
reflect  external  representations.  Therefore,  using  external  visual  representations
would  enable  the  formation  and  development  of  mental  visual  representations.
Dehaene (2011), for instance, proposes that the mental number line that supports his
concept  of  number  sense  is  the  result  of  complex  interactions  between  culturally
constructed representations and innate faculties.

It is interesting to notice that recent research is proposing a distinction that goes
beyond verbalizers (those who prefer textual representations) and visualizers (those
who prefer visual representations). The new distinction differentiates between those
who use  more pictorial  visual  representations  and  those  who use  more schematic
visual representations.

In a continuum, pictures would be at the pictorial extreme, with diagrams in the
schematic extreme.

Van Garderen (2006) concluded that:

Use of visual images was positively correlated with higher mathematical
word problem–solving performance.  Furthermore,  the  use  of  schematic
imagery  was  significantly  and  positively  correlated  with  higher
performance  on  each  spatial  visualization  measure;  conversely,  it  was
negatively correlated with the use of pictorial images. (p. 496)

Gray  et  al.  (2000) reported that  students  demonstrated qualitatively  different
thinking when shown simple images, words or sounds, and were asked to explain what
they had seen or listened. They described this difference in the following manner:

The  qualitatively  different  responses  to  the  words,  icons,  and  symbols
suggest that the “low achievers” were reluctant to reject information. If
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there was little to describe,  they created description by building stories
around the items using images  from their  known physical  world.  Often
they were participants  in  the image,  elaborating the detail  whenever  it
seemed that such embellishment  was required.  In some instances,  they
drew upon one image, which acted as a symbol, for example, “my football,”
“my mother's car” (p.408)

Note that this type of response is similar to a response to a picture, while high
achievers “filtered out the superficial to concentrate on the more abstract qualities of
the items” (Gray et al., 2000, p. 408), getting closer to a diagram.

These  results  suggest  that  the  use  of  more  schematic  visual  representations
(diagrams from now on) is also related to achievement in mathematics. One possible
causal  explanation  for  this  relationship  could  be  the  idea  that  this  type  of  visual
representation enables inferences by offering a holistic view of the relations between
its elements (Larkin & Simon, 1987; Skemp, 1987).

Therefore, the use of schematic visual representations is beneficial for the learning
of mathematics because: a) it promotes the practice of visual skills, b) it enables the
acquisition  of  mental  visual  representations,  and  c)  it  facilitates  key  aspects  of
thinking, such as inferences.

The issues discussed in the last  two sections regarding socio-economic status,
visual representations and teaching and learning of mathematics informed my focus
during the preliminary study that took place during the last term of the academic year,
and will be discussed in the next chapter.
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 3  A PRELIMINARY STUDY

By February 2015, I had already observed about 30 lessons at Purple Valley and
my research interest had been refined in order to include the educational potential of
visual representation for low achieving students. Then the research team and teachers
decided to move forward to what could be characterized as a preliminary study for my
research project.

The initial idea was to start a series of meetings aimed at developing some lesson
plans that would be enacted by one of the teachers in a style similar to the Japanese
lesson studies. After three meetings, it was agreed that Julia would work on lesson
plans covering fraction addition for her Year 7 Set 4 (out of 5). From this point on, all
the meetings and informal talks between us focused on discussing her lesson plans,
which were intended to make intense use of visual representations.  She developed
two lesson plans and I developed a third one. As these lessons greatly influenced the
design of the lesson plans I used during my data collection, I will describe them in
detail in the following sections.

It is important to keep in mind that at this stage, the activities were not being
developed systematically by the research team, because we were still getting a feeling
for what the teachers would be willing to do, and be interested in doing. Therefore,
what may seem “too loose” for research, was actually intentionally conducted that way
to create rapport and synergy between researchers and teachers.

 3.1  First lesson
The first lesson was mostly designed based on one principle and around one task.

The principle, originally suggested by Dr. Peter Gates, was for the teacher to try to
avoid talking as much as possible. This principle is aligned with the ideas regarding the
over-reliance  of  teachers  on  verbal  language  and  how  this  over-reliance  may  be
differentially  affecting  students  from  different  social  backgrounds  (Gates,  2015;
Zevenbergen, 2001). At the same time, this principle tries to maximize the affordances
of visual representations.

The  task  was  proposed initially  by  Julia  and derived from the animation,  also
conceived by her, available at  https://youtu.be/adiA9_8-Mrc. Her idea was to show
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this animation and then ask students to create sums of fractions that add up to 1. This
task  became  a  pivotal  element  for  this  lesson  plan,  and  all  the  other  tasks  were
conceived as a preparation for, or an extension of it.

The lesson was taught in May. All members of the research team attended, but
none of the other teachers could. During the lesson, students had a set of coloured
cardboard pre-cut shapes representing the fractions 1/2, 1/4, 1/8 and 1/16 in the
rectangular area model (the unit was a square with sides measuring 12 cm) that could
be used throughout the lesson to solve the tasks.

It started with some warm-up questions on topics from previous lessons, as Julia
usually  does  at  the  beginning  of  every  lesson.  Then  she  played  an  animation
(https://youtu.be/U1O9uhCIIZ8) showing how to represent the fractions 1/2,  1/4,
1/8 and 1/16 in the rectangular area model, and some sums adding up to 1. Following
the animation,  she introduced the task below giving minimal instructions regarding
what was seen and what students should do to solve it.

After 14 minutes with students working by themselves on the task above,  she
played  another  animation  (https://youtu.be/QKWuQ5JzQds)  showing  equivalent
fractions in the rectangular  area model.  Following it,  Julia  posed a matching cards
activity (see image below) involving diagrams and equivalent fractions.
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Students worked on this task individually for 11 minutes and then she distributed
the worksheet below and students worked on it for 8 more minutes.

Julia then promoted a final discussion around answers given by the students to
the question, “can you give me a sum that adds up to 1?” She got 4 examples, wrote
them on the board and discussed each one briefly with the whole class. During this
stage, they should not use the cut-outs. 

The table below summarizes the main stage of each lesson. The width of each
column is proportional to the time spend on the respective stage.
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Warm-up questions First worksheet Matching cards activity Third worksheet Final
discussion

Table 3: Scheme summarizing the first lesson of the preliminary study

After the lesson, we had a meeting with all the teachers and the research team.
Julia was satisfied with students’ engagement and apparent understanding. Based on
their reactions and answers during the final discussion, she was convinced the students
were actually thinking visually about fractions: “I could see some of them imagining
the shapes in their heads”.

 3.2  Second lesson
The second lesson was designed to capitalize on the work done on the first lesson

to introduce sums with the fractions involving 1/2, 1/4, 1/8 and 1/16 not necessarily
adding up to 1. The research team and the teachers had time to meet twice after the
previous lesson and before this one, to discuss the lesson plan. The lesson was taught
in July.

It was decided that students would have the same set of cut-outs available, but
there was less concern regarding the amount of talk by the teacher. As a result, instead
of animations, the teacher used static slides to show diagrams.

The lesson started with the warm-up questions below followed by a whole class
discussion about the answers.
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Then the teacher presented the three diagrams shown below, one at a time, and
asked the students “what fraction of this shape is shaded?” Before explaining how the
question could be solved, Julia asked the students to have a go and try to figure out
how they could answer that question and present their solution to somebody else.

She spent 12 minutes posing the question, and waiting for the students to solve
and  discuss  these  three  questions.  Following  that,  the  worksheet  below  was
distributed to the students. They had 7 minutes to solve the questions and she spent 6
minutes discussing the solutions.
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Finally, she posed the final task with fraction sums given symbolically, but the
students could use the cut-outs or diagrams to solve them if they wanted.
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Students spent 12 minutes solving these sums and she concluded the lesson by
discussing the answer for 4 minutes. The table below summarizes the main stages of
the lesson.

Warm-up
questions

First diagrams Sums given diagrammatically Sums given symbolically

Table 4: Scheme summarizing the second lesson of the preliminary study

Julia’s  evaluation  of  this  lesson was  very positive.  She was  impressed by  how
easily students were paraphrasing her, and able to transfer their knowledge from the
previous lesson to this one.

 3.3  Third lesson
After the second lesson, I offered to design a third lesson myself, extending the

approach to other fractions, namely 1/3, 1/6 and 1/9. I was personally interested in
seeing if Julia and the other teachers would be open to trying a lesson designed by
somebody else and how this process would work.

At this moment, the academic year was very close to its end, and there was not
much time for meetings, so I designed the full lesson plan and had time to discuss it
with Julia only once before she enacted it. The lesson was video-recorded, and the
research team attended with David and Alice, a new pre-service teacher at the school.

The lesson started with a warm-up task involving sums, such as those presented

in the second lesson, 1
4
+
7
16

and 1
2
+
3
8

.

Students  were  then  asked  to  draw  diagrams  for  1/3,  1/6  and  1/9,  and  Julia
discussed their  answers in depth,  asking for several  answers for each diagram and
commenting not only about the correctness, but also advantages and limitations of
each. This stage alone took 16 minutes.

After that, the matching cards task shown below was posed.
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Students had 8 minutes to work on this task and then Julia introduced the final
worksheet.
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They worked on this worksheet for 13 minutes and the lesson was over. The table
below summarizes the main stages of it.

Warm-up questions Diagrams for 1/3, 1/6 and 1/9 Matching cards Sums

Table 5: Scheme summarizing the third lesson of the preliminary study

After  the  lesson  we  had  a  meeting  to  discuss  it,  and  Julia  said  she  was  less
impressed with students’ engagement and work this time. However, the teachers and
research team engaged in a much deeper discussion about what worked and what did
not, how the tasks could be improved, and what else would need to be discussed in
other lessons in order to develop them into a full program to teach fractions.

By this lesson, the initial excitement by teachers due to the novelty had started to
fade away and was replaced by a more reflexive view focused on students’ learning.
Although they were less excited with the third lesson specifically, it was clear that they
were satisfied with the general proposal.

 3.4  An episode of reasoning anchored on visual 
representations

Although  these  activities  served  as  an  exploratory  experience  for  everyone
involved, it was possible to identify episodes illustrating students making use of the
visual  representations  to  reason  about  mathematics.  These  episodes  became  even
more salient because reasoning was not usually present in the lessons I  observed,
specially for low achieving students, at Purple Valley.

The episode below shows one of the Year 7 student’s  reasoning based on the
diagrams  (Barichello,  2015).  It  took place at  the end of  the third  lesson and was

triggered  by  the  question:  “Show 1
9
+
5
6

”.  This  question  was  not  included  in  the

lesson plan and was posed to one student, L, because he had already finished all the
tasks.

It is important to highlight that during the lessons the students only worked on
sums involving like fractions. Therefore, this question was beyond what was explicitly
discussed in the lessons, and the research team had no ideas about how the student
would approach it. Image 11 shows L's solution.
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His final answer is not conventional and at no point during the lessons was this
sort of approach suggested. However, it seems reasonable to interpret it as below and,
therefore, he is right.

8½
9

=
8.5
9

=
17
18

The most impressive feature in his solution is how it is anchored on properties and
elements of the diagram. The re-construction below was based on what was observed
by one of the teachers attending the lesson, and by careful analysis of the solution
itself. The writing at the bottom of his solution suggests that he used the diagram to
find a fraction equivalent to 5/6 with a denominator equal to 9.

 

From this interpretation, it is safe to say that the student could not have solved
the question without the support of the diagram, and at the same time, that visual
properties  of  the  diagram  seem  to  have  enabled  him  to  move  beyond  what  was
explicitly taught.
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This  episode  resonates  with  the  idea  of  diagrammatic  reasoning  proposed  by
Rivera  (2011) and  with  Rodd’s  (2000) view  of  diagrams  acting  as  warrants  for
mathematical arguments. It illustrates the potential of visual representation to offer a
gateway  for  low-achieving  students  to  reason  mathematically  about  relatively
sophisticated topics, such as fractions.

This  possibility  gains  even  more  importance  if  contrasted  with  the  fact  that
reasoning was not commonly observed during lessons for low achieving students at
Purple Valley. In general, its students experienced mathematics broken into lesson-
sized portions and with very low levels of agency in terms of knowledge construction.
Not only they were not used to be asked questions that demanded reasoning but they
rarely showed reasoning when such questions were asked. These issues will be further
discussed when the main study of my thesis is explained.

 3.5  Other conclusions from the preliminary study
While the episode discussed above served as a starting point for re-elaboration of

the research question, as will be discussed in Section  4.1, the preliminary study also
served to inform some more practical aspects of the research design.

On the one hand, it became clear that the lesson study style would not work. Even
though the Head of Department, David, was actively participating in all the meetings
and encouraging the teachers to engage in the meetings and lessons, there was always
‘something’ happening in the school that impeded the teachers from observing each
other’s  lessons.  On  the  other  hand,  the  teachers  were  very  keen  to  open  their
classrooms for us to observe, to meet with the research team after lesson time with
reasonable frequency (about once every half-term), to talk to us between lessons and
to use lesson plans designed by us.

Finally, Julia and the other teachers were satisfied with the perceived results of
the three lessons presented before, and this feeling paved the way for a longer and
more systematic intervention in the next academic year, as will be described in the
following chapters.
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As mentioned in the Introduction,  I  started the research process with a  broad
interest  in  low-achieving  students’  learning  and  would  like  to  investigate  at  a
classroom level through an interventionist approach.

The experience reported in the two previous chapters enabled me to refine this
interest. During the preliminary study, the possibility of using visual representations as
a basis on which to build knowledge about fractions became more tangible for me, as
well  as  for  the  teachers.  Additionally,  the  episode  that  took  place  during  the
preliminary study raised the issue of students being able to use visual representations
to reason mathematically. As a result, visual representations were consolidated as a
central issue of the research, and a new element was brought to it: reasoning.

Therefore, before presenting my research question, I will elaborate on these two
issues.  The  content  of  the  next  three  sections  is  a  further  development  of  the
theoretical discussion presented in Barichello (2017).

 4.1  The role of visual representations
In this section,  I  will  deepen the discussion on how visual  representations can

have a fundamental role in the learning of mathematics further than that in Section
2.4. In order to do so, I will focus on the ideas of Marcus Giaquinto regarding the
epistemological  role  of  visualization  in  mathematical  knowledge  acquisition,  and
George Lakoff’s and Rafael E. Núñez’s concept of grounding metaphors.

 4.1.1  The role of visualization in knowledge acquisition
Marcus Giaquinto is a British philosopher who concentrated his work for a long

time in discussing the epistemological status of visualization in Mathematics. He is not
commonly referred to in the mathematics education literature,  as evidenced by the
table below: only 8 papers  are identified when searching his name on three major
European journals in the field.
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Journal Number of results of a search by “Giaquinto” in their websites

Educational Studies in Mathematics 3

ZDM 3

Mathematics Thinking and Learning 2

Table 6: References to Giaquinto in mathematics education journals.

Most of the papers above focus on the issue of the use of figures and diagrams in
proofs, which is not of interest for me. However, Giaquinto focused not only on this
issue but also on discovery and knowledge acquisition in mathematics. For this reason,
as highlighted by Gutiérrez, Llewellyn & Mendick (2009), his ideas are also of interest
for mathematics educators.

His work around visualization was built since the 1990s and culminated with his
book, “Visual thinking in mathematics: an epistemological study” published in 2007. In
this  book,  in  order  to  explain  the  epistemological  role  played  by  visualization  in
mathematics,  he  started  with  the  concept  of  category  specification.  A  category
specification is less than a concept, as it is only a list of characteristics for something.
The example he chooses is the square, and the category specification he proposes (one
of  many  theoretically  possible)  is  composed  only  of  characteristics  (parallelism,
symmetry and reference system) that can be perceived by humans innately, or from a
very early age. Here is the category specification:

Plane surface region enclosed by straight edges;
Edges parallel to H (one of the axes of the reference system established by
our visual system), one above and other below;
Edges parallel to V, one each side.
Symmetrical about V;
Symmetrical about H;
Symmetrical about each axis bisecting angles of V and H. (Giaquinto, 
2007, p. 23) 

He calls this a visual category specification for squares, and states that:

when,  in  seeing  (perception)  or  visualizing  (mental)  something,  the
description set for the visual representation contains descriptions of all the
features in this category specification, what is seen or visualized is seen or
visualized as a square (Giaquinto, 2007, p. 24).
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This  means  that  a  person  can  perceive  the  squareness  of  a  figure  without
possessing  a  concept  for  a  square  or  any  other  antecedent  concept,  since  all  the
characteristics above can be perceived innately by our visual system. However,

the  capacity  to  reason  about  squares  is  distinct  from  the  capacity  to
recognize  perceptually  something  as  a  square.  The  capacity  to  reason
about  squares  requires  that  one has  a  concept  for  squares.  (Giaquinto,
2007, p. 24) 

It  is  important  to  explain  the  author’s  definition  of  a  concept.  According  to
Giaquinto, a concept is a constituent of a thought and a thought is a mental state that
has inferential relations between its constituents. In his view, “to possess a concept
one must be disposed to find certain inferences cogent without supporting reasons”
(Giaquinto, 2007, p. 25), i.e. one must be disposed to form a thought involving this
concept. For example, consider the concept of uncle. One possesses this concept if and
only if one is disposed to form a thought such as ‘x is an uncle if, for some person, x is a
brother or brother-in-law of a parent of this person’.

The problem is that in order to possess a concept (uncle), one has to be able to
form a thought with inferential relations between this concept and at least one other
(brother and brother-in-law,  in  this example).  But,  if  we always need a precedent
concept to possess a new concept, how does the concept possession start?

Giaquinto’s answer to this question is what I consider one of the main points of his
theory: non-conceptual contents can be constituents of a thought.

Now consider the thought, ‘an item x is a square if it is perceived in such a way that
it  matches  the  category  specification  described above’.  Note  that  in  this  case,  the
formation of the thought does not depend on other concepts. Once the thought is
formed in one’s mind, the concept is acquired.

This  mechanism  allows  us  to  acquire  a  concept,  such  as  ‘square’,  from  the
experience of perceiving something that fits the category specification above, and by
being told that it is a square.

The same idea can be applied to new knowledge acquisition.

First,  let’s  clarify the difference between concept and knowledge. According to
Giaquinto, knowledge is a thought that a person believes to be true (before being true,
the thought is called a belief by the author), it is reliable (the same stimulus would
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result in the same thought), and rational (the thought is not contradictory to any other
already established knowledge).

The process of acquisition of new knowledge starts by possessing the concepts
necessary  to  form the  thought.  This  gives  rise  to  what  he calls  a  disposition,  and
dispositions are “bound”  (Giaquinto, 2007, p. 45) to become thoughts due to certain
stimuli. Here comes the second main point of Giaquinto’s proposal: visual experience is
capable  of  triggering the disposition  to  become  a  belief  and if  the  person has  no
reason  to  question  the  experience  this  belief  is  considered  true  and,  therefore,
becomes a thought.

Note that the visual experience did not work as empirical evidence or ground for
the thought,  but as  a trigger that  activated a disposition to acquire that  particular
knowledge. This way, the author suggests that this mechanism can be an answer to the
philosophical debate of how knowledge acquisition starts.

Here, then, is one possible role for sense experience: together with certain
innate  mental  propensities  it  results  in  our  forming  the  geometrical
concepts involved in the belief. [...] On this account, sense experience does
enter into the causal pre-history of the belief, but not as evidence; rather it
is the raw material from which the mind forms our geometrical concepts
(Giaquinto, 1992, p. 389)

The next step is  to show that the thought acquired through this mechanism is
reliable and rational. Giaquinto (2007) discusses these issues in depth and shows that
it is actually the case, but it is beyond the scope of my thesis to go through the details
of it.

In  summary,  knowledge  acquisition  starts  with  possession  of  the  necessary
concepts, which results in a disposition, and this disposition can be triggered by visual
experience  to  form  a  thought  that  has  all  the  characteristics  necessary  to  be
considered knowledge. He concludes this discussion with the following summarizing
statement:

This manner of acquiring the belief is non-empirical, because the role of
experience  is  not  to  provide  evidence.  At  the  same  time,  some  visual
experience  is  essential  for  activating  the  relevant  belief-forming
disposition; and it  is clear that this way of reaching the belief does not
involve unpacking definitions,  conceptual  analysis,  or  logical  deduction.
Hence  it  must  count  as  non-analytical.  Given  that  “non-analytical  and
non-empirical” translates as “synthetic a priori”, we have arrived at a view
that is a […] synthetic a priori knowledge. (Giaquinto, 2007, p. 47) 
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The  second  role  of  sense-experience  identified  by  the  author  is  “to  provide
components  on  which  the  mind  operates  in  producing  a  visualizing  experience”
(Giaquinto, 1992, p. 389). He reinforces that, once again, it is not a matter of providing
empirical evidence, but basic components that can be manipulated mentally leading us
to new knowledge.

It is also important to highlight that he explored these ideas in domains beyond
geometry, such as arithmetic  (Giaquinto, 1993b) and real analysis  (Giaquinto, 1994)
with special emphasis on the process of discovery, not proof.

Finally, there are two aspects that should be clarified regarding his proposal.

Firstly,  he  never  stated  that  this  is  the  only  way  to  acquire  concepts  or  new
knowledge. The explanation below comes after a thorough discussion of the episode
reported by Plato known as Meno’s paradox  (Giaquinto, 1993a). He argues that the
episode  illustrates  a  person  acquiring  new  knowledge  through  visualization.  He
concludes the paper by stating that:

It  is  possible  that  a  reader  of  the  text  arrives  at  the  theorem  in  the
empirical manner, by making observational judgements about the areas of
figures enclosed by the relevant ink-marks on the page and so on, thence
inferring the theorem. The point here is merely that this is not the only way
of  following  the  text  and  using  the  diagrams  to  arrive  at  the  theorem
(Giaquinto, 1993a, p. 88) 

Secondly,  although sense (visual)  experience and innate (visual)  capacities  are
very important in his theory,  it  does not mean that knowledge acquisition through
visualization should be seen as automatic or independent of instruction.

My  hypothesis  is  that  the  hidden  process  involves  the  activation  of
dispositions  that  come  with  possession  of  certain  geometrical  concepts
(e.g. for square, diagonal, congruent). What triggers the activation of these
dispositions  is  conscious,  indeed  attentive,  visual  experience;  but  the
presence and operation of these dispositions is hidden from the subject.
(Giaquinto, 2008, p. 33) 

Although  Giaquinto  (2007) is  much  more  concerned  with  philosophical  issues
than with teaching and learning, the implication of his ideas is that visualization, and
visual  representations,  may  occupy  a  more  central  status  in  the  learning  of
mathematics  than  just  being  accessories  to  proofs  and  explanations,  or  ways  of
representing a given mathematical object. As Rodd (2000) puts it, “his visualizing can
constitute a warrant for mathematical belief […], a knowledge-generating process” (p.
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238). In terms of my study, Giaquinto’s discussions highlight the solid foundations for
the  possibility  of  building  knowledge  of  fractions  on  visualization  and  visual
representations, using them as means to discovery and knowledge acquisition and as
warrants for mathematical reasoning.

 4.1.2  Grounding metaphors
Although  Giaquinto  (2007) sometimes  uses  general  terms  such  as  sense-

experience  and  mental  propensities,  his  work  focuses  exclusively  on  visualization,
leaving out  of  his  proposals  other  senses and bodily  experiences.  Why did he not
expand towards other senses?

The answer I provide to this question lies in the nature of the evidence that backs
Giaquinto’s arguments. At the beginning of his book, he highlights that his ideas were
only possible due to recent advances in cognitive psychology showing the connections
between seeing and visualizing. To the best of my knowledge, there is no empirical
evidence and not even methods to capture such evidence regarding other senses and
bodily experiences and, for that reason, he limited himself to visualization.

However,  authors  such  as  George  Lakoff  and  Mark  Johnson,  coming  from  a
linguistic background and relying on a different set of evidence, developed a theory
proposing that bodily experiences in general are fundamental for human cognition.
Instead of emphasizing innate or very basic mental abilities, they focus on the human
capacity  of  transferring  the  functioning  structure  of  concrete,  physical,  bodily
experiences to other more abstract contexts via metaphors.

According  to  Lakoff  (1993),  his  proposals  regarding  the  role  of  metaphor  for
human cognition was originally inspired by the analysis presented by Michael J. Reddy
in his classical paper “The conduit metaphor — a case of frame conflict in our language
about  language”  (Reddy,  1979),  where he shows that  the way people use English
language to talk about language suggests that we conceive language as a conduit for
meaning  and  knowledge.  This  analysis  gave  rise  to  what  Lakoff  (1993) termed
contemporary theory of metaphor, in which:

metaphor is not just a matter of language, but of thought and reason. The
language is secondary. The mapping is primary, in that it sanctions the use
of  source  domain  language  and  inference  patterns  for  target  domain
concepts. (p. 208)
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According to  this  view,  metaphors  allow  us  to  transfer  inference  patterns  and
functioning structures from concepts in a domain (the source domain) to concepts in
another domain (the target domain), not only in linguistic and poetic terms but most
importantly in terms of reasoning and behaviour. What Reddy (1979) showed was that
the way we talk about language is impregnated with metaphors that link this abstract
domain (language) with a more concrete one (conduit). The movement from the local
claim made by Reddy (1979) towards a whole view on human cognition, now called
embodied cognition, was given by Lakoff (1993) when he claimed that “as soon as one
gets away from concrete physical experience and starts talking about abstractions or
emotions, metaphorical understanding is the norm” (p. 205) and that “our everyday
behaviour reflects our metaphorical understanding of experience” (p. 204).

This  claim means that  we use metaphors  to  transfer  what  we know regarding
concrete  concepts,  due  to  our  bodily  experience  in  the world,  to  transfer  ways  of
thinking, inferences and relationships to more abstract domains that are less clearly
delineated.  Thus,  metaphors here are not seen as poetic tools,  but as fundamental
cognitive  tools  that  allow  us  to  extend  what  we  experience  physically  to  other
domains.

In 1980, George Lakoff and Mark Johnson published the book “Metaphors we live
by” which is the first one to fully explore this contemporary theory of metaphor and
the emergent ideas of embodied cognition. In this book, the authors discuss metaphors
such as propositional logic as containers and the widespread use of the orientation
metaphor (up and down) across several different domains. Their goal is to show how
our understanding in different domains is grounded on physical experience and how
this can be unveiled by linguistic analysis. Later in the book, they clarify that:

We are not claiming that physical experience is in any way more basic than
other  kinds  of  experience,  whether  emotional,  mental,  cultural,  or
whatever.  All  of  these  experiences  may  be  just  as  basic  as  physical
experiences.  Rather,  what  we  are  claiming  about  grounding  is  that  we
typically conceptualize the nonphysical in terms of the physical—that is,
we conceptualize the less clearly delineated in terms of the more clearly
delineated. (Lakoff & Johnson, 1980, p. 59) 

Returning to the case explored by Reddy (1979), language is an abstract domain
so, according to this view, we conceptualize it in terms of a more delineated domain
such  as  the  idea  of  conduit,  which  can  be  experienced  in  a  very  concrete  level.
Moreover, as mentioned before, the author shows that it is not only a linguistic issue,
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but the metaphor influences the way we reason and, ultimately, behave when it comes
to language.

In  order  to  understand  the  mechanisms  through  which  metaphors  work
cognitively, Johnson (1987) proposes the concept of schema.

A  schema  is  a  recurrent  pattern,  shape,  and  regularity  in,  or  of,  these
ongoing  ordering  activities.  These  patterns  emerge  as  meaningful
structures  for  us  chiefly  at  the level  of  our  bodily  movements  through
space, our manipulation of objects, and our perceptual interactions. (p. 29)

The  author  explores  the  container  schema  that  emerges  from  our  concrete,
physical  experience with containment,  and shows through a linguistic  analysis how
propositional logic emerges from it. Other schemas, such as balance and path, are also
discussed extensively in this book and in other related publications by the author.

At this point,  even though the main ideas were already established,  embodied
cognition  was  mainly  restricted  to  philosophers,  due  to  their  claims  regarding  the
nature of knowledge, and to linguists, due to the original fields of interest of the main
authors and the nature of their analysis. Although the main step towards mathematics
was given in the book “Where mathematics comes from” published in 2000 by George
Lakoff and Rafael E. Núñez, the first step was given by Núñez, Edwards & Filipe Matos
(1999).  The  authors  discuss  how  embodied  cognition,  treated  as  a  new  way  of
conceiving  human  cognition,  can  be  understood  in  contrast  to  behaviourist  and
situated views. According to them, while situated perspectives:

acknowledged  that  learning  and  teaching  take  place,  and  have  always
taken place, within embedding social contexts that do not just influence,
but essentially determine the kinds of knowledge and practices that are
constructed. […] Research and theoretical frameworks based on a situated
approach to cognition insist that linguistic, social, and interactional factors
be  included  in  any  account  of  subject  matter  learning,  including  the
learning of mathematics. (p. 45)

Although  they  recognize  the  advances  promoted  by  the  situated  view  in
opposition to more traditional behaviourists views, they propose that:

the nature of situated learning and cognition cannot be fully understood
by  attending  only  to  contextual  or  social  factors  considered  as  inter-
individual  processes.  Thinking  and  learning  are  also  situated  within
biological  and  experiential  contexts,  contexts  which  have  shaped,  in  a
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non-arbitrary way, our characteristic ways of making sense of the world.
(Núñez et al., 1999, p. 46) 

Next,  they  revisit  the  concept  of  schemata,  reinforcing  the  importance  of
conceptual metaphors in mathematics.

Conceptual  metaphors  are  ‘mappings’  that  preserve  the  inferential
structure of a source domain as it is projected onto a target domain. Thus
the  target  domain  is  understood,  often  unconsciously,  in  terms  of  the
relations that hold in the source domain. For instance, within mathematics,
Boolean logic is an extension of the container schema, realized through a
conceptual  metaphorical  projection  of  the  logic  of  containers.  This
metaphorical projection preserves the original inferential structure of IN,
OUT, and transitivity, developed originally via physical experiences with
actual  containers,  and  later  unconsciously  mapped  to  a  set  of  abstract
mathematical concepts (Lakoff and Núñez, forthcoming). The ‘projections’
or ‘mappings’ involved in conceptual metaphors are not arbitrary, and can
be studied empirically and stated precisely. They are not arbitrary, because
they  are  motivated  by  our  everyday  experience  —  especially  bodily
experience, which is biologically constrained. (p. 52)

The  paper  ends  with  an  analysis,  that  later  was  named  “mathematical  idea
analysis”  (Nuñez, 2009), of the concept of continuity showing how it is grounded on
bodily experiences via metaphors.

This approach is extended and deepened by Lakoff and Núñez (2000). Although
the book is quite controversial in terms of its philosophical claims regarding the nature
of  mathematics  (Goldin,  2001),  their  proposal  regarding  the  role  of  metaphors  in
mathematical  knowledge  has  been  used  and  explored  by  many  authors  in
mathematics education with different emphasis  (Sfard, 1994; N. Sinclair & Schiralli,
2003; Tall, 2013).

Lakoff  &  Núñez  (2000) argue  that  all  mathematical  knowledge  is  built  upon
metaphors ultimately grounded in physical experiences that precede formal training,
and this became one of the key assumptions of the subdomain of embodied cognition
in mathematics education (Sriraman & Wu, 2014).

In  order  to  develop  their  ideas,  they  differentiate  between  two  types  of
metaphors: linking and grounding metaphors. The first is the type of metaphor that
connects two different domains inside mathematics.  As the authors explain,  linking
metaphors:
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occur whenever one branch of mathematics is used to model another, as
happens  frequently.  Moreover,  linking  metaphors  are  central  to  the
creation not only of new mathematical concepts but often of new branches
of mathematics. As we shall see, such classical branches of mathematics as
analytic geometry, trigonometry, and complex analysis owe their existence
to linking metaphors. (p. 150)

An example discussed by  the authors  is  the development of  boolean algebra,
establishing a connection between arithmetic and classes.

The other type of metaphor is the grounding metaphor. Lakoff & Núñez  (2000)
define them as the “metaphors that allow you to project from everyday experiences
(like  putting  things  into  piles)  onto  abstract  concepts  (like  addition)”  (p.  52-53).
Consider the example below given by the authors:

When we conceptualize numbers as collections,  we project  the logic  of
collections  onto  numbers.  In  this  way,  experiences  like  grouping  that
correlate  with  simple  numbers  give  further  logical  structure  to  an
expanded notion of number (p. 54)

Note that it is not only an issue of representing numbers as collections but being
able  to  transfer  the  structure  of  collections  (arguably  very  intuitive  due  to  our
experiences in  the physical  world)  to  the context  of  numbers (more abstract).  The
importance of metaphors does not come only from the fact that 5+3 can be seen as 5
flowers being put  together with another  3  flowers (change of representation),  but
from the fact that our experience with collections allows us to realize that putting 5
flowers together with 3 flowers has the same result as putting together 3 flowers and
5 flowers, and therefore, 5+3 must be equal to 3+5 (transference of inferential roles).

