
 

LYAPUNOV APPROACH ON A HOMOGENEOUS FAMILY OF 

CONTROLLERS FOR ROBOTIC MANIPULATOR 

 

 

 

Jang Wilson 

 

 

 

 

Thesis submitted to the University of Nottingham 

 for the degree of Doctor of Philosophy 

 

 

February 2019 

 

 

 

 

  



 

 

2 

 

ABSTRACT 

Second order sliding mode has been successfully implemented for solution of real problems 

for its inherent features such as finite-time convergence and robustness to disturbances. For 

the first order sliding modes, it is common to deal with the issues of stability, robustness, and 

convergence rate of the equilibrium by means of a Lyapunov approach. For higher order 

sliding modes, however, a similar treatment has not been developed until recently.  The focus 

of this thesis is the construction of strong Lyapunov function, i.e. for which its time derivative 

can be upper bounded by negative-definite functions, for the design of control strategies for 

robotic manipulator, which is a nonlinear system, subject to combinations of parametric 

uncertainty, bounded disturbances, actuator saturation, and output feedback. 

The first contribution of this work is the development of a strong Lyapunov function for a 

parameterized family of homogeneous sliding mode based controller comprising twisting 

algorithm, continuous finite time control, linear PD control law, and uniformly stable control 

law, all of which belongs to a general homogeneous family of control algorithms. The strict 

locally Lipschitz homogeneous Lyapunov function proposed permits the estimation of 

convergence time for the trajectories of the system to the origin, in finite-time, exponentially, 

or uniformly asymptotically, even in the case when it is affected by bounded non-vanishing or 

growth bounded vanishing external perturbations. Moreover, the relationship between the 

control gains and its convergence performance can be analyzed.  

Leveraging on these results, a strong Lyapunov function is developed for a closely related 

second order sliding mode algorithm, the super-twisting algorithm based controller. In 

particular, the construction of these strong homogeneous Lyapunov function is able to show 
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the relationship between the twisting and super-twisting algorithms and allows linear 

combination of two homogeneous control of different degree.  

Extending the results for MIMO robot manipulator, a type of Euler-Lagrange dynamic 

systems, a family of integral sliding mode-based controller is introduced for trajectory 

tracking. In particular, the homogeneous dynamics is employed as the desired error dynamics 

for the controller. Additionally, the conventional PID control is shown to be a special case and 

the present formulation presents the relationship between the gains of the controller and the 

desired performance, which provides a systematic method for gain selection for a robust PID 

control. In addition, for the special problem of regulation, employing the results of 

homogeneous control, finite-time regulation of the robot manipulator is achieved. 

Since actuator saturation is a phenomenon that affects the performance of dynamic systems 

under closed-loop control, a saturated version of the controller is also developed that achieved 

global stability while maintaining the features of the unbounded version of the controller in 

terms of trajectory tracking and finite time regulation. Extending the results for system with 

position measurements only, a saturated output feedback version of the controller is 

introduced that can achieved global stability as well. Each of the proposed controllers 

provides advantages over the previous literature in their ability to design desired error 

dynamics and the time derivative of the disturbance is not required in the stability analyses. 

Throughout the work, Lyapunov-based stability, in particular the nonsmooth Lyapunov 

analysis techniques, and numerical experiments are provided to highlight the performance of 

each controller design.  
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Chapter 1: INTRODUCTION 

 

1.1 Motivation 

Sliding mode approach to control design has received great amount of attentions of late due 

to its inherent attractive features such as finite-time convergence and robustness to 

disturbances. It introduces a nonlinear discontinuous term where its gain must be designed so 

that the trajectories of the system are forced to remain on some user-defined sliding 

hyperplane in the error state space. The resulting motion is called sliding mode. It is this 

discontinuous term that provides the abilities to reject perturbations and some classes of 

uncertainties between the actual system and the nominal model used in the control design 

stages. In [1], a definition of the sliding mode order is given and consists of trajectories in the 

sense of Filippov [2]. The standard sliding mode is of the first order and is known as robust 

and very accurate with respect to various classes of internal and external perturbations, but it 

is restricted to the case in which the output relative degree is one. Besides, the high frequency 

switching that produces the sliding mode may cause chattering effect.  

Higher order sliding modes (HOSM) appears sometimes in systems with traditional sliding 

mode control or they are deliberately introduced because it has been found that finite time 

convergent HOSMs preserve the features of the first order sliding modes and can improve 

them, if properly designed, by eliminating the chattering, for instance see [3] and [4]. While 

finite-time convergent arbitrary order sliding mode controllers are mostly still theoretically 

studied, 2-sliding controller or second order sliding mode(SOSM) with finite-time 

convergence have already been successfully implemented for solution of real problems. 
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However, there are only few SOSM that are widely used namely, the sub-optimal controller 

[3], [5], [6], the terminal sliding mode controllers [7], [8], [9], twisting controller, and the 

super-twisting controller; the last two being the most popular. 

