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Abstract

Sensory substitution devices have been widely used as an assistive tool, mainly for

the purpose of rehabilitation for people with disabilities. With the development

of electronics and computing devices, the application of visual-to-auditory sensory

substitution (VASS) is becoming widespread in sensory substitution devices for the

visually impaired. These devices convert visual information from images into an au-

ditory form, known as a soundscape, allowing listeners to visualize their surrounding

by interpreting the audio representation they hear. Despite its potential benefits,

the technology has not been gaining acceptance among the public because of its

weaknesses, such as the interpretability of the soundscapes and the quality of the

user experience. The aims of this study were to improve cross-modality conversions

in areas that include interpretability, information preservation, and the generation

of soundscapes that afford a better listening experience. The use of image processing

methods for the purpose of visual feature extraction is demonstrated in order to help

the user to better interpret the soundscape they hear. By combining audio synthesis

with the sounds of musical instruments and mapping colours to these sounds, sys-

tems that generate soundscapes that not only contain more information than that

produced by traditional devices but also afford a more pleasant listening experience

are created. Finally, a new evaluation and optimization methods are proposed to

allow better visual-to-auditory feature mapping and foster a more up-to-date means

of developing such devices. According to the experimental results and user feedback,

the performance of VASS systems created using proposed techniques, in general, im-

proves compared to the traditional systems in terms of ease of usage and user utility.

1



It is encouraging that in the future improved devices can be developed following the

direction proposed in this research coupled with more up-to-date techniques, such

as machine learning.

2



Acknowledgements

I owe a debt of gratitude to my supervisor, Dr Tomás Henrique Bode Maul, who

was not only a great source of guidance for me when conducting the research but

also has acted as a life coach, offering useful advice that helped me through difficult

times. Your brilliance in identifying opportunities in my studies and your deep

understanding in the field inspire me to pursue and contribute more to science. I

am very grateful for your patience, especially during the final phase of my studies.

I will always remember all the good qualities you showed me and will continue to

spread the positive attitude you taught me to the people around me.

My next sincere thanks go to my wife. Without your encouragement and praise,

I would not be the person I am today. The motivation you give me goes a long

mile and has helped me considerably in pursuing such a challenging career. You are

always the first to listen and believe in what I do. I am also very grateful to my

father, mother, and brother. The support I receive from all of you is like a safety

net for my life. You are always there standing ready to catch me with wide open

arms if I should fall.

I would like to thank my co-supervisor, Dr Neil Russell Mennie, and also Dr

Peter Mitchell. You both showed me the fascinating world of psychology and aided

me in many activities during my studies. In addition, I am also grateful to the

Faculty members who participated in my experiments.

I would like to express my gratitude to my former employers for their under-

standing when I was doing my research and working at the same time. My final

thanks go to all my friends for accepting who I am.

3



Chapter 1

Introduction

1.1 Background Studies and Motivation

1.1.1 Sensory substitution

Sensory substitution refers to a process in which the characteristics of a sensory

modality are restored by compensating them with those of a different sensory modal-

ity. It is normally performed on the basis of converting signals from input stimuli

to different output stimuli. For example, Braille utilizes tiny palpable bumps called

raised dots to encode text, essentially allowing blind users to read using their fingers,

that is, using tactile stimuli. It is anticipated that, with the help of sensory sub-

stitution, some functionalities of a defective sensory modality can be transferred to

another better functioning sensory modality so that the input of a defective sensory

function can remain relevant to the individual who has suffered a sensory loss.

Sensory substitution has benefited humans in many respects, but in the area of

physical medicine and rehabilitation (PM&R) it truly excels. Sensory substitution

devices (SSD) are used as a tool for improving the standard quality of life of people

who suffer sensory loss, thus helping them in the rehabilitation process. As compared

to current invasive devices, such as neuroprosthetics, the SSD has the advantage that

it is non-invasive, that is, its use requires no major surgery (Michael J Proulx and

4
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Harder, 2008). It has been reported that when users receive appropriate training,

they can use some SSDs as part of their daily life (Ella and Guendelman, 2012;

Maidenbaum, Abboud, and Amedi, 2014).

According to Bach-y-Rita and W Kercel (2003), sensory substitution occurs

across human sensory system. Currently, SSDs exist that perform cross-modality

conversion, such as sight-to-touch, or conversion within the same sensory domain,

such as touch-to-touch. Humans have been depending on the technology of sen-

sory substitution in their daily activities. Some may use the technology without

realizing it. Bach-y-Rita and W Kercel (2003) suggested that even the act of read-

ing can be considered as the earliest sensory substitution technology that humans

invented. This is because reading is not a natural ability for humans, but rather

they are taught to understand visual representations of speech (in auditory form).

Through writing, the author is able to communicate with the reader, although they

are not together in the same place. Essentially, reading is an auditory-to-visual sen-

sory substitution technique. Additional modern sensory substitution systems are

available on different media and also with the help of electronics and computers.

All of these are made possible by virtue of the flexibility of the brain that can be

moulded through the processes of reprogramming, remapping, and reorganization.

This amazing adaptive capacity of the central nervous system is called ‘brain plas-

ticity’ or ‘neuroplasticity’.

1.1.2 Brain Plasticity

The human brain is an amazing organ. It weighs only three pounds and yet it is

the most complex material in the universe that humans have discovered thus far.

Constructed of billions of neurons, the brain is the decision maker and central com-

munication centre of the body. The neurons that form the core components of the

brain typically consist of three parts: the soma, dendrites, and axon. Physically,

a single neuron may appear simple but its power lies in its ability to communi-
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cate with other neurons in milliseconds through an electrochemical process called

synapse transmission (Seung, 2012). The interconnected network of neurons is called

the neural network (or sometimes the neural pathway). In his book The Organiza-

tion of Behavior: A Neuropsychological Theory, Donald Hebb introduced ‘Hebbian

Learning’, a theory that explains how the neural network adapts through synapses

and spikes during a learning process (Hebb, 1949). This mechanism of synaptic

plasticity that reweights its synaptic strength (either strengthens or weakens) based

on synapses describes how our brain learns and makes decisions.

As the field of neuroscience progressed, neuroscientists realized the potential

of the brain in that it is able to transform itself throughout its lifetime. This phe-

nomenon is called ‘brain plasticity’ and refers to long-term structural reorganization

and functional changes in the central nervous system. Like a wax tablet, as illus-

trated by Plato, the brain is malleable through episodes of plastic change in various

situations. These changes may be caused by both external factors, such as brain

injury, and internal factors, such as neuronal rewiring and synaptic plasticity.

In an experiment, Merzenich et al. (1983) proved by monitoring the changes in

adult owl and squirrel monkeys’ brains pre- and post-surgery that the adult brain

has the ability to rewire itself structurally. The experimental results showed that

two to nine months after the surgery, consisting of a transection of the median

nerve, the cortical area that matched the monkeys’ hand median nerve area was

completely occupied by new and expanded representations of the surrounding skin

fields. Following the surgery, the brain of the adult monkeys was able to maintain

the topographic representations of the skin surface, where most cortical sectors,

such as the relationship between the receptive field size and magnification, were

reorganized normally. This discovery suggested that, contrary to popular belief,

nerves are capable of repairing themselves after being destroyed, even when the host

is well past the age of adolescence. It also indicated that processes identical to the

original developmental organizing processes are operational throughout the lifetime

of a primate.



CHAPTER 1. INTRODUCTION 7

In recent years, advanced tools, such as functional magnetic resonance imag-

ing (fMRI) and positron emission tomography (PET) have enabled researchers to

discover more examples of situations where the brain is able to reorganize itself

structurally and more importantly remap its functionalities (Seung, 2012; Thomas

et al., 2007; Thulborn, Carpenter, and Just, 1999). A study conducted by Weiller

et al. (1995) using PET showed that adult patients who recovered from aphasia after

a left-hemisphere stroke demonstrated right-sided activation for language process-

ing. Similar experiments were executed by Thulborn, Carpenter, and Just (1999)

using fMRI instead of PET to study the shifting pattern of cognitive workload that

occurred in patients who had regained a language function lost as a result of a

stroke. The studies of such phenomena were enhanced by exploiting the ability

of fMRI to measure and characterize the activity of a large-scale cortical network

and to noninvasively monitor any changes in its organization. Although fMRI has

good spatial resolution, it is limited in its temporal resolution, which is at best 1

s for each feedback. Because of the low temporal resolution, most fMRI experi-

ments can be conducted only on brain processes having a duration of at least a few

seconds, and thus most neuronal activities that occur within a 100 ms timeframe

are excluded. Thulborn, Carpenter, and Just (1999) observed that the activities

of undamaged components, such as contralateral homologs, increased in order to

share the workload of a large-scale cortical network that was damaged by stroke. In

addition, patterns of compensatory cortical activation, such as increased activation

in areas immediately adjacent to the lesion, may exist in patients a long time after a

stroke. These observations further reinforced the idea that brain plasticity allows a

function to be shifted from a damaged region to a nearby region through long-term

adaptations of the neural network.

Sensory substitution is deeply connected with the idea of brain plasticity and

most of the recent successes in this area can be attributed mainly to the improvement

in our understanding of the brain and human cognition. Exploiting the ability

of brain plasticity, SSDs are designed as tools to facilitate cross-modality region
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rewiring to shift the functional representation from a damaged region to another

functioning region of the brain. It is anticipated that with the help of SSDs, the user

can utilize other functioning brain regions to replicate some of the functionalities

of the sensory loss. For example, with appropriate training and long-term usage

of SSDs, users claim that they can make a mental representation of an object’s

shape and surface texture and the location of their surroundings similarly to a

person with normal sight (Bach-Y-Rita et al., 1969; Ward and Meijer, 2010). In

an ideal scenario, the use of SSDs causes a plastic reorganization inside the brain,

where the functioning region adopts external representations without sacrificing its

original functional presentation (Jenkins et al., 1990). This can be seen when a

user uses an SSD, such as a visual-to-auditory SSD. While the user listens to an

auditory representation of visual stimuli, his/her other hearing functions do not

cease to operate, and sounds from other sources remain audible. According to Bach-

y-Rita (1995), this is probably because the brain’s plasticity allows it to unmask the

secondary input to the primary visual cortex. Unmasking is one of the probable

mechanisms featured in late brain plasticity. After a neural lesion occurs, the pre-

existing neuronal connections that were concealed are uncovered. If the user is

provided with appropriate training sessions in the use of an SSD and a rehabilitation

program, the masked connections in his/her brain can be reactivated because of the

increase in functional demand or even as a result of the motivation and willpower

of the user (Bach-y-Rita, Danilov, et al., 2005). Studies conducted by Ptito et al.

(2005) showed that, after a few sessions with a visual-to-tactile sensory substitution

system called the BrainPort interface, a PET scan revealed that the activity in the

visual cortex of a blind person becomes prominent.

However, without proper information management and training, brain plastic-

ity may nevertheless be a double-edged sword (Maidenbaum, Abboud, and Amedi,

2014). On the one hand, brain plasticity can be utilized to restore some functional-

ities through activating compensatory capabilities, but on the other hand, it poses

some risks as a result of the alteration of the original sensory function caused by the
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effort to restore functions. This functional reorganization may cause unknown side

effects that require further investigation, especially in cases where the performance

of other tasks (e.g., memory tasks) and habits on which individuals have learned to

rely that use the same brain region are potentially hampered (Röder and Rösler,

2003). In the process of rehabilitation, users may experience changes in their life to

which they need to conform in order to retain the newly acquired skill.

Another failure of PM&R involving sensory substitution is attributed to the

existence of ‘critical periods’ in early childhood when the brain remains very plastic

and susceptible to the development of basic functions. In cases involving congenital

sensory loss and failure of appropriate childhood learning, the brain is prevented

from fostering functional specialization (Bedny et al., 2011; Sathian and Lacey, 2007;

Gougoux et al., 2005). A classic example Hubel and Wiesel (1970) was demonstrated

in cats, the visual system of which remained dysfunctional if they did not learn to

see during the first few years of their life. It should be emphasized that the success

rate of rehabilitation through brain plasticity varies between individuals. Not only

the structure of the physical brain plays a role; the past experience and willpower

of the person are also important.

Rehabilitation through brain plasticity remains a complicated task that must

involve many external factors to be successful. Thus, the use of SSDs alone does not

guarantee a complete recovery. Although it may be almost impossible to achieve

maximum functional restoration, specific training procedures should be provided

to improve the effectiveness of SSDs in promoting the activities of brain plasticity

(Bach-y-Rita, 1990). In addition, a conducive environment and therapy too help

the sufferer cope with the recovery process is required.

1.1.3 Visual Sensory Substitution

Visual sensory substitution can be defined as sensory substitution technology that

focuses on cross-modality information conversion of visual signals. Because the abil-
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ity to see is a dominant part of the sensory system, the loss of vision is a severe

impairment for the individual. This may be one of the main reasons why the major-

ity of sensory substitution technology is applied to visual systems to rehabilitate the

visually impaired population. According to a report of World Health Organization

(2014) (WHO) , a total of 39 million people suffer from blindness (as of the year

2014). Visual impairment frequently has a catastrophic effect on the sufferer, with

inevitable indirect effects on their standard of living, their ability to support them-

selves, and their caregivers’ life. Furthermore, it has a significant economic effect

on society, especially in developing countries where most of the visually impaired

population currently resides (World Health Organization, 2003). These facts are the

main driving force of this research (i.e., that of Luminophonics), where the main

aim is to further develop and improve the technology of visual-to-auditory sensory

substitution (VASS).

The tactile and auditory modalities are the modalities of choice for the output

representation of converted visual signals. In the early days of sensory substitu-

tion, tactile representation was frequently used in exchange for visual stimuli, but

recently an increasing number of auditory representations have appeared with the

help of computer audio synthesizers. One of the earlier examples of visual-to-tactile

sensory substitution that utilizes tactile stimuli as the output representation and

is currently used widely is Braille. Braille, a tactile phonetic reading and writing

system for the visually impaired, is maybe the most popular visual sensory substitu-

tion system invented. Louis Braille invented the Braille system to help people with

sight problems to read by tracing different bump patterns using their fingers. In

addition to Braille, blind people also rely on mobility canes, another visual sensory

substitution device, as a navigation guide that indicates the surrounding environ-

ment through tactile sensation and an audible sound when the cane hits an object.

The user hears and feels the feedback from the cane when he/she uses it to tap on

surrounding obstacles. A cane is a rare example of a device that can convert a single

stimulus source (i.e., a visual signal) into multiple output representations (i.e., both
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tactile and auditory signals).

Mobility canes together with guide dogs and the Braille system have become the

de facto assistive technology for the visually impaired, particularly for the purpose

of navigation and reading, respectively. Because of their reliability and familiarity,

these tools are well accepted by people suffering from visual impairment. However,

the conditions of the modern world currently require an advanced tool that is robust

and suitable for a fast-paced lifestyle and not limited to only a single purpose,

such as navigation or reading. The visual substitution systems created to suit this

lifestyle were frequently unmethodical until 1969, when a modern type of SSD was

introduced by an American neuroscientist called Paul Bach-y-Rita (Bach-Y-Rita et

al., 1969). After years of performing research in the field of neuroplasticity, Bach-

y-Rita conceived this type of device as an aid to help blind people acquire visual

information about their surroundings through tactile sensations. His device was

one of the earliest attempts in this particular field and it triggered a new wave of

visual rehabilitation tools based on the concept of sensory substitution. As a result,

many different devices and software based on the idea of Bach-y-Rita are now being

developed and made available.

From the earlier VTSS devices, which used vibrating plates attached to a chair,

such as that initially proposed by Bach-y-Rita, SSDs have developed into various

forms. There exists a VTSS in the form of a wearable device resembling a vest

in which an array of vibrotactile actuators is embedded (Novich and Eagleman,

2015) and an electrode array that is attached to the tongue, called BrainPort, was

developed by Danilov and Tyler (2005). Although the conversion of visual informa-

tion to tactile stimuli was popular at the beginning of the development of sensory

substitution for visual rehabilitation, currently not only visual-to-tactile conversion

is implemented in SSDs. One of the more popular approaches for visual sensory

substitution that has been gaining the attention of researchers worldwide is VASS.

It uses auditory stimuli instead of tactile stimuli as the medium of interpretation.

As well as being more sophisticated, it offers a few advantages over VTSS that are
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suitable for the visually impaired.

As mentioned previously, this research project, Luminophonics, is focused only

on VASS. Briefly, similarly to VTSS, VASS transforms visual information into an

auditory representation (soundscape), primarily for the visually impaired. A VASS

device that has attracted considerable public attention because of its practicality is

called vOICe (Meijer, 1992). It was developed by Peter Meijer in 1992 as an exper-

imental system for translating live camera images into sounds. Since then, it has

become available in multiple forms, such as Android, Raspberry Pi, and Web ap-

plications. The device operates using as the input device a camera, which captures

visual signals in greyscale and then converts them to auditory signals by manipu-

lating the audio properties to match the pixel intensities of the input image frames.

This framework, which consists of a camera as the input unit, a processing unit, and

a speaker as the output unit, is common across most SSDs. A few other VASS de-

vices exist, the design of which follows a similar framework (Maidenbaum, Abboud,

and Amedi, 2014); some recent solutions include SonART proposed by Yeo, Berger,

and Lee (2004), See ColOr proposed by Bologna, Deville, Pun, and Vinckenbosch

(2007), EyeMusic proposed by Hanassy et al. (2013), and ETA proposed by Wong

et al. (2000). Although they are identical in terms of their hardware design, these

VASS devices differ in factors such as the implemented conversion technique, input-

output features matching, form factors, and speed. Consequently, the performance

of each system varies in terms of functionality, interpretability, information preser-

vation, and usability. Each device has its advantages and disadvantages, as reported

by researchers and inventors, and there exists no clear evidence of how they compare

with each other .

The field of visual SSDs, whether VTSS, VASS, or other similar SSDs, is in-

deed growing slowly. Researchers worldwide continue to find means of improving

visual SSDs. As the technology advances, the awareness of the existence of this

technology is beginning to grow. With the help of coverage by mass media, such as

news reports and articles on the Internet, people are beginning to become informed
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about the benefits of SSDs for the purpose of rehabilitation. Recently, a number of

sensory substitution researchers were invited to present talks in their field at pop-

ular public conferences, such as the Technology, Entertainment, and Design (TED)

Conference . One of the more well-known talks on visual sensory substitution was

given by Amir Amedi at TEDxJerusalem. Not long ago, with the help of its pop-

ularity gained at the TED conference, an auditory-to-tactile SSD, called VEST,

designed by David Eagleman was successfully funded with the help of Kickstarter,

a global online crowdfunding platform based in Brooklyn, New York (Eagleman,

2015). This constitutes further proof that the public is beginning to be receptive to

the technology of sensory substitution, but more work is needed to further promote

the public adoption of rehabilitation through sensory substitution. Following this

trend, it is hopeful that visual sensory substitution can be widely adopted by blind

people. Currently, only a small group of people with visual impairment are using

the devices to facilitate their daily activities and most of the systems are reserved

primarily for experiments in controlled settings. Our motivation is to help improve

the performance of the VASS system so that in the future it can be a device that

complements conventional assistive technology, such as the mobility cane.

1.2 Problem Statement

It is noteworthy that the World Health Organization (2014) reported on its Web-

site that an estimated 285 million people are visually impaired, out of which 39

million are blind and 246 million categorized as having low-level vision. Owing to

the decline in infectious diseases, the overall population of the visually impaired

worldwide has decreased. However, work remains to be done to help and support

them, most importantly in the area of rehabilitation. Through rehabilitation, the

blind can be trained to acquire the relevant skills and capabilities that facilitate

personal independence. Although technology has advanced, it can be seen that vi-

sually impaired people still rely on the tools that were created decades ago, such as
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mobility canes and Braille. People with visual impairment can benefit from more up-

to-date technologies, such as sensory substitution, in particular visual-to-auditory

sensory substitution (VASS); however, these technologies are not widely adopted.

Most VASS devices are operated only in controlled environments for the purpose of

research activities. In brief, although VASS technology has the potential to improve

the livelihood of the visually impaired through the process of rehabilitation, there

remain deficiencies that prohibit the blind from using these devices in their daily life.

Therefore, this research project is aimed to solve the problem by finding a means

of improving visual-to-auditory cross-modality conversion in order to promote the

adoption of VASS in the blind community.

In this section, possible problems that may affect the performance of VASS and

thus lead to its slow public adoption are identified. Then, in Section 1.3, solutions

and goals are formulated within the frame of this research to solve the problems

through techniques that improve the conversion of visual-to-auditory cross modali-

ties.

1. Complicated interpretation

The soundscape produced by VASS is frequently confusing and not easily in-

terpreted, especially by people who have not been trained in its use. The situ-

ation becomes more complicated when the conversion algorithm is attempting

to encode a relatively large amount of visual information into an auditory

representation. As compared to an auditory presentation, a 2D visual image

can accommodate more varieties of information and its information content is

relatively unpredictable. Humans perceive a considerable amount of informa-

tion about their surrounding solely through their visual system, including an

object’s shape, location, depth, colour, and much more. Naturally, the human

hearing system is not designed to perceive this information, because audio

presentations and visual images serve different purposes and their structure

and size differ. In other words, audio and images are not interchangeable in
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nature, thus making it more difficult for a system to encode images into an

audio representation so that the individual can ‘hear’ the images. Therefore,

the conversion of an image to its corresponding auditory representation for

the purpose of sensory substitution requires a complex procedure for encoding

the visual information, which frequently results in an incongruous outcome, in

this case a soundscape that sounds unnatural. In order to make sense of the

visual information encoded within the soundscape, the listener must interpret

the audio sounds and reconstruct them into the original visual form in his/her

mind. Essentially, visual-to-auditory cross-modality conversion provides an

additional form of communication channel where the VASS system is the en-

coder and the human’s mind is the decoder. The complexity of the soundscape

interpretation (decoding) depends on the amount of visual information being

encoded in the soundscape. The interpretability and the amount of informa-

tion being encoded are inversely exponentially proportional: the interpretabil-

ity decreases as the amount of encoded information increases. As the quantity

of information increases further, the complexity of the interpretability rises

as a result of external factors, such as noise and the effect of cacophony. The

problem of soundscape interpretability is a major one, which VASS researchers

need to overcome or at least ameliorate. It would very considerably enhance

the performance of a VASS device if the algorithm produced a soundscape

that is easily interpreted or a scenario that is better represented.

2. Information reduction during conversions

As mentioned above, the incompatibility of the structure and size of an audi-

tory and a visual form seriously affects the procedure of visual-to-auditory con-

version. Hence, it is necessary to map one property of the visual information

to another property of the auditory information. This is a standard procedure

in cross-modality conversion, in this case, the conversion from a visual to an

auditory modality. It should be emphasized that one major drawback of this
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type of conversion is the consequences of the information reduction that oc-

curs during the conversion process. When designing cross-modality mapping,

it is inevitable that certain properties of the source will be discarded for two

major reasons. First, some information from the source cannot be represented

completely in the target representation. The second reason is that the size of

the target form may be limited and not able to contain all the information

from the source. Unfortunately, the problem of information reduction within

visual-to-auditory conversion is a result of both these factors. Thus, the con-

version from the visual to auditory modality can be a demanding task if the

source information is not selected appropriately. In many examples of the ear-

lier generations of VASS devices, a considerable amount of important visual

information was discarded. For instance, the inventor of vOICe chose not to

include colour information in the encoding into the soundscape. Although an

improvement in the interpretability of a soundscape is important, it is equally

crucial to manage the information reduction during the conversion. A lack of

relevant information will directly affect the performance of a VASS device neg-

atively because the user receives a soundscape that only partially represents

the visual form. For this reason, techniques need to be developed to optimize

the visual-to-auditory conversion such that most of the relevant information

is retained and the interpretability of the soundscape is enhanced.

3. High learning barrier

Learnability was cited in multiple sources addressing sensory substitution re-

search as one of the major hindrances to its use until the user becomes suffi-

ciently acquainted with the sensory substitution device (SSD). In general, all

SSDs require a certain training period before the user can use them correctly.

Certainly, VASS devices are no exception. There is a strong likelihood that

this problem is related to the brain’s plasticity. As mentioned above, sensory

substitution takes advantage of the plasticity of the brain, which allows it to
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mould/rewire itself by empowering one of its regions to assume control of the

functionality of another. It should be stressed that the brain does not rewire

itself quickly and the time the process takes may vary from one individual to

another. In order for a user to be able to understand the soundscape produced

by a VASS device, the brain may need to rewire its auditory region to inter-

pret the signals as visual information. However, the learning barrier of a VASS

does not depend solely on the activity of the brain; it can also be affected by

other factors. One of the factors that influence the learnability of an SSD is

the procedures behind the cross-modality conversion. Thus far, each VASS

algorithm presents a different learning barrier, and some systems are easier to

learn and some more difficult. The elements that affect the learnability of a

system include the quantity of information being encoded, the interpretability

of the soundscape, and the number of different timbres used to represent the

features of the image. In addition, the experience of individuals also signif-

icantly affects their learning process. To summarize, every VASS device has

a serious learning barrier, which varies according to the individual using it

and the conversion process. It is therefore essential to identify the underlying

problem to reduce the learning barrier so that more people can adopt a VASS

device with less effort.

1.3 Research Goals

The Luminophonics project was initiated to address the problems related to VASS

with the aim of further developing and improving the technology in order to close

the gap between research studies and practical visual rehabilitation implementa-

tions. The name Luminophonics is a wordplay combining ‘luminous’ (related to

light as perceived by the eye) and ‘phonics’ (related to speech sounds), which essen-

tially carries the meaning of translating visual signals into an interpretable auditory

soundscape, such as speech. Although a few types of visual sensory substitution
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systems exist, the research focused only on the conversion of visual information to

an auditory representation. This decision was motivated by the advantages of VASS

over its tactile counterpart. One of these advantages includes the future potential

and flexibility that VASS can provide. As compared to visual tactile substitution

systems (VTSSs), VASS has more possibilities and room in which to grow, because it

requires only a camera and a speaker with which a regular smartphone is equipped,

whereas VTSS needs specialized tactile output units, such as motorized actuators.

Primarily, this is because the source of the power of a VASS device is the software, in

contrast to a VTSS, which is mainly hardware-oriented. Moreover, a VASS system

has a smaller footprint in terms of overall device size, and the devices’ smaller over-

all size and cheaper manufacturing cost will facilitate their commercialization in the

future. Finally, by focusing only on one type of output representation, more ideas

can be generated during attempts to improve the performance of VASS devices.

The primary research question of this project is how can the performance of

VASS be improved with better visual-to-auditory cross-modality algortihm? It is

hopeful that with improved performance of VASS, the practicality of VASS device

can be elevated such that they will be more suitable for the daily usage of people

with visually impaired. Thus, the main goal of this research was to maximize the

performance of cross-modality conversion from visual signals to auditory represen-

tation. Accordingly, the research scope is wide, but this research focused on the

factors that would help promote the adoption of VASS devices. According to Maid-

enbaum, Abboud, and Amedi (2014), the reasons behind the low adoption rate of

SSDs are two-fold. One is the problems related to sensory substitution itself, the

performance and reliability of which do not meet the standards required for daily

usage. The second reason, however, is related to the general limitations of visual

rehabilitation itself that constrain the potential of sensory substitution. In general,

VASS systems face a set of problems similar to that faced by most modern visual

sensory substitution systems; however, a few problems exist that are unique to VASS

systems. Because the research activities focused on improving the performance of
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VASS devices, all the aims are organized to answer research questions related to the

problems that affect the performance of a VASS system.

This research hoped to answer these sub-questions in order to arrive to the main

goal.

• Can the listening experience of the soundscape be improved?

• How to convert more visual information into the soundscape?

• How to make the soundscape easier to be interpreted?

• Can we evaluate VASS fairly with automated measurement instead of user-

based experiment?

1.3.1 Objectives

The objectives of this research were as follows.

1. To improve the soundscape such that it sounds more natural to the

user

Currently, most VASS systems manipulate audio frequency, associating it with

visual properties to produce the soundscape. However, the results are unnat-

ural and this has been shown to affect the pleasantness and usability of the

SSD when the user is listening and even to induce mental fatigue after pro-

longed usage, especially in the case of high resolution image frames (Abboud

et al., 2014). In some research studies, an attempt was made to improve

the sound quality of the audio synthesizer (Cronly-Dillon, Persaud, and Gre-

gory, 1999; Bologna, Deville, Pun, and Vinckenbosch, 2007; Abboud et al.,

2014). However, this attempt introduced different problems, such as interpre-

tation difficulties and sound cacophony in cases where the information was

not transferred correctly from visual to auditory signals. Before implementing

new idea of replacing the audio synthesizer, research is needed to solve these
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problems so that important features are not sacrificed in favour of a more

natural soundscape.

2. To increase the amount of information that is retained without in-

troducing the cacophony effect

Information loss occurs during the process of cross-modality information trans-

fer from the visual to the auditory domain, because it is not possible to encode

as much data in auditory signals as in visual signals. It is common for a VASS

system to simplify the visual data before the process of conversion in which

the audio properties are matched with the corresponding visual properties, in

order to pack the data into the audio channel. For instance, earlier examples,

such as vOICe, reduce coloured images to greyscale images before the conver-

sion (Meijer, 1992), which significantly reduces the amount of input data, but

also means that the output soundscape cannot represent colour information.

However, because of the size of the information content of auditory signals,

the effort to pack all the information of visual signals (which is larger) into

auditory signals leads to the effect of cacophony. When the user experiences

cacophony, his/her brain cannot interpret the soundscape because of the dis-

sonance caused by a mixture of too many types of sound. In this research,

several other options are explored, such as applying advanced image processing

techniques to retain as much visual information as possible and discard other

non-relevant noise to produce a soundscape that is interpretable and useful for

the user.

3. To explore means of enhancing the interpretability of the auditory

representation

A soundscape characterized by a high level of interpretability requires the user

to use less effort to interpret it. The soundscape becomes a visual mental map,

which allows the user to better understand the auditory representation. It is

important to apply a conversion algorithm that matches the correct visual
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properties with the corresponding auditory properties in order to produce a

highly interpretable soundscape. In addition, the characteristics of the sound-

scape must be suitable for the user’s current situation. For instance, in a

situation where the user needs to make a quick decision (e.g., during navi-

gation), time is an important factor. Therefore, the soundscape produced for

this scenario must be fast and concise as compared to slow and detailed, which

is more suitable for a different scenario.

In addition, according to the results of studies by Brown, Macpherson, and

Ward (2011), the soundscape’s auditory characteristics produced by the SSD

also play a part in influencing the user’s perception, especially in the initial

learning period. As for many other technologies, the learning period is crucial

for enabling the user to fully understand the functionalities of the device.

Moreover, sensory substitution relies on the plasticity of the brain in order to

fully exploit the power of the technology. Hence, a good training module not

only shortens the user’s learning period but also teaches the user to interpret

the soundscape correctly.

In this research study, the intention was to explore means of searching for

a set of matching visual and audio properties that allow the normal user to

interpret the soundscape easily. This is also crucial from the psychological

aspect of users and their thought processes during soundscape interpretation,

because such a set will determine an optimized visual to auditory translation

configuration. The development of a training curriculum that helps promote

the learnability of an SSD is also essential.

4. To develop methods to evaluate a visual-to-auditory substitution

system

The lack of a common evaluation framework for VASS systems is one of the

reasons why it has not improved as much as anticipated, which has hindered

its adoption among the public. Currently, sensory substitution research is
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conducted in silo, where researchers develop their own solution together with

an evaluation method of the performance of their prototype, which are then

disseminated globally. This traditional path makes a comparative evaluation

of the performance of SSDs difficult. In addition, experiments using human

subjects are the solution for measuring performance that is frequently used,

but they can be very expensive. The aim was to develop a common evalua-

tion framework that can quickly evaluate an SSD as a precursor for a good

VASS system. This framework must be transparent regardless of the SSD,

comparing the output soundscape and input visual information to produce a

quantitative measurement that is standard for all VASS systems. It is hopeful

that with such a framework, VASS researchers can evaluate their SSDs without

lengthy and expensive experiments and improve their solutions by fine-tuning

the configuration based on the evaluation results.

1.3.2 Scopes

During the course of the research presented in this thesis, a few scopes were made.

They are explicitly stated below.

1. This research does not aim to develop a VASS product immediately for ev-

eryday usage. There are many other complex design problems like human-

computer interaction and feasibility studies that are best to be conducted by

their domain experts. Instead, this research focused on improving the design

of visual-to-auditory conversions algorithm.

2. There are different degrees of blindness, ranging from complete to partial blind-

ness, and special situations, such as congenital blindness. Because VASS sys-

tems are intended to address the rehabilitation issue of the visually impaired,

this research did not aim to target completely blind people, in particular peo-

ple who never experienced vision. It is apparent that the severely visually

impaired, such as those with no prior vision experience, and the partially blind
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population require different treatment because of their contrasting perception

and exposure to visual systems. Many more resources, such as psychologi-

cal studies or even a completely new VASS system, are needed, in particular

for people whose blindness is congenital because of their lack of prior vision

experience. Therefore, this research is addressing those with minor visual im-

pairment to acquire more knowledge that can be used to create a better system

that is suitable also for the severely blind population.

3. The experiments in this research were all conducted in a controlled environ-

ment. For example, the navigation experiments were at an indoor room with

supervision. where the situation could be controlled with suitable lighting

conditions and less hindrance from noise. Furthermore, it is safer to perform

initial experiments indoors so that the experimenter can protect the subjects

from any unexpected accident and injury.

4. Due to budget constraint, the equipment and the software used in this research

were all stated in this thesis. Although there are many high-performance hard-

ware available, equipment like the camera was selected based on the criteria

such that they are cheap and easily acquired. Software like audio synthesizers

was all of the open-source in nature or freely available for educational purposes.

1.4 Contributions

The research presented in this thesis offers specific advancements in the following

research fields.

1. Swiping-based visual information pre-processing

Two out of the four major prototypes developed by Luminophonics are equipped

with an algorithm that utilizes image processing techniques to process the in-

put image frames prior to cross-modality conversion. The approach of apply-

ing computer image processing techniques inside the VASS system, as imple-



CHAPTER 1. INTRODUCTION 24

mented in a few of the most recently produced systems in order to produce

more information from the input images, is beginning to be developed. How-

ever, the main contribution of our technique is the combination of a swiping

mechanism and connected-component labelling for blob extraction. The main

benefit of this technique is that it simplifies the entire soundscape by sonifying

the blobs according to the location, thus creating a soundscape that is both

quickly and easily understood.

2. Inclusion of colour information in cross-modality conversions

Throughout the history of VASS, not many systems have included colour in-

formation in their elements of visual-to-auditory conversion. One of the main

reasons for this is that it frequently makes the soundscape considerably more

complex, which may lower the overall interpretability. Two new improvements

are proposed in this thesis that are designed to prevent this reduction of inter-

pretability. We propose a method to compute an optimum musical instrument

set selection in which the timbre similarity is small so that the sound of each

individual colour is easily distinguishable. The second improvement is the cre-

ation of a heuristic colour model (HCM) (see Section 3.2.3) to personalize the

colour representation according to each user’s perception.

3. Use of a three-dimensional camera to capture depth information

With the advancement of camera technology, many types of camera have been

invented that allow more information about a person’s surroundings to be

captured. In addition, a VASS system that uses solely the information pro-

vided by a 2D camera is not adequate for helping people navigate. Studies

have shown that, in some circumstances, humans depend on depth cues from

stereo vision during their navigation. Therefore, we are the first to propose

using a time-of-flight (TOF) camera to capture an accurate depth map of

the surroundings to provide depth cues as additional input information for

our conversions algorithm. Furthermore, our depth implementation, whereby
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more user control of the depth level selection during the course of soundscape

sonification is allowed, is considered the first to implement with such way.

4. Development of quantitative measurements to evaluate VASS through

interpretability and information preservation

Because of the difficulty in comparing the performance of different VASS sys-

tems, we developed the basis of an evaluation framework that quickly gauges

the important aspects of an SSD. In our initial work, the evaluation frame-

work was used to measure the interpretability and information preservation of

a VASS system. In the future, more features can be included in the framework

as indicators of a good VASS system.

5. Optimization of visual-to-auditory properties mapping

On the basis of the evaluation method developed previously, we propose a new

means of optimizing visual-to-auditory properties mapping through the appli-

cation of a genetic algorithm. The cost function of the optimization is based

on the evaluation method, and therefore, the results produced can be opti-

mized to provide the best interpretability and also information preservation.

The benefit of this method is that it will facilitate future VASS development

in that an excessive number of trial and error processes will not have to be

executed to obtain the best conversion mapping.
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1.5 Thesis Outline

In this thesis, the research activities are structured according to a broad to narrow

approach as follows.

Chapter 1 First, the thesis presents an introduction to sensory substitution tech-

nology and a brief explanation of how cross-modality conversion operates in

general and the relationship of these technologies with brain perception. This

chapter also includes the motivation for improving VASS and the goals of this

improvement.

Chapter 2 The research areas related to the problem framework of VASS are out-

lined in this chapter, including descriptions ranging from those of early visual

SSDs to those of the state-of-the-art VASS systems. The advantages and dis-

advantages of the current research together with the areas of improvements

are described in detail.

Chapter 3 Following a top-down approach, this chapter describes the process of

designing VASS prototypes in order to further explain the current VASS sys-

tem. The prototypes created include some new features, such as the incor-

poration of image processing techniques and instrument timbre for auditory

representation.

Chapter 4 After the prototypes had been designed, their performance was tested

through experiments using human subjects. The details of the experimental

designs are presented in this chapter, together with an explanation of the

experimental results.

Chapter 5 A set of quantitative measurements is introduced as a framework for

comparing the performance of different VASS systems in terms of properties

such as interpretability and information preservation. Using the quantitative
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measurement, we introduce a technique for searching for an optimized VASS

using a genetic algorithm.

Chapter 6 The overall results of the research are discussed and analysed in this

chapter. The possible actions that can be taken to improve future research

are also discussed .

Chapter 7 In this chapter, the future of VASS and some possible insights into

the use of VASS in the future are discussed. The power of deep learning in

shaping VASS technology is emphasized, especially through visual recognition,

generating better soundscapes, and searching for the most optimized cross-

modality mapping.

Chapter 8 The conclusions that were drawn are presented in this chapter, includ-

ing an overall summary of the research activities and the contributions made

towards advancing the field of sensory substitution.



Chapter 2

Related Research

2.1 Introduction

This chapter presents the related research on VASS concepts together with some of

the more popular devices in the field. By virtue of research work worldwide, VASS

systems have grown such that their current versions include more functions and are

easier to interpret and more user friendly than the earlier versions, although the

overall size of devices has been reduced considerably. These tremendous achieve-

ments can be attributed to two major factors that have contributed to the growth

of VASS:

• Advances in electronics

• Better understanding in neuroscience.

2.1.1 Advancement in Electronics

Size is one of the advantages of VASS over VTSS. The small size of VASS is the

result of its minimum hardware requirements, i.e., a camera, speaker, and a CPU,

as compared to VTSS, which depends on an array of motorized actuators. Because

of this advantage, researchers have been working to reduce the size of SSDs so that

28
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they will be suitable for use as wearable devices that can be carried everywhere for

daily activities.

At the beginning of VASS system development, the hardware components, such

as the camera and processors, were rather large, which resulted in a device hav-

ing a very large overall size. However, over the years, the size of these electronic

components has been reduced to the point that the smallest VASS system currently

existing is as small as a palm-sized mobile device. This can be attributed to the

recent developments in electronics, especially in the mobile device industry. For

example, the camera and audio speakers are packaged in a single integrated elec-

tronic circuit. A mobile processor, such as the Advanced RISC Machine (ARM)

processor, is very energy efficient and yet its computing power is such that the life

of a VASS device running on a battery is longer, allowing it to be carried anywhere.

Finally, advanced mobile operating systems (OSs) , such as iOS and Android, make

it easier for researchers to develop the necessary software without compromising

the performance of the VASS system. Finally, the mobile device has evolved into a

powerful smartphone through the combination of a powerful mobile processor, ad-

vanced mobile OS, and other electronics, such as the LCD touchscreen display and

audio speaker. This has led to the increased portability of the VASS system. Its

portability has helped promote the usage of this SSD, because the user can carry

the device anywhere and its weight does not restrict the user to a single location or

cause him/her discomfort during its use. This has further expanded the possibilities

of VASS into areas such as navigation.

It is worth stressing that not only are the hardware requirements of VASS low but

also most of the electronics needed to operate it are now widely available. Since the

recent rapid adoption of smartphones, the majority of people in both developed and

developing countries now own at least one smartphone. Because all the smartphones

now available on the market are equipped with the three main components required

by a VASS system, i.e., a camera, speaker and CPU, the development duration of

a VASS device has been shortened. The effort expended on developing a VASS
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device can now be focused on designing the software applications and improving the

algorithm that powers it, whereas for the earlier VASS devices, the whole system

had to be designed by researchers from the ground up, including both the hardware

and the conversion algorithm.

Overall, the advancement in electronics has mostly benefited the field of VASS.

The future of VASS systems is encouraging because of the shift from designing both

hardware and software, so that the focus is now on improving the software. Following

this trend, the VASS device is expected to perform better in terms of the conversion

algorithms and also become more portable in the distant future. It is hoped that, by

taking advantage of the opportunities resulting from the advancement in electronics,

VASS devices can be widely accepted, especially by the community of the visually

impaired.

2.1.2 Better Understanding in Neuroscience

While the advance in electronics has provided the necessary computing power and

portable hardware, a better understanding of the brain has afforded researchers

the knowledge of how it works, especially in the area of brain plasticity, and this

has facilitated the development of improved visual-to-auditory information transfer.

Software is an integral part of VASS devices, and a good VASS device requires the

combination of powerful hardware and well-designed software that optimizes the

information conversion. With the knowledge gained from interdisciplinary research

in neuroscience and psychology, we are beginning to understand how humans in-

terpret auditory information using VASS systems. Because of this, it is possible to

increase the soundscape interpretability offered by modern VASS devices by using

methods such as image processing, intuitive colour to auditory signal mapping, and

the application of image saliency.

VASS has been in existence for at least 30 years. The earliest VASS system was

developed in the 1990s. This VASS system implemented a simple algorithm that
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utilized only the intensity of each pixel from the input images to modulate the sound

frequency to produce a soundscape. Then, more complex algorithms were created

by incorporating more visual computing into the conversion formulas. Figure 2.1

roughly summarizes the generations of VASS systems that have existed up to now,

where the blue gradient represents the involvement of computer image processing

during the visual-to-auditory conversions.

Manual AutomatedSemi-Auto

Generations

Figure 2.1: Generations of visual-to-auditory sensory substitution systems

In general, VASS systems can be categorized into three major generations, namely,

manual, semi-automated, and fully automated. Most of the earlier VASS systems

are identified as belonging to the manual generation, because they used minimal

image processing in their algorithms. The characteristics of the soundscape of this

generation are frequently straightforward and unnatural. The reasons why a simplis-

tic conversion algorithm was used are probably the scarcity of computers with high

computational power and a lack of emphasis on the visual-to-auditory conversion

algorithm at the time of their development. Because the soundscape is converted

through raw conversion without much manipulation, it relies more on the human

brain power for interpretation. The user is required to make a mental map based

on the sound frequencies to recreate the original input image.

With time, computing resources are becoming more abundant and therefore more

researchers are trying to incorporate more computing power into their VASS systems

to produce a better soundscape. Hence, image processing algorithms are starting
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to be applied in the conversions for the purpose of feature extraction. Through

the implementation of image processing algorithms, such as image segmentation,

some VASS system developers have attempted to reduce the load on the user during

the process of soundscape interpretation. This is achieved through increasing the

involvement of computers during the encoding to synthesize a more intuitive sound-

scape that is easier to understand. For this reason, VASS systems in which advanced

image processing algorithms are applied during the visual-to-auditory cross-modality

conversion belong to the semi-automated generation.