Lakoff & Núñez (2000) only explore grounding metaphors in the first chapters of
the book, when discussing arithmetic and set theory. From that point on, other areas of
mathematics, such as limits, continuity, calculus, trigonometry and complex numbers
are explored via linking metaphors.  However,  these linking metaphors could all  be
traced back to arithmetic and set theory. Thus, from their perspective, all mathematics
is  ultimately  grounded  on  a  small  number  of  grounding  metaphors  which,  by
definition, are anchored on bodily experiences.

Thus,  even  though  linking  metaphors  are  more  salient  in  the  work  of
mathematician and seem to be richer and leading to more complex results, grounding
metaphors seem to be more relevant when it comes to basic mathematics. Moreover,
linking metaphors do not sound promising for low achieving students, since they lack
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prior  mathematical  knowledge,  while  grounding  metaphors,  exactly  for  relying  on
concrete experiences,  may present  itself  as  a  promising path for  these students  to
build a way towards some topics. As emphasized by Núñez et al. (1999) if one admits
the basic premises of embodied cognition there are entailments for the teaching of
mathematics.

Rather  than  looking  for  better  ways  to  help  students  learn  ‘rigorous’
definitions of pre-given mathematical ideas, we need to examine the kinds
of  understanding and sense-making  we  want  students  to  develop.  We
should look at the everyday experiences that provide the initial grounding
for the abstractions that constitute mathematics. (p. 61)

However, this claim should not be taken as a naive appraisal for teaching with
concrete materials or emphasizing a daily use of mathematical ideas.

At times, this grounding can be found in immediate physical experience, as
in the case of work with early arithmetic, space, size, and motion. At other
times,  the  grounding  for  a  mathematical  idea  takes  place  indirectly,
through a chain of conceptual mappings (Núñez et al., 1999, p. 62) 

Johansen  (2014) proposes  a  tool  that  can  be  used  to  help  in  the  process  of
building metaphors.  After  analysing the cognitive  function of  symbols,  figures and
diagrams, he concludes that figures and diagrams can both serve as “material anchors
for  conceptual  structures”  (p.  89).  His  proposal  is  that  the likeness  of  some visual
representations with material objects is capable of enabling the conceptual mapping
from one domain to another. Taken together with Giaquinto’s (2007) ideas, this claim
reinforces  the  relevance  of  visual  representations  in  mathematical  knowledge
acquisition.

According to authors throughout this section, metaphors are a key element for
human cognition. They serve as basis for us to extend the functioning structure from a
more  concrete,  more  clearly  delineated  domain  to  more  abstract  domains.  In
mathematics, even though metaphors linking different concepts are more frequent in
the work of mathematicians and necessary for the advance of the field, basic concepts,
are  connected  to  concrete  domains  via  grounding  metaphors.  Although  these
metaphors  may not  be obvious or  directly  accessible,  Johansen  (2014) claims that
certain visual representations can elicit conceptual mappings from concrete to abstract
domains.  His  claim,  therefore,  reinforces  the  possibility  of  grounding  mathematics
topics, such as fractions, in concrete experiences.
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The great advantage of using such approach would be that it does not rely on
prior  knowledge  about  other  mathematical  topics,  which  can  be  an  issue  for  low
achieving students. Therefore, grounding metaphors may offer an alternative pathway
to some mathematical concepts, such as fractions.

 4.2  Reasoning
Since the processes of knowledge acquisition and learning are essentially internal

and  not  directly  accessible  for  analysis,  my  data  analysis  will  focus  on  students’
reasoning as a way to access their learning. Thus, I present the main ideas regarding
reasoning below and then,  in the next section,  connect  these ideas with what  was
discussed above.

I define reasoning as an externalized sequence of arguments that supports the
solution of a task, as the result of cognitive processes that enable the solution of the
task, and is socially constructed as part of the classroom culture established between
teacher and students.  For  me, reasoning is  different from proof.  In fact,  proof is  a
specific  form  of  reasoning,  whose  norms  are  dictated  by  the  community  of
mathematicians.  Reasoning,  on  the  other  hand,  is  any  attempt  at  supporting  an
assertion rationally, from the perspective of the one presenting the arguments.

Stephen E. Toulmin, a philosopher concerned with reasoning in a broad range of
formal and informal settings, proposed a structure (or layout) that could be used to
break an argument into different components in order to enable analysis. His ideas are
widely  used  in  science  education  and  were  brought  to  mathematics  education  by
Krummheuer  (1995).  Since then,  his  ideas  have been adopted by researchers  with
varied interests within the field  (Jeannotte & Kieran, 2017; Lithner,  2008; Yackel &
Cobb, 1996).

Krummheuer’s  (1995) version of Toulmin’s layout divides an argument into four
components: conclusion, data, warrant and backing.

• Conclusion  is  the  final  claim,  the  answer  that  is  considered  correct  by  the
reasoner;

• Data offers support for the conclusion. This component typically emerges when
‘how’ questions are asked. Further on, it is possible to question any particular
information,  action  or  claim  in  the  data.  In  that  case,  the  reasoner  has  to
provide different or additional data to support that claim;
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• Warrant  is about the explanatory relevance of the data. It elicits the reasons
why the data  provided  explains  the conclusion.  Typically,  warrants  emerge
from ‘why’ questions;

• Backing is the justification of why the warrant should be accepted. 

In  order  to  understand  the  four  components,  Yackel  (2004)
illustrated them with the following example generated from the question
“How many dots do you see?” followed by a quick display of the image on
the right.

Using the language of Toulmin’s argumentation scheme, we would say that
the conclusion is, [There are] seven [dots]. The data is, there are three and
one and another three. This data is adequate for those children who know
immediately that 3+1+3=7. However, those children who do not just know
may require a warrant. A warrant would provide the explanatory relevance
of the data, that is why three and one and three have anything to do with
the conclusion, seven. For these children, counting the totality would be
further (perhaps necessary) backing. (Yackel, 2004, p. 10) 

It  may  be  useful  to  consider  the  two  examples  below.  They  are  fictional  but
inspired by lesson observations at Purple Valley. Both were triggered by the question
‘Work out the sum 1/2+3/8’.

Reasoning sequence Components according to Toulmin’s
layout

Teacher: What is the answer?
Student: 14/16
Teacher: How do you know that?
Student: I did cross and smiles2.
Teacher: Why have you done that?
Student: Because that is how you add 
fractions.
Teacher: How do you know that?
Student: Because you told us so.

Conclusion

Data

Warrant

Backing

Teacher: What is the answer?
Student: 7/8
Teacher: How do you know that?
Student: Because I did 4/8+3/8
Teacher: Why have you done that?
Student: Because 1/2 is the same as 4/8.
Teacher: And how do you know that?
Student: Because four eights go into a half

Conclusion

Data

Warrant

Backing

Table 7: Two examples of reasoning sequences

2 This is a mnemonic for the procedure to add two fractions.
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Toulmin’s  original  proposal  actually  has  two  more  components,  rebuttal  and
qualifier,  that  were  not  used  by  Krummheuer  (1995),  and  are  usually  not  even
mentioned in research in elementary mathematics education, even though they seem
to  be  relevant  to  understand  mathematical  reasoning  in  higher  education  (Inglis,
Mejia-Ramos,  &  Simpson,  2007).  The  rebuttal  refers  to  conditions  added  to  the
conclusion in  order  to  clarify  its  scope,  and the qualifier  refers  to  the level  of  the
reasoner’s certainty regarding the conclusion.

Considering  Toulmin’s  layout  of  an  argument,  one  could  ask  what  is  a  good
mathematical argument.

Yackel  &  Cobb  (1996) argue  that  a  good  argument  should  be  based  on
mathematical  rationale  instead  of  classroom  authority.  I  agree  that  classroom
authority,  although  inevitable  in  certain  situations, should  not  be  the  core  of
mathematics lessons  (Hewitt,  1999).  However, in accordance with Lithner  (2008), I
argue that being based on mathematical rationale is not sufficient. He illustrates this
objection  with  an  example  from  Schoenfeld  (1985) showing  that  novices  usually
utilise naive empiricism to judge the correctness of geometrical constructions based on
their appearance, but using mathematical elements to make the decisions (Does it look
tangent? Does it look congruent?). He concludes that being based on mathematical
elements is not enough: the content is also important.

Then,  he introduces the concept  of  anchoring,  “which refers  not  to  the logical
coherence of the warrant, but to its fastening [...] in relevant mathematical properties
of the components one is reasoning about”  (Lithner, 2008, p. 261). Returning to the
examples  given  above,  the  one  given  by  Yackel  (2004) is  anchored  in  counting
strategies, while the first one on Table 7 is anchored in the authority of the teacher and
the last one in the visual representation.

Note that the author defines anchoring related to warrants, but the same idea
can be applied to backing (Toulmin himself recognizes that warrant and data are not
always easy to distinguish and that this does not create any theoretical problem). Also,
it seems reasonable to assume that the nature of data would be similar to the nature of
its  warrant  and backing.  Therefore,  one can talk  in  more  general  terms about  the
anchoring of an argument.

The idea of anchoring sounds a more sensible way to analyse reasoning presented
by lower secondary students while solving tasks about relatively foundational topics,
such as fractions, than the full layout of an argument proposed by Toulmin (1969). My
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interest is in identifying whether the participant students will be able to reason about
fractions, and if that reasoning is anchored in the visual representations.

 4.3  Visual representations and reasoning
In this section, I will discuss what would be the possibilities for anchoring, in order

to justify one of the reasons why I expect visual representations to be particularly
helpful with low achieving students.

As mentioned in the previous section, two possibilities for anchoring are authority,
and mathematical elements (Yackel & Cobb, 1996).

Although authority may be seen as the least valuable anchor for mathematical
reasoning,  it  is  important  not  to  dismiss  it  totally,  but  to  understand  its  role  in
mathematics. To do so, the concepts of arbitrary and necessary knowledge proposed
by Hewitt (1999, 2001a, 2001b) seem appropriate. According to Hewitt, mathematical
knowledge  can  be  divided  into  these  two  groups.  Some  pieces  of  knowledge  are
arbitrary

if someone could only come to know it to be true by being informed of it
by some external means — whether by a teacher, a book, the internet, etc.
[…]  It  is  not  only  labels,  symbols  or  names  which  are  arbitrary.  The
mathematics curriculum is full of conventions, which are based on choices
which have been made at some time in the past. (Hewitt, 1999, p. 3) 

Complementarily, the author defines necessary knowledge as:

things which students can work out for themselves and know to be correct.
They  are  parts  of  the  mathematics  curriculum  which  are  not  social
conventions but rather are properties which can be worked out from what
someone already knows. (Hewitt, 1999, p. 4) 

Hewitt  (1999) suggests that “mathematics does not lie with the arbitrary, but is
found in what is necessary” (p. 5). However, he recognizes the importance of arbitrary
knowledge  per  se, and  as  a  stepping  stone  for  some  necessary  knowledge  to  be
worked out.

The  connection  between  arbitrary  and  necessary  knowledge  and  anchoring  in
authority and mathematical elements is quite clear. On one hand, arbitrary knowledge
is unavoidably anchored on some type of  authority.  It  could be the authority of  a
person such as a teacher (“because the teacher told me so”), a cultural convention or
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historical reasons (the measure in degrees of a given angle) or linguistic reasons (the
way polygons are named in  Chinese).  On the other  hand,  necessary knowledge (if
presented  by  the  teacher  as  such,  and  not  converted  into  something  arbitrary)  is
anchored on knowledge previously known by the person working it  out.  Therefore,
new necessary knowledge is anchored in previous mathematical knowledge (arbitrary
or necessary),  in  a  dynamic very similar  to  the idea of  proofs  based on axioms or
properties already proven.

This  could lead to the same question posed in  Section  4.1 regarding how this
process starts, but the aspect I want to discuss here relates to what happens if we are
dealing  with  low  achieving  students,  who  in  general  lack  prior  mathematical
knowledge.  If  it  is  not  desirable  to  transform  necessary  knowledge  into  arbitrary
knowledge, and if the students lack the knowledge that could be the anchor of a new
piece of knowledge, what can be done?

The answer that I will explore in this thesis is grounding metaphors connecting
concrete  experience  to  abstract  concepts  via  visual  representations,  as  argued  by
Johansen (2014):

figures do not only provide a material anchor for the conceptual structure
at hand; they provide an anchor that grounds our understanding of the
conceptual  structure  in  every-day  sensory-motor  experience  of  the
physical world. (p. 94)

In  his  paper,  Johansen  (2014) shows  how  this  process  unfolds  by  carefully
analysing one example:  circles  as  a  means  to  the  grounding  metaphor  of  `sets  as
containers`. He concludes that:

The circles might not have a direct likeness with mathematical sets, but
they do have a direct likeness with containers, and when we conceptualize
sets as containers, the diagram gets an indirect or metaphorical likeness
with mathematical sets as well. (p. 102)

According  to  the  Johansen  (2014),  the  circle  diagram  enables  the  conceptual
mapping of one domain into the other. Analogously, I will explore the possibility of
using a visual representation to enable the conceptual mapping from area of surfaces
into fractions or, in Lakoff & Núñez’s (2000) terms, to promote the `fractions as areas`
metaphor.

In summary, the arguments presented by Giaquinto (2007) show that humans are
capable of acquiring new knowledge based on visualization (visual experience plus
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fundamental visual skills), while the arguments presented by Lakoff & Núñez (2000)
suggest that the mechanism of transferring the basic functioning structure from a more
intuitive  context  to  a  more  abstract  context  is  key  to  human  cognition.  This
combination  offers  a  third  option  for  anchoring:  not  authority  (undesirable  when
possible), not previous knowledge (barrier for low achieving students), but grounding
metaphors via carefully chosen visual representations. This approach resonates with
Johansen’s  (2014) ideas  regarding  the  epistemological  role  of  diagrams,  Rodd’s
(2000) view  on  visual  warrants  and  Rivera’s  (2011) proposal  of  diagrammatic
reasoning.

 4.4  The research question
At this point, based on the experiences reported on in Chapters 2 and 3, and the

theoretical  considerations  presented above,  I  defined my research  question  as  the

following:  what is the effect of a set of lessons based on a carefully chosen visual

representation on low achieving students’ reasoning about fraction?

First of all, the question above presupposes an intervention at a classroom level.
Second, it is intentionally exploratory in nature and, in such a scenario, as discussed by
Hammersley & Atkinson (2007), it is common to start with a broader question or goal
and refine it during the research process, according to the possibilities and limitations
offered by the environment.

However, it is important to specify some other features of the research question in
order to understand the choices that will be described later regarding methods and
data collection, as well as the scope of the conclusions I may reach by the end of this
thesis.

Firstly,  since I  am interested in  classroom level  research,  my focus is  more on
learning  as  it  takes  place  in  an  educational  environment  than  on  cognitive
development per se. This has some implications:

• During the intervention,  I  will  maintain  the integrity  of  the teachers  of  the
groups, instead of assuming the role of the teacher myself. This would increase
the ecological  validity  of  the findings and reduce my influence on the data
collected;
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• The data should be collected during lessons or in an environment analogous to
a regular classroom. Details will be discussed on Section 4.5;

• The data collection should take place during an extended period of time, as
teachers  expect  mathematical  knowledge  to  be  acquired  or  constructed  by
students over time. The natural timescale would be the academic year.

Secondly,  the choice  of  focusing  on  low-achieving students  implies  collecting
data  from  students  placed  in  low  sets.  The  specificities  of  such  students  will  be
discussed in Section 6.3.

Thirdly,  the characteristics  of  the lessons that compose my intervention are of
utmost importance to the conclusions. Therefore, I will discuss the whole process of
designing the lesson plans in depth in Chapter 5.

 4.4.1  On what this research is not about
Since the beginning of  my research  process,  I  have been asked by  colleagues

about how I would compare “my lessons” with some sort of control group. Although it
was  always  very  clear  to  me  that  the  research  would  not  follow  any  sort  of
experimental design, the recurrence of the question made me aware that I would need
to justify why that is the case.

Firstly,  my  research  goal  is  not  to  compare  two  or  more  approaches,  but  to
understand how a particular approach, enacted through a set of lesson plans, would
unfold within a specific context. Therefore, description, discussion and understanding
of this process should inform choices of methods and analysis.

Secondly, I believe there is a huge methodological gap regarding assessment of
low achieving students that is, to my knowledge, not discussed in the literature. These
students,  especially  in  the  UK,  due  to  the  wide  adoption  of  ability  setting  in
mathematics,  are  exactly  those  who  have  constructed  a  negative  attitude  towards
school as a result of their  successive experience of failure  (Boaler & Wiliam, 2001;
Zevenbergen, 2003). For this reason, I argue that the scores these students get in a
test are a worse indication of their learning than could be considered for high achieving
students,  since  they  may  fail  at  a  question  because  of  their  lack  of  interest  or
engagement with the test rather than because they do not know how to solve it.

Unfortunately,  to  my  knowledge,  this  issue  is  neglected  in  the  literature  in
mathematics education. In my opinion, this is due to:
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Researchers avoiding research in ‘messy’ environments [...] when they feel
that this choice of context can lead to their research being considered as
methodologically poor (Stylianides & Stylianides, 2013).

While the quotation above refers to “actual classrooms”, following Skovsmose’s
(2011) suggestion that “90% of research in mathematics education concentrates on
the 10% most affluent classroom environments in the world” (p. 18), my perception is
that  the  problem  is  even  bigger  for  low-achieving  groups.  Although  I  have  no
systematic  data  to  support  my position,  there  is  an incident  that  can illustrate  my
position. It took place by the end of the first term, when one of the teachers, David,
asked me if I could prepare a new version of the diagnostic test I used at the beginning
of  the  academic  year  (see  Appendix  10.1 for  the original  version  of  the test).  His
intention was to evaluate the progress of the group. Even though this was not part of
my data collection, I prepared a new, but very similar version of the test, which he
applied to the students and I marked. The table below shows the results for the 8
students that took both tests.

Questions 1A 1B 1C 1D 2B 2D 2E 2F 2G 3A 3C 4

Test 1 8 1 1 1 5 5 6 3 7 6 6 1

Test 2 8 6 3 6 3 6 8 6 7 8 6 1

Table 8: Number of correct answers for each question that had a clear equivalent question in the second
version of the test.

David was disappointed by the results,  since topics related to questions 1 to 4
were discussed during the lessons already taught to this group. In fact, students have
successfully solved questions similar to these in previous lessons, and even though
there was some improvement in the scores, David was expecting more.

At the end of the next term, David made the same request. I created a new version
of the test, but this time he applied and marked it himself. Unfortunately, I do not have
the  scores  because  David  was  even  more  disappointed  this  time.  However,  I  was
present when the test was administered, and what became clear during the 15 minutes
the students spent with the test, was that most of them were not even trying to solve
the questions. They were visibly just waiting for the time to pass, and when David or I
walked near them, they would look at the test and act as if they were engaging with it,
but only while we were near them.
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Even though some students  presented a similar  off-task behaviour sometimes
during the lessons, this was much more salient during the test. I would say that these
students have realized that the tests make little difference to them, because 1) the
mobility from set to set was minimal in the school, 2) they were already in the bottom
sets and 3) the reward they could get in the final examination at the end of Year 11
seemed very unlikely. Therefore, they do not engage with it. If I am right, their score is
much more a reflection of their lack of engagement than of their learning.

This behaviour poses an extra methodological challenge to researchers willing to
use experimental  designs with low achieving students.  However,  it  does not affect
greatly the methods I will present in the next section, since they are focused on data
collected during the lessons.

 4.5  Methods
As explained in the previous chapter,  my research goal  was to investigate the

changes  provoked  by  a  classroom-based  intervention  designed  for  low  achieving
students  to  learn  addition  and  subtraction  of  fractions  through  an  approach
emphasizing visual representations.

Once this was defined, following the scheme proposed by Hammersley  (1992),
the next step would be to choose my selection strategy.
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As can be seen in the scheme above, Hammersley adopts “a narrower definition of
the  term  'case  study'  than  is  conventional”  (p.  185)  by  defining  it  as  a  selection
strategy in opposition to experiment and survey. He points out that:

There is no implication here that case studies always involve the use of
participant observation,  the collection and analysis of  qualitative rather
than  quantitative  data,  that  they  focus  on  meaning  rather  than  on
behaviour, or that case study inquiry is inductive or idiographic rather than
deductive or nomothetic (Hammersley, 1992, p. 185).

According  to  Hammersley  (1992),  the  strategies  for  case  selection  have
advantages and disadvantages that should be weighed bearing in mind the research
goal.  Experiments are based on cases created by the researcher in order to control
theoretical and extraneous variables; consequently, experiments assist in identifying
causal  relationships,  but lose ecological  validity.  Surveys are based on a relatively
large number of naturally occurring cases, increasing the ease of generalisability but
decreasing the details and the degree of likely accuracy. Finally, case studies are based
on small numbers of naturally occurring cases, enabling a high degree of accuracy and
detail, at the same time as maintaining the ecological validity of the findings, but with
limitations in terms of generalisability due to the lack of variable control and to the
specificity of the findings.

Considering the exploratory nature of my research goal, case study seemed to be
the most appropriate selection strategy, the case being the group of low achieving
students that participated in my data collection (see Section  6.3). It is important to
reinforce that I am not focusing on any specific student, but on the whole group of
students. For that reason, I decided not to use names for the students, but to identify
each of them by a letter during the Data Analysis chapter.

In  summary,  my  research  can  be  characterized  as  an  exploratory  study
(Hammersley & Atkinson, 2007) based on a classroom-based intervention (Stylianides
&  Stylianides,  2013) designed  for  a  specific  group  of  low achieving  students.  The
methods of data collection will be presented and discussed in the next sections.
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 4.5.1  Within-class clinical interviews
Due to my focus on learning, methods derived from classical clinical interviews

(Ginsburg,  1997),  such  as  task  based  interviews  (Carolyn,  Sigley,  &  Davis,  2014),
student  observation  and  think  aloud  methods  (Schoenfeld,  1985),  and  teaching
experiments (Steffe & Thompson, 2000) seemed suitable.

However, before the beginning of my data collection two issues emerged.

The first was the Head of Department’s hesitation when I suggested interviews
with students outside of regular lesson times. According to him, their students were
not used to such activities, and the school was not prepared for them. Also, interviews
during lesson time, but outside the classroom would imply that staff personnel had
been allocated for it,  since I am not a teacher and would need to be accompanied
during the interviews, and that would also have practical implications for the school.
For those reasons, activities outside of the regular lesson context had to be discarded.

The second issue came from the perception that cultural differences between me,
(a non-native speaker teacher used to the student-teacher interactions and relations
as they are considered normal in Brazil) and the students at Purple Valley could create
discomfort, especially if our interaction were to take place in small groups separated
from the rest of the group.

Apart from these two pragmatic issues, there was another consideration taken into
account when I was defining my methods. It refers to a bias that acts when researchers
are  choosing  students  to  participate  in  methods  similar  to  clinical  interviews.
Unfortunately,  to  my knowledge,  this  bias  is  not  documented.  However,  it  can  be
identified  when researchers  present  their  studies.  An anecdotal  example happened
during  a  summer  school  for  researchers  in  mathematics  education  in  which  I
participated.  Three  researchers  used  the  same  methods  to  collect  data  for  their
research  project:  choose  groups  of  two  or  three  students  to  work  together  while
instructed  to  “think  aloud”  when  solving  the  tasks,  and  video  record  the  group
interaction during the whole lesson. All three researchers reported (in their papers)
that the students were chosen according to their attainment levels. However, when I
questioned them about the criteria during their presentations, all of them added that
they explicitly selected talk-active students.

This is not a surprise, as their methods rely heavily on the students’ capacity for
communication (between them or to the teacher). However, this may be introducing a
bias in terms of which students are being selected by researchers and, consequently,
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informing  their  conclusions.  This  potential  bias  is  particularly  important  for  this
research if one takes into account the complex interactions between language, social
class  and  underachievement  in  mathematics  (Gates  &  Noyes,  2014;  Zevenbergen,
2001).

Kvale  (2008) gives an interesting example of this phenomenon when discussing
interviews.  He  conducted  interviews  with  young  students  about  academic
achievement;  one  participant  suggested  that  students  who  talk  more  get  higher
grades. Out of curiosity, the author decided to analyse the correlation between the
length of the interview by each student with his/her grades and found a statistically
significant positive correlation of 0.65. This means that students with higher grades
talked more during their interviews, even though there was nothing in the interview
protocol that would promote this behaviour. The example illustrates perfectly the bias
I was referring to above: researchers may be subconsciously choosing students with
certain characteristics to take part in their research just because they are more talk-
active and open to interactions, but this can be hiding a social class and achievement
bias that is then propagated to their findings.

Pye  (1988) also  offers  an  interesting characterization  of  a  particular  group  of
students: the invisible children. According to her, these students occasionally engage
in off-task behaviour, but not enough to attract attention, doing enough work to get
by, but not enough to stand out. They seem to consciously and actively act to make
themselves invisible to the teacher. Reciprocally, teachers do not pay much attention
to them because they do not demand it, the other students are usually enough to keep
him/her busy, and the reward is usually minimal. If the author is right, this last point
could be even more relevant for researchers, who usually have practical constraints
that force them to make decisions aiming to optimize their data collection. Once again,
this could be promoting the same bias mentioned before, especially considering that
this profile was very common among the students participating in my research (more
details in Section 6.3).

The alternative I adopted to minimize the three issues mentioned above was to
place my data collection during the lessons. As I have never planned to be the actual
teacher, I would have enough time to approach students during the lesson and talk to
them about the tasks they would be solving. The talk could be audio recorded by a
smartpen3 and complemented by students’ worksheets and field notes.

3 Smartpen is a device that is shaped like a pen, records digitally everything that is written down with it 
and captures the ambient audio. The specific one I used for my data collection enabled me to watch 
my notes being written as a video synchronized with the audio.
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This strategy is similar to what Steffe and Thompson (2000) describe as a teaching
experiment, since this approach emphasizes the collection of data while teaching is
taking place. Another similarity refers to the focus on students’  progress during an
extended period of time, instead of local portraits of their knowledge. However, there
is an important difference. Steffe and Thompson (2000) emphasize the experimental
component of a teaching experiment: the researcher should have a hypothesis and use
the interaction with students to test this hypothesis locally. That is not the case for my
research; although I have hypothesis and expectations that influenced my research
design as a whole, my focus is more of exploratory in nature than hypothesis testing.

Due to all the specificities mentioned above, instead of subscribing to one of the
methods discussed, I decided to term my approach “within-class clinical interview”. It
can  be characterized  as  a  middle  ground between clinical  interviews  and teaching
experiments, because it has a focus on learning (as both), it takes place during teaching
(as the latter), but has an exploratory focus instead of a hypothesis testing focus (as
the former).

Although my approach is  similar to existing approaches,  its  novelty demanded
extra caution and reflexivity  during my data collection,  especially  in the beginning
when its dynamic was unfolding for the first time. In Section 6.6.4, I will describe this
process, and based on my experience, reflect on the approach as a whole.

 4.5.2  Lesson observations
The second method for data collection I adopted was lesson observations.

As discussed in Section 2.2, this instrument was central during the pre-field work
stage and preliminary study to help me familiarize myself with the English educational
context, school ethos, teachers’ practice and students. During the main data collection,
this method had a similar purpose: to help me to build rapport with the groups of
students taking part in my research and observe teachers’ practices with them. With
these purposes in mind, I planned to observe at least one lesson per teacher per week
for each group that would take part in my research, as well as other occasional lessons
for other low achieving groups of the same teachers.

When I could not identify in the literature any observation protocol that would fit
my research goals, I decided to take unstructured field notes paying special attention
to:  a)  use of  visual  representations by teachers  and students,  b) any mathematical
reasoning expressed by students, c) the nature of the tasks posed to students, and d)
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how these tasks were used by the teachers. The field notes were complemented by
further notes made as soon as possible after the lesson.

Additionally, I planned to audio record all the lessons about fractions, as my focus
would be on the within class  clinical  interviews.  This  way,  it  would be possible to
reconstruct the overall dynamic of the lessons in the future if necessary.

 4.5.3  Complementary data
Apart from the two main methods described above, I also planned to collect data

from another two different sources.

The  first  were  audio  records  of  the  meetings  with  teachers.  My  plan  was  to
promote  meetings  between  the  research  team  and  teachers  regularly  during  the
academic  year.  Based on the availability  they  had in  the previous  year,  it  seemed
feasible to have about three meetings per term. As it will be explained in the next
section, they were important to give the opportunity to the teachers to get in touch
with the lesson plans before the actual lessons, to understand my approach to visual
representations and to collect their impressions of the lessons as a group.

The  second  complementary  data  source  for  my  research  was  audio  recording
informal talks with the teachers before and after the observed lessons, and not only
those about fractions. The importance of these talks became evident during the pre-
field work stage, as moments when the teachers could externalize their impressions
and opinions about what had just happened, or expectations and plans for what was
going to happen. As stated by Hammersley and Atkinson (2007):

these ‘naturally occurring’ oral accounts are a useful source both of direct
information  about  the  setting  and  of  evidence  about  the  perspectives,
concerns, and discursive practices of the people who produce them. (p. 99)

Although these two sources of data had a secondary importance for the research
project,  they  enabled  me  to  record  potentially  interesting  research  data,  such  as
conversations between the teachers and the students that were later described to me
by the teachers.
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 5  DESIGN OF THE LESSONS

In this section I will present the design principles behind the lesson plans that I
developed  for  my  research  (targeted  lesson  plans  from  now  on),  discuss  their
implications,  and  present  how  the  observations  during  the  pre-field  work  and
preliminary study stages were taken into account during this process.

Before discussing the design principles, I want to clarify two details. The first one
refers to the design of my research. Even though the structure of this chapter may
suggest that I adopted a design-based approach to my research project, this is not
actually the case. According to Swan (2014b), the distinctive feature of design-based
research is the use of “cycles of enactment, observation, analysis, and redesign, with
systematic feedback from end users” (p. 148) aiming at refining a product or process.
Although it is possible to identify a certain level of redesigning of lesson plans after
enactment, observation and analysis during the data collection, my research project
was not designed explicitly to enhance this process, and the refinement of the lesson
plans was not part of my main research goals.

The second issue refers to the choice of the topic for the lessons. It was agreed by
teachers and the research team that the main learning goal of the targeted lessons
should  be  addition  and  subtraction  of  fractions,  but  they  should  also  cover  other
topics, such as equivalent fractions, necessary to achieve that goal.

 5.1  The design principles
There  were  three  principles  at  the core  of  the  design  process  of  the  targeted

lesson  plans.  Two  of  them  are  based  on  empirical  results  and  theoretical
considerations  related  to  mathematics  teaching  and  learning,  while  the  third  is  a
personal principle (even though it resonates with some research in education) that I
wanted to bring into my research.

The first principle is: the lessons should enable students to build their knowledge

about fractions on visual representations. It derives from the discussion presented in
Section  4.1 showing that it is epistemologically possible  (Giaquinto, 2007), from the
perception that it is didactically feasible (Rivera, 2011; Watanabe, 2015) to construct
knowledge from visual representations, and that this approach has the potential to be
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particularly  effective for  low achieving students  (Gates,  2015; Lowrie & Jorgensen,
2018).

The implication of this principle is that students should be taught not only how to
read and write according to a particular representation, which is called ‘treatment’ by
Duval  (2006), but also how to operate with, and transform elements of a particular
representation, which Duval calls ‘conversion’ (2006). Because this takes time, instead
of presenting several different representations related to fractions, my lesson plans
will  explicitly  focus  on  one  visual  representation,  with  all  the  intended  concepts,
properties and operations regarding fractions (such as equivalence, ordering, addition
and subtraction) being taught through operations and transformations on elements of
that visual representation in connection with the standard symbolic representation.

The use of multiple representations may lead students to what Rau and Matthews
(2017) call  “representational  dilemma”,  where  students  are  overwhelmed  by  the
demands of learning the topic itself and the representations attached to it at the same
time. The decision of focusing on a single representational model aims at promoting a
deep  understanding  of  the  topic  based  on  the  elements,  properties  and  actions
afforded by the representation. Using the ideas of Lakoff & Núñez  (2000), it aims at
using  a  more  concrete  representation  as  a  metaphor  for  learning  a  more  abstract
mathematical topic.

The second principle is:  students should have opportunities to solve the tasks

without being told how to do it beforehand. This principle should be understood in
contrast to the common practice among the participant teachers of always showing the
students how a particular type of question can be solved right before posing a series of
questions of the same type, and will be discussed in the upcoming sections.

At  first,  this  principle  sounds  aligned  to  principles  related  to  student  centred,
investigative,  or  open-ended  approaches  to  mathematics  teaching.  However,  the
principle  does not  imply that  the lessons will  be based on open-ended questions,
collaborative work and discussions, as it is usually associated with these approaches
(Watson, 2008). Actually, a quick look through the lesson plans will evidence that this
is not the case. The majority of the tasks proposed in the lesson plans, when seen in
isolation,  would  be  considered  closed  and  aligned  to  teacher  centred,  traditional
approaches (Watson, 2008). The difference here is that the lesson plans were designed
in such a way that the students have a chance to solve the questions before seeing a
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ready-to-use  procedure,  and  after  getting  acquainted  with  the  elements  and
operations allowed in the visual representation being used.