Particularly, the super-twisting control found its application on wind energy conversion 

system [10], velocity observer of mechanical systems [11], and uncertainty observers [12] 

[13]. On the other hand, application of twisting algorithm can be found in the adaptive 

tracking control of intelligent vehicle system [14] and trajectory tracking of crane [15] and 

[16]. Also of interest, are the development of family of controllers that are based upon the 

twisting and super-twisting algorithms [17] and [18]. For the first order sliding modes, it is 

common to deal with the issues of stability, robustness, and convergence rate of the 

equilibrium by means of a Lyapunov approach. For higher order sliding modes, however, a 

similar treatment has not been developed until recently. Instead it is usual to use majorant 

curves [11], homogeneity based methods [19], or a weak Lyapunov function together with 

geometric approach [20].  The focus of Chapter 2 is the development of strict Lyapunov 

functions for the super-twisting, twisting algorithms, and the corresponding family of 

controllers, which can be used as design and analysis tool whose time derivative can be 

bounded by negative definite functions. 

The research on the control theory of serial mechanical systems has been a topic that is 

actively studied. The asymptotic stability of robot manipulators can be achieved by computed 

torque method or inverse-dynamics control [21].  While asymptotic stability implies that the 

system have convergence to the origin as time goes to infinity, finite-time stabilization can 

ensure convergence to the origin in finite time, as discussed above. On the other hand, 
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robustness in control systems is an equally important property as stability and convergence. It 

is the property by which a system preserves a tolerable behaviour under the influence of 

uncertainty, perturbations, external disturbances, etc. In particular, it is known that finite-time 

stabilization of dynamical systems can provide high-precision performance and improved 

rejection of low-level persistent disturbances [22] [23]. This can be achieved by continuous 

non-Lipschitz feedback controllers such as twisting-based algorithm in [24]. However, the 

robustness issue is not specified clearly as the algorithms require exact knowledge of the 

dynamics of the manipulators. Leveraging the outcomes developed in Chapter 2, Chapter 3 

presents full state feedback approach by integrating SOSM into the controller.  

The previous discussion on robot manipulator control assumes that the joint velocity is 

available from measurement. If only position information is available, one has to employ 

output feedback control, which has received considerable interest in robotics literature due to 

its possibility to avoid the need of a tachometer hence simplifying the robot design [12]. The 

main problem in output feedback control is the need for the control law to not only 

compensate uncertainties of the system but also the lack of link joint velocity measurements. 

Employing the outcomes of Chapter 2 and 3, Chapter 4 presents an output feedback controller 

for robot manipulator. 

While the robust control methods mentioned above for robot manipulators have been shown 

to be effective for the compensation of uncertainties and disturbance in their respective 

context, generally, the fact that the required input torques may command more actuation than 

is physically possible by the system for instances such as large perturbations, initial 

conditions that are far from the equilibriums, or fast desired trajectory. These may lead to 
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unexpected or undesirable closed-loop behaviours, for instance, in the nonlinear PID control 

for the global regulation problem of robot manipulator of [25], it requires unbounded state 

dependent control gains, which may easily causes saturation of actuator if the initial 

conditions of the system is not restricted. Owing to these risks, control law that is bounded 

while ensuring performance when operating within actuator limits are motivated. By means of 

the results of Chapter 2 and 3, Chapter 5 presents a bounded full state feedback controller for 

robot manipulator which limits the control authority at or below an adjustable a priori limit. 

Bounded control designs are available in literature; however, the integration of SOSM into the 

bounded structure that has a strict Lyapunov function has remained an open problem. 

Motivated by the same concerns presented in Chapter 4 on the lack of joint velocity 

measurements and that of actuator constraints in Chapter 5, Chapter 6 develops a control 

strategy for robot manipulators with a bounded control approach with output feedback. 

Previous techniques and outcomes obtained in Chapter 4 and 5 are utilized which allows for 

the bound on the control to be adjusted a priori provided through strict Lyapunov functions. 
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1.2 Literature Review 

A literature review of Chapters 2-6 is presented below. 

Chapter 2: Lyapunov approach on twisting and super-twisting based second order 

sliding mode: By means of strong Lyapunov functions, the study of stability on super-

twisting algorithm and its finite time convergent characteristics was carried out for the first 

time by [26] and later in [27]. This approach allows a wider class of perturbations and 

uncertainties originally admitted by SOSM. Another advantage of the use of Lyapunov 

functions is that it is possible to obtain explicit relations for the design parameters. On the 

other hand, [17] developed a Lyapunov method for the analysis of a generic second order 

algorithm, which is a family of controllers of which the super-twisting algorithm is a special 

case. It extends the results of [26] by allowing the positive power of the control terms to range 

from less than one to more than one. By doing so, a range of stability results were obtained. 

Essentially, three types of stability can be achieved for the generic super-twisting system 

namely, finite-time, exponential, and uniform convergence. A remarkable fact from the 

approach is that the stability of the equilibrium of the system is completely determined by the 

stability of its associated linear counterpart. Additionally, non-homogeneous super-twisting 

algorithms have been studied using strict Lyapunov functions as well [28]. 

