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Abstract

Strawberry plants produce one of the highest quantities of soft fruits in the UK.
The plants are grown in fields and glass houses where the environment is hard to
completely control. There are a variety of biotic and abiotic stresses that affect
the plants’ production rate, lifespan and the quality of the fruit. It is possible to
mitigate these stresses, but first they must be detected as early as possible.

Drought, or water deficit, is an environmental stress which impacts the plants’
productivity. The stress can be monitored by looking for visible signs, but detec-
tion by a person can occur too late. Using technology could improve the detection
before a person can see the signs. One such technology is hyperspectral imaging.
Hyperspectral imaging has the potential to detect certain features in plants by
examining their reflectance spectrum. In this work, a spectral range from visi-
ble to near-infrared will be used to record reflectance changes from plants during
drought experiments.

The data collected in this thesis comprises strawberry plants undergoing drought
conditions. Initial inspection of the data suggests that a difference in reflectance
may exist throughout this time period, but the data is noisy and changes subtle:
using whole-plant measures may not be as accurate as selecting individual leaves.
Also, particular leaves may be more suited to hyperspectral inspection than others.
Therefore, the work in the rest of the thesis focuses on automatically selecting
suitable quality leaves from which to derive hyperspectral measures.

Leaf locations are selected automatically by combining 2D spatial information and
select wavelengths from the hyperspectral data to extract leaf features (leaf centres
and vein patterns), and this information is used to initialise a level set shape model
to segment the leaves. The results from the 2D segmentation are evaluated, and
results suggest clearly visible leaves can be segmented well automatically. However,
it is hypothesised that further information is required to select the best possible
leaves for analysis from the set of segmented leaves, so 3D plant information is
then incorporated into the approach.

The orientation of leaves, and shadows, are likely to influence the spectral signa-
tures, and occluded leaves are undesirable. Therefore, the leaf orientation, position
and height are taken into consideration when selecting leaves for measurement. To
do this, 3D surface models are created from multiple digital images captured at
the same time as the hyperspectral data. The hyperspectral data is then mapped



onto the model and suitable leaves are identified based on their orientation, height
and distance from the centre of the plant. This allows for selection of a subset
of leaves as sources of hyperspectral measurement for each plant. This approach,
from segmentation to leaf selection and measuring, is built into a fully-automated
pipeline, and evaluated.

The resulting leaves are selected from the other time points in the time series data,
and the spectral signatures are compared to the initial manual inspection. The
automatically selected leaf data show similar spectral responses to the manual ap-
proach. The challenge of detecting changes in these spectral profiles is investigated
and discussed.
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Chapter 1

Introduction

Strawberry plants (Fragaria ananassa) account for 1/7 of the soft fruit produced
annually in the UK, 115 thousand tonnes were produced in 2015 and a similar
amount in 2016 [1] [2]. Understanding how to manage and respond to stress is
therefore important to a commercial strawberry grower.

Trying to predict stress in plants is complicated due to the amount of biotic and
abiotic factors affecting the plants. Stress in plants can occur from a variety of
sources. There is biotic stress which includes pathogens and parasites, and abiotic
stress which includes natural changes in the physical environment (light intensity,
drought). There are known visible signs to look for depending on the plant species
and the disease/pest or drought under consideration.

A few examples of stress signs in the strawberry plants are described [3]. Pow-
dery mildew caused by a fungus (Podosphaera aphanis) shows some or all of the
following visible indicators: rolling of infected leaves, purplish or reddish blotches
on leaves, the infected flowers and fruit will have a fine white covering of powder.
Spider mites (Tetranychus urticae) are very small arthropod pests that infest the
plants. The signs include bronze coloured leaves and eventually leaf death because
the eggs are laid under the leaves and extract the sugar productions. If the infes-
tation is severe it can reduce fruit production by up to 80% [4] A few visible signs
of stress due to drought include curling and lighter coloured leaves (see Figure
1.1).

These stress signs are after some time has elapsed since the stress first occurred,
before the visible signs appear there are changes happening in the leaf structure
depending on the type of stress but this can not be visibly seen without using
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technology to measure the leaf. Can early stress symptoms be detected through
the use of a non invasive technology? This thesis will develop techniques to try to
do that.

(a) Day 1 (b) Day 2 (c) Day 3 (d) Day 4

Figure 1.1: Images of a strawberry plant sensitive to water deficit under drought
stress over time taken in the glasshouse at East Malling Research. By day 4 clear
signs of stress are visible. Can the stress be detected earlier?

1.1 Motivation

Stress in crops can have an impact on the productivity of the crop and lead
to yield loss. There are a few traditional ways of detecting stress caused by
pests/disease (biotic) or environmental, eg. drought (abiotic stress) in strawberry
plants. One way of detecting stress is manually checking the plants for visible
signs of stress. This involves growers and agronomists regularly checking their
plants for symptoms of disease or adverse conditions such as drought or nutrient
deficiencies. This method is time-consuming and costly.

As an alternative, the health of a crop could be automatically measured to increase
efficiency and reduce costs to the grower; however, at this stage easily visible signs
of stress are measured rather than pre-symptomatic signs. Automated pheno-
typing is a high throughput screening of the plants, measuring the observable
properties such as the leaf area and leaf pigment content. A plant’s phenotype
can be described as observable complex traits influenced by the genotype and the
environmental conditions [5]. Automated phenotyping can be expensive due to
the advanced technology and technical equipment needed, and subsequent anal-
ysis, although research is aimed at reducing the cost by using low cost cameras
and phenotyping systems [6] [7]. Hyperspectral imaging is a recent addition to
phenotyping technology, which can measure extra colour information that cannot
be observed by eye or a standard digital camera.
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Techniques for measuring the health of a crop also include vegetation indices.
There are indices for detecting specific characteristics which combine the re-
flectance properties of two or more wavelengths; for example Normalised difference
vegetation index (NDVI) is used to detect stress caused by a cereal pest in wheat
[8]. There are a lot of vegetation indices but only a small number have been sys-
tematically tested [9]. This thesis will look more at hyperspectral imaging and
analysis (including using indices) in the next Chapter.

Finding ways to automatically detect stress before it is easily visible would be
beneficial to reduce potential losses to the quantity and quality of the strawberry
crop. Combining image based phenotyping, hyperspectral imaging, and novel
analysis methods may allow for the detection of early stress signs without manual
labour cost. This is the motivation behind the work in this thesis.

1.2 Objectives

The overall objective of the thesis is to develop methods to detect the onset of
stress in strawberry plants. The first question is: Can the stress be detected in
Strawberry plants? This leads onto the next question: If so, how early can the
stress be detected before visible signs appear? If the stress is detected early then
the plant can be treated so the impact of the stress would be minimal to the
plants productivity. Also it could potentially stop the spread of the cause to the
whole crop. Before it can be detected, though, the thesis will examine the data
processing and analysis required to take a good quality hyperspectral measure.

The main objectives of the thesis are as follows:

1. Dataset capture - capture novel hyperspectral datasets of plants undergoing
stress.

2. Manual analysis of these datasets to try to identify stress onset indicatives.

3. Develop segmentation for individual leaf-based hyperspectral measures

4. Develop geometry compensation using 3D information to improve hyper-
spectral measurements

5. Create a pipeline to enable automatic hyperspectral measures for use in
stress detection

6. Evaluate the pipeline with a view to early stress detection
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In order to analyse plants in images they first need to be segmented and suitable
measuring locations identified before the analysis can be applied. This could
involve finding the whole plant, finding the individual leaves or finding the angles
of the leaves, for example.

Image segmentation is widely researched and can be challenging, when it comes to
plants it can be very challenging. Due to occlusions with overlapping leaves and
similar colours, sometimes it is hard to define the boundary even by the human
eye. Also plants vary in appearance; size of the plants, size of the leaves, colour,
shape and complexity. Additionally shadows, leaf angles and lighting can also
affect the appearance of the plants in the images, making plant image analysis a
particular challenge.

Hyperspectral data can be particularly sensitive to such effects; by imaging plants
in close proximity to the camera this introduces 3D effects for the hyperspectral
data and a new challenge. The angles of the leaves and shadows can affect the
data [10]. How much does this affect the detection of drought? Also how do you
select the desired leaves on the plant?

There are different stress symptoms in plants depending on the biotic or abiotic
stress involved and the aim is to determine whether it is possible to detect indi-
cators of stress before these signs are visible to a human. Hyperspectral imaging
will be used to analyse the spectrum range from the visible to near infrared wave-
lengths during the onset of the particular stress, and analysis methods will be
developed to help gain insight from the hyperspectral data.

1.3 Problem domain: Hyperspectral Imaging for
plant phenotyping

Hyperspectral imaging for crop health started with remote sensing, however in
recent years the technology has become affordable to bring the research into the
laboratory and glasshouse. Here the technology and data underpinning hyper-
spectral imaging is briefly introduced.

4



Chapter 1. Introduction 5

1.3.1 Imaging technology

There are various hardware approaches behind hyperspectral imaging spectrom-
eters, which means there are different ways that the image is captured. In one
example, the incoming light passes through a convex grating (or a prism) which
separates the light into narrow wavelengths. This separation is then recorded on
a light sensitive chip (similar to a standard digital camera). Examples of opera-
tion include push broom, filter wheel, liquid crystal tunable filters amongst others
[11]. A pushbroom device, taken as a typical example, has three components; the
camera, a spectrometer and a lens. This system simultaneously captures a single
spatial line of the image, and the whole colour spectrum range. Then the camera
or object is moved and the next pixel line is captured (the broom is ’pushed’ for-
wards, hence the name), effectively making the camera a line scanner, with the
final image being built up after the full scan is complete. An alternative to pushb-
room is a snapshot approach, where the entire image is captured at once. To date,
pushbroom technology has seen the most use, but recent advances in snapshot
technology are increasing the uptake and possibilities related to phenotyping and
analysis. In this project, pushbroom hyperspectral cameras are used.

1.3.2 Hyperspectral data

This thesis will require a good understanding of the nature of hyperspectral data.
A hyperspectral image contains both spatial and spectral information, which can
be represented in three dimensions. The spatial information is the pixels location
along the x- and y-axis, and the spectrum is represented along the z-axis. This
can be visually displayed as a hypercube (Figure 1.2b) where white represents
high reflectance and black is low reflectance. Each band of the spectrum can be
displayed as a greyscale image which displays the intensity of the light. Figure
1.3a shows a select number of greyscale images of the same plant in the spectral
range of 400nm to 1000nm.
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(a)

(b)

Figure 1.2: (a) is the RGB image of the Hawaii strawberry plant where the
red box indicates the section that has been imaged. (b) is the hypercube of the
selected area. The x and y show the pixels in the spatial location and the spectrum
is respresented in the z axis from green to near infra-red wavelengths
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(a)

(b)

Figure 1.3: (a) Select greyscale images over the spectrum of a strawberry plant.
The hyperspectral image is displayed as greyscale images at selected band intervals
over the spectrum where the greyscale images are the intensity of the light at a
specific band: A is 400nm, B is 472nm, C is 546nm, D is 620nm, E is 694nm, F is
768nm, G is 842nm, H is 916nm and I is 990nm. (b) is the spectral signature of
the plant where the letters A-I correspond to the images in (a)

Healthy leaves and vegetation look green to us because the leaf pigments absorb
most of the blue and red wavelengths (∼ 450nm and ∼ 660nm) while most of the
green wavelengths (∼ 550nm) are reflected back. The red and blue wavelengths
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are absorbed by chlorophyll. Chlorophyll absorbance has two peaks at ∼ 450 and
∼ 660nm. When the leaves become unhealthy there is less chlorophyll content,
therefore some red wavelengths are also reflected instead of being absorbed, which
is why the leaves start to look yellow. In the infrared range the wavelengths are
longer which allows them to travel through the leaf to the cell structure, specifically
the spongy mesophyll [12]. More light is reflected back in the infra-red range than
in the visible range of the spectrum for vegetation; however the human eye cannot
see this. Figure 1.4 shows the spectral signature of a healthy strawberry plant.
There is high reflectance in the infrared points (Figure 1.3 G,H,I).

There are some common features of hyperspectral plant data that can be explained
with reference to Figure 1.3b:

Visible light (A-D) are selected points in the visible light of the spectrum. C
is the small reflective peak at the green wavelength of the spectrum, representing
the green colour we perceive leaves as.

Red edge (E) is the wavelength at the steep reflectance incline called the ’red
edge’, this is a narrow section in the electromagnetic spectrum (690-740nm) where
the visible spectrum ends and the near infrared starts. This section has a large
change in spectral response space for green plant material, since chlorophyll strongly
absorbs wavelengths up to around 700 nm, and hence the material has low re-
flectance in this range, but it is strongly reflecting the infrared (from about 720
nm).

Near infra-red (F-I) is the near infra-red section of the spectrum, typically 0.75
- 1.4um. In infra-red very little energy is absorbed by the leaves and therefore
most of the energy is reflected.

Spectral signature A-I is the complete hyperspecral signature of a plant in the
visible and near infra-red sections of the spectrum. This data looks continuous but
they are actually individual contiguous wavelength band samples ( 0.74nm each)
along a spectrum; in total 812 wavelengths are displayed in the graph. This is
what the data looks like when it is captured compared to for example a vegetation
index which may just use two wavelengths to determine the health of the plant
or crop, selected from this continuous profile.VIs will be considered in more detail
later in the thesis.
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Figure 1.4: The spectral signature of a strawberry plant’s leaves. The blue,
green and red sections refer to the perceived colouring in the visible range, and
the red box represents the red edge range. The plot is the reflectance of the light
from the plant over the spectrum and this is known as a spectral signature. This
data covers the range from 400nm to 1000nm. Each band width is 0.74nm.

More details on hyperspectral imaging and data will be presented in Chapter 3.

1.4 Thesis organisation

Chapter 2 - Literature review This Chapter is a general literature review, the
first section outlines computer vision techniques for segmenting plants. The second
section features an overview of different application to detect stress in plants [13].

Chapter 3 - Data collection and initial manual analysis explains the ac-
quisition and processing of the datasets including calibration and identifies the
challenges associated with the datasets. Also in this Chapter the data is prelimi-
narily analysed using a manual software tool to select data measures and compare
the spectral signatures. This is followed by experimental application of a clustering
technique to separate the materials of the image. (Objectives 1 and 2)

Chapter 4 - A model based approach for segmenting leaves in hyper-
spectral images Development in this Chapter leads to segmenting individual
leaves in 2D hyperspectral data with the aim to begin selecting certain leaves to
be analysed. This process includes a new leaf model pipeline for segmenting the
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leaves on a plant (Objective 3).

Chapter 5 - 3D plant reconstruction and data mapping involves finding
extra information from the images using depth and/or 3D to help overcome the
challenges of hyperspectral data. There are two different approaches, first depth
is estimated for the images using stereo pairs of hyperspectral data. Then several
digital SLR images are used for 3D reconstruction and surface reconstruction of
the plants via multi-view reconstruction. The hyperspectral data is then registered
onto the 3D model in order to ascertain the leaf properties for each hyperspectral
data point (Objective 4).

Chapter 6 - Using 3D information to select leaves from which to mea-
sure hyperspectral data This Chapter creates an automated process to identify
suitable leaves from which to take measures.

Chapter 7 - Hyperspectral data analysis of the selected leaves over
time The Chapter analyses the time series data that has been selected through
Chapters 4-6 for the early detection of stress in strawberry plants (Objective 5).
The time series for the automatically selected leaves (Chapter 6) and manually
selected leaves (Chapter 3) are compared.

Finally Chapter 8 - Conclusions concludes the thesis with a summary of the
research presented and gives an overview of the possible directions for future work.

1.5 Contributions

The main novel contributions of this thesis are:

1. A review of the emerging field of using hyperspectral imaging to detect
stress.(Chapter 2)

2. A leaf segmentation approach using shape models seeded from local normal-
isation and leaf vein detection. (Chapter 4)

3. A pipeline for mapping 2D hyperspectral data onto a recovered 3D plant
model. (Chapter 5)

4. A novel data analysis approach to try to detect drought stress given 3D-
mapped hyperspectral data, selecting automatically the best leaves from
which to take measurements. (Chapter 6)
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5. A comparison of this new method with manual stress detection methods.
(Chapter 7)

The second contribution involves merging existing techniques together to locate
and segment leaves in images and is covered in Chapter 4. Plant images are com-
plex with occlusions, shape, colour intensity and shadows contributing to change
in the appearance of the leaves. Local normalisation is usually used to normalise
the intensity of images however this technique has been adapted to locate leaves.
The Hough transform is then used to find the veins. A leaf template is translated
and rotated according to the seed centres and vein direction. Then level sets with
a shape prior (the placed shape template) is used to actually segment the leaves.

The third contribution is explained in Chapter 5 and involves registering the hy-
perspectral data onto a 3D model. This process is a pipeline which includes 3D
reconstruction and surface creation before the registration process. This is a dif-
ferent approach to collecting full 3D hyperspectral data directly, that requires
less data and is potentially a viable option to automatically collect the data in a
glasshouse in the future. This process just needs one hyperspectral image and typ-
ically 3-7 RGB images of the plant from different angles. With the limited amount
of images and viewing angle required this could be replicated with a simple capture
process on a rig in the glasshouse or field in the future.

The fourth and fifth contributions are described in Chapters 6 and 7, this involves
selecting data from the 3D models for further analysis. The data is selected
automatically using several features from the plant: The leaf angles, the leaf
height, the leaf distance and, also potentially the flatness of the leaf. These features
are combined and weighted to select the best three leaves per plant. The data
selected is then compared in Chapter 7 with the manually selected data in Chapter
3.

Additional contributions are the hyperspectral imaging protocols and datasets for
plants experiencing 3 stress conditions (Chapter 3).

1.6 Publications

Various Sections of the thesis have been presented in various forms:

• ‘Hyperspectral image analysis techniques for the detection and classification
of the early onset of plant disease and stress’ - Plant methods 13, no. 1
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(2017):80 [13] - Hyperspectral literature review (Chapter 2.2)

• ‘Meaningful region segmentation using hyperspectral imaging’ - Image Anal-
ysis Methods for the Plant Sciences Workshop, Angers, France, 2016 - Pre-
sentation/Poster (Chapter 4)

• ‘HyperPatches - a pipeline for reconstructing 3D plant models with registered
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Chapter 2

Literature review

This Chapter reviews related work and is divided into two Sections; (2.1) Com-
puter vision and image segmentation methods applied to plant data, (2.2) Tech-
niques for detecting biotic and abiotic stress in plants.

The first Section is related to prior segmentation work used on similar colour and
hyperspectral datasets that are viable options for finding the plants and leaves in
the image data. The second Section describes and discusses prior approaches that
have detected biotic and abiotic stress in plants using hyperspectral imaging.

Elements of this review have been published in a Plant Methods journal review
paper [13].

2.1 Leaf detection and Segmentation in colour
and HS images

Plant images can vary in complexity from a simple leaf with a plain background
to multiple overlapping leaves with plants in the background, such as field images.
The complexity of data for this research falls in the middle, with overlapping leaves
and a plain background, taken in a lab setting.

This project uses RGB data but it also uses hyperspectral data which increases the
complexity. Even though hyperspectral images are complex standard computer
vision techniques i.e. segmentation approaches can still be used. Therefore the
next Section looks at several potential approaches.

13



Chapter 2. Literature review 14

2.1.1 Segmentation techniques

The aim of segmentation is to partition the image into sections by grouping similar
pixels or superpixels (collection of pixels treated as one that share some charac-
teristics) into sections by labelling the pixels.

There are low level segmentation methods, such as thresholding, which take a
value and eliminate everything below or above that value. The thresholding could
be based on the intensity or colour. There is also edge detection which looks for
a difference between neighbouring pixels to find edges [15] [16]. While there are
many situations where these methods would be useful in this case they are not
because the data is complex and the thresholding or edge detectors are not good
enough to segment leaves. More information is needed in order to find leaves that
overlap, and have similar image properties.

The following describe some of the most popular classes of segmentation methods.

2.1.1.1 Clustering

Clustering is a region-based segmentation method and uses features (colour, tex-
ture, etc) to group similar pixels (or superpixels) together. K−means and Mean
Shift are well known clustering methods widely used in segmentation.

K−means works by calculating distance from points (usually pixels) to the nearest
mean and then update the mean to include the new point [17]. If the means have
not changed more than a tolerance term ε then the algorithm stops. K−means
requires an initial K number of points that will become the centroids.

Mean shift was first introduced by Fukunaga [18] and adapted by Comaniciu and
Meer [19] for segmentation where the Mean shift uses features in the image such
as colour, gradient or texture.

The general algorithm for mean shift is: For each point xi

1. Find the mean shift vector m(xt
i)

2. Translate density estimation window by m(xt
i)

3. Iterate (1) and (2) until convergence.

Mean shift has been used for object extraction and classification on hyperspec-
tral data [20]. First, matrix factorisation is used to reduce the dimensionality.
However it is noted that the kernel density estimation does not work well with
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high dimensions and the bandwidth selection is dependent on the data, which
means the method needs to be adapted per dataset. The results of Mean shift are
very good, and had a higher accuracy than: matrix factorisation, Derivative Mor-
phological Profile (DMP) and Fractal Net Evolution Approach (FNEA) a region
merging approach.

2.1.1.2 Graphs

Graph based methods have previously been used to segment plant images (and
hyperspectral images). This is because this approach splits sections of the image
using statistics and this generally works well. Graphs can partition objects in the
image by finding the difference in intensities of the pixels and partitioning the
image.

A Graph is represented as G = (V,E) where V is the vertices and E is the edges.
Usually the vertices are pixels within the image and the edge is the connection
between two vertices. Then the edge is weighted depending on the particular
method in use.

The pixels connected to each other are neighbours and there are four or eight
neighbours selected depending on the method. The edges are weighted depending
on the method, where the weighting could be the similarity of the pixel intensities.
The aim is to cut the graph to have the best fit (segmentation) of desired object,
where a cut is a separation of the graph into two disjoint sections. There are
different graph based methods, some of which are described below.

A simple way of finding the graph cut is to mark the object and mark the back-
ground then calculate the probability that each pixel belongs to the class. Then
the pixels can have a probability distribution of the likelihood that it is back-
ground or object. The minimum cut finds the cut in the cluster of vertices with
the maximum flow, where the maximum flow is the most direct cut from the object
(source) to the background (sink). Greig et al [21] was the first to use the min
cut/max flow in computer vision to minimise energy functions.

The problem is the cuts in min cut tend to happen in the wrong place and not the
optimal place along the graph as mentioned in [22]. Instead the authors propose
normalised cuts in computer vision. This builds on elements of graph theory
however instead of finding the minimum they find the normalised cut. This takes
the cut as a fraction of all the edge connections to all of the nodes. This means
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isolated nodes will not have a small cut weight and will remain with other isolated
nodes.

A relevent application of normalised cuts is used by Gorretta [23]. This focuses
on hyperspectral images and uses both the spatial and spectral information as
opposed to primarily using the spectral data and ignoring the spatial information.
The experiment takes two images; one is a remote sensing image of the city of
Pavia in the spectral range 495 to 2000nm over 80 bands, and another is a field
visible and near-infrared image of a plant with 3.6nm spectral resolution over the
range 400-980nm (160 bands).

The images are split using the normalised cut and the aim is to over segment so
that the region merging can correctly merge the regions. The plants segmentation
works well however the city segmentation is not fully segmented.

2.1.1.3 Active Contours, implicit and explicit

Active contours move a mathematical line to an object boundary by minimising
the energy of a system representing the line. There are control points along the line
that are controlled using internal and external forces. Parametric Active Contours
are an explicit way of finding the contour; whereas level set approaches find the
contour implicitly using partial differential equations, and finding the zero level
where the grid interacts with the object.

Kass [24] first introduced active contours in computer vision where the active
contours, also known as snakes, have internal forces that are attracted to the edge
or line of an object using splines to represent the curve (Eq. 2.1).

∫ 1

0
Esnake(v(s))ds =

∫ 1

0
Eint(v(s)) + Eimage(v(s)) + Econ(v(s))ds (2.1)

Where v(s) = x(s),y(s)is the location of the snake, Eint controls the shape of the
spline/snake, Eimage are the external image forces (image features such as edges
and sharp pixel intensity changes), where the image forces are weighted to attract
the snake to the contour. Also Econ are extra external constraints on the snake.
Snakes can be attracted to an edge of an object from a distance and avoid local
minima by using a smoothness constraint to find the object over a noisy image.
The weights need to be adjusted depending on the images, also the snakes need to
be initialised very close to the desired object otherwise it could locate a different
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object or get stuck in local maxima (inner edges, eg. in the case of leaves the
veins).

Snakes work on the image plane and directly uses the image features to find
the countours. There is a second approach where a function interacts with the
image plane in order to find the contours, this is called level sets. Osher [25] first
proposed the level set approach, which considers the evolution of a curve over time
and implicitly finds the contour of the desired object.

The level set representation is:

φ(p, t) = ±d (2.2)

Where d is the distance from point p to the curve when time t = 0. The positive
distance represents the outside of the curve, and the negative distance is within
the curve. Level sets are partial differential equations, represented as:

φt = F (K)|∇φ| (2.3)

This follows the Hamilton Jacobi problem. Here K is the curve and F (K) =
F0 + F1(K). Malladi et al [26] describe the limitations with the original level set
and propose narrow bands and reinitialisation. The narrow band level set method
focuses on a thin band at the front of the function and therefore instead of com-
puting all the level sets. Reinitialisation is good because when the function is
evolving it can become distorted and the function will deviate. Therefore reini-
tialisation maintains a stable function. The following equations are referred to as
the Eularian Hamilton Jacobi formulation.

The function φ(x, t) evolves over a mesh with uniformly spaced nodes i,j where
φ = φij in the following equations:

φn+1 − φn

4t
+ (F )(∇φn) = 0 (2.4)

Where 4t is the time step and ∇φn is an approximate finite difference operator
for a spatial derivative.

By rearranging Equation 2.4 the φn+1 can be found for the numerical method.

φn+1 = φn − (F∇φn))(4t) (2.5)
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An advantage for this approach is that it can be extended to three dimensions
with no significant difference.

Chan and Vese [27] introduce active contours without edges called the Chan-Vese
model. This model can find objects or features with contours without gradient,
this is not possible with the original snakes or level sets. This approach can also
work with noisy images where the object boundaries are less clear. This is helpful
for overlapping leaves where the boundary can be visually hard to see.

F (c1, c2, φ) = length(φ) + area(φ) +
∫
|f(x)− c1|2 +

∫
|f(x)− c2|2 (2.6)

Where the piece wise constant intensities of two regions (inside and outside the
object), the integral containing c1 refers to inside the object and c2 refers to outside
the object.

length(φ = 0) = µ
∫
δ(φ(x))|∇φ(x)|dx (2.7)

area(φ ≥ 0) = υ
∫
H(φ(x))dx (2.8)

Extending 2.6 and including 2.7 and 2.8 the energy can be written as:

F (c1, c2, φ) = µ
∫
δ(φ(x))|∇φ(x)|dx+ υ

∫
H(φ(x))dx

+λ1

∫
|f(x)− c1|2H(φ(x))dx+ λ2

∫
|f(x)− c2|2(1−H(φ(x)))dx (2.9)

Where H, the Heaviside function, is a one-dimensional function:

H(φ) =

1, if φ > 0

0, if φ ≤ 0
(2.10)

2.1.1.4 Spectral unmixing

While spectral unmixing is usually used for distant remote sensing data when the
pixels need to be separated, and so it is not so relevant here, however it is briefly
discussed below.

Spectral unmixing is the decomposition of a mixed pixel into distinct spectra (end-
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members) and the proportion of each endmember within the pixel (abundance).
A mixed pixel is when multiple materials are in one pixel. An endmember is re-
ferring to raw material such as plant, soil or background. If a pixel is mentioned
as pure it means only one endmember is contained in the pixel. [28] list the three
steps for unmixing the hyperspectral data:

1. Dimension reduction (optional)

2. Endmember selection

3. Inversion (fractional abundance)

Dimension reduction takes the data and reduces the size by keeping the most im-
portant information. Hyperspectral data is usually large, so this process would
reduce the size of the data and increase the computation speed. For example
each plant that has been imaged for the drought experiment in this thesis has the
dimensions (400x1004x812) which corresponds to (x,y,z) axes of the data respec-
tively. There are over 300 million pixels that need to be processed and the amount
of pixels would be halved if there were 406 bands instead of 812 bands.

