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Abstract

In this thesis we discuss two key problems: the cosmological constant problem (CCP),

an issue that primarily manifests itself in late universe cosmology; and the process

of thermalisation during the post-inflationary reheating phase of the early universe.

We start by giving a brief review of general relativity, discussing both its successes

and failures, in particular, why one might consider modifications of it. We then

delve into the aspects of early and late universe cosmology that we aim to address

in the research discussed in this thesis. Starting with an overview of the inflationary

paradigm, and the need to reheat the universe post-inflation, we give a review of

previous research that has been conducted in this area. We then move on to discuss

the CCP in detail, in particular, why it is such an issue. After setting the scene

for this problem, we proceed to discuss how to approach finding a resolution to it,

highlighting certain stumbling blocks that one needs to be mindful of.

Having set the scene, we then present a potential solution to the CCP, involving a

scalar-tensor modified theory of gravity, so-called Horndeski theory. Building upon a

class of Horndeski theories providing self-tuning solutions to the CCP, we provide a

generalisation in which matter interacts with gravity via a disformal coupling to the

spacetime metric. We establish the form of the disformally self-tuning Lagrangian

on a cosmological Friedmann-Robertson-Walker background, and show that there

exist non-trivial self-tuning solutions.

In the latter half of this thesis, we move on to review the literature on the non-

perturbative description of the early stages of reheating, so-called preheating. With

the motivation to study the less well understood thermalisation process that must

necessarily take place in this phase, we then present a toy model preheating theory,

in which we account for the effects of thermalisation from its onset. Within the

density matrix formalism, we derive a (self-consistent) set of quantum Boltzmann

equations, which are able to describe the evolution of an ensemble of self-inter-

acting scalar particles that are subject to an oscillating mass term. In particular,

we apply this to the preheating scenario in order to study the evolution of scalar

particle number densities throughout this process. We then conclude by discussing

our numerical analysis of the Boltzmann equations, drawing attention to some im-

portant results and features that manifest using this approach, in particular, how the

process differs from the standard analysis through the inclusion of thermalisation.
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Conventions & notation

The following conventions are adopted throughout this thesis (unless stated other-

wise):

– We work in units where ~ = c = 1. In this units system, any quantity has

dimensions of energy and as such can be expressed in terms of electronvolts,

where 1eV ≈ 1.602× 10−19J.

– The metric signature used is (−+ ++).

– We use the reduced Planck mass MPl = 1√
8πG
≈ 2.435× 1018 GeV, where G is

the gravitational constant.

– Spacetime coordinates are given in 4-vector form, i.e. xµ = (t,x). In particular,

functions f of spacetime coordinates will be expressed as f(x) := f(t,x).

– We adopt the standard practice of refering to tensors A via their components

Aµ1...µn
ν1...νm

.

The following is a list of notation used throughout this thesis:

– Operators are denoted with a circumflex, i.e. Ô.

– A dot over a function (or an operator) denotes a derivative with respect to

coordinate time t, for example ḟ = df
dt

.

– Partial derivatives of (a set of) functions fj(q1, . . . , qn) are either denoted as

∂ifj :=
∂fj
∂qi

, or fj,qi . The same notation is used for derivatives of operators Ô
(with the appropriate replacement fj → Ô).

– For spacetime derivatives in Minkowski spacetime we adopt the shorthand

notation ∂µ := ∂
∂xµ

. In more general settings, i.e. curved spacetimes, we denote

the covariant derivative as ∇µ, which for an arbitrary tensor Aµ1...µn
ν1...νm

, is given

by

∇σA
µ1...µn
ν1...νm

= ∂σA
µ1...µn
ν1...νm

+ Γµ1
ασ A

α...µn
ν1...νm

+ · · ·+ Γµnασ A
µ1...α
ν1...νm

−Γαν1σ
Aµ1...µn

α...νm − · · · − Γανmσ A
µ1...µn
ν1...α

.
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– Higher-order spacetime derivatives are determined through repeated operation

of the covariant derivative. A particularly important example is the d’Alembert

operator � := ∇µ∇µ. In this thesis, we also use other combinations:

(∇µ∇νf)2 = ∇µ∇νf∇ν∇µf and (∇µ∇νf)3 = ∇µ∇νf∇ν∇λf∇λ∇µf where f

is a proxy spacetime-dependent function.

– In §6 we shall also adopt the following compact notation for spatial integrals:∫
x1, ...,xn

:=

∫ +∞

−∞
dx1 · · ·

∫ +∞

−∞
dxn

and similarly for momentum integrals:∫
p1, ...,pn

:=

∫ +∞

−∞

d3p1

(2π)3
√

2ωp1(t)
· · ·

∫ +∞

−∞

d3pn

(2π)3
√

2ωpn(t)

where ωpi(t) =
√
|pi|2 +m2

eff(t) (in which the time-dependent effective mass

m2
eff(t) is defined as in §6.1.1).

– The various curvature terms (tensors and scalars), prevalent in the settings of

general relativity and the model(s) of modified gravity that we consider in this

thesis, are

Rα
µβν = ∂βΓανµ − ∂νΓαβµ + ΓαβλΓ

λ
νµ − ΓανλΓ

λ
βµ ,

Rµν = Rα
µαν = gαβRαµβν ,

R = gµνRµν ,

Ĝ = R2 − 4RµνRµν +RµνρλRµνρλ ,

P µναβ =
1

4
εµνλσRλσγδε

γδαβ .

where Rα
µβν and Rµν are the Riemann and Ricci curvature tensors, respectively,

R = gµνRµν is the scalar curvature, Ĝ is the Gauss-Bonnet combination, and

P µναβ is the double-dual of the Riemann tensor. The Γανµ are the (coefficients

of the) affine connection, Γανµ = 1
2
gαβ
(
∂νgβµ + ∂µgνβ − ∂βgνµ

)
, εµνλσ is the

Levi-Civita tensor (density), and gµν the metric tensor.
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Abbreviations

Here we list (in alphabetical order) the abbreviations of commonly used words

throughout this thesis:

BBN Big-bang nucleosynthesis.

CCP Cosmological constant problem.

CMB Cosmic microwave background.

CM Centre-of-mass.

EEP Einstein equivalence principle.

EFE Einstein field equation.

EFT Effective field theory.

EH Einstein-Hilbert.

EOM Equation(s) of motion.

FRW Friedmann-Robertson-Walker.

GR General relativity.

HBB Hot big-bang.

IR Infrared.

QED Quantum electrodynamics.

QFT Quantum field theory.

PDE Partial differential equation.

SM Standard model (of particle physics).

UV Ultraviolet.

VEV Vacuum expectation value.
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Chapter 1

Introduction

1.1 Overview

In our quest to understand the universe, and how it came into existence, cosmology

has proven to be a powerful tool, enabling us to develop descriptions of its very early

moments, to the formation of structure, and importantly, track its evolution to the

present day (and beyond). At the heart of cosmology is gravity. Indeed, despite it be-

ing significantly weaker than the other three fundamental forces: electromagnetism,

weak and strong nuclear forces1, on the scales that are dealt with in cosmology, it

is often the most relevant interaction. That being said, a thorough understanding

of non-gravitational physics is vital in order to describe the complex interactions

that occur, particularly in the early universe, giving rise to the rich structure and

abundances of elements that we observe in the present day universe. Thus, if we are

to attain a complete description of the universe, a thorough and consistent under-

standing of both gravity and the three non-gravitational forces is needed to fully

understand its history, how it came into being and how it has evolved into the com-

plex cosmos that we observe today. As such, in our efforts to attain these goals, it

is of great importance to have robust theories describing the gravitational and non-

gravitational interactions, and furthermore, a complementary cosmological model to

specify the evolution and composition of the universe.

Since the non-gravitational physics of our universe is inherently quantum, it seems

reasonable to expect that the gravitational sector might also be quantum in nature.

This being the case, one ultimately seeks to determine a complete quantum theory

of both gravity, and the non-gravitational forces. At present, the standard model of

particle physics provides us with an empirically well tested quantum theory for the

non-gravitational forces, however, a complete quantum description of gravity is yet

to be attained. Nonetheless, in many situations, it is possible to combine our classi-

1There is a hierarchy of ∼ O(1042) between electromagnetism and gravity. Similarly, there are
hierarchies of ∼ O(1024) and ∼ O(1038) between the weak and strong nuclear forces and gravity,
respectively.
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1.2. GR: A robust theory of gravity

cal understanding of gravity with our quantum description of electromagnetism, and

the weak and strong nuclear forces, to successfully further our knowledge of how the

universe “ticks”.

In this chapter, we briefly discuss the current best (classical) description of grav-

ity, general relativity, and how it can be interpreted in the context of effective field

theory as a low energy quantum description of a massless spin-2 particle. We shall

also touch upon its theoretical and empirical successes and failures. We then move

on, in §2 and §3, to summarise some important problems existing in cosmology, our

current understanding of both the early and late universe, and how these are related

to the interplay between contemporary descriptions of gravity and non-gravitational

physics. §4 is then dedicated to a detailed discussion, and derivation of a solution to

the CCP (introduced in §3). In §5 we move on to address the current state of affairs

in the theory of post-inflationary reheating in the universe, the non-perturbative as-

pects of it, and in particular, the less well understood details of how the particles

produced in this phase thermalise. §6 is then focused on a detailed derivation and

analysis of a toy model of reheating that aims to capture the effects of thermali-

sation from its onset, serving to highlight the need to include these contributions

throughout the full reheating process if one is to correctly estimate the reheating

temperature of the universe. Finally, in §7, we shall make some concluding remarks

on the topics discussed throughout this thesis, and in particular, the outcomes and

future research directions of the projects that we have reviewed.

1.2 GR: A robust theory of gravity

At present, the prevailing theory of gravity is general relativity; first formulated by

Einstein over 100 years ago to reconcile inconsistencies between Newtonian grav-

ity and special relativity [1].2 Einstein posited that gravitation is nothing but the

manifestation of the local curvature of spacetime sourced by the presence of mat-

ter, a statement that was based on the founding principle of GR: the principle of

equivalence. In fact, to be precise, it is the Einstein equivalence principle:

EEP: The outcome of any local non-gravitational experiment in a freely

falling laboratory is independent of the velocity of the laboratory and its

position in spacetime.

2In the following section we make use of Refs. [2] and [3], and we refer the reader to them for
further details.

2



1.2. GR: A robust theory of gravity

That is, all forms of matter and energy (by which we mean all massive and massless

particles, and all forms of non-gravitational energy) will undergo the same accelera-

tion, independently of their properties, when subject only to gravity. In particular,

the EEP implies that locally3 it is impossible, even in principle, by means of observ-

ing any non-gravitational physics, to distinguish between the effects of an arbitrary

gravitational field and those of a uniformly accelerating reference frame in Minkowksi

spacetime. Note, however, that the effects of a true gravitational field can never be

completely transformed away by a suitable choice of coordinates. Indeed, the ability

to negate the effects of gravity locally relies on the fact that, within infinitesimal

regions of spacetime, the gravitational field is (approximately) homogeneous. As we

extend such spacetime regions to finite sizes, there will generically be inhomogeneities

in the gravitational field. These lead to tidal forces which can be detected.

The fact that the local effects of a gravitational field are independent of the na-

ture of any given particle suggests that the effect of gravity is not related to the

properties of matter, but is an intrinsic feature of spacetime itself. Indeed, such ob-

servations suggest that one should view gravity as the manifestation of spacetime

curvature, the geometry of which should be described by a metric tensor gµν(x).

Furthermore, the local curvature of spacetime should be attributed to the presence

of matter (i.e. all forms of mass and energy source local spacetime curvature). Con-

sequently, in the absence of external forces, the trajectories of all species of particles

lie along the geodesics of gµν(x). The tidal forces that manifest over finite regions

within a gravitational field then result in relative accelerations between neighbouring

geodesics (so-called geodesic deviation).

Moreover, the EEP implies that within a sufficiently small neighbourhood of each

spacetime point, the (non-gravitational) laws of physics reduce to those of special

relativity. With this is mind one can uniquely recast their corresponding mathemat-

ical descriptions into tensorial form4 such that they are generally covariant, i.e. they

are valid in all frames of reference in the presence of an arbitrary gravitational field.

The EEP is often further extended to the so-called strong equivalence principle to

include local gravitational experiments, taking into account bodies whose gravita-

tional self-energy contribute significantly to their overall mass. Thus, one posits that

3By local we mean that we are in a small enough volume of spacetime such that the tidal effects
of gravitation can be neglected.

4The is the so-called principle of general covariance - the requirement that the form of physical
laws should be independent of any reference frame (i.e. they should be coordinate independent).

3



1.2. GR: A robust theory of gravity

it is impossible to locally distinguish between gravitation and uniform acceleration

through observing any kind of local experiment, both non-gravitational and gravita-

tional.

The supposition that gravity is a geometric phenomenon suggests that a theory

describing it should be formulated within the framework of differential geometry.

Indeed, if spacetime is represented by a pseudo-Riemannian manifold M equipped

with a metric gµν , then within infinitesimally small regions its geometry is that of

Minkowski spacetime, however for finite regions its curvature is apparent. This con-

forms with the EEP: that in the presence of a gravitational field, locally (i.e. infinites-

imal regions) the geometry is Minkowksi, however, over finite regions tidal forces arise

as a consequence of the non-vanishing gravitational field. GR formalises the notion

that gravity is the manifestation of spacetime geometry through the construction of

a gravitational action from curvature invariants. This is the Einstein-Hilbert action,

which is given by

S
EH

[gµν ] =

∫
M

d4x
√
−g
[
M2

Pl

2
R− Λbare

]
, (1.2.1)

where g = det(gµν) is the determinant of the metric tensor, R is the Ricci scalar,

and Λbare is a bare cosmological constant. Note that the theory has two inherent

dimensionful scales built into it by the presence of the (reduced) Planck mass MPl

and a cosmological constant term. We include matter in the theory by a universal

minimal coupling (this universality is dictated by the EEP) to the metric tensor5,

such that the total action is a linear combination of gravitational action and the

action describing the field theory sector,

S[gµν ,Ψ] = S
EH

[gµν ] + SM[gµν ,Ψ] , (1.2.2)

where Ψ generically denotes the matter fields. The equations of motion for this theory

are found by varying the action with respect to gµν (where gµν satisfies Dirichlet

boundary conditions, i.e. it is fixed on the spacetime boundary6), and due to the

5By minimal coupling we mean that one introduces a covariant integration measure
d4x→ d4x

√
−g to the matter action and promotes partial derivatives to covariant derivatives

∂µ → ∇µ.
6Technically one should include a Gibbons-Hawking term [4] in eq. (1.2.2) to account for space-

time manifolds with boundaries (see e.g. ref. [5] for a detailed review). Here we shall implicitly
assume its presence in the derivation of the EOM.

4



1.2. GR: A robust theory of gravity

symmetry of the metric tensor, correspond to 10 partial differential equations

δS

δgµν
= M2

PlGµν + gµνΛbare − Tµν = 0

⇒ Gµν =
1

M2
Pl

[
Tµν − gµνΛbare

]
, (1.2.3)

where Gµν is the Einstein tensor, and Tµν is the energy-momentum tensor of the field

theory sector and is defined as

Tµν = − 2√
−g

δSM

δgµν
. (1.2.4)

These are generally referred to as the Einstein field equations. We see then that

the metric is a dynamical quantity, i.e. it is a solution to the EFEs [eq. (1.2.3)]

whose form is dictated by the local matter configuration (described by Tµν). We

see then, that the geometry and the behaviour of the matter fields are dynamically

determined - the theory is free of prior geometry, i.e background independent (this is

true up to the presence of the predetermined cosmological constant). Consequently,

it is found that given the same initial data, one can have more than one solution

to the EFEs, eq. (1.2.3) (analogous to the gauge redundancy of quantum electro-

dynamics in which two potentials Aµ and A′µ, related by a gauge transformation

Aµ → Aµ + ∂µα(x), can be obtained from Maxwell’s equations given the same ini-

tial data). Indeed, this is the case if two given metrics g̃µν and gµν are related by

a diffeomorphism φ : M → M, i.e. g̃µν = (φ∗g)µν . For the theory to be determin-

istic it must be that these two solutions are physically equivalent.7 Thus, a given

gravitational field cannot be represented by a single mathematical field, but instead

an equivalence class of diffeomorphic fields. This necessitates that the full action

[eq. (1.2.2)] is diffeomorphism invariant.8 In fact, when considered in isolation, the

EH action [eq. (1.2.1)] is diffeomorphism invariant, and this implies that Gµν satisfies

the (contracted) Bianchi identity ∇µG
µν = 0.9 As a consequence, this requires that

the matter action should simultaneously be diffeomorphism invariant such that the

full action [eq. (1.2.2)] is. This condition enforces the on-shell covariant conservation

of Tµν , i.e. ∇µT
µν = 0. The fact that GR is diffeomorphism invariant is captured

7Since we have no way of distinguishing between them, we would otherwise lose predictability
as we would not be able to uniquely determine the gravitational field given any initial data.

8See e.g. ref. [6] for a detailed analysis of Einstein’s so-called “hole” argument.
9Note that this is an off-shell statement, i.e. it is true for any metric, regardless of whether it

is a solution to the EFEs or not.

5



1.3. Experimental & theoretical successes of GR

in the field equations [eq. (1.2.3)]. Indeed, the Bianchi identity reveals that 4 of the

10 PDEs are in fact constraint equations (they cannot propagate the initial data).

Moreover, the freedom to choose our spacetime coordinates introduces a fourfold

degeneracy (corresponding to the gauge freedom of GR). Taking these details into

account, the theory actually propagates only two physical degrees of freedom. These

are the polarisations of the graviton.

At this point we observe that Λbare has been included in the EH action [eq. (1.2.1)]

simply because it is not prevented by diffeomorphism invariance and hence there

is no a priori reason to exclude it. However, as we shall discuss in detail in §2,

there are contributions from the vacuum energies ρvac of the matter fields that man-

ifest themselves as a cosmological constant. Accordingly, since gravity has no way of

distinguishing between the two contributions, it is actually the net cosmological con-

stant Λ = Λbare +ρvac that sources curvature in Einstein’s field equations [eq. (1.2.3)].

1.3 Experimental & theoretical successes of GR

Phenomenologically, GR has had many successes, indeed, some examples of experi-

mental confirmation of its predictions include the perihelion precession of Mercury,

the bending of light in a gravitational field (due to the local warping of spacetime

by massive bodies) and gravitational redshifting (a consequence of the equivalence

principle in the case where light is propagating out of a gravitational potential well).

So far, GR has passed every experimental test, on Earth and in the solar system,

highlighting its accomplishment as a theory of gravity, see for example refs. [7–10].

The pinnacle of this success has to be the experimental discovery of gravitational

waves, the final prediction of GR to be experimentally verified. First observed from

a binary black hole merger in 2016 [11], followed by a flurry of further detections

[12–15], and most recently from a binary neutron star merger [16]. These detec-

tions have given further credence to predictive power of GR, and furthermore, the

most recent detection has enabled even more detailed analyses due to data being

collected from both gravitational and electromagnetic (EM) waves generated by the

event. This data has further supported the validity of GR, with stringent bounds

being placed on the difference between the speed of gravitational and EM waves

(−3×10−15 ≤ cg−c
c
≤ 5×10−16, where cg is the gravitational wave speed and c is the

speed of light), as well as violations of Lorentz invariance and the equivalence prin-

6



1.3. Experimental & theoretical successes of GR

ciple (by constraining the Shapiro delay between gravitational and EM radiation10)

[16].

Empirical successes aside, GR is also theoretically extremely robust. Indeed, from

minimal assumptions it can be derived as the unique geometrical theory of gravity,

starting from either a geometrical or a field theoretic approach. In the framework of

differential geometry, it was first proven by Lovelock that if one wishes to construct a

theory of gravity from an action principle, in four dimensional (pseudo-) Riemannian

space, from the spacetime metric gµν(x) and its derivatives alone, then the unique

EOM following from this action are Einstein’s (vacuum) equations with the addi-

tion of a bare cosmological constant [eq. (1.2.3)] [18, 19]. We note here that while

Lovelock’s theorem identifies Einstein’s equations as the unique second-order field

equations for a metric theory of gravity in 4D (pseudo-) Riemannian space, it does

not preclude the presence of higher-order curvature terms in the gravitational action,

i.e. the EH action [eq. (1.2.1)] is not the unique action constructed from gµν(x) that

leads to these equations. Indeed, in four dimensions (or less), the most general action

that one can construct from gµν(x) is given by11

S[gµν ] =

∫
d4x
√
−g
[
αR−2Λ+βεµνρσRαβ

µνRαβρσ+γ
(
R2−4RµνRνµ+Rµν

ρσR
ρσ
µν

)]
,

(1.3.1)

where α, Λ, β and γ are constants, Rµ
ανβ is the Riemann curvature tensor, Rµν the

Ricci curvature tensor, and εµνρσ the Levi-Civita tensor density. It can be shown the

third and fourth terms in this expression do not contribute to the EOM, and so we

recover Einstein’s equations.12

In the context of field theory, one can arrive uniquely at GR as the low-energy limit

of a local Lorentz invariant theory for interacting massless spin-2 particles [21–26].

In brief, one starts by considering a theory for a local massless spin-2 field operator

hµν(x) whose quanta we shall refer to as gravitons. We then construct a Lagrangian

for this theory by writing down all possible terms, quadratic in derivatives of hµν(x),

that are compatible with Lorentz invariance and locality, of which the general form

10The Shapiro delay is a gravitational phenomenon, predicted in GR, in which the time taken
for a photon to propagate past a massive body is longer than it would be in its absence, due to
gravitational spacetime dilation increasing the path length [17].

11Note, however, that the RαβµνRαβρσ term is forbidden if one assumes parity, due to the presence
of the Levi-Civita tensor εµνρσ.

12For further discussion of Lovelock’s theorem c.f. this review [20]
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is

L = α∂λh
µν∂λhµν + β∂µh

µν∂λhνλ + γ∂νh∂µh
µν + σ∂µh∂

µh , (1.3.2)

where α, β, γ and σ are constants and h := ηµνhµν is the trace of hµν . By insisting

upon both Lorentz and gauge invariance of the theory, we require that eq. (1.3.2)

must be invariant under Lorentz transformations xµ → Λµ
νx

ν , and simultaneously

invariant (up to boundary terms) under the following transformation of hµν

hµν(x)→ hµν(x) + ∂µξν(x) + ∂νξµ(x) , (1.3.3)

where ξµ(x) is a generic vector field. In fact, eq. (1.3.3) corresponds exactly to a

gauge transformation of a massless spin-2 field. We can exploit this gauge freedom

to determine the constants in eq. (1.3.2); indeed, by replacing of occurrences of hµν

in eq. (1.3.2) with the transformation given by eq. (1.3.3), and integrating by parts

(neglecting boundary terms), we obtain constraints on α, β, γ and σ such that

α = −1

2
β , γ = −β , σ =

1

2
β . (1.3.4)

Therefore, by choosing β = −1
2

we find that eq. (1.3.2) takes the form,

L =
1

4
∂λh

µν∂λhµν −
1

2
∂µh

µν∂λhνλ +
1

2
∂νh∂µh

µν − 1

4
∂µh∂

µh . (1.3.5)

One can then determine the field equations for this spin-2 field in the usual manner,

from the Euler-Lagrange equations,

�hµν − ηµν�h− 2∂λ∂(µhν)λ + ηµν∂λ∂σh
λσ + ∂µ∂νh = 0 , (1.3.6)

where � is the d’Alembert operator. Remarkably, these are exactly the linearised

Einstein field equations in a Minkowski vacuum. To see this, consider a small per-

turbation of the metric gµν around a Minkowski background ηµν ,

gµν = ηµν + hµν , (1.3.7)

where hµν is a symmetric rank (0, 2) tensor that we require to be small, in the

sense that, in any given coordinate system, its components are infinitesimally small,

|hµν | � 1. One can find the inverse metric from eq. (1.3.7) and the fact that δg−1 =

8



1.3. Experimental & theoretical successes of GR

g−1δgg−1 (where δg = h). Indeed, one finds that,

gµν = ηµν − hµν + hµλhνλ +O(h3) . (1.3.8)

Furthermore, the determinant of the metric g :=
√
|gµν | can be expanded in powers

of hµν to give

g = −
(
1 + h+O(h2)

)
(1.3.9)

leading to
√
−g = 1 +

1

2
h+O(h2) . (1.3.10)

Since the perturbation is small, we can consider only the leading order contributions

to the Einstein-Hilbert action, i.e. up to quadratic-order in the Lagrangian, such that

we obtain the linear approximation of Einstein’s field equations. Equipped with this

information one can show that the quadratic-order Einstein-Hilbert action δ(2)SEH

has the following form,

δ(2)SEH = −M
2
Pl

2

∫
d4x
[1

2
∂λh

µν∂λhµν − ∂µhµν∂λhνλ + ∂νh∂µh
µν − 1

2
∂µh∂

µh
]
,

(1.3.11)

we see then that the Lagrangian in eq. (1.3.11) has the exact same form as eq. (1.3.5),

up to a constant of proportionality, and thus clearly leads to the same equations of

motion, the linearised Einstein equations in vacuo. Furthermore, eq. (1.3.11) is in-

variant under linearised diffeomorphisms, xµ → xµ − ξµ (where ξµ is the generator

of the diffeomorphism) in which the perturbation to the metric hµν transforms as in

eq. (1.3.3). In this sense we can view hµν either from a geometric standpoint, as an

infinitesimal perturbation to the Minkowksi metric, or from a field theoretic stance,

in which hµν is a massless spin-2 quantum field, propagating on a Minkowski back-

ground, whose quanta are identified as gravitons. Moreover, if we were to further

couple the graviton field to a set of matter fields, then the only way to achieve this

in a Lorentz invariant manner is if all the coupling constants are equal, i.e. Lorentz

invariance implies the equivalence principle [27, 28]. Although it would certainly be

an overstatement to say that “all (theoretical) roads lead to GR”, it can be seen that

GR can be derived almost uniquely from two completely different starting points, a

result that, at the very least shows that GR is theoretically well founded.
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1.4 Where GR fails

Despite its many successes, GR is not without its failings and ultimately, it cannot

be the full UV completed theory of gravity. As we have shown, GR can be inter-

preted as low energy description of a QFT for a massless spin-2 field and in fact, it

has been shown to be renormalisable at the one-loop level [29]. Unfortunately, this is

a fluke, and in continuing this perturbative approach to quantum gravity, one finds

that it becomes non-renormalisable at two-loops [30, 31]. The problem is exacerbated

further when matter is introduced, in fact, GR coupled to matter is not even renor-

malisable at one-loop [29]. Therefore, GR is at best an effective description of the

ultimate quantum theory of gravity.13 As an effective field theory, the cut-off scale of

GR is at the Planck mass, MPl. At energies well below this scale, E � MPl, GR is

a well-defined QFT and is extremely predictive. However, when E ∼ MPl the EFT

breaks down since the theory becomes strongly coupled, and hence non-perturbative

- higher-order quantum effects of gravity can no longer be neglected. This breakdown

of perturbation theory signals the need for a full UV completion of GR. As alluded

to earlier, this issue is related to the non-renormalisablity of GR, i.e. it is not possible

to cancel the UV divergences (that necessarily appear as we consider higher-order

loop effects) with a finite number of counter-terms, a consequence of the fact that

GR has a coupling constant of negative mass dimension, [1/MPl] = −1.

Indeed, this can readily be seen by power-counting. From eq. (1.3.5) we see that

each term in the Lagrangian for the graviton contains only kinetic terms (due to it

being massless), and as such, in momentum space the graviton propagator behaves

as ∼ 1
k2 , whilst each vertex contributes a factor of k2, furthermore, each loop integral

supplies a factor of k4. Accordingly, for V vertices, P internal lines and L loops,

the superficial degree of divergence, D, of a Feynman diagram in GR is given by

D = 4L + 2V − 2P . From the topological relation, L = 1 − V + P , it follows that

D = 2L+2, where L is the number of loops in a given diagram [33, 34]. We therefore

see that the degree of divergence increases as the number of loops increases, rendering

GR non-renormalisable. Various attempts have been made to find a UV completion of

GR, the most prominent being loop quantum gravity [35] and string theory [36, 37].14

13We refer the reader to these notes [32] for an detailed introduction to GR as an EFT.
14One might argue that string theory is currently the more promising of the two, given that it

contains GR as a low energy limit, and is furthermore a quantum theory of not just gravity, but all
the fundamental forces (see, e.g., [38] for further details). Loop quantum gravity, on the other hand,
is purely a quantum theory of gravity, and is unable (at present) to recover GR in the semi-classical
limit (see, e.g. [39] for a review).
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1.4. Where GR fails

Quantum issues aside, GR faces classical problems too. Astrophysical data has shown

that rotation curves of galaxies are not in agreement with what one predicts from

GR given the distribution of baryonic matter within them. Indeed, one expects the

dominant contribution to the gravitational field to be from the baryonic matter dis-

tribution, which is predominantly at the core of the galaxy, M(r) ∼ M = const.

Using the Newtonian limit of GR and assuming circular orbits for simplicity, this

leads to the following velocity profile of the outer stars,

GM

r2
=

v2

r
=⇒ v(r) ∝ 1√

r
, (1.4.1)

however, what is actually observed is that the velocity profile flattens out as one

moves further from the galatic core and is roughly constant, v ≈ const. at large

radii [40, 41]. One can account for this flattening by assuming that the matter dis-

tribution within the galaxy grows linearly with distance, i.e. M(r) ∝ r, however,

as we have stated, the observable matter is largely found near the galatic core. As

such, GR coupled to ordinary baryonic matter cannot account for this observation.

To resolve this issue, it has been postulated that an exotic, non-baryonic form of

matter, generically referred to as dark matter exists, interacting weakly with the SM

fields, thus explaining why it is not directly observable in non-gravitational physics.

In the present day, there is a significant amount of astrophysical data that points

towards the necessity of dark matter; sophisticated analyses using x-ray emissions,

gravitational lensing and mass modelling from galaxy clusters provide overwhelming

evidence for dark matter [42, 43].

A further issue that arises is the fact that observational evidence indicates that

the universe is currently undergoing a late-time period of acceleration. Naively, one

would expect the universe to be decelerating due to the presence of baryonic and

dark matter, however, the experimental data suggests otherwise. Indeed, this was

first noticed from studying Type 1A supernovae which were observed to be dimmer

than would be expected assuming that the universe is presently dominated by non-

relativistic baryonic matter [44, 45]. Moreover, earlier observations suggested that

the net density parameter ΩM (a measure of the energy density of the universe) for

baryonic and dark matter was ΩM ∼ 0.1 − 0.3 [46, 47]. Now, assuming a period of

cosmological inflation [48], it was expected that ΩM ∼ 1, and so there was a dise-

crepancy of ∼ 0.7. One can explain both of these observations by postulating that,
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alongside the energy provided by baryonic and dark matter, there exists another

form of energy, generically referred to as dark energy.

The simplest candidate for dark energy is a cosmological constant Λ quantifying

the intrinsic vacuum energy of spacetime. As it is a constant energy density asso-

ciated with the vacuum it is unaffected by the cosmic expansion and is therefore

able to drive a late-time accelerated expansion. Since the initial discovery of the ac-

celerated expansion of the universe and the measurements of Ω, further compelling

evidence has been provided by experimental data. For example, the WMAP and

Planck experiments of the Cosmic Microwave Background have made precise mea-

surements suggesting that baryonic matter and dark matter comprise ∼ 31% (with

the majority, ∼ 27%, coming from dark matter) of the total energy density of the

universe, which infers that dark energy must account for the remaining ∼ 68%. They

have furthermore placed bounds on the density parameter and the equation of state

for dark energy, indicating that Ω = ΩM + ΩDE ≈ 1, and w ≈ −1, implying that

dark energy behaves like a cosmological constant [49–51].

Now, GR is perfectly capable of providing an explanation for this. The presence of

a cosmological constant term, Λ = Λbare + ρvac, in the full action for GR [eq. (1.2.2)]

fulfills the essential requirements for a dark energy candidate - it can account for the

remaining energy density required by observations, and furthermore, it is a constant

energy density. Indeed, the fact that Λ does not redshift, as all other forms of energy

density do, means that it will eventually completely dominate the total energy den-

sity, causing the universe to evolve into a period of exponential expansion, a so-called

de Sitter phase [52]. The cosmological constant then determines the magnitude of

the spacetime curvature during this phase, and current observational data constrains

its value to Λobs ∼ (meV)4 [51].

The problem arises when one takes into account that the matter sector is described

in the framework of quantum field theory, which implies that each particle species

has an associated vacuum energy density. As a consequence of the equivalence prin-

ciple, vacuum energy should couple to gravity identically to all other forms of matter

and energy, i.e. it should gravitate. The issue here is that a priori the vacuum energy

densities from each of the massive particle species should contribute to the cosmo-

logical constant, and in the context of the SM, these energy densities are extremely

sensitive to high energy physics. As such the natural value of the cosmological con-
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stant is many orders of magnitude larger than its observed value, even if we only

include the contribution from the lightest SM particle, the electron15. Indeed, it is

found that the cosmological horizon would be less than the distance between the

Earth and the Moon, dH . 106km [53], whereas current observations indicate that

dH ∼ H−1
0 ∼ 1023km [51] (where H0 is the current value of the Hubble parameter).

One can naively reconcile this issue by introducing the bare cosmological constant

Λbare, itself divergent, such that it can absorb the divergences present in the vacuum

energy density ρvac. In doing so, what actually gravitates is then the finite combina-

tion of these two quantities, i.e. Λ = Λbare + ρvac. The problem is that this presents

us with a serious amount of fine-tuning - there must be cancelling to an accuracy of

(at least) 1 part in 1060 between the finite parts of Λbare and ρvac in order to match

the observational bound of Λ . (meV)4. Things get much worse, however, once one

considers radiative corrections to ρvac. It is found that, as one includes higher-order

loop corrections, they are not significantly suppressed relative to the lower order

contributions, and in fact, one is forced to re-tune Λbare at each level in perturbation

theory to a similar degree of accuracy as the lower order contributions. As such, the

vacuum energy density is radiatively unstable, implying that it is very sensitive to

the details of UV physics of which we are ignorant. This is the crux of what is known

as the cosmological constant problem, which we shall review in detail in §3.

We see then, that a number of phenomenological issues provide motivation to con-

sider modifications to GR. In fact, the problem of dark matter prompted the con-

struction of modified models such as MOND [54], and its relativistic generalisation,

TeVeS [55], which attempt to explain dark matter by modifying gravity rather than

introducing new forms of exotic matter. The issue of dark energy has also generated

a plethora of modified theories of gravity, many of which do not attempt to account

for the effects of dark energy, but to “simply” solve the CCP, for example the “fat”

graviton [56] and SLED [57]. Since the CCP presents such a big problem, by itself

it is very much a warranted motivation for modifying GR. One particular approach

that has proven popular, is to accept that the cosmological constant is radiatively

unstable, and large, but to address this by preventing it from sourcing curvature.

This idea has been explored recently in the sequester model [58], in which a global

modification is made such that the gravitational equations of GR are only modi-

fied in the infinite wavelength limit. This has the advantage of not requiring any

15Neglecting the neutrino masses.
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screening mechanism to pass local solar system tests, since the theory reduces to

GR locally (in fact, it was further shown that the theory can be constructed such

that it is manifestly local, with the global modifications corresponding to conserved

quantities [59]). Another recent example that adopts this de-gravitation approach is

the Fab-Four [60] and its disformal generalisation [61]; here one introduces a homoge-

neous scalar field that self-adjusts (or self-tunes) dynamically to absorb the vacuum

energy in such a way that it does not source curvature. We will discuss these latter

two approaches in detail in §4. For further details on modifed theories of gravity, we

refer the reader to the following reviews [62, 63].
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Chapter 2

Problems in early universe

cosmology

2.1 Inflating the early universe

2.1.1 The hot big-bang & the need for inflation

The paradigm shift instigated by GR lead to new ideas about the evolution of the

universe. In particular, it was first noted by Georges Lemâıtre that a solution to Ein-

stein’s equations, describing an expanding universe, could be traced back in time to

a single point [64]. The subsequent experimental discovery (by Edwin Hubble, [65])

that the universe is expanding prompted the development of a phenomologically

successful cosmological model for the observable universe, the so-called hot big-bang

model (we refer the reader to ref. [66] for a review of the HBB model). Here we shall

recapitulate the successes of the HBB model, as well as give a brief overview of its

cosmology. In the following discussion we shall make use of the Refs. [66], [67] and

[68], and refer the reader to them for further details.

The standard HBB model has been successful at providing a theoretical explanantion

for a number of important experimental observations [69], most notably:

1. it predicts the existence and spectrum of the cosmic microwave background;

2. it provides a mechanism whereby the primordial abundances of light elements

in the universe are produced (nucleosynthesis);

3. it also predicts the expansion of the universe, and in addition, provides a frame-

work in which one can describe the gravitational collapse of matter to form

galaxies and other large-scale structures observed in the present-day universe.

The HBB model is based on the cosmological principle which states that, on scales

& O(100Mpc), the matter distribution in the universe should be homogeneous and
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isotropic.1 Qualitatively, this translates to the notion that there are no preferred lo-

cations, and no preferred directions in the universe. This provides us with a criterion

for the metric describing such a spacetime (at least on the scales at which the prin-

ciple is valid). Indeed, the coarse-grained spacetime is described by the Friedmann-

Robertson-Walker metric,

ds2 = −dt2 + a2(t)γij(x)dxidxj , (2.1.1)

where we work in a spherical-polar comoving coordinate system2, such that

xµ = (t, r, θ, φ). Spacetime is thus foliated into a set of homogeneous and isotropic

spatial (space-like) hypersurfaces Σt. The foliation is in terms of the time coordinate

t, the so-called cosmic time, which is the time (since the big-bang) as measured by

an observer for which the local matter distribution is homogeneous and isotropic at

each time-slice t. The metric on each spacelike hypersurface Σt is given by,

γij(x) = δ1
iδ

1
j

1

1− kr2
+ δ2

iδ
2
j r

2 + δ3
iδ

3
j r

2 sin2(θ) , (2.1.2)

where k is the curvature constant, parameterising the constant spatial curvature of

each hyper-surface, which is either flat (k = 0), positively (k = +1), or negatively

(k = −1) curved. The function a(t) in eq. (2.1.1) is a dimensionful scale factor,

parameterising the expansion of the universe as it evolves in time. Qualitatively, it

characterises the relative size of spacelike hypersurfaces Σt at different times.

The cosmological principle implies that the background energy-momentum tensor

is that of a perfect fluid, i.e. Tµν = (ρ+ p)uµuν + p gµν , where ρ(t) and p(t) are the

energy density and pressure of the fluid, respectively. Given this, we obtain from Ein-

stein’s equations (1.2.3), the so-called Friedmann equations describing the evolution

1This is evidenced by astronomical and cosmological data which suggest that the distribution
of galaxy clusters is highly homogeneous on scales of & O(100Mpc) [70]. The isotropy of the CMB
to high levels of precision [51] futhermore backs up the assumption that the universe is isotropic
on these scales.

2By co-moving, we mean that a particle intially at rest within this coordinate system will remain
at rest, i.e. it moves along with the Hubble flow (motion solely due to the expansion of the universe).
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of an FRW universe,

H2 =
1

3M2
Pl

ρ− k

a2
, (2.1.3a)

Ḣ +H2 = − 1

6M2
Pl

(ρ+ 3p) , (2.1.3b)

where

H(t) =
ȧ(t)

a(t)
(2.1.4)

is the Hubble parameter. Note that, for brevity, we have subsumed the contibution

from the cosmological constant ρΛ into the total energy density ρ(t) on the right-

hand side of eq. (2.1.3a).

Observe from eq. (2.1.3a), that if the spatial geometry is flat (i.e. k = 0), then

one obtains an expression for the critical energy density,

ρc(t) = 3M2
PlH

2 . (2.1.5)

One can then measure the densities of matter and energy relative to the critical

density in terms of the density parameter

Ω(t) :=
ρ(t)

ρc(t)
. (2.1.6)

This is a useful quantity, as it can be used to determine the spatial geometry of the

universe. Indeed, the value of Ω(t) determines the value of k, i.e. whether the universe

is flat, open, or closed. Moreover, the density and pressure will generically be time

dependent, such that the value of Ω, and thus the spacetime geometry changes over

time. The evolution of the energy density ρ(t) (and hence of Ω(t)) can be determined

from Eqs. (2.1.3a) and (2.1.3b). Indeed, they imply the following continuity equation

ρ̇+ 3H(ρ+ p) = 0 (2.1.7)

To fully close this equation one typically assumes that the density and pressure are

related via an equation of state: p = wρ, where w is the so-called equation of state
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parameter. Given this, and noting that dlna = Hdt, one can recast eq. (2.1.7) as

dlnρ

dlna
= −3(1 + w) . (2.1.8)

For fixed w, one can integrate this equation to get

ρ ∝ a−3(1+w) . (2.1.9)

It is clear from eq. (2.1.9) how different cosmological fluids are diluted by the cos-

mological expansion. Indeed, for a matter dominated universe w = 0 and so we see

that ρ ∝ a−3. For radiation domination w = 1
3

and so ρ ∝ a−4, and for a universe

dominated by a cosmological constant w = −1, such that ρ ∝ a0. Moreover, by

inserting eq. (2.1.9) into eq. (2.1.3a) (in the case of a flat universe, k = 0) we then

obtain the time evolution of the scale factor:

a(t) ∝
{
t2/(3(1+w)) w 6= −1;

eHt w = −1.
(2.1.10)

From this, we obtain the standard results that a(t) ∝ t2/3, a(t) ∝ t1/2 and a(t) ∝ eHt,

for the scale factor of a flat universe dominated by matter (w = 0), radiation

(w = 1
3
) and a cosmological constant (w = −1), respectively. Moreover, we see

that in the cases of matter or radiation domination, the Hubble parameter scales

as H ∼ t−1. For reference, the present measured value of the Hubble parameter is

H0 = H(t0) ≈ 67.6 kms−1Mpc−1 ∼ 10−33 eV [51].3

Before concluding our discussion on the HBB cosmology, we should emphasise the

importance of the Hubble parameter H(t) [eq. (2.1.4)] as a physical observable.

Specifically, it describes the expansion rate of an FRW universe, thus setting its char-

acteristic time and distance scales. One can see this by noting that H(t) has units

of inverse time, and as such one can construct associated time and length scales: the

Hubble time tH = H−1 and the Hubble radius dH = H−1 (in units where c = 1).

Accordingly, the time and distance scales of an FRW spacetime are characterised by

the Hubble time tH and radius dH , respectively. By this we mean that tH sets the

3Note that this is the value for H0 as determined by the data from the Planck collaboration. It
should be noted that there is currently a tension between the data sets of different experiments using
different methods to measure the value of H0 (see, e.g. refs. [71–73]). For the present discussion
we shall adopt the value determined by the Planck data, and refer the reader to, e.g., ref. [74] for
further details on the subject.
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time-scale over which the scale factor changes appreciably (a(t) roughly doubles over

the course of one Hubble time). The Hubble radius dH then sets (approximately) the

distance that light can propagate over the course of one Hubble time tH , and thus

the length-scale over which causal interactions can occur within a time-scale of order

tH .4 Given this, one can define the comoving particle (or cosmological) horizon as

the maximum comoving distance rp(τ) that a light ray can travel between the initial

big-bang singularity (t = 0) and some later time t:

rp(τ) = τ(t)− τ(0) =

∫ t

0

dt′

a(t′)
=

∫ a

0

da

a2H
=

∫ a

0

dlna
1

aH
. (2.1.11)

where τ is the conformal time (defined via the relation dτ = dt
a(t)

). The physical size

of the particle (or cosmological) horizon is then given by dp(t) = a(t)rp. Recall that

in the framework of the HBB model, the ‘origin of the universe’ was at some finite

time in the past, such that any time in its past the particle horizon was finite. An

important consequence is that this limits the region of spacetime that could have

been in causal contact.

We note here that one should be careful to distinguish between the comoving horizon

rp(τ) and the comoving Hubble radius rH = a−1dH = (aH)−1. Indeed, if particles are

separated by a comoving distances greater than rp(τ), then they never could have

been in causal contact. However, if they are separated by distances greater than rH ,

then they are not currently in causal contact (i.e. points that are separated by more

than one Hubble radius have not been in causal contact for the last Hubble time

or so). Consequently, it is possible for rp(τ) to be much larger than rH now, such

that they cannot communicate in the present, but were in causal contact at much

earlier times. This observation will be employed in our discussion of the inflationary

paradigm in §2.1.2.

Having given a brief overview of the cosmology of the HBB model and highlighted

its main successes, we should note that it is far from a complete model of the uni-

verse. At the very least, this is due to the fact that its description of the universe is

limited to those epochs in which the temperature of the universe is sufficiently low

for experimentally well understood physical processes to become well established

4Note that the Hubble time tH and radius dH are strictly local quantities, by which we mean
that they depend on the instantaneous expansion rate at a given time t. This differs from the
particle horizon dp (cf. eq. (2.1.11)), whose value at a given time t depends on the entire expansion
history of the universe up to that point.
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2.1. Inflating the early universe

(T . O(TeV)) [66]. It is not able to account for the state of the universe at much

earlier times, when it was significantly hotter, and furthermore requires very finely

tuned intial conditions in order to proceed in the first place. Ultimately, a quantum

theory of gravity will be required in order to understand the earliest moments of the

universe in which the temperature of the universe is & O(MPl). Casting this issue

aside for the time being, the HBB model already encounters several glaring problems

when faced with observational data, and we shall briefly review them here.

We first observe that, by using eq. (2.1.6), we can recast eq. (2.1.3a) into the following

form

Ω− 1 =
k

(aH)2 , (2.1.12)

where Ω is the net density parameter, i.e. it is a sum of the matter, dark mat-

ter, radiation and dark energy density parameters. Now, from current observational

data, we know that |Ω− 1| . 0.005 [51], however, in the framework of the standard

HBB model, the comoving Hubble radius rH = (aH)−1 is increasing as the universe

evolves. As such, Ω = 1 is an unstable critical point, which means that in order for

|Ω− 1| to have its present observed value Ω must have been extremely close to unity

at much earlier times, e.g. at the grand unified (GUT) scale, |ΩGUT−1| . O(10−55).

This is an incredible amount of fine-tuning and leaves one questioning why nature

would have chosen parameters so precisely. This is the so-called Flatness Problem.

A further issue arises from the CMB data, which indicates that widely separated

patches of the observable universe are almost the same temperature ∆T ∼ O(10−7eV)

[51]. One could naively hope to explain this by positing that these regions have al-

ready interacted, attaining thermal equilibrium. However, this is not possible in the

HBB model. Specifically, for a universe dominated by a cosmological fluid with equa-

tion of state w = p
ρ
, one has that (for fixed w)

(aH)−1 ∝ a
1
2

(1+3w) . (2.1.13)

Using this, one can then integrate eq. (2.1.11) to obtain the comoving horizon

rp(τ) = τ ∝ 2

1 + 3w
a

1
2

(1+3w) (2.1.14)

Note that for ordinary matter sources (i.e. those satisfying the strong energy condi-

tion ρ+3p > 0⇒ 1+3w > 0), the initial big-bang singularity is at τ
intitial

= τ(0) = 0,
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2.1. Inflating the early universe

i.e. τ
intitial

∝ a(1+3w)/2
intitial

= 0, and consequently, the comoving horizon rp ∝ a
1
2

(1+3w) is

finite. Importantly, we see that the region of the universe in causal contact increases

with time. Moreover, for a matter or radiation dominated FRW universe, the particle

horizon is of order the Hubble radius, i.e. dp ∼ dH .5 Given eq. (2.1.14), one can then

estimate the ratio between the comoving particle horizons at the time tdec ∼ 105 yrs

of the CMB decoupling and the present epoch t0 ∼ 1010 yrs (noting that the universe

is matter dominated in both epochs):

rp(tdec)

rp(t0)
≈
(
tdec

t0

)1/3

≈
(

105

1010

)1/3

≈ 10−2 . (2.1.15)

This means that comoving scales entering the horizon in the present would have been

far outside the horizon at the time of the CMB decoupling. In other words, there

would not have been enough time for these regions to interact before matter and

radiation decoupled and the CMB was formed. The question is then, why are these

a priori causally disconnected patches of spacetime almost the same temperature;

why is the observable universe so homogeneous? More worryingly, this reasoning

also prevents the creation of the observed fluctuations in the CMB. The HBB can

be constructed such that the observed fluctuations are intrinsic to the surface of last

scattering, however, these perturbations are much too large a scale for them to have

been created between the big bang and the matter-radiation decoupling time. Thus

the HBB model would require these perturbations to have been present in the initial

conditions of the universe, which seems to be a highly contrived solution. This is the

so-called Horizon Problem.