In the future, it is possible that VASS systems will become fully automated and a

machine learning algorithm can be used to recognize objects and explain the visual

information to the user in human speech. For example, Karpathy and Li (2015)

demonstrated a real-time image captioning application called NeuralTalk that runs

on a multimodal recurrent neural network pretrained on a huge dataset of images

with corresponding descriptions. At this stage, the computer takes complete con-

trol of the interpretation for the user, significantly reducing the need for the user

to interpret the soundscape. Although the later generation has some improvements

(e.g., better learnability and improved interpretability), there is no conclusive evi-

dence supporting the notion that it is better than the older generation. Therefore,

some of the manual VASS devices are still in use.

The following subsections examine some of the related VASS research and devices

as part of the Luminophonics background studies.

2.2 Tactile Vision Substitution System

The TVSS is the product of the work done by Bach-y-Rita and his team at the

Smith-Kettlewell Institute of Visual Sciences in the 1960s, which reignited inter-

est in sensory substitution for rehabilitation purposes (Bach-Y-Rita et al., 1969;

Bach-y-Rita, 1972). The TVSS has since evolved and grown through many research

activities and projects, which have taught us many lessons and contributed knowl-
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edge about building a good sensory substitution system. Although the TVSS is

focused on the application of visual-to-tactile sensory substitution, many parts of

the system were precursors for parts of the VASS system. Overall, the team estab-

lished a basic modern sensory substitution framework through the application of

their TVSS, which many research groups have been using.

The general sensory substitution framework introduced by Bach-y-Rita and his

team follows a standard communication channel (see Figure 2.2). First, it streams

the information captured by an input device into an encoder that transforms it into

another modality as a medium for transportation to a decoder. In the TVSS, the

team utilized the tactile sense as the medium for transporting the visual information

that later is received by a tactile sensor, such as the skin or tongue. Then, finally the

brain acts as a decoder to decode the information, restoring it to its original form. In

general, the process is standard for all sensory substitution systems, but the usage

of a computer to encode the information has only very recently been introduced

into TVSSs. Using a TVSS, Bach-Y-Rita et al. (1969) successfully implemented a

working prototype that transformed the face of sensory substitution. Since then,

most modern SSDs have followed the same framework.

Figure 2.2: General sensory substitution framework

The first TVSS was very large. The user was seated on a large and sturdy



CHAPTER 2. RELATED RESEARCH 34

chair. In the back of the chair, 400 vibrators were installed aligned in a square

configuration according to the resolution of the image captured by the input camera.

The vibrators were wired to a computing unit that was connected to a camera and a

monitor. While sitting in the chair with his/her back against the array of vibrators,

the user held a camera, which he/she controlled, pointing it in the desired direction.

The image was captured by the camera and transmitted to the computing unit for

conversion. After the conversion, the array of vibrators was activated, and each

vibrator vibrates according to a pixel location on the image. The user needed to

recognize the visual images through the vibration felt in his/her back.

As can be seen in the artistic illustration of a TVSS in Figure 2.31, the overall size

of the first TVSS was very large. The chair, camera, and computer that constituted

the device together were the size of a room, which made its use as a mobile device

impossible. As the technology advanced, the size of the entire device was reduced.

However, the size of a TVSS is limited by the size of the vibrators. The number

of vibrators increases in proportion to the resolution of the image to be converted.

Moreover, so that the whole device is portable, a large battery is needed as a power

supply for the computer and vibrators. Therefore, their size is a major disadvantage

of TVSSs that needs to be overcome.

2.2.1 Tongue Display Unit (TDU)

The Tongue Display Unit (TDU) was invented by the same group of researchers to

solve the size problem of visual-to-tactile sensory substitution systems so that they

can be carried by the visually impaired. The TDU takes advantage of the fact that

the human tongue has a more sensitive touch surface than other tactile sensors, such

as the skin (Kaczmarek, 2011). Because of the crowded mechanoreceptors, such as

Meissner’s corpuscles, and the thin epidermis, the sensitivity of the tongue is higher

in terms of both pressure sensitivity and spatial acuity. As a result, it can react

1Source: Tactile Communication and Neurorehabilitation Laboratory (TCNL), University of

Wisconsin–Madison (https://tcnl.bme.wisc.edu/projects/completed/tvss)

https://tcnl.bme.wisc.edu/projects/completed/tvss
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Figure 2.3: Artistic rendition of a tactile vision substitution system

better to smaller tactile stimuli, making it a surface suitable for the application of

many tiny actuators. Another reason why the tongue is used is its protected location

in the mouth, where hydration is more consistent than on the skin. When tested,

the impedance of the electrode varies very little throughout the tongue. For these

reasons, an array of electrodes forming an electrode-tongue interface is used to evoke

electrotactile sensation (vibration, tingle, and pressure) to communicate temporal

and spatial information, when other sensory channels cannot (Sampaio, Maris, and

Bach-y-Rita, 2001; Bach-y-Rita, Tyler, and Kaczmarek, 2003; Kaczmarek, 2011).

A TDU comprises an array of electrodes in a flexible printed circuit substrate that

interacts with the tongue to create a tactile sensation through electric stimuli. The

first version of TDU had 144 electrodes capable of displaying a static 12×12 tactile

pattern. As its development advanced, the number of the electrodes in an array

grew, while the overall size of the substrate was maintained, making it capable of

displaying information at a higher resolution. Currently, a tongue array containing
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as many as 400 electrodes exists. The TDU can be coupled with a computing unit

as an output device to substitute two type of sensory signals, visual, as provided by

a tongue TVSS (Sampaio, Maris, and Bach-y-Rita, 2001; Kupers and Ptito, 2004)

and vestibular, as provided by BalanceSensub (Tyler, Danilov, and Bach-y-Rita,

2003; Danilov, Tyler, et al., 2007). In a vision substitution situation, the TDU

represents a captured greyscale image by activating the electrodes based on the

location and intensity of the image pixels. White image pixels are mapped as strong

tactile stimulation, grey pixels as medium level stimulation, and black pixels as no

stimulation. The scenario of vestibular substitution is slightly different from that of

visual substitution, where the position of the head stimulates a specific location of

the TDU. For example, if the head is tilted back, a subarray of the TDU at the back

is activated. The user then uses the information received from the tongue sensation

to adjust his/her balance.

The TDU was not only demonstrated to be a good device in the research en-

vironment, but is also very successful commercially. As a result of a thorough

commercialization process, TDU is now available to the public in a package that

includes a video camera mounted on a pair of sunglasses, a hand-held controller, a

tongue array, and a lithium battery that lasts up to 3 h with a single charge. Cur-

rently, it is sold as BrainPort to the public by a company called Wicab Inc. founded

by Paul Bach-y-Rita and others (Danilov and Tyler, 2005).

2.2.2 Computer Graphics for the Visually Impaired

The researchers at the Tactile Communication and Neurorehabilitation Laboratory

(TCNL), University Of Wisconsin–Madison, where Prof. Bach-y-Rita last worked,

produced two spin-off devices of TVSS, which are designed to help the visually

impaired visualize computer graphics, especially graphical user interfaces (GUI).

They recognized that the visually impaired population needs to access and unlock

the vast amount of information available on computers as the age of technology
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advances. However, the devices need to be tailored for this purpose, with a specific

algorithm that can handle most of the information.

One of these devices is in the form of a glove that generates a tactile sensation in

the fingers according to the graphically-rich information presented on the computer

screen. As reported by Tyler, Haase, et al. (2002), the complete system consists

of a glove, which is tethered to the computer and which the blind person puts

on one hand. The contact of the tactile actuators spreads from the fingertips all

the way down to the top of the palm. The user feels the tactile sensation when

scanning/brushing the top of a flat LCD monitor mounted facing upward. While

scanning the image, through software control the user is able to control the size of

the image by using a zooming feature. He/she can also control other characteristics,

such as edge enhancement or black-white colour reversal. This haptic glove provides

a good alternative to or even a replacement for the traditional haptic displays, such

as Braille displays.

An additional haptic display proposed by the group at TCNL uses the technology

of electrostatic stimulation, because this type of display has some advantages over

the common haptic displays, such as those that use electrotaneous and vibrotactile

stimulation (Agarwal et al., 2002). Its advantages include that batch fabrication

using micro fabrication techniques is easy, its power consumption is lower, it can

be used without being worn on the body, and it is less bulky. The display consists

of a 4-inch thin silicon wafer that has multiple layers of a chemical compound that

produces electrostatic tactile sensations. Like that of the TDU, this haptic display

is thin and portable. Although its current usage is limited to displaying business

diagrams, such as graphs, the initial experiments showed promising results, although

more work is needed to reveal its potential.
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2.3 Visual-to-Auditory Devices

2.3.1 The vOICe

vOICe is one of the better known VASS devices and is probably the device that is

most frequently referred to in this field. The inventor, Peter Meijer, developed vOICe

(the three middle capital letters stand for “Oh I See”) in 1992 at the Philips Research

Laboratories in the Netherlands as a device that offers live camera rendering in audi-

tory form through cross-modality visual to auditory conversion (Meijer, 1992). Since

its inception, vOICe has been improved significantly, particularly its form factor: it

has evolved from a basic prototype that uses a special purpose computer into appli-

cations for multiple platforms that are currently available, including a smartphone

application. Currently, on the Website (https://www.seeingwithsound.com/), five

types of vOICe can be freely accessed: i.e., Windows Application, Android Mobile

Application, WebRTC Application, Raspberry Pi Application, and NVDA Audio

Screen. The popularity of vOICe has proven that its developers made a commend-

able marketing move when they provided the technology on the Internet at no cost

on multiple platforms. This not only expanded the userbase of vOICe, but also

helped promote the benefits of VASS systems to the public in the process.

As can be seen in Figure 2.4, the visual-to-auditory cross modal information

transfer process applied in vOICe is basic and straightforward. This has advantages

and disadvantages, but overall it has been demonstrated that vOICe can easily

be implemented and the user requires some training to begin using it. Following

the usual standard cross-modality conversion, the vOICe conversion process first

extracts visual information and then executes visual-to-auditory property mapping.

Finally, soundscape encoding synthesis is performed. As an SSD that is marketed

as a device that is able to generate live sound representation in real time, vOICe

acquires the stream of image frames from a video camera, such as a Webcam or

head-mounted camera. The image frames then pass through a simplification process

that reduces the amount of visual information. Colour is discarded from the input

https://www.seeingwithsound.com/
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image frames, turning them into greyscale images, and the image resolution is then

reduced to 64×64 pixels (in the earliest version). This simplification not only reduces

the soundscape’s duration, making it closer to real time, but also decreases the

complexity of the visual-to-auditory properties mapping. According to Meijer, the

bitrate each ear can accommodate is about 15 kB/s. By limiting the total pixels per

frame to 4096 pixels at 4 bits per pixel and scanning a single frame per 1 s, vOICe is

able to produce the soundscape at a bitrate of 16 kB/s (Meijer, 1992; Jones, 2004).

These simplification steps contribute to the effort to reduce the effect of cacophony

that is commonly faced by VASS users. However, in advanced systems this process

is substituted by image processing techniques.

Figure 2.4: vOICe cross-modality conversion process

Each individual pixel p of an image frame (k) with the size M (height) × N

(width) is mapped into 16 grey tones of different frequencies and amplitudes to

create an audio representation s(t), as

s(t) =
M∑
i=1

p
(k)
ij sin(2πfit+ φ

(k)
i ) (2.1)

The vertical position i of the pixel affects the frequency fi of the tone: the higher
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the pixel, the higher is the tone. The intensity/brightness of the pixel changes the

amplitude of the grey tone, represented by p
(k)
ij . The brighter a pixel, the higher is the

amplitude/loudness of the tone. The image frame from the video is sounded in the

left to right scanning order in the form of column j. The leftmost column is sounded

first, and then, the next column j+1 is converted; this procedure continues until the

rightmost column (j = N) is reached. After the frame is completed, a ‘click’ sound

is appended at the end, denoted by φ
(k)
i , an arbitrary constant for the generation

of the synchronization ‘click’. The process then moves to the next frame k + 1 and

continues until no image frames remain in the video sequence.

Application

Figure 2.5: Screenshot of vOICe Windows

Figure 2.5 shows a screenshot of vOICe

running on Microsoft Windows. The ap-

plication is generating an audio repre-

sentation of a greyscale image of a car on

a road, scanning from left to right at a

default rate of 1 s per frame. This appli-

cation has a higher resolution than the

earliest version with a 176×64 resolu-

tion by default. In addition, it can cap-

ture live views from most universal serial

bus (USB) Webcams or head-mounted

cameras available on the market that are

compatible with Microsoft ‘Video for Windows’ (VfW). There are also very many

options built into the application, including an auditory graphing calculator option,

exercises for training, and a text-to-speech function. Another interesting feature that

is included in vOICe Windows is the colour filtration option that can be toggled by

the user. With colour filtration, the user listens to a selected colour by filtering out

other colours. This is another means by which vOICe can handle colour information.
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Figure 2.62 illustrates how the visually impaired use vOICe in a normal situation.

The user wears a head-mounted camera together with a pair of speakers connected

to a processing unit (normally a laptop computer carried in a backpack). In the

picture, the user is attempting to locate the mug by grasping it with his hand while

listening to the soundscape produced by vOICe. It is essential that the user wear

the camera on the top of the head because he/she can then move the camera around,

simulating how human eyes examine the surrounding.

Figure 2.6: User of vOICe

2Source: IEEE Spectrum Feb 2004
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Discussion

vOICe was invented in 1992 when tactile sensory substitution for visual signals was

the preferred modality rather than its auditory counterpart, which made it one of

the earliest VASS systems. At the time it was conceived, researchers were still at-

tempting to find the best means of accomplishing visual-to-auditory cross-modality

conversion efficiently, because computation power was limited. Therefore, vOICe

used a special purpose computer built using standard low-power Schottky transistor-

transistor logic (LS-TTL) technology to translate visual information into an auditory

representation by applying a simple and direct mapping method. Consequently, the

user needs to use more manual effort to interpret the audio representation, which

explains why vOICe belongs to the manual generation (see Figure 2.1).

Despite the advantages of the system that it is simple and easily implemented,

interpreting its soundscape causes the user more fatigue over a long usage period,

because it depends heavily on the user. Users need to decode the auditory represen-

tation themselves to restore the original visual information to a mental map. During

the process, other auxiliary tasks, such as noise filtering and object recognition, are

run in parallel, which can tire the brain. Thus, the outsourcing of some of the tasks

to a computer through intelligent algorithms and image processing methods may

lighten the user’s cognitive load, and hence, reduce his/her fatigue and also improve

the overall usability of the SSD.

In addition, it is difficult to learn to use VASS devices (especially those belonging

to the manual generation). In order to increase the user’s proficiency so that he/she

can use vOICe in daily life, structured training needs to be provided, as well as

frequent usage, to increase the efficiency of soundscape interpretation. Although

several basic training materials are provided on the Seeing with Sound Website,

which help the user to start using the device, it is important to emphasize that

a structured tutorial would help the beginner learn to use the device in practical

environments in a shorter time.

https://www.seeingwithsound.com/
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2.3.2 Prothesis Substituting Vision by Audition

PSVA stands for Prosthesis for Substitution of Vision by Audition. PSVA is a VASS

system developed by Capelle, Faik, et al. (1994) of the Université Catholique de

Louvain. The system is one of the earliest VASS prototypes, having been developed

in 1994, two years after the introduction of vOICe. Although it was established in the

early 1990s, PSVA paved the way for the application of image processing techniques

to extract more information from a normal 2D image in order to closely model

human vision. Hence, it is regarded as a semi-automated VASS system. Another

earlier feature that PSVA introduced into VASS systems is its emphasis on operating

in real time as a means of affording the user an efficient sensory-motor interaction.

Because of this, it was designed from the ground up to be a real-time VASS system

for the purpose of vision rehabilitation. The resulting PSVA manages to achieve

a maximum total data processing (from video grabber to speaker) duration in a

laboratory setting of 100 ms (Capelle, Trullemans, et al., 1998).

PSVA follows the same framework as other VASS systems for converting video

signals into soundscape. It acquires visual information from an image frame (in

64×64 pixels) captured by a video camera. As opposed to vOICe, which only con-

verts colour images into greyscale images, in PSVA an attempt was made to model

humans’ primary visual system by implementing features such as lateral inhibition

and graded resolution. In the human visual sensory system, lateral inhibition in-

creases the contrast of a certain region by reducing the signals from its neighbouring

regions. To simulate lateral inhibition, in PSVA a Laplacian of Gaussian (LoG) con-

volution filter is implemented and then the detection of zero-crossing in the input

image is performed. The filter suppresses signals other than those of the edge to

produce an input image with edge detection.

In a normal situation, human vision utilizes the focus of attention to segment

visual data into multiple regions, thus reducing the information load to be processed

by the brain (Hubel and Wiesel, 1977; Balasuriya and Siebert, 2003). Inspired by
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this, in PSVA graded resolution is implemented using a technique called multires-

olution artificial retina. An artificial retina with two levels of resolution pyramid

consists of an 8×8 pixels low resolution grid with 2×2 pixels at the centre grid,

subdivided into another 8×8 pixels, amounting to a total of 160 pixels (from the

original 4096 pixels). This process can be continued to four levels of resolution pyra-

mid, which can be as detailed as a total of 208 pixels. This graded resolution both

reduces the duration of conversion and greatly lessens the effect of cacophony in the

soundscape.

The conversion process first uses the information from the previous image pro-

cessing stage and applies it in visual-to-auditory mapping. Using a basic coding

scheme that is based on the association of pixel intensity and audio frequency, PSVA

presents two types of mapping codes, segregated code and interlaced code. Both

codes have the following basic features.

• Pixel vertical position −→ audio pitch

• Pixel horizontal position −→ binaural intensity and phase differences

• Pixel brightness −→ audio loudness or amplitude

• The frequencies are chosen such that the columns resemble melodious sound

and the rows resemble harsh sound.

Segregated code assigns a different frequency value to each pixel location with f0

as the base frequency (normally 50 Hz), following

f = f0 · 2p/32 (2.2)

Interlaced code assigns the frequencies so that the fovea (central pixel region) and

the periphery (outer pixel region) are not harmonic with each other. The formula

for generating frequencies is particularly flexible, ranging from two to four levels of

resolution pyramid. With f0 as the base frequency, the frequencies for two levels of

resolution pyramid are generated using
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• For periphery grid,

fperiphery = f0 · 2p/8 · 21/16 (2.3)

• For fovea grid,

ffovea = f0 · 2p/32 · 21/64 (2.4)

Because PSVA uses a pregenerated frequency mapping code, in this system the

need to recalculate the audio frequencies for each conversion is eliminated, resulting

in a fast and efficient conversion. To further reduce the duration of soundscape

generation, two dedicated printed circuit boards (PCBs), containing the control

circuitry and music processors, respectively, were built so that the entire process

can be executed in real time by offloading the processes from an Intel 486 processor.

The PCBs are connected to a speaker to output the soundscape.

2.3.3 See ColOr

Bologna, Deville, Pun, and Vinckenbosch (2007) advanced the development of VASS

systems by incorporating many new ideas in his project, Seeing Colours with an Or-

chestra (See ColOr), after years of research in the field of assistive technology for

the blind. Prior to See ColOr, Bologna and Vinckenbosch (2005) created the Am-

bisonic 3D-sound field, which utilizes an eye tracker to assist the capture process of

the visual input device based on inherent attention combined with musical instru-

ment sounds to encode colour pixels. Visual substitution through the Ambisonic

3D-sound field introduced several innovative ideas into the research field, including

the differentiation of colour by different sounds of musical instruments, head-related

impulse response (HRIR) to simulate 3D surround sound, and an eye tracker to limit

and crop visual input based on the attentional field.

The semi-automated generation of the VASS system appeared around the year

2005, as computers began to play a role in assisting the processing of visual infor-

mation to increase the efficiency and interpretability of the auditory representation

(Bologna and Vinckenbosch, 2005). These sequences of events were spurred by the
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increase in available computing power and the efficient image processing algorithms

contributed by the field of computer vision. A computer can both assist in extract-

ing more information from a raw image and be used to filter out information that

is irrelevant to the user. As demonstrated by Ambisonic 3D sound, it can be used

to imitate humans’ attentional visual field by cropping the entire raw input image

into a smaller image by computing the importance of the region.

See ColOr is a VASS prototype that is focused on guiding the visually impaired

and is thus configured specifically for navigation purposes. Several aspects that were

previously used in VASS systems are implemented in See ColOr. In particular, it in-

cludes colour information, which the system is able to encode as musical instrument

sounds during the cross modal conversion. In the past, many VASS systems were de-

signed to sonify colour in the soundscape, but frequently this introduced more noise

and the cacophony effect, which causes deterioration in the user’s interpretation

performance. Colour information is important for recognition because the descrip-

tion of coloured objects and their textures helps the user build consistent mental

images of the environment. With colour information, the user is able to recognize

objects more easily than when he/she distinguishes objects purely by their texture

in greyscale, because colour information decreases the level of ambiguity during the

process of recognition. Moreover, colour is important for navigation because traffic

and safety signs utilize colour to impart a warning message to the user (i.e., red

signifies a prohibition/danger alarm, yellow/amber a warning, blue a mandatory

instruction, and green an emergency escape/first aid/no danger message).

In addition, See ColOr demonstrated the ability to encode depth through a spe-

cial spatialisation method using the depth map of a stereoscopic camera. Because

the amount of information collected from a stereoscopic camera is frequently very

large, it is a norm to simplify the visual information before executing the conver-

sion in order to avoid a situation where the user is overwhelmed by all the different

sounds in the soundscape. In order to resolve the issue of cacophony, in See ColOr

image simplification is implemented by means of segmentation and guiding the focus
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of attention (FOA) through the computation of visual saliency. The inspiration be-

hind FOA, which is implemented in See ColOr, is humans’ natural attentional visual

field. As shown in Figure 2.7, See ColOr performs image simplification in parallel

with computing the FOA using the raw coloured image frame. In Bologna, Deville,

Pun, and Vinckenbosch (2007), mean shift, K-means and quadtree algorithms were

tested to obtain a suitable algorithm that provides the greatest number of regions of

optimum size without sacrificing computing time. In general, the images produced

by the simplification process contain less noise, because visually similar pixels are

merged together to form multiple segments. In contrast, some fine details are dis-

carded in the process, resulting in the loss of texture details in favour of a simpler

image.
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Figure 2.7: See ColOr cross modal conversion process

Visual saliency is computed from the same raw image frame. According to Lan-

dragin (2004), visual saliency refers to the visual mechanism that is linked to the

emergence of an object from a background that captures the attention of the indi-
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vidual. Humans frequently depend on visual saliency to determine the region on

which they should focus, so that the brain does not need to process the entire field

of view, and thus, the cognitive load imposed on the brain is reduced. Factors such

as the iconic features of the scene and cognitive preference determine the value of

visual saliency. Many computerized methods to compute visual saliency exist, but

only a few are able to combine both physical features and cognitive factors to deter-

mine the value of visual saliency. Methods that focus only on physical factors are

called bottom-up approaches, whereas cognitive-based ones are termed top-down

approaches. Considering that the See ColOr system is not aimed to replace the

cognitive abilities of the blind user, the top-down attention model was selected to

understand the captured scene (Deville et al., 2008). The saliency regions detected

are based on conspicuity maps computed using methods that focus on specific char-

acteristics of images, such as entropy or blobs (Kadir and Brady, 2001), such as

difference of Gaussians (DoG) or the speeded up robust features (SURF). Inter-

estingly, See ColOr utilizes a depth map acquired from a stereoscopic camera to

determine objects of interest and filter out those that can be ignored. The impor-

tance of the objects is based on the distance between them and the user. The closer

the objects, the more their importance increases. However, because See ColOr is

designed to be used in conjunction with a mobility cane, objects located at less than

a minimum distance, dmin, and reachable by the cane are discarded. Objects that

are located at a distance that exceeds the maximum distance, dmax, set by the user,

are also discarded. Using pz as the depth value of the pixel p, the distance feature

map, Fd, can be simplified using

Fd(p) =

dmax − pz, if dmin < pz 6 dmax

0, otherwise

(2.5)

Motion is another important information feature that can be derived from the depth

map. Using Equation 2.6, the object’s motion is computed from the gradient of

depth ∂pz over time t frame by frame as received from the camera to determine
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whether it is moving towards or away from the user. Objects that are moving closer

to the user are retained and the others are discarded.

F∇(p) =

−
∂pz
∂t
, if ∂pz

∂t
< 0

0, otherwise

(2.6)

In order to obtain the corresponding conspicuity map of each feature map, DoG is

applied to the feature map (e.g., depth feature map Fd(p) and motion feature map

F∇(p)). DoG here acts as a band-pass filter to discard all values outside σ1 and

σ2, which essentially reduces the amount of information by excluding non-relevant

information, including noise. Finally, a saliency map is formed from the weighted

sum of all the computed conspicuity maps.

To produce the auditory representation, the pixels’ values in the saliency map

are encoded using colour-to-musical instrument mapping developed for See ColOr.

Two experimental mappings are used in See ColOr, namely, flat audio encoding and

3D sound spatialisation. Flat audio encoding encodes into an audio representation

by transferring the values from colour pixels matching a set of musical instruments,

while 3D sound spatialisation enhances flat audio encoding to create a perception

of localised sound sources called Ambisonic through the application of personalised

head-related transfer functions (HRTFs). The hue, saturation, and luminosity colour

model (HSL) , a cylindrical-coordinate representation of colour, is used to extract the

colour value from the pixel instead of the original red, green, and blue colour model

(RGB) colour model supplied by the camera. As a symmetric double cone, HSL has

the advantage of having symmetrical lightness and darkness at both opposite ends,

while the hue determines the colour in degree (from red to purple) and saturation

measures the concentration of the colour. As compared to RGB or other colour

models, such as the hue, saturation, and luminosity colour model (HSL), HSL is

closer to human vision and more intuitive. The system translates hue to eight

different instruments and saturation to four different notes (C, G, B[, and E) and

uses luminosity to determine whether a double bass note or a singing note is used.
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To create the perception of depth in the soundscape, the duration of the sound

is calculated based on the depth value pz received from the stereoscopic camera,

converted to the equivalent metric meter, D. This emulates sound travel, where the

sound of an object situated farther away or closer takes a longer or shorter time,

respectively, to reach the user. Detailed mapping values are presented in Tables 2.1,

2.2, 2.3 and 2.4.

Table 2.1: Mapping of hue, H, to musical instrument by See ColOr

Hue, H Instrument

Red (0 6 H < 1/12) Oboe

Orange (1/12 6 H < 1/6) Viola

Yellow (1/6 6 H < 1/3) Pizzicato Violin

Green (1/3 6 H < 1/2) Flute

Cyan (1/2 6 H < 2/3) Trumpet

Blue (2/3 6 H < 5/6) Piano

Purple (5/6 6 H < 1) Saxophone

Table 2.2: Mapping of saturation, S, to note by See ColOr

Saturation, S Note

0 6 S < 0.25 C

0.25 6 S < 0.5 G

0.5 6 S < 0.75 B[

0.75 6 S < 1 E
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Table 2.3: Mapping of luminosity, L to note by See ColOr

Luminosity, L Note Type

0 6 L < 0.125 C Double Bass

0.125 6 L < 0.25 G Double Bass

0.25 6 L < 0.375 B[ Double Bass

0.375 6 L < 0.5 E Double Bass

0.5 6 L < 0.625 C Voice note

0.625 6 L < 0.75 G Voice note

0.75 6 L < 0.875 B[ Voice note

0.875 6 L < 1 E Voice note

Table 2.4: Mapping of distance, D, to sound duration by See ColOr

Depth, D in m Sound duration in ms

Undetermined 90

0 6 D < 1 160

1 6 D < 2 207

2 6 D < 3 254

3 6 D <∞ 300

Application

See ColOr is designed to guide the visually impaired for navigation purposes, and

therefore, it is not expected to perform well in heavy feature recognition tasks, such

as object identification, because of the lack of feature information that is encoded. As

reported in Bologna, Deville, and Pun (2008), an experiment involving two scenarios

was conducted to measure the performance of See ColOr in terms of assisting the

user in the scenarios. The first scenario tested the ability of the soundscape to

describe colour correctly using musical instruments. The experiment was performed
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using seven blindfolded adults who were asked to find the matching half of a pair of

socks of the same colour. Instead of associating the colour of the socks by listening

to the sound, they were asked to find the matching pair of socks, because it is

difficult for first-time users to make the colour-sound association after one training

session. Before the actual experiment, each participant received a two-step training

session. The first step consisted of static training. The participants were shown

static images on a laptop computer while a trainer explained the colour associated

to the sound the participant heard. The second training step involved an activity

that was closer to the experimental task. The participant held a pair of socks

and learned to associate the colour with the sound. During the actual experiment,

five pairs of socks having the colours black, green, low saturated yellow, blue, and

orange were presented to the participant for matching and the time taken by each

participant to complete the task was recorded. On average, a person can match a

pair of socks correctly in 25 s, or 4 m for a total of five pairs of socks. An interesting

finding from this experiment was that a participant (who was one of the authors of

See ColOr) was able to complete the task in 2.2 m, which was almost twice as fast as

the next fastest participant. This further proved that training and prior knowledge

does indeed increase the user’s efficiency when using an SSD.

The second scenario of the experiment involved the participant following a coloured

serpentine path laid on the floor in an outdoor environment. This scenario was de-

signed to investigate how effectively See ColOr can assist a user in a navigation task.

The same seven participants as took part in the previous experiment were invited

to take part in this test. They were required to wear a Webcam connected to the

See ColOr system installed on a laptop computer. They were instructed to follow

the red coloured tape stuck on the floor, called the ‘serpentine path’, by listening

to the soundscape produced inside their earphones. As usual, each participant was

provided with a short training session in which they were guided to listen to a sound

pattern that contained an oboe sound (representing red) and a double bass sound

(representing grey, the colour on both sides of the red tape) while following the ser-
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pentine path. During the testing phase, the time it took a participant to walk from

the point of origin to the destination while listening to the soundscape was mea-

sured. In order to complete a navigation task as demonstrated in this scenario, the

user needs to learn to use at least three components: the sound position of objects,

awareness of head orientation, and alignment of the body and head. The results

of this experiment showed that, when colour information is implemented correctly,

users receive more information, which makes it easier for them to determine their

surroundings. It is essential that this information be included in a VASS system to

assist a user to navigate.

Discussion

In See ColOr, the application of VASS was advanced by incorporating interesting

ideas, such as colour, musical instruments, image processing, and a stereoscopic

camera, but it was far from perfect. Because the concept was relatively new at the

time of its development, there were not many systems with which to compare See

ColOr. It is unconfirmed how the system compared with other systems, because

it was tested in an experiment designed by the researchers. An improved general

testing framework is needed that can fairly evaluate and quantify the performance

of multiple VASS systems in terms of different aspects. In addition to evaluating

the performance, such a general framework could reveal the advantages and disad-

vantages of a system. It would be beneficial in a situation such as that described

above, because it would be easier for the developers of a device such as See ColOr

to identify an idea that does not perform well without excessive testing.

The new implementations in See ColOr were still preliminary, and there are areas

that can be improved to increase the effectiveness of the system. For instance, what

is the optimum mapping of colours to musical instruments? As shown in Table 2.1,

Bologna, Deville, Pun, and Vinckenbosch (2007) proposed a set of seven colours (red,

orange, yellow, green, cyan, blue, and purple) to be matched with seven musical

instruments (oboe, viola, pizzicato violin, flute, trumpet, piano, and saxophone).



CHAPTER 2. RELATED RESEARCH 55

There are several questions related to this proposed mapping scheme, including why

a non-standard colour set was chosen instead of a rainbow colour set. In addition,

the mapping of colours to musical instruments according the human psychological

perception of colour might improve the soundscape’s interpretability and help the

user learn the colour association during the training period. Let us consider the

case of traffic signage. Warm colours such as red are frequently associated with a

warning or hazard. It might be more intuitive for the user if the colour red was

mapped to a musical timbre that is related to hazard, such as a horn. Moreover, the

computation of visual saliency needs to be re-examined so that the algorithm does

not discard important information, which might hamper the system’s usability and

endanger the user during navigation.

To conclude, more studies are required, especially interdisciplinary ones involving

human psychology and neuroscience, to design a better system with high usability

that produce a soundscape that is more intuitive and easily interpreted.

2.3.4 EyeMusic

The two most recent directions of VASS research are aimed at overcoming the prob-

lems of the unpleasantness of the soundscape and the non-inclusion of colour infor-

mation in the soundscape. Following the trend, EyeMusic, a VASS system developed

by a team of researchers at The Hebrew University of Jerusalem, is aimed at solving

these two problems with a single solution (Abboud et al., 2014). Similarly to See

ColOr, EyeMusic uses musical notes to encode colour visual information in order to

convey shape and colour information in an auditory form that is pleasant to listen to

(Hanassy et al., 2013). This proposed VASS system can be considered to belong to

the manual generation because, like vOICe, it simplifies the input image by reducing

the image resolution but retains the colour information.

Colour vision is an important feature of sight that provides humans or other

organisms with the ability to distinguish objects based on the different wavelengths
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of the light reflected from the object. Humans frequently depend on colour informa-

tion to perform various tasks in their daily life. The reports of Bramão et al. (2011),

Goffaux et al. (2005), and Yip and Sinha (2002) further confirmed that humans use

colour vision for tasks such as object and face recognition, scene reconstruction, and

navigation. Without colour, humans take longer to execute these tasks or even fail

to complete them. For this reason, it is imperative that a VASS system include

colour as a part of its vision-to-auditory cross modal conversion in order to help the

visually impaired in their vision rehabilitation. This motivated the developers of

EyeMusic to solve the problems that arise as a result of the incorporation of colour

information such that the overall performance of VASS is not sacrificed.

The objective of the developers of EyeMusic was to create a general purpose

VASS system to sonify the surrounding shapes, including their colour information,

in a pleasant manner. In contrast, the developers of See ColOr, one of the systems

most similar to EyeMusic, focused on building a VASS system with a single special-

ized function: navigation. The developers of EyeMusic approached the conversion

by processing each image column-by-column in a single direction from left to right.

This technique is called the sweep-line technique. This approach is identical to the

swiping technique that is first proposed in an article describing the first prototype

in this study (see Tan, Maul, N. R. Mennie, and Mitchell, 2010). Figure 2.8 suc-

cinctly shows the process flow of EyeMusic, which is similar to that of vOICe (see

Figure 2.4), except that EyeMusic features a colour clustering algorithm to retain

the colour information instead of the colour to greyscale conversion that is used in

vOICe. In the process, first image frames are taken from an input video source, such

as a camera or computer screen. Then, the image frame passes through a resolution

reduction process so that the amount of visual information is decreased to lessen the

effect of cacophony in the soundscape. The resolution of the image is reduced by

expanding each pixel using a pixelation technique into a larger pixel having a width

of 40 pixels and height of 24 pixels. With the resolution, the image is split into mul-

tiple columns 40 pixels in width. A soundscape is then synthesized for each image
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frame column by column in one direction from left to right. At the start of each

soundscape, a cue sound is played to signify the beginning of the soundscape. The

visual-to-auditory mapping follows the HSL colour model to determine the colour of

the pixels. Each larger pixel in a column is mapped to a single musical instrument

according to the colour taken from the hue value, H. The pitch of the musical note

is set according to the Y -axis of the larger pixel and the volume of the musical note

is set according to the luminance level, L, of the larger pixel.

Figure 2.8: EyeMusic cross modal conversion process

Application

At the time of writing, EyeMusic can be found in multiple implementations, in-

cluding mobile applications in the form of iOS and Android. On its official Website,

managed by one of the authors (http://www.amedilab.com/), there are several inter-

esting applications, including a tutorial that teaches a beginner how to use EyeMusic,

a Web application that converts a static image into an EyeMusic soundscape, and

an HTML5 game based on EyeMusic. It is refreshing to find a simple game based

on VASS technology. The game is designed as a shooting game in which a cannon

situated at the bottom of the screen attempts to shoot a target at the top of the

https://itunes.apple.com/us/app/eyemusic-hearing-colored-shapes/id805461054?mt=8
https://play.google.com/store/apps/details?id=com.quickode.eyemusic
http://www.amedilab.com/
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screen. In order to win the game, the player needs to correctly shoot at the target,

which is located at the top right hand corner, in the middle, or at the top left hand

corner, based on the soundscape. This simple game has demonstrated that thus far

VASS has achieved much, considering that the most recent VASS implementation is

able to accurately encode the information of feature, colour, and location combined

together.

The researchers who developed EyeMusic have publically promoted their device

extensively in the past few years. This is new and very welcoming, because sensory

substitution technology was largely unknown in the past, as the research of sensory

substitution frequently occurs inside the laboratory, where most users use the tech-

nology in a closely monitored environment. The activities of the group of researchers

at The Hebrew University of Jerusalem have successfully raised the public’s aware-

ness of this technology and helped the visually impaired population understand the

benefits of VASS. They followed the good example set by the developers of vOICe

in that they set up a Website that provides tutorials and information and released

their software to the public who are interested in testing it. Moreover, the primary

researcher, Prof. Dr. Amedi Amir, gave an interesting talk at TEDxJerusalem (an

independently organized TED event in Jerusalem) entitled ‘Seeing with the Ears,

Hands and Bionic Eyes’ in which he briefly summarized how sensory substitution

technology can benefit the rehabilitation of visually impaired people3. In addition

to promoting and demonstrating EyeMusic, he conveyed a considerable amount of

useful information about sensory substitution to the audience. Public reaction to

the presentation was very encouraging, as the audience realised the advantages that

sensory substitution brings to the world of assistive technology.

3Link to ‘Seeing with the Ears, Hands and Bionic Eyes’ by Amir Amedi at TEDxJerusalem:

https://www.youtube.com/watch?v=jVBp2nDmg7E

https://www.youtube.com/watch?v=jVBp2nDmg7E
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Discussion

The new ideas realized in EyeMusic may be promising, but more actual tests need to

be conducted to confirm their feasibility and evaluate the performance of EyeMusic.

For example, the choice of instruments used in EyeMusic will remain questionable

until there are proven results to support it. The reason for this is that some musical

instruments sound similar, especially those that belong to the same group, such as

the cello and guitar, which are both string instruments. Using musical instruments

that sound similar will degrade the quality of the soundscape, causing the user

confusion because of the effect of cacophony. Furthermore, questions exist regarding

the selection of colours; for example, is their reflection of the surroundings beneficial

to the user? Moreover, does the number of colours also affect the interpretability of

the soundscape? More colours might better describe the surrounding but would add

to the time needed for interpretation. It is essential to conduct systematic tests to

find the appropriate number of colours together with the correct choice of musical

instruments that optimize interpretability without sacrificing the functionalities.

While the work of the group led by Prof. Dr. Amedi Amir has improved VASS

technology, most importantly their public relations work has raised the awareness

of this technology. During the TEDx talk, the public reception of the technology

proved that they previously had little or no knowledge of this type of technology.

After the talk, there was wide coverage of this technology on both mass media and

social media, which spurred the public to discover more about sensory substitution.

Through their promotional activities, the EyeMusic research group may have solved

one of the key problems that contribute to the low level of public adoption of SSDs.

In order to encourage public usage, not only the performance of the device need

to be focused on but also the marketing efforts to promote the technology to the

public.
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2.4 Discussion

There is much to be learned from the popular visual sensory substitution systems,

including both the TVSS and VASS. The work of researchers has contributed signifi-

cantly to the field of sensory substitution and has facilitated the further development

of the systems. It should be noted that, in most of the published papers, it is agreed

that visual sensory substitution can benefit people with visual impairment; however,

gaps remain that need to be filled to allow its adoption by the public.

A common feature of all the visual sensory substitution systems is that they share

the same framework. The general sensory substitution framework, as described in

Section 2.2, was inspired by the traditional communication channel, which consists of

three major components: encoder, transmission medium, and decoder. For instance,

in the VASS system an algorithm is applied to encode visual information into a

soundscape, which is transferred through a medium; in this case, the sound of the

audio representation is transmitted over the air. The ears of the user play the role

of the receiver: the user listens to the soundscape and his/her brain attempts to

interpret the visual information contained in the soundscape by decoding it using the

visual-to-auditory mapping that was used by the computer during the conversion.

Because this framework has been proven to be effective in all VASS systems thus

far, it was decided that this research too would follow the same framework as the

general structure in terms of designing the basis of the prototypes.

However, the majority of VASS systems have their own unique process for visual-

to-auditory conversion, from the most simple, which is extracting pixel intensities

(as in vOICe and PSVA), to those that include image processing techniques to ex-

tract more visual information (as in SeeColOr and EyeMusic). Although the systems

have their own complexity in terms of handling visual information, they also have

their own advantages and disadvantages, which is why no approach is clearly su-

perior. For other up-to-date systems, such as SeeColOr and EyeMusic, means of

including more information in the conversion process were explored. For example,



CHAPTER 2. RELATED RESEARCH 61

the developers of SeeColOr were the first to propose that it is necessary to include

colour information in the conversion mix, which was rarely considered in the earlier

VASS systems. Moreover, Bologna, Deville, Pun, and Vinckenbosch (2007) were

the first to utilize a 3D camera to provide an accurate depth map to assist in the

visual saliency computation for visual-to-auditory conversions. The effort invested

by Bologna, Deville, Pun, and Vinckenbosch (2007) to attempt to improve the per-

formance by increasing the input information is commendable; however, the cost

of this improvement is a considerably more complex soundscape. The complexity

of the soundscape affects the interpretability of the output of the system, because

it may generate more signal noise and cause the soundscape to be cacophonous.

When designing an improved algorithm, the Luminophonics team examined the ap-

proaches taken in all the related research and their effect on the soundscape in order

to find the balance between the richness of the soundscape and its interpretability.

In the area of sound synthesis, in the earlier VASS systems a direct approach

was used according to which the audio frequency was attenuated. Although this

approach simplified the entire process, it generated an unnatural soundscape. The

up-to-date approach however utilizes an advanced sound synthesizer library to cre-

ate a natural yet vibrant soundscape by utilizing models of the timbres of various

musical instruments. Moreover, the use of different timbres has the advantage that

more sound representation is achieved, which leads to an increase in the amount of

information that can be encoded.

As visual sensory substitution is still at the development stage, many researchers

are experimenting with different methods and formulas to create a better visual-to-

auditory conversion, and thus, a better soundscape. Despite the fact that good

results based on user evaluation have been reported for VASS systems, there is no

clearly correct method for designing a good VASS system. This is probably due

to the lack of standardized measurements for evaluating these systems. Currently,

research groups that design their own system also create their own evaluation criteria

to measure the performance of their device. As a consequence, these evaluations in
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silo have hindered the growth of VASS systems. This motivated us to create a

standardized evaluation platform that has the ability to quantify the performance

of every VASS device.



Chapter 3

Prototyping

3.1 Introduction

As the Luminophonics project was new at the time the research started in 2009, not

many free resources were readily available and few similar systems existed. Instead

of studying solely on VASS, the search for information about SSDs was expanded to

include other types of SSD, such as those featuring visual-to-tactile conversion. De-

spite the effort, most SSDs are closed-source and on top of that, they are frequently

difficult to replicate internally because of hardware and software constraints. There-

fore, it was decided that a top-down approach was applied as the overall strategy

for this research. In a top-down approach, so that more insight into the inner func-

tions of the existing systems is gained, they are decomposed, that is, broken down

into smaller components. Different working systems such as vOICe and See ColOr

were examined down to the individual process level in order to fully understand

the features implemented in them. Then, several prototypes were built based on

the combination of the promising features from the pool of features that were being

investigated. Following the prototyping process, discussions were conducted on ad-

justing and fine-tuning the features that were implemented in the prototypes. The

main purpose of this was to solve the problems and improve the performance of the

63
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systems built in this studies. In parallel, the prototypes underwent a series of tests,

including user-based experiments, to measure their individual performance. This

section covers only the activities of the prototyping process and the methodology

behind the development phase of the Luminophonics project. Chapter 4 and Chap-

ter 5 document the details on the experiments and the performance measurements

of the prototypes that were conducted.