Being more specific,  two factors are key to satisfying this design principle:  the
immediacy and specificity of the instruction received by the students before having a
chance to solve a particular question. My intention is to avoid very specific instructions
(in terms of how to solve the tasks that will be posed during a lesson) being presented
right before a task. Instead, students should have opportunities to face a task to which
they have never seen a solution specific enough to be simply mimicked, but to which
they have had access to the necessary knowledge to solve. In very pragmatic terms,
this principle makes explicit my intention of avoiding procedure-focused lessons.

Finally,  the third  principle  is:  keep the lesson plans reasonably coherent  with

participant  teachers’  current  practices.  This  principle  is  mostly  based  on  personal
motivations. My perception is that if the lessons are too different from the practices
with which the teachers feel comfortable, it may force the teachers too far from their
comfort  zones.  Some  authors  may  argue  that  this  is  necessary  to  induce  change
(Penteado, 2001). However, I believe that it is neither fair nor sustainable, because it
may  put  the  teacher  in  an  uncomfortable  position,  and  does  not  consider  the
knowledge and experience the teacher has accumulated, and the hidden reasons that
have shaped her/his practice as it currently is.

Therefore, instead of suggesting a complete revolution in how a teacher teaches, I
want to propose something that is familiar, but incorporates some new research based
elements. This attitude resonates with Guimarães’ (2015) ideas of trying to aim at an
“innovation zone”, which would be a middle ground between comfort and risk zones,
where the teacher still has a certain feeling of control, but at the same time, pushes
his/her boundaries towards new practices regarding some specific aspects.

Once the design principles are set, I will discuss literature related to teaching and
learning fractions.

 5.2  An overview about fractions
Fractions  is  a  recurrent  topic  in  mathematics  education  and  it  is  easy  to  find

reviews  referring  to  studies  from  several  decades  ago  showing  that  the  topic  is
challenging for teachers and students. However, the study provided by Zhang et al.
(2014) is particularly intriguing because they revisit research that is 200 years old. The
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authors show that fractions is considered a challenging topic at least since the end of
the 18th century to the point of being consciously omitted from some arithmetic books
and of researchers and teachers arguing against its inclusion in regular curriculum even
in a very basic level.

It is not the focus of this thesis to engage in such discussions, but it is important to
recognize the challenge faced by teachers and students when the topic of the lesson is
fractions and for researchers trying to understand how this scenario can be improved.

One  of  the  explanations  proposed by  researchers  to  explain  the  challenge  of
fractions  is  summarized  by  Charalambous  and  Pitta-Patanzi  (2007) when  they
commented that:

researchers  and  scholars  agree  that  one  of  the  predominant  factors
contributing to the complexities of teaching and learning fractions lies in
the fact that fractions comprise a multifaceted construct (p. 293)

This view started with Kieren (1976) and was further explored by researchers that
became members of the Rational Number Project4, such as in Behr et al.  (1983). The
project extended for about three decades, generating several academic papers, many
instructional materials and became hugely influential around the world.

Based on a semantic  analysis  of  the topic  (Olive & Lobato,  2008),  Behr et  al.
(1983) proposed that fractions are composed of five different sub-constructs: part-
whole, operator, ratio, quotient and measure. Behr et al.  (1983) also linked the sub-
constructs with different representations, such as number lines for the measurement
sub-construct and area for the part-whole sub-construct,  and with operations and
properties, such as equivalence for ratio, addition and subtraction with measure, and
multiplication with operator.

According to these authors,  the different  meanings and associations related to
rational  numbers  would  be  responsible  for  the  difficulty  of  teaching  and  learning
fractions. A common reaction to this claim is to assume that a full understanding of
fractions is only possible if students learn different representations. The reasoning is
basically  that  only  multiple  representations  can  cover  such  variety  of  meanings
encompassed by the concept. This became a basic assumption for many studies, such
as Charalambous & Pitta-Pantazi (2007), Deliyianni & Gagatsis (2013) and Cramer &
Wyberg (2009) and even influenced official documents on mathematics teaching and

4 www.cehd.umn.edu/ci/rationalnumberproject  
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learning in some countries, where knowledge of multiple representations is seen as a
condition (or even as synonym) of conceptual knowledge.

However,  this  approach  may  lead  to  a  new  problem:  the  representational
dilemma.  It  occurs  when students  have to  learn  domain knowledge from different
representations while learning about  the representations themselves.  The dilemma
may take place when working with a single representation, but it can be magnified if
students have to deal with more than one representation because they usually rely on
different sets of properties and operations: what is allowed in one representation may
not be in another (Rau, 2016).

Another limitation regarding the Rational  Number Project  refers  to  the causes
behind the conclusions. Although they developed instructional materials covering all
topics and operations usually taught in basic education regarding fractions that were
scrutinized by many studies  using different  approaches,  it  is  difficult  to  isolate  the
causes behind the conclusions because their interventions and materials are usually
multifaceted. Nonetheless, some results obtained within this initiative will be used to
inform some of the design choices that will be presented in the next sections.

A second internationally renowned research initiative that approached the topic of
fractions is the Realistic Mathematics Education (RME) developed in the Netherlands
since the early 70s (Van den Heuvel-Panhuizen & Drijvers, 2014). RME is a domain-
specific instruction theory for mathematics education that follows certain principles.
The theory  was  originally  proposed by  Hanz  Freudenthal  and can be summarized,
according to Van den Heuvel-Panhuizen & Drijvers (2014), as: 1) students should be
active  participants  in  their  learning  process,  2)  mathematics  should  start  from
situations meaningful for students, 3) students develop through stages from informal
approaches  to  more  systematic  tools  and  models  play  an  important  role  in  the
transition, 4) different topics should not be studied in isolation, 5) learning should be
seen as a social activity, and 6) learning opportunities should guide students towards
the discovery of relevant mathematics.

These  principles  and  their  implications  were  applied  to  different  topics,  from
primary to secondary mathematics, resulting in collections of instructional materials
developed and refined based on evidence collected in classrooms, in a process that is
widely recognized as exemplary for design-based research.
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Within this context, Streefland (1991) reports the process of initial development
of  the  unit  on  fractions.  The  starting  point  is  the  perception  that  the  teaching  of
fractions:

consisted of rigid, rule-oriented instruction, and neglected the students`
own  fragmentary  and  informal  bank  of  knowledge.  It  rested  on  a
superficial,  brief  and  one-sided  concrete  introduction,  considerably
detached  from  reality,  and  isolated  within  the  broader  context  of
arithmetic/mathematics curriculum as a whole. (Streefland, 1991, p. 12) 

Their proposal to face this challenge is, as expected, based on the wider principles
behind RME. However, there is one aspect related to the third principle that deserves
special attention considering the features of my study: their didactical use of models.
First of all, it is important to highlight that, in this context, “the term ‘model’ is not
taken  in  a  very  literal  way.  Materials,  visual  sketches,  paradigmatic  situations,
schemes,  diagrams  and  even  symbols  can  serve  as  models”  (Van  Den  Heuvel-
Panhuizen,  2003,  p.  12).  Bearing  that  in  mind,  the  author  distinguishes  between
“models of” and “models for”. The first refers to models that emerge from a situation
being explored by students  maintaining a  close connection to  it.  The latter  occurs
when  “models  of”  are  generalized  and  “can  be  used  to  organize  related  and  new
problem situations and to reason mathematically” (Van Den Heuvel-Panhuizen, 2003,
p. 14). This distinction is compatible with the idea defended in this thesis of using a
model (or visual representation) as more than just a way to represent concepts, but as
a means to build new mathematical knowledge.

However, in RME a great emphasis is given to students developing their models
from carefully chosen situations, in resonance with the first principle mentioned above,
while my approach is to pose a carefully chosen model to be explored by students
enabling them to actively build new mathematical knowledge. Although this is a big
difference, the details of the development process of their fractions unit reported by
Streefland (1991) and the discussion about their use of models presented by Van den
Heuvel-Panhuizen (2003) influenced the design of my lessons.

Since 2011,  Robert  Siegler  and collaborators  are  developing another  body of
scientific work about fractions that is worth discussion. Siegler et al.  (2011) initiated
this  by  introducing  the  “integrated  theory  of  whole  number  and  fraction
development”, which posits the magnitude of a number and the number line as central
aspects unifying the development of real numbers. Their proposal has its origin in the
works  of  Dehaenne  (2011) regarding  the  importance  of  number  line  as  a  mental
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representation  for  numbers  and  its  cognitive  role.  Instead  of  emphasizing  the
disruption  in  learning from whole number  to  fractions,  as  advocates  of  the whole
number bias do, Siegler et al. (2011) emphasize the possible continuity enabled by the
concept of magnitude of a number (whole or fractional) connected to the number line
representation.

we  propose  an  alternative  theory  of  numerical  development  that
emphasizes  a  key  developmental  continuity  across  all  types  of  real
numbers. This theory proposes that numerical development is at its core a
process  of  progressively  broadening  the  class  of  numbers  that  are
understood  to  possess  magnitudes  and  of  learning  the  functions  that
connect  that  increasingly  broad  and  varied  set  of  numbers  to  their
magnitudes. In other words, numerical development involves coming to
understand that all real numbers have magnitudes that can be ordered and
assigned specific locations on number lines. (Siegler et al., 2011, p. 2) 

Siegler  and  contributors  conducted  several  experiments  aiming  at  testing  the
consequences of such theory. Siegler et al.  (2013) summarize these results, restating
the adequacy of their theory. A key argument in this paper is a conclusion reached by
Siegler et al.  (2012) according to which knowledge about fraction magnitude is the
best  predictor  of  future  achievement  in  mathematics,  even  when  controlled  for
knowledge  on  fraction  arithmetic  and  general  achievement  in  mathematics.  Later,
Torbyens et al.  (2015) concluded the same based on a sample of students in three
different countries, USA, Belgium and China.

However, the fact that fraction magnitude is a good predictor of later mathematics
achievement does not imply directly that it is a key element for learning of fractions. In
an attempt to strengthen their argument, Siegler et al. (2013) cite the study by Fuchs
et al.  (2013), where the researchers developed an instructional approach based on
their theory of integrated development, with great emphasis on fraction magnitude
and number line representation. By using an experimental design, the authors not only
detected greater gains in the intervention group but also that “improvement in the
accuracy of children’s measurement interpretation of fractions mediated intervention
effects”  (Fuchs  et  al.,  2013,  p.  683).  This  result  actually  strengthens  their  theory,
however,  a  closer  look at  the intervention shows that it  was composed by several
elements apart from the focus on magnitude and number line: “the intervention was
designed to address the working memory, attentive behavior, processing speed, and
listening comprehension deficits” (p. 687). Therefore, it seems premature to attribute
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the effects to their theory and more research in a classroom level could help to fill
some gaps and strengthen the relevance of their proposal for educational contexts.

In  summary,  the  three  initiatives  mentioned  above  show  that  there  are  still
questions to be answered when it comes to the development, teaching and learning of
fractions. Although they do not provide definitive answers, the potentially different
constructs within fraction highlighted by the Rational Number Project, the different
uses of models promoted by the Realistic Mathematics Education and the emphasis on
magnitude given by Siegler and contributors were taken into account when designing
the lessons, as it will be discussed in the next section, and when analysing the data in
search for meaningful phenomena, as it will be discussed in Chapter 7.

 5.3  The choice of the rectangular area model
Following the implications of the first design principle discussed above, I had to

decide which model to adopt. The word model here is being used as a synonym to a
visual representational system (see Section  2.4.1),  which encompasses not only the
symbols,  but  also  the  rules  that  allow  a  person  to  create  new  symbols  and  to
transform and operate on them.

The five most widely known models to represent fractions are: rectangular area
models, circular area models, number line models, bar models and discrete models.
The image below shows the fraction 3/8 represented in each one of the models.

During the preliminary study, when it was clear that visual representations were a
central aspect of the overarching research project, the rectangular area model (RAM)
emerged from the meetings and discussions between the research team and teachers
as the preferred model to represent fractions. Later,  when the design of the lesson
plans actually started, I decided to search the literature for results regarding models
representing fractions to confirm that the rectangular area model was actually a good
choice and to see how it could actually be implemented.
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Authors  related  to  the  Rational  Number  Project,  recommend  the  use  of  the
circular model  (Cramer, Wyberg, & Leavitt, 2008). This recommendation comes from
studies  with  experimental  or  quasi-experimental  design  aimed  at  comparing  the
effectiveness  of  different  models.  However,  when  comparing  the  use  of  different
models,  the way each model  was  realized  was significantly  different.  For  instance,
Cramer  et  al.  (2008) compared  how  students  solved  addition  and  subtraction
questions using a set of acrylic shapes for the circular, ready-drawn diagrams for the
discrete  model,  and  dotted  paper  for  the  rectangular  area  model.  Note  that  the
authors  varied  not  only  the  models,  but  how  they  were  materialized.  All
materializations are very different in terms of the affordances and constraints they
offer  to  the students,  and therefore,  the conclusions  may refer  not  to  the models
themselves, but to the way they were materialized.

The same could  be said about  the conclusion reached by Zhang et  al.  (2014)
stating that models based on area (rectangular and circular) should not be the only
focus while teaching fractions. They used an experimental approach to compare the
outcomes  of  a  group  receiving  instruction  based  on  a  standard  textbook  that
emphasized  only  area  models,  and  an  innovative  approach  that  used  “multiple
embodiments”  of  fractions.  The  problem  is  that  the  two  instructional  approaches
differed not only in this aspect. For instance, the latter incorporated elements of games
during some lessons.

Martin and Schwartz (2005) also utilized a series of experiments to compare the
circular  and  rectangular  area  models  and  concluded  that  students  that  used  the
rectangular area model were more able to transfer their knowledge to new situations.
However,  the authors recognize that the conclusion may come not from the model
itself,  but from one difference in how it was realized: while the circular model was
composed of  ready-to-use  edges  representing  several  different  unit  fractions,  the
rectangular  area model  was composed only of  congruent  squares,  with which,  the
authors argue,  students could be forced into figuring out how to represent a given
fraction.  According  to  Martin  and  Schwartz  (2005),  this  extra  cognitive  exercise,
imposed by the way the rectangular area model was realized, may explain the higher
levels of transferability.

Other studies have shown that the discrete model is less effective for teaching
fractions (Behr, Wachsmuth, & Post, 1988), or that students “operate with the number
line  representation  with  more  difficulty  when  compared  to  circle  and  rectangle
representations” (Tunç-Pekkan, 2015, p. 438). 
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This brief summary of results shows that it is not simple, and maybe not possible,
to draw a clear conclusion regarding which model is more effective for teaching and
learning fractions. As Gersten et al. (2009) concluded, the models are usually “part of
a complex multicomponent intervention [...] So, it is difficult to judge the impact of the
representation  component  alone”  (p.  30).  Therefore,  I  decided  to  adopt  the
rectangular  area model  based on my experience as  a mathematics  teacher,  on the
acceptance by the teachers, and on the perceived affordances of the model and of one
of its materializations, as will be discussed in Section 5.3.3.

 5.3.1  Two characteristics of the RAM
The rectangular  area model  has two characteristics that seem adequate to the

learning goals of my lessons and to the design principles I described before. The first
one is the fact that the model is truly bi-dimensional. This characteristic facilitates the
combination of two fractions, as shown below.

As addition and subtraction, as well as multiplication and division, are essentially
binary operations (in the sense that two fractions are involved), the bi-dimensionality
enables students to combine the fractions and then operate them.

One could argue that the circular area model is also bi-dimensional,  since the
value of a fraction is also represented by the area of a sector. However, because the
lines utilised to represent a given fraction have to go through the centre of the circle,
the model ends up behaving as a uni-dimensional model. The image below illustrates
how 1/4+1/3 could be visualized in this model. Note that this representation is not
useful to understand why twelfths can be used to obtain an answer to the same extent
that the rectangular area model allows.
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The image above could only be used as a way to represent a calculation that had
already been made in a different representation. As discussed by Herman et al. (2004),
the representation in this case can work as a  post-hoc justification for a calculation,
but fail to inform the process of adding two fractions. The same could be said about
the number line and the bar models. Note that although the bar model also uses area
to represent fractions, the second dimension (usually the height), is not actually used.

The second characteristic of the rectangular area model is the fact that its parts
are similar to the whole in terms of shape, facilitating the visualization of relationships
between different fractions, and not only between fractions and the unit. For instance,
noticing that 1/8 is half of 1/4 is very similar to understanding 1/2 (of the unit).

The same property does not hold for the circular model where the comparison
between 1/8 and 1/4, and between 1/2 and the unit is different in nature, since 1/4 is
not similar to the unit. This way, the RAM seems to be able to convey the meaning of
the relation between fractions better than the circular model.

These  two  characteristics  reinforce  RAM’s  flexibility  and  potential  for
generalization.  These  two  characteristics  are  highlighted  by  Van  Den  Heuvel-
Panhuizen  (2003) as key for a given model to work as a more than a “model of” a
certain situation, but also as a “model for” building new knowledge.
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 5.3.2  One or multiple representations?
A substantial  part of the literature in mathematics education in recent decades

seems to assume that using multiple representations is a key aspect of any instruction
aimed at conceptual understanding, even though several authors recognize that the
use of multiple representations may bring out challenges for teaching and learning. As
Ainsworth (2006) puts it: “recently, attention has been focused on learning with more
than one representation, seemingly predicated on the notion ‘that two representations
are better than one’” (p. 183).

Rau and Matthews (2017) is an example of this stance. On one hand, the authors
defend the use of multiple representations because “no single visual representation
perfectly  depicts  the  complexity  of  mathematical  concepts  [and]  different
representations emphasize complementary conceptual aspects” (p. 531). On the other
hand,  they  recognize  that  “multiple  visual  representations  are  not  always  more
effective for promoting learning”  (p.  531) and that its  adoption may bring out  the
“representational dilemma”, referring to the phenomena of having to learn the content
from visual representations, while having to learn the representations themselves.

Bearing that in mind, I agree with Ainsworth’s (2006) conclusion:

It seems wise to use the minimum number of representations consistent
with the pedagogical function of the system. In many cases it may not be
appropriate  to  use  [multiple  external  representations]  at  all,  since  one
representation  may  be  sufficient  and  will  minimise  the  split  attention
affect. (p. 192)

In the same paper mentioned above, Rau and Matthews  (2017) recognize that
there is research pointing out the existence of privileged representations, that “convey
meaning more intuitively than others because the human brain seems to be sensitive
to  perceiving  their  referents  from  their  physical  structures”  (p.  540).  From  this
perspective, other representations should come into play only if they are necessary.
The  necessity  could  come  from  curricular  demands,  because  a  particular
representation is common in daily life or necessary for future topics, or to highlight
specific aspects of certain multi-faceted topics, as some researchers would argue is the
case with negative numbers (Ball, 1993).

In  terms of  my research,  even though the students  probably  had already had
lessons about fractions in the past few years, the lesson plans should treat the topic as
if  new.  This  decision  was  made  because  of  teachers’  perceptions  that  even  if  the
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students had some knowledge about fractions, they were still struggling with basic
concepts,  such  as  equivalence.  Therefore,  the  option  of  using  a  single  visual
representation seemed sensible.

This is also coherent with the emphasis given to the development of powerful
models by the researchers at the Realistic Mathematics Education (Van Den Heuvel-
Panhuizen, 2003), since it allows students to get familiar with a certain model to the
point of using it to approach new situations.

Moreover,  the  characteristics  that  will  be  discussed  in  the  next  two  sections
support  my  view  that  the  representation  chosen  could  act  as  a  privileged
representation (Rau & Matthews, 2017), capable of conveying meaning intuitively and
covering  most  of  the  aspects  necessary  for  the  educational  goals  of  the  targeted
lesson plans.

 5.3.3  The materialization of the model
It is important to clarify the differences between the model itself from the way it

is materialized.

When I stated that I have chosen the rectangular area model as the model for the
targeted  lessons,  I  meant  that  fractions  would  be  represented  as  sections  of
rectangles in such a way that the ratio between the area of the section and the area of
the rectangle defined as the unit is numerically equal to the intended fraction.

The students will not be asked to calculate areas and compare them numerically.
Instead, the areas will be compared visually, by composing and decomposing sections
of the unit, overlapping and juxtaposing them. For instance, a given section could be

identified  as  representing  the  fraction 1
3

by  verifying  that  the  unit  can  be  fully

covered by three instances of it.

Even though this description is enough to understand the model, it leaves open
the question  of  how it  will  be  materialized.  By  materialized  I  mean  how  symbols
pertaining to this model will be physically constructed by students, or which objects
and tools will be offered in order to enable them to construct and manipulate these
symbols.

From the research mentioned in Section 5.3, it is possible to list some possibilities,
such  as  pre-cut  shapes  in  different  sizes  representing  different  fractions,  pre-cut
shapes all with the same size, previously drawn diagrams, and diagrams drawn by the
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students. The latter can be further unfolded into several possibilities if one takes into
account details of how the diagrams would be produced by the students, for instance,
by using squared, dotted or blank paper.

Each option has its own possibilities and limitations that would impact students’
learning. My decision was informed by my design principles and by Giaquinto’s (2007)
and Lakoff & Núñez’s (2000) ideas.

Firstly, as I emphasized the importance of students learning not only how to read
a visual representation, but also the transformations that could be carried out on it, it
was clear to me that students should produce their own representations. Sometimes
they would do it entirely by themselves, sometimes they would do it over partially
drawn diagrams intentionally designed to reinforce some property or transformation
that I wanted to emphasize, or with some other sort of support.

I  did  not  use  squared  or  dotted  paper,  because  I  believe  they  reinforce  the
misconception reported by Cramer et al. (2008), where students represent all the unit
fractions by the same size (the size of the basic square suggested by the grid or dots)
and consequently end up with units of different sizes (as shown below).
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Illustration 18: Example of a solution built over a partially drawn diagram (top) and another 
fully drawn by the student (bottom)
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In fact, I observed this effect during a regular lesson, taught between the first and
second packs, when I decided to observe after the teacher told me she would include a
starter with a question about fractions. As usual, students solved the questions in their
notebooks, whose pages have a squared grid as a watermark, instead of solving them
on a worksheet prepared by me. When I was checking their answers, I noticed one of
the most successful students, when solving fraction questions with his own diagrams,
drawing the diagrams shown below in order to compare the two given fractions. 

Secondly, since I wanted to capitalize on the advantages of visual representations
as  discussed in  Section  2.4,  I  needed to  find  a  way to materialize  the model  that
embedded the properties and transformations necessary for my lessons in the most
intuitive  way  possible,  otherwise  I  would  be  bound  to  explain  verbally  these
properties  and  transformations,  and  would  lose  the  very  advantages  I  wanted  to
capitalize on.

The  three inter-related  properties  and transformations  I  needed  in  the model
were:

1. Composition  and  decomposition  of  shapes:  students  should  be  able  to
decompose  a  given  shape  into  two  or  more  shapes  preserving  the  areas
involved, and reversely, put together shapes (equal or different both in terms
of shape and area) in order to obtain another bigger shape;

2. Comparison of areas: students should be able to compare the area of different
shapes by composing and decomposing them;
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3. Rigid movements: students should be able to move shapes around in order to
obtain different configurations.

Although diagrams enable the first affordance (by adding and removing lines),
they are not so suitable for the second and third ones. Pre-cut shapes, on the other
hand, enable all the items by allowing students to juxtapose shapes (item 1), overlap
shapes  (item 2),  and actually  move the shapes  around  (item 3).  If  this  analysis  is
correct, the materialization would enable the model to act as a grounding metaphor
(Lakoff & Núñez, 2000), as will be discussed on the next section.

For that reason, I decided to use pre-cut shapes (in cardboard, called cut-outs
from now on) as the introductory material throughout the lessons. This happened in
the three first lessons of pack 1, when the model was introduced using fractions from
the same family, and in the first lesson of pack 3, when students explored fractions
with any denominators.

However, I recognise that the cut-outs are restrictive, since the students would
depend on the existence of sections representing the fractions they need to operate
with. For that reason, the lessons gradually progressed towards diagrams.

At this point, one could expect a final step towards purely symbolic approaches. If
that  was the case,  the trajectory from cut-outs to diagrams, and then to symbols,
would resonate with a widely accepted movement from enactive to iconic, to symbolic,
which is extensively described and discussed by Jerome Bruner and other researchers
(Hoong, Kin, & Pien, 2015). However, that was not the case for my lessons. Since I
subscribe to Giaquinto’s (2007) view that knowledge acquired by visual means should
be  accepted  as  mathematically  valid,  I  see  no  need  for  moving  towards  purely
symbolic representations. From my perspective, there is no epistemological difference

between the two solutions to 1
2

+
1
4

shown below.
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Illustration 20: A purely symbolic solution at the left and a diagrammatic solution on the right
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Considering that the teachers were also satisfied with the solution presented on
the right side, I can think of no justifiable reason to move towards purely symbolic
approaches. It could be argued that it is important for the students to be familiar with
the symbolic representation of fractions, since it occurs in some everyday situations
and (mostly) in assessments, but the familiarity with symbolic and verbal forms was
guaranteed by regular use in the worksheets and explanations from the teacher. What
I want to emphasize here is that verbal and symbolic representations were not avoided
in any way during the lessons, on the contrary, they were present in the worksheets,
animations  and  explanations.  However,  there  were  no  urge  into  using  approaches
solely dependent on them.

 5.3.4  Arbitrary, necessary and grounding metaphors
Considering the reasons and characteristics presented above,  it  is  important to

emphasize a consequence of the choices regarding how the rectangular area model is
utilized. This consequence is related to the three concepts mentioned in the title of this
section.

The  concepts  of  arbitrary  and  necessary  knowledge,  as  proposed  by  Hewitt
(1999),  have  previously  been  discussed  in  Section  4.3.  In  summary,  arbitrary
knowledge is the kind of knowledge that one can only come to know by being told,
while necessary knowledge is the kind that can be worked out by a person.

From these definitions, it is clear that necessary knowledge is always the result of
some  previous  knowledge.  So,  does  all  necessary  knowledge  come  from  a  set  of
arbitrary knowledge that was, by definition, told to the students at some point? If the
answer  is  affirmative,  it  could  be  argued  that  students  need  a  lot  of  arbitrary
knowledge before moving on to build necessary knowledge.

My answer, however, is that apart from these two categories, human cognition can
capitalize on some built-in capacities, such as those referred by Giaquinto (2007) and
Dehaene  (2011) when  discussing  visual  thinking  and  number  sense,  respectively.
Acting upon that, our capacity to use metaphors to link objects in different domains
would allow us to project the inferential structure from the more intuitive domain of
areas onto the more abstract domain of fractions, enabling students to work out the
intended necessary knowledge.

Bearing that in mind, my intention when designing the lessons was to minimize
the amount  of  arbitrary  knowledge,  which  is  inevitably  anchored  in  authority,  and
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capitalize  as  much  as  possible  on  commonplace  activities  that  I  expect  to  act  as
grounding metaphors.

The one piece of knowledge I assumed as arbitrary was the definition of a fraction
in  the  model.  This  definition  can  be  summarized  by  the  answer  one  gives  to  the
question: how should the diagram below be read?

Equivalence  is  the  other  key  concept  that  could  be  presented  as  arbitrary,
depending on how the teachers does it. However, the way I employed the rectangular
area model allows the replacement of this arbitrary definition by comparison of area,
which can be done in an arguably very intuitive way by overlapping cut-outs or adding
lines to diagrams, depending on how the model was materialized. Thus, the concept of
equivalent fraction becomes necessary, derived from the behaviour of areas.

Based on these two starting points, I designed the targeted lessons in a way that
all the other concepts and operations could be obtained by the students as necessary
knowledge.

 5.4  The targeted lessons
Before explaining the structure of the targeted lessons and lesson plans, because

of the third design principle (keep the lesson plans coherent with participant teachers’
current practices), it is important to understand the structure of the regular lessons for
low achieving groups at Purple Valley.

 5.4.1  The general structure of a regular lesson
The  lessons  observed  during  the  pre-field  work  stage  and  preliminary  study

(about 30 in total) allowed me to identify a common structure for the mathematics
lessons for low achieving students at Purple Valley. This structure can be summarized
by the following scheme, where the relative length of the bars represents the relative
duration of each stage in a typical lesson (1 hour).
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Starter Introduction Main tasks Final
Remarks

The starter would be composed of three or four questions about topics discussed
in  previous  lessons,  or  about  arithmetic  procedures.  After  some  time,  the  teacher
would discuss these questions with the whole class.

After that, the teacher would introduce the main topic of the lesson. This could
vary  a  lot  between  teachers  and  between  lessons,  but  the  teacher  would  usually
interact with the students similarly to Watson & De Geest’s (2012) characterization of
a typical British lesson: teacher asking “short closed questions, wait[ing] a very short
time for replies and deal[ing] very briefly with student responses,  whether right or
wrong, conceptual or procedural” (p. 227). During this stage, the teacher would clarify
new nomenclature and recall mathematical properties and procedures related to the
topic.  However,  most  of  the  time  would  be  spent  on  solving  and  commenting on
example questions.

Once that was done, the teacher would pose a longer task, usually very similar to
the questions solved during the introduction and composed of several similar items, or
a sequence of two or three closely related tasks. 

Finally,  the teacher  would make some final  remarks,  checking the answers  for
some or all of the tasks, followed by some managerial issues, and the lesson would be
over.

Although the scheme holds in general for the three participant teachers, below I
will  present  one  observed  lesson  for  each  teacher  and  comment  about  some
differences between them.

Julia was more systematic in terms of checking the answers for all tasks during a
lesson, which she usually did by asking for input from the students. Sometimes, this
process could evolve into a discussion (as opposed to just a very direct exchange of
questions and answers), but in general she would ask the students the final answer
and sometimes the steps necessary for the solution. Also, during the ‘main task’ stage
she would rarely use a single very long task. Instead, she would pose two or three
tasks (each with several items) and use the transitions to check answers and make
some remarks. Due to that, sometimes her introduction stage would be shorter than
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those of the other teachers. Table  9 shows one lesson by Julia to Year 8 set 4 about
index laws that is representative of her regular lessons, according to my observations.

The general structure of David’s lessons was very similar,  except that he never
made final remarks and would rarely make comments for the whole class after the
introduction stage. His main task, usually one single task long enough to last the rest
of the lesson, was always very similar to examples commented on in the introduction.
He  rarely  checked  answers  with  the  whole  class  after  the  starter,  although  he
interacted individually with some students during the main task stage and checked the
answers when a student claimed to have completed the task. Table  10 represents a
lesson about rounding decimal numbers that is representative of his regular practice,
according to my observations.

Finally, like Julia, Alice usually broke the main task stage into several relatively
smaller tasks and used the transitions between tasks for short “lecture-like” moments
commenting on the solution of a few items and introducing the next task. Also, her
introduction  stage  was  relatively  short  compared  to  those  of  the  other  teachers.
Through this practice she was able to vary the tasks more than David during the same
lesson, but at the same time, she always solved an example before posing any task.
Table  11 shows  a  lesson  about  multiplication  using  the  box  method  that  is
representative of her regular lessons.

In the three schemes below, the height of each section is proportional to the time
dedicated to that stage within that particular lesson.
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Starter 
(21 m

inutes)

The following questions were available to the students when they
arrived at the classroom:

1  Simplify the following by collecting like —
terms:
a) 13a+5b-3a+2b        b) 15c+8d-6c-5d        c)
9e-6f-3e+10f

2  Work out the following sum – 1060÷8

3  Write down the value of the following angles.—
Give a reason.

After 9 minutes, she started to discuss the questions, which took another 12 minutes.

Introduction 
(14 m

inutes)

She presented all the laws using slides and asked the students to copy them into their 
notebooks.

Then, she posed three examples followed by some time for the students to solve them. 
When discussing each example, she asked for input from the students, but there was no 
attempt to understand their mistakes and strategies. She would ask until she got a correct 
answer adding some very short comments about the previous answer, almost as clues to 
lead them to the right answer.
The examples were: c3×c4 , x 7× x and a5 b2×a b3

M
ain tasks

(21 m
inutes)

She posed two other questions very similar to the previous examples and just checked their 
answers after a brief interval. This could also be considered part of the introduction, but she 
was talking less and focusing more on getting the questions solved.
At this point, I noticed that the lesson was focusing on only one of the index laws although 
she had presented three.

She distributed a worksheet with 12 questions very similar to the examples before and 
waited some time for them to be solved. During this time, she walked around the classroom 
checking answers and making short specific comments to some students.

Final
rem

arks
(3 m

in)

A quick correction of the 12 questions with minor comments.

Table 9: Scheme representing a regular lesson by Julia
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Starter
(11 m

inutes)

1  Answer the following:—
a) -16+7        b) -19-8        c) 11-17

2  Answer the following:—
a) 0.37x10        b) 89÷10        c) 5.3x100

3  Simplify:—
a) x+2y+x+8y        b) 3a+9b+2a-7a

After 7 minutes, he started to discuss the questions and this took another 4 minutes.

Introduction 
(5 m

inutes)

David introduced the concept of “significant figures” contrasting with “decimal places”, 
which had been discussed in previous lessons. He solved three examples below. When 
doing so, he used coloured pens to indicate the digit that should be the last one in the 
answer and the digit that should be taken into account to decide if the number should be 
rounded up or down.