The endmember selection step finds all of the endmembers within the input data
matrix. Then the inversion finds the fractional abundance matrix, this is N num-
ber of matrices (N = number of endmembers) and each matrix represents the
probability of the spectral signatures belonging to that endmember (see Chapter
3.2.2). [29] lists the endmember and inversion techniques available.

Spectral unmixing will either use the linear mixture model or non-linear mixture
model depending on if the data is linear or non-linear. [28] explains that the data
is linear if there is a linear combination of the endmembers weighted by the frac-
tional area of each endmember in the pixel, i.e. the light interacts with only one
component for each distinct endmember. The data is non-linear if the endmem-
bers are mixed at spatially smaller scales than the path length of photons in the
mixture. The light interacts with different components as it is scattered.

If the wrong mixture model is selected the proportions of the endmembers within
the pixel will be significantly wrong. [28] demonstrates the results of using a linear
mixture model with non-linear data.

When the light reflects once off the surface of the endmember in the pixel then the
endmember will have a clear signature, which means the fractional abundance per
endmember within the pixel will have a linear relationship and the endmembers
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abundance will sum to 1. A pixel in the observed matrix can be expressed as:

Yij =
r∑

a=1
WiaHaj +N (2.11)

Where N ∈ Rmxn accounts for additive noise. This can be written as:

Y = WH +N (2.12)

Where Y ∈ Rmxn is the hyperspectral input data matrix, m is the number of
spectral bands and n is the pixels, and W ∈ Rmxr is the endmembers signatures
where r is the number of endmembers and H ∈ Rrxn is the abundance matrix
containing a fraction for each endmember per pixel. Also each column of H sums
to 1 [30].

The linear mixture model has two constraints. The abundance needs to be nonneg-
ative and the abundances need to sum to one. Independent Component Analysis
(ICA) has an assumption that the sources are mutually independent. This as-
sumption violates the conditions of the Linear Mixture Model. There are a few
constraints applied to ICA to overcome this problem. [31] uses dependency in
dependent component analysis by using Dirichlet densities that will satisfy the
LMM.

The input matrix is decomposed into two lower rank non-negative matrices con-
taining the endmember signatures and the abundance fractions of each endmember
per pixel. The input data matrix is a two dimensional matrix where the pixels
spatial location is dismissed and the pixels are converted into a matrix to vector
alignment.

Y = WH (2.13)

Equation 2.13 uses Equation 2.12 and follows the linear mixture model. Matrices
W and H are either initialised using random non−negative values or initialised us-
ing Vertex component analysis (VCA) for more robust results [32]. Also r (number
of endmembers) is either already known, found using Virtual Dimension (VD) [33]
or found by trial and error. NMF uses a multiplicative update rule to keep the
matrix values above zero and to minimise the matrices. There are several update
rules that can be used. Two examples are Lee-Seung (LS) and Alternating Least
Squares (ALS). Two minor problems with the update rules are that LS slowly
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converge and ALS can reach local minima and diverge ([34])

H = H((W TY )./(W TWH)) (2.14)

W = W ((Y HT )./(WHHT )) (2.15)
r∑

r=1
Hrn = 1 (2.16)

Hn+1 = (W T
n Wn)−1./(W TY ) (2.17)

Wn+1 = Y HT
n+1(HT

n+1Hn+1)−1 (2.18)

Equations (2.14), (2.15) and (2.16) are the ’LS’ update rule used in [35] and [30].
After the first iteration the estimated matrices are tested for convergence using
Equation 2.15. This update continues until the matrices converge or the input
iteration number is exceeded.

Equations (2.17) and (2.18) are the Alternating Least Squares update rule, where
the matrices may not be non−negative because of the inverse. After Equation
2.17 and 2.18 if W or H values are less than zero then that pixel becomes zero
otherwise it keeps the current value [34].

After each iteration of the LS update rule (or another selected rule) the input
data matrix (Y) and the estimated data matrices (WH) are compared to check the
difference per pixel and if the convergence is below a certain value (i.e. <0.0001) it
will stop. The Frobenius norm, equation 2.19, is a popular minimisation equation
however other equations can also be used.

1
n
||Y −WH||2F (2.19)

However there may not be a unique solution since WH = (WD)(D-1H) for any
nonnegative invertible matrix D which is explained in [36]. This General NMF
can be improved using sparseness and smoothness constraints.

2.1.2 Techniques applied to leaf segmentation

Separating the whole plant from the background can be relatively easy if the
background is distinct from the plant. It becomes more challenging when the
individual leaves need to be segmented. This problem was turned into a competi-
tion; since 2014 there has been a leaf segmentation challenge, this was introduced

21



Chapter 2. Literature review 22

for the ECCV Computer Vision Problems in Plant Phenotyping workshop where
a dataset was created that contained three sets of Arabidopsis thaliana and to-
bacco plants along with the corresponding ground truth segmentation. The three
sets of images had different challenging elements; Set 1 had more of a complex
background, Set 2 had different varieties of genotypes of Arabidopsis thaliana and
Set 3 contained higher resolution images.

The first leaf segmentation challenge resulted in several approaches used to count
and segment leaves. Three used distance maps and one used template matching,
summarised in a collation study [37]. The datasets created for the challenge have
been used by researchers since the challenge. Vukadinovic and Polder [38] used the
Euclidean distance to create a distance map of the image, then they applied the
watershed approach on the map to segment the leaves. Simek and Barnard [39]
used a Gaussian process shape model along with a likelihood function to segment
the datasets. The shape prior is a combination of the petiole and the blade,
the likelihood parameters were trained from the ground truth leaf masks using
maximum likelihood. Quan [40] used normalised cuts for part of partitioning
the leaves. First colour thresholding is applied, which reduces the amount of
nodes needed to be connected. Then the further subdivisions are found using
normalised cuts. The focus is on plant modelling using 2D and 3D approaches to
find the plant and individual leaves. Also the algorithm relies on a user interface
to modify or adjust the segmentation if it is needed, and it does not perform well
with occlusions.

Wang et al [41] have adapted a level set approach to overlapping leaves using a two
step method. The midrib (main central vein) is first selected (manually placing a
line over the vein), then the narrow band evolution region is applied followed by
the Local Chan-Vese (LCV) model. Images included two overlapping leaves where
the top leaf is segmented.

Machine learning

Machine learning approaches train algorithms using a training dataset, with the
aim of analysing and predicting results from new, unseen data. Multilayer percep-
tron's (MLP) are simple networks (called Artificial Neural Networks) that map
input data to an output. An input node connects to the output, and is updated
using an activation function and weights that can be optimised to produce the
desired output (using training data).
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The MLP approach uses a simple architecture consisting of an input, hidden
layer(s) and the output. In machine learning a new, more sophisticated approach
called deep learning is becoming popular. Deep learning refers to artificial neural
networks with a structure that contains a lot of layers. In each layer, neurons
are able to implicitly represent features from the data and by doing this, more
complex information can be obtained in later layers; image features are auto-
matically determined by the network. One specific example of a deep learning
approach is convolutional neural networks (CNN). Whilst ANNs use neuron acti-
vation networks as their analogous model, CNNs are based on retinal fields in the
vision system. Whatever the approach, deep learning takes longer to train and
the architecture can be more complex than traditional neural networks. However,
with the added complexity, very impressive classification and recognition rates are
achievable. There have been approaches in deep learning over recent years that
used plant datasets for leaf counting and segmentation, which have performed
well. [42] [43] [44] [45]

2.2 Techniques for early detection of biotic and
abiotic stress in plants

The reliable detection and identification of plant disease and plant stress are a
current challenge in agriculture [46] [47] . Standard existing methods of detection
rely on crop agronomists manually checking the crop for indicator signs that are
already visible. Depending on the type of crop and the size of the crop area, which
for many commercial crops is often very large, this method of monitoring plant
health is both time consuming and demanding. Manual detection also relies on
the disease or stress exhibiting clearly visible symptoms, which often manifest at
middle to late stages of infection. Identification of the causal agent is through
either manual detection or diagnostic tests [48]. Diseases usually start in a small
region on the foliage (e.g. Septoria tritici blotch (STB) of wheat caused by the
fungal pathogen, Mycosphaerella graminicola; Apple scab caused by Venturia in-
aequalis), which can be difficult to detect by visual inspection if the crop is large;
however, the ability to identify the disease at this early stage would enable an op-
portunity for early intervention to control, prevent spread of infection, or change
crop management practices before the whole crop is infected or damaged. Iden-
tifying areas of disease could also lead to targeted application of chemicals. Such
precision approaches would result in the reduction of pesticide and herbicide us-
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age, with subsequent beneficial impact for the environment, ecosystem services,
grower finances and the end consumer. Hence, there is a keen interest in the agri-
cultural and horticultural sector to replace this largely manual process with more
automated, objective, and sensitive approaches. Mahlein [49] has discussed the
literature on plant disease detection by imaging sensors. This includes RGB, Multi
spectral, Hyperspectral, thermal, Chlorophyll Fluorescence and 3D sensors. One
conclusion is that RGB and hyperspectral imaging are preferable for identifying
specific diseases.

To improve crop management and plant health, several avenues of research are
focussing on the identification of the onset of adverse stresses, ideally before or-
dinarily visible signs are present. Image analysis techniques show much potential
here as they represent non-invasive and potentially autonomous approaches to de-
tect biotic and abiotic stress in plants. Image analysis as a research field represents
a host of computational techniques which are able to extract information from dig-
ital images. From a practical point of view, this means automatic processing of
carefully captured images to produce a dataset of desired measurements from the
images. The images themselves can come from a variety of sources, from colour
digital cameras or smartphones, to more specialist cameras designed to capture
a variety of different information in the images. One such technological advance
here is hyperspectral imaging, where cameras capture more than the usual three
bands of coloured light found in traditional digital imaging. This Section will
specifically focus on the subsequent analysis approach known as hyperspectral im-
age analysis. This has recently become financially accessible to a wide variety of
users, due to falling technology costs. Analysis approaches are being developed
which are enabling the Hyperspectral imaging technologies to be utilised for wider
ranging applications. Hyperspectral imaging uses high-fidelity colour reflectance
information over a large range of the light spectrum (beyond that of human vi-
sion), and thus has potential for identifying subtle changes in plant growth and
development.

For plants and vegetation the most useful wavelength ranges to analyse are the
visible range combined with near infrared range (Figure 2.1). This wavelength
range can capture changes in the leaf pigmentation (400-700nm) and mesophyll
cell structure (700-1300nm); however to see water content of the plant changes,
extended ranges are needed (1300-2500nm) [50]. Severe dehydration, for example,
can affect the leaf mesophyll structure which relates to changes in the near infrared
reflectance; however, minor drought stress does not usually have enough of an
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effect to be detected [51].

Figure 2.1: Electromagnetic spectrum with the lower bar displaying visible and
infra-red light.

2.2.1 Existing Vegetation and Disease Indices

Before hyperspectral imaging devices were readily available, researchers wishing
to quantify effects based on colour information have used multispectral imaging,
or hyperspectral, point-source devices (such as spectroradiometers which do not
produce a spatial image) to acquire colour data. Hyperspectral devices do not in
general provide a point-and-click measurement. Instead, much onus is on the user
to develop the capture and analysis process. Once acquired, the resulting large
numerical datasets must be analysed in order to provide useful information. A
sensible and simple way into such large datasets is to consider only a small number
of positions in the wavelength range, looking at changes across conditions at pre-
determined key points in the spectrum. Using this approach, we can also counter
effects of relative light changes by considering ratios of data values. This involves
the combination of two or more wavelengths, commonly known as 'indices'.

To interpret the data, a number of such indices have been developed, through
either pre-considered biological reasoning (e.g. knowing that a particular wave-
length relates to properties in a particular cell structure) or due to limitations
in the particular wavelengths available from the capture equipment (e.g. indices
which are derived from satellite multispectral remote sensing data may only have
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had a limited number of wavelengths available). When applied to plant material,
these are known as 'vegetation indices'. Many different vegetation indices exist,
and each uses a different set of wavelength measurements for describing physio-
logical attributes of vegetation, looking at either general properties of the plant,
or at specific parameters of its growth One of the most popular and widespread
metrics is the Normalised Difference Vegetation Index (NDVI) , which is used for
measuring the general health status of crops [52] [53]. It is calculated via a simple
ratio of near-IR and visible light (see Table 2.1). NDVI has been used for many
different purposes, for example, to detect stress caused by the Sunn pest/cereal
pest, Eurygaster integriceps Put. (Hemiptera: Scutelleridae), in wheat [8]. Most
of the indices are very specific and only work well with the datasets that they
were designed for [9]. There are disease-centric studies focused on creating disease
indices for detecting and quantifying specific diseases [54], for example, one study
used leaf rust disease severity index (LRDSI) with a 87-91% accuracy in detecting
the leaf rust (Puccinia triticina) in Wheat [55].
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Table 2.1: A selection of Vegetation indices

VI Formula Reference Information
Normalised
difference
vegetation index
(NDVI)

(RNIR - RRED)/
(RNIR+RRED)
RRED 680, RNIR 800

[56] Range: -1 to 1
GH: 0.2-0.8
Broadband

Red Edge NDVI (R750-R705)/
(R750+R705)

[56] Range: -1 to 1
GH: 0.2 to 0.9
Narrowband
(hyperspectral data)

Simple ratio
index(SRI)

RNIR/RRED
RRED 680 RNIR 800

[55] Range: 0 to 30
GH: 2-8
Broadband

Photochemical
Reflectance
Index (PRI)

(R531-R570)/
(R731+R750)

[56] [57] Range: -1 to 1
GH: -0.2 to 0.2
Vegetation health
prior to senescence

Plant Senes-
cence Re-
flectance Index
(PSRI)

(R680-R500)/
R750

[56] Range: -1 to 1
GH: -0.1 to 0.2
PSRI used for canopy
stress, onset of senes-
cence, fruit ripening

Normalised
Phaeophytiniza-
tion Index
(NPQI)

(R415-
R435)/(R415+R435)

[58] Chlorophyll degrada-
tion 0.56 to 1.41*
*unacidified and acid-
ified solutions

Structure
Independent
Pigment Index
(SIPI)

(R800-R445)/
(R800+R680)

[56] [57]
[59]

Range: 0 to 2
GH: 0.8 to 1.8
Good with canopy va-
riety

Leaf Rust
disease Severity
Index (LRDSI)

6.9* (R605/R455)- 1.2 [55] Accuracy of 89% in
study may vary with
other data

Another commonly-used approach is to detect changes in the sudden increase in
reflectance at the red/near-infrared border. This 'red edge' position is a narrow
section in the electromagnetic spectrum (690-740nm) where the visible spectrum
ends and the near infrared starts (Figure 2.2). This section has a large derivative
within leaves due to the amount of reflectance in the near infrared that the plants
emit. Cho[60] describes a number of different algorithms that extract or detect
the red edge. A disease index based on the red edge position has been used to
detect powdery mildew in wheat (Blumeria graminis f. sp. Tritici), however it
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was not found to be as accurate as Partial Least Squares Regression (PLSR), a
technique that uses a statistical approach [61].

Figure 2.2: A typical healthy vegetation spectra (400-1000nm) with the red edge
section highlighted in red (690-740nm).

2.2.2 Applications for the detection and classification of
healthy and diseased stressed plants

A variety of techniques are used specifically for the detection of biotic stress in
plants. Classification techniques, that is, those that separate the data into healthy
and diseased categories for example, can be divided into two types: those that use
the entire spectrum response, and those that focus on a number of key wavelengths
in the spectrum. Furthermore, disease classification is discussed with regards to
the identification of multiple diseases and detection of a specific disease.

2.2.2.1 Classification using a subset of selected wavelengths

In this Section we consider classification approaches that truly rely on multispec-
tral data, that is, sub sampling at particular wavelengths in the full spectrum.
With true multi-spectral data specific wavelengths can be manually or automati-
cally chosen from anywhere in the captured range, as the full range is available in
a hyperspectral dataset.

Analysis from Section 2.2.1 typically used indices to calculate representative val-
ues using discrete wavelengths at various positions in the spectrum. One such
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study involving a wheat field experiment used Normalised Difference Vegetation
Index (NDVI) response to eliminate everything except the leaves from the dataset,
followed by a statistical approach called an ANCOVA (which measures statistical
covariance) to identify selected wavelength bands, and then Quadratic Discrimi-
nant Analysis (QDA) to classify the spectra between healthy and diseased leaves
(yellow rust)[62]. This is representative of a typical workflow in hyperspectral
analysis: isolate (or segment) the parts of the image of interest, then use a mathe-
matical technique to identify regions of the spectra likely to have predictive power,
and finally use those spatial and spectral regions to learn a classification approach.
Using QDA, the overall accuracy reached 92% with 4 wavebands [62].

An example of a Multilayer perceptron(MLP) is described by Moshou [63], who
aimed to detect yellow rust in field-grown wheat using a spectrograph with the
range 460-900 nm and a 20 nm spectral resolution. The spectrograph captured
the images in the field using a handheld system. Then four significant wavelengths
were selected. The first two wavelengths were selected using 'variable selection'
which involved comparing the wavelengths using stepwise discriminant analysis
and using the F-test. The second pair of wavelengths uses the NDVI wavelengths.
The neural network used by Moshou is a simple architecture with four inputs, one
hidden layer consisting of ten neurons and two outputs (healthy and diseased).
The architecture is determined by the number of inputs, a selected amount of
hidden neurons and the amount of outputs required. Trial and error can be used
to determine a suitable architecture. Moshou tried different quantities of neurons
and selected the most efficient. The classification accuracy reached using this
approach was 98.9% for the healthy plants and 99.4% for the diseased plants.

Deep learning has been applied to the problem of plant disease detection. Mohanty
[64] used CNNs to detect 26 diseases over 14 crop species. A dataset consisting of
54,306 colour images were used, 80% for training and 20% for testing on AlexNet
and GoogLeNet (two popular versions of pretrained CNN's). The accuracy was
97.82% for AlexNet and 98.36% for GoogLeNet using colour images. They selected
individual leaves with a homogenous background. If the network is tested on
images under different conditions from the trained images the accuracy is 31.4%
[64]. Sladojevic also used CNN's to detect 13 diseases across various crop plants,
including Apple (powdery mildew, rust), pear (leaf spot), grapevine (wilt, mites,
powdery mildew, downey mildew ) using 30000 images with an accuracy of 96.3%
using CaffeNet [65].

There are currently very few complete studies applying deep learning to hyper-
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spectral data, though this is an active research area. There are several challenges
that need to be addressed in order to use hyperspectral data for deep learning.
The size of the hyperspectral data including the amount of wavelengths would
require a lot of processing time and power it would ideally require a graphics pro-
cessing unit (GPU). The amount of hyperspectral wavelengths would most likely
include noise from specific wavelengths. Also there needs to be a sufficient amount
of data for the training/testing process along with labelled data. There is also the
possibility that the error will be higher than alternative approaches.

Other non-deep learning approaches include using Fishers Linear Discriminant
Analysis with remote sensing data to detect yellow rust and powdery mildew for
a wheat crop with an overall accuracy of 93% with selected wavelength ranges
(531nm, 570-654nm, 685-717nm) that are significant for detecting differences be-
tween powdery mildew and yellow rust diseases in these spectral reflectance ranges,
resulting from an independent t-test [66].

Sometimes data analysis approaches are combined with simple image processing
steps in order to add feature discrimination. A family of image processing tech-
niques called morphological operators can be used to clean up binary (black and
white) images. One such technique is called erosion, whereby the foreground of
an object is shrunk by turning boundary pixels into background pixels. The op-
posite technique is called 'dilation' and has the effect of enlarging the foreground
objects boundary. They can be used together to fill in holes, or remove speckle
noise (depending on the order used) in binary labelled data. One approach using
this method is a study on cucumber leaf data has been used to analyse a differ-
ent type of mildew; downy mildew (Pseudoperonospora cubensis). First Principle
Component analysis (PCA) is applied to reduce the size of the data and a binary
image is produced, and then Erosion and Dilation are used in a second step to
enhance the disease features. The accuracy is 90% however only 20 samples were
used (10 healthy and 10 infected) [67]. This method is unlikely to work as well on
other hyperspectral images to detect diseases unless the leaf data is similar and
even then the results are uncertain.

Hyperspectral imaging can also be combined with microscopy to capture images at
a higher resolution. Barley with different genotypes has been studied at the micro-
scopic level to see if spectral differences could be identified between the genotypes.
Barley leaves were also analysed from both healthy and diseased plants, which had
been inoculated with Powdery Mildew (Blumeria graminis). Results showed there
was a difference over time between the healthy and inoculated leaves, except for
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those varieties containing the mildew locus o (mlo) gene, which provides plant
resistance to Blumeria graminis. In this study, the spectral range was reduced to
420-830 nm due to the noise, then normalised and smoothed with Savitzky-Golay
filter, and then Simplex Volume Maximisation (SiVM) is used to find the extreme
spectra followed by Dirichlet aggregation regression for the leaf trace [68].

2.2.2.2 Classification using full spectrum data

Classification approaches aim to divide the data into a number of distinct classes.
One such approach is Quadratic Discriminant Analysis (QDA), which classifies
by using a covariance matrix, which compares classes. The QDA method was
used in a study with Avocado plants, to examine the fungal disease Laurel wilt
(Raffaelea lauricola), using plants located both in the field and glasshouse. The
QDA classification accuracy was 94% [69]. It is possible of course to use alternative
methods at each stage of the analysis pipeline. For example, rather than use
QDA, a Decision Tree approach (a machine learning technique) has been used
and reached 95% accuracy [69]. Choosing the correct approach for the data, as
well as ensuring sufficient dataset size and quality, is key.

MLP's requires prior knowledge (training data) therefore if the 'disease spectra'
is unknown then this technique will be unsuitable.

A third classification approach is to look at the spectral signatures by using deriva-
tives; this is when the underlying pattern or change in data is analysed. Second
order (and above) derivatives are usually insensitive to changes in the illumina-
tion [70]; however they are sensitive to noise which hyperspectral data typically
suffers from, therefore 'smoothing' needs to be applied before using derivatives.
Smoothing is a process that reduces the difference between individual pixel in-
tensities and neighbouring pixels using forms of averaging to create a smoother
signal. Two smoothing examples are Savitsky-Golay and Mean filters. Savitszky-
Golay proposed a method for smoothing noisy data by fitting local polynomials
to a sub set of the input data then evaluating the polynomial at a single point to
smooth the signal [71]. The Mean filter replaces pixel values with the mean of the
neighbouring pixels, this helps to reduce noisy pixels.

Huang [72] tried to detect Sclerotinia rot disease in Celery crops by using Par-
tial Least Squares Regression (PLSR) with derivatives of first and second order.
Partial least squares regression reduces the predictors to a small set of compo-
nents. This technique is useful when the predictors are collinear/highly correlated
and you wish to reduce the set to a smaller set of key values. The classification
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accuracy for PLSR with the raw spectra is 88.92%, PLSR with Savitzky-Golay
first derivative is 88.18% and PLSR with second order derivative is 86.38%. The
accuracies are similar, with the second order derivative performing slightly worse.
Yuan used PLSR on Fishers Linear Discriminant Analysis (FLDA) to detect pest
and disease in wheat. It produced a 60% accuracy for aphid damage and a 92%
accuracy for Yellow rust disease [73]. In another study, Zhang used FLDA to
detect powdery mildew in wheat (using heavily damaged leaves) with over 90%
accuracy [74].

2.2.2.3 Disease identification

As well as detecting the presence of disease, another avenue of research is to distin-
guish between different diseases to identify specific pathogens. One such approach
is spectral information divergence classification. This method compares the diver-
gence between the observed spectra and a reference spectra (a library of spectra, or
average spectra of interest from the data), where the smaller the divergence value
then the more similar the spectra are, and if they are larger than a set threshold
then they are not classified as the reference spectra [75]. Spectral information
divergence was used to detect canker legions on citrus fruit (grapefruits) where
the spectral range of the data was 450-930 nm with 92 bands and 5.2 nm spectral
resolution. Before analysing the data, a pre-processing step is applied by com-
bining neighbouring pixels to reduce the size by half. Cankerous grapefruits were
compared with normal grapefruit and also with grapefruit showing other disease
or damage symptoms including: greasy spot, insect damage, melanose, scab and
wind scar; this method resulted in 95.2% classification accuracy [76].

2.2.3 Quantifying severity of disease

Along with detecting and classifying disease, we may wish to record the effective
amount of disease, or its severity. This approach does run into some particular
challenges. The amount of leaf damage and coverage from the disease can affect
the accuracy of the leaves being classified as healthy or diseased. Extreme disease
damage can affect the appearance of leaves so detrimentally that they may not
be counted as plant material at all. Still, there are a number of methods for
estimating severity, and we present a selection of approaches below.

Spectral Angle Mapper (SAM) approaches match the pixel spectra to reference
spectra to classify the pixels by calculating the angle between the spectra which
are treated as n-dimensional vectors in space [77]. This technique has been widely
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used with moderate success to classify hyperspectral data, including plant dis-
eases. Yuhas studied the severity of Fusarium head blight disease for wheat before
harvesting. The hyperspectral data was in the range 400-1000 nm with a spec-
tral resolution of 2.5 nm. SAM was used to detect the amount of disease with
a classification accuracy of 87%. Two experiments with wheat plants were car-
ried out, one in a glasshouse and one in field. The plants were imaged over their
developmental stages from inoculated to established infection. Yuhas determined
that just after infection, the healthy and infected plants were not distinguishable
because the infection had not yet established. However, when the hyperspectral
data were examined during the ripening stage, the wheat pigment composition
changes, and the healthy plants then appear as diseased plants [78].

Mahlein used the same technique to analyse sugar beet diseases specifically Cerospora
leaf spot, powdery mildew and leaf rust. The range is 400 -1000 nm with 2.8 nm
spectral resolution and 0.19 mm spatial resolution. The plants were analysed over
a time period (>20 days) to monitor the different stages of each disease, and
the leaves were classified as healthy or diseased. Cerospora leaf spot classifica-
tion accuracy varied depending on the severity of the disease (89.01% to 98.90%),
powdery mildew accuracy varied between 90.18% and 97.23%, and sugar beet rust
reached 61.70%, with no classification before day 20 using SAM [79].

Rumpf et al (2010) used the same dataset as Mahlein but with different analysis
approaches; Decision Trees (DT), Artificial Neural Networks (ANN) and Support
Vector Machine (SVM). All approaches require prior knowledge, however once
trained have proven to be efficient. For example, with Cerospora leaf spot the
accuracy for SVM is 97% (compared to DT- 95% and ANN- 96% ); for Sugar
beet rust the accuracy is 93% (DT- 92%, ANN- 95%); and for Powdery mildew
the accuracy is 93% (DT− 86%, ANN− 91%). Measuring the severity with leaf
area coverage after the disease has covered 1-2% of the leaf the accuracy is 62-
68% and for more than 10% leaf coverage the accuracy is almost 100% [80]. This
demonstrates that it is possible to use a variety of analysis methods on the same
set of hyperspectral data to elucidate different insights and achieve different levels
of accuracy - choice of technique is important.

2.2.4 Detection of early stage stress symptoms

The ultimate goal of such detection systems is to identify the disease with a mini-
mum of physical changes to the plant. Identifying diseases or abiotic problems as

33



Chapter 2. Literature review 34

early as possible has obvious benefits. By using hyperspectral technology in com-
bination with appropriate analysis methods, we can realistically hope to identify
stress symptoms before a human observer.

Drought can be a significant problem for many crops [81], particularly as some
plant species or varieties do not visibly indicate this stress for a period of time,
and by this time, the potential yield or quality of the crop may have decreased be-
cause normal plant developmental processes have been affected through the stress
response. The definition of ‘drought’ can also vary from a little water deprivation
to complete deprivation. Studies discussed in this Section have detected the onset
of drought before Vegetation Indices' detected the drought and also days before
visible signs appeared.

One technique in particular which become popular for early detection of drought
stress is SiVM, which is a data clustering technique [82]. This technique selects
spectral signatures that are samples of healthy and stressed plants, and then clus-
ters the data using these classes. When the signatures become similar to a pre-
learned sample signature then it is classified as such.