3.1.1 Initial studies

A number of studies were conducted on the majority of SSDs including Meijer

(1992), Capelle, Faik, et al. (1994), Balakrishnan et al. (2005), Bologna, Deville,

Pun, and Vinckenbosch (2007), and some other minor systems. They were done

with the purpose to understand the design of an SSD and also the advantages

and disadvantages of each implementation. Currently, the existing systems can be

categorized into three different forms, namely, open-source systems, closed-source

systems, and those that have been presented in the literature, including in conference

papers and journal publications.

Of all the systems, open-source systems are the easiest to study because their

underlying algorithms and the conversion process are detailed in the source code.

In general, they can be downloaded from the official Website of the system or major

source code repositories, such as Github, Bitbucket, and Sourceforge. The down-

loaded material frequently includes instructions on how to set up the software and

the relevant configurations needed. With the correct hardware, the systems can

be re-implemented in their entirety. Examples of the open-source systems that are

available online include OpenSonify1, Wavy by Nicolas Louveton of the University of

Luxembourg2, Sensub by Stefan Strahl of the UCL Ear Institute3, and other generic

implementations from open-source contributors on the Internet. Although the avail-

1OpenSonify Repository: https://sourceforge.net/projects/opensonify/
2Wavy Repository: https://bitbucket.org/nblouveton/wavy/overview
3Sensub Repository: https://code.google.com/archive/p/sensub/

https://sourceforge.net/projects/opensonify/
https://bitbucket.org/nblouveton/wavy/overview
https://code.google.com/archive/p/sensub/
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ability of source code facilitated the investigation, most open-source SSD material

covers only the basic sensory substitution features that are not cutting-edge. This

has a major effect on their performance, which is frequently much lower than that of

their closed-source counterparts. In addition, the purpose of providing open-source

SSDs is mainly to demonstrate to the general public the ability of sensory substitu-

tion. Therefore, the open-source SSDs are developed for the public, utilizing basic

consumer hardware, such as Webcams and smartphones. Because the open-source

SSDs are lacking in terms of sophisticated software and specialized hardware, the

maximum capabilities of sensory substitution that they achieve is not equal to those

of the existing high-quality SSDs. However, this study did not exclude the open-

source SSDs because it is essential to examine them for the sake of overviewing SSDs

and the conversion algorithms. Moreover, from these systems, one can learn the ba-

sic structure of the software design that powers an SSD and how best to implement

an SSD from the source code. The investigation of SSD did not end here. The effort

to explore and study systems other than open-source SSDs continues to understand

the features that contribute to building a better VASS system.

As well as open-source SSDs, many studies were conducted to cover closed-source

devices and the SSDs that have been presented in the literature. As compared to

the open-source SSDs, the performance of these systems is frequently much better as

a result of the effort and the resources that were invested by the researchers and in-

ventors. However, for the same reason, some of the internal and system design is not

disclosed, mainly because of future commercialization opportunities. However, it is

necessary to invest a considerable amount of effort in analysing the systems because

they incorporate many cutting-edge features with up-to-date algorithms. The sys-

tems that fall into this category are described in detail in Chapter 2. They include

the The vOICe, Prothesis Substituting Vision by Audition, See ColOr, EyeMusic,

and the VTSS. Of these five systems, vOICe and EyeMusic exist in the form of an

executable software application that the public can download and use. These exe-

cutables provided some avenues to test the functionalities of the individual systems
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in detail and to examine the process behind the visual-to-auditory conversion.

The final category consisted of systems, the software of which is not available

to the public, such as See ColOr and PSVA. The information about these systems

is available in the form of papers published by the authors of the systems. The

only possible means of examining these systems is to re-implement the mechanism

behind them. Some potential features, such as colour-to-auditory mapping and

image segmentation processes were re-implemented in some of the prototypes of

this research to gain a better understanding of their operation. However, intricate

parts, such as the hardware-software integration and the physical aspect of the entire

system, are difficult to imitate because they require that both the hardware and

software operate according to specific configurations and settings. This information

is frequently not disclosed in publications. It is possible that the performance of

the systems is elevated by the configurations, as well as by the hardware-software

integration tuned specifically for the system. Although the reimplementation did

not achieve the highest performance as specified in the publication, the advanced

design and modern ideas included in the systems provided many insights into means

of the improvement of the VASS system.

To conclude, many extensive studies on similar systems were conducted during

the exploratory stage. In these studies, the main intention was to search for the

features and design that affect the overall performance of the system. These stud-

ies included examining the source code, using the software repeatedly, conducting

rigorous system testing, and reimplementing some of the features in the prototypes.

Then, efforts were expended to improve the performance of the VASS system by

upgrading these features in combination with some innovative approach, to reduce

the effect of the features that negatively influenced the performance of the system.
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3.2 Common Features

In total, four prototypes and one mobile prototype (in the form of an Android smart-

phone application) were produced in this studies. All the prototypes were developed

according to a single common framework and using the same software architecture,

with several additional features implemented individually that differentiate the pro-

totypes from each other. In this section, the common features shared across the

prototype and their implementation are discussed in detail. These features include

the architecture of the software, the type of hardware used, and the processing of

colour information.

3.2.1 Software Architecture

Figure 3.1 shows in detail the software architecture that was utilised in the proto-

types. In general, the architecture consists of three layers of the process flow. The

information flow in sequential order starts with the imaging layer (left), followed by

the image processing layer (middle), and finally the sound synthesis layer (right). To

convert the visual information into a soundscape, in every Luminophonics prototype

the same three-layer process flow is applied. Each individual layer contains several

components (as represented by the rounded rectangles inside the layer) that cooper-

ate to achieve the functionality of the layer. Because of certain constraints, in some

prototypes, different software packages and coding languages were used, but for all

the prototypes the same framework and process flow were followed. By unifying the

prototypes by using the same concept/framework, it was easier to manipulate and

make changes to the prototype for the purpose of performance enhancement. The

decision to use a modular framework instead of building each application has been

proven to be useful for future work, although it takes more time to establish the

framework initially. As a result, the architecture saves time and reduces some of the

engineering efforts by eliminating the need to rebuild the entire application for each

different prototype.
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Figure 3.1: Luminophonics software architecture

Moreover, the modular framework facilitates the optimization process, which is

further discussed in Chapter 5. In summary, the main purpose of using this layered

architecture for Luminophonics prototypes is to facilitate the prototyping process,

which allows one to make multiple minor changes to the prototypes without needing

to rewrite the entire software application.

Imaging Layer

Because of the complex nature of a VASS system, attention should also be paid to the

process of camera selection. Certain camera specifications, such as sensor size and

colour sensitivity, may affect the general performance of a VASS system. However,

given the many different cameras that are currently available, it is frequently difficult

to select the camera most suitable for the VASS prototypes. Moreover, the format

of the visual data varies according to the manufacturer and the type of the camera.
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It is not feasible to build an image capture module for each camera that is going to

be tested. Hence, decision was made to isolate the image capture module in order

to create a general purpose image capture function that enables the prototypes to

support a wide range of cameras. The result of the process is this imaging layer,

which is both modular and robust. The sole purpose of creating a modular imaging

layer was to allow the visual information captured using cameras that are widely

available on the market to be used. The image data captured are then transformed

into a standardized container suitable for use as the input at the next stage for

further processing. The benefits of using a modular imaging layer are two-fold. It

both allows most commercially available cameras to be used as the input component

through common ports such as a USB and removes the need for format conversion

in the later stage.

In order to achieve a modular image capture process, it is necessary to use a

suitable image processing library that is not only widely acceptable, high in perfor-

mance, and reliable, but also, most importantly, able to operate with a vast selection

of cameras. Hence, this imaging layer relies on OpenCV 4, an open source image pro-

cessing library originally written by Bradski (2000). OpenCV was designed mainly

for image processing tasks, including video capture and image segmentation, with

a strong focus on real-time applications, which makes it very suitable for VASS

systems. OpenCV is free (released under a Berkeley Software Distribution license),

and most importantly is highly efficient because the core components are written

in optimized C/C++. In comparison with other image processing libraries of high-

level scripting languages, such as the Image Processing Library of MATLAB and

the Python Imaging Library of Python, OpenCV performs better, mainly because

of the compiled code and more efficient memory management.

The use of OpenCV allows the prototypes to operate with many video sources

because the library is compatible with most popular OSs (e.g., Microsoft Windows,

Linux, and Mac OSX) through their internal video capturing API, VfW, AVFoun-

4OpenCV Official Website: http://opencv.org/

http://opencv.org/
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dation, FFmpeg, and GStreamer. Although this design decision means that the

system can support most video cameras, the use of a universal video capture driver

limits the systems’ ability to utilize advanced camera features, such as faster frame

rates and sensor control, which are offered only through a proprietary driver. How-

ever, it fulfilled the project’s one of the important objectives, which was not to be

limited to using a single camera model because it is important to evaluate as many

cameras as possible to determine which is the most suitable for the prototypes and

conversion process.

In addition to being able to manage data produced by the 2D cameras, the

compatibility of which with the system was originally provided by OpenCV, one

of the requirements of the Luminophonics project is the ability to manage also the

data produced by the proprietary 3D depth sensor of DepthSense. To manage 3D

depth maps, which is not within the scope of OpenCV, a custom wrapper was

written on top of the OpenCV video capturing function. It acts as an automatic

switch to capture 2D image data from a 2D source using the OpenCV video capture

function and to obtain the 3D depth map whenever the software is connected to a

depth sensor. Because the only depth sensor used is supplied by DepthSense, the

wrapper utilizes the DepthSense software development kit (SDK) functions that are

provided with the sensor. When the algorithm requests a depth map, the wrapper

activates the depth sensor and retrieves the relevant depth map frame from it. It is

fortunate that the driver supplied by DepthSense is sufficiently robust to be able to

work with both Microsoft Windows and Linux, which are the main OSs on which

the prototypes run. Thus, a wrapper was written to add an additional avenue to

OpenCV’s ‘videoio’ class, which provided an easy interface to allow most 2D cameras

to work with the DepthSense sensor through the proprietary SDK.

An additional important requirement of the imaging layer is that it be able

to convert most image data (in various formats) into a standard format that is

acceptable by the image processing algorithm. The image data from commercially

available cameras frequently differ in three aspects: image format, container format,
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and pixel arrangement. In addition, the DepthSense depth sensor uses its own

format, which is YUV2 for 2D images and an array of floating values for depth

maps. While most conversions of image data are executed inside OpenCV ‘videoio’

into OpenCV’s standard cv::Mat container through the ‘videoio’ class, the final

image format has to be converted into the HSL colour model that is used for the

Heuristic Colour Model (HCM) (see Section 3.2.3). Therefore, custom functions

have to be written to convert both the cv::Mat container and DepthSense container

into a container represented by an array of 32-bit floating point pixel values. It also

converts cv::Mat’s standard BGR pixel arrangement and also DepthSense’s YUV

pixel arrangement to the HSL colour model.

Image Processing Layer

For each image frame, the imaging layer outputs a container instance that contains

all the metadata of the image frame, together with the raw image data that have

been converted for further processing. The instance is then directly channelled

to the subsequent layer, which is called the image processing layer. This layer is

the most crucial layer in the entire architecture, because in this layer most of the

computational tasks are executed. In the architecture diagram (see Figure 3.1), it

can be seen that the image processing layer is positioned between the imaging layer

and the sound synthesis layer, acting as the intermediator for the previous and the

subsequent layer. Basically, it converts the visual information arriving from the

imaging layer (located to its left) to the auditory modality that is synthesized in

the sound synthesis layer (located to its right). In general, the input of this layer

arrives from the imaging layer and its output flows into the sound synthesis layer.

Hence, in order to preserve the modularity of each layer, the format of the input and

output of the image processing layer is standardized to avoid information conflict if

changes occur in the layers.

In total, the image processing layer contains four modules: image segmenta-

tion, image simplification, the HCM, and finally a decision engine called visual-to-
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soundscape mapping. The processes in this layer depend mainly on OpenCV as

the primary image processing library. They utilize several OpenCV image process-

ing functions together to achieve their function. However, in some cases where the

algorithms are not available in OpenCV, additional custom functions were writ-

ten. This section does not cover the intricate details of each module in the layer.

Because of their importance and complicated nature, they are further described in

detail and explained in a later section individually. Furthermore, the interaction and

the usage of the modules are discussed further in the sections where the conversion

of the visual-to-auditory cross-modality information executed by the prototype are

detailed.

Briefly, the modules in this layer are independent of each other. Each has dif-

ferent functions that can be combined to fill a larger role in the conversion process.

Uniform across all prototypes is the decision engine, which receives the extracted

visual features from the other modules and translates them into the appropriate au-

ditory format through its mapping. The results are then packaged into an array of

auditory data that are later synthesized into a soundscape in the subsequent layer.

Sound Synthesis Layer

The final part of the visual-to-auditory conversion process is the generation of sound

from the converted visual information that was captured and extracted previously.

Hence, the final layer of the Luminophonics architecture, called the sound synthe-

sis layer, serves one purpose: it generates the soundscape based on the output of

the image processing layer. Exactly like the other layers, this layer accepts a stan-

dardized input arriving from the previous layer. By enforcing a standardized input

into this layer, the modularity of the layer is maintained, regardless of the different

conversion processes used in the different prototypes.

Contained inside this layer are the three main components: an audio driver, a set

of musical instrument models, and a sound synthesizer. As elements of the sound

synthesis layer, they work together to fill a larger role as the audio generator for
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the VASS prototypes. In more detail, the sound synthesizer uses a set of musical

instrument models that is preloaded at the start of the application to generate the

soundscape in the form of audio. The result (the audio signal) is then channelled

to the audio driver, which interacts with the OS in order to play the audio through

the speaker connected via an audio jack. Each component plays an integral part

in producing the soundscape. If one of the components fails, a soundscape cannot

be generated accurately, which may result in the user hearing distorted sound, or

worse, total silence.

Exactly like the previous layers, the sound synthesis layer is not written from

the ground up. Instead, it relies on software or a library at its core that provides

most of the audio-related functions. The prototypes were designed such that they

are compatible with the three main OSs (Microsoft Windows, OSX, and Linux), so

that it is possible to play well the audio that is produced on any of the OSs and,

most importantly, the soundscape sounds exactly the same on each of the three OSs.

Hence, the audio library that was selected for this layer had to be cross-platform

and able to run on the x86 architecture for the OSs mentioned. A major change

was made in the sound synthesis layer during the period of prototyping, involving

switching to a different core audio library. Initially, Pure Data (Pd) 5, an open source

visual programming language for sound generation, was used (Puckette, 1996). In

the later part of the research, the sound synthesis layer used the Synthesis Tool

Kit in C++ (STK) 6 produced by the Stanford Center for Computer Research in

Music and Acoustics (Cook and G. Scavone, 1999; G. P. Scavone and Cook, 2004).

The decision to change the core audio library was due mainly to the performance

requirement of the optimization process, which is discussed further in Chapter 5. As

the format of the input to the layer remained the same, the processes of the other

layers were not affected.

The decision to use Pd as the core audio library for all of the prototypes was

5PureData Official Website: https://puredata.info/
6STK Official Website: https://ccrma.stanford.edu/software/stk/

https://puredata.info/
https://ccrma.stanford.edu/software/stk/
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motivated by its visual programming paradigm, because it is easy to learn and suffi-

ciently robust to allow customization. By presenting audio concepts in visual boxes,

such as algorithmic functions as objects, a patching window as canvas, and data

flow connectors as cords, Pd enables users to create software graphically through

its GUI. The first sound synthesizer was developed by dragging and dropping vi-

sual boxes and connecting them with cords in the canvas provided. This was easily

accomplished in the Pd application. Furthermore, Pd is launched as a separate

process, which is beneficial for the prototype because it does not interfere with the

conversion process. In other words, the sound synthesizer runs in parallel with the

conversion process. In order for the two applications to communicate with each

other, a networking protocol is used. The networking sound protocol is called Open

Sound Control (OSC). OSC is used within the communication of the prototypes to

transfer the soundscape information from the image processing layer to the sound

synthesis layer. It is very similar to the musical instrument digital interface (MIDI),

which is another transport protocol for musical instruments and sound synthesizers.

Although both OSC and MIDI are supported for Pd, OSC was preferred for the

prototypes because of its advantage over MIDI in that it allows multiple datatypes,

including 32-bit integers, floating point numbers, strings, and more, to be trans-

mitted. OSC also includes a high-precision timestamp with picosecond resolution,

which is crucial for applications such as VASS systems, where speed and accuracy

can greatly affect the user experience. Using the OSC protocol format, the image

processing layer encodes the soundscape results into OSC data packets. The sound-

scape that was encoded in OSC format is transferred using the transmission control

protocol (TCP) to the sound synthesis layer. Before starting the VASS system, both

the applications (that contain the earlier layers) and the sound synthesis layer have

to be initiated simultaneously. During the initiation, the sound synthesizer instructs

the Pd engine to load all the required musical instrument models. Immediately after

the musical instrument models are loaded, the sound synthesizer assumes a standby

state while listening to the incoming data through the dedicated OSC network in-



CHAPTER 3. PROTOTYPING 75

terface. Upon receiving the data, the sound synthesizer begins to operate. First,

it unpacks the data into time series format forming a complete soundscape. Audio

is generated by reading the data chunk by chunk and the dataflow is directed to

the appropriate instrument according to the information stored in the chunk. The

Pd engine controls the instrument by attenuating the properties of the sound (e.g.,

pitch and volume) to match the instructions provided. The audio is then played on

the speaker, which is connected to the audio jack of the computer.

In the latter stage, an optimization process was planned to be introduced to

increase the performance of the VASS system. However, despite its benefit for the

prototype development, the performance of Pd is deemed not suitable for inclu-

sion as a part of the optimization process. The main reason for this is that Pd is

launched as a separate process and the communication between the application and

the sound synthesizer was through the internal network using the OSC protocol.

The separation introduced a lag between image processing and sound synthesizing,

which slowed down the optimization process very considerably. To eliminate this

bottleneck, it was decided to merge all the three layers into a single application using

a single code base. Hence, STK was chosen as the immediate replacement for Pd as

the engine that powers the sound synthesizer. Because the implementation behind

audio signal processing is similar to Pd and STK, the changes in the process flow

were not very large. A similar process flow was ported from Pd to STK, but the layer

was then coded in its entirety from the ground up using the C++ language (which

is the same language used for both the previous layers). Instead of using OSC to

represent the soundscape, an instance of the soundscape from the image processing

layer is directly passed to the sound synthesis layer through the manipulation of

internal memory. As in the process in Pd, the musical instrument models, which

are preloaded, are used to synthesize the soundscape and then are played through

the speaker. As a result, the soundscape can be generated more quickly and is more

memory efficient, which makes it suitable for use with the optimization algorithm.
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3.2.2 Hardware

Hardware is an additional important aspect of a VASS system, together with the

internal software that executes the visual-to-auditory conversion. For the normal

prototypes (Prototype 1–4), they are built on an x86 computer on which the three

supported OSs (Microsoft Windows, OSX, and Linux) are installed. Although the

software of the prototypes operates with all computers in different form factors, it

is recommended that a relatively small computer (preferably containing a battery)

such as a laptop be used for the sake of portability. Hence, in the experiments (see

Chapter 4), the participants were instructed to carry a backpack containing a laptop

computer that was running the prototype.

As the VASS prototypes are expected to be operated in real time so that the

soundscape is heard immediately after an image frame is captured, the specification

of the computer hardware has to be powerful. The two main aspects of the hardware

that should be emphasized in order achieve a reliable real-time performance are the

processor and RAM. The role of a processor is mainly to operate the software,

which includes heavy computation tasks, such as manipulating image pixels and

image segmentation. Therefore, it is recommended that a multi core processor with

a relatively high clock speed be used. The lowest processor specification that was

tested that runs well with the prototypes is the Intel® Core™ 2 Duo E6550 with

2.33 GHz. RAM also plays a role in ensuring the soundscape generation is as fast as

possible. It is crucial mainly in three areas in the process: memory storage to keep

the image frames that are captured before processing, as a cache to speed up image

processing tasks, and finally to hold the soundscape information while it is being

synthesized. Hence, the larger the memory, the better the performance of the VASS

system. A minimum RAM size of 4 GB is recommended to minimize the effect of

audio lag between each soundscape.

A VASS system also requires input and output (I/O) devices. The main functions

of these devices are to supply the visual information to the system and to produce
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the audio for the soundscape. In order to achieve these two functions, the system

requires at least a camera and a pair of speakers. Because the research prototypes are

designed for use by the general public, there are no strict requirements regarding

the types of camera and speaker. Throughout the research activities, a range of

standard USB powered Webcams was used to supply the image frames. As for the

speakers, a stereo speaker is needed, because the conversion algorithms utilize the

binaural feature of a sound to represent the visual information. Sennheiser over-

ear headphones as the headphone of choice headphones because they can be worn

comfortably on the head and, most importantly, they produce a clearer sound by

minimizing the external noise from the surroundings.

Additional hardware used in the research included a TOF depth sensor to pro-

vide depth information and also a smartphone for the mobile version of the VASS

prototype. These devices are described later in more detail, in their individual sec-

tions, the depth sensor in Section 3.7 on Prototype 4, and the smartphone in Section

3.8, on Mobile Prototype.

3.2.3 Colour Information

As explained in Section 1.3 of Chapter 1, one of the research goals was to include

colour information in the visual-to-auditory cross-modality information. The colour

information feature is an essential part of the conversion process and therefore it is

shared across all of the research prototypes. The purpose of this feature is to include

the colour information in the soundscape such that it can closely represent normal

human colour vision. According to DeValois and Webster (2011), colour vision can

be defined as the ability to differentiate the light through its wavelength composition.

It is instrumental for human vision and serves multiple important purposes in our

daily life. For example, colour is applied in object recognition. Humans identify

an object’s shape, location, and texture through its colour tones and shades. It is

also useful for scene reconstruction, especially natural scenes that are cluttered with
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many objects and sometimes include lighting effects such as shadows.

In the earlier VASS systems, the developers chose to discard the valuable colour

information in their conversion process for several reasons, which were not limited

to the lack of CPU processing power and the cost of electronics components at that

time. The decision was also driven by the results of experiments, which showed

that a simpler soundscape is considerably preferable because of its speed and ease of

interpretation. Therefore, in the first generation of VASS systems, there was a ten-

dency to emphasize visual features, such as texture and shape, which are expressed

in greyscale images. However, it was anticipated that, with better designs coupled

with improved hardware and software, the implementation of colour information

will not degrade the performance of the soundscape but rather enable us to design

a system that provides a balance between information richness and interpretability.

The inclusion of colour information in VASS systems would allow more possibilities

and improvements. The soundscape can be more varied and users can utilize the

additional information to aid their interpretation. In order to include the colour

information without reducing the quality of the soundscape, additional precautions

have to be taken when designing the conversion algorithm. It is known that, as

the complexity of the information increases, other negative side effects may be in-

troduced in the transmitted medium, which in this case may be the cacophonous

sound effect. Hence, in the prototyping phase, many possible means of overcoming

the problems that arise when the soundscape is synthesized with colour information

were explored.

The incorporation of colour information in visual-to-auditory conversion for the

prototypes is discussed in detail in the following subsections.

Colour and Personalization

One of the problems that arise when implementing colour information in visual

conversion is the consistency of colour recognition. In fact, the variance in colour

perception is common across all colour reproduction devices, such as colour mon-
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itors and printers. VASS too suffers this type of problem. In some of the initial

tests of smaller research prototypes, the users reported many incidents related to

colour inconsistency. In some of the minor tests, they reported that that some users

frequently incorrectly identified the colours; in particular, they confused two colours

that are very close to each other, e.g., blue and indigo or red and orange. When

comparing the actual ground truth (input images) with the output soundscape,

some users noted that the colour captured was misrepresented in the soundscape.

In addition to the problem of the colour reproduction devices, colour constancy also

affects the human perception of colour (Krantz, 2012). Briefly, colour constancy

is the ability of humans to recognize a colour regardless of the colour of the light

source. For instance, a green plant appears green under white daylight but reddish

during a sunset when the main light source is predominately red. Therefore, the

colour has to be adjusted such that VASS can maintain a stable colour appearance

across light sources and users.

We hypothesize that there are two major factors that contribute to this problem.

One is that colour preference differs from one individual to another. The other

contributory factors are external. They consist of a slight variance in the colour

captured by input devices and the surrounding illumination conditions. Therefore, a

colour profile for VASS systems similar to the International Color Consortium (ICC)

profile was proposed. The colour profile created by this study is called the Heuristic

Colour Model (HCM). ICC profile that is introduced by the International Color

Consortium is widely used to describe the colour attributes of a particular device.

Although somewhat similar, the role of the HCM is to set the colour representation

for VASS in the soundscape such that it matches a profile calibrated for the input

device and users.

The HCM was developed based on the HSL colour model as opposed to the

popular RGB colour model for both imaging and display. Although most electronic

devices, such as digital cameras and monitors, use the RGB colour model, the re-

search prototypes use the HSL colour model as the basis of the visual conversion.
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The HSL colour model is preferred to the RGB colour model because it represents

colour more naturally. Being a cylindrical-coordinate representation of colour, HSL

defines the colour such that it closely resembles the colour as perceived by the hu-

man retina. H, which stands for the hue value, specifies the base colour in degrees

(°) from 0°to 360°in a full circle. The other two values, S (for saturation) and L

(for luminosity), respectively specify the saturation and brightness of the colour. S

follows a scale ranging from the lowest saturated colour, 0, to the highest saturated

colour, 1 (in floating points). L follows the same scale, where 0 refers to a very dark

colour and 1 to a very light colour. Using the three components (hue, saturation,

and luminosity), the HCM was developed by combining different threshold values

for each component calibrated according to the preference of different individuals.

Figure 3.2 shows a flowchart of the colour calibration process of the HCM. The

results of the colour calibration profile determine the colour based on several thresh-

old values. The process starts with the value of S. Using two threshold values, S

is used to determine whether the colour should be classified as greyscale or non-

greyscale. If the S value of a colour is very low (below the lowest threshold) or very

high (above the highest threshold), the colour is considered greyscale. There are

three outcomes of greyscale colour: white, grey, and black. The reason for using

the S value to simplify the colour into greyscale or non-greyscale is because humans

frequently fail to recognize a colour if its saturation is too low or too high.

Next, the value of L is used to decide whether the colour falls in the category of

white, grey, or black. This is done because, when the luminosity of the colour is too

high, humans tend to regard it as white and when the luminosity is too low as black.

Therefore, if the L value of the colour is below the lowest threshold, it is classified

as black because it has a very low brightness, whereas if the L value is higher than

the highest threshold, it is classified as white. When the value of L falls in between

the high and low thresholds, the colour is determined as grey.

In the flowchart shown in Figure 3.2, the left side of the branch determines

the colour through the H value. The non-greyscale colours are segregated into seven
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Figure 3.2: Heuristic colour model chart
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basic colours according to the rainbow scale (red, orange, yellow, green, blue, indigo,

and violet). Because the H value is of a circular shape, seven threshold values are

used to separate the pie into seven segments, with each segment belonging to one of

the seven colours. Starting from 0° until the next threshold, the colour is classified as

red. The thresholding continues and ends at 360°, where the final segment belongs

to violet. Using this calibration, a total of 11 threshold values are recorded as the

HCM calibration profile, the role of which is to determine the colour preference of

each individual.

In order to produce an HCM calibration profile, users are required to undergo

a simple test assisted by a facilitator. First, a greyscale colour is presented. The

facilitator slowly adjusts the brightness of the colour from white to black. One high

threshold and one low threshold are recorded from the test. The second test is

conducted to determine the seven segments of the hue pie chart that segregates the

H values into seven different colours. Repeating the same process, the facilitator

adjusts the H values from 0° to 360° while monitoring the response of the user in

order to obtain the seven threshold values that separate the pie chart into segments.

However, the high and low threshold values of S are not obtained through testing.

The high threshold is predefined as 0.9 and the low threshold as 0.1. After the 11

threshold values are obtained, they are saved into a configuration file that is later

loaded and applied in the conversion algorithm for colour determination.

Colour and Timbre Selection

After the colours are distinguished using the HCM, the visual-to-auditory conversion

attempts to map the colour information into an auditory property that does not

cause the user confusion when interpreting the soundscape as a result of an effect

frequently referred to as cacophony. According to the Oxford dictionary, cacophony

can be defined as a harsh discordant mixture of sounds. A cacophonous sound

is mostly experienced by the user as noise and dissonance, which is undesirable

because it confuses the user and reduces the interpretability of a soundscape. When
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generating the soundscape for VASS, it is best to minimize the cacophony effect so

that the soundscape presented to the user is clear and characterized by minimum

noise and high interpretability.

In addition to aiming to minimize the effect of sound cacophony, Luminophonics

plans to enhance the soundscape further by making it as natural as possible. Cur-

rently, in the majority of VASS systems the approach of frequency modulation by

attenuating the audio signal to encode the visual information into the soundscape

is applied. The result is a soundscape that sounds unnatural and that can exhaust

the energy of the user if used for a long time. Listening to unnatural sounds is

tiring because human hearing is not accustomed to this type of sound. The final

soundscape to which Luminophonics aspires is ideally a soothing and natural sound

experience similar to music performed by a musical orchestra. Therefore, it was

decided that musical instrument timbres should be used as the basic sound compo-

nents in the synthesis of the soundscape. This approach is not new: the developers

of See ColOr proposed a similar approach, wherein different timbres are used to

represent different colours (Bologna, Deville, Pun, and Vinckenbosch, 2007). In a

manner analogous to See ColOr, the Luminophonics project used the 10 different

colours from the HCM, i.e., red, orange, yellow, green, blue, indigo, violet, white,

grey, and black, and paired them with 10 different musical instrument timbres.

Given the number of musical instrument sounds that are currently available,

choosing the appropriate set of timbres that suits the prototype was a major prob-

lem. Ten different musical instruments have to selected and the set of timbres has

to conform to the requirement that they should be easily interpreted. Furthermore,

the individual timbres must be distinctive. If two timbres are very similar, they

may contribute to the effect of sound cacophony, because it is more difficult for the

user to distinguish the sounds as they clump together forming a singular sound. It

is not advisable to randomly choose a set of timbres because this may hamper the

interpretability of the soundscape in the event that multiple competing timbres are

grouped together. Therefore, the selection of the timbre set is a difficult task and is
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important considering that, if it is not accomplished correctly, it may degrade the

entire performance of a VASS system.

The easiest means of building an optimal timbre set is to examine the timbres

one by one and test the selection using human subjects to determine their suitabil-

ity. However, this process is exhausting. For instance, with 20 potential musical

instruments and 10 different colours, each subject is presented with 200 test cases.

To obtain a better sample size, the 200 test cases have to be tested on a minimum of

20 users. In total, to test 20 musical instruments, the study would have to conduct

4000 test cases spread over 20 users. Conducting 4000 tests is expensive in terms

of both time and money. Thus, human subject tests for timbre selection can be a

major hindrance to a research project with limited resources. Therefore, an alter-

native method to systematically select the best timbers was proposed in which each

sound signature is analysed and compared with other timbres within the set. Using

this method, a set of distinctive timbres can be found. Through the application of

the timbre set, the effect of cacophony is reduced significantly in the soundscape

produced by the prototypes.

The method used for timbre set selection was built using MATLAB on top of a

toolbox that provides functions to compute music similarity, which was developed

by Elias Pampalk (Pampalk, 2004). Two algorithms, mel-frequency cepstral coef-

ficients (MFCC) and Earth Mover’s Distance (EMD), are used from the toolbox

for these audio similarity measures. MFCCs are a collection of coefficients that are

used to form a mel-frequency cepstrum (MFC). A full MFC is frequently used as a

representation of audio because it is able to express a sound structure through its

short-term power spectrum calculated from the non-linear mel scale of its frequency

(Mermelstein, 1976). Because of the robustness of MFCC, which is able to detect au-

dio signatures regardless of volume or noise, it is frequently used as an audio feature

extractor for applications such as music similarity measures and audio information

retrieval. EMD is the second algorithm used alongside MFCC. EMD was created

to measure the minimum distance between two different probability distributions.
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For this purpose, the distance between two sound signatures (in the form of MFCC

distributions) is measured using the EMD formula, as shown below:

∫ ∞
x=−∞

|Fa(x)− Fb(x)| dx (3.1)

The value of their EMD indicates the extent to which they are dissimilar. Using

the EMD value, one can determine the inter-sound distance (ISD) between two

timbres and then filter out the timbres that are deemed to be too close to each

other.

Algorithm 1 Timber set selection pseudocode

1: for all 10 Timbres do

2: Convert the timbre sound from stereo to mono

3: Scale down the timbre bitrate to 11025 Hz

4: Compute the MFCC of the timbre

5: Perform frame clustering (FC) on the timbre’s MFCC

6: end for

7: while i 6 10 Timbres do

8: while j 6 10 Timbres do

9: Compute the EMD of timbre i vs timbre j.

10: end while

11: end while

Overall, the optimization of the timbre set selection comprises a two-stage pro-

cess. In the first stage, similarity measurement of the audio samples is performed,

and in the second, when the similarity of the timbres is below a threshold, they are

replaced. The process continues until all the available timbres have been used or

all the similarity measurements are well within the acceptable threshold. Initially, a

random set of 10 different timbres is chosen out of the entire set of 20 timbres. An

audio sample is generated for each timbre using the sound synthesizer. Similarity

measurement of the generated audio samples is then performed. So that the dif-



CHAPTER 3. PROTOTYPING 86

ference measurements are focused only on the timbre signature, the volume, pitch,

and duration of the sound are fixed as the control variables. Each audio sample is

generated with the highest volume using La or A as the pitch playing continuously

for 5 s. The two-stage process is repeated until an optimal timbre set is found. After

multiple iterations of optimization, the final timbre set must contain timbres that

achieve a minimal similarity that has a sound separation above a threshold. The

pseudocode of the optimization process is shown at Algorithm 1.

Results of the Timbre Set Optimization Process

The proposed optimization process for timbre selection shows promising results. Af-

ter four iterations of similarity measurement and timbre replacement, a set of desir-

able timbres is obtained. To simplify the process, the similarity of the audio samples

was grouped into four levels, 6 5000pt, 5001pt → 7500pt, 7501pt → 10000pt, and

> 10000pt, where the lower the point, the closer in similarity are the members of

the timbre pair. The goal was to eliminate timbres that have a similarity of 5000pt

and below. The figures below show all four iterations of similarity measurement and

timbre replacement for the available timbre samples. As the iterations proceeded,

the number of similar timbre pairs was reduced and the similar timbre pairs were

replaced by other instruments until it reached Iteration No. 4 in which most of the

similar timbre pairs were replaced.
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Figure 3.3: Optimizing timbre set, Iteration No. 1

Iteration 1

The viola timbre was found to be very close to at least three other timbres,

including piano, quartet, and saxophone. In Figure 3.3, the similarity of the

viola to the piano, quartet, and saxophone is 6 5000pt. Therefore, it was

selected for replacement in the next iteration.
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Figure 3.4: Timbre set optimization, Iteration No. 2

Iteration 2

In this iteration, the viola was replaced by the ocarina, which has a very dis-

tinctive sound, scoring above 10000pt when matched with other timbres. How-

ever, it was found that the saxophone is very similar to the quartet. Therefore,

the quartet was selected for replacement in the next iteration.
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Figure 3.5: Timbre set optimization, Iteration No. 3

Iteration 3

After replacing the quartet with the organ, an improved result was obtained.

However, the piano timbre was unsatisfactory because the similarity measure

showed that the piano timbre is very similar to that of three other timbres

(organ, saxophone, and violin), scoring very close to 5000pt.
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Figure 3.6: Timbre set optimization, Iteration No. 4

Iteration 4

In the final iteration, the piano was replaced with the oboe. Like the ocarina in

Iteration 2 (in Figure 3.4), the oboe was a good replacement because its sound

signature differs greatly from that of other timbres. After four iterations, the

final timbre set was within the threshold of distance measurement.

The final set of timbres that satisfied the distance measurement is presented in

Table 3.1:
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Table 3.1: Final timbre set after four iterations

Timbre

Cello

Clavichord

Flute

Guitar

Harmonica

Oboe

Ocarina

Organ

Saxophone

Violin

3.3 Overview

In order to create a better VASS system through continuous improvement, a common

software engineering approach called prototyping was used. A prototype is a draft

version of the final product that is built to demonstrate one or more features and

concepts before time and resources are invested in initiating the entire development

of the concept. This approach allows implementations and examinations of the

feasibility of new VASS features in prototypes before the actual final implementation.

During the prototyping process, different types of prototype are built, ranging from

simple designs, such as drawings and flowcharts, to smaller working prototypes that

integrate both hardware and software. Prototypes allow researchers, to communicate

ideas during brainstorming sessions and determine whether a certain feature will

help to achieve the research goals. Adjustments to and comments about the idea

on which the prototype is based can be made before moving on to the next stage.

After the validity of the ideas is confirmed, features and functions are combined

for development into a bigger and functional prototype. The prototyping process
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eventually became an evolutionary process in which the prototypes that have the

potential to perform well were selected to be developed. Prototyping optimizes the

development process by helping to reduce the costs incurred. A substantial amount

of time and money is saved when bad concepts are discarded before the actual

development phase.

Figure 3.7 shows the overall flow chart of the prototyping process of this research

project during the early phase in which multiple prototypes were built according

to the flow. By following this process and continually evolving the prototypes from

initial concept, a total of four working prototypes and some other smaller prototypes

were produced for this research studies. In the figure, it can be seen that the ideas

resulting from brainstorming are evaluated and later become prototypes. Then,

the development phase began, during which software was coded and hardware was

assembled to develop the concept into a working prototype. The process continued

until four prototypes were achieved. The prototyping concluded with a series of

experiments and analyses to measure their performance.

The following sections present the details of all the four working prototypes

that were created in the Luminophonics project. Each section is divided into four

subsections: Description, General Process Flow, Conversion Mapping, and Usage.

The subsection on description outlines each individual prototype and the differences

between them. In the section on general process flow, a flow chart is provided

to illustrate the basic process flow of the particular prototype. While different

prototypes have their own visual-to-auditory conversion, the conversion mapping

subsection describes how the prototype converts the visual information. Finally, the

practical usefulness and the benefits of the prototype for the user are clarified in the

usage subsection.
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3.4 Prototype 1

At the end of the exploratory phase of the research, several potential features in

the form of smaller prototypes had been achieved. A basic initial concept was

formed by combining some innovative ideas that were conceptualized with several

common features found in the existing SSDs, in particular in VASS systems. In

order to realize the true potential of a concept, a working prototype must be built.

The main purpose of building a fully working prototype is to evaluate the concept

and examine the strengths and weaknesses of the features. Hence, after finalizing

the ideas, the development process began by building the first working prototype.

Presented in this section are the details of building Prototype 1 and an explanation

of its operation.

3.4.1 Overview

Prototype 1 is the first working VASS prototype produced by the Luminophonics

project for the purpose of examining the proposed features. One of the features that

was examined was the incorporation of additional image processing techniques into

the visual-to-auditory conversion. Recently, researchers from a similar field started

to harness the potential of image processing and computer vision techniques in some

of the latest VASS projects, such as See ColOr and EyeMusic. The main motiva-

tion for applying these techniques in the cross-modality conversion was to increase

the feature extraction of visual information in order to improve the interpretability

of the soundscape. As well as using image processing techniques to improve the

visual feature extraction, the inclusion of colour information in the conversion was

proposed. By including colour information, the soundscape can provide more in-

formation to the listener than can the traditional VASS soundscape, which encodes

only colourless visual texture information. Finally, an additional aim of the creation

of Prototype 1 was to improve the quality of the generated soundscape. To achieve

this, the prototype relies on the timbres of musical instruments as the basis for its
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sound synthesizer, in the hope that the synthesized soundscape would sound more

natural so that it can be more easily interpreted and more comfortable to listen to.

In addition to the above three potential features, a new approach that was in-

troduced in Prototype 1 is the usage of the swiping mechanism. In summary, the

swiping mechanism implemented in Prototype 1 splits an image into multiple rows

and scans the rows individually in one direction (from left to right). The purpose of

applying the swiping mechanism is to introduce the concept of time delay to repre-

sent one of the visual features. Utilization of the temporal property of audio allows

an additional option to be mapped to the visual features that have been extracted

in Prototype 1. The details of the system and experiments were published in one of

my earlier papers titled “Swiping with Luminophonics” (Tan, Maul, N. R. Mennie,

and Mitchell, 2010). In the following sections, the processes of Prototype 1 and the

development efforts are discussed. On the other hand, the process of evaluation is

covered in Chapter 4.

3.4.2 Process Flow

Figure 3.8 illustrates the general conversion process flow applied in Prototype 1.

Prototype 1 follows the general framework that is commonly used for most VASS

systems. In this process, first the visual data are received from an image frames

grabber unit, such as a Webcam or a digital camera. The capturing process is per-

formed in the imaging layer, which is represented by the blue box in Figure 3.8. As

explained in the previous section, this layer executes all the heavy tasks, capturing

the image and processing the data into the suitable format.

After the image frames have been captured, the data are delivered directly to

the next layer, which is the image processing layer (represented by the yellow box

in Figure 3.8). The purpose of this layer is to extract the visual features from

the image data and to translate/map them into the corresponding auditory form.

Several standard image processing techniques are used in this layer, which executes
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Figure 3.8: Prototype 1 conversion process
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mainly image segmentation, as well as colour processing. The visual features that

are extracted in this layer include colour information, location, and the size of the

segmented blobs. To perform the task, the layer contains four modules, each of

which is designed to manage a different task. As the image data enter the layer,

they are processed by the image segmentation module, which converts the image

data into several different blobs. This process is also called blobbing. The blobs

then pass through the HCM (as explained in Subsection 3.2.3), which determines

the colour of each blob. The locations of the blobs are determined by a third

module that stripes the image into multiple rows and arranges the blobs in their

specific rows for the swiping mechanism. All the information is then fed into the

final module in the layer, called the decision module. This module, as its name

suggests, makes the decisions for the cross modalities conversion process. It decides

which visual property matches the corresponding auditory properties such that a

good soundscape is produced. In addition, the swiping mechanism is implemented

in this module. The decision module receives input from the two previous sources

combined in a streaming format of blobs tagged with their colour code. It then

decides to output an individual sound for each blob according to its size, colour,

and location. Each blob has a different sound that is predetermined by the mapping

coded inside this module. Finally, a soundscape is generated by combining the

sound of each blob, where the blobs residing in the leftmost column are sounded

first, followed by the blobs in the subsequent columns, until the rightmost column

is reached. This briefly describes the operation of Prototype 1’s swiping method.

In the final step, the soundscape generated from the image processing layer is

transferred to the final layer, the sound synthesis layer. This layer contains a sound

synthesizer that is implemented using Pd or the STK library. Before the application

is started, a set of timbre models of different musical instruments is preloaded in

the sound synthesizer. It then uses the timbre models to generate the soundscape

according to the message passed from the previous layer. Finally, the user listens to

the audio (using a speaker or headphones) created in real time by the synthesizer
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through the audio driver inside the OS. Prototype 1 provides an additional function

that saves the soundscape into an audio file so that it can be played again in the

future.

3.4.3 Software and Hardware

During its lifetime, Prototype 1 underwent two revisions before reaching the final

version. In its initial version, the software of Prototype 1 was written as two separate

applications, one of which executed the imaging and image processing and the second

the sound synthesis. The two applications ran in parallel.