Finally, from the field theory sector, one also expects an abundance of ‘relics’, typ-

ically left over from the radiation epoch, e.g. magnetic monopoles, domain walls,

etc. If such relics existed in the early universe, then their energy densities would

have decreased as a matter component, thus they would have been diluted by cos-

mic expansion much more slowly than radiation (as ∼ a−3 opposed to ∼ a−4). As

such, these massive relics can easily come to dominate the dynamics of the universe

and would cause it to rapidly close in on itself (k → 1). Clearly this is not what is

observed, and furthermore, none of these relics have currently been experimentally

observed. However, the HBB model has no way of disposing of them without also

disturbing conventional matter in the universe. This is the so-called Monopole (or

Relic) Problem.

5As are the comoving particle horizon and Hubble radius, i.e. rp ∼ rH .
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2.1. Inflating the early universe

2.1.2 The inflationary paradigm

The conflicts between theory and data, present in the HBB model, motivate the need

for (an) additional theory that provide(s) a more complete description. To date, the

prevailing theory offering solutions (at least in part) to these problems is that of

inflation, initially proposed by Guth in 1980 [48], whose original motivation was to

explain the non-existence of magnetic monopoles, and further developed by Linde

[75] and Albrecht and Steinhardt [76]. The idea of inflation is to introduce a phase

of decreasing co-moving Hubble radius, (aH)−1, in the very early universe,

d

dt

[
(aH)−1

]
< 0 . (2.1.16)

Note that this implies that the universe was subject to an accelerated expansion

during this period, i.e. ä > 0. From Eqs. (2.1.12) and (2.1.16), we see that such an

accelerated expansion dynamically drives Ω (regardless of its initial value) to unity,

and thus the universe to spatial flatness. Accordingly, so long as the inflationary

period is sufficiently long, Ω will be forced arbitrarily close to one, such that, despite

its value being driven away from one for the remaining post-inflationary evolution of

the universe, its value will remain extremely near to unity up to the present. We see

then that inflation provides an elegant solution to the flatness problem (cf. fig. 2.1.1).

In fact, it is able to solve the horizon problem too. This is clear from the fact that

eq. (2.1.16) implies that the comoving Hubble radius shrinks during inflation. As we

discussed in §2.1.1, the Hubble radius provides a measure of how far particles can

travel within the universe over a cosmological time-scale, i.e. over one Hubble time.

If this is decreasing during inflation, then it implies that a much larger patch of the

universe was in causal contact before inflation occurred than in the present. Hence,

it would have been possible for a volume much larger than the current observable

universe to have thermalised before becoming causally disconnected due to inflation-

ary expansion.

Finally, inflation is also able to account for the lack of relic particles in the present

observable universe; the accelerated expansion during inflation rapidly dilutes any

initial particle densities such that they quickly become negligible. Of course, this

requires that the temperature at the end of inflation must be much less than T ∼
1014GeV, such that these relics are not produced during post-inflationary reheating.
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2.1. Inflating the early universe

Figure 2.1.1: In the pre-inflationary universe the (comoving) Hubble radius is large, enabling a
smooth patch to form via causal interactions. Inflation then precipitates a decrease in the (comoving)
Hubble radius by such an amount that even the post-inflationary expansion leaves the present-day
observable universe within this smoothed patch. [Source: Liddle, 1999 [66]].

To understand the dynamics of inflation in further detail, we first note that,

d

dt

[
(aH)−1

]
= −1

a
(1− ε) , (2.1.17)

where,

ε := − Ḣ

H2
. (2.1.18)

In order for the condition given by eq. (2.1.16) to be satisfied, we require that ε < 1,

i.e. the fractional change in the Hubble parameter per Hubble time must be small.

Hence we see that inflation corresponds to a period of quasi-de Sitter expansion,

since for ε = 0, we have H = const.⇒ a(t) = eHt. Of course, inflation should end in

a finite amount of time and so spacetime cannot be exactly de Sitter, however, it is a

good approximation when ε is small, but finite. In order to solve the problems faced

by the HBB model, we need inflation to last for a sufficiently long period of time,

typically measured in number of e-folds, N =
∫
Hdt. This corresponds to requiring
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2.1. Inflating the early universe

the universe to inflate for a time-period of N & 60 e-folds.6 To see this, we note that

in order for inflation to solve the horizon problem, the largest distance scales λ(t0)

observed at the present time t0 should be well within the horizon at the beginning of

inflation ti. Thus, upon noting that λ(t0) ∼ H−1(t0) (cf. §2.1.1), where H(t0) := H0

is the value of the Hubble parameter at t = t0, we require that7

λ(ti) ∼ H−1
0

(
af
a0

)(
ai
af

)
= H−1

0

(
af
a0

)
e−N < HI (2.1.19)

where af is the value of the scale factor at the end of inflation, HI is the value of the

Hubble parameter during the inflationary epoch (which is approximately constant),

and N = ln
(
af
ai

)
is the number of e-folds of inflation. Let us assume that the post-

inflationary transition to the radiation dominated epoch is effectively instantaneous

(i.e. the conversion of inflationary energy into ultra-relativistic particles is almost

instantaneous). The energy density of radiation is then ρr ∼ ρI ∼ T 4
f , where ρI is

the inflationary energy density (which is approximately constant during inflation),

Tf is the temperature at the end of inflation, and we have noted that the energy

density of a radiation dominated universe scales as T 4 ∼ a−4 (cf. §2.1.1). As such,

the bound on the number of e-folds is given by

N > ln

(
T0

H0

HI

Tf

)
= ln

(
T0

H0

)
+ ln

(
HI

Tf

)
∼ 60 + ln

(
HI

Tf

)
(2.1.20)

where T0 = 0.2348 meV is the current measured temperature of the CMB [51]. Note

that the precise value of the bound depends on the energy scale of inflation and

on the details of reheating after inflation [68]. From this analysis, we see therefore

that one requires ε to remain small for an appreciable number of Hubble times, a

condition that is parametrised by

η :=
ε̇

Hε
. (2.1.21)

Inflation then persists for |η| < 1, since the fractional change in ε per Hubble time

is small. For it to persist for a sufficiently long time, we require that |η| � 1.

Originally, inflation was conceived as occurring in a universe dominated by the con-

stant energy density of a false metastable vacuum. However, this suffered from a

6In the following calculation we have made use of ref. [77].
7Here, we use that the physical distance scale λ(t) is related to its corresponding comoving

distance λc (which is constant with respect to Hubble expansion) as λ(t) = a(t)λc.
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so-called graceful-exit problem, whereby classically, inflation never ends, and even

though quantum mechanically it can (through tunnelling from the false to the true

vacuum), in such a case the post-inflationary universe looks nothing like what we

observe. To overcome this issue, modern inflationary models typically follow the so-

called slow-roll paradigm, of which we shall elaborate on shortly.

A natural candidate for the driving force of inflation can be found though the in-

troduction of a new scalar (i.e. spin zero) degree of freedom8, minimally coupled

to gravity. From a theoretical standing, the existence of such light scalar degrees of

freedom in nature can be argued from the plethora of scalar fields present in string

theory (see e.g. [81] for a discussion on moduli in string theory). Furthermore, the

discovery of the Higgs boson [82] has provided the first experimental evidence for the

existence of fundamental spin-zero particles, and in fact, models in which the Higgs

boson plays the role of the inflaton have been constructed [83–85], and in doing so,

are able to describe inflation within the framework of the SM (i.e. without needing

to introduce additional degrees of freedom).9 In this case, our new scalar field is the

so-called inflaton, φ. The standard assumption in the inflationary paradigm is that,

at the start of inflation, the inflaton is displaced sufficiently far from the minimum

of its potential, such that its infrared modes have large occupancy numbers, and

accordingly, its leading order behaviour is classical. This enables one to treat the

inflaton in terms of a classical scalar field, the dynamics of which can be described

by the following action,

S[gµν , φ] = SEH[gµν ]+

∫
d4x
√
−g
[
−1

2
gµν∂µφ∂µφ− V (φ)

]
= SEH[gµν ]+Sφ[gµν , φ] ,

(2.1.22)

where SEH[gµν ] is the Einstein-Hilbert action [eq. (1.2.1)], and Sφ[gµν , φ] is the action

for the inflaton φ with canonical kinetic term and potential V (φ) describing the self-

interactions of φ. The corresponding field equation and energ-momentum tensor for

8One can use vector degrees of freedom to describe inflation (see e.g. [78–80]), however, this typ-
ically tends to be more complex to construct such that it agrees with observational data. Fermionic
fields do not tend to be used, as they are purely quantum in nature, and therefore cannot be used
in a classical description (one could consider a condensate formed of Cooper pairs, however, this
would simply be equivalent to using a complex scalar).

9We will briefly discuss the role of the Higgs boson as the inflaton at the end of this section.
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φ are given by

δSφ
δφ

=
1√
−g

∂µ
(√
−g∂µφ

)
− V ′(φ) = 0 , (2.1.23a)

T (φ)
µν = − 2√

−g
δSφ
δgµν

= ∂µφ∂νφ− gµν
(1

2
∂λφ∂λφ+ V (φ)

)
. (2.1.23b)

Now, for inflation to start it must be seeded by at least one small region of ho-

mogeneous spacetime (at least of order the pre-inflationary Hubble radius, ∼ H−1

[86–89]). Within this region the classical field configuration is homogeneous. More-

over, since spatial gradients scale as a−1∇ in an FRW spacetime, inflation will rapidly

smooth out any spatial variations. Consequently, throughout the majority of infla-

tion the inflaton field φ is well approximated by its homogeneous configuration (this

will certainly be true after a couple of e-folds of inflation). Furthermore, by its very

construction, inflation drives the observable universe towards an FRW background,

and as such we shall take the metric gµν to be the FRW solution [eq. (2.1.1)]. Con-

sequently, we can neglect any spatial gradients for φ such that its dynamics are

governed by the homogeneous Klein-Gordon equation,

φ̈+ 3Hφ̇+ V ′(φ) = 0 , (2.1.24)

with the FRW geometry determined by the Friedmann equation

H2 =
1

3M2
Pl

(
1

2
φ̇2 + V (φ)

)
. (2.1.25)

Moreover, the energy-momentum tensor [eq. (2.1.23b)] for φ is that of a perfect fluid

ρφ =
1

2
φ̇2 + V (φ) , (2.1.26a)

pφ =
1

2
φ̇2 − V (φ) . (2.1.26b)

The corresponding equation of state is then

wφ =
pφ
ρφ

=
1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

, (2.1.27)
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from which we see, that if the potential of φ dominates over its kinetic energy,
1
2
φ̇2 � V (φ), then wφ ≈ −1 such that φ has negative pressure, and furthermore can

drive an accelerated expansion, as required. Additionally, since pφ ≈ −ρ we see from

eq. (2.1.7), that in this case ρ̇φ ≈ 0⇒ ρφ ≈ V (φ) ≈ const., i.e. the energy density of

φ is not diluted by the expansion of the universe whilst the condition 1
2
φ̇2 � V (φ)

holds.

With this information we can then determine the form of the parameters ε and

η that set the conditions for the required inflation. From Eqs. (2.1.18) and (2.1.21),

these are given by,

ε =
1
2
φ̇2

M2
PlH

2
, η = 2

(
ε+

φ̈

Hφ̇

)
= 2(ε− δ) , (2.1.28)

where δ := − φ̈

Hφ̇
. For inflation to persist for long enough we require that {ε, |δ|} � 1,

such that both H and ε have only small fractional changes per e-fold, i.e. {ε, |η|} � 1.

Given this, we note that the condition ε � 1 implies that the kinetic energy 1
2
φ̇2

must only make a small contribution to the total energy density, i.e. 1
2
φ̇2 � V (φ).

This enables us to make the following approximation for the Friedmann equation

(2.1.25),

H2 ≈ 1

3M2
Pl

V (φ) . (2.1.29)

Moreover, the condition |δ| � 1 implies that |φ̈| � |Hφ̇|, leading to the following

simplification of the Klein-Gordon equation (2.1.24),

3Hφ̇ ≈ −V ′(φ) . (2.1.30)

This simplification of the equations of motion is the so-called slow-roll approxi-

mation. This approximation then provides a useful way to assess whether or not

a particular potential V (φ) can support inflation, via the introduction of so-called

potential slow-roll parameters, ε
V

and η
V

. Motivated from our definitions of the slow-

roll parameters ε and η, we then use the approximate equations of motion (2.1.29)

and (2.1.30), to define ε
V

and η
V

,

ε ≈ M2
Pl

2

(
V ′

V

)2

:= ε
V
, δ + η ≈M2

Pl

V ′′

V
:= η

V
, (2.1.31)
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which are related to ε and η during slow-roll, respectively, as follows: ε
V
≈ ε and

η
V
≈ 2ε− 1

2
η. We see, therefore, that slow-roll inflation occurs when {ε

V
, |η

V
|} � 1.

Note from eq. (2.1.31), that the inflaton potential does not have to be (approxi-

mately) flat for inflation to occur, but rather its first and second derivatives have

to be small relative to V itself. This is the case in so-called large-field inflationary

models (see e.g. Refs. [90, 91]), in which one can have a steep potential, however

the slow roll conditions can still be satisfied since the Hubble friction term 3Hφ̇ in

eq. (2.1.24) damps the velocity of the scalar field sufficiently enough that the con-

dition 1
2
φ̇2 � V (φ) is satisfied. Note, however, that in such models, for inflation to

persist forN ∼ 60 e-foldings requires φ to undergo super-Planckian field excursions10.

Qualitatively, slow-roll inflation can be visualised classically as a ball rolling down its

potential (cf. fig. 2.1.2). The inflaton is initially displaced from the minimum of its

potential at the start of inflation, and then as inflation proceeds it begins to slowly

roll towards this minimum. Inflation ends when the slow-roll conditions are no longer

satisfied, i.e. ε(φend) = 1, ε
V

(φend) ≈ 1. At this point φ will transition from being

overdamped to underdamped and start to move rapidly on the Hubble time-scale,

falling into the minimum of its potential, about which it oscillates. There are

Figure 2.1.2: Schematic representation of the inflaton potential (the actual shape of the potential
is model dependent). The inflaton φ (yellow circle) slowly rolls down its potential until it reaches
a critical value φend (corresponding to Vend = V (φend)), at which point inflation ends and it starts
to oscillate about its VEV. [Source: Dimopoulos, 2010 [92]].

10One may worry that the fact that φ can assume super-planckian values invalidates our semi-
classical analysis, however, as long as the potential satisfies V (φ) . MPl we are safe to treat both
gravity and the dynamics of the inflaton field classically.
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a large number of different inflationary models, broadly classified in terms of small -

and large-field inflation, corresponding to whether or not the amplitude of the in-

flaton field can take on super-Planckian values. For example, all large-field models

with a sufficiently flat potential have a limit in which they reduce to the sub-class

of so-called chaotic inflation [90, 91], where the inflaton potential is polynomial in

form V (φ) ∼ λφn

Mn−4
Pl

, for φ & MPl (where n > 0, 0 < λ � 1). Another example is

Higgs inflation [83], where the SM Higgs boson plays the role of the inflaton. In this

case, the potential is given by the Higgs effective potential ∼ λ
4

(φ2 − v2)
2
; one also

requires a non-minimal coupling of the Higgs boson to gravity ∼ ξφ2R in order to

tame the self-coupling of the Higgs, such that the matter perturbations it produces

agree with observational data. Further examples include k-inflation [93] and hybrid

inflation [94]. For a brief review of several of these models, we refer the reader to,

e.g. [68] and [95]. Finally, it is worth noting that, the current best cosmology we

have combines the HBB and inflationary models into the so-called Lambda Cold

Dark Matter model, or ΛCDM, including a cosmological constant Λ to account for

dark energy and a cold dark matter content in the matter distribution. ΛCDM is in

strong agreement with current experimental observations, as evidenced by the most

recent Planck data [51], and analogous to the SM, provides a standard cosmological

model (see e.g. [96] for a brief review).

2.2 Post-inflationary reheating

In the slow-roll regime, the energy density of the inflaton field φ remains approxi-

mately constant, as opposed to the energy densities of all forms of matter, which are

red-shifted to negligible amounts. As such, at the end of inflation, practically all of

the energy density in the universe is stored in the inflaton field φ. Thus, we need a

mechanism by which the vast amount of energy held in φ can be transferred back to

the matter fields, thus producing the abundances of SM particles that we observe in

the present. This post-inflationary stage is referred to as reheating.

Reheating begins as soon as the inflaton field φ begins to oscillate about its VEV -

as it passes through the minimum of its potential V (φ), it transfers energy to the

matter fields that it is coupled to. From a quantum mechanical perspective, this can

be understood as follows. The inflaton is initially displaced from the minimum of

its potential such that its infrared modes are densely populated (this ensures that

the field can satisfy the slow-roll conditions - large occupations of shorter wave-
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length modes would violate these conditions). As such, the leading order behaviour

of the field is classical. Moreover, as soon as inflation starts, the shorter wavelength

modes of φ̂ are rapidly redshifted (as they scale as a−1|k|) and quickly become

super-horizon length, at which point they become “frozen-in” as classical fluctua-

tions. This leads to the build up of a condensate in the zero mode of φ̂, such that

its background (classical) field value can be well approximated by its homogeneous

configuration. As such, we can represent the quantum inflaton field φ as a sum of

its background value ϕ(t) = 〈φ̂(t,x)〉 (corresponding to the expectation value of φ̂

in a translationally invariant vacuum state) and its quantum fluctuations δφ̂(t,x),

i.e. φ̂(t,x) = ϕ(t) + δφ̂(t,x). The quantum fluctuations of φ̂ correspond to small in-

homogeneities in the pre-inflationary background. These lead to disparate regions of

space inflating by different amounts. Such disparaties in the local expansion histories

result in differences in the local energy densities post-inflation. These perturbations

seed the formation of structure in the post-inflationary universe, observationally cor-

responding to small anisotropies in the CMB (see e.g. Refs. [68, 91, 97] for further

details).

We shall now elaborate further on the details of post-inflationary reheating, first

we briefly review the perturbative analysis and then move on to discuss the non-

perturbative aspects of reheating that arise due to the coherent nature of the inflaton

condensate. In the following two subsections, we have made use of Refs. [98], [99]

and [100], and we refer the reader to them for further details.

2.2.1 The perturbative approach

At the end of inflation, we are left with a coherently oscillating condensate of zero

momentum inflaton quanta. Naively, one then assumes that it is possible to treat

the decay of the inflaton field perturbatively, i.e. that individual quanta in this con-

densate decay independently of each other into SM (or other intermediary) particles.

Following this approach, one considers the inflaton Lagrangian with an effective po-

tential V (φ) and additional interaction terms, describing interactions of the inflaton

field φ with a scalar field χ and a fermion field ψ,

L = −1

2
∂µφ∂µφ−V (φ)− 1

2
∂µχ∂µχ−

1

2
m2
χχ

2 + ψ̄ (γµ∂µ −mψ)ψ− 1

2
gφ2χ2−hψ̄ψφ ,

(2.2.1)

where mχ and mψ are the bare masses of the χ and ψ fields, g and h are the coupling

constants parameterising the strength of the interactions, and ψ̄ = iψ†γ0 is the Dirac
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adjoint spinor field, with γµ the Dirac matrices. For generality, it is assumed that

the effective potential has a minimum at φ = σ, which we assume to be quadratic in

form near this minimum, i.e.,

V (φ) ∼ 1

2
m2
φ (φ− σ)2 , (2.2.2)

where mφ is the effective mass of the inflaton field. We can make a field redefinition

φ→ φ+ σ such that the Lagrangian [eq. (2.2.1)] now contains interactions between

φ, χ and ψ that are linear in φ,

∆L ⊃ −gσφχ2 − hψ̄ψφ . (2.2.3)

Given this, we will now study the effects of the Hubble expansion and particle cre-

ation, arising from interactions with other fields, on the dynamics of the inflaton

field. In the early perturbative studies of reheating, typically the dissipation of en-

ergy from the inflaton condensate was treated from a phenomenological point of

view, by including a dissipative term in its EOM [101–103]

φ̈+ 3H(t)φ̇+ Γtotφ̇+ V ′(φ) = 0 , (2.2.4)

where Γtot is the total interaction (or decay) rate for interactions between the inflaton

and scalar and fermionic fields arising from eq. (2.2.3). To obtain an approximate

solution to eq. (2.2.4), let us consider the case where V (φ) = 1
2
m2
φφ

2. Given this, we

first note that post-inflation mφ � H ∼ t−1, and so the condensate undergoes many

oscillations over one Hubble time. As such, if mφ � Γ also holds, and we neglect the

time-dependence of H and Γ due to the expansion of the universe, then eq. (2.2.4)

has the following approximate solution

φ(t) ≈ φ0a
−3/2(t)e−

1
2

Γtott cos(mφt) , (2.2.5)

where φ0 is the amplitude of the inflaton condensate at the start of reheating. Such

a solution describes damped oscillations of φ near the point φ = 0. In particular,

we see that the amplitude of φ decreases due to both the expansion of the universe

and particle production. To estimate Γtot, we consider the flat-space limits of the

contributing decay rates. Referring back to eq. (2.2.3), we see that φ can decay into

two scalar particles or a fermion-anti-fermion pair. At tree-level, these interactions

are given by the Feynman diagrams in fig. 2.2.1, with corresponding scattering am-
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φ

ψ

ψ̄

1

(a)

φ

χ

χ

1

(b)

Figure 2.2.1: Tree-level Feynman diagrams for the perturbative decay of the an inflaton particle
into: (a) two scalar particles and (b) a fermion-anti-fermion pair.

plitudes Mφ→χχ = −2igσ and Mφ→ψ̄ψ = −ihūv, respectively, where u and v are

(four-) spinor particle and anti-particle (momentum space) solutions to the Dirac

equation, corresponding to a fermion-anti-fermion pair (where we have suppressed

the spin indices and momentum dependence of ū and v for brevity). The decay rates

for φ→ χχ and φ→ ψ̄ψ are then

Γ (φ→ χχ) =
g2σ2

8πmφ

, (2.2.6a)

Γ
(
φ→ ψ̄ψ

)
=

h2mφ

8π
, (2.2.6b)

where we have assumed that mφ � mχ, mψ. Returning to the solution for φ,

eq. (2.2.5), we see that the amplitude of the condensate Φ(t) ' φ0a
−3/2(t)e−

1
2

Γtott

satifies,
1

a3

d

dt

(
a3Φ2

)
= −ΓtotΦ

2 , (2.2.7)

where Γtot = Γ(φ → ψ̄ψ) + Γ(φ → χχ). For time intervals larger than m−1
φ one

approximate φ̇2(t) ≈ m2
φΦ2(t) sin2(mφt), such that the number density of inflaton

quanta can be related to the amplitude Φ(t) of the condensate asNφ = 1
mφ
ρφ ≈ 1

2
mφΦ2

[98]. Thus, upon multiplying both sides of eq. (2.2.7) by mφ, we arrive at a rate equa-

tion
d

dt

(
a3Nφ

)
= −a3ΓtotNφ , (2.2.8)

describing the exponential decay of the total comoving number density of inflaton

quanta, with decay rate Γtot.
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2.2. Post-inflationary reheating

Note that, in theories without a non-zero minimum of the corresponding effective

potential (where σ = 0), reheating can still can occur due to the presence of the os-

cillating inflaton condensate φ. Indeed, let us return to the Lagrangian [eq. (2.2.1)],

and consider the quartic interaction L = −1
2
gφ2χ2, neglecting any fermion inter-

actions for the time being. When the amplitude Φ of the oscillating condensate is

sufficiently small (Φ � MPl) one may expect perturbation theory to be applica-

ble. Given this, one can then consider the perturbative annihilation of two infla-

ton particles (at rest) into two χ particles φφ → χχ. In so doing, it is found that

the corresponding annihilation cross-section (at zero relative velocity) is given by[
σφφ→χχ|vrel|

]∣∣
|vrel|=0

≈ g2

64πmφ2
[104]. One can then estimate the scattering rate for

this process as Γ(φφ → χχ) ≈
[
σφφ→χχ|vrel|

]∣∣
|vrel|=0

Nφ ∼ g2Φ2

8mφ
(where we have used

that Nφ ≈ 1
2
mφΦ2). However, such a decay rate is problematic, since Φ2 decreases

as t−2, whereas the Hubble parameter H decreases as t−1. Consequently, the rate of

decay of the inflaton field never catches up with the rate of expansion of the universe,

and so reheating never completes. This would be a disaster, as an incomplete decay

of the inflaton field would result in the matter and energy that was created during

reheating being redshifted to the point where the present day universe would be

cold, empty and devoid of life, something that certainly does not match observation.

In fact, reheating will only complete if Γ decreases slower than t−1, which typically

requires spontaneous symmetry breaking, and/or coupling of the inflaton to fermions

with mψ < mφ/2 [98].

The requirement that reheating does complete thus places important constraints

on the structure of any theory that aims to describe it. It is also important to note

that perturbative decays are not the only option for reheating. Indeed, if the initial

amplitude of the inflaton condensate is large enough, then non-perturbative effects

can play an important role in the reheating process. We shall discuss this in further

detail in §2.2.2.

For now, we assume that reheating does complete solely due to perturbative de-

cay of the inflaton field, and that the system thermalises almost instantaneously

upon reheating terminating, at which point the universe enters an epoch of radiation

domination. Given this, we can estimate the time at which reheating ends, and the

corresponding temperature of the universe soon after this occurs. With this in mind,

we note that during the post-inflationary oscillatory phase of the inflaton field, it
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2.2. Post-inflationary reheating

still provides the dominant contribution to the total energy density of the universe.

The behaviour of the universe during this phase is thus dictated by the inflaton

condensate, which is that of a fluid of non-relativistic particles of mass mφ, and as

such H(t) ∼ 2
3t

. From the assumption that mφ � mχ, mψ, the decay products of the

inflaton are ultra-relativistic, and as such their energy densities decrease much faster

(∼ a−4) than that of the inflaton condensate (∼ a−3). Consequently, reheating only

terminates when H < Γtot (otherwise most of the energy available will remain stored

in the inflaton condensate). This occurs when the age of the universe is trh ∼ 2
3
Γ−1

tot

(referred to as the reheat time), at which point, the matter content in predominantly

ultra-relativistic. Using the first Friedmann equation (2.1.3a), we can estimate the

energy density of the universe at the reheating time,

ρ(trh) ' 4M2
Pl

3t2rh
= 3M2

PlΓ
2
tot . (2.2.9)

The assumption is then, once the inflaton has completely decayed, these ultra-

relativistic particles quickly equilibriate, forming a thermal bath of temperature Trh,

the so-called reheat temperature, with energy density

ρ(trh) ' 3M2
PlΓ

2
tot '

π2

30
g∗T 4

rh , (2.2.10)

where g∗ quantifies the total number of relativistic degrees of freedom. Thus, one

arrives at an estimate for the reheat temperature,

Trh '
(90M2

Pl

π2g∗
Γ2

tot

)1/4

' 0.1
√
MPlΓtot , (2.2.11)

where we have used g∗ ∼ O(100) (expected to be true in realistic models [98]). The

reheat temperature is an important observable that one hopes to extract a predic-

tion for from a given reheating theory, since it enables one to determine the thermal

history of the universe. Indeed, its value has important consequences for leptogenesis

(see, e.g., ref. [105]) and for the generation of dark matter relic densities (see, e.g.,

ref. [106]). Importantly, the reheat temperature should be larger than a few MeV

to allow for the standard big-bang nucleosynthesis [107]. Requiring that thermalisa-

tion occurs before nucleosynthesis imposes an upper bound on the inflaton mass as

a function of the reheat temperature [108]. In the case of supersymmetric theories,

the potential over-production of gravitinos [109, 110] can spoil the generation of the

light elements, providing an upper bound on the reheat temperature.
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2.2. Post-inflationary reheating

Before continuing, we should note that are some caveats to the above analysis. In

particular, the heuristic EOM [eq. (2.2.4)], whilst looking physically intuitive, does

not provide a consistent description of the inflaton dynamics during perturbative

decay. This is because it violates the fluctuation-dissipation theorem, which states

that dissipative processes necessarily lead to fluctuations within the system [100].

Such fluctuations would impact on the effective mass of φ, which is not accounted

for in eq. (2.2.4). More careful perturbative analyses have been conducted, however,

in which such fluctuations are included in the effective EOM for φ, see e.g. [111, 112].

A further issue with eq. (2.2.4), is that whilst it approximates the impact of the dis-

sipative processes on the dynamics of the inflaton condensate, it neglects the fact

that the decay products themselves are dynamical. To describe the full dynamics

of the system would require one to solve a coupled set of self-consistent equations

describing the evolution of both the inflaton condensate and the decay products.

Aside from the issue of correctly describing the effects of perturbative processes

on the dynamics of the inflaton condensate, one is presented with the problem that

a perturbative analysis of the inflaton decay completely neglects the effects of Bose

condensation. These can greatly enhance the naive decay rates calculated above (as

we will discuss in §2.2.2). Moreover, the fact that the inflaton condensate undergoes

coherent oscillations gives rise to parametric resonances of the fields coupled to it,

which can lead to explosive particle production and a corresponding exponential

growth in particle number densities. Such resonant effects, which are particularly

prevalent in cases where the amplitude of these coherent oscillations is large, cannot

be accounted for within the elementary perturbative description. Through a non-

perturbative analysis, however, it is possible to account for these phenomenona, and

we shall elaborate on this further in the next subsection.

2.2.2 The non-perturbative nature of reheating

The perturbative approach to reheating is appealing, but is not sufficient to fully de-

scribe the post-inflationary reheating process. As we have mentioned, it neglects the

effects of Bose condensation, in which the decay of an inflaton into bosonic particles

is enhanced if the corresponding final states are already occupied. Furthermore, in

the perturbative analysis, one treats the condensate as a collection of independent

inflaton quanta decaying independently into bosonic, or fermion-anti-fermion pairs of

particles. However, at the end of inflation, the inflaton condensate φ cannot be well-
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2.2. Post-inflationary reheating

described by a superposition of asymptotically free single inflaton states, decaying

independently into SM (or other intermediary) particles. Rather, it behaves as a co-

herently oscillating homogeneous field. This (classical) time-dependent background

field can induce quantum mechanical production of matter particles, through driv-

ing parametric resonances of the fields it is coupled to. Such resonances are typically

much more efficient than single-body decays at transferring energy from the inflaton

condensate to coupled matter fields. The result is an extremely rapid and highly non-

adiabatic production of particles across multiple bands of momenta. Moreover, this

resonant production can be interpreted in terms of simultaneous collective decays of

many inflaton quanta (which correspond to higher order Feynman diagrams). There-

fore, to fully capture such behaviour necessitates a non-perturbative description11.

A non-perturbative analysis of reheating was first conducted in detail by Kofman,

Linde and Starobinsky [98, 113]. They found that the resonant particle production

arising from the coherent oscillations of the inflaton condensate dominates over per-

turbative decays during the early stages of reheating.

Having mentioned the phenomenon of Bose enhancement, let us now give a heuris-

tic analysis of how such effects arise. As reheating progresses the χ particle states

will generally have non-zero number densities. The result of this is that the prob-

ability of the inflaton decaying into χ particles within these states is subject to

so-called Bose enhancement. As an example, let us work in the perturbative regime

and consider the process φ → χχ. If the corresponding momentum states already

have non-zero number density, then the effective decay rate of the inflaton Γeff is

enhanced, i.e. Γeff ' Γφ→χχ(1 + 2N|k|) (where Nk is the occupation number of the

given momentum state) [114]. One can heuristically derive this by considering the

decay of an inflaton particle into two χ particles, i.e. φ→ χχ. Since φ is at rest (i.e.

has zero momentum) the produced χ particles will then have back-to-back momenta,

with magnitude |k| ∼ mφ/2. Moreover, the inverse process χχ → φ can also occur,

11Note further, that the coherent oscillations of inflaton condensate can be large, and so even
if the coupling between the condensate and other fields is small, this does not guarantee that
perturbation theory is accurate.
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2.2. Post-inflationary reheating

with the rates of the two interactions being respectively proportional to

|〈Nφ − 1, Nk + 1, N−k + 1|â†kâ
†
−kâ

φ
0|N

φ
0 , Nk, N−k〉|2 = (1 +Nk)(1 +N−k)Nφ

0

(2.2.12a)

|〈Nφ
0 + 1, Nk − 1, N−k − 1|âkâ−k(âφ0)†|Nφ

0 , Nk, N−k〉|2 = NkN−k(1 +Nφ
0 )

(2.2.12b)

where â
(†)
k and (âφ0)(†) are the creation (annihilation) operators of χ particles and (the

zero-mode) inflatons, respectively. Note that the and Nφ
0 is the occupation number of

zero-momentum state of the inflaton field, and since the field has formed a condensate

in this state at the end of inflation, its corresponding occupation number is large,

i.e. Nφ
0 � 1. Given this, one can compute the rate of change of (total) χ particle

number density Nχ =
∫

d3k
(2π)3Nk per comoving volume V :

d

dt

(
a3Nχ

)
=

2 a3

V
Γφ→χχ

[
(1 +Nk)(1 +N−k)Nφ

0 −NkN−k(1 +Nφ
0 )
]
≈ 2 a3ΓeffNφ

(2.2.13)

where Nφ =
Nφ

0

V
≈ mφΦ2

2
, the factor of two accounts for the fact that a single inflaton

is decaying into two χ particles, and we have noted that Nk = N−k, with |k| = mφ/2.

Similarly, the comoving rate of change of inflaton quanta (considering φ → χχ

processes only) is given by

d

dt

(
a3Nφ

)
= −a3ΓeffNφ (2.2.14)

We see then that Γeff can be significantly larger than the naive decay rate Γφ→χχ,

and our elementary treatment of reheating starts to break down as soon as Nk > 1.

This occurs very soon after reheating begins [114].

In the above discussion, we considered the case of bosonic particles. Fermions are not

subject to Bose enhancement due to Pauli blocking, and following this line of thought,

it was initially thought that parametric resonance of fermionic fields could not occur.

However, Greene and Kofman have shown that fermions can be efficiently produced

though parametric resonance whilst still adhering to the Pauli exclusion principle

[115, 116]. The analysis was further developed by Berges et al., who showed that this

efficiency is much higher if one takes into account backreactions of the fermions on

the inflaton condensate [117]. Interestingly, one can produce super-heavy fermionic

particles during parametric resonance, essentially as a consequence of the Yukawa
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coupling between the fermionic field and the condensate, enabling the effective mass

of the fermions to become vanishingly small at certain points in the oscillation cycle

of the inflaton condensate [118]. This is something that cannot occur for the bosonic

case, since its effective mass cannot be reduced by an oscillating condensate, and so

production of super-heavy bosonic particles is heavily suppressed [119].

Despite the importance of non-perturbative effects during the early stages of reheat-

ing, the elementary theory of perturbative inflaton decays is still applicable during

its latter phase, once the amplitude of the inflaton oscillations becomes sufficiently

small and parametric resonance has terminated. In fact, reheating never ends in the

regime of parametric resonance. Due to the fact that the inflaton condensate decays

(redshifted by Hubble expansion and transference of energy to the matter fields),

eventually the bands of momentum space in which resonance can occur become van-

ishingly small. This occurs before the condensate is completely depleted of its energy

density, such that particle production continues, however is subsequently dominated

by perturbative decays of inflaton quanta. As this initial, non-perturbative stage of

the reheating process precedes the perturbative phase, and the ensuing thermalisa-

tion of created particles, it is referred to as preheating [98, 113]. We shall return to

the subject of preheating in §5, where we shall discuss it in more detail.
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Chapter 3

The cosmological constant problem

3.1 Overview

As we briefly discussed in the introduction (cf. §1.4), the CCP is an issue that arises

within the framework of semi-classical gravity, in which one treats the gravitational

sector classically, but the matter sector quantum mechanically. More concretely, it

is a result of combining the two cornerstones of our current understanding of funda-

mental physics, that is, GR and the SM. Indeed, QFT predicts that the vacuum state

of a given theory is highly non-trivial, in particular, it has a non-zero energy density

attributed to it, a so-called vacuum energy (density). In Minkowski spacetime this

does not present an issue since in this case QFT is insensitive to absolute energies:

two QFTs differing only by a constant energy are equivalent, since one can add an

arbitrary constant the Lagrangian without affecting the equations of motion, and

hence, the physics. In this sense, in flat spacetime the vacuum energy is not part of

the physical content of any given QFT, rendering it impossible, even in principle, to

make any predictions about it. This drastically changes, however, when one “switches

on” gravity; GR tells us that gravity is sensitive to absolute energies, and from the

equivalence principle we know that all forms of energy source spacetime curvature.

As such there is no reason a priori why vacuum energy should be an exception to

this, and accordingly, in the context of GR, vacuum energy is a physical quantity,

since shifting it by some amount will affect the curvature of spacetime.

From an EFT perspective, we therefore expect that all massive particles, up to the

cut-off energy scale of the theory (in this case ∼ O(TeV), but potentially as high

as the Planck mass, MPl), should contribute. Given that the spacetime vacuum is

observed to be Lorentz invariant to a high degree of accuracy [120], the only way we

can introduce a vacuum energy density term into the energy-momentum tensor is

for it to be proportional to the metric, i.e. T vac
µν = −ρvacgµν . We therefore expect the

vacuum energy density contribution to the gravitational action to be of the form,

− ρvac

∫
d4x
√
−g . (3.1.1)
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There is a clear sense in which the cosmological constant manifests itself as a prob-

lem in the long wavelength, i.e., infrared sector of GR. The reason being is that

gravitons probing dark energy are ultrasoft, with wavelengths of order the current

Hubble length, i.e. λ ∼ H−1
0 . As such, the effect of vacuum energy is most pro-

nounced on cosmological scales. Moreover, at late times, the vacuum energy density

will dominate over all other forms of energy density (ρvac does not redshift, whereas

matter and radiation will have redshifted to negligible amounts). Accordingly, from

eq. (2.1.3a), the late-time curvature will be H2 ≈ 1
3M2

Pl
ρvac, and so if ρvac > 0, then

this yields an accelerated de Sitter expansion at late times. Given that the value of

the Hubble parameter in the present epoch is measured to be H0 ∼ 10−33eV, this

sets an upper-bound for the vacuum energy density, ρvac . (meV)4. If ρvac exceeded

this bound, then it would have started to dominate long before the present epoch,

and the corresponding cosmological horizon (∼ H−1) would be much smaller than

we observe today.

A natural question arising when considering these issues is, does vacuum energy

truly exist, i.e. does it produce experimentally observable effects? To answer this, we

first need to recall how vacuum fluctuations contribute to physical processes. In the

standard framework of perturbative QFT, one can identify the contributions from

the vacuum fluctuations of a particular theory with radiative, so-called loop correc-

tions to tree level scattering amplitudes of physical processes. For example, consider

a particular interacting QFT, quantum electrodynamics, described by the following

Lagrangian,

L
QED

= −1

4
F µνFµν + ψ̄

(
/∂ +m

)
ψ − eψ̄ /Aψ , (3.1.2)

where Fµν = ∂µAν − ∂νAµ is the electromagnetic field strength tensor for the vector

potential Aµ, ψ is a fermion spinor field (with ψ̄ = iψ†γ0 its adjoint) of bare mass

m, with the associated electric charge e2 = 4πα,1 and we have adopted the Feynman

slash notation /O := γµOµ, with γµ the Dirac matrices. A familiar interaction in QED

is the electron self-energy, arising from an electron interacting with its own EM field,

and corresponds to radiative corrections to the electron mass me. At the one-loop

level, this interaction is represented by the Feynman diagram given in fig. 3.1.1. The

quantitative expression extracted from this diagram then corresponds to the electron

1Where α ≈ 1/137 is the fine structure constant at low energies . O(MeV) [121].
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Figure 3.1.1: One-loop electron self-energy.

self-energy (at one-loop) [121]

iΣ2(/p) =

∫
d4k

(2π)4

(−ieγµ)(−iηµν)i(/k +m)(−ieγν)
(k2 −m2 + iε)((k − p)2 + iε)

. (3.1.3)

As is usually the case with loop corrections, the self-energy is divergent and so we

must regularise eq. (3.1.3) to obtain an analytical solution to the integral. Upon

using dimensional regularisation (cf. ref. [121] for details; we shall also carry out an

explicit calculation in §3.1.1), one can isolate the divergent pieces of Σ2(/p). To avoid

overcomplicating the discussion, we shall briefly comment that, in order to make

sense of the theory and obtain physical predictions, we interpret the bare mass of

the electron m as being formally infinite. In doing so, we can tame the infinities

that arise in radiative corrections such as the self-energy contribution above. This

is achieved through the introduction of counterterms, δm and δ2 such that what we

end up with are a renormalised mass mR, defined via m = (1 + δm)mR, and self

energy ΣR(/p) = Σ2(/p) + δ2/p− (δm + δ2)mR +O(α2). These renormalised quantities

are themselves finite, and can then be related to the physical, i.e. experimentally

measured, (pole) mass me of the electron as me = mR + ΣR(me). In this case, using

the modified minimal subtraction (MS) renormalisation scheme, the result (to leading

order in α) is [121],

me = mMS +me
α

4π

[
5 + 3 ln

(
µ2

m2
e

)]
+O(α2) , (3.1.4)

where mMS is the renormalised (so-called MS) mass of the electron, and µ is the

renormalisation energy scale (this is the energy scale, the so-called subtraction point,

where the theory is renormalised). Note that self-energy loop, fig. 3.1.1, provides a

correction ∆m := me −mMS = α
4π
me

[
5 + 3ln

(
µ2

m2
e

)]
to the MS mass mMS relative
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to the physical mass me, however, it is evident that ∆m . O(me).
2 It turns out

that the correction to mMS at each order in perturbation theory, is proportional to

me itself, i.e., it recieves multiplicative corrections. Consequently, the theoretically

predicted mass of the electron is only very mildly sensitive to ultraviolet physics, as

its corrections remain small as we increase the energy scale µ, such that its value

never strays far from me. As such, we only ever need to fine-tune mMS by (at most)

an O(1) amount at each order in perturbation theory in order to match the observed

physical mass me. This property will be of importance when we come to discuss

radiative instability in the next section, and we shall discuss it in further detail then.

Now that we have some appreciation for how vacuum fluctuations contribute to

theoretical predictions of physical quantities, we shall now address whether or not

such effects are experimentally observable. It appears to be the case that they do, as

evidenced by the Lamb shift [122] and the Casimir effect [123]. Indeed, Willis Lamb

observed a small splitting between two energy levels of the Hydrogen atom which are

predicted to be degenerate at tree level in QED. This splitting can be accounted for

theoretically by including one loop corrections, the dominant contributions of which

are from the vacuum polarisation and the electron self-energy [fig. 3.1.1] [121]. The

prediction agrees well with experiment [124–126], serving to highlight the importance

of these contributions to physical processes, and leading to the development of mod-

ern renormalisation techniques. Moreover, the Casimir effect arises from considering

the effects of the QED vacuum on two neutral, conducting plates (separated by a

finite distance). Indeed, it is found that the relative difference between the vacuum

energy of the EM field, inside and outside the two plates, generates a force between

them [121, 123].

These phenomena seem to indicate that loop corrections do have observable effects

on physical processes, however, we should note that there is a caveat here. The the-

oretical calculations pertaining to the Lamb shift and Casimir effect both involve

external on-shell particle states, and thus do not correspond to pure vacuum effects,

however, the fact that the contribution of vacuum fluctuations to these processes play

an important role in the calculation of observables suggests that we should take them

2Note that, since the physical mass me must be independent of the renormalisation energy
scale µ we choose, this implies that the MS mass mMS, and the fine-structure constant α are
dependent on µ, and thus their values “run” with the energy scale. This leads to the concept
of the renormalisation group, which provides a systematic structure for quantifying how coupling
constants run as the renormalisation scale µ changes. See e.g. ref. [121] for a detailed discussion of
the renormalisation group.
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seriously when considering physical phenomena. With this in mind, we now consider

what happens when we introduce gravity into the mix. Within the context of GR,

we know that, by the equivalence principle, all forms of matter and energy gravitate,

and do so with the same strength. As such, one expects that the contributions from

vacuum fluctuations to the Lamb shift and Casimir effect will gravitate. Indeed, if we

consider the Lamb shift, for example, it is found that the relevant loop corrections

affect both the inertial and gravitational energy of an atom [53]. In particular, for

heavy nuclei such as Aluminium and Platinium, it has been shown that the loop

corrections arising from vacuum polarisation, to both their inertial energies, are of

order 10−3, but differ by a factor of 3. Nevertheless, the respective ratios between

their gravitational and inertial energies remain the same up to order 10−12 [127].

We see then, that there is experimental evidence to suggest that the presence of

vacuum fluctuations affect physical processes, and furthermore, at least in certain

situations, gravitate. Given this, one is motivated to consider the effects that arise

due to their presence when gravity is “switched on”. Processes such as the example

discussed above do not contribute to the cosmological constant, since they include

SM particles on external legs. In vacuum, however, the diagams remaining are so-

called bubble diagrams which do not contain external legs. Such bubble diagrams

contribute to the vacuum energy of a given theory. With this in mind, in “switching

on” gravity, and applying the principle of equivalence, one would expect these bubble

diagrams to couple to external graviton legs, i.e. that the vacuum energy couples to

gravity (just as all other forms of energy and matter do). This subject forms the

basis of the next subsection, where we shall see that the CCP manifests itself as a

consequence of taking the existence of vacuum energy seriously in the context of GR.

For further details on the nature of the CCP, we refer the reader to the following

reviews [53, 128–131].

3.1.1 The radiative instability of Λ

The core of the issue manifests when one considers radiative corrections to the vac-

uum energy contributions from each massive particle species.3 To highlight the prob-

lem we shall consider a scalar field φ of mass m, with a quartic self-interaction ∼ λφ4,

3Whilst it is true that all vacuum loop corrections for strictly massless particles are zero (since
they are scale-free), as we are working in the framework of EFT, there is a caveat here, as we have
integrated-out more massive particles, which could enter into loop corrections of naively massless
Feynman diagrams. We shall neglect this subtlety here as a big problem already exists by considering
explicitly massive particles.
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that is minimally coupled to gravity. The results that we shall arrive at are quali-

tatively the same for other particles of different mass and spin, and so we therefore

stick to a simple example to avoid over-complicating the analysis. In the following

discussion we make use of Refs. [53, 130], and refer the reader to them for further

details.