Romer [83] studied drought stress in a barley experiment contained in a rainout
shelter and a corn experiment grown in field. The technique used to detect the
stress was again Simplex Volume Maximisation, which is unsupervised. The spec-
trum range was 400-900nm, with 4nm spectral resolution. During pre-processing
some wavelengths are removed due to noise (<470 and >750nm). This is a com-
mon occurrence with hyperspectral data due to unstable illumination at the end
of the spectrum range, and is especially common with lab-based light sources
which may not generate much light in these regions of the spectrum. To reduce
the size of the data and to remove the background, a K-means clustering method
was used to separate the data into a selected number of groups using mean colour.
SiVM is then compared to four well known vegetation indices'- NDVI, Photochem-
ical Reflectance Index (PRI), Red Edge Inflection Point (REIP) and Carotenoid
Reflectance Index (CRI). For the Barley data, reduced partial water stress was
detected four days earlier with SiVM (day 9) than Vegetation Indices (day 13).
For the plants with no water/ complete drought conditions the Vegetation Indices
'detected the stress on day 8, one day faster than SiVM but they failed to detect
the stress for days 9 and 10.

Behmann also analysed drought stress in barley using Support Vector Machine
(SVM). This algorithm is supervised and requires labelled training data, which in
this case is labelled as drought or healthy. The data is pre-processed with K-means
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to reduce the size of the dataset before analysis with SVM. Using this approach,
Behmann detected drought stress on day 6, with NDVI detecting a difference on
day 16 [84].

Drought stress in wheat has been analysed by two combined techniques to try
and improve detection rates. Moshou [85] uses least squares support vector ma-
chine (LSSVM) to try and detect drought stress. Wheat plants were studied in a
glasshouse and both spectral reflectance and fluorescence were analysed. LSSVM
needed to be trained, and 846 data samples were used for this training, whilst 302
data samples were used for the testing stage. For some techniques the size of the
dataset and/or number of wavelengths will determine the time taken to analyse
the data due to computation time. Therefore, Moshou used six wavelengths - 503,
545, 566, 608, 860 and 881nm. The LSSVM attained 76.3% accuracy for stress
leaves and 86.6% accuracy for healthy leaves. However, the study stated that
by using a fusion LSSVM model combining spectral and florescence features, the
overall accuracy was greater than 99%. Fluorescence is the measure of chlorophyll
fluorescence in the leaf to determine physiological changes.

According to Kersting [86] many of these techniques are difficult to use for non-
machine learning or data mining experts because the hyperspectral data needs
pre-processing or adapting (i.e. finding the leaves or using select wavelengths).
In addition, the other techniques apart from [83] do not analyse lots of plants
over several days. This is an important factor to consider for plant phenotyping
when there is a lot of data to analyse. Kersting claims to have the first Artificial
Intelligence technique for drought stress prediction using hyperspectral data. A
novel approach is developed which includes a predictive technique for drought that
does not adapt the data or reduce the size. Kersting demonstrates the approach
in a Barley drought experiment with data collected over a five-week period. The
technique used is called Dirichlet aggregation regression (DAR) and it is based
on matrix factorisation. First Simplex Volume Maximisation is used to find 50
spectral signatures from the data and classify them. Then, latent Dirichlet aggre-
gation values are estimated before using a Gaussian process over the values to find
the drought levels per plant and per time point. Finally, the process predicts the
drought-affected plants before there are visible signs. Based on a five-week barley
experiment, prediction of drought occurred 1.5 weeks before visible signs appeared.
A comparison of runtimes between SiVM and DAR was assessed and resulted in
a runtime of 30 minutes for parallelized SiVM, versus only several minutes using
the DAR model. This demonstrates that developing custom analysis techniques
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can outperform (either in computation time, required assumptions, ease of use, or
final accuracy) the direct application of existing approaches.

There has been a significant increase in scientific literature in recent years focusing
on detecting stress in plants using hyperspectral image analysis. Plant disease
detection is a major activity in the management of crop plants in both agriculture
and horticulture. Hyperspectral imaging is a non-invasive process where the plants
are scanned to collect high-resolution data. The technology is becoming more
popular since the falling costs of camera production have enabled researchers and
developers greater access to this technology.

2.3 Summary

Techniques to segment objects in images have been described in Section 2.1 specifi-
cally related to segmenting individual leaves. Then the CVPPP challenge and work
related to the datasets have been discussed, as it involves counting and segmenting
leaves.

Chapter 3 will present an initial look at the data. Non negative matrix factorisa-
tion will be used to explore the hyperspectral data in the raw format and treating
the data as unsorted data.

Distance maps and active contours have been covered in this Chapter, level sets are
used in Chapter 4 for the leaf segmentation model. Active contours are a promising
approach for segmenting leaves and finding the contours and information within
the image, especially the Chan-Vese model that can find edges when there is noise
or the edges are hard to distinguish. Shape priors have also been found to be
useful when the objects are hard to detect ie overlapping similar shapes. Level
sets are more reliable than snakes due to the function interacting with the image
plane implicitly rather than explicitly, also snakes work in a local range whereas
the level sets can be global.

Section 2.2 includes various techniques available to analyse the data to detect
biotic and abiotic stress in plants, examples of which have been discussed, with a
focus on the classification of healthy and diseased plants, the severity of disease
and early detection of stress symptoms. This is explored in Chapter 7 to analyse
the data.
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Chapter 3

Data collection and initial manual
analysis

This Chapter comprises of two main Sections. The first Section describes collecting
and calibrating the data. The second Section looks at an initial inspection of the
data by manually selecting leaves and examining a drought dataset over the time
series from healthy to visibly stressed. This provides an initial insight into the
data analysis challenge, and a baseline for the automated data extraction and
analysis covered in later thesis Chapters.

A quick overview of the data collected is in Table 3.1

Table 3.1: Data collected

Stress Start
date Days Plants Instances Time

steps Location

Spider mite 15.06.15 1 Elsanta 10 2 NIAB
EMR

Fenella 10
Powdery
mildew 22.06.15 16 Elsanta 13 9 NIAB

EMR
Fenella 12

Drought (E) 19.07.15 5 Fenella 21 5 NIAB
EMR

Drought (N) 13.08.15 6 Sonata 6 4
BSP14 12 4 Nottingham
Malling

Centenary 8 3

Hawaii4 12 3

37



Chapter 3. Data collection and initial manual analysis 38

Drought(E) is the drought dataset collected at NIAB EMR and Drought(N) is
collected at Nottingham.

Problems that occurred with data capture, in summary:

• Spider mite - Biological problem: The over saturation of spider mites during
the infection process resulted in visible signs appearing at the next imaging
time point.

• Mildew and Drought(E) - Technical problem with the HS camera: The im-
ages included a visual shift in the wavelengths. This created a 3D effect
in the images due to the misalignment in the camera sensors. The spectral
signatures were affected.

Due to these reasons only the Drought (Nottingham) dataset is used later in this
thesis, however the process of capturing these datasets are discussed in more detail
below.

3.1 Part 1: Data capture

3.1.1 Imaging set up

During this project the data was collected at two locations: NIAB East Malling
Research (EMR) in Kent, and The University of Nottingham − Sutton Bonington
campus. The hyperspectral imaging system specification varies in each location,
see Table 3.2.

Table 3.2: HSI details for the two cameras used to collect data in this Chapter.

Location UoN Sutton Bonington NIAB East Malling Research
Make Headwall Photonics IMEC Ltd (Gent, Belgium)
Type Pushbroom Pushbroom
Range 400-1000nm 600-975nm

Wavelength resolution 0.74nm 4nm
Image size 400x1004x812 2048xlength scan

The system set ups are both based in a laboratory with the camera attached to
a metal frame for support. The Nottingham system involves moving the cam-
era, whereas the EMR camera is stationary and the object moves on a platform.
Therefore, both are pushbroom systems, but implemented in two diferent ways.
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The camera at the University of Nottingham captures visible and near infrared
(VNIR) wavelengths, which has the range 400 –1000nm and is comprised of con-
tiguous bands where each band is 0.74nm wide with a total of 812 bands. The
Spidermite, Mildew and Drought(E) experiments were collected at NIAB EMR us-
ing the camera in Figure 3.1b. Drought(N) dataset was captured in Nottingham
using the camera in Figure 3.1a.

Hyperspectral data capture and software

Hyperspectral data is large in size, especially when multiple plants are imaged for
several days. A scan of a single plant could easily be around a gigabyte in size.
If the whole spectrum range is analysed then the process will take considerably
longer than selecting several wavelengths to analyse. However, there is a lot of
information contained in the data, which could be valuable. If the camera collects
800 spectral bands, are all 800 needed or would binning into 400 or 200 etc. bands
be sufficient?

Storing fewer spectral bands results in smaller file sizes, and reduces the complexity
of the data analysis, at the expense of throwing away potentially important colour
properties. Polder et al. [87] explores the calibration and characterisation of
spectrographs captured using three system set ups. The experiments look at the
different types of noise and signal-to-noise ratio. The experiments also determined
that to an extent binning can occur without loss of information by calculating the
resolution, the spectral range and the amount of pixels.
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(a) UoN camera set up (b) NIAB EMR camera set up

Figure 3.1: (a) the Nottingham camera system and (b) the EMR camera system.
The square frame holds the camera and the cables so the camera can move and
capture the plant (a) or the plant is moved (b). The Nottingham system has the
capability to move the camera in the x-and y- axis, but for imaging the strawberry
plants the camera only needs to move along the -y axis.

3.1.2 Selection of plant varieties and type of stress/disease

There are a lot of strawberry varieties that could have been used in this project.
The varieties selected have a good variation of traditional and modern types of
strawberry plants, also representing a good variety of architecture and stress sus-
ceptability. Six varieties were selected: Elsanta, Fenella, Sonatta, BSP 14, Malling
Centenary and Hawaii-4. Elsanta and Fenella were selected because they have
some resistance to powdery mildew. These were grown from cold store to min-
imise the chance that the plants were exposed to more than the intended stress
or disease. Also this limited the height of the strawberry plants; if they are too
large this can cause problems for imaging. Figure 3.1b displays a medium sized
Elsanta plant on the imaging board where the leaves are at the same height as
the spot lights which means the plant will not be illuminated and the image will
be dark. Sonatta, BSP 14, Malling Centenary and Hawaii-4 were existing mature
plants with an increased chance that the plants were exposed to other stress and
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diseases.

Three stresses were investigated before deciding which stress would be selected for
further study in this thesis, three initial experiments were conducted to investigate
the development of these stresses.

Two biotic stresses were selected; Powdery Mildew and Spider Mites. Powdery
mildew can devastate crops because it is spread by wind dispersal from an infected
plant nearby. The spores land on the leaves and the infection takes 14 days (10
if the leaves are directly under the infected plant) to show the first signs, which
are curling leaves, small white patches and spots underneath the leaves. Powdery
mildew is specific to a plant species which means strawberry powdery mildew will
only affect other strawberry plants; however it can affect the whole crop through
wind dispersal and by the time the visible signs appear the plants productivity is
reduced. Due to the 14 day window there is a lot of time that could be saved by
noticing the stress early.

Spider mites are incredibly hard to see by eye. They are tiny (0.4mm), translucent
and hide under the leaves where they cause damage. A solution to spider mites
is larger pests that only eat the spider mites and not the plants; however there
need to be signs of spider mites before application. If there are a few spider mites
(<10) then the period from infection to visible signs can be up to several days.

The third abiotic stress selected was drought. This is a broad term for restricting
the plants water intake. It can be anything from an increase in water deprivation
to complete water withdrawal. For this project the complete withdrawal option
was taken.

The experiments lasted until the first visible signs of the relevant stress appeared.
There is a protocol for the drought process below and the powdery mildew and
Spider mite protocols are in Appendix B which explains each experiment includ-
ing the process, equipment needed, how the plants were stored and the imaging
process. The data collected is listed in Table 3.4.

3.1.3 Protocol for imaging the strawberry plants during
stress application

Protocols were developed at NIAB EMR to image strawberry plants with a hyper-
spectral imaging camera. A protocol ensures appropriate procedures and precau-
tions are taken, including how to store the plants, how to inoculate or infect them

41



Chapter 3. Data collection and initial manual analysis 42

and how to contain the disease/pest while imaging. The drought(E) protocol is
included below while the powdery mildew and spider mite protocols are in the
Appendix.

Protocol Strawberry Plants - drought experiment

Plant Material Preparation

Dormant strawberry plants were purchased from strawberry propagators and kept
in a cold store at 2◦C until required. The dormant strawberry plants were taken
out of the cold store the night before potting and left at +2◦C to ensure plants
were not damaged due to a sudden change in temperature. The following day, the
strawberry plants were potted into FP9 pots using standard compost and grown
for 2-3 weeks until they have 2-3 leaves. When plants have 2-3 leaves, a thorough
inspection of the leaves was undertaken and any marks/signs on the leaves of any
other diseases/pests were noted.

Equipment: FP9 pots, Standard compost, Cold store plants, Glasshouse for the
plants to grow in.

Location for the plants during the experiment: The plants were kept in a heated
glasshouse.

Drought preparation and process

Stop watering the plant on day zero.

Equipment: Box with lid and box, 14 Fenella plants ( 7 drought, 7 control)

Imaging Process

The strawberry plants were imaged on day 0. They were then imaged every day
until there were visible signs on all drought induced plants. To transport the
plants from the glasshouse for imaging, a box with a lid was used. Also after each
imaging session the plants were placed back into random positions.

Imaging method at EMR

1. Clean the area around the camera with 70% ethanol
2. Turn on the three switches at the plugs and turn the PC on.
3. Open the HSI software and select 'start pipeline'
4. Switch the lights on at the voltage box, bottom left and then bottom right.
5. Move the board using the arrow keys on the screen if it is needed.
6. Turn the main room light off.
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7. Place the white balance on the board.
8. Select the white balance calibration button
9. Cover lens with hand and select dark (white) calibration button

10. Cover lens with hand and select dark (object) calibration button
11. Place the plant on the board under the lens.
12. Make sure the lens is in focus.
13. Move the board to the desired start position using the arrow keys on the

screen

(Repeat steps 14-20 for each plant)
14. Take a digital image of the plant
15. Place the plant on the board
16. Click the right arrow key on screen to take the board to the start position
17. (select right arrow key to let the plants speed be tested, the image on the

screen needs to match on the left and right sides)
18. Change the number of the speed slightly and repeat the last three steps until

the image matches on the screen.
19. Name the file a relevant name ie. Day0 Elsanta1 Cal
20. Select frame arrow right key on screen to finally capture the images.

Equipment:

• Camera and Frame set up
• Lighting and set up
• Board
• PC and software - HSI
• Plants and box (to carry the plants in)

Recording information during imaging (note): plant variety, number, date, time
and time after treatment, Speed, start and stop position, lighting, exposure rate
and frame rate. Any visible marks/signs (including before infection to discount
it). General health.

3.1.4 Stress experiments

All three types of stress were imaged to identify the most suitable stress with
which to develop the methods for the rest of the thesis. Details and results are
presented below.

Powdery Mildew
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Mildew can typically take 14 days from infection before visible signs appear. The
signs of mildew are curling of the leaves, white spores on the underside of the
curled leaves and small dark patches form on the underside. This experiment
took place over 16 days in June/July 2015 at EMR.

The plants used were 14 Fenella (7 control and 7 infected) and 11 Elsanta (5
control and 6 infected). The sixth plant in the Elsanta set was used for destructive
sampling by removing leaves for imaging.

Due to the length of the experiment, the plan was to image every other day at the
same time each day. This started with day 0 (before infection). The plants would
be placed into controlled environment cabinets to control as many conditions as
possible (Figure 3.2a). After imaging, the plants would be placed back in the
Mildew cabinet at random positions to prevent bias in the data. The two Mildew
infected host plants were raised above the experimental plants for imaging to
enable the mildew spores to naturally drop/float onto them to provide suitable
inoculum for good infection (3.2a).

The temperature was set at 19◦C for the day and 17◦C for the night, and the
humidity was set at 70%. The day/night cycle was 15hrs day/9hrs night. The
plants were watered every other day.
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(a) The Mildew infected plants

(b) The control plants

Figure 3.2: (a) The Mildew infected cabinet set up (b) The control plants cabinet
set up.

Spider Mite

The Spider Mite infection lasted for just 24hrs until visible signs appeared. This
was due to over saturation of spider mites. The inoculation process involved
selecting a small quantity of spider mites on a section of leaf from an infected
plant and transferring the leaf to the strawberry plants. It was hard to determine
the exact amount of spidermites under the microscope due to the size of the young
mites and eggs.

Ten Fenella (five control and five infected) and ten Elsanta (five control and five
infected) plants were used. Before they were infected the plants were imaged for
a control dataset, and then transported to a glasshouse containing spider mite
infected plants. To contain the spider mites on each plant the plants were placed
on an overturned plant saucer and placed on a tray filled with water (3.3). Spider
mites do not like the water and a moat kept the spider mites contained on the
plants.
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(a) The Spidermite infected plants

(b) The control plants

Figure 3.3: (a) The Spider mite set up in a controlled glasshouse, (b) The control
plants set up.

Spider mite infection involved taking a leaf from a previously infected host plant
and placing it at the base of the stem of the plant to be inoculated. Using this
method enables the spider mites to crawl onto the leaves naturally rather than
being placed on the leaf (Figure 3.4).
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(a) A Spidermite crawling up the
stem

(b) Leaf placement for infection

Figure 3.4: (a) An example of a Spider mite set in the process of naturally
moving to the leaf, (b) The placement of the leaf for infection.

The leaves used for inoculation had many spider mites (50+), therefore by the
next day there were already visible signs of infection. The plants were imaged
and then the data collection ended because visible signs of infection were already
present. The aim of this experiment was to have a slow progression for a time
series dataset over several days; however, within 24 hours easily visible signs were
already present.

Drought

Two drought datasets were captured. The first drought dataset was collected at
EMR NIAB over 10 days in July 2015. 21 Strawberry plants cv. 'Fenella', were
placed into a heated glasshouse (Figure 3.5). The experiment contained 7 control
plants, 7 drought plants and 7 over-watered plants. The plants were imaged daily
until day 4 when the drought plants showed visible drooping/weakness by this
point.
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Figure 3.5: The set up and location for the Fenella plants during the drought
stress and imaging process at EMR

At Nottingham, a second drought experiment took place using the cultivars Hawaii4(12),
BSP14(12), Malling Centenary(8) and Sonata(6) during two weeks in August (Fig-
ure 3.6). These plants were selected because they supply a variation within the
strawberry plant varieties. Sonata and Malling Centenary are commercial plants,
BSP14 is visually different and Hawaii4 is a wild strawberry cultivar. The plants
were evenly divided into control or drought plants and they were imaged daily for
5-6 days, depending on the plant variety and its sensitivity to drought. The data
was collected until visible signs of stress appeared on all of the plants, therefore
some plants were imaged for longer. Sonata was imaged for 6 days, there was also
a day 9 collection where visible signs were present, and two plants (one control
and one drought) were imaged on day 10. BSP14 was imaged for 6 days, Malling
Centenary was imaged for 5 days and Hawaii4 was imaged for 6 days. The imaging
details are listed in Table 3.4.

Figure 3.6: The set up and location for the plants during the drought stress and
imaging process at Nottingham
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3.1.5 Data collected: summary

Table 3.3: Table of the data collected that comprises four datasets. The plants,
time period, number of images, location and extra data are listed for each dataset.

Stress Plants Time Images Location Dates Multi
view
data

Spider mite 10 Elsanta,
10 Fenella

24 hours
imaged
daily

40 (20 x 2
days) 132
bands

NIAB
EMR
glasshouse

15th-16th
June

-

Mildew 13 Elsanta,
12 Fenella

16 days
-imaged
two day
intervals

225 (25 x
9 days)
132 bands

NIAB
EMR
Cabinets

22nd June
- 8th July

-

Drought(E) 21 Fenella 5 days -
imaged
daily

105 ( 21
x 5 days)
132 bands

NIAB
EMR
glasshouse

13th -
23rd July
(imaged
19th-23rd)

-

Drought(N) 6 Sonata,
12 BSP14,
8 Malling
Centenary,
12 Hawaii4

6 days, 6
days, 5
days, 6
days

123, 812
bands

UoN
Sutton
Bonington
campus

13th - 25th
August

Pair + 3
- 10 im-
ages per
plant

Observations from the datasets

The spider mite data is not being considered in this project. The experiment had
to be shortened because the plants were infected with too many spider mites (+50)
which resulted in the plants displaying visible signs of stress just 24hrs later. The
data includes the control plants and infected plants before infection and at 24hrs.
The aim was to collect more data before visible signs appeared.

Also, the data collected at EMR contains what appears to be a camera misalign-
ment problem. It is not exactly known what the problem is but from contacting
the manufacturer they believe it to be a misalignment problem with the sensors
which affects the hyperspectral data and causes a shift noticeable when imaging
a 3D object.

As the plant moves along the y axis the camera captures a line in the z axis,
however there is an apparent 3D shift as the plant is moved appearing as though
the plant has moved in each frame of the hyperspectral wavelengths.
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To summarise:

• Spider mite - Biological problem: The over saturation of spider mites during
the infection process resulted in visible signs appearing at the next imaging
time point.

• Mildew and Drought(E) - Technical problem with the HS camera: The im-
ages included a visual shift in the wavelengths. This created a 3D effect
in the images due to the misalignment in the camera sensors. The spectral
signatures were affected.

While the first three datasets were captured at NIAB EMR, the Drought(N)
dataset was collected at Nottingham with a different camera. Drought(N) also
includes stereo pairs of hyperspectral data and Multi view colour images from the
side of the plants.

Table 3.4: Table of the dataset selected after consideration of the data

Plants Time Images Location multi
view
data

Drought(N) 6 Sonata,
12 BSP14,
8 Malling
Centenary,
12 Hawaii4

6 days, 6
days, 5
days, 6
days

123, 812
bands

UoN
Sutton
Bonington
campus

Pair + 3
- 10 im-
ages per
plant

Image collection

The strawberry varieties for Drought(N) are Sonata, BSP14, Malling Centenary
and Hawaii4. There are some images of each variety in Figure 3.7. This displays
two plants of each variety with the aim to show the appearance and the variety
within and between varieties. For example, Figure 3.7e-f are Hawaii plants and it
can be seen that the size of the plants are different. Most of the Hawaii plants
that were imaged (10) are large and complex with a few small sized Hawaii plants
(2). BSP (a-b) and Hawaii (e - f) have small sized leaves but BSP leaves have a
darker shade of green. Sonata and Malling Centenary are generally medium/large
in size. The exception is (d) which is a Sonata plant. The Sonata plants imaged
generally had flat leaves whereas Malling Centenary had lots of leaves that were
curled and overlapping.

To summarise:
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• The BSP14 plant is generally small which might retain water and last longer
during water stress. There was a drought induced study that included BSP14
(Fragaria chiloensis) and the results stated that there was no difference
between the control and drought plants for the first four days [88].

• Sonata cultivar was created from Elsanta and Polka. Sonata plants are
medium/ large in size and the leaves are large (in comparison with BSP14).
The leaves overlap and the plant is quite dense. However the leaves during
the well watered period appear flat and they face the camera.

• Hawaii-4 is known as a wild strawberry plant. These are not a commercial
fruit producing plant, the strawberries produced are small and white/yellow
in colour and the leaves are very small.

• Malling Centenary was created at NIAB EMR in 2013 to compete with
Elsanta. This plant is similar to Sonata in size, the leaves are dense and the
the plants grow fast.
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(a) BSP14 (b) BSP14

(c) Sonata (d) Sonata

(e) Hawaii4 (f) Hawaii4

(g) Malling Centenary (h) Malling Centenary

Figure 3.7: Images of the four strawberry plant varieties to display the appear-
ance and architecture of the plants. BSP14 and Hawaii have small leaves although
BSP14 remained quite small whereas Hawaii have a variety of sizes (e - f). Sonata
have large leaves and are a medium size. Malling Centenary are of a similar size
but the leaves are curling (g -h )

Selection of varieties

The BSP14 plants were selected due to the small organised plant structure making
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imaging easier. This is a good control variety due to evidenced early drought
tolerance. BSP14 would also be good for computer vision techniques development
because the leaves are small, the plant in general is small and the leaves are spread
out.

Sonata plants were also selected because they originate from Elsanta, and the
leaves are relatively flat which is helpful for hyperspectral data.

Hawaii-4 and Malling Centenary have not been selected for further study. Hawaii-
4 is similar to BSP14 in leaf size however the variety is a wild strawberry plant.
Most of the plants imaged are like Figure 3.7e, dense compact leaves. This is not
suitable for sections of the later work, and with the amount of leaves overlapping
any ground truth labelling would also be challenge. Malling Centenary is a good
option, it is similar to Sonata; however the leaves have a slight curve, overlap more
and look compact as well as large.

From this point onward drought(N) captured in Nottingham will just be known
as the drought dataset.

3.1.6 Data calibration

Calibrating the images

The hyperspectral data needs to be calibrated to ensure the images produced are
adjusted for the lighting; hyperpspectral camera software may have this option,
but if it does not then the data can be calibrated after it is captured. The lighting
is calibrated using a known white balance target, which is captured by the camera
system in the same imaging period as the plants. An example image of a small
white balance with a BSP14 plant is included (see Figure 3.8), however a larger
white balance board was imaged at a similar height as the top of the plants.
This target will reflect a known percentage of light over the complete spectrum,
for example 99% across the entire working spectrum of the camera. The non-
uniformity of illumination can be corrected for by dividing the observed data by
the captured white balance data (see Figure 3.9). Additionally, the system must be
corrected for electrical noise present from the sensor in the absence of light (called
dark current). This is usually carried out by taking an image with the camera in
the absence of any light, and using the resultant low-level noise readings to adjust
future measures. [89]
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X = S −B
W −B

(3.1)

Where X is the resulting calibrated image, S is the input image, B is the dark
current image and W is the white reference. [90]

Figure 3.8: A BSP14 plant and small white balance disc. This is an example, a
larger white balance board was placed at a similar height to the top of the plant
and imaged for the calibration process.
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(a) Uncalibrated signature of a strawberry plant

(b) The white balance signature

(c) Calibrated signature of a strawberry plant

Figure 3.9: (a) The signature of the strawberry plant before the image is cali-
brated; (c) The signature after it has been calibrated using the light colour spec-
trum (b). (c) The small peak at 540nm represents green, the sharp incline is called
the red edge and the larger peak is the near infra-red range.

The data collected at EMR NIAB already had this process included in the camera
software. Therefore the white balance needed to be imaged and the dark reference
involved turning the lights off and covering the lens to capture a dark current im-
age. Then these two references were included in the calibration formula. However
the data collected from Nottingham did not include the white balance calibration.
In this case the white balance reference is divided by the images to calibrate the
data post capture.
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3.2 Part 2: Initial data inspection and manual
analysis

3.2.1 Manual selection of data

To provide a ground truth analysis, a manual approach to data extraction was
explored. Figures 3.10a-b were produced from the Sonata plant images in the
Drought-2 experiment to see if there were any noticeable differences between the
drought and control plants. Six Sonata plants were imaged, three were control
plants and three were drought-induced plants. The image analysis software pack-
age 'FIJI' [91] was used to manually select three leaves from the plants and take
the average per day over three days for the control and drought plants. The con-
trol and drought graphs are displayed in Figure 3.10, the spectral signature have
been smoothed automatically in 'FIJI ', the hyperspectral data unfiltered would
be noisy in the near infrared range of the spectrum and this can be seen in Chapter
6.
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(a) Control Sonata plants spectral signatures over time.

(b) Drought sonata plants spectral signatures over time.

Figure 3.10: The manual selection of control and drought plants spectral signa-
tures plotted over time to display the difference between the two datasets. Sonata
was used to see if a difference could be seen, as BSP14 has a suspected tolerance
to drought.
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From Figure 3.10 there are minimal differences between the reflectance of the
control plants and some difference for the drought plants but it is hard to identify
therefore more complex analysis is required. This data is manually selected from
the plants, the next step would be to try and automate the process of selecting
certain leaves and if it is possible to get better quality measures.

3.2.2 First automated analysis using the hyperspectral data
alone

The hyperspectral data is both a spatial image and large complex data reflectance
set. The first approach tried was to check what would happen if the hyperspectral
reflectance data was analysed in isolation of spatial image information.