The diagram in Figure 3.9 shows the general processes and software of Proto-

type 1 Beta, the first revision of Prototype 1. In the diagram, two big rectangles

separated horizontally, on the left and right hand side, can be seen. The rectan-

gles represent the two separate applications used in Prototype 1. Between them,

an envelope symbol is drawn to represent the communications channel between the

two applications. Stated simply, Prototype 1 comprises two applications running in

parallel and communicating with each other using a common message format called

Open Sound Control (OSC). The first two layers (the imaging layer and the image

processing layer) run inside the first application. Using the functions supplied by

libraries, such as OpenCV, the application captures image frames from the camera

and translates them into a soundscape, which is contained in OSC format. The

OSC message is then transferred to the second application through a TCP network

channel. Upon receiving the OSC message containing the information about the

soundscape, the second application starts to decode the information in the message.

Using the functions provided by Pd as its core engine, it synthesizes the sound-

scape into its audio form. Pd also fills the role of playing the audio through the

audio driver. The user listens to the soundscape in real time using the headphones

connected to the computer.

Following Prototype 1 Beta, the final version of Prototype 1 was created after a



CHAPTER 3. PROTOTYPING 99

Figure 3.9: Prototype 1 Beta software

major change had been made in the software and the library used. In Figure 3.10,

the diagram of the second revision of Prototype 1, which is also its final version, is

presented. Although the versions produce similar results, parts of the software (in

the second revision) were completely rewritten. As opposed to Prototype 1 Beta,

the final version of Prototype 1 is written as a single application. All the three

layers, the imaging layer, image processing layer, and sound synthesis layer, are

merged into one application. A major difference between the versions is the sound

synthesis layer. The final version of Prototype 1 no longer uses Pd as the core sound

synthesizer. Instead, it uses a C++ sound library called the STK library as its

replacement. Basically, in the context of the prototype, STK functions in the same

manner as Pd as a real-time sound synthesizer. The main reason behind this major

rewrite was to cater for future tasks, especially the optimization of the conversion,

which is discussed in Chapter 5. Furthermore, by using STK as the audio library,

the entire application can be written in a single language (C++). This increases

the efficiency of all the software by eliminating the bottleneck that occurs when
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Figure 3.10: Prototype 1 software

transferring the soundscape through a TCP network channel.

3.4.4 Image Segmentation (Blobbing)

Following the previous introduction of the general process and software used for

Prototype 1, this section discusses the core process of the visual-to-auditory conver-

sion implemented in the prototype, which is the feature extraction function. This

function resides in the image processing layer, which is located between the imaging

and sound synthesis layers. It receives the visual data from the imaging layer and

converts them into the auditory soundscape format that is transformed into audio

in the sound synthesis layer. The main purpose of this feature extraction function is

to obtain the relevant visual information, such as colours, textures, and shapes, so

that it can be represented in auditory form. In Prototype 1, an image segmentation

technique called blobbing is applied as the main feature extraction component.

Basically, upon receiving the image data, the image processing layer calls the

algorithm to segment the image. The algorithm slices the image into multiple blobs.

A blob can be defined as a group of image pixels that are considered to belong

to the same source/object. The process is sometimes called blobbing. In order

to identify the blobs in the image, the algorithm scans the image and labels the
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pixels by computing their connected components as specified by the contours. A

few image segmentation algorithms for digital images are available, each of which

has its own strengths and weaknesses. In this image segmentation module, the

main image segmentation algorithm used, called “A linear-time component-labeling

algorithm using contour tracing technique”, was proposed by Fu, Chen, and Lu

(2004),. The component-labelling algorithm operates by tracing the contours in

the input greyscale image to detect both the external and internal contours of the

components. By iterating through the list of contour points, multiple blobs can be

detected by identify the components that belong to the same contour and can be

grouped. The main advantage of using this simple yet efficient algorithm is that

it segments the image in linear time, which is very fast for a small image. The

algorithm is ideal for the prototype because the image frames used are small (with a

maximum of 640×480 image resolution). Therefore, although image segmentation is

computationally heavy, the process operates in near real time with a minimal time

lag being incurred by the entire conversion process. Furthermore, the algorithm

produces additional blob properties, such as size (width and height) and exact lo-

cation. The implementation of this fast image segmentation algorithm enhances

the user experience of the prototype because it minimizes the lagging effect during

the conversion. Because the conversion operates in near real time, it also helps the

user make quicker decisions. Moreover, the additional blob information, such as

its size and location, facilitates the visual-to-auditory property mapping during the

conversions process.

However, the image segmentation module in Prototype 1 does not entirely de-

pend on the connected component contour tracing algorithm. The module includes

additional image processing functions for pre-processing the image in order to in-

crease the accuracy and the performance of the feature extraction. Figure 3.11

shows that two pre-processing steps are executed before the main segmentation us-

ing connected-component contour tracing segmentation. In the pre-processing, first,

the image frames are cloned and converted into greyscale colour space (as shown in
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Figure 3.11b). The conversion of the colour images into greyscale images is a prereq-

uisite for the contour tracing algorithm. However, in order to maintain the colour

information for colour extraction in the later stage, the image frames are cloned be-

fore the greyscale conversion is performed. At this point, two image frames (colour

and greyscale) are split from a single source.

Next, a K-means clustering algorithm (with the number of clusters set to 10) is

applied to the greyscale images. The purpose of the clustering algorithm is to further

simplify the images by grouping similar pixels together. Figure 3.11c illustrates

an example image of a teapot after K-means clustering. The K-means algorithm

clusters the image into several segments and further reduces the noise in the image.

If the K-means algorithm was not applied, the contour-based image segmentation

method would produce a considerable amount of noise comprised of many tiny pixels

that may greatly degrade the quality of the soundscape. After five iterations of K-

means, the noise is greatly reduced, where some of it is seen to be absorbed into a

larger segment. The post K-means binary images are then divided into two parts of

equal size horizontally (left and right hand) forming two regions of interest (ROIs).

The function of creating two ROIs out of a single image serves two purposes. It

not only speeds up the process of image segmentation but also caters to the two

channel stereo audio aspect of the prototype. In this prototype, blobs in the left

and right hand regions are sonified individually in different channels. Assuming that

earphones/headphones are being used, the left ear can hear only the objects present

in the left hand ROI and the right ear can hear only the objects in the right hand

ROI. If the object is large so that it stretches over both regions, its corresponding

audio properties are played in both channels so that they are heard in both ears.

This implementation allows the user to determine the X-axis of objects.

The last step in the image pre-processing phase is the generation of the contours

for both ROIs. This is an important process, because the contour information is one

of the dependencies of the subsequent image segmentation algorithm. The extraction

of contour information is relatively fast and easy using the built-in function provided
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(a) Example image (b) Example image (greyscale)

(c) Example image (K-means)
(d) Example image (connected component

segmentation)

Figure 3.11: Blobbing steps for an example image
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by OpenCV library. The contour function is executed twice, once for each ROI. At

the end of the pre-processing phase, two sets of contour information, together with

their greyscale image data, are obtained for the left and right hand ROI of the image,

respectively.

The feature extraction process ends with the image segmentation that was de-

scribed above. Both the ROIs and their corresponding contour information are fed

into contour-based component-labelling algorithm proposed by Fu, Chen, and Lu

(2004). Blobs are then generated for both the left and right hand region. The results

of the segmentations are arranged into a list of blobs according to their location in

terms of a vertical starting point (Y -axis). The description of each blob is stored in

the individual element of the list. It includes the size and the starting location of the

blob (X and Y), and its width and height. The final piece of information about the

blobs, which is their colour, is determined using HCM process. At this stage, the

blobs generated by the image segmentation algorithm are mostly of a single colour

with slight variations. The HCM module that was discussed in the previous section

is utilized at this stage. To determine the colour of each blob, the RGB values of

every pixel in the blob are averaged. The HCM module determines the colour of

the blob using the averaged RGB value. The results of the HCM are appended to

the list of blobs. The final result of the feature extraction is a list of blobs with

their metadata, including size, starting point, width, height, averaged RGB value,

averaged HSL value (from HCM), and colour.

3.4.5 Conversion Mapping

The primary visual properties that were investigated in this prototype are the colour,

size, and location of objects. In order to synthesize the soundscape, the visual prop-

erties are extracted and then converted into the corresponding auditory properties.

The conversion process follows a set of rules that determines the matching of the

visual and auditory properties, which is called visual-to-auditory mapping. Superfi-
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cially, the mapping appears to be simple and direct, but it is crucial to understand

both the input and output properties that allow the prototype to maximize the in-

formation conversion to produce a good soundscape. A good and intuitive mapping

both improves the learning process so that the user can start using the technol-

ogy more quickly and maximizes the information retention across visual to auditory

modalities, as well as increasing the interpretability of the soundscape. This sub-

section documents the activities and design process that are used in Prototype 1.

Figure 3.12 shows the results of the conversion. After the image is divided,

each individual blob is extracted from one of the stripes. In the figure, the green

blob in the 8th row is highlighted. The blob then passes to the conversion mapping,

which produces four information items describing the blob: colour, colour brightness,

location (X-axis), location (Y -axis), and the size of the blob. Referring the example

teapot image, the following sections describe the process of the conversion using this

mapping.



CHAPTER 3. PROTOTYPING 106

Figure 3.12: Prototype 1 conversion for example image

Colour Mapping

After undergoing the HCM process, the colour of each blob is labelled from the

range of 10 colours (red, orange, yellow, green, blue, indigo, violet, white, grey,

and black). To represent it in the soundscape, each colour is directly mapped to a

musical instrument from the set of instrument timbres that was preloaded into the

sound synthesizer. Initially, a set of musical instruments was selected based on the

intuition of psychological association between timbre tone and colour (similar to the

traffic light scenario, where stop is associated with red and caution is associated with

amber). However, the general feedback collected from the users indicates that the
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instruments produced a weak soundscape with too much overlapping sound, which

resulted in a soundscape that was difficult to interpret.

This problem led to the creation of the process for optimizing the timbre set

selection, discussed in Subsection 3.2.3. The general idea is to maximize the distance

between each timbre by emphasizing the uniqueness of the sound signature and thus

form a set of timbres that are distinguishable when played together. The result is

the set of optimized timbres presented in Table 3.2. The same timbre set is used for

all the prototypes in this studies.

Table 3.2: Prototype 1 Colour Mapping

Colours Instrument

Red Saxophone

Orange Cello

Yellow Harmonica

Green Clavichord

Blue Oboe

Indigo Guitar

Violet Ocarina

White Organ

Gray Flute

Black Violin

Colour Mapping: Brightness

An additional benefit of using the HSL colour model as the basis of HCM is the avail-

ability of colour brightness information. The brightness of a colour is determined by

the L component in the HSL value. Hence, using the value of the L component, the

brightness of the blob is able to be encoded in to one of the audio properties. The

decision to encode the brightness of the blob in the soundscape was made because its
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brightness is a crucial aspect of a colour, in addition to the colour itself. In certain

situations, decision have to be made based on the combination of the colour and its

brightness. For example, a colour can be perceived as white when it is too bright.

The same principle also applies in the opposite situation, where the colour can be

considered black when the brightness is not sufficient. In order to better describe

colour in terms of normal human vision, it is essential to include colour brightness

in the soundscape.

The conversion mapping in Prototype 1 maps the brightness to the audio fre-

quency. Because in general human hearing is effectively limited to a range of audible

frequency (around 20 to 2000 Hz), the L value has to be converted to a value within

this range. In order for the audio frequency to be more pronounced, the algorithm

converts the L value to a range of audio notes in a musical scale. For the purpose

sound synthesis, the Dorian scale was chosen. In a standard octave, the notes in the

Dorian scale are C0, D0, E[0, F0, F0, A1, B[1, and C1. Table 3.3 shows the notes of

the Dorian scale and the corresponding frequencies used for this conversion. In the

example in Figure 3.11, the colour of the extracted blob is green when the L value

is 0.2196. Therefore, the converted note is D0, which is 73.416 Hz. Combining the

colour conversion (above) and this brightness conversion, the sound of the blob is

played using the clavichord in D0.
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Table 3.3: Dorian scale and its frequencies

Note Frequency (Hz)

C0 65.406

D0 73.416

E[0 77.782

F0 87.307

G0 97.999

A1 110.000

B[1 116.541

C1 130.813

Location Mapping: X-Axis

For Prototype 1, the information describing the horizontal location (in terms of the

X-axis) of a blob is reduced to only two resolutions, the left and the right hand side.

This allows the sound to be directly mapped to the stereo (dual channel) audio used

to synthesize the soundscape. Each channel corresponds to the ear in which the

user can hear the sound. Sound that is produced in the left or right channel can

be heard only in the left and right ear, respectively. Therefore, if and only if the

blob resides in the left hand side of the image, is it heard in the left channel of the

soundscape. The same applies to blobs located at the right hand side of the image:

they can be heard only in the right channel of the soundscape. If the blob is so large

that it spans across both sides of the image, it can be heard in both the left and

right channel and is thus played in both ears. In the example in Figure 3.11, the

green blob is located at the right hand side of the image, and therefore, the sound

of the blob can be heard only in user’s right ear.
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Location Mapping: Y -Axis

The swiping mechanism proposed for the prototypes is used to encode the vertical

location (in terms of the Y -axis) in the soundscape. Because Prototype 1 swipes

from the top to the bottom, creating one horizontal stripe after the other, the vertical

locations of the blobs are translated into temporal information in the soundscape.

To simplify, the blobs in the first stripe are heard first and subsequently the blobs

in the stripe below that stripe, until the swipe reaches the end of the image. The

start time (tn) of the blob sound is calculated as

tn =
T

N
· n (3.2)

The start time (tn) of the blob in the nth stripe is the total time of a soundscape

(T ) divided by the total number of horizontal stripes (N) times the index of the

stripe (n). In the example in Figure 3.11, the blob is located in the 8th row. If the

total duration of the entire soundscape of an image is 2 s, the blob can be heard

800 ms after the sound of the image. This is because there are a total of 20 horizontal

stripes in the image, and therefore 100 ms is allocated for each stripe according to

Equation 3.2.

Size Mapping

When the blobs are extracted from the image frames, the component labelling al-

gorithm supplies the size of every blob by calculating using the coordinates of the

rectangle bounding box. Each blob’s size, S, can be obtained from the two coor-

dinates of opposing corners, the top right hand corner (x0, y0) and the bottom left

hand corner (x1, y1) using

S = (x1 − x0) · (y1 − y0) (3.3)

For Prototype 1, it was decided that the size of a blob should be mapped to the

sound volume. In order to describe the size of a blob, the two elements (the blob’s
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size and the sound volume) are directly proportional. The intention was that the

larger blobs would sound louder than the smaller blobs. However, the volume range

is normalized within a limited sound range to ameliorate the problem that the sound

of a bigger blob covers the sound of smaller blobs. Ten levels of sound volume are

used, from 0 (no sound) to 9 (maximum volume). The sound volume of the blob is

calculated using its size as compared to the total size of a single horizontal stripe.

For example, if the total size of a horizontal stripe is 800 pixels and the blob size

is 200 pixels, the sound volume of the blob will be 3. The result is obtained by

rounding up the value (2.5) from the fraction of 200
800

multiplying by 10 volume levels.

3.4.6 Usage

Prototype 1 must be used with a personal computer, whether a desktop or a laptop.

It can be used with or without a camera attached to it. However, without a live cam-

era, the application can sonify only when loaded with a static image. In this mode,

the user puts on the earphones/headphones, opens the application, and loads an im-

age. The computer plays the audio of the soundscape in the earphones/headphones

when it has completed the conversion.

In the live mode, Prototype 1 must be tethered to a USB-powered camera. It

operates with any Webcam or the DS311 depth sensor produced by DepthSense.

Normally, in experiments the camera is tethered to a laptop computer because it

is lighter and easier to carry. When in live mode, the camera constantly feeds the

captured image frames to the application. The application reads the image frames

and converts them into the soundscape serially. Between the frames, a short mono-

tone sound is played to signify the end of the current frame while the application is

processing the next frame. As usual, the user listens to the audio of the soundscape

through the earphones/headphones.

To interpret the soundscape, the user needs to concentrate on the sounds heard

in both the left and right ear. The blobs at the right hand side appear in the right
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sound channel and the blobs located at the left hand side appear in the left sound

channel. As Prototype 1 swipes from top to bottom, the blobs that appear first are

located at the top. Subsequently, the blobs appear one by one depending on their

location on the Y -axis. To pinpoint the location of the blob approximately, the

user first determines the Y -axis and then determines whether the blob appears on

the left or right hand side. If the blob appears on both sides of the sound channel,

the blob stretches over both sides. After obtaining the location of the blobs, the

user can interpret the remaining details of the blobs according to their mapping.

For example, the colour is determined by the type of timbre, the shade by the tone

used, and the size by the volume of the sound.

In a practical scenario, two options are provided for the position of the camera.

The user is free to choose whether to mount the camera on top of his/her head

or to hold the camera in his/her hand. Each option has its own strength. The

head-mounted position provides vision that is closer to that which the human eye

sees, whereas the handheld position provides more degrees of freedom because the

user can swing the camera. Whichever camera position is chosen, the usage is

similar. The user points the camera to the direction he/she intends to visualize and

the soundscape is played in his/her ears. One advantage of mounting the camera

on top of the head is that it frees up the user’s hand to do other things. When

the soundscape of the visual frame has been played, the direction of the camera is

changed slightly to capture a slightly different angle of the scene. While listening to

the soundscapes, the user gradually builds a mental image of his/her surroundings

by interpreting and comparing the soundscapes.
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3.5 Prototype 2

3.5.1 Overview

Prototype 2 is the second iteration in the Luminophonics project prototype series.

It was derived from Prototype 1, most of the basic processes of which were retained

with some changes to introduce an additional new feature. Although the two pro-

totypes are similar in terms of basic functionalities, Prototype 2 was created to

examine a major shortcoming in Prototype 1: the lack of resolution of the blob’s

horizontal position. In Prototype 1, the information of the blob location is trans-

lated to temporal delay to represent the vertical position and to the audio channel

in the stereo audio to represent the horizontal position. As an image is split into

10 separate stripes, the vertical position of a blob has 10 possible discrete locations.

However, because the prototype relies on stereo audio, there are only three possible

options for the translation of the horizontal position. The blob can be heard in the

left audio channel if it is located at the left hand side of the image or otherwise in

the right audio channel. It can also be heard in both channels if the blob stretches

from the left to the right hand side of the image. In total, the blobs in Prototype

1 have only three possible horizontal positions: left, right, and centre. Superficially,

the interpretation can be very simple, but it can be imprecise. The main objective

of the development of Prototype 2 was to address the problem by increasing the

number of possible horizontal positions of the blobs to improve the precision of their

location.

In order to increase the number of horizontal positions, Prototype 2 implements

a concept called the head-related transfer function (HRTF) (, which takes advantage

of humans’ ability to localize sound through their hearing. This amazing ability of

humans allows them to locate a sound source by listening to the volume difference

in the binaural sound. This technique has been commonly applied and exploited in

the entertainment industry to create an immersive theatrical experience. Popular

cinema halls are frequently equipped with multiple speakers (5.1 or 7.1) of all sizes
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located around the audience, which play multi-channel audio to simulate sound com-

ing from different surrounding locations. The concept of applying HRTF in VASS

systems is not new: Bologna and Vinckenbosch explored this idea in one of their

research projects, namely, Ambisonic 3D-sound field (Bologna and Vinckenbosch,

2005). The Ambisonic 3D-sound field device utilizes sound localization to simulate

a 3D surround sound environment by locating individual sounds through augmenta-

tion according to the location from which the objects are coming. By means of this

immersive surround sound, the user can approximately determine the source loca-

tion of objects. By exploiting this human stereo hearing ability, sound localization

may have a large potential for improving visual-to-auditory conversion.

A simple HRTF is implemented in Prototype 2. Basically, the volume of each

blob is varied according to its horizontal position. Thus, more resolution is added to

the horizontal representation by using the volume resolution. However, by associat-

ing the volume to the horizontal position, Prototype 2 lost the ability to represent

the blob size by volume, which was a feature of Prototype 1. This overview de-

scribes the brief implementation and the intuition behind Prototype 2. The details

are further elaborated in the ‘Conversions Mapping’ section (Subsection 3.5.4).

3.5.2 Process Flow

The process flows of Prototype 1 and Prototype 2 are similar, as shown in Figure

3.8. First, the image grabber captures the current image frame and stores the

data in the image container for subsequent operations. Then, an image processing

module, inherited from Prototype 1, proceeds to process the image data, producing

blobs and colour information. It is noteworthy that it is the subsequent part of the

process that distinguishes Prototype 2 from its predecessor. The information from

the image is split into multiple horizontal stripes according to its location. The

soundscape is generated by swiping each horizontal stripe top-down, matching each

visual property to its corresponding audio properties. The resultant soundscape (in
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the form of an array) is then transferred to a sound synthesizer so that the audio

can be played by means of the audio driver in the computer. A headphone/speaker

connected to the computer at the audio jack plays the audio to be heard by the

user.

3.5.3 Image Segmentation and Blobbing

In Prototype 2, the same blobbing method is implemented as in Prototype 1, as

described in the previous section (Subsection 3.4.4). Since the swiping direction of

the two prototypes is the same, the manner in which the image is divided is also

the same. In both prototypes, the segmentation function divides the image into

two vertical columns (left and right). The two columns are then further divided

horizontally into multiple stripes for the top-to-bottom swipe. However, the major

differences between Prototypes 1 and 2 lie in the conversion mapping, which is

described in detail in the following section.

3.5.4 Conversion Mapping

The differences between Prototypes 1 and Prototype 2 lie in their conversion map-

ping. They are revealed by a side by side comparison of Figures 3.12 and 3.13. The

figures illustrate the conversion of each prototype performed on the same example

image. The results of the conversion are clearly different because of the changes ef-

fected in Prototype 2. One obvious difference in the Prototype 2 conversion results

is the number of conversions: Prototype 2 encodes only four types of information,

whereas Prototype 1 encodes five types of information. The types of information

used in Prototype 2 are colour type, colour intensity, horizontal location (X-axis),

and vertical location (Y -axis). The absence of blob size in the soundscape produced

by Prototype 2 is compensated by emphasizing the horizontal location of the blob.

Prototype 2 was built such that the horizontal location is defined better by adding

more positions to the X-axis information as compared with only three positions
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(left, right, and centre) used in Prototype 1.

Figure 3.13: Prototype 2 conversions for example image

Colour Mapping

Prototype 2 inherited the colour-to-instrument mapping from Prototype 1. The

details of the colour conversion are discussed in Subsection 3.4.5. The same colour-

to-instrument mapping shown in Table 3.2 is used.

Colour Mapping: Intensity

Because Prototypes 1 and 2 use the same colour mapping, the mapping of colour

intensity to audio frequency remains the same. Prototype 2 converts the colour

intensity to the Dorian scale, as shown in Table 3.3. As illustrated in Figure 3.13,
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the result for the green leaf in the teapot is translated as a D0 note played using the

clavichord.

Location Mapping: X-axis

As mentioned, the implementation of the horizontal location information of the blob

(in terms of the X-axis) is the major difference between Prototype 2 and Prototype

1. The reason for this change is that the horizontal location of a blob is poorly

represented in Prototype 1. The horizontal information of the blobs in Prototype 1

allows three positions (left, right, and centre). Changes were made in Prototype 2 to

increase the horizontal resolution in order to increase the accuracy when sonifying

the location of the blobs. A more precise location representation greatly enhances

the conversion of the features of an image frame.

To increase the horizontal resolution of the location, a different sound property

from that used in Prototype 1 is utilized. This was because the current implementa-

tion (representing horizontal location with the stereo channel) cannot accommodate

this information expansion. Therefore, in Prototype 2 the support for size mapping

was omitted so that the volume property would be available. Moreover, by repre-

senting horizontal location by sound volume, a user experience that is similar to

HRTF can be created when the user listens to the soundscape.

The sound volume of a blob is calculated using its distance from the centre of

its horizontal stripe. The closer to the centre the blob is situated, the higher is the

sound volume of the blob. Similarly, if the blob is situated at the far end of the

stripe, its sound has the lowest volume. The sound volume, V , of a blob is calculated

as

V = 10 ·

∥∥∥∥∥W2 −
∣∣x− W

2

∣∣
W
2

∥∥∥∥∥ (3.4)

Figure 3.13 shows that the volume of the green leaf blob according to result of

the equation above is 9. Its volume is 9 because the horizontal location of the blob,
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x, is pixel 340 while the centre of the stripe is pixel 400, making the distance of the

blob from the centre 60 pixels. With this distance, the blob falls in the second of

the 10 slots, and therefore it has the second highest volume (9). Finally, because

the blob is at the right hand side of the image, it is heard in the right channel of

the soundscape.

Location Mapping: Y -axis

Finally, in Prototypes 1 and 2 the same swiping technique is implemented: they both

swipe from top to bottom. Therefore, the vertical location of the blob is translated

to temporal information in the soundscape. Stated simply, blobs that appear in the

first row of the image are heard first. Subsequently, the blobs in the next row are

heard, and so on until the swipe reaches the final row in the image.

3.5.5 Usage

The differences in terms of usage between Prototypes 1 and 2 are minimal. They

both have two modes, a static image mode and a live mode. The user is still required

to wear earphones/headphones to listen to the soundscape. The general process is

the same for the two prototypes: the prototypes receive visual data and play the

converted soundscape through the speaker. However, the user needs to relearn the

interpretation of the soundscape for Prototype 2.

In Prototype 2, the volume of the sound is no longer used to represent the size of

a blob. Because the size of the blob is not represented in this prototype, users have

to reinterpret the information using their mental map. The lack of size information

is compensated by the increased resolution of the blob’s horizontal position. The

volume of sound is reassigned in Prototype 2 to represent the horizontal position of

the blobs. Previously, in Prototype 1 the blobs had only three positions (left, right,

and centre). For instance, a blob that is played in the left channel is situated on

the left hand side of the image, whereas a blob that is played in the right channel is
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situated on the right hand side of the image. The difference in Prototype 2 is that

the user is required to listen closely to the volume to determine the location of a

blob. The volume of the sound now inversely correlates to the calculated distance

of the blob’s horizontal position from the centre point of the image. In other words,

the louder the sound volume of the blob, the closer it is to the centre of the image.

For example, when the user hears the sound of a blob at low volume in his/her right

ear, this indicates that the blob is located at the right side of the image far away

from the centre.

To conclude, the usage of Prototype 2 remains similar to the general approach,

where the user points the camera to the intended direction and allows the proto-

type to sonify the entire scene. However, Prototype 2 offers a soundscape with a

higher horizontal resolution than Prototype 1 because the horizontal information is

translated to the volume.

3.6 Prototype 3

Unlike Prototype 2, Prototype 3 is not a direct evolution from its predecessors. There

is a major difference between it and both Prototype 1 and Prototype 2. While Pro-

totype 3 still retains the swiping mechanism originally implemented in Prototype 1,

a much simpler image segmentation technique is applied for visual feature extrac-

tion. In Prototype 3, the contour-based blobbing technique for segmenting the input

image into objects/blobs is not used. Instead, an approach for resolution reduction

similar to that used in many of the first generation VASS systems (e.g., vOICe) is

used. The source of the idea behind Prototype 3 was many of the earlier VASS

systems, where the focus was on producing soundscape from raw visual features,

such as pixels and colour intensities, rather than from blobs. The purpose of imple-

menting a much simpler algorithm for image segmentation instead of the complex

contour-based segmentation technique used in Prototypes 1 and 2 was to determine

the advantages and disadvantages of both techniques through comparison. Each
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technique has its own unique features: the blobbing technique produces a simpler

soundscape focusing on each object as a whole but sacrifices information, such as

detailed features. Although the soundscape based on raw pixels may retain much

of the visual information, it may degrade the interpretability of the soundscape. By

comparing the two techniques, the effect of each on the user experience in terms of

interpretability and learnability and also on the robustness of the conversion can be

determined. Using the results of the comparison, more insight into how to build a

better image processing algorithm that is suitable for a VASS system was obtained

and then further elevates its performance. This section describes in detail the in-

ternal operation and the development of Prototype 3 and the inspiration behind

it.

3.6.1 Overview

Prototypes 1 and 2 utilize a contour-based image segmentation technique to extract

the features of the objects/blobs in an image. The soundscape is then generated

based on the information of the extracted blobs. This mimics human vision as closely

as possible because humans recognize a scene through the objects in the frame. By

using this approach, the power of the computer is harnessed to process the image in

advance to lighten the interpretation burden of the user.

The VASS devices of the earlier generation (i.e., vOICe and PSVA) applied a

much simpler image segmentation technique, emphasizing human interpretation of

the soundscape instead of computer assisted interpretation with image processing.

They do have certain merits, and thus they sometimes outperform Prototypes 1 and

2 in certain situations. Because they directly map the properties of the pixels to the

audio properties, the devices are able to maintain most of the visual properties, such

as the features, shapes, and textures. In situations that greatly favour visual features

(e.g., object recognition), such a VASS system shows a very good performance. Users

are able to utilize the features to recognize an object through its shape and texture.
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As compared to the prototypes that use contour-based segmentation, many visual

details were discarded during the image processing phase in favour of the shape

as opposed to the texture. Although the soundscape sounds simpler and is more

easily interpreted, the user finds it difficult to use it in a situation that requires finer

details. For example, a user could not easily distinguish between two objects of the

same shape, such as a basketball and an orange. The detailed results and further

explanations of the comparison are presented in Chapter 4.

The source of an additional inspiration that encouraged us to pursue direct pixel

mapping was the modern MIDI controllers that are widely used by soundmixers and

disc jockeys, such as Ableton Push7 and UNTZtrument by Adafruit8. Images of the

two controllers are shown in Figure 3.14. It can be seen that the devices feature

multiple buttons arranged in a square shape, where each row can be programmed as

a different instrument and each column can be specified at a certain time interval.

A disc jockey composes a tune by pressing the buttons so that the instruments are

played in a specific timeframe in a desired key. Connected to a sound synthesizer

such as the Ableton Push, the MIDI controller then sweeps from left to right, column

by column, repeating the beats to form a tune. It should be noted that the swiping

mechanism proposed in this study implemented in the previous prototypes operates

in a similar fashion. This one-direction swiping either from left to right or from top

to bottom utilizes the time factor to play different keys to form a tune/soundscape.

Thus, by re-imagining each image pixel as an individual button on the MIDI con-

troller, a soundscape can be synthesized using the same procedure as implemented

in the MIDI controller.

7Information on Ableton Push can be found at: https://www.ableton.com/en/push
8Information on UNTZtrument can be found at: https://learn.adafruit.com/untztrument-

trellis-midi-instrument/overview

https://www.ableton.com/en/push
https://learn.adafruit.com/untztrument-trellis-midi-instrument/overview
https://learn.adafruit.com/untztrument-trellis-midi-instrument/overview
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(a) Ableton Push (b) UNTZtrument produced by Adafruit

Figure 3.14: Images of popular modern musical instrument digital interface con-

troller

3.6.2 Process Flow

Figure 3.15 shows the conversion process of Prototype 3 from capturing the input

images to synthesizing the soundscape. The main difference between this process

and that implemented in Prototypes 1 and 2 is the absence of an image processing

module. This module is replaced by a simple function to reduce the resolution of the

image from the original resolution, which depends on the type of camera used, to a

resolution of 20 × 20. The HCM, which previously ran in parallel with the image

processing module, now operates after the image resolution is reduced. The reason

for locating the module after the resolution reduction is that the HCM operates

by looping each pixel row by row, which is very time consuming when applied on

a high resolution image. Hence, after resolution reduction the process of colour

determination using the HCM is faster and less heavy.

When the application has been initiated, it captures image frames using the

camera connected to the computer. The frame grabber then converts the visual

data into the colour model accepted by the OpenCV library and stores it inside

a frame container. An instruction is then transmitted to the frame container to

reduce the resolution of the image data inside it. Then, the frame container passes
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Figure 3.15: Prototype 3 conversion process

through the process of the HCM. Additional data, which contain an array of colour

information based on each pixel, are embedded into the container after the process.

The decision module then processes the image data together with the array of colour

information to transform them into a time-series structure. The sound synthesizer,

in which the musical instrument models are loaded, uses the time-series structure

to generate a soundscape accordingly. Finally, the user can listen to the soundscape

being played on the computer using headphones plugged into its headphone jack.

3.6.3 Image Segmentation/Pixelation

As compared to Prototypes 1 and 2, Prototype 3 takes a step backward in that it

uses a much simpler visual feature extraction method to focus on the texture and

the details of an image instead of on the shapes and objects. However, the outcome

would be very poor if the conversion mapped every pixel in the image to a sound.
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The resulting soundscape would be very noisy and difficult to interpret. In order to

solve this problem, the input image frames must be simplified so that the conversion

algorithms can produce a better soundscape. I referred to vOICe for the solution

(Meijer, 1992). Meijer (1992) proposed down-sampling an image by grouping the

neighbouring pixels to form a larger pixel. The process is called pixelation.

Pixelation is a method of scaling down the resolution of the image by applying a

filter to obtain the value of a central pixel by averaging the values of its neighbouring

pixels. Through pixelation, although the resolution/quality of the image is reduced,

the approximate texture of the content is still retained. Therefore, Prototype 3 uses

the technique of pixelation to reduce the amount of pixels to be converted while

maintaining the texture information of the image. To maintain the aspect ratio of

an image, Prototype 3 reduces the input image using a fixed size average box filter.

For example, if a 30×30 box filter is applied to an input image with a resolution

of 640×480, the input image is down-sampled to a resolution of 22×16. Therefore,

instead of 307300 pixels, Prototype 3 now converts only a total of 352 pixels. To

maintain the texture and colour, the value of each pixel of the pixelated image

is the average value of the 30×30 pixels of the original image. Because the colour

image is composed of three channels (red, green, and blue), each channel is averaged

individually.

Figure 3.16 shows an example image before and after pixelation. A comparison

of the images on the left and right hand side reveals that the image after pixelation

(right hand image) has a significantly lower number of pixels. As for the conversions,

every pixel is mapped to each sound according to the conversion mapping. Each

pixel contains its information, such as location and colour. The location of the pixel

is expressed as the X and Y coordinates in the image. The colour of the pixels is

determined by the HCM module, which takes the HSL value converted from the

RGB value of the pixels. Because Prototype 3 swipes from left-to-right horizontally,

the final result of this feature extraction is a list of pixels structured by arranging

them column by column.
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(a) Example image (b) Example image (pixelation)

Figure 3.16: Pixelation of example image

3.6.4 Conversion Mapping

There is a major difference in Prototype 3 in terms of the segmentation algorithm:

it uses the pixelation technique instead of the blobbing technique that was used by

Prototypes 1 and 2. As a result, the emphasis of this prototype is on the image tex-

ture rather than on the shape of objects. This also affects the conversion mapping:

the location mapping is completely different from that of the earlier prototypes. In-

stead of the location of the blobs being sonified, the soundscape now has to encode

the location of every pixel produced by the pixelation. In addition to the segmen-

tation, the swiping direction implemented in Prototype 3 was changed. Prototype

3 swipes from left to right, column by column, instead of top-down as the previous

two prototypes did.

Figure 3.17 shows the conversion process for an example image of a teapot. As

compared to the previous conversions, illustrated in Figure 3.12 and Figure 3.13,

the features extracted by Prototype 3 have been reduced. Prototype 3 simplifies

the conversion mapping further. The supported features for conversion are the

colour type and location (for both the X- and Y -axis). In summary, Prototype 3

focuses on image pixels instead of on the shape of the objects. Although it extracts
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fewer features from the image (i.e., size), it sonifies the entire image pixel by pixel.

Prototype 3 empowers users by allowing them to reconstruct the image entirely

from the soundscape, so that they can interpret the information themselves by

visualization using their mental map.

Figure 3.17: Prototype 3 conversion for example image

Colour Mapping

Prototype 3 follows exactly the same colour-to-instrument mapping as that pre-

viously optimized in Prototype 1. The colour conversion is discussed in detail in

Subsection 3.4.5 according to the colour-to-instrument map shown in Table 3.2. In

the example illustrated in Figure 3.15, which explains the conversion results pro-
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duced by Prototype 3, the clavichord is used as the instrument to represent the

specified pixel, because it has been assigned by the HCM to the green colour.

Location Mapping: X-axis

The horizontal location information of the pixels is converted to temporal infor-

mation in the Prototype 3 soundscape because this prototype employs the left to

right swiping direction. It is different from the previous two prototypes in that the

swiping direction is changed from the top-down direction.

However, the core procedure that converts location into temporal form in a

soundscape remains unchanged. By applying the equation presented in the previous

section (Equation 3.2), a time delay can be applied to the sequence. Instead of

applying the time delay to each row (as do Prototypes 1 and 2), Prototype 3 applies

the time delay to each and every column from the leftmost column to the rightmost

column. For instance, if the total time of a soundscape for an image with 20 columns

is 2 s, a single column requires a time delay of precisely 100 ms. The sound is

played according to the sequence of columns from left to right. They are not played

simultaneously, but rather the subsequent column can be played if and only if the

previous column has finished its allocated time. Let us refer to Figure 3.17. The

green pixel is played after the 10th column has finished playing, because the pixel

is located in the 11th column. Therefore, the sound of the green pixel can be heard

only 1000 ms after Prototype 3 has started sonifying the image. When the swipe

reaches the rightmost column, a small buzz is played for 100 ms, indicating that it

has reached the end of the frame and the next frame will be starting soon.

Location Mapping: Y -axis

In order to represent the vertical location of the pixel, Prototype 3 uses different

sound frequencies to represent the Y -axis information of the pixel. Previously, the

pitch of the sound was used to represent the colour shade of a blob. However, decision

was made to omit the support for encoding colour brightness and re-implemented
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sound frequencies to represent the vertical location of the pixel.

Table 3.4 shows the mapping of the vertical location (Row Index) to its cor-

responding sound frequency. When representing colour shades, only one octave of

the Dorian scale is used. However, because of the increased number of rows, three

octaves of the Dorian scale are used to represent the vertical location. Using three

octaves, Prototype 3 is able to convert an image having 22 rows. As shown in Table

3.4, the sound frequencies are arranged in descending order, where the top row has

the highest frequency and the bottom row has the lowest frequency. Let us refer

to Figure 3.17. The specified green pixel can be heard in a B[2 tone, because it is

located in the 8th row.
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Table 3.4: Dorian scale and vertical location map

Row Index Note Frequency (Hz)

21 C0 65.406

20 D0 73.416

19 E[0 77.782

18 F0 87.307

17 G0 97.999

16 A1 110.000

15 B[1 116.541

14 C1 130.813

13 D1 146.832

12 E[1 155.563

11 F1 174.614

10 G1 195.998

9 A2 110.000

8 B[2 233.082

7 C2 261.626

6 D2 293.665

5 E[2 311.127

4 F2 349.228

3 G2 391.995

2 A3 440.000

1 B[3 466.164

0 C3 523.251
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3.6.5 Usage

In general, the operation of Prototype 3 is identical to that of the other prototypes.

It receives visual data from a camera or a static image and translates them into

the corresponding soundscape. The audio of the soundscape is then played in the

earphones/headphones of the user. However, the conversion algorithm in Prototype

3 has been rewritten completely. In order to use Prototype 3, the user has to learn

how to interpret the soundscape produced by the prototype.

In Prototype 3, not only is the conversion mapping different but also the concept

of blobbing has been replaced in favour of the simplified pixelization approach. As

described above, unlike Prototypes 1 and 2, Prototype 3 does not segment the image

based on the contour-based image segmentation. The segmentation technique of

Prototype 3 is considerably simpler, and is similar to that used in vOICe. Instead of

using blobs, the soundscape now uses larger pixels arranged in a 2D array. Moreover,

an additional major difference in Prototype 3 is the swiping direction. Previously,

Prototypes 1 and 2 used the top-to-bottom swiping direction; However, Prototype

3 swipes from left to right. In order to interpret the soundscape, the user has to

reconstruct the image from left to right, pixel by pixel. The leftmost column is

heard first and subsequently one column after the other until the end of the image.

The vertical position of the pixel is translated to the pitch of the sound.

Other than the image segmentation method and the swiping direction, Prototype

3 is similar to the previous prototypes. When using the prototype in live mode,

similarly the user points the camera towards the intended direction. When the

camera has captured the scene, a soundscape is generated. The user visualizes the

scene by listening to and interpreting the soundscape.

3.7 Prototype 4

The 4th prototype produced from this research studies utilizes a depth camera in-

stead of the normal 2D camera used in the other prototypes. By using a depth
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camera, this prototype is able to supply depth information in addition to the 2D

colour image as the input. The main motivation behind the inclusion of depth is

that depth information is an important element in the human vision system. In the

first three prototypes, colour information was introduced, which led to some im-

provements in the performance in terms of accuracy and the user experience. Using

their stereo vision, humans frequently use depth information to differentiate objects

and gauge the distances between objects in an environment. It is hoped that the

addition of depth information in VASS systems will improve the accuracy in some

scenarios, such as navigation and scene recognition.

3.7.1 Overview

In addition to visual images, depth perception is always an important part of an in-

dividual’s visual ability. Although there is no specialized organ for depth sensation,

it always arises from a variety of depth cues, the main source of which is humans’

stereo vision. Depth cues take different forms, depending on whether their source is

monocular or binocular vision (e.g., motion parallax, visual perspective, and stere-

opsis). The extent to which humans rely on the depth information is not clear, but

there are several purposes for which depth is an important factor, for example, the

detection of the angle of the path of an object moving towards one or the avoidance

of obstacles on the road during navigation. Essentially, for humans, the world com-

prises three dimensions, which explains why depth as additional information may

help humans perform tasks in real-life situations such as navigation.

Currently, to a certain extent, VASS systems are capable of imparting depth

perception to their users. Since most VASS systems translate 2D images into an

audible soundscape one at a time, it is possible for users to perceive depth from

the soundscape, in a manner similar to that in which they perceive depth by using

monocular vision. Monocular vision provides depth perception through its own

depth cues. Examples of monocular depth cues include motion parallax, the visual



CHAPTER 3. PROTOTYPING 132

perspective, the size of objects, and object occlusions. Most of these elicit a depth

sensation through the viewer’s comparison of an object’s position in the scene. The

user feels the sense of depth by gauging the relative position between objects and also

the distance between him/her and the objects. Because of the construction of their

binocular eyes, humans have an additional means of obtaining depth perception.

Although usually, the depth cues elicited by monocular vision are adequate, in some

situations binocular depth cues are preferable. Stereopsis is one the depth cues

that result from binocular vision. By using two images (one seen by each eye) of

the same scene that are positioned at slightly different angles, stereopsis creates a

depth perception by triangulating the position of the same object residing in the

overlapping region of the two images. Stereopsis is frequently more accurate than

the depth cues elicited by monocular vision. In particular, in the case of a scene

with minimal objects, it is even more effective than monocular depth cues, because

gauging the relative distance from multiple objects is more difficult when there are

only a few objects.

Therefore, in Prototype 4, a specialized depth sensor was applied on top of the

existing 2D camera to supply depth information. It is hoped that using the data

from the depth sensor, more accurate depth cues can be encoded into the soundscape

to complement the existing ones.

3.7.2 Process Flow

Figure 3.18 shows the process flow implemented in Prototype 4. The flow is similar

to that of Prototype 3, albeit a depth map is included as the additional visual input

from the TOF camera. First, a 2D visual image and its corresponding 3D depth

map are captured using the TOF camera. They are processed internally by the

camera before being transferred to the computer through the attached USB port.