As a quantum theory of gravity currently eludes us, in order to calculate the vac-

uum energy contributions, we must adopt a semi-classical approximation in which we

treat the gravitational sector classically and the matter sector quantum mechanically

(in the framework of QFT). Although this means that we are ignoring all contribu-

tions involving virtual graviton exchanges, since they are sensitive to the quantum

effects of gravity and as such not well understood presently, the loop contributions

from the matter sector already present a significant problem in trying to match the-

oretical calculations of vacuum energy with the observed value of the cosmological

constant.4 Practically, this corresponds to perturbing the metric around a Minkowski

background, gµν = ηµν + hµν , and in doing so fixes the graviton-scalar interaction

vertex. The revelant Feynman diagrams are then given by a perturbative sum of all

possible vacuum scalar loops coupled to external graviton legs. For example, at the

one-loop level, we have,

1

+ + + · · · (3.1.5)

where the first diagram corresponds to the net sum of vacuum energy in the absence

of gravity, and the second two diagrams correspond to the tadpole two-graviton

contributions at one-loop order. The ellipsis denote all further one-loop contributions

containing arbitary numbers of external graviton legs. Due to the diffeomorphism

invariance of GR, it must be that the series of diagrams (3.1.5) resums, such that

the net result is of the form −ρφ,1-loop
vac

∫
d4x
√
−g. Consequently, since one expects

ρφ,1-loop
vac to factor out (if it did not diffeomorphism invariance would be violated), we

need only calculate one of the loop diagrams to obtain an estimate for the vacuum

4In a full solution to the CCP these would of course need to be dealt with.
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energy contribution at one-loop. To this end, we consider the simplest vacuum loop,

1

∼ i

2
Tr

[
ln

(
− δ2S

δφ(x)φ(y)

)]
=

i

2
Tr
[
ln
((
−�x +m2

)
δ(4)(x− y)

)]

=
i

2

∫
d4x d4y δ(4)(x− y)

∫
d4k

(2π)4
eik·(x−y)ln

(
−k2 +m2

)
= − 1

2

∫
d4x

∫
d4k

E

(2π)4
ln
(
k2
E

+m2
)
∼ −ρφ,1-loop

vac

∫
d4x . (3.1.6)

Here we have diagonalised
(
− �x + m2

)
δ(4)(x − y) by representing it in terms of

a momentum basis, such that we can straighforwardly take its log and trace over

this result. With the aim of computing this integral, we subsequently analytically

continued the integral to Euclidean space via a Wick rotation k0 → ik0
E. To obtain

an expression for the momentum space integral, we shall make use of dimensional

regularisation, analytically continuing the spacetime dimensions D = 4→ D = 4−ε
(where ε� 1) to obtain a finite result,∫

d4k
E

(2π)4
ln
(
k2
E

+m2
)

= − lim
ε→0

∂

∂α

(
µ4−D

∫
dDk

(2π)D
(
k2 +m2

)−α)

= − lim
ε→0

m4

16π2

(
m2

4πµ2

)−ε/2
Γ
(ε

2
− 2
)

= − lim
ε→0

m4

32π2

[
2

ε
− 3

2
+ ln

(
µ̃2

m2

)
+O(ε)

]
(3.1.7)

where Γ (z) =
∫∞

0
dx xz−1e−x is the gamma function, and µ is an arbitrary (but

regulator dependent) mass scale, which we must introduce by dimensional analysis

as a consequence of our choice of regularisation. Indeed, the arbitrariness of µ allows

us to absorb factors of 4π and the Euler-Mascheroni constant, γ
E

, into a redefinition

of µ, i.e. µ̃2 = 4πe−γEµ2. We have kept the divergent piece and the leading order

finite pieces, neglecting terms of order ε and above, since they will vanish in the limit

as D → 4 (ε→ 0). The final result is given by,

ρφ,1-loop
vac ∼ − m4

(8π)2

[
2

ε
+ ln

(
µ̃2

m2

)
− 3

2

]
. (3.1.8)

where the limit (ε → 0) is implicit. In order to obtain a sensible finite result in

the limit ε → 0, we must remove the divergence from this loop contribution using
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renormalisation. To do so, we recall from §1.2, that we are always free to add a bare

cosmological constant, Λbare, to the EH action [eq. (1.2.1)]. This itself must contain a

formally infinite piece, acting as a counter-term, to cancel off the divergence arising

from the vacuum loop. Thus, if we separate Λbare up into a finite piece ΛC and a

formally divergent piece δΛC.T., such that Λbare = ΛC +δΛC.T., then it is evident that

we must choose (using a slightly modified MS scheme),

δΛφ,1-loop
C.T. =

m4

(8π)2

[
2

ε
− γ

E
+ ln(4π)− 3

2

]
. (3.1.9)

Thus, what actually gravitates is the finite combination Λφ,1-loop = Λφ,1-loop
bare +ρφ,1-loop

vac, R

(where ρφ,1-loop
vac, R is the renormalised vacuum energy at one loop), i.e. the renormalised

one-loop vacuum energy contribution from the massive scalar field φ,

Λφ,1-loop = Λφ,1-loop
bare + ρφ,1-loop

vac, R ∼ ΛC +
m4

(8π)2
ln

(
m2

µ2

)
. (3.1.10)

Note that, in the MS scheme, one implicitly sets the arbitrary mass scale µ to the

subtraction point at which we renormalise. Thus µ is interpreted as the renormali-

sation energy scale (itself still arbitrary, but finite). It is clear from this calculation

that we have no way of predicting the magnitude of contributions to the vacuum

energy from massive particles in the context of SM QFT. This is due to the fact that

we are describing physics in the context of an EFT and thus after renormalising, the

result always depends on an arbitrary mass scale, µ.

In practice we must experimentally measure its value and then adjust ΛC accordingly,

such that the theory matches observational data. For example, suppose that our mas-

sive scalar field is the SM Higgs boson, whose mass is m = 125 GeV [132]. Then at

the one-loop level, the finite contributions to the renormalised vacuum energy must

cancel to an accuracy of 1 part in 1057 in order to agree with the experimental upper

bound of ∼ (meV)4 [51] for the net cosmological constant.5 This is already a con-

siderable amount of fine-tuning which in itself presents a problem, why does such a

precise cancellation seem to be occurring in nature?

The issue is further exacerbated when one takes into account all possible contri-

butions to the cosmological constant. Indeed, the SM is valid at least up to the TeV

5Here, we have assumed that ln
(
m2

µ2

)
∼ O(1).
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scale, and so one expects that Λ should receive contributions from heavy particles

right up to this energy scale, requiring a fine-tuning of 1 part in 1060, in order for the-

ory to agree with experiment. Moreover, the SM is potentially valid up to the Planck

scale [133], meaning that it is possible that Λ could receive contributions from ra-

diative corrections right up to MPl ∼ 1018 GeV. The result is that there could be a

difference of up to 120 orders of magnitude between the observed and theoretically

predicted values for the cosmological constant. In this case, a fine-tuning of 1 part

in 10120 is required for theory to match experiment. We could perhaps tolerate this

extreme amount of fine-tuning to some extent by accepting an anthropic argument:

that the vacuum we exist in is simply the one that is able to support evolution of

intelligent life, and so such a fine-tuned value for the cosmological constant is, in

some sense, necessary.6 This does seem like a rather contrived solution, however.

Although the fine-tuning in itself is an issue to a certain extent, there is a much more

severe problem that is really at the heart of the CCP, arising from the seemingly

innocuous question: what happens when we consider higher-order loop corrections to

the vacuum energy density from our massive scalar field? At two loops, the vacuum

energy density ρφvac receives an additive correction from the following diagram

1

∼ λ

8

∫
d4x

∫
d4p

E

(2π)4

d4k
E

(2π)4

1

p2
E

+m2

1

k2
E

+m2

∼ −ρφ,2-loop
vac

∫
d4x (3.1.11)

After regularising and renormalising, as we did for the one-loop correction, we find

that eq. (3.1.11) contributes a term that scales as ρφ,2-loop
vac ∼ λm4. Importantly, we

see that this is an additive correction (unlike in the electron mass case, where they

were multiplicative) and is proportional to the fourth power of the mass. As we did

previously, assuming that scalar field is the Higgs boson, we find that even if we take

the coupling constant λ ∼ 0.1, the two-loop diagram still contributes a large correc-

tion to the cosmological constant relative to its observed value of ∼ (meV)4. Now,

6By this, it is meant that if the cosmological constant were postive and large, i.e. Λ� (meV)4,
then the early universe would have expanded so rapidly that it would not have been possible
for matter to coalesce, forming stars and planets necessary for life. Similarly, if the cosmological
constant were negative, and its magnitude large, i.e. |Λ| � (meV)4, then the early universe would
have rapidly collapsed, again preventing life from taking a foothold.
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the problem is that we have already fixed the value of ΛC, such that Λ matches the

experimental data at the one-loop level, and so in order to cancel off the additional

contributions at the two-loop order, we must re-tune ΛC. This is not necessarily

a problem in itself; an artifact of perturbation theory is that we must re-tune the

counter-terms at each order to match experiment. The issue here though, is that

at each order in the loop expansion, the correction to the vacuum energy from the

massive scalar is not significantly suppressed relative to either the lower order con-

tributions or the observed value of Λ. Consequently, we are forced to re-tune ΛC to

almost the same level of accuracy, order-by-order in perturbation theory, such that

our theoretical prediction matches experimental data.

The need for such a severe amount of re-tuning at each loop order indicates that

the vacuum energy density is radiatively unstable. This instability to higher order

loop corrections is the real reason as to why the CCP is so troubling. It indicates that

our low-energy description of the cosmological constant is highly sensitive to physics

in the UV, of which we are ignorant of at present. An alternative way of seeing this

problem, is to simply focus on the one-loop correction [eq. (3.1.6)]. Now, consider

a shift in the mass of the particle in the loop, m → m + ∆m, or keep everything

fixed, and instead introduce a new heavy particle into the theory. In either case, it

is clear that Λ has a power-law sensitivity to such a modification. We see then, that

the cosmological constant is unstable against changes in our effective description of

physics, either through introducing new energy scales, or by phase transitions in the

early universe that give rise to constant shifts in the vacuum energy.

The fact that the observed value of the cosmological constant is so small signals

a naturalness problem, i.e. why is its natural value at the meV scale and not at the

cut-off scale of our EFT. This is analogous to the so-called “Hierarchy Problem”

relating to the mass of the Higgs boson in the SM.7 Note that this not the case for

other SM parameters, such as the mass of the electron, whose value changes by an

amount proportional to its mass at each loop order. For example, recall from §3.1

(cf. eq. (3.1.4)), that at the one-loop level, ∆m = α
4π
me

[
5 + 3ln

(
µ2

m2
e

)]
, at leading

order in α [121] (where me ' 0.511 MeV is the pole mass of the electron). Hence its

small value is radiatively stable under loop corrections, i.e., there is no need for sig-

nificant fine tuning at each loop order to keep the electron mass small, since radiative

7See ref. [134] for a review of the Hierarchy Problem in the SM and some possible solutions to
it.
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corrections to its value satisfy ∆m . O(me). This is a consequence of the fact that

the mass of the electron is protected by the chiral symmetry possessed by massless

fermions. Since in the massless limit there should be no loop corrections (otherwise

their presence would generate a mass, thus violating the chiral symmetry), they must

all be proportional to the symmetry breaking parameter, i.e., its mass. Any param-

eter whose small value arises from a softly broken symmetry is said to be technically

natural.8 The cosmological constant and the Higgs boson have no such ‘custodial’

symmetry and thus their small values are not protected from radiative corrections.

As such the SM is unable to provide a technically natural explanation for the small-

ness of both of their observed values. This sensitivity of the cosmological constant to

UV physics can also be understood in terms of Wilsonian effective actions [136, 137],

and for a detailed discussion of the problem using this approach we refer the reader

to ref. [131].

As the CCP arises from considering field theoretic effects, i.e. radiative (loop) cor-

rections from massive particles in the matter sector, an immediate response is to

search for a solution by refining one’s quantum description of matter in such a way

that the large loop corrections are tamed in some way. Indeed, it is already the case

within the framework of the SM that radiative corrections from fermions and bosons

have opposite signs, resulting in a partial cancellation of their contributions to the

vacuum energy density. This naturally lends itself to the idea of supersymmetry,

in which each fermion species has a partnering boson species with the same mass

and interaction strengths (see e.g. ref. [138] for an introduction to supersymmetry).

Thus, in the case where supersymmetry is exact, all the radiative corrections from

each massive particle species cancel out, such that the net cosmological constant is

zero. However, as nice an idea as this is, supersymmetry is not exact - the symmetry

is broken at least up to the TeV scale [139], and accordingly this sets a natural scale

for the value of the cosmological constant, i.e. Λ ∼ (TeV)4. Clearly this is still much

larger than the observed value of ∼ (meV)4, and leaves us not much better off than

we were before.

Given that the field theory sector is currently unable to offer much in terms of a

solution to the CCP, this leads us to search for solutions in the gravitational sector.

A popular approach has been to modify our description of gravity in such a way

8Technical naturalness is a criterion, originally introduced by t’Hooft, which states that a pa-
rameter of a theory is naturally small in value if setting it to zero enhances the symmetry of the
theory [135]
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as to prevent the vacuum energy density from sourcing curvature. In this way, we

do not address the radiative instability of the vacuum energy, but we do provide a

solution that allows for a small value for the cosmological constant, thus alleviating

the issue, at least for the gravitational sector. As we shall see in the following two

subsections, we cannot just make any modification that we please, there are some

fairly strict constraints that one must satisfy in order to construct a physically viable

(and theoretically “healthy”) theory, particularly given the empirical success of GR

at the scale of the solar system.

3.2 Solving the CCP: the pitfalls

3.2.1 Weinberg’s no-go theorem

Perhaps the most minimal approach to resolving the CCP is to posit that there exists

new local degrees of freedom in the matter sector, in the simplest case a collection

of scalar fields φi, coupling minimally to gravity. We demand that their coupling to

gravity is such that they can self-adjust, or “self-tune”, to absorb the net vacuum

energy and consequently prevent it from sourcing gravity. Of course, this would rule

out vacuum energy as a source of dark energy, but it would offer a dynamical so-

lution to a significant problem plaguing semi-classical gravity. However, this naive

approach was shown by Weinberg to be flawed. Indeed, Weinberg’s no-go theorem

states that it is impossible to have such a self-tuning mechanism without transferring

the fine-tuning of the bare cosmological constant to the potential of the self-tuning

fields [128]. We shall give a review of this no-go theorem before proceeding (here we

follow [53, 63] and refer the reader to them for further details).

Our initial assumption is that the gravitational action is the usual Einstein-Hilbert

term with the addition of a term containing all contributions from the net cosmo-

logical constant, constructed from the spacetime metric gµν and a set of scalar fields

{φi}i=1,...,N , whose job it is to self-tune such that they absorb the vacuum energy

contributions to the cosmological constant.9 This theory is then described by the

following action,

S =

∫
d4x
√
−g
[M2

Pl

2
R + L(gµν , φi)

]
=

∫
d4xL (gµν , φi) , (3.2.1)

9Although Weinberg’s argument is valid for fields of any tensor rank we stick to scalar fields
here for simplicity as the main points of the argument are still present

50



3.2. Solving the CCP: the pitfalls

where L in principle contains all possible interactions between the scalar fields and

the metric. Assuming that a solution exists that corresponds to a Poincaré invari-

ant vacuum geometry gµν = ηµν , and field configuration φi = φ̄i = constant, the

corresponding equations of motion are

1√
−g

δS

δgµν

∣∣∣∣∣gµν = ηµν ,
φi = φ̄i

=
∂L

∂gµν
= 0 (3.2.2a)

1√
−g

δS

δφi

∣∣∣∣∣gµν = ηµν

φi = φ̄i

=
∂L

∂φi
= 0 . (3.2.2b)

If these equations are satisfied independently, then fine-tuning of the solutions is in-

evitable [128]10, and so we are left with the alternative: that Eqs. (3.2.2a) and (3.2.2b)

do not hold independently. In this case, we can in principle avoid fine-tuned solutions

by insisting that the trace of the gravitational EOM be automatically fulfilled as a

consequence of the scalar equations. This corresponds to requiring the trace of the

metric equation of motion to be a linear combination of the φi field equations, i.e.,

gµν
∂L

∂gµν
=
∑
i

f i(φ)
∂L

∂φi
(3.2.3)

where f i(φ) are generic functions of the scalar fields φi. By imposing this condition,

we are implicitly demanding that the action possess a particular symmetry. Indeed,

consider the variation of the action [eq. (3.2.1)] with respect to gµν and φi,

δS =

∫
d4x
√
−g

[
1√
−g

δL

δgµν
δgµν +

∑
i

1√
−g

δL

δφi
δφi

]
. (3.2.4)

Given this, we observe that by choosing the infinitesimal variations,

δgµν = 2εgµν δφi = εf i(φ) , (3.2.5)

then eq. (3.2.3) implies that this variation is a symmetry of the action, when one

takes the fields to be in their vacuum configuration, φi = φ̄i = const. Following

from this, we see that if we start out with an action invariant under the variations

10This is a consequence of the residual GL(4) symmetry remaining after fixing the vacuum
solution. If one assumes that ∂L

∂φi
= 0 holds (without, for the time being, assuming ∂L

∂gµν = 0), then
using the GL(4) symmetry, one can solve this equation to give L =

√
gV (φi). The remaining field

equation ∂L
∂gµν = 0 then yields V (φi), which corresponds to fine-tuning.
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given by eq. (3.2.5), and admitting a vacuum solution φi = φ̄i = const. such that
∂L
∂φi

∣∣
φ̄i

= 0, then eq. (3.2.3) will be automatically fulfilled, and the existence of a

Minkowski solution is guaranteed. However, it turns out that this is impossible to

achieve without having to fine-tune the scalar field potential.

Let us redefine the fields φi → ψi such that the variations given by eq. (3.2.5)

become,

δgµν = 2εgµν , δψi 6=N = 0 (i = 1, . . . , N − 1), δψN = −ε , (3.2.6)

it can be seen that this corresponds to a conformal rescaling of the metric. Indeed,

consider a conformal transformation of the metric gµν → g̃µν = e2ψgµν , with the

corresponding transformation of the inverse metric given by gµν → g̃µν = e−2ψgµν .

Now if δψ is taken to be constant and the transformation is infinitesimal, then we

have that g̃µν = gµν − 2ψgµν , i.e. δgµν = −2ψgµν . Hence, we see that the variation

given by eq. (3.2.6) conformally rescales the metric. Consequently, the action will be

invariant if it is constructed from the conformal metric g̃µν = e2ψ
N gµν and the scalar

fields ψi 6=N . When all the fields are constant, the curvature invariants of this metric

will vanish, and so diffeomorphism invariance then requires that the on-shell action

has the form,

S =

∫
d4x
√
−g̃ V (ψi 6=N) =

∫
d4x
√
−g e4ψ

N V (ψi 6=N) . (3.2.7)

Accordingly the gravitational equation of motion becomes,

1√
−g

δS

δgµν

∣∣∣∣∣ gµν = ηµν

ψi 6=N = const.

= −1

2
e4ψ

N V (ψi 6=N) = 0 =⇒ e4ψ
N V (ψi 6=N) = 0 .

(3.2.8)

Thus we are left we two choices: either we take V (ψi 6=N) = 0, or take the limit

e4ψ
N → 0. The former case clearly corresponds to fine-tuning, since it would require

us to tune the potential of ψi 6=N such that it has a minimum at V (ψi 6=N)
∣∣
ψi6=N

= 0.

In the latter case, since the matter fields couple to g̃µν , it follows that the physical

masses in the matter sector would all scale as e2ψ
N , and so taking the limit e4ψ

N → 0

corresponds to scale invariance in which all the physical masses vanish, a result that

is clearly ruled out by observations.
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We see then that Weinberg’s no-go theorem presents a very large obstacle for any

theory that hopes to employ such a self-tuning mechanism and remain physical. One

might be left wondering whether this is even at all possible and perhaps we should

abandon such an approach completely. However, if one carefully analyses the as-

sumptions made in the no-go theorem it becomes apparent that there are options

remaining to avoid it. For example, a simple, but elegant solution is to relax the

assumption of on-shell Poincaré invariance at the level of the fields, instead simply

requiring them to be spatially homogeneous. We shall explore this option in more

detail in §4.

3.2.2 Ostrogradsky’s theorem

A natural starting point in an attempt to cure the CCP is to construct a modified

theory of gravity, i.e. a theory beyond GR. The reason for doing so is that GR in

itself does not provide any wiggle room to evade the CCP, in particular, it is not

possible to realise a Minkowski vacuum solution to Einstein’s field equations without

fine-tuning the net cosmological constant to zero. However, one has to be very careful

in how such a modified theory of gravity is constructed, indeed there is good reason

why Lagrangians tend to be dependent on (at most) first-order in time derivatives

of the physical degrees of freedom. This reason is due to Ostrogradsky’s theorem

which states that there is a linear instability in the Hamiltonians associated with

Lagrangians that depend non-degenerately on higher than first-order time deriva-

tives [140]. In fact this result is so general that in order to review it one can consider

the problem in the context of classical mechanics for simplicity (here we have made

use of [141] and refer the reader to it for a more extensive discussion).

To highlight Ostrogradsky’s result, we shall first briefly recapitulate on the con-

struction of the Hamiltonian in the standard case where the Lagrangian depends

on at most first-order time derivatives, then we will examine Ostrogradsky’s con-

struction of the problem for Lagrangians containing second-order time derivatives.

Let us consider a one-dimensional system containing a single point-particle whose

time-dependent position is given by q(t). The system is described by a Lagrangian

L(q, q̇) that we assume depends non-degenerately on q̇, i.e. det
(
∂2L
∂q̇2

)
6= 0. Given this

the equation of motion is given by the usual Euler-Lagrange (EL) equation,

∂L

∂q
− d

dt

(
∂L

∂q̇

)
= 0 , (3.2.9)
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and since L(q, q̇) is assumed to be non-degenerate it is clear that the solutions to

eq. (3.2.9) require two pieces of initial data: q0 = q(t0) and q̇0 = q̇(t0). Correspond-

ingly, this means that we require two canonical coordinates, q and p in the phase

space of our system, where we define the canonically conjugate momentum as p = ∂L
∂q̇

.

Since L is a convex function of q̇, this is a one-to-one mapping and so we can (in

principle) invert this transformation to find a function v(q, p) such that,

∂L

∂q̇

∣∣∣∣
q̇ = v(q,p)

= p . (3.2.10)

The Hamiltonian corresponding to this system is then constructed by taking the

Legendre transform of L with respect to q̇,

H(q, p) = pq̇ − L(q, q̇) = pv(q, p)− L(q, v(q, p)) , (3.2.11)

and, if it is not explicitly time-dependent (i.e. ∂H
∂t

= 0), H is a conserved quantity

corresponding to the energy of the system. Furthermore, the Hamiltonian generates

time evolution of the systems phase space coordinates q(t) and p(t). Indeed, their

evolution is dictated by the following equations,

q̇ :=
dq

dt
= {q,H} =

∂H

∂p
= v + p

∂v

∂p
− ∂v

∂p

∂L

∂q̇

∣∣∣∣
q̇ = v

= p , (3.2.12a)

ṗ :=
dp

dt
= {p,H} = −∂H

∂q
= −p∂v

∂q
+
∂v

∂q

∂L

∂q̇

∣∣∣∣
q̇ = v

+
∂L

∂q
=

∂L

∂q
, (3.2.12b)

where { · , H} := ∂H
∂p

∂
∂q
− ∂H

∂q
∂
∂p

is the Poisson bracket. We see that the evolution

equations (3.2.12) are consistent with the EL equation (3.2.9) and the inverse phase

space map [eq. (3.2.10)]. Importantly, it is clear that H(q, p) is stable, by which we

mean that it has quadratic dependence on the canonical momentum p and there-

fore is bounded from below such that the system has a well-defined minimal energy

configuration, a so-called classical vacuum state. Furthermore, due to the existence

of this vacuum state, the energy of a particle is strictly positive (or zero) and so its

trajectories are finite. Of course, this is a desirable feature for any theory hoping

to describe a physical system as it prevents the existence of so-called “ghost” insta-

bilities in which the physical degrees of freedom can have negative kinetic energies.

In this case the Hamiltonian becomes unbounded from below and consequently the

physical trajectories of the particle can become singular in a finite amount of time

(i.e. q(t) and its derivatives become singular) [142]. At the quantum level this means
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that, if the system is interacting, the existence of negative energy states signals an

instability, since the system can continue to lower its energy interminably by pro-

ducing a cascade of negative energy states. This causes the Hamiltonian to become

unbounded from below since such “ghost” states can have arbitrarily high negative

energy, meaning that there is no stable vacuum state.11

Let us now consider the same system, but this time with a non-degenerate depen-

dence on q̇ and q̈, thus described by a Lagrangian L(q, q̇, q̈). Now the EL equation is

given by,
∂L

∂q
− d

dt

(
∂L

∂q̇

)
+

d2

dt2

(
∂L

∂q̈

)
= 0 . (3.2.13)

As L(q, q̇, q̈) depends non-degenerately on q̇ and q̈, by which we mean det
(
∂2L
∂q̇2

)
6= 0

and det
(
∂2L
∂q̈2

)
6= 0, we see that we now need four pieces of initial data, q0, q̇0, q̈0 =

q̈(t0) and
...
q 0 =

...
q (t0), in order to find solutions to eq. (3.2.13). Thus, our phase space

for this system must have four independent canonical coordinates, originally chosen

by Ostrogradsky to be,

q1 = q , p1 =
∂L

∂q̇
− d

dt

(
∂L

∂q̈

)
, (3.2.14a)

q2 = q̇ , p2 =
∂L

∂q̈
. (3.2.14b)

In principle we can then invert these transformations and find a solution for q̈, and

since the Lagrangian depends on the coordinates q, q̇ and q̈, we consequently need

only three out of the four phase space coordinates to do so, a fact that has significant

consequences. Indeed solving for q̈ in terms of q1, q2 and p2 requires the existence of

a function a(q1, q2, p2) such that,

∂L

∂q̈

∣∣∣∣q = q1 ,
q̇ = q2 ,
q̈ = a

= p2 . (3.2.15)

11One could of course redefine the inner product such that the energy is always positive, however,
this would result in negative norm states which would no longer lend themselves to a probabilistic
interpretation.
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To obtain Ostrogradsky’s Hamiltonian we then Legendre transform L(q, q̇, q̈) with

respect to both q̇ = q(1) and q̈ = q(2),

H(q1, q2, p1, p2) =
2∑

i = 1

piq
(i) − L(q, q̇, q̈) ,

= p1q2 + p2a(q1, q2, p2)− L(q1, q2, a(q1, q2, p2)) . (3.2.16)

The corresponding equations of motion for the systems phase space coordinates qi

and pi (i = 1, 2) are,

q̇i = {qi, H} =
∂H

∂pi
, ṗi = {pi, H} = −∂H

∂qi
. (3.2.17)

One can check each equation to confirm that Ostrogradsky’s Hamiltonian generates

time evolution of the system:

q̇1 =
∂H

∂p1

= q2 , (3.2.18a)

ṗ1 = −∂H
∂q1

= −p2
∂a

∂q1

+
∂L

∂q1

+
∂a

∂q1

∂L

∂q̈

∣∣∣∣q = q1 ,
q̇ = q2 ,
q̈ = a

=
∂L

∂q
, (3.2.18b)

q̇2 =
∂H

∂p2

= a+ p2
∂a

∂p2

− ∂a

∂p2

∂L

∂q̈

∣∣∣∣q = q1 ,
q̇ = q2 ,
q̈ = a

= a , (3.2.18c)

ṗ2 = −∂H
∂q2

= −p1
∂a

∂q2

+
∂L

∂q2

+
∂a

∂q2

∂L

∂q̈

∣∣∣∣q = q1 ,
q̇ = q2 ,
q̈ = a

= −p1 +
∂L

∂q̇
. (3.2.18d)

Hence we see that Eqs. (3.2.18a) and (3.2.18d) reproduce the phase space transfor-

mations q̇ = q2 and p1 = ∂L
∂q̇
− d

dt

(
∂L
∂q̈

)
, respectively. Furthermore, Eqs. (3.2.18c)

and (3.2.18b) reproduce the inverse mapping [eq. (3.2.15)] and the EL equation

(3.2.13), respectively, and thus confirm that H(q1, q2, p1, p2) does indeed generate

time evolution. Moreover, it can be seen from eq. (3.2.16) that if H(q1, q2, p1, p2)

is not explicity time-dependent then it is conserved under time translations, and

therefore it constitutes the energy of the system. Notice from eq. (3.2.16), however,

that the Ostrogradsky Hamiltonian has a linear dependence on the conjugate mo-

mentum p1. Consequently, any system of this form possesses an instability. Indeed,

as discussed earlier, the Hamiltonian is unbounded from below. The situation at
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the quantum level is more severe; it can be shown that the same Ostrogradsky-type

canonical variable carries both positive and negative creation and annihilation oper-

ators, the result of which is that, if the system is interacting, then the ground-state

can dynamically decay into a collection of positive and negative energy excitations

[141]. Perhaps the most severe consequence of this instability is that degrees of free-

dom with large momenta do not decouple from low energy physics (due to the fact

that high energy modes can be excited by also exciting modes with the opposite

energy), rendering effective field theory useless.

One might ask whether this instability can be cured by simply adding higher-order

time-derivatives to the Lagrangian, however, it can be shown that this simply makes

the problem more acute. This result is very general and can be extended to the

continuum limit such that it carries over to QFT. All is not lost, however, as the

problem arises due to the Lagrangian having a non-degenerate dependence on second-

order (and higher) time derivatives of the physical degrees of freedom, resulting in

equations of motion that contain higher than second-order time-derivatives. Thus,

there is a loop-hole in Ostrogradsky’s argument: one can construct a Lagrangian

that has higher- (than first) order time-dependence so long as it is degenerate such

that it maintains second-order equations of motion. In fact, this loop-hole is readily

exploited by GR; the Einstein-Hilbert Lagrangian contains second-order time deriva-

tives of the metric, however, in can be shown that this dependence is degenerate and

hence Einstein’s field equations remain second-order [143]. This observation is of vi-

tal importance in the construction of modified theories of gravity such as those that

will be discussed in §4.

3.2.3 Screening mechanisms

One of the more common approaches in attempts to solve the CCP in recent years,

is to introduce new degrees of freedom into the gravitational sector, the simplest

being an additional scalar field φ, of which we shall base our following discussion

on (here we follow [63], and refer the reader to it for a more detailed review of

screening mechanisms). Since we require these new degrees of freedom to negate the

contribution of ρvac to the net cosmological constant to an accuracy of ∼ H2
0M

2
Pl ∼

(meV)4, we generically require that φ are light scalars, i.e.,

mφ . H0 , (3.2.19)
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where H0 is the present-day Hubble parameter. This requirement is clear from an

EFT point of view, as if they were any heavier then we could simply integrate them

out such that their contribution is irrelevant to the low energy dynamics of the the-

ory. Since the CCP is a problem arising in the infrared sector of GR, such a theory

would clearly be useless as a solution to the CCP. A generic problematic feature

arises in such approaches to modify gravity, due to the requirement that these new

light scalars must couple to the the SM fields if they are to alleviate the problem of

vacuum loop contributions to the cosmological constant. The result is that a given

scalar φ mediates an additional fifth force between SM particles, besides gravity,

electromagnetism and the weak and strong nuclear forces, the range of which is

∼ m−1
φ . The requirement that φ is light [eq. (3.2.19)] implies that this range is of

order the present Hubble radius, and as such the fifth force is mediated at both cos-

mological distances and within the solar system. However, within the solar system

GR is well tested (see e.g. [7]), and there is no evidence to suggest the existence

of such fifth forces. Thus, if a modified theory of gravity is to be physically viable

there must be some mechanism by which any effects of such fifth forces are screened

in high density regions, at least at distance scales of order the size of the solar system.

Fortunately, there do exist theoretical models that propose ways in which one can

hide fifth forces, generically termed screening mechanisms. These can be classified in

a fairly general manner though studying how fields present in a Lagrangian manifest

themselves in our classical notions of force and potential. To this end, consider a

general theory for a scalar field with a universal conformal coupling to matter,

L = −1

2
Z̃µν (φ, ∂φ, . . .) ∂µφ∂νφ− V (φ) +

g(φ)

MPl

T , (3.2.20)

where Z̃µν encodes all the possible derivative self-interactions of φ, V (φ) is some

scalar potential, g(φ)/MPl is the (potentially φ dependent) dimensionless coupling

constant between φ and the matter sector, and T = T µµ is the trace of the matter

energy-momentum tensor Tµν . Let us then consider the scalar field in the presence of

a non-relativistic, spherically symmetric, static point source, and expand eq. (3.2.20)

around some background solution , i.e. φ = φ̄+ ϕ and T = T̄ + δT . The Lagrangian

[eq. (3.2.20)] at second-order in fluctuations, δφ = ϕ and δT , is then given by,

L(2) = −1

2
Z µν∂µϕ∂νϕ−

1

2
m2ϕ2 + ϕ

g̃

MPl

δT , (3.2.21)
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where Z µν
(
φ̄, ∂φ̄ . . .

)
encodes the various derivative self-interactions of the scalar

field (evaluated on its background configuration φ̄), and we have re-defined the cou-

pling constant, such that g̃ = g′(φ̄) is dimensionless. Furthermore, we have identified

the coefficient of ϕ2 with the mass, m2
(
φ̄, ∂φ̄ . . .

)
of the fluctuation. The correspond-

ing field equations for ϕ are then schematically given by,

Zµν
(
φ̄
)
∂µ∂νϕ−m2

(
φ̄
)
ϕ+

g̃

MPl

δT = 0 . (3.2.22)

Since the source is non-relativistic, we have that δT → −ρ, and furthermore, it is

possible to diagonalise Zµν [144], significantly simplifying the EOM. Considering a

point-like source, i.e. ρ = M4δ3(x), eq. (3.2.22) reduces to,

Z(φ̄)
(
ϕ̈− c2

s(φ̄)∇2ϕ
)

+m2(φ̄)ϕ = − g̃

MPl

M4δ(3)(x) , (3.2.23)

where we have factored out Z(φ̄) := Z00(φ̄), and defined an effective speed of sound

c2
s(φ̄) := Zii(φ̄)

Z00(φ̄)
at which the fluctuations propagate.

For a static field configuration (neglecting the spatial variation of φ̄ over the scales

of interest), we can solve eq. (3.2.23) using standard Green function techniques, such

that the resulting potential is given by

V (r) = − g̃M4

c2
sZM

4
Pl

e
− m√

Zcs
r

4πr
. (3.2.24)

We thus see that the classical force arising from this potential is given by

Fϕ(r) = −∇V (r) = − g̃M4

c2
sZM

4
Pl

1

4πr2

(
1 +

mr

cs
√
Z

)
e
− m

cs
√
Z
r
r̂ , (3.2.25)

where r̂ is a radial unit 3-vector. We see then that Fϕ(r) describes an attractive force.

In particular, for a light scalar, the second term in the brackets is negligible and the

exponential term approximately unity. If the remaining parameters are O(1), then it

is clear that ϕ mediates a gravitational strength long range force Fϕ := |Fϕ| ∼ 1
r2 .

The problem with this is that precision tests of GR on solar system scales strongly

prohibit the presence of such a force, and so one needs a mechanism by which its

effect is negligible in high density regions of spacetime, in doing so, rendering them

undetectable at the current experimental precision. Fortunately, the fact that the

remaining parameters, g̃, Z, cs and m all depend on the background configuration
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of the scalar field provide ways by which one can generate a screening mechanism.

Indeed, such mechanisms can be understood in terms of making one (or more) of

these parameters dependent on the background environment:

1. Weak coupling: If one lets only the scalar-matter coupling g̃ depend on the

environment, then it is possible to have scenarios in which for low density

regions, g̃ ∼ O(1), such that a gravitational strength fifth force is present,

however, for high density regions, g̃ can be made small enough such that the

fifth force is sufficiently weak to satisfy constraints placed by local tests of GR.

Examples of such cases include the symmetron [145–147] and varying dilaton

models [148, 149].

2. High mass: An alternative is to allow the mass m(φ̄) depend on the local

matter density, such that in high density regions, the field acquires a large

mass, enabling a Yukawa-like suppression, and thus rendering its interaction

short-ranged (r ∼ 1
m

), to the extent that its effects are unobservable. In low

density regions (e.g. interstellar space), its mass would be much lighter and

thus the scalar would mediate a graviational fifth force. This is essential the

assumption of the Chameleon mechanism [150, 151].

3. Kinetic screening: A third option is to allow the kinetic function Z(φ̄) to

depend on the background environment - becoming large in high density re-

gions. This corresponds to a kinetic-type screening, in which either the first

or second derivatives become important. The case in which first derivatives of

the field become relevant is employed by theoretical models such as k-Mouflage

[152, 153], DBI and k-essence models [154, 155]. Where second derivatives

of the scalar field become important corresponds to the Vainshtein screening

mechanism [156, 157].

4. Sound speed: The final option is to consider cases in which the effective speed

of sound cs(φ̄) becomes very large in high density regions, however, this is not

particulary useful since it manifestly relies on superluminality. Furthermore,

for time dependent sources the screening will not be very efficient, since cs will

only multiply spatial gradients of the field (cancellations between ˙̄φ and ∇φ̄
terms contained in Z can occur, leading to smaller values of |Z|).

It is evident that, in general, a modified theory of gravity will require a screen-

ing mechanism to be empirically viable. That being said, it should be noted that

such screening mechanisms are not without their own problems. For example, the
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Chameleon mechanism came about through an attempt to explain the non-detection

of light scalar fields, with gravitational strength couplings to matter fields, in local

experiments. The idea being that the effective mass of such a scalar field is depen-

dent on the local environment, such that it mediates a force long range force in low

density regions, but is heavily suppressed in high density regions (such as the solar

system), rendering it an extremely short range force on local scales, hence the name

the “Chameleon”. In principle, this would enable it to have non-trivial effects on

large distance scales, but remain undetectable to current local gravitational experi-

ments.

As such, it was orignally though that the Chameleon might explain the late-time

acceleration of the universe [158]. Unfortunately, it has been shown that under cer-

tain assumptions, it is unable to account for dark energy by itself as a genunine

modification of gravity, instead requiring a form of dark energy [159, 160]. Indeed,

J. Wang, L. Hui and J. Koury argued in [160] that one can place an upper bound

on the Compton wavelength of the Chameleon of O(1Mpc), three orders of magni-

tude below the present Hubble scale, and thus restricting its impact to non-linear

scales (due to Yukawa suppression). A further issue with the Chameleon model is

that the coupling between the Chameleon and matter degrees of freedom, which is

essential for successful screening on local scales, causes a breakdown in its classical

description in the epoch of Big Bang Nucleosynthesis (BBN) due to the SM fields

transferring from relativistic to non-relativistic [161, 162]. At these energy scales,

one expects to have control over the theory if it is to present a viable alternative to

GR. The primary cause of this breakdown of the classical description is due to the

conformal coupling, β ∼ O(1), between matter and the Chameleon. Recently, a pos-

sible solution to alleviate this problem was presented, which involves modifying the

original Chameleon theory, such that it can support a Vainshtein mechanism, and

in doing so, dynamically weakening the coupling to the matter degrees of freedom,

and rendering the theory well-behaved during BBN [163].

A further example is the Vainshtein mechanism, originally constructed to resolve

issues in massive gravity [156], in particular the vDVZ discontinuity [164, 165]. This

mechanism is by no means exclusive to massive gravity and is in fact employable in

other modifications of gravity, in particular those that introduce new scalar degrees

of freedom that participate in non-linear derivative self-interactions (see e.g. [166–

170]). Indeed, it has since been proven to provide a useful method to locally screen
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additional forces that inevitably arise as a result of introducing these new degrees of

freedom. Such theories always possess a minimal shift symmetry of the scalar field,

φ → φ + c (where c is some constant), to the extent that m
(
φ̄
)

= 0, and g̃ ∼ O(1)

(cf. eq. (3.2.21)).

The Vainshtein mechanism relies on the theory containing higher-order non-linear

self-interactions of the scalar field, which requires Zµν (in eq. (3.2.21)) to be de-

pendent on second-order derivatives ∂∂φ of the field. Specifically, on distance scales

greater than the so-called Vainshtein radius, rV , we have that Zµν ∼ O(1), and

as such, the higher-derivative non-linear self-interactions of the scalar fluctuation ϕ

are suppressed relative to the linear contributions to the scalar EOM (3.2.23). We

therefore find, that ϕ mediates a long-range fifth force of gravitational strength on

these scales. However, for r � rV , we have that Zµν � 1, such that the non-linear

derivative self-interactions start to dominate the EOM (3.2.23). It is then found that,

upon a canoncial normalisation of the scalar fluctuation, ϕ→ Z−1/2ϕ, it couples to

the source T with a strength ∼ 1
MPl

√
Z
� 1

MPl
. Consequently, the fifth force sourced

by ϕ is much weaker then the force propagated by the spin-2 graviton of GR. This

relative suppression on local scales can be exploited to screen such fifth forces from

local gravitational experiments, such that the theory mimics GR on local scales, and

they remain undetectable. We refer the reader to the following reviews [62, 63, 171]

for a detailed introduction to the Vainshtein mechanism.

In principle, this is a powerful tool at our disposal, enabling one quite a bit of free-

dom to construct a modified theory of gravity, whilst still being able to pass solar

system tests of gravity. However, as was the case with the Chameleon mechanism,

it is not without its issues. In particular, the main problem arises from positivity

constraints placed on the coupling constants of the non-linear interactions, which

suggest that for theories such as the Galileon, one cannot construct an EFT that im-

plements the Vainshtein mechanism on local scales, whilst simultaneously describing

the low-energy limit of a local, Lorentz invariant UV completion [172]. Furthermore,

for theories where a UV completion is known, doubt has been cast on whether the

corresponding low-energy EFTs, that are used to exhibit Vainshtein phenomena, can

be trusted [173]. Having said this, given the ability of the Vainshtein mechanism to

provide efficient screening, it still remains employed as a method to cloak the pres-

ence of additional degrees of freedom generically introduced in modified theories of

gravity.
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Chapter 4

Self-tuning solutions to the CCP

4.1 Horndeski theory and the Fab-Four

Having set the scene we see that, foregoing a modification to the field theory sector,

one is not really left with much choice but to modify GR. The most popular route

taken is to consider a minimal approach in which one introduces an additional de-

gree of freedom into the gravitational sector in the form of a scalar field φ, and in

doing so, constructing a so-called scalar-tensor theory of gravity. Indeed, this point

of view has proven to be useful in a wide range of models, one of the earliest be-

ing Brans-Dicke theory, and more recently models inspired by Galileon theory [166]

have been developed [167–170, 174–178]. Of course, as we have discussed in §3.2.2,

one has to be very careful when formulating a new theory, importantly, ensuring

that it does not propagate Ostrogradsky ghost instabilities, furthermore, given that

GR has so far proven very successful phenomenologically, one must keep at least

some of its structure in order to agree with experimental data. Given this, several

desired features are most often required for a modified theory of gravity: that it is

causal; it satisfies the EEP; and that the corresponding EOM are of second-order

in derivatives. In fact, it was first discovered by G.W. Horndeski in 1974 [179], and

more recently re-discovered by C. Deffayet et al. [180], that the most general class of

scalar-tensor theories possessing second-order field equations, are described by the

so-called Horndeski action,

SH [φ, gµν ] =
5∑

i = 2

∫
d4x
√
−g L(i) , (4.1.1)
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where the component Lagrangians are defined as,

L(2) = K (φ,X) , (4.1.2a)

L(3) = −G3 (φ,X)�φ , (4.1.2b)

L(4) = G4 (φ,X)R +G4,X

[
(�φ)2 − (∇µ∇νφ)2] , (4.1.2c)

L(5) = G5 (φ,X)Gµν∇µ∇νφ−
1

6
G5,X

[
(�φ)3 − 3�φ (∇µ∇νφ)2 + 2 (∇µ∇νφ)3] ,

(4.1.2d)

where X = −1
2
∂µφ∂µφ is the canonical kinetic term for the scalar field φ = φ(x).

The corresponding field equations for the Horndeski action [eq. (4.1.1)] are then

Eµν := 1√−g
δSH

δgµν
= 0 and Eφ := 1√−g

δSH

δφ
= 0. Note that, as the theory is diffeomor-

phism invariant, the scalar field equation Eφ and the metric field equation Eµν are

related via ∇µEµν = 1
2
Eφ∇νφ, and so Eφ can be readily determined given knowledge

of Eµν .

Introducing a matter action SM [gµν ,Ψ], one can ensure that the EEP is satisfied

by requiring that the matter fields are minimally coupled to gravity via the metric

gµν , i.e. there are no direct couplings between the scalar field φ and the matter fields

Ψ. The full action for the theory is thus given by

S [φ,Ψ, gµν ] = SH [φ, gµν ] + SM [gµν ,Ψ] . (4.1.3)

From which we obtain the following field equations: Eµν = 1
2
T µν and Eφ = 0, where

T µν = − 2√−g
δSM

δgµν
.

As mentioned briefly in §3.2.1, it is in principle possible to evade Weinberg’s no-go

theorem. Indeed, this possiblility was explored within the class of Horndeski theories,

and in doing so, a general class of self-tuning theories, the so-called Fab-Four, was

discovered [60, 181]. It was found that one can solve the CCP, at least at the classical

level, through a viable self-tuning mechanism that completely screens the spacetime

curvature from the cosmological constant. Moreover, the Fab-Four may also be able

to solve the radiative instability that is at the heart of the CCP, as at least heuristi-

cally, it appears that the radiative corrections in this theory are manageable, given

some not too restrictive conditions.
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The essential idea of Fab-Four theory is to allow the cosmological constant to exist,

and take on any value it may, but in such a way that its presence does not affect

the spacetime geometry seen by matter, i.e. it simply does not source curvature.

The starting point in the construction of this theory is to consider a scalar field φ

that is able to self-tune such that it can screen the spacetime geometry from the

cosmological constant. Furthermore, since the cosmological constant manifests itself

in the infrared sector of gravity, we require that φ is a light degree of freedom, i.e.

mφ ∼ H0, such that it can mediate long-range interactions.1 Additionally, so as not

to fall afoul of Weinberg’s no-go theorem, one breaks Poincaré invariance at the level

of the self-tuning field φ, that is, one allows the self-tuning vacuum configurations

of φ to become time-dependent, φ = φ(t). To proceed, we shall therefore consider

Horndeski’s theory on FRW backgrounds, for which we have a spatially homogeneous

scalar field φ = φ(t), and the metric is of the form given by eq. (2.1.1). Then, since

we wish to determine whether Horndeski’s theory admits self-tuning solutions, we

need to define what it means for a theory to be able to self-tune in a relatively model

independent manner. To do so, we define a so-called self-tuning filter :

S.1 The vacuum solution of the theory should always be Minkowksi, regardless of

the value of the net cosmological constant;

S.2 This should remain true before and after any phase transition in which the

cosmological constant jumps instantaneously by a finite amount;

S.3 The theory should admit a non-trivial cosmology, in other words, it does not

self-tune for any other matter backgrounds other than vacuum energy (ensuring

that Minkowksi spacetime is not the only solution, a condition that is certainly

required by observational data).

This provides us with a template for viable cosmological field equations, i.e. those

that describe dynamical evolution towards Minkowksi spacetime as some sort of fixed

point. By this it is meant that, if we are on a Minkowksi solution, we stay there,

otherwise we dynamically evolve to it as an attractor solution.2 It is worth noting

that any diffeomorphism invariant theory that passes through both the first two

conditions of this filter will admit a Minkowksi solution in the presence of not just a

1If it were any heavier, then Yukawa suppression would reduce its range to below the Hubble
scale, since r ∼ 1

mφ
, and hence it would not be able to mediate interactions on cosmological scales.

2It has been shown in [182] that there are many examples within the Fab-Four class of self-tuning
theories in which this is the case.
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cosmological constant, but an arbitrary cosmological fluid. The reason being is that

the vacuum energy density corresponds to a piece-wise constant function, with dis-

continuities arising at phase transitions, which in principle, can occur at any time.

As such, a Minkowksi solution can be returned for all piece-wise constant energy

densities. The third condition is then in place to ensure that a theory, satisfying

the first two conditions, also permits (in some sense3) reasonable matter dominated

cosmologies.

Remarkably, having passed Horndeski theory through the self-tuning filter, and ap-

plying the ensuing constraints, it was found that one can establish a self-tuning,

minisuperspace Lagrangian on the FRW background. Furthermore, it was shown

in [60], that it is possible to reconstruct curvature invariants from the correspond-

ing cosmological field equations, leading to a set of base Lagrangians defining the

Fab-Four theory:

SFab-Four[φ,Ψ, gµν ] =

∫
d4x
√
−g [Lj + Lp + Lg + Lr − Λbare] + SM [gµν ,Ψ] ,

(4.1.4)

where Λbare is a bare cosmological constant (which can always be absorbed into a

renormalisation of the vacuum energy contained in SM), and the base Lagrangians,

denoted John, Paul, Ringo and George, are given by

Lj = Vj(φ)Gµν∇µφ∇νφ , (4.1.5a)

Lp = Vp(φ)P µναβ∇µφ∇αφ∇ν∇βφ , (4.1.5b)

Lg = Vg(φ)R , (4.1.5c)

Lr = Vr(φ)Ĝ , (4.1.5d)

where {Vi} (i = {j, p, g, r}) are arbitrary functions of the scalar field φ, R is the

Ricci scalar, Gµν the Einstein tensor, Ĝ the Gauss-Bonnet combination, and P µναβ

the double-dual of the Riemann tensor.

This result implies that any self-tuning scalar-tensor theory (within the class of

3The caveat here is that it was found in [182], that the scalar field completely determines the
dynamical evolution of the universe regardless of the dominant matter content. This is problematic,
as one expects the dynamical evolution of the universe to be dictated by its matter content. In this
sense, the Fab-Four self-tuning mechanism is too good. That being said, despite not providing the
ultimate solution to the CCP, it is a significant step in the direction of one.
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Horndeski theories), that satisfies the EEP, must be constructed from the Fab-Four.