M
ain task 

(33 m
inutes) 

The main task was a single question with 15 items similar to the examples shown above.
During this period, the teacher walked around the classroom checking answers and giving 
brief suggestions to some students.

At some point, he went to the board and tried to describe a list of steps that could be 
followed to solve the questions. However, the procedure was not valid for all the cases. He 
apparently noticed that and decided not to discuss it further.

By the end of the lesson, the teacher had marked almost all answers of all students as right 
or wrong.

A few minutes before the end, he asked them to stick the homework to their planners.

Table 10: Scheme representing a regular lesson by David
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Starter
(14 m

inutes)

The following sums were shown on the white board when the students arrived at the 
classroom:

-4-4          4+-2         10-6

-7+8          -5x-2          72÷-3

She discussed only the first three items and only gave the final answer for the last three. The
students struggled a lot with the positive and negative signs. She tried to help them with a 
mnemonic gesture with her arms to memorize that “two minus would join to make a plus”.

Introduction
(6 m

inutes)

She introduced the box method through examples: 4x32 and 24x46.

When discussing it, she asked students to come to the board and show how to do it. None of
the students that went to the board did the multiplication correctly. At some point, she 
showed how to do it by emphasizing the number of zeros in each cell of the multiplication 
box.

M
ain task 1

(25 m
inutes)

She posed six multiplications with an increasing number of digits to be solved by the 
students. While they were working out the sums, she walked around the classroom giving 
extra individual explanations to some students. 
After 17 minutes, she started to discuss the answers. She did it thoroughly for the first two 
sums and for the last one.

M
ain task 2 
(9 m

in)

She posed the following word problem, gave some time to the students to solve it and then
solved it by asking for input from the students. Most of them were not able to solve the
question individually.

I earn £34 a week doing a paper round. There are 52 weeks in a
year. If I work every week, how much will I earn in a whole year?

She posed another similar problem, but it was too close to the end of the lesson and there
was no time to check answers. I could only identify one student that had solved this final
question.

Table 11: Scheme representing a regular lesson by Alice
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Based on this data, I decided to adopt the sequence starter-introduction-main
tasks as the general structure of the targeted lessons. Considering that both Alice and
David did not usually save time at the end of the lesson for final remarks, I decided not
to include these moments in my lesson plans.

The most relevant difference of my lesson plans compared to their regular lessons
refers to the nature of the introduction. As discussed in Section 5.1, one of my three
design principles is to give opportunities for the students to engage with the visual
representations  and  build  what  is  necessary  to  solve  the  task  by  themselves.
Therefore, instead of showing examples during the introduction and then posing tasks
that could be solved following exactly what was shown before, I wanted the teachers
to use the introduction to present as minimally as possible. This stage should focus on
arbitrary knowledge, and avoid presenting necessary knowledge.

 5.4.2  An example of a targeted lesson
The lesson chosen to illustrate the general structure of the targeted lessons was

lesson 2.2 (the second lesson of the second pack). The topic of the lesson was addition
of fractions with denominators  equal  to  2,  4,  8 and 16.  At  this  point the students
would be familiar with equivalent fractions (main topic of the first pack) and would
have just had a lesson about how to decompose the unit into sums of fractions. Lesson
2.2 is the first one where students would have to actually express the addition of two
fractions as a third fraction.

The image below shows the starter, the aim of which was to reinforce equivalent
fractions.
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Following the starter, the teacher would check the answers with the whole class
and discuss eventual mistakes. Special attention should be paid to the “create your
own” item.

Then  the  teacher  would  show  an  animation  (https://youtu.be/7FMhj3E1WzI)
showing the strategy to add two fractions. If necessary, the teacher should add some
comments, but I suggested that the teachers should try to give as minimal extra input
as possible, before letting the students try to solve the main tasks (shown below) by
themselves.
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The main tasks asked the students to add fractions.  At first,  the fractions were
given  only  in  a  diagram,  and  later  symbolically  but  accompanied  by  a  square  to
support the drawing of a diagram. The third task was a subtraction given symbolically.
In addition, some extra sums were suggested in the “Comments for the teacher” (see
next section) in case students needed.
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Note that some questions posed in the main tasks were closely related to what
was seen in the video, whereas others went a bit beyond that by not giving the visual
representation or by introducing subtraction.

 5.4.3  The lesson plans for the targeted lessons
Apart from the worksheet and eventual manipulatives and videos, all the lesson

plans included a document called “Comments for the teachers”, whose structure was
inspired by the Teaching Materials designed by the ICCAMS project (http://iccams-
maths.org/).

They were usually only one-page long and were composed of: a description of the
learning objectives, a list with the material, a commented sequence of expected stages
for the whole lesson and some extra questions to be used, if necessary, at the end of
the lesson. In the comments I tried to anticipate critical moments and make general
recommendations about how the teacher could discuss them with the students and
what questions could be used to deepen their understanding.

This format was chosen based on remarks made by the teachers during meetings
in the preliminary study, when several options were presented to them for discussion.
One MAP lesson was provided as an example of a long and detailed lesson plan5, one

5 http://map.mathshell.org/lessons.php?unit=6120&collection=8  
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Illustration 24: Example of a "Comments for the teacher". Although it had been broken into 
two pages here to save space, the contents fit one A4 sheet

http://iccams-maths.org/
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activity adapted from NCTEM as an example of a very loose lesson plan6,  and one
from ICCAMS as an example of a less detailed plan than the MAP lesson, but still with
some remarks and suggestions aimed at the teacher7. They clearly appreciated the idea
of a summary of the whole lesson with notes on critical moments, but disliked the
length  of  more detailed  descriptions  and recommendations.  Therefore,  I  decide  to
adopt a style similar to the third option listed above.

 5.4.4  The overall learning path
In general, the mathematics scheme of work used by the teachers at Purple Valley

groups  lessons  about  the same topic  in  blocks  of  three  or  four  lessons  each,  and
revisits that topic every term, deepening some aspect of it, or just reinforcing what was
taught before. Based on that, I decided to develop 3 packs of lesson plans to be used:
one for each term of the academic year, with each pack being about 3 or 4 lessons
long.

As said at the beginning of this chapter, the main learning goal of the lessons was
addition  and  subtraction  of  fractions.  This  was  agreed  at  the  beginning  of  the
overarching research project  because of  the common perception that  fractions is  a
particularly challenging topic for low achieving students, and at the same time a topic
suitable for a visual approach. 

It  was  clear  to  me  from  my  first  design  principle  that  I  had  to  dedicate  a
considerable  amount  of  time  to  clarifying  the  meaning  and  the  transformations
allowed in the rectangular area model before moving to addition. Also, authors such
as Besuk and Cramer (1989) and Streefland (1991), from the Rational Number Project
and from the Realistic Mathematics Education group respectively, recommend that an
understanding of equivalence should precede the operations with fractions.

Based  on  that,  I  decided  to  dedicate  all  the  lessons  in  the  first  pack  to  the
introduction of the rectangular  area model  (lesson 1),  the connection between the
model and fractions (lessons 2 and 3), and equivalence and comparison of fractions
(lessons 2 to 5). 

The next step was to decide how to approach addition and subtraction. To my
disappointment, I found that there are not enough details reported in the literature,
such as Mack (1995), Cramer et al.  (2008) and Izsák et al.  (2008), in terms of design

6 http://barichello.coffee/public/uploads/extra/fair_shares.pdf  
7 http://iccams-maths.org/multiplicative-reasoning  
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when it comes to these operations. However, reading the tasks used in these papers it
is  possible  to  notice  a  movement  starting  with  pairs  of  fractions  in  which  one
denominator is a multiple of the other (I am calling these ‘fractions from the same
family’8 from now on), and then moving on to fractions in which the denominators are
not multiples of each other (‘fractions from different families’ from now on). 

In terms of the rectangular area model, this sequence also makes sense, since it is
possible to add two fractions from the same family just by altering the diagram of one
of the fractions, while for fractions not from the same family both diagrams have to be
altered.

Although based on a limited sample, Mack  (2004) adopts the same sequencing
and reinforces the importance of spending a considerable amount of time on fractions
from the same family first.  This way,  according to her,  the students may grasp the
importance of operating on “like-size units [and] extend this big idea in small steps” (p.
227).

8 This concept is the same as the concept of “like fractions” in the United States of America, but as the 
latter seems to be unusual in England, I decide to adopt “fractions from the same family” in this thesis. 
Note that a fraction can belong to more than one family. For instance, 1/2 belong to the family 
composed of 1/2, 1/4, 1/8 and so on, but also to the family composed of 1/2, 1/6, 1/12 and so on 
and this does not imply that 1/4 and 1/6 belong to the same family. A family of fractions could be 
defined as a set of fractions in which for any pair of fractions chosen one of the denominators is a 
multiple of the other.
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Illustration 25: How to solve 1/2+3/8 on the top and 1/3+1/4 on the bottom using the 
rectangular area model

+ = + =

1/3 1/4 4/12 3/12 7/12

+ = + =

1/2 3/8 4/8 3/8 7/8
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Based on these considerations, in the second pack of lessons I decided to focus on
addition and subtraction of fractions from the same family, continuing the work done
on the first pack. After that, I would progress to addition and subtraction of any two
fractions in the third pack. 

Another element that influenced the design of the lesson plans was the teachers’
expectation that they should enable students to solve not only ‘work out’ questions,
but also what they called ‘word problems’. This concern apparently originates from
their perception that both types of questions are being asked in mandatory external
exams.

From my perspective, the ‘word problems’ would be an opportunity to analyse
whether, and how students transferred the knowledge they originally built on ‘work
out’ questions to a different setting. Therefore, I decided to dedicate one lesson at the
end of the second and third packs to such problems.

Finally,  a  special  emphasis on comparison of fractions was given based on the
proposal of Siegler (2011) regarding the unifying role that the idea of magnitude can
play  when  it  comes  to  whole  numbers  and  fractions.  This  was  done  by  including
questions asking students to compare two given fractions throughout the three packs.

After several rounds of sketches based on a vast collection of research papers,
teacher-oriented materials and lesson plans available online, I decided that it would
be necessary to have 5 lessons on the first pack, 4 on the second, and 3 on the third in
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order to achieve the goal of each pack. The tables below summarize the main topics
and material used on all the targeted lesson plans.

Lesson 1.1 Lesson 1.2 Lesson 1.3 Lesson 1.4 Lesson 1.5

- Introduce the 
rectangular area 
model;

- Introduce 
fractions from the
same family as 
1/2 through the 
model;
- Equivalent 
fractions;

- Introduce 
fractions from the 
same family as 1/3 
through the model;
- Equivalent 
fractions;

- Fractions from 
other families;
- Equivalent 
fractions;
- Comparison of 
fractions;

- Equivalent 
fractions;
- Create a booklet 
with diagrams;

- Cut-outs - Cut-outs - Cut-outs - Cut-outs - Diagrams

Table 12: Lessons from pack 1

Lesson 2.1 Lesson 2.2 Lesson 2.3 Lesson 2.4

- Decompose the unit as
a sum of fractions;
- Comparison of 
fractions;

- Add and subtract 
fractions from the same 
family as 1/2;

- Add and subtract 
fractions from the same 
family as 1/3 and 1/5;

Word problems

- Diagrams - Diagrams - Diagrams - Diagrams

Table 13: Lessons from pack 2

Lesson 3.1 Lesson 3.2 Lesson 3.3

-  Introduce  addition  and
subtraction  of  fractions  from
different families

- Add and subtract fractions from
different families;

- Word problems

- Cut-outs - Diagrams - Diagrams

Table 14: Lesson from pack 3

All  the  initial  versions  of  each  lesson  can  be  accessed  at
http://dx.doi.org/10.17639/nott.353.  Although most of them were adapted before
enactment, due to observations made in the previous lessons and to impressions from
the teachers and research team, the changes were generally small and preserved the
lesson objectives and the general design.

Once  the  design  of  the  targeted  lessons  is  discussed  and  the  learning  path
outlined, I will describe how the data collection unfolded in the next chapter.
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 6  DATA COLLECTION

 6.1  Updates on the context
The school where the data collection took place was the same as for the pre-field

work and preliminary study, Purple Valley. After the end of the 2014-2015 academic
year, and as a result of being “under special measures”, the school was taken over by
an Academy9. This event had no direct impact on my data collection and throughout
the academic  year  I  could  barely  notice  any  change  that  could  be a  result  of  the
incorporation, apart from changes in uniform.

There were two changes in terms of the participant teachers. One was that a new
teacher, Alice, who observed the last lesson of the preliminary study, joined the group
for the next academic year. At that moment, she was getting her certification through
the “Teach First” programme and was responsible for 5 groups at Purple Valley. She
had a brief  experience as P.E.  teacher assistant,  but had never taught mathematics
before. She voluntarily agreed to take part in my research with her Year 8 (set 5 out of
5) group.

The other change was that Oscar’s participation faded out towards the end of the
2014-2015 academic year, and he did not take part in the main data collection. No
reason was given for that.

The other teachers, already described in Section 2.1.2, were David and Julia with
their Year 9 class (set 5 out of 5) and Year 8 class (set 4 out of 5) respectively. The
group chosen by Julia was the same group that participated in the preliminary study
(see Chapter 3).

9 In short, being “under special measures” means that the monitoring agency would be paying special 
attention to that school during the upcoming year. In the case of the school not improving as 
expected, one possible outcome is to be “taken over by an Academy”, which essentially means that 
some decisions would be transferred to another supposedly high quality school (called an Academy) 
experienced in helping schools “under special measures”.

111



Data collection

 6.2  Ethics
My activities at Purple Valley started as part of the overarching research project

that was being developed, and whose ethics procedures were initially taken care of, by
Dr. Peter Gates.

When the 2015-2016 academic year started and my data collection was near, I
started to consider ethical implications related to my research. My main concern was
with  students,  since  my  focus  is  on  low-achieving  students  and  this  group  often
overlaps with other groups that may be considered to be in a vulnerable situation.
However, since my methods resemble regular teaching activities, I had already built a
good rapport with the teachers and was familiar both with the school and for all the
students potentially participating in my research, I anticipated no major ethical issues.
Since  the  end  of  the  previous  academic  year,  it  was  clear  to  me  that  the  good
relationship  that  had  been  already  established  with  the  school  would  be  the
foundation for the ethical standards of my research. For these reasons, I was planning
to  adopt  an  opt-out  approach  for  students’  consent,  which  was  approved  by  the
Ethical Committee at the School of Education (University of Nottingham).

However,  David  suggested  a  different  approach  to  avoid  raising  excessive
concerns from parents. It is important to remember that David was the Head of the
Mathematics Department and an experienced teacher. His position was motivated by
the fact that the teachers knew about my proposal and agreed on using the lesson
plans, my lessons would not be substantially different from what is commonly done in
the  school,  and  that  every  activity  I  would  carry  out  in  the  school  would  be
accompanied by a teacher. Therefore, he could extend the blanket permission students
had already given to the school for audio and video recordings, as well as use of their
notebooks and worksheets  for  educational  purposes,  to my activities.  Once all  the
students of the groups that were about to take part in my research had accepted the
school’s terms, I could carry out my data collection without further consent.

After discussing this issue with my supervisor and considering the rapport already
established with David and teachers, I decided to go through with his suggestion but
not without being sure that the teachers were aware of the arrangement and students
were informed about my activities. In order to do so, three measures were taken. First,
on top of the consent form and information sheet that he agreed upon and signed as a
teacher,  David  agreed  upon  and  signed  a  second  one  covering  the  details  of  this
arrangement. Second, the other teachers were informed of this decision and agreed
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with it.  They were informed of the possibility of  withdrawing themselves from the
research at any time as well as the possibility of students asking to withdraw at any
time. Third, although all students already knew me, the teachers re-introduced me to
them before the beginning of  my data collection,  explaining the activities I  would
carry  out  during some  lessons,  their  right  to  not  participate  in  my data  collection
activities and making sure students knew they could reach out for the teachers in case
of any discomfort.

The issues of confidentiality, anonymity, non-traceability of students’  identities
would  be  properly  dealt  with  following  the  guidelines  adopted  at  the  School  of
Education regarding all data collected from students.

Additionally, I was attentive during all my data collection to any student showing
signs of discomfort or distress during the lessons. Since I was visiting the school at
least one day per week, I had plenty opportunities to talk to the teachers about any
issues that could arise, related or not to my research. Any event that could suggest
that  students  were in  a sensitive situation or  that  was abnormal in  any sense was
reported to and discussed with the teachers.

Although David had provided what he saw as consent for me to carry out my
research with students at Purple Valley, my approach was to treat their consent as a
process, being open to revisit it if necessary. Fortunately, no student showed signs of
discomfort or distress and the data collection ran smoothly during the whole academy
year.

I  also  provided  an  information  sheet  to  the  teachers,  explaining  my  research
objectives, methods and activities that would be developed throughout the academic
year as well as issues related to confidentiality, anonymity, non-traceability of their
identities  and their  right  to  withdraw from the project  at  any  time without  risk  or
prejudice. Later, I obtained a signed consent form from all the teachers involved and I
could carry out the research as I was planning to do.

 6.3  The students
All the groups that took part in my research were low sets, which means that most

of the students had usually scored low marks in external and internal exams. In fact,
except for a few students in Year 8 Set 4, all the other students got marks below 30%
on all mathematics exams that took place during the academic year.
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The groups were relatively small when compared to other groups: 13 students in
Year  8  set  5,  10  students  in  Year  9  Set  5,  and  20  in  Year  8  set  4 10.  Also,  they
experienced a  limited  curriculum focused only  on  topics  expected for  the low  tier
certificate (GSCE Foundation).

On one hand, Year 8 Set 4 and Year 9 Set 5 would not present any major problem
for the teachers in terms of behaviour other than occasional off-task talk and small
disturbances.  On the other hand, Year 8 Set 5 was more challenging; Alice had to
interrupt lessons several times for behavioural management and some students were
excluded from the classroom during some lessons.  Although these situations were
usually started by the same three students and did not happen in most of the lessons,
it  was  enough  to  disrupt  the  whole  lesson  and  affect  the  behaviour  of  the  other
students.

Apart from these few disrupting students and a similarly small number of students
that were more engaged and keen to participate in the lessons, most of the students in
these groups would fit into what Pye (1988) calls “invisible children”, as discussed in
Section 4.5.1.

An  important  characteristic  of  the  environment  in  which  these  students  are
immersed  is  the  lack  of  agency  when  it  comes  to  “doing  mathematics”.  This
characteristic can be seen in the structure of the lessons: presentation of the topic of
the lessons, resolution of a paradigmatic example followed by a list of items that can
be solved using the strategy shown in the example. This lack of agency, that probably
has been experienced since primary school  by  low set  students  (Boaler  & Wiliam,
2001; Marks, 2011), is ultimately incorporated by the students into a form of apparent
apathy and lack of initiative when they are asked to solve new questions.

In terms of prior knowledge, as widely acknowledged by teachers and researchers
(Gersten, Jordan, & Flojo, 2005), when it comes to low set students, they generally
struggle with basic arithmetical knowledge. Before the lessons started, I asked the
teachers to apply a diagnostic assessment about fractions to the targeted groups (see
appendix  10.1).  The questions were adapted from Hart  et  al.  (1984),  but  it  was a
conscious decision to make the assessment shorter in such a way that it could be fitted
into the beginning of a lesson as a starter,  or at the end as a final activity. Just to
illustrate  students’  previous  knowledge  regarding  addition  of  fractions,  the  table
below shows the percentage of correct answers for the three final questions of the
diagnostic assessment.

10 These numbers changed throughout the academic year.
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5A) Work out 3
8
+
2
8

. 5B) Work out 1
10

+
3
5

. 5C) Work out 1
3
+
1
4

. Number of
students

Year 8 set 4 88%11 29% 0% 17

Year 8 set 5 8% 0% 0% 13

Year 9 set 5 0% 0% 0% 8

Across all groups 42% 13% 0% 38

Table 15: Percentage of right answers on the diagnostic assessment

The scores are considerably lower than the national average reported by Hart et
al. (1981) for the same questions. Although the result is more than 30 years old, more
recent studies showed that the levels of achievement in England remain almost the
same (Hodgen, Küchemann, Brown, & Coe, 2008, 2010).

Finally, it  is  worth pointing out that according to the English curriculum, these
students should have had lessons about all the topics that were to be covered during
the targeted lesson in their primary schools. However, it was widely accepted by the
participant teachers that the students probably have had only a limited exposition to
concepts  related  to  fractions,  since  they  were  probably  labelled  as  low  achieving
students in their primary schools, therefore, having access to a restricted version of the
curriculum, which according to them, probably excluded more advanced topics, such as
comparison, addition and subtraction of fractions.

 6.4  The original plan
My  initial  sketches  of  the  lesson  plans  suggested  that  12  lessons  would  be

necessary to cover the topics necessary to get to addition and subtraction of fractions.
Considering how the teachers used to organise the working plan, the lessons were
grouped into 3 packs that should be spread throughout the academic year, each made
of 3 to 5 lessons that should be enacted consecutively in a row. Remember that the
initial  version  of  the  lesson  plans  can  be  accessed  at
http  s  ://dx.doi.org/10.17639/nott.353  .  As I  was planning to incorporate changes in
future lessons based on what would be observed in previous lessons, it felt sensible to
plan some gaps between the packs.

11 This comparatively high score can be explained by the fact they this group participated in the 
preliminary study in the previous academic year, which covered essentially sums as presented on 
question 5A and 5B.
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Based on that, my original plan was for the teachers to enact one pack of lessons
per term, and more precisely, in the second half of the term, so the research team and
the teachers would have time to meet and discuss the lesson plans before they were
used.

It  was  also  agreed  that  none  of  the  groups  would  have  had  lessons  about
fractions  during  the  2015-2016  academic  year  apart  from  the  targeted  lessons.
However,  they  may  have  had  lessons  covering  topics  marginally  related,  such  as
percentages and ratios.

 6.5  The data collection
As  mentioned  before,  my  data  came  essentially  from  four  different  sources:

observation of the targeted lessons, observation of other lessons taught by the three
teachers, informal talks with the teachers, and meetings between the research team
and the teachers.

The  data  collection  started  with  the  first  meeting  in  September.  From  that
moment on, I started to come to the school two or three times a week to observe
lessons and talk to the teachers. This stage was important to establish rapport with the
students  and  teachers,  get  familiar  with  the  lessons  for  the  targeted  groups  and
discuss, even informally, aspects of the targeted lessons that I was designing in the
meantime.

The  timeline  below  shows  an  overview  of  the  targeted  lessons  and  group
meetings.  The  lesson  observations  and  informal  talks  took  place  over  the  whole
academic year, making a total of 95 lessons observed apart from the targeted lessons.

In the following sections I will give an overview of how the data collection went
with each teacher during each term, paying special attention to the targeted lessons.
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It is important to keep in mind that my research is not focused on the teachers, but
on the students. For that reason some events reported in the next three sections will
be left without further discussion. They are mentioned only because I believe they are
useful to understand how my data collection actually happened.

 6.5.1  First term
The first meeting was set to re-establish contact with the teachers, explain our

research proposals, clarify our goals and needs for the next academic year, discuss a
rough  timetable  and  any  possible  constraints  on  their  parts,  and  get  their  formal
consent to take part in the research.

The  next  two  meetings  were  focused  on  the  upcoming  targeted  lessons.  The
research team brought excerpts of the lesson plans and the underlying core ideas to be
discussed.  My goal  was to  capture the teachers’  impressions and adjust  the lesson
plans accordingly.

The first pack of lessons planned for this term was composed of five lessons and
started to be enacted in December.

Alice’s lessons

Due to the training that Alice was undergoing that academic year, she was asked
to develop a sequence of lessons using some sort of innovation. For that reason, she
decided to take the general description of the lessons in the first pack and develop the
lesson plans by herself. Bearing that in mind, I asked her to start enacting the lessons
before the other teachers, so I could use her lessons as a trial for my data collection
strategies, especially regarding the within-class clinical interviews.

The lessons started on 1st December,  and after the third lesson she decided to
interrupt the targeted lessons. According to her, the decision of not going through all
the five lessons was due to a perceived lack of impact on the students’ learning. This
view was based on her on the fly impressions during the lessons, since there was no
formal  mechanism to  evaluate learning incorporated  into  the lesson plans.  During
talks after the lessons and in the next meeting, she said that the work with the cut-
outs was very demanding for the students and they were too tired when the lessons
finally got to fractions.

At that point, I agreed with her in terms of the demands of working with the cut-
outs  to  the  extent  that  it  became  one  of  the  central  issues  discussed  in  my  data
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analysis (Section 7.2). However, I did not agree with her perception of lack of impact
on students’ learning. This could be the result of a conscious design choice of starting
by introducing the rectangular area model with not much emphasis on fractions that
was not clear to Alice.

From the perspective of my research, these lessons were very useful. Firstly, being
the first lessons of the main data collection to be enacted, they helped me to make
final  adjustments  to  the  lesson  plans.  Secondly,  through  my interactions  with  the
students, I had the opportunity to refine how I would collect the data. 

Regarding  the  second  point,  it  is  important  to  clarify  how  this  refinement
happened. During the first lesson, I decided to turn on the audio recording function of
the smartpen only if an interaction with a student was revealed to not be superficial.
This  strategy  proved  to  be  ineffective,  since  the  decision  to  start  recording  could
happen after a meaningful interaction had been started. During the second lesson, I
decided to  start  recording just  before  approaching any  student.  This  strategy also
proved ineffective because the action of starting a recording disrupted my integration
into the classroom environment, and my interactions with students. Finally, during the
third  lesson,  I  adopted  the  strategy  that  was  used  during  the  rest  of  my  data
collection: the audio recording function was left on during the whole lesson and I tried
to take notes immediately after any meaningful interaction with a student. These notes
always included the name of the student, her/his position in the classroom and could
include details  of  the interaction,  such as specific  words,  expressions and diagrams
used  by  the  student,  short  descriptions  of  the  interaction,  or  later  on  in  the  data
collection  process,  brief  references  to  what  sort  of  phenomenon  I  felt  that  the
interaction was an example of.

David’s lessons

Starting in December David taught five consecutive lessons about fractions, but
we decided to divide the original lesson 1.2 into two lessons based on the progress
made  by  the  students.  The  final  lesson  of  this  pack  was  enacted  right  after  the
Christmas break.

He always came for the lessons with a printed version of the lesson plans with
several notes. We usually had time for a quick talk before the lessons. During these
talks he would usually explain the general objectives and structure of the lesson and
highlight critical issues that could arise. I observed that he was very effective in paying
attention to these issues during the lesson.
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Julia’s lessons

Since  the  beginning,  Julia  reinforced  that  she  was  willing  to  use  the  lessons
exactly as I had planned, and in fact, she rarely made any changes to the lesson plans.
This decision was motivated by her perception that this would “improve the quality” of
my research. Nevertheless, she was still conscious of her role as the teacher and over
the academic year felt comfortable enough to sometimes interfere in a lesson, or in the
plans for the next lesson.

Her lessons also started in December, but due to external reasons, she could only
teach three lessons before the Christmas break. The two final lessons of this pack were
taught at the beginning of January, and the lesson 1.4 was divided into two lessons.
This was done because in the first lesson she ended up spending a long time on the
starter and the students had not enough time to conclude all the tasks.

 6.5.2  Second term
This term started with the final lessons by Julia. During the first half-term, I kept

observing lessons for the targeted groups, even though I reduced the number of visits
to the school in order to dedicate more time to finishing the design of the second pack
of lessons. These would focus on adding fractions from the same family. The pack was
composed of four lessons, with the last one being different from the others because it
was focused on word problems.

There was a meeting with the teachers at the end of January to discuss the lessons
enacted during the previous term, and another at the beginning of February to discuss
the upcoming lessons, which started on 29th February.

Julia’s lessons

Julia taught the four lessons in a row and everything went as planned even though
this group have had similar lessons during the preliminary study.

She evaluated that the students’ levels of engagement started low, but increased
significantly as the lessons progressed. Nevertheless, she was concerned about how
the final lesson would turn out, considering that it was the first that focused on word
problems.  According  to  my  observations,  this  type  of  lesson  was  not  common  in
general  for  low  sets  at  Purple  Valley.  However,  considering  the  amount  of  work
registered on the worksheets, it can be said that the lesson was successful, since most
students solved all the questions proposed in the original lesson plan.
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After the final lesson, Julia said to us that she wanted to do another lesson on
word problems, because she felt that the students could go even further. As a result,
she prepared the worksheet below for the next lesson and I went to the school to
observe it.

It is remarkable how this lesson plan is different from Julia’s regular lesson plans.
Firstly,  the  number  of  questions  to  be  answered  is  considerably  smaller,  so  the
students had more time to focus on each one of them. Secondly, the questions are
considerably different from each other in terms of what is expected from the students.
Finally, during the lesson, the questions were not preceded by examples showing how
to solve them, as she usually did (see Section  5.4). It could be said that Julia was
copying my lesson plans, however, even when compared to mine, she went further in
terms of the variety of the questions. Considering that Julia is always very careful in
the choice of tasks for her lessons, this lesson plan suggests that Julia considered that
students’  knowledge about  fractions  was  somehow different  from their  knowledge
about other topics.

120

Illustration 28: Lesson plan for an extra lesson on fractions



Data collection

David’s lessons

The four lessons became six for David’s groups. Firstly, lesson 2.1 was broken into
two lessons, because the students were not able to conclude all the tasks. Secondly,
lesson 2.2 was repeated after one week, when David was not able to teach this group
for  personal  reasons.  Both  decisions  were  agreed  between  the  teacher  and  the
research team.

In relation to the final lesson with word problems, it was clear that the students
asked  for  help  more  frequently  than  Julia’s  students.  However,  their  progression
during the lesson was satisfactory enough for us to consider that an additional lesson
was not necessary.

Alice’s lessons

The term started with Alice teaching the final lesson of the last pack. I could not
observe this lesson due to conflict with Julia’s lesson, but she was satisfied with it,
because according to her, the lesson went more smoothly and she was able to notice
progress. This time, she used my lesson plan. It is interesting to notice that this lesson
was different to the lesson plans she enacted last term, and more focused on fractions
than on the model.

Alice, as did David, needed two lessons to complete what was planned for lesson
2.1. After the second lesson, we talked about her impressions, and she thought the
students needed more similar questions on each task, so they could get some fluency.
As a result, I decided to change the lesson plan for lesson 2.2 more than I used to do
from  one  lesson  to  the  other,  but  still  keeping  the  same  design  principles  and
objectives.

From my perspective, as the designer, the difference is that there were more items
in the opening question  (work  out  sums given diagrammatically),  which allowed a
slower transition from simpler to more complex cases. The consequence of this change
is that there was less time to spend on the final questions of the original lesson plans
(work out sums given symbolically and compare sums).

After  this  lesson,  Alice  was  very  satisfied  with  the  result.  According  to  her,
students progressed more and were more engaged during the lesson. Consequently, I
decided to adapt the style of lessons 2.3 and 2.4 to a similar format. By the end of this
sequence of lessons (seven considering the one from the first pack), Alice was much
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more enthusiastic about the approach of the targeted lessons than she had been at the
end of the previous pack.

 6.5.3  Third term
We had two meetings before the third pack of lessons, one to discuss the previous

and another for the third pack of lessons, which started in the middle of January.

Julia’s lessons

The first and second lessons went as planned. The students made the transition
from using the pieces (lesson 3.1) to using diagrams or purely numerical approaches
(lesson 3.2).  However,  at  the beginning  of  the third  lesson,  when the lesson plan
suggested a discussion about how to add fractions without drawing the full diagrams,
Julia asked me to explain it for the whole class. Later, she told me that she had no time
to prepare for this lesson and could not remember what aspects should be emphasized
during the discussion. As I was not expecting to lead the lesson, my explanation did
not  cover  what  was  suggested  in  the  lesson  plan,  and  this  apparently  affected
students’ progress and engagement during the lesson.

Consequently, we decided to include a fourth lesson, very similar to the third one.
Afterwards, Julia considered the fourth lesson very successful and we concluded the
lessons on fractions with this group.

David’s lessons

David enacted all the lessons in this pack consecutively and there was no need to
add extra lessons. As had happened with Julia, he also perceived them to have been
successful and so the targeted lessons for this group were concluded.

Alice’s lessons

Alice was the last one to enact the lessons in the third pack, but she was able to do
all of them consecutively and with no extra lesson needed.

Interestingly,  during  the  first  lesson,  I  noticed  that  the  students  were  less
cooperative than usual. As I have mentioned before, this was the most challenging
group in terms of behaviour, as well as being the group with the highest number of
students that were not open to talking to me. During the first lesson I noticed that
some of them were avoiding talking to me and apparently joking about it when I went
away. Apparently, some students were actively avoiding interactions with me. When I
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mentioned my impression to Alice, she said that she did not believe there was any
special reason, just something normal for this group.

Consequently,  I  was  not  able  to  collect  as  much  data  as  I  could  in  previous
lessons.