The prototype then polls the camera and grabs both the 2D image and the depth

map using the library provided by DepthSense’s SDK. By default, as in Prototype 3



CHAPTER 3. PROTOTYPING 133

the software functions capture the entire image regardless of its depth. Alternatively,

the user is provided with three additional options to adjust the depth level on which

the system is focused. The three depth options are < 3 m, 3 m 6 depth < 5 m,

and 5 m 6 depth. The input image that is to be sonified is filtered based on the

depth option chosen by the user. If option 1 is chosen (depth < 3 m), the soundscape

includes only visual data within that depth and excludes all other visual data. Thus,

the user can focus on the visual data only within the region.

The subsequent part of the process is identical to that in Prototype 3. The reso-

lution of the visual data is reduced to 20× 30 before passing through a process that

extracts the visual information. The decision module then maps the visual proper-

ties, such as colour, location and size, to the auditory properties in order to generate

a soundscape. Finally, the soundscape is synthesized using a sound synthesizer and

passes to the audio driver to be played through the speaker/headphones.
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Figure 3.18: Prototype 4 conversion process
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3.7.3 Software and Hardware

Hardware

A depth camera is used in Prototype 4 as the image capture device to supply 3D

visual information in addition to the 2D visual images. A few different technologies

exist that allow depth information to be captured from the surroundings electron-

ically. However, the stereoscopic camera and TOF camera are among the widely

used depth sensors because of their low cost and availability. A stereoscopic camera,

commonly known as a stereo camera, uses two or more lenses in separate sensors,

the distance between which is fixed to simulate human binocular vision. From the

two images that are captured concurrently, a depth map can be interpolated through

advanced image processing techniques. As opposed to the stereoscopic camera, the

TOF camera uses a dedicated photon mixing device (PMD) sensor to capture a

series of light signals from objects illuminated using an infra-red ray. From the

infra-red ray reflected from the objects, the depth sensor is able to produce a depth

map of the surroundings by calculating the distance from the intensity value of the

pixels. Although each camera has its own advantages and disadvantages, the Lu-

minophonics research group decided to use the technology of TOF to capture the

depth information of the surroundings.

d =
c

2fmod
· φ

2π
(3.5)

The depth camera used for Prototype 4 is a complementary metal–oxide semicon-

ductor (CMOS) TOF depth camera called DepthSense® 311, developed by SoftKi-

netic. The main reason behind the decision to use a TOF rather than a stereoscopic

camera is that the operation of a TOF camera is relatively less computationally

intensive than that of other depth sensors. In principle, a TOF camera uses a very

simple mathematical formula to calculate the depth information. The distances

between the objects in the scene and the sensor are calculated from the incoher-

ent light signal reflected from the objects (Schaller, Penne, and Hornegger, 2008).
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Therefore, a separate light source that is intensity modulated by a cosine-shape

signal of frequency, fmod, has to constantly illuminate the objects of interest. The

DepthSense depth sensor takes advantage of light in the infra-red spectral range so

that the emitted light is invisible to the user. In normal conditions, the light travels

through the medium at a constant speed, c. Hence, the object’s distance, d, from

the sensor can be calculated by estimating the phase shift, φ, between the emitted

and reflected light signal as shown in in Equation 3.5 (Schaller, 2011).

Because of the relatively simple calculations involved, the TOF camera does not

use a large amount of computational resources. As compared to other depth sensor

technologies, such as laser range, structured light, coded aperture, and stereoscopic

cameras, it is usually very fast, achieving a near real-time frame rate and high

depth accuracy. Finally, because of its low computation resource requirement, it

leaves more computing power for other computational intensive tasks that are often

needed in the later stage of the prototype. The DepthSense® 311 (DS311) used in

Prototype 4 (see Figure 3.19) features a 60 fps frame rate on a QQVGA (160× 120)

depth map resolution, as well as providing a colour image in VGA (640 × 480)

resolution. Most importantly, the sensor is able to accurately gauge the distance of

objects from 0.15 m up to 4.5 m. According to this specification, the DS311 sensor

is suitable for application in a VASS system.
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Figure 3.19: DepthSense® 311 by SoftKinetic

Software

Interaction with a DS311 sensor is not difficult, as most of the heavy lifting has

been done by the manufacturer, SoftKinetic. The connectivity with all DepthSense

cameras is through a single USB port in the back of the device coupled with an

external power supply unit. For convenience, Prototype 4 utilizes a dual USB cable

to connect the computer and the DS311 sensor, where one of the USBs is used for

data communication and the second to provide the extra power needed to drive

the depth sensor. Because of the dual-USB mode, the use of the DS311 sensor has

significantly increased the portability of the prototype, because it can be powered

by the additional USB port and does not have to draw the power from an external

power brick connected to the power socket. A driver and a software development

kit (SDK) are provided with the depth sensor, which were very helpful during the

application development. Inside the SDK, there are a few sample applications and

instructions that allow a first-time user to start using the device. So that the DS311

sensor could be used with the current software framework, a converter module was

needed because the framework was designed to operate with a USB Webcam. To
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convert the depth sensor as a drop-in replacement of the visual frame grabber, a

converter module was coded to convert the image format captured from the DS311

sensor into the BGR format accepted by OpenCV’s Image Container (Mat).

3.7.4 Image Segmentation

The image segmentation techniques implemented in Prototype 4 are identical to

those used in Prototype 3, as discussed in Subsection 3.6.3.

3.7.5 Conversion Mapping

Because of time and resource constraints, instead of designing the Prototype 4 from

the ground up, it was decided to create the conversion algorithms of Prototype 4 by

basing them on one of the previous prototype. The base conversion process was se-

lected based on the performance measurement conducted in one of the experiments.

Because Prototype 3 scored fairly well in terms of information preservation and in-

terpretability, the major parts of the conversion algorithms designed for Prototype 4

are based on Prototype 3. In addition, because of the addition of depth information,

a simpler conversion algorithm was recommended. As compared to the previous two

prototypes, the process of Prototype 3 is much simpler, because it does not involve

an advanced image segmentation algorithm to extract the object blobs. In general,

Prototype 4 was built on top of Prototype 3 by replacing the 2D camera with a TOF

camera to sense the surrounding depth. This section explains the application of the

conversion and the relationship between depth and other visual elements during the

audio conversion.

Prototype 4 converts a total of three major visual elements, including the depth

information that it uniquely applies. The three elements are colour, pixel location,

and depth.
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Depth

Depth information is rarely incorporated in a VASS system because the 2D cam-

eras used by most of the systems are not capable of producing an accurate depth

map similar to the stereopsis of normal binocular vision. Hence, not many depth

implementations exist that can be used as a reference. Among these, See ColOr by

Bologna, Deville, Pun, and Vinckenbosch (2007) is one of the few systems that are

capable of including depth information in the visual-to-auditory conversion algo-

rithm by means of using data from a stereoscopic camera. The application of depth

in See ColOr is in the automated FOA algorithm. In the system, depth informa-

tion is used as one of the guides in the visual saliency computation to search for

the most relevant visual attentional field. In another implementation, Fristot et al.

(2012) developed a method that encodes a depth map directly into the soundscape

by utilizing a Microsoft Kinect® camera. The device resamples the depth map into

several receptive fields, where each depth level is represented by a sound frequency

in the musical scale. Other than these two VASS systems, there are several sensory

substitution alternatives that encode depth in their implementation, such as the

cane(Maidenbaum, Chebat, et al., 2014) and VTSS with ultrasonic sensors.

In Prototype 4, the encoding of the depth information is different from that

in the previous two VASS systems that were discussed previously. They integrate

the depth information within the conversions by either automatically calculating

the visual attentional field using the depth information (Bologna, Deville, Pun, and

Vinckenbosch, 2007) or encoding each depth level using different sound frequencies

(Fristot et al., 2012). In contrast, Prototype 4 is designed to empower its user,

providing him/her with more control of whether the depth information is included

in the soundscape. The reasons behind this decision were two-fold: first, the effect

of cacophony in the soundscape is reduced, and second, depth perception can be

formed from a 2D image through its monocular depth cues. Therefore, in Prototype

4, users are given the option to specify the depth level from which the soundscape
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is to be derived. Using this option, users are able both to listen to the soundscape

from a specified depth level and to switch off the depth map, so that the soundscape

is sonified from a 2D image. Furthermore, this implementation avoids the need to

encode the depth information into one of the audio properties, which might overload

the already crowded soundscape. If a soundscape is overloaded with information,

it will create a cacophony effect, which will decrease the interpretability of the

soundscape. Moreover, the user does not have to obtain depth information from an

accurate source, such as the depth map; the depth perception can also be derived

from the monocular depth cues that exist in a 2D image. Thus, the depth switch

allows the user to switch on the function when it is needed.

The depth levels, d, that are available to the user are as follows.

• d / No filter (Default)

• d < 3 m

• 3 m 6 d < 5 m

• 5 m 6 d.

During the process of merging a depth map and a 2D image, the image pixels

are filtered out based on the d value selected by the user. To illustrate, if the option

d < 3 m was selected, the pixels that were labelled with distance 3 m and above

in the corresponding depth map are not merged, leaving only visual information

located less than 3 m away from the user in the image.

Colour

Exactly as does Prototype 3, Prototype 4 uses the same colour-to-instrument map

shown in Table 3.2, which was discussed in detail in Subsection 3.4.5.
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Location

Prototype 4 uses the same swiping mechanism as Prototype 3. Therefore, the loca-

tion conversion for every pixel follows the same procedure as described in Subsection

3.6.4 for the pixel’s X-axis and in Subsection 3.6.4 for the pixel’s X-axis.

3.7.6 Usage

As compared to that of the other three prototypes, the operation of Prototype

4 is slightly more complicated. However, all the prototypes are contained in the

same executable that the user can switch according to the mode of the prototype

he/she desires. The startup procedure of the prototypes is the same, as is the GUI.

Initially, the Prototype 4 mode is disabled, but when a compatible depth sensor

(e.g., DepthSense DS311) has been detected by the application, the functionalities

of Prototype 4 are enabled immediately. From this point onwards, the user can

choose to switch to the mode of Prototype 4 by choosing this mode in the selection

menu. In short, the functionalities of Prototype 4 can run only if a compatible depth

sensor is connected to the computer. The depth sensor is not exclusive to Prototype

4 because the other three prototypes can still use the 2D camera of the DepthSense’s

depth sensor to operate.

In order to use Prototype 4, the user needs to understand that it provides the

option to choose the depth range to be sonified. The depth range can be switched

on-the-fly during usage. When the user has chosen the depth range, the subsequent

visual data are accordingly sonified. In comparison, the other three prototypes

do not provide this option, because they operate using 2D visual data, which do

not specify the depth information. As explained in the paragraph headed ‘Depth

Segment’ in Subsection 3.7.5, four different depth ranges are provided in Prototype

4: entire depth, depth < 3 m, 3 m 6 depth < 5 m, and 5 m 6 depth. The default

depth range is entire depth, where the entire image captured by the camera is sonified

without any filtering. In this depth range, Prototype 4 operates like Prototype 3.



CHAPTER 3. PROTOTYPING 142

The other three options engage the information from the depth sensor to slice and

filter the visual information that falls into the depth range. For example, if the

option 3 m 6 Depth < 5 m is selected, the algorithm refers each pixel in the 2D

image frame to its corresponding depth in the depth map. If the pixels do not

reside in the depth range specified, which is between 3 m and 5 m, the pixels are not

sonified. The resultant soundscape contains the sound of only the pixels that fall in

the depth range specified.

With the inclusion of depth range, Prototype 4 presents an additional different

approach for using the prototype. Usually (when the user uses Prototypes 1, 2, or 3),

the camera is pointed to a specified region while the user listens to and interprets

the soundscape. The depth is perceived either through the depth cues contained

inside the soundscape (such as the size of the blobs) or by varying the position of

the camera to compare soundscapes. However, this approach can be too simple.

In certain situations, the depth perceived can be erroneous and misleading because

of various factors, such as surrounding noise and the user’s lack of use experience.

With the depth range provided by Prototype 4, the user has the means to target

a certain depth range, thus filtering out other unwanted scenes to obtain more

accurate depth information of the surroundings. The prototype first sonifies the

entire depth range, exactly as does Prototype 3. When the user wants to focus on

a specific range, he/she chooses the range. For example, when the user is going to

hit an object in front of him/her, the range Depth < 3 m can be chosen to sonify

the nearby surroundings within the 3 m range. The soundscape sounds simpler and

is more easily interpreted because the unwanted objects outside the specified range

have been discarded. Furthermore, it helps the user to reconfirm the depth and the

position in which he/she is located. Then, the depth range can be switched back to

default mode to sonify the entire scene. Essentially, Prototype 4 introduces a new

usage approach. It allows the user to simplify the scene by filtering based on depth

range when in doubt.
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3.8 Mobile Prototype

This section documents the work that was performed to create a new portable VASS

prototype that would be more suitable for being carried by the user as a mobile vision

aid. So far, the prototypes discussed were all developed for a personal computer

(PC). This approach was used for almost all VASS systems in the past, because

in general the hardware of a PC is much more powerful and highly customizable

than the existing embedded systems. Furthermore, it is easier to develop a software

application for the PC platform because of its better and considerably more complete

OS; it also provides development tools that are better supported, as well as greater

functionalities. As a result, the time between ideation and a completed prototype

is shorter when developing a VASS system for a PC than for an embedded device.

Nevertheless, the PC-based VASS system is ideal for research purposes, where

experiments are conducted in a controlled environment and the user has no intention

of carrying the device around. However, it involves the major limitation that the

prototype has to be constantly tethered to a PC. Because of its overall size, weight,

and bulk, carrying a PC can be a strain on the user. Moreover, the VASS prototypes

that are discussed in the previous sections are not suitable for running on a laptop

computer powered by a battery. They not only consume a considerable amount of

battery power but also generate more heat. A common observation was noticed in

all the different experiments conducted with the prototypes is that it was possible

to run the prototypes on average for only 1 hour on a fully charged laptop powered

by an Intel Core processor with a 48 W h battery.

These limitations hamper the portability of a VASS system, rendering it unsuit-

able for daily usage. Therefore, it is important to solve these limitations so that the

portability of VASS can be increased. An ideal VASS system must have a body that

is light and small, a relatively long battery life, and a stable and efficient OS with

a good set of development tools. Not many options meet these requirements easily.

One of the possibilities is to build a customized embedded system for the purpose of



CHAPTER 3. PROTOTYPING 144

VASS system. However, with the availability of the smartphone platform in recent

years, developing a VASS system as a portable system has become easier. It can

be stated confidently that the smartphone opens up many more opportunities that

allow VASS systems to thrive.

3.8.1 Overview

As the electronics industry continues to thrive, integrated circuit (IC) design has

been advancing steadily, catering to the market demand. This has been fuelled

by the increasing computing power and miniaturization of electronic devices. Fi-

nally, a smartphone revolution, spurred by the creation of the iPhone by Apple Inc.,

occurred in the late 2000s. A smartphone is a full featured mobile phone that is

powered by an advanced mobile OS, such as iOS and Android, which are able to

provide the features of a PC in a smaller package. With the development of the

smartphone, a basic mobile phone became a powerful portable device that can be

equipped with many functionalities only by installing mobile applications as on a

computer. Moreover, with the introduction of the mobile application framework

supported by a community of developers, developing applications for a smartphone

has becoming easier. It is the advancement of both software and hardware that has

led to today’s powerful smartphone.

As mentioned in the research goals, the members of the Luminophonics project

recognize that in order for a VASS system to be effective, the issue of portability,

which affects most current VASS devices, must be addressed. Rather than requiring

the user to be constantly tethered to a PC, a VASS has to be small and portable so

that the user can carry it around everywhere, as people carry their spectacles. This

is also one of the reasons why the use of the smartphone has become widespread

recently. It has the power of a PC and yet is portable, which greatly enhances

its usefulness. An opportunity was presented by the fact that every smartphone is

equipped with at least a camera and a speaker. A small form factor that includes
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an efficient mobile processor, a good camera, and a speaker constitutes the perfect

combination for a portable VASS system. Therefore, a decision was made in order

to harness the power of the smartphone and convert one of the prototypes into a

smartphone application.

The goal was that one of the conversion algorithms would run as an application

so that the user can turn his/her smartphone into a VASS device by installing the

application. In this section, the details of the operation of the VASS application are

discussed and also how it compares to the conventional VASS system built to be

installed in a PC.

3.8.2 Process Flow

Overall, the process of this prototype does not differ significantly from that of the

prototypes developed for PCs. Following the same method, they all first grab input

images from a camera and pass them into a conversion function that converts the

visual data into an auditory soundscape. However, because many of the compo-

nents inside a smartphone are well integrated, the process of this mobile prototype

is simpler than that of the other Luminophonics prototypes. Inside the PC pro-

totypes, some customized adapters may be required, in particular for intermediary

conversion. For example, in the rare situation where a camera uses an incompatible

colour model, a colour model conversion step is needed to handle the conversion of

the visual information into a colour model acceptable by the image container used in

the software. By virtue of the tight hardware-software integration of modern smart-

phone architectures, such as Android and iOS, the hardware components (e.g., the

camera and speaker) with which the smartphone is equipped frequently operate im-

mediately on first use, requiring no adjustment. This also significantly reduces the

overall development time, because the required functions mostly operate according

to the specification using the API provided by the framework.

Figure 3.20 shows a flow chart of the general process of this prototype. It does not
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differ significantly from the process used in Prototype 3 (Figure 3.15), because the

mobile prototype was ported from this prototype. The only difference between the

mobile prototype and Prototype 3 is the adoption of the Android framework in the

development of the software. Using the API provided by the Android framework,

the application is able to communicate with the hardware, i.e., the camera and

speaker, directly, and an additional library or driver does not need to be installed.

In the process, first an ImageReader class is used that reads out and buffers the

image frames captured by the Android camera component. Then, the image frames

are transferred into a separate thread that runs a native compiled code for further

processing. The process is executed using the Android Native Development Kit

(NDK), because processing image frames can be computationally intensive. The

usage of NDK and the design decision are described in more detail in the following

section. After the thread has completed the core processing, the Android SoundPool

is used to synthesize the soundscape using the information from the previous process.

The musical instrument models that were previously loaded into the SoundPool

instance are used to generate an audio tune, which then passes into the speaker

component to be played through the speaker/headphones.
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Figure 3.20: Prototype mobile conversion process

3.8.3 Software and Hardware

Software

Currently, there are two smartphone ecosystems that are widely used and well sup-

ported by the communities of both smartphone users and developers. They are

Android, an open source mobile OS produced by Google, which is based on the

Linux kernel, and iOS, a proprietary mobile operating system produced by Apple

Inc., which is based on Darwin BSD. Although the OSs are equally powerful, be-

cause of the motivation behind their creation they target different users; however,

they compete in the same market segment. iOS was created by Apple Inc. to be

a proprietary mobile OS that is available exclusively for Apple products, whereas

Android, a product of Google, was conceived as the open-source alternative that
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could be used by different manufacturers to develop their own smartphones. An

additional difference between Android and iOS is the main programming language

supported by the SDK platform. The Android application was developed primarily

using the Java programming language, whereas for iOS the approach of using the

Objective-C programming language was used. Both have their advantages and dis-

advantages, and developing applications for the platform differs greatly depending

on the chosen platform.

Google’s Android was chosen as the primary smartphone platform for this mobile

prototype for several reasons. First, Android smartphones are more widely available

and less expensive in terms of overall cost. Because Android can be used by dif-

ferent manufacturers, it is installed in smartphones ranging from a low cost mobile

phone to a more powerful fully equipped smartphone. The use of the Android plat-

form allows this prototype to be installed on a much wider phone selection, which

benefits users in poorer countries, because they can run the prototype on a cheaper

smartphone. In addition, because it is an open source mobile OS, considerably more

software libraries are readily available for use. Many open source audio and image

processing libraries have been ported to support the Android platform by fellow

open source contributors. Although there were no plans to apply the libraries in

the prototype in the initial development phase, the availability of the option pre-

sented the opportunity to use customized functions that may be needed for special

situations in the future.

One of the disadvantages of using the Android platform arises from its heavy

reliance on the Java programming language, which may lead to problems for ap-

plications that require heavy computational resources. Android platforms are built

almost entirely on Java, which uses a virtual machine (VM) to run its instructions.

While the VM provides advantages, such as garbage collection (GC), an improved

debugging mechanism, and abstraction, these features come at the expense of per-

formance. In a normal situation, the performance loss is negligible, but it is a major

problem in the case of computationally heavy tasks, such as image processing. If
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the prototype were ported to run entirely on the Java programming language, there

would be a significant lag between soundscapes, because it requires considerably

more processing power to process each frame. The lagging effect has been proven to

render the entire device unusable and degrades the overall usage experience. In or-

der for the application to be usable, the soundscape must run at a minimum refresh

rate of 1 Hz (one soundscape per second). Fortunately, this problem was overcome

by the implementation of the computational chunk of code supplied with the An-

droid native development kit (NDK)9. The NDK allows the application to leverage

C/C++ compiled code for computationally intensive tasks. Therefore, as illustrated

in Figure 3.20 in the dotted rectangle frame, processes including resolution reduc-

tion, the colour heuristics model, and the decision module were programmed entirely

with C language specifically to take advantage of the native processor environment,

bypassing the VM. While the application runs on the VM, it accesses the native

components through using the Java native interface (JNI). When this mechanism

is used, the overall lag is reduced substantially. The processing time, which was

previously 5 s using the VM, is reduced to 200 ms for a standard ARM processor.

Hardware

It was considerably easier to select the appropriate hardware for a mobile VASS pro-

totype than to customize a PC. Since a smartphone comes in a complete package, it

does not involve a significant amount of hardware customization as compared to the

previous prototypes. The work consisted only of choosing a smartphone that meets

the minimum requirements for running the mobile prototype application. During

the development of the prototype, the Sony Xperia S was the smartphone used.

This smartphone was considered to be one of the higher-end Android smartphones

at that time. However, because of the rapid smartphone development, its specifica-

tion was quickly eclipsed by many Android smartphones that cost less. Currently,

9More information about the Android NDK can be found at https://developer.android.

com/ndk/index.html

https://developer.android.com/ndk/index.html
https://developer.android.com/ndk/index.html
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almost all smartphones on the market are capable of running the mobile prototype

application effectively. Although the camera and speaker are the main components

of a VASS system, the choice of the right processor and memory was the top prior-

ity, given that every smartphone is equipped with a camera and speaker that meet

the basic requirements. To allow this mobile VASS prototype to run normally, the

smartphone must be equipped with at least a dual-core 1 GHz processor (CPU) and

a RAM amounting to 1 GB. These recommendations were proposed after trial and

error tests of multiple different smartphones. As observed throughout multiple tri-

als on different hardware, smartphones having a single-core processor or a memory

of less than 1 GB must be deemed inadequate, because the processes of the VASS

system are resource hungry, and they may cause the application to freeze or, even

worse, cause the entire smartphone to reboot. When a multi-core processor is used,

more threads can be generated for visual-to-auditory conversion and thus the main

process that captures the video and plays the soundscape simultaneously is not dis-

rupted. Conversely, the larger amount of RAM can be dedicated to buffering the

incoming image frames while processing the current ones. In the future, a mobile

graphics processing unit (GPU), such as PowerVR, NVIDIA Tegra, or Qualcomm

Adreno, can be utilized to increase the performance by relieving the CPU of some of

the computational workload. A GPU not only is able to reduce the time taken for

image processing and information conversion, but also reduces the battery consump-

tion by improving the efficiency of the entire processing procedure, taking advantage

of the improved floating-point computation and parallel computation.

3.8.4 Conversions Mapping

Colour Mapping

Since the mobile prototype was ported directly from Prototype 3, its conversion

mapping also follows the same procedure as Prototype 3. The same colour mapping

is used for every prototype. The details of the colour mapping are discussed in
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Subsection 3.4.5 following the same colour mapping, which is shown in Table 3.2.

Location

The swiping mechanism of the mobile prototype follows exactly the same procedure

as Prototype 3. The location conversion for every pixel is presented in Subsection

3.6.4 for a pixel’s X-axis and in Subsection 3.6.4 for a pixel’s Y -axis.

3.8.5 Usage

To use this mobile prototype, the user must install the application in an Android

smartphone. The application is initiated when the user starts the application in

the OS. Then, the application displays a screen on which a video composed of

the image frames captured by the phone’s camera is shown. In the background,

the application is performing the computation to convert the image frames into

the corresponding soundscape. To hear the soundscape, the user can either listen

through the speaker or plug headphones into the audiojack of the phone. It is

recommended that the phone be aligned horizontally in landscape mode with the

rear camera facing frontward. This stance is very natural, because it resembles that

of a normal user taking a photograph with phone camera.

Normally, the application is used for two different primary purposes: object

recognition and navigation. To visualize the object in front of him/her, the user must

point the rear camera of the phone directly towards the object. The soundscape

produced by the application contains the information about the object and the

surroundings. However, to navigate the user may need to move the camera through

multiple angles. Unlike the human eye, a phone camera has a limited field of view.

By listening to the multiple soundscapes from multiple angles and consolidating

them, the user can visualize a larger surrounding area. Taking the cues from the

soundscape, a visually impaired user can navigate the area. Users can also combine

the usage of the application with that of a cane to improve their navigation.



Chapter 4

Experiments and Results

4.1 Introduction

Experiments based on human subjects to obtain feedback and understand the in-

teraction between a computer system and its user have always been an integral part

of computer science research. This is especially true for computer systems or soft-

ware applications with which human subjects constantly interact. A considerable

amount of valuable information can be gained by observing a human subject using

the systems while performing a set of carefully planned experimental tasks. Using

the data gathered from these experiments, the system processes and other details of

the prototypes can be fine-tuned. This process suits the prototyping process, where

improvements are made incrementally using information supported by experimental

observations.

In the past, each sensory substitution research study, including those on VASS

systems, had its own unique set of experiments, where the simplest experimental

method involved a feedback questionnaire or even a carefully planned scenario to

measure the effect of the system on its users. In particular in the case of a VASS

system, the tests and experiments using human subjects were designed mainly to

measure its performance and to examine how the users perceived the soundscape it

152



CHAPTER 4. EXPERIMENTS AND RESULTS 153

produced. Moreover, a large part of the userbase of VASS systems comprises the

visually impaired population. The feedback from this population of users is very

valuable, because their experiences when using the systems with their limited sight

are frequently unique. The results of the experiments were frequently published in

scientific journals to demonstrate the capabilities of the systems and also to provide

other researchers with a basis for comparison. Since the first VASS system was

reported, various performance measures were introduced by researchers worldwide,

such as the accuracy of object detection, the time taken by a user to learn the system,

and the time required to interpret the soundscape. Different systems were measured

differently under different sets of conditions. Thus, the evaluation of VASS through

experiments based on human subjects is an important phase in VASS research.

As well as on the system’s accuracy, emphasis should be placed on designing a

system based on the needs of its intended users. This has been promoted strongly

by the human-computer interaction (HCI) research community, because a system is

ineffective if the user does not benefit from it. Moreover, VASS systems, like many

other sensory substitution systems, are built mostly as an assistive technology device

for the disabled for rehabilitation purposes. Because the intended users belong to

a group of people with disabilities, the device must be designed to cater for their

special needs. When addressing this population, the designers of the systems must

take their concerns into account so that the systems answer these concerns, as well

as helping them to accomplish their tasks. In order to measure the performance of

the system, the experiments should also be designed such that they focus on the

user experience, measuring the effectiveness of the features of the prototypes from

the perspective of the user. In summary, the goal of experiments is not only to

reveal the performance of the system but also to measure the user experience when

using it. When the experimental procedures are embedded into the prototyping

phase, the development of the prototypes can benefit from the data gathered from

the experiments and at the same time they can be improved incrementally with each

evolution.
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4.2 Experiment 1

The first experiment was conducted after the completion of the Prototype 1. The

main purpose of this experiment was to obtain an initial evaluation of the overall

performance of Prototype 1 and also to verify some of the newly crafted ideas. The

new ideas that are built into Prototype 1 consist of the inclusion of colour informa-

tion in the soundscape, contour-based image segmentation, the swiping mechanism,

and the usage of natural musical instrument models when synthesizing the sound-

scape. By evaluating the effectiveness of the prototype’s performance, the relevance

of the new ideas for the users were able to be gauged. This experiment played an

integral role in the prototyping process, because the subsequent improvements de-

pended on the information gathered from it. Using the results of this experiment,

solutions to fine-tune Prototype 1 were designed and plans for the next iterations of

the prototypes were made. The details of this experiment were reported in my first

conference paper (Tan, Maul, N. R. Mennie, and Mitchell, 2010).

For measuring the performance of Prototype 1, a decision was made to take an

approach similar to that used in previous similar research studies on VASS systems.

As in other VASS system experiments, human subjects were asked to use the devices

to perform carefully planned test activities. The main purpose of conducting the

experiment in this fashion was to understand the human perception of engaging

with the device through listening to the soundscape. The perception of the user

plays an important role in determining the success of a VASS system. Therefore,

the psychological aspect of the user when using the device should be monitored. To

achieve this, the experiment was designed to include feature-based test activities that

monitored the psychological aspect of the user when using the system. Basically, the

experiment tested the perception and the reaction of the subject (user) when exposed

to a physical stimulus (the soundscape). During the experiment, the participant was

required to listen to the soundscape produced by the system while accompanied by a

facilitator who recorded all his/her reactions, including the actions he/she performed
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and the accuracy of his/her test performance.

The structure of this experiment comprised two phases. The results were recorded

only after the participant had successfully completed both the phases. The first

phase consisted of a training session, where the user was taught the basic operation

of Prototype 1 and shown how visual information is converted into a soundscape.

The objective of this phase was to equip the participants with general knowledge

of the VASS system and the basic operation of Prototype 1. Upon completing the

training, the participants were requested to complete the test cases in the next phase

using the knowledge they gained from this session. Each participant attended one

training session, which was limited in its scope, before performing the main ex-

perimental activities. In order to minimize the chance that the participants would

gain uneven advantages from the training session, the training materials were stan-

dardized, with each participant receiving the same set of material. However, the

participants were given the opportunity to ask questions when in doubt. The reason

why the training sessions were as basic as possible was that one of objectives for

this experiment was to evaluate the learnability of the prototype.

Immediately after completing the training session, each participant was instructed

to complete the next phase, which was the main experimental phase. This phase

consisted of a series of test cases designed to test each individual feature of Proto-

type 1. The test cases of this experiment were designed to focus on the conversion

algorithm. During the tests, the participant was seated in front of a computer while

being monitored by a facilitator. An application that implemented Prototype 1 was

installed in the computer. It converted the test images into soundscapes and played

them through a pair of headphones worn by the participant. The role of the facil-

itator was to observe the reactions of the participant closely and to record his/her

judgements after listening to the soundscape. In total, six different experiments were

conducted, each of which tested a different aspect of Prototype 1. They comprised a

colour test, object test, shade test, location identification test, object location test,

and finally an object counting test. So that the experiments would be suitable for a
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beginner, the complexity and the difficulty of the test cases were set at a low level,

with a maximum of two feature combinations appearing in each test. Each task had

its own objective to which the participant was required to adhere. When the objec-

tive was completed, the accuracy of the participant in each experimental task was

recorded. In summary, this experiment was designed to measure the extent to which

Prototype 1 assists users in six different tasks through the features implemented in

the conversion algorithm. The performance evaluation of the prototype depended

on how well the participants executed the task as instructed for each experiment.

4.2.1 Phase 1: Training

Before the main experiment, each participant was provided with a training session

individually facilitated by the prototype designer. The training session was designed

to be limited to explaining the basic features implemented in Prototype 1. The

facilitator explained the basic visual-to-auditory conversion mapping, including the

conversion of colour, blob location, and blob size. After completing the training

materials, the participants were expected to be able both to visualize the input image

using the basic feature mapping by listening to the soundscape and to understand the

combination of two or more basic feature mappings forming a complex visualization.

Although the training session was conducted only once for each participant, the

duration of the training was determined by the participant. The participants were

allowed to repeat the training material until they were satisfied with their newly

acquired ability. Throughout the training session, opportunities were given to the

participant to ask the facilitator any question when he/she was in doubt. The

Q&A session between the facilitator and the participant significantly accelerated

the learning process of the participants and improved their understanding of the

VASS system.

The first element of the training session focused on differentiating the 10 colours

encoded in the soundscape. The participant was given 10 different colours (black,
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grey, white, red, orange, yellow, green, blue, indigo, and violet) and the corre-

sponding sound timbre associated with each one. The participant was instructed

to identify the 10 different musical instruments and memorize the associativity of

their sound timbre and the colour. In addition, in the training session the partici-

pants were taught to differentiate the shades of each colour based on the pitch of the

soundscape. Different shades of the colour were projected, while the participant was

exposed to a soundscape in different pitches aligned with the shades of the colour.

The second element in the training session addressed the location of the object.

Location is another important feature implemented in the prototype, allowing the

user to locate an object based on the sound properties after forming a mental image

of the soundscape. To train the participants to identify the location of an object,

they were taught to relate time delays to vertical positions and stereo sound place-

ment to horizontal position. In the training session, an image was separated into

four quadrants, top-left, top-right, bottom-left, and bottom-right. Then, different

images were placed in different quadrants each time repeatedly. The participant was

shown how to differentiate the location by recognizing the effect on the soundscape

when the objects were placed in a different quadrant.

The final feature that can be interpreted from the soundscape produced by Pro-

totype 1 is the size of the blob. In the final training set, the participant was taught

to describe the size of the blob (or object). In Prototype 1, the size of the blob was

correlated with the volume of the sound it produced. Therefore, the participant was

taught to recognize the volume and estimate the size of the blob relative to the other

blobs around it. In the training material, multiple circular blobs were drawn in the

input images and the algorithm generated a different volume according to the blob

size using the same sound. The participant learned how to differentiate the volume

and correlate it to the size of the blob.

The experiments in the next stage were designed to include both simple and

complex images in the tests to examine the extent to which the user understood the

system and also how well the system converted the images.
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4.2.2 Phase 2: Experiment Activities

A total of six different experiments were conducted in the second phase, where each

experiment focused on a different aspect of the soundscape produced by Prototype 1.

The level of difficulty of these test cases was adjusted to a maximum complexity of

two feature combinations per test case. The purpose of this was to lower the barrier

for the participant, making the tests easier for them to complete. Moreover, at the

time, Prototype 1 was still at the preliminary development stage and natural images

captured from the surroundings were too complex for it to sonify. Therefore, it was

decided that in this initial experiment, synthetic test images with simple colours

and shapes would be used. The test images used in this experiment are included in

Appendix B.

Colour Test

The first experiment consisted of the colour test, where the participants were re-

quired to identify a colour from the soundscape. The colour test was chosen as the

first experiment because it was the simplest. A total of 10 test images, each of a

different colour, were used in this experiment (see Appendix B.3). The participant

was shown one test case, each time randomly selected from the pool, while listening

to the soundscape generated by Prototype 1 through headphones. The process of

selecting a test case and identifying the colour was repeated 20 times for each par-

ticipant. The purpose of the test was to estimate approximately each participant’s

ability to identify colours.

Object Test

The objective of this experiment was to examine whether the prototype has the

ability to convert sufficient visual information into an auditory soundscape to enable

the user to identify an object through the soundscape. A total of four different object

classes were prepared for this test, each having a different sound signature. During
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the experiment, one object class was randomly selected from the four object classes.

The objects were displayed and sonified in random order, which was different for

each participant. Because each object had 5 different variations, the participants

were required to identify 20 different test cases composed of 4 object classes. The

accuracy of each participant’s object recognition was taken as the average result of

the 20 trials.

The test images of the object class were shown to the participants before they

took part in this experiment. They needed to find and register any visual signatures

that were unique to the object class to ease the process of identifying it using the

soundscape. The four object classes (bee, house, stick-man, and tree) were pre-

selected based partly on their distinctive features. The bee was chosen because of

its combination of black and yellow colours; the participants were expected to hear

the sounds of the black and yellow colours (see Appendix B.2). The images of the

house were drawn based on two distinctive shapes in two different colours with a

triangle at the top and a square underneath it (see Appendix B.4). It was hoped that

the house could be determined from the features of these two shapes. To differentiate

them from the other images, the stick-man images were specifically drawn using a

single colour with a rounded head and a body composed of several straight lines (see

Appendix B.7). Finally, the tree images were drawn with simplified green foliage and

a brown trunk below it (refer to Appendix B.8). The simplistic test images were

specifically designed with a maximum of two feature representations so that the

beginners could recognize the objects based on their two distinctive sound patterns

encoded in the soundscape.

Shade Test

In Prototype 1, not only is the type of colour represented by different musical in-

struments, but the lightness of the colour is represented by the pitch of the timbre

as well. In this experiment, different colour shades were tested. However, the shade

test implemented in this experiment was simple, the intention being to test whether
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the concept of sound pitch augmentation based on colour lightness is effective. For

each test case, two blobs of different shades of the same colour were drawn, one at

each side of a rectangular image frame. The participant was instructed to specify

the location (left or right) of the darker blob based on the pitch of the soundscape

he/she heard (see B.5). The test case was repeated 20 times for each participant

and the accuracy results were produced by calculating the number of correct guesses.

This experiment tested the ability of the participant to discriminate the horizontal

location and the shades of colour based on the soundscape produced by Prototype

1.

Identify the Object’s Location

This experiment was designed to test whether the location information embedded in

the soundscape could help the participant identify the location of an object. Using

the same image object classes as in the previous test, the object test, four different

objects were selected and redrawn in the four quadrants (top-left, top-right, bottom-

left, and bottom-right) of an image frame. Figure B.9 shows four images, where in

each a tree is located in a different quadrant. The participant was then instructed

to identify the object’s location, which was chosen by the facilitator. For example,

if the facilitator requested the participant to locate the tree, the participant needed

to listen carefully for the features of a tree and then pinpoint the quadrant that

contained it. In this experiment, 24 different combinations were used and each

participant was required to listen to 20 different test cases in random sequence. In

order to correctly identify the location of the object, the participant had to be able

to determine the location through the horizontal and vertical position, as well as to

differentiate objects through complex features such as colour, shape, and texture.

Identify the Object in the Quadrant

This experiment was closely related to the previous experiment. Instead of iden-

tifying the quadrant in which the object was located, the participants were asked
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by the facilitator to identify the object in the chosen quadrant. The same 24 com-

binations of images were used for this task as for the previous task. In order to

correctly identify the object in the quadrant, the participant was required to differ-

entiate multiple visual features in the soundscape, most importantly location (X-

and Y -axis), colour, and blob. A correct answer was one of the four object classes.

Counting Test

The final test was the most difficult of all the tests used in this experiment. The

participants (and the prototype) were tested on all three visual features, i.e., loca-

tion, size, and colour. As shown in Appendix B.1, images that contained various

circles in different colours and sizes were used in the test cases for this test. The

participants were asked to count the number of blobs in the image by listening to

the soundscape. The testing process was repeated 10 times for each participant. In

order to correctly complete the task, the participant had to create a mental image

containing the circles using the information in the soundscape.

4.2.3 Results

The bar chart in Figure 4.1 shows the recognition accuracy for each test in Exper-

iment 1. Based on the fact that for most conditions the chance level was 25% (for

the colour and shade tests the chance levels were 10% and 50%, respectively), the

results suggest that Prototype 1 indeed was operating as expected. Although the

participants were using the prototype for the first time, the results show that they

were able to achieve a minimum accuracy of over 50%, which proved that Proto-

type 1 was promising. With better appropriate guidance and prolonged usage, the

participants may even have achieved a higher accuracy using the prototype.

Among all the test cases, the accuracy for the ‘find object’ test was the lowest,

being only 60%. Although the ‘find object’ and ‘find location’ tests were similar,

the latter required a deeper understanding of the conversions and sharp ears to
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Figure 4.1: Experiment 1: Accuracy

differentiate the various elements of the soundscape in order to decode the visual

information contained in it. The participants were required first to determine the

specific region where the object was located and then identify the object, which the

participants frequently failed to do. In the ‘find location’ test, the participant could

listen to the soundscape as a whole and then identify the object through the sound

signature of certain objects and then determine the location from the time delay.

This suggests that the order of the information may affect the recognition accuracy,

especially for beginners because their mental map did not endure as long when

exposed to so many different sounds and noises at the same time. It is therefore

important to take this effect into consideration when designing the training sessions
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for VASS systems.

In contrast, ‘counting test‘ which was expected to be the most difficult, yielded

the best results. The participants obtained a high accuracy rate of 90% correct

answers. In principle, the swiping mechanism the algorithm in Prototype 1 that

is used to represent location information helps in such scenario. The results prove

that the top-down swipe is useful for the users, helping them to create a mental map

filled with blobs and their locations. The feedback from all the four participants later

further confirmed that they were able to paint the blobs in their mind by listening

to the swipe. By following closely the direction of the swipe from top to bottom,

they were able to guess the number of blobs and their location in each region.

4.3 Experiment 2

In total, this research project has conducted two experiments, Experiment 1 and

Experiment 2, to test the functionalities of the prototypes. Experiment 1 was con-

ducted in order to evaluate new ideas. With the promising results of Experiment 1,

the process of prototyping continued in order to further improve on the ideas. After

the first experiments, no major experiment was conducted to evaluate the subse-

quent few iterations and the next major experiment was conducted only after the

completion of Prototype 4. The second major experiment was conducted after the

implementation of depth sensor that incorporate the depth element in addition to

the usual 2D visual data. The purpose was to measure the research progress of this

project. This experiment, Experiment 2 is crucial not only because of the depth

concept and all the new adjustments, but also how well the prototypes perform

and also how well they operate in a real-life scenario. Hence, this experment was

designed mainly to evaluate the performance of each prototype. The details of the

experiments were documented in my published article (Tan, Maul, and N. R. Men-

nie, 2015). The experiment has obtained the approval from the Ethics Committee

of University of Nottingham Malaysia.
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First, in this experiment the objective was to test the prototypes in a simulated

real-life situation in a controlled environment using subjects other than personnel

belonging to the project. After Prototype 1, the prototypes produced by the Lu-

minophonics project were tested only internally by our own researchers and were

never used by outsiders in a real-time situation. Therefore, in this experiment,

participants from different categories of age and profession were invited to use all

the prototypes. They were required to carry the prototype while completing the

tasks designed for the experiment. The prototypes used in this experiment were im-

plemented in physical form. The visual-to-auditory conversion algorithms for each

prototype were fully developed and installed in a laptop that was equipped with the

necessary input and output devices, the camera and the headphones. After using

the device, the opinions of the participants of their perception and usage experience

were collected through either questionnaires or verbal interviews.

Second, one of the prototypes was developed to incorporate depth information by

using an additional depth sensor, as well as a normal camera. Using the depth sensor,

the prototype is able to capture depth information from the surroundings and build

a depth map. The combination of the depth map and the image from the normal 2D

camera allows Prototype 4 to supply the additional depth information to the user

that helps them in their judgement. In normal human vision, depth information is

frequently used when making a decision in scenarios such as navigation and reaching

towards an object. Because depth is relatively new subject in the area of VASS,

Prototype 4 took an innovative approach in the implementation of depth information

it its information conversions. The conversion algorithm was built such that it does

not automatically convert the depth information, but the users are provided with

the option to switch on the conversion of depth information into the soundscape

whenever they need it. One of the objectives of this experiment was to determine the

practicality of the depth implementation in Prototype 4. Because in the experiment

the participants used all the four prototypes one after another, more data pertaining

to the manner in which Prototype 4 processes depth information could be gathered.



CHAPTER 4. EXPERIMENTS AND RESULTS 165

The opportunity to compare Prototype 4 and the other prototypes, based on either

observations of participants or their feedback, allowed us to collect more information

about the effectiveness of the manner in which Prototype 4 represents depth and also

the usefulness of depth information in the VASS system. Moreover, through their

responses to the questionnaires, the participants shed some light on the effectiveness

of the implementation and also possible means of improving Prototype 4.