Using a mathematical approach to separate the images into endmember
materials to select leaves

Refering back to the literature review in Chapter 2, Non Negative Matrix Fac-
torisation (NMF) has been explored as a technique that only uses the spectral
information from the data without spatial information. NMF is a matrix factori-
sation approach that minimises the error between the input and two expected
output matrices. For hyperspectral data one output matrix is the expected hy-
perspectral signatures for N number of endmembers and the second matrix is the
probability of the pixel being a part of that endmember (abundance).

There are three colourmaps produced from the matrices of the results (See Figure
3.11). The positive point is the technique is autonomous and requires no inputs
after the initial parameters are set. The negative points are the number of end-
members need to be selected and also the data can be quite noisy. This means
the results would be very hard to interpret between diseased and healthy for the
data collected. But the technique is good at separating the endmembers/different
types of material from the signatures. This separation can then be used to exam-
ine spectral profiles for underlying materials. A labelled figure with colour sections
of the plant has been included for clarity of the plant materials (Figure 3.12).
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(a) NMF 1 of three end-
members - stolon

(b) NMF 2 (c) NMF 3

Figure 3.11: The colourmaps of the three endmembers/parts of the plant seper-
ated. Red is the endmember and blue is not the endmember. Figures where (a)
is the first endmember the stolon, (b) is the second endmember the soil and (c) is
the third endmember the leaves.

Figure 3.12: Labelled figure of the plant; dark blue is the leaf, light blue is the
soil, green is the stolon and red is the background.

Two graphs are displayed for comparison between the ground truth spectral sig-
natures (selected manually using FIJI) and the NMF produced spectral signatures
(Fig 3.13). Figure 3.13b is the output from NMF; clearly it is very noisy. Near
infrared wavelengths in the spectral data are very noisy to start with and no post
processing has been applied.
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(a) The ground truth spectral signatures of the
endmembers (materials)

(b) The spectral signatures produced
from NMF.

Figure 3.13: The two graphs display the spectral signatures of the endmembers
(materials) in the image. Figures where (a) is the ground truth spectral signatures
and (b) is the graph produced from the technique. Endmember1 is the stolon,
endmember 2 is the soil and endmember 3 is the leaves.

The results from the technique are not good enough to analyse for small changes in
the spectrum, while the flowers, leaves, stolon can be detected these have different
shape spectral signatures whereas individual leaves have almost identical signa-
tures. So are all clustered into one class. Therefore identifying individual leaves is
not possible. Also the hyperspectral data is quite noisy and this technique will not
work that well with the subtle changes that will occur in the spectral signatures
as the plants become stressed. Therefore spatial information and computer vision
techniques are going to be explored.
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3.2.3 Conclusions from the initial tests

The Sonata plants were imaged over several days until visible signs of drought
appeared, the hyperspectral data is displayed in Figure 3.10. From inspection
of Figure 3.10 the control plants reflectance responses are very similar and the
drought induced plants display signs of reducing in the green and near infra red
wavelengths over the experimental period. The plants were imaged under the same
conditions and camera settings. There is a suggested difference in reflectance over
time, however it is hard to draw conclusions from this data alone.

The NMF analysis involved automatically selecting all the plant data and sep-
arating it into the different materials. When the number of materials increased
the data was split into sub-categories of the same materials which produced noisy
data. Also stressed areas would be difficult if not impossible to determine using
this method alone.

NMF uses the hyperspectral data alone; this is a good test to see what could
be detected from an automated process that uses just the colour (no spatial)
information. Segmenting leaves based solely on colour when the colour is expected
to change as part of the stress is not ideal. Geometric, vision based approaches are
therefore required for this dataset. Developing such approaches is the foundation
of Chapters 4 - 6 in the rest of the thesis.

In order to develop such methods, labelled ground truths are required which will
be detailed below.

3.3 Creating 2D ground truth data

Before any methods can be evaluated ground truth data is needed. In this case leaf
segmentation is needed. The process of creating the ground truth data manually
involves drawing around the edges of leaves. This will create two sections, inside
and outside the leaf. A mask image is used to label regions. The area inside the leaf
is set to 1 and outside the leaf is set to 0 to create a binary mask. However plants
usually have several leaves, therefore the leaves are labelled by a numerical value;
background regions are labelled 0 (black) and leaves are labelled with ascending
numerical values.
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3.3.1 Hyperspectral images

The hyperspectral plant data is calibrated with the corresponding white balance
data to normalise the illumination. Then a slice is selected, 700nm, to display the
leaves. The leaf is manually selected, this would save the binary mask as 0 and 1,
then the process is repeated for each leaf. Each leaf that is selected is then added
to the mask matrix until all the leaves have been selected. The resulting image
can be viewed as a colourmap where the leaves are displayed in different colours
(index values) or they can be displayed with the boundary of the leaf on top of the
700nm image. Figure 3.14 shows four different views of the plant data from the
initial grayscale image (a) to the ground truth selected (c) and the corresponding
colourmap (d) to visually see the leaves. The colourmap index image and a binary
image are saved to be used for the evaluation of the images in Chapter 4.

(a) Plant 12 displayed at 700nm (b) Plant 12 binary image.

(c) Plant 12 ground truth, each leaf has a num-
ber id. Displayed in grayscale.

(d) Plant 12 colourmap.

Figure 3.14: Plant 12 - the ground truth data.(a) is a grayscale image of the
plant from the hyperspectral data, used to draw around the leaves. (b) is a binary
image. (c) is an example of the ground truth data that is used, it is dark because
the leaves are numbered from 1-N. (d) shows a colourmap applied to (c) to help
visualise the leaves.

The datasets with 2D ground truth that have been created are all Sonata and
BSP14 plants for days 0, 3, 4 and 5. Malling Centenary also has 2D ground truth
images however this plant variety is not used.
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3.4 Conclusions

This Chapter covered the data capture, data selection and initial analysis. Several
plant stress imaging protocols were developed and used. Three stress datasets
were captured and compared with regard to suitability for analysis. Drought is
promising to investigate because the stress is abiotic and it is consistent with how
the typical hyperspectral signature profile should appear for healthy and stressed
plants.

Initial visualisation shows some difference in reflectance over a drought experiment
but there are only small changes visible. Colour-based clustering was explored as
a way to identify leaf data, but was not found to be reliable. More sophisticated
methods are needed to identify and select leaves for data analysis, due to the
challenges of hyperspectral image data. These will start with a segmentation
using a leaf shape model, explored in Chapter 4.
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Chapter 4

A model based approach for
segmenting leaves in
hyperspectral images

This Chapter will describe the development of computer vision techniques in order
to segment individual leaves. Chapter 3 initially analysed selected leaves using
manual analysis which indicated a slight difference in the spectral signatures for
the drought plants compared to the control plants however the leaf positions,
shadows, overlapping and depth can all affect the spectral signatures. The logical
next step is to find the individual leaves to be able to analyse them separately.
Additional analysis would be needed later in order to determine which of these
segmented leaves should be selected to take hyperspectral measures from.

The image data is quite complex, with texture, occlusion of some leaves and
lighting changes. The main aim is to segment individual leaves in these challenging
images automatically with no input from the user.

Separating the whole plant from the background is relatively easy for this data
(when the background is suitably different) by using colour to seperate the plant
from everything else - k-means, gaussian mixture models or the hyperspectral pro-
files can be used. NMF in Chapter 3 could separate the plant from the background.
It becomes more challenging when the individual leaves need to be segmented, as
described in Chapter 2.

The hyperspectral images collected here have distinctive strawberry leaf edges
and the main vein of the leaves are mostly visible. After the hyperspectral images
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were captured a second set of SLR images were also captured both to provide
high resolution option and for a reference. Hyperspectral data is relatively low
resolution compared to SLR, and also tends to have a narrower focal plane which
is even more of a challenge. The hyperspectral dataset will be used for the analysis
but both datasets will be displayed to explain the proposed pipeline (see Fig. 4.2).

4.1 Leaf model pipeline

The leaf model is an automated pipeline to find the leaf shape segmentation for
the leaves in the images. This process looks at finding the leaf centre points and
the veins in order to place a leaf shape template over the leaf and rotate it in the
same direction as the leaf. The shape template is then incorporated into the level
set to find the final leaf segmentation. Figure 4.1 is a flowchart of the pipeline.
The numbers in the flowchart correspond to the algorithm.

The algorithmic steps are:

1. Find the individual leaf centre point,

2. Find the veins

3. Create a mean shape template

4. Place the shape template in the local area of the leaf using the leaf centre
points (from step 1)

5. Rotate the shape template using the veins (from step 2)

6. Apply the level set with the shape incorporated. (from step 4)
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Figure 4.1: Flowchart for the hyperspectral leaf segmentation pipeline presented
here in Chapter 4. The numbers correspond to the algorithm steps.
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The dataset being used for the model is the hyperspectral images collected in
Nottingham for the drought dataset; specifically BSP14 and Sonata.

(a) RGB data from DSLR (b) Hyperspectral data displayed in
RGB

Figure 4.2: Figures where 4.2a is DSLR images and 4.2b is the hyperspectral im-
ages displayed in RGB. The hyperspectral images are of relatively poor resolution
and quality (b)

4.1.1 Finding the leaf centre point using local normalisa-
tion

The first step in the leaf model is to find the leaves centre point. There is a poten-
tial method called the distance transform which measures each pixels distance to
the boundary of a binary image. This however tends not to work that well when
there are multiple leaves together and overlapping.

Local normalisation takes a small window of the image and applies the local mean
and variation to the pixels then the window is moved and applied as a filter to
the whole image. By applying a Gaussian smoothing kernel first and then local
normalisation the image is broken into regions. Finally a size threshold is applied
to remove small groups of noisy pixels and keep the large clusters which represent
the leaves. In images with severe overlapping leaves duplicate seeds will be in a
leaf which can be removed later.
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Images of three strawberry plants with different amounts of leaves have been used
to display the output from local normalisation (see Figure 4.3). (a) shows lots of
leaves but the leaves are bright and only slight overlapping. The centres of the
leaves appear to work well apart from two in the background that are partially
occluded. The middle image (b) is slightly darker in intensity than the top image
and the leaves are closer together. Here local normalisation has not worked as well
and the seed centre points are closer to the edges of the leaves. The bottom image
(c) has more leaves and a few leaves are out of focus. Multiple seed centre points
have been placed on three leaves while the other seed centre points are near the
edges of the leaves.

The hyperspectral images are noisy especially in the near-infrared section, and
the RGB images are higher resolution. However the near-infrared section of the
hyperspectral images are bright because the plants reflect a lot of light for this
wavelength range which helps the local normalisation. Using NIR is not possible
on RGB images, but optimising the process to use NIR(eg. 800nm) data where
available works well.

Finding the leaf centre points (ie. seed locations for the rest of the leaf segmenta-
tion algorithm) is evaluated further in 4.3.1.
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(a) Hyperspectral image displayed at
800nm. The circles are the automated
seed centre points. There is a good
contrast between the leaves and back-
ground.

(b) RGB displayed in grayscale with the au-
tomated leaf centre points. Although for this
image they have not found the centre, they
are near the edge of the leaves.

(c) RGB displayed in grayscale with the automated
seed centre points. The seed centre points are not
in the centre.

Figure 4.3: Greyscale images of strawberry plants with the centre points dis-
played on the leaves. (a) leaves are spread apart and bright (800nm), (b) leaves
are overlapping but there are only a few leaves, (c) multiple leaves, close together.
The automated seed centre point detection works well with the hyperspectral data
however they appear to not work as well with the RGB high resolution images.
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4.1.2 Finding the veins on the leaves for shape template
orientation

After finding the centres of the leaves, the next step is to find the veins. The veins
will help to rotate a shape template to the same direction as the leaf orientation.
The veins in strawberry leaves have a distinctive architecture, there is the main
vein that is direct from the stem to near the end of the leaf, then the secondary
veins branch out almost symmetrically at about 30 degrees each side of the main
vein. (see Figs. 4.3 and 4.4)

A way of finding the veins is by using the Hough transform [92]. This method
can find straight lines or even curves in the image. First an edge detector is
applied to the image, this will find lots of lines on the image. Then points are
mapped from the image to curves in the Hough space. The peaks of the curves
represent parameters of potential straight lines. There are parameters to set in
the Hough transform to control the length of the lines detected, and the number
of lines. Figure 4.4 displays the lines on a strawberry plant image found using this
approach.

Figure 4.4: Lines placed on the RGB image from the Hough transform. The
image is blury in the background therefore the leaves in the distance are out of
focus and not as many veins are found. Found lines are in green; line end points
are indicated by the red/yellow Xs.

Many lines are found. It is necessary to reduce the amount. Lines close to the leaf
centre points are preferable and allow for the general leaf direction.

Figure 4.5 displays two automated leaf centre points with the three nearest lines.
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The leaf on the left works well however because the leaf on the right is out of focus
no lines are found on the leaf and instead the lines are from nearby leaves. For
this project it is ok that the leaf would be disgarded because it is out of focus,
in the background and slightly occluded, so unsuitable for measurement purposes
anyway. This is to display problems with the current method.

(a) Veins for the bottom left leaf (b) Veins for the lower, out of focus
leaf

Figure 4.5: Lines closest to the centre points are selected and displayed. (a) The
selected leaf is the bottom left with the three closest lines selected successfully.
(b) The selected leaf is on the right in the background (white circle), which is out
of focus; no veins are detected successfully for that leaf.

4.1.3 A shape template for leaf segmentation

The automated leaf centre points and the veins will both contribute to placing
a leaf shape over the leaf. However a leaf shape template needs to be created
first. Strawberry plants can vary in size and shape, two varieties that will be used
throughout the thesis are BSP14 and Sonata. BSP14 leaves have a small circular
shape while Sonata leaves are large, irregular and they have a pronounced jagged
edge. One way is to use a particular ground truth strawberry leaf as the leaf shape.
However the shape may be too big or too small and the shape could certainly be
considerably different to a second variety.

The next idea was to use a mean leaf shape; this approach takes several ground
truth leaves, combines the binary masks and calculates the mean shape.

One mean shape template would not account for the large shape variation of leaves
between the varieties. For this dataset, BSP14 and Sonata, there are two mean
shape templates to account for the large difference in the leaves. The aim is not
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to match the shape template perfectly but to have a general leaf template where
the leaf is.This template will form the basis of the level set initialisation later on.

Figure 4.6 shows the rotation and translation of two leaves. The shape template
is rotated using the vein information located by the Hough transform; the mean
line direction, then the shape template is translated to the automated seed centre
points from local normalisation.

(a) Initial shape (red) (b) Rotation (blue) (c) Translation to seed point
of desired leaf (green)

(d) Initial (e) Rotation (f) Translation

Figure 4.6: Two examples displaying the shape template being rotated and
translated using the seed placement and vein structure described above. Left:
The red shape template starts in the middle of the image. Middle: The blue
shape template has been rotated from the red template to the vein orientation of
the leaf. Right: The green shape template has been translated to the leaf. Dot on
the target leaf centre to show where the shape template is being moved to. Arrow
to show the direction the template has been rotated to.

4.1.4 Leaf model up to the shape template placement out-
put: example for one complete image segmentation

At this point the leaf centre point and the leaf veins have been located for the
majority of the leaves. If the leaf is dark or blurry then it might not have been
selected. Then the mean shape has been created, rotated and translated to where
the leaf should be.
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Figure 4.7 displays the outputs for each stage of the leaf model. First the leaf
centre points are detected, then veins on the leaves are located. Both of these
steps are used to place the shape templates over the leaves. The shape templates
are placed over the leaves (Fig. 4.7c), there are overlapping templates which means
there are duplicate seed points.

Template accuracy forms part of the final boundary evaluation in Section 4.3.3.
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(a) The automated leaf centre seed points detected
(green circles).

(b) Veins located on the leaves using the Hough
transform (green lines, crosses represent line termi-
nation points)

(c) The placed shape templates after they have
been translated to the leaf using the centre points
and rotated using the veins.

Figure 4.7: The output from the process of the model. (a) Output from the
automated leaf seed centre points, the green circles represent the points (b) the
lines/veins are found using the Hough transform and finally (c) the shape tem-
plates are placed using these steps to rotate and translate the mean shape tem-
plate. The placed shape templates in (c) are used in the level sets to find the final
leaf segmentations.
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The next step is to incorporate the shape template into a level set approach to
segment the individual leaf boundaries.

4.1.5 Level sets and the shape prior

The Chanvese model, introduced in the literature review (Chapter 2.1.1) is used
because it is good for finding weak edges which is needed when the leaves overlap
and the difference in the pixel intensity is small [27].

One problem associated with the use of level sets, is that it will find any connecting
regions of the image instead of individual leaves. To prevent this there are different
versions of level sets which constrain the contour to a specific area in order to find
the nearest edges/contours. However, the leaf boundary is hard to see with the
human eye therefore additional steps are needed. When the image information
alone cannot find the leaf, then incorporating prior shape information is a possible
solution. This involves creating a shape model that resembles a strawberry leaf
and incorporating it into the level set. The template created in Section 4.1.3 can
be used as a shape prior and incorporated as so:

F (c1, c2, φ, φo) = F (c1, c2, φ) + αshape(φ, φo) (4.1)

F (c1, c2, φ) is Equation 2.10 in Chapter 2.1.1.

shape(φ) =
∫

(φ− φo)2dx (4.2)

Where φo is the shape model, a signed distance function. Equations (4.1) and
(4.2) represent the updated level set to include the shape.

This shape incorporated level set model was developed by Cremers, Sochen and
Schnorr [93]. They use the Mumford Shah model and embed the shape into a
signed distance function. There are two options to incorporate the shape into the
model. The first option is to include the shape into the evolution equation and
the second option is to add the shape energy into the signed distance function.

Here, the shape is included into the functional. Also the shape template is used
with the Chanvese model rather than the Mumford Shah because the leaves overlap
and the level set needs to be sensitive to weaker edges.
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An additional inclusion into the level set approach is the reinitialisation of the
signed distance function to update the model, which allows for customisable pa-
rameters. The customisable parameters would allow the objective to be flexible
and adjusted over time and after iterations with the shape being the primary ob-
jective then the parameters could weaken the shape force and strengthen the edge
forces. This could improve the segmentation of edges rather than being smoothed
from the pull of the sharper shape forces.

4.2 Evaluation and Results

Two stages of the model are evaluated: the leaf centre point placement accuracy
and the final leaf shape segmentation.

4.2.1 Seed centre point location accuracy

The automated seed centre points are used to initially place the leaf shape template
in the same place as the leaf, this is then incorporated into the level set to find
the leaf shape segmentation. The centre points will be measured against ground
truth centre points to determine the accuracy of the automated leaf centre points.

To evaluate the seed point centres a ground truth is needed. The ground truth
was the leaf masks described in Chapter 3, where each pixel representing a leaf on
the plant is labelled from 1 to n. The centre points have been selected by finding
the centre of each binary leaf mask - the average point of the x and y points in the
leaf area. Figure 4.8 displays the ground truth centre point in Plant 12 (BSP14,
plant 12, day 3).
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(a) Binary mask of a leaf from
ground truth (Chapter 3)

(b) Binary mask of a leaf with the
ground truth centre point

(c) Boundary from (a) overlaid on
image

(d) Leaf boundary and ground
truth centre point overlaid on im-
age

Figure 4.8: BSP14 Plant 12 ground truth process for selecting the leaf centre
points.

An example of the ground truth centre points and the automated centre point
locations are compared in Figure 4.9. Panel (c) displays the difference in location
by plotting both of the centre points on the same image where the yellow circles
are the ground truth centre points and the green circles are the automated centre
points. The accuracy is measured by using the Euclidean distance to find the
distance between two points. The results display the average plant accuracy in
pixel units across all leaves as well as the root mean squared error. The results
are in Tables 4.3 and 4.5.
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(a) Ground truth leaf centre points

(b) Automatically detected centre points

(c) Comparison between the ground truth
leaf centre points (yellow) and the auto-
matically located centre points (green).

Figure 4.9: Example comparison between the ground truth centre points and
the seed centre points for BSP14 plant 12. Some leaves have not been detected,
this will be due to the brightness or blurriness of the leaves (out of focus leaves).

Table 4.1 displays placement results for 12 BSP14 plants. Accuracy based on
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distance is calculated in 4.3.2.

• Plant - the plant number
• Number of leaves - the number of leaves that are on each plant - ground

truth (GT)
• Number of seeds - the number of centre points automatically detected (auto

detect)
• False positive seeds (FP seeds) - the automated centre points that missed

the leaves completely
• Duplicate seeds - the number of automated centre points that appear on a

leaf more than once.

Table 4.1: BSP plants seed information

Plant No. of leaves (GT) No. of seeds (auto detect) FP seeds Duplicate seeds
1 21 8 3 0
2 20 10 1 0
3 13 5 1 0
4 16 12 2 0
5 18 5 1 0
6 17 10 1 0
7 23 11 1 0
8 18 7 1 0
9 16 5 2 0
10 22 6 2 0
11 19 8 2 0
12 22 10 1 0

Sonata plants also need to be evaluated because the varieties are visually different
strawberry plants and the overlapping crowded leaves means this data is more
challenging. Note for the plant in Figure 4.10 there are duplicate seed points in a
leaf. An example Sonata plant (Plant 13) is displayed in Figures 4.10a,4.10b and
4.10c. The leaf centre accuracy results are in Table 4.4.
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(a) Ground truth leaf centre points for a
Sonata plant

(b) Automatically detected centre points.
There are some duplicate seeds (¿1 per
leaf).

(c) Comparison between the ground truth
leaf centre points (yellow) and the auto-
matically located centre points (green).

Figure 4.10: Comparison between the ground truth centre points and the seed
centre points for Sonata plant 13. Some leaves have not been detected, this will
be due to the brightness of the leaves. As can be seen from (a), some leaves are
very dark, even by eye.
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Table 4.2 displays the same information as Table 4.1 for the Sonata plants. There
are duplicate seed centre points which means some leaves have more than one seed
per leaf.

Table 4.2: Sonata plants seed information

Plant No. of leaves (GT) No. of seeds (auto detect) FP seeds Duplicate seeds
13 21 12 0 4
14 16 6 1 1
15 21 10 0 1
16 15 10 0 1
17 21 12 0 1
18 17 9 0 0

The duplicate seed points have been removed if two shape templates are in the
same area (by 80 percent or more). The original seed points were selected and
combined by selecting the midpoint. Figures (4.11a to 4.11c) are Plant 13 again
after duplicate seeds have been removed. The duplicate seeds are discussed in the
results Section.
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(a) Ground truth leaf centre points for a
Sonata plant

(b) Automatically detected centre points

(c) Comparison between the ground truth
leaf centre points (yellow) and the auto-
matically located centre points (green).

Figure 4.11: Comparison between the ground truth centre points and the seed
centre points. The duplicate seeds have been removed.
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4.2.2 Automated leaf centre accuracy results

The average accuracy across all leaves on a plant for all of the automated leaf
centre points are listed in Tables 4.3 and 4.5. This discounts missed seeds. There
were no duplicate seeds for BSP14 however there were duplicate seeds for Sonata
and this is in Table 4.4.

Table 4.3: BSP plants seed location evaluation

Plant Average Distance (pixels) RMSE
1 6.021 7.574
2 7.153 11.520
3 3.176 3.589
4 6.150 7.774
5 7.123 9.567
6 4.388 5.206
7 4.153 6.083
8 6.266 11.32
9 4.644 5.066
10 6.519 8.739
11 3.641 4.173
12 4.618 5.254

Table 4.4: Sonata plants seed location evaluation with the duplicate seeds still
included.

Plant Average Distance (pixels) RMSE
13 21.327 30.506
14 26.019 31.248
15 27.465 31.246
16 18.712 22.086
17 23.835 27.779
18 15.506 19.045

The average plant accuracy for BSP14 is less than 8 pixels whereas the average
plant accuracy with no duplicate seeds (from Table 4.2) for Sonata is 15-24 pix-
els from the ground truth centres. Three additional Tables in Appendix A lists
example individual leaves for two plants of each variety to provide examples of
the individual leaf accuracies, the ground truth and automated leaf centre points
as well as the separate x and y deviation from the ground truth centre point.
The Tables include the individual leaf information rather than the average plant
results.
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Table 4.5: Sonata plants seed location evaluation after duplicate seeds were
removed.

Plant Average Distance (pixels) RMSE
13 16.548 19.903
14 19.146 21.779
15 23.519 25.095
16 16.769 19.296
17 20.386 23.210
18 15.506 19.045

The automated seed centre point detection works better for BSP14 than Sonata,
this could be because BSP14 leaves are small, well lit and a similar shape. Sonata
plant leaves are large, at various angles which changes the brightness and the leaf
shape varies. The furthest leaf centre point error was Sonata plant 15 with a
distance of 24 pixels (Table 4.5). An average Sonata leaf is 80 pixels in width and
96 pixels in length, therefore even the furthest centre point of 24 pixels (from the
ground truth centre point) is still inside the leaf and therefore acceptable.

4.2.3 Level set final contour

The initial level set is placed using the leaf model pipeline. First the automated
leaf centre points are located using local normalisation, and then the leaf template
is translated to the centre point, then a few of the veins close to the centre point
are used to rotate the leaf template. The leaf template is then incorporated as the
initial contour for the level set, converted into a signed distance function.

Jaccard and Dice similarity scores are selected to evaluate the final segmented
leaves. This uses two binary images and compares the similarity with a score
between 0 and 1, where scores closer to 1 represents a closer match. If the value
is 1 then both images match exactly, if the value is 0 there is no overlap between
the two images; this is the lowest the value can be, representing the poorest fit.

Jaccard similarity score is the intersection over union:-

J(A,B) = |A ∩B|
|A ∪B|

= |A ∩B|
|A|+ |B| − |A ∩B| (4.3)

Dice similarity score:-
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D(A,B) = 2 ∗ |A ∩B|
|A|+ |B| (4.4)

Dice can also be written in relation to Jaccard (the same applies for the Jaccard
index).

D(A,B) = 2 ∗ Jaccard(A,B)
1 + Jaccard(A,B) (4.5)

Visual inspection

Figures 4.12 to 4.16 show the final leaf segmentation from the level set for several
individual plants. Some leaves are missed from the final segmentation. This
happens in the vein selection process if no lines are found near the centre point,
also the centre point if the leaf is too dark. Referring to Table 4.1 in Section
4.3.1 the number of leaves that the ground truth finds are all of the leaves but the
number of seeds found are a reduced number. Some leaves are missed from the
automated leaf centre point detection if the leaves are very dark Eg. see Figures
4.9 and 4.10. This is not necessarily bad since the poorly lit leaves are usually
near the bottom of the plant, or in a shadow. Therefore, those leaves would not
be good for further analysis. The second place where leaves are removed are when
the veins are not found for the leaf. Without the veins the leaf template would
not be rotated correctly. This happens when the lines from the veins can not be
detected due to noise or low resolution of the image. The leaves are rejected if no
veins are located within the centred shape template.

The final resulting leaf segmentations generally segment the leaves well, however
in some places where the leaves overlap and there is only a small difference in
intensity between the leaves the segmentation misses the leaf boundary. Figure
4.13 displays a leaf where the segmentation has increased passed the leaf to locate
a small section of the leaf below.
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Figure 4.12: BSP14 plant 8 with the segmented leaves displayed in green

Figure 4.13: BSP14 plant 7 with the segmented leaves displayed in green. The
bottom middle leaf (fourth leaf from the left) displays where the segmentation has
over segmented because the difference in pixel intensity is small between the two
leaves.

Figure 4.14: BSP14 plant 5 with the segmented leaves displayed in green
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Figure 4.15: BSP14 plant 6 with the segmented leaves displayed in green

Figure 4.16: Sonata plant 6 with the segmented leaves displayed in green

Visual inspection summary

Poorly lit and occulded leaves are not detected by the pipeline at all. This is a
positive result for this work because these leaves would not be good to analyse in
Chapter 6.

The boundaries are a generally good fit, they will be measured in the next Section.

4.2.4 Leaf segmentation accuracy results

Table 4.6 displays the results for the leaf segmentation accuracy for boundaries
which remain at the end of the pipeline. The plant overall accuracy average is the
average of the metrics across all selected leaves on the plant. The segmentation
accuracy for BSP14 is better than Sonata. The BSP14 leaves are small and have
an easier shape. The leaves tend to be isolated without overlapping leaves, or
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touching leaves. Sonata tend to be large leaves grouped together with overlapping
and touching leaves and have a more complex shape. The averages from the
Jaccard and Dice scores have also been included for an overall comparison.