 6.5.4  Extra lessons
After  the end of the third pack,  the research team had a meeting with all  the

teachers to discuss the lessons as a whole. By the end of the meeting, all the teachers
asked us if  it  would be possible to use the lessons with other groups. Specifically,
David wanted to use a condensed version of the lessons with his Year 9 Set 3 (out of
5), Alice wanted to use some lessons, especially from the first pack, with her Year 7 Set
3  (out  of  3),  and  Julia  wanted  to  teach  multiplication  of  fractions  using  a  similar
approach to her Year 8 Set 4 (out of 5 — the same group as the targeted lesson).

For David and Alice, I selected some lessons and adapted them in such a way that
they could be used as a coherent set considering the number of lessons each one of
them had available (5 for David and 3 for Alice).  I observed all  these lessons and
collected data during them as I had for the targeted lessons. However, due to the fact
that  I  was  not  prepared for  that,  and the time for  planning  was  very  restricted,  I
decided not to include this data as part of my research.

With Julia, the approach was different. The research team met with her twice to
discuss  her  ideas  to  teach  multiplication  of  fractions  based  on  the  approach  I
developed throughout the targeted lessons. I also observed the two resulting lessons,
but again decided not to include this data as part of my research.

This interest in extending the experience can be considered a sign of satisfaction
with the results achieved with the targeted lessons.

Before the end of the academic year, the teachers asked me if I could organize a
booklet including all the lessons to be used during the next academic year by them,
and eventually by other teachers in the department. In August, I organised the lesson
plans into a booklet, incorporated some changes based on my informal analysis of the
experience, and passed it  to them with the cut-outs. This new version of the lesson
plans is available at  http://barichello.coffee/about-my-research/lessons-fractions-
visual-representations.
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 6.6  Reflection on the data collection process

 6.6.1  The relationship with the school
I could not actually expect a better relationship with the school than the one I

developed  during  the  period  of  my  pre-field  work,  preliminary  study  and  data
collection, as I had no problems in carrying out my research. Other members of the
staff were aware of my activities in the school.

The other mathematics teachers also received me very well. I spent a significant
amount of time in the staff room between lessons and during breaks and always felt
very welcome, engaging in several conversations about many topics related, or not, to
my research.

 6.6.2  The relationship with the teachers
The same can be said about the relationship with the participant teachers. They

were not only very open about me observing their lessons, but were also available to
talk about any topic related to my research. They felt comfortable in asking me, for
example, not to come to observe particular lessons (all of them did that at some point
during the academic year),  or to openly say that they had no time to prepare for a
particular lesson (again, all of them did that at some point during the academic year).
At the same time, I felt that I could ask them for anything related to my research and
they  would  honestly  ponder  and  say  yes  or  no  according  to  their  judgement.
Fortunately,  the  data  collection  went  smoothly  and  I  did  not  have  to  make  any
significant changes during it.

 6.6.3  The relationship with the students
Regarding the students, it was clear to me that my rapport with them evolved

throughout the year.  This became even clearer during the extra lessons for David’s
Year 9 Set 3, as I had never observed this group before, and by contrast it was more
difficult to engage in meaningful interactions with these students.

On the other hand, apart from the change in Alice’s group’s behaviour during the
beginning of the third pack, I felt very comfortable when talking to all students, even
though some of them would sometimes not be open to conversation. In that case, I
would just walk away and try to approach the student again after some time. In fact, it
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became quite common for students to ask for help directly from me instead of just
raising their hands and waiting for somebody to come.

Another sign that I had reached a good rapport with the participant students was
the “small talks” in which the students had started to engage with me at the end of
some lessons. As a former teacher in Brazil, I noticed that the relationships between
teachers and students in this school were restricted to academic issues, with almost no
interaction outside the classroom; this is very different in Brazil. However, after a while
the students felt comfortable enough around me to initiate conversations about non-
academic topics, or even better, to show me how much they had done by the end of a
lesson, or brag about having solved a particular question.

 6.6.4  Considerations about the within-class clinical interviews
It is important to clarify a few more aspects of the within-class clinical interviews

than what was described in Section 4.5.1.

The first aspect refers to how I chose the students with whom I would interact. In
general, during a lesson, I would walk around the classroom making myself available
for the students to ask for assistance.  When no student asked for  my assistance,  I
would keep walking around checking discretely what tasks they were solving and what
answers  they  were  obtaining.  Based  on  that,  if  I  noticed  anything  that  could  be
interesting in terms of my research goals, I would approach the student asking `why`
and `how` questions (Ginsburg, 1997).

During this process, I did not follow any pattern in terms of which student would
be approached next. My choice was based on what I could notice on their worksheets.
Although I was intentionally trying to avoid focusing solely on talk-active students, I
would not insist on engaging with a student who was not open to conversation. 

In terms of the depth of the interactions, most of the time they were superficial
(asking me to check an answer, for instance), but inspecting my notes retrospectively I
can say that I collected at least 4 meaningful interactions per lesson, and that quantity
seems enough to shed light onto my research goals.

Finally, it is worth discussing the balance of power between me (as interviewer)
and  the  students  (as  interviewees)  during  my  data  collection.  This  is  a  common
criticism of the work of Piaget  (diSessa, 2007): are children’s reactions and answers
during a clinical interview a portrait of their cognitive resources, or are they the result
of an uneven power relation between the children and the researcher? 
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Although I admit this question is also pertinent to within-class clinical interviews,
my answer is that the power relation in this case is closer to the power relation existent
between  teacher  and  students,  which  is  arguably  an  inevitable  component  of  any
educational endeavour in the current context (maybe apart from very innovative or
specific settings). Therefore, the data I could access with this method is closer to the
input a teacher could have during a lesson, rather than the data arising from traditional
clinical interviews, meaning that it gains a higher ecological validity.

 6.6.5  What could have been done better
During my data collection, I sometimes felt that it was too unstructured and could

result in a set of data lacking rigour. However, as argued by Hammersley and Atkinson
(2007), it is common in exploratory research to have a wide range of methods for data
collection that may evolve or be refined during the research process. In fact, after a
while I started to realise a certain coherence emerging from my data, and could then
focus more on the within-class clinical interview, and less on students’ answers on the
worksheets.

Nevertheless, reflecting retrospectively, I can identify three aspects that could be
improved in my data collection.

Firstly, some lessons, such as 1.1 and 3.1, generated little material apart from the
audio recordings. This happened especially with lessons based on cut-outs, due to the
fact that I did not use video recording, and the students used the same set of cut-outs
to answer several questions, which limited drastically the possibility of leaving some
sort of permanent register of their solutions. Although I do not think it was a problem
for most of the lessons, some video recordings would complement the data and could
be useful during analysis, even considering the disruption that the video may cause.

Secondly, some clinical interviews outside the classroom could have been useful
to elucidate specific issues that arose during my data collection. I do not mean that
this  would  provide  deeper  data,  but  that  it  would  allow  me  to  pursue  some
phenomena that  I  could not  pursue during the lessons.  However,  I  am not  sure  it
would have been possible to identify the issues and prepare clinical interviews within
the time constraints.  Therefore,  these clinical interviews can be seen as a choice of
complementary  method  for  a  subsequent  research  project  aiming  at  further
investigate issues already identified in this one.
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Thirdly, even though it was possible to avoid overlapping of lessons on the same
day and at the same time, it was common to have overlaps in the periods during which
the teachers decided to enact the lesson plans. For instance, the three lessons of the
third pack were enacted by Julia and David in the same week. As a result, the time
constraints to incorporate changes from one lesson to the next one were huge and
there was no time to refine a lesson for the next teacher once it had been enacted by
the first. Ideally, it would be desirable to have big gaps between the delivery of the
packs, as I had, but also small gaps between when the different teachers enacted the
lessons. However, I recognize that when it comes to research into real classrooms this
may be not feasible.
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 7  DATA ANALYSIS

 7.1  First steps

 7.1.1  Initial impressions from the data collection
As  it  is  expected  during  any  research  with  an  ethnographic  component

(Hammersley  &  Atkinson,  2007),  the  data  analysis  inevitably  starts  during  data
collection. Every day after my visit  to the school, I would produce some additional
notes summarizing my impressions of what happened during that day and events that
caught my attention for some reason. Moreover, the research team talked after every
visit  to  the  school.  Even  though  these  talks  were  essentially  informal  and  mostly
focused  on  practical  issues  regarding  ongoing  and  future  actions,  they  sometimes
evolved into more reflexive discussions.

The interactions with the participant teachers were also important in this process.
Their impressions about the lessons and opinions about what should be done next not
only influenced the design of the lesson plans, but also directed my attention towards
specific events and phenomena.

As a  result  of  all  of  this,  when I  concluded my data collection,  I  had already
tentatively identified three themes that seemed relevant to the research question (how
students  learn  fraction  addition  and  subtraction  through  an  approach  emphasizing
visual representations), namely:

1. Students using vocabulary related to visual representations when reasoning
about fractions;

2. Students  being  able  to  extend  their  knowledge  to  solve  questions  slightly
beyond what was taught to them;

3. Specific difficulties that seemed to be related to the use of the chosen visual
model.

With these issues in mind, but with no plans to restrict myself to them, I started
the systematic data analysis.

129



Data analysis

 7.1.2  The beginning of the systematic data analysis
After  the  end  of  the  data  collection,  I  started  to  analyse  it  systematically,

organizing worksheets, audio recordings and notes. Considering the amount of data
collected (about 2000 pages of worksheets used by students, more than 100 pages of
notes  accompanied  by  audio,  and  several  hours  of  audio  recordings  of  talks  and
meetings with the teachers), it took me some considerable time merely to organize it in
a way that allowed me to identify and access quickly any piece of data12.

After this stage, I started to describe further the within-class interviews that I had
marked during my data collection as potentially interesting. This means that among all
the interactions I recorded with students during the targeted lessons, these are the
ones  that  caught  my attention  directly  after  their  occurrence,  and were,  therefore,
marked on my field notes as potentially interesting. This process generated a list with
about 60 episodes.  To each episode I attached any worksheet related to it,  a brief
description, a short comment on why I thought it could be interesting to the research
question,  and  a  code.  The  latter  allowed  me  to  create  an  initial  grouping  for  the
episodes, taking into account recurrent phenomena, the themes that emerged during
the data collection and relevant aspects according to the literature.

Once I had concluded the organization of the episodes already identified during
data collection, I moved on to a systematic inspection of all my field notes, searching
for other meaningful within-class interviews in terms of the research questions. It is
worth remembering that during all the lessons I did not adopt a stance of a neutral
observer, so sometimes I would talk to students explicitly aiming at collecting data
and  at  other  times  I  would  assume  a  role  similar  to  that  of  an  assistant  teacher,
encouraging,  checking answers,  offering apposite support,  and keeping students on
task, etc. Because of that, my recordings also contained lots of interactions that were
not related to my research questions. By the end of the inspection, I identified 105
episodes altogether, with all of them receiving a description, reflective comment and a
code.

Then I  started  to  revisit  all  the episodes focusing on the codes I  created.  My
intention was to refine them into a more coherent and shorter list. Similar codes were
unified and others merged due to further consideration of the episodes listed under
them, resulting in 8 different codes. This whole process of organising, revisiting, listing
and coding was very immersive for me, and allowed me to consider the data available
and decide what issues it would be possible to discuss.

12 This was done mainly using the free software Pipoca (https://github.com/barichello/openQDA).
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I started to write the following sections analysing the data for each one of the
eight codes. As it progressed, three of them ended up being satisfactorily covered by
the other five. Consequently, my data analysis is divided into 5 sections, each referring
to a different issue that was observed during data collection and for which I believe to
have collected enough data for a rich understanding. The issues are:

1. The interference of visual abilities (Section 7.2). This refers to how an apparent
lack  of  certain  visual  abilities  seem  to  have  interfered  negatively  in  how
students engaged with the tasks;

2. Reasoning and visual representations (Section 7.3). This section discusses the
emergence of reasoning during the lessons and highlights how this reasoning
was anchored in the visual representations being used;

3. Generative  reasoning (Section  7.4).  This  refers  to  the  capacity  shown  by
students  to  extend their  knowledge of solving questions  that  went  beyond
what was explicitly taught to them during the targeted lessons;

4. The multiplicative aspect of fractions (Section  7.5). In this section I discuss
two issues related to prior knowledge on multiplication. First, I will show how
the targeted lessons presented a low threshold in terms of previous knowledge
of  multiplication,  and  secondly,  how  this  knowledge  influenced  the  way
students engaged with the tasks;

5. Whole number bias and other rote procedures (Section  7.6). The aim of this
section is to discuss the occurrence of the whole number bias and other rote
procedures during the targeted lessons.

Each one of these issues will be presented and discussed in the next sections in
the light of the data collected.
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 7.2  The interference of visual abilities
As  discussed  in  Section  2.4.3,  the  correlation  between  visual  abilities  and

achievement in mathematics is well documented in the literature (Mix & Cheng, 2012),
even though the causal mechanisms are still not completely clear. Since my research
deals with visual representations and low achieving students,  I  was expecting that
visual abilities would be a critical aspect during the lessons and that they would be
salient during my observations.

The first  episodes,  when that interference was observed, took place during the
very first few lessons, when the rectangular area model was introduced for 1/2, 1/4,
1/8  and  1/16  and  for  1/3,  1/6,  1/9  and  1/12  (lessons  1.1,  1.2  and  1.3,  see
http://dx.doi.org/10.17639/nott.353). During these lessons, students were asked to
compare the relative size (in terms of area) of cut-outs as shown in image  29. The
lessons started with questions such as ‘how many of this do you need to cover that?’,
and most of the combinations involved the white square on the right side of image 29
(later, this shape would be defined as the unit).

In general, students had no problem solving these questions when both shapes
were rectangles.  However,  I  observed some students struggling to fit  the cut-outs
when there were triangles involved.
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On some occasions, I observed students staring at the cut-outs almost as if frozen
for several seconds. That was the case for a pair of students working together during
Alice’s first lesson when trying to answer the question “how many yellows would you
need to cover the white square?” with a configuration of cut-outs similar to the image
below in front of them (the yellow shape is an isosceles triangle with an area equal to
1/16 of the square’s area and the longest side equal to 1/2 of the side of the square).

Before intervening, I observed them manipulating the cut-outs for a while. Their
actions  were  limited  to  adding  new yellow  shapes  to  the  current  configuration  or
translating one of the shapes already being used. At some point, one of the students
acted as if he had just had an insight, but he just removed the yellow shapes from over
the white  square and started  over  to  position  them in  a  similar  configuration,  but
instead of starting by covering one of the sides of the square, he built yellow squares
by joining the hypotenuses.  After  doing that to some triangles,  he noticed that his
approach would not work.

They seemed to be unable to use rotations and reflections to solve the task. After
a while, I decided to intervene by verbally13 suggesting ‘why don’t you try this?’ and
rotating one of the triangles, such that its hypotenuse would coincide with the base of
the square. When I finished the movement, one of them reacted as if having an insight,
discarded  the  other  triangles  and  carried  on  the  pattern  my  triangle  suggested,
thereby finding an answer to the question.

Similar situations, where students seemed not to be able to use reflections and
rotations to solve such questions, were observed throughout the first three lessons
with all  the teachers.  On other occasions, instead of showing the rotation with the
shape, I tried to suggest the movement verbally using words such as ‘rotate’ or ‘turn’.

13 The issue of using language as mean for my interventions is discussed in Section 8.4.1
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While it worked for a few students, it did not for most students that were struggling
with triangles.

My conjecture is that the prevalence of this struggle with triangles was because
for  rectangles  the  rotations  (90,  180  and  270  degrees)  do  not  add  much  new
information,  since  the  referent  (the  square  unit)  is  symmetrical  under  such
transformations. So in general, rotation (realized mentally or manually) was not really
necessary to solve questions when only rectangles were involved. However, for some
questions involving triangles, rotation was fundamental. In the task discussed above,
the yellow shapes represented 1/16, as its longest side was half the length of the unit

and the other two sides were equal to √2
4

times the length of the unit. Therefore, it

would only fit the unit square if the longest side was aligned with the side of the unit.

It is important to emphasise that this was not generalised across all the students,
but it happened with students in all the groups, and for those struggling it was a real
impediment, to such an extent that I decided to remove the triangles from lesson 1.3
when David taught it as he was the last teacher to do so and I had a gap between
lessons that allowed me to prepare the new cut-outs.

After lesson 1.3, students stopped using triangles to represent fractions because
of the convenience of using rectangles. This was an explicit goal for the first pack of
lessons. Therefore, it is natural to expect that the occurrence of this sort of episode
would reduce, and it actually did.

However, towards the end of the first pack of lessons, I was still able to observe
episodes that I consider related to this issue. This one happened with the student M,
from David’s group, during lesson 1.5, the first lesson with no cut-outs. Students were
asked to produce a series of diagrams representing several fractions to keep in their
notebooks  for  future  reference  (after  this  lesson  a  break  was  planned  before  the
beginning of the second pack). After creating the diagrams, the students were asked to
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complete  some  equalities  involving  equivalent  fractions,  such  as 1
3

=
9

.  M had

already  created  all  the  diagrams  and  was  successful  in  answering  the  first  few
questions on equivalent fractions, when I noticed that she was stuck on the question
1
5

=
10

.  From my perspective,  this question was nothing special  in comparison

with  the  ones  she  had  already  answered,  so  I  intervened  by  just  reinforcing  the
question: “so, you have to compare one fifth to tenths. How many tenths would fit into
one fifth?”. At this point, she was looking at her list of diagrams, which contained an

example for 1
5

and one for 1
10

, as shown below.

To my surprise  she  was  not  able  to  answer,  even  though she  had apparently
identified both diagrams. I had no clue as to what could be behind her difficulty to

solve this particular question, when I noticed that the diagram for 1
10

was the only

one that she had glued into her notebook in a different orientation. At this moment, I
pointed that out to her and commented that this could happen and that she could
imagine  the  diagram  rotated.  She  did  not  show  any  sign  of  an  insight  from  my
comment,  but  found  the  correct  answer  and  moved  on  successfully  to  the  next
questions.
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Note that in this episode triangles were not involved, but it seems that even a
student  who  was  able  to  create  the  diagrams  and  answer  some  questions  about
equivalent fractions could get stuck on a question that demanded mental rotation of a
rectangle by 90 degrees.

These two episodes illustrate how visual abilities, such as mental rotation, may
interfere with students’ learning. Visual representations are common in mathematics
classrooms,  maybe  due  to  curricular  demands  (data  representations),  teachers’
preferences (fraction models), or to the nature of some topics (Euclidean geometry),
and when using them teachers or task designers may implicitly expect students to be
able to freely use such seemingly simple visual abilities, such as mental rotation. The
problem is that such abilities may not be readily available to all students.

For instance, consider the work of Cheng and Mix (2012) showing that training in
mental  rotation  improved  the  achievement  of  young  students  in  missing  number
questions ( 4+?=7 ). While at first it could be said that this question can be solved
by purely arithmetical  means,  the study suggests that there could be a connection
between basic arithmetical knowledge and visual skill mediated, arguably, by the use
of some internal visual representation. The authors suggest that the effect could be
explained by a diagrammatic view of the equations: students see the expression as a
diagram that can be visually manipulated by, for instance, rotating the 4 around the =,
to the other side of the expression obtaining the new version ?=7−4 . Uribe et al.
(2017) uses a semiotic reference to search for other causal mechanisms to explain
what  was  observed by Cheng and Mix  (2012) and proposes  three possibilities:  an
improvement in working memory due to a more efficient use of visual skills, better
reading and understanding of the arithmetic-symbols due to an improved capacity of
dealing with spatial information, and improved capacity to manipulate images could
conceptually  influence  the  capacity  of  association  and  distribution  of  numbers.
Although more research is necessary to better understand the causal mechanisms, all
possibilities  point  to  ways  in  which  visual  skills  could  interfere  with  “doing
mathematics”, even when there is no obvious visual representation involved.

While the two episodes discussed in this section show a negative interference of a
student lacking visual abilities, there were also episodes showing a positive influence
of having fluency with them. 

W, who was Julia’s student, was well-behaved and seemed to engage with the
tasks  during  all  the  lessons.  However,  according  to  Julia,  he  had  severe  literacy
problems, to the extent of being allowed to ask for a reader during exams. Regarding
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my lessons, since my preliminary study, he always progressed very well, being one of
the  first  students  to  complete  the  basic  lesson  plan  and  engage  with  extension
questions. A quick check of his worksheets shows that W completed the vast majority
of the lessons and got the right answer for most questions. This episode took place
during the starters used by the teachers before the beginning of the second pack of
lessons. The question asked the students to show 1/3 of three given diagrams. When I
was walking around, I saw W’s solution to this question.

It caught my attention because I was expecting answers with one column shaded
in the first diagram (1 out of the 3 columns available) and one line shaded in the third
(1 out of the 3 lines available). When I asked him “why this is 1/3? [pointing to the
third diagram]”, he answered: “that one is for that column, that one is for that column,
that one is for that column, that one is for that column [pointing to each one of the
shaded squares successively]”.

The  spontaneity  of  his  reasoning  was  striking  for  me.  He  sounded  absolutely
under  control  of  where  the  shaded  squares  would  be,  since  he  could  move  them
around mentally if necessary. Although this is just one episode, I would argue that it is
not  a coincidence that  one of  the students  who showed great  progress  during my
lessons  was  also  able  to  exhibit  a  great  ability  to  mentally  transform  a  visual
representation. Even though he was placed in a low set in mathematics (set 4 out of 5),
W was promoted to set 3 by the end of the academic year.

Interestingly, with the second pack of lessons, this type of episode ceased and this
could be due to two reasons. The first comes from the fact that the lesson plans moved
away  from  triangular  and  towards  rectangular  sections  to  represent  fractions  in
diagrams, and since rectangles reduced the need to perform mental rotation and more
sophisticated transformations,  there  were fewer  opportunities  for  such  episodes to
happen. The second relies on the expectation that increasing familiarity and exposure
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to the rectangular area model would enhance students’ visual ability, or at least some
components of it, which is coherent with findings indicating that this kind of skill is
trainable at any age (Uttal et al., 2013).

 7.2.1  Discussion
Originally, I decided to use triangles during the lessons as a way to transmit the

message that  it  is  not  the shape of  the pieces  that  is  important,  but  their  area  in
relation to the unit. For that reason, after the introduction of the model (the three first
lessons of the first pack), the triangles faded away and the students would work only
with rectangular sections, which were expected to be simpler to draw and manipulate.

The lessons started with Alice’s group, and even though she did not use my lesson
plans  she  used  the  same  set  of  pieces  that  I  suggested  originally.  The  challenge
represented by these pieces was translated by Alice in a talk we had just after the
second lesson.

The lesson started with the same pieces used in the first lesson (representing 1,
1/2, 1/4, 1/8 and 1/16 — including three triangular shapes) and the tasks consisted
of  identifying  how many of  one type would  be necessary  to  cover  another  set  of
pieces.  By  the second half  of  the lesson,  fractions  would  be finally  introduced by
associating each one of the pieces with a fraction based on how many it would be
necessary  to  cover  the  white  square  (unit).  This  was  one  of  the  lessons  when  I
observed several students struggling to rotate the pieces.

After the lesson Alice said that after the first half of the lesson students were so
mentally exhausted due to the working with the pieces, that they were not able to
learn  anything  about  fractions.  Even  though  her  judgement  was  based  on  her
perception during the lesson, most of the students actually did not conclude the tasks
posed and planned by her.

I can conceive of two reasons for that struggle: that students did not realize that
those  transformations  were  allowed,  or  that  they  were  not  able  to  see  how  the
transformation could be useful.

The first hypothesis would mean that the model being used did not embed the
transformations  very  well,  thus  demanding more  explanations  from the teacher  in
order for it to be successfully used by students. However, I do not think that is the
case, because on no occasion did the students seem to be surprised when I showed
them a transformation taking place (flipping over or turning around a cut-out), except
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when I approached the actual solution to the task, for instance, by positioning one
cut-out in a way that started the pattern that would lead to the solution.

This perception suggests that the second hypothesis is actually correct: students
were not able to project how the transformation could be useful to reach a solution to
the tasks posed. This conclusion is also compatible with results showing that visual
skills,  such as mental rotation, should not be taken for granted, as I had done in a
retrospective analysis when deciding to include triangles in the lesson plans.

Note that this remark does not contradict one of the main premises of this work,
that  the  rectangular  area  model  can  work  as  a  grounding  metaphor  for  learning
fractions.  I  believe that  the model  very successfully  embedded the properties  and
transformations necessary to build the intended knowledge regarding fractions, due to
the characteristics discussed in Section 5.3, that the lack of some visual abilities affect
the fluency of some students with some transformations.

The next question that has to be answered is should teachers just avoid situations
that demand visual abilities with low achieving students or should they intentionally
use such situations to improve students’ visual abilities?

First of all, it is important to remember that such abilities are trainable (Uttal et al.,
2013) and correlate with achievement in mathematics  (Wai et al., 2009). Therefore,
the natural conclusion seems to be that those situations should not be avoided, but
promoted. Additionally, as Gates (2015, 2018) argues, the gap in visual abilities can
be even more significant for students from certain social backgrounds, since they may
have experienced fewer opportunities to develop these abilities through playing with
construction blocks, jig-saws, board games and other mathematics related activities
(Levine, Ratliff, Huttenlocher, & Cannon, 2012; Tudge & Doucet, 2004).

However, what my data shows is that this could be challenging to an extent that
may hinder the mathematical aims of a lesson, as highlighted by Alice’s observation
above. Finally, I cannot identify any situation in my observations where the previous
contact with triangular shapes was clearly beneficial for students.

Thus, my recommendation is that if a teacher wants to focus on the mathematical
topic of fractions, as in the case of my research, he/she should avoid situations with a
high demand of visual abilities because they can be a major distractor and become the
focus of the activity.

This is  not to say that activities designed to promote visual abilities should be
avoided at all. Actually, Newcombe (2016) highlights that the evidence showing the
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connection between visual skills and achievement in mathematics and science is so
extensive that it is beyond time to “spatialize the curriculum”. She points out that this
can  be  achieved  by  explicitly  including  such  goals  in  the  curriculum,  or  by
incorporating activities with such goals into regular disciplines. 

My argument is that this should be done consciously and based on the merits of
visual skills, rather than being left to be marginally covered during eventual lessons,
and at risk of becoming another gatekeeper instead of an opportunity to learn.
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 7.3  Reasoning and visual representations
In Section 3.4, I presented and discussed an episode of a student working out the

sum 1
9

+
5
6

using  diagrams.  This  episode  was  striking  for  two  reasons.  Firstly,  his

arguments were strongly anchored in the visual representation. Secondly, the visual
representation  seemed to have enabled him to extend his  knowledge and solve a
question that had not been covered during the lesson (so far, students had only added
fractions from the same family). As discussed before, this observation influenced the
focus of my research, such that reasoning became one of the main issues that I had in
mind during the data collection.

As a result, in Chapter  4 I developed ideas related to reasoning towards what I
call  reasoning anchored  in  visual  representations,  based  on concepts  proposed  by
Toulmin  (1969), Rivera  (2011) and Lithner  (2008).  In summary,  this term refers to
chains  of  arguments  whose  warrants  or  backings  are  explicitly  tied  to  visual
representations, its elements, properties and transformations.

In this section, I will present some episodes with students explaining how they
solved different tasks and why they had chosen the way they did so, i.e. reasoning.
Beyond  showing  their  reasoning,  my  goal  is  to  evidence  how  this  reasoning  is
anchored  in  the  visual  representations,  and even  further,  is  enabled  by  the visual
representations.

 7.3.1  Anchoring reasoning in visual representations
The first episode took place during lesson 1.4, after students used cut-outs to

identify  several  rectangles  as  representing the fractions  1/6,  1/8,  1/10,  1/12 and
1/15.  The task below was than posed to them. For the first  item of this  task two
fractions were given, but for the other items only one fraction was given.
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Furthermore, the items of this task were chosen such that a unitary fraction would
be asked before a non-unitary fraction with same denominator. For instance, before
asking for fractions equivalent to 3/4, the task asked for fractions equivalent to 1/4.
The intention was to create an opportunity for students to notice the relation between
a unitary  fraction (and its  equivalent  fractions)  and non-unitary fractions  with  the
same denominator (and its equivalent fractions).

When I was walking around the room, I noticed that M was solving Task 2 for the
fractions 1/3. After talking to some other students, I noticed she had not only solved
this item correctly, but also the next one regarding 2/3, as shown below.

Because she got the right answers very quickly, I decided to ask her how she got
the answers to 2/3, to which she answered:

M: You can fit five of these [pointing to 5/15] into that [pointing to 1/3]. 
So, you can fit 10 into that [pointing to 2/3].
Me: What about the others?
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M: The same. 4 and 8 [pointing to 4/12 and 8/12], 2 and 4 [pointing to 2/6
and 4/6]

First of all, note the meaning she attributed to the equal sign: “to fit into”. This
meaning  is  strongly  connected  to  how  equality  is  treated  in  the  rectangular  area
model.  Two fractions are considered equal  if  they cover  the same area and this  is
operationalized by overlapping (fitting) the shapes one onto the other.  This is very
close to viewing non-unitary fractions as a collection of unitary fractions. Collection is
seen  by  Lakoff  and  Núñez (2000) as  one  of  the  most  fundamental  grounding
metaphors  for  mathematical  cognition.  However,  note that  there  is  more  than the
numerical view of a collection involved in her reasoning. The use of “fit” as the verb
suggests that she is aware of the relation between different types of fractions in terms
of areas, and that it is not only an issue of counting elements. Therefore, in terms of
Lithner’s (2008) proposal, her reasoning was anchored in the visual representations.

Another episode that shows that students’ conceptualization of fractions was not
restricted to counting, but considered the relation between different fractions, can be
seen in the answer given by Z when justifying for the whole class why he thought 3/4
was bigger than 5/8. He said: “Though five eighths has more bits, they are smaller”.
Once  again,  the  use  of  a  word  such  as  “bits”  reinforces  the  anchoring  in  visual
representations.

The second episode took place at the end of the second pack of lessons. L wrote
the following as an answer to the question, “What is bigger, one half or six tenths?”.

When asked how he concluded that 6/10 is bigger, he said, “because if this was a
half [pointing to the second diagram],  the line would be in the middle of that one
[moving his finger along the red line]”.
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Note that his argument relies on a visual perception of what half should look like,
so it is clearly an example of reasoning anchored in visual representations. I recognise
that,  maybe,  this  student  would  not  be  able  to  employ  a  similar  strategy  if  the
question did not involve half, although the episode shows that visual representations
may also capitalize on the familiarity students show with certain fractions, especially
half (Clarke & Roche, 2009). Because “halving” and “doubling” are emphasized in the
English curriculum, a teacher would naturally expect students to easily calculate that 5
is half of 10 and, therefore, 6 tenths would be more than 5 tenths. However, this may
not  be case  for  low  achieving  students,  who are  usually  not  fluent  with  what  are
considered basic arithmetical facts.  Nevertheless,  this episode shows an alternative
pathway, anchored in a visual representation that also relies on common knowledge
regarding “half of something”,  but one that could be accessible to a low achieving
student.

Similarly, when asked about the question “Is 5/8 bigger than 1/4+2/8?” during
the first pack of questions, C answered: “This [pointing to 1/4+2/8] would fill up half,
and this [pointing to 5/8] has one more”. Even though he had no diagram drawn on his
worksheet,  his  explanation  is  very  visual,  as  indicated  by  the  verb  “fill  up”.  Also,
although not referred to explicitly in the question, half was again used as a benchmark,
with the strategy employed by the student showing no sign of a numerical approach.

Third episode

The next episode involved student D (Year 9 Set 5), who usually engaged well
during mathematics lessons. In lesson 2.3 I noticed he had correctly worked out the

sum 2
3

+
5
12

,  even though his  diagram (below)  only  showed the unit  divided into

twelfths, with all of them shaded (as the answer is 13/12, I was expecting something
else to represent the thirteenth twelfth).

144

Illustration 37: L's gesturing



Data analysis

I decided to approach him to ask how he had solved it, to which he answered:

“Here is two thirds [running his finger along the two first columns in the
diagram] and it is the same as eight twelfths. And then one, two, three,
four [pointing to each one of the rectangles in the third column] and five
[pointing again to the last rectangle]. So eight plus five is thirteen.”

I was impressed by his explanation, but decided to add that he could have drawn
another unit to show the last twelfth and he said promptly, “Yeah, I know,” as he had
consciously decided not to do it. Actually, when I checked his answer for a question

involving the sum 3
4
+
3
8

from the previous lesson, I noticed that he did draw and use

a second square.

My argument is that his strategy of “double counting” a twelfth in the diagram
above  is  anchored  in  the  possibility  of  overlapping  shapes  that  was  extensively
explored in early lessons, and that this action was naturally embedded in the chosen
materialization of the rectangular area model.

 7.3.2  Discussion
The three episodes presented above are just a selection that could have been used

to illustrate students’ reasoning based on visual representations. My intention when
presenting them is to highlight the central role played by the visual representations
manifested  through  the  vocabulary  used  by  the  students,  their  gestures,  and  the
content  of  their  arguments.  They  all  resonate  with  Rodd’s  (2000) reading  of
Giaquinto’s ideas that visualization can work as warrant for mathematical reasoning.