The four base Lagrangians are not all able to self-tune in isolation, in particular, it

was found that Lr is unable to give rise to self-tuning “without a little help from

[its] friends” [181], John and Paul (hence the name Fab-Four). In this particular

case, Ringo has a non-trivial effect on the cosmological dynamics, but self-tuning is

still possible. Furthermore, when {Vj = 0, Vp = 0, Vg = const., Vr = 0}, the Fab-

Four reduces to GR and is therefore unable to self-tune. If we allow Vg to vary (i.e.

Vg 6= const.) then we recover a particular limit of Brans-Dicke gravity (w = 0),

which is able to self-tune, but ruled out by solar system constraints. It follows that

one should consider the Fab-Four Lagrangians, not in isolation as theories in their

own right, but as combining to give a single self-tuning theory. Of course, in order

for the Fab-Four to be a viable physical theory, it must permit some sort of screening

mechanism such that it can pass solar system tests (since GR is well tested at these

scales). From eq. (4.1.5), we see that John and Paul have non-trivial derivative in-

teractions contained in them, and as such, these may be able to provide the require

screening through Vainshtein or Chameleon effects [150, 156, 181].

Before proceeding, we remark that, although the Fab-Four certainly provides a so-

lution to the CCP at the classical level, (as we discussed in §3.1.1) a full solution

to the problem must resolve the issue of radiative instability of the vacuum. An

initial heurisitic analysis tentatively suggests that it might be possible to render

certain forms of Fab-four theory safe from large quantum corrections around a self-

tuning background, provided that the cut-off of the effective theory ΛUV satisfies
√
GeffρΛ < ΛUV < ρ

1/4
Λ , where Geff is the gravitational coupling strength to matter in

the linearised regime [60]. It should be noted, however, that the radiative stability of

the theory cannot be fully addressed without a better understanding of the preferred

background solutions and potentials, since the corrections are sensitive to the cut-off,

itself sensitive to the background.

4.2 Disformal self-tuning

Given the success of the Fab-Four at providing a potential viable solution to the

CCP, one is left wondering if it is possible to generalise this result even further. In-

deed, a minimal extension was found by Babichev et al. [183], in which they consider

Fab-Four potentials Vi that depend on both the scalar field φ and its corresponding

canonical kinetic term X. However, one can consider an alternative generalisation in
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which one allows the scalar field to enter the matter sector, interacting with matter

directly. Before proceeding, we note that the class of Horndeski theories is invari-

ant under conformal transformations of the metric, gµν(x) → ḡµν(x) = A(φ)gµν(x)

(where φ is some scalar field), by which we mean that if a given scalar-tensor theory

is related to Horndeski theory by a conformal transformation, then it can always be

put into Horndeski form (i.e. of the form given by eq. (4.1.1)) by appropriate field

re-definitions φ → φ̄ = F (φ) [184]. Accordingly, in order to achieve such a general-

isation, one must consider a disformal coupling of matter to gravity. The presence

of disformal couplings is theoretically well motivated, appearing in the low energy

effective action of string theory [185], and manifesting in Galileon theories through

the induced metric on probe branes within higher dimensional spacetimes [186, 187],

as well as in the decoupling limit of massive gravity [188].

Following this approach, we consider two distinct (but related) geometries: one defin-

ing the geometry on which matter plays out its dynamics, and one describing gravi-

tation. We refer to these as physical and gravitational geometries, described by the

two metrics, ḡµν and gµν , respectively. It was shown by Bekenstein [189], that the

most general relation between these two metrics, involving a scalar field φ = φ(x)

and its canonically conjugate kinetic term X, adhering to the WEP and causality,

is given by the following disformal transformation,

ḡµν(x) = A2(φ,X)
[
gµν(x) +B2(φ,X)∂µφ∂νφ

]
, (4.2.1)

where A(φ,X) and B(φ,X) are arbitrary functions of φ and X. We further note that

it has been shown that the Horndeski action is invariant (up to field redefinitions)

under disformal transformations of the metric [eq. (4.2.1)] in which A and B depend

solely on φ (and not X) [184], and so in order to fully generalise beyond any subset

of Horndeski theory, one must consider cases in which A and B are non-trivially

dependent on X as well as φ.

The inverse metric ḡµν transformation can be determined using the Sherman-Morrison

formula [190, 191] for the inverse of the sum of an invertible matrix M and the outer

product uvT , of two vectors u and v:

(
M + uvT

)−1
= M−1 − M−1uvTM−1

1 + vTM−1u
, (4.2.2)

68



4.2. Disformal self-tuning

In our case, the role of M is played by the metric gµν , and the roles of u and v

are both played by the gradient of the scalar field ∂µφ (appropriately multiplied by

factors of A an B). As such, we find that the inverse metric ḡµν is of the form,

ḡµν =
1

A2(φ,X)

[
gµν − B2(φ,X)

1− 2B2(φ,X)X
gµλgνσ∂λφ∂σφ

]
. (4.2.3)

Moreover, we can determine the relationship between the integration measures
√
−g

and
√
−ḡ (where g := det(gµν) and likewise for ḡ) from the determinant relation

det
(
M + uvT

)
=
(
1 + vTM−1u

)
detM . Indeed, we have that,

ḡ = A8
(
1− 2B2X

)
g =⇒

√
−ḡ = A4

√
1− 2B2X

√
−g . (4.2.4)

From eq. (4.2.3), we are also lead to an expression for the canonical kinetic term X,

in terms of the physical metric,

X̄(φ,X) = −1

2
ḡµν∂µφ∂νφ =

X

A2(φ,X) (1− 2B2(φ,X)X)
. (4.2.5)

In principle, we can invert this equation such that X = X(φ, X̄), and with this in

mind, we can rearrange eq. (4.2.1) to arrive at an expression for the inverse disformal

transformation, from the physical to the gravitational metric,

gµν(x) =
1

A2(φ,X)

[
ḡµν(x)− A2(φ,X)B2(φ,X)∂µφ∂νφ

]
:= Ā2(φ, X̄)

[
ḡµν(x)− B̄2(φ, X̄)∂µφ∂νφ

]
, (4.2.6)

where X is implicitly dependent on φ and X̄. From this, we can imply that Ā and

B̄ are related to A and B in the following manner,

Ā2(φ, X̄) =
1

A2(φ,X)
, B̄2(φ, X̄) = −A2(φ,X)B2(φ,X) . (4.2.7)

Equipped with this knowledge, we are able to delve into the details of constructing

a disformal generalisation of the Fab-Four.

Our aim is to construct a self-tuning theory of gravity in which matter is disfor-

mally coupled to the gravitational metric, described by an action of the form

S = SH [gµν , φ] + SM[ḡµν ,Ψ] , (4.2.8)
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where, as usual, Ψ collectively denotes the matter fields. Note that, in this repre-

sentation of the theory, there is a direct coupling of both gravity and matter to the

scalar field φ, due to the non-trivial dependence of ḡµν on φ and its gradient ∂µφ. The

reason this is the case is that, in this representation, we treat gµν , φ and Ψ as our

fundamental dynamical variables, with the physical geometry ḡµν , determined via

eq. (4.2.1). An alternative representation of the theory can be found by expressing

the action, eq. (4.2.8), in terms of ḡµν , φ and Ψ, treating these as our fundamental

dynamical variables, with gµν determined via eq. (4.2.6),

S = SH [ḡµν , φ] + SM[ḡµν ,Ψ] . (4.2.9)

In doing so we eliminate any direct coupling of φ to the matter sector at the level of

the action, however, the gravitational sector remains directly coupled to to the scalar

field φ. In principle, there is an infinite number of ways in which we could represent

our theory, however, these two particular representations are often the most use-

ful. Conventionally, these different representations are referred to as “frames”, and

adopting this terminology, we shall refer to the representation in which the action

has the form given by eq. (4.2.8), as the Horndeski frame, which is the analogue of

the Einstein frame.4 The representation in which we can express the action in the

form given by eq. (4.2.9) is referred to as the Jordan frame. At least at the classical

level, all physical observables are independent of the frame we calculate them in, and

so we are free to work in whichever frame is most suitable.

It is in the Jordan frame that matter is minimally couple to the (physical) met-

ric ḡµν , and follows the geodesics defined by it. This is in stark contrast to the

Horndeski frame, in which the matter geodesics defined by the metric are also in-

fluenced by variations in the scalar field φ. Furthermore, in the Jordon frame, the

matter energy-momentum tensor is locally conserved, i.e. ∇̄µT̄
µν = 0, whereas, in

the Horndeski frame this is not true, ∇µT
µν 6= 0, due to the direct coupling between

the scalar field φ and the matter fields. It is for these reasons that we consider the

Jordan frame to be the physical frame: matter follows geodesics defined purely by

the metric ḡµν , and its energy-momentum tensor T̄ µν is locally conserved.

4The Einstein frame is a representation of a theory in which the gravitational action is of the
form of the EH action [eq. (1.2.1)].

70
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4.2.1 Towards a disformally self-tuning theory of gravity

As our aim here is to construct a generalisation of Fab-Four theory, we shall adopt

the self-tuning structure laid out in its original derivation. Thus, by a self-tuning the-

ory, we assume the existence of a spatially homogeneous, light scalar field φ = φ(t),

that is able to evolve in such a way as to dynamically screen any vacuum energy

density contributed by the net cosmological constant from the spacetime curvature

seen by matter. In other words, the presence of the scalar field effectively degravitates

the net cosmological constant. Moreover, in order for the theory to be a physically

legitimate self-tuning theory of gravity, we require it to satify the requirements laid

out by the self-tuning filter, S.1 - S.3.

To proceed, we shall set-up the cosmological structure in which we shall carry out our

self-tuning analysis, and to do so, we require that the geometry in both the Horndeski

and the Jordan frame are both FRW. To this end, in the Horndeski frame, where we

treat gµν , φ and Ψ as our fundamental dynamical variables, with the Jordan-frame

(physical) metric, ḡµν , defined via eq. (4.2.1), and foliate spacetime into a set of space-

like hypersurfaces, Σt, such that the spatial “slice” at each given instant in time t

is homogeneous and isotropic (this corresponds to making a minisuperspace approx-

imation5). The geometry defined by the Horndeski-frame (gravitational) metric gµν

is then,

ds2 = gµν(x)dxµdxν = −N2(t)dt2 + a2(t)γij(x)dxidxj , (4.2.10)

where N(t) is the lapse function, a(t) the scale factor, and γij(x) the (maximally

symmetric) metric on the plane (k = 0), sphere (k = 1), or hyperboloid (k = −1)

given by eq. (2.1.2).

In the Jordan frame, where we instead treat ḡµν , φ and Ψ as our fundamental

dynamical variables, with the Horndeski-frame metric, gµν defined via eq. (4.2.6),

we similarly stipulate that the geometry defined by the Jordan-frame metric ḡµν is

asymptotically Minkowksi in form, and as such,

ds̄2 = ḡµν(x)dxµdxν = −dt2 + ā2(t)γij(x)dxidxj . (4.2.11)

5Superspace is the configuration space in the Hamiltonian formulation of GR; it is the set of
equivalence classes of 3-dimensional metrics γij(x) on the hypersurfaces Σt foliating spacetime. The
minisuperspace approximation corresponds to neglecting spatial dependence in the metric, taking
our gravitational degrees of freedom to be purely time-dependent.
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An immediate consequence of imposing the two geometries Eqs. (4.2.10) and (4.2.11),

along with the assumption that the scalar field is spatially homogeneous, is that the

canonical kinetic term X takes on the following explicit form in the Horndeski frame

X = −1

2
g00∂0φ∂0φ =

1

2

(
φ̇

N

)2

, (4.2.12)

and

X̄ = −1

2
ḡ00∂0φ∂0φ =

1

2
φ̇2 , (4.2.13)

in the Jordan frame. Moreover, we can determine a mapping between the Horndeski

and Jordan frames for the lapse function N(t) and the scale factor a(t) by noting

that the geometry defined by gµν , eq. (4.2.10), can be expressed in the Jordan frame

via the inverse disformal transformation, eq. (4.2.6),

ds2 = −Ā2(φ, X̄)
[
1− 2B̄2(φ, X̄)X̄

]
dt2 + ā2(t)Ā2(φ, X̄)γij(x)dxidxj . (4.2.14)

Since this expression must be equivalent to eq. (4.2.10), we can thus imply the

following relations,

N2(t) = Ā2(φ, X̄)
[
1− 2B̄2(φ, X̄)X̄

]
, (4.2.15a)

a2(t) = ā2(t)Ā2(φ, X̄) , (4.2.15b)

providing a useful check for the relation between X and X̄, eq. (4.2.5).

Having set the cosmological scene, we remark that, since we are considering a spa-

tially homogeneous scalar field, propagating on an FRW background, the Horndeski

Lagrangian is homogeneous, and thus the we can define a corresponding cosmological

minisuperspace action of the form

S̃H :=
SH[gµν |FRW

, φ]∫
d3x
√
γ

=

∫
d4x
√
−gLH

∣∣
FRW∫

d3x
√
γ

=

∫
dt
√
−g̃LH

∣∣
FRW

:=

∫
dtL(t) ,

(4.2.16)

where we have used that
√
−g = N(t)a3(t)

√
γ (noting that γij is maximally symmet-

ric), and defined an effective metric determinant, g → g̃, such that
√
−g̃ = N(t)a3(t).

Furthermore, we have defined the cosmological minisuperspace Lagrangian as L(t) =
√
−g̃LH(t)

∣∣
FRW

.
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Given that the Horndeski Lagrangian encapsulates the dynamics of the gravitational

sector, we shall proceed to evaluate the appropriate curvature terms on the metric

defined in this sector, gµν . We can subsequently map to their corresponding descrip-

tions in terms of the physical metric ḡµν using the inverse disformal transformation

[eq. (4.2.6)] and in doing so, obtain an expression for L(t) in the Jordan frame:

L(t) =
√
−g̃

5∑
i = 2

L(i)

∣∣
FRW

= ā3

3∑
j = 0

Zj(ā, φ, φ̇, φ̈)H̄j , (4.2.17)

where H̄ = ˙̄a
ā

is the Hubble parameter evaluated in the Jordan frame, and the

functions Zj = Zj(ā, φ, φ̇, φ̈) are defined as follows

Z0 = NĀ3K +
(
Ā3
)• φ̇
N
G3 − φ̇G̃3,φ − 6

Ā ˙̄A2

N
G4 − 6Ā2 ˙̄A

φ̇

N
G4,φ

+ 6
Ā ˙̄A2

N

(
φ̇

N

)2

G4,X +
˙̄A3

N2

(
φ̇

N

)3

G5,X − 3
Ā ˙̄A2

N

(
φ̇

N

)2

G5,φ

− k

ā2

(
3φ̇G̃5,φ − 3 ˙̄A

φ̇

N
G5 − 6NĀG4

)
= X0(φ, φ̇, φ̈)− k

ā2
Y0(φ, φ̇, φ̈) , (4.2.18a)

Z1 = 3Ā3 φ̇

N
G3 − 3G̃3 + 12

Ā2 ˙̄A

N

(
φ̇

N

)2

G4,X − 6Ā3 φ̇

N
G4,φ − 12

Ā2 ˙̄A

N
G4

+ 3
Ā ˙̄A2

N2

(
φ̇

N

)3

G5,X − 6
Ā2 ˙̄A

N

(
φ̇

N

)2

G5,φ −
k

ā2

(
3G̃5 − 3Ā

φ̇

N
G5

)
= X1(φ, φ̇, φ̈)− k

ā2
Y1(φ, φ̇, φ̈) (4.2.18b)

Z2 = 6
Ā3

N

(
φ̇

N

)2

G4,X − 6
Ā3

N
G4 + 3

Ā2 ˙̄A

N2

(
φ̇

N

)3

G5,X − 3
Ā3

N

(
φ̇

N

)2

G5,φ

= X2(φ, φ̇, φ̈) , (4.2.18c)

Z3 =
Ā3

N2

(
φ̇

N

)3

G5,X = X3(φ, φ̇, φ̈) , (4.2.18d)
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where we have implicitly defined two auxilliary functions G̃3 and G̃5,

G̃3,X :=
∂G̃3

∂X
=

NĀ3

φ̇
G3 =

Ā3

√
2X

G3 , (4.2.19a)

G̃5,X :=
∂G̃5

∂X
=

NĀ

φ̇
G5 =

Ā√
2X

G5 . (4.2.19b)

Upon inspection of the functional forms of the component functions Zj, we have

further noted that they can be expressed in the following form

Zj(ā, φ, φ̇, φ̈) = Xj(φ, φ̇, φ̈)− k

ā2
Yj(φ, φ̇, φ̈) (4.2.20)

where Y2 = Y3 = 0. The corresponding Hamiltonian density H for the gravitational

sector can then be ascertained by taking the Legendre transform of eq. (4.2.17) with

respect to ˙̄a, φ̇ and φ̈,

H = H (ā, ˙̄a, ¨̄a, φ, φ̇, φ̈,
...
φ ) = ˙̄ap

˙̄a
+ φ̇p

φ̇
+ φ̈p

φ̈
− L

= ā3

3∑
j = 0

[(
(j − 1)Zj + φ̇Zj,φ̇ − φ̇

2Zj,φ,φ̈ − φ̇φ̈Zj,φ̇,φ̈ + φ̈Zj,φ̈ − φ̇
...
φZj,φ̈,φ̈

)
+
(

(j − 3) φ̇Zj,φ̈ − āφ̇Zj,ā,φ̈
)
H̄ − jφ̇

¨̄a

ā
Zj,φ̈H̄

−1

]
H̄j , (4.2.21)

where we have defined the “Ostrogradsky” canonical momenta p
˙̄a

= ∂L
∂ ˙̄a

, p
φ̇

=

∂L
∂φ̇
− d

dt

(
∂L
∂φ̈

)
and p

φ̈
= ∂L

∂φ̈
.

The full Jordan frame Hamiltonian density Htotal of the theory can be constructed

from the contribution from the gravitational sector H , and a source term from the

matter sector in the form of a homogeneous cosmological fluid of energy density

ρ
M

, and pressure p, minimally coupled to the metric, i.e. Htotal = H + ρ
M

. Due to

the invariance of the theory under temporal (and spatial) diffeomorphisms, the full

Hamiltonian satisfies the constraint Htotal = 0.

Finally, to obtain the EOM for the scalar field φ, we can take advantage of the

fact that we are working in the Jordan frame, and as such, matter is decoupled from
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the scalar field. Thus, the EOM for φ can be determined exclusively from eq. (4.2.17),

Eφ = Eφ(ā, ˙̄a, ¨̄a,
...
ā , φ, φ̇, φ̈,

...
φ,

....
φ ) =

∂L
∂φ
− d

dt

(
∂L
∂φ̇

)
+

d2

dt2

(
∂L
∂φ̈

)
= ā3

3∑
j = 0

[
2ā (2− j)Zj,ā,φ̈H̄

2 + ā2Zj,ā,ā,φ̈H̄
2 + 3jZj,φ̈

¨̄a

ā
H̄ − āZj,ā,φ̇H̄

+ 2
(...
φZj,ā,φ̈,φ̈ + φ̈Zj,ā,φ̇,φ̈ + φ̇Zj,ā,φ,φ̈

)
H̄ − (3− j)Zj,φ̇H̄

+ 2 (3− j)
(
φ̈Zj,φ̇,φ̈ + φ̈Zj,φ̇,φ̈ + φ̇Zj,φ,φ̈

)
H̄

+ (j + 1) (3− j)Zj,φ̈
(
1− H̄

) ¨̄a

ā
+

....
φ Zj,φ̈,φ̈ +

...
φ

2
Zj,φ̈,φ̈,φ̈

+ φ̈2Zj,φ̇,φ̇,φ̈ + 2
(
φ̇

...
φZj,φ,φ̈,φ̈ + φ̈

...
φZj,φ̇,φ̈,φ̈ + φ̇φ̈Zj,φ,φ̈,φ̈

)
+ φ̇2Zj,φ,φ,φ̈ + φ̈Zj,ā,φ,φ̈ + φ̇Zj,φ,φ̇ − φ̈Zj,φ̇,φ̇ + Zj,φ

+ ā
(

(2j + 1)Zj,ā,φ̈ − jZj,φ̈
) ¨̄a

ā
+ jZj,φ̈

...
ā

ā
H̄−1

+ 2j
(
φ̇Zj,φ,φ̈ + φ̈Zj,φ̇,φ̈ +

...
φZj,φ̈,φ̈

) ¨̄a

ā
H̄−1 − jZj,φ̇

¨̄a

ā
H̄−1

]
H̄j . (4.2.22)

The Jordan frame field equations for our disformally coupled Horndeski theory are

thus given by

H = −ρ
M
, Eφ = 0 , ρ̇

M
+ 3H̄ (ρ

M
+ p) = 0 . (4.2.23)

4.2.2 Sieving out the self-tuning solutions

So far, we have only applied minimal constraints to our disformally coupled Horn-

deski theory; in order to determine if it admits self-tuning solutions, we need to apply

the self tuning filter, S.1 - S.3, and establish the restrictions placed on the theory.

To do so, we shall continue to work in the Jordan frame, in which the spacetime

geometry is described by ḡµν . Since ḡµν is what matter couples to, we wish to de-

termine how the theory must self-tune in order for the effects of the cosmological

constant to be screened from this metric.

Our starting point is to apply the self-tuning filter in the case where our cosmo-

logical background is in vacuo and consider the implications following from this

scenario. Given this, the matter sector is expected to contribute a constant vacuum
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energy density that we identify with the cosmological constant, Λ = 〈ρ
M
〉vac (as is

the case in the derivation of the Fab-Four [60]). According to the first filter S.1,

the vacuum energy density should have no effect on the spacetime curvature seen by

matter, therefore we require a (portion of) Minkowski spacetime regardless of the

value of Λ. It also follows from the second filter S.2, that this should remain true

even in the case where the matter sector undergoes a phase transition, and in doing

so, alters the net value of Λ by a constant amount (over an effectively infinitesimal

time interval). This translates to requiring the scalar field φ to completely absorb any

abrupt changes in the matter sector, leaving the geometry unaffected. Consequently,

the scalar field tunes itself to each change in the vacuum energy density Λ, and this

must be permitted independently of the time of transition.

Focussing our attention on the first filter S.1, we observe that in order to be con-

sistent with it, our theory must admit cosmological vacuum solutions that are Ricci

flat, i.e. R̄µν = 0. Note that, in the Jordan frame, the Ricci tensor is given by

R̄µ
ν = diag

(
3 ˙̄H+3H̄2, ˙̄H+3H̄2 +2

k

ā2
, ˙̄H+3H̄2 +2

k

ā2
, ˙̄H+3H̄2 +2

k

ā2

)
. (4.2.24)

Thus, enforcing the constraint of Ricci flatness provides us with our so-called on-

shell-in-ā condition

H̄2 = − k

ā2
=
(s
ā

)2

, (4.2.25)

where k = 0 and k = −1 correspond to a flat, and a Milne slicing of spacetime,

respectively (for k = 1, we see that − k
ā2 < 0, and so no flat spacetime slicing is

possible in this case). For brevity, we have also defined s :=
√
−k.

To proceed, we shall assume that φ is a continuous function, but that φ̇, φ̈ and
...
φ can be discontinuous. With this in mind, we then go on-shell-in-ā at the level of

the field equations, imposing (4.2.25) by inserting ā = āk = ā0 + st, whilst leaving φ

to be determined dynamically. In doing so, we find that

H (ā, ˙̄a, ¨̄a, φ, φ̇, φ̈,
...
φ ) → Hk(āk, φ, φ̇, φ̈,

...
φ ) , (4.2.26a)

Eφ(ā, ˙̄a, ¨̄a,
...
ā , φ, φ̇, φ̈,

...
φ,

....
φ ) → Eφk (āk, φ, φ̇, φ̈,

...
φ,

....
φ ) , (4.2.26b)
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such that the on-shell-in-ā field equations are

Hk = −Λ , Eφk = 0 , (4.2.27)

where, in accordance with the second filter, the matter sector contributes Λ to the

vacuum energy density, where Λ is a piece-wise constant function of time. From here

on in, a sub-(super) script k on a variable denotes that it is on-shell-in-ā. Further

note that Hk and Eφk contain no explicit time dependence.

From eq. (4.2.21), we see that the gravitational Hamiltonian is constructed from

a set of functions Zj(ā, φ, φ̇, φ̈) and their derivatives, with terms depending on φ̇, φ̈

and
...
φ . As such, the requirement that it satisfy the condition given by eq. (4.2.27),

imposes constraints on how φ̇, φ̈ and
...
φ appear in H . Furthermore, from eq. (4.2.22),

we see that the scalar EOM is similarly constructed from the functions Zj; we can

therefore use these restrictions on the forms of φ̇, φ̈ and
...
φ to similarly impose con-

straints on the functional form of Eφ. In particular, we note that since Λ is piece-wise

continuous, there must be some discontinuity in Hk to account for this, and as ā

and φ are continuous, this means that Hk must (at least) have some non-trivial

dependence on φ̇.

One might worry about the validity of imposing constraints on the higher-order

derivatives of φ, as they arise from transforming between the Horndeski and Jordan

frames. The point here, however, is that in the Jordan frame the matter sector is

minimally coupled to metric, whereas in the Horndeski frame it is not. Were we to

work in the Horndeski frame, complicated functions of the metric, and the scalar

field (and its derivatives) would be present, and we would have to apply constraints

to these instead. By working in the Jordan frame, the information contained in these

complicated functions manifests as higher-order derivatives of the scalar fields. They

therefore have a physical interpretation, rendering it legitimate to apply the self-

tuning constraints to them.

Given these observations, and the form of H , eq. (4.2.21), it is sufficient to con-

sider the functional dependence of the functions, Zj, on φ̈ in order to determine the

constraints we must impose on φ̇, φ̈ and
...
φ , and subsequently, Eφ. Thus, we are left

with three possible cases to consider:

77



4.2. Disformal self-tuning

1. Zj(āk, φ, φ̇, φ̈) is non-linear in φ̈ ;

2. Zj(āk, φ, φ̇, φ̈) is linear in φ̈ ;

3. Zj(āk, φ, φ̇, φ̈) is independent of φ̈ .

Since we require Hk to possess a discontinuity, we can refer back to eq. (4.2.21)

to derive the constraints this imposes on the forms of φ̈ and
...
φ . We note that at a

phase transition, localised at some time t = t∗, the right-hand side of the Hamiltonian

constraint Hk = −Λ is discontinuous, and therefore, there must be support for this on

the left-hand side. Furthermore, the support for this discontinuity must be provided

by the highest derivative of φ in each case; if it were not, then terms proportional to a

δ-function would appear on the left-hand side of eq. (4.2.27), which is not consistent

with the right-hand side. Thus, proceeding in a case-by-case fashion, we find that:

(Ia) If Zj(āk, φ, φ̇, φ̈) is non-linear in φ̈, then Zj,φ̈,φ̈ 6= 0, and thus
...
φ ∝ θ(t − t∗)

(where θ(t) is the Heaviside step-function), implying that
....
φ ∝ δ(t− t∗).

(Ib) Alternatively, if Zj(āk, φ, φ̇, φ̈) is linear in φ̈, then Zj,φ̈,φ̈ = 0, and so it fol-

lows that φ̈ ∝ θ(t − t∗), such that
...
φ ∝ δ(t − t∗). Note that this condition

automatically implies that Hk is linear in φ̈.

(Ic) Finally, if Zj(āk, φ, φ̇, φ̈) is independent of φ̈, then all derivatives of Zj with

respect to φ̈ vanish. In this case, it follows that φ̇ ∝ θ(t−t∗), and so φ̈ ∝ δ(t−t∗).
Moreover, it is evident from eq. (4.2.21) that Hk is independent of φ̈ and

...
φ .

The implications of this analysis can then be applied to the on-shell EOM, Eφk for φ

[eq. (4.2.22)], placing constraints on the (4.2.27) forms of the functions Zj:

(IIa) If Zj(āk, φ, φ̇, φ̈) is non-linear in φ̈, then Zj,φ̈,φ̈ 6= 0 and accordingly, Eφk is (at

most) linear in
....
φ . However, we know that in this case

....
φ ∝ δ(t− t∗), but we

require that Eφk = 0. There is no support for a δ-function on the right-hand

side of this equation and so we must conclude that, actually, Zj,φ̈,φ̈ = 0.

(IIb) If instead Zj(āk, φ, φ̇, φ̈) is linear in φ̈, then clearly Zj,φ̈,φ̈ = 0 and it follows

that Eφk will be (at most) linear in φ̈. This can be seen by referring back to

eq. (4.2.22), and noting that Zj,φ̇,φ̇ ∼ α(ā, φ, φ̇)φ̈ (since Zj is linear in φ̈), hence

Zj,φ̇,φ̇,φ̈ ∼ α(ā, φ, φ̇), implying that φ̈2Zj,φ̇,φ̇,φ̈ ∼ α(ā, φ, φ̇)φ̈2. We see, therefore,

that this term will cancel with the term −φ̈Zj,φ̇,φ̇, and so any non-linear terms

in φ̈ appearing in Eφk cancel out.
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(IIc) In the final case, if Zj(āk, φ, φ̇, φ̈) is independent of φ̈, then it is immediately

clear that Eφk is (at most) linear in φ̈.

Strictly speaking, these arguments only apply in the neighbourhood of the transition

time t = t∗, however, the transition (or transitions) can occur at any time, so we can

extend these results to include all times. It is evident then, that in each case Zj can

be (at most) linear in φ̈, and consequently, the on-shell-in-ā Lagrangian, Lk, will be

also. This suggests that Lk should be of the form

Lk = α(āk, φ, φ̇) + φ̈ β,φ̇(āk, φ, φ̇) , (4.2.28)

where the derivative of β with respect to φ̇ has been introduced for later convenience

(α and β are arbitrary at this point and so we are always free to arrange things such

that this is the case). Note that ˙̄a = const. when on-shell-in-ā and so, whilst α and

β can be dependent on ā, they will not be dependent on any of its derivatives.

From eq. (4.2.17), it is clear that L only depends on the form of the functions Zj

(since the form of H̄ is fixed as H̄ = ˙̄a
ā
). We can thus deduce that in cases 2 and 3, the

on-shell-in-ā Lagrangian can always be cast into the form given by eq. (4.2.28); case

1 is less obvious. To prove that Lk can be expressed in the form given by eq. (4.2.28)

even in the case where, Zj(āk, φ, φ̇, φ̈) is non-linear in φ̈, we refer to the on-shell-

in-ā scalar EOM, Eφk = 0, and concentrate on the terms proportional to
....
φ , i.e.

ā3
∑3

j=0

....
φ Zj,φ̈,φ̈H̄

j
k ⊂ E

φ
k . Now, we know that in case 1,

....
φ ∝ δ(t − t∗), however,

there is no support for a δ-function on the right-hand side of Eφk = 0, and so it must

be the case that, in actual fact, Zj,φ̈,φ̈(āk, φ, φ̇, φ̈) = 0, i.e. Zj cannot be non-linear in

φ̈ (for all j). Therefore, we see that in all three cases, the on-shell-in-ā Lagrangian

can be expressed in the form given by eq. (4.2.28).

From our ansatz for Lk, eq. (4.2.28), we can subsequently ascertain an expression

for the on-shell-in-ā scalar EOM, Eφk

Eφk = φ̈fk(āk, φ, φ̇) + gk(āk, φ, φ̇) = 0 , (4.2.29)
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where

fk(āk, φ, φ̇) = −α,φ̇,φ̇ + 2β,φ,φ̇ + φ̇β,φ,φ̇,φ̇ + sβ,ā,φ̇,φ̇ , (4.2.30a)

gk(āk, φ, φ̇) = −α,φ − φ̇α,φ,φ̇ − sα,ā,φ̇ + 2sφ̇β,ā,φ,φ̇ + φ̇2β,φ,φ,φ̇ + s2β,ā,ā,φ̇ , (4.2.30b)

and we note that there is no explicit time dependence contained in either fk or gk.

Given these expressions for fk and gk, we can work through each case, 1 - 3, ap-

plying the ensuing constraints that they must satisfy. Since the latter two cases are

less computationally heavy we shall start with those first, working backwards to-

wards case 1.

We first look at case 3, in which Zj(āk, φ, φ̇, φ̈) is independent of φ̈. We now know

that this implies φ̈ ∝ δ(t − t∗), however, there is no support for a δ-function on

the right-hand side of the on-shell field equation6, eq. (4.2.29), and therefore, we are

forced to conclude

fk(āk, φ, φ̇) = 0 , ⇒ gk(āk, φ, φ̇) = 0 . (4.2.31)

If we then take the time derivative of these constraints,

dfk
dt

= φ̈fk,φ̇ + φ̇fk,φ + sfk,ā = 0 ,
dgk
dt

= φ̈gk,φ̇ + φ̇gk,φ + sgk,ā = 0 , (4.2.32)

(where we have noted that ˙̄ak = s on-shell-in-ā) we can use the same argument to

arrive at the conclusion that fk,φ̇ = 0 = gk,φ̇, i.e. both fk and gk are independent

of φ̇. Moreover, referring back to eq. (4.2.32), with fk,φ̇ = 0 = gk,φ̇, we see that the

right-hand side contains a discontinuity, due to the presence of φ̇, however, this is

inconsistent with the left-hand side (of which there is no discontinuity), and hence

we must further have that fk,φ = 0 = gk,φ. Thus, both on-shell-in-ā functions, fk

and gk, depend on (at most) only ā, i.e.

fk = fk(āk) , gk = gk(āk) . (4.2.33)

It can be readily seen, through following the same set of steps (up to taking an

additional time derivative), that this result also holds for case 2, in which Zj is linear

6Note that this argument relies on the fact that there is no explicit time dependence in fk and
gk, and so there is nothing to absorb the discontinuity in φ̈. The same is true for φ̇.
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in φ̈. Case 1 , however, requires a little more care due to the non-linear dependence

of Zj in φ̈. We first recall that in this case,
...
φ ∝ θ(t−t∗) implying that

....
φ ∝ δ(t−t∗).

Then, taking the time derivative of the on-shell-in-ā field equation [eq. (4.2.29)], we

have

...
φfk + φ̈2fk,φ̇ + φ̇φ̈fk,φ + sφ̈fk,ā + φ̈gk,φ̇ + φ̇gk,φ + sgk,ā = 0 , (4.2.34)

and thus fk = 0, due to the unsupported discontinuity in
...
φ on the left-hand side, fur-

ther implying (by inserting fk = 0 back into eq. (4.2.29)) that gk = 0. Differentiating

fk = 0 twice with respect to t,

...
φfk,φ̇ + φ̈2fk,φ̇,φ̇ + 2φ̇φ̈fk,φ,φ̇ + 2sφ̈fk,ā,φ̇ + φ̈fk,φ + φ̇2fk,φ,φ + 2sφ̇fk,ā,φ + s2fk,ā,ā = 0 ,

(4.2.35)

it is evident that fk,φ̇ = 0, i.e. fk is independent of φ̇, due to the discontinuity in
...
φ

and the lack of support for this on the right-hand side of the equation. Returning to

eq. (4.2.35), and taking a further time derivative, we find that the resulting equation

has a term of the form
...
φfk,φ. Again, the discontinuity in

...
φ implies that fk,φ = 0,

that is, fk is independent of φ and hence depends only on āk. Following the same

procedure, it can be shown that gk,φ̇ = 0 and gk,φ = 0 also, and so both fk and gk

are dependent only on āk, fk = fk(āk) and gk = gk(āk). Since it is true that, in all

three cases, 1 - 3, fk and gk are dependent only on āk, which is fixed, we see that the

on-shell-in-ā scalar EOM fk(āk) = 0 and gk(āk) = 0 contain no dynamics. In other

words, the scalar field equation Ek
φ places no further constraints on the evolution of

φ, as it vanishes identically when on-shell-in-ā.

It is clear that the conditions placed on fk and gk inevitably impact on the ad-

missable form of the on-shell-in-ā Lagrangian, eq. (4.2.28). Indeed, referring back to

our expressions relating α and β,φ̇ to fk and gk, Eqs. (4.2.30a) and (4.2.30b), and

setting fk = 0, we can integrate eq. (4.2.30a) twice with respect to φ̇ to obtain an

expression for α

α = α(āk, φ, φ̇) = φ̇β,φ + sβ,ā + φ̇ζ,φ + ξ , (4.2.36)

where ζ,φ = ζ,φ(āk, φ) and ξ = ξ(āk, φ) are constants of integration (with respect

to φ̇). We can then insert this result back into eq. (4.2.30b), and upon setting it to

zero, we obtain a differential equation relating ζ,φ and ξ, of the form ξ,φ = sζ,φ,ā,

which can trivially integrate to give ξ = ξ(āk, φ) = sζ,ā, where we have absorbed the
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constant of integration through a redefinition of ζ. Therefore, upon substituting this

result back into eq. (4.2.36), we find that

α(āk, φ, φ̇) = φ̇β,φ + sβ,ā + ζ̇ . (4.2.37)

Finally, inserting this into our on-shell-in-ā Lagrangian, eq. (4.2.28), we arrive at

the following result

Lk = α + φ̈β,φ̇ =
d

dt

(
β + ζ

)
. (4.2.38)

That is, the on-shell-in-ā Lagrangian is simply a total derivative.

It remains for us to apply the third self-tuning filter, S.3, which requires that our

self-tuning theory admit a non-trivial cosmology. We can determine the criterion

for this to occur by referring back to the scalar EOM [eq. (4.2.22)] before going

on-shell-in-ā. For the theory to admit self-tuning solutions, the first filter requires

Ricci flatness, which we now know requires Eφ to vanish identically (i.e. it is satisfied

trivially) when on-shell-in-ā. This can only happen in either one of two ways: (1)

either Eφ = 0 is an algebraic equation in H̄− s
ā
, i.e. of the form

∑
n χn

(
H̄ − s

ā

)n
= 0

(where χn are arbitrary coefficients); or (2) Eφ = 0 is a dynamical equation in H̄− s
ā
.

Now, if it is the case that option (1) is satisfied, then it is clear that only a trivial

cosmology is ever permitted - the scalar EOM enforces Minkowksi spacetime for all

time, in direct conflict with the third filter, S.3. We therefore adopt option (2), which

requires that the scalar EOM contains derivatives of H̄ − s
ā
, implying that it must

be non-trivially dependent on ¨̄a and
...
ā . In other words, the theory must satisfy the

field equations (4.2.23) in such a way that it evolves asympotically towards a Ricci

flat solution, i.e. its late time solution to the EOM is on-shell-in-ā.

Let us briefly return to the full minisuperspace Lagrangian [eq. (4.2.17)], and pass

it through the self-tuning filter, taking into account the results we have obtained

above:

(IIIa) the on-shell-in-ā Lagrangian must be zero (up to a total derivative);

(IIIb) the on-shell-in-ā Hamiltonian must not be independent of φ̇;

(IIIc) the full scalar EOM must not be independent of ¨̄a.

In doing so, we can infer the following set of constraints:
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(IVa) ā3
∑3

j = 0 Zj
(
s
ā

)j ∣∣
ā = āk

= d
dt
G(ā, φ, φ̇)

∣∣
ā = āk

∼= 0 ;

(IVb) ā3
∑3

j = 1

[
jZj,φ̇ + (j − 1)

(
Zj,φ̈ + φ̇Zj,φ̇,φ̈

)] (
s
ā

)j ∣∣∣
ā = āk

6= 0 ;

(IVc) Cannot simultaneously have

3Z0,φ̈ − Z1,φ̇ + āZ0,ā,φ̈ + 2
(
φ̇Z1,φ,φ̈ + φ̈Z1,φ̇,φ̈ +

...
φZ1,φ̈,φ̈

)
= 0 ,

4Z1,φ̈ − 3Z0,φ̈ − 2Z2,φ̇ + ā
(
3Z1,ā,φ̈ − Z1,φ̈

)
+ 4

(
φ̇Z2,φ,φ̈ + φ̈Z2,φ̇,φ̈ +

...
φZ2,φ̈,φ̈

)
= 0 ,

3Z2,φ̈ − Z1,φ̈ − 3Z3,φ̇ + ā
(
5Z2,ā,φ̈ − 2Z2,φ̈

)
+ 6

(
φ̇Z3,φ,φ̈ + φ̈Z3,φ̇,φ̈ +

...
φZ3,φ̈,φ̈

)
= 0 ,

3Z2,φ̈ + ā
(
7Z3,ā,φ̈ − 3Z3,φ̈

)
= 0 ,

Z3,φ̈ = 0 .

Note that (IVa) implies that
∑3

j = 0 Zj,φ̇
(
s
ā

)j ∣∣
ā = āk

= 0 =
∑3

j = 0 Zj,φ̈
(
s
ā

)j ∣∣
ā = āk

,

which we have made use of to simplify (IVb) (we have also used that ¨̄ak = 0). In

particular, (IVb) rules out k = 0. This is an important result, as it shows that self-

tuning is not possible within this class of scalar-tensor theories for a homogeneous

scalar field and a spatial flat cosmology. Nevertheless, as was the case for the original

Fab-Four, there is no obvious obstruction to self-tuning with a homogeneous scalar

and a spatially hyperbolic cosmology (k = −1).

4.2.3 Constructing a self-tuning theory

Having determined the required features of our theory in order for it to pass through

the self-tuning filters, we are now at the point in which we can construct our pu-

tative self-tuning Lagrangian. To this end, we note that we are working within an

equivalence class of Lagrangians, [L,∼=], where two Lagrangians are equivalent if and

only if they differ by a total derivative

L̃ ∼= L ⇐⇒ L̃ = L+
dG
dt

. (4.2.39)

This is a consequence of the fact that any two such Lagrangians describe the same

dynamical theory, i.e. they lead to identical EOM. Then, given that H̄ = s
ā

when

on-shell-in-ā, and recalling that Lk must be equal to a total derivative, we have from
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Eqs. (4.2.17) and (4.2.38), that

Lk = ā3

3∑
j = 0

Zj(ā, φ, φ̇, φ̈)
(s
ā

)j ∣∣∣∣
ā = āk

=
d

dt
G(ā, φ, φ̇)

∣∣∣∣
ā = āk

∼= 0 . (4.2.40)

Given this analysis, let us consider a Horndeski-like theory of the form

L̃ = ā3

3∑
j = 0

Z̃jH̄
j = ā3

3∑
j = 0

Z̃j

(s
ā

)j
+ ā3

3∑
j = 1

Z̃j

[
H̄j −

(s
ā

)j ]
∼= ā3

3∑
j = 1

Z̃j

[
H̄j −

(s
ā

)j ]
, (4.2.41)

where Z̃j = Z̃j(ā, φ, φ̇, φ̈).

Such a theory certainly conforms to the self-tuning constraints laid out in this sec-

tion, passing through the self-tuning filter, S.1-S.3. It is, in this sense, sufficient

for self-tuning, but to what extent is it necessary? Indeed, a priori, it is certainly

not necessary that the theory takes the form of eq. (4.2.41), as there could be other

equivalent Lagrangians, with Zj = Z̃j + ∆Zj, that admit the same set of self-tuning

solutions. To establish whether this is the case, we need to demand that the “tilded”

and “untilded” systems each have EOM that give rise to the same dynamics. That

is, we require that when on-shell,

H = −ρ
M
, Eφ = 0 ⇐⇒ H̃ = −ρ

M
, Ẽφ = 0 . (4.2.42)

In general, we cannot imply from this statement that Ẽφ ≡ Eφ, nor even that Ẽφ ∝ Eφ,

as the relevant equations could well be related to one another non-linearly. Notwith-

standing these observations, a detailed analysis reveals that the self-tuning limit of

the Horndeski Lagrangian enforces the conclusion that

H = H̃ , Eφ = Ẽφ . (4.2.43)

In other words, our putative self-tuning Lagrangian L̃, given by eq. (4.2.41), fur-

nishes a general self-tuning theory (up to a total derivative). To see that this is the

case, we consider the following.
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In principle, the Hamiltonian’s of two different self-tuning Horndeski theories (de-

fined by Eqs. (4.2.17) and (4.2.41)), H and H̃ , differ by a function

∆H = ∆H (ā, ˙̄a, ¨̄a, φ, φ̇, φ̈,
...
φ ), such that

H + ρ
M
≡ H̃ + ρ

M
+ ∆H , (4.2.44)

where the functional dependence of ∆H arises from the fact that matter couples

the same way in both theories (by assumption)7. If we now go on-shell, such that

H + ρ
M

= 0 = H̃ + ρ
M

and Eφ = 0 = Ẽφ, then it follows from eq. (4.2.44) that

∆H = 0. Since ∆H does not depend on ρ
M

, it cannot vanish by virtue of the on-

shell equation H̃ = −ρ
M

. Can it instead vanish by virtue of Ẽφ = 0? Let us consider

cases 1 and 2, where Z̃i depends non-linearly and linearly on φ̈, respectively. From

eq. (4.2.22), it is clear that Ẽφ contains a term proportional to
...
ā , however H̃ does

not, and so we cannot use Ẽφ = 0 to enforce ∆H = 0 (as in both cases there would

remain non-trivial terms with no corresponding terms to cancel with). In case 3, in

which Z̃i is independent of φ̈, we see that Ẽφ contains ¨̄a, but H̃ does not, and as

such, we cannot use Ẽφ = 0 to enforce ∆H = 0 in this case either. Therefore, we are

unable to use the on-shell equations, H̃ = −ρ
M

and Ẽφ = 0, to dynamically enforce

∆H = 0, we must conclude that ∆H is identically zero. In other words,

H = H̃ . (4.2.45)

This constraint provides us with a useful relation. Indeed, given that ∆Zj = Zj− Z̃j,
we have that

∆H = ā3

3∑
j = 0

[
(j − 1) ∆Zj + φ̇∆Zj,φ̇ − φ̇

2∆Zj,φ,φ̈ − φ̇φ̈∆Zj,φ̇,φ̈ + φ̈∆Zj,φ̈

− φ̇
...
φ∆Zj,φ̈,φ̈ +

(
(j − 3) φ̇∆Zj,φ̈ − āφ̇∆Zj,ā,φ̈

)
H̄ − jφ̇

¨̄a

ā
∆Zj,φ̈H̄

−1

]
H̄j

= 0 . (4.2.46)

We first observe that there is only one term proportional to
...
φ for each power of H̄,

and thus it cannot cancel with any other terms. Hence, it must vanish identically,

i.e.

∆Zj,φ̈,φ̈ = 0 ∀ j . (4.2.47)

7As we are working in the Jordan frame, this means that matter does not directly couple to
the scalar field φ, and as such, neither H (H̃ ) nor ∆H can depend on ρM .
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That is, ∆Zj,φ̈,φ̈ can be at most linear in φ̈, regardless of the dependence Z̃j has on

φ̈. Moreover, there is also only one term proportional to ¨̄a for each power in H̄, and

therefore, by the same reasoning it must vanish identically,

jφ̇
¨̄a

ā
∆Zj,φ̈ = 0 =⇒ ∆Zj,φ̈ = 0 for j = 1, 2, 3 , (4.2.48)

and this must hold for whatever dependence Z̃j has on φ̈. Referring back to eq. (4.2.46),

and equating the remaining powers in H̄ (noting that any terms containing deriva-

tives of ∆Zj must vanish on account of eq. (4.2.48)) , we find that

(j − 1)∆Zj + φ̇∆Zj,φ̇ = 0 for j = 1, 2, 3 , (4.2.49)

leaving us with a first-order differential equation for ∆Zj, which at most, must be a

function of ā, φ and φ̇, i.e. ∆Zj = ∆Zj(ā, φ, φ̇) by virtue of the constraint given by

eq. (4.2.48). Upon integration of eq. (4.2.49) with respect to φ̇, we have

∆Zj(ā, φ, φ̇) = σj(ā, φ)φ̇1−j for j = 1, 2, 3 , (4.2.50)

where σj(ā, φ) is an arbitary function of ā and φ.

Note that eq. (4.2.50) is only the solution for ∆Zj in the cases where j 6= 0. For

j = 0 the situation is a little more complicated, since jφ̇ ¨̄a
ā
∆Zj,φ̈ vanishes by virtue

of j. In this case, we refer back to the constraint given by eq. (4.2.47), which implies

that

∆Z0 = A(ā, φ, φ̇) + φ̈B(ā, φ, φ̇) . (4.2.51)

With this information at our disposal, we now turn our attention to the scalar EOM.