A closely related algorithm, which is equivalently important, is the twisting algorithm. The 

twisting algorithm [29]  is given by 

    2211221 , zsignkzsignkzzz  
 

where z1 and z2ℝ are scalar state variables, , k1 > 0 and k2 > 0   are control parameters. 
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Similar to that of super-twisting, it is common to find its stability analyses using the 

homogeneity approach [1], [20], [30], [31] or a weak Lyapunov function together with 

geometric approach [32]. The algorithm is globally uniformly finite time stable if the 

inequality k1 > k2 > 0 is satisfied [20]. Of recent, there is a growing interest in identifying 

strict Lyapunov function for this algorithm. A strict Lyapunov design and estimation for 

reaching time, based on Zubov method, is presented in [33]. It employs the idea of using the 

solution of a partial differential equation as the Lyapunov function. For design control 

purposes, this methodology becomes difficult. Indeed it requires some handicraft techniques, 

like fixing the discontinuities. In [34], a strict non smooth Lyapunov function is proposed for 

the twisting algorithm. The strictness of this function allows estimation of the convergence 

time of the closed loop system to the origin. While the in work of [35], an alternative proof is 

established with the same Lyapunov function as in [34]. It provides additional properties that 

are not shown in [34] as well as a simple rule of thumb pertaining to the relationship between 

the control gains and the finite settling time of the system. 

Similar to the super-twisting algorithm, which has a generic second order algorithm 

developed based on it [17], for twisting algorithm, in [18], a parameterized family of 

homogeneous continuous controllers, inspired from the twisting algorithm, is proposed  

     ,, 2221
2

11221 






  zsignzkzsignzkzzz   (1 - 1) 

where  [0,1),   is an external disturbance, and k1, k2 > 0. Note that the twisting algorithm 

is a special case of this generalized controller. This continuous controller with unity gains was 

first proposed by [36] to develop a class of continuous second order finite time systems. 
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However, the approach employed there for finite time stability does not allow an upper bound 

of the settling time to be obtained.  

Pertaining to the approaches mentioned above for the twisting algorithm, they cannot be 

applied directly for the parameterized family of homogeneous continuous controllers (1 - 1) 

that includes the twisting algorithm as its special case. In [18], for   (0, 1), the use of a 

weak Lyapunov function with invariance principle, only global asymptotic stability can be 

guaranteed. It requires application of Theorem 4.2 of [20], which depends on the weighted 

homogeneity properties to infer finite time convergence for the case of  = 0.  

In contrast, from the results of [37] and [38], a strict non-smooth Lyapunov function is 

proposed for the family of controllers (1 - 1), where the upper bound of the settling time can 

be obtained. On a related development in [24], a non-smooth proportional-derivative (PD) 

controller is proposed that is of the same form as the controllers (1 - 1) shown above. There, 

an explicit construction of Lyapunov function, based on the method of [39], is given. In spite 

of that, the Lyapunov function given cannot accept zero fractional power (i.e.  = 0), the 

Lyapunov function does not work for the twisting algorithm. Within the work of [40] the 

conditions on the gains of the controllers (1-1) are developed for  (0, 1) that ensures finite 

time stability.  

While in [41], an important link between asymptotic stability with finite-time stability is 

provided. It is shown that a homogeneous system is finite-time stable if and only if it is 

asymptotically stable and has a negative degree of homogeneity. On the other hand, a double 

integrator nonlinear system [42],  
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    21221 , zgzfzzz    

where f(0) = 0 and g(0) = 0 are continuous functions verifying the sign conditions,   011 zfz

,  for 01 z , and   022 zgz ,  for 02 z , is shown to be globally asymptotically stable. 

Since, the parameterized controllers (1-1) for  (0, 1) with gains k1 and k2 > 0 satisfy the 

above sign conditions, the system is asymptotically stable. 

 In addition, it is noted that the parameterized family of system (1-1) is homogeneous of 

degree (  1), which is negative for  (0,1), with respect to dilation ((2), 1) (see 

definitions of [13]). This implies that the family of controllers are finite time stable when k1 

and k2 > 0 and  (0, 1). In [37] and [38] the gains are required to be greater than some 

positive values. Similarly the strict Lyapunov function of [24] requires k2 to be sufficiently 

large, while k1 has to belong to a certain positive interval in the results of [40]. Thus, it 

suggests that the gain restrictions given by these results are conservative. 

Pertaining to the robustness of this family of controllers, two types of perturbation are 

analyzed in [18], namely M , and | |   |z2|

  where   is an external disturbance, M and 

 are positive constants, and  has the same value as that of the controller (1-1). The first one 

is a uniform upper bounded type and the second one is a vanishing perturbation. Note that 

both conditions are identical when  = 0. However, finite-time stability can only be proved 

for the uniform upper bounded type for  = 0 (i.e. the discontinuous control). For the 

vanishing perturbation with   0, the results of [18] can guarantee asymptotic stability only. 

Furthermore, the vanishing perturbation constraints are with respect to one state only. In [43], 

a recent survey on robust finite time stability is presented. It suggested that robustness of 



 

 

21 

 

continuous finite time controllers to disturbances that are bounded by continuous bound with 

fractional exponent has not been proven. Furthermore, they noted that a recent result in this 

direction without proof appears in [37].  In [44], a similar form of perturbation is considered 

as well, however the range of  is limited and it requires additional condition on the gain of 

i.e. k1 > k2 + . This system is also studied in [45] which provides asymptotic stability through 

explicit Lyapunov method, and concludes the finite-time stability through implicit Lyapunov 

method for the system (1-1) and that of the super-twisting observer. However, due to the 

structure of the Lyapunov function, the results are only reported for   [0, 1). While in [46], 

the same upper bound on the perturbation is considered but it allows discontinuity in the 

perturbation, which is not considered in prior contributions. However, the analyses are tedious 

since no strong Lyapunov function is available.  