However, this small sample would not be enough to draw conclusions. Although
they are focused on other phenomena, the following sections will reinforce the close
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connection between reasoning and visual representation during the targeted lessons.
Specifically, the next section will extend the argument presented here by exploring
what I called the generativity of students’ reasoning.
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 7.4  Generative reasoning
The  idea  of  generativity  came  into  play  when I  noticed the  contrast  between

teachers’ expectations regarding some specific questions included in my lesson plans,
and how students actually responded to these questions. The moment this contrast
was most evident was when I showed the teachers my ideas for lesson 2.5, with the
first one being focused on word problems. Their first reaction was that students would
struggle to solve the word problems due to their difficulty in applying mathematics, or
to literacy limitations.

I did not feel they were discouraging me or would prefer not to use the lesson
plan. The reactions sounded like honest diagnoses based on their experience with the
students involved in my research. That means low achieving students, with low levels
of confidence, from working class backgrounds and accustomed to being placed in low
sets, at least since the beginning of secondary education.

Nevertheless,  all  the  teachers  were  positively  impressed  with  the  student
engagement and results after lesson 2.5.  Most of the students solved most of the
questions posed and obtained correct answers. They did not struggle more with these
questions  than  they  had  done  with  the  un-contextualized  questions  in  previous
lessons.

This phenomenon, where students were able to extend smoothly what they were
taught in order to solve questions that were somehow new to them, appeared on other
occasions throughout my data collection. This step beyond what was explicitly taught
is what I am calling “generative thinking” and will be discussed in the next sections.

 7.4.1  Generativity
The use of the term generativity occurred to me after reading Tsang et al. (2015).

The authors used an experimental design to compare three approaches to teaching
operations with negative numbers. However, instead of only using pre- and post-test
measurements,  they  added  a  post-test  composed  of  what  they  called  generative
questions. Their idea was to use the regular pre- and post-test to measure whether
the three groups received minimally satisfactory instruction during intervention, i.e.,
the  three  groups  should  achieve  similarly  in  the  post-test  (considering  their
achievement in the pre-test), otherwise it would mean that the quality of instruction
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was different, and any change detected in the generative test could be due to this
factor and not to the approach employed.

The regular pre- and post-tests were composed of questions that were directly
discussed during the intervention. Therefore, they established a baseline against which
the researchers could disregard the quality of teaching as an influence in the results.

In contrast, the generative test was composed of questions that were not directly
discussed  during  the  intervention.  All  the  questions  had  some  new  element
embedded. For instance, while the regular pre- and post-tests posed questions, such
as “work out 7-4” and “place -2 on a given number line”, the generative test posed
questions, such as “complete the number sentence −5+−3=−4+[ ] ” and “place -
3/7 on a given number line”. Note that the latter questions are similar to the former,
but  include  elements  that  even  though  not  discussed  during  intervention,  were
familiar to students in other contexts (they have previously had lessons about missing
number problems and fractions), but new in the context of negative numbers.

Personally, I would characterize such questions as “suitable topics for the next
lesson”,  since neither  do  they  demand new arbitrary  knowledge  to  be solved,  nor
novel chains of reasoning. The novelty here is to apply the same chain of reasoning
that was used to solve recent questions, to a broader set of objects, to extend what
was seen in previous lessons to other known situations.

There are some concepts in the mathematics education literature that resemble
the  concept  of  generativity.  One  of  them  is  transferability.  This  concept  usually
appears in research related to the use of different representations, such as Behr et al.
(1988) who analysed how well students that received instruction on fractions using a
continuous manipulative, were able to transfer their knowledge to solve tasks based
on a discrete manipulative.

Another  context  in  which  this  concept  is  common  is  problem  solving.  Here,
transferability refers to students’ capacity to mobilize concepts that they have already
learned, to solve a problem which by definition, should be new to the student. In this
context some researchers use the idea of transfer distance to recognize that novelties
can  be  more  or  less  challenging  for  students.  For  example,  Fuchs  et  al.  (2004)
employed this concept to group problems used to evaluate an intervention aiming to
help third graders solve real-life mathematical problems.

Note that neither of these contexts are compatible with Tsang et al’s. (2015) use
of generative questions. The same could be said about the use I intend to make of it in
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this thesis. Since I am not referring to transferences between different representations,
and not  specifically  to  transferences towards  what  are typically  called problems,  I
believe the term generative is more adequate for my purposes. Therefore, I will clarify
in the next sections what I mean by it.

 7.4.2  Zone of proximal development
Another concept that seems to be related to generativity is the zone of proximal

development  (ZPD),  originally  proposed  by  Vygotsky  in  his  seminal  works  (Roth,
2014). Vygotsky uses the concept to differentiate between the space of tasks that a
learner can solve independently, from the space of tasks that a learner can solve with
the help of a more knowledgeable person. He defined ZPD as being:

the  distance  between  the  actual  developmental  level  (independent
problem solving) and the level of potential development (problem solving
under  adult  guidance  or  in  collaboration  with  more  capable  peers).
(Vygotsky, 1978, p. 86) 

The concept is key for his view of learning and development as essentially social
acts:  students  are  learning when they  explore  problems in  their  zone of  proximal
development, enabled by some sort of support,  and they develop by progressively
incorporating  these  problems  into  the  space  of  problems  they  can  solve
independently. From his perspective, the role of teachers was to build opportunities
for learners to act on tasks in their ZPD.

Vygotsky also considered that all human action is mediated by tools and signs.
Even though he distinguished both by defining the former as externally oriented and
the latter as internally oriented, these two concepts were collapsed into the concept of
artefact  (Vygotsky, 1978). Note that at this point, even though some emphasis had
been  placed  on  the  artefacts,  the  creation  of  ZPD  depended  on  interaction  with
another  person:  a  more knowledgeable one.  Later  on,  the role  of  artefacts  in  this
process was reconsidered by researchers.

Abtahi, Graven & Lerman (2017) analysed an interaction between a child and her
mother around the task of counting in threes. However, instead of considering only the
child and the more knowledgeable mother, they took into account the role played by
the artefact being used during the task: a remote control (displaying numbers from 1
to 9 in a 3×3 grid). As did other researchers, they concluded that the features of the
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artefact were determinant in the learning opportunities created during the interaction.
They understood that:

While  we  are  not  considering  a  tool  (such  as  a  ruler)  to  be  an  active
agential  participant  in  interactions,  nevertheless  we believe  that  a  tool
carries  the  knowledge  of  its  designer  (who  draws  on  knowledge  of
standardized  mathematical  knowledge),  and  also  the  knowing  and
perception of the people who have used and modified it over time. It is in
this  respect  that  a  tool  can  function  as  a  knowledgeable  other  if  the
actions of the participants bestow on it that function. (Abtahi et al., 2017,
p. 276) 

Abtahi (2017) arrives at a similar conclusion after analysing two students working
out a fraction sum using manipulatives:

I  suggest  that  the  possibilities  for  learning  in  the  ZPD  exist  not  only
between individuals, but also between individuals and tools, with tools at
times being the more knowledgeable other. (p. 12)

In terms of my research, the visual representations (cut-outs and diagrams) can
be seen as artefacts, and following the arguments presented above, they could enable
students to act in their ZPD. This means that the visual representations could support
students in solving questions beyond what were explicitly taught to them, and this is
what  I  am  going  to  define  as  generative.  However,  before  that  I  will  revisit  one
episode that I consider illustrative of the concept.

 7.4.3  One example of generative thinking
Once  again,  I  want  to  refer  to  the  episode  reported  in  Section  3.4.  On  that

occasion, L worked out the sum 5
6
+
1
9

and obtained the correct (although unusual)

answer 8+½
9

, even though he had never explored sums with unlike fractions. Can

this question, considering the context, elicit generative thinking?

First, it is important to clarify how students in this group were adding fractions at
that time. They were only dealing with sums of fractions from the same family, such as

1
6
+
5
12

. In this case, students would typically represent 1
6

in a diagram and then

try to figure out how twelfths could be represented in the same diagram. The image
below shows a hypothetical path towards the final answer for this sum.
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Note  that  this  strategy  depends  on  the  possibility  of  converting  sixths  into
twelfths. However, this is not so simple in the case of sixths and ninths because nine is
not a multiple of six. For this reason, I consider that this was actually a generative
question  when  it  was  posed  to  the  student.  Note  the  situational  nature  of  this
characterization: the same question could be considered generative or not depending
on what was taught in previous lessons, depending on students’ prior knowledge.

Moreover, the generativity of the question can be confirmed by the generativity of
L’s solution. Since the student had no ready-known strategy to apply, it is expected to
see some element of novelty in his solution too. In this case, L’s solution arose from

the possibility of using fractional multiples: 5
6
=
7½
9

.  Although unconventional, his

solution is logically consistent. It is worth mentioning that this approach was never
shown to  him during the lessons.  Therefore,  it  could  also  be said  that  he showed
generative thinking.

The argument that was made in Section 3.4, and that will be reinforced in the next
section, is that this generative thinking was enabled by the visual representation in
use.

 7.4.4  Defining generative reasoning
Another framework that has to be considered is one proposed by Lithner (2008).

He distinguishes between imitative reasoning, which can be further discriminated as
memorised and algorithmic,  and creative reasoning.  He defines  the latter  (actually
called creative mathematically founded reasoning) based on three criteria:

1) Novelty. A new (to the reasoner) reasoning sequence is created, or a
forgotten  one  is  re-created;  2)  Plausibility.  There  are  arguments
supporting the strategy choice and/or strategy implementation motivating
why the conclusions are true or plausible; and 3) Mathematical foundation.
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The arguments are  anchored in intrinsic  mathematical  properties  of  the
components involved in the reasoning. (p. 266)

The example presented in the previous section certainly satisfies the first criterion.
I  consider  that  it  does  satisfy  the  third,  because  from  my  perspective  the  visual
representation counts as “mathematical foundation”. However, the second is difficult
to evaluate, since support for strategy choice and strategy implementation are unlikely
to be captured in written solutions, and considering the characteristics of the students
in my study, are also unlikely to be captured through conversations.

A similar result regarding the second and third criteria would be achieved if other
episodes from my data were analysed against Lithner’s framework. For that reason I
believe his framework is not adequate.

I  would  define generative reasoning as  a  reasoning sequence,  inferred  from a
written solution produced by a student and possibly complemented by conversations
with him or her, that are:

1) new  for  the  reasoner.  The  novelty  does  not  have  to  be  in  terms  of  all  its
components, but mainly in terms of how known arguments are connected. This
criterion is very similar to Lithner’s first criterion;

2) not  anchored in  authority.  This  is  a  more flexible  version  of  Lithner’s  third
criterion. The main reason for this change is to make explicit the acceptance of
arguments anchored in visual thinking, as proposed by Giaquinto (2007). This
should be enough for  my study,  since I  am intentionally  focusing on visual
representations, but arguments of a different nature could be included here,
such as those discussed by Lakoff & Núñez (2000).

These two criteria seem to encapsulate the essence of what was presented in the
example without relying on assumptions that are not reasonable, considering the data
available.

Generative reasoning is likely to be elicited by questions that are, to some extent,
new to that particular student, but not too distant from what he/she can already solve,
similarly  to  Vygostky’s  ZPD.  I  would  call  these  questions  generative.  Its  main
characteristic is to force students into a situation where they do not have the full prior
knowledge to solve the problem, but  can “generate” an approach given what they
actually know.

152



Data analysis

However, generative reasoning could also emerge from familiar questions when
approached from a different perspective.

 7.4.5  Episodes showing generative thinking
In this section I will analyse some episodes grouped according to the conceptual

structure of the questions that originated them, illustrating what I would qualify as
generative thinking supported by visual representations.

Subtraction

To understand how this question could be generative, it is important to consider
how addition  and subtraction  of  fractions  were  taught  to  low achieving groups  at
Purple Valley. I had the opportunity to observe Julia teaching this lesson to a Year 9
Set 4 (out of 5) during my data collection, and essentially the lesson was limited to
presenting  the  algorithm  through  the  memory  aid  called  cross-and-smile  (shown
below).

What surprised me the most was not the dependency on the memorization of an
algorithm  or  mnemonic  device,  but  the  fact  that  after  showing  how  to  use  it  for
addition, Julia explicitly explained how to use it for subtraction. She did not explain the
algorithm step by step, but she also did not establish any connections between the
two cases. In fact, I would say that there was no meaning attached to any action or
object throughout the algorithm, only a hidden message saying something like “if you
see the symbol + between two fractions, you should follow this procedure; and if the
symbol is —, you should use this other (very similar) procedure”.

This lack of meaning, especially regarding the symbols + and -, was reinforced by
two observations I made regarding the same student. First,  I noticed the following
answer to the questions, “Work out the sums shown in the diagram”.
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Note how he registers the third and fourth fractions without connecting them to
the sum written right before. He was answering this way even though the teacher had
solved one example on the board for the whole class. It could be argued that he did
not bother writing down everything and was just focusing on the numbers as a way to
register partial results necessary to get to the final answer. However, in the next lesson
I noticed the following answer on his sheet during the starter.

Illustration 42: Partial recreation of student's answer

Note that he was treating the fractions of the sum as individual objects. Finally, I
observed the same student solving basic arithmetic questions successfully with whole
numbers in several regular lessons. Taken together, these observations suggest a very
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fragmented  understanding  of  the  symbol  +.  It  could  mean  an  indication  of  which
procedure to follow, something dispensable, or addition of whole numbers.

The same could be said about the symbol -.  Actually,  when subtractions were
posed for  the first  time during my lessons,  three questions were asked by several
students: “What do I do here?”, “Is this take away?” and “How do I show this in the
diagram?” I was expecting the latter, since the way addition was represented did not
suggest  how  subtraction  could  be  represented,  but  the  former  two  questions
reinforced my perception of fragmented understandings of the symbol -.

In general, my reaction to these questions was to confirm that it meant take away.
In comparison to the effort involved in Julia’s re-explanation of the cross-and-smile
approach, I consider my intervention to be quite short. Nonetheless, it proved enough
for most of the students. Although the subtractions were represented in different ways
(as can be seen in the image below), most of the students were able to work out these
sums, after my sole clarification regarding the meaning of the symbol -.

My argument is that this relative smoothness and success in transitioning from
addition to subtraction should be seen as result of generative thinking and this is the
result  of  the objects  and actions involved in  the questions  being anchored on the
visual representations, providing a meaningful reference for the symbols.

Bigger than the unit

Generativity  can  be manifested  not  only  when solving questions  that  demand
something beyond what students were taught, but also when they deal with didactical
obstacles  (Schneider, 2014), and that was the case when sums bigger than one were
introduced. Due to the way sums of fractions were presented (the video shown on
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lesson  2.3  summarizes  the  approach:  https://youtu.be/7FMhj3E1WzI),  I  expected
that sums bigger than the unit would be challenging for students, but since one of my
assumptions  was  that  visual  representations  are  a  solid  enough  basis  to  build
knowledge  of  fraction  addition  and  subtraction,  I  decided  to  keep  it,  expecting  it
would lead students to productive struggle (Kapur, 2010).

For instance, consider what happened with C, one of Alice’s students, when he first
faced a sum whose result would be bigger than 1. He was raising his hand and looking
at me asking for some assistance. When I approached him, he had the diagram below
drawn.

And here is the transcription of our conversation initiated by him:

C: So, two quarters is a half. And five eights... I can only put four [pointing 
to the second column of his diagram].
Me: Perfect. Now, you can add another square here [outlining a new unit 
square besides his diagram] and have an extra eighth right here.
C: So, would it be... one… one… add one eighth?
Me: Yes, you are right!

First of all, I consider it important to remember that the students in low sets at
Purple Valley would rarely ask questions spontaneously and lacked confidence. Even
though C was one of the students with the highest scores in external exams (but still
below 25%), he was not an exception to this behaviour. However, he felt something
was not right with his answer, and instead of making a mistake as will be shown below,
he asked for assistance and was able to express his doubt. The fact that he needed
assistance should not be seen as lack of generativity by him, especially if you take into
account that he was able to conclude the solution after my modest assistance.
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Another student from David’s group, J, when solving a sum bigger than 1 for the
first time, was approached by David when I happened to be passing by, so I captured
their conversation based on the solution shown below.

David: Show me your thinking on this one.
J: So you get your quarters and you do three of them. Because you already 
have three done, you put a line through the other one there [suggesting 
dividing the bottom-right quarter on the second diagram in half 
horizontally] and shade in one. And then to get the answer I have just put 
a line through all of them [referring to the lines dividing the other quarters 
into eighths] and add them up.
David: Why is that right?
J: Because it says three out of eight. [long pause] That is what is confusing 
me because there is not three [inaudible]…

At this point, David noticed my interest in the conversation and asked me to lead
the conversation.

Me: This is a bit weird… Can you show me the three quarters?
J: Here, here and here [pointing to the diagram]
Me: Okay, so how many eighths are in three quarters?
J: Six. And then there is one left in the eights, so it is seven.

It seems reasonable that the last sentence in the dialogue above is an attempt by
him to deal with the eight that did not fit in the unitary square. Since it is only possible
to fit another two eighths, he may be imagining the third one overlapped on one of the
eighths contained on the three quarters.
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Me: Wait… You have six eights here and you have to add another three…
J: Oh! Nine… But then it is not right in there [referring to the fourth quarter 
in the diagram].

Instead of incurring the mistake made by some students of deforming the diagram
in order to fit any fraction needed, he showed awareness that something was not right.
Note that he had already drawn two diagrams before the conversation, suggesting
that he was trying to find a better solution for the sum. It could be argued that the
possibility of working with more than one unitary square should have been introduced
before, but his struggle turned out to be productive, and he was able to expand his
knowledge  towards  a  situation  with  new  elements  and  actively  participate  in  the
construction of a solution, even though my intervention was necessary.

In the next  lesson,  the sum 2
3
+
5
12

was posed and when I was passing by,  J

called me and asked, “Is that one right, ‘cause you can’t go over the one, can you?”
pointing to the diagrams below.

 

Note that he was still struggling with sums bigger than one. The second diagram
shows that he tried to fit 5/12 into 1/3 but the dots suggest that he counted the parts
to check if it was right. Finally, the crossing all  over the diagrams (done before he
called  for  me)  and  the  question  he  asked  me,  suggest  that  he  was  aware  that
something was wrong and was trying to find a better diagrammatic representation,
even though he had got a numeric answer.

This type of behaviour was very common in all three groups: students noticing
that something different was happening with the representations and being tentative
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in terms of how to approach this. My point is that even though these students needed
some sort of assistance, in general,  a suggestion from me or from the teacher was
enough for them. This shows that generative thinking to expand the possibilities of the
representation had been utilized.

Mixed numbers

By  the  end  of  every  term,  all  students  at  Purple  Valley  undertook  an  exam
developed by the teacher responsible for each specific Key Stage; for each year group
there were two exams, one for the two bottom sets and another for the other sets,
such that the exam would fit better to the expected curriculum for each set. In the case
of the groups participating in my research, the teacher responsible for creating the test
was not Julia, Alice, nor David.

The exam applied at the end of the second term took place on a day that I was not
in  the school,  but  Julia  told  me afterwards  that  there  were  some questions  about
fractions.

1) Work out
1
4
+
2
3

.

2) Work out
2
5

×
1
4

.

3) Work out 3
1
2

×2
1
4

.

4) Work out
3
4
−
1
5

.

5) Work out 1
4
5

+3
3
10

.

6)  Convert 2
3
4

to  an

improper fraction.

7)  Convert
15
4

to  a

mixed numbers.

Unfortunately,  none of  the questions were comparable  to  what  students  were
learning during the targeted lessons.  Just  to remember,  at  this  point  that  students
were adding and subtracting fractions from the same family. Note that questions 2 and
3 were about  multiplication;  questions  6 and 7 depended heavily  on  knowing the
meaning of improper fractions and mixed numbers, which was not the focus of the
targeted lessons; although questions 1 and 4 are about addition and subtraction, the
denominators are not multiples.  Finally,  question 5 was a good fit,  apart  from the
mixed numbers,  that  were never used during the targeted lessons and that I  have
never observed teachers using with low achieving groups at Purple Valley.

After marking the assessment, Julia invited me to have a look at students’ answers
for those questions. None of the other teachers offered me the possibility of looking at
the exams and I did not feel comfortable asking them to allow me to do so. There is
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nothing to comment on questions 2 and 3, because they are not related to the targeted
lessons,  but  the  answers  for  the  other  questions  are  interesting  in  terms  of  my
research. 

Firstly, regarding questions 1 and 4, I think it is worth mentioning that no student
in Julia’s group fell back to ‘add-tops-and-bottoms’ even though they were not able
to solve these questions. Actually, the diagrams made by some students, considering
what they had learned by that day, show coherent attempts to find a solution. The

images below show diagrams created for the sum 3
4
–
1
5

.

The picture to the left of Illustration 47 shows that the student shaded 2 over 10
(first column) and then a portion that resembles a quarter (apparently trying to make

sense of how to represent 3
4

on this diagram). On the right, the first diagram seems

to be an attempt to represent 3
4

in a diagram divided into tenths, and the second

shows the same amount shaded minus one tenth (it seems that the student meant one
fifth, as asked in the question); note that the final answer given by the student was
2½
4

, which is coherent with the second diagram.

Secondly, some students got right answers for question 5, even though it involved
mixed numbers. The image below is an example.
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Note  that  the  student  represented correctly  the fractional  part  of  each  mixed
number and left out the integer parts. However, the final answer not only considered

all the parts but it is also presented as a mixed number instead of 4
11
10

. I consider

this to be a great example of generative thinking, because this student was able to
mobilize not only the specific topics covered during the targeted lesson, but was also
successful in interpreting the addition of mixed numbers and converting an improper
fraction to a mixed number relying only on diagrams.

The  following  answer  is  also  very  revealing  of  how  much  students  relied  on
diagrams. It seems that this particular student felt comfortable enough to expand the
use of the model to whole numbers.

A new comparison method

Comparison of  fractions is  usually  done by equalling the denominators  of  the
given fractions and then comparing the numerators. This approach also makes sense
within the rectangular area model: when the fractions are from the same family, the
student  has  to  transform  one  of  the  diagrams  into  the  other,  but  even  when  the
fractions  are  not  from  the  same  family,  the  approach  can  be  implemented  by
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combining the grids, as the lessons in pack 3 suggest for addition and subtraction of
fractions.  However,  this  is  not  the only  approach.  For  instance,  you can equal  the
numerator and compare the denominators. The difficulty here is that the conclusion is
the reverse of  the direct  comparison between denominators:  the fraction  with  the
biggest denominator is the smallest fraction. This is the reason why this approach is
unusual, unless the given fractions already have the same numerator.

From pack 1 to 3, I included questions regarding comparison of fractions for three
reasons. Firstly, it is part of the curriculum. Secondly, there is research showing that
the  knowledge  of  the  magnitude  is  an  important  component  for  understanding
rational  numbers  in  general  (Bezuk  &  Cramer,  1989;  Torbeyns,  Schneider,  Xin,  &
Siegler, 2015). Thirdly, since comparison was never the main goal of a lesson, I felt I
could use the topic to elicit reasoning not influenced by previous explanations.

The event I want to analyse here took place during lesson 1.4 in David’s group.
The third task posed four comparisons between two fractions right after a question in
which students should list fractions equivalent to a given one. The comparison task
was designed in  such  a  way that  all  the fractions used had been also used in the
previous  task.  The  intention  behind  it  was  to  allow  students  to  use  the  list  of
equivalent fractions to identify equivalent fractions that enabled the comparisons. My
expectation  was  to  highlight  the  strategy  of  using  fractions  with  the  same

denominator.  For  instance,  the  first  pair  of  fractions  was 1
3

and 2
5

and  my

expectation was that students would find, by checking the list of fractions equivalent

to 1
3

and 2
5

,  that  1
3

=
5
15

and  that 2
5

=
6
15

.  However,  after  the  end  of  the

lesson, David told us that a pair of students working together had used a different

strategy: they noticed that 1
3

is also equal to 2
6

and that this fraction is smaller

than 2
5

because “sixths are smaller than fifths” (David’s words describing students’

explanation). Although unusual, their approach is actually more economic, since it can
be  executed  (for  this  pair  of  fractions)  by  inspecting  only  one  list  of  equivalent
fractions.

From  my  perspective,  even  though  these  students  had  faced  comparison
questions  before  this  lesson,  their  reasoning could be considered to  be generative
thinking. Is it reasonable to say that it emerged from the visual representations?
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To  answer  that  question,  I  would  like  to  discuss  David’s  description  of  the
explanation given by the students: “sixths are smaller than fifths”, even though I do
not have a recording of their explanation, and David may not have been precise in his
description.  In  a  subsequent  lesson  I  posed  to  some  students  three  comparisons

intentionally  designed  to  tackle  different  approaches,  using  5
8

and 6
8

 for

comparison of numerators, 1
4

and 1
3

for comparison of denominators, and 2
3

and

5
9

for equivalent fractions. I got data from some students using sentences just like

“sixths are smaller than fifths” to justify their choices. For instance, when I asked about
the  three  comparisons,  A  answered  the  following  quite  quickly,  without  much
pondering:

This has one more than the other [pointing to 5/8].
These [pointing to 1/4] are smaller than these [pointing to 1/3].
This [pointing to 2/3] is the same as… [pause for thinking] six ninths so it 
has got one more than this [pointing to 5/9].

After getting his verbal answers, I asked him to write them down and the result is
shown below.

The first two answers are quite clear, but the third needs some interpretation. I
believe that “2 rectangles” refers to the shaded columns that he would obtain if he had
drawn  a  diagram  for  2/3  using  vertical  sections.  Note  that  if  you  add  horizontal
sections to this diagram in order to divide it into ninths, 5/9 would not fill two full
columns.
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Note the similarity between the verbal reasoning and the written answers above,
and  David’s  description  of  the  student’s  explanation  before.  The  way  they  both
referred to sixths and fifths as objects, and the use of “has got” reflects the way the
rectangular  area model  was materialised:  unitary  fractions as  basic  elements (cut-
outs)  that  can  be  directly  compared  via  overlapping  and  non-unitary  fractions  as
collections of such basic elements. Based on this analysis, I argue that the generativity
shown by the pair of students who compared fractions by equalling the numerator of
the fractions was anchored in the visual representations.

 7.4.6  Discussion
When  reading  this  section,  it  is  important  to  keep  in  mind  the  students  who

participated in my research: low achieving students in a school that was “under special
measures” due to the low achievement levels of its students in national exams.

At first, from a mathematical perspective, it may seem not much to extrapolate
properties from the addition of fractions to subtraction, or to deal with sums bigger
than one, with just a little extra input from the teacher. In an ideal scenario, even I
would expect my students to do it seamlessly. However, the students in my research
are students with low confidence and undeniable deficiencies in their prior knowledge
when compared to their peers. Also, they are part of a school culture that emphasizes
bite-sized instruction and presents mathematics as a collection of specific, and mostly
unconnected  procedures  in  which  students  have  little  agency  and  no  space  for
creativity.

It is also important to take into account the impressions of the three teachers. As I
mentioned at the beginning of this section, they were hesitant when I presented the
lesson plans with word problems. However, after teaching these lessons, they were all
very impressed by how much the students were able to accomplish. They may have
not noticed consciously all the episodes that I discussed above, but they certainly felt
the lessons were successful, since all three teachers asked me to use the lessons with
other groups when I finished my official data collection.

In conclusion, I would extend my argument to say that what was shown in the
episodes  above  represents  generative  thinking,  and  also  to  suggest  that  this
generativity was actually enabled by the visual representations.
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This conclusion is coherent with theoretical arguments posed by researchers, such
as Richard Skemp, that visual representations are somehow more intuitive and give
access to the structures underlying the representation itself (Skemp, 1987).

From  the  perspective  of  embodied cognition,  as  proposed  by  Lakoff  &  Núñez
(2000), the model utilized can be seen as a metaphor that enabled students to transfer
the  inference  structure  from  the  source  domain  of  flat  surfaces  (area,  movement,
composition  and  decomposition)  to  the  target  domain  of  fractions  addition  and
subtraction.  Considering  the  arguments  presented  by  Giaquinto  (2007) regarding
some visual abilities, it can be argued that the model worked as a grounded metaphor,
“allow[ing] us to ground our understanding of arithmetic in our prior understanding of
extremely  commonplace  physical  activity”  (Lakoff  &  Núñez,  2000,  p.  53).  This
approximation between the target domain from a meaningful source domain though
visual representations, as proposed by Johansen (2014), not only enabled students to
reason, but provided the flexibility necessary to allow them to do so generatively.

Of  course  other  factors,  such  as  the  design  of  the  lesson  plans,  played  an
important role in this process. Therefore, my conclusion should be understood under
the  constraints  of  the  context  in  question  and  the  characteristics  of  the
implementation, from the choice of the model and its materialization, to the lesson
plans and the way teachers enacted them.

165



Data analysis

 7.5  The multiplicative aspect of fractions
Some  researchers  argue  that  fractions  are  part  of  the  so  called  multiplicative

conceptual field (Harel & Confrey, 1994), and therefore, cannot be separated from the
broader idea of multiplicative reasoning (M. Brown, Küchemann, & Hodgen, 2010). In
my approach, the multiplicative aspect of fractions arises from the importance given to
equivalent fractions throughout the lessons.

From  a  numerical  perspective,  the  relation  between  equivalent  fractions  and
multiplication is quite obvious: two fractions are equivalent if, and only if, one could be
obtained by multiplying the numerator and the denominator of the other by the same
scalar number. At one extreme, if a teacher adopts a so called conceptual approach to
the topic,  emphasizing the meaning behind the procedures,  students will  deal  with
equivalent fractions all the time, to add, subtract, compare, multiply and divide them.
At the other extreme, if a teacher adopts an approach emphasizing procedures without
much concern about meaning, multiplications and division will be used all the time,
since equivalence is necessary for most of the procedures. Either way, knowledge of
fractions seems to depend on knowledge of multiplication.

Considering the approach utilized in the targeted lessons, which is less numerical
and more visual, I argue that the relation between fraction and multiplication becomes
more complex. On one hand, multiplication seems to be less of a pre-requisite, since it
is  possible  to  obtain  equivalent  fractions  via  transformations  that  can  be  realized
without any numerical use of multiplication (adding lines to, removing lines from and
rearranging a given diagram). For instance, the transformation below shows that 1/3 is
equivalent to 2/6 without any numerical multiplication being necessary.
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However, fluency with multiplication could enable students to use the rectangular

area  model  more  efficiently.  For  instance,  when  asked  to  work  out 1
3

+
1
12

using

diagrams,  a  student  may  notice  that  twelfths  can  be  represented  in  a  diagram
representing thirds by adding some extra lines.

The relationship that has to be noticed in order to use the diagrams as shown
above is that 12 is a multiple of 3, and even further, that 12=3×4 , so the diagram
has  to  be  further  divided  into  4  new  cross-sections.  This  example  suggests  that
knowledge  of  multiplication  is  actually  a  pre-requisite  for  a  visual  approach  to
teaching fractions. However, the rectangular area model is closely related to the array
model for multiplication (Küchemann, Hodgen, & Konstantine, 2016). Therefore, it was
expected  that  by  using  the  rectangular  area  model  for  fractions,  students  could
improve  their  knowledge  of  multiplication.  This  way,  the  perception  that  ‘learning
fractions depends on knowing multiplication’, could be reversed to ‘learning fractions
may promote learning of multiplication’. 

As discussed in Section 6.3, the participant students, as usually expected from low
achieving  students,  lacked  some  prior  knowledge  regarding  arithmetical  facts,
including  multiplication.  I  observed  students  from  the  three  groups  struggling  to
recall the result of simple multiplications such as 3×3 and 6×4 and struggling to
execute the procedure for grid multiplication. Therefore, when designing the lesson
plans, I aimed at reducing the dependence on numerical skills, and at the same time,
helped to promote them through the use of the rectangular area model. The first aim
can be seen in the use of a limited range of small denominators and in the careful
introduction  of  new  denominators.  For  example,  I  rarely  posed  questions  with
denominators  larger  than  20  in  the  first  and  second  packs  of  lessons,  and  new
denominators were only introduced during the first and second packs together with
other fractions from the same family. The second aim can be seen in the questions
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related to equivalent fractions intensively used in the first pack, when the rectangular
area model was being established.

In the next two sections, I will analyse some episodes to try to shed some light on
the relationship between fractions and multiplication throughout the approach utilized
in the targeted lessons.

 7.5.1  The emergence of multiplication
From the first lessons until the last, I was able to observe several students solving

the  questions,  from the “work  out”  to  the  “word problems”  posed  in  the  targeted
lessons,  without  using  multiplication  explicitly.  This  was  possible  by  obtaining  a
relevant  diagram  and  then  counting  the  pieces  that  it  had  been  divided  into.  An
example that took place in the third pack of lessons is shown in the image below.

This  question asked the students  to  work  out  the sum shown in  the diagrams
below.

Although the student made a mistake when converting the second diagram to the
same denominator as the first,  the marks on the unshaded pieces suggest that she
counted  not  only  to  determine  the  numerators  of  the  fractions,  but  also  the
denominator,  even though the total  to  be counted was not  so  small  (20)  and the
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answer could be obtained by calculating 4×5 .  The answer below, from the same
student in the same lesson, confirms her reliance on counting.