Analogously to the Hamiltonian’s of the two different self-tuning Horndeski theories,

the scalar equations of motion will differ by a function

∆Eφ = ∆Eφ(ā, ˙̄a, ¨̄a,
...
ā , φ, φ̇, φ̈,

...
φ,

....
φ ) such that

Eφ = Ẽφ + ∆Eφ . (4.2.52)

This implies that, on-shell, ∆Eφ = 0. However, as in the Hamiltonian case above, ∆Eφ

is independent of ρ
M

and therefore cannot vanish by virtue of the on-shell equation

H̃ = −ρ
M

. Therefore, at best, it can vanish by virtue of Ẽφ = 0. To proceed, we
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note that

∆Eφ =
∂∆L
∂φ
− d

dt

(
∂∆L
∂φ̇

)
+

d2

dt2

(
∂∆L
∂φ̈

)
=

3∑
j = 0

[
ā3∆Zj,φH̄

j − d

dt

(
ā3∆Zj,φ̇H̄

j
) ]

+
d2

dt2
(
ā3∆Z0,φ̈

)
. (4.2.53)

Upon calculating the time derivatives, we see then that ∆Eφ has the following form

∆Eφ = ā3
[
∆Z0,φ +

¨̄a

ā

(
3∆Z0,φ̈ + ā∆Z0,ā,φ̈

)
− φ̇
(
∆Z0,φ,φ̇ −∆Z0,φ,φ,φ̈

)
+ φ̈
(
∆Z0,φ,φ̈ −∆Z0,φ̇,φ̇ + 2φ̇∆Z0,φ,φ̇,φ̈ + φ̈∆Z0,φ̇,φ̇,φ̈

)]
+ ā3

[
∆Z1,φ − 3∆Z0,φ̇ − ā

(
∆Z0,ā,φ̈ − 3∆Z0,ā,φ̈

)
− 2

¨̄a

ā
∆Z2,φ̇

+ 2φ̇
(
ā∆Z0,ā,φ,φ̈ + 3∆Z0,φ,φ̇

)
+ 2φ̈

(
ā∆Z0,ā,φ̇,φ̈ + 3∆Z0,φ̇,φ̈

)]
H̄

+ ā3
[
6∆Z0,φ̈ + 3ā∆Z0,ā,φ̈ + ā2∆Z0,ā,ā,φ̈ + ∆Z2,φ − 3

¨̄a

ā
∆Z3,φ̇

]
H̄2

− ā3
[
∆Z3,φ + ∆Z2,φ̇ + ā∆Z3,ā,φ̇ + φ̇∆Z3,φ,φ̇ + φ̈∆Z2,φ̇,φ̇

]
H̄3

− ā∆Z3,ā,φ̇H̄
4 (4.2.54)

From this expression, it is clear that ∆Eφ is independent of
...
ā and

....
φ , i.e

∆Eφ = ∆Eφ(ā, ˙̄a, ¨̄a, φ, φ̇, φ̈,
...
φ ).

Following the same procedure as for the Hamiltonian, we again consider cases 1

and 2, where Z̃i depends non-linearly and linearly on φ̈, respectively. Now, from

eq. (4.2.22), we see that Ẽφ contains a term proportional to
...
ā , hence Ẽφ = 0 cannot

be used to enforce ∆Eφ = 0 (if we use it to substitute in for ¨̄a in ∆Eφ, there will

always be non-trivial terms proportional to
...
ā remaining). It is evident from this,

that in these two cases, ∆Eφ must vanish identically.

Now, collecting the terms proportional to ¨̄a for each power in H̄, we see that there are

no other contributions to cancel with them, hence they must each vanish identically.

As such, we find that

− 2∆Z2,φ̇ = 2σ2φ̇
−2 = 0 ⇒ σ2(ā, φ) = 0 , (4.2.55a)

− 3∆Z3,φ̇ = 6σ3φ̇
−3 = 0 ⇒ σ3(ā, φ) = 0 , (4.2.55b)
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−∆Z1,φ̇ + 3∆Z0,φ̈ + ā∆Z0,ā,φ̈ = 3∆Z0,φ̈ + ā∆Z0,ā,φ̈ = 3B + āB,ā = 0

⇒ B = ā−3B̃(φ, φ̇) , (4.2.55c)

where we have made use of eq. (4.2.50). Given this information, we proceed to equate

the remaining powers in H̄. Concentrating on the coefficients of H̄2, it follows that,

6∆Z0,φ̈ + 3ā∆Z0,ā,φ̈ + ā2∆Z0,ā,ā,φ̈ = 0

⇒ 6B + 3āB,ā + ā2B,ā,ā = 6B − 9B + 12B = 9B = 0

⇒ B(ā, φ, φ̇) = 0 . (4.2.56)

Therefore, in actual fact, ∆Z0 is also independent of φ̈, and as such eq. (4.2.50) holds

for j = 0 as well.

Turning our attention to case 3, in which Z̃i is independent of φ̈, it is apparent

from eq. (4.2.22) that Ẽφ no longer contains any terms proportional to
...
ā and so we

must be more careful with our analysis. To proceed, we note that for Z̃j,φ̈ = 0, the

scalar EOM has the form,

Eφ = A (ā, ˙̄a, φ, φ̇)¨̄a+ B(ā, ˙̄a, φ, φ̇)φ̈+ C (ā, ˙̄a, φ, φ̇) , (4.2.57)

and similarly for Ẽφ (with “tilded” functions Ã , B̃ and C̃ replacing A , B and C ).8

It follows then, that

¨̄a =
1

Ã

[
Ẽφ − B̃φ̈− C̃

]
, (4.2.58)

which leads us to the expression

∆Eφ = Eφ − Ẽφ = ∆A ¨̄a+ ∆Bφ̈+ ∆C =
∆A

Ã

[
Ẽφ − B̃φ̈− C̃

]
+ ∆Bφ̈+ ∆C

=
∆A

Ã
Ẽφ +

Ã ∆B − B̃∆A

Ã
φ̈+

Ã ∆C − C̃ ∆A

Ã
, (4.2.59)

where ∆A = A −Ã , and likewise for ∆B and ∆C . Given that ∆Eφ ought to vanish

by virtue of Ẽφ = 0, it is immediately clear that the following relationship must hold

∆Eφ =
∆A

Ã
Ẽφ , Ã ∆B = B̃∆A , Ã ∆C − C̃ ∆A = 0 . (4.2.60)

8Note that A 6= 0 (Ã 6= 0) due to the third self-tuning filter, S.3.
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Moreover, upon comparison of eq. (4.2.59) with eq. (4.2.54), and making use of

eq. (4.2.50), we can infer explicit expressions for ∆A , ∆B and ∆C ,

∆A = − ā3

3∑
j = 0

j∆Zj,φ̇
H̄j−1

ā
= −ā3

3∑
j = 0

j(1− j)σj
H̄j−1

āφ̇j
, (4.2.61a)

∆B = − ā3

3∑
j = 0

∆Zj,φ̇,φ̇H̄
j = ā3

3∑
j = 0

j(1− j)σj
H̄j

φ̇j+1
= − āH̄

φ̇
∆A , (4.2.61b)

∆C = − ā3

3∑
j = 0

[
φ̇∆Zj,φ,φ̇ + (3− j)∆Zj,φ̇H̄ + ā∆Zj,ā,φ̇H̄ −∆Zj,φ

]
H̄j

= − ā3

3∑
j = 0

[(
(3− j)σj + āσj,ā

)
(1− j)H̄ − jφ̇σj,φ

] H̄j

φ̇j
. (4.2.61c)

Given that we require Ã ∆B = B̃∆A in order for ∆Eφ to vanish by virtue of Ẽφ = 0

(otherwise ∆Eφ vanishes identically), it must be the case that āÃ H̄ = −φ̇B̃, and

this leads to the following solution for Z̃j,

ā3

3∑
j = 0

jZ̃j,φ̇H̄
j = −ā3

3∑
j = 0

φ̇Z̃j,φ̇,φ̇H̄
j

=⇒ jZ̃j,φ̇ = −φ̇Z̃j,φ̇,φ̇

=⇒ Z̃j = uj(ā, φ)Ij(φ̇) + vj(ā, φ) , (4.2.62)

where

Ij(φ̇) =

ln (φ̇) if j = 1

φ̇1−j if j 6= 1
(4.2.63)

From this, and the definition of L̃ given by eq. (4.2.41), we see that,

ā3

3∑
j = 0

Z̃j

(s
ā

)j
= ā3

3∑
j = 0

(
uj(ā, φ)Ij(φ̇) + vj(ā, φ)

)(s
ā

)j ∼= 0 . (4.2.64)

By equating powers in φ̇, it is clear that uj = 0 for all j, and this evidently implies

that Z̃j,φ̇ = 0 for all j. However, we know that in order for the theory to be self-tuning,

it must have a non-tivial dependence on φ̇ (such that its on-shell-in-ā Hamiltonian

is not independent of φ̇). Therefore, we are forced to conclude that ∆Eφ vanishes
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identically (i.e. ∆A = 0), and so,

− ā3

3∑
j = 0

j(1− j)σj
H̄j−1

āφ̇j
= 0 =⇒ j(1− j)σj ā2 H̄

j−1

φ̇j
= 0 . (4.2.65)

We see that, for i = {0, 1} this condition is satisfied by j(1 − j), however, for

i = {2, 3}, j(1− j) 6= 0 and so it must be that,

σ2 = 0 , σ3 = 0 . (4.2.66)

Therefore, in all three cases, ∆Eφ vanishes identically, implying that σ2 = 0 = σ3,

and furthermore, that Eφ = Ẽφ.

We can utilise these results to determine explicit expressions for the remaining non-

zero functions, σ0 and σ1. To this end, we refer back to eq. (4.2.59); noting that

∆Eφ must vanish identically (in all three cases), it is clear that ∆A = ∆B =

∆C = 0 identically. Now, from ∆A = 0 and using eq. (4.2.61a) with ∆Zj given by

eq. (4.2.50), we can immediately imply that σ2 = 0 = σ3. Moreover, referring back

to eq. (4.2.61c) and requiring that ∆C = 0 identically, we find that

σ1,φ = 3σ0 + āσ0,ā =
1

ā2

(
ā3σ0

)
,ā

=⇒ ā3σ0 = µ,φ , ā2σ1 = µ,ā ,

(4.2.67)

where µ = µ(ā, φ). Following this extensive analysis, we finally consider the difference

∆L between the Lagrangians, L and L̃, of the two different self-tuning Horndeski

theories,

∆L = L − L̃ = ā3

3∑
j = 0

∆ZjH̄
j = ā3∆Z0 + ā3∆Z1H̄

= φ̇µ,φ + ˙̄aµ,ā = µ̇ . (4.2.68)

We see, therefore, that any two self-tuning Horndeski theories differ by a total deriva-

tive, and as such a general self-tuning Lagrangian is equivalent to eq. (4.2.41), up to

a total derivative d
dt
µ(ā, φ).

With this information at our disposal, we are in a position to determine the forms

of the functions Xj and Yj for our self-tuning Lagrangian. To this end, we shall

compare the general form of the self-tuning Lagrangian, L = L̃ + d
dt
µ(ā, φ) (where
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L̃ is given by eq. (4.2.41)), with our expressions for the component functions Z̃j in

terms of the functions Xj and Yj, as defined by eq. (4.2.20). We find that,

L̃+ µ̇ = ā3

{
Z̃1

[
H̄ − s

ā

]
+ Z̃2

[
H̄2 −

(s
ā

)2 ]
+ Z̃1

[
H̄3 −

(s
ā

)3 ]}
+ φ̇µ,φ + ˙̄aµ,ā

= ā3

{(
X0 −

s2

ā2
Y0

)
+
(
X1 −

s2

ā2
Y1

)
H̄ + X2H̄

2 + X3H̄
3

}
, (4.2.69)

which, upon equating powers in H̄ we obtain the following set of equations,

−s
ā
Z̃1 −

(s
ā

)2

Z̃2 −
(s
ā

)3

Z̃3 + ā−3φ̇µ,φ = X0 −
s2

ā2
Y0 , (4.2.70a)

Z̃1 + ā−2µ,ā = X1 −
s2

ā2
Y1 , (4.2.70b)

Z̃2 = X2 (4.2.70c)

Z̃3 = X3 . (4.2.70d)

Substituting Eqs. (4.2.70b), (4.2.70c) and (4.2.70d) into eq. (4.2.70a) leads to the

relation,

ā−3φ̇µ,φ+sā−3µ,ā−X0−
s

ā
X1−

(s
ā

)2 [
X2 +Y0

]
−
(s
ā

)3 [
X3 +Y1

]
= 0 . (4.2.71)

To proceed, we now restrict attention to s 6= 0, and expand ā−3φ̇µ as a power series

in s
ā
,

ā−3µ(ā, φ) =
∞∑

j = −∞
Vj(φ)

(s
ā

)j
, (4.2.72)

where Vj(φ) are arbitrary functions of φ. Inserting this into eq. (4.2.71), we have,

∞∑
j = −∞

φ̇Vj,φ

(s
ā

)j
+

∞∑
j = −∞

(3− j)Vj,φ
(s
ā

)j+1

−
3∑

j = 0

Xj

(s
ā

)j
−

1∑
j = 0

Yj

(s
ā

)j+2

= 0 ,

(4.2.73)

and so, upon equating powers of s
ā
, first in the cases where j ≤ −1 and j ≥ 4, we

find that,

φ̇Vj,φ + (4− j)Vj−1 = 0 j ≤ −1 or j ≥ 4 . (4.2.74)
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Since Vj does not depend on φ̇, it follows that,

V−1 = const. , V−2 = V−3 = · · · = 0 , V4 = V5 = · · · = 0 . (4.2.75)

As such, equating the remaining powers of s
ā
, i.e. for 0 ≤ j ≤ 3, we arrive at a set of

equations for Xj and Yj,

X0 = 4V−1 + φ̇V0,φ = −Λbare + φ̇V0,φ , (4.2.76a)

X1 = 3V0 + φ̇V1,φ , (4.2.76b)

X2 + Y0 = 2V1 + φ̇V2,φ , (4.2.76c)

X3 + Y1 = V2 + φ̇V3,φ , (4.2.76d)

where we have identified the arbitrary constant with the bare cosmological constant,

V−1 = const. = −1
4
Λbare. This is an important consistency check, since the vacuum

energy renormalises this term. If the theory did not admit such an arbitrary con-

stant, then we would have effectively fine-tuned the bare cosmological constant to

zero against the vacuum energy, precisely the result of Weinberg’s no-go theorem

(as discussed in §3.2.1). Since the theory does allow for an arbitrary cosmological

constant term, we can be confident in stating that the theory self-tunes.

Having ascertained relations between the functions Xj and Yj in terms of arbi-

trary potentials Vj(φ), we can then use these to evaluate the Horndeski functions K

and Gi (i = 3, 4, 5) in the self-tuning limit by comparing Eqs. (4.2.76a) to (4.2.76d)

with Eqs. (4.2.18a) to (4.2.18d).

4.2.4 Recovering the Fab-Four

Having derived a set of equations for the Horndeski functions K and Gi (i = 3, 4, 5)

in the self-tuning limit, we are now in the position to analyse particular cases of our

disformally coupled self-tuning theory. The first is an important consistency check;

since our self-tuning theory is a generalisation of the Fab-Four theory, it must reduce

to the Fab-Four, in the special case where Ā = 1, B = 0 and N = 1 (implied by

eq. (4.2.15a)). We see that, in this particular case, the Jordan and Horndeski frames

coincide, and so we have that X = X̄ = 1
2
φ̇2, and ā = a. Thus, upon referring back

to Eqs. (4.2.76a) to (4.2.76d) and Eqs. (4.2.18a) to (4.2.18d), we are left with the
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following set of differential equations

φ̇2G̃5,φ̇,φ̇ − 3φ̇G̃5,φ̇ + 3G̃5 = φ̇V3,φ + V2 , (4.2.77a)

6φ̇G4,φ̇ − 12G4 − 3φ̇2G5,φ + 3φ̇G̃5,φ = φ̇V2,φ + 2V1 , (4.2.77b)

3φ̇G3 − 3G̃3 − 6φ̇G4,φ = φ̇V1,φ + 3V0 , (4.2.77c)

K − φ̇G̃3,φ = − Λbare + φ̇V0,φ , (4.2.77d)

where we have recalled eq. (4.2.19), and noted that in this particular case Gi = G̃i,φ̇

for i = 3, 5. Integrating each of these equations iteratively, we have that

K(φ,X) = − Λbare + 2Xf ′3(φ) + 4X2f ′′4 (φ)− 2X3g′′′5 (φ)

− 1

2
X2
[
2 ln(
√

2X)− 1
]
V ′′′′3 (φ) (4.2.78a)

G3(φ,X) = f3(φ)− 1

4
X
[
2 ln(
√

2X)− 1
]
V ′′′3 (φ) + 6Xf ′4(φ) + 5X2g′′5(φ) ,

(4.2.78b)

G̃3(φ,X) = − V0(φ) +
√

2Xf3(φ)− 1

4
X
√

2X
[
2 ln(
√

2X)− 1
]
V ′′′3 (φ)

+ 2X
√

2Xf ′4(φ) +X2
√

2Xg′′5(φ) , (4.2.78c)

G4(φ,X) = 2Xf4(φ)− 1

2
X ln(

√
2X)V ′′3 (φ) + 2X2g′5(φ)− 1

6
V1(φ) , (4.2.78d)

G5(φ,X) = f5(φ) + 6Xg5(φ)− 1

2

[
ln(
√

2X) + 1
]
V ′3(φ) , (4.2.78e)

G̃5(φ,X) =
√

2Xf5(φ) + 2X
√

2Xg5(φ)− 1

2

√
2X ln(

√
2X)V ′3(φ) +

1

3
V2(φ) ,

(4.2.78f)

where f3, f4, g4, f5 and g5 are arbitrary functions of φ. We see, therefore, that the

self-tuning limit of the Horndeski Lagrangian, eq. (4.2.17) on an FRW background,

in the case where Ā = 1, N = 1 and B = 0, has the form:
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L = ā3

[
K −

√
2XG̃3,φ + 3

(
2G4 −

√
2XG̃5,φ

)(s
a

)2
]

+ ā3

[
3
√

2XG3 − 3G̃3 − 6
√

2XG4,φ + 3
(√

2XG5 − G̃5,φ

)(s
a

)2
]
H̄

+ ā3

[
12XG4,X − 6G4 − 6XG5,φ

]
H̄2 + 2ā3X

√
2XG5,XH̄

3 . (4.2.79)

In order to deduce the covariant form of this Lagrangian we observe from eq. (4.2.78)

that each of the functions f3, f4, g4, f5 and g5 and the potential terms Vi (i = 3, 4, 5)

are completely de-coupled from one another, that is, we can express eq. (4.2.79) in

terms of a sum of component Lagrangians, each purely in terms of one of the functions

f3, f4, g4, f5, g5 and Vi (i = 3, 4, 5), and one containing only the bare cosmological

constant, i.e. LΛ = −
√
−gΛbare. This enables us to analyse the form of eq. (4.2.79) on

a case-by-case basis, in which we “switch-on” each of these functions individually. In

doing so, after integrating by parts, it is found that the contributions to eq. (4.2.78),

pertaining to the functions V0, V2 and f3, are vanishing.9 The remaining functions,

V1, V3, f4, f5 and g5 provide non-trivial contributions, however, f4 and f5 lead to

the same expression, implying that only four of the eight original functions yield

independent terms in eq. (4.2.78). As component Lagrangians, these are given by,

LV1 = − a3V1

[
ä

a
+H −

(s
a

)2
]
, (4.2.80a)

LV3 =
3

2
a3V3

ä

a

[
H2 −

(s
a

)2
]
, (4.2.80b)

Lf4 = 12a3Xf4

[
H2 −

(s
a

)2
]
, (4.2.80c)

Lg5 = 12a3X
√

2Xg5

[
H2 −

(s
a

)2
]
H . (4.2.80d)

9It turns out that the reason for this stems from the fact that, in the fully covariant theory,
these terms correspond to total derivatives, as was the case in the orignal Fab-Four construction
[60].
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Comparing these expressions with the following curvature invariants, evaluated on

an FRW background,

R
∣∣
FRW

= 6

[
ä

a
+H −

(s
a

)2
]
, (4.2.81a)

Ĝ
∣∣
FRW

= 24
ä

a

[
H2 −

(s
a

)2
]
, (4.2.81b)

Gµν∇µφ∇νφ
∣∣∣
FRW

= 6X

[
H2 −

(s
a

)2
]
, (4.2.81c)

P µναβ∇µφ∇αφ∇ν∇βφ
∣∣∣
FRW

= 6X
√

2X

[
H2 −

(s
a

)2
]
H . (4.2.81d)

We arrive at the fully covariant expressions for the component Lagrangians [eq. (4.2.80)],

LV1 = −
√
−gV1

6
R
∣∣
FRW

, (4.2.82a)

LV3 =
1

16

√
−gV3Ĝ

∣∣
FRW

, (4.2.82b)

Lf4 = 2
√
−gf4G

µν∇µφ∇νφ
∣∣∣
FRW

, (4.2.82c)

Lg5 = 2
√
−gg5P

µναβ∇µφ∇αφ∇ν∇βφ
∣∣∣
FRW

. (4.2.82d)

Referring back to the component Fab-Four Lagrangians [eq. (4.1.5)], and comparing

these to the above expressions, it is evident, upon making the following identifica-

tions: V1 := −6Vg, V3 := 16Vr, f4 := 1
2
Vj and g5 := 1

2
Vp, that we have recovered

Fab-Four theory, as required.

Proceeding to the next case, in which Ā = Ā(φ), B = 0 and N = Ā (implied

by eq. (4.2.15a)), we see that this corresponds to a conformal transformation of

the metric. Upon following the same procedure as in the previous case, upon a re-

definition of the arbitrary coefficient functions, one arrives back at the component

Fab-Four Lagrangians [eq. (4.2.82)]. It is clear, therefore, that conformally related

self-tuning Horndeski theories fall within the same class, i.e. they are all Fab-Four

theories. This is to be expected, since it is inherited from the full Horndeski theory,
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4.2. Disformal self-tuning

itself a class of conformally related theories.10 Moreover, it has recently been shown

that if a Lagrangian is related to the Horndeski Lagrangian by a special disformal

transformation, in which Ā = Ā(φ) and B̄ = B̄(φ), then in can always be recast

into Horndeski form [184]. Therefore, to generalise beyond Fab-Four theory, we must

consider the most general case in which Ā and B̄ (and implicitly N) are dependent

on φ and X̄ = X̄(φ,X).

4.2.5 Disformal couplings & beyond Fab-Four

Our starting point, in this most general case, is to refer back to Eqs. (4.2.76a) to

(4.2.76d); observing that the right-hand sides of these equations are independent of

φ̈, it must be the case that the left-hand sides are also. Now, from the definitions

of the functions Xj and Yj, (implied from Eqs. (4.2.18a) to (4.2.18d)), we see that

they contain terms proportional to ˙̄A(φ, X̄), which are dependent on φ, φ̇ and φ̈. As

such, for each of Eqs. (4.2.76a) to (4.2.76d), the sum of terms proportional to φ̈ must

vanish. Concentrating on eq. (4.2.76a), we see from eq. (4.2.18a), that the left-hand

side has the form

X0 = NĀ3K − φ̇G̃3,φ +

[
3Ā2 φ̇

N
G3 − 6Ā2 φ̇

N
G4,φ

]
˙̄A

+

[
6
Ā

N

(
φ̇

N

)2

G4,X − 6
Ā

N
G4 − 3

Ā

N

(
φ̇

N

)2

G5,φ

]
˙̄A2 +

1

N2

(
φ̇

N

)3

G5,X
˙̄A3 ,

(4.2.83)

enabling us to isolate the terms proportional to ˙̄A, which can be expressed in the

schematic form

X0 ⊃ α(φ, φ̇) ˙̄A(φ, X̄) + β(φ, φ̇) ˙̄A2(φ, X̄) + γ(φ, φ̇) ˙̄A3(φ, X̄) , (4.2.84)

and so, upon expanding ˙̄A,

˙̄A(φ, X̄) = φ̇Ā,φ + ˙̄XĀ,X̄ = λ(φ, φ̇) + δ(φ, φ̇)φ̈ , (4.2.85)

10Any theory related to Horndeski theory by a conformal transformation can be recast into
“Horndeski form”, i.e. upon appropriate redefinitions of the Horndeski functions K → K̃ and
Gi → G̃i (i = 3, 4, 5), its component Lagrangians will be of the form given in eq. (4.1.2).
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4.2. Disformal self-tuning

we can extract the terms proportional to φ̈, leading to the following constraint equa-

tion (
αδ + 2βλδ + 3γλ2δ

)
φ̈+

(
βδ2 + 3γλδ2

)
φ̈2 + γδ3φ̈3 = 0 . (4.2.86)

Now, since we are considering the most general case, it must be that Ā,φ 6= 0 and

Ā,X̄ 6= 0, implying that λ 6= 0 and δ 6= 0. By equating powers in φ̈, it is evident from

eq. (4.2.86) that γ = α = β = 0, and hence, each of the terms proportional to ˙̄A

vanish. This procedure can be applied to each of the remaining equations (4.2.76b),

(4.2.76c) and (4.2.76d), and in each case, it is found that the coefficients of each

power in ˙̄A vanish identically.

Let us now study the implications of this result. From eq. (4.2.83), we can im-

mediately infer that

G5,X = 0 (4.2.87a)

G4 =
[
2G4,X −G5,φ

]
X , (4.2.87b)

G3 = 2G4,φ . (4.2.87c)

These results then imply that

X1 = 3Ā3 φ̇

N
G3 − 3G̃3 − 6Ā3 φ̇

N
G4,φ +

[
12
Ā2

N

(
φ̇

N

)2

G4,X̄

− 12
Ā2

N
G4 − 6

Ā2

N

(
φ̇

N

)2

G5,φ

]
˙̄A+ 3

Ā

N2

(
φ̇

N

)3

G5,X̄
˙̄A2

= − 3G̃3 = 2V1 + φ̇V2,φ

⇒ G̃3(φ,X) = − 1

3

(
2V1 +N

√
2XV2,φ

)
. (4.2.88)
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Moving onto eq. (4.2.76c), and applying eq. (4.2.87), we have

X2 + Y0 = 6
Ā3

N

(
φ̇

N

)2

G4,X − 6
Ā3

N
G4 − 3

Ā3

N

(
φ̇

N

)2

G5,φ

− 6NĀG4 + 3φ̇G̃5,φ +

[
6
Ā2

N2

(
φ̇

N

)3

G5,X − 3
φ̇

N
G5

]
˙̄A

= − 6
Ā3

N
G4 − 3

Ā3

N

(
φ̇

N

)2

G5,φ − 3
φ̇

N
G5

˙̄A , (4.2.89)

it immediately follows that G5 = 0, and us such, we are left with

X2 + Y0 = − 6NĀG4 + 3φ̇G̃5,φ = 2V1 + φ̇V2,φ ,

G4(φ,X) =
1

6NĀ

[
N
√

2X
(

3G̃5,φ − V2,φ

)
− 2V1

]
, (4.2.90)

Finally, turning our attention to eq. (4.2.76d),

X3 + Y1 =
Ā3

N2

(
φ̇

N

)3

G5,X − 3
Ā

N
φ̇G5 + 3G̃5

= 3G̃5 = V2 + φ̇V3,φ

⇒ G̃5 =
1

3

(
V2 +N

√
2XV3,φ

)
. (4.2.91)

Observe that G5 = Ā√
2X
G̃5,X = G5 = 0, which implies that G̃5,X = 0. Given the

expression for G̃5 from eq. (4.2.91), it follows that

V3,φ

3

(√
2XN,X +

N√
2X

)
= 0 =⇒ N(φ,X) =

J (φ)√
2X

. (4.2.92)

This is a contradiction, however, as φ and φ̇ are independent variables. Since it is the

case that
√

2X = φ̇, it is not possible for N to have the form given by eq. (4.2.92).

To resolve this contradiction, we are therefore forced to conclude that ĀX = 0.

Consequently, the most general disformal coupling that admits self-tuning must have

Ā as a function of φ only, which from eq. (4.2.7), implies that A is also at most

a function of φ (note however, that this does not preclude B̄ from remaining a

function of both φ and X̄). This is an important result, as the form of the Horndeski
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4.2. Disformal self-tuning

Lagrangian does not change under conformal transformations, meaning that if we

transform the gravitational metric, such that gµν → ĝµν = A2(φ)gµν , we find

L = LH(g, φ,X) + LM(ḡ,Ψ) = LH(g, φ,X) + LM(A2g + A2B2∂φ∂φ,Ψ)

= L̃H(ĝ, φ,X) + LM(ĝ + B̂2∂φ∂φ,Ψ)

= L̃H(ĝ, φ,X) + LM(¯̂g,Ψ) (4.2.93)

where we have redefined B such that B̂ = AB. As such, in the self-tuning limit of

the theory, we are at liberty to set Ā = A = 1 without loss of generality. It follows

from this, that ˙̄A = 0, and as such, we are left with the following set of differential

equations for the K and Gi

K −
√

2XG̃3,φ = −Λbare +
√

2XV0,φ , (4.2.94a)

3
√

2XG3 − 3G̃3 − 6
√

2XG4,φ = 3V0 +N
√

2XV1,φ , (4.2.94b)

12

N
XG4,X −

6

N
G4 −

6

N
XG5,φ + 3N

√
2XG̃5,φ − 6NG4 = 2V1 +N

√
2XV2,φ ,

(4.2.94c)

2

N2
X
√

2XG5,X + 3G̃5 − 3
√

2XG5 = V2 +N
√

2XV3,φ . (4.2.94d)

We can use these expressions, along with several integrations by parts to drastically

simplify the form of the cosmological Lagrangian [eq. (4.2.17)]. Indeed, it is found

that the self tuning limit of the disformally coupled Horndeski Lagrangian, evaluated

on an FRW background, can be expressed as

L = ā3

[
N
√

2XV1,φ − 2V1
s

ā
+
(

3G̃5 − 3
√

2XG5 − V2

)(s
ā

)2
][
H̄ − s

ā

]
+ ā3

[
N
√

2XV2,φ + 6NG4 − 3N
√

2XG̃5,φ + 2V1

][
H̄2 −

(s
ā

)2
]

+ 2ā3X
√

2X

N2
G5,X

[
H̄3 −

(s
ā

)3
]
. (4.2.95)

Note that eq. (4.2.95) has the nice feature that it is manifestly in self-tuning form.
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4.2. Disformal self-tuning

Unfortunately, unlike the Fab-Four case, the differential equations for K and Gi,

eq. (4.2.94), cannot be integrated in general form, due to the presence of an un-

known function, B(φ,X) (appearing implicitly in eq. (4.2.94) through N); the system

is under-determined. As such, one must first either specify the form of this arbitrary

function, or alternatively, specify the form of at least one of the functions K and

Gi. Ultimately, one aims to obtain a covariant form for this generalisation of the

Fab-Four, however, it has proven to be a difficult task, and as of yet, has not been

achieved.

Before closing our discussion on self-tuning solutions to the CCP, we shall present a

particular solution to the set of differential equations (4.2.94). This serves to show

firstly, that non-trivial (consistent) solutions do exist in the disformal case, and

secondly, that the corresponding Lagrangian cannot be put into Fab-Four form,

highlighting that it does constitute an extension beyond Fab-Four. To this end, we

return to eq. (4.2.94); it is evident that we have a system of four differential equations

with five unknown functions, N , K and Gi (i = 3, 4, 5). Focussing our attention on

eq. (4.2.94a), we can trivially solve for K, leaving us with three remaining equations

and four unknown functions. It is clear that, whichever way we look at it, the system

is under-determined ; this freedom is what enables us to choose how matter is to be

disformally coupled to gravity. Given this, we first observe that we cannot choose N

to have any form we like. In particular, it cannot be of the form N = f(φ)(2X)−1/2,

as according to eq. (4.2.12) this would imply that φ and φ̇ are dependent on one

another, which is inconsistent, since φ and φ̇ are independent variables. With this in

mind, in the interest of clarity, we shall use eq. (4.2.94d), to implicity choose a form

for N
2

N2
X
√

2XG5,X = N
√

2XV3,φ . (4.2.96)

With this choice, eq. (4.2.94d) can be readily solved to give

2XG̃5,X − G̃5 = −V2

3
⇒ G̃5(φ,X) = f(φ)

√
2X +

V2

3

⇒ G5(φ,X) = f(φ) . (4.2.97)

However, note from eq. (4.2.96), that this implies N
√

2XV3,φ = 0, and since we

require N to be non-vanishing, it follows that V3 = const. We see then, that in

fact eq. (4.2.96) places no constraint on the form of N . Now turning our attention

to eq. (4.2.94c), in the interest of obtaining an analytic solution, we restrict to the
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4.2. Disformal self-tuning

case in which the arbitrary function f(φ) = f = const.. Furthermore, since we have

ascertained that eq. (4.2.96) places no restriction on the form of N , we shall now

choose it to have the form

N(t) = g(φ)X − 1 . (4.2.98)

Finally, we note that the function V1 in eq. (4.2.94c) is also arbitrary, and so we shall

set it to zero. In doing so, we find the following solution for G4

12XG4,X − 6g(φ)XG4 = 0 =⇒ G4(φ,X) = h(φ) exp

(
g(φ)X

2

)
.

(4.2.99)

It thus remains for us to determine G3 and K, and to do so, we shall simplify

eq. (4.2.94b) by setting g(φ) = g = const. and h(φ) = h = const., such that G4,φ = 0,

and so

6XG̃3,X − 3G̃3 = 3V0 ⇒ G̃3(φ,X) = I(φ)
√

2X − V0(φ)

⇒ G3(φ,X) = I(φ) . (4.2.100)

Given this, we can trivially determine K, from eq. (4.2.94a), to be

K(φ,X) = 2I(φ)X . (4.2.101)

In summary, we find the following set of solutions

G5(φ,X) = f = const. , (4.2.102a)

G4(φ,X) = h exp

(
gX

2

)
, (4.2.102b)

G3(φ,X) = I(φ) , (4.2.102c)

K(φ,X) = 2I(φ)X , (4.2.102d)

and upon inserting them back into our disformally self-tuning Lagrangian [eq. (4.2.95)],

we find that for this specific case, it has the following form

L = 6ā3Nh exp

(
gX

2

)[
H̄2 −

(s
ā

)2
]
, N = gX − 1 . (4.2.103)

It is clear from this, that eq. (4.2.103) cannot be expressed in terms of the component

Fab-Four Lagrangians [eq. (4.1.5)]. Note, however, that in this simple example, the
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self-tuning Lagrangian [eq. (4.2.103)] can be written in covariant form as

L =
√
−g F (X̄)Ḡµν∇µφ∇νφ (4.2.104)

where F (X̄) = h
X̄

exp
(
gX̄
2N2

)
, with N given by eq. (4.2.98) (in which X is implic-

itly a function of X̄, cf. eq. (4.2.5)), and Ḡµν is the Einstein tensor evaluated in the

Jordan frame (cf. eq. (4.2.81c)). Thus, in this particular case the Lagrangian is a sub-

set of the beyond Horndeski extension of the Fab-Four found by Babichev et al. [183].

4.3 Discussion

In this chapter, we have have shown that it is possible to construct a theory that

admits self-tuning solutions that absorb all contributions to the vacuum energy,

and thus evading the CCP, at least at the classical level. This is possible due to

the assumption that the vacuum configuration of the self-adjusting field φ breaks

Poincaŕe invariance, thus evading Weinberg’s no-go theorem [128], and enabling it

to dynamically screen the vacuum energy from the spacetime curvature. We gave a

brief overview of the original construction of such a self-tuning theory, the so-called

Fab-Four. We then proceeded to consider whether this theory could be generalised

to incorporate disformal couplings to the matter sector, whilst preserving the desired

self-tuning dynamics of the scalar field.

Through a careful analysis, we were able to show that it is indeed possible to gener-

alise the Fab-Four theory and obtain a self-tuning theory of gravity in which matter

is disformally coupled to the self-tuning scalar field φ. In §4.2.4, we were able to

show that this generalisation is consistent with the known results, reproducing the

Fab-Four theory for both minimal coupling to the Horndeski metric and a minimal

coupling to a Weyl-rescaled Horndeski metric. This is true so long as the scaling func-

tion depends on φ, but not its canonical kinetic term X. Interestingly, by passing

the disformal theory through the self-tuning filter (cf. §4.1), we were forced to place

strong constraints on the form of any disformal coupling to matter in the theory.

Indeed, for self-tuning to be feasible, the conformal part of any disformal coupling

to matter must necessarily be a function of φ alone (as opposed to being a function

of both φ and X). This constraint significantly simplies the theory, since we can

take advantage of the fact that a Lagrangian, conformally related to a Horndeski

Lagrangian, remains in the Horndeski class, to effectively set the conformal factor

A(φ) to unity. Furthermore, this simplification enabled us to express the theory in
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“self-tuning form” such that, upon solving the related differential equations for the

Horndeski functions K and Gi (i = 3, 4, 5), the theory is guaranteed to be self-

tuning.11

The caveat in this analysis is that, unlike the original Fab-Four, the set of cou-

pled differential equations that must be solved in order to determine K and Gi,

cannot be done so in general. Essentially, the system is underdetermined, arising

from our freedom to choose the disformal coupling to matter, and so we can, at

best, find solutions on a case-by-case basis, for each specfic choice of the disformal

function B. Having said this, we were able to show that non-trivial solutions for K

and Gi do exist, for a particular choice of B (implicity defined though N). Moreover,

this simple analysis provided us with information on the inadmissable choices of the

lapse function N(t), and served to highlight that the resulting Lagrangian cannot be

expressed in Fab-Four form.

Clearly there is still work to be done on this disformal generalisation. The main

hurdle being that we are yet to discover a covariant form for the theory; owing to

the presence of the arbitrary disformal function B, the path to covariantisation is

less clear than in the original Fab-Four case. However, it may be possible to make

a fairly general choice for the form of B as a starting point, and be able to identify

associated curvature invariants for the solutions on an FRW background. More in-

terestingly, as the disformal function B is dependent on both φ and X, the theory

cannot be brought into Horndeski form under field re-definitions (this would be pos-

sible if B were a function of φ alone, cf. [184]), and as such, should one be able to find

a covariant form for the theory, it would fall into a beyond Horndeski class. More

recently, research has been conducted into the possibility of constructing theories

that go beyond Horndeski, whilst still evading Ostrogradsky’s instability [140] (cf.

§3.2.2), see, for example [192–195], and the implications this may have for Vainshtein

screening, e.g. [196, 197]. In particular, recently D. Langlois and K. Noui were able

to derive a general class of degenerate higher-order scalar-tensor (DHOST ) theories

[198, 199]. Should one be able to construct a covariant form for our disformally self-

tuning theory, one might expect that it would fall within this class, and it would

be interesting to investigate this. A further avenue of future research, would be to

11This point is somewhat tautological, since the differential equations for K and Gi were derived
by placing self tuning constraints on the theory. However, the fact that the theory can be recast
into “self-tuning form” on an FRW background before determining K and Gi, explicitly shows that
the theory is self-tuning, so long as there exist non-trivial solutions for K and Gi.
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study the cosmology of our disformal theory, and whether there are phenomenologi-

cally viable solutions; one might naively hope, that as this appeared to be possible

for the original Fab-Four, the same might be true for its disformal generalisation.

However, it would require a detailed analysis to determine whether this is the case

or not. Moreover, it is by no means certain that our theory is stable under radiative

corrections, although, even if it turns out not to be, it may provide a useful stepping

stone towards a self-tuning theory that is.

Aside from self-tuning, other long-distance modifications to gravity have been made,

in an attempt to solve the CCP. As briely mentioned in §1.4, a particularly interesting

idea is that of sequestering the SM vacuum energy, including all its loop corrections

such that it never impacts on spacetime curvature. This approach, first developed by

Kaloper and Padilla [58], proposes that one only modifies GR in the infinite wave-

length limit in such a way that no new propagating degrees of freedom are introduced

into the theory. Furthermore, by construction, it removes all contributions from the

vacuum energy (to the energy-momentum tensor), including matter loops to all or-

ders, rendering it a radiatively stable solution to the CCP. A particulary appealing

attribute of this theory is that it reduces exactly to GR locally, not requiring any

form of screening mechanism to pass solar system tests. For more in-depth details

of this proposed solution, and recent analyses, we refer the reader to the following

references [58, 59] and [200, 201].

Before bringing our discussion on self-tuning solutions to the CCP to a close, we

would be remiss not to discuss the recent data obtained from the gravitational wave

detection due to a binary neutron star collision. The data from the detection, named

GW170817, has seemingly placed strong constraints on modified theories of gravity,

in particular, scalar-tensor theories, having severely reduced their viable regions of

parameter space. Indeed, several papers were published following the data release,

completely ruling out the cubic Galileon (a subset of Horndeski theory), and essen-

tially all variants of Horndeski theory (unless one accepts severe fine-tuning) apart

from simple cases, as viable models for dark energy [202–206]. In particular, these

analyses imply that Fab-Four theory is ruled out, since it relies on the quartic and

quintic contributions in the Lagrangian, which have been ruled out, to provide Vain-

shtein screening [202].
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The conclusions made rest on the constraints placed on the speed of gravitational

waves, i.e. that −3 × 10−15 ≤ cg−c
c
≤ 5 × 10−16 (where cg is the gravitational wave

speed and c is the speed of light). Indeed, Horndeski theories general predict cg to

deviate from c, with the relative difference between the two values parameterised by

a quantity αT =
c2g−c2
c2

. It should be noted, however, that there are loopholes in the ar-

guments made in these papers. For example, in [205], an expression for αT is derived

in terms of the Horndeski functions, M2
∗αT ≡ 2X

[
2G4,X − 2G5,φ −

(
φ̈− φ̇H

)
G5,X

]
(where M2

∗ ≡ 2 (G4 − 2XG4,X +XG5,φ)). The claim is that the only way we can

arrive at αT ≈ 0, is if G5 ≈ const. and G4,X ≈ 0, otherwise there would have to be

some delicate cancellation between G4,X , G5,φ and G5,X , which would correspond to

fine-tuning, and unstable to radiative corrections.

However, there are two options available, yet to be thoroughly explored, that could

potentially lead to non-trivial solutions for φ that are not contrived. Indeed, one can

use the EOM for the scalar field φ, to express φ̈ in terms of φ̇, H and Ḣ. We can then

use the analogue Friedmann equations to express this in terms of the energy density

arising from the matter sector. By inserting this into the expression into αT , that

we wish to vanish, the problem will then be recast into determining choices of the

matter content of the universe for which H evolves in a particular fashion, such that

it forces αT ≈ 0. Of course, one might argue that such choices for the matter sector

may need to be finally tuned, nonetheless, it is still worth investigating. Another

option, is to seek solutions for the Horndeski functions K, G3, G4 and G5, such that

αT vanishes independently of matter content of the universe. It could well be that

such solutions do not exist, or are simply trivial, but again, one should not discard

this possiblility without further exploration.

Of course, even if non-trivial solutions for the Horndeski functions exist, it remains

to be seem whether they are able to describe a sensible evolution of the universe

that matches observations. It should further be noted, that the constraints placed on

beyond Horndeski, e.g. DHOST theories are less severe but still restrictive [202, 206].

Taking into account the possible loopholes discussed above, it is possible that these

can be alleviated somewhat. If this were to be the case, since the disformal exten-

sion of the Fab-Four is a beyond Horndeski theory (most probably within a class of

DHOST theories), the model would still remain a phenomenologically viable option.

Having said this, recent work by Creminelli et al. on graviton decay into dark energy

fluctuations has placed tighter constraints on the types of beyond Horndeski theories
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4.3. Discussion

compatible with the gravitational wave data [207]. This will undoubtedly make it

more difficult to keep the model viable, however, a more detailed analysis would need

to be carried out to determine its status.
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Chapter 5

(P)reheating the early universe

5.1 Preheating: a toy model

In §2 we briefly discussed the inflationary stage of the universe and the nature of

the subsequent necessary reheating process, in which the energy density held in the

inflaton condensate is deposited back into the universe, enabling the production of

the SM particles, and allowing for the early universe to enter a radiation dominated

epoch. As noted in §2.2.1, this is an important stage in the thermal evolution of the

universe, having significant consequences for leptogenesis (see, e.g., ref. [105]) and

for the generation of dark matter relic densities (see, e.g., ref. [106]). The process of

reheating enables us to transition to the standard HBB model, whose description of

BBN agrees well with experimental data [107].

In §2.2.2, we further commented that one must be careful to take into account

the non-perturbative nature of the inflaton condensate at the end of inflation, and

the non-trivial effects that this has on particle production, particularly during the

early stages of reheating. Indeed, the coherent, collective behaviour exhibited by the

inflaton condensate induces parametric resonances of the fields that it couples to,

resulting in efficient, explosive particle production. Since parametric resonance is a

phenomenon that occurs in the early stages of reheating, preceding the latter stages

of perturbative decay, it is referred to as preheating.

We shall now give a more detailed review of preheating, following the original papers

of Kofman, Linde and Starobinsky1 [98, 113] and the reviews [100, 114, 213, 214], to

which we refer the reader to for further details.

1Note that the phenomenon of parametric resonance was already known of, and well under-
stood, having been previously applied to particle production by external electric fields, e.g. [208–
210]. Indeed, early attempts to apply the theory of parametric resonance were made by Dologov
and Kirilova [211], and by Traschen and Brandenberger [212], however, it was Kofman, Linde and
Starobinsky who presented the first rigorous analysis of both narrow and broad resonance phenom-
ena in reheating.
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5.1. Preheating: a toy model

We start our discussion by referring back to the equations of motion for the classical

inflaton field, ϕ, given by Eqs. (2.1.24) and (2.1.25). In the most simple case of chaotic

inflation [90, 91], in which the inflaton potential is of the form V (ϕ) = 1
2
m2
φϕ

2, it

is possible to parametrise eq. (2.1.25) in terms of the Hubble parameter H and an

angular variable θ, as follows,

ϕ̇ =
√

6MPlH sin(θ) , (5.1.1a)

ϕ =
√

6
MPl

mφ

H cos(θ) . (5.1.1b)

Using eq. (2.1.24), we arrive at the equations of motion describing the dynamics of

H and θ,

Ḣ = − 3H2 sin2(θ) , (5.1.2a)

θ̇ = −mφ −
3

2
H sin(2θ) . (5.1.2b)

Observe from eq. (5.1.2a), that H has a solution of the form,

H =
2

3t

(
1−

∫ t
dt′ cos(2θ)

t

)−1

, (5.1.3)

and thus decays over time. From this, it is then clear that the second term on

the right-hand side of eq. (5.1.2b) describes oscillations with a decaying amplitude.

Indeed, we find that θ̇ = −mφ

[
1 + 1

mφt

(
1 − 1

t

∫ t
dt′ cos(2θ)

)−1
sin(2θ)

]
, and so for

mφt � 1, we can neglect this term to obtain an approximate solution for θ of

the form θ(t) ' −mφt. The Hubble parameter can then be readily obtained from

eq. (5.1.2a), such that

H(t) ' 2

3t

(
1− sin(2mφt)

2mφt

)−1

, (5.1.4)

which is valid for mφt � 1. Expanding this solution in powers of (mφt)
−1, and

substituting the result into eq. (5.1.1b), we thus obtain an approximate expression

for the inflaton

ϕ(t) ' ϕ0(t) cos(mφt)
(
1 + sinc(2mφt)

)
. (5.1.5)

As inflation draws to a close, the “friction” term 3Hϕ̇ in eq. (2.1.24) becomes less

and less important, with inflation terminating at ϕ ∼MPl/2. Since eq. (5.1.5) is valid

108



5.1. Preheating: a toy model

for mφt � 1, it is applicable near the end of inflation, and it has been shown that

the amplitude of ϕ drops off sufficiently enough that we can neglect the sinc-function

contribution in eq. (2.1.24) [98]. Consequently, at the onset of reheating, the solution

for the inflaton field ϕ asymptotically approaches the form

ϕ(t) ' ϕ0(t) cos(mφt) , ϕ0(t) ' 2
√

6MPl

3mφt
, (5.1.6)

where ϕ0(t) is the (decaying) oscillation amplitude of the inflaton field.