Third, from the past trials and experiments, it was understood that it is very

difficult to create a VASS system that completely replaces human vision and is

able to perform perfectly in every situation. Thus, the efforts were refocused on

finding the optimum features and settings for a VASS system that perform well in

two major scenarios, navigation and object recognition, that involve the application

of depth information. Therefore, the third part of this experiment consisted of

using the prototypes in a controlled environment in the scenarios mentioned above.

Navigation and object recognition tasks were combined into a single test course in

a safe compound to evaluate the ability of the user to perform the tasks and the

effectiveness of the prototypes’ translation of visual information into a soundscape

in terms of assisting users. In general, the users, who had been blindfolded, were

required to navigate a series of obstacles in order to perform a task involving object

recognition at the end of the course, and then return to the origin. The time they

took to complete the tasks and their reactions during the course were recorded for

performance analysis and comparison.

Finally, one of the features that the Luminophonics project hopes to improve is

the learnability of the VASS system. When designing the prototypes, the aspect of

learnability was seriously taken into consideration. The conversion algorithms were

built to lower the barrier of entry so that new users can start using the device more

quickly. In this experiment, the objective was to determine which type of algorithm

a beginner can learn more easily and also the aspects that influence the learnability

of a VASS system. In order to measure the learnability of the prototypes, the

invitations to participate in the experiment were given only to people who had no
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prior knowledge and experience of a VASS system. In contrast to Experiment 1,

no training was provided for the participants before the actual experiment. These

conditions were set so that, in the experiment, the time required by users with no

experience to learn and adapt to the system in order to perform the task could be

measured.

4.3.1 Course Design and Preparation

Specifically for this experiment, a fixed navigation course was designed and plotted

in an indoor room. An indoor room was chosen for these experimental activities for

a few reasons. The main reason was to provide a safe and controlled environment for

the participants, because they were blindfolded for the greater part of the session.

While an indoor environment is not as realistic as an outdoor one, safety is of utmost

importance when conducting such experiments. Moreover, because the prototypes

had not been fully tested in an outdoor environment, it was possible that they might

not operate correctly in potentially harmful conditions, such as an environment

with dangerous objects and situations that involve moving obstacles, for example,

animals and vehicles. In these types of difficult and complex situations, the system

is required to react sufficiently fast and provide accurate information to the user.

The prototypes are still under improvements to meet these stringent requirements.

Before the prototypes can meet the standard, it is safer to use them in controlled

indoor environment conditions under supervision.

In addition to addressing safety concerns, an experiment conducted in an indoor

environment has a second advantage. Inside a room, the surrounding condition can

be easily controlled, in particular the lighting conditions, which might degrade the

performance of the prototypes if not handled correctly. For example, in an envi-

ronment with extreme lightning conditions, i.e., one that is too bright or dark, the

colour of the objects changes. Moreover, the TOF depth sensor used by Prototype 4

does not effectively register depth information in a brightly lit environment. This is
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because a high amount of infra-red rays from foreign sources degrades the infra-red

pattern emitted by the sensor and hence increases the noise in the data received

by the depth sensor. In order to obtain more accurate results, the surroundings in

which the prototypes were operated needed to be consistent across all the partic-

ipants. Therefore, an indoor environment was preferred, because it allowed us to

control the light intensity in the surroundings, e.g., by controlling the number of

fluorescent lamps that were switched on. In addition, an outdoor environment can

be affected also by other uncontrollable conditions, such as weather. In summary,

Experiment 2 was conducted in an indoor room to provide a consistent environment

throughout the entire experiment, minimizing environmental and risk factors that

might have affected the accuracy of the results.

When designing the course for Experiment 2, various research studies in which

similar experiments involving a group of visually impaired people were being re-

ferred. After considering many issues and clues in the published studies, a navi-

gation course that was inspired mainly by the Red Serpentine course used in the

experiment of Bologna, Deville, and Pun (2008) was created for this experiment.

The navigation course was a fixed course designed to allow the human subject to

walk along a path, on the shoulders of which various obstacles were located. In Fig-

ure 4.2, the red line indicates the path that the participants were required to follow

and the shaded boxes beside the red line are the obstacles that the participants were

required to avoid. The path is a long wavy line from its origin to the goal (indicated

in the figure by a flag). When the participant reached the goal, he/she was required

to complete a task that involved object identification. Then, he/she was required

to walk back to the origin.
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Figure 4.2: Experimental course design

Figure 4.3 shows the real experiment site set up in a carpeted indoor room with

a level floor. As seen in the figure, a 90 m long path was marked on the floor using

yellow floor tape. A bright yellow tape was chosen because it is more easily detected

and recognized, especially by a beginner. Floor tape with alternating red and white

stripes was stuck at both the left and right hand side of the yellow floor tape to

act as a barricade. This tape was used as guidance lines: when the user heard the

sound representation of the red and white stripes in the soundscape, they knew
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that they were not focusing on the correct region. Because of space constraints,

the wavy path drawn on the floor did not follow exactly the previously proposed

design. Participants walked from the origin (shown in the middle of Figure 4.3a)

following the yellow curved path to reach the table on which three balloons were

located (shown in the middle of Figure 4.3b) and then back to the origin.

At the end of the course (as seen at Figure 4.3b), there was a table on which were

placed three balloons of different colours (blue, yellow, and red). The table and the

balloons were used in the object recognition task that the participants performed

when they reached the end of the course. Upon reaching the table, the participants

had to perform the task at the table before resuming their journey back to the start

of the course. In both figures, multiple brown cardboard boxes laid randomly outside

the barricade tape can be seen. There were a total of 10 cardboard boxes in the

room, which acted as obstacles that the participants had to avoid. Empty cardboard

boxes of various sizes were chosen as obstacles because of their characteristics of

being soft and light, which meant that they would not harm a participant if he/she

accidentally hit them. The role of these obstacles in the experiment was to simulate

the static objects that should be avoided in a real-life situation, e.g., rocks, trees,

and sign posts. Therefore, the number of boxes knocked by each participant was

recorded as one of the indicators for the performance measurement.
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(a) Front view (b) Rear view

Figure 4.3: Experiment room

4.3.2 Experiment Activities

A total of four prototypes produced by Luminophonics were tested in this experi-

ment. It was important that the experiment would produce unbiased results for each

prototype. Hence, a few preventive measures were introduced so that the results

would be as fair as possible.

For instance, a unique sequence of prototypes for each participant was intro-

duced. Given that every participant was required to navigate the same course four

times using each prototype once, it was possible that a beginner would start to navi-

gate better towards the end of the experiment. This is because, when the participant

had navigated the course a few times, he/she might have developed a mental map

of the surroundings or have become more familiar with the VASS system. Thus,

it was unfair to conduct the experiment using the same sequence of prototypes for

all the participants. This might have created the effect that the final prototype in

the sequence appeared to perform better in the experiment when in fact the user

navigated more easily because he/she was using the experience gained from prior

runs. To minimize the effect of sequence bias via learning and memory, each par-

ticipant was given a unique sequence so that each prototype was located an equal
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number of times in each position in the sequence. Because there was a total of four

prototypes, there was a total of 24 possible sequence combinations. For example, if

his/her sequence was 4-2-1-3, the user would first use Prototype 4, then Prototype

2, Prototype 1, and Prototype 3, in that order.

In the object recognition component of the experiment, the position of the three

balloons was also randomized for each run of each participant. Basically, at the

end of the course the participant was required to select the correct balloon as in-

structed by the facilitator before returning to the origin. The balloons were not

located in a fixed position, but rather the facilitator changed the position of the

balloons randomly while the participant was navigating the course before he/she

reached the table. By randomizing the position of the balloons, the effect of the

participant memorizing their position was negated. Thus, the participant was re-

quired to depend on the soundscape produced by the prototype when selecting the

balloon.

Because there were a total of 24 sequence combinations, the invitations to par-

ticipate in the experiment were sent to more than 100 people in the hope that more

than 24 people would accept. The initial plan was to allocate a session of about 1 h

to each participant (15 m per prototype for a total of four prototypes). A schedule

was drafted to accommodate at least 24 sessions, which comprised a total duration

of five days for the entire experiment. A total of 28 people signed up for the exper-

iment, but only 16 arrived. The background and age group of the 16 participants

differed. However, they all had normal vision. At each experimental session, a fa-

cilitator was present to coordinate the experimental activities and provide guidance

to the participants.

Before the start of each session, every participant was given a unique four- num-

ber sequence indicating the order of prototypes he/she would be using during the

session. After receiving a short briefing presented by the facilitator on the operation

of each prototype, the participant was blindfolded with a thick black sleep mask.

Meanwhile, a laptop computer containing the prototype software was loaded and
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started before being placed in a backpack that would be carried by the participant.

Two options were given to the participant for carrying the prototype device: the

handheld or head-mounted mode. The session started when the participant was

prepared. Following the sequence given, the participant completed the course using

the prototypes serially. During the entire session, the facilitator recorded all the

data required for the performance evaluation, including the duration of the journey,

number of obstacles knocked over, and time taken to select the correct balloon. At

the end of the session, each participant was required to fill in a feedback form about

the entire experiment. The feedback form was used to record information that could

not be observed during the experiment, such as the opinion of the users and their

experience while using the prototypes. All the information that was recorded during

this experiment was important, because it would help us improve the systems in the

future.

4.3.3 Results and Discussions

Participation

In an experimental session, each participant was allocated a total of 1 h to complete

the navigation course four times using a different prototype in each run. All the

participants were able to complete their session in nearly 1 h and not one exceeded

the time allocated. However, 2 of the 16 participants ended their session prema-

turely. They were not able to complete the tasks as instructed. During their session,

they both showed signs of discomfort when using the device. They were not able

to interpret the soundscape or even comprehend the sound. One of them panicked

when he was being blindfolded by the facilitator. When they were attempting to

navigate the course using the provided prototypes, they were not only unable to

follow the yellow guide path but also knocked over many cardboard boxes.

Although their sessions ended prematurely, the facilitator conducted an addi-

tional follow-up session consisting of a brief interview with these two participants.



CHAPTER 4. EXPERIMENTS AND RESULTS 173

The purpose of the interview was to investigate their behaviour further and under-

stand the effect of the VASS system on them. In general, neither participant was

able to distinguish the sound patterns encoded in the soundscape. In the interview,

they clearly exhibited that they were uneasy navigating without being able to see.

The fear of hurting themselves prevented them from focusing on the soundscape.

They both insisted that they did not know how to decipher the soundscape after

multiple trials. This could also have been caused by their poor hearing skills, which

may have impeded their ability to understand the information the prototype encodes

in the soundscape. These two participants were considered outliers, because thus far

most of the people who used the prototypes did not complain about the systems or

show any signs of an inability to start using them. To extrapolate, these incidents

suggest that there may exist a group of people among the visually impaired who

are unable to use this type of device on their first attempt. These people may per-

ceive the sound in a manner that is deeply different from that in which the average

person perceives it. This difference may contribute to the difficulty they experience

decoding information in the soundscape and recreating mental images and spatial

relations from the soundscape. The immediate solution to help this type of per-

son is to design a special set of training material tailored for this group of people

and encourage them to invest a sufficient amount of additional time in self-learning.

However, if the further investigation can be continued on this group of people, it may

benefit the development of VASS systems in the long term. Some hidden aspects

may be discovered that can greatly improve the performance of the VASS system.

Based on the knowledge, a set of tutorials can be designed to speeds up the system’s

learning process.

Navigation Results

Table 4.1 shows the average travel time (in seconds) for each prototype. The results

are expressed as the average of the sum of the total distance travelled for all 16

participants. In the table, Prototype 1 is labelled ‘P1’, Prototype 2 ‘P2’, Prototype
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3 ‘P3’, and Prototype 4, which is the prototype with a depth sensor, ‘P4’. The

navigation results are grouped into three separate values, the average total time,

the average time it took to travel from the origin to the target, and finally the

average time it took to travel in return to the origin. There was no statistically

significant difference between groups as determined by one-way ANOVA (F(3,52)

= 1.9497, p = 0.1376). However, according to the total average time taken for the

entire navigation course, Prototype 1 was better than the other three prototypes.

Prototype 1 was the only prototype that scored a total average time less than 300 s,

whereas the results for the other prototypes were all above 300 s.

Table 4.1: Average travel time (s)

P1 P2 P3 P4

Total 293.0714 337.9286 360.9286 366

From Origin 183.9286 199.2143 217.7857 254.3571

Back to Origin 109.1429 138.7143 143.1429 111.6429

That Prototypes 2, 3, and 4 required a significant 10% more time than Prototype

1 shows that the algorithm implemented in Prototype 1 was of help in a naviga-

tion situation. However, according to the results of the performance measurement

studies (Tan, Maul, and N. R. Mennie, 2013), Prototype 3 scored best in terms

of information preservation and also interpretability. Prototype 3 was expected to

perform well in this experiment. As compared to the original expectations before

the experiment, the results for Prototype 1 surprised us. From the opinions of the

participants that were recorded post-experiment, the results were consistent with

the views expressed by the participants. Most users felt that Prototype 1 gener-

ated the soundscape more quickly, which in turn facilitated fast decision making

during the navigation. Prototype 1 takes 500 ms to generate the soundscape from

a single frame, whereas Prototype 2 takes slightly less than 1 s to perform the same

operation. Prototypes 3 and 4 take at least 2 s to generate the soundscape.
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It is clear that the participants favoured the prototype that delivered a faster

response. This probably reflects the fact that the role of the prototype is similar

to that of vision when a human is navigating. According to Findlay and Gilchrist

(2003), normal human performance relies on quick judgement rather than a long

thought process before making the next decision when navigating, i.e., taking the

next step. Humans naturally use gaze fixation to guide their movement to the

appropriate target. This action is frequently quick and requires only minimal visual

information. On average, a person fixates his/her gaze two steps ahead for a short

time period (about 800 ms – 1000 ms) before taking a step (Patla and Vickers, 2003).

During the experiment, the participants moved the camera in a unique manner to

emulate gaze fixation. For example, when they used the prototype in the handheld

mode, they moved the camera horizontally (left-right) and vertically (top-down)

before taking the next step. These movements helped to increase the accuracy of

their next action (N. Mennie, Hayhoe, and Sullivan, 2007). Hence, when a prototype

is able to produce a soundscape in a shorter time frame, it increases the number of

accurate judgements the user can make before he/she decides on the next movement.

The reason for separating the results into three different groups is that some

interesting relationships exist between these three timings. The total average time,

T , is the sum of the average time taken to navigate from the origin to the target,

t0, and the time taken to return to the origin, t1.

T = t0 + t1 (4.1)

We noticed that significant differences existed between t0 and t1, although ideally

the two times should be approximately the same. The result for all the prototypes

showed that t1, the duration of the return journey, was significantly shorter than

t0, the duration of the journey from the origin to the target. Among all prototypes,

Prototype 4 showed the most reduction between t0 and t1, with a 56.1% decrease

in time on average. Prototype 1 was in second place with a 40.67% time reduction,

while Prototypes 2 and 3 yielded similar results, with a 30.34% and 34.28% time
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reduction, respectively. The results correlated with the number of obstacles knocked

over in both the journey to the target and the return journey. The number of

obstacles knocked over by the participants was significantly lower during the return

journey than during the journey from the origin to the target.

The results for the difference in the journey duration and the number of obsta-

cles knocked over showed the ability of the user to learn while using the provided

prototypes for the first time. The improvements were apparent when the partici-

pants showed that they were able to traverse better during their return journey. The

improvement for their return journey can be explained by two factors. First, the

participants understood how to use the prototype better after they had completed

the outward trip. Normally, before starting to use a VASS system, the user attends

a training lesson. However, in this experiment no training was given except a short

introduction to the operation of each prototype so that the participants would know

what to expect when they put on the headphones. Therefore, the participants re-

lied on their outward trip to learn, which in turn helped improve their return trip.

According to the participants’ responses and observations, they learned both how

to operate the device and to interpret the soundscape. For example, it was observed

that the participants operated the camera more efficiently; for example, they im-

proved the angle at which they pointed the camera. Second, the results also suggest

that the participants were able to create mental images/maps through listening to

the soundscape on their outward trip. On their return trip from the target to the

origin, they relied less on the soundscape because they were able to use the mental

map in their mind as guidance. When they had a mental map of the navigation

course, the users could focus their energy on detailed features in the soundscape,

such as the boxes placed along the side of the path.

It is not clear why Prototype 4 showed the best improvement between the out-

ward and the return journey of all the prototypes; however, the ease of mental image

creation tends to be inversely correlated to the amount of information contained in

the soundscape. For example, Prototype 1 converts less visual information and
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therefore the user can create a mental image more easily. By using a computer to

process the image frames, Prototypes 1 and 2 can discard many irrelevant features in

the visual-to-auditory conversions, leaving important information in multiple blobs.

With a simpler soundscape, the users can easily create a mental image in a shorter

period. However, experienced VASS system users have the ability to create a de-

tailed mental image when using a more complex soundscape. According to the

feedback of the participants, the mental images/maps did not remain in their mind

for the entire experiment. The map was retained only for each individual prototype

period. The participants had to create a new mental image for each prototype. This

may be because the users were inexperienced in using this type of device. Hence,

with proper training and exposure, it is believed that users can be taught how to

create rich mental images/maps from soundscapes with more information and how

to prolong their retention of these mental images/maps.

Object Recognition

At the end of the navigation course, the participants were required to complete an

object recognition task before they were allowed to return to the original location

to end the test. The object recognition task was a simple one: the participants were

asked to select a specific balloon based on the colour given by the facilitator who

was monitoring them. A total of three balloons (red, blue, and yellow) were glued

on the table. Before the participant reached the table and was asked to select the

balloon, the facilitator randomized the location of the balloons. Each participant

was given two chances to select the correct balloon and the time each participant

took to complete the task and the choice(s) of each participant were recorded.

As in the previous table, in Table 4.2 Prototypes 1 to 4 are labelled from P1

to P4. The results presented are the average time taken by the participants to

complete the experimental task sorted according to the prototype they used. The

table shows that the results for this activity do not exhibit an obvious pattern, as

do those for the navigational aspect of the experiment. This could be due to the
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simplistic nature of the test, given that the entire experiment was focused mainly

on the navigation task rather than on the object recognition task. In the future, to

investigate the user’s ability to recognize objects, improved object recognition tasks

similar to those used in Experiment 1 can be included. Of the four prototypes, the

users performed better using Prototype 3, with an average task duration of 72.71 s.

The difference as compared to the worst performer, Prototype 4, was more than

10 s.

Table 4.2: Average balloon recognition time (s)

P1 P2 P3 P4

Average Time 78.92857 80.78571 72.71429 83.28571

Because it was built on the concept of vOICe (Meijer, 1992), it is expected that

Prototype 3 would perform better than the other prototypes. This was mainly

because Prototype 3 converts relatively more visual information than the other pro-

totypes, especially Prototypes 1 and 2 in which an image processing module is

incorporated in the conversion process. A considerable amount of visual informa-

tion is required to correctly complete a task such as this, because it requires the

user to select the correct balloon together with determining its exact location based

on the features of the object and its surroundings. A comparison of the results for

both the navigational and object recognition task shows clearly that the different

tasks required different aspects of visual information. Although Prototype 3 did not

perform well in the navigational task, it performed better in the object recognition

task because of its richer and more detailed soundscape.

Depth Implementation

One of the objectives of this experiment was to determine whether the depth imple-

mentation built into Prototype 4 contributed to a performance increment. Overall,

according to the results of this experiment, Prototype 4 did not achieve any sig-
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nificant improvement over the other prototypes. In fact, its performance was the

worst for both the navigational and object recognition task. These results were

not expected, especially those for the aspect of navigation, because humans natu-

rally depend heavily on depth information when they are moving. It is clear that

the manner in which depth information is implemented in Prototype 4 cannot be

deemed suitable for application in VASS systems.

After the experiment, the participants were also interviewed about their opinion

of Prototype 4. The participants unanimously agreed that the depth implementation

did not help them visualize the surroundings better from the soundscape. As the

depth information is implemented in Prototype 4 as an optional feature, most of the

participants chose to switch off this option for the entire course. Some complained

that the soundscape tended to be more confusing when they were navigating with

the depth feature turned on.

There are two possible reasons for this poor result. The first is the particular

method used to incorporate depth in the prototype. In Prototype 4, the depth map

is used as an optional filter to slice the visual information so that the user can focus

on a specific depth range. However, being able to choose the depth range during

navigation not only caused the users confusion but also interrupted their flow of

spatial reasoning. As mentioned previously, users rely on fast judgements and quick

reflexes during navigation, which is why the prototype that provides a faster refresh

rate frequently performs better. This kind of depth implementation necessitates an

additional layer of thought process, hence slowing down the overall conversion if the

user intends to switch to 3D mode. Furthermore, it adds confusion to the usual

sound cacophony as the user switches back and forth between the 3D and 2D mode.

The second reason is that the poor implementation may be caused by the factor

of resolution provided by the TOF camera used in Prototype 4. The TOF camera

provided only the QQVGA depth map resolution (160×120), which is significantly

smaller than the standard resolution used for the 2D implementation. Thus, many

of the visual features are not captured by the depth sensor, which lowers the overall
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accuracy of the depth filter.

Although the results were discouraging in terms of depth implementation in the

VASS devices, I still believe that depth information is essential for VASS systems.

It has been reported that users perceive multiple depth cues even from a soundscape

that is generated from 2D image frames. With the 2D depth cues, they were able

to navigate through the navigation course despite the lack of accuracy of the cues.

However, the VASS system can provide a more precise set of depth cues with a better

depth sensor which will improve the performance of the system. Additional effort

needs to be invested in researching new means of converting and integrating depth

information automatically into the soundscape. It is possible that, with advanced

technologies, a soundscape that maximizes the visual information while reducing

sound confusion and user interaction can be generated.

4.4 Discussions

The results of the experiments provided many insights into the research. Not only

did the feedback obtained from the experiments guide us to improve the prototypes,

but also the results affected the direction of the Luminophonics project research.

At the beginning, the aim of the project was to push the limit of visual-to-auditory

cross-modality conversion in order to create a better VASS system that can com-

pletely replace the human eye by providing vision through a soundscape for the

visually impaired. However, according to the results of this experiment, more work

is required to achieve a device ideal for practical usage. Hence, it was decided that

the research would take a slightly different route to provide the necessary infras-

tructure and support that would facilitate the development of future VASS systems

based on the prototypes that were developed. In this section, the lessons learned

from the experiments are summarized and presented.
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4.4.1 Scenarios for VASS

The decision to combine both navigation and object recognition tasks in an experi-

ment was a good one. The practice of testing a VASS system in a situation involv-

ing two different scenarios, i.e., navigation and object recognition, is not commonly

implemented. However, this experiment design was created to find out which proto-

types can perform well in both scenarios. The results of the search for the prototype

that can perform best in both scenarios were unexpected. The results of Experiment

2 surprised us, given that some of them were unforeseen. For instance, Prototype

1, which was performed worst in terms of object recognition, outperformed other

prototypes in terms of navigation. Most interestingly, the observations from the

experiments revealed that the prototypes could not perform both tasks well. They

all proved to be effective in one of the scenarios but performed poorly in the second.

It is clear that the approach built in the prototypes is not adequate for producing a

system that is sufficiently robust to perform in all scenarios.

The results of Experiment 2 showed that for the different scenarios users need

to use a different aspect in order to complete the task optimally. However, very

frequently the aspects contradict each other, which is the reason why it is difficult

to create a perfect VASS system. In a scenario such as object recognition, the

VASS should prioritize information content, because the user requires various visual

features to correctly recognize the object in front of him/her. The soundscape

produced to meet these requirements is slow and long because of the details of

the information encoded into the soundscape. In contrast, in a scenario such as

navigation, the amount of information required is minimal. In this type of scenario,

speed is most important, because users need to make very fast judgements to help

them move along a path while avoiding obstacles. Most of the time, a device that

supplies only relevant information encoded in a short soundscape performs well in

such cases. These two scenarios contradict each other: navigation requires speed but

not the information richness that is important for object recognition. An intelligent
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algorithm is needed to balance the two aspects so that the VASS system can be

sufficiently robust to operate well in different scenarios. However, in the near future,

this research project will be focused on improving the prototypes so that they excel

with limited functions rather than on building a system that caters for all possible

scenarios but performs poorly.

4.4.2 Disadvantages of Experiments

In addition to the two experiments presented in this chapter, several experiments

were conducted on a minor scale internally to test the functionalities of the proto-

types. Since the beginning of the development of VASS systems, experiments using

human subjects have been the only tool available for measuring the performance of

a system. Because humans are the end users of VASS systems, it is important to

know how the system performs from the point of view of the user and also how the

user perceives the soundscape output from the system. After reviewing the results

of multiple experiment sessions, this evaluation method has some major weaknesses

that might cause a bottleneck in the development of sensory substitution technology.

First, experiments using human subjects require a considerable amount of re-

sources, including time, human effort, and money. Thus, it is inefficient to conduct

multiple large scale experiments to measure different VASS systems. In order to ob-

tain more accurate results, the sample size of the subjects must be sufficiently large

to include humans of different gender, background, age, and experience. However,

to recruit a sufficient number of human participants to meet the sampling require-

ments for experimental purposes costs money, as well as time and other resources.

Moreover, time must be dedicated to conducting experimental sessions with each

participant. Thus, the amount of resources needed to conduct a thorough experi-

ment is very large. If the experiment fails, the entire experiment must be repeated,

which further increases the costs incurred. Therefore, the amount of resources re-

quired has become a major hindrance for sensory substitution research, especially
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for a small research group with limited funding.

Second, until now no standardized set of quality measurements has existed for

VASS systems. The lack of a universal performance measurement for VASS is a

concern, especially given the increasing number of similar systems that are being

invented. As the number of new VASS systems being invented increases, so does

the number of experiments for testing them. It has been the norm in the field of

VASS that inventors create a different set of test cases to evaluate their system.

This has led to many problems for the community, mainly because it is difficult to

compare different systems without standardized benchmarking tools. It is important

to compare the systems so that their strengths and weaknesses can be identified.

As a result, the growth of VASS has been restricted because of the lack of common

goals and direction coming from research, which is frequently conducted in silo.

This problem is discussed in more detail in the next chapter, together with solutions

proposed to overcome it.

4.4.3 Learnability

There was a slight difference between Experiments 1 and 2 in terms of allowing the

participants to learn to use the prototypes prior to the actual experimental activ-

ities. The basic VASS training session in Experiment 1 that was compulsory for

every participant was omitted in Experiment 2. The training phase was omitted in

Experiment 2 so that the learnability of the prototypes could be examined. The re-

sults show very clearly that the prototypes developed by the Luminophonics project

promote learning.

In both experiments, the participants demonstrated improvement in understand-

ing the soundscape after their first exposure to the device. The situations of the

two experiments were different. In Experiment 1, the training session was struc-

tured as a simple guided tutorial session in which the operation of the algorithm

was explained to the participants. The users were blindfolded while they interpreted
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the soundscape through the guidance of a facilitator. After the training session, all

the users were able to start performing the experimental tasks and demonstrated

the ability to interpret the soundscape in the case of a simple scenario. Although

the accuracy was lower for complex scenarios that required the user to interpret

different combinations of different features, this showed that even a short training

session helps users succeed in learning to use the system quickly. This is probably

because of the simplicity of the concept, which is easy for the user to comprehend

and which they can learn intuitively.

Unlike Experiment 1, Experiment 2 did not include a training session before

the actual activities. The participants were briefed only with a simple explanation

on the mapping of visual-to-auditory features conversions for each prototype. Ac-

cording to the observations, most participants gradually learned how to interpret

the soundscape while navigating the course. The feedback of the participants af-

ter the experiment showed that they mostly learned to interpret the soundscape

by differentiating multiple soundscapes. The consistent differences and changes in

the soundscape generated by the prototype when sonifying different environments

helped the user to learn to interpret the soundscape. However, in Experiment 2, two

persons were discovered among the participants were unable (or afraid) to use the

device without prior training. They were considered outliers. This singular cases

was very valuable for the research. It showed how valuable a training session can

be.

From the experiments conducted, a few facts related to the learnability of the

VASS system from the experiments were identified. First, intuitive and logical

visual-to-auditory conversion algorithms facilitate the learning process of the users.

When designing the conversion algorithms, it is important to consider human psy-

chology in the basis of the cross-modality conversion. The feedback from the survey

showed that this was beneficial, because the users felt that the soundscape was in-

tuitive. The results of the experiments also indicated that the prototypes are easy

to learn. Second, not all individuals have the capacity to start using VASS quickly.
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For example, in Experiment 2, two participants were observed to unable to use the

device on their first trial. The reason why these subjects in particular could not

use the device is unclear. However, in the interview session, it was revealed that it

could be related to psychological factors and personal experience. It is to be hope

that this can be solved by providing an appropriate structured training session.

Finally, I strongly believe that a training session is very important for increasing

the learnability of a VASS system. Because of their different personalities and

experience, different individuals may react differently to the soundscape. Although

the conversions can be designed such that they were as intuitive as possible, without

proper guidance some individuals may interpret the soundscape differently. Exactly

as for any new tool, a syllabus of training material need to be constructed so that

every individual can fully grasp the concept of the conversion and interpret the

soundscape more efficiently. An appropriately structured training session can both

promote the learnability of all users and ensure that every user can learn at the

same pace, regardless of their past experience.

4.4.4 Exterior and Hardware

In Experiment 2, the prototypes were presented in two forms, head-mounted and

handheld. The source of the intuition that motivated us to develop these two forms

was humans’ natural navigation gait and stance. In the head-mounted mode, the

level of the device emulates humans’ natural eye level and the user can how move

his/her head in the same manner as he/she would move it to control the angle of

his/her vision. People move their head to control their field of view so that they

can focus on the desired scene. When the prototype is used in handheld mode, the

user holds the camera in the palm of his/her hand, waving it around in the same

manner as a blind person waves a mobility cane. These two forms were tested in

Experiment 2. The participants were given the option to use either of the forms

and were allowed to change their preference at any point during their navigation.
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As reported, all the participants finally chose to use the handheld mode.

The majority of the participants demonstrated difficulty using the prototype

when they wore the camera on the top of their head. The handheld mode offers

more flexibility and the user can move the camera into any position. This provides

more degrees of freedom and a longer reach than the head-mounted mode, the field

of view of which is limited by how far the user can turn his/her head. Although

humans’ eyes are located in their head, this may not be the optimal position for

the camera in a VASS system. In addition to more degrees of freedom it offered,

one of the reasons why the users preferred the handheld over the head-mounted

mode may be the limitations of the camera used. As compared to human eyes, the

camera used in the prototypes has a narrow field of view. Normal peripheral human

vision has 180° of horizontal field of view and about 135° of vertical field of view

(Strasburger and Pöppel, 1999). However, the DepthSense DS311 camera that was

used in the prototypes has 50° of horizontal field of view and 40° of vertical field of

view. Therefore, to compensate the limited field of view of the camera, the users

preferred the handheld mode, which allowed them to expand the field of view of the

camera. Furthermore, using reach a user can extend his/her hand forward to ‘zoom’

in on his/her field of view to capture more detail when needed.

In summary, these experiments confirmed that it is preferable to base the design

of the VASS system on the handheld form, which provides users with more control

of the visual information they hear. The outcome further confirmed the validity of

the decision to incorporate the VASS system in a smartphone. As the smartphone

is becoming the most widely used handheld mobile device, it is natural that an

increasing number of VASS systems will be designed to be installed as a mobile

application in a smartphone. Because of the size of the device and the camera

placement (at the rear of the phone), it is indeed the perfect platform for VASS

systems. Using a VASS system installed in a smartphone, the visually impaired user

can sonify the scene towards which the smartphone is pointing. The fact that the

use of smartphones is common allows the user to utilize the VASS system more freely
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in public without appearing awkward. However, the investigation of the feasibility

of using VASS in head-mounted mode should not end here. It may be that when a

user becomes expert in using the VASS system (after long term usage), he/she may

prefer the head-mounted mode. This is because when using the head-mounted mode

the user’s hands are free for performing other tasks, such as grasping and touching.



Chapter 5

Measurement and Optimization

5.1 Introduction

Presented in this chapter are the studies conducted that focus on the subject of

improving the VASS system through the application of optimization techniques.

According to the results of the experiments conducted after the prototyping phase,

the performance of the prototypes is indeed better than that of some existing coun-

terparts. However, the path of improving the visual-to-auditory conversions even-

tually led us to two main challenges. They are related to the questions of how the

improved prototypes perform as compared to other systems and to what extent the

performance of the proposed technology can be improved. Therefore, the idea of

using an optimization process was conceived to meet these challenges and eventually

to further elevate the performance of the prototypes.

The main objectives attempted to achieve were to determine which features

constitute a good VASS system, and using this information, to determine through

optimization a set of more effective feature pairs for the visual-to-auditory con-

versions mapping. However, in order to arrive at the process of optimization, the

challenge was to obtain a cost function that quantitatively measures the performance

of a VASS system and that can be optimized. Unfortunately, there are not many

188
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tools for specifically measuring the performance of a system that converts visual

to auditory information. Although there are many systems that translate visual

information into the auditory form, there is no standardized method for correctly

measuring the performance of a VASS system. Most VASS research groups conduct

their own performance measurements in their own facilities, such as the experiments

described in Chapter 4. As a result, activities were planned first to produce a set of

performance measurement tools and then to use it to start the optimization process

to determine the best visual-to-auditory conversions features.

In Chapter 5, the work that will be described is grouped into two main sections,

addressing the automated measurement (Section 5.2) and subsequently the opti-

mization (Section 5.3) of the visual-to-auditory conversion features. The purpose of

developing the automated measurement was to assess the performance of a VASS

system quantitatively, targeting certain elements of the system. For this purpose,

an innovative approach for evaluating the performance of a VASS system from its

soundscape by examining both the information preservation and the interpretability

of the content is introduced. Then, the process of optimization is developed on the

conversion parameters using the evaluation methods developed earlier as the cost

functions. Finally, two sets of visual-to-auditory conversion feature mappings, which

are optimized for two different scenarios are described in this chapter.

5.2 Automated Measurement

After the prototype development and conducted the experiments, the next step was

to evaluate the performance of the prototypes in comparison with that of the other

existing VASS systems. The purpose was to determine how the prototypes com-

pare with the established systems and also to identify the improvements that are

achieved in the prototypes. However, without standardized tools and guidelines, it

is very difficult to compare the systems fairly. The main factor behind this problem

is probably the fact that most VASS research is done in silo and there is minimal
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collaboration between groups. This has resulted in a situation where different sets

of experiments for performance evaluation have been created for each of the dif-

ferent systems. Their performance is measured according to different criteria and

requirements, and thus, it is difficult to compare the measurement results.

Relatively frequently the evaluation methods are focused on the features of the

prototype, which adds an additional layer of difficulty in terms of comparison because

some other systems do not have the same feature package. For example, See ColOr

(Bologna, Deville, Pun, and Vinckenbosch, 2007) performs very well, especially in

terms of object manipulation and human navigation. The authors proposed testing

their system by introducing experiments that measured the interaction of users

with the system. It is easy to evaluate a system from the reported results of the

experiments but it is not possible to compare it with other systems. As more systems

are created, different kinds of tests are created together with them. In principle,

internal experiments can be conducted to compare the prototypes with systems such

as vOICe (Meijer, 1992) or the Raster Scanning method (Yeo and Berger, 2006), but

the results would be skewed towards my prototypes. This is because the two systems

do not share a common set of features with the prototypes and, most importantly, the

systems emphasize sonifying the image texture rather than other information, such

as colour. Since the experimental tests focused on the users’ ability to interpret the

colour information in the soundscape, the systems that do not incorporate colour

in the conversions would be in an unfavourable position. Therefore, a common

evaluation method that quantifies the performance of a system based on the content

of its soundscape is preferable, because it provides a fairer platform on which to

measure the performance regardless of the features of the VASS system.

Most of the current preferred measurements are based primarily on the approach

of psychological experiments, such as the experiments described in Chapter 4. These

experiments employed human subjects in order to gather their feedback on the sensa-

tion and perception of the systems of interest. Hence, by examining the interactions

between the users and the systems through a series of carefully planned psycholog-
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ical experimentation, it was possible to gather more intrinsic data that benefit the

development of the systems. The team from the University of Trier also achieved

good results from psychological experiments. They developed this type of experi-

ment to evaluate the effectiveness of their visual-to-auditory conversion system on

the perception of the representation of colour and also the effect of learning when

people use these systems (Michael J. Proulx et al., 2008). From the data they col-

lected, they were able to understand the learning effect and the human reactions to

the system. Ultimately, psychological experiments are indispensable for evaluating

an SSD because of their comprehensive results. It is therefore advisable to conduct

such experiments before deploying an SSD. However, this remains a very expensive

approach (in terms of both time and money) and thus is unsuitable for the early

exploratory phase of a project. A more suitable approach for the testing, evalu-

ation, and filtering of prototypes at the early developmental stage would have to

rely on some type of mathematical measurement of the conversion process. If this

measurement were, moreover, to avoid certain biases, it could even be instrumen-

tal as a universal method for comparing systems. Although it would never replace

psychological experiments, it would allow cheap and effective prototype exploration

and would add some objectivity to the comparison of systems.

The unavailability of a common performance measurement platform on which

to evaluate the systems is a major concern for VASS researchers, as an increasing

number of systems are being produced. In order to improve the image sonification

technique, essentially systems comparison is inevitable. It is important to compare

the systems so that their strengths and weaknesses can be identified. Without a

standardized performance measurement, it is difficult to rank the systems fairly

based only on the results generated by human test subjects.
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5.2.1 Overview

In this section, a performance measurement is proposed. The objective of such mea-

surement is to quantify the performance of a VASS by analysing both the input and

output of the system. The evaluation method is aimed to be both fair to all systems

and cheap to implement, and thus, it is ideal as a common performance measure-

ment platform for VASS systems. The performance measurement addresses two

main issues: the interpretability and the information preservation of a soundscape.

Although, the quality of a soundscape is not limited to only these two components,

they are valuable indicators of a good VASS system. The other features that con-

tribute to the effectiveness of a visual-to-auditory conversion process include high

learnability, a good listening experience, and the robustness of the system.

The measurements of interpretability and information preservation are indepen-

dent of each other. The two measurements use a different set of visual and audio

analysis algorithms to achieve their purpose. The interpretability of a soundscape

answers the question of how feasible it is that a human user can interpret or learn

how to interpret the generated soundscape. A highly interpretable soundscape is

easy to learn and also perceive. It can be measured by analysing both the input

visual information and the generated soundscape to determine the connection be-

tween the input and output. Frequently, the input and output information of a

soundscape that is easy to interpret are highly correlated. Based on this premise,

an interpretability measurement that uses components such as inter-image distance

(IID) and inter-sound distance (ISD) is being proposed.

Second, the performance measurement includes the ability of a VASS system

to preserve information during the process of visual-to-auditory conversion. As

mentioned, a visual container is able to accommodate more information than an

audio container of similar size. Therefore, the process of cross-modality conversion

from a visual to an auditory domain usually results in information loss. However,

different conversion methods cause different degrees of information loss, one higher
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than another. By calculating the amount of information in the input image and the

corresponding generated soundscape, the amount of information that is preserved

during the conversion process can be gauged. The objective of this measurement

is to search for a system that is able to encapsulate the most information in the

soundscape.

5.2.2 Measuring Interpretability

As suggested previously (see Chapter 3.2.3), the process of optimizing the selection

of a musical instrument set paved the way to the establishment of an interpretability

measurement. Briefly, the goal of this optimization was to produce a set of 10 dis-

tinctive timbres. This was achieved by analysing the sound signature of each timbre

and measuring the differences between these signatures to map the differences be-

tween all the timbres. The process of characterizing the timbres through MFCC and

calculating the ISD based on their sound signatures was significantly instrumental

for developing a method of measuring interpretability.

From the results of measuring the distance between audio signals, there is a

strong connection between the distance between input images and their correspond-

ing output soundscape and the interpretability of the soundscape. More intuitively, if

the soundscapes generated by a system are to possess the property of interpretability,

then, if two images are similar, their corresponding soundscapes should be similar,

and conversely, if two images are different, then their corresponding soundscapes

should be different. This property can be easily captured by a correlation measure.

Based on that idea, the analysis of IID and ISD is introduced. IID is the similarity

metric between two input images. Similarly, ISD measures the similarity between

two soundscapes. It can be hypothesized that the correlation between IIDs and

the corresponding ISDs measures to a significant degree the interpretability of the

soundscapes generated by a VASS system. In other words, it is expected that a

good VASS, i.e., one that allows easy interpretation of soundscapes, will exhibit a
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relatively strong IID-ISD correlation.

Inter-image Distance

The algorithm for image similarity measures has advanced tremendously, aided by

the growth of visual data and its applications, such as in image retrieval as used

in most of the search engines available on the Internet. Although there are several

readily available algorithms from which to choose, EMD was chosen in this study

to measure the distance between two input images. EMD, which is also known as

the Wasserstein metric, was first proposed by Peleg, Werman, and Rom (1989) to

measure the distance between greyscale images. It describes the minimum cost of

changing a probability distribution to another probability distribution. In this case,

a representation scheme was created based on a pair of probability distributions for

both images. EMD measures the lowest cost of transforming image A to image B

using this representation scheme.

In the research studies, an advanced form of EMD is applied. It is commonly

used for the purpose of image retrieval, developed by Rubner, Guibas, and Tomasi

(1997). Instead of probability distributions, vector quantization was used as the ba-

sic representation scheme. This distance measurement is called EMD-KL , the name

of which reflects that it is a combination of EMD and Kullback Leibler divergence. It

improves the results by taking into account the perceptual similarity of images, and

thus, the approach is considerably more robust and well suited for applications that

involve colour and texture information. An additional reason why EMD-KL was

used for calculating the IID is that it can also be used to calculate the differences

between two audio signals (Logan and Salomon, 2001). By using the same algo-

rithm for calculating both the input (image) differences and output (soundscape)

differences, the need to normalize the results so that they were compatible with each

other can be eliminated.
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Inter-sound Distance

The task of computing the ISD between two soundscapes relied on an existing MAT-

LAB toolbox proposed by Pampalk (2004), called the MA Toolbox, that computes

music similarity from audio. The toolbox contains different approaches that focus

on audio similarity measures, including content-based music analysis, feature extrac-

tion, and visualization. For ISD, the methods to extract the sound signature, which

is similar to the approach used for the timbre selection, discussed in Chapter 3.2.3

is used. However, instead of using different timbre sound snippets, the extraction

method was applied to the output soundscapes generated by the VASS system.

To calculate the ISD, a music similarity that combines the two approaches pro-

posed by Aucouturier and Pachet (2004) and Logan and Salomon (2001) respectively

was designed. Figure 5.1 shows the process of the ISD measurement for soundscapes.

Basically, the ISD measurement method modifies the approach of Aucouturier and

Pachet (2004) by replacing the Monte Carlo sampling with EMD-KL for the dis-

tance measurement. From this, the ISD measurement comprises a three-part pro-

cess. First, the soundscape (in the form of audio signals) is chunked into multiple

frames. Each frame is then transformed into MFCCs. An MFCC consists of a group

of coefficients formed by the MFC, which is a representation of the sound spectrum

on a non-linear mel scale frequency. MFCC is used because it records the features

of the soundscapes; the sound analysis of the features is easier than that of a raw

audio signal. In order to correctly model the audio frames, a Gaussian mixture

model (GMM) is then used to cluster the audio frames (in MFCC) into one clus-

ter model. Finally, the distance is computed by comparing two soundscape models

using EMD-KL.

Process

The measure of interpretability is calculated based on the correlation between a list

of IIDs and ISDs produced by a VASS system. So that a VASS system can produce
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Figure 5.1: Inter-sound distance process

a highly interpretable soundscape, the distance between two input images must be

highly correlated with the distance between the two corresponding generated sound-

scapes. Pearson correlation coefficient (PCC) is proposed to measure the correlation

between the IID and the ISD using

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ )

(n− 1)SxSy

where:

X̄ and Ȳ are the sample means,

Sx and Sy are the standard scores

(5.1)

Numerous correlation coefficients are available, but PCC was chosen mainly be-

cause essentially the IID and ISD pairs are normally distributed bivariate data.