It seems likely that her mistake in the first answer (26/23) is due to miscounting,
which confirms that she was counting when solving the questions above, instead of
multiplying. This behaviour is noticeable in all her worksheets for this lesson and some
worksheets in other lessons, whenever she was working with ready made diagrams or
diagrams drawn by her. The same was observed for several other students.

Similar behaviour could be observed for several students throughout the targeted
lessons. I interpret that as being a sign of students dealing with fractions based on the
visual representations and not on numerical properties, which allowed them to get
into this field regardless of their  difficulties with topics such as multiplication. This
could only be achieved because the visual representations were not being used only as
a form of representing mathematical objects,  but also as conveyors of meaning, as
grounding metaphors (Lakoff & Núñez, 2000). Following the arguments proposed by
Giaquinto  (2007),  what  is  happening  here  is  that  students  are  acquiring  new
knowledge through visual thinking, instead of working with visual representations just
as an accessory.

It could be argued that this reliance on counting is problematic, since it is very
basic  and  may  be  ineffective  or  even  inappropriate  for  more  advanced  topics.
Therefore, it would be desirable to observe students progressing to more advanced
strategies throughout the targeted lessons. It actually was possible to observe steps
towards such progress, as will be shown in the next episodes.

The first step was the use of repeated addition. Later in the same lesson, where I
observed the episodes referred to above,  when she was working out a sum whose
result had 24 as denominator, I asked her how she could find out the denominator
without counting each bit in the diagrams. Immediately she started to count in blocks,
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using three fingers to point to each column and saying in a low voice: “3, 6, 9 [short
pause] 12, 15 [short pause], 18 [short pause], 21 [short pause], 24”. The fact that she
used her fingers pointing to the diagram suggests that the visual arrangement of the
elements in the paper was relevant to her realization that repeated addition could be
used to answer my question. Therefore, I would argue that the visual representation
enabled her, a low achieving student with weak prior knowledge, who was apparently
relying on counting to solve the questions so far, to use repeated addition, which is a
first step towards multiplicative reasoning.

A similar example happened during the starter of a lesson in the second pack,
when students were asked to draw a diagram representing the unitary fractions that
would be used in the lesson.

I was watching when M (Year 9 set 6) finished her diagram for 1/5, using five
vertical strips,  as expected,  and was about to move to the next question (1/10).  I
asked  her  how  she  would  draw  it.  After  a  brief  moment  thinking,  the  following
conversation took place:

M: I would put five there and put a line across
Me: How do you know that?
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M: Because you already got five, then you put a line across the middle, 5 
there and 5 there… 10

Another example took place even earlier in the year, during the first pack. When T

(Year 9 set 6) was about to complete the equality 5
4
=
16

,  I  intervened with the

question “How could you know the answer if you know that there are four sixteenths in
a quarter?” (the same conclusion had just been reached in the previous question), to
which  she  answered:  “Because,  it  is… 4…  [silence  while  she  was  moving  her  hand
rhythmically, like knocking in the table, a few times]… 20. It is twenty sixteenths”. The
pause  and  the  rhythmic  movement  of  her  arm  suggested  that  she  was  counting,
however the length of the pause and the fact that she only moved her hand a few
times suggested that she counted not one by one, but in blocks: 4, 8, 12, 16, 20.

The three episodes above show students using repeated addition when dealing
with questions that did not ask or suggest explicitly the use of such a strategy. It is
also possible to notice references to visual elements in their explanations, especially in
the first one, when the student used her fingers to point to the columns in her diagram
while counting, and in the second one, when M used words such as, “put a line across”,
“here”,  “there”.  These evidences support my argument that  this is  the result  of  the
rectangular area model working also as a model for multiplication.

Beyond  repeated  addition,  there  were  students  who  apparently  noticed  the
multiplicative  nature  of  equivalent  fractions.  Student  J,  for  instance,  was  using  a
combination  of  counting  and  multiplying.  I  noticed  that  his  answer  to  the  sum
3/4+1/6 was wrong (10/12 instead of 11/12), so I asked him to explain how he had
solved it, which he did as follows:

I shaded three here and one here. I can use twelfths, because 12 is in both 
times tables, 4 and 6. So, I did two lines across [referring to the first 
diagram] and one down [referring to the second diagram]. And I’ve got ten 
twelfths.
Me: I think you may have miscounted…
J: Oh… It is [counting bits on the first diagram] eleven [pause] eleven 
twelfths.
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Note that he used multiplication (times tables) to figure out the denominator of
his  answer.  It  seems reasonable to  say that  it  was not  a  post  factum explanation,
because if he had used the diagrams, as he did in the previous lesson, it would have led
him to 24 as denominator, so he probably relied on his knowledge of multiplication to
choose 12 as a denominator for this sum.

Similarly, during the final lesson of the first pack, when students were asked to
draw their  own diagrams for  the  first  time,  based  on some previously  made  grids
(showing halves, thirds, quarters and fifths), part of the challenge was to decide which
grid should be used for each fraction. For instance, to obtain a diagram representing
1/10, students could use the grid showing 1/5 and divide it further in half, as shown
below.
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Although  there  was  no  explicit  reference  to  multiplication  in  the  task,  it  was
actually designed to enable them to notice the relationship between how to obtain a
certain diagram and the idea of multiples and factors. When I approached W (Year 8
set 4), he had completed the task. I asked him why he decided to use the grids divided
into fifths to draw the diagrams for 1/10 and 1/15, to which he answered: “because 5
goes into 10 and 15.”

Together, these episodes show that the approach utilized enabled at least some
students to notice the multiplicative aspect of fractions, even though this was never
explicitly covered during the lessons. In fact, an increasing number of students gave
me numerical explanations to their answers as the lessons progressed. It is also easy
to identify them in their worksheet solutions without a diagram, suggesting the use of
a purely numerical approach.

The episodes above suggest that the lesson plans were successful  in enabling
students  to  get  into  the  field  of  fractions  without  much  prior  knowledge  of
multiplication, and at the same time create a fertile terrain to promote knowledge of
this topic through visual representations.

However,  it  was  also  possible  to  identify  episodes  in  which  students  were
apparently limited by their lack of knowledge about multiplication.

173

Illustration 58: Diagrams showing 1/10 obtained from 1/5

Illustration 59: Example of purely numerical answer



Data analysis

 7.5.2  The influence of prior knowledge on multiplication
During the four first lesson in the first pack, students had cut-outs available to

solve all the questions posed. Actually, the questions started depending totally on the
cut-outs  (using their  colours  as  identification,  for  instance)  and progressively used
more references to symbolic fractions. The students were expected to figure out which
cut-out they should use, if any. From the fifth lesson onwards, students started to use
diagrams.

During  teaching  of  the  second  pack,  there  were  no  cut-outs  available  and
students alternated between reading diagrams, completing partially drawn diagrams
and drawing their own diagrams. At this stage, a new challenge arose: how to obtain a
diagram to represent a fraction with a given denominator?

The episodes below illustrate the magnitude of this challenge for the students. It
is  important  to  point  out  that  all  three  students  involved  in  the  episodes  were
engaging  really  well  during  the targeted  lessons.  They systematically  finished  the
tasks included in the lesson plans and engaged with some extra questions during the
final minutes of  the lessons.  When I noticed that this was happening frequently,  I
started to plan some extension questions to include in the “Comments for the teacher”,
so there was no need to improvise, and I could use them to generate more data.

The first episode happened with student G (Year 9 Set 6) during the second lesson
of  the  second  pack.  This  lesson  was  about  adding  halves,  quarters,  eighths  and
sixteenths. By the end of the lesson, she had completed all the tasks and I posed the

sum 1
3

+
1
6

. It was the first time she was asked to draw a diagram involving thirds.

Even  though  she  was  able  to  solve  several  questions  involving  halves,  quarters,
eighths and sixteenths, she struggled to create a diagram for 1/3. After thinking for a
while, she managed to get such a diagram by dividing the whole by two vertical lines.
For the next step, she needed to realize that sixths could be obtained by drawing a line
across the diagram, but she was not able to realize that by herself, and was completely
stuck until I asked her, “What would happen if you add a line across the middle?”,
while referring to her diagram showing thirds.

The second and third episodes took place in the final minutes of the third lesson of
the second pack, after some work with fractions from the same family as 1/3 and 1/5.
Firstly, I asked J how he would represent 1/24. My intention was to check if he had
developed  any  strategy  that  was  not  only  guessing  or  counting,  since  24  was  a

174



Data analysis

relatively large number in comparison to the denominators used so far and was novel.
After some minutes, I returned to him and he had the answer below.

When I asked him to explain how he had solved this he said, “I know 4 goes into
24, so I did like this (pointing consecutively to 2×2 groups as shown below) until I
get  24”.  Note that  the drawing suggests  that  he had actually  drawn 2×2 groups
where indicated, but the last two groups do not look like they were drawn in the same
manner. If he had calculated 24÷4=6  he would have known that he needed exactly
six groups, so I asked him how he knew that “4 goes into 24”, to which he answered:
“because it ends in 4”, in an apparent reference to a wrong generalization of the rule to
identify if a number is divisible by 2.
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The third episode took place when I asked C (Year 8 Set 6) to work out the sum
1
7

+
1
14

. I returned to him after some minutes and found him completely stuck on the

question.  When  I  approached  him,  he  promptly  said,  “I  don’t  know  how  to  get
sevenths,”  and  his  worksheet  had  several  incomplete  drawings  of  diagrams
representing sixths, eights and ninths. When I helped him by saying “Why don’t you go
all like this?”, suggesting several vertical strips, he was able to complete the rest of
solution by himself.

Remember  that  these  three  episodes  took  place  with  students  who  were
successful in the targeted lessons so far. In the first episode, even though 6÷3=2 is
supposedly a simple calculation, the student was not able to obtain sixths from thirds.
In the second episode, the student was clearly aware of the multiplicative aspect of
fractions, but was not able to use it fully to his advantage. In the third episode, the
several  incomplete  diagrams  on  his  worksheet  suggest  that  he  was  looking  for  a
multiplication that was equal to 7 and was unable to realize that the only option was
1×7 ; it could be argued that something else was involved here, such as a tendency

to avoid diagrams with too many strips, but the realization that 7 is a prime number
could  have  helped  him  to  abandon  this  search  and  decide  for  the  correct
representation. For these reasons, my interpretation is that their difficulty in figuring
out how to obtain the diagrams is a result of a poor knowledge of multiplication and
division.

Based on these cases, it  seems reasonable to conjecture that a more profound
knowledge  of  multiplication  would  be  helpful  to  students,  and  that  the  targeted
lessons were not enough to develop such understanding, even though there was some
improvement.

There  were  also  cases  in  which  the  students  seemed not  to  have  noticed the
multiplicative aspect of fractions at all. For instance, two students (Year 8 Set 4) were
working on how to represent twelfths using some already drawn grids (half, thirds and
fifths). When I approached them, they were struggling with the grid divided into fifths,
so I said, “Why don’t you try this one?” and moved a grid with thirds closer to them.
After a few seconds contemplating the grid, one of them had an “A-ha moment” and
promptly drew the exact number of extra lines to obtain twelfths. In this episode, it
seems that she was able to calculate 12÷3=4 , but had not yet realized how this can
be used to predict which grid was appropriate.
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 7.5.3  Discussion
At  first,  the  two  sets  of  episodes  presented  above  could  be  interpreted  as

contradictory. However, each is highlighting different aspects of the targeted lessons
in terms of students’ prior knowledge on multiplication.

The first set of episodes shows that the approach utilized enabled students to get
into the field of fractions even though some of them lacked prior knowledge of a topic
that is usually considered a pre-requisite to learn fractions: multiplication. This seems
to be a result of anchoring all the content taught during the targeted lessons in visual
representations instead of in numerical knowledge. Furthermore, the lessons seemed
to have created some situations that  promoted multiplicative  knowledge for  some
students.

The second set shows that despite the low initial threshold, some students were
not able to appreciate the multiplicative aspect of fractions, or were not able to make
use of  such an aspect when solving particular  questions.  As presented before,  this
issue often emerged when students faced fractions with new denominators without a
lesson introducing them through the use of  other  fractions  from the  same family.
Considering that the ability to work with any fraction is desired, I would say that the
targeted lessons did not fill this gap.

It  was  said  at  the  beginning  of  this  section  that  the  similarity  between  the
rectangular  area  model  (for  fractions)  and  the  array  model  (for  multiplication)
suggests that by working with the former, students could acquire knowledge regarding
multiplication. Actually, as illustrated by episodes showing students counting in blocks
or  performing  other  rudimentary  multiplicative  reasoning  strategies,  this  effect
happened, but not to the extent that was necessary for all students to make full use of
the  affordances  provided  by  the  visual  representations.  Bearing  that  in  mind,  my
understanding  is  that  students  would  benefit  greatly  from  lessons  specifically
designed to explore the connection between the two models, i.e., between fractions
and multiplication.

This design implication will be further discussed in Section 8.2 together with other
issues that point towards design improvements for the lesson plans.

177



Data analysis

 7.6  Whole number bias and other rote 
procedures

Whole number bias is the tendency of students to extend rules and properties of
whole numbers to  fractions.  Two examples of  whole number bias  are  to:  compare
fractions by judging the magnitude of numerators and denominators in isolation and
add or  subtract  numerators  and denominators  when asked to add or  subtract  two
fractions (Ni & Zhou, 2005).

These behaviours are widely reported in children, students, adults and even pre-
service teachers  (Siegler & Lortie-Forgues, 2015). One of the hypotheses to explain
this behaviour is that: 

Much of the mathematics that is taught and learned in schools is focused
on  written  mathematical  symbols.  However,  a  substantial  body  of
literature  has  suggested  that  many  students  perform  operations  on
symbolic  representations  with  little  understanding  of  the  meaning
underlying the representation. (Mack, 1995, p. 422) 

The argument would be that since fractions are represented basically using whole

numbers (in the form a
b

) and teaching usually focuses on symbolic manipulation,

students would be biased towards using the properties of whole numbers they already
know and have been using successfully in mathematics lessons. This interpretation is
reinforced by more recent studies showing that the difficulties with fractions seems to
arise when symbolic  notations are introduced  (Siegler  et  al.,  2013).  Another study
commented  on  by  Vamvakoussi,  (2015) investigated  adults  trained  to  associate
random symbols to fractions, instead of their standard symbolic representation. The
authors  concluded  that  when  comparing  fractions  represented  by  those  random
symbols,  adults  would  automatically  access  their  magnitude,  but  not  when  the
fractions are presented with usual symbolic representation.

Although  Vamvakoussi  (2015) recognizes  that  more  research  is  necessary  to
understand how and why this bias happens, he proposes that:

Because  human  reasoning  is  often  intuitive  in  nature,  the  bias  will
occasionally manifest itself, sometimes in an error, sometimes in a time-
consuming attempt to inhibit the initial intuitive response, and sometimes
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as  illusion  of  understanding,  depending  on  the  task  at  hand,  the
individual's familiarity with the task, and their level of engagement. (p. 52)

Intuitive or not, there is still the challenge of overcoming the whole number bias
in the classroom. Mack  (1995) highlights that a “number of researchers concur that
students  can  develop  a  deep  understanding  of  mathematical  symbols  by  relating
symbolic  representations  to  referents  that  are  meaningful  to  them”  (p.  422),  and
pursues this recommendation by using informal knowledge about equal sharing as a
meaningful referent candidate for third and fourth-grade students.

The  similarities  between  her  work  (Mack,  1990,  1995,  2001) and  mine  were
discussed  in  Barichello  (2015).  In  summary,  both  of  us  are  looking  for  some
knowledge that can be used as basis to build understanding of fraction addition and
subtraction  and  is  available  for  students  in  general.  Her  choice  is  based  on  the
perception that even though informal knowledge is  ill-structured and usually  very
circumstantial,  it  is  widespread  and  meaningful.  My  choice  is  based  on  the  ideas
discussed in Sections  2.4.3 and  4.1 that suggest that mental visual representations
play a fundamental part in how humans apprehend mathematics, and that some visual
skills are widely shared by humans. For Mack (2001), multiplication of fractions can be
seen as equal sharing of fractional totals. For me, addition of fractions can be seen as
juxtaposing sections of a whole represented by a rectangle. Drawing on Lakoff and
Núñez (2000), we are both looking for some knowledge that can work as a metaphor
for  fractions  addition  and  subtraction,  so  by  using  the  metaphor  we  would  be
borrowing  properties,  transformations  and  inferences  from  the  source  domain
(informal knowledge or visual representations) and using them in the target domain
(fractions). For that reason, some of her conclusions could be relevant to my work. The
dialogue below illustrates the dual conclusion Mack (1990) obtained.
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Note the use of expressions, such as, “You have to have a fraction,” and “You have
to reduce,” as a sign that he is trying to recall and follow some sort of procedure, even
though he did not need that to solve the contextualized (and supposedly meaningful)
question presented right after that. After discussing several interactions like this one,
Mack  (1990) concludes that informal knowledge about equal sharing can be a solid
basis for learning fraction arithmetic, however, what she calls “rote procedures” keep
getting in the way. The use of the expression “rote procedure” suggests procedures
that were learned in the past without being connected to a meaningful referent. In
fact, she finishes her paper presenting “arguments in favour of teaching concepts prior
to procedures” (p. 30).

My argument is that fraction instruction suffers from more than the interference of
procedures learned previously, but also from phenomena, such as the whole number
bias,  which  seems  not  to  be  created  by  previous  teaching,  but  results  from  how
fractions are symbolically represented and how our brains work.
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Regarding my research, my expectation was that the approach aiming at building
all  the concepts,  properties  and operations with fractions in visual  representations,
would  allow  students  to  overcome  whole  number  bias  or  interference  of  rote
procedures. This is because the standard symbolic representation was only used as a
way  to  represent  the  fraction,  while  the  meaning  was  anchored  in  the  visual
representations,  which  as  discussed  before,  were  expected  to  act  as  grounding
metaphors.

Before the targeted lessons started,  I  applied  a  diagnostic  test  to  assess  how
much students knew about fractions (see Appendix 10.1). The results were discussed
in Section 6.3 (see Table 8 on page 71), but I would like to discuss further the results
from the questions involving fraction addition.

Julia’s group (Year 8 Set 4 out of 5) had participated in the preliminary study (see
Chapter 3), during which they had three lessons on addition of fractions that were very
similar  to  the three first  lessons of  the second pack.  Even though they  performed
better than the other two groups on questions 5A and 5B, only 28% got a right answer

for question 5B (Work out 1
10

+
3
5

) and 0% for question 5C (Work out 1
3

+
1
4

). 

However,  when you compare the solutions from this  group with Alice’s  group,
(Year 8 Set 5 out of 5) something else becomes salient. While all of Alice’s students
who  did  not  leave  the  questions  blank  (10  out  of  13)  on  5C,  used  some  sort  of
variation of the whole number bias for addition of fractions (added numerators and
denominators  obtaining  a  new  fraction  as  answer  or  added  numerators  and
denominators altogether obtaining a whole number as answer), only 4 (out of 17) of
Julia’s students used a strategy that could reasonably be associated with the whole
number  bias.  Even  though  the  data  available  does  not  allow  me  to  reach  a  firm
conclusion regarding causes, it seems reasonable to conjecture that this difference was
a result of the lessons during the preliminary study.

In  order  to  confirm  my  impression,  I  checked  my  field  notes  for  annotations
regarding any answer that resembled the whole number bias, as I was aware of the
issue during the data collection, because it is strongly documented in the literature.
However, I could only identify two occurrences for all three groups through the whole
academic year. One was with a student from another group who was moved to David’s
group temporarily, and another with a student who missed the first three lessons of
the  second  pack  and  made  that  mistake  in  the  fourth  lesson.  This  reinforces  my
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argument that the targeted lessons enabled students to overcome whole number bias
for addition and subtraction of fractions.

Nonetheless, another “rote procedure” interfered with my lessons: doubling. This
became evident in lesson 1.4 during the second task, shown below.

The table referred to in the task contained information about the colours of the
cut-outs representing a half, thirds, quarters, fifths, sixths, eights, tenths, twelfths and
fifteenths. Beyond the item above,  the task was composed of another seven items,

such as 1
3

= and 2
3

= .

What I observed with several students when solving the item above is that after

identifying 2
4

as another equivalent fraction, they carried on doubling the numerator

and denominator, in order to generate more equivalent fractions, even though they did
not have cut-outs for sixteenths this lesson. This behaviour may have been caused by
an  insistence  from  me  and  from  the  teacher  that  they  should  find  all  fractions
equivalent to the given one, since this would be important for the next task. Note that
the strategy is correct as a way to generate equivalent fractions, but because it is not
compatible with what the task asked them to do, I insisted that they should use the
cut-outs and the information on the table to find the answers. However, in general,
once students  used the strategy they  were very  reluctant  to  abandon it,  probably
because it resonates with procedures previously learned by rote.

Apart  from  this  particular  situation,  it  was  possible  to  identify  several  other
examples  of  students  “doubling”  the  numerator  and  denominator  of  a  fraction
throughout the targeted lessons. Although this is only based on my experience as a
teacher in Brazil and as a researcher in England, I would argue that the persistence of
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“doubling”  is  due to  a  comparatively strong emphasis  on “doubling”,  “halving”  and
“count in twos” in the English national curriculum for mathematics in primary school.

Another  topic  covered  during  my  lessons  where  whole  number  bias  could  be
expected,  is  comparison.  Regarding  Alice’s  group,  the one  in  which  most  students
presented whole number bias in the diagnostic test, comparison questions appeared in
two lessons during the second pack, which means they had already had five of the
targeted lessons when such questions appeared for the first time. On this occasion, 11
students  showed  some  working  out  in  their  worksheets.  After  checking  all  the
worksheets, I could identify only 2 students who made a mistake that seems related to
whole number bias, such as in the answer below.

Among  the  right  answers,  the  example  below  is  representative  of  the  most
common strategy.

On the next occasion where comparison questions were posed (3 lessons later),
only one student made a mistake that resulted in answers compatible with the whole
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number bias, but as she only wrote a fraction as an answer, it is not reasonable to infer
about what may have influenced her.

My argument  is  that  after  5  lessons  on  fractions  using visual  representations,
students  from  a  low  achieving  group  that  presented,  almost  unanimously,  whole
number bias when adding fractions, were able to overcome this bias on a related topic
(comparison) without being explicitly taught about it.  This,  together with the other
evidence presented in this section, suggest that the approach utilized in the targeted
lessons  was  very  effective  in  overcoming  the  whole  number  bias  for  addition,
subtraction  and  comparison  of  fractions.  However,  other  procedures,  such  as
“doubling”, arguably interfered as an easy fall-back option.

 7.6.1  Discussion
Mack  (1995) suggests that this negative interference of “rote procedure” is the

result of an over emphasis on procedures before conceptual understanding, and my
data seems to support her conclusion. However, my argument is that the issue is more
complex than the dichotomy of procedural versus conceptual knowledge. Although I
do not have data to support this view directly, I interpret this behaviour of “falling
back” to simple procedures as the result of a long culture of learning to solve tasks by
simply applying procedures without meaningful referents for the choice of procedure,
and for the procedure itself. 

An illustrative example was given by student J (Year 9 Set 6) when solving the
word question below. The question was presented in the final (sixth) lesson of the
second pack after a sequence of lessons during which this particular student presented
an exemplar level of engagement and success.
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When I observed that he had answered 4
15

, a totally unexpected answer from

my perspective, I asked him why and he justified it by pointing out a regularity in the
numerators and denominators given in the task: “add one to the numerator and five to
the denominator”. This was a huge surprise for me due to his success in the last lessons
and the fact that he had solved correctly the previous questions.

My argument is that for this student, the association of this strategy (looking for
additive patterns, which is very common when working with number sequences), to
some type of question is meaningless, and at the moment he spotted an easy pattern
in the numbers printed in the task,  the association was triggered. Also,  he sees no
problem in acting like that, since most of the associations he does during mathematics
lessons may be of the same meaningless nature.

The conclusion I would draw from the data discussed in the previous section, is
that even though some episodes similar to the one just described actually happened,
the  approach  utilized  was  effective  in  reducing  the  influence  of  known  “rote
procedures”, such as the whole number bias.
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 8  CONCLUSIONS

In the previous chapter I presented and discussed five themes that emerged from

my data and are related to my research question: what is the effect of a set of lessons

based  on  a  carefully  chosen  visual  representation  on  low  achieving  students’

reasoning about fraction?

In this chapter I will discuss those themes presented in the previous chapter by
grouping them into two main conclusions. The first, discussed in Section 8.1, refers to
the  qualities  of  the  learning  based  on  visual  representations  during  the  targeted
lessons. This conclusion responds more clearly to the research question posed above.
The second, discussed in Section  8.2, refers to aspects that seemed to have limited
students’  engagement during the targeted lessons and that could be interpreted as
opportunities to improve the design of the lesson plans.

However, before these sections, I want to summarize the trajectory of this study in
order to make sense of what was done and why.

At the beginning of this thesis I introduced my general interest in investigating the
learning processes of low achieving students. At that point it was not clear to me in
what ways these processes would differ from those of other students, but there was a
feeling  that  low  achieving  students  are  not  achieving  less  than their  peers  simply
because they are lazy, are having problems at home, are going through challenging
times in their personal lives, or are intellectually limited. Even though I admit those
issues can interfere in the achievement of some students, the literature shows that
achievement is  not homogeneously distributed in a population and is  correlated to
variables, such as family income and parents’ education (West & Pennell, 2003), and
these variables could be a way to better understand why they are low achieving.

In the case of the United Kingdom, where students are grouped in sets supposedly
according  to  their  prior  achievement  in  mathematics,  there  is  a  strong  correlation
between social class and the set in which students are placed  (Dunne et al.,  2007;
Gates & Noyes, 2014).

Inspired by the literature in mathematics education  (Mayer, 1997; Gates, 2015,
2018;  Lowrie  &  Jorgensen,  2018),  visualization  emerged  as  a  possible  tool  to
overcome  the  disadvantages  that  may  be  forcing  this  failure  onto  students  from
underprivileged  social  classes.  An  intense  use  of  visual  representations  could:  a)

187



Conclusions

reduce the reliance on language, which is a factor strongly connected to social class
(Zevenbergen, 2001), b) develop visual skills, which are correlated to achievement in
mathematics and seem to develop via early experiences, such as playing with blocks
and  puzzles,  which  is  much  more  common  among  children  from  privileged  social
classes  (Verdine  et  al.,  2014),  and  finally,  c)  reduce  the  dependence  on  prior
mathematical knowledge (Barichello, 2017).

The  experience  during  the  preliminary  study  was  important  to  confirm  such
expectations  (Barichello,  2015),  and  establish  a  plan  to  implement  a  sequence  of
lessons on fraction addition and subtraction through visual representations. Also, this
preliminary stage of my research was key to  becoming acquainted with the British
educational system at different levels: school, teachers, classroom and students. With
these experiences in mind, I designed an intervention composed of 12 lesson plans,
based on three main design principles: 1) keep coherence with current practices in the
school, 2) use visual representations as the basis on which to build all the knowledge
intended and 3) create opportunities for students to engage with tasks without being
told how to solve them beforehand.

As the main data collection method, I used what I termed within-class clinical
interviews, which are essentially task-based clinical interviews (Carolyn et al., 2014)
taking place during a regular lesson, instead of in a special environment designed for
research purposes. Worksheets solved by the students and field notes were also very
important.

Then, during the next academic year, three teachers in the same school enacted
the lessons, each with one low-achieving group from Years 8 or 9. In total, about 40
students were involved in my data collection.

All twelve lesson plans were used, some of them for more than one lesson and a
few extra lessons were planned on demand. In total, 45 lessons were taught based on
the lesson plans. Based on teachers’ perceptions and researcher’s impressions from the
previous lessons, each lesson plan was tweaked from one lesson to the next, without
compromising the main learning goal  and the design principles.  The twelve lesson
plans were grouped in three packs in a way that the lessons in each pack were enacted
consecutively and each pack was enacted in a different term.

Finally, the analysis of the episodes of within-class clinical interviews, together
with  my  field  notes  and  students’  worksheets  revealed  five  themes.  Considered
together, these themes showed that, even though the effect of the lesson plans were
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limited for some design choices, mathematical reasoning emerged during the targeted
lessons. The data analysis showed that this reasoning was not only anchored on but
seemed to have been enabled by the visual representations. Moreover, students were
able to extend their knowledge beyond what was explicitly taught to them, solving
questions  and reasoning  about  situations  that  demanded  generative  thinking  from
them. Once again, the data analysis suggested that this behaviour was also enabled by
the visual representations.

This  observation  was  especially  striking  considering  the  participants  of  my
research: students from three low-set groups in an under-performing school. These
students presented serious limitations in their prior mathematical knowledge and were
not used to reasoning in their  lessons,  as I  could observe throughout the research
process. However, the use of visual representations as basis to build their knowledge
constituted a pathway for them to have access to fractions.

These issues will be further detailed and discussed in the next sections.

 8.1  Reasoning anchored in visual representations
Section  7.3 of  the  data  analysis  chapter  shows  that  students’  reasoning  was

fundamentally  anchored  in  the  elements,  properties  and  actions  of  the  visual
representations, when they were talking about the tasks posed during the targeted
lessons. Moreover, Section 7.4 showed that their reasoning was generative, meaning
that  students  were  able  to  extend  their  knowledge  to  solve  questions  that  were
beyond what was explicitly taught to them.

The third characteristic of the learning elicited by the targeted lessons that I will
take  into  account  in  this  section,  is  the  low  threshold,  in  terms  of  previous
mathematical  knowledge  created  by  the  visual  representations,  and  discussed  in
Section 7.5.1.

My data analysis suggests that  these three characteristics  of learning fractions
through the lesson plans I designed are the result of two components of my research
related to the design principles. Each one of them will be discussed separately in the
next sections.
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 8.1.1  The rectangular area model as a grounding metaphor for 
fractions

The first component is the model chosen to serve as a basis on which to build the
intended knowledge, both because of its general properties for being a visual model,
and  because  of  its  specific  properties  as  a  rectangular  area  model.  The  analysis
presented on chapter  7 suggests that together these properties enable the model to
function as a grounding metaphor in the sense proposed by Lakoff & Núñez (2000). or,
as  suggested  by  Johansen  (2014),  as  a  material  anchor  for  fractions  into  area  of
surfaces. Lakoff & Núñez (2000) proposed that metaphors are important because they
allow us to transfer not only the direct meaning implied by a metaphor (in this case,
the direct meaning would be how to represent a fraction given symbolically using the
model and vice-versa), but also all the inferential structure from the source domain
into  the target  domain  (in  this  case,  this  would  be the perception  that  by  putting
together  two  one  quarters  the  result  is  equal  to  one  half).  Through  this  transfer
mechanism, humans are capable of reasoning in new contexts based on arguments
that we know from other more familiar contexts. Still, according to Lakoff & Núñez
(2000),  a  grounding  metaphor  is  a  metaphor  that  allows  us  to  “ground  our
understanding  [...]  in  our  prior  understanding  of  extremely  commonplace  physical
activities” (p. 53).

As discussed on Section 5.3, my argument is that the properties of the model that
were  used  during  my  lessons  (composition  and  decomposition  of  shapes  by
juxtaposing and cutting, and comparison of areas by overlapping) are commonplace
physical activities, and when combined with some definitions, they were sufficient to
explore  the intended topics  in  the target  domain.  Therefore,  and my data  analysis
supports this claim, the rectangular area model enabled this grounding metaphor for
fractions.

This explains why mathematical reasoning emerged during the targeted lessons to
an extent  not  observed during regular  lessons:  students  were able  to  transfer  the
inferential  structure  from  the  cut-outs  (and  later  the  diagrams)  to  the  domain  of
fractions. This observation is coherent with Johansen’s  (2014) view of certain visual
representations as capable of promoting conceptual mappings. 

Moreover, as argued on Section 7.4, it also explains the generativity presented by
the  students.  As  Rodd  (2000) speculated  when  discussing  possible  connection
between  reasoning  and  visualization,  since  the  warrants  and  backings  of  the
arguments  constructed  during  the  targeted  lessons  were  anchored  in  a  grounding
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metaphor via visual representations, or ultimately in a commonplace physical activity,
students were able to actually interact with the building blocks of the arguments being
used and eventually re-use them to solve relatively new questions.

This  behaviour  was  not  common  during  regular  lessons,  because  since  the
students  lacked  prior  mathematical  knowledge,  the  only  option  left  to  which  the
teachers could anchor their arguments, was authority (manifested through the mere
presentation of information or through algorithms).

Based on that, I propose that the rectangular area model, manifested as it was in
the targeted lessons, worked as a privileged representation for fractions. According to
Rau  and  Matthews  (2017),  there  is  evidence  that  for  some  topics  there  could  be
representations that “convey meaning more intuitively” (p. 540) and could, therefore,
be used as a way to solve the representation dilemma often highlighted by advocates
of the use of multiple representations. 

 8.1.2  Opportunities for thinking
The  discussion  presented  in  the  previous  section  explains  the  emergence  of

reasoning  and  its  generativity  based  fundamentally  on  the  first  design  principle,

discussed in Section  5.1, that says that the  lessons should enable students to build

their knowledge about fractions on visual representations.