Now, in order to capture the non-perturbative effects present during preheating,

we shall again consider a Lagrangian of the form given in eq. (2.2.1), treating the

inflaton classically and the scalar field χ (to which it is coupled) quantum mechani-

cally. As such, we quantise the χ field in the presence of a classical time dependent

background field ϕ(t). In the Heisenberg picture, we can thus expand χ̂ in terms of

its Fourier modes as follows

χ̂(t,x) =

∫
d3k

(2π)3

[
âkχk(t)e+ik·x + â†kχ

∗
k(t)e−ik·x

]
, (5.1.7)

where âk and â†k are the annihilation and creation operators, respectively.2 For a

spatially flat (k = 0) FRW background, the temporal part of each of the field modes

satifies the following EOM

χ̈k + 3Hχ̇k +

(
k2

a2
+m2

χ + gϕ2

)
χk = 0 , (5.1.8)

where k is the comoving momentum. Note that this equation describes an oscil-

lator with a variable frequency ω due to the presence of the time-dependent back-

ground field ϕ(t), and the expansion of the universe (captured in the time-dependent

scale factor a(t)). For the sake of clarity, let us neglect the expansion of the uni-

verse for now, and furthermore, we observe from eq. (5.1.6) that typically ϕ0(t)

varies slowly with respect to the oscillation frequencies of both ϕ and χ. This cor-

responds to setting a = 1 (and hence H = 0) and ϕ0(t) ≈ const. in eq. (5.1.8).3

We are left, therefore, with an EOM for an oscillator with periodically changing fre-

2Note that we are employing the condensed notation âk := â(k), and χk(t) := χ(k, t) (and
likewise for â†k and χ∗k(t)).

3In fact, if we neglect the additional decay of the inflaton amplitude ϕ0 due to the transfer of
energy to the χ field, then provided that the time period of preheating is small compared to the
Hubble expansion time H−1, this approximation a ≈ 1 and ϕ0 ≈ const. is a reasonable one.
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5.1. Preheating: a toy model

quency ω2
k(t) = k2 + m2

χ + gϕ2
0 cos2(mφt), which upon making a change of variables

mt = z − π/2, can be recast into the form of a Mathieu equation

χ′′k + (Ak − 2q cos 2z)χk = 0 , (5.1.9)

where the primes denote derivatives with respect to z, and the parameters Ak and q

have been defined as follows,

Ak =
k2 +m2

χ

m2
φ

+ 2q , (5.1.10a)

q =
gϕ2

0

4m2
φ

. (5.1.10b)

The solutions to eq. (5.1.9) can be determined according to Floquet’s theorem, and

will be of the form [213],

χk(z) = emkzP1(z) + e−mkzP2(z) , (5.1.11)

where Pi (i = 1, 2) are periodic functions of z, and mk is a complex number known

as the Floquet exponent, which depends on Ak and q. Note that the real part of the

Floquet exponent µk := Remk is always non-negative, i.e. µk ≥ 0. An important

feature of the solutions to a Mathieu equation, is that they possess instabilities for

certain ranges of |k|. Specifically, for µk > 0, the corresponding modes χk exhibit

exponential growth, whereas, for µk = 0, the modes are stable and no parametric

resonance occurs. In this sense µk parameterises the instability of the system, de-

scribing the exponential growth of the mode functions χk in the unstable regions of

parameter space (q, Ak). As such, for clarity, we shall refer to µk as the instability

parameter of the system.

In general, it is found that the stabilities/instabilities present in such a system man-

ifest a band structure in its corresponding parameter space, with the boundaries

between stable and unstable regions being functions of Ak and q. This is evident in

fig. 5.1, in which we can see the band structure of the stable and unstable regions

for a range of values for q and Ak. Note from eq. (5.1.10a) that only certain re-

gions of instability are physically realisable, these correspond to values of momenta

|k| ≥ 0, and as such, parametric resonance of the modes χk can only occur above

the line A0 = (mχ/mφ)2 + 2q. From an in-depth analysis of the Mathieu equation
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5.1. Preheating: a toy model

Figure 5.1.1: Stability chart for solutions to the Mathieu equation. The horizontal axis is the
parameter q, and the vertical axis the value of A. The shaded regions correspond to regions of
instability in parameter space in which parametric resonance occurs. [Source: McLachlan, 1951
[215]].

[215], it is found that the width of these resonance bands ∆A
(l)
k (where l ∈ Z+),

and furthermore the efficiency of preheating, are governed solely by the parameter

q. Indeed, it is found that for small values of q, i.e. q � 1, resonance can only occur

within narrow bands, a regime that is aptly referred to as narrow resonance. In the

opposite extreme, i.e. q � 1, resonance can take place in broad bands, which include

all long-wavelength modes |k| → 0; this regime is referred to as broad resonance.

Before moving on to discuss the details of narrow and broad resonance, we shall

address the physical interpretation of the resonant effects on the mode functions

χk due to these instabilities. Indeed, the exponential growth of modes lying within

a given resonance band can be interpreted physically as rapid particle production,

leading to an exponential amplification of occupation numbers nk(t) = 〈â†kâk〉 in

those modes. To see this, we observe that the energy per mode can be extracted

from the expectation value of the effective Hamiltonian for the χ field,

〈Ĥk(t)〉 = ωk(t)

(
Nk(t) +

1

2

)
=

1

2

(
|χ̇k|2 + ω2

k(t)|χk|2
)
, (5.1.12)
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5.1. Preheating: a toy model

such that the number density Nk of χ particles per mode is given by,

Nk(t) =
1

2ωk(t)

(
|χ̇k|2 + ω2

k(t)|χk|2
)
− 1

2
. (5.1.13)

Now, from eq. (5.1.11), we know that unstable modes grow as χk ∼ eµkz, and so we

see from eq. (5.1.13), that this sources an exponentially increasing particle number

density in these modes, Nk ∼ e2µkz. This implies that the growth rate of the particle

number densities in these modes is proportional to the current number density per

mode, i.e. Ṅk ∼ 2µkmφNk = ΓPRNk, and thus capturing the effect of Bose enhance-

ment, in agreement with the expected result in the perturbative calculation of this

effect discussed in §2.2.2).

It is important to note that this rapid production of particles results in a highly

non-thermal spectrum, as evidenced by the band structure in fig. 5.1. As such, the

particles produced during the preheating phase are far from thermal equilibrium,

and will therefore subsequently thermalise, eventually resulting in an equilibrium

distribution, at which point the system will have a well-defined temperature.4

5.1.1 Narrow resonance

As briefly mentioned, the defining condition of narrow resonance is that q � 1,

which from eq. (5.1.10b), implies that gϕ2 � m2
φ. In this case, resonance occurs

only in narrow bands in momentum space centered around A
(l)
k ' l2 (l ∈ Z+),

each with a width of order ∆A
(l)
k = |A(l)

k − l2| ∼ ql, as dictated by the theory of

Mathieu’s equation [215]. The corresponding resonance then occurs for modes with

k2 ∼ m2
φ

(
l2 − 2q ± ql

)
−m2

χ, and since q � 1, it is evident that, as l increases, these

instability bands become progressively narrower. Consequently, it is clear that the

widest and most important instability band is the first one, A
(1)
k ∼ 1± q,, for which

k2 ∼ m2
φ (1− 2q ± q)−m2

χ. The instability parameter µ
(1)
k for this first band is given

by [215],

µ
(1)
k '

√(q
2

)2

−
(
A

1/2
k − 1

)2

. (5.1.14)

4Note that in equilibrium, the distribution of particles across the available energy states is
proportional to (eβεi ± 1)−1 for fermions (+) and bosons (−), where β = (kBT )−1, and εi is the
energy corresponding to the ith state. We can therefore determine the inverse temperature T of the
system from the gradient of the logarithmic plot of this distribution. However, far from thermal
equilibrium, things are much more complex, in particular, the distribution of particles will not be
parametrised by a single quantity β. Simply put, the system will not have a thermal distribution
of particles and therefore will not have a well-defined notion of temperature.
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5.1. Preheating: a toy model

At the edges of the resonance band µ
(1)
k = 0 as expected, since in stable regions the

real part of the Floquet exponent, mk, must vanish. Furthermore, it has a maximal

value µ
(1)
k = q

2
at the center of resonance, k ∼ mφ, corresponding to a maximal

growth in modes χk with this momentum of order χk ∼ eqz/2 ' eqmφt/2, with a cor-

responding increase in the number density of these modes Nk ∼ exp(
gϕ2

0π

4m2
φ
N), where

N = mφt/2π counts the number of oscillations of the inflaton condensate since the

start of reheating. One can provide a natural physical interpretation for the reso-

nance in the first band peaking at |k| ∼ mφ. Indeed, since gϕ2
0 � m2

φ (and assuming

that mχ � mφ), the effective mass of the χ particles is much less than mφ, and as

such, two φ particles decay into two χ particles with momenta |k| ∼ mφ. We can

generalise this particle picture by noting that, for the lth instability band, the reso-

nance is centered around |k| ∼ lmφ, and as such can be interpreted as the collective

process 2l × φ→ χχ.

Note that the resonant production of particles is drastically different to the per-

turbative production discussed in §2.2.1. The decay rate Γϕ of the latter is sup-

pressed by a factor g2/m2
φ, and is thus very inefficient (since we take the coupling

to be weak), whereas, in the former ΓPR ∼ mφq, and so is much greater than Γϕ

for ϕ2
0 > gσ2/2π. Moreover, referring back to eq. (2.2.8), we see that in the pertur-

bative approach the growth rate of the χ particle number density (per momentum

mode) Nk is proportional to the number density of the inflatons Nφ, conversely, in

the case of parametric resonance the growth rate is proportional to Nk itself, i.e. it

is contingent on the number of χ particles already produced, resulting in an expo-

nential growth. Note, however, that one can provide a link between the perturbative

and non-perturbative analyses in this scenario. Indeed, one can interpret the Bose

condensation effects in the leading-order perturbative process φφ → χχ as a para-

metric resonance of the χ modes due to the first (l = 1) instability band (|k| ∼ mφ).

The higher-order resonance bands (l > 1) then correspond to the higher-order pro-

cesses involving collective decays of l × φ particles into pairs of χ particles, taking

into account the Bose effects due to dense populations of the χ modes with |k| ∼ lmφ.

It is clear then, that by solving eq. (5.1.8) non-perturbatively, we capture the collec-

tive behaviour of the inflaton condensate ϕ, and thus opening up additional decay

channels for ϕ to transfer energy to the χ field. Indeed, in the perturbative approach,

it is assumed the χ particles produced by the oscillating inflaton field ϕ are on the

(bare) mass-shell, i.e. k2
χ = −m2

χ (where kµχ is the four-momentum of the produced
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5.1. Preheating: a toy model

χ particles), however, if parametric resonance is taken into account, then the χ field

has a time-dependent effective mass, and so particles can be produced off the (bare)

mass-shell, i.e. k2
χ = −m2

χ−gϕ2(t). Consequently, energy can be transferred from the

inflaton condensate to the χ field much more efficiently, resulting in an exponential

growth of field modes χk (and accordingly the number density nk). Intuitively this

makes sense, since the effective mass of the χ field fluctuates with the oscillations

of the inflaton condensate, such that at certain points in its cycle the χ field can

become very light relative to the inflaton mass, at which point becomes kinematically

possible for a large number of χ particles to be created.

We note, however, that as the name suggests the resonance is narrow, and thus

only occurs for modes χk within a small region of momentum space. As a result,

for most of momentum space, the perturbative techniques discussed in §2.2.1 are

applicable. Indeed, if the resulting decay rate is smaller than 2µkmφ ∼ mφq, then

parametric resonance and perturbative decay of the inflaton field may coexist. Res-

onance of the χ field does not persist indefinitely, as ϕ gradually loses energy to

the χ field, its amplitude decreases, eventually becoming smaller than (g/8π)σ, at

which point perturbative decays take over and the amplitude of ϕ decreases expo-

nentially (within a time ∼ Γ−1
φ→χχ), terminating any remaining resonance. Indeed, for

resonance to occur, it must proceed at a faster rate than perturbative decays, i.e.

ΓPR ∼ mφq =
gϕ2

0

4mφ
& Γφ→χχ, and once this condition is violated any resonant effects

disappear. At this point, perturbative decays take over, in which one can treat the

inflaton quanta as decaying independently into χ particles, and the analysis carried

out in §2.2.1 is applicable. These will continue until the inflaton condensate has com-

pletely decayed, upon which the system will proceed to thermalise and ultimately

rejoin with the standard HBB model.

5.1.2 Broad resonance

In models such as chaotic inflation, it is possible for the initial oscillations of the

inflaton condensate to have a large amplitude, ϕ0 ∼ 0.1MPl. In this case q can be

very large, i.e. q =
gϕ2

0

4m2
φ
� 1, and so the resonance bands of momenta, |k|, can be

very broad. In particular, all infrared modes (|k| → 0) reside within these bands,

resulting in extremely efficient reheating. This is the regime of broad resonance,

and since q � 1, the techniques and results used to determine µk in the narrow

resonance regime cannot be applied. One can still calculate µk for q � 1, however,

the procedure is more complicated. That being said, for completeness, we quote here
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the general solution for µk (for fixed Ak and q),

µk =
1

π
ln
∣∣∣√F 2

k +
√
F 2

k − 1
∣∣∣ , (5.1.15)

where Fk = 1 +
[

d
dz
χ̃

(1)
k (z = π

2
)
]
χ̃

(2)
k (z = π

2
), in which χ̃

(1)
k and χ̃

(2)
k are solutions to

eq. (5.1.9), satisfying the intitial conditions χ̃
(1)
k = 1,

dχ̃
(1)
k

dz
= 0, and χ̃

(2)
k = 0,

dχ̃
(2)
k

dz
= 1

at z = 0, respectively [216]. In particular, note that parametric resonance occurs

whenever Fk > 1.

In the interest of clarity, however, we shall instead follow a different route to ex-

tract the salient features of broad resonance (and refer the reader to, e.g., [216–218]

for further details on the procedure for determining µk). Indeed, let us return to

eq. (5.1.8), and note that, in our current approximation (a(t) = 1 and ϕ0(t) ≈ const.)

this reduces to,

χ̈k(t) + ω2
k(t)χk(t) = 0 , (5.1.16)

where ω2
k(t) = |k|2 +m2

χ+gϕ2
0 cos2(mφt). This differential equation has the following

approximate solution

χk(t) ≈ χk(t0)√
ωk(t)

exp

(
±i
∫

dt′ωk(t′)
)
, (5.1.17)

which holds whenever the condition

|ω̇k(t)|
ω2

k(t)
< 1 , (5.1.18)

is satisfied. This is the so-called WKB, or adiabatic approximation. Whenever eq. (5.1.18)

is fulfilled then the system evolves adiabatically5, and in particular, the number den-

sity Nk is (approximately) an adiabatic invariant, which can be seen by referring

5Note that, during reheating, the inflaton condensate induces a time-dependent oscillation fre-
quency ωk(t) for any field coupled to the condensate (in this case χ). Qualitatively, an adiabatic
evolution of the system then corresponds to a slow change in this oscillation frequency. Indeed,
when ϕ is not near ϕ(t) = 0, ωk(t) varies sufficiently slowly, inducing a gradual evolution of the
systems Hamiltonian. As such, the state of the system remains in the same instantaneous eigenstate
of the Hamiltonian as it was in before the system started to evolve. However, when ϕ passes through
ϕ(t) = 0, this causes an abrupt change in ωk(t), in turn, inducing a rapid change in the Hamiltonian
of the system. Consequently, the system is no longer in the same instantaneous eigenstate of the
Hamiltonian as it was before the non-adiabatic evolution occurred.

115



5.1. Preheating: a toy model

back to eq. (5.1.13)

Nk =
1

2ωk(t)

(
|χ̇k(t)|2+ω2

k(t)|χk(t)|2
)
− 1

2
≈ ωk(t)|χk(t)|2− 1

2
≈ const. (5.1.19)

In fact, during broad resonance, the typical oscillation frequency of the χ field

ω(t) =
√
|k|2 +m2

χ + 4m2
φq cos2(mφt) is much greater than that of the inflaton con-

densate, and as such the χ field oscillates many times (O(q1/2)) during each period of

oscillation of ϕ. For this reason, throughout most of this interval, the effective mass

of the χ field varies adiabatically. We see then, that Nk can vary significantly when

there is a non-adiabatic change in ωk, i.e. when the condition given by eq. (5.1.18) is

violated. As such, resonant particle production occurs during intervals of the inflaton

oscillations where |ω̇k|
ω2
k
& 1, i.e.,

g|ϕ||ϕ̇|(
|k|2 +m2

χ + gϕ2
)3/2
& 1 . (5.1.20)

It is clear then, that eq. (5.1.18) is strongly violated in cases where |ϕ̇| & √g |ϕ|2,

and only for particular values of momenta (as we shall discuss below). Moreover,

|ϕ̇| & √g |ϕ|2 at points in the inflaton’s interval of oscillation near ϕ = 0, at which

the effective mass of the χ field attains its minimal value meff ≈ mχ � mφ. As such,

during broad resonance, particles are produced in rapid bursts (and as we will see)

across a broad range of momenta during short intervals of each oscillation of the in-

flaton condensate. The result is an exponentially fast growth of the number density.

Note that this differs from the case of narrow resonance, in which particle production

occurs smoothly over time. Indeed, the adiabatic condition [eq. (5.1.18)] is never vi-

olated during narrow resonance, however, it is always non-zero and therefore particle

production can still take place, but proceeding at a much slower rate than resonant

production. In this case the dominant contribution arises from the first resonance

band, and since q � 1, we have that |k| ∼ mφ ∼ ωk in its centre (for mχ � mφ).

The corresponding mode χk oscillates at approximately the same frequency as the

inflaton condensate ϕ. Typically, the rate of parametric resonance in the narrow

regime does not differ much for the rate of growth of these modes [98]. The reason

why resonance occurs in the narrow regime is due to Bose enhancement of inflaton

decays into certain χ modes (those within resonance bands of momenta identified

in the Floquet analysis, cf. §5.1.1). As preheating progresses in this regime, these

modes become densely populated, leading to a smooth exponential increase in their

corresponding number densities over many oscillations of the inflaton condensate.
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As we have established, it is clear from eq. (5.1.20) that resonant particle production

occurs when ϕ passes through zero. In order to determine the range of momenta over

which field modes can be parametrically excited, we note that for small |ϕ| one may

approximate ϕ̇ ≈ −mφϕ0. From eq. (5.1.20) it then follows that6

0 ≤ |k|2 . (gmφϕϕ0)2/3 − gϕ2 , (5.1.21)

from which it is evident that parametric resonance can occur across a continuous

and broad range of momenta, allowing for extremely efficient reheating. Clearly, the

condition given by eq. (5.1.21) places a constraint on the amplitude of the inflaton

condensate, in particular, we observe that |ϕ| must be smaller than
(
mφϕ0√

g

)1/2

. If

we then treat the momenta |k|2 that satisfy eq. (5.1.21) as a function of ϕ(t), then

we find that the maximal range of momenta for which particle production can occur

corresponds to where ϕ takes the value,

ϕ(t) = ϕ∗ ≈
1

2

(
mφϕ0√

g

)1/2

≈ 1

3
ϕ0q

−1/4 . (5.1.22)

Accordingly, one can estimate the maximal momentum for particles produced to

be |k|max ≈
(√

gmφϕ0

2

)1/2

. Given that |ϕ| . 2ϕ∗ throughout the main part of each

interval of oscillation, the maximum value of momentum attainable will decrease, but

should remain of the same order of magnitude as |k|max. As such, one can further

estimate that the typical range of momenta k = |k| for particles produced during

broad resonance should be

0 ≤ k .
k∗
2

=
1

2
(
√
gmφϕ0)1/2 =

mφq
1/4

√
2

, (5.1.23)

where k∗ =
(√

gmφϕ0

)1/2
is a measure for the maximum momentum scale attainable

for produced particles during preheating. Since q � 1, we see from eq. (5.1.23) that

it is possible for k � mφ, indicating the collective behaviour of the interaction been

the inflaton condensate and the χ field. Indeed, this highlights the fact that para-

metric resonance is a highly non-perturbative phenomenon in the broad resonance

regime, in which the coherent nature of inflaton condensate manifests as the collec-

tive interaction of many inflaton quanta in the production of χ particles.

6Here we neglect the bare mass of the χ field, as we assume mχ � mφ
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5.1. Preheating: a toy model

To conclude this part of the analysis, we note that as ϕ approaches the point ϕ = 0,

it will spend an amount of time ∆t∗ in the region where eq. (5.1.18) is violated and

particle production can occur. Within this region, we have that |ϕ| . ϕ∗, and so its

width can be estimated as |ϕ̇|∆t∗ ∼ 2ϕ∗, and therefore particle production occurs

within a time interval,

∆t∗ ∼
2ϕ∗
|ϕ̇|
≈ (
√
gmφϕ0)−1/2 = k−1

∗ . (5.1.24)

As briefly mentioned earlier, we see then that particle production occurs only within

short time intervals near the points where ϕ = 0. In particular, note that during that

time interval k∗ ∼
√
gϕ∗ ≈ mχ, such that ω∗ =

√
k2∗ +m2

χ + gϕ2∗ ∼ k∗. We see there-

fore, that particle production occurs within a time of order the oscillation period of

the χ field, i.e. ∆t∗ ∼ ω−1
∗ . Due to the strong violation of adiabaticity, the number

density Nk jumps rapidly and it cannot be interpreted as a physical quantity within

these short time intervals, however, it fairly quickly settles down to an approximately

constant value and is (approximately) adiabatically invariant in between such jumps.

As the production process progresses, the amplitude of the inflaton will decrease

due to energy being transferred to the χ field, furthermore, the created particles will

generate a contribution to the effective mass of ϕ, m2
φ,eff = m2

φ + g〈χ̂2〉 (where 〈χ̂2〉
is the renormalised expectation value of χ̂2). As a result of these effects, eventually

q =
gϕ2

0

4m2
φ,eff
. 1 when ϕ2

0 ∼ 〈χ̂2〉, at which point broad resonance will transition to the

narrow regime. This has been estimated to occur after a time tBR ∼ m−1
φ ln

(
mφ

g5/2MPl

)
[113], which for

√
g = 5×10−4 and mφ =

√
8π10−6MPl, corresponds to NBR ∼ O(10)

oscillations of the condensate. Preheating then proceeds in the regime of narrow res-

onance, during which the energy of the inflaton field ϕ decreases further, such that

it becomes much less than that of the produced χ particles. The decay of the in-

flaton field will eventually cease, when the field ϕ is small enough that the process

becomes inefficient. Indeed, the inflaton can only completely decay if the single par-

ticle decay processes, ϕ→ χχ and/or ϕ→ ψψ, remain possible. In fact, it has been

shown that when the amplitude of the condensate ϕ0 < g−1/2mφ, then the decay

of ϕ will terminate, corresponding to a time tend ∼ m−1
φ

(√
gMPl/mφ

)1/3
. If, however

mφ < g7/2MPl, then the decay of ϕ occurs at a later stage, once reheating has entered

the perturbative regime [113].
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5.2. Preheating: a more realistic scenario

5.2 Preheating: a more realistic scenario

Our discussion of preheating in the narrow resonance regime so far, whilst enlighten-

ing on the key aspects of parametric resonance, is nonetheless a toy model. A more

realistic treatment would require us to include the effects arising from the expansion

of the universe, the backreactions of the produced χ particles on the inflaton con-

densate and their secondary interactions (rescatterings and decays). In the case of

narrow resonance, these effects, of which we shall discuss briefly in turn, all conspire

to suppress the efficiency of parametric resonance and evolve the system towards the

perturbative regime. We shall closely follow the analyses of Refs. [98], [114] and [100]

in this section, and we refer the reader to them for further details.

Referring back to eq. (2.1.24), we see that the expansion of the universe increases the

rate at which the inflaton decays, due to the presence of the “Hubble friction” term

3Hϕ̇. Comparing ΓPR with the effective decay rate of the inflaton field, 3H + Γϕ (cf.

eq. (2.2.5)), we see that parametric resonance can only take place if mφq & 3H+ Γϕ.

Furthermore, the momenta of the previously created χ particles will be redshifted

due to the expansion, thus shifting them out of the resonance band, which can be es-

timated to occur after a time interval of order ∆t ∼ qH−1. This places an additional

condition on ΓPR, indeed, efficient decay of inflatons can only occur if qmφ & ∆t−1.

We see therefore, that in order for parametric resonance to play a role in reheating,

the following two conditions must be satisfied:

mφq & 3H + Γϕ , (5.2.1a)

q2mφ & H . (5.2.1b)

Observe that, in the case of narrow resonance (q � 1), eq. (5.2.1b) is a much stronger

condition than eq. (5.2.1a).

The backreactions of the the produced χ particles on the inflaton condensate further

inhibit the efficiency of parametric resonance. As more and more χ particles are cre-

ated, they shift the effective mass of ϕ, causing the structure of the resonance bands

to change, and causing previously produced particles to be removed from the reso-

nance. Finally, the secondary interactions of rescattering and decays of the produced

χ particles will generally cause them to change momenta and, as such, shift them

out of the resonance band, thus further reducing the efficiency of preheating. In the
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5.2. Preheating: a more realistic scenario

case of broad resonance (q � 1), the situation is a little different. In fact, the process

of parametric resonance in the broad regime is significantly more complex when one

re-introduces the expansion of spacetime into the picture. This more complex reso-

nant behaviour is referred to as stochastic resonance. The name arises from the fact

that, for ȧ 6= 0, ω2
k(t) = k2

a2 + m2
χ + gϕ2

0 cos2(mφt); the additional time-dependence

provided by the scale factor a causes the χ field to oscillate non-periodically. As

such, the phases of the a given resonant field mode χk at successive crossings of the

inflaton field through zero, ϕ(t∗) = 0, are completely uncorrelated. This leads to

stochastic changes in the number density Nk, in which it can increase or decrease

at any given moment, only increasing exponentially on average. As a result, one is

unable to interpret this process in terms of a classical particle picture; it is purely

quantum mechanical.

Perhaps counter-intuitively, the expansion of spacetime actually competes against

the de-stabilising effects of backreactions and rescatterings during preheating in the

broad resonance regime. To see why this is the case, we note that particle produc-

tion will occur for all values of momentum |k| within a sphere of radius ∼ k∗. As a

result of spacetime expansion, the physical momenta of the created χ particles are

red-shifted (|k| ∝ a−1), however, the radius of the resonance sphere, decreases at a

slower rate; indeed, we see from eq. (5.1.23), that it falls off as ϕ
1/2
0 ∝ t−1/2 ∝ a−3/4.

Consequently, created particles are shifted away from the boundary of the sphere,

moving towards its center, where they are able to participate in further particle pro-

duction and thus enhancing the probability of decay into these modes. Recall that,

in the case of narrow resonance, the efficiency of the resonance was affected by the

subsequent re-scatterings of the produced χ particles, and their backreaction on the

inflaton condensate. Indeed, they reduced efficiency by removing particles from the

resonance bands.

The same effect also occurs in the broad resonance regime, causing created particles

near the boundary of the resonance sphere to be pushed away from it. However, as we

have just noted, the expansion of spacetime causes particles to naturally move away

from this region, and so the efficiency of the resonant particle production is deter-

mined by the competing effects of Hubble expansion, backreaction and rescatterings.

That being said, the backreaction is already expected to be small throughout the

most part of broad resonance. Indeed, the presence of χ particles changes the effective

mass of the inflaton condensate. This effect is negligible so long as ∆m2
φ < m2

φ, where
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5.2. Preheating: a more realistic scenario

in the mean-field approximation ∆m2
φ = g〈χ̂2〉. One can show that within this ap-

proximation ∆m2
φ ≈

(
1+ε cos

(2
√
gϕ0

mφ
cos(mφt)

))√gNχ
|ϕ(t)| ∼

√
gNχ
|ϕ(t)| (where ε < 1). During

the broad resonance regime (where
√
gϕ0 � mφ) the term is highly oscillatory and

therefore has only a negligible effect on the evolution of the condensate ϕ(t) (due to

the sign of ε cos
(2
√
gϕ0

mφ
cos(mφt)

)
changing rapidly during each oscillation of ϕ(t)).7

In order to fully neglect backreaction effects on the dynamics of ϕ(t), it must also be

the case that the energy density of the χ field is sub-dominant to that of the inflaton

condensate. Since the produced χ particles are predominantly relativistic, we shall

estimate the energy density of the χ field in terms of its kinetic energy (density), as

such ρχ ∼ 〈(∂µχ̂)2〉 ∼ k2
∗〈χ̂2〉.8 Moreover, k2

∗〈χ̂2〉 ∼ 2mφNχq
1/2, and so comparing

this with the potential energy density of the inflaton condensate Vφ ∼
2m4

φ

g
q, we see

that ρχ is smaller than Vφ so long as q > 1.9 Therefore, backreaction will only start

to have a non-negligible impact on the dynamics of ϕ(t), and hence on the resonance,

once preheating enters the narrow resonance regime (q � 1), and one can reasonably

ignore its effects before this point. Finally, we should note that in many models the

scattering of χ particles off the inflaton condensate can suppress, and even shut-off

resonance before backreaction effects start to become relevant, as has been confirmed

by numerical simulations [219–222].

With all of these considerations taken into account, it is clear that preheating is

far from a straightforward affair, its efficiency (and viability) proving to be sensitive

to an interplay of various factors. Importantly, we have seen that there are multi-

ple effects that conspire to shut-off the resonance, particularly the backreaction and

rescatterings of the produced particles. Moreover, resonance can be blocked by the

generation of thermal effective masses of the produced particles [223]. In an expand-

ing universe the point in time tPR at which parametric resonance will typically cease

when eq. (5.2.1) is violated. This can be estimated to occur when q ∼ O(0.1), i.e.

7Kofman, Linde and Starobinsky showed that this rapid oscillatory behaviour does not lead to
the parametric resonance of the inflaton condensate, but that a non-resonant particle production
is possible (see ref. [98] for further details).

8To estimate the kinetic energy (density), one can consider the ultra-relativistic limit of the
(expectation value of the) corresponding Hamiltonian: 〈H〉 ≈ 1

2

(
〈(∂tχ̂)2〉 + 〈(∇χ̂)2〉

)
. By consid-

ering the Fourier transform, one can then make the formal replacements ∂t → −ωk ∼ −k∗ and
∇ → k ∼ k∗, such that 〈H〉 ∼ k2

∗〈χ̂2〉.
9Here, we have noted that ∆m2

φ ∼
√
gNχ
|ϕ(t)| , and for the effects of backreaction to be neglected,

we require that ∆m2
φ < m2

φ. This implies the condition that Nχ .
m2
φ|ϕ(t)|
√
g .
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5.2. Preheating: a more realistic scenario

when
√
gϕ0 ∼ mφ. At this point ϕ0 ≈ 2

√
6MPl

3mφtPR
, corresponding to

tPR ∼
2
√

6

3

√
gMPl

m2
φ

, (5.2.2)

meaning that, for
√
g = 5× 10−4 and mφ =

√
8π10−6MPl, parametric resonance will

persist for NPR ∼
√

6
3π

√
gMPl

mφ
∼ 26 oscillations of ϕ.

Once preheating terminates, perturbative decays take over and the elementary anal-

ysis discussed in §2.2.2 can be used. The production of χ particles will persist until

the inflaton has completely decayed, and once this has occurred, the system of par-

ticles will eventually settle down to a state of equilibrium, with a corresponding

reheat temperature, at which point the standard HBB model becomes applicable.

In fact, one expects that the produced particles will start to thermalise even during

preheating, as soon as the number density becomes appreciable in size. Thermali-

sation of the produced χ particles is a rather complex phenomenon, however, it is

an important part of the reheating process and must be analysed carefully if one is

to obtain a sensible prediction for the reheat temperature. We shall discuss this in

detail in the following chapter, where we shall consider the processes of preheating

and thermalisation simultaneously through use of the density matrix formalism.
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Chapter 6

Thermalisation during preheating

At the end of the previous chapter we introduced the notion of thermalisation dur-

ing reheating, noting that it is an important and essential part of the process, in

order for inflationary theory to reconnect with the standard HBB model. Indeed,

the elementary analysis and prediction of the reheating temperature carried out in

§2.2.1 is severely lacking, in particular, due to its assumption that thermalisation

happens almost instantaneously. In a realistic scenario, this generically would not

be the case1, in fact, thermalisation can only proceed so long as the rate of Hubble

expansion is less than the interaction rate between the created particles.

In the early stages of reheating, non-perturbative processes can dominate, leading

to explosive particle production. This occurs on time-scales much shorter than those

needed for the produced particles to thermalise. Within the chaotic inflation sce-

nario, preheating begins in the broad resonance regime, wherein the particle number

grows exponentially across wide bands of momentum [98, 100]. As was discussed in

§5.2, due to the decay of the amplitude of the inflaton condensate, and the expansion

of the universe, the dynamics eventually transition to the narrow resonance regime,

where the growth of particle number is restricted to ever narrower bands of momen-

tum.

At this stage, the backreaction from the created particles and the Hubble expan-

sion continue to conspire to reduce the efficiency of the parametric resonance [97].

Specifically, the backreaction alters the structure of the resonance bands, the cosmo-

logical expansion redshifts the momenta of the produced particles and both effects

cause the created particles to be shifted out of the resonance bands. The resonance

can also be blocked by the onset of effective thermal masses [223]. In any case, as

the parametric resonance becomes increasingly narrow and inefficient, the dynamics

inevitably transition to the perturbative regime [98, 113], and it is during this fi-

nal stage of reheating that scatterings redistribute the occupancy of the momentum

1If reheating is predominantly perturbative, and particle production occurs slowly enough, then
thermalisation is almost instantaneous [100].
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modes, leading to the eventual kinetic equilibriation of the primordial plasma.

While the time-scales for preheating are much shorter than those needed for thermali-

sation, the processes driving that thermalisation are still relevant during the preheat-

ing phase. In particular, semi-classical lattice simulations have shown that sufficiently

large self-interactions of the produced particles can suppress or prevent the resonant

particle production [222]. The early thermal history of the universe depends strongly

on how the primordial plasma attained kinetic equilibrium [224]. This has motivated

the extensive study of thermalisation both in perturbative reheating [225–231] and

after the phase of preheating [224, 232–239], and the relevant relaxation rates can

be calculated by means of thermal quantum field theory [229, 240, 241].

With an aim of better understanding the thermalisation process during preheat-

ing, in this chapter we will recast the problem of preheating in the density matrix

formalism [242] and study the impact of scatterings on this phase by means of a

system of quantum Boltzmann equations. These Boltzmann equations are able to

go beyond the usual mode-function analysis of preheating, based on the Mathieu

equation, by accounting simultaneously for both the resonant particle production

and the collisional processes.

As we shall show, the resonant particle production proceeds via the population of

pair correlations of the form Mk ∼ 〈â−k(t)âk(t)〉 and M∗
k ∼ 〈â

†
k(t)â†−k(t)〉, requiring

one to solve the coupled system of Boltzmann equations for the number density

Nk ∼ 〈â†k(t)âk(t)〉 and these “particle-anti-particle” correlations. The presence of

such pair correlations is expected in the absence of time translational invariance,

as was identified in the context of preheating in Refs. [243–245] by means of the

Schwinger-Keldysh closed-time-path and Kadanoff-Baym [246] formalisms of non-

equilibrium quantum field theory [247, 248] (see also Refs. [249, 250]). Therein, the

number density must be carefully defined [251], and the pair correlations can then

be accounted for in the non-equilibrium Green’s functions by working with coherent

quasi-particle approximations [252–254] or directly in terms of the operator alge-

bra by means of the so-called interaction-picture approach [255, 256]. Particle-anti-

particle pair correlations have also been studied in the density matrix formalism in

the context of neutrino kinetics, where they may play a role in core-collapse super-

novae [257–261].
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6.1. A density matrix approach to preheating

As will be demonstrated in this chapter, the pair correlations in fact play the pivotal

role in mediating the particle production, and without them no particle produc-

tion occurs. This leads to a powerful generalization of the previous observation by

Morikawa and Sasaki [262] that small perturbations to such a system would destroy

coherences between particle and anti-particle states. Indeed, it follows that any pro-

cesses that cause such pair correlations to decohere will suppress, or shut off, the

resonant particle production.

6.1 A density matrix approach to preheating

Following the introductory discussion to this chapter, we now proceed to construct

a toy model of preheating. In doing so, we will account for the leading-order scat-

tering processes of particles produced during this phase, thereby enabling one to

study their impact on the preheating process. For this, we need to determine the

behaviour of a statistical ensemble of relativistic particles as they evolve towards a

state of thermal equilibrium. This requires a set of evolution equations describing

a relativistic quantum many-body system.2 The density matrix formalism, in which

we describe the state of the system in terms of a density operator ρ̂(t), furnishes

us with the means to derive such a set of equations. Ultimately, this will enable us

to derive a self-consistent set of quantum Boltzmann equations that describe the

evolution of the (scalar) particle number densities throughout preheating. With this

in mind, in the following subsections we will elaborate on the details of a density

matrix description of preheating.

6.1.1 Canonical quantisation on a time-dependent background

Let us consider a toy-model preheating theory, in which we assume single-field chaotic

inflation has occurred, and that the inflaton φ(x) := φ(t,x) is coupled to some scalar

field3 χ(x) := χ(t,x) via a potential of the form V (ϕ, χ) = g
4
ϕ2χ2. Throughout this

analysis, we shall assume that the rate of post-inflationary expansion is small rela-

tive to the rate of particle production and thermalisation, such that the universe is

approximately Minkowski at the end of inflation, i.e., the scale-factor a(t) ≈ const.4

2Such a system will generically be in a mixed state throughout its evolution, necessitating a
density matrix description.

3We restrict our attention to scalar fields to the avoid additional complications of dealing with
spinor fields.

4One can choose co-moving coordinates such that a(t) ≈ 1.
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6.1. A density matrix approach to preheating

Although a toy model, it captures the salient features physical effects that we wish

to study.

We therefore consider a Lagrangian of the form given by eq. (2.2.1), i.e.

L = L φ
0 + L χ

0 + Lint = −1

2
∂µφ∂µφ−

1

2
m2
φφ

2 − 1

2
∂µχ∂µχ−

1

2
m2
χχ

2 − g

4
φ2χ2 ,

(6.1.1)

where Lint = −g
4
φ2χ2 is the interaction Lagrangian, mφ and mχ are the bare masses

of the inflaton φ = φ(x) and the scalar field χ = χ(x), and g is the coupling between

φ and χ.5 Given this, we can construct the corresponding Hamiltonian density from

the Legendre transform of eq. (6.1.1) to give,

H = H φ
0 + H χ

0 +
g

4
φ2χ2 , (6.1.2)

where H φ
0 = πφφ̇−L φ

0 and H φ
0 = πχχ̇−L χ

0 are the free-field Hamiltonian’s of φ

and χ, with πφ = ∂L
∂φ̇

and πχ = ∂L
∂χ̇

their respective conjugate momenta.

To proceed, we make a mean-field approximation, describing the inflaton conden-

sate by the time-dependent background field ϕ(t) := 〈φ̂(t,x)〉 (and assuming that

〈χ̂(t,x)〉 = 0), where t is the cosmic time and the expectation value is with respect

to a translationally invariant vacuum state. This homogeneous background ϕ(t) cor-

responds to a condensate of zero-momentum inflaton quanta, coherently oscillating

with frequency ωk = mφ. As discussed in §2.2.1, this is a reasonable approximation

to make, since by the end of inflation the inflaton field φ has condensed, such that a

large number of its quanta reside in the zero-momentum mode.6 The evolution of the

background value of the inflaton field ϕ(t) is described by the following equations of

motion:

ϕ̈(t) + 3H(t)ϕ̇(t) +m2
φϕ(t) = 0 (6.1.3a)

H2(t) =
1

3M2
Pl

[1

2
ϕ̇2(t) +

1

2
m2
φϕ

2(t)
]
. (6.1.3b)

5We note that quadratic inflation, where the inflaton potential is of the form V (φ) = 1
2m

2
φφ

2

has been all but ruled out by observational data (essentially, the model predicts too large a tensor-
to-scalar ratio [263]). However, here we are only interested in the behaviour of the inflaton at the
end of inflation as it approaches the minimum of its potential. One expects that near the minimum
of V (φ) it will be quadratic in form.

6As a result of the large occupancy in a single mode, it is reasonable to describe the inflaton in
terms of classical scalar field.
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6.1. A density matrix approach to preheating

These equations of course neglect the dissipative effects of particle production and its

backreaction on the inflaton condensate, which increases the rate of decay. However,

as remarked upon in §5.2, this backreaction is expected to be subdominant in the

early stages of preheating that we study here. As such, one obtains an asymptotic

solution to eq. (6.1.3) of the form (cf. §5.1)

ϕ(t) ' ϕ0(t) cos (mφt) , ϕ0(t) ' 2
√

6MPl

3mφt
, (6.1.4)

which is valid during the post-inflationary reheating phase. Furthermore, recalling

our assumption that the rate of post-inflationary expansion is small relative to the

rate of particle production and thermalisation, i.e. ȧ ≈ 0, we can take ϕ0(t) ≈ const.

Since we are primarily interested in the dynamics of the χ field, we use eq. (6.1.1) to

construct an effective Lagrangian density for χ, in the presence of a time-dependent

background (corresponding to the background value ϕ(t) of the inflaton field)

Leff(x) = − 1

2
∂µχ(x)∂µχ(x)− 1

2
m2
χχ

2(x)− g

4
ϕ2(t)χ2(x)

= − 1

2
∂µχ(x)∂µχ(x)− 1

2
m2

eff(t)χ2(x) . (6.1.5)

We see then that the time-dependence of the background manifests in the Lagrangian

as a time-dependent effective mass for the χ field

m2
eff(t) = m2

χ +
g

2
ϕ2(t) . (6.1.6)

Note that we have omitted the interactions between the χ and inflaton fluctuations,

which give rise to perturbative decays, however, these play a subdominant role in the

particle production.7 We see that eq. (6.1.5) bears resemblance to the free theory of

a scalar boson. By this, we mean that χ particles are produced non-perturbatively

by virtue of the χ field interacting with the time-dependent background, but do not

mutually interact in anyway; once they are produced, they can propagate freely. In

reality, however, the theory implicitly contains interactions, since χ is coupled to a

7To see this, note that one can estimate both of the decay rates corresponding to the interactions
Lint ⊃ − g2ϕ(t)φ2χ2 and Lint ⊃ − g4φ

2χ2 to scale as Γφ→χχ ∼ g2ϕ2
0

32πmφ
and Γφφ→χχ ∼ g2ϕ2

0
256πmφ

(cf.
§2.2.1). Moreover, the resonant production rate can be estimated as Γ∗ := 1/∆t∗ ∼ (

√
gmφϕ0)1/2.

Therefore, so long as
{

1
32π ,

1
256π

} (
g7ϕ6

0/m
6
φ

)1/4 � 1, then Γ∗ � {Γφ→χχ ,Γφφ→χχ}. In our analysis
we take g to be O(10−7), furthermore, at the start of preheating ϕ0 ∼ 0.1MPl. Therefore, if we take
mφ ∼ 10−5ϕ0, then it is clear that the resonant particle production dominates.
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time-dependent background scalar field ϕ. As such, we shall refer to eq. (6.1.5) as

the “collisionless” theory for χ, i.e. neglecting any self-interactions of the χ field.

The effective equation of motion for the χ field is then derived the usual way, by in-

serting eq. (6.1.5) into the Euler-Lagrange equation, and corresponds to an effective

Klein-Gordon equation, [
�−m2

eff(t)
]
χ(x) = 0 . (6.1.7)

Furthermore, from eq. (6.1.5), we can construct the associated Hamiltonian density,

H eff
0 (x) =

1

2
π2
χ
(x) +

1

2

(
∇χ(x)

)2
+

1

2
m2

eff(t)χ2(x) . (6.1.8)

Before proceeding, we note that one can constrain the range of values the the

coupling g (in eq. (6.1.6)) can take, such that: (a) the effective inflaton potential

V (ϕ) = 1
2
m2
φϕ

2 is not destablised by quantum corrections, and (b) that inflation is

solely driven by the inflaton. Indeed, one can obtain an upper limit for g by consid-

ering the interaction at the QFT level. The interaction potential V (ϕ, χ) = g
4
ϕ2χ2,

will generate radiative corrections to the inflaton effective potential V (ϕ) of the

form ∼ g2ϕ4

64π2 ln
(√

g
2
ϕ/µ

)
, where µ is an arbitrary subtraction scale (introduced via

renormalisation, cf. §3.1.1). For large field inflation, the scale at which cosmological

fluctuations are observed corresponds to inflaton values ϕ ∼ 4MPl [224]. As such, if

we take the (bare) inflaton mass to be mφ ∼ 10−6MPl (which for simple cases, such

as this one, reproduces the correct amplitude for CMB anisotropies [224]), then the

radiative corrections from the interaction potential do not alter the effective inflaton

potential as long as g . 10−5. Moreover, one can also provide a lower limit for g by

noting that, during inflation, the χ field will have an effective mass (squared) given

by eq. (6.1.6), which scales as g
2
ϕ2 ∼ g

2
M2

Pl. Now, for scenarios in which (at least)

two scalar fields ϕ and χ are present during inflation, then its latest stage will be

driven by the lightest scalar [264]. For a consistent setting, where the end of inflation

is driven by ϕ (i.e. inflation is purely due to ϕ), it must be that g
2
M2

Pl > m2
φ which

implies that g > 10−12.

Continuing with the construction of a toy model of preheating, we now canonically

quantise the χ field in the presence of a time dependent background, ϕ(t), by speci-

fying that χ̂(t,x) and its canonically conjugate momentum π̂χ(t,x) = ∂Leff

∂(∂tχ)
(where
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∂t := ∂
∂t

) satisfy the following equal-time commutation relations,

[
χ̂(t,x), χ̂(t,y)

]
=
[
π̂χ(t,x), π̂χ(t,y)

]
= 0 , (6.1.9a)[

χ̂(t,x), π̂χ(t,y)
]

= iδ(3) (x− y) . (6.1.9b)

To account for the thermalisation process, driven by the collisional processes between

the produced χ particles, we introduce a self-interaction potential, the corresponding

interactions of which are expected to be perturbative. As such, it is possible to treat

the χ field within the framework of perturbative QFT. Thus we may work in the

(modified) interaction picture, and expand χ̂(x) in terms of its Fourier modes,

χ̂(t,x) =

∫
k

[
â(t,k)e+ik·x + â†(t,k)e−ik·x

]
, (6.1.10)

where â†(t,k) := â†k(t) and â(t,k) := âk(t) create and destroy quanta of instanta-

neous frequency ωk(t) given by

ω2
k(t) = k2 +m2

eff(t) (6.1.11)

Proceeding with our analysis, we note that the creation and annihilation operators

â†k(t) and âk(t) (respectively) can be expressed in terms of χ̂(t,x) and π̂χ(t,x),

âk(t) =

∫ +∞

−∞
d3x e−ik·x

[√
ωk(t)

2
χ̂(t,x) +

i√
2ωk(t)

π̂χ(t,x)

]
, (6.1.12a)

â†k(t) =

∫ +∞

−∞
d3x e+ik·x

[√
ωk(t)

2
χ̂(t,x)− i√

2ωk(t)
π̂χ(t,x)

]
. (6.1.12b)

The creation and annhilation operators have mass dimension −3/2, and satisfy the

canonical equal-time commutation relations

[
âp(t), âk(t)

]
=
[
â†p(t), â†k(t)

]
= 0 , (6.1.13a)[

âp(t), â†k(t)
]

= (2π)3δ(3) (p− k) . (6.1.13b)

This convention is advantageous in the sense that the right-hand side of eq. (6.1.13b)

is time-independent. Moreover, χ̂(x) and π̂χ(x) are the canonical variables of the sys-

tem, and therefore (by definition) are not explicitly dependent on time, i.e. ∂tχ̂ = 0,
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∂tπ̂χ = 0 (that is, they are held fixed with respect to partial time derivatives).8

However, this is not true for the corresponding creation and annihilation operators:

the time dependence of the effective (instantaneous) frequency ωk(t) generates an

explicit time dependence for âk(t) and â†k(t). There full time-evolution is governed

by the (interaction picture) Heisenberg equations,

∂tâk(t) =
ω̇k(t)

2ωk(t)
â†−k(t) , (6.1.14a)

∂tâ
†
k(t) =

ω̇k(t)

2ωk(t)
â−k(t) . (6.1.14b)

Since we are working in the (modified) interaction picture it follows that the full

time evolution of a given operator Ô(t) (in general, with explicit time dependence)

is governed by the Heisenberg equation of motion,

d

dt
Ô(t) :=

˙̂O(t) = i
[
Ĥ0(t), Ô(t)

]
+ ∂tÔ(t) , (6.1.15)

where where d
dt
Ô(t) :=

˙̂O(t) denotes the total time derivative of an operator Ô(t)

(taking into account both its implicit and explicit time dependence), and

Ĥ0(t) =

∫ +∞

−∞
d3x Ĥ eff

0 (t,x) (6.1.16)

is the effective Hamiltonian operator of the “collisionless” theory (i.e. the Legen-

dre transform of eq. (6.1.5)), where Ĥ eff
0 (t,x) is given by the quantised version of

eq. (6.1.8).