However, the choice of correlation coefficients is not limited to PCC; other similar

correlation coefficients, such as Spearman’s rho coefficient and Kendall’s tau coeffi-

cient, can also be considered for this purpose. Further investigation may show that

they describe better the relationship between the IID and the ISD.

Results

To test the interpretability measurement, it was implemented on three prototypes

and one external system, vOICe.
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Table 5.1 and Figures 5.2 to 5.5 show the results when the interpretability mea-

surements were applied to Prototypes 1 to 3 and vOICe. The blue dots in the scatter

plots show the value of the IID vs the ISD and the orange line shows the PCC of

the values for each plot. The scatter plots clearly show that the correlation of the

prototypes is better that that of vOICe. Prototypes 1 and 2 scored a significant ad-

vantage over Prototype 3 and vOICe. This shows that, when image segmentation is

applied, the generated soundscapes are considerably more correlated with the input

image.

Figure 5.2: Correlation of Prototype 1 (value: 0.5209)
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Figure 5.3: Correlation of Prototype 2 (value: 0.4546)

Figure 5.4: Correlation of Prototype 3 (value: 0.2142)
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Figure 5.5: Correlation of vOICe (value: 0.1650)

Table 5.1: Pearson correlation coefficient of inter-image distance and inter-sound

distance

Correlation Value

Prototype 1 0.5209

Prototype 2 0.4546

Prototype 3 0.2142

vOICe 0.1650

One of the possible explanations for this situation is that the fundamental soni-

fication processes of Prototype 3 and vOICe are similar: the conversions of both

are based on the value of the pixel. Because they do not implement an additional

image processing step before the sound synthesis step, all the information (includ-

ing noise) is translated into the final soundscape. However, because of the blobbing

implementation in Prototypes 1 and 2, the soundscape is considerably simpler. The
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blobbing technique groups the pixels into multiple blobs, reducing the noise, and

hence effectively filters most of the noise, resulting in a cleaner soundscape. There-

fore, it can be confidently stated that the soundscapes of the prototypes in which

blobbing is implemented as the feature extraction technique have a better correla-

tion than those of the prototype in which it is not. Because it is easier to interpret a

soundscape that correlates well with the input image, indirectly the interpretability

of Prototypes 1 and 2 is higher than that of Prototype 3 and vOICe. Although they

lost detailed information, they gained an advantage in terms of interpretability.

5.2.3 Measuring Information Preservation

Another aspect that is important for describing the performance of a good visual-

to-auditory conversion is the extent to which the algorithm can preserve the in-

formation. Information preservation in visual-to-audio conversion is hotly debated

and frequently difficult to achieve because, ultimately, converting information from

a visual to an auditory form is a process of information reduction. Najjar (1996)

suggested that spatial and recognition information is represented better by pictures.

Similarly, Stoneman and Brody (1983) found that children subjected to visual or

audiovisual commercial presentations could recognize advertised products more ef-

fectively than children subjected only to audio presentations. The papers reporting

these two studies presented an important piece of information very relevant to the

research studies in the context of information preservation. The studies showed

that the amount of information contained inside an image allows very rich cognitive

encoding that allows high recognition rates as compared to audio.

During the process of visual-to-audio conversion, information is lost primarily

through dimensional reduction, i.e., the conversion of a 2D signal to a 1D signal.

So that the users can make sense of the generated soundscapes, a sufficient amount

of visual information must be preserved in them. In order to utilize the spatial

information encoded in an auditory signal, users need to reconstruct mental images
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by listening to the soundscapes. To ensure that the image sonification is effective,

it is required that the reconstructed mental image be sufficiently similar to the real

image. Ultimately, although the soundscapes generated by VASS systems experience

severe information reduction, certain aspects of the visual signal, such as spatial

information, needs to be retained. Over time, users can learn how to reconstruct

the spatial information embedded in soundscapes.

The amount of information preserved needs to be moderately controlled. In

most cases, the more visual information that is preserved in soundscapes, the better.

When more information is preserved, there are more features that can be interpreted

by users. For example, if sufficient information is preserved, the user may be able

to interpret features such as spatial relationships, shape, colour, shade, texture, and

motion. However, an excessive amount of information encoded in soundscapes may

lead to the user being overwhelmed and/or confused. Conversely, systems may lose

some of their usefulness if they do not preserve the appropriate amount and type

of visual information. For instance, vOICe encodes only greyscale pixels into sound

frequencies (Meijer, 1992). As a result, the colour information is lost during the

conversion process, when there may be many situations where colour is essential for

decision making. To conclude, in information preservation a balance needs to be

maintained between sufficiency (too little leads to debilitated decision making) and

excessiveness (too much leads to cacophony).

In this section, a method to measure the amount of information preservation by

examining the input image and the corresponding generated soundscape is proposed.

The main objective of this measurement is to identify the algorithms that are able

to retain the most information during the conversion. Although this measurement

cannot indicate a system that is able to retain the correct type of information, hope-

fully it can be the precursor in the search for the most efficient visual-to-auditory

conversion.
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Entropy

The degradation of information can be represented by calculating the difference be-

tween the entropy of the input images and that of the corresponding output sound-

scapes. An approximate measure of information preservation can be obtained by

estimating the ‘quantity of information’ in images and their corresponding sound-

scapes and then calculating the difference between these quantities. For this purpose,

a measure widely used in information theory that was introduced by Shannon (1948)

is being utilized, that is, entropy. The basic equation for entropy is

H(X) = −
n∑
i=0

P (xi) log2 P (xi) (5.2)

Entropy is used to measure the unpredictability and uncertainty of a random

variable. In Equation 5.2, entropy, H of X is calculated on the number of bits

needed to transmit the probability occurance of x. In essence, the easier a variable

is to occur, the lower is its entropy. In the case of this research, an assumption is

made that entropy is directly related to the information contained/encoded within

the signal.

By computing the entropy of the input images and their corresponding sound-

scapes, pairs of values that overall represent the information preservation capabilities

of a particular visual-to-auditory conversion is obtained. Because of the dimension-

ality reduction aspect of the conversion process, the entropy of a soundscape should

in general be lower than that of its image. By averaging the differences for every

matching input (image) and output (soundscape) entropy, the relative effectiveness

of a system in terms of information preservation can be obtained. The lower the

difference between the entropy of the output and its input, the higher the ability

of the system to retain information during the conversion process. By using this

method as a measurement standard, a comparison of systems in terms of informa-

tion preservation is made possible.
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Results

To test the information preservation measurement, three Luminophonics prototypes

and an external system (vOICe) were tested. A set of 40 input images were prepared.

The same process, in which the information preservation was computed for every

image by comparing the information in the input image and the output soundscape,

was applied to all the systems. Finally, the values were averaged to form the average

information preserved in every system.

The results in Table 5.2 show the average amount of information preserved by

each system. The table shows that Prototype 3 on average preserved the most in-

formation during the conversions, whereas the score of vOICe was the lowest among

the four systems. Whereas Prototypes 1 and 2 lost considerably more information

than Prototype 3, their soundscapes still contained more information than vOICe.

As shown by the results presented in the previous section (Section 5.2.2), the sound-

scapes of Prototypes 1 and 2 are better in terms of interpretability than those of

Prototype 3 and vOICe. The difference between Prototype 3 and Prototypes 1 and

2 is the implementation of the blobbing technique for feature extraction. While

the soundscapes of Prototypes 1 and 2 do not contain as much information, the

information retained is of a higher level. For example, the objects in the image

are represented as shapes rather than pixels. Essentially, higher level information

reduces the space needed to store the information and helps the user interpret the

soundscape. However, the disadvantage is that, because the information is simpli-

fied in the case of Prototypes 1 and 2, they cannot describe the surroundings in as

much detail as Prototype 3. Prototype 3 remains the preferred choice for tasks such

as object recognition that require finer details.
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Table 5.2: Average amount of information preserved during conversion

Average Information Preserved (%)

Prototype 1 50.641

Prototype 2 48.966

Prototype 3 54.656

vOICe 42.447

An additional key fact shown in Table 5.2 is that all the prototypes scored

better than vOICe in terms of information preservation. The main reason for this is

that the prototypes were able to encode colour information, whereas the developers

of vOICe decided to discard colour information. Without colour information, the

information in the resultant soundscape is significantly lower. This is clear in a

comparison of Prototype 3 and vOICe, because they both implemented a similar

swiping mechanism and sonified the raw pixels instead of blobs. The difference is

very large, with a 12.209% drop in information preservation. It is therefore preferable

to sonify colour information in order to preserve the content, as well as because colour

is frequently required in various tasks that humans undertake.

5.2.4 Discussion

Tools that measure information preservation and interpretability through the corre-

lation of the IID and ISD were proposed above. Comprising only two measurements,

they are not intended to be the definitive standard measurements for all VASS sys-

tems. These tools are a step towards the accurate and automated prediction of the

effectiveness of a VASS system when used by human subjects. It is however rec-

ommended that these measurements be extended and improved to provide a more

detailed description of the performance of a VASS system. Other measurements

relevant to the prediction goal mentioned above should be developed. These in-

clude measures of the naturalness of generated soundscapes and estimations of the
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learning complexity of different conversion processes.

Table 5.3: System ranking according to interpretability and information preservation

Interpretability Information Preservation Average

Prototype 1 1 2 1

Prototype 2 2 3 3

Prototype 3 3 1 2

vOICe 4 4 4

For the purpose of improving the IID/ISD measurements, it would be useful

to conduct a systematic study to determine which similarity measures are more

adequate from the human perceptual point of view. In particular, it would be

interesting to use human measurements of image or sound similarity and compare

them with automated similarity measurements. In this context it would also be

pertinent to further investigate the relative suitability of different pre-processing

and feature extraction methods.

5.3 Optimization of the Visual-to-Auditory Con-

versions Features

Finding the best visual-to-auditory feature mapping is probably one of the most

important processes in the development of a good VASS system. The performance

of a system and the effectiveness of the soundscape are deeply connected to the

conversion mapping. When the visual-to-auditory mapping is good, a VASS system

is able to synthesize soundscapes more effectively, thus ensuring their higher quality.

Frequently, it is easier for the user to interpret a soundscape that is converted using

a good mapping. Moreover, a soundscape is able to describe the surrounding more

vividly when more converted visual information is encoded in it. Furthermore, a

slight error in the mapping may degrade the entire performance of the conversion.
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An example is the problem that was encountered during the selection of a timbre set

(as discussed in Subsection 3.2.3), where the soundscapes produced by the earlier

prototypes introduced the effect of cacophony, so that they were more difficult to

interpret. The reason was that a poor timbre set was used, causing the entire

feature mapping to be ineffective, and the sounds that were generated were difficult

to distinguish.

However, the creation of an optimized visual-to-auditory mapping can also be one

of the greatest challenges in the development of a VASS system. The mapping of the

correct visual properties to the corresponding auditory properties for cross-modality

conversion is a complicated and difficult task. One of the reasons is the large amount

of visual features that need to be converted. Because of the difference in the modality

(visual and auditory), not every property in the output audio is compatible with

the input visual features. This limits the scope of the visual features than can

be converted. For instance, properties such as audio pitch and volume are more

suitable for representing linear values than categorical information such as types of

colour. Hence, a filtering process must be established so that only the most relevant

visual information is selected for retention. The selection process can be based on

the criteria and the objective of the system. However, the most difficult aspect of

creating the mapping lies in the large number of combinations of configurations that

are involved.

Let us take the case of mapping pixel intensity to the corresponding sound prop-

erties. There are a number of choices of features into which the pixel intensity can

be mapped, such as sound pitch, sound volume, and sound amplitude. It is not

reasonable to develop a separate prototype for each combination of pixel intensity

and feature and then conduct an experiment for each of the prototypes. The search

space became even larger after the inclusion of colour information into the conver-

sion. When there are 10 different colours and many more musical instruments, the

number of combinations can be extremely large. When every possible visual feature

and the available audio properties are combined, the number of mappings is so large
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that testing every mapping manually one by one is not feasible.

During the research, most of the time was spent looking for the most suitable

mapping for the prototypes in order to elevate the performance of the soundscape. It

was nearly impossible to test every mapping combination, because the search space

was too large. However, after developing the automated measurements (discussed in

Section 5.2), the idea of applying an optimization algorithm with the measurements

as the cost function to automate the search for the optimized visual-to-auditory

feature mapping was conceived.

5.3.1 Overview

In this section, a new method for searching the optimal visual-to-auditory feature

mappings based on the automated measurements described in the previous section

is examined. As described, the large number of visual features and many different

variations of mappings resulted in an extremely large number of combinations, also

known as a combinatorial explosion. Therefore, the best approach for finding the

optimal mapping is to use computational optimization techniques. It was decided

that an evolutionary algorithm is applied to address the problem, which required

us to search for a high quality solution from a large number of combinations. For

this case, an evolutionary algorithm called covariance matrix adaptation evolution

strategy (CMA-ES) is used as the optimization algorithm.

Initially, the goal was to search for the optimal feature mapping that satisfied

two objectives, interpretability and information preservation. However, from the

results of Experiment 2 (see Section 4.3) a system that attempts to maximize both

objectives, thus placing the solution at a Pareto front, essentially lowers its overall

user performance. Let us take the example of the navigation scenario. It is not prac-

tical to maximize the amount of information to be encoded in a short soundscape.

In order to include a higher level of detail, such as the texture of the objects, the

soundscape has to be relatively long. However, long soundscapes do not allow the
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user to make a quick decision as is required in scenarios such as navigation. For this

reason, soundscapes having a higher level of interpretability, such as those produced

by Prototypes 1 and 2, performed better in the navigation scenario in Experiment

2. The information delivered by the soundscapes is of a higher level, which is more

easily understood by the user in a shorter time frame. Hence, it was foreseeable that

mapping optimized for both interpretability and information preservation would re-

sult in a poorer system. Instead of attempting to use a multi-objective optimization

approach, I decided to produce two different mappings, each optimized for a different

objective, that is, one for information preservation and one for interpretability.

To use the algorithm, a set of parameters, better known as a genotype were

established. A total of 18 parameters (including 10 different colours) were selected.

They are discussed further in Subsection 5.3.1. For each generation, the algorithm

yielded a series of mapping candidates according to the parameters. The candidates

were then transferred to the VASS framework. Using the candidates for mapping,

the framework was able to transform into a new VASS by changing the visual-to-

auditory conversions according to the mappings of the candidates. The fitness of the

candidates was evaluated using the soundscape they produced based on the measure-

ments that were previously developed (Section 5.2). The optimization was run twice,

once with the interpretability cost function and a second time with the information

preservation cost function. To obtain the mappings optimized for interpretability,

the interpretability measurement was used, that is, the correlation between the IID

and the ISD. To obtain the mappings optimized for information preservation, the

fitness of the candidates was calculated using the information difference between the

input and output.

Many iterations of the process were executed, yielding variations of candidates

in each generation. A soundscape based on the feature mapping proposed by the

candidates was produced and then evaluated. The fitness of each generation was

monitored until the fitness value was found plateaued at a range below the satis-

factory threshold. The genotype of the final generation was then promoted as the
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best candidate yielded by the process and consequently graduated as the feature

mapping optimized for the objective.

Covariance Matrix Adaptation Evolution Strategy

(CMA-ES)

CMA-ES is an evolutionary optimization algorithm. It has been under continuous

development for more than twenty years worldwide in many research laboratories

since it was introduced by N. Hansen and Ostermeier (1995).

Algorithm 2 Basic CMA-ES Pseudocode

Input: m,σ . Initialize mean and step-size

1: C ← I . Initialize a symmetric covariance matrix

2: while stopping condition not met do

3: for all i ∈ {1, ...λ} do . Sample and evaluate offspring

4: xi ← N (m,σ2, C) . Sample multivariate normal distribution

5: end for

6: sort {xi} according to f(xi) . Sort offspring according to its fitness

7: x
′ ←

∑u
i=1wixi . Update mean

8: ps ← (1− c)s · ps +
√
cs(2− csµeff ) · C1/2(m

′ −m) . Update isotropic

evolution path

9: pc ← (1− c)c · pc +
√
cc(2− ccµeff ) · (m′ −m)/σ . Update anisotropic

evolution path

10: C ← (1− c1 − cu) · C + c1 · pcpᵀc + cu ·
∑µ

i=iwi((xi −m)/σ)((xi −m)/σ)ᵀ .

Update covariance matrix

11: σ ← · exp( Cs
Dσ
· (‖ps‖

xd
− 1)) . Update step-size using isotropic path length

12: m← m
′

A basic version of CMA-ES is shown in the pseudocode above (See Algorithm 2)

(Krause and Glasmachers, 2015). CMA-ES was chosen because it is effective for

solving difficult non-linear and non-convex problems. The algorithm both oper-
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ates at a reasonable speed and is very suitable for such problem, having a search

space dimension of 18 parameters. To achieve the research objective, libcmaes was

used. Libcmaes was proposed by Benazera (2015), a multithreaded high perfor-

mance C++11 CMA-ES library that implements several flavours of optimization

algorithms belonging to the CMA-ES family. For the use case, an algorithm called

Active CMA-ES (aCMAES) from the library was applied. It appeared to be the

most suitable algorithm for the purpose, because it implements a scaling strategy

whereby it increases the number of offspring per generation if it fails to find a good

minimum. In addition, aCMAES was observed to incur lower memory footprint

than basic CMA-ESs (Arnold and Nikolaus Hansen, 2010). Because of its efficient

memory management, the duration of the entire optimization process was reduced.

Parametrization

A total of 18 parameters were used in the process of optimization. Table 5.4 lists

all the parameters that were applied in the CMA-ES algorithm. Because all the

parameters were represented as a floating point number, the categorizations under

each parameter were grouped according to the floating point value. For example,

as there are two swiping directions, the top-down swipe was represented as any

value between 0 and 0.4 and the left-right swipe as any value greater than 0.4 up to

1.0. The candidates yielded by the genetic algorithm bearing the values (in floating

point) for each parameter were translated into the feature mapping accordingly.
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Table 5.4: List of parameters for optimization

No Parameter Description

1 - 10 Colours Map to musical instruments

11 Volume Maximum volume level

12 Segmentation 0.0–0.4 for pixelation,

0.5–0.9 for blobbing

13 Stripe Width Width of stripe in pixels (only for blobbing)

14 Blob Size Minimum blob size (only for blobbing)

15 Pixel Height Height of pixel (only for pixelation)

16 Pixel Width Width of pixel (only for pixelation)

17 Swiping Direction 0.0–0.4 for top-down,

0.5–0.9 for left-right

18 Input Image Resolution Video graphics array resolutions

1. Colours

Parameters 1 to 10 were used to address colour types, one for each of a to-

tal of 10 colours. Each colour could be matched with 20 different musical

instruments.

2. Volume

Parameter 11 was used to determine the maximum volume that should be ap-

plied to the conversions. The range of the value was from 0 to 10. For instance,

if the parameter value was 0.4, the maximum volume of the conversions was

4.

3. Type of Segmentation

Parameter 12 was used to determine the type of segmentation the conversions

should use. For value < 0.5, the segmentation mode was pixelation, as imple-

mented in Prototype 3. For value > 0.5, the segmentation mode was blobbing,
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as implemented in Prototypes 1 and 2.

4. Stripe Size (Blobbing)

Parameter 13 determined the stripe size of the conversions. This parameter

was used if the type of segmentation was set to blobbing. The stripe size

was from a minimum of 10 pixels up to a maximum of 110 pixels. Its value

determined the additional padding that should be added to form the final

stripe size. For example, if the value was 0.5, the final stripe size was 60 pixels

according to the calculation S = 10 + 10x, where x is the value of parameter

13.

5. Blob Size (Blobbing)

Parameter 14 determined the blob size of the conversions. This parameter

was also used only if the type of segmentation was set to blobbing. The blob

size parameter determined the smallest size that could be determined as a

blob. By setting a threshold for the minimum blob size, it was possible to

eliminate other noise. The range of the value was 0 to 1000. If the value of

this parameter was 0.5, the blob size was set at 500.

6. Pixel Height (Pixelation)

Parameter 15 determined the pixel height for pixelation segmentation. For

example, if the parameter determined that the pixelation should use 25 pixels

as the height, the pixelation would group all 25 pixels in the same column as

a single pixel.

7. Pixel Width (Pixelation)

Parameter 16 determined the pixel width for pixelation segmentation. Com-

bined with parameter 15, this parameter determined the size of the pixels that

should be grouped together. Their values ranged from 0 to 50. For example, if

parameter 15 and parameter 16 gave the value of 0.5 and 0.8, respectively, the

pixel size would be a 25×40 pixel resolution, which means the pixels within the
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same 25 pixels in a column and 40 pixels in a row would be grouped together.

8. Swiping Direction

Parameter 17 determined the swiping direction of the conversion. For value

< 0.5, the conversions would follow the top-down swiping direction. For value

> 0.5, the swiping direction would be left-right.

9. Input Image Resolution

Parameter 18 determined the resizing of the input image before it entered the

conversion process. Please see Table 5.5 for all the resolutions together with

their parameter values.

Table 5.5: List of video graphics array and its parameter value

No Name Width (px) Height (px) Parameter Value

1 QQVGA 160 120 0.0 6 x < 0.1

2 HQVGA 240 160 0.1 6 x < 0.2

3 QVGA 320 240 0.2 6 x < 0.3

4 WQVGA 400 240 0.3 6 x < 0.4

5 HVGA 480 320 0.4 6 x < 0.5

6 VGA or SD 640 480 0.5 6 x < 0.6

7 WVGA 768 480 0.6 6 x < 0.7

8 FWVGA 854 480 0.7 6 x < 0.8

9 SVGA 800 600 0.8 6 x < 0.9

10 DVGA 960 640 0.9 6 x < 1.0

Table 5.5 shows the 10 video graphics array (VGA) modes used for the opti-

mization.
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5.3.2 Discussion

Table 5.6: Optimization based on information preservation (at information preser-

vation of 56.4873%)

No Parameter Result

1 White BeeThree

2 Grey BeeThree

3 Black Piano

4 Red Brass

5 Orange Flute

6 Yellow Moog

7 Blue Saxophone

8 Green Wurley

9 Indigo Clarinet

10 Violet Percussion Flute

11 Volume 5

12 Image Segmentation Pixelation

13 Stripe Size Not Applicable

14 Blob Size Not Applicable

15 Pixel Height 8 pixel

16 Pixel Width 8 pixel

17 Swiping Top Down

18 Image resolution VGA
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Table 5.7: Optimization based on interpretability (at correlation of 0.5728)

No Parameter Result

1 White Bowed

2 Grey BeeThree

3 Black Brass

4 Red Wurley

5 Orange Flute

6 Yellow Moog

7 Blue Blowhole

8 Green Flute

9 Indigo Clarinet

10 Violet Saxophone

11 Volume 8

12 Image Segmentation Blobbing

13 Stripe Size 10 pixel

14 Blob Size 100

15 Pixel Height Not Applicable

16 Pixel Width Not Applicable

17 Swiping Top Down

18 Image resolution QVGA

Tables 5.6 and 5.7 show the final results of the optimization process. Presented in

Table 5.6 is the best feature mapping candidate that was optimized for the mea-

surement of information preservation. After 34 generations of evolution (in about

4 h), the candidate was obtained with a score of 56.4873% for average information

preservation. The score was better than that of Prototype 3, the best prototype in

the research studies in terms of information preservation, by a margin of 1.8277%.

Table 5.6 shows the best feature mapping candidate that was optimized for the mea-
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surement of interpretability. After 22 generations of evolution (in approximately 5

h), the candidate was obtained with a score of 0.5728 in the interpretability corre-

lation. The score was a slight increase of 0.0519 over that of Prototype 1, the best

candidate in the research studies in terms of interpretability.

Both the candidates presented here scored a marginal increase as compared to

the best prototypes. Although the results are not spectacular, they prove that

the optimization algorithm is able to generate feature mapping that can achieve a

conversion that is equal to, if not better than, the best prototype that is engineered

manually. After examining closely the parameters of the candidates, some interesting

features were found. They were both reassuring and surprising. First and foremost,

the results confirmed that blobbing performed better in terms of interpretability,

whereas pixelation was better in terms of preserving information. This is shown by

the fact that the best candidate optimized for information preservation bore a close

resemblance to Prototype 3 and the best candidate optimized for interpretability

functioned like Prototype 1.

Before the process, it was assumed that the candidate for information preser-

vation would have the biggest input resolution available, which was that of DVGA

(960×480 pixel resolution), because with a larger input image, the feature mapping

is able to contain more information. It was interesting to observe that VGA was

selected as the best resolution for information preservation. From this, it can be

hypothesized that the soundscape generated from a large input image tends to have

a larger difference in terms of information content. However, if the input image is

too small, the information content will also be smaller. Therefore, the optimum the

size of the input image hovers around a 640 × 480 pixel resolution to preserve the

largest amount of information. Other than that, interpretability selected QVGA

(320× 240 pixel resolution) as the best resolution, probably because the minimum

setting of the stripe size was 10 pixels. At QVGA, the system was able to capture

most blobs while maintaining the interpretability of the soundscape.

An additional interesting feature was the maximum volume presented in both
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candidates. The maximum volume for the candidate of information preservation was

5, whereas interpretability had a higher maximum volume of 8. This is interesting

because information preservation tends to encode more information in the sound-

scape, which may frequently cause more noise. By capping the volume at 5, the

optimization attempted to reduce the noise to balance the information contained

inside. The choice of instruments mapped to the colours surprised us. Table 5.6

shows that BeeThree was chosen to represent both grey and white colours for the

optimization of information preservation. This choice is aligned with the previous

statement that the optimization attempted to balance noise and content. It may

have considered that white and grey fill a similar role and therefore combined them

as a single colour.

The biggest weakness of the optimization process was the listening experience of

the soundscapes generated by the candidates: the listening experience of the sound-

scapes was not enjoyable. As compared to the current prototype, the soundscapes

generated by the candidates were not as natural and pleasant to listen to. Thus,

although the soundscapes were comparable with the soundscapes produced by the

research prototype, they were lacking in terms of listening experience. This was

probably due to the choices of musical instruments provided for the optimization.

It was intended to provide as many timbres as were available so that there would

be many variations that the algorithm could change. In the future, this situation

can be improved by carefully curating the selection of timbres for the optimization

or even better by replacing the current audio synthesizer with a more robust and

commercial quality audio synthesizer that is able to produce audio that is much

more natural.

In addition, a few timbres in both the timbre set selections sounded similar.

Some of the timbre choices were the same for different colours. For example, the

candidate for interpretability had the flute to represent both the green and orange

colour. This could potentially cause cacophony in the soundscape. Previously, it

was solved the issue by introducing some optimization steps by calculating the ISD
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between two timbres in order to obtain a set of timbres that were as distinctive as

possible. Hence, it is possible that the fitness function of the optimization can be

improved to include the computation of the ISD between timbres so that the sound

of the final timbre set is distinctive.



Chapter 6

Discussion

6.1 Overview

Chapter 1.3.1 introduces four main aims that the Luminophonics project is at-

tempting to accomplish. The proposed goals were selected in order to increase the

performance of VASS technology as well as to improve the practicality of such sys-

tems for the intended users, mainly people with visual impairment. It was hopeful

that this research findings will facilitate the production of better VASS systems and

allow more people to adopt this technology for the benefit of their livelihood, in

particular for the purpose of rehabilitation.

The proposed goals were to generate better soundscapes that are more natural

and more interpretable, increase the amount of information retention during the

conversions, improve the interpretability of the soundscape, and finally develop a

better evaluation method to measure the performance of VASS systems. In order to

achieve these goals, several approaches are introduced that are relatively new to the

field, including a top-down research approach through prototyping, the association of

colours with musical instruments, and methods for optimizing the system. Although

the research methodology may be unconventional, the findings from this studies meet

the main goals of this research. In this chapter, the results of the work thus far are

219
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consolidated and their contributions to the performance improvement of visual-to-

auditory conversions.

6.2 Better Soundscape

It is unanimously agreed that the greatest effect of research in terms of increasing the

overall performance of a VASS system is due to the continuous effort invested in the

improvement of soundscapes. This research was also aimed to improve the overall

quality of soundscapes produced by a VASS system. There are many factors that

can be used to improve a soundscape, but the scope of this research was narrowed

and focused on making the soundscape sound more natural, as well as on increasing

its interpretability.

The encoding of visual information into soundscapes through audio frequency

modulation has been the default approach for building a VASS system. The main

problem raised by this implementation is that the soundscape can be unpleasant to

listen to and cause fatigue after it has been used for a long time. The approach for

solving this problem is to use the timbres of musical instruments together with a

sound synthesizer to replace the frequency modulation method. Based on this core

idea, all the conversion algorithms developed for the four prototypes were built to

take advantage of the timbres of a set of musical instruments.

The main advantage of generating soundscapes using a sound synthesizer and the

timbres of musical instruments as the core component is their sound quality. They

sound more natural, because they are based on a type of sound that naturally exists

in the environment. This approach takes cues from the performance of music by an

orchestra, where combinations of instruments from different families, such as string,

brass, and woodwind instruments, are played in an ensemble to perform a musical

piece. The features of the visual data are mapped to the different characteristics of

the musical instruments. In this case, different colours are represented by different

timbres, as if a musical piece is composed of the sounds of colours. Table 3.2
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shows the conversions for all the prototypes that map the 10 colours to 10 different

instruments. For example, the colour red is represented by a saxophone and the

colour violet by the ocarina. The decision to model the colours based on different

instruments has its advantages. The main advantage is that it allows us to encode

colour information in the soundscape. Since the introduction of including colour

information in the visual-to-auditory conversion, the representation of colour by

different timbres has been the most frequently used approach. Both See ColOr

(Bologna, Deville, Pun, and Vinckenbosch, 2007) and EyeMusic (Hanassy et al.,

2013) have demonstrated the effectiveness of this approach.

6.2.1 Timbre Set

The implementation was not, however, unimpeded. A major hurdle when using a

set of different musical instruments lies in the control of its complexity in terms

of the expected outcome of the soundscape. One of the problems was that it was

difficult to select the appropriate combination of instruments to sonify the visual

information. First, a set of 10 musical instruments available in a toolbox was ran-

domy selected. However, initial tests indicated that the timbre set was not ideal for

the purpose of sonification. Some of the timbre sound signatures were too similar,

resulting in sound cacophony when similar timbres were played at the same time.

To overcome the problem, a systematic approach was created for selecting an op-

timal timbre set in which there was minimum similarity between the timbres. The

approach constitutes a process for optimizing the timbre set selection that searches

and replaces very similar timbres (as described in Subsection 3.2.3). The final result

(shown in Table 3.1) is a set of 10 timbres that provide the maximum disparity,

which is used in all of the prototypes.

Our timbre set is far from perfect. More work can be done in the search for the

optimal timbre set and to improve the optimization process. First, the total number

of timbres should be increased from the current total of only 20 timbres in the pool
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to encompass more musical instruments. An increase in the total quantity of timbres

would increase the size of the search space, which would in turn result in a better set

of timbres. It is apparent that the current timbre set suffers an inherent weakness

caused by the limited number of timbres in the pool to begin with. In Figure 3.6, we

can see that there are three pairs of timbres (violin and clavichord, guitar and flute,

and saxophone and organ), which barely meet the minimum similarity requirement.

However, a greater total number of musical instruments would allow more timbre

choices for replacing the similar timbres.

There is also room for improvement in the cost function of the optimization

process. The current implementation focuses on measuring the sound signature by

means of the MFCC of audio samples. There are better audio similarity measures

that are more robust and that maybe of better suit. Additional sound properties

of musical instruments, such as perception, rhythm, and tone, should also be taken

into account explicitly. For example, more recently created audio similarity mea-

sure algorithms, such as by OFAI, would be a good replacement for the current

algorithm. The music similarity by Austrian Research Institute for Artificial In-

telligence (OFAI) is able to compute the acoustic distance based on aspects such

as timbral and rhythmic qualities, and thus, it is an ideal candidate for measur-

ing timbre similarity (Pohle et al., 2009; Seyerlehner, Widmer, and Pohle, 2010).

Further, an additional major problem observed in the current implementation is

the audio samples. The audio samples used for the similarity measurements are all

based on a fixed set of properties for the sake of simplicity. The audio sample was

synthesized using the musical instruments model with the highest volume and La or

A as the pitch. Because of this, the similarity measure algorithm did not consider

every possible variation of the timbres. In certain circumstances, timbres may sound

different in terms of pitch or volume. Therefore, timbres that are dissimilar in the

same settings may collide because of a different pitch or volume. This weakness

was not observed during the development of the selection process, but was discov-

ered later during the development of the prototypes. Hence, it is recommended
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that the selection process be improved such that every possible audio variation is

included in the similarity measure. For instance, because the prototypes use the

Dorian scale (see Table 3.3), at least eight different frequencies should be covered in

the measurements. However, with the addition of eight frequencies for each musical

instrument, the number of audio similarity measurements will also be multiplied.

To accommodate the large number of combinations, the process should be handled

by an automated (or semi-automated) optimization process.

6.2.2 Musical Instrument-based Soundscape

We initially examined musical instruments as the replacement for the current sound

synthesizer for VASS systems for the sole purpose of generating a more soothing and

pleasing soundscape. However, the attempt led to more discoveries. As compared

to the synthesization of soundscapes using frequencies, the generation of musical

instrument-based soundscapes is much more complex. However, the benefits it intro-

duces outweigh the difficulties involved in its implementation. The main advantage

of using musical instruments is evidently the more enjoyable listening experience it

provides to the user. All the users who used the prototypes uniformly agreed that

they preferred versions that use the timbres of musical instruments to those that

use frequency modulation. Furthermore, the use of musical instruments allows more

types of sound to be played concurrently. This provides more space in which the

algorithm can accommodate more information in the soundscape, which can never

be achieved using a frequency modulation method alone. This advantage in the

prototype design was exploited to incorporate colour in the soundscape, which was

not used in the first generation of VASS systems and is unprecedented.

It is important that a change in the means by which the soundscape is syn-

thesized does not compromise the quality of the soundscape. The results of the

experiments and the feedback received from the users show that the soundscapes

generated by the prototypes perform at the minimum as well as, if not better than,



CHAPTER 6. DISCUSSION 224

the traditional frequency-based soundscapes. The prototypes are able to preserve

the quality of a good soundscape while the soundscape is also aesthetically pleasing

to listen to. The results of both this major experiments (see Chapter 4) show that

the prototypes perform better for every aspect, such as object recognition and loca-

tion determination, than vOICe. Although the results may be premature, vOICe as

the only frequency-based VASS system with which was being compared, this does

not change the perspective that timbre-based VASS systems constitute a stronger

alternative than frequency-based VASS systems.

Undoubtedly, the implementation of musical instruments to sonify the sound-

scape is becoming widely used among researchers of VASS systems. In newer sys-

tems, such as See ColOr and EyeMusic, this approach was also applied. The findings

also confirmed that the application of musical instruments is the appropriate means

of soundscape sonification. In the foreseeable future, the production of VASS sys-

tems for the public will be based on a similar approach, unless a better alternative is

found. This is because normally humans prefer a more natural sound to an artificial

sound when using the system in everyday life. The initial motivation when ap-

proaching musical instrument timbres was to emulate a musical orchestra as closely

as possible. However, there is still a very wide gap that must be filled before a

system is able to produce soundscape that is enjoyable and yet able to carry the

relevant information. With newer technologies, such a user experience will not be

implausible. However, effort should now be focused on the building of function-

alities based on the proposed method that are beneficial to the visually impaired

population.

6.3 Improving Information Retention

In a sense, building a visual-to-auditory conversions device resembles building a

communication channel, where the input information is encoded and transferred

through a certain medium and decoded by the receiver. Exactly as the conversions
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implemented in a communication channel, cross-modality conversions also suffer

from information loss during the transmission process. To exacerbate the situation,

cross-modality from the visual to the auditory domain suffers from greater loss,

because the bandwidth of the target domain (auditory) is much lower than that of

the source domain (visual). Moreover, certain visual signals cannot be represented

in auditory form unless they are manipulated. Solving the problem of information

loss is another important step towards improving the performance of a VASS system.

A good VASS system has to be able to deliver the information required by the user.

If the system loses most of the information during the conversion processes, it is not

beneficial to the user, because the soundscape does not contain sufficient information

to enable the him/her to make sense of the surroundings.

Throughout the research, two different areas were being examined in which im-

provement can be made in order to build a better visual-to-auditory conversion that

can more effectively control information loss, as well as preserve the information

most relevant to the user. First, visual information from various digital images was

examined so that the effort on improving the information retention in the conver-

sion algorithms could be focused by selecting the appropriate features according to

their relevancy to the intended users. Because of the limited channel capacity of

soundscape signals, the preferred means of retaining the greatest amount of visual

information helpful to the user is to convert only the most relevant features rather

than packing every bit of information into a soundscape. Thus, an optimization pro-

cess is also proposed to find the optimal feature set that minimizes information loss

based on the cost function was formulated. Second, as well as focusing on feature

selection, the incorporation of more visual information dimensions in the conversions

was attempted. The additional information dimensions, colour and depth, were ex-

plored in the prototyping phase. It is anticipated that the use of more information

will enable us to build systems that accommodate better the needs of the user.

However, it should be noted that a good VASS system is one that is able to

deliver the information required by the user without the overall performance being
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sacrificed. Therefore, in an attempt to improve the information retention, it is

essential to balance the information loss for the sake of the interpretability of the

soundscape.

6.3.1 Feature Mapping Optimization

Feature selection has always been the core problem for cross-modality conversion.

It can be a complicated process and frequently causes a ripple effect that indirectly

affects the overall performance of the system. From the results of the experiments,

I learned that feature selection should be aligned with the objective of the task that

the user is attempting to accomplish. In other words, in order to achieve an optimum

user experience, the information retained has to support the user’s objective.

The results of Experiment 2 (see Subsection 4.3.3) show that compromises are

unavoidable when attempting to produce a system that maximizes both the inter-

pretability and information content of the soundscape simultaneously. It is fore-

seeable that multi-objective optimization will give a solution at the Pareto front

that may perform badly as compared to a solution of single objective optimization.

Therefore, for situations that require detailed visual content for object recognition,

it is preferable that the system emphasize stretching the soundscape to encode more

visual information. The observation of all these research prototypes showed that

an important feature that differentiates the prototypes in terms of the ability to

preserve more information lies in the segmentation method. Prototypes 3 and 4

used pixelation as the segmentation technique, which produced the soundscapes

that were able to preserve the most information. The results of Experiment 2 and

the information preservation measurement were in agreement. They both indicated

the soundscapes produced by Prototypes 3 and 4 were superior in terms of infor-

mation content. Because of the pixelation, it was possible to capture more detailed

information, such as texture, in the soundscape that could not be captured by using

the blobbing method proposed. These minor details made it easier for the users to
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recognize objects.

As described in Section 5.3, instead of optimizing the feature mapping based on

two objectives together, it was decided that two sets of feature mappings were pro-

duced and optimized separately for information preservation and interpretability.

Although the feature mappings that were obtained from the automatic optimiza-

tion process achieved better results in terms of information preservation, the overall

performance was lacking as compared to that of the prototype, the feature mapping

of which was closest to the optimized feature mapping (Prototype 3). This was

probably because, by using hand-engineered feature mapping, multiple minor tun-

ings in different areas could be performed, which resulted in better overall results,

in particular in terms of the listening experience. Manual tuning allows us (possibly

unconsciously) to incorporate other subjective terms in the optimization. There-

fore, in order to improve the optimization process, the fitness function should be

examined carefully. First, and most importantly, the measurement of information

preservation needs to be improved. The current measurement, which uses entropy, is

excessively simplistic. The measurement does not take into account the information

content for different modalities, but rather assumes that the levels of complexity

of the input and the output content are similar. Further, the fitness function of

the evolutionary algorithm must encompass additional different criteria, such as the

distinctiveness of the timbres in the timbre set and the duration of the soundscape

synthesis. In summary, an optimized feature mapping could be created if the fitness

of the mapping was measured accurately without losing other important criteria

that contribute to the performance of the system.

6.3.2 Additional Information Dimension

The existing VASS system focuses mainly on encoding texture information from

images in the soundscape. The texture information is usually encoded by mapping

the pixel intensity of each pixel of a greyscale image that has been converted from
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a colour image to the corresponding sound property, such as frequency. Although

the implementation of such a process is simple and straightforward, some other

important visual information is discarded in the conversion (in this case the colour

properties). By down-sampling to a greyscale image before the conversion, the

system loses colour information that may be important for many tasks, such as

object recognition and navigation, in the process.

From this, it was found out that one of the larger factors that affects the amount

of information in the soundscape is the visual information that is converted. By

limiting the property of the visual information input in the conversion mapping, the

amount of information contained in the soundscape may be significantly reduced.

Thus, an additional means of increasing the information retention of the conversion

algorithm is to expand the richness of the content in soundscapes. This can be

achieved by converting more visual properties into the soundscapes. Building on

this concept, two means of preserving more information in soundscapes were tested.

The first approach was to retain the colour information by mapping the colours

to the timbres of musical instruments. Second, by utilizing a depth sensor, the

depth information was attempted to be included explicitly in the soundscape as an

additional visual property, as demonstrated in Prototype 4 in Chapter 3.7.

Colour

Colour information is one of the default features that the entire range of the research

prototypes makes available. In this implementation, which was previously simplified,

the colours are sonified based on the 10 different colour types (red, orange, yellow,

green, blue, indigo, violet, white, grey, and black). The conversion process then maps

the colours to the corresponding musical instruments following in Table 3.2. When

they listen to the soundscape, users can recognize the colours by differentiating the

timbres representing them.

To reduce the complexity of the cross-modality conversions and lessen the effect

of cacophony in the soundscape, it was decided that colour should be down-sampled
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to 10 different types. Although the implementation does not cover the entire range

of colour depth, the conversion maintains a crucial piece of information, the repre-

sentation of colour. Thus, users are able to differentiate colours by means of the

soundscape, which they cannot do when using the traditional VASS system, which

converts only texture information. When the method was used to measure the infor-

mation preservation of a soundscape, it showed that all the prototypes demonstrated

a respectable improvement in terms of limiting the information loss in the conversion

after including colour information in the conversion process. This is most evident

in a comparison of Prototype 3 and the external system most similar to it, vOICe.

As shown in Table 5.2, Prototype 3 scored on average 12.209% better in terms of

information preservation. In addition to improving the information preservation,

the inclusion of colour information in the conversion provides an avenue for users to

identify the colour of an object by listening to the soundscape. This could never be

achieved if the conversion relied solely on greyscale images as the input, as exhibited

by most traditional VASS systems.

However, the prototype implementation is not without flaws. Because the colour

mapping is applied for only 10 different colours, the soundscape is not able to fully

describe the entire range of colour depth. Moreover, information about colour shades

is lost as a result of the colour reduction performed before the conversion. To miti-

gate this problem, Prototypes 1 and 2 utilize sound pitch to represent the different

levels of colour brightness. Despite the efforts to expand the colour representation

by sonifying their shades, the representation is sufficient to cover only a small part

of the colour depth. For instance, the users of the prototype can approximately

identify crimson as a lighter shade of red than mahogany, but not the precise type

of colour shade, if the two shades appear side by side. To exacerbate the situa-

tion, the shade-to-pitch implementation can sometimes be counter-intuitive when

the pitches of different timbres collide at the same time causing more cacophony in

the soundscapes and thus making their interpretation more difficult. Therefore, in

Prototypes 3 and 4 the mapping of shade to pitch is replaced in favour of mapping
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location information. Prototypes 3 and 4 translate the vertical location value of a

pixel into a sound pitch. More precisely, the higher the pitch, the higher is the pixel

located, and the lower the pitch, the lower is the pixel located.