The vanishing perturbation that is with respect to both state variables,  

 






 22
2

11 zMzM    (1 - 2) 

where M1 and M2 are positive constants, are studied in [37] and [38]. Note that the vanishing 

perturbation considered in [18] is a special case of this when M1 = 0. It should be noted that 

this perturbation has a non-Lipschitz continuous bounds that vanish at the origin. While [18] 

only manage to guarantee asymptotic stability under the vanishing perturbation, [38] manage 

to prove finite-time stability through its strict Lyapunov function. However, similar to its 

unperturbed analysis, the gains have to satisfy a more conservative constraints for the case of 

 = 0 (i.e. twisting algorithm). In particular, when  = 0, with M1 + M2 = M, the well known 

inequality [20] for the twisting algorithm under bounded perturbation, k1  M > k2 > M cannot 
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be obtained from the results of [38], which suggest the stability properties of the system not 

being fully characterize by the Lyapunov function presented there. 

Of recent, [47] put forward a stability analysis of second-order sliding mode for a 

discontinuous control by means of a Lyapunov function. The main benefits are to fully 

characterize the stability properties of the system so that finite-time convergence can be 

concluded without resorting to geometric methods, to provide a relationship between the 

gains and its estimation of convergence time. Pertaining to Lyapunov function candidate, [48] 

provides an important theorem that relates the finite-time stability of a system with the 

existence of a Lyapunov function. It states that there exists a strict Lyapunov function for a 

system if the origin of the system is a finite time equilibrium. In particular, the Lyapunov 

function satisfy the differential inequality V̇ + kV
 
 0 where k > 0 and (0, 1). That 

contribution provides not only an existence of strict Lyapunov for the stability analysis, but 

also an estimate on the upper bound of the convergence time of the system based on the 

differential inequality.  

Regarding the construction of Lyapunov function, [49] provides a method to construct strict 

Lyapunov function for a class of HOSM algorithms. In particular, the twisting algorithm is 

considered and a Lyapunov function is shown in the work. However, the construction is 

highly dependent on the knowledge of an expression for the solutions of the system, which is 

difficult to obtain for nonlinear systems in general. In [50] and [51], Lyapunov functions, 

obtained through solving partial differential equation,  are applied to study the finite-time 

stability of some finite-time 2-sliding mode algorithms, including the twisting, and super-

twisting algorithm,  and terminal controllers [52]. It is found in a recent study of HOSM 
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control schemes [53] that these Lyapunov functions are indeed homogeneous in nature. 

However, the form of the function makes it difficult to operate with for applications or 

developments [17]. 

Furthermore, recently a Lyapunov-based homogeneous controllers is presented by [54] for 

perturbed integrator chains, of which the results of universal SISO sliding mode of [55] are a 

special case of. In particular, greater simplicity in analyses can be achieved by taking 

advantage of the homogeneity properties of the system by using a homogeneous Lyapunov 

function. In [56], the existence of a homogeneous Lyapunov function for a homogeneous 

asymptotically stable system is shown. In particular, a homogeneous Lyapunov functions for 

a terminal sliding mode-like second order system is constructed in [57]. Due to the 

homogeneous nature of the Lyapunov function, several interesting properties can be obtained 

that simplifies the construction of a differential inequality that ultimately concludes finite-

time stability.  

Other than finite-time stability, there is another relevant development on homogeneous 

systems that provides a convergence time independent of the initial conditions. In [58], a 

lemma that relates the convergence rate of a homogeneous system with its degree of 

homogeneity is provided. In particular, the origin of a system is rationally stable if it is 

homogeneous with degrees greater than zero, exponentially stable if it is equal to zero, and 

finite-time stable if it is negative. For the rational stability, the states of the system will 

asymptotically converge to zero. It differs from the exponential convergence in the sense that 

it converge to a bounded region in finite time independent of the initial conditions of the 

system. The upper-bound of the settling time is dependent only on the said bounded region. 
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This condition is similar to the uniform convergence shown in [59]. 

 This attractive feature of uniform convergence has attracted numerous attentions lately. For 

instance, by employing a control term having exponent greater than unity, fast and uniform 

convergence can be found in the work of double power reaching law for sliding mode control 

[60], uniform sliding dynamic of [59], generic second order algorithm of [17], and fixed-time 

stabilization of [61] and in [62] a fixed-time convergent super-twisting-like control inspired 

from [63] is presented, to name a few. 

Since the parameterized family of controllers (1 - 1) is homogeneous, it is of interest to 

study its uniform convergence characteristic when its range of [0, 1) is allowed to extend 

beyond unity, which to the best of the authors’ knowledge, has not been reported in the 

published literature.  