Hence, the full time evolutions of âk(t) and â†k(t) are given by,

˙̂ak(t) = i
[
Ĥ0(t), âk(t)

]
+

ω̇k(t)

2ωk(t)
â†−k(t) , (6.1.17a)

˙̂ak(t) = i
[
Ĥ0(t), â†k(t)

]
+

ω̇k(t)

2ωk(t)
â−k(t) . (6.1.17b)

8Their time evolution is generated by the Hamiltonian of the system (note that this is true even
in cases where the Hamiltonian has explicit time-dependence, as it does here). This is in analogy to
the Hamiltonian formulation of classical mechanics, where the EOM of the canonical coordinates
(p, q) are given by dq

dt = {q,H}, dp
dt = {p,H}, with {u,H} = ∂u

∂q
∂H
∂p −

∂u
∂p

∂H
∂q the Poisson bracket

of some quantity u with respect to the Hamiltonian H. In general, functions u of the canonical
variables will have explicit time dependence, i.e. u = u(q, p, t), in which case their EOM are given
by du

dt = {u,H}+ ∂u
∂t . See, e.g., ref. [265] for further details.

130



6.1. A density matrix approach to preheating

From Eqs. (6.1.12a) and (6.1.12b), we can subsequently express the conjugate mo-

mentum π̂χ(x) in terms of âk(t) and â†k(t) as,

π̂χ(t,x) = i

∫
k

ωk(t)
[
â†k(t)e−ik·x − âk(t)e+ik·x

]
. (6.1.18)

It can be shown that the expression for π̂χ(x) given above is consistent with the fact

that π̂χ(x) = ˙̂χ(t,x) = d
dt
χ̂(t,x), and that it also adheres to the canonical commuta-

tion relations, Eqs. (6.1.9a) and (6.1.9b).9 Furthermore, inserting our expressions for

χ̂ and π̂χ (Eqs. (6.1.10) and (6.1.18) respectively) into (6.1.16), and normal-ordering

the operators10, we can express the effective “collisionless” (normal-ordered) Hamil-

tonian Ĥ0(t) in terms of the creation and annihilation operators,

Ĥ0(t) =

∫ +∞

−∞

d3k

(2π)3
ωk(t)â†k(t)âk(t) . (6.1.19)

Accordingly, it is found that,

[
Ĥ0(t), âk(t)

]
= −ωk(t)âk(t) , (6.1.20a)[

Ĥ0(t), â†k(t)
]

= +ωk(t)â†k(t) . (6.1.20b)

Such that the full time evolutions of âk(t) and â†k(t) given in eq. (6.1.17) can be

written explicity as,

˙̂ak(t) = −iωk(t)âk(t) +
ω̇k(t)

2ωk(t)
â†−k(t) , (6.1.21a)

˙̂a†k(t) = +iωk(t)â†k(t) +
ω̇k(t)

2ωk(t)
â−k(t) . (6.1.21b)

6.1.2 Introducing thermalisation into the picture

The process of thermalisation is driven by collisional processes between the χ par-

ticles, and therefore we need to incorporate a means whereby they can mutually

interact. With this in mind, we assume that such collisional processes arise from a

9Note that the corresponding EOM for the canonical variables χ̂(x) and π̂χ(x) are given by
d
dt χ̂(x) = i

[
Ĥ0(t), χ̂(x)

]
and d

dt π̂χ(x) = i
[
Ĥ0(t), π̂χ(x)

]
, respectively.

10We are safe to do this here as we are considering the flat (Minkowski) space limit, i.e. the scale
factor a(t) ≈ const.
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self-interaction potential for the χ field, of the form

Lint(x) = − λ
4!
χ4(x) , (6.1.22)

where λ is a (dimensionless) coupling constant. Transitioning to the quantum regime,

via canonical quantisation, this amounts to introducing an interaction Hamiltonian

operator of the form,

Ĥint(t) =

∫ +∞

−∞
d3x

λ

4!
χ̂4(t,x) . (6.1.23)

As such, the effective Hamiltonian becomes,

Ĥ(t) = Ĥ0(t) + Ĥint(t)

=

∫ +∞

−∞
d3x

[
1

2
π̂2
χ(t,x) +

1

2

(
∇χ̂(t,x)

)2
+

1

2
m2

eff(t)χ̂2(t,x) +
λ

4!
χ̂4(t,x)

]
.

(6.1.24)

At this point, we note that the additional effective interaction L eff
int ⊃ −

g
2
ϕ(t)φχ2,

generated from the coupling between φ and χ, gives rise to φ mediated two-to-two

scatterings of χ particles.11 A legitimate concern is that these processes may dom-

inate over those arising from eq. (6.1.22). To determine whether this is the case or

not, we need to calculate the relevant two-to-two scattering cross-sections for each of

the interactions (which for clarity we denote as σλ and σg). Having said this, we can

already obtain an order-of-magnitude estimate. Indeed, one expects that σλ ∼ λ2

s
,

whereas σg ∼ g4ϕ4

s3
, where

√
s is the centre-of-mass energy of the scattering process.

In order for the scattering processes arising from eq. (6.1.22) to dominate over the

φ-mediated processes, we require that σλ � σg, which translates to the condition

λ2 � g4ϕ4

s2
. In intervals of adiabacity, the centre-of-mass energy scales as

√
s ∼ 2gϕ2,

and as such this places the bound λ� g/2. In non-adiabatic intervals, the centre-of-

mass energy scales as
√
s ∼ 2m2

φ, and so we require that λ � g2ϕ2

4m2
φ

. Note, however,

in this regime |ϕ| � 1 and so this does not really place a constraint on λ (other

than it should be non-zero). Having determined constraints on the value of λ, let us

now carry out a rigorous calculation of the relevant cross-sections so as to provide a

confirmation of our expectations. We start by considering the zero temperature limit

of the cross-section for two-to-two scattering processes, which will provide us with a

11There is also the effective interaction L eff
int ⊃ −

g
4φ

2χ2, however, two-to-two scattering processes
arising from this interaction are loop suppressed, and thus will be sub-dominant to the tree-level
contributions from L eff

int ⊃ − λ
4!χ

4 and L eff
int ⊃ −

g
2ϕ(t)φχ2.
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leading order estimate for how it scales at finite temperature. Having determined its

generic form, we shall then apply the result to the relevent interactions.

In general, the differential cross-section for two-to-n scattering processes is deter-

mined via the following formula [121]:

dσ =
1

(2E1)(2E2)|v1 − v2|
|M|2dΠ(n) , (6.1.25)

where Ei =
√
m2
i + p2

i (i = 1, 2) are the energies of the incoming particles (with mi

and pi their corresponding masses and momenta), v1 − v2 is their relative velocity,

M is the corresponding S-matrix element for the interaction, and dΠ(n) is the n-body

Lorentz invariant phase space (LIPS) measure, given by [121]

dΠ(n) := (2π)4δ(4)
(
p1 + p2 −

∑
j

pj

)∏
j

d3pj
(2π)3

1

2Ej
, (6.1.26)

where pi = (Ei, pi) are the 4-momenta of the particles, and the product and sum

are taken over the final states j. Since they will prove useful later, here we also

define three Lorentz scalars s, t and u, the so-called Mandelstam variables (where

we consider processes of the form p1 + p2 → p3 + p4),

s := −(p1 + p2)2 = −(p3 + p4)2 , (6.1.27a)

t := −(p1 − p3)2 = −(p2 − p4)2 , (6.1.27b)

u := −(p1 − p4)2 = −(p2 − p3)2 , (6.1.27c)

which satisfy s+t+u =
∑4

i=1 m
2
i . In particular s is the (square of the) centre-of-mass

energy.

Returning to eq. (6.1.26), for two-to-two scattering processes in the CM frame

p1 + p2 → p3 + p4, where p1 = −p2, such that E1 + E2 =
√
−(p1 + p2)2 =

√
s,

the LIPS measure has the form

dΠ(2) =
d3p3

(2π)3

d3p4

(2π)3

1

2E3

1

2E4

(2π)4δ(4)(p1 + p2 − p3 − p4)

=
d3p3

(2π)3

d3p4

(2π)3

1

2E3

1

2E4

(2π)4δ(
√
s− E3 − E4)δ(3)(p3 + p4) . (6.1.28)
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We can then use the δ-function over the 3-momenta to integrate over d3p4, such that

dΠ(2) =
d3p3

(2π)24E3E4

δ(
√
s− E3 − E4) , (6.1.29)

where now E3 =
√
|p3|2 +m2

3 and E4 =
√
|p3|2 +m2

4. Let us now transform to

a spherical polar coordinate system, such that d3p3 = |p3|2d|p3|dΩCM, in which

dΩCM = sin(θ)dθdφ is the differential solid angle (in the CM frame), φ is the az-

imuthal angle (about the collision axis), and θ is the angle between p1 and p3 in the

CM frame. Given this, we can then integrate over d|p3| by recalling the following

result

δ(f(x)) =
∑
i

1

|f ′(xi)|
δ(x− xi) , (6.1.30)

where xi are the roots of f(x) and the f ′ := df
dx

. In this particular case, the δ-function

vanishes at only one value of |p3|. Note further, that the derivative of its argument

with respect to |p3| is

∂

∂|p3|

(√
s− E3 − E4

)
= −|p3|

E3

− |p3|
E4

= −|p3|
√
s

E3E4

. (6.1.31)

Thus,

δ(
√
s− E3 − E4) =

E3E4

|p∗3|
√
s
δ(|p3| − |p∗3|) , (6.1.32)

where |p∗3| is the (postive) root of the function f(|p3|) =
√
s − E3 − E4, corre-

sponding to its CM expression [eq. (6.1.35)]. Applying this result to eq. (6.1.29), and

integrating over d|p3|, we arrive at the final expression

dΠ(2) =
|p∗3|

16π2
√
s

dΩCM . (6.1.33)

Finally, upon noting that vi = 1
Ei

pi, such that |v1 − v2| = 1
E1E2
|p∗1|
√
s (where p∗1,

p∗2 = −p∗1 are the 3-momenta of the incoming particles in the CM frame), one finds

that eq. (6.1.25) takes the form

dσ

dΩCM

∣∣∣∣
2→2

=
|M|2

64π2s

|p∗3|
|p∗1|

, (6.1.34)
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where |p∗1| = |p∗2| and |p∗3| = |p∗4|. Their values in the CM frame are given by

|p∗1|2 =
1

4s
λ(s,m1,m2) , (6.1.35a)

|p∗3|2 =
1

4s
λ(s,m3,m4) , (6.1.35b)

in which

λ(s,mi,mj) = s2 − 2(m2
i +m2

j)s+ (m2
i −m2

j)
2 , (6.1.36)

with i = m1, m3 and j = m2, m4, in which λ(s,mi,mj) is the Källén function,

defined as

λ(a, b, c) = a2 + b2 + c2 − 2ab− 2ac− 2bc = a2 − 2a(b+ c) + (b− c)2 . (6.1.37)

Note, in particular, that for elastic scattering (where m1 = m3 and m2 = m4) in the

CM frame, it follows that |p∗1| = |p∗2| = |p∗3| = |p∗4|, and E1 = E3, E2 = E4. In the

special case where the masses of the incoming and outgoing particles are all equal,

this further reduces to E1 = E2 = E3 = E4 = 1
2

√
s.

For spinless particles, the differential cross-section dσ2→2 for two-to-two scattering

is rotationally symmetric about the collision axis (the azimuthal angle φ) and so

depends on only two independent variables: the CM energy
√
s and the scattering

angle θ. Moreover, the t−channel Mandelstam variable is related to θ as

t = m2
1 +m2

3 − 2E1E3 + 2|p1||p3|cos(θ) (6.1.38)

and therefore, dσ2→2 is equivalently a function of
√
s and t. For fixed s, we have that

dt = 2|p1||p3|dcos(θ) = 2|p1||p3|dΩCM

2π
(where we have used that dΩCM = 2πdcos(θ)).

Given this, one can straightforwardly express eq. (6.1.34) in a frame-independent

manner,
dσ

dt

∣∣∣∣
2→2

=
dΩCM

dt

dσ

dΩCM

∣∣∣∣
2→2

=
|M|2

64πs|p∗1|2
, (6.1.39)

where |p∗1| is a function of s given by eq. (6.1.35a). To obtain the total cross-section,

one must integrate (6.1.25) over all outgoing momenta for fixed CM energy
√
s,

and divide by the appropriate symmetry factor S: if there are nj identical outgoing
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particles of type j, then S =
∏

j nj!, and so

σ =
1

S

∫
dσ . (6.1.40)

In the case of two-to-two scattering we can use eq. (6.1.39), and integate with respect

to t,

σ2→2 =
1

S

∫ tmax

tmin

dσ

dt

∣∣∣∣
2→2

dt , (6.1.41)

where S = 1 (S = 2) if the outgoing particles are (in)distinguishable. The limits

tmin and tmax can be determined from eq. (6.1.38) evaluated in the CM frame with

cos(θ) = −1 and cos(θ) = +1, respectively. In the case where the incoming particles

are identical (i.e. m1 = m2), and outgoing particles are also identical (i.e. m3 = m4),

it follows from eq. (6.1.35) that |p∗1| = 1
2
(s − 4m2

1)1/2, and |p∗3| = 1
2
(s − 4m2

1)1/2.

Moreover, from eq. (6.1.38), we have that tmin = m2
1 + m2

1 − 2E1E2 − 2|p∗1||p∗3| and

tmax = m2
1 +m2

1 − 2E1E2 + 2|p∗1||p∗3|. Given this, eq. (6.1.41) can be expressed as

σ2→2 =
1

2

∫ tmax

tmin

|M|2

64π2s|p∗1|2
dt =

∫ tmax

tmin

|M|2

32πs(s− 4m2
1)

dt . (6.1.42)

If |M|2 is independent of t, then one can readily integrate eq. (6.1.42) to give

σ2→2 =
|M|2

32πs

√
s− 4m2

3

s− 4m2
1

. (6.1.43)

Note further, that in the special case where the incoming and outgoing particles are

all identical (i.e. m1 = m2 = m3 = m4 := m), then |p∗1| = |p∗3| = 1
2
(s− 4m2)1/2, and

tmin = −(s− 4m2) and tmax = 0, such that eq. (6.1.42) becomes

σ2→2 =

∫ 0

−(s−4m2)

|M|2

32πs(s− 4m2)
dt . (6.1.44)

We are now in a position to determine the scattering cross-sections for the quar-

tic and φ-mediated interactions arising from eq. (6.1.22), and L eff
int ⊃ −

g
2
ϕ(t)φχ2,

respectively. Let us first consider the quartic interaction. Since the scattering pro-

cesses are perturbative, the dominant contribution to the cross-section arises from

the tree-level diagram (cf. fig. 6.1.1), which corresponds to the S-matrix element

M = −iλ. Accordingly, one can use eq. (6.1.43), with m1 = m3, to get
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χ

χ

χ

χ

1

Figure 6.1.1: Tree-level Feynman diagram for two-to-two scattering of χ particles arising from the
quartic self-interaction λ

4! χ̂
4(x).

σλ =
λ2

32πs
. (6.1.45)

Turning our attention to the φ-mediated interaction, the situation is a little more

complicated. In this case, there are three contributing processes at tree-level, arising

from the s−, t− and u−channels (cf. fig. 6.1.2). The corresponding S-matrix element

φ

χ

χ

χ

χ

1

+ φ

χ

χ

χ

χ

1

+ φ

χ

χ

χ

χ

1

Figure 6.1.2: Tree-level s−, t− and u−channel Feynman diagrams contributing to the scattering
matrix element for φ-mediated two-to-two scatterings of χ particles, arising from the effective
interaction Lagrangian L eff

int ⊃ −
g
2ϕ(t)φχ2.

in this case isM = −ig2ϕ2
[

1
m2
φ−s

+ 1
m2
φ−t

+ 1
m2
φ−u

]
. Upon noting that u = 4m2

χ−s−t,
eq. (6.1.44) can be integrated, yielding the result

σg =
g4ϕ4

32πs(s− 4m2
eff)

[
s− 4m2

eff

(s−m2
φ)2

+
2

m2
φ

− 2

s+m2
φ − 4m2

eff

−
4(3m2

φ − 4m2
eff)

(s−m2
φ)(s+ 2m2

φ − 4m2
eff)

ln

(
s+m2

φ − 4m2
χ

m2
φ

)]
, (6.1.46)

where meff is the effective mass of the χ particles, given by eq. (6.1.6). Given

Eqs. (6.1.45) and (6.1.46), we are now in a position to determine which of the two

interactions dominates the scattering rate for χχ → χχ. To do so, it suffices to
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consider the ratio of their corresponding cross-sections. With this in mind, let us

consider the two regimes of each oscillation interval of ϕ, namely the intervals of

adiabaticity and non-adiabaticity, with the coupling constants taken to be g ∼ 10−7

and λ ∼ 10−1.12 Recall from §5.1.2, that the momenta of the produced particles

will typically be |k| .
(√

gmφϕ0

)1/2
, and in the adiabatic regime meff ∼

√
g
2
ϕ0.

Therefore, the COM energy will be dominated by contributions from the effective

mass of the χ field (
√

g
2
ϕ0 � mφ, mχ), thus scaling as

√
s ∼
√

2gϕ0. In this case,

we find that the t- and u-channels dominate the φ-mediated processes, however

their combined cross-section is still suppressed by O(10−3) relative to that of the

self-interaction. We now consider the non-adiabtatic regime. In this case, the time-

dependent coupling gϕ(t)→ 0, and as such the total cross-section vanishes (even for

the smallest centre-of-mass energies
√
s→ 2mχ). We see, therefore, that the results

of this detailed analysis are in agreement with what we expected from our order-

of-magnitude estimate of the values that λ can assume in order for the interactions

arising from eq. (6.1.22) to dominate the scattering rate. One is thus safe to proceed

under the assumption that the dominant collisional processes are those stemming

from eq. (6.1.22).

With these initial considerations in mind, we now continue towards deriving a set

of equations describing the evolution of the χ particle number density during pre-

heating. For this, we first define the χ particle number density operator N̂k(t) (per

momentum mode) as a dimensionless quantity,

N̂k(t) := N̂(t,k) =
â†k(t)âk(t)

Vol
, (6.1.47)

where Vol = (2π)3δ(3)(0) is the corresponding spatial volume (note that δ(3)(0) is the

δ-function in momentum-space13). To find the total number density operator N̂(t)

we must then integrate over the momentum space volume (taking into account the

density-of-states per unit volume of momentum space):

12This order or magnitude for g is typical in studies or preheating (cf. [97, 98, 224, 237]), and is
within the required bounds as discussed in §6.1.1.

13To see this, note that

(2π)3δ(3)(0) =
∫ +∞

−∞
d3x ei(p−k)·x

∣∣∣∣
p = k

=
∫ +∞

−∞
d3x = Vol
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N̂(t) =

∫
d3k

(2π)3
N̂k(t) . (6.1.48)

Furthermore, as a result of the non-adiabatic evolution of the system, the pair cor-

relations 〈â−k(t)âk(t)〉t and 〈â†k(t)â†−k(t)〉t, which can be interpreted as quantifying

correlations between particle and antiparticle states, will be non-trivial. This is due

to the coupling between χ̂ and the time-dependent background field ϕ generating

intervals of non-adiabacity in the evolution of the system. The result is that the

evolution of the creation and annihilation operators of χ̂ are coupled during the pre-

heating phase, thus causing them to become mixed as they evolve in time14. Once

the inflaton has completely decayed, such that χ̂ has essentially decoupled from it,

the system evolves adiabatically, i.e. ω̇k(t)→ 0. The creation and annihilation opera-

tors then evolve independently of one another, and as such, there are no correlations

between particle and antiparticle states during purely adiabatic evolution.

Accordingly, we shall introduce corresponding pair operators M̂k(t) and M̂ †
k(t), de-

fined respectively as

M̂k(t) :=
â−k(t)âk(t)

Vol
, (6.1.49a)

M̂ †
k(t) :=

â†k(t)â†−k(t)

Vol
. (6.1.49b)

As we are working in the (modified) interaction picture, we note that all operators

evolve with respect to the effective Hamiltonian of the collisionless theory, Ĥ0(t)

according to eq. (6.1.15), with the exception of the the density operator ρ̂(t) which

(since it describes the state of the system) evolves with respect to the interaction

Hamiltonian Ĥint(t) [eq. (6.1.23)]. With this in mind, we take the total time derivative

of N̂k(t), noting that
[
Ĥ0(t), N̂k(t)

]
= 0, such that,

˙̂
Nk(t) = ∂tN̂k(t) =

ω̇k(t)

ωk(t)
Re M̂k(t) . (6.1.50)

Moreover, the pair correlations (Eqs. (6.1.49a) and (6.1.49b)) evolve according to

˙̂
Mk(t) = −2iωk(t)M̂k(t) +

ω̇k(t)

2ωk(t)

(
2N̂k(t) + 1

)
. (6.1.51)

14cf. eq. (6.1.21) which clearly shows the coupled evolution of âk(t) and â†−k(t), thus generating
time-dependent correlations between them.
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where d
dt
M̂ †

k can be obtained from the complex conjugate of eq. (6.1.51). In par-

ticular, note from eq. (6.1.50), that the evolution of the number density operator,

N̂k(t), is solely dependent on the pair operators, M̂k(t) and M̂ †
k(t). If there were no

non-adiabaticity present in the evolution of the system, then M̂k(t) and M̂ †
k(t) would

vanish, and N̂k(t) would be an (approximate) adiabatic invariant. This observation

will have important implications on the production of particles due to parametric

resonance.

We have determined how the operators N̂k(t), M̂k(t) and M̂ †
k(t) evolve, however,

our aim is to study the evolution of the corresponding observable, i.e. the expeca-

tion value of the number density operator N(t) =
〈
N̂(t)

〉
t

(where N̂(t) is given by

eq. (6.1.48)). Within the framework of the density matrix formalism, the expectation

value of a given operator Ô(t) is given by its ensemble average

〈
Ô(t)

〉
t

:=
Tr
[
ρ̂(t)Ô(t)

]
Tr
[
ρ̂(t)

] = Tr
[
ρ̂(t)Ô(t)

]
, (6.1.52)

where Tr is the trace operator15. The subscript in the expecation value
〈
Ô(t)

〉
t

de-

notes that we are taking the expectation value of an operator Ô(t) with respect to

the density matrix ρ̂, evaluated at time t. Thus, in order to establish how the number

density N(t) evolves during preheating, we need to determine the evolution of the

expectation values of the relevant operators during preheating. This further requires

one to specify how the density operator ρ̂(t) evolves. To proceed, we note that the

evolution of ρ̂(t) is governed by the quantum Liouville equation

˙̂ρ(t) = ∂tρ̂(t)− i
[
Ĥint(t), ρ̂(t)

]
= −i

[
Ĥint(t), ρ̂(t)

]
, (6.1.53)

where, to reduce complexity, we have assumed that ρ̂(t) has no explicit time depen-

dence. Integrating eq. (6.1.53) we obtain the formal solution

ρ̂(t) = ρ̂(t0)− i
∫ t

t0

dt′
[
Ĥint(t

′), ρ̂(t′)
]
, (6.1.54)

where t0 ≤ t′ ≤ t, in which t0 is the initial time. Applying the method of successive

substitution, we have that

15Note here, that we take the density matrix ρ̂(t) to be normalised to unity, i.e. Tr
[
ρ̂(t)

]
= 1.
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ρ̂(t) = ρ̂(t0)− i
∫ t

t0

dt′
[
Ĥint(t

′), ρ̂(t0)
]
−
∫ t

t0

dt′
∫ t′

t0

dt′′
[
Ĥint(t

′),
[
Ĥint(t

′′), ρ̂(t′′)
]]
,

(6.1.55)

where t0 ≤ t′′ ≤ t′ ≤ t. Finally, differentiating with respect to t, we can recast the

time-evolution of ρ̂(t) in the form

˙̂ρ(t) = −i
[
Ĥint(t), ρ̂(t0)

]
−
∫ t

t0

dt′
[
Ĥint(t),

[
Ĥint(t

′), ρ̂(t′)
]]
, (6.1.56)

where t0 ≤ t′ ≤ t.

Given this result, we then differentiate the number density (per momentum mode)

Nk(t) = Tr(ρ̂(t)N̂k(t)) with respect to t, replacing ˙̂ρ(t) with the right-hand side of

eq.(6.1.56) wherever it occurs,

Ṅk(t) =
d

dt
Tr
[
ρ̂(t)N̂k(t)

]
= Tr

[
ρ̂(t)

˙̂
Nk(t)

]
+ Tr

[
˙̂ρ(t)N̂k(t)

]
=

ω̇k(t)

2ωk(t)

(
Tr
[
ρ̂(t)M̂k(t)

]
+ Tr

[
ρ̂(t)M̂ †

k(t)
])
− iTr

{[
Ĥint(t), ρ̂(t0)

]
N̂k(t)

}
−
∫ t

t0

dt′ Tr
{[
Ĥint(t),

[
Ĥint(t

′), ρ̂(t′)
]]
N̂k(t)

}
.

(6.1.57)

Using the cyclicity property of the trace and eq. (6.1.52) we can then recast this as,

Ṅk(t) =
ω̇k(t)

ωk(t)
ReMk(t)−i

〈[
N̂k(t), Ĥint(t)

]〉
t0
−
∫ t

t0

dt′
〈[[

N̂k(t), Ĥint(t)
]
, Ĥint(t

′)
]〉
t′
.

(6.1.58)

Proceeding similarly for Mk(t) := Tr
[
ρ̂(t)M̂k(t)

]
and M∗

k(t) := Tr
[
ρ̂(t)M̂ †

k(t)
]
, we ob-

tain the following evolution equation for the pair correlation Mk(t)

Ṁk(t) = − 2iωk(t)Mk(t) +
ω̇k(t)

2ωk(t)

(
2Nk(t) + 1

)
− i
〈[
M̂k(t), Ĥint(t)

]〉
t0

−
∫ t

t0

dt′
〈[[

M̂k(t), Ĥint(t)
]
, Ĥint(t

′)
]〉
t′
. (6.1.59)

The corresponding evolution equation for M∗
k(t) can be obtained from the complex

conjugate of eq. (6.1.59).
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Equations (6.1.58) and (6.1.59) compose a coupled set of self-consistent Boltzmann

equations that describe the complete evolution of the system, including non-Markovian

memory effects. The latter make the solution of this system technically challenging.

However, under the assumption that the non-Markovian effects are subdominant,

we can make the system tractable by means of a Wigner-Weisskopf (or Markovian)

approximation [266]. This relies on two assumptions:

1. molecular chaos: momentum correlations are lost between collisions;

2. a separation of time-scales: the evolution of the system is slow compared with

the microscopic QFT processes.

The first assumption introduces a notion of time irreversibility into the evolution

equations. That is, prior to a given collision, assuming previous correlations between

the momenta of the particles involved have been lost (on time-scales relevant to the

statistical evolution of the system), results in an asymmetry in trajectory of the sys-

tem. Given a set of initial conditions, it is possible to solve the evolution equations

and determine its trajectory in the positive time direction. However, it is not possible

to evolve the system back to its initial state16). This is what enables the system to

evolve irreversibly towards a state of thermal equilibrium, i.e. a state of maximal en-

tropy. A consequence of this is that we can express the correlation functions (within

the collision integrals) in terms of (products of) single particle distribution functions,

viz. the number density and pair correlations.

In order to make use of the second assumption, and closely following ref. [256],

we consider the integral

I =

∫ t

t0

dt′Tr
{[[
Ôk(t), Ĥint(t)

]
, Ĥint(t

′)
]
ρ̂(t)

}
=

∫ t

t0

dt′Tr
{[
F̂k(t), Ĥint(t

′)
]
ρ̂(t′)

}
, (6.1.60)

where Ôk(t) generically denote the operators of interest, and we have defined the

following time-dependent operator

F̂k(t) :=
[
Ôk(t), Ĥint(t)

]
. (6.1.61)

16One can of course find a solution to the time-reversed evolution equations, but since they are
no longer symmetric under t → −t, this will not correspond to a trajectory that leads back to
the same state as the initial state of the system, since information about the past dynamics of the
system has been lost.
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Inserting the Fourier transforms of both F̂k(t) and Ĥint(t
′), we have,

I =

∫ t

t0

dt′
∫ +∞

−∞

dω

2π

∫ +∞

−∞

dω′

2π
eiωteiω

′t′ Tr
{[ ˆ̃Fk(ω), ˆ̃Hint(ω

′)
]
ρ̂(t′)

}
, (6.1.62)

and after making a change of variables ω → ω − ω′, we can re-express this as

I =

∫ t

t0

dt′
∫ +∞

−∞

dω

2π

∫ +∞

−∞

dω′

2π
eiωt eiω

′(t′−t) Tr
{[ ˆ̃Fk(ω − ω′), ˆ̃Hint(ω

′)
]
ρ̂(t′)

}
.

(6.1.63)

Since we are ultimately interested in the evolution of the system over macroscopic

time-scales, we shall now assume that there exists a separation of scales between

the QFT processes and the coarse-grained statistical evolution of the system, i.e.

that the statistical averages of (products of) operators evolve slowly compared to

the evolution of the operators Ôk.17 Given this, we observe from eq. (6.1.62), that

the exponential eiω
′(t′−t) rapidly oscillates at times far away from t ∼ t′. Therefore,

as long as the inverse Fourier transform of ˆ̃F (ω − ω′) remains dynamical, i.e. it is not

sharply peaked around ω ∼ ω′, the integral over ω′ is dominated by contributions

at t ∼ t′. We can therefore replace ρ̂(t′) by ρ̂(t) (or, equivalently 〈· · · 〉t′ → 〈· · · 〉t) in

the integrand of eq. (6.1.62),

I '
∫ 0

t0−t
dt′
∫ +∞

−∞

dω

2π

∫ +∞

−∞

dω′

2π
eiωteiω

′t′ Tr
{[ ˆ̃F (ω − ω′), ˆ̃Hint(ω

′)
]
ρ̂(t)

}
, (6.1.64)

where we have made a judicious change of variables t′ → t′ − t. Moreover, the

separation of time-scales implies that we can extend the lower limit of the integral

to the infinite past, i.e. t0 → −∞, since its tails contribute negligibly (due the

incoherent nature of neighbouring values of the integrand). Note that we do not

actually change the boundary time t0; this remains fixed. Rather, we can extend the

lower bound of the integral without altering its value significantly. As such, we can

write

I '
∫ 0

−∞
dt′
∫ +∞

−∞

dω

2π

∫ +∞

−∞

dω′

2π
eiωteiω

′t′ Tr
{[ ˆ̃F (ω − ω′), ˆ̃Hint(ω

′)
]
ρ̂(t)

}
. (6.1.65)

17One expects this to be true for perturbatively small collisional processes, since these occur
at a slow rate (i.e. the time between each collision is macroscopically large), resulting in a slow
macroscopic evolution of the system.
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Now, let us compute the integral over t′ via an analytic continuation of ω′ to ω′− iε
(with ε > 0):∫ 0

−∞
dt′ eiω

′t′ = lim
ε→0

∫ 0

−∞
dt̃ ei(ω

′−iε)t̃ = lim
ε→0

1

iω′ + ε
eiω
′ t̃+εt̃

∣∣∣∣0
−∞

. (6.1.66)

Note that
∣∣ei(ω′−iε)t′∣∣ = eεt

′ → 0 as t′ → −∞, and therefore we arrive at the following

formal solution,∫ 0

−∞
dt′ eiω

′t′ = lim
ε→0

[ ε

ω′2 + ε2
− i ω′

ω′2 + ε2

]
= πδ(ω′)− iP 1

ω′
, (6.1.67)

where we have used that the δ-function can be represented as δ(ω′) = limε→0
1
π

ε
ω′2+ε2

,

and that P 1
ω′

= limε→0
ω′

ω′2+ε2
, where P denotes the Cauchy principal value. Since

δ(ω′) can also be represented via a Fourier integral δ(ω′) =
∫ +∞
−∞

dt′

2π
eiω
′t′ , we can

recast the right-hand side of eq. (6.1.67) as∫ 0

−∞
dt′ eiω

′t′ =
1

2

∫ +∞

−∞
dt′ eiω

′t′ − iP 1

ω′
. (6.1.68)

Given this result, we find that, in the Wigner-Weisskopf approximation, eq. (6.1.60)

can be expressed as,

I ' 1

2

∫ +∞

−∞
dt′Tr

{[[
Ôk(t), Ĥint(t)

]
, Ĥint(t

′)
]
ρ̂(t)

}
− iP

∫ +∞

−∞

dω′

2π

eiω
′t′

ω′
Tr
{[[
Ôk(t), Ĥint(t)

]
, ˆ̃Hint(ω

′)
]
ρ̂(t)

}
. (6.1.69)

The relevant collision contributions are subsumed in the first term in eq. (6.1.69).

The second term gives rise to dispersive self-energy corrections18 [256], which we

shall hereafter neglect. As such, eq. (6.1.69) becomes

I ' 1

2

∫ +∞

−∞
dt′ Tr

{[[
Ôk(t), Ĥint(t)

]
, Ĥint(t

′)
]
ρ̂(t)

}
=

1

2

∫ +∞

−∞
dt′
〈[[
Ôk(t), Ĥint(t)

]
, Ĥint(t̃)

]〉
t
, (6.1.70)

18These correspond (upon renormalising) to shifts in energy levels, essentially through the dress-
ing of the mass of the χ field.
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where we have made use of eq. (6.1.52).

Implementing the above approximations to Eqs. (6.1.58) and (6.1.59), we arrive

at the following coupled set of Markovian master equations for the number density

Nk(t), and the pair correlations Mk(t) and M∗
k(t), valid at order λ2:

Ṅk(t) ' ω̇k(t)

ωk(t)
ReMk(t)− i

〈[
N̂k(t), Ĥint(t)

]〉
t0

− 1

2

∫ ∞
−∞

dt′
〈[[

N̂k(t), Ĥint(t)
]
, Ĥint(t

′)
]〉
t
, (6.1.71a)

Ṁk(t) ' − 2iωk(t)Mk(t) +
ω̇k(t)

2ωk(t)

(
2Nk(t) + 1

)
− i
〈[
M̂k(t), Ĥint(t)

]〉
t0

− 1

2

∫ ∞
−∞

dt′
〈[[

M̂k(t), Ĥint(t)
]
, Ĥint(t

′)
]〉
t
, (6.1.71b)

Ṁ∗
k(t) ' 2iωk(t)M∗

k(t) +
ω̇k(t)

2ωk(t)

(
2Nk(t) + 1

)
− i
〈[
M̂ †

k(t), Ĥint(t)
]〉
t0

− 1

2

∫ ∞
−∞

dt′
〈[[

M̂ †
k(t), Ĥint(t)

]
, Ĥint(t

′)
]〉
t
, (6.1.71c)

Note that, while we are applying these Markovian master equations in the context

of preheating, they can be applied in a more general setting to describe the evolu-

tion of any interacting scalar field with a time-dependent mass term. In particular,

we observe from eq. (6.1.71a), that the particle production terms for the number

density are proportional to Mk(t) and M∗
k(t). We see, therefore, that non-adiabatic

particle production depends crucially on the existence and non-vanishing values of

pair correlations, such that any processes that destroy these coherences will suppress

(and eventually shut off) the resonant production (cf. ref. [262]). Furthermore, since

Mk(t) and M∗
k(t) source Nk(t), one should expect their values to be of the same

order of magnitude, so long as |ω̇k/ω
2
k| ∼ O(1), which is true during intervals of

non-adiabaticity.

In a more realistic scenario, the inflaton condensate will decay. Consequently, the

particle production terms (the first term in the right-hand side of each of the master

equations) will decrease as time progresses. Once the condensate has completely di-

minished, the production terms in the master equations will vanish and the system

will continue to thermalise. At this point, the evolution of the system will become

adiabatic, resulting in the decoherence of the pair correlations, Mk(t) and M∗
k(t).
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Once the remaining collision terms have died off, the system will have equilibriated,

and one expects that Nk(t) will have the form of a Bose-Einstein distribution.

6.2 A self-consistent set of Boltzmann transport equations

6.2.1 Derivation of the approximate mode functions

In the previous section, we derived a set of Boltzmann transport equations describ-

ing the evolutions of Nk(t), Mk(t) and M∗
k(t), to leading-order in the Markovian

approximation. We now wish to express the master equations entirely in terms of

Nk(t), Mk(t) and M∗
k(t), so as to obtain a self-consistent set of evolution equations.

In order to do so, we first need to solve the Heisenberg equations for âk(t) and â†k(t)

(see eq. (6.1.21)), so that we can evolve all of the operators appearing in the collision

terms to equal times, namely the time t of the density operator. To this end, we

assume a Bogoliubov ansatz [267], relating the creation and operators at some time

t to their counterparts at some other time t̃

âp(t) = αp(t, t̃)âp(t̃) + β∗p(t, t̃)â†−p(t̃) , (6.2.1a)

â†p(t) = α∗p(t, t̃)â†p(t̃) + βp(t, t̃)â−p(t̃) . (6.2.1b)

Such transformations preserve the canonical algebra (cf. eq. (6.1.13)), which implies

that the Bogoliubov coefficients αk(t, t̃) and βk(t, t̃) satisfy the constraint

∣∣αk(t, t̃)
∣∣2 − ∣∣βk(t, t̃)

∣∣2 = 1 . (6.2.2)

Furthermore, by setting t = t̃, we see that αk(t, t̃) and βk(t, t̃) satisfy the following

boundary conditions:

α
(∗)
k (t̃, t̃) = 1 , β

(∗)
k (t̃, t̃) = 0 . (6.2.3)

Additionally, their isotropy is guaranteed since χ̂ is a real scalar field, i.e.,

αk(t, t̃) = α−k(t, t̃) , βk(t, t̃) = β−k(t, t̃) . (6.2.4)
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The Bogoliubov coefficients αk(t, t̃) and βk(t, t̃) satisfy the differential equations:

d

dt
αk(t, t̃) = − i ωk(t)αk(t, t̃) +

ω̇k(t)

2ωk(t)
βk(t, t̃) , (6.2.5a)

d

dt
βk(t, t̃) = + i ωk(t)βk(t, t̃) +

ω̇k(t)

2ωk(t)
αk(t, t̃) , (6.2.5b)

which follow directly from Eqs. (6.1.21). Now, observe that eq. (6.2.1) can be neatly

recast into matrix form(
âp(t)

â†−p(t)

)
=

(
αp(t, t̃) β∗p(t, t̃)

βp(t, t̃) α∗p(t, t̃)

)(
âp(t̃)

â†−p(t̃)

)
. (6.2.6)

Expressing the transformation in this form has the particular advantage that one

can readily obtain its inverse(
âp(t̃)

â†−p(t̃)

)
=

(
αp(t, t̃) β∗p(t, t̃)

βp(t, t̃) α∗p(t, t̃)

)−1(
âp(t)

â†−p(t)

)
=

(
α∗p(t, t̃) −β∗p(t, t̃)

−βp(t, t̃) αp(t, t̃)

)(
âp(t)

â†−p(t)

)

:=

(
αp(t̃, t) β∗p(t̃, t)

βp(t̃, t) α∗p(t̃, t)

)(
âp(t)

â†−p(t)

)
. (6.2.7)

It is clear then, that αk(t̃, t) and βk(t̃, t) are related to αk(t, t̃) and βk(t, t̃) as follows:

αk(t̃, t) = α∗k(t, t̃) , (6.2.8a)

βk(t̃, t) = − βk(t, t̃) . (6.2.8b)

Moreover, one can iterate eq. (6.2.6) to derive the following composition properties:

αk(t, t̃′) = αk(t, t̃)αk(t̃, t̃′) + β∗k(t, t̃)βk(t̃, t̃′) , (6.2.9a)

βk(t, t̃′) = βk(t, t̃)αk(t̃, t̃′) + α∗k(t, t̃)βk(t̃, t̃′) . (6.2.9b)

This then provides us with a good consistency check; by setting t = t̃′, we see

that eq. (6.2.9) implies eq. (6.2.8). Equipped with the Bogoliubov transformation

[eq. (6.2.1)] and its inverse [eq. (6.2.7)], we can now express the creation and anni-

hilation operators at time t′ ≤ t in terms of their later time forms âk(t) and â†k(t)

and vice-verse. Indeed, upon applying these results to eq. (6.1.10), the field at time
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t′ ≤ t is given by

χ̂(t′,x) =

∫
d3k

(2π)3

[
χ̃k(t′, t)âk(t)e+ik·x + χ̃∗k(t′, t)â†k(t)e−ik·x

]
, (6.2.10)

where the mode function χ̃k(t′, t) is given by

χ̃k(t′, t) :=
1√

2ωk(t′)

[
αk(t′, t) + βk(t′, t)

]
. (6.2.11)

which satisfies the following EOM,

d2

dt2
χk(t′, t) + ω2

k(t)χk(t′, t) = 0 . (6.2.12)

This can further be recast in the form of a Mathieu equation, upon a change of

variables, mφt→ z = mφt+ π
2
,

d2

dz2
χk(z′, z) +

[
Ak − 2q cos(2z)

]
χk(z′, z) = 0 , (6.2.13)

where Ak =
k2+m2

χ

m2
φ

+ 2q and q =
gϕ2

0

8m2
φ
. As discussed in §5.1, q parameterises whether

we are in narrow (q � 1) or broad (q � 1) resonance. We therefore see that one

can recover the mode function analysis within the framework of the density matrix

formalism. One would of course expect this to be the case, and therefore it provides

a good consistency check.

In their present form, Eqs. (6.2.5a) and (6.2.5b) do not lend themselves to an analyt-

ical calculation. However, we intend to make use of the solutions to them only in the

collision terms. Moreover, recall the Wigner-Weisskopf approximation of the colli-

sion terms, described earlier in subsection 6.1.2, wherein we argued that the collision

integral is dominated by times t′ ∼ t. This allowed us to replace ρ̂(t′) by ρ̂(t) and

extend the upper and lower limits of the integration over t′ to positive and negative

infinity, respectively. Once all of the creation and annihilation operators have been

evolved to the time t, we are therefore interested in the Bogoliubov coefficients only

for times t′ near t, while treating the integration over this neighbourhood in t′ as

effectively infinite as far as the dynamics of the fast modes is concerned. Accordingly,

for t ∼ t′, we can set βk(t, t′) ' 0, such that (cf. eq. (6.2.5))

α̇k(t, t′) ' − iωk(t)αk(t, t′) , (6.2.14)
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effectively imposing adiabatic evolution in the neighbourhood of the time t. The

solution to eq. (6.2.14), satisfying the boundary condition in eq. (6.2.3), is

αk(t, t′) ' exp

[
− i
∫ t

t′
dt̃ ωk(t̃)

]
, (6.2.15)

and the inverse function αk(t′, t) can be obtained from the property αk(t′, t) = α∗k(t, t′)

(cf. eq. (6.2.8)).

Given eq. (6.2.15), we are then left with the task of evaluating the integral in the

exponent. Within the adiabatic approximation, this can be done in closed form;

specifically ∫ t

t′
dt̃ ωk(t̃) =

ωk|max

mφ

[
E (mφt, zk) − E (mφt

′, zk)
]
, (6.2.16)

where E (mφt, zk) is the incomplete elliptic integral of the second kind, and the

argument zk is given by zk =
gϕ2

0

2(ωk|max)2 , in which,

ωk(t)|max :=

√
k2 +m2

χ +
gϕ2

0

2
, (6.2.17)

is the maximum value of ωk(t). While it is not appropriate to expand ωk(t) perturba-

tively in the coupling g, since gϕ2
0 � m2

χ, a numerical analysis of eq. (6.2.16) suggests

that it is possible to approximate the solution well by making a series expansion of

E (mφt, zk) with respect to zk (for zk < 1). To linear order, we obtain

E (mφt, zk)−E (mφt
′, zk) '

(
1− zk

4

)
mφ(t−t′)+zk

4
mφ

[
t sinc(2mφt)−t′ sinc(2mφt

′)
]
.

(6.2.18)

For zk � 1, the relative error is ∼ 0.01%; for zk ∼ O(1), it is at most ∼ 15% (see

fig. 6.2.1)19. Away from t, t′ = 0, the first term dominates, and we can neglect the

terms involving sinc functions, whose relative contributions decrease linearly with

time for t > 1
mφ

. Doing so, we are left with the result

∫ t

t′
dt̃ ωk(t̃) ' ω̄k(t− t′) . (6.2.19)

19We can tolerate an error of ∼ 15% as it is a global error in the overall contribution from the
collision integrals, and not a relative error between its constituent terms.
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We see therefore, that eq. (6.2.16) can be interpreted as the approximate time-average

of ωk(t) over an interval ∆t = t− t′, i.e.

ω̄k '
1

∆t

∫ t

t′
dt̃ ωk(t̃) . (6.2.20)

To be consistent with this approximation, we should make the replacement ωk(t) →
ω̄k in the mode functions (cf. eq. (6.2.11)) and whenever it appears in the collision

integrals. In this way, eq. (6.2.11) for the mode function reduces to

χ̃k(t′, t) ' 1√
2ω̄k

e+iω̄k(t−t′) . (6.2.21)

Notice that, in the limit ϕ0 → 0, corresponding to the decay of the amplitude of the

inflaton oscillations, ω̄k →
√

k2 +m2
χ, and we correctly recover the usual evolution

of the free field.
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Figure 6.2.1: Plot of the percentage difference between
∫ t
t0

dt′ ωk(t′) and its Taylor approximation
(cf. eq. (6.2.18)) as a function of t (in units of mφ/2π) over several periods of oscillation of the
inflaton condensate for zk ∼ O(1) (blue line) and zk � 1 (orange).

Observe that the approximation we have discussed above imposes adiabatic evolution

in the collision integral between the times t and t′. Since the periods of non-adiabatic

particle production are much shorter than the intervening periods of adiabatic evo-
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lution, this is expected to be a valid procedure, so long as the time-scale for the col-

lisions is much larger than that of each burst of particle production. We now wish to

show that such a separation of scales can be present during the preheating phase. To

do so, we first recall from §5.1.2, that during the broad resonance phase, one can esti-

mate the particle production rate to be Γ∗ := 1
∆t∗
∼
(√

g
2
mφϕ0

)1/2
, and the produced

particles typically have momenta lying in the interval 0 ≤ |k| . mφ( q
4
)1/4 ≈ 4mφ

<
√

g
2
ϕ0 for q = O(103) [98]. During the very early stages of preheating, we can

therefore estimate the total number density of χ particles to be N ∝ m3
φ. Now,

turning our attention to the collision processes, we note that the collision rate is

given by Γχχ→χχ = |vrel|Nσχχ→χχ, where |vrel| is the relative velocity between the

two colliding particles, and σχχ→χχ is the cross-section for the two-to-two scattering

processes. To remain conservative with our estimate for the collision rate, herein we

shall assume that the relative velocity, which scales as |vrel| ∼ 2 |k|
meff(t)

, is of order one.

Let us now consider σχχ→χχ in vacuo (cf. eq. (6.1.45))20, which in this case is

given by eq. (6.1.45). Accordingly, when m2
eff '

gϕ2
0

2
is maximal, |k| . meff, and

the two-to-two scattering cross-section scales as σχχ→χχ ∼ λ2

16π gϕ2
0
. When m2

eff '
gϕ2

0

2
is maximal, |k| . meff, and the two-to-two scattering cross-section scales as

σχχ→χχ ∼ λ2

64π gϕ2
0
. On the other hand, when ϕ nears the turning point of an oscil-

lation and for modes with |k| . mχ, the cross-section scales as σχχ→χχ ∼ λ2

128πm2
χ
.

For modes with |k| . mφ, the cross-section scales as σχχ→χχ ∼ λ2

128πm2
φ
. Hence,

in order to achieve the separation of scales required above, i.e. Γχχ→χχ � Γ∗, we

need
λ2m

5/2
φ

128π

(√
g
2
ϕ0

)−1/2{ 1
gϕ2

0/2
, 1
m2
χ
, 1
m2
φ

}
� 1, and all three cases can be satisfied for

λ = O(0.1).