This shows that conversions that include colour information are able to produce

soundscapes that contain more information than those that do not. This studies

also showed that colour information can be sonified in a soundscape easily without

losing any major disadvantages as compared to a soundscape with only texture infor-

mation. Moreover, because of the importance of colour information for performing

everyday tasks, it is undoubtable that colour will be one of the basic requirements of

most future visual-to-audio conversion systems. However, other options should be

explored beyond the scope of representing colour types with musical instruments in

order to cover a wider range of colours. Alternatives such as an explicit description

of the colour type by a human voice can be considered.

Depth

Prototype 4 is the only prototype that incorporates depth information into the

visual-to-auditory conversion. The details of the implementation were described

in the section headed ‘Depth’ in Chapter 3.7.5. Briefly, four levels of depth are

provided in the prototype, which the user can select during use. When one of the

options is selected, the prototype generates a soundscape that is narrowed according

to the depth range specified. The usage of the toggles provides a means by which the

soundscape can be modified to communicate the depth information such that the

user does not need to relearn the interpretation. Most importantly, explicit mapping

of depth information to an additional sound property may cause the already crowded

soundscape to confuse the user.

However, the results for the depth implementation, as demonstrated in Proto-

type 4, were unsatisfactory. This conclusion is based on the observations of the

participants and their feedback in Experiment 2 (Chapter 4.3). Although most

participants agreed that the depth switch provides a means of receiving depth infor-
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mation in the soundscape, the participants were observed to stop toggling the depth

switch after they were accustomed to listening to the soundscape that sonifies the

entire depth. The feedback indicated that almost all the participants agreed that

the depth switch was unnecessary. From a summary of the data gathered from the

observations, user feedback, and post-experiment interviews, it can conclude that

the main reason for the participants’ reluctance to use the depth switch was the

implementation of the system itself. I strongly believe that depth information is

important for VASS systems, because the users navigated the experimental course

by interpreting the depth information from the subtle depth cues received from the

soundscape.

There are two possible reasons why my implementation did not fully demonstrate

its capability to supply depth information. The user may find that the addition of

switches on top of the conversion process excessively complicates the use of the

prototype. As the users focus on interpreting the soundscape, switching the depth

level can disrupt the interpretation process. Thus, switching back and forth from one

depth level to another degrades the user experience. Because the users gradually are

able to comprehend the depth of the surrounding from the depth cues presented in

a soundscape (full depth), the switch is of minimal benefit to them. Having realised

that the disruptive nature of the switches negatively affects the user experience and

that it provides a minimal benefit, it was not surprising that the users tended to avoid

toggling the depth switches and preferred to focus on interpreting the soundscape.

The second reason may be that the TOF camera used in Prototype 4 is unsuitable

for the purpose. In Prototype 4, a DepthSense DS311 was used as the depth sensor

to provide the depth map of the surroundings. A TOF camera was chosen because of

its low cost as compared to other more complex options, and specifically because this

type of camera is the fastest depth sensor presently available. The main limitation

that negatively affects the VASS system is that the TOF camera is very susceptible

to lighting conditions. As a TOF camera relies on infra-red rays to measure depth, it

cannot perform effectively in environments that are extremely brightly lit, because
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bright light is frequently accompanied by a high infra-red ray that distorts the

infra-red reception of the TOF camera, resulting in an unsuccessful overall depth

map being generated by the camera. This is why the TOF camera frequently fails

in outdoor scenes, in particular during the daytime. Moreover, the depth map

resolution provided by the current TOF camera is usually very low. In the case of

Prototype 4, it relied on the QQVGA resolution (160×120) supplied by DepthSense

DS311. Because the original source image has a very low resolution, first it does not

have sufficient information, and second, the noise to signal ratio of low resolution

images is higher. During the segmentation and subsequent conversion process, noise

is enlarged, and ultimately degrades the interpretability of the soundscape. Hence,

it very significantly reduces the amount of information that can be encoded in the

soundscape and this in turn degrades the overall performance of the soundscape as

a result of limited information and more noise in the conversions.

Although Prototype 4 was not able to fully provide the depth information as

it was designed to do, I still believe depth information is an additional important

element for VASS systems that should be explored. This is because humans naturally

rely heavily on depth perception for everyday spatial tasks, such as navigation and

understanding scenes. Learning from the mistakes of this research, I suggest that an

entirely new approach that focuses on a fluid user experience should be designed for

implementing depth information. An automatic approach, similar to that used in See

ColOr, where depth information is used to identify areas with high visual saliency

for sonification (Bologna, Deville, Pun, and Vinckenbosch, 2007), may be the best

method currently available. Furthermore, types of depth sensor other than a TOF

camera should be explored. For example, it is recommended that sensors that use

stereo triangulation, such as stereoscopic cameras, or sensors that rely on a coded

aperture for depth sensing should be explored. These two types of depth sensor do

not rely on structured light as the means of depth sensing and therefore they are less

susceptible to light noise and thus more suitable for everyday scenarios, including

outdoor operation. Moreover, these cameras can supply a larger image resolution
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when they are provided with sufficient processing power.

6.4 Increasing Soundscape Interpretability

Its interpretability is by far the most important aspect that defines a good sound-

scape. An interpretable yet simple soundscape is probably more useful than a com-

plicated soundscape that contains a large amount of information. For instance, a

soundscape that is rich in information but difficult to interpret is of minimal benefit

to users. This is because, if the soundscape is difficult to interpret, users will expe-

rience difficulty understanding its content let alone using the information to assist

them in their everyday tasks. Hence, instead of focusing on introducing new content

into a soundscape, the objective was to balance a useful amount of information with

the level of interpretability of the soundscape.

During the prototyping phase, three major changes were introduced focusing on

improving the interpretability of the soundscape. These changes were implemented

in the prototypes in different phases of their development. They are feature extrac-

tion through image processing, cacophony reduction, and optimization of feature

mapping.

6.4.1 Feature Extraction through Image Processing

The first approach that was used in the project to help the user interpret the sound-

scape better was to explore the area of applying feature extraction to the visual

input prior to the visual-to-auditory conversions. The main purpose of deploying

feature extraction in a VASS system is to be able delegate some interpretation work

to a computer. The computer pre-processes the image, allowing a simple yet useful

soundscape to be created for the user. Traditionally, most VASS systems directly

map the intensity value of each image pixel to the corresponding sound properties to

create a soundscape. The technique of direct mapping limits the visual information

that is converted to the information at the lower level, neglecting the importance of
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the information at the higher level. As a result, these systems frequently require the

human user to perform more interpretation in order to fully understand the content

of the soundscape. The approach is to exploit the processing power of a computer by

using it to extract more features from an image using image processing algorithms.

Thus, the prototype is able to shift the workload from the user to the computer,

thereby reducing his/her effort required to interpret the lower level information but

focusing on the bigger picture of the entire content. VASS systems that utilize fea-

ture extraction in their conversions belong to the semi-automated generation, as

described in Subsection 2.1.2.

Feature extraction was used primarily in two of the earlier prototypes, Proto-

types 1 and 2. These two prototypes apply image processing algorithms extensively

throughout the processing, but primarily before the start of the conversion. A

contour-based image segmentation technique is used prior to the conversion phase

to extract the information about the blobs in the image. Through the application

of the algorithm, the conversion process is able to use information, including the

size, location, colour type, and shape of the blobs. This is a major step forwards as

compared to the VASS systems of the manual generation, which convert only pixel-

based visual information. Instead of encoding the raw pixel intensities, Prototypes 1

and 2 generate soundscapes based on the information of the blobs in the image. As a

result, the users can reconstruct mental images based on blobs instead of raw pixels.

Many benefits are reaped through using this approach. The main improvement can

be seen in the results of Experiment 1, where Prototype 1 performed well even for

tasks involving object detection. Moreover, the soundscape used in Experiment 1

was sonified at a rate of 2 s per frame, which is faster than the sonification rate of

vOICe, which is more than 4 s per frame. This proved that using contour-based im-

age segmentation, the prototype can achieve results that are similar to if not better

than those of the traditional VASS systems belonging to the manual generation.

The key point of this approach is that users are able to interpret the scene at a

much faster rate, because the soundscape helps them bypass the process in which
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they need to reconstruct mental image from the pixel level. Instead, when using

Prototypes 1 and 2, they can focus on the information at a higher level, such as

blobs, shapes, and colour. Thus, the prototypes are able to produce a soundscape

that is more easily interpreted, because the users are able to interpret the soundscape

and understand the content more quickly. In addition, the approach also improves

the learnability of the system. The users of the prototpyes were able to start an

assigned task after a maximum of one training session. This can be seen in both

Experiments 1 and 2.

The results of Experiment 2 enabled us to identify a major weakness of this

approach. Even before the experiments, it was suspected that the possibility that

the approach might in certain cases lead to oversimplification of the content of the

soundscape. In general, an oversimplified soundscape may lead to a lower perfor-

mance for specific tasks, the execution of which requires detailed information. Thus,

Prototype 3 was developed based on pixel features rather than the blob features on

which the development of Prototypes 1 and 2 was based. By comparing the two

contrasting approaches, their strengths and weaknesses were discovered. In Experi-

ment 2, the prototypes were tested in a real scenario composed of two major tasks,

navigation and object recognition. The results of Experiment 2 further confirmed

that the application of blobbing as the image segmentation technique (applied in

Prototypes 1 and 2) helped the users navigate but did not effectively aid their object

recognition. The main reason for these interesting results is that tasks such as nav-

igation are more easily accomplished using systems that provide quickly delivered

and concise information. The users are able to depend on this quickly delivered

information to make instant judgements and choose the correct path. Although the

information may not be detailed and precise, users are able to correct their course

quickly by using the rapid and continuous stream of information supplied by the sys-

tem. However, tasks that require detailed information, such as object recognition,

are not very easily performed using systems that are tuned for speed. Users need

considerably more information to correctly perform this type of task. Therefore,
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Prototype 3, which is built based on pixels rather than blobs, performed better in

object recognition because it provides more precise and detailed information. Pro-

totype 3 is able to describe the scene better because the soundscape is considerably

richer in details, providing more information, such as shape and texture.

The first purpose of implementing an image processing algorithm for feature

extraction was to harness the processing power of a computer to reduce the time

that a user takes to interpret a soundscape when low-level pixel information is used.

It was anticipated that with the help of a computer the system can achieve a higher

level of interpretability. However, the results of the experiments and the tests of

the prototypes led us to an interesting finding. The interpretability of a soundscape

depends heavily on the user’s task. Tasks that require a faster response will always

be accomplished more easily using short and fast soundscapes with clear and concise

information, which in this case corresponds to Prototypes 1 and 2, which implement

the blobbing technique as the primary image segmentation. However, a VASS system

that is built based on image pixels has the advantage that more detailed information

is encoded inside the soundscape, which favours tasks involving object recognition.

Although there may come a time when VASS systems can be sufficiently general to

cover all human visual functions, currently it is still best to build a VASS system

that targets specific tasks to achieve maximum interpretability.

6.4.2 Reducing Cacophony

Sound cacophony is a major hurdle that is slowing down advances in VASS tech-

nology. It directly affects the interpretability of a soundscape, and each increase in

the effect of cacophony makes the interpretation of the soundscape more difficult.

Many factors may lead to a build-up of the effect of cacophony in the soundscape.

Among them, the number of features encoded is considered the primary factor. The

more visual information translated into auditory form, the greater is the effect of

cacophony in the soundscape. Hence, it prevents us from packing more information



CHAPTER 6. DISCUSSION 237

into a soundscape, because of the concern that this may cause more cacophony,

which will then lower the interpretability of the soundscape and the overall perfor-

mance of the system. Therefore, it should be noted that a balance between the

amount of information and interpretability must be achieved in order to create a

VASS system having a high performance.

The same problem was encountered during the development of the prototypes.

The usage of musical instruments as a replacement for frequency-based soundscape

synthesis was introduced to offer more variety and richness in the soundscape and

to allow more information to be encoded in it. However, also this approach cannot

avoid the effect of cacophony. If it is not appropriately handled, the chance of sound

cacophony occurring is frequently higher than in the traditional approach. This is

especially true when musical instruments with similar sound signatures are used in

the sound synthesis. In order to mitigate the problem, a solution was proposed.

An automated method was created to select the optimal set of timbres out of the

pool of available musical instruments. The solution selects 10 timbres by computing

the ISD for each timbre and filters out any timbre having characteristics and sound

signatures that are too similar to those of another timbre. This creates a better

overall timbre set with minimal sound collisions. In fact, the improvements in the

quality of the soundscape were noticeable in terms of overall interpretability as

compared with the soundscape that was produced when a randomized timbre set

was used. Positive feedback was received from the users, the majority of whom

indicated that the improved timbre set produced a clearer and more distinctive

soundscape. The effect of cacophony was more obvious in the soundscape produced

using the improved timbre set than in that produced using the initial timbre set,

because in the latter some of the constituent timbres sounded too similar and were

more difficult to distinguish.

Although the proposed method yielded some improvements in the soundscape,

it did not completely eliminate the effect of cacophony. The interpretation of the

soundscapes can become more difficult as the number of different musical instru-
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ments playing at the same time increases. One of the factors that contribute to

the problem may be the fact that the selection process did not cover the sound

similarities of timbres at different pitches and volumes. Therefore, the measurement

of sound similarity for each timbre should be expanded to cover a wider range of

criteria, including different ranges of pitch and multiple levels of sound volume. To

complement this, it is recommended that an optimization algorithm, such as an evo-

lutionary algorithm, be incorporated to reduce the search time. This is because the

search space will expand exponentially as the number of selection criteria increases.

When implementing a new feature in a system that translates visual information

to auditory information, researchers should investigate further and find solutions

that mitigate the effect of cacophony in the end result. I learned that the inter-

pretability of a soundscape is strongly related to the sound cacophony. A high level

of sound cacophony lowers the interpretability of a soundscape. It was confirmed

that, when the proposed solutions to reduce the noise and sound cacophony were

not applied, the soundscapes produced by the prototype are less interpretable than

those produced by other existing VASS systems.

6.5 Better Evaluation Method for VASS

An additional contribution that Luminophonics has made to the development of

VASS systems is a method for evaluating their performance. Previously, a standard-

ized model that was able to measure the performance of VASS fairly across different

systems, regardless of the algorithms implemented, did not exist. Historically, the

default approach for evaluating a VASS system is through user-based experiments.

Although evaluation through user trials is the best means of measuring the full po-

tential of a VASS system, it is difficult to replicate trials across all systems. As

a consequence, the results of these experiments are frequently not easy to use for

comparing different VASS systems fairly. A method to complement the standard

experimental methodology was developed, which consists of evaluating the VASS
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quantitatively using the input images and the corresponding soundscapes. Chapter

5.2 describes such method has the potential to become a standardized evaluation

framework for VASS systems because of its simplicity and straightforward imple-

mentation. Moreover, because the method relies only on input images and their

corresponding soundscapes, which are common across all systems, the values in the

results can be used to compare different VASS systems. By using such performance

measurement tools, system that were previously developed in silo can be compared

in a fairer manner.

As mentioned, the automated performance measurement for VASS systems that

was introduced is a very good tool as a complement to the existing user-based experi-

ment evaluation method. It does not only provide a fair overview of the performance

of a VASS system (in terms of interpretability and information preservation); it has

another benefit of which VASS developers can take advantage as part of their sys-

tem development process. Because of its low implementation cost, it is an ideal tool

for testing and for filtering out poor features. It can be quickly set up to evaluate

newly implemented features without incurring the considerable cost of conducting

an experiment. The results of the measurement can be a good indicator of whether

the new features are affecting the overall performance of the system positively or

negatively. Using the results, researchers and developers alike are able to make in-

formed decisions at an early stage as to whether to proceed to further development

without wasting many resources in the long run. Essentially, the automated mea-

surement is a ‘litmus test’ for VASS systems in that it provides an early indication

as to whether the performance of a system will be good or poor before the entire

development has been completed. Hypothetically, if the process of automated per-

formance measurement is incorporated in the development of every VASS system,

the technology of visual-to-auditory conversion can advance more quickly. Because

it has shortened the time it takes to create a system, which leads to a reduction

in the total development cost, it gives more researchers (in particular those hav-

ing a relatively small budget) the opportunity to be involved in contributing to the
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technology of visual-to-auditory conversions.

However, the performance measurement requires considerable improvement be-

fore it can realize its full potential as the standardized performance measurements

framework. So that the automated performance measurement can be accepted

worldwide, it has to provide a more comprehensive evaluation of the system. Cur-

rently, the proposed measurements are limited to only two measurement criteria,

interpretability and information preservation, which are not sufficient to completely

describe the ability of a system. Improvements should be made to enhance the cur-

rent measurements, and additional measurements need to be included. As discussed

in Section 5.2.2, the measure of soundscape interpretability is based on the corre-

lation between the IID and ISD. Because it is expected that the IID and ISD have

a linear relationship, a PCC is used to measure the relationship between the two

variables in order to describe a system that produces a highly interpretable sound-

scape. As suggested, other correlation measurements, such as distance correlation

or rank correlation, should be explored in case the relationship between the IID and

ISD is not linear in nature. Dimensionality reduction techniques can also be con-

sidered, as well as the values of the IID and ISD, to measure the interpretability of

the soundscape. One suggested alternative is to reduce the dimensionality of both

the images and the soundscapes to a common dimension using a technique such as

principal component analysis (PCA) or singular value decomposition (SVD). The

interpretability of a soundscape can be estimated by calculating the distance be-

tween the images and the corresponding soundscapes in the same dimensionality. A

system that is highly interpretable should be able to produce soundscapes that are

highly correlated with the input images. In other words, after dimensionality reduc-

tion, the distance between a visual input and its corresponding soundscape should

be minimal. As does that for the measurement of interpretability, the approach for

measuring the information preservation shows some weaknesses. The reliance on

comparing the entropy of the input image and its corresponding soundscape may be

too simplistic. Although it indicates which system preserves the information better
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in the conversions, the comparison does not reveal the amount of information lost

in the process. This is due to the inequalities of information entropy in different

modalities. In order to mitigate the problem, methods for computing information

gain, such as Kullback-Leibler divergence, which measures the relative entropy be-

tween two probability distributions, can be used to measure the difference in the

amount of information before and after conversions.

The automated measurement should also be expanded to include more measure-

ments in order to describe better the performance of a system. A good indicator in

addition to interpretability and information preservation is the total time required

to complete all the conversions in a system. In certain scenarios, users may be

able to benefit from a system that is capable of quickly converting an image into

a soundscape. The inclusion of this time in the measurements can help researchers

whose objective is to filter out algorithms that do not meet the time requirement.

Further, a set of audio analyses of the soundscape can be useful for finding a system

that produces quality soundscapes. In general, a good soundscape should be pleas-

ant to listen to and exhibit minimal cacophony. Using audio analysis, unpleasant

sound quality can be detected and eliminated, such as high disparities between peak

volumes and unnatural sound pitches.



Chapter 7

Future Works

7.1 Overview

In this dissertation, multiple improvements to advance visual-to-auditory cross-

modality conversion systems are presented. The proposed improvements are aimed

at different areas of the entire process. They include the audio quality of the sound-

scape, the ability to preserve information before and after conversions, the inter-

pretability of the soundscape, and finally performance measurements for evaluation

purposes. According to the results of the experiments and the feedback from all

the testers, it can be stated that the proposed changes benefit visual-to-auditory

conversion and its application as a whole. Although many possible solutions are

presented to overcome the weaknesses of the current VASS systems, the problems

are far from solved. Continuous improvements have to be made to the technology

before it can be adopted widely by the public.

On a positive note, in the foreseeable future the growth momentum of VASS will

be increased in tandem with the advances that have been achieved in numerous fields,

such as computer science, neuroscience, and psychology. As discussed in Chapter 2,

the rise of VASS was initiated by the advances in electronics, whereby the synthesis of

a soundscape by translating visual signals electronically was made possible. As VASS

242
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systems progress from the manual generation to the semi-automated generation

and finally to the automated generation, an increasing number of techniques are

being incorporated to process the visual information better in order to improve

the interpretability of the system. The devices of the first stage, which produce

soundscapes by directly converting the visual signal without passing them through

additional image processing, are generally regarded as the VASS systems belonging

to the manual generation. The second stage of VASS systems, the semi-automated

generation, was advanced by the abundance of computing power. Currently, the

power of computers can be capitalized to process more visual data, mapping them

to generate a richer soundscape. Although electronics has played a crucial role in the

application of the technology, the achievements of visual-to-auditory conversion in its

current state were not reached without the help of our knowledge of neuroscience. As

we continue to deepen our understanding of the human brain, much of the relevant

knowledge, in particular that about brain plasticity, can facilitate the research of

sensory substitution.

Although the second generation of VASS devices showed many of the capabilities

of visual-to-auditory sensory substitution technology and its relevance to humans,

in particular the visually impaired, they did not achieve any real positive results

outside the experimental environment. The reasons for the poor public adoption

of such devices are most probably its weaknesses and the limitation in terms of

its robustness. The length of the learning period together with aesthetics and the

interpretability of the soundscape are some of the major weaknesses that were iden-

tified in the second generation VASS systems. However, as the field of computer

science and neuroscience have continued to mature, their advances have influenced

the progress of VASS to a very great extent. This is particularly true given that

in recent decades our understanding of neural networks has had a great effect on

computer science, especially in the field of machine learning. This convergence of

machine learning (in terms of neural networks) and neuroscience may be lead to the

next breakthrough needed to advance VASS technology to the next stage. Signs of
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this are slowly surfacing, as applications of deep neural networks are starting to be

incorporated in some SSDs, usually in the form of visual recognition. The situa-

tion should improve further as VASS systems evolve into the next, fully automated,

generation, driven primarily by machine learning and neuroscience.

Although most of the research efforts are channelled to improve the current

generation of VASS, the next logical step for the research of visual-to-auditory con-

versions is to explore other opportunities to realise the coming generation of VASS

systems, a fully automated one. In this chapter, other promising solutions are dis-

cussed that have potential to solve the limitations that VASS is currently facing.

By redesigning the process of cross-modality conversion and coupling it with state-

of-the-art machine learning techniques, it is possible that VASS systems can achieve

a greater performance than that of the current generation. With high hope, SSDs,

especially VASS systems, will be accepted by a wider public audience in the future

and have a more significant effect as devices that provide access to individuals with

visual impairment.

7.2 Visual Recognition

The integration of visual recognition in parallel with the soundscape will be the

next great advance in VASS technology. Visual recognition allows the system to

describe objects in the scene in a language understandable by its users. For instance,

while playing the soundscape, the computer can pronounce the word ‘tree’ in the

form of human speech if a tree is detected in the input image. The verbal audio

description provided by the computer allows the user to be aware of the existence of

a tree in front of him/her. This reduces the time and effort users need to invest in

mentally reconstructing the visual information in the soundscape and subsequently

interpreting the content.

Such an ability may have sounded implausible in the earlier phase of VASS de-

velopment, but with the advancements in the field of machine learning, human-like
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visual recognition by computers is achievable by using deep learning. A number

of such systems currently exist, most of which are aided by convolutional neural

networks (CNNs) trained with a large number of images labelled with a descrip-

tion in words. Of these, the most popular system that demonstrates the ability to

describe visual data in words is NeuralTalk presented by Karpathy and Li (2015).

To represent the image, they use a combination of region convolutional neural net-

works trained on ImageNet and MSCOCO datasets (Lin et al., 2014) to extract the

relevant objects and plug the information into a recurrent neural network (RNN)

, called the bidirectional recurrent neural network, to form a string of word repre-

sentations. The results are exceptional: the model, in particular the most recent

version (NeuralTalk2), is able to describe image frames using English sentences in a

matter of seconds. Figure 7.1 shows a screenshot from a video of the NeuralTalk2

in real time produced by @kcimc1 that describes a scene with the caption ‘A man

is eating a hot dog in a crowd’. The result is not perfect but it correctly describes

part of the image. Another impressive image captioning algorithm was demon-

strated by the Google Brain team. The model is able to describe images with high

accuracy (Vinyals et al., 2017). The idea behind the model is that a transfer learn-

ing technique using a deeper CNN (Inception-ResNet v2) is applied on top of an

RNN for caption generation. The model is very successful: it achieved first place in

the MSCOCO Captioning Challenge 2015, outperforming other strong competitors,

e.g., models developed by Microsoft Research and the University of Montreal, and

NeuralTalk.

The element of visual recognition built into a VASS combines well with the

core idea behind the second generation of VASS systems, which promotes using

computational power to process the content prior to the delivery of the soundscape

to the user in order to improve its interpretability. While the computing power in

second generation VASS systems is used to describe the objects in terms of features,

such as shapes and blobs, visual recognition provides a further improvement by

1Source: NeuralTalk and Walk (https://vimeo.com/146492001)

https://vimeo.com/146492001
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Figure 7.1: Screenshot from a video demonstrating NeuralTalk2 by @kcimc

describing the objects in the form of human language. As compared to the second

generation, the effort that the user has to invest in soundscape interpretation in order

to recognize the objects in the scene when using the third generation is minimal.

Hence, this generation is called fully automated, as opposed to the second generation,

which is called semi-automated. Ultimately, the obvious benefit of including visual

recognition in a VASS system is the increase in the interpretability of the resulting

soundscape. The fact that the interpretation of the soundscape is becoming easier

creates many more positive additional effects. One direct effect in addition to the

ease of interpretation is that soundscapes can now be shorter and faster. A few words

formed into a sentence can fully describe the visual content in a shorter time frame.

Because the user can more quickly perceive the content of the soundscape, he/she

can make faster judgements. It was a major disadvantage of second generation

VASS systems that they were unable to sonify the richness of the content in an
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acceptable amount of time or to describe the content more quickly without sacrificing

information. Hence, visual recognition may be a solution that provides the best of

both worlds: it can both fully and quickly describe the content, because the richness

of the visual input is translated semantically into human speech.

Because the soundscape is available in the form of human speech and easily

interpretable, the learnability of the systems is also increased. Previously, users

had to learn to decode the soundscape in order to understand its visual content.

The duration of the training required to reach standard proficiency could be from

a few weeks to months, depending on the users’ experience. However, because

the soundscape is translated into a language that users understand, they do not

need to learn the feature mapping used in the conversions algorithm. Thus, the

training period is reduced significantly by the fact that the VASS system and its users

share a common set of communication protocols: the human language. Essentially,

visual recognition uses language as the feature mapping/encoding to sonify the visual

information for the soundscape. An additional benefit of using human language

to describe visual information is that the users are already accustomed to human

speech. This means that the systems do not have to invest the effort that is required

to produce a natural soundscape, which was a result of the introduction of musical

instrument in sound synthesis. If a VASS system can describe the visual information

in human language, it can be treated as an agent that is constantly talking to the

user describing what it sees.

Although visual recognition appears to be promising, the feature is still in the

very early stages of development. More work is required before it can be incorporated

into an actual VASS system. The most difficult problem that needs to be solved

involves the attention mechanism. Currently, no control function that determines

the segment that the neural network will describe is implemented. The caption of

an image is generated based on the confidence level of the model trained on the

dataset. An ideal visual recognition function has to mimic the saliency of human

attention, describing the most important part of the image and filtering out the
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other minor details. However, the contribution of deep learning (both modelling

and datasets) is helping close the gaps in visual recognition. Recent work, such as

Show, Attend, and Tell produced by the MILA Laboratory, shows good progress (Xu

et al., 2015). They introduced a novel approach that is able to describe the content

of images using an attention-based model that is capable of focusing on highly

salient objects. The current state-of-the-art image captioning was developed by the

researchers at the IBM Watson Research Center (Rennie et al., 2016). The approach

uses a reinforcement learning technique called self-critical sequence training (SCST)

and when trained on the MSCOCO dataset the model was able to achieve a score

of 114.7 CIDEr in the MSCOCO evaluation. The advances in deep learning suggest

that a comprehensive visual recognition function built into a VASS system may be

possible in the not too distant future.

Meanwhile, until stable maturity in the field of visual recognition is achieved

through image captioning, the best immediate approach is to develop a better im-

age segmentation method, such as the blobbing technique that was proposed in this

research. However, the use of neural networks to replace the traditional contouring

techniques may allow the performance of the segmentation to be more robust and

refined. Currently, there are many popular image segmentation approaches that

use deep learning, such as R-CNN presented by Girshick et al. (2014), YOLO pre-

sented by Redmon and Farhadi (2016), and fully convolutional networks presented

by Long, Shelhamer, and Darrell (2014) and Shelhamer, Long, and Darrell (2017).

Using a high quality dataset such as MSCOCO, these segmentation methods are

able to locate and outline the objects detected in a short time. The best seman-

tic segmentation technique is Mask R-CNN developed by Facebook AI Research,

which extends the idea behind R-CNN (He et al., 2017). By adding an additional

branch to predict objects on top of bounding box recognition, the accuracy of Mask

R-CNN was improved and it outperformed all existing methods. If the speed of

these methods can be improved to be equal that of the current contouring-based

segmentation methods (at least 30 fps), they potentially can be used as a drop-in
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replacement for the segmentation layer. Using semantic segmentation performed by

neural networks, the VASS system will be able to produce soundscapes based on

actual objects rather than only on blobs.

7.3 Deep Learning and Audio

The future of visual-to-auditory cross-modality conversions will be strongly influ-

enced by the many breakthroughs derived from machine learning. This includes

improvements in the sound quality of the soundscape. Recently, many successes

in the area of synthesizing high quality audio by using deep learning models were

reported. By applying such methods, neural networks, trained with a high qual-

ity dataset, will definitely greatly facilitate the generation of better soundscapes.

Hence, it is expected that the soundscape produced by the VASS system of the

future will be of higher quality. As compared to the soundscapes from the current

generation, the sound will be more natural and closer to real life.

One of the more prominent studies on using deep learning for audio synthesis

was conducted by the researchers of the Magenta project at Google Brain. The core

motivation of the Magenta project is the wish to develop high quality music and art

generation using various machine learning techniques. Although their research does

not affect the development of VASS research directly, the spillover effect from their

work, especially that on audio synthesis, will benefit those working on creating a

better soundscape. Many of their published results showed that, by using some of

the state-of-the-art neural networks, such as long short term memory (LSTM) and

generative adversarial networks (GAN), they were able to synthesize audio clips that

closely resemble music composed by a professional artist.

The most recent results can be seen in NSynth, an audio synthesizer that is

capable of generating raw audio samples using neural networks (Ramachandran

et al., 2017). The core component of NSynth is WaveNet presented by Oord et

al. (2015) of DeepMind, which basically is an autoencoder coupled with a fully
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convolutional neural network (CNN) built for the purpose of learning the embeddings

of audio samples. Trained on a relatively large set of audio and musical notes,

NSynth is able to encode a sound pattern and then resynthesize it based on other

parameters into a new variation of the original sound. The technology of NSynth

will solve two major existing problems related to VASS systems. First, the learned

embeddings from NSynth can be combined and mapped with the features of our

visual input to create an automated visual-to-auditory conversion. Second, the

technology offers more possibilities for soundscape synthesis, because researchers

will not be limited to the musical instrument models that are currently supplied

with a sound synthesizer. It is possible that its use will allow VASS to include many

different sounds to sonify an image. For example, the sound of a bird chirping could

represent a bird in the image and the sound of wind a clear blue sky. Soundscapes

will be not only more natural but also more lively, creating a considerably more

immersive experience for the listener.

An additional impressive result of the same group is the usage of LSTM to

create a polyphonic music model, called Performance RNN (Simon and Oore, 2017).

Trained on the Yamaha e-Piano Competition dataset2, the model is able to modify

the timing and dynamics of the music without interrupting the sound. The timing

of the audio output has become one of the reasons why the soundscape produced by

a VASS system does not resemble the music of an orchestra as closely as expected.

Because of excessive audio modifications to match the mapping of the visual features,

the soundscapes sound unnatural with many sudden intervals in between the sounds

of instruments. It is hopeful that by applying the proposed Performance RNN, the

timing in the soundscape can be modified without breaking the flow and dynamic

of the music. Moreover, it provides an additional audio property, as well as the

usual frequency and volume, that can be mapped to the visual features, that is,

the temperature of the audio. Using this property, a VASS system can express the

temperature of the visual input in the audio. For example, a blueish scene can be

2Source: Yamaha e-Piano Competition dataset (http://www.piano-e-competition.com/)

http://www.piano-e-competition.com/
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expressed by a slower tempo in the soundscape, while a soundscape with a faster

tempo can describe a reddish image.

There is no doubt that the availability of such models will, with little effort,

allow the sound of soundscapes to be considerably improved in the future. It is pos-

sible that with a larger dataset and a sophisticated model, a neural network-based

audio synthesizer will make considerably more audio properties available that can

be changed. With more parameters, the soundscape can be more flexible, providing

considerably more avenues for mapping visual information. To conclude, the sound-

scape in the future will both sound more natural and be considerably richer as a

result of the flexibility and capacity provided by a better synthesizer.

7.4 Cross-Modality Mapping

An additional important feature that is expected to be introduced in the next gener-

ation of VASS systems is automated visual-to-auditory mapping through optimiza-

tion. Currently, the building of a visual-to-auditory mapping that is able to translate

the visual information into a soundscape that the user can intuitively understand

and that is able to assist the user in many tasks presents a major problem. In ad-

dition, at the present the process of creating a new mapping is frequently resource

intensive, because creating the mapping currently involves manual feature engineer-

ing by means of a considerable amount of trial and error. Although the expected

performance is achieved, the resulting soundscapes are far from optimal. There is

room for the algorithms to be developed further, so that they can produce sound-

scapes of higher quality. However, because it is a slow and expensive process, we

may not be able to finally achieve a good visual-to-auditory mapping for a long time

if the path of manual engineering approach is continued. Hence, it is recommended

that a more efficient method to build the mapping automatically through the ap-

plication of an optimization algorithm should be explored. Chapter 5 describes a

technique that can be considered a first step towards such an implementation. To
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the best of my knowledge, this is the first time an optimization process has been

used to explicitly evolve VASS systems. CMA-ES as the evolutionary algorithm was

applied to form two sets of mappings optimized for interpretability and information

preservation, respectively. Fortunately, many more optimization techniques are cur-

rently being developed that are suitable for this purpose. In this section, explore

other state-of-the-art methods that have great potential are explored They have the

potential to help us create a better visual-to-auditory cross-modality conversion.

Again, deep learning plays a very significant role in advancing VASS and it too

will help to create a better translation mapping for visual-to-auditory cross-modality

conversions. In this case, unsupervised learning neural networks, such as autoen-

coders, are useful. Autoencoders are a type of neural network that is comprised of

two parts, an encoder and a decoder. The objective of such a network is to apply

a backpropagation algorithm to learn the embeddings/representation of the input

from the encoder element and attempt to recreate the output such that it is as close

as possible to the input from the embeddings. Currently, state-of-the-art autoen-

coders are implemented in many applications, such as those for pretraining other

classifiers, data compression, and information retrieval. Because autoencoders excel

in dimensionality reduction, they are very suitable for the purpose of cross-modality

translation. Many studies have been reported that involved the usage of autoen-

coders in cross-modality applications, in particular to retrieve information based

on different modalities (Ngiam et al., 2011; Wang et al., 2016; Vukotić, Raymond,

and Gravier, 2016). One particularly interesting study is that of Fried and Fiebrink

(2013), who attempted to achieve a goal that is very similar to ours. They proposed

training a stacked autoencoder to find the mapping between visual input and the

corresponding audio output. Using the mapping, they were able to link a piece of

music to a slideshow and identify the audio by means of the corresponding gesture

image.

Although the study of Fried and Fiebrink (2013) provided some glimpses of the

application of an autoencoder to create visual and auditory cross-modality mapping,
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their proposed technique is still far from the goal, because options for synthesizing

audio directly from the learned embeddings are lacking. While currently, no meth-

ods exist that are able to provide these options, two probable solutions using an

autoencoder exist that may lead us to tools that can create automated visual-to-

auditory features mapping for soundscape synthesis. A direct approach is to build an

autoencoder using the image in the encoder to capture the information, whereas the

decoder is formed to create a synthesizer that generates the corresponding sound-

scape. This approach is simple and more easily implemented, but it has a major

weakness in that the network may generate a soundscape that is related well to the

embeddings but is incomprehensible to the user. An additional indirect approach

is to use an autoencoder, such as a stacked autoencoder or variational autoencoder,

to learn the embeddings of the image dataset first. Then, another generative model

using networks, such as GAN or LSTM, is connected to synthesize the soundscape

from these embeddings. The second approach is more robust because it provides

the option to guide the sound of the soundscape by giving a higher score to a sound

that is deemed suitable for the user. Thus, a more natural sound can be created

using musical instruments in the sound synthesizer.

However, it is by no means a trivial task to create an automated cross-modality

mapping. The major reason for the difficulty is that the construction of an ideal cost

function that measures the content of the input image and the resulting soundscape

presents many challenges. The problem was also faced in this research when build-

ing the automated optimization feature mapping using CMA-ES. Therefore, the

effort should be focused on creating a better cost function that correctly defines the

qualities that characterize a good soundscape before applying such an optimization

algorithm. An additional approach is to collect a vast number of datasets com-

prising images and soundscapes to train the algorithm to learn the ‘good’ feature

mapping between the image and soundscape pair. Thus, we may achieve a system

that incorporates an automated process for synthesizing soundscapes that is capable

of describing much visual information in the form of audio in near future.



Chapter 8

Conclusion

To conclude, our research project achieved a number of improvements in multiple

different areas of visual-to-auditory cross-modality conversion. First, the possibility

for a VASS system to sonify the soundscape using the timbres from musical instru-

ments through the implementation of a sound synthesizer is being demonstrated.

The objective of using musical instruments is to make the soundscapes sound more

natural than the traditional soundscape that is based on frequency modulation. Our

results show that not only do users prefer to listen to a soundscape constructed from

the timbres, but also the performance of the soundscapes is comparable to, if not

better than, that of frequency-based soundscapes.

However, the idea of using musical instruments was not conceived solely for the

purpose of improving the user’s listening experience. It also made available possi-

bilities to encode more information into a soundscape. Thus, the inclusion of colour

information in visual-to-auditory conversions was introduced. The mapping of 10

different musical instruments to 10 different colours allows our soundscapes to sonify

the colour information of the input image. In order to reduce the effect of cacophony

in the soundscape, a timbre set selection process was developed. It is based on com-

paring the sound signature of a series of two different timbres to obtain a set of

10 different timbres having sounds that can easily be distinguished. Our efforts to

increase the amount of information retention achieved by the conversions algorithm

254



CHAPTER 8. CONCLUSION 255

did not include only the introduction of colour information; the implementation

of an image processing algorithm that is applied mainly in the image segmentation

process was proposed to further increase the feature extraction for the input images.

The resulting soundscape is able to sonify additional information, such as blob size,

which is mapped to different audio properties, such as volume and pitch. In addi-

tion, depth information was attempted in Prototype 4, collected using a TOF depth

sensor, as an addition to the 2D visual information supplied by images captured

using a normal camera.

In this dissertation, several approaches for improving the user’s experience of

soundscape interpretation were suggested. As demonstrated in Prototypes 1 and

2, a contour-based image segmentation algorithm is used for the purpose of feature

extraction. The main purpose of including an image processing algorithm in the

conversions is to allow a computer to handle this part of the processing task so

that the user can focus on the interpretation. The results are encouraging because

this feature allows users to interpret the soundscape more quickly, making the sys-

tems suitable for tasks that require rapid decision making, such as navigation. To

complement our effort to increase the interpretability of the soundscape, a measure-

ment was developed based on the correlation between the input and output of the

system as a basic tool to measure the performance of a VASS system in terms of

interpretability.

Central to our approach are several innovative solutions that were introduced in

addition to the successes achieved with our prototypes. The purpose of these con-

tributions was to solve some of the difficult problems that hinder us from achieving

our goals. One of the opportunities for improvement that was identified was the lack

of an evaluation framework for VASS systems. Without a standardized evaluation

method, it is difficult to compare performance across different VASS systems. Two

new measurements were developed to measure the performance of a VASS system,

interpretability and information preservation. These two measurements form the

basis of an evaluation method to rank the performance of a VASS system consider-
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ably more quickly than the current user-based experimental methods. It is hopeful

that with further development and refinements by various parties worldwide, the

measurement methods can become a standardized evaluation platform for VASS.

Building on the measurements as the cost function, an optimization method was de-

veloped to search for the best visual-to-auditory mapping for the conversions. The

proposed method is based on the usage of an evolutionary algorithm such as CMA-

ES to produce two sets of feature mapping optimized respectively for two different

purposes, namely, interpretability and information preservation. The optimization

process reduced the duration of the prototyping and the testing processes used to

search for an optimized visual-to-auditory feature mapping.

Overall, the results achieved thus far in this research studies are satisfactory. I

believe that the contributions in this research will advance the field of sensory substi-

tution, in particular in the domain of visual-to-auditory cross-modality conversion.

Towards the end of the research phase, observing the recent resurgence of machine

learning, in particular in deep learning, I realized that the future of VASS systems

is going to be relatively bright. If efforts are invested in combining the state-of-the-

art neural networks and visual-to-auditory cross-modality conversion, many more

interesting VASS systems can be developed. They are expected to excel in terms

of features such as visual recognition, listening experience, and visual-to-auditory

conversion mapping. The next generation of VASS systems is slowly emerging as

advances in machine learning are achieved, and I hope that this will lead to the

greater public adoption of VASS technology. When VASS technology is improved

and its capabilities enhanced, more people will understand its benefits. Ultimately,

the livelihood of people with visual impairment will be improved with the usage of

these new visual-to-auditory sensory substitution systems.
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Appendix A

Kodak Lossless True Color Image

Suite

The pictures from Kodak Lossless True Color Image Suite was used extensively in

Project Luminophonics. They were released by the Eastman Kodak Company for

unrestricted usage. Kodak Lossless True Color Image Suite hosted by Franzen, 1999

can be found at http://r0k.us/graphics/kodak/.

b

http://r0k.us/graphics/kodak/
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Figure A.1: Kodak Lossless True Color Image Suite



Appendix B

Test Images for Experiment 1

These are the images used in Experiment 1. They can be categorized into 7 different

categories, including: Ball, Bee, Colour, House, Shape, Stick-man, and Tree.

B.1 Ball

Figure B.1: Ball Test Images for Experiment 1

d
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B.2 Bee

Figure B.2: Bee Test Images for Experiment 1
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B.3 Colour

Figure B.3: Colour Test Images for Experiment 1
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B.4 House

Figure B.4: House Test Images for Experiment 1
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B.5 Shape (Shade)

Figure B.5: Shape Test Images for Experiment 1 (Different Shade)

B.6 Shape (Size)

Figure B.6: Shape Test Images for Experiment 1 (Different Size)
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B.7 Stick-man

Figure B.7: Stick-man Test Images for Experiment 1

B.8 Tree

Figure B.8: Tree Test Images for Experiment 1

Figure B.9: Tree Images in Different Quadrant for Experiment 1
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Bologna, Guido, Benôıt Deville, Thierry Pun, and Michel Vinckenbosch (Aug. 2007).

“Transforming 3D coloured pixels into musical instrument notes for vision sub-

stitution applications”. In: EURASIP Journal on Image and Video Processing

2007.2, p. 8.

Bologna, Guido and Michel Vinckenbosch (2005). “Eye Tracking in Coloured Image

Scenes Represented by Ambisonic Fields of Musical Instrument Sounds”. In: 1st

International Work-conference on the Interplay between Natural and Artificial

Computation. Canary Islands, Spain, pp. 327–337.

Bradski, Gary (2000). “The opencv library”. In: Dr. Dobb’s Journal of Software

Tools.

Bramão, Inês, Alexandra Reis, Karl Magnus Petersson, and Lúıs Fáısca (Sept. 2011).
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