Table 4.6: Leaf segmentation evaluation

Plant Jaccard (0-1) Dice (0-1)

4 0.862 0.922
5 0.901 0.947
6 0.904 0.949
7 0.900 0.947
8 0.916 0.956
10 0.843 0.912
11 0.855 0.921
12 0.887 0.939

BSP14 average 0.883 0.937

13 0.564 0.708
14 0.688 0.797
15 0.629 0.768
16 0.624 0.765
17 0.757 0.858
18 0.810 0.895

Sonata average 0.679 0.799

The results show that BSP14 plants on average have an 0.88 accuracy and the
Sonata plants have a 0.67 accuracy calculated using the Jaccard score. The missing
leaves were eliminated earlier on from the automated leaf centre detection or
the vein location Sections of the pipeline. This is a beneficial result because
the ultimate aim is to automatically select the best leaves for further analysis in
Chapter 6. Bright pixels generally indicate that the leaf is well lit and near the
light source which would imply the leaf is near the top of the plant. Therefore if
the leaf model does not segment all of the leaves due to poor appearance of the
leaf, occlusion, etc, this simply filters the available leaf set appropriately earlier
on in the process: We would not want to select these leaves for analysis anyway.

The algorithm is not evaluated for the missed leaves, this is not a problem for this
case but if the purpose is to segment all of the leaves then the number of leaves
missed can be counted from the ground truth and the final segmented leaves.
There is ground truth for all of the leaves on the plants and this could determine
on a plant level the accuracy for the amount of segmented plant compared to the
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ground truth.

4.3 Conclusion

This Chapter focused on building an automated pipeline for segmenting the leaves
in a plant. The centre of the leaves are automatically detected and the veins of the
leaves are located. These two steps are used to place and align a shape template
in the general area of the leaf, then this is incorporated into the level set to
find the final leaf boundary/segmentation. Final boundaries and accuracies are
encouraging, and poor visible leaves are rejected at various stages in the pipeline.

This pipeline and evaluation used the drought hyperspectral dataset; BSP14 and
Sonata plants. This is using the image information in 2D, while this worked well
to segment individual leaves the images are hyperspectral data and the plant is
imaged in the pot, imaging the plant instead of flat leaves might have an affect on
the data. This will be explored in Chapter 5 along with possible solutions if 3D
has an affect from imaging plants in the pots (or natural environment).
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Chapter 5

3D plant reconstruction and data
mapping

5.1 Introduction

Capturing close up images of the plants allows for higher quality data and more
subtle changes to be detected, whether that is in the lab, in glasshouses or the
field [94]. For hyperspectral imaging the material being imaged for studies is
usually flattened onto a surface so the effects of 3D structure are removed - this
is not feasible for imaging at high throughput quantities, also it may damage the
plant, and it is unnatural. But hyperspectral imaging of 3D objects brings its own
challenges. In recent studies it has been demonstrated that the inclinations of the
leaves can affect the spectral signatures, and accounting for it can improve the
classification accuracy of detecting diseases [10].

There has been a recent review on imaging plants, and in particular the effects
of imaging plants in situ [95]. Imaging the plants in 3D rather than flattening
the leaf to a 2D surface leads to leaves presenting at different angles and heights.
This can change the reflectance [96]. On a slightly larger scale, vertical canopies
were imaged to see if there was a difference in the leaf spectral signatures between
the upper, middle and lower canopies. There was found to be a difference in
several sections of the spectrum range (400-2200nm) [97]. Another study found a
difference when the position of the leaves changed, relative to the lighting and the
camera. In this case only specific hyperspectral wavelengths were affected [98].

Also, overlapping leaves would mean some leaves are in a shadow, which can also
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affect the spectral signatures [99]. These are challenges that will need to be taken
into consideration when imaging whole plants in situ if good quality hyperspectral
measures are desired.

During this project the plants are imaged in pots. This then includes the problem
of imaging the plant with leaves at angles and different heights from the camera
(See Fig 5.1). Objects in a shadow are known to have an altered spectral signature
compared to the same object that is not covered [99]. If the leaf is in the shadow
of another leaf then this could affect whether the plant is considered healthy
or diseased. One solution is to disregard occluded and shaded leaves by using
approximate depth information to find the height of the plant and individual
leaves. A second solution is to measure the brightness of leaves, and have a
threshold value which if the pixels’ brightness decreases lower than this value the
leaves are removed from the analysis. This would need to be a variable threshold
for each hyperspectral data set because the height of the leaves and the white
balance calibration could change between the plants. A third option is to create
an accurate 3D model of the plants to determine the location and position of
leaves, and account for 3D variability when using hyperspectral data for analysis.
This is the approach ultimately developed in this Chapter.
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Figure 5.1: A plant in the hyperspectral camera setup. The leaves are at different
positions relative to the camera. Flattening leaves is not possible; and this may
additionally stress the plant.

The first Section of this Chapter looks at methods that can be used to find 3D
information from the hyperspectral data. The hyperspectral data was captured
from a top down view of the plant and a pair of hyperspectral images were captured
for each plant with a 10cm offset between the two scans. At the same time 3-10
images were captured with a SLR camera from the side of the plant. This data
would allow for either stereo pairs or multi-view 3D reconstruction methods to be
used, and both are investigated here.

This leads on to the second Section which focuses on mapping the hyperspectral
data onto 3D surface models. By the end of the Chapter, an approach will produce
3D hyperspectral plant models which can be used to find leaf location and geom-
etry information, and provide criteria to help select the best leaves for analysis -
this is then considered in Chapter 6.
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5.2 Imaging plants in situ and the 3D effects on
spectral signatures

Imaging plants close up and in situ involves lighting effects, shadows and leaves
at different angles. The lights for the hyperspectral imaging setup in Nottingham
were attached to a metal frame and pointing towards the center where the plants
were located. If the plant was large then the light decreases significantly near the
edge of the plant, and if the plant was small the light covers the plant in a more
uniform fashion. The best light coverage was in the middle of the image. The
upper leaves cast shadows on the lower leaves because the lights were next to the
camera and oriented down. Therefore, the top leaves of the plant would be well-lit,
but lower leaves might have shadows or be partially obscured from the camera.
Finally, as literature shows, the leaf angles can affect the spectral signatures.

There have been studies that have looked at the leaf geometry to see how it can
change the spectral signatures of the leaves (described in the introduction). Also
an example is now presented to see whether the 3D properties should be further
explored in the rest of the thesis.

5.2.1 An example of the leaf orientation influencing the
spectral signature

Figure 5.4 displays the spectral signatures of leaves at different angles relative to
the camera.

Figure 5.2a is a top down view of the plant; a lot of the leaves appear relatively
flat. However they have varying degrees of inclines from the camera plane. Figure
5.2b is a corresponding image with labelled leaves (manually annotated ground
truth). Leaves 17,18 and 19 spectral signatures have also been plotted. Leaf 17
has an extreme inclination towards the camera. The reflectance profile for leaf 17
is different to versus other profiles - it is increased in the blue and red wavelengths
of the visible light (400-500nm and 570-680nm) while decreasing lower than leaf
19 in the green wavelengths (500-570nm) and both profiles in the near-infrared
wavelengths (700-900nm). Therefore, even angle alone can be demonstrated to
have an effect on reflectance information.
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(a) Hyperspectral image - displayed as a
grayscale image.

(b) Labelled data - ground truth.

Figure 5.2: Hyperspectral data and labelled leaf numbers.
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(a) Side SLR view of the same plant as in
Fig. 5.2.

(b) SLR image with leaf numbers that cor-
respond to the leaf numbers in 5.2b.

Figure 5.3: Two images captured from the side of the plant from Figure 5.2.(a)
is a side view image of the plant. (b) a similar side view image with numbers that
correspond to the leaf ground truth 5.2b. The leaves are at different angles to
the camera (top down view) however, the leaves in the hyperspectral image alone
(5.2a) appear flat and it is hard to tell the leaf shape from this data alone. Leaves
18 and 19 have a consistent sloping angle however leaf 17 has a much steeper angle
to the camera.
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Figure 5.4: Graph of hyperspectral data from three leaves. Leaf 17 is at a steep
incline. The profile for leaf 17 is different compared to leaves 18 and 19. The
reflectance has decreased in the green and near-infrared ranges and increased in
the blue and red wavelengths.

5.3 Overview of 3D reconstruction

There are many existing methods that can produce a 3D model of plants. [100]
explores the different broad approaches for 3D reconstruction of plants. There
are two main categories: Rule-based methods and image-based methods. The
rule-based method incorporates user defined rules to generate example 3D models.
These are synthetic plant structures developed via a modelling process, and do not
capture the detailed structure of real plants. This method is good to visualise and
research how the plants respond to environmental changes. The second category
is that of image-based methods which incorporate computer vision techniques and
extract the geometric information from the plant data collected to reconstruct
accurate 3D models.

Image-based methods can themselves be split into two groups: active and passive.
Both methods require hardware. Active approaches use controlled light. Passive
approaches only require a camera that captures overlapping images of the plant.
The passive image based method is more accessible and the option that is going
to be discussed in more detail here.

There are several approaches that use different properties of the images; Shape
from silhouette [101] views the silhouettes from the camera’s viewpoints to build
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the 3D model. Space carving [102] involves a bounding box of the object which
is separated into groups of voxels, and if the voxels are consistent between the
images then the voxels are included in the final model.

Binocular stereo vision captures two images on the same plane focused on the
object with an offset between the left and right image. Then the depth map can
be created by matching the features (edges, lines, pixel intensities) in the two
images, measure the distance and the distance values can create a disparity map.
This is based on human vision, where the eyes view two different viewpoints with
a small offset. A close by object has a bigger difference between the left and right
eye compared to a far away object where the difference can be hard to notice
because the difference is small.

First the cameras must be calibrated, this is finding the distance between the
two cameras and the rotation angle between the cameras pointing at the object.
The rotation matrix and translation vector need to be found. Then the images
need to be aligned to account for the different viewpoints and distance from the
object, this aligns the two images horizontally. The final step is stereo matching,
this can use local or global methods. Local methods use block matching, feature
matching, etc whereas global methods use intrinsic curves, graph cuts, etc [103].
Local methods can mismatch if the images are noisy/low resolution, while global
methods have a longer computation time.

Multi view stereo extends to multiple images, captured at different view points
of the object to build a precise 3D reconstruction model. Structure from motion
(SFM) estimates the images location and the camera parameters by matching the
features across images and locate where the cameras are in relation to the matched
features [104]; the overview is: Detect 2D features in every image; these could be
edges, points, lines, regions and they could be detected using Surf [105] or Scale
invarient feature transform [106] as two examples. SIFT extracts features and
identifies them with a unique feature description so they can be found regardless of
scale or illumination, then the Euclidean distance can be used to find the similarity
between the features [107]. The matched features, correspondence points, can be
used to calculate where the cameras are by using the features to project tracks to
the same point in space (3D). The more features that match and the more images
that are included adjusts the cameras to have a more accurate position for each
camera and builds up a point cloud in 3D.

Multiview uses the camera parameters and adjusted image locations to project
matched features (correspondance points mentioned previously) and where the
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two projections interesct this should be the 3D point [108].

5.4 Stereo pair hyperspectral data

Stereo pair hyperspectral data was collected for the drought experiment. After
the first hyperspectral image was captured the camera was moved 10cm to the
right and imaged again (the camera specifications are listed in Chapter 3).

A pair of images were then captured to create a depth map. All of the plants
for drought were imaged twice to capture the stereo pair data. Here Sonata and
BSP14 are again considered; this includes 18 plants.

The hyperspectral pairs were captured at the same x start and end positions,
with the y start position moved by 10cm for the second image; therefore the
corresponding pixels between the images should be on the same row, within a
tolerance. The hyperspectral image pair are reduced to a grayscale image pair at
750nm to make it easier to match small pixel blocks between the images.

For each block (9x9pixels) in the left image the sum of absolute differences (SAD)
is calculated between the block and pixel blocks along the same row of the right
image. The block with the smallest SAD is selected as the the correct matching
blocks and the distance between the two blocks is the disparity value. Repeat-
ing this process for all the blocks in the left image results in a disparity matrix
(disparity map) where the lowest value is the closest point to the camera and the
highest value is the furthest point away from the camera [109].

Figure 5.5 has an RGB image of the plant to visualise the plant and the disparity
map where the light grey pixels are higher on the plant (closer to the camera)
than the dark grey pixels.
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(a) Colour image of BSP14 - control plant 12 to visualise the
plant

(b) Disparity map of the whole image.

Figure 5.5: Comparison of the colour image and the disparity (depth) map. (a)
is the RGB images created from the hyperspectral data and (b) is the disparity
map (displayed as a colourmap for clarity). The disparity map is quite noisy
however there is a slight difference in areas of the plant image which in general is
indicating the distance of the leaves from the sensor.

hyperspectral data is too low resolution to enable a good correspondence to be
calculated.
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5.5 3D reconstruction and mapping hyperspec-
tral data to the 3D model

This Chapter so far has looked at the effects of imaging plants in situ and how
the leaf angles can change the hyperspectral reflectance profiles. A previous study
showed that shadows can also influence the profiles [99]. With the leaf angles,
shadows and lighting all influencing the hyperspectral data this needs to be taken
into consideration. Therefore, at least the leaf angles and height need to be cal-
culated in order to discount leaves that may lead to poor measurements. Stereo
methods solely using the hyperspectral camera could not determine the leaf angle
or the height. Therefore full 3D plant models will be needed and the hyperspectral
data will need to be mapped to the 3D model.

The plan is to have hyperspectral data registered onto a 3D model of the plant
in order to obtain the orientation, angle and location of the leaves. Multi-view
images were captured at the same time as the hyperspectral data, this means
a model can be built using a multi-view stereo reconstruction method and the
hyperspectral data later mapped on. There are a few methods currently available
for 3D reconstruction that use multiple views discussed at the beginning of the
Chapter. Patch-based multi view stereo approaches are an option that are used
to produce a point cloud in 3D space.

The pipeline is outlined in Figure 5.6. First the plants are reconstructed using the
3-10 SLR side view colour images captured at the same time as the hyperspectral
data. The method used is PMVS which is a multi-view stereo method and this
creates a dense point cloud of the plant. Then the surface reconstruction software
is used to create a 3D model for the plant. This is a colourless surface model with
vertices and faces. The third step involves projecting the 3D model to 2D and
finally the fourth step is to register the hyperspectral image to the top down view
of the 3D model followed by mapping the hyperspectral data onto the 3D model.
These patches with mapped hyperspectral data are referred to as hyperpatches.
A flow-chart detailing their creation is shown Figure 5.6.
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Figure 5.6: Pipeline for the 3D reconstruction, hyperspectral data mapping and
hyperpatches.
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5.5.1 Patch based multi view stereo software

First of all, to use Patch based multi view stereo software (PMVS) the camera
parameters need to be known [110]. To do this VisualSFM can be used to find the
camera parameters using structure from motion (SFM) [111] [112]. The same basic
principles are used as for stereo vision. This process matches up corresponding
features in the images to locate the camera positions. The features used are Harris
and Difference-of-Gaussian operators which detect corners and blobs. Once the
features are matched the patches are tested for photo consistency using normalised
cross correlation - checking the consistency of the colour in the voxels/patches.

PMVS takes the RGB SLR images (Fig. 5.7) and camera parameters as inputs
to build a 3D point cloud where the colour information can be included on the
points. The output is a noisy point cloud which contains patches of the 3D model
of the plant. However at this point the model has large sections missing, especially
from a view point not included in the original images (See Figure (5.8).

Figure 5.7: Original images used for PMVS and surface reconstruction. These
are SLR colour images captured from the side of the plant. 3-10 images were cap-
tured for each plant and at each imaging session for the drought dataset captured
in Nottingham.
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Figure 5.8: Patch based 3D reconstruction including the colour texture. Left:
Side view of the model where most of the images were captured from. Right: Top
down view displaying gaps where no features were detected due to occlusion and
view restriction.

5.5.2 Surface reconstruction

Next surface reconstruction software is used. This software was created for the
reconstruction of plant shoots [113]. The surface reconstruction software takes the
images, the dense point cloud from PMVS and camera parameters as inputs to
reconstruct a 3D surface model.

The software uses the output from PMVS, and the dense point cloud, and rep-
resents the surfaces of the plant as small patches. The patches are placed using
the PMVS output then they are adjusted using level sets to connect and align
neighbouring surfaces. The patches themselves consist of a group of triangles
(faces) and each triangle (face) contains three vertices (x1,y1,z1), (x2,y2,z2) and
(x3,y3,z3). There can still be spaces in between patches due to the parameter
settings of the software if not enough images were captured; this is not a problem
for this application.

Figure 5.9 shows the result of the surface reconstruction software on one plant.
The surfaces resemble the plant; however there is no longer colour information on
the model at this stage.
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Figure 5.9: Surface reconstruction has created patches that has improved the
leaves where information was missing. It also smooths the patches, however the
colour and texture is missing from the original images.

5.5.3 Registering the hyperspectral data

The hyperspectral data is captured via one top down view of the plant, and from
the 3D reconstruction there is now a corresponding 3D surface model of the same
plant as is the hyperspectral image. The hyperspectral data and the 3D model
were captured and created using different sensors and at different heights and
angles. Therefore they will need to be aligned as part of a registration process
before mapping of hyperspectral data onto the 3D model can occur.

Registration in 2D

The registration process here is in two parts; the gross orientation of the 3D model
(to find the top down view that the hyperspectral images were captured at), and
the fine tuning registration.

Gross orientation - global registration

The hyperspectral data is a top down view of the plant in 2D. The first step of the
registration is to find the view that best matches the 2D hyperspectral data by
rotating the 3D model and projecting the view to a 2D plane. The initial top down
view (orientation) has been manually selected because the camera setup is known
therefore the known geometry can give an approximate initial alignment. Once
the orientation was found for one plant it worked for the whole dataset. Once the
general orientation was selected it could be used for the whole dataset therefore
the manual selection has been applied using the known geometry for this part.

Fine tuning - local registration
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The 2D view of the 3D model that best matches the hyperspectral image is selected
and projected, in the case of this dataset the camera is on the x,z axis with the
camera facing along the y axis. The hyperspectral image is scaled to be a similar
size as the projected view by locating the furthest x and y pixels on the plant
and the projected model (x and z) and then scale up the image by the distance
between the points. An automated registration process then uses a grayscale 2D
projection of the model and a grayscale image of the hyperspectral data.

The projected model and greyscale (hyperspectral) image are different, the model
has no texture and the general shape of the leaf edges will appear but there might
be gaps where the patches join. The hyperspectral image is low resolution and
noisy. There are images that are similar but have been captured using different
imaging systems or from different time points, images can change over a time
series or between the imaging devices however the images need to be compared and
one popular metthod used for medical image registration is mutual information.
This is when features need to be matched between the images but the features
have changed slightly, therefore the statistical information is compared to find the
closest match [114]. The greyscale hyperspectral image is translated and rotated
until the mutual information is maximised between the projected 2D model and
the hyperspectral image.

The 2D registration results are displayed in Figures 5.10 and 5.11. These figures
show the two error modes of registration.

Figure 5.10 shows the missing 3D surface data. The images used to create the 3D
model are at a restricted side view angle and with a limited number of images. At
the time of collecting the images it was not known that the images would be used
for 3D reconstruction. They were collected knowing 3D information was needed
and multi-view reconstruction is possible with a limited number of images. It
was also hard to capture images directly over head when the plants were in the
camera setup and it was best to maintain the plants position for the hyperspectral
images and the SLR images. This is why some of the 3D model is missing when
the plant model is viewed from the point of view of the hyperspectral camera
(directly above), and could be improved by collecting more images next time.

Figure (5.11) displays the hyperspectral data in grey pixels on the 2D version of
the plant model. The white sections are missing hyperspectral data. There are a
few possible reasons why the hyperspectral data is missing. 1) misregistration: a)
the 2D projection of the 3D model is not exactly aligned with the y axis. b) the
translation is slightly wrong. 2)extra triangles/patches reconstructed on the 3D
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model or noise.

Figure 5.10: 2D registration - The grey pixels are the 2D hyperspectral image
(displayed at 600nm) and the green pixels represent missing 3D model for the top
down orientation. 2D hyperspectral data exists but no 3D surface model exists.
The 3D sections (on the 2D projection) are missing because the 3D reconstruction
only had images from the side of the plant and this is the top down view of the
plant that the hyperspectral images were captured at.

Figure 5.11: The grey pixels are hyperspectral data and the pink pixels represent
missing hyperspectral data there is a 3D surface model (on 2D projection) but no
hyperspectral data (that could be mapped onto the 3D surface model).
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5.5.4 Mapping hyperspectral data onto the 3D surface model

The next step is to map the hyperspectral data onto the 3D model. The model is at
this point a collection of patches representing leaves and within the patches are a
collection of triangles. The triangles in the 3D model are randomly allocated RGB
values as ID numbers which are unique (Figure 5.12); the RGB combinations are
compared and any repeating combinations are replaced until the list is unique. The
2D top-down projection of the 3D model has been registered with the hyperspectral
data. Therefore, the hyperspectral image (x,y) is aligned with the 3D model (x,z).
Then for each triangle of the 3D model from the top down view the registered
hyperspectral data is selected. One triangle does not directly equal one pixel
from the hyperspectral image. Sometimes for one triangle there will be several
2D hyperspectral pixels, and the average pixel value for the triangle is calculated
and mapped onto the model. If the triangles are smaller than the size of the
hyperspectral pixel then the pixel is mapped onto the set of triangles that are
within the pixel area. Finally, there will be random triangles that do not have
hyperspectral data for a few possible reasons: the top down view obscures the leaf
underneath, misregistration, missing hyperspectral data due to the leaf being cut
off in the image (this is displayed in pink in the following Figures).

The hyperspectral data mapped to the corresponding location on the 3D model
can be visualised (Figure 5.13). There are a few problems with the current process.
If the registration is slightly misaligned then the 2D leaves will be mapped onto
the wrong 3D leaf. Figure 5.16 displays the individual leaves mapped onto the
model; the bright green is partially projected onto the leaf below, which should
be labelled as missing data. Also, the red sections show patches that due to the
angle of the leaves mean they are not presented in the top down view.
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Figure 5.12: The 2D top down view of the 3D model, showing unique ID values
for triangles respresented at RGB colours.
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(a) Top leaf of BSP14 plant 11
from the 3D model with the random
colour triangles.

(b) A leaf from BSP14 plant 11.
The hyperspectral data is mapped
onto the 3D model (dark grey) and
the pink is the missed hyperspectral
data where a model exists but the
data does not.

(c) A grayscale image of the same leaf
from the hyperspectral image.

(d) The same leaf from the slr
colour image.

Figure 5.13: A leaf from BSP14 plant 11 to display what the leaf looks like in
different modalities. (a) 3D model of the leaf with the random triangles. (b) the
same model leaf with mapped hyperspectral data (displayed using one wavelength)
(c) The corresponding leaf taken from the hyperspectral image and displayed as
a grayscale image. (c) the same leaf again taken from a colour image.
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(a) A second leaf on BSP14 plant
11. This is a leaf from the 3D model.

(b) A second leaf from BSP14
plant 11. This is the hyperspectral
data mapped onto the leaf (dark
grey) and the pink is where the
hyperspectral data could not be
mapped (the missed data from the
2D registration).

(c) The same leaf from the hyperspec-
tral image.

(d) Corresponding leaf taken from a RGB
SLR image.

Figure 5.14: A second leaf from BSP14 plant 11. The 3D model leaf, the mapped
hyperspectral data, the grayscale hyperspectral leaf and the colour leaf images are
displayed together.

The hyperspectral data (Fig. 5.15b) and the 2D ground truth, also called leaf IDs
(Fig. 5.15a), are mapped on to the 3D model. The hyperspectral data is mapped
to obtain 3D hyperspectral data and the leaf IDs are mapped to know where the
hyperspectral data is mapped onto the 3D model. The leaf IDs are also easier to
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visualise, and check if the mapping worked. This is used to evaluate how much of
each hyperspectral leaf data is mapped onto the correct leaves in the 3D model.

The leaf IDs and the hyperspectral data have been mapped onto the 3D model and
can be visualised in Figures 5.16 and 5.17. The leaf ID colours from the ground
truth Figure (5.15a) correspond to the leaf colours in the 3D model (Figs. 5.16 ,
5.17). The hyperspectral data is harder to interpret but the hyperspectral leaf data
and the leaf IDs originate from the same 2D image, therefore the leaf ID model is a
good visual indicator to investigate what is happening. The pink sections are also
mapped from the registration process. These sections are where the hyperspectral
data was missing from the top down view of the 3D model. The red sections are
where the hyperspectral data was missing because the hyperspectral images were
captured from above the plant and the leaves below would be occluded or leaves
at a steep angle would miss some of the hyperspectral data being mapped onto
the model. The red sections are more prominent in the side view of the 3D model
(Fig. 5.16) than the top down view (Fig. 5.17) where the red sections should be
minimal.

(a) (b)

Figure 5.15: (a) The labelled ground truth image displayed as a colour map to
visualise the different leaves. (b)The 2D top down view of the hyperspectral data
displayed as a grayscale image
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Figure 5.16: Side view of the 3D model. Left: individual leaf IDs mapped onto
the 3D model. Right: hyperspectral data (600nm) mapped to the model. The
pink highlights where the hyperspectral data is missed from the model. The red
is missed due to the angle of the leaves causing problems for the top down view

Figure 5.17: Top down view of the 3D model. Left: individual leaf colours
mapped onto the model (same colours as Fig. 4). Right: the mapped hyperspec-
tral data (600nm). As before the pink highlights where the hyperspectral data is
missed from the model. The red is missed due to the angle of the leaves causing
problems for the top down view.

At this stage, then, there exists a pipeline for registering hyperspectral data onto
a 3D model. The 3D model has been constructed from multiple side view images.
However, the hyperspectral image is a single, top down view. This means there
are inevitably small sections of the model missing, and conversely hyperspectral
data is missing from lower leaves and leaves that were at an acute angle to the
camera.

This process only uses 1 hyperspectral top down view of the plant and 3-10 digital
SLR images of the plant from different angles. The processing time per plant is
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35 minutes: 5 minutes for PMVS, 25 minutes for surface reconstruction and 5
minutes for the registration.

At this point the hyperspectral data is mapped onto the 3D model per triangle but
the patch information that was created in the surface reconstruction software has
been lost. The only information retained for the 3D models is the list of triangle
vertices and faces.

5.6 Manual creation of 3D ground truth

To evaluate the registration of the hyperspectral data on the 3D model there needs
to be ground truth data for the 3D model. To create this, the leaves are manually
labelled using different colours in Meshlab [115], then the faces, vertices and colour
information are saved in the 3D model. The ground truth data was created for
the Sonata and BSP14 plants for day 3 and 4. BSP14 plant 3 and 9 could not be
reconstructed and therefore there is no ground truth or analysis for these plants.

An example of the manual selection process is shown in Figure 5.20. Where Figure
5.18 displays two different views of the plant, then Figure 5.19 is the point cloud
produced. However Figure 5.20 is the surface reconstruction where all colour is
removed and the only information left is the patches in 3D. A few leaves have been
coloured however in the lower right section the blue and purple leaves overlap and
the patches do not exactly follow the leaf edges.
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(a) Point of view of BSP14 plant 11.

(b) Second point of view of BSP14 plant 11

Figure 5.18: Two views of BSP14 plant 11. The images were captured using a
D-SLR camera just before the hyperspectral imaging occured.

Figure 5.19: Point cloud of BSP14 plant 11 to display the colour and details of
the plant for a comparison when labelling the 3D model.
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Figure 5.20: BSP14 Plant 11. A few leaves have been manually selected and
display the ground truth for the leaf using colour.

Just for display here two plants have been manually selected for the ground truth
(BSP14 Plants 11 and 12). The three Figures (5.21 - 5.23) display different view
points of the 3D model for plant 12. White is the colour when the patches have
not been assigned to a leaf, this will contain the stem, stolon, noise and any leaves
or patches that were hard to determine if they belonged to a leaf.

Figure 5.21: BSP14 plant 12 view 1. This is a top down view of the plant, the
same view point that the hyperspectral images were captured.
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Figure 5.22: BSP14 plant 12 view 2. This is a side view of the plant, the view
point where some SLR images were captured from that were used to create the
3D model.

Figure 5.23: BSP14 plant 12 view 3. This is view in between the top down and
the side views.