The properties of (1 - 1) and the kind of perturbations that each of the member of the 

algorithms can tolerate are different depending on the parameter . The member with  ≥ 1 

has correction terms that are stronger further away from the origin and not as strong near the 

origin as those members with 0   < 1. These differences are related to the kind of 

perturbations that each member of the algorithm is able to tolerate as suggested by the form of 

(1 - 2), although no conclusive result has been shown in the literature 

Hence a natural question arises whether the linear combination of both members of the 

family can inherits the best properties of both.  A result that is close to answering the question 

is found in [64], where a finite-time dynamics which has a fast transient process is introduced. 

Instead of having a linear sum of two homogeneous controls with different exponent, the fast 

transient process is achieved by modifying the finite-time homogeneous control law to have 
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greater correctional values when the states are far away from the origin. On the other hand, 

when the states are smaller than a threshold, the control law is essentially a double integrator 

with control (1 - 1) of negative degree of homogeneity hence providing finite-time stability. 

Nevertheless, only weak Lyapunov function is given for analysis, as such no conclusion is 

obtained on its robustness. Another question is, if a strong homogeneous Lyapunov function 

can be developed for the family of algorithms, how can it be employed for this new 

combinational algorithm which is not homogeneous, that comprise of sum of two 

homogenous algorithm.  

The above questions are answered positively however, not for the twisting based family of 

controllers (1 - 1), but for a closely-related SOSM based controllers, namely, a generalized 

super-twisting algorithm that comprises the super-twisting algorithm with additional linear 

correctional term found in [65]. In it a linear framework is put forward for the algorithm that 

allows the construction of a strong Lyapunov functions. While in [17] a generic second order 

sliding mode (super-twisting based), which extends the result of [65], where two Lyapunov 

functions, which are structurally different, are developed to show different aspects of 

convergence properties of the system. Both in [65] and [17], the control comprise of linear 

combination of two homogeneous control term of different homogeneity plus a additional 

term that has an exponent that depends on both the individual component. Hence, several 

questions arise here for the super-twisting based family of controllers, as whether the 

additional term in the linear combination is necessary in order to attain the best properties of 

both components, and whether the structurally different Lyapunov functions are required to 

obtain the same results. To that end, it is imperative to study the relationship between the 
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super-twisting and the twisting algorithms and their respectively based family of controllers. 

In [32] and [66] the same mechanical energy are employed as the basis for constructing 

Lyapunov function to analyse the stability of both twisting and super-twisting algorithms. 

However, the resulting Lyapunov function is a weak one; i.e. its time derivative is only 

negative semi-definite.  

While in [67] a super-twisting algorithm plus an adaptive term to compensate structured 

uncertainty is proposed. The additional adaptive term is based on the certainty equivalence 

principle, in which the controller is designed initially under the assumption of known 

parameters by means of a nominal Lyapunov function, in which case an adaptation law is 

derived from. There, it shows the importance of having a strong nominal Lyapunov function 

for the super-twisting algorithm, as a weak nominal Lyapunov function when applied to 

obtain adaptation law, stability of the system states cannot be concluded. At the same time, 

the strong Lyapunov function required here have to be at least Lipschitz continuous, since the 

strong Lyapunov function for the super-twisting algorithm developed in [26], which is non-

Lipschitz, resulting singularity to appear in the adaptation law. Thus, it is of importance to not 

only develop a strong Lyapunov function but a locally Lipschitz one as well for the super-

twisting algorithm in order for it to have a wider applications. In [67], a Lyapunov function 

that satisfies these criteria, developed by [68], is used. However, it is mentioned that the said 

Lyapunov function requires a more conservative condition on the controller gains than would 

be obtained employing the previously weak Lyapunov function or the non-Lipschitz one. 

The preceding results and arguments point to the direction of finding strict and locally 

Lipschitz Lyapunov functions that are able to characterize the various stability properties of 
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the family of controllers (1 - 1), which is a twisting-based algorithm, and correspondingly a 

super-twisting based algorithm, together with a derivative algorithm that are based on the sum 

of two homogeneous ones.  

However, constructing Lyapunov function for a system is difficult, let alone for a family of 

system. In essence, some of the works above employ strict Lyapunov function for stability 

analyses without considering the homogeneity properties of the system. Interestingly, in [69] 

a constructive method is proposed for generating Lyapunov function for a class of 

homogeneous systems using Polya's theorem. However, there are some drawbacks mentioned 

in the method including the selection of monomials and the exponent in the Polya's theorem 

which are unknown in the initial selection process. On the other hand, others rely on a weak 

Lyapunov function for asymptotic stability, together with a homogeneity approach to prove 

finite-time stability. These methods inevitably provide restrictions on the range of usability of 

the Lyapunov function even when the controllers are from the same parameterized family. 

At the same time, the system described above may have differential equations with 

discontinuous right-hand side (i.e. the twisting or the super-twisting algorithm or having 

perturbations that is discontinuous). According to Filippov's theory, a solution to a differential 

equation with discontinuous right-hand side is an absolutely continuous function that satisfies 

a suitable differential inclusion associated to the differential equation [2]. In particular, for 

some nonsmooth dynamic system, it is natural for the system to assume a nonsmooth 

Lyapunov function (Example 1, [70]). Due to the lack of differentiability of nonsmooth 

Lyapunov function, the usual Lyapunov's theorem [71] cannot be applied. Instead, we need 

some tools of generalized Lyapunov analysis for which the stability properties of nonsmooth 
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dynamic systems can be determined such as in [70] [72] [73] [74].  