At this point, we note that the particle number can become extremely large during

preheating, in which case the system can become effectively strongly coupled [233],

such that many-to-many processes dominate over the two-to-two scatterings that

we consider here. However, in this analysis we are interested only in the first few

oscillations of the inflaton, wherein the particle number remains relatively small and

the collision integral amounts to perturbatively small corrections to the Boltzmann

equations. Nevertheless, one would anticipate that such strong coupling would only

increase the impact of the collisions on the dynamics of the resonance.

20This should provide us with a leading order estimate for how it scales at finite temperature.
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6.2.2 Collision terms in the Boltzmann equations

Having determined approximate forms for the mode functions χ̃k(t′, t), we can now

proceed to evaluate the remaining expectation values in the Markovian master equa-

tions [eq. (6.1.71)]. In order to do so, we make two additional assumptions about

the system: (i) that the state is (approximately) Gaussian so that all higher-order

correlations can be expressed in terms of one- and two-point functions by Wick’s the-

orem and (ii) that the system is spatially homogeneous, such that momentum-space

two-point correlation functions can be written in the form

〈
Ôp(t)Ôk(t)

〉
=

(2π)3

Vol
δ(3)(p + k)

〈
Ô−k(t)Ôk(t)

〉
, (6.2.22a)

〈
Ô†p(t)Ôk(t)

〉
=

(2π)3

Vol
δ(3)(p− k)

〈
Ôk(t)Ôk(t)

〉
. (6.2.22b)

We note from eq. (6.1.71), that the various correlation functions (at O(λ) and O(λ2))

can be expressed generically as

〈[
Ôk(t), Ĥint(t)

]〉
t0

=
λ

4!

∫
x

〈[
Ôk(t), χ̂4(t,x)

]〉
t0

(6.2.23)

and

〈[[
Ôk(t), Ĥint(t)

]
, Ĥint(t

′)
]〉
t

=

(
λ

4!

)2 ∫
x,y

〈[[
Ôk(t), χ̂4(x)

]
, χ̂4(y)

]〉
t
, (6.2.24)

where Ôk ∈ {N̂k, M̂k}, and xµ = (t,x) and yµ = (t′,y). With a view to deriving

explicit expressions for Eqs. (6.2.23) and (6.2.24), let us expand their corresponding

commutators:

[
Ôk(t), Ĥint(t)

]
=

λ

4!

∫
x

[
Ôk(t), χ̂4(t,x)

]
=

λ

4!

∫
x

{[
Ôk(t), χ̂(t,x)

]
χ̂3(t,x) + χ̂(t,x)

[
Ôk(t), χ̂(t,x)

]
χ̂2(t,x)

+ χ̂2(t,x)
[
Ôk(t), χ̂(t,x)

]
χ̂(t,x) + χ̂3(t,x)

[
Ôk(t), χ̂(t,x)

]}
=

λ

4!

∫
x

{
4
[
Ôk(t), χ̂(t,x)

]
χ̂3(t,x)− 6∆Ôk

χ̂2(t,x)
}
, (6.2.25)
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and,

[[
Ôk(t), Ĥint(t)

]
, Ĥint(t

′)
]

=

(
λ

4!

)2 ∫
x,y

[[
Ôk(t), χ̂4(t,x)

]
, χ̂4(t′,y)

]
=

(
λ

4!

)2 ∫
x,y

{
4
[
Ôk, χ̂

][
χ̂3, χ̂′4

]
+ 4
[[
Ôk, χ̂

]
, χ̂′4

]
χ̂3 − 6∆Ôk

[
χ̂2, χ̂′4

]}

=

(
λ

4!

)2 ∫
x,y

{
16∆′Ôk

[
χ̂3χ̂′3 − 9∆χ̂2χ̂′2 + 18∆2χ̂χ̂′ − 6∆3

]
+ 96∆3

[
Ôk, χ̂

]
χ̂′

− 144∆2
[
Ôk, χ̂

]
χ̂χ̂′2 + 48∆

[
Ôk, χ̂

]
χ̂2χ̂′3 − 24∆Ôk

∆
[
2χ̂χ̂′3 − 3∆χ̂′2

]}
,

(6.2.26)

where all operators with the latest time t ≥ t′ have been commuted to the left (to

simplify their Wick contraction). Herein, we have suppressed the spacetime argu-

ments of the various operators and used the shorthand notations χ̂ ≡ χ̂(t,x) and

χ̂′ ≡ χ̂(t′,y). In addition, we have defined the various Pauli-Jordan-like functions

∆ ≡ ∆(x, y) :=
[
χ̂(x), χ̂(y)

]
=

∫
p

(
χ̃∗p(t′, t)e+ip·(x−y) − χ̃p(t′, t)e−ip·(x−y)

)
,

(6.2.27a)

∆′Ôk
≡ ∆Ôk

(x, y) :=
[[
Ôk(t), χ̂(t,x)

]
, χ̂(t′,y)

]
, (6.2.27b)

∆Ôk
≡ ∆Ôk

(x, x) . (6.2.27c)

We now proceed to take the trace of Eqs. (6.2.25) and (6.2.26) with density operator,

and Wick contract the resulting expressions. In the case of eq. (6.2.25), we have

〈[
Ôk(t), Ĥint(t)

]〉
t0

=
λ

4

∫
x

{〈[
Ôk, χ̂

]
χ̂
〉
t0
−
〈
χ̂
[
Ôk, χ̂

]〉
t0

}〈
χ̂2
〉
t0
. (6.2.28)

In fact, the contributions to eq. (6.1.71) from eq. (6.2.28) correspond to radiative

corrections to the mass of the χ field. Since we are interested in the thermalisation

process, which is precipitated by collisional processes, we shall henceforth neglect

the contributions from eq. (6.2.28).
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Let us now Wick contract eq. (6.2.26):

〈[[
Ôk, Ĥint

]
, Ĥ ′int

]〉
t

= −1

2

∫
x,y

{[
Π<(x, y)G>

Ok
(y, x) − Π>(x, y)G<

Ok
(y, x)

]
− λ4

2

[
G<
Ok

(y, x)G>(x, y) − G>
Ok

(y, x)G<(x, y)
]〈
χ̂2(x)

〉
t

〈
χ̂2(y)

〉
t

− λ2

8

[
G<
Ok

(x, x)
(
G>(x, y)

)2 − G<
Ok

(x, x)
(
G<(x, y)

)2

+G>
Ok

(x, x)
(
G<(x, y)

)2 − G>
Ok

(x, x)
(
G>(x, y)

)2
]〈
χ̂2(y)

〉
t

}
,

(6.2.29)

where G≶(x, y) are the positive- (>) and negative-frequency (<) Wightman propa-

gators, to which the functions G≶
Ok

(x, y) are related, and the Π≶(x, y) correspond to

the two cut self-energies. These are defined respectively as

G>(x, y) := 〈χ(x)χ(y)〉t =
(
G<(x, y)

)∗
, (6.2.30a)

Π>(x, y) :=
λ2

3!

(
G>(x, y)

)3
=
(
Π<(x, y)

)∗
, (6.2.30b)

G>
Ok

(x, y) :=
〈
χ̂(x)

[
Ôk(t), χ̂(y)

]〉
t
, (6.2.30c)

G<
Ok

(x, y) :=
〈[
Ôk(t), χ̂(y)

]
χ̂(x)

〉
t
. (6.2.30d)

Note from eq. (6.2.29), that the presence of Π>(x, y) and Π<(x, y) implies that all

of the terms in the integrand correspond to on-shell processes, and thus one should

view them diagramatically as the cuts of their corresponding bubble diagrams, such

that the internal cut lines become external legs. Furthermore, the insertion of the

number density in each term, arising from the correlation functions containing the

commutator between χ̂ and Ôk, indicates that one should “open-up” the correspond-

ing bubble diagrams at the point where the number density is inserted (as it carries

an external on-shell momentum k). In doing so, one should identify the endpoints of

the two corresponding external legs.

Given this, in the Markovian limit, the terms Π>(x, y)G<
Ok

(y, x) and Π<(x, y)G>
Ok

(y, x)

in eq. (6.2.29) give rise to the relevant two-to-two scattering processes. That they

are the correct terms follows from the fact that diagramatically, they correspond to
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(a) (b)

Figure 6.2.2: The forward (a) and backward (b) cuts of the scalar two-loop “sunset” diagram. The
small shaded circles indicate coincident points, and the crossed boxes indicate insertions of the
operator Ôk. The net energy flow is from the unshaded to shaded regions.

the absorptive forward and backward cuts (corresponding to the direction of energy

flow, respectively) of the two-particle irreducible (2PI) sunset diagram (cf. fig. 6.2.2).

Thermalization of the produced particles is precipitated by collision processes. These

correspond to two-to-two scatterings, of which the kinematics of such a diagram per-

mits. Thus, we can interpret Figs. 6.2.3a and 6.2.3b as gain and loss terms, in which

particles are added and subtracted, respectively, from a given momentum mode.

Moreover, the remaining terms in eq. (6.2.29) (2nd, 3rd and 4th lines of eq. (6.2.29))

correspond to O(λ2) shifts in the mass of the χ field. As was the case for the O(λ)

contributions [eq. (6.2.28)], we shall omit these in the present analysis, since we are

interested only in the terms that drive thermalisation. Therefore, only collisional

contributions remain in eq. (6.2.29), and it thus reduces to the following collision

integral

C
(O)
k [N,M ; t] = − 1

2

∫ +∞

∞
dt′
〈[[
Ôk(t), Ĥint(t)

]
, Ĥint(t

′)
]〉
t

' 1

2

∫ +∞

−∞
dt′
∫

x,y

[
Π<(x, y)G>

Ok
(y, x) − Π>(x, y)G<

Ok
(y, x)

]
.

(6.2.31)

While we calculate the collision terms directly from the operator algebra, the fact

that we have been able to write the collision contributions in terms of the self-energies

and Green functions provides us with a good consistency check. This being that it

enables us to make contact with approaches based on non-equilibrium quantum field
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theory (see, e.g., Refs. [249, 250]). In this case, the collision terms can be associated

with the absorptive cuts of the non-equilibrium self-energies, which can be calcu-

lated by means of the Kobes-Semenoff [268, 269] cutting rules that generalize those

of Cutkosky [270], and ’t Hooft and Veltman [271]. The gain and loss terms are then

associated with the forward and backward cuts of the two-loop sunset diagram, as

depicted in fig. 6.2.2, wherein all cut lines are placed on-shell with the net energy

flow proceeding from the unshaded to the shaded regions.

Let us now consider the collision integrals for Nk(t) and Mk(t) (the collision in-

tegral for M∗
k(t) can be obtained through complex conjugation of M ’s). In the case

of Nk(t), we note that it is a purely real quantity (as is Ṅk(t)), and therefore it must

be that C
(N)
k [N,M ; t] = ReC

(N)
k [N,M ; t]. Indeed, the integrand can be written as

Π<(x, y)G>
Nk

(y, x)− Π>(x, y)G<
Nk

(y, x)

=
1

Vol
√

2ωk(t)

[(
Π<(x, y)

〈
χ̂(y)â†k(t)

〉
t
− Π>(x, y)〈â†k(t)χ̂(y)

〉
t

)
e−ik·x

+
(

Π>(x, y)
〈
âk(t)χ̂(y)

〉
t
− Π<(x, y)〈χ̂(y)âk(t)

〉
t

)
e+ik·x

]
= 2 Re

[ 1

Vol
√

2ωk(t)

(
Π<(x, y)

〈
χ̂(y)â†k(t)

〉
t
− Π>(x, y)〈â†k(t)χ̂(y)

〉
t

)
e−ik·x

]
,

(6.2.32)

and thus is a real quantity, such that the integral is itself real. To proceed, we note

that Π≶,
〈
â†kχ̂

′〉
t

and
〈
χ̂′â†k

〉
t

can be expressed in terms of the number density Nk

and pair correlations Mk and M∗
k as follows

Π>(x, y) =
λ2

3!

3∏
i=1

∫
κi

Tr
[
Xκi(t

′, t)Nκi(t)A(1)

]
e+iκi·(x−y) , (6.2.33a)

〈
â†k(t)χ̂(y)

〉
t

= Tr
[
Xk(t′, t)Nk(t)A(2)

]
e+ik·y =

〈
χ̂(y)âk(t)

〉∗
t
, (6.2.33b)〈

χ̂(y)â†k(t)
〉
t

=
[
Tr
[
Xk(t′, t)Nk(t)A(3)

]]∗
e+ik·y =

〈
âk(t)χ̂(y)

〉∗
t
, (6.2.33c)
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where κi ∈ {p, q, l}, and we have introduced the compact matrix notation A(1),

Xκ(t′, t) and Nκ(t) such that

A(1) :=

(
1 1

1 1

)
, A(2) :=

(
1 1

0 0

)
, A(3) :=

(
0 0

1 1

)
(6.2.34a)

Xκi(t
′, t) :=

(
χ̃κi(t

′, t) 0

0 χ̃∗κi(t
′, t)

)
, (6.2.34b)

Nκi(t) :=

(
Nκi(t) Mκi(t)

M∗
κi

(t) 1 +Nκi(t)

)
, (6.2.34c)

where χκi(t
′, t) is the approximate solution for the mode function, as defined in

eq. (6.2.11). As such, using the expressions for Π≶, 〈â†kχ′〉t and 〈χ′â†k〉t [eq. (6.2.33)]

in eq. (6.2.32), and upon some simplifications21, the collision integral C
(N)
k [N,M ; t]

can be expressed as

C
(N)
k [N,M ; t] =

λ2

3!
Re

∫ +∞

−∞
dt′
∫

p,q

1√
2ω̄k

√
2ω̄k+p−q

f̃
(N)
k,p,q(t, t′) (6.2.35)

where the function f̃
(N)
k,p,q(t, t′) is defined as,

f̃
(N)
k,p,q(t, t′) =

[
Tr
[
Xk(t′, t)Nk(t)A(3)

]]∗ 3∏
j=1

[
Tr
[
Xκ′j

(t′, t)Nκ′j
(t)A(1)

]]∗
− Tr

[
Xk(t′, t)Nk(t)A(2)

] 3∏
j=1

Tr
[
Xκ′j

(t′, t)Nκ′j
(t)A(1)

]
. (6.2.36)

with κ′i ∈ {p, q, k + p − q}. Note that in eq. (6.2.35) we have replaced the time-

dependent frequency ωκ(t) with its (approximate) time-averaged form ω̄κ (cf. eq. (6.2.20))

wherever it appears in the integrand. As discussed at the end of §6.2.1, we are re-

quired to do this so as to be consistent with the approximations made in determining

the (approximate) solutions for the mode functions χκ(t′, t) [eq. (6.2.21)].

21To arrive at eq. (6.2.35) we have made use of the fact that we are free to make the change of
variables κi → −κi in each of the integrals in the expressions for Π≶. Furthermore, we have used
that

∫
x
e−i(k+p−q−l) = 2π δ(3)(k + p− q− l).
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Following the same procedure for the collision integral for Mk(t), we have from

eq. (6.2.31), that

C
(M)
k [N,M ; t] =

1

2

∫ +∞

−∞
dt′
∫

x,y

[
Π<(x, y)G>

Mk
(y, x) − Π>(x, y)G<

Mk
(y, x)

]

=
1

2

∫ +∞

−∞
dt′
∫

x,y

1

Vol
√

2ω̄k

[
Π<(x, y)

(〈
χ̂(y)âk(t)

〉
t
e+ik·x −

〈
χ̂(y)â−k(t)

〉
t
e−ik·x

)
− Π>(x, y)

(〈
âk(t)χ̂(y)

〉
t
e+ik·x −

〈
â−k(t)χ̂(y)

〉
t
e−ik·x

)]
=

λ2

3!

∫ +∞

−∞
dt′
∫

p,q

1√
2ω̄k

√
2ω̄k+p−q

f̃
(M)
k,p,q(t, t′) , (6.2.37)

where the function f̃
(M)
k,p,q(t, t′) is defined as,

f̃
(M)
k,p,q(t, t′) =

[
Tr
[
Xk(t′, t)Nk(t)A(2)

]]∗ 3∏
j=1

[
Tr
[
Xκ′j

(t′, t)Nκ′j
(t)A(1)

]]∗
− Tr

[
Xk(t′, t)Nk(t)A(3)

] 3∏
j=1

Tr
[
Xκ′j

(t′, t)Nκ′j
(t)A(1)

]
. (6.2.38)

The current form of the collision integrals C
(N)
k [N,M ; t] and C

(M)
k [N,M ; t] [Eqs. (6.2.35)

and (6.2.37)] can be further reduced. Indeed, upon inserting the approximate solu-

tion for the mode functions χκ(t′, t) [eq. (6.2.21)] into Eqs. (6.2.36) and (6.2.38),

both collision integrals can be expressed in the following general form,

C(O)
k [N,M ; t] ' λ2

2

4∑
j= 1

∫
dΠ

(j)
p,q,k f

(O)
(j);p,q,k[N,M ; t] , (6.2.39)

where we have introduced the modified phase-space measure

dΠ
(j)
p,q,k =

d3p

(2π)3

d3q

(2π)3
2πδ (∆ωj)

∏
κ

1

2ω̄κ

, (6.2.40)
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6.2. A self-consistent set of Boltzmann transport equations

and defined the set of functions {∆ωj|j = 1, 2, 3, 4}, with

∆ω1 = ω̄k + ω̄p+q−k − ω̄p − ω̄q , (6.2.41a)

∆ω2 = ω̄k + ω̄−p−q−k + ω̄p + ω̄p , (6.2.41b)

∆ω3 = ω̄p + ω̄q + ω̄k−p−q − ω̄k , (6.2.41c)

∆ω4 = ω̄k + ω̄q + ω̄p−k−q − ω̄p . (6.2.41d)

The set of functions {f (O)
(j);p,q,k[N,M ; t]|j = 1, 2, 3, 4} contain the statistical factors,

and their explicit expressions (for C(N)
k [N,M ; t] and C(M)

k [N,M ; t] respectively) are

defined in the appendix.

In deriving eq. (6.2.39) we have made use of the fact that, within the Wigner-

Weisskopf (or Markovian) approximation, only the mode functions depend on t′, and

therefore their products (appearing in Eqs. (6.2.36) and (6.2.38)) can be reduced to

δ-functions upon integrating over t′, for example,∫ +∞

−∞
dt′ χkχpχ

∗
qχ
∗
k+p−q '

1√
2ω̄k

√
2ω̄p

√
2ω̄q

√
2ω̄k+p−q

∫ +∞

−∞
dt′′ e−i∆ω1t′′

=
1√

2ω̄k

√
2ω̄p

√
2ω̄q

√
2ω̄k+p−q

2πδ (∆ω1) , (6.2.42)

where we have made a change of variables t′ → t′′ = t − t′. We see therefore,

that the Wigner-Weisskopf approximation restores quasi-energy conservation22 at

each interaction vertex. Consequently, the only kinematically viable process is the

two-to-two scattering, corresponding to the case j = 1 in eq. (6.2.39). Accordingly,

eq. (6.2.39) reduces to

C(O)
k [N,M, t] ' λ2

2

∫
dΠp,q,k f

(O)
p,q,k[N,M ; t] , (6.2.43)

where

dΠp,q,k =
d3p

(2π)3

d3q

(2π)3
2πδ(ω̄k + ω̄p+q−k − ω̄p − ω̄q)

∏
κ

1

2ω̄κ

. (6.2.44)

22The “quasi-energy” conservation refers to the fact that it is not the instantaneous time-
dependent energies that are conserved but rather their approximate time averages.
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6.2. A self-consistent set of Boltzmann transport equations

where κ ∈ {k, p, q, (p + q − k)}. The real and imaginary parts of the statistical

weights f
(N)
p,q,k[N,M ; t] and f

(M)
p,q,k[N,M ; t] are given by

Ref
(N)
p,q,k[N,M ; t] = − Ref

(M)
p,q,k[N,M ; t]

= Re
[
(1 +Nk −Mk)

(
Np +M∗

p

) (
Nq +M∗

q

)
(1 +Np+q−k +Mp+q−k)

− (Nk −M∗
k) (1 +Np +Mp) (1 +Nq +Mq)

(
Np+q−k +M∗

p+q−k

)]
, (6.2.45a)

Imf
(M)
p,q,k[N,M ; t]

= Im
[
(Nk +M∗

k) (1 +Np +Mp) (1 +Nq +Mq)
(
Np+q−k +M∗

p+q−k

)
− (1 +Nk +Mk)

(
Np +M∗

p

) (
Nq +M∗

q

)
(1 +Np+q−k +Mp+q−k)

]
. (6.2.45b)

These comprise the gain and loss terms that arise from two-to-two scattering pro-

cesses, which are shown diagrammatically in fig. 6.2.3, where we have treated the

contributions from Nk and M
(∗)
k separately.We draw attention to the relative signs

between the N ’s and M ’s in the factors corresponding to the external momentum

k in eq. (6.2.45), which do not occur for the internal statistical factors. These have

arisen because the gain and loss terms are interchanged in the contributions from

the external pair correlation Mk relative to those arising from the number density Nk.

Given this extensive analysis, upon inserting the form of the collision integral [eq.

(6.2.43)] into the Markovian master equations [eq. (6.1.71)], and neglecting the O(λ)

contributions23, we arrive at a (self-consistent) set of Boltzmann equations describing

the evolution of the number density of scalar particles during the post-inflationary

preheating phase, in which we capture the leading-order two-to-two collisional pro-

cesses driving thermalistion:

Ṅk(t) ' ω̇k(t)

ωk(t)
ReMk(t) + Re C(N)

k [N,M ; t] , (6.2.46a)

Re Ṁk(t) ' + 2ωk(t) ImMk(t) +
1

2

ω̇k(t)

ωk(t)

(
2Nk(t) + 1

)
+ Re C(M)

k [N,M ; t] ,

(6.2.46b)

Im Ṁk(t) ' − 2ωk(t) ReMk(t) + Im C(M)
k [N,M ; t] , (6.2.46c)

23As previously discussed, these correspond to radiative corrections to the χ mass, which are
not of relevance here as they do not drive thermalisation.
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Figure 6.2.3: Feynman diagrams of the two-to-two scattering processes in the number density colli-
sion integral C(N)

k [N,M, t]: (a) gain and loss terms, where the “external” momentum k is associated
with the number density; (b) gain and loss terms, where the “external” momentum k is associated
with the (complex conjugate of the) pair correlation. Note that the momentum l = p + q − k is
determined by three-momentum conservation at each vertex.

where we have written the equation for Mk(t) in terms of its real and imaginary

parts, which is sufficient to determine the evolution of both Mk(t) and M∗
k(t). These

Boltzmann equations cannot be solved analytically, and thus in order to study the

evolution of scalar particle number density during preheating, one must adopt a

numerical approach, the details of which we will discuss in the next section.

6.3 Evolving the system: a numerical analysis

In this section, we present numerical solutions to the Boltzmann equations in eq.

(6.2.46) for the very early stages of preheating. Throughout this analysis, we have

focused on the case of broad resonance (i.e. that which occurs over a broad range of

momenta and corresponds to the condition q =
gϕ2

0)

8m2
φ
� 1), since reheating becomes

extremely efficient, thereby enabling a relatively large occupancy for each momen-

tum mode to build up in just a few oscillations of the inflaton field. In this case, one

expects the effect of the collision terms to be more pronounced at these early stages

compared to the regime of narrow resonance. With this in mind, we choose
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Figure 6.2.4: (a) Time evolution (measured in units of mφ/2π) of the χ particle number density
Nk (blue) and pair correlation |Mk| (orange) for the mode k = 0 in the regime of broad resonance
(q ∼ 103) for the collisionless case λ = 0. (b) Evolution of the integrated number density (blue)
and pair correlation (orange), i.e. N(t) =

∫
d3k

(2π)3 Nk and |M(t)| =
∫

d3k
(2π)3 |Mk| up to t = 2π/mφ.
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6.3. Evolving the system: a numerical analysis

the model parameters as follows: ϕ0 = MPl

10
= 105mφ, mχ =

mφ
10

and g = 5 × 10−7,

such that q ∼ O(103).

The results that are discussed in this section were obtained by means of a fourth-

order Runge-Kutta differential solver implemented in Mathematica and involving

five non-trivial phase-space integrals over the magnitudes of the momenta p and q,

the relative angle between them and the relative angles of one of these momenta to

the external momentum k.24 We remark that the approximations made in order to

reduce the solutions for the mode functions χκ(t′, t) (cf. eq. (6.2.21)) to a form yield-

ing (quasi-)energy-conserving Dirac delta functions introduce an error of at most

∼ 15% to the collision integrals (see §6.2.2). This is, however, anticipated to be a

global error, rather than a relative error between the contributions to each collision

integral, and therefore is expected to have little impact on the inferences that follow.

Let us first analyse the collision-free (i.e. in the absence of thermalisation) evolution
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Figure 6.3.1: Plots of Nk (blue), |Mk| (orange), ReMk (green) and ImMk (purple) as a function
of |k|/mφ at t = 4π/mφ.

24The SO(3) symmetry of the collision integrals [eq. (6.2.43)] to further reduce the complexity
of the problem. Indeed, we can always orient our reference frame such that k lies purely along the
z-axis, and q lies purely in the xz-plane. In doing so, by working in spherical polar coordinates, we
can reduce the number of variables that we need to integrate over from six to five.
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6.3. Evolving the system: a numerical analysis

of the number density and pair correlations. Figure 6.2.4a illustrates the evolution

of the (natural) logarithm of the number density and the pair correlation for the

zero mode |k| = 0 over the first three inflaton oscillations for the collisionless case,

i.e. with λ = 0. We see that the density matrix approach correctly captures the

resonant particle production, and it therefore provides a framework within which to

study non-adiabatic particle production that is complementary to existing methods

based on solving the Mathieu equation for the field modes. In particular, we see the

characteristic jumps in the number density, occurring each time the inflaton field

passes through zero. Note that the adiabatic approximation is satisfied between each

jump, i.e. |ω̇k|
ω2
k
< 1, such that Nk is an approximate adiabatic invariant and remains

roughly constant. From eq. (6.2.46), it is clear that the pair correlations act to source

the growth in the number density. This is corroborated by the numerics, where, in

fig. 6.2.4b, we see that the growth in the pair correlations precedes the growth in

the number density. We reiterate that the presence of the pair correlations plays a

crucial role in the non-adiabatic particle production.

Figure 6.3.1 shows plots of Nk, |Mk|, ReMk and ImMk as a function of |k|/mφ

at t = 4π/mφ. We see that the number density is non-zero for a continuous range of

momenta, typically within the interval 0 ≤ |k| . mφ(q/4)1/4 ≈ 4mφ, as is expected

for broad resonance (cf. §5.1.2). Importantly, fig. 6.3.1 also confirms the expected

result that Nk and |Mk| are the same order of magnitude throughout the preheating

phase. In fact, it is evident from fig. 6.3.1 that they are almost identical.

We now turn our attention to the collisional cases, i.e. λ 6= 0. In the first instance,

we set the pair correlations M and M∗ to zero in the collision terms in eq. (6.2.46),

so as to be able to isolate their impact. Figure 6.3.2a shows the number density as a

function of |k|/mφ for the collisionless case and collisional cases with λ ∈ {0.1, 0.2},
neglecting the pair correlations. While the maximum difference is at the sub-percent

level (∼ 0.3%) for both the λ = 0.1 and λ = 0.2 cases, we see that the collisions

lead to a suppression of the particle production, corresponding to a reduction in the

efficiency of the resonance, as we might expect. This suppression is also visible in

fig. 6.3.2b, where we show the time-evolution of the collisionless and collisional num-

ber densities for the same case. These results illustrate that the collisions have an

effect (albeit initially small) fairly soon after the onset of preheating. Importantly,

one would expect these effects to become more pronounced as preheating proceeds

and as the number density grows.
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Figure 6.3.2: (a) Difference ∆Nk = Nλ
k − Nλ= 0

k between the collisional and collisionless number
densities as a function of |k|/mφ for λ = 0.1 (blue) and λ = 0.2 (orange) at t = 4π/mφ and in the
case where only the number density Nk participates in the collision integral. (b) Time evolution
of the total number N(t) for λ = 0 (green), λ = 0.1 (blue) and λ = 0.2 (orange), where the
time evolution is shown in units of mφ/2π (corresponding to the number of periods of the inflaton
condensate). We have truncated the graph near to t ∼ 4π/mφ to make the suppression visible.
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In fig. 6.3.3, we plot the difference between the cases without and with the pair

correlations for the collisional case with λ = 0.1. The impact of the pair correlations

is negligible, despite the magnitudes of Nk and |Mk| being almost identical. However,

by plotting the time-evolution of the integrated collision term

d

dt
∆N(t) =

∫
d3k

(2π)3
Re C(N)

k [N,M ; t] (6.3.1)

for the cases with and without the pair correlations (see fig. 6.3.4), the reason for this

negligible impact becomes apparent. Specifically, the terms involving Mk and M∗
k re-
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Figure 6.3.3: Difference N (N,M)
k −N (N)

k between the number densities with both Nk and Mk par-
ticipating (N (N,M)

k ) in the collision terms, and with only Nk participating (N (N)
k ) for λ = 0.1 (blue)

and λ = 0.2 (orange) at t = 4π/mφ.

sult in highly oscillatory contributions, which fluctuate about an average value that is

only negligibly different from that of the case where only Nk contributes. This can be

traced back to the master equations for Mk and M∗
k, obtained from Eqs. (6.2.46b)

and (6.2.46c). Both contain an oscillatory contribution with instantaneous period

T ∼ 2π/ωk(t) � 1/Γχχ→χχ. As such, Mk and M∗
k oscillate on time-scales much

shorter than those over which collisional processes take place, and their contribution

effectively averages to zero.

Therefore, with the present separation of scales, we can safely ignore any contri-

butions from Mk and M∗
k to the collision integrals in the master equations. On the
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Figure 6.3.4: Behaviour of the collision integral d∆N(t)/dt as a function of time t (in units of
mφ/2π). The blue and green curves correspond to the case where only Nk contributes, for λ = 0.1
and λ = 0.2 respectively, and the orange curve, to the case in which Mk and M∗k are also included.
The graph has been truncated at t = 1.2, since the collision integral is negligible beforehand. In
particular, it is found that the magnitude of d∆N(t)/dt for λ = 0.2 is four times larger than the
λ = 0.1, as would be expected.

other hand, if the collision rate becomes comparable to the rate of oscillation of the

pair correlations, one might expect a greater residual effect on the evolution of the

number density. However, one might then doubt the applicability of the approxi-

mations used here to treat the time-dependence of the phase space, and we leave

dedicated studies to future work.

By neglecting the contributions from Mk and M∗
k to the collision integrals, as we

have shown to be appropriate for the present choice of parameters, the stability of

the numerics is improved. By this means, we were able to evolve the system reli-

ably for three full oscillations of the inflaton field. The collisionless number density

is shown in fig. 6.3.5a, having increased in amplitude by an order of magnitude

compared with the previous inflaton oscillation shown in fig. 6.3.1. The comparison

with the collisional case is presented in fig. 6.3.5b. We see that the suppression of

the number density increases with each full oscillation of the inflaton field over the

three periods. In particular, we see that after three periods, the maximum relative

difference has increased from the sub-percent level (∼ 0.3%) to order 1%, that is the

effect of the collision integrals has essentially doubled after only one additional cycle.
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Figure 6.3.5: (a) Plot of the number density in the collisionless case Nλ= 0
k at t = 0.9 × 6π/mφ.

(b) The difference ∆Nk = Nλ
k −Nλ= 0

k between the collisional and collisionless number density for
λ = 0.2 at t = 2π/mφ (orange), t = 4π/mφ (blue) and t = 0.9× 6π/mφ (green) in the case where
only the number density Nk participates in the collision integral.
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6.4 Discussion

In this chapter we have used a density matrix approach to construct a toy model

preheating theory, in which we simultaneously account for the effects of both reso-

nant particle production and the leading-order two-to-two scattering processes that

drive thermalisation. In particular, within the density matrix formalism, we have

shown that one can derive a (self-consistent) set of quantum Boltzmann equations,

which are able to describe the evolution of an ensemble of self-interacting scalar

particles that are subject to an oscillating mass term. During the preheating phase

of the early universe, these equations can be used to determine the evolution of the

number density and pair correlations for a scalar field coupled to the inflaton, while

accounting also for collisional processes.

Through a numerical analysis of this toy model of preheating, we solved for this

evolution over the first few inflaton oscillations, through which we illustrated the

importance of the pair correlations during preheating. Specifically, it was evident

from the analysis in §6.3 that they play a crucial role in mediating the non-adiabatic

particle production. Importantly, from this observation, we were able to establish an

important generalization of the previous observation by Morikawa and Sasaki [262]

that small perturbations to such a system would destroy coherences between particle

and anti-particle states. Indeed, it follows that any processes that cause such pair

correlations to decohere will suppress, or shut off, the resonant particle production.

Moreover, we demonstrated that the pair correlations are of comparable magnitude

to the number density throughout preheating and cannot, therefore, be neglected a

priori in the collision integrals that precipitate thermalisation. In spite of the latter

observation, we noted from the Boltzmann equations, that the pair correlations can

safely be neglected in the collision integrals when the collision rate is much slower

than the rate of free-phase oscillations of the pair correlations. This was confirmed

in the numerical data, in which we showed that the contributions of the pair corre-

lations are effectively time-averaged away.

Perhaps most importantly, the numerical analysis conducted in §6.3 suggests that

the collision terms have an impact on the resulting number density even in the very

early stages of preheating. Specifically, after only three oscillations of the inflaton

condensate, we found that the number density starts to become suppressed rela-

tive to the collisionless case, with the data indicating an O(1%) deviation between

their respective magnitudes. This suppression is expected to increase significantly
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as preheating progresses, which would lead to appreciable deviations between the

(magnitudes of) the particle number densities in the collisionful and collisionless

cases. This motivates further numerical studies beyond what we have discussed in

§6.3 to establish the effect of accounting fully for the thermalisation processes during

preheating (and reheating) on the thermal history of the early universe.

We should note, that in the work presented in this chapter, we have considered a sim-

plified toy model of preheating. In a more realistic scenario (as was briefly discussed

in §5.2), one would need to account for the effects of the Hubble expansion both on

the decay of the inflaton condensate and the structure of the resonance bands. In

addition, one would want to account for perturbative inflaton decays, as well as the

backreaction of the particle-production processes on the inflaton condensate. In the

case of broad resonance, the cosmological expansion results in a stochastic resonance

behaviour, wherein the number density increases exponentially on average [98, 114].

This background expansion competes with the effects of backreactions and rescat-

terings in determining the efficiency of the resonant particle production [114]. One

may therefore anticipate the effects of collisional processes during the production

phases to remain significant in more realistic scenarios. Before exploring these pos-

sibilities, we note that it would be constructive to make direct comparisons between

the present density matrix approach, where the relation to canonical quantities such

as the number density is manifest, and others based on the closed-time-path formal-

ism of non-equilibrium quantum field theory, where one must instead employ, e.g.,

quasi-particle approximations in order to extract physical observables. With this is

mind, in future research it would be interesting, albeit technically challenging, to re-

introduce the effects of Hubble expansion and backreaction, with the aim of working

towards a more realistic model.
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Chapter 7

Epilogue

7.1 Summary

The research elaborated on in this thesis is separated into two parts: the first fo-

cusing on the CCP, a problem in late universe cosmology; and the second on early

universe cosmology, analysing the nature of post-inflationary preheating, in particu-

lar the thermalisation process of the produced particles.

In §1, we gave a brief introduction to our current best theory of gravity, GR, an

important ingredient in our endeavour to understand our universe. We touched upon

its theoretical robustness, as well as its successes and failures, both theoretically and

experimentally. We then finished off the chapter by briefly examining some possible

solutions to the problems faced by GR, and how, in the case of the CCP, the lack

of a compelling solution in the field theory sector, i.e. from the SM (or even Super-

symmetry), has prompted research into modifications of GR.

Following on from this, in §2 we discussed problems pertaining to the early uni-

verse, in particular the necessity for inflation, and the subsequent reheating phase.

We highlighted the intricacies of post-inflationary reheating, specifically the non-

perturbative nature of the inflaton condensate in the early stages, and its effects on

particle-production. In §3, we moved on to analyse the CCP in more detail. Indeed,

the CCP remains a thorn in the side of modern physics, presently still evading a

complete solution. We elucidated on how it is intimately related to the radiative

instability of vacuum energy loop contributions from massive particles. Moreover,

on how this results in higher order contributions not being significantly suppressed

relative to leading order terms, requiring one to repeatedly fine-tune the classical pa-

rameter appearing in the action for GR, in order for our theory to match the present

day observable universe. There is clearly something wrong on the theory side here,

and there have been many attempts to provide an answer.
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As we went on to discuss in §4, one particular (minimal) approach is to introduce a

new scalar degree of freedom φ into the gravity sector, that is able to self-tune, so as

to screen the effects of the vacuum energy on spacetime curvature, from the matter

sector. We elaborated on the subtleties that are involved here, most importantly, that

in order to evade Weinberg’s famous no-go theorem, preventing such self-adjustment

mechanisms, one has to allow φ to dynamically self-tune, i.e., break Poincaré invari-

ance of the vacuum solution at the level of the scalar field, such that φ = φ(t).

Such an approach naturally lead to the construction of a class of self-tuning theories,

known as the “Fab-Four”.

After reviewing the Fab-Four, we moved on to consider a generalisation, in which

matter interacts with the gravitational sector via a disformal coupling. In this sce-

nario, matter becomes directly coupled to the self-tuning field, however, one can

always recast the theory in a different representation, the so-called Horndeski frame,

such that this direct coupling is removed. Evaluating the Horndeski Lagrangian on an

FRW background, we ascertained expressions for the equation of motion for φ, as well

as the gravitational Hamiltonian. Upon passing the theory through the self-tuning

filter (established in the derivation of the Fab-Four), we were able to determine the

necessary conditions for our disformally coupled theory to self-tune. Importantly, we

were able to show that the theory reduces to the Fab-Four, in the conformal limit.

Moreover, we determined a strong condition on the form of the conformal function

in the disformal transformation of the metric, namely, that it cannot be a function of

the canonical momentum X = −1
2
(∂φ)2 of the scalar field. Given this, we were able

to recast the FRW Horndeski Lagrangian in manifestly self-tuning form. Finally, we

provided a particular solution to the self-tuning equations of motion, proving that

the self-tuning solution set is non-trivial.

In the second half of this thesis, we moved on to an analysis of early universe cosmol-

ogy. In particular, we focused on the post-inflationary reheating phase, in which the

vast energy density stored in the inflaton condensate is transferred back to matter

fields. This precipitates a radiation dominated epoch, and enables a transition to the

standard HBB model, whose description of the latter stages of the early universe

agrees well with experimental data.

In §5, we discussed in detail the non-perturbative behaviour of the inflaton con-

densate at the start of reheating, and how this can induce a period of highly ef-
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ficient, rapid particle production via parametric resonance of fields coupled to the

inflaton. First reviewing previous analyses of this early stage of reheating, known

as preheating, we then commented on the necessity of thermalisation during this

period, and throughout reheating, in order for the produced particles to equilibriate,

eventually reaching a so-called reheat temperature and enabling a transition to the

standard HBB model. This lead us into §6, where we started by motivating the need

for a thorough understanding of the post-inflationary reheating an thermalisation

processes. Specifically, their importance in determining the early thermal history of

the universe. Whilst acknowledging the research that has already been conducted in

understanding the thermalisation process, we noted that there is still some way to go

to attain a more complete knowledge. In particular, the role and impact of the (pair)

correlations between particle and anti-particle states, which are present during the

preheating phase, is less well understood.

With this in mind, we were motivated to develop a better understanding of the ther-

malisation process during preheating. In §6.1, we adopted a density matrix approach

that enabled us to derive a (self-consistent) system of quantum Boltzmann equa-

tions. In doing so, one can go beyond the usual mode-function analysis, accounting

for both the resonant particle production and the collisional processes simultane-

ously. Moreover, we were able to show the pivotal role of the pair correlations in the

particle production, and that without them resonant production simply cannot oc-

cur. Importantly, this means that any processes that cause such pair correlations to

decohere will suppress, or shut off, the resonant particle production. The Boltzmann

equations further highlighted the fact that the magnitudes of the number density and

pair correlations are similar in value during preheating. As such, one would expect

them to play equally important roles in the collision integral precipitating thermali-

sation.

An analytic solution to the Boltzmann equations is not possible, thus necessitat-

ing a numerical analysis. In §6.3 we discussed the results of this analysis, in which

we were able to solve the system of equations over the first few inflaton oscillations

for an illustrative set of benchmark parameters. We first considered the collisionless

case, in which we showed that the density matrix approach correctly captures the

resonant particle production. Accordingly, it provides a framework within which to

study non-adiabatic particle production that is complementary to existing methods

based on solving the Mathieu equation for the field modes. Importantly, the data
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illustrated the crucial presence of the pair correlations in order for non-adiabatic

particle production to occur. Furthermore, we confirmed that their magnitude is

negligibly different from that of the number density N during the preheating phase.

We then turned our attention to the collision cases, initially setting the pair cor-

relations M and M∗ to zero in the collision terms so as to isolate their impact. We

found that, while the maximum difference between the collisionless and collisionful

number densities is at the sub-percent level, the collisions nevertheless lead to a sup-

pression of the particle production, corresponding to a reduction in the efficiency of

the resonance. This served to show that the collisions have an effect (albeit initially

small) fairly soon after the onset of preheating. Importantly, one would expect these

effects to become more pronounced as preheating proceeds and as the number den-

sity grows.

Interestingly, upon including the pair correlations in the collision integrals, we found

that their presence had a negligible effect on evolution of the number density. The

reason for this is that the contributions from M and M∗ are highly oscillatory, fluc-

tuating about an average value that is only negligibly different from that of the case

where only N contributes. This arises from their free phase evolution being much

faster than the collision rate of the produced particles, resulting in their contributions

to the collision integral essentially averaging to zero. With this hierarchy in place

one can safely ignore any contributions from M and M∗ to the collision integrals.

That being said, if the collision rate becomes comparable to the rate of oscillation

of the pair correlations, one might expect a greater residual effect on the evolution

of the number density.

Finally, upon neglecting contributions from M and M∗ to the collision integrals,

we found that the stability of the numerics is improved. As a result, we were able

to evolve the system reliably for three full oscillations of the inflaton field. In doing

so, we showed how the suppression of the number density increases with each full

oscillation of the inflaton field over the three periods. In particular, we found that

after one additional (full) oscillation of the inflaton field, the the maximum relative

difference between the collisionless and collisionful number densities increased from

the sub-percent level (∼ 0.3%) to order 1%. This suggests that a much larger devi-

ation might accumulate as preheating progresses.
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7.2 Future directions

Both of the research projects in this thesis present interesting results, but also pose

some intriguing questions, opening up possible future avenues of research. We shall

discuss some of these briefly in this section.

In §4.2, we developed a generalisation of Fab-Four theory, with the aim of providing a

disformally self-tuning solution to the CCP. We showed that, on a cosmological FRW

background, it is possible to achieve this, so long as certain constraints are placed

on the form of the disformal transformation of the Jordan-frame metric. However, as

remarked upon in §4.3, there is still work to be done on this disformal generalisation

of Fab-Four theory. Unlike the Fab-Four, we have yet to determine a fully covariant

form for the theory. As such, one avenue of future research would be to promote

the theory to covariant form. This would be a more technically challenging task

than in the Fab-Four case, due to the presence of the arbitrary disformal function

B(φ,X) (which is zero in Fab-Four). Consequently, the path is less clear, neverthe-

less, it would be worth analysing the plethora of curvature invariants that one can

construct in Horndeski theory, and ascertain whether it is possible to massage the

disformally self-tuning Lagrangian into a form that is manifestly a combination of a

certain set of invariants (evaluated on an FRW background).

There is also the question of whether the theory is still relevant, due to the re-

cent gravitational wave data. As discussed in §4.3, the results have severely reduced

the viable regions of parameter space for many classes of Horndeski theories. That

being said, there are loop-holes in the constraints. One possible approach would be

to use the EOM for the scalar field φ, to express φ̈ in terms of φ̇, H and Ḣ. One can

then use the analog Friedmann equations to express this in terms of the energy den-

sity arising from the matter sector. By inserting this into the expression in αT , that

is required to vanish, the problem will then be recast into determining choices of the

matter content of the universe for which H evolves in a particular fashion, such that

it forces αT ≈ 0. Of course, one might argue that such choices for the matter sector

may need to be finally tuned, nonetheless, it is still worth investigating. Another av-

enue to consider, would be to search for solutions for the Horndeski functions K, G3,

G4 and G5, such that αT vanishes independently of matter content of the universe. It

may well be the case that such solutions do not exist, or are simply trivial, but again,

one should not discard this possiblility without further exploration. Of course, even if

non-trivial solutions for the Horndeski functions, it remains to be seem whether they
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are able to describe a sensible evolution of the universe that matches observations.

Finally, it is known that any disformally coupled Horndeski theory cannot be brought

into Horndeski form under a set of field re-definitions. Since the disformally self-

tuning Lagrangian is degenerate, and is at least in some sense an extension of Horn-

deski theory, it may well be that it lies within a certain class of so-called DHOST

theory. This would be an interesting hypothesis to test, since DHOST theories are

less constrained by the gravitational wave data, thus potentially opening up a larger

viable region of parameter space for the disformal Fab-Four. However, one would also

need to adhere to the graviton decay constraints placed by Creminelli et al. [207],

which may well rule out the disformal Fab-Four as a viable model.

In the latter half of this thesis, we moved on to consider the reheating phase of

the early universe. In particular, we were interested in its early stages, so-called pre-

heating, and how the effects of thermalisation play a role on the evolution of particle

number densities during this phase. In §6, we derived a set of quantum Boltzmann

equations describing the evolution of a scalar particle number density throughout

preheating. To conduct a numercial analysis we made several assumptions, in order

to reduce the complexity of the system. This enabled us to determine some inter-

esting results, in particular highlighting the importance of pair correlations, and the

effects of thermalisation during the preheating phase, but also left some open ques-

tions.

So far, we have evolved the system for three full oscillations of the inflaton con-

densate. In future research, one would aim to push this further and determine, to a

fuller extent, how the effects thermalisation impact the evolution of particle number

densities throughout preheating. This would necessarily involve the construction of

a more robust code that is able to handle the increasingly computationally taxing

numerical integrations that arise as preheating progresses. Moreover, the numeri-

cal results determined in §6.3 were done under the assumption of a separation of

time-scales between the particle production and collisional processes, namely, that

the latter occurs at a much slower rate than the former. This enabled us to employ

a Wigner-Weisskoff approximation for the collision integrals, resulting in WKB-like

approximate solutions for the mode functions. An initial extension would therefore

be to relax this approximation, and determine full solutions for the mode functions,

such that one can better approximate the behaviour of the collision integrals during
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intervals of non-adiabaticity. This would, however, necessiate one to numerical solve

the evolution equations for the mode functions.

Assuming that this can be done, it would then be interesting to relax the hier-

archy between the production and collision processes. One expects that the pair

correlations would play a more significant role in the collision processes as the par-

ticle collision rate and free phase oscillation rate of the the pair correlations become

the same order of magnitude. Although the analysis in such a scenario would be

technically challenging, one might expect to see much larger deviations between the

evolution of the collisionless and collisionful number densities developing during the

preheating phase.

Finally, in this thesis, we have considered a toy model preheating theory to study the

effects of thermalisation. Whilst this was certainly sufficient to provide us with some

enlightening results, it is nevertheless a simplification of the actual theory. With the

aim of working towards a more realistic scenario in mind, in future work, one could

consider introducing some of the additional effects present in the early universe. For

example, a starting point would be to account for Hubble expansion, which would

cause the inflaton condensate to redshift, as well as affecting the resonant particle

production process. Furthermore, one could introduce the backreactions of the pro-

duced particles on the condensate, and in addition account for its decay due to the

transfer of energy to the coupled matter fields.1 In the regime of broad resonance,

although complicating the process, such effects serve to stabilise preheating, and so

one may therefore anticipate the effects of collisional processes during the production

phases to remain significant in more realistic scenarios.

1In reality, this is much easier said than done, and so would have to be a gradual process,
involving several stages in which one progresses by introducing one effect at a time.
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Appendix

Further details on the preheating Boltzmann equations

Here we give the full expressions for the component statistical weight functions

f
(N)
(j);p,q,k[N,M ; t] and f

(M)
(j);p,q,k[N,M ; t] (j = 1, 2, 3, 4), in the collision integrals (given

by eq. (6.2.39)), which we neglected in §6.2.2 for brevity. These are as follows (for N

and M respectively),

f
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p

) (
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q
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