At this point, it is relevant to remember the other two principles. The second says

that students should have opportunities to solve the tasks without being told how to

do it beforehand, and the third was to  keep the lesson plans coherent with current

practices  in  the  school.  The  latter  was  not  expected  to  have  impact  on  students’
learning, but to facilitate the use of lesson plans by the teachers, increasing the fidelity
of implementation, and to avoid drastic changes for the students.

However,  the  second  principle  could  also  be  seen  as  responsible  for  the
emergence of reasoning, as discussed in the previous section. It could be argued that
all  that  was  observed  during  the  lessons  was  not  the  result  of  the  use  of  visual
representations, but of the fact that the lesson plans created situations in which the
students  had opportunities  to  solve  tasks  without  having been told  how to  do so
beforehand.

I recognize that the design of my research did not allow me to separate the effect
of both principles. Actually, I expected them to act together.
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The first principle without the second could result in an approach where the data
of  students’  arguments  would  refer  to  visual  representations,  but  any  warrant  or
backing would be anchored in authority. In that scenario, I would not say that the
model worked as a grounded metaphor, since the inferential structure (warrants and
backings  and  how  they  can  be  combined)  would  not  have  come  from  the  visual
representations.  Consequently,  I  would  not  expect  much  generativity  in  students’
reasoning.

The  second  principle  without  the  first  would  arguably  result  in  difficulties
regarding  whatever  prior  knowledge  would  be  used  as  the  anchor  for  students’
reasoning.  The consequence,  I  believe,  would  be the well-known feeling by  most
teachers  that  her/his  students  do not  know the pre-requisites  for  the topic  of  the
lesson. This feeling is arguably the reason behind the reduced curriculum commonly
adopted with low sets in the UK (Boaler & Wiliam, 2001).

In  conclusion,  the  first  and  second  design  principles  acting  together  were
fundamental for the emergence of reasoning, its generativity and the low threshold in
terms of prior  mathematical  knowledge observed during the targeted lessons.  This
conclusion  resonates  with  some  of  the  principles  defended  by  the  Realistic
Mathematics Education movement and their way of using models  (Van Den Heuvel-
Panhuizen, 2003). For them, the active engagement of students with models is key to
promote the movement from “models of”, which are models tied to specific situations,
to “models for”, which are more abstract models that can be used to approach new
problems and situations. My analysis showed that the students participating on my
study used the rectangular area model as a “model for” fractions in a very broad sense,
even expanding towards new questions and situations.

 8.1.3  One final episode
Before moving on to the second major conclusion of my thesis, I will discuss a

final episode collected during the targeted lessons. This episode took place during the
second lesson of the third pack, which was also the second to last lesson. After the
lesson, when checking the worksheets, I identified the three answers below given by
the same student.
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In  the  first  question,  the  sums  were  given  as  diagrams.  The  students  were
expected to use them to obtain the final answer. My expectation was that they would
add extra lines to each (mimicking the other) in order to get the same denominator for
both fractions and then obtain the final answer; apparently, that is how the student
solved the question (by adding the horizontal lines onto the first  diagram and the
vertical onto the second). In the second question, the sums were given symbolically
and students had enough space to draw diagrams if they wanted to. In this case, there
was no sign that this student had drawn diagrams to solve the question. Finally, the
third  question  also  posed  a  sum  symbolically,  but  the  student  voluntarily  drew  a
diagram  to  solve  it;  the  counting  marks  in  both  diagrams  and  the  mistake  in  the
denominator of the first fraction (97 instead of 96) suggest that she actually relied on
the diagrams to obtain the final answer.

I consider this episode quite revealing in terms of my research question because,
even though I  am presenting only one case,  it  is  possible to  concoct other similar
episodes  with  other  students  and questions  from  other  lessons.  For  this  reason,  I
consider  this  a  paradigmatic  episode.  It  is  important  in  the  sense  that  it  shows  a
student who was able to use the visual representation (first question), and was also
able  to  use  a  purely  symbolic  approach  when  convenient  (second  question),  even
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though such an approach was never emphasized in any lesson. Moreover, in the third
question,  which  was  intentionally  designed  with  big  denominators,  a  reasonable
interpretation is that the student was not able to perform the operations using the
symbolic  representation,  probably  due  to  limitations  in  her  knowledge  on
multiplication, as she had in the second. However, she felt comfortable enough with
the visual representation to use it, even though it is arguable that the method is not so
efficient due to the number and size of the subdivisions in the diagram.

This analysis is coherent with observations that a model should provide ”students
with opportunities for progress, without blocking the way back to the sources in which
the understanding is grounded”  (Van Den Heuvel-Panhuizen, 2003, p. 30) since the
student seems to be able to move beyond, towards a numerical approach, and back to
the model according to her needs.

To fully understand the significance of this episode as a synthesis of the learning
promoted  by  the  targeted  lessons,  it  is  important  to  contrast  it  with  the  episode
reported by Ainsworth (2016) shown below. The student was explaining to the teacher

what she did regarding the sum 1
2
+
2
5

.

“This  is  half  [picking  up  white

and  red  -  A]  and  so  is  this

[yellow and orange - B]. This is
one-fifth,  [she  taps  red  along

the orange – A then B - with no
attempt at accuracy as we both
know its true], so this must be
two-fifths  [pink].”  She  places
the pink and yellow end to end

[C].  “So  it  makes  nine-tenths
altogether.”  (C.  Ainsworth,
2016, p. 15- letters added) 

Note how the student demonstrates fluency not only when explaining the process,
but also by presenting more representations and relations that would be necessary to
solve the question (the relation between white and red in A and the arrangement in D).
However, from the information available, it seems that the choice of tenths for the
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final answer, which is a critical step when adding fractions, does not seem to follow
from the diagrams. Quite the opposite, it seems reasonable to argue that she knew the
final answer and represented (very competently) all the elements involved in it (9/10
and 1/10) as a post-hoc illustration to her solution. A similar behaviour was reported
by Herman et al. (2004) in a study based on a large sample of secondary students that
showed that they tend to use diagrams as static objects in  post-hoc justifications of
solutions obtained via symbolic methods.

As  I  discussed before,  the scenario  for  the  third  solution  on Illustration  67 is
sharply different. When needed, the student used the diagrams to obtain the answer
and relied on its properties and transformations to carry out the process.

In conclusion, I would say that this was the main characteristic of the learning that
resulted from the approach adopted during the targeted lessons: students’ reasoning
was based on elements, properties and transformations of the visual representations,
and this was the result of the first and second design principles. Therefore, my work
contributes to the challenge of finding ways for “spatializing the curriculum”, in the
words of Newcombe (2016).

 8.2  Limitations of the lesson plans
Sections 7.2 and 7.5 discussed issues that can be seen as limitations of the lesson

plans in terms of students’ learning. In the former, I showed how challenging it was for
some students to mobilize certain visual skills to solve some of the very first tasks with
cut-outs.  In  the  latter,  I  showed  how  the  lack  of  knowledge  on  multiplication
apparently limited how students engaged with some tasks, especially towards the end
of the third pack.

In this section I will discuss how I think these two issues are not limitations of the
approach itself, but should be seen as opportunities to improve the lesson plans.

 8.2.1  The challenge of rotating shapes
This  issue  emerged  in  the  first  lessons  of  the  first  pack,  when  students  were

exploring cut-outs, and refers specifically to rotation. Students struggled to figure out
how to obtain certain arrangements when it was necessary to rotate the cut-outs. The
struggle  was  more  evident  when  triangles  were  involved,  since  they  sometimes
demanded rotation not by multiples of 90 degrees. The struggle was so salient that I

195



Conclusions

decided to remove the triangles before David’s third lesson (after observing all the
lessons by Alice and by Julia). The change was perceived to be successful by me and
the teachers, as students advanced more quickly through the worksheets without the
triangles.

Later on, when the focus of the lesson plans was not so much on the rectangular
area model as it was on fractions, and when diagrams had replaced the cut-outs, I
observed  students  using  visual  skills  to  reason  about  tasks  related  to  fraction
equivalence and comparison.

I consider this example very relevant because it illustrates an arguably simpler
connection between visual skills and mathematical achievement when compared, for
instance, to the result reported by Cheng and Mix  (2012). The authors reported an
improvement in solving missing number problems by young students who participated
in mental rotation training. Because the missing number questions were presented in a
purely symbolic way ( 4+[ ]=11 ) and do not suggest explicitly any relation with
rotation,  it  is  not  simple  to  understand  the  causal  mechanisms  behind  the  result.
Cheng  and  Mix  (2012) propose  two  explanations:  a)  the  mental  rotation  training
improved  students’  general  working  memory  and  this  facilitated  the  strategy
employed by them to solve the task, and b) the training helped students to mentally
move the number to the other side of the equal sign, obtaining [ ]=11−4 , which is
one step closer to the final solution. Nevertheless, the authors recognize that their
proposals are tentative.

Uribe  et  al.  (2017) revisit  Cheng  and  Mix’s  discussion and  propose  three
explanations for their results. The first is a detailed discussion of their first proposals
regarding a general improvement in working memory. The second relies on the idea
that  even  though  the  missing  number  questions  were  essentially  symbolic,  the
symbols  are  still  spatially  represented on the paper,  therefore,  an  improvement in
visual skills could lead to a better understanding of the symbols involved. The third is
related to the second proposal by the original authors, according to which students
could be manipulating pieces of the numeric expression as it is done in parts of a visual
representation by decomposing, moving them around and composing something new.
Note that the three explanations proposed are not specific for the missing number
questions  and  could  be  extended  to  other  mathematical  topics.  However,  the
underlying mechanisms supporting them are not fully understood yet.

This  discussion  illustrates  the  complexity  of  the  causal  mechanisms  that  act
behind the relationship between visual  skills  and mathematics  learning,  which is  a
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discussion away from a clear conclusion (Mix & Cheng, 2012). However, my research
provides an example where this seems to be more direct. By the very nature of some
curricular topics,  mathematics lessons are full  of visual representations,  even when
teachers  do not intend to emphasize them: polygons,  circles,  grids,  tables,  number
lines, dots, planes, axis, angles, etc. In addition, as it happened in the first lessons of
the first pack, sometimes these objects have to be imagined in a different position or
orientation in order to enable a particular approach, and teachers may inadvertently
use  transformations  that  rely  on  visual  skills  that  are  not  readily  available  to  the
learners. Even in my research, which clearly revolved around visual representations,
the episodes reported in Section  7.2 showed that to some extent, I took for granted
that students would be able to deal with rotation of the cut-outs.

This discussion highlights a mechanism that could explain the well-established
correlation  between  visual  skill  and  achievement  in  mathematics:  when  visual
representations  are  at  play,  due  to  their  nature,  it  is  inevitable  that  some
transformations will be necessary in order to solve tasks, even those that may not be
explicitly  focusing on visual  elements,  and since  the curriculum is  permeated with
topics that intrinsically rely on visual representations of some form, it is difficult, if not
impossible, to avoid such transformations. However, they may be challenging for some
students,  especially  those who are  already considered to be low achieving  (Gates,
2015).

The  consequence  of  this  discussion  is  that  visual  skills  should  be  explicitly
incorporated  into  lessons,  especially  if  a  teacher  wants  to  explore  topics  and
approaches relying on visual representations. However, at a pragmatical level, there
may be no opportunities to do so while exploring a regular topic in the curriculum,
such  as  fractions.  In  this  scenario,  since  my  results  suggest  that  visual  skills  may
interfere  negatively,  it  may  be  necessary  to  choose  paths  that  minimize  this
interference, as I did when removing the triangles from the third lesson for David’s
group. This situation opens up an opportunity for improvement in the lesson plans in
case the teacher does not want,  or simply cannot, focus on visual skills,  as will  be
presented after the following section.

 8.2.2  Multiplication and the rectangular area model
As discussed in Section 7.5, this aspect emerged as a two-fold issue. On one hand,

I argued that the visual representations were able to lower the threshold in terms of
previous mathematical knowledge during the targeted lessons. On the other hand, not
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all the students were able to contemplate the multiplicative aspect of fractions and
this limited their engagement with some tasks, especially towards the final lessons.

It could be argued that this actually shows a limitation of the approach: the model
and the lessons were not able to build the knowledge on multiplication necessary to
fully explore the concepts and properties of fractions intended during the targeted
lessons. However, it has to be taken into account that the lesson plans did not have
multiplication as an explicit goal. Since some students were able to contemplate the
multiplicative aspect of fractions quite successfully, even though it was not central to
any  lesson,  it  seems  that  there  is  potential  to  promote  such  knowledge  within  a
sequence of lessons.

The  fact  that  the  lessons  were  able  to  lower  the  threshold  regarding
multiplication also highlights the potential for further explorations on this topic during
the lessons. However, this should be made explicit and not only treated as a side effect
as was the case in my original lessons plans.

This observation also has implications for the design of the lessons and they will
be discussed in the next section.

 8.2.3  Improvements in the lesson plans
The two sections previously pointed out aspects that could be improved in the

lessons plans.

Firstly,  the  challenge  resulting  from  the  use  of  triangles  in  the  first  lessons
suggested that it became a distractor from the main goal of those lessons. This effect
was so evident during Alice’s and Julia’s lessons that I decided to remove the triangles
before David started his lessons on 1/3, 1/6, 1/9 and 1/12 and this was perceived as a
good decision, as students were able to move faster throughout the tasks. Later, after
the end of the targeted lessons, when the teachers asked me to use the lesson plans
with other groups14, the triangles were also not included.

Based on that and on the considerations presented before, my recommendation
would be not to use triangles in the lessons if the teacher wants to focus on fractions
and does not want to spend more time on developing mental rotation. This could be
achieved by simply replacing the triangular cut-outs in the first lessons by rectangles.
As a side effect, the important message that the shape is not relevant (only the area)

14 These lessons were not considered as part of my data collection because there was not enough time to
plan it properly.
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could get  weaker.  In order to  overcome this,  I  would recommend the inclusion of
triangles in starters, to be discussed in the beginning of some lessons as examples of
representations that can be done but may not be convenient.

It is important to highlight that I am not advocating against approaches that rely
on mental rotation or other visual skills. On the contrary, throughout this thesis I have
presented several arguments in favour of a greater emphasis on visual aspects in the
teaching of mathematics. However, my data suggest that such a thing should be taken
seriously, not as a secondary goal, but as a central topic in itself. As shown in literature,
these skills  are  not  only  trainable,  but  also fairly  transferable  (Wright,  Thompson,
Ganis, Newcombe, & Kosslyn, 2008). If a teacher wants to keep the triangles in the
lessons as a way of enhancing students’ visual skills, I would recommend the inclusion
of extra lessons explicitly focused on these skills before introducing fractions.

Secondly, the fact that the multiplicative aspect of fractions did not emerge for
some students suggests that the connection between the rectangular area model and
multiplication of whole numbers should be explicitly explored. This could be achieved
by  changing  the  focus  of  the  final  lesson  of  the  first  pack,  when  diagrams  are
introduced and students have already expanded the range of denominators beyond
the families of 1/2 and 1/3.

The original lesson emphasized the creation of diagrams by the students based on
the cut-outs and grids used in the previous lesson. The outcome of this lesson was a
leaflet with the diagrams of several unitary fractions that could be used as reference at
the  beginning  of  the  next  pack.  However,  students  seldom  referred  back  to  it.
Therefore, I believe its substitution for a lesson that also introduced diagrams but did
not generate the leaflet would not have greater impact in the overall trajectory.

The lesson could be centred around questions such as: “In how many ways can
you represent  1/12?” This  question would allow students to explore how to draw
diagrams, as well as the original lesson plan, and could create more explicit situations
for them to contemplate and discuss the multiplicative aspect.
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An example of a lesson plan built around this question can be seen in Appendix
10.215.  Note  that  this  question  opens  up  opportunities  for  discussions  about
multiplication  (factors  and  multiples)  and,  leaning  towards  visual  skills  and  the
vocabulary associated with it, about rotation (reflections and symmetries).

Based on the suggestions presented above, the outline of the whole sequence of
lessons, keeping the division into 3 packs, would look like the diagram below.

15 This lesson plan was designed due to teachers’ request, after the end of my data collection, for a 
booklet with all the lessons to be used in the next academic year.
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As it was said in Section 4.4.1, my research was not conceived as a design-based
research study, therefore, it was beyond my objectives to perfect the lesson plans. This
could be explored as a future research project, as will be discussed on Section 8.4.4.

However, I believe the discussion presented here can be informative for design
purposes, as well as being a contribution towards a better understanding of the role of
visual  representations  in  teaching  and  learning  mathematics  and  how  this  can  be
effectively achieved.

 8.3  For a more visual pedagogy
In this section I will focus on a general issue that is broader than the conclusions

that have been presented so far. I will make an argument for a more visual pedagogy
in mathematics.

From  the  perspective  of  visual  representations,  there  is  a  long  standing
understanding among educationalists that visual representations are fundamental for
mathematics learning, see for instance the arguments presented in Skemp (1987). For
him, visual representations are responsible for bringing meaning to the more abstract
and concise symbolic  representations,  enabling students to  approach mathematical
objects  in  a  more  intuitive  and  holistic  way.  Even  though  his  ideas  are  more
speculative, they resonate with arguments presented by many other researchers in the
field of mathematics education. For instance, this feeling that visual representations
are more intuitive and holistic could be understood under the lens of Lakoff & Núñez’s
(2000) ideas regarding the role of metaphors in learning: visual representations are
intuitive because they can work as metaphors connecting the abstract concepts with
more  concrete  realms.  Giaquinto’s  (2007) ideas  can  also  help  us  to  understand
Skemp’s argument: humans are equipped with some visual skills and visual perception
can be the trigger to the acquisition of new knowledge.

Considering these arguments, I suggest that the first major conclusion I presented
before,  regarding  the  emergence  of  generative  reasoning  anchored  in  visual
representations,  is  the  result  of  students  successfully  transferring  their  (intuitive)
knowledge on 2-D shapes into fractions, and consequently being able to extend it
towards novel questions.
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Therefore, a more visual pedagogy from the perspective of visual representations
could make the learning of abstract topics more meaningful by offering an alternative
to anchor it in intuitive prior knowledge.

From the perspective of  visual  skills,  as  was discussed in  Section  2.4,  there  is
extensive evidence that visual skills and achievement in mathematics (or STEM areas
in general) are correlated both predictively and concurrently. Moreover, recent studies
are  starting  to  unveil  the causal  mechanisms behind this  correlation.  For  instance,
proposals,  such as Dehaene’s  (2011) number sense,  that places the number line,  a
visual  way  of  representing  numbers,  as  a  central  element  in  all  mathematical
cognition. This thesis provides a more direct example where the lack of visual skills
interfered negatively in how students engaged with mathematical tasks. As discussed
in Section  7.2, by not being able to rotate some shapes mentally, students were not
able to solve some tasks involving equivalent fractions via comparison of areas. This
difficulty was not anticipated by me when designing the lesson plans and resulted in
students being intellectually distracted from the actual goals of the lesson. On the
positive  side,  there  is  research  showing  that  apparently  simple  activities  involving
visual skills, such as playing with linear numbered board games  (Ramani & Siegler,
2008) and video games like tetris  (Newcombe, 2010), or training in mental rotation
(Cheng & Mix, 2012), and activities involving paper folding (Wright et al., 2008), have
a  positive  impact  for  the  learning  of  standard  mathematical  topics  ranging  from
number estimation to missing number problems.

Although there  is  still  a  lot  to  understand regarding the complex  relationship
between visual skills and mathematics cognition, I agree with Newcombe (2016) when
she states that there is enough evidence for researchers to investigate how to use it in
teaching, and I believe my results contribute to fill this gap by suggesting two main
features for such a pedagogy.

Firstly,  many  benefits  may  arise  from  the  use  of  visual  representations  as
grounding metaphors for a mathematical topic, instead of only using them as ways of
representing mathematical objects. In this scenario, it is necessary to learn much more
than only the elements of  a  representational  system,  but  also the transformations
allowed within it. This takes time, yet, it seems to be key to the success of an approach
emphasizing  visual  representations.  Consider,  for  instance,  the  case  in  Japan  and
Singapore. Watanabe (2015) shows how the Japanese textbooks capitalize on visual
representations  as  tools  for  reasoning,  and  points  out  that  this  is  possible  by
consistently supporting a cohesive use of visual representations since the early stages
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of education. A similar conclusion is reached through the description given by Ng &
Lee (2009) of how Singapore uses the bar model for different topics and problems in
different years and on how models are used in the Realistic Mathematics Education
approach (Van Den Heuvel-Panhuizen, 2003).

Secondly, the development of visual skills is important. They can enable students
to  use  the  properties  and  transformations  of  the  representational  system  more
efficiently  and  even  understand  its  element  more  clearly.  As  pointed  out  by
Newcombe  (2016),  this  development  can  be  reached  via  lessons  fully  focused  on
visual  skills,  or  via  incorporating  such  activities  within  regular  lessons.  For  both
approaches, there are plenty of activities in the literature that can be helpful (L. Brown,
Coles, & Hewitt, 2016; Newcombe, 2010). 

In conclusion, a more visual curriculum does not mean just providing a multitude
of different visual representations for each concept in the curriculum, but:

1. a  change  in  the  role  played  by  visual  representations  in  the  teaching  and
learning of mathematical topics from accessories to source of meanings, and;

2. a  recognition  of  the  relevance  of  visual  and  spatial  skills  in  learning
mathematics.

Another aspect that has to be considered refers to the participants of my research:
low achieving students. It could be said that my conclusions are bounded by my choice
of  focusing  on  this  particular  group  of  students  (a  detailed  discussion  of  their
characteristics  beyond  the  `low  achieving`  label  is  presented  on  section  6.3).  My
answer is based on two arguments.

First,  although my focus on visual  representations was particularly  inspired by
some  features  of  these  students,  the  benefits  of  approaches  emphasizing  visual
representations and skills are not limited to them. The ideas proposed by Giaquinto
(2007) and by Lakoff and Núñez  (2000), as well as proposals connecting these two
body of  knowledge  such  as  Johansen  (2014),  refer  to  the nature  of  mathematical
knowledge  and the  results  emphasized by Newcombe  (2016) refer  to  science and
mathematics  learning  in  general.  It  is  also  worth  reinforcing  that  high  achieving
countries,  such  as  Japan  and  Singapore,  adopt  strategies  that  emphasize  visual
elements as a general approach to teach mathematics.

Second, as a general ideological principle, I believe that not only research should
focus more on unprivileged individuals but also education. Curriculum and didactics
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should be taught aiming at the struggling students and then expect that the others will
also benefit from it.

One last aspect that has to be considered refers to choice of fractions as a topic.
While it  is  true that my conclusions are limited to  it,  the main ideas on which my
arguments are built  are  not  limited to  any specific  topic.  For  that  reason,  I  would
expect  that  my conclusions  could  be  extended  to  other  topics  taught  at  a  similar
school level. However, as emphasized in my research question, the choice of the visual
representation and the design of the lessons were both very carefully, demanding a lot
of considerations. Therefore, although possible, I do not think that the extension of my
results should be taken for granted. It depends on work to be done in finding and
developing a model suitable for other topics and designing lesson plans accordingly.

 8.4  Final considerations
In this final section, I will present a brief discussion of some issues that emerged

during the data collection and analysis, but were not central to my research question.
For that reason, the amount of data available is relatively scarce, and the discussion
proposed has a more tentative aspect than the conclusions presented in the previous
chapter.

Also, I will  reflect  on some issues that I  have experienced during my research
project and finish by presenting some possibilities for further research related to what
was explored throughout this thesis.

 8.4.1  My own use of language
In  Section  2.4,  I  define  visual  representations  in  opposition  to  textual

representations  by presenting a series  of  characteristics  that  would  identify  verbal
communication with the latter. Moreover, the reduction of the use of verbal language
is  highlighted  as  a  potential  benefit  of  using  visual  representations  to  teach  low
achieving students.

Bearing  that  in  mind,  how can  I  justify  the  fact  that  most  of  the  interactions
discussed in my data analysis were essentially verbal?

Reflecting  retrospectively,  I  believe  the  answer  relies  on  my  habits  and
unconscious preferences for verbal interactions. Although I have explicitly questioned
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the  role  of  such  a  medium  when  designing  the  lesson  plans,  and  have  created,
together  with  the  teachers,  an  environment  where  arguments  based  on  visual
representations  were  accepted  and  encouraged,  this  questioning  could  have  been
extended further to cover the way I interacted with students when helping them to
solve the tasks.

By  the end of  a  paper  on the importance of  visualization for  STEM education
(Gates, 2018), Gates makes an interesting observation: “We all have a lot to learn —
even me, who has written a chapter praising and encouraging visualisation — with
only four diagrams” (p. 188). The fact that even I, a researcher explicitly concerned
with the role of visual representations in the teaching and learning of mathematics,
could  have  become  more  detached  from  verbal  communication,  but  did  not,  only
shows how pervasive this medium is inside classrooms.

A related anecdote happened during the preliminary study. After the first lesson
(during which she was challenged by the researchers not to use much language), Julia
told us that she felt tempted to use talk every time she noticed something that was not
going according to the plan. Once again, it seems that when the context demanded
unplanned action, the immediate response involved verbal communication.

Nevertheless,  several  episodes  discussed  in  my  data  analysis  also  show  that
students felt this change and while reasoning, actually used visual elements, such as,
vocabulary strongly charged with visual words, explicit references to the diagrams and
gesturing. The observation that this kind of behaviour emerged even though the use of
visual representation could have been more intense,  encourages the exploration of
more  extreme  approaches  in  terms  of  using  less  verbal  and  more  visual
communication.

 8.4.2  My influence on the data
As mentioned in Section 2.2, I do not believe that it is possible to adopt a stance

of pure observer, when it comes to research inside classrooms (Wragg, 1999). During
the pre-field work stage, my interactions with the students were dictated by what the
teacher asked or expected from me (going from managerial assistance,  to checking
answers and helping students with the tasks). As there was already a good rapport
built between me and the teachers, during the preliminary study I adopted a more
active stance, initiating conversation with students when I felt they would be open to
talk or needed assistance. Finally, during the main data collection, I tried to initiate as
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many interactions as I could, in order to generate as much data as possible without
causing discomfort for the students, or interfering in how the teacher was conducting
the lesson.

The  students  got  used  to  the kind  of  interaction  I  used  to  initiate  during the
targeted lessons.  One of Julia’s  students said humorously,  “Here comes Leo asking
why.” It could be argued that any conclusion I have drawn from my data is the result
of my presence in the classroom and the way I interacted with the students instead of
due to any specific characteristic of the lessons. While I cannot discard my influence as
relevant, I can say that my attitude during the lessons was similar to the teacher’s: 1)
checking answers and giving punctual feedback, or 2) offering some help to a student
when struggling with a question,  by pointing out critical features,  or offering some
guidance  towards  the  solution,  or  3)  asking  “why”  and  “how”  questions  when  I
identified some solution that could be interesting to my research, or when I felt the
student would be willing to elaborate on it.

My argument is that my attitude could be replaced by that of the teacher, or by a
teaching assistant.  In  fact,  David  commented during one  of  the meetings  that  the
approach of the lessons about fractions enabled him to interact with the students in
much richer ways than during his regular lessons. This remark weakens the argument
that my findings are the result of my presence instead of the characteristics of the
approach being investigated.

Also, as discussed in Section 4.5.1, the within-class clinical interviews are closer
to regular classroom interaction between teacher and student than a typical clinical
interview,  and  since  my  research  question  refers  to  learning  as  it  occurs  in  an
educational environment, and not to cognitive development itself, this characteristic
increases the ecological validity of my findings.

 8.4.3  What I would do differently
This  issue  has  already  been  discussed  in  Section  6.6.5 based  on  my  first

impressions right after the end of the data collection. The reflections that follow are
somehow deeper and take into account the results of my research.

Reflecting retrospectively on all stages of the research, I can identify two changes
that I believe would have been beneficial to my aims.

The first of these, and the most important in my opinion, refers to the timing of the
lessons. Initially, I believed that the gaps between the packs of lessons (remember

206



Conclusions

that each pack was enacted in a different term) would be enough for me to make sense
of the data in time to inform the design of the lessons in the next pack. Although I
think I was right in this respect, now I believe that my data collection would benefit
from some interval between the lessons (within the same pack) from one teacher to
the other.  This gap would have to be short,  otherwise it  would not be possible to
accommodate the three teachers and meetings with the research team in a term, but
what  happened  during  my data  collection  was  that  teachers  decided to  enact  the
lessons usually during the same weeks. Consequently, sometimes it was not possible
to reflect properly on the lessons in time to incorporate changes for the next teacher
who would use that lesson plan.

In general, every lesson plan was tweaked from one teacher to the next, but the
tweaks were sometimes limited by the time available, for instance, to prepare more
cut-outs  or  envisage  new  tasks.  Also,  these  tweaks  were  often  based  on  local
evidence, from one lesson, instead of on all lessons from a pack, which limited the
scope of what could be noticed and incorporated.

Considering that every term is about 12 weeks long and that the school did not
follow a  strict  scheme  of  work,  I  believe it  would  have  been possible,  with  some
planning, to avoid overlaps and still accommodate meetings, lessons observations and
the targeted lessons of each pack within a term.

The second change refers to instruments for data collection. At first, I discarded
the use of video as a tool for data collection, based on my perception that it could
intimidate students, especially considering their lack of confidence with mathematics,
as discussed in Section 6.3. However, I believe this study would benefit from pictures
of their solutions complementing my notes, and short videos recording their working
out  during  the  lessons.  Moreover,  the  other  members  of  the  research  team  made
occasional  use  of  such  tools  and  did  not  notice  any  disturbance  when  doing  so.
Considering that it all could have been done using a smartphone and that students are
very  familiar  with such devices nowadays,  I  believe that  they would not  have felt
intimidated and my data would have gained in richness.

Unfortunately, I did not notice the potential advantages of these two changes in
time to incorporate them into my data collection and I believe the reason for that is
the intensity of the activities during this period.
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 8.4.4  Possibilities for further research
Considering  the  topics  discussed  the  context,  data  collection  methods  and

findings of this study, I can identify three possibilities to continue the investigation
presented in this thesis.

The  first  possibility  would  be  to  investigate  the  lesson  plans  being  used  in  a
similar context (ideally in the same school) after incorporating the changes discussed
in Section  8.2. Even though I do not subscribe to the common view among design-
based researchers of aiming for some sort of optimal, finely crafted lesson plan (Swan,
2014a), I believe that the issues related to visual abilities and to the multiplicative
aspect of fractions deserve further investigation at a classroom level. In this scenario,
the research question would move a bit away from fractions, and focus more on how
low  achieving  students  mobilize  visual  abilities  in  lessons  involving  cut-outs  and
diagrams,  and  how  they  develop  knowledge  on  multiplication  through  visual
representations. Both questions are similar in nature to my research question in this
thesis,  therefore,  both  could  be  investigated  with  methods  very  similar  to  those
employed here.

The second possibility would be to explore different contexts, especially in terms
of teachers’ styles and preferences. This possibility is particularly enticing for me since
my  own  teaching  style  is  quite  different  from  what  I  observed  in  Purple  Valley’s
teachers, and for that reason, I caught myself throughout my data collection imagining
how exactly I would enact the lessons I had designed. How would the approach look if
teachers and students were more comfortable with whole class or peer discussions, or
with  more  investigative questions?  As  I  have  discussed  before,  one of  my design
principles was to maintain a certain level of coherence with the current practices at the
school. This principle had a massive impact on how I designed the lesson plans and
some variation in this respect could provide new insights into my research question
without compromising the advantages of keeping coherence with school practices.

This possibility is especially relevant considering that my career is probably going
to continue in Brazil instead of in the United Kingdom, which implies changes in terms
of preferred teaching styles, characteristics of students’ behaviour and engagement,
and  schools’  support  to  professional  development.  A  combination  of  these  would
result in different starting points, which would in turn, imply different characteristics
for the lesson plans within the boundaries set by the design principles adopted here.
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Finally,  the third possibility I  envisage is  to explore a different  topic from the
curriculum with a similar approach. I believe, based on my views of what mathematics
education research should be, that this possibility should aim at understanding how to
use  visual  representations  in  a  more  integrative  way  throughout  the  curriculum,
instead of only aiming at expanding what was done here to new topics, in order to
create  a  collection  of  lesson  plans.  Research  in  other  countries,  such  as  Japan
(Watanabe,  Takahashi,  & Yoshida,  2010),  Singapore  (Clark,  2007) and Netherlands
(Van Den Heuvel-Panhuizen, 2003), has already shown that it is possible to build such
a curriculum. However, I would make a case for the importance of developing such a
strategy rooted in current practices,  instead of trying to transplant it  from another
context,  as well  as by focusing on the needs of low achieving students,  instead of
relying  on  the  “misguided  belief  that  by  supporting  the  affluent,  all  will  benefit
through the trickle down principle” (Gates, 2015, p. 1).
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 10  APPENDICES

 10.1  Diagnostic assessment
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 10.2  Lesson plan on multiplication
This lesson plan is composed of four pages with seven tasks in total. As explained

in this document, it was developed based on my initial analysis of the lessons but not
used in my data collection.
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