 

Chapter 3: Robot manipulator control - full state feedback approach: An approach 

with sliding mode control has also been followed extensively on robot manipulator systems. 

However, such an approach will lead to discontinuous control [75]. In [76] the authors 

employ a smooth robust controller that comprises a proportional term and an integral term of 

a linear sliding mode variable for the trajectories control of robot manipulator. The stability 

analyses ensure the states to have asymptotic convergence. However, to ensure robustness, the 

robust gains of the control law have to dominate the first and second derivative of the 

uncertainties, which are difficult to obtain. While, in [77] the authors provides a chattering 

free sliding mode based control for trajectory tracking of robot manipulator. It can ensure 

global invariance by having the system to be on the sliding surface from the initial conditions. 

This is achieved through an integral sliding surface, hence producing a high order sliding 

manifold. However, due to the formulation, extended state variables, the acceleration, have to 

be available for computation o the control law. Higher order sliding mode algorithm for 

chattering reduction and finite-time stability for the control of robot manipulator is reported in 

[78]. However, the robust gains of the system have a singularity problem. In particular, when 

the sliding variable is zero while its derivative is non-zero, singularity will occur. In order to 

produce a smooth variable structure control on robot manipulator, the use of a low pass filter 

is presented [79]. Essentially, a virtual controller is designed based on sliding mode approach 

for a virtual plant that comprises the actual plant in cascade with a low pass filter. Hence, the 

switching action will be filtered before being applied to the actual plant. 
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Beside the discontinuous control, application of sliding mode control entails a certain 

reaching phase. The robustness property that sliding mode is well-known for can be achieved 

only after the occurrence of sliding mode. During the reaching phase, however, no guarantee 

on robustness is available [75].  In [80], a time-varying sliding manifold that comprise a 

conventional linear sliding manifold together with an exponentially decaying term is proposed 

to overcome this issue. By designing the initial condition of the decay term to be equal to the 

initial value of the linear sliding manifold, the time-varying manifold will be zero initially, 

hence avoiding reaching phase altogether. The concept of integral sliding mode to the 

trajectory tracking of robot manipulators is put forward in [75]. In particular, a low pass filter 

is added to reduce chattering effect of the discontinuous control term. By the means of 

adjusting the time constant of the low pass filter, the algorithm has a characteristic of a 

perturbation estimator to that of a pure integral sliding mode. Also, due to the use of an 

integral sliding surface, initial conditions of the algorithm can be chosen to match those of the 

robot manipulators so that the states of the systems are on the sliding manifold initially, thus 

having robustness throughout an entire response of the system starting from initial time 

instance [81]. Essentially, the integral sliding mode control leads to a sliding manifold that 

spans the whole state space [82]. Thus the tuning of the time constant of the filter, the trade-

off between chattering reduction and robustness can be adjusted.  

To apply second order sliding mode, in [83] a time varying nonsingular terminal sliding 

mode (NTSM) control for robot manipulator is presented. It is able to eliminate reaching 

phase by formulating a time-varying nonsingular terminal sliding surface. Essentially, the 

surface is augmented by an additional time varying function that provides the sliding function 
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to be zero at the initial time instance and decay to zero in finite time. Together with a 

switching type robust control term, the system will be in sliding mode from the initial time 

instance. Also, in [84] the NTSM is use as the sliding manifold and a fast terminal sliding 

mode type reaching law for ensuring finite time convergence. The control law also comprise 

of nominal parts of the robot dynamics for compensation of the nonlinearities. Another 

example can be found in [85], where a type of fast nonsingular terminal sliding mode for the 

control of robot manipulators is presented. The sliding manifold consists of a nonsingular 

terminal sliding mode together with a proportional term.  

Effectively, the main feature of sliding mode utilized in the previously mentioned controller 

is its inherent robustness properties to uncertainty and disturbances, in which case is also its 

main drawback because to have the said robustness properties, its gain for the discontinuous 

control term has to be sufficiently larger the  upper bound of the disturbances. As such, a lot 

of effort has been done to research on the method of reducing the gain of the discontinuous 

term while at the same time having the same level of robustness in the system. Towards this 

direction, a sliding mode algorithm for the control of robot manipulator with an efficient on-

line compensation for tracking of trajectories is found in [86]. The compensation is computed 

from the acceleration information and the torque applied to the robot manipulator. This 

method of uncertainties compensation is the essence of time-delay estimation, and the 

conventional sliding mode is applied not on the uncertainty of the system itself but on the 

error between the uncertainty and its compensated (estimated) form, which is assumed to be 

smaller.  