5.7 Results and comparison of the ground truth
and mapped data

The mapped hyperspectral data (equivalently, the leaf IDs) are compared with
the 3D manually labelled ground truth data to look at the quality of the mapping
from the 2D source image to the 3D model. Figure 5.24 displays the ground truth
and mapped leaf IDs for BSP14 plant 12. The colours from the ground truth and
mapped leaf IDs are not the same. The data is being mapped to the triangles,
not the patches, in this Section.
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(a) Annotated 3D model of Plant 12 (Ground truth)

(b) Mapped model of Plant 12, pink is the sections where there is no
hyperspectral data mapped onto the 3D model.

Figure 5.24: The ground truth model and mapped model in 3D, from a top
down view of the plant.
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Due to the process of mapping the data to the 3D model the upper most visible
leaves are mapped, and any hidden lower leaves will of course be missed. The
hyperspectral data is captured from a top down view of the plant which means
the leaf data underneath the top leaves is missed. However because there is likely
high quality hyperspectral data for the top layer leaves it doesn’t matter if lower
levels are missed in the model.

Figure 5.25 displays the effect of two overlapping leaves: (a, c) are the ground
truth leaves and (b, d) are the mapped leaf IDs. This displays the top down view
of the 3D model and leaves 9 and 15 appear fine (b, d) compared to the side view.
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(a) Plant 12 leaf 9 ground truth data (b) Plant 12 leaf 9 mapped leaf IDs

(c) Plant 12 leaf 15 ground truth data (d) Plant 12 leaf 15 mapped leaf IDs

Figure 5.25: BSP14 Plant 12 leaves 9 and 15 comparison. Leaf 9 is overlapping
leaf 15, and from the top down view this looks as though it is not a problem
however from a side view the leaf ID is not mapped that well due to occlusion.
This can be viewed more clearly in the side view in Figure 5.26.

A side view reveals both missed data and misregistration (see Figure 5.26b). Leaf
15 is shown in green and pink is the known missed hyperspectral data. However
there is a section of brown from leaf 9 visible on leaf 15, this would count as

119



Chapter 5. 3D plant reconstruction and data mapping 120

mislabelled.

(a) Plant 12 leaf 15 gt side view.

(b) Plant 12 leaf 15 map side view.

Figure 5.26: BSP14 Plant 12 leaf 15 side view comparison. (a) is the ground
truth labelled data and (b) is the mapped leaf ID data. The mapped data (green)
has a few mislabelled faces. This is a restricted viewpoint for the hyperspectral
data and some of the leaf was not visible from the top down view. Therefore only
approx half of the leaf is correctly labelled. Pink is the missed hyperspectral data
and brown is the ID for leaf 9 which is mislabelled.
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5.8 Hyperpatches

The Figures above have had data mapped on a per-triangle rather than per-patch
basis. For plant 12, as an example, there are 71k vertices and 90k triangle faces.
Also contained in the data there is patch information describing how groups of
triangles are collected together for each small patch surface. The surface recon-
struction software [113] originally collected vertices into patches however only the
vertices and faces data structure was passed through to the 3D model, the patch
information has been lost. Developed here is a method to find the patches again
by calculating the normals for the triangles. The vertices are in order for the
patch information from the surface reconstruction software. This is helpful be-
cause it means the patches can be easily selected from the vertices by looking for
the change between normals.

The process for reforming patches is as follows:

1. Calculate the normals for the vertices

2. Iterate through the vertices in order (extracted from the surface reconstruc-
tion software)

3. When the normals change between two vertices save that group of vertices
as one patch

4. Repeat the process until all the vertices have been grouped together into
patches.

An example of the patches is displayed in Figure 5.27b.
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(a) The triangles are assigned a unique random
colour.

(b) Patches created by combining triangles with the
same vertices normals. Random individual colours
display the patches. There are small patches com-
bined together where the patches have shared the
same normals therefore they were grouped as one
patch. The original surface reconstruction software
did not group these together.

Figure 5.27: The triangles and patches displayed together to see the difference
in detail and complexity. There are 71k triangles and 312 patches.
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A problem with the patches method for grouping the triangles is that if the tri-
angles have matching normals and as long as they follow in the vertices list then
they will be combined into one patch. This is a clustering type approach and using
the above method means 2-3 patches might be combined. As long as the patches
are a part of the same leaf then it is not a problem. Figure 5.27b on a lower leaf
displays a long patch of light green colour; this is an example of multiple small
patches being combined by using this process.

For many faces in practice the algorithm to group the vertices together using
the normals will work. However when patch (i) and patch (i+1) have the same
normals but they are on seperate leaves they will be mis-classified as the same
patch. This results in certain patches being misclassified, displayed in Figure 5.28
(black circles), and a specific example of the problem is shown in Figure 5.29.

Figure 5.28: Initial face to patch selection. There are patches with the wrong
leaf ID, a few of the patches have a black circle to highlight that the patches are
wrong.
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Figure 5.29: Two patches selected (brown and yellow) however the brown patch
is over two leaves. Displayed with a light blue background to clearly see the two
patches.

One solution to this erroneous grouping across leaves is to take into account extra
information known about the model. In this case a distance criteria has been
applied. For each patch, the distance of the vertices are measured and if the
distance in any direction exceeds a limit then the patch is subdivided. This works
for this data, but is sensitive to the distance limit which would most likely need to
be amended for significantly different plant datasets. Figure 5.30 is the resulting
model after the patch corrections were applied.
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Figure 5.30: The patches after accounting for the distance as well as the normals.
The leaf IDs are mapped to the patches.

5.8.1 Evaluation of mapping accuracy of the 3D model

For each plant that has mapped hyperspectral data to the patches there is now
a manually created 3D ground truth plant (see Section 5.5) where the leaves
are labelled from 1 to N (number of leaves). The mapped leaf (leaf ID) is here
compared to the corresponding 3D ground truth leaf ID and the number of faces
that are correctly mapped onto the leaves are counted.

The manual ground truth accounts for the majority of the leaves on the plant. For
BSP14, a few leaves in the middle of the plant were hard to visually determine,
therefore they were discounted, and for Sonata two plants were very hard to create
ground truth for therefore only a few leaves from those plants can be compared.
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Procedure

Locating the leaves in 3D on a grey surface model can be hard because the central
section of the plant or dense leaves appear as lots of patches with only the shape
to indicate if it is a leaf.

For each leaf on the ground truth model the corresponding leaf from the mapped
model was located. The leaf ID was counted as the correct leaf and anything
else was considered incorrect (this includes the faces where no hyperspectral data
existed in the first place).

Each Mapped leaf ID plant has between 10 and 40 leaves and as long as there was
ground truth for the leaf then it was included in the evaluation. The evaluation is
an accuracy score from 0 to 1, where 0 is completely incorrect and 1 is a perfect
match between the ground truth and the mapped data for each leaf. The data is
mapped to patches; where each patch contains a group of triangles that collectively
forms the plant model. The number of patches that match are counted and then
divided by the total number of patches representing the leaf. Table (5.1) shows
some selected leaf data of the plants as an illustration. Two plants from each
variety were selected and then individual leaves were selected to represent the
minimum, maximum and mean accuracy leaves. This allows for an overview of
the data from each variety across a drought and control set from day 3 (Table
5.1). For the BSP14 plants the mean leaf accuracies range from 73% to 80% while
there is a slightly wider range for the mean leaf accuracies Sonata plants (61% to
86%), However the range of the leaf accuracies for both varieties are similar (48%
to 65% spread).

Table 5.1: Statistics of accuracy scores (0-1) of correctly mapped patches per
leaf compared to the ground truth from four selected plants. The table displays
the differences between Sonata and BSP14. Top two rows are BSP14 plants and
bottom two rows are Sonata plants. Plants 4 and 13 are drought plants, plants 12
and 16 are control plants. This is a small subsection of plants for an overview of
the statistics between the two varieties.

Plant Min leaf ratio Max leaf ratio Mean leaf ratio
4 (BSP) 0.43 0.95 0.73
12 (BSP) 0.52 1.00 0.80

13 (Sonata) 0.35 1.00 0.61
16 (Sonata) 0.48 1.00 0.86

Boxplots have been included to display hyperspectral data mapping accuracy for
all of the leaf data across two varieties. Figure 5.31 is the boxplot for 6 selected
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BSP plants, 3 drought and 3 control plants. Then Figure 5.32 displays all of
the plants for BSP14 and Sonata (except BSP14 plants 3 and 9). Due to the
ground truth selection the Sonata plants have a reduced number of leaves that
were compared.

Figure 5.31: Six plants have been selected (3 drought (2,4,6) and 3 control
plants(8,10,12)) to display the correctly mapped hyperspectral data and the vari-
ation between plants of the same variety. Each plant has a different amount of
leaves; boxplot displays the summary statistics.
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Figure 5.32: The leaf percentage accuracy across all plants of two varieties has
been measured. BSP and Sonata are compared. There are 166 BSP14 leaves and
24 Sonata leaves.

5.9 Conclusions

This Chapter developed an approach to mapping 2D hyperspectral data onto a
3D plant model. This has been done to supplement the hyperspectral data with
extra information about the leaves in 3D, such as the height, distance from the
centre of the plants and the leaf orientation angles. This could be used to improve
the hyperspectral data quality, and will be examined more in Chapter 6.

During the process of mapping the data from 2D to 3D, the 2D ground truth
labels were used in order to know where the hyperspectral data came from, and if
it was mapped to the correct leaf in 3D (by comparing the 2D to the 3D ground
truth). This does mean that the ground truth in 2D would be needed. However
if this method is used on a live system then instead of the 2D ground truth the
level set segmentation for the leaves could be used from Chapter 4. This was not
used here in order to isolate testing from earlier sections of the pipeline.

Table 5.1 and boxplots (5.31, 5.32) from the evaluation display statistics about
the accuracy of the mapped data. The accuracy represents the successful map-
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ping of hyperspectral data on faces within the leaf area (selected from the 3D
ground truth). The extra faces that do not have the leaf data is labelled pink
for visualisation. This is the areas where the hyperspectral data did not exist for
the 3D model, where the hyperspectral image was cut off (cropped) or there is
misregistration.

Table 5.1 summaries statistics for two BSP14 and two Sonata plants, the means
vary between the varieties - BSP14 have means (0.73-0.80) while the Sonata plants
are (0.61 - 0.86) which suggests the leaf IDs were mapped more consistantly for
the BSP14 plants, however the boxplot will give a better result of the statistics
because this includes more data.

The boxplots display the difference between the plants and between two varieties.
Figure 5.32 displays the BSP14 leaf accuracies and the Sonata leaf accuracies.
The BSP14 boxplot has a lower overall median accuracy compared to Sonata
however BSP14’s inter-quartile range is smaller, which means the leaf mapping
accuracies are slightly more compact than Sonatas. The whiskers for the BSP14
is considerably longer than Sonata which indicates a larger distribution of leaf
mapping accuracies.

The 3D information can be used to select good quality leaves for further analysis
based on certain criteria. The leaf angle has been shown to affect the spectral
signature therefore selecting a leaf parallel to the camera would potentially be
good. The plant has better lighting near the top centre compared to lower down
due to the position of the lighting and the camera position. Also mentioned
previously shadows affect the spectral signature. 3D information now mapped to
the hyperspectral data will allow for intelligent data sampling for use in further
analysis: this will now be considered in Chapter 6.
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Chapter 6

Using 3D information to select
leaves from which to measure
hyperspectral data

Chapter 5 involved 3D reconstruction of the strawberry plants and mapping hy-
perspectral data onto the 3D models. This then allows extra 3D information to be
retrieved and used to select leaves from which to take hyperspectral measurements.

This Chapter looks at selecting high quality leaves for analysis. This would be
leaves near the top of the plant that are clearly imaged by the camera, and the
top leaves would also be well lit by the light source. It would also be beneficial if
the leaves are as flat as possible and facing towards the camera.

There are many potential measures that could be used to select ’high quality’
leaves, some potential candidates are listed below.

1. Leaf angle
2. Leaf height
3. Leaf distance from centre of the image
4. Size of the leaf
5. Leaf flatness - inclination from horizontal position across the leaf surface
6. Brightness of reflectance data

This Chapter will consider such options and develop a set of suitable measures
which help identify a ’good quality’ from which to take a hyperspectral measure.
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6.1 Criteria for selecting leaves from the 3D model

There are many potential measurements that can be computed to help select the
’best quality’ leaves.

1. Leaf angles would help to determine how the leaves are orientated relative
to the camera; for hyperspectral images the angle can influence the hyper-
spectral profile.

2. The leaf height is useful to select leaves near the top of the plant and disre-
gard the lower leaves that will be more likely to be in a shadow, or dark, or
occluded.

3. The leaf distance from the centre of the image could be helpful; the lights
are directed towards the middle of the plant and large plants might suffer
from poor illumination on the outside leaves.

4. The size of the leaf would not in fact affect the best leaves selected because
there would still be a lot of hyperspectral information on a small or large
leaf; except in extreme cases of eg. very young leaves.

5. Leaf flatness looks at the leaf inclination from the horizontal plane across
it’s surface. Each leaf is comprised of a number of patches and each patch
will have an angle. The leaf flatness would be good to know the 3D surface
texture.

6. Brightness of the reflectance data will decrease with leaves lower on the
plant; if the leaf height is taken into account then the leaves selected should
already account for this.

From the list there are three factors that would be beneficial for selecting optimum
data: Leaf angle properties (inclination and flatness) (A), the leaf height (B) and
the leaf distance from the centre of the plant (C).

The leaf angles can influence the hyperspectral data by increasing the red wave-
lengths and decreasing the green and near-infrared wavelengths (Chapter 5.2),
therefore it would be useful to know the angles and potentially select the flattest
leaves (5). The height of the leaves from the top of the plant will affect the light-
ing on the leaf, via potential shadows from leaves above, and also the leaves near
the bottom may not have much hyperspectral data mapped onto the leaf due to
the top down view of the hyperspectral images ie, they are occluded. The leaves
near the centre of the plant will have more consistant lighting due to the lighting
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arrangement on the imaging system.

Figure 6.1 displays the flowchart for Chapter 6, to explain the process.
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Figure 6.1: Flow diagram for selecting leaves in Chapter 6.
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6.1.1 A: Finding leaf angle and flatness

The first challenge is to determine the leaf orientation (1) and the leaf flatness (2).
To do this using the 3D data from Chapter 5 the approach must:

1) Select all the vertices from the leaf, fitting a plane to the points and comparing
this plane with the imaging XZ plane in order to find the general inclination of
the leaf compared to the surface/table plane.

2) Find the angles for all the patches in the leaf and compare the angles to quantify
the ’flatness’ of the leaf. For example if most of the patches have a similar angle
then the leaf is considered flat, however if there is a variation in the angles then
this indicates there is a curve in the leaf.

6.1.1.1 Development of overall leaf angle quantification

An angle can be found between two planes by finding the normal vectors of both
planes. The normal vectors are tangent to the planes; therefore, the angle between
the two normals is the angle that can be used to quantify orientation, and if one
plane is the horizontal image plane, it can measure inclination of the leaf. In this
case the leaf and the table surface (horizontal/XZ plane) are the two planes. The
leaf plane will be an approximation because the leaf might be curved or a few
patches could be misaligned. The leaf flatness will also be explained in Section
6.1.1.2 to find the leaf structure.

Least squares is used to find a plane of best fit for the vertices. The mean of
the sample points is found, assuming the mean point lies on the plane. Then the
difference between the mean and the vertex points are selected and the covariance
matrix is computed. The eigenvector with the largest eigenvalue is in the direction
of the largest variation (which should be along the plane); therefore the other
eigenvectors are orthogonal. The normal is found from selecting the eigenvector
with the smallest eigenvalue.

The imaging plane for the camera in this case is the XZ plane; therefore the normal
for this plane is (0,1,0). Figure 6.4 displays the normal vectors with the leaf and
horizontal plane.

The last step is to find the angle. The dot product and cross product are calcu-
lated, the normals need to be unit length, then arctan can be used to compute the
angle (in radians - which is then converted to degrees). The angle will be in the

134



Chapter 6. Using 3D information to select leaves from which to measure
hyperspectral data 135

range 0 - 180, but only 0 - 90 degrees is required to the horizontal, because the
leaf angle of interest is between the horizontal and vertical planes (90 degrees);
therefore if the angle is more than 90, subtract the angle from 180. By way of
example, the calculated angle for BSP14 plant 12 leaf 15 is 27.8 degrees; see Fig-
ures 6.2 and 6.3 for the displayed leaf and leaf vertices, and Table 6.1 for the leaf
angle.

(a) Plant 12 top down view

(b) Leaf 15 vertices top down view.

Figure 6.2: (a) BSP14 Plant 12 with a circle around leaf 15. (b) leaf 15 vertices
from a top down view along the X axis and Z axis.
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(a) Plant 12 side view

(b) Leaf 15 vertices side view.

Figure 6.3: (a) BSP14 Plant 12 and (b) leaf 15 vertices from a side view where
the Y axis represents the plant height.
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Figure 6.4: Leaf 15 vertices (blue) with the normal vector (red) and normal to
the XZ plane (cyan)

This process computed the leaves on one particular plant for an example. The
leaves in Table 6.1 have the corresponding leaf angle computed through the ap-
proach as explained. These are found by fitting a plane to the vertices for the leaf
angle. The following Section considers leaf shape through the patches that create
the leaf, in order to identify how flat the leaf is.

6.1.1.2 Leaf patch angle quantification to determine the leaf ’flatness’

The leaf data is comprised of a group of patches. The individual patches are flat,
and together they create the appearance of the leaves. The leaves can be flat,
curved or curling. Also there might potentially be a random noisy patch at the
wrong angle compared to the rest of the patches due to a problem in the process
when the patch was created.

A flatness score would therefore require finding the individual patch angles and
comparing the list of angles to see if they are similar or not. The patches could
have a similar angle (therefore, flat), a few distinct angles (wavy or originating
from a technical problem) or lots of smoothly varying angles over a potentially
wide range(curved). The angles for all the patches are needed, and then the angles
can be analysed to see if the leaf is flat or curved.
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Table 6.1: Plant 12 leaf number and the leaf angle. The angles are ordered from
smallest to largest, where 0◦ is parallel to the camera plane and 90◦ is tangential
to the camera.

Leaf number Angle

6 16.8
14 22.8
15 27.8
1 29.5
9 38.0
8 38.0
11 44.0
19 54.7
13 61.3
2 64.0
16 65.8
10 70.6

First, to find the patch angles the same process as for flatness is used to find
the angles for the leaf only this time the angles are calculated for the individual
patches in the leaf. Then a novel algorithm to quantify flatness is presented below.

As an example, leaf 15 will be used again. The angles for the patches in leaf 15 are
listed in Table 6.2. To note, while this relates to leaf 15 in Table 6.1 the overall
leaf angle was calculated from fitting a plane to the vertices in the leaf (Section
6.1.1.1), therefore it can vary from the patch angles in Table 6.2. This can vary
because the plane is fitted to the leaf vertices of the leaf (point cloud), however
with the patches there can be lots of local variation. The overall leaf angle for leaf
15 is 27.8◦ however the mean angle for all the patches in leaf 15 is 42.5◦.

In general if the patches were aligned with no noise, no local variation or missing
patches then the overall leaf angle should be very similar to the average leaf patch.
Table 6.3 is included to illustrate the difference between the leaf angle and average
patch angle. Seven of the leaves have a similar angle (with a 10 degree tolerance).
Five of the leaves are above that level. Even though they are considered different,
the largest difference is 30 degrees. Therefore both angles are needed because they
are not always the same.

If patches are missing and the leaf is curved or folded then the overall mean patch
angle would be different from the leaf angle plane. For example Figure 6.5 is a
diagram with two curves (green) and patches (blue). The overall angle for both
curves is the same, but the local average patch angle is different. The top Figure
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Table 6.2: Leaf 15 patch angles

Patch number Angle (degrees)

1 71.1
2 53.1
3 58.3
4 73.9
5 30.5
6 33.8
7 19.6
8 8.0
9 67.7
10 18.7
11 64.2
12 35.8
13 43.8
14 38.5
15 22.8
16 38.0
17 45.3
18 11.1
19 58.2
20 58.2
21 41.3

Table 6.3: Comparison of the overall leaf angles and average leaf patches from
individual leaf patches. Ordered by the difference, from the smallest to largest.

Leaf Patch average Leaf average Difference
11 44.3 44.0 0.3
19 55.3 54.7 0.6
13 60.5 61.3 0.8
8 37.1 38 0.9
1 28.0 29.5 1.5
9 31.3 38 6.7
6 25.9 16.8 9.1
14 34.0 22.8 11.2
2 52.0 64 12.0
15 42.5 27.8 14.7
16 45.2 65.8 20.6
10 40.7 70.6 29.9
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includes patches that are aligned and matching where the curve is. The bottom
Figure displays some patches missing and this would influence the average patch
angle. The figure is shown to explain how the two angle metrics can be different,
strawberry leaves are usually more flat than the curves in the diagram however
patches might still be missing due to occlusion and noise during the reconstruction
as well as the input images for reconstruction being quite limited in both number
and viewing angle.

Both measures can still be used to identify different features.

Figure 6.5: Diagram of two curves (green) and patches (blue) to display how a
leaf can have the same overall angle but the average patch angle can be different.
The top Figure is when the leaf and average patch angle would be the same or
very similar. The bottom Figure has missing patches, and this will influence the
average patch angle to be larger than the leaf angle. The black line represents the
leaf overall angle.

Figure 6.6 shows a leaf and the patch angles, distribution of angles and the KDE
graph of the peaks. Figure 6.6a displays a RGB image of leaf 15 on plant 12.
Figures 6.6b and 6.6c are the reconstructed leaf patches in Meshlab with the
front view, similar to 6.6a, and the side view to show the variation in the patch
orientations.

The histogram (Figure 6.6d) displays the distribution of patch angles, grouped in
degree increments. There might be noisy data or anomalies; therefore any bins
with a frequency of 1 are removed from the data. There are usually 10-30 patches
per leaf therefore removing a few patches should still leave plenty which are suitable
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to calculate flatness. The next histogram (Figure 6.6e) reflects the new data
once these potential anomalies have been removed. The kernel density estimation
(KDE) (Figure 6.6f) estimates the underlying probability density function of the
data [116]. The samples are each smoothed using a Gaussian kernel and summed
for a total estimate. There is also a bandwidth to control the smoothness of the
data, the smoothing can artificially increase the variance and lower the peak. The
peaks are where the majority of the patch angles are; if a leaf is flat then all of the
patches should have similar angles. However, if the leaf is a smooth curve then
the angles would be distributed over a wide range, this would still represent one
peak but the spread of the data would be large.
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(a) Plant 12 leaf 15 rgb image (b) Plant 12 leaf 15 meshlab
image

(c) Plant 12 leaf 15 meshlab
image side view

(d) Plant 12 leaf 15 histogram of
the angle data

(e) A histogram of the edited data
to remove angle bins with 1 fre-
quency.

(f) Kernel density estimate of the
angles to display the peaks.

Figure 6.6: Plant 12, leaf 15 displaying the leaf in RGB (a), the reconstructed
leaf front view (b) and side view displaying a fold in the leaf (c). The histograms
(d,e) and KDE graph (f) show the angles, the range and the frequency of the
patches in the leaf.
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The peaks on the KDE profile are counted by finding any local maximum points
(where the two point beside the maxima are both a lower value). If there are
three or more peaks then the leaf is determined to be curved (or not flat). If there
are two peaks and the range of the angles are less than 25 degrees then the leaf
is considered sufficiently flat, otherwise the leaf is considered not flat. Finally if
there is only one peak the range is still checked - if the range of angles is less than
35 degrees then the leaf is flat otherwise it is not flat. For example, the leaf can
have one peak but if the angles vary by 50 degrees then the leaf could be curved.

If there are one or two peaks in the KDE then the leaf could still be flat enough,
this is why up to three peaks are selected. Also 35 and 25 degrees are empirically
selected as an estimate for when the leaf would be considered not flat.

The peaks are counted from the KDE, and the range of angles is selected from
the histogram. The KDE is smoothed, which means the spread can appear larger
than it is. In general the more peaks there are the less likely the leaf is to be flat,
also the bigger the spread of angles in the histogram is also an indication that the
leaf is not flat.

So the rules for flatness are as follows:

• Number of peaks: 1) if angle range <35 then leaf = flat
otherwise leaf = not flat

• Number of peaks: 2) if angle range <25 then leaf = flat
otherwise leaf = not flat

• Number of peaks: 3+) leaf = not flat

Three examples with one (Figure 6.7) , two (Figure 6.6) and three peaks (Figure
6.8) are displayed. The approach results in two new properties per leaf: a flatness
label, and a count of KDE peaks.

The side view profile for leaf 9 (Figure 6.7c) and the histogram (Figure 6.7e)
visually shows a flat leaf; there is one peak and the range of angles are relatively
close together. Leaf 15 (Figure 6.6) displays a folded leaf and there are two peaks,
this would be considered not flat. Then leaf 16 (Figure 6.8) is a noisy leaf, with a
wide range of angles. For this data it would be hard to assign a variable with a
continuous value to measure how flat the leaf is because the leaf patches are noisy.
This could be due to the limited number of images for the reconstruction process.

A binary value of 1 or 0 will be used because for some leaves the patches do
not align and measuring this variation in a curvature value could determine a
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higher value than the leaf actually is. If the data was collected again and more
images were captured then the leaves would have less variation/noise. In this case
the Gaussian or mean curvature could be measured. An advantage for using the
binary score in this instance is to determine a general leaf shape rather than a fine
grained description.

Table 6.4 displays the leaf number, whether the leaf is considered flat or not and
how many peaks there are of similar angles.
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(a) Plant 12 leaf 9 rgb image (b) Plant 12 leaf 9 meshlab
image

(c) Plant 12 leaf 9 meshlab
image side view

(d) Plant 12 leaf 9 histogram of
the angle data

(e) A histogram of the edited data
to remove angle bins with 1 fre-
quency.

(f) Kernel density estimate of the
angles to display the peaks.

Figure 6.7: Plant 12, leaf 9. The histograms and KDE graph displays the angles,
the range and the frequency. The leaf is smoothly curving therefore there is only
one peak.
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(a) Plant 12 leaf 16 rgb image (b) Plant 12 leaf 16 meshlab
image

(c) Plant 12 leaf 16 meshlab
image side view

(d) Plant 12 leaf 16 histogram of
the angle data

(e) A histogram of the edited data
to remove angle bins with 1 fre-
quency.

(f) Kernel density estimate of the
angles to display the peaks.

Figure 6.8: The histograms and KDE graph displays the angles, the range and
the frequency
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Table 6.4: Plant 12 - leaf flatness and peaks. Ordered by the leaf flatness score

Leaf Number Flat Peaks
1 1 1
8 1 1
9 1 1
13 1 1
19 1 1
6 1 2
2 0 1
11 0 1
14 0 2
15 0 2
10 0 3
16 0 3

6.1.2 B: Height of the leaf

The leaf height on the plant determines how close the leaf is to the camera and
the top of the plant. It has been stated before that the leaves near the top of the
plant have been clearly imaged, they should not be in a shadow or covered by an
overlapping leaf, and they would therefore be sensible leaves to select.

Due to the registration in Chapter 5, the height of the leaves aligns along the Y
axis of the 3D data. Therefore, the leaf vertex Y-coordinate is all that is needed.
The average of the Y-coordinates for the leaf is calculated, and this is used to
represent the leaf height.

Figures 6.9 and 6.10 visualise the leaf heights. The values are stored in a Table
for each leaf and this will be used as a measure for determining the best leaves to
be selected. Table 6.5 lists the leaf numbers and leaf height.
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Figure 6.9: BSP14 Plant 12 and the leaf height measurement (blue circles).

Figure 6.10: BSP14 Plant 12 leaf points without the plant to see the points used
to measure height.
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Table 6.5: Plant 12 leaf number and the leaf height. Lower values are closer to
the top of the plant. Ordered by the height from the top of the plant.

Leaf number Height

11 1.364
2 1.367
19 1.433
15 1.448
14 1.528
13 1.533
9 1.549
10 1.595
6 1.718
1 1.730
16 1.770
8 1.788

6.1.3 C: Distance of the leaf centre to the plant centre

The plants are centred under the camera and the lights are pointing down towards
the plant, they are angled to the middle of the camera system set up area. If the
plants are quite small (eg. BSP - plants 1,...12) then most or all of the plant
should be well lit; however, with large plants (Sonata - Plants 13,...18) the edge
of the plant and leaves could have low lighting due to the hardware set-up and
the positioning of the lights. Therefore the distance of the leaf from the centre
of the plant, and hence imaging system, could be considered when selecting the
’best leaves’.