A slightly different approach is found in [87], where a gradient estimator, instead of sliding 
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mode approach, is applied on time-delay control (TDC) for improving the robustness of robot 

manipulator control under the presence of nonlinear friction. The control law consists of a 

time-delay estimation term to estimate the nonlinearities of the system, a desired error 

dynamics term, and a gradient estimator term as a compensator for the time-delay estimation 

error. The algorithm is shown to provide similar performance to the case of time-delay control 

with switching action which is sliding mode based. Similarly, an approach called time-delay 

control with ideal velocity feedback (TDCIVF) for controlling tracking problem of robot 

manipulators is given [88]. The control structure is simple; it has three distinct elements, 

namely the soft nonlinearity compensation term, hard nonlinearity cancelling term, and a 

desired error dynamics injection term. The soft nonlinearity compensation term is of the time-

delay estimation form, while the hard nonlinearity is taken care of by the ideal velocity 

feedback. The so-called ideal velocity feedback term can be viewed as a proportional control 

term of an integral sliding surface variable, which its derivative is the desired error dynamics.  

It is worth mentioning in [89], a simple decentralized linear time-invariant control for robot 

manipulator as a alternative to computation intensive computed torque method. The algorithm 

also uses a time-delayed control together with a specially designed constant diagonal gain 

matrix for the decoupling and linearization of the robot joint dynamics. The desired error 

dynamics are of a linear PD structure. Sufficient condition for ensuring stability for the design 

of the gain matrix is given, however, it requires knowledge of the inertial matrix of the robot 

manipulator. In [90], a similar robust control for the trajectory tracking of robot manipulators 

is developed that is based on a disturbance and uncertainty estimation (UDE), instead of time-

delayed control. The control formulation consists of two parts, one to inject a desired linear 
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error dynamics, and another term is based on the UDE [91] to compensate for the 

uncertainties and disturbances of the system.  Essentially, the compensation includes the 

design of a constant diagonal matrix and a time constant for a first order low pass filter. The 

stability of the system is dependent on the effectiveness of this compensation. In particular, if 

exact compensation is achieved, exponential convergence can be achieved based on the 

injected desired linear error dynamics. On the other hand, if the derivatives of the 

uncertainties are non-zero but finite, uniform ultimate boundedness can be attained. However, 

the existence of the estimation term is not properly shown and it is mentioned that the 

compensation does not exist for systems that have discontinuous disturbances and 

uncertainties.  

It is of interest to note that the time-delay estimation method of TDC has similar structure 

as the UDE algorithm above. Similar to the UDE, the time-delay-estimation method for the 

estimation of uncertainties includes the design of a constant diagonal matrix for decoupling of 

the nonlinear dynamics of the robot manipulator. In particular, it is shown by  [92] that the 

time-delay estimation does indeed behave like a first-order digital low-pass filter, in the sense 

that the diagonal elements of the constant matrix is related to the cutoff frequency of the 

digital low-pass filter. Besides that, the time-delay estimation also has similar drawbacks as of 

the UDE. For instance in [93] the authors show that the time-delay estimation algorithm have 

difficulty in estimating hard nonlinearity or discontinuous uncertainty. Also, the time delay 

estimation has an inherent property of an integrator as shown by [94], which is similar to the 

integration action of the UDE. Hence, time-delay estimation can be seen as a discrete form of 

the UDE algorithm. In [95] UDE-based control was proposed as a replacement of the time-
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delay control [96]. Along the same line of estimating disturbance in robotic manipulators, a 

relationship between the discrete TDC and the discrete PID controller is established in [97]. In 

particular, the gains of the discrete PID controller can be selected such that it has same 

properties as the TDC. While in [98] and [99], based on the concept of modelling error 

compensation, the PID control is formulated as a composition of modelling error estimator 

and a certainty equivalent feedback function for regulation and tracking problem of robot 

manipulators. As most of the literature on the robot joint position control problem deal solely 

with the stability problem rather than the system performance in a transient situation, it has 

been early recognized that transient performance guarantees deserve further research as noted 

by [98], where a PID control scheme with acceptable transient performance guarantee is 

proposed. Several works on prescribed performance guarantees have been presented that 

utilised error transformation, see [100], [101]. A sliding mode controller with guaranteed 

transient performance is proposed for application on robot manipulators, [102], where by 

choosing proper initial value of the controller, reaching transient is eliminated 

Note that TDE, UDE, and the modelling error observer discussed above, all have a similar 

structure, in which they can be reformulated to be PID control that inherently comprise of a 

linear desired error dynamics and a form of uncertainty compensation. The closed-loop error 

dynamics in all cases above involve the time derivative of the lumped disturbances and 

uncertainties, which its upper bound may not be easily evaluated in practical applications. 

Also, for both the TDE [97] and modelling error compensation [99] approaches it is necessary 

to choose an appropriate inertia matrix estimate term.  

Alternatively, robustness of PID-controlled manipulators is studied differently in [103] as 
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opposed to the formulation in [99]. It is shown that uniform semiglobal practical asymptotic 

stability can be achieved and a tuning procedure of the PID gains is given in order to obtain 

any given precision from any given bounded set of initial conditions. It is worth noting that 

the results are obtained through analysis of a strict Lyapunov function. Also, the perturbations 

that are considered there include the discontinuous functions of the state such as Coulomb 

friction and it does not require an appropriate inertia matrix estimate term. Furthermore, in 

[104], [105] a tuning procedure for the PID gains that ensures semiglobal asymptotic stability 

for the regulation problem of rigid robots. Although the tuning procedure there allows the 

selection of PID gains that ensures stability in a specified arbitrary domain, the transient 

performance of the closed-loop system is unclear from the gain selection procedures. As such, 

the performance in terms of desired error dynamics is not clear in these approaches.  