In this case the centre of the plant and the centre of the imaging platform are the
same since the plant is positioned in the centre of the image platform. However
if the plant is positioned off centre then the platform centre would need to be the
focus due to the location of the lights.

The centre of the plant and the centre of each leaf is calculated, then the distance
between the plant and the leaves is measured. There are a few ways of selecting
the centre point from a group of vertices. It is possible to use the mean of the
points, the median of the points, or weighted versions of these averages.

The centre points calculated from Chapter 4 used the mean of the points and this
is used again here. For the set of plant vertices S = (x1, z1), (x2, z2), ...(xn, zn)
the average x and z values are found (XP , ZP ) = ( 1

n

∑
xi,

1
n

∑
zi). For the set of
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leaf vertices T = (x1, z1), (x2, z2), ...(xn, zn) the average x and z values are found
(XL, ZL). Then the distance is computed using Euclidean distance.

Figure 6.11 shows the plant and leaf center points for plant 12. These are used to
measure the distance of the leaf to the center of the plant. This will be used as a
further measure for selecting the best leaves.

Figure 6.11: Plant 12 center point (*) and the leaf center points (o) have been
displayed. A top down view is shown.

6.1.4 Selecting the best leaves to be analysed

After finding the leaf angles, heights and distance from the center of the plant the
next step is to use this information in order to select leaves to use for subsequent
hyperspectral measurement. Each measure A: angle, B: height and C: distance
will be sorted in order and scored from 1 to N. Then A B and C will be weighted
to decide which three leaves will be selected.

Table 6.7 shows a list of the leaves along with the angles, heights and distances
for one plant. The angle, height and distance have been individually sorted from
smallest to largest. The smallest angle is desired because it would be parallel with
the XZ plane (surface). The smallest height in this case means the top of the plant

150



Chapter 6. Using 3D information to select leaves from which to measure
hyperspectral data 151

Table 6.6: Plant 12 - Leaf distance to centre. The distance is sorted in order
from smallest to largest, where the smallest is the closest leaf to the centre.

Leaf Distance

6 0.143
8 0.201
9 0.307
2 0.367
10 0.455
1 0.512
13 0.535
14 0.541
16 0.553
11 0.684
19 0.716
15 0.795

which is closest to the lights/camera. The smallest distance is the point closest to
the center of the plant and hence, image.

Note the leaf flatness is not taken into consideration in the score equation. It is
currently a binary score, and it would be a challenge to balance the equation to
include the flat score while maintaining the leaf angle and height as important
measurements. While a binary score is not an efficient way to measure the leaves,
due to the data and the reconstruction some of the leaves are noisy, this can be
seen in Figures 6.6,6.7 and 6.8.

Table 6.7 lists the angles, heights and distances for the leaves of the BSP14 plant
12 3D model. Then Table 6.8 lists the summed scores for the leaves. The flat
score and number of peaks are also included for reference. Columns 2,3 and 4 are
summed for a total score (column 5), and the Table is ordered by column 5.

To provide a quality measure, a score is computed from the 3 metrics. The score
is initially calculated from A + B + C = S; smaller scores are better. This is
a simple method for including all three measures; variations on this are possible
and will be examined below. Table 6.8 lists the scores and the leaves sorted in the
order of the smallest to largest score. If the best three leaves were selected, the
system would select leaves 6, 14 and 9 in this case.

The equation could be weighted more towards particular measures. The selection
process and weighting could change which leaves are selected. For example Table
6.9 only uses the angles and height to determine the final score. If the top three
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Table 6.7: Plant 12 - Leaf angle, height and distance to centre with the corre-
sponding score. The angle, height and distance is sorted in order from smallest to
largest. In this Table the three Sections are sorted independently for each measure;
This shows that scores for each leaf can change between measures.

Leaf Angle Leaf Height Leaf Distance Score

6 16.8 11 1.364 6 0.143 1
14 22.8 2 1.367 8 0.201 2
15 27.8 19 1.433 9 0.307 3
1 29.5 15 1.448 2 0.367 4
9 38.0 14 1.528 10 0.455 5
8 38.0 13 1.533 1 0.512 6
11 44.0 9 1.549 13 0.535 7
19 54.7 10 1.595 14 0.541 8
13 61.3 6 1.718 16 0.553 9
2 64.0 1 1.730 11 0.684 10
16 65.8 16 1.770 19 0.716 11
10 70.6 8 1.788 15 0.795 12

Table 6.8: A list of leaves with the corresponding angles, heights and distances
scores for plant 12, including a summed total score.

Leaf Angle(A) Height(B) Distance( C) Total score (A+B+C)

6 1 9 1 11
14 2 5 8 15
9 5 7 3 15
2 10 2 4 16
11 7 1 10 18
15 3 4 12 19
8 6 12 2 20
1 4 10 6 20
13 9 6 7 22
19 8 3 11 22
10 12 8 5 25
16 11 11 9 31

leaves are again selected then this would change from numbers 6, 14 and 9 to 15,
14 and 11. Only one leaf remains in the same top three across the two Tables;
clearly choice of metrics is important. Table 6.9 shows an example of weighting
the measurements in an extreme case, where A and B are weighted 1 and C is
weighted 0.

Some measurements might have more influence on what determines a good leaf
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Table 6.9: Illustration of the effect of using Angle and Height parameters only in
the total score. A list of leaves with the corresponding angles, heights and distances
scores for plant 12. The final score only includes A+B (Angle and height)

Leaf Angle (A) Height(B) Distance( C) Total score (A+B)

15 3 4 12 7
14 2 5 8 7
11 7 1 10 8
6 1 9 1 10
19 8 3 11 11
2 10 2 4 12
9 5 7 3 12
1 4 10 6 14
13 9 6 7 15
8 6 12 2 18
10 12 8 5 20
16 11 11 9 22

than others, and a weighted system could be helpful. The leaf angle and height are
known to affect the hyperspectral data; however the distance from the centre of the
plant could be less of an influence for the data. It has been demonstrated (Table
6.9) that an extreme weighted score will change the best three leaves; however, a
small change in the weighted score system could be appropriate, distance is still a
good measure to include but perhaps with less weight than the other parameters.
Therefore, we shall explore what happens when the scores are weighted with a
small difference in the weights.

The parameters should be tested to see how much influence they would have over
the selection of the top three leaves if the weights were increased or decreased.
One sensible option is to change the weights of one parameter at the time and
keep the remaining two constant ie at 1 (a balanced weight).

The parameters have been tested by changing one weight at a time:

S =
∑

(αA, βB, γC) (6.1)

Where A is the angle, B is the height and C is the distance. For example, one
weight (α) varies from 0 to 2 with 0.1 increments and two weights (βγ) are held
constant. i.e. α = 0 : 2, β = 1, γ = 1

The graphs in Figure 6.12 display three example plants with the results of the
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angle, height and distance influencing the change in the top three leaves that are
selected. The default parameter set is α = β = γ = 1 and for each weight the new
selection of leaves are compared to the default selection of the top three leaves.
For each graph the Y axis is numbered 0 to 3 where 3 represents the same top
three leaves selected as the balanced equation and 0 is that none of the original
three leaves are the same. The X axis is the weight value of the parameter under
test which varies from 0 to 2 in 0.1 increments.

Figure 6.12: Graphs to display the number of top three leaves which remain the
same when the weights are changed for the angle, height or distance parameters.
Top row are the angles, middle row are the heights, and bottom row are the
distance for the three plants.

The weights affect which top three leaves are selected, however the same three
leaves remained the same for three plants when the weights varied slightly above
or below 1. This means the weights can change the outcome by being increased
or decreased by large amounts; however, values around 1 do not affect the chosen
leaves much.

The lowest final score is the best quality leaf and the highest score is the worst
option. The equation could be weighted (0.8,0.8,1) and this would mean that
one of the measurements influences the final score less than the other two. The

154



Chapter 6. Using 3D information to select leaves from which to measure
hyperspectral data 155

weights can be increased, decreased or balanced. From the graphs above this
would generally not affect the top three leaves.

The equation could also include the weights after a certain limit. Once the leaf
angle is above an extreme limit the weight can be increased for the angle score,
if the leaf height goes above a certain value then the height score could also be
increased.

Equation 7.1 starts with the weights α = 0.8, β = 0.8, γ = 1
.

Additional penalty for extreme values

This Section then adds an additional constraint so that once the leaf angle and
or leaf height reaches a certain limit then they are penalised. This just increases
the score and reduces the likelihood that the leaf would be selected. It effectively
filters out extreme values entirely.

if A >50 degrees then α = 1.2
if B >50 % then β = 1.2

Equation 7.1 is then re-weighted using the formula above. This would produce
Table 6.10 which includes the ordered scores for the leaves. The top 3 leaves
remains the same as the balanced Table 6.8 in a different order. This makes sense,
as top three leaves should not contain many extreme values anyway. While the
same top three leaves would be selected for the balanced equation and weighted
equation in this case it might change slightly for different plants.

Following development and application of this score, the top three leaves selected
are displayed in Figure 6.13. Leaves 6 and 9 also appear to be flat from the
criteria used to define the flatness. This metric can be calculated automatically
for all plant models in the experiments.
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Table 6.10: Plant 12 - the weighted scores for the leaves and corresponding
angles, heights and distances.

Leaf Angle (A) Height(B) Distance ( C) Total score (weighted)

6 1 9 1 12.6
9 5 7 3 12.6
14 2 5 8 13.6
11 7 1 10 16.4
2 10 2 4 17.6
15 3 4 12 17.6
8 6 12 2 21.2
1 4 10 6 21.2
13 9 6 7 22.6
19 8 3 11 23
10 12 8 5 25.8
16 11 11 9 35.4

Figure 6.13: BSP14 Plant 12 - the top three leaves selected (6,9,14) from the
weighted (and balanced) equations

The results are shown for one plant in Table 6.10, and the top 3 leaves have been
displayed in Figure 6.13. Three leaves have been selected for each plant as a sample
number of leaves to analysed. This could have been any reasonable number but
a small number of leaves would still result in a lot of hyperspectral data that is
selected, and 3 allows for some replication of samples.
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6.1.5 Summary

The Chapter has discussed three leaf properties that can be measured from the
3D data.

A novel leaf scoring system was developed to automatically select leaves, from
the automatic pipeline developed in Chapters 4-5. The flatness score was not
included in the weighted scoring system, it would need to be balanced so the
angle, height and distance are still regarded as important in determining the leaf
order. The flatness could be incorporated by implementing a sensitivity analysis
for the parameters to see how the different combinations influence the final leaf
order.

The weighted scoring system includes a penalty section by increasing the param-
eter when the measurement reaches a limit and this affects the leaf score. This
is one example approach, but it might not be the best option to penalise the
leaves during the weighted system, instead the extreme values could be filtered
out directly.

In the next Chapter the selected top leaves are analysed over the time series.

157



Chapter 7

Hyperspectral data analysis of
the selected leaves over time

Chapter 6 developed an approach to locate the best (for a given quality measure)
three leaves per plant to be analysed. The leaves are selected by determining
the orientation and location of each leaf and then scoring the leaves from best to
worst. The top three leaves would ideally have a shallow angle and be centrally
located near the top of the plant.

This Chapter focuses on the leaves over the time series to see if there are any
differences over the time during drought stress until visible signs appear.

7.1 Comparing independant, automated selec-
tion of leaves vs tracked selection of leaves

The automated pipeline from Chapters 5 and 6 is used to select the best three
leaves for all of the plants. Chapter 5 reconstructs the 3D model, maps the
hyperspectral data onto the model, then into hyperpatches. Chapter 6 takes this
model and finds three selected leaf properties; the properties are measured and
scored to select the leaves for day 3. The remaining question is how to select leaves
from the other time points.

Option 1: Select the best three leaves, per plant, then manually match for the
other days in the rest of the time series to select the same leaves. This is matched
by manually inspecting the 2D ground truth images to find the correct leaves and
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then manually ensuring that the correct leaves have been selected at each time
point.

Option 2: Use the automated process for all of the days in the time series inde-
pendently.

This raises the question of if the three leaves selected will be the same throughtout
the time series. The effect of automatic selectioni on which leaves are used will
first be investigated.

Effect of automatic selection

Figure 7.1 displays plant 12 on day 0,3,4 and 5 with the top three leaves selected
by the automatic selection process. Day 3 is the original day selected and used in
Chapter 6 therefore the leaf numbers relate to day 3 ground truth to easily match
the leaves over the time points.

159



Chapter 7. Hyperspectral data analysis of the selected leaves over time 160

(a) Plant 12 day 0 top
down view

(b) Plant 12 day
0. Top 3 leaves;
5 (green), 9 (blue),
14 (purple).

(c) Plant 12 day 3 top
down view.

(d) Plant 12 day 3.
Top 3 leaves; 6, 9,
14.

(e) Plant 12 day 3.
Numbered leaves for ref-
erence.

(f) Plant 12 day 4 top
down view.

(g) Plant 12 day 4.
Top 3 leaves; 9 (pur-
ple), 14 (lime), 15
(green).

(h) Plant 12 day 5 top
down view

(i) Plant 12
day 5. Top 3
leaves; 1 (purple),7
(brown),10 (green).

(j) Table of leaves that are
the same as day 3.

Figure 7.1: Plant 12 time series. The left column is a top down view of the
plant (days 0-4), the middle column is the 3D model with the top three leaves
automatically selected. Days 0-4 include 2/3 same leaves selected. Leaf 6 is a
young leaf in day 3. Day 5 has selected three different leaves, the plant has
started to wilt.
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The automated process selects the same two leaves from day 0 to day 4; leaves 9
and 14 (Figure 7.1). Leaf 6 in day 3 is a young leaf and it is tiny in day 0, also
by the time leaf 6 is imaged on day 4 the leaf has moved slightly and is therefore
not as good as leaf 15 using the automated selection.

Day 5 using the automated process selected three different leaves. This is also the
time point where the first signs of drought appeared, which is likely to explain the
change in selection.

The two approaches, fully automated vs tracked, can produce slightly different
leaf selection however this is usually when the leaves have moved, have not been
reconstructed in the 3D model or when visible signs of drought appear.

The leaves from the tracked method select the same leaves over the times series.
This means the same leaves are analysed and this could include wilting leaves once
they start to droop. Alternatively the automatic method selects slightly different
leaves according to the scoring criteria in Chapter 6, because the leaves move
slightly, or new leaves grow and therefore different leaves are now better. This
means the healthier and better leaves will be selected and so it could potentially
take longer to detect drought.

For this reason, the tracked-leaf method will now be used in this thesis to analyse
the same leaves and maintain consistency.

The next Section looks at analysing data from the automatically selected, manu-
ally tracked leaves (from day three with the same leaves selected from day 0,4,5)
and compares it with the initial data selected in Chapter 3.

7.2 Using automatically selected leaves to mea-
sure hyperspectral data by manual selection
over time

Chapter 6 automatically finds the best three leaves for day 3. Then the best three
leaves, per plant, are manually matched for the other days in the time series to
select the same leaves. This is matched by overlaying the 2D ground truth images
to find the leaves and then manually ensuring that the correct leaves have been
selected at each time point.

The average of the mapped hyperspectral data for the leaves for each variety for
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each day is calculated and plotted over the time series for the 16 plants (10 BSP,
6 Sonata). BSP14 plants 3 and 9 were discounted as they could not produce a 3D
reconstructed plant.

The data is compared with the initial manually created plots in Chapter 3, pre-
sented again here for clarity in Figure 7.2a and 7.2b. For the initial manual analysis
several leaves were selected per Sonata plant. The leaves appeared brightly lit and
relatively uniform. Nothing else was known about the leaves at that point. The
control plants spectral signatures revealed no obvious change from day 0 to day 5,
whereas the drought plants have a slight shift in the signatures specifically visible
in the near infra-red range (750 - 1000nm). Although quite small and so poten-
tially insignificant, drought plants are expected to decrease in reflectance in the
near infra-red (and slightly in the green wavelengths) over time. So this consistant
change which is observed, although small, does fit with expectations.
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(a) The initial sonata plants spectral signatures over time.

(b) The initial drought sonata plants spectral signatures over time.

Figure 7.2: (a) is the control plant graph from Chapter 3 presented for the initial
analysis. (b) is the drought plant graph from Chapter 3 for the initial analysis.

The key questions are:

1. Can this manually measured result be replicated using the new automated
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approach?

2. Does this improve the signal to noise ratio of the data (visible as more
separation in the graphs)?

The average data from the 3 highest scoring leaves as calculated per earlier algo-
rithm for all the Sonata plants have been plotted in Figure 7.3a and 7.3b. For
Sonata, the control plants profiles appear similar over the time series. The drought
plants spectral signatures have slightly decreased over the time series in the near
infrared. The data has been smoothed using the Savitzky-Golay smoothing filter
for 7points [117]:

yt = (−2xt−3 + 3xt−2 + 6xt−1 + 7xt + 6xt+1 + 3xt+2 − 2xt+3)/21 (7.1)

During the early stage of water drought stress the hyperspectral signature de-
creases in the green and near-infrared sections of the spectrum. It is known that
when the leaves dry out the red wavelengths will increase in reflectance because
this is where the leaf pigments and chlorophyll affect the spectral signature. How-
ever during the early stages the green and near-infrared sections can decrease with
little or no change to the red section. A study on Maize plants displays the spec-
tral signatures of the leaves during different growth stages [118]. The spectral
signatures are similar to the sonata drought spectral signatures, suggesting this is
not an artifact.

The BSP14 control and drought plants’ reflectivity increases slightly over time
in Figure 7.4. The ordering effect is the same between drought and control, but
ordering is different between Sonata drought and control (Figure 7.3). This might
be explained, as BSP14 has some drought tolerance, as opposed to Sonata which
does not. Alternatively this could be an anomaly with the BSP14 plants due to
the change, since the control plants change more so than the Sonata plant data.
The significance of these observations is hard to determine given the noise and
variability in the datasets though.
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(a) The selected leaves for Sonata plants.

(b) The selected leaves for Sonata drought plants.

Figure 7.3: Leaves selected via the automated method introduced in Chapter
6. (a) The leaves for Sonata control plants over time. (b) The leaves for Sonata
drought plants over time. The graphs have been smoothed using Savitzky-Golay.
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(a) The selected leaves for BSP14 plants.

(b) The selected leaves for sonata drought plants.

Figure 7.4: Leaves selected via the automated method from Chapter 6 along
with the same leaves for the time series. (a) The leaves for BSP14 control plants
over time. (b) The leaves for BSP14 drought plants over time. The graphs have
been smoothed using Savitzky-Golay.

7.3 Effect of normalisation

The effect of normalisation method is investigated to reveal further details from
the dataset. The hyperspectral data presented so far is calibrated by dividing the
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reflectance by the white balance [119]. This is how Figures 7.2,7.3 and 7.4 were
created.

There are in fact many ways to further normalise the data and to investigate the
effect of this [120]. A few methods have been used below. The first method is
to divide the profile by a wavelength band using Equation 7.2 where R is the
individual reflectance values, R660 is the reflectance at 660nm and NR is the
normalised reflectance (See Figures 7.5 and 7.6). This normalises the data to a
wavelength and the data will range from 1 to a maximum value. This helps to
normalise profiles at one point in the spectral signatures but keep the possible
changes visible in the graphs.

The wavelength is usually selected in the visible range where the data is less noisy.
The wavelength selected is ideally a point which is not expected to change between
datasets is used as a reference point. This normalises the brightness of reflectance
at a particular colour.

NR = R

R660 (7.2)

The wavelength band selected varies if it is used in studies and there is no specific
band (like NDVI).
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(a) Sonata control plants normalised at one wavelength - 660nm.

(b) Sonata drought plants normalised at 660nm.

Figure 7.5: The Sonata plants have been normalised to 1 at 660nm. This moves
the wavelength to align at 660nm. A smaller but consistent seperation is still
visible in the near infrared.
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(a) BSP14 control plants normalised against one wavelength - 660nm.

(b) BSP14 drought plants normalised against 660nm.

Figure 7.6: The BSP14 plants have been normalised to 1 at 660nm.

Figure 7.5b still shows a consistant decrease in the near infrared, but there is a
smaller effect. Figures 7.5a and 7.6 appear to have no obvious effect.

A second normalisation process is to select the maximum and minimum reflectance
values by Equation 7.3, where R is the individual reflectance, max is the maximum
reflectance value, min is the minimum reflectance value and NR is the normalised
reflectance. This normalises the data between 0 and 1, (see Figures 7.7 and 7.8).

NR = (R−min)
(max−min) (7.3)
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(a) Sonata control plants normalised in the 0-1 range.

(b) Sonata drought plants normalised in the 0-1 range.

Figure 7.7: The Sonata plants have been normalised to the maximum and min-
imum wavelengths. While this normalises the data it is not the best option. The
near-infrared section of the spectrum is quite noisy and the main change would
appear in this section of the graph if it does.
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(a) BSP14 control plants normalised in the 0-1 range.

(b) BSP14 drought plants normalised in the 0-1 range.

Figure 7.8: The BSP14 plants have been normalised so the maximum and min-
imum wavelengths are 1 and 0 respectively.

The normalisation method using the maximum/minimum is sesitive to the mini-
mum and maximum values which occur at noisy measurement points. However,
no change detectable in BSP14, day 0 may be different in Sonata.
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Conclusion of normalisation

Normalising might not be the best way to view hyperspectral data when the
changes are being reduced or the data is being stretched where the change in data
matters (for example the near infra-red and green wavebands). Normalisation
helps to view the data in the same range. Several normalisation methods were
applied to datasets for hyperspectral classification to see how well they would
work. There are many ways to normalise data and the reflectance is usually
’normalised’ against the white balance but there is not a single preferred method
for normalising hyperspectral data yet.

Normalisation changes how data can be viewed. It might be sensitive to differ-
ent effects, for example using the maximum/minimum method the data in the
near infrared range appears the same however this is a key section for changes
with drought stress. There needs to be a consideration before selecting a specific
normalisation method for hyperspectral data.

7.4 Calculating indices from automatically se-
lected leaves

Although complete profiles have been reported, here the effect of using this tech-
nique as an example vegetation index is examined.

Normalised Difference Vegetation Index (NDVI) is used to measure the health of
crops, written as:

NDV I = (RNIR−RRED)
(RNIR +RRED) (7.4)

This selects two wavelengths from the red (RRED) and near infrared (RNIR)
ranges of the hyperspectral data and produces a value between 1 and -1 [56].
NDVI has been calculated from the data from Figures 7.3 and 7.4 to see if there is
any change using the Vegetation index. The results shown are in Tables 7.1 and
7.2. For the Sonata Table there is a less than 0.01 decrease and the BSP14 Table
varies over the time series. The NDVI results could not determine a difference
during the short time period. The NDVI detects changes in the leaf colour which
would change when wilting occurs. Most NDVI drought monitoring studies were
used with remote sensing data and over long time periods; two separate studies
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that used NDVI to compare it with different techniques noted that it took NDVI
13 and 16 days to indicate a difference in the plants [83] [84]. So not finding a
positive result here is not surprising.

Table 7.1: NDVI for Sonata over the time series. This selects a wavelength in
the near-infrared range and a wavelength in the red visible range

NDVI Day 0 Day 3 Day 4 Day 5
Sonata drought 0.8545 0.8534 0.8459 0.8456
Sonata control 0.8254 0.8314 0.8323 0.8229

Table 7.2: NDVI for BSP14 over the time series. This selects a wavelength in
the near-infrared range and a wavelength in the red visible range

NDVI Day 0 Day 3 Day 4 Day 5
BSP14 drought 0.8450 0.8153 0.8464 0.8515
BSP14 control 0.8210 0.8229 0.8294 0.8407

NDVI can also be applied to the data per pixel and this has been applied to Sonata
control and drought plants for the top 3 leaves selected.

Figure 7.9 displays the plants output from the NDVI. Figure 7.9a - 7.9b are the
control and drought Sonata plants for day 3 and 7.9c and 7.9d are the control and
drought plants for day 5. There does not appear to be much difference, NDVI is
good for displaying changes over a longer period.
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(a) Sonata control plant 13 day 3. (b) Sonata drought plant 16 day 3.

(c) Sonata control plant 13 day 5. (d) Sonata drought plant 16 day 5.

Figure 7.9: Two plants have been displayed over two time points. NDVI has
been applied to the best 3 leaves. There does not appear to be much difference
visible, NDVI is good for displaying changes over a longer period.

7.5 Conclusions

The graphs from this Chapter (Figures 7.3b and 7.5b) suggest that the leaf re-
flectance for Sonata decreases slightly in the near infrared range of the spectral
signatures for the drought plants while the control plants remain almost the same,
as indicated in the initial manual graphs. There is no difference between BSP
control and drought plants observed (eg. Figure 7.4). Interesting, normalising
removes some of the spread for BSP14 ( Figure 7.6). This could indicate that the
spread is from the brightness rather than colour. A few studies found that BSP is
more resistant to drought than varieties NCC85-13V and Elvira. The paper also
describes BSP14 as drought resistant. [88] [121]

While there appears to be a slight decrease in the infra red with the Sonata drought
plants this is not enough to draw a conclusion that the drought can be detectable
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on a specific day.

It is still challenging to identify a difference despite measuring from the same leaves
over the time series (reducing the effects of leaf height and leaf angle changes). The
best quality leaves were selected manually in Chapter 3 (2D) and automatically
in Chapter 6 (3D), and still a clear conclusion cannot be drawn.

The difference between automatically selecting the best leaves over a time series
and tracking the remaining time points results in a slight change in the leaves
selected. The automatic method selected a slight variation over the time points
due to leaves moving slightly and new leaves growing. This could mean when
the leaves start to wilt the automatic method selects healthier/different leaves.
However the tracked method selected the same leaves over the time series, this
means consistency but also that the leaves could start to wilt.

Is picking different leaves good or bad? The two options are different approaches
for selecting the leaves which would need to be considered depending on the effect
under study.

The questions near the start of the Chapter can be answered:

1. Can the manually measured results from Chapter 3 be replicated using the
new automated approach from Chapter 6? It appears that the manual ob-
servations have been automatically replicated.

2. Does this improve the signal to noise ratio of the data (visible as more of
a separation in the graphs)? The data quality has not apparently been
improved.
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Conclusions

This thesis developed a new approach to analyse hyperspectral data using a novel
pipeline incorporating 3D data, with an aim to use hyperspectral data to determine
if drought can be detected in strawberry plants before visible signs appear. This
pipeline included 2D segmentation of leaves and 3D registration of hyperspectral
data, and an approach to select suitable individual leaves from which to take
hyperspectral measurements.

8.1 Summary

The problem was introduced in Chapter 1, and a review of relevant work presented
in Chapter 2.

Chapter 3 explained the process of collecting the data, followed by calibration for
the lighting and camera noise. Initial manual inspection was carried out on the
data; leaves were selected manually, and data measured over 5 days to see if there
was any difference between control and drought plants. The initial data collection
and inspection indicated a difference in reflectance may be detectable over the
range of days for drought but the data was noisy and changes were subtle so a
new analysis approach was required.

Next, computer vision methods were developed to segment the individual leaves.
This was developed in Chapter 4, using a leaf shape model. A shape template
was translated to a leaf and rotated using the venetian pattern on the leaf before
being incorporated as a shape prior into a level set. The results show that iden-
tified boundaries are of good quality, and of those segmented leaves, the Jaccard
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accuracy was 0.68 for Sonata plants and 0.88 for BSP14 plants.

This method however is limited to just using the 2D spatial information. 3D
information allows for the leaf shape, position and orientation to be taken into
consideration when trying to automatically select the best leaves to use for anal-
ysis.

This leads to Chapter 5, which looked at using 3D information to support hy-
perspectral analysis. During the image capture process for the drought data, two
extra sets of image data were captured. The first was an extra hyperspectral scan
of each plant, but offset to the left of the first scan. This allowed for stereo data
to be extracted. The second data collected were digital images from around a side
view angle of the plant. Stereo did not produce good results, therefore multiview
stereo was adopted.

First, the 3D models were built using existing multi view stereo software, PMVS,
and surface reconstruction [112] [113]. Then the 3D model was projected to 2D,
the hyperspectral data was registered with the 2D view then the hyperspectral
data was mapped onto the 3D model using unique index values. The registration
was compared in 2D, but evaluation was also carried out for the leaves in 3D.
This 3D evaluation was to find out how well leaves were accurately mapped. The
overall median values for the leaf mapping accuracy for Sonata was 83% and
BSP14 was 75%, this only measured the percentage of correctly assigned leaf ID
with the ground truth labelled leaf ID. There was hyperspectral data that did not
exist for the model due to being cropped during imaging or misregistration, and
hyperspectral data that could not be mapped onto the 3D model because small
sections of the 3D model did not exist for the top down orientation of the plant.

Chapter 6 comprised of a novel high quality leaf selection process was developed.
The best three leaves for each plant of the Sonata and BSP14 dataset were selected
by finding the leaf angle, height and distance from the centre of the plant. Each
element was scored from best to worst from the three measurements, and the best
three leaves were selected from the combination of the three scores.

In Chapter 7 the same best three leaves were selected in the remaining time points
to analyse the same leaf data over the time series. This was compared against the
manual leaf selection plots from Chapter 3. While there appeared to be a slight
decrease in the Sonata drought plants this was not enough to draw a conclusion
that the drought could be detectable on a specific day.

It is still challenging to identify a difference despite measuring from the same leaves
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over the time series (reducing the effects of leaf height and leaf angle changes). The
best quality leaves were selected manually in Chapter 3 (2D) and automatically
in Chapter 6 (3D), and still a clear conclusion cannot be drawn.

8.2 Challenges and Futurework

8.2.1 Full automation

In Chapter 5 the gross top-down pre-orientation of the 3D model was manually
preset to save time (Eg solving a global registration problem) and then the pro-
ceeding local registration was automated. The camera setup was known and the
geometry of the model was known.

Chapter 4 segmented leaves using a leaf model in 2D. Then Chapter 5 moved to
using 3D models, and mapping the 2D hyperspectral data onto the model in order
to find the orientation, location and general shape of the leaves to augment the
corresponding hyperspectral data.

Currently the 2D ground truth is used to generate the leaf ID number; However
it is possible for the level set segmentation from Chapter 4 to be inserted instead
of the ground truth. In this case it would be fully automated. This has not been
implemented in this case to focus on the ground truth and measuring how the
data is mapped however is it possible.

After the best leaves were selected in Chapter 6 the same leaves were manually
selected over the time series; this was manually selected to be sure that the leaves
were the same through the time series. This could be automated by using a
tracking algorithm. The plants were positioned in the same place and in the same
orientation during imaging and the leaves should not move too far away from
their original position (here, the day 3 images) until the stems weaken and wilting
occurs therefore it should not be a challenging tracking problem for this time series
data however if the leaves move it does increase the challenge of locating it. The
level set leaf model (Chapter 4) produced the leaf boundaries and these could be
used to track the same leaves over the time series, then compare the leaves on a
pixel texture level to find the best match. However using the current leaf shape
model a few leaves could potentially be missed because of the seed centre and vein
location steps in the level set model.
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8.2.2 Challenges of creating ground truth data

Two sets of ground truth data were created; the hyperspectral 2D ground truth
and the 3D leaf ground truth.

The 2D ground truth consisted of manually drawing around the leaves in the image.
The hyperspectral data was noisy but the leaf shapes were located. There were
a few dark leaves near the bottom of plants where the boundary was estimated;
this will always present a challenge for the manual creation of ground truth.

Manual creation of 2D ground truth is time consuming. A semi-automated ap-
proach could be used, such as level sets or other segmentation based methods,
then any mis-segmented or completely missed leaves could be manually annotated
afterwards.

The 3D ground truth consisted of manually assigning leaf IDs to the patches and
triangles. This was challenging to create because the 3D model appeared as a
collection of grey patches in Meshlab, there was no colour or texture information
on the 3D model, only the patches and the shape they formed together to represent
leaves. There were lots of patches and sometimes it was hard to see where the
boundary of one leaf ended and the next leaf started. The SLR images were used
as a visual reference to improve the leaf selection. BSP14 was in general easier to
see where the leaves were. Sonata leaves were easy to annotate for the leaves on
the top of the plant, however the lower leaves on the plant were hard to determine.

Summary

2D ground truth for this dataset could be semi-automated to an extent, although
it would still require time to manually annotate leaves afterwards. 3D ground
truth in this instance is very hard and would require manual annotation.

Ground truth is challenging and time consuming however it is required to evaluate
how well the algorithm works. There are semi automated approaches that exist
and this might become easier in the near future since deep learning can segment
complex images on the same level of accuracy as a person can (ie. an expert).

8.2.3 Challenges of hyperspectral imaging

There are many challenges that arise with hyperspectral imaging.
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When the plant is imaged in situ the leaves have different orientations to the
camera plane, this can change the hyperspectral profile which can appear similar
when looking for changes due to signs of stress. Therefore 3D information is
needed to know the orientation of the leaves. With imaging a plant the leaves are
at different heights and this also needs to be taken into consideration.

The hyperspectral data is calibrated with a white balance to account for the
variance in lighting, however there is also a question of whether to normalise the
data and if so, how. This was considered in Chapter 6.2; there are many methods
to normalise data but are they helpful for hyperspectral data analysis and which
one is the most appropriate? This must be considered in future work.

Hyperspectral data is a large, noisy dataset. The literature review in Chapter
2.2 discusses different approaches that can be used to analyse hyperspectral data
during stress. A large portion of existing approaches reduce the data down to just
several wavelengths to account for the size and noise of the data, but also to try
and select important wavelengths.

There are a lot of factors to take into consideration with hyperspectral imaging
and challenges that need to be overcome.

8.2.4 Application to other stresses

The work in this thesis used the drought dataset, a logical question is if this could
be extended to other stresses. The methods in Chapters 4 and 5 can be expected
to work if the datasets are similar (eg. hyperspectral images and high resolution
multi-view images). Chapter 6.1 selects the leaf measurements, therefore it could
be applied to a mildew dataset because the leaf angles and the leaf height would
still be important.

This thesis has created a hyperspectral dataset for three plant stresses over a time
series for early onset of stress until visible signs appeared (Objective 1). The
leaf measurements were manually selected and analysed to see a small change in
the near infrared range of the data for the drought times series while the control
times series remained consistent (Objective 2). A leaf shape model was developed
to automatically locate and segment individual leaves (in 2D) with good results
(Objective 3). Then a pipeline was developed to use 3D information to improve
the hyperspectral measurements (Objective 4). The hyperspectral measurements
were used to find the best leaves on the plant using the location and inclination
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of the leaves (Objective 5). The same automated leaves were manually selected
for the other days to compare with the initial manual analysis from Chapter 3
(Objective 6).

A complete, largely automated pipeline has been developed, which incorporated
hyperspectral and 3D data.

Final results suggest a possible difference in reflectance for some varieties in early
stages of drought but a firm conclusion is hard to come to in part because of the
challenges with the variables present in hyperspectral imaging. There are studies
that have managed to detect early stress in comparison to vegetation indices, in
certain crops, using hyperspectral imaging however the data can be noisy and the
analysis approach needs to be considered.
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Appendix A

Seed evaluation for chapter 4

Table A.1: BSP14 plants 1 and 12 individual leaf ground truth and seed centre
points with the x and y differences. The units are measured in pixels.

Plant Leaf Gt x Gt y Seed x Seed y Distance X (+-) Y ( +-)

1 1 603.475 114.5639 608.6849 114.3853 5.212975 5.209912 -0.17866
1 3 416.5448 106.7693 410.3397 103.2367 7.140121 -6.20505 -3.53252
1 5 430.5354 157.8049 435.3597 159.7593 5.205096 4.82425 1.954389
1 9 490.0699 235.1528 473.6718 228.7836 17.5916 -16.3981 -6.36923
1 10 430.1237 300.6735 432.3587 300.379 2.254339 2.235021 -0.29449
1 11 520.6388 311.2736 523.443 309.9622 3.095753 2.804256 -1.31142
1 13 539.954 146.8688 536.0079 145.7048 4.114163 -3.94608 -1.16396
1 20 537.8276 51.62356 534.947 49.53851 3.556027 -2.88061 -2.08505
12 1 532.5509 317.2531 529.9828 320.9776 4.524114 -2.56811 3.724571
12 4 613.434 196.7593 616.0307 192.7978 4.736679 2.596729 -3.96146
12 5 547.9732 180.9703 544.4433 180.003 3.659968 -3.52983 -0.96731
12 9 437.2439 164.0809 437.7388 162.1506 1.992795 0.494881 -1.93037
12 10 410.948 248.2226 415.5051 250.6378 5.157589 4.557137 2.415209
12 11 340.1932 182.1726 339.982 180.8359 1.353318 -0.21123 -1.33673
12 12 426.4942 93.66181 426.2491 85.94624 7.719468 -0.24507 -7.71558
12 14 533.0788 38.39824 534.5282 48.1066 9.815964 1.449444 9.70836
12 16 613.5257 90.83576 614.1727 92.69697 1.970476 0.647048 1.86121
12 19 618.8872 335.2881 620.9139 340.1288 5.247824 2.026686 4.840682
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Table A.2: Sonata plants 13 and 14 individual leaf ground truth and seed cen-
tre points with the x and y differences. This is after duplicate seeds have been
removed. The units are measured in pixels.

Plant Leaf Gt x Gt y Seed x Seed y Distance X (+-) Y (+-)

13 1 363.2285 307.2511 359.7379 314.5678 8.10669 -3.49067 7.316669
13 2 397.285 374.1244 393.4149 398.0421 24.22878 -3.8701 23.9177
13 3 467.304 338.7141 488.4514 378.2597 44.84493 21.14739 39.54561
13 4 525.6484 222.0119 527.1525 216.2567 5.948441 1.504007 -5.75516
13 5 563.8384 297.3112 548.0503 308.0217 19.0782 -15.7881 10.71043
13 6 638.2471 264.632 648.5584 281.2319 19.54174 10.31131 16.59989
13 7 538.794 123.8247 534.62 126.4413 4.926321 -4.174 2.616553
13 8 611.819 98.3948 620.8402 111.4963 15.90696 9.021151 13.10153
13 11 431.428 212.0348 417.0442 215.7668 14.86007 -14.3838 3.732004
13 13 674.2087 184.2801 682.0637 182.1762 8.131809 7.854949 -2.10383
13 20 472.3487 28.04273 466.056 26.38404 6.50758 -6.29264 -1.65869
13 21 587.3517 31.244 613.511 27.06611 26.49081 26.15928 -4.17789
14 3 592.6471 249.6762 597.4975 262.886 14.07217 4.850402 13.20983
14 4 490.9494 203.911 457.4945 215.3479 35.35574 -33.4548 11.43689
14 5 582.371 137.6175 585.0355 133.4946 4.909046 2.664581 -4.12295
14 7 435.4485 304.1413 431.2114 317.818 14.31803 -4.23709 13.67674
14 11 519.2559 71.46565 528.855 58.64546 16.0156 9.599079 -12.8202
14 15 650.9598 70.06473 677.8204 56.24876 30.20549 26.86058 -13.816
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Appendix B

Protocols - from Chapter 3

B.1 Strawberry Plants - Mildew experiment pro-
tocol

Plant Material Preparation

Dormant strawberry plants were purchased from strawberry propagators and kept
in a cold store at 2◦C until required. The dormant strawberry plants were taken
out of the cold store the night before potting and left at +2◦C to ensure plants
were not damaged due to a sudden change in temperature. The following day, the
strawberry plants were potted into FP9 pots using standard compost and grown
for 2-3 weeks until they have 2-3 leaves. When plants have 2-3 leaves, a thorough
inspection of the leaves was undertaken and any marks/signs on the leaves of any
other diseases/pests were noted. A dissecting microscope is used to check the
leaves on 10% of the plants at random to ensure they were pest-free.

Equipment: FP9 pots, Standard compost, Cold store plants, Glasshouse for the
plants to grow in.

Location for the plants during the experiment The experimental strawberry plants
were grown in CE cabinets at NIAB EMR. The CE cabinets were cleaned thor-
oughly with 70% ethanol the day before the experiment to make sure no dis-
ease/pests were present that would infect the control/infected plants during the
experiment. After the experiment was finished, the cabinets were cleaned again
using 70% ethanol.

Mildew Infection process
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Two upside-down plant saucers were placed into the CE cabinet ready for the
large mildew infected plants to be placed upon. Previously infected mildew plants
were transferred from the glasshouse to the CE cabinets. The plants were trans-
ferred in a completely covered box to prevent spreading of mildew spores to any
nearby strawberry plants. The two large mildew plants were placed into the mid-
dle of cabinet but evenly spaced. The test strawberry plants, cv. 'Elsanta'and
'Fenella'were placed in a circle around the two plants to evenly expose them to
the mildew spores.

Equipment: Mildew infected strawberry plants (x2), Box with lid and box, 25
plants (11 Elsanta plants and 14 Fenella plants)

7 Fenella plants and 5 Elsanta plants will be placed in Cabinet 6 as control plants.
7 Fenella plants and 6 Elsanta plants will be placed in Cabinet 7 with the two
mildew plants.

Imaging Process

The strawberry plants were imaged before they were placed into the cabinets (day
0). They were then imaged every other day until there were visible signs on all
infected plants. To transport the plants from the cabinets for imaging, a box with
a lid was used to contain the mildew spores. Water the plants every other day.
Also after each imaging session the plants are placed back into random positions.

Imaging method at EMR

1. Clean the area around the camera with 70% ethanol
2. Turn on the three switches at the plugs and turn the PC on.
3. Open the HSI software and select 'start pipeline'
4. Switch the lights on at the voltage box, bottom left and then bottom right.
5. Move the board using the arrow keys on the screen if it is needed.
6. Turn the main room light off.
7. Place the white balance on the board.
8. Select the white balance calibration button
9. Cover lens with hand and select dark (white) calibration button

10. Cover lens with hand and select dark (object) calibration button
11. Place the plant on the board under the lens.
12. Make sure the lens is in focus.
13. Move the board to the desired start position using the arrow keys on the

screen
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(Repeat steps 14-20 for each plant)
14. Take a digital image of the plant
15. Place the plant on the board
16. Click the right arrow key on screen to take the board to the start position
17. (select right arrow key to let the plants speed be tested, the image on the

screen needs to match on the left and right sides)
18. Change the number of the speed slightly and repeat the last three steps until

the image matches on the screen.
19. Name the file a relevant name ie. Day0 Fenella1 Cal
20. Select frame arrow right key on screen to finally capture the images.

B.2 Strawberry Plants - Spider mite experiment
protocol

Plant Material Preparation

Dormant strawberry plants were purchased from strawberry propagators and kept
in a cold store at 2ÂřC until required. The dormant strawberry plants were taken
out of the cold store the night before potting and left at +2 ◦C to ensure plants
were not damaged due to a sudden change in temperature. The following day, the
strawberry plants were potted into FP9 pots using standard compost and grown
for 2-3 weeks until they have 2-3 leaves. When plants have 2-3 leaves, a thorough
inspection of the leaves was undertaken and any marks/signs on the leaves of any
other diseases/pests were noted. A dissecting microscope is used to check the
leaves on 10% of the plants at random to ensure they were pest-free.

Equipment:

• FP9 pots

• Standard compost

• Cold store plants

• Glasshouse for the plants to grow in

• Number the plants for the experiment 1-10 for the control and 11-20 for the
inoculated.

Location for the plants during the experiment
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The plants were kept in a contained glasshouse that limits exposure of spider
mites. The area was cleaned before and after the experiment using 70% ethanol.

Spider mite preparation

Use spider mite infected plant. Remove and cut the leaf into sections using a
microscope and put the sections into a sealed container. Do this on the day that
the plants will be infected. Set up the area in the glasshouse with a tray filled
with water and place 10 saucers upside down onto the tray then put the plants
on these saucers. This creates a barrier and keeps the spider mites location as
controlled as possible.

Infection process

Place an infected leaf section on the bottom of the stem of each plant. This will
allow an even distribution and also a natural infection compared to placing the
infected leaf on the top of a leaf.

Equipment:

• Spider mite leaf sections (x10)

• 10 plants (5 per variety) that will be infected.

• 2 (or 3 if possible) varieties.

Imaging Process Image before the plants are placed into the glasshouse (day 0).
Then image every day (10am-2pm) until there are visible signs on the plants.

Imaging method at EMR

1. Clean the area around the camera with 70% ethanol
2. Turn on the three switches at the plugs and turn the PC on.
3. Open the HSI software and select 'start pipeline'
4. Switch the lights on at the voltage box, bottom left and then bottom right.
5. Move the board using the arrow keys on the screen if it is needed.
6. Turn the main room light off.
7. Place the white balance on the board.
8. Select the white balance calibration button
9. Cover lens with hand and select dark (white) calibration button

10. Cover lens with hand and select dark (object) calibration button
11. Place the plant on the board under the lens.
12. Make sure the lens is in focus.
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13. Move the board to the desired start position using the arrow keys on the
screen

(Repeat steps 14-20 for each plant)
14. Take a digital image of the plant
15. Place the plant on the board
16. Click the right arrow key on screen to take the board to the start position
17. (select right arrow key to let the plants speed be tested, the image on the

screen needs to match on the left and right sides)
18. Change the number of the speed slightly and repeat the last three steps until

the image matches on the screen.
19. Name the file a relevant name ie. Day0 Fenella1 Cal
20. Select frame arrow right key on screen to finally capture the images.

Recording additional information

• plant variety, number, date, time and time after infection
• Speed, start and stop position, lighting, exposure rate and frame rate
• Any visible marks/signs (including before infection to discount it)
• General health
• Grading 1-4 where 1 is no signs, 2 is slight marks or discoloration, 3 is a few

light green speckles and 4 is obvious light green speckles
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Appendix C

Individual leaves with the
mapped data - for Chapter 5

Individual leaves have been selected to display the hyperspectral data mapped
onto the leaf in Figure C.1.

189



(a) Plant 12 leaf 2 gt (b) Plant 12 leaf 2 map.

(c) Plant 12 leaf 3 gt (d) Plant 12 leaf 3 map.

(e) Plant 12 leaf 12 gt (f) Plant 12 leaf 12 map.

Figure C.1: Plant 12 leaf comparison.
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Early detection and classification of plant diseases with support vector ma-
chines based on hyperspectral reflectance. Computers and Electronics in
Agriculture, 74(1):91–99, 2010.

[81] John Passioura. The drought environment: physical, biological and agri-
cultural perspectives. Journal of experimental botany, 58(2):113–117, 2007.
URL http://jxb.oxfordjournals.org/content/58/2/113.short.

[82] Christian Thurau, Kristian Kersting, and Christian Bauckhage. Yes
We Can: Simplex Volume Maximization for Descriptive Web-scale
Matrix Factorization. In Proceedings of the 19th ACM Interna-
tional Conference on Information and Knowledge Management,
CIKM ’10, pages 1785–1788, New York, NY, USA, 2010. ACM.
ISBN 978-1-4503-0099-5. doi: 10.1145/1871437.1871729. URL
http://doi.acm.org/10.1145/1871437.1871729.

[83] Christoph Romer, Mirwaes Wahabzada, Agim Ballvora, Francisco Pinto,
Micol Rossini, Cinzia Panigada, Jan Behmann, Jens Leon, Christian Thurau,
Christian Bauckhage, et al. Early drought stress detection in cereals: simplex
volume maximisation for hyperspectral image analysis. Functional Plant
Biology, 39(11):878–890, 2012.

[84] Jan Behmann, Jorg Steinrucken, and Lutz Plumer. Detection of early plant
stress responses in hyperspectral images. ISPRS Journal of Photogram-
metry and Remote Sensing, 93:98–111, July 2014. ISSN 0924-2716. doi:
10.1016/j.isprsjprs.2014.03.016.

[85] Dimitrios Moshou, Xanthoula-Eirini Pantazi, Dimitrios Kateris,
and Ioannis Gravalos. Water stress detection based on opti-
cal multisensor fusion with a least squares support vector ma-



chine classifier. Biosystems Engineering, 117:15–22, January 2014.
ISSN 1537-5110. doi: 10.1016/j.biosystemseng.2013.07.008. URL
http://www.sciencedirect.com/science/article/pii/S1537511013001
153.

[86] Kristian Kersting, Zhao Xu, Mirwaes Wahabzada, Christian Bauck-
hage, Christian Thurau, Christoph Roemer, Agim Ballvora, Uwe
Rascher, Jens Leon, and Lutz Pluemer. Pre-symptomatic pre-
diction of plant drought stress using dirichlet-aggregation re-
gression on hyperspectral images. In AAAI, 2012. URL
http://www-kd.iai.uni-bonn.de/pubattachments/620/kersting12aaai
.pdf.

[87] Gerrit Polder, Gerie WAM van der Heijden, LC Paul Keizer, and Ian T
Young. Calibration and characterisation of imaging spectrographs. Journal
of near Infrared Spectroscopy, 11(3):193–210, 2003.

[88] Baolin Zhang and Douglas D Archbold. Water relations of a fragaria chiloen-
sis and a f. virginiana selection during and after water deficit stress. Journal
of the American Society for Horticultural Science, 118(2):274–279, 1993.

[89] Antonio Robles-Kelly and Cong Phuoc Huynh. Imaging spectroscopy for
scene analysis. Springer Science & Business Media, 2012.

[90] Paul Geladi, Jim Burger, and Torbjörn Lestander. Hyperspectral imaging:
calibration problems and solutions. Chemometrics and intelligent laboratory
systems, 72(2):209–217, 2004.

[91] Johannes Schindelin, Ignacio Arganda-Carreras, Erwin Frise, Verena
Kaynig, Mark Longair, Tobias Pietzsch, Stephan Preibisch, Curtis Rueden,
Stephan Saalfeld, Benjamin Schmid, et al. Fiji: an open-source platform for
biological-image analysis. Nature methods, 9(7):676–682, 2012.

[92] Richard O Duda and Peter E Hart. Use of the hough transformation to
detect lines and curves in pictures. Communications of the ACM, 15(1):
11–15, 1972.

[93] Daniel Cremers, Nir Sochen, and Christoph Schnorr. Towards recognition-
based variational segmentation using shape priors and dynamic labeling.
In International Conference on Scale-Space Theories in Computer Vision,
pages 388–400. Springer, 2003.



[94] AK Mahlein, MT Kuska, S Thomas, D Bohnenkamp, E Alisaac, J Behmann,
M Wahabzada, and K Kersting. Plant disease detection by hyperspectral
imaging: from the lab to the field. Advances in Animal Biosciences, 8(2):
238–243, 2017.

[95] Puneet Mishra, Mohd Shahrimie Mohd Asaari, Ana Herrero-Langreo, San-
tosh Lohumi, Belén Diezma, and Paul Scheunders. Close range hyperspectral
imaging of plants: A review. Biosystems Engineering, 164:49–67, 2017.

[96] Jan Behmann, Anne-Katrin Mahlein, Stefan Paulus, Jan Dupuis, Heiner
Kuhlmann, Erich-Christian Oerke, and Lutz Plumer. Generation and appli-
cation of hyperspectral 3d plant models: methods and challenges. Machine
Vision and Applications, 27(5):611–624, 2016.

[97] Tawanda W Gara, Roshanak Darvishzadeh, Andrew K Skidmore, and
Tiejun Wang. Impact of vertical canopy position on leaf spectral properties
and traits across multiple species. Remote sensing, 10(2):346, 2018.

[98] L Ma and MK Upadhyaya. Effects of leaf position on reflectance, transmit-
tance and absorption of red and far-red light in tomato, chenopodium album
and amaranthus retroflexus leaves. Weed Research, 58(1):17–24, 2018.

[99] I Ibrahim. Illumination invariance and shadow compensation on hyperspec-
tral images. 2014.

[100] Jonathon A Gibbs, Michael Pound, Andrew P French, Darren M Wells, Erik
Murchie, and Tony Pridmore. Approaches to three-dimensional reconstruc-
tion of plant shoot topology and geometry. Functional Plant Biology, 44(1):
62–75, 2017.

[101] Aldo Laurentini. The visual hull concept for silhouette-based image under-
standing. IEEE Transactions on pattern analysis and machine intelligence,
16(2):150–162, 1994.

[102] Kiriakos N Kutulakos and Steven M Seitz. A theory of shape by space
carving. In Computer Vision, 1999. The Proceedings of the Seventh IEEE
International Conference on, volume 1, pages 307–314. IEEE, 1999.

[103] Ke Lu, Xiangyang Wang, Zhi Wang, and Lei Wang. Binocular stereo vision
based on opencv. 2011.



[104] H Christopher Longuet-Higgins. A computer algorithm for reconstructing a
scene from two projections. Nature, 293(5828):133, 1981.

[105] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up ro-
bust features. In European conference on computer vision, pages 404–417.
Springer, 2006.

[106] David G Lowe. Distinctive image features from scale-invariant keypoints.
International journal of computer vision, 60(2):91–110, 2004.

[107] Jian Yao and Wai-Kuen Cham. Robust multi-view feature matching from
multiple unordered views. Pattern Recognition, 40(11):3081–3099, 2007.

[108] Zhengyou Zhang. A flexible new technique for camera calibration. IEEE
Transactions on pattern analysis and machine intelligence, 22(11):1330–
1334, 2000.

[109] Rostam Affendi Hamzah, Rosman Abd Rahim, and Zarina Mohd Noh. Sum
of absolute differences algorithm in stereo correspondence problem for stereo
matching in computer vision application. In Computer Science and Infor-
mation Technology (ICCSIT), 2010 3rd IEEE International Conference on,
volume 1, pages 652–657. IEEE, 2010.

[110] Yasutaka Furukawa and Jean Ponce. Accurate, dense, and robust multiview
stereopsis. IEEE transactions on pattern analysis and machine intelligence,
32(8):1362–1376, 2010.

[111] Changchang Wu. Towards linear-time incremental structure from motion.
In 3D Vision-3DV 2013, 2013 International conference on, pages 127–134.
IEEE, 2013.

[112] Changchang Wu, Sameer Agarwal, Brian Curless, and Steven M Seitz. Mul-
ticore bundle adjustment. In Computer Vision and Pattern Recognition
(CVPR), 2011 IEEE Conference on, pages 3057–3064. IEEE, 2011.

[113] Michael P Pound, Andrew P French, Erik H Murchie, and Tony P Pridmore.
Surface reconstruction of plant shoots from multiple views. In European
Conference on Computer Vision, pages 158–173. Springer, 2014.

[114] Josien PW Pluim, JB Antoine Maintz, and Max A Viergever. Mutual-
information-based registration of medical images: a survey. IEEE transac-
tions on medical imaging, 22(8):986–1004, 2003.



[115] Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo Dellepi-
ane, Fabio Ganovelli, and Guido Ranzuglia. MeshLab: an Open-
Source Mesh Processing Tool. In Vittorio Scarano, Rosario De
Chiara, and Ugo Erra, editors, Eurographics Italian Chapter Confer-
ence. The Eurographics Association, 2008. ISBN 978-3-905673-68-5. doi:
10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136.

[116] Emanuel Parzen. On estimation of a probability den-
sity function and mode. Ann. Math. Statist., 33(3):1065–
1076, 09 1962. doi: 10.1214/aoms/1177704472. URL
https://doi.org/10.1214/aoms/1177704472.

[117] Abraham Savitzky and Marcel JE Golay. Smoothing and differentiation
of data by simplified least squares procedures. Analytical chemistry, 36(8):
1627–1639, 1964.

[118] V. S. Manivasagam and R. Nagarajan. Water stress assessment in maize
crop using field hyperspectral data. 2015.

[119] Anne-Katrin Mahlein, Ulrike Steiner, Christian Hillnhütter, Heinz-Wilhelm
Dehne, and Erich-Christian Oerke. Hyperspectral imaging for small-scale
analysis of symptoms caused by different sugar beet diseases. Plant methods,
8(1):3, 2012.

[120] Faxian Cao, Zhijing Yang, Jinchang Ren, Mengying Jiang, and Wing-Kuen
Ling. Does normalization methods play a role for hyperspectral image clas-
sification? arXiv preprint arXiv:1710.02939, 2017.

[121] AW Johnson, MJ Davies, OM Grant, and DW Simpson. Developing straw-
berry cultivars with improved water use efficiency. Acta Hortic, 1049:853–
858, 2014.