Hence, a natural question arises here as to whether a particular formulation of stability 

analysis is available, such that it provides a strict Lyapunov function that ensures semiglobal 

practical stability of PID-controlled manipulators and at the same time, provides a linear 

desired error dynamics and an uncertainty compensation components that relates directly to 

the PID gains. This relationship between conventional PID control and the nonlinear 

formulation of TDE or modelling error estimator is useful, as it provides a systematic way of 

PID gain selection as opposed to heuristic gain tuning approach which has its own problems 

due to too many gains to tune simultaneously [97]. 

Next, it should be noted that in the previously mentioned integral sliding mode, TDE-based, 

UDE-based, and PID control of robot manipulators, even in the case of exact model 

compensation, only exponential convergence is attained due to the inherent linear desired 
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error dynamics as opposed to that of NTSM, which can ensure finite time convergence [84]. 

The linear error dynamics is actually the response of linear second order system, and by 

designing the desired dynamics gains, the well-known responses such as stable node or stable 

focus in the phase portraits can be achieved (see Chapter 2 of [71]). However, due to the 

structure of NTSM, which comprise of two first order sliding mode, the type of desired error 

dynamics is limited. Essentially, under the conditions of no perturbations, it has two distinct 

phases, namely a reaching like phase, which will bring the trajectories towards the NTSM 

sliding surface if it is no already there, and once the NTSM surface, it will have a finite time 

sliding phase towards the origin, thus it is not possible for it to exhibit stable focus in its phase 

portraits. Hence, another question emerges here as to whether one can design a desired error 

dynamics that can retain finite time convergence property of NTSM while allowing the 

flexibility of selection of desired responses either stable node-like or stable focus-like in its 

dynamics. To answer it, one can consider the dynamics (1 - 1), which is a second order sliding 

mode based algorithm. In [106], for motion control of permanent-magnet linear motors, an 

integral sliding mode control with (1 - 1) as desired error dynamics is presented. It comprise 

of the usual discontinuous reaching law to enforce sliding mode, in which case, the system 

behaved like (1 - 1) in sliding mode. However, if the sliding surface is not reached exactly but 

reached within a bounded region (i.e. when a boundary layer method is employed to reduce 

chattering), the convergence of the states are not clearly shown due to the lack of strong 

Lyapunov function for the desired error dynamics of (1 - 1).  

 

Chapter 4: Robot manipulator control - output feedback approach: Several outcomes 
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in this direction have been developed. For instance, in [12], super-twisting algorithm is 

employed as observers for both velocity and uncertainties estimation. The same structure is 

employed in [24] as well, but the robot dynamics is required in its implementation. While in 

[90] a Luenberger-like plus UDE-based robust observer was proposed to solve the problem of 

requiring joint velocities for control. Additionally, a filter based on so-called "dirty-

derivative"   is used for finding the velocity from position measurements in [107], [108], 

[109], [110].  

However, the Luenberger-like observer and the "dirty-derivative" can only provide 

asymptotical convergence. On using super-twisting algorithm as a velocity observer, the 

admissible upper bound of unknown disturbances and its finite-time convergence properties is 

studied in [111]. In addition, it is mentioned that finding the tradeoff between the gains of the 

algorithm to minimize chattering amplitude at the presence of unmodelled dynamics is an 

open problem. In [112] a modified super-twisting algorithm with double closed-loop feedback 

regulation is proposed. 
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Essentially, it added a linear correction term 4k  to the   dynamics as opposed to the 

linear correction term of the sliding variable proposed by [26]. It is reported in their results 

that the modified super-twisting algorithm can improve the convergence of the sliding 

variable by accelerating the approaching speed and at the same time limiting the overshoot. 

Note that in the observation error dynamics, both the Luenberger-like and the super-twisting 

algorithm do not have a velocity observation error term in the dynamics, which in part due to 



 

 

37 

 

the lack of information on the velocity information, and hence the need of this observer in the 

first place.  However, from the "dirty-derivative" formulation it is indeed possible to get a 

linear correction term into the observer error dynamics. Hence, another question arises as to 

whether the combination of super-twisting algorithm with "dirty-derivative" can complement 

each other, and if yes, can a strict Lyapunov function be developed that characterize its 

features. 

 

Chapter 5: Robot manipulator control - bounded control approach with full-state 

feedback: Motivated by issues with actuator constraints for robot manipulator control, some 

efforts have been proposed in the literature.  For instance, assuming exact value of robot 

manipulator parameters, a bounded static feedback for trajectory tracking for robot 

manipulator is proposed in [113]. In achieving semiglobal finite-time tracking, a saturated 

control law plus desired trajectories based dynamics term is found in [114]. It has the ability 

to ensure that actuator constraints are not violated by selecting control gains a priori. In [115] 

an asymptotic tracking control for robot manipulators with actuator saturation is presented. 

The control law comprises saturated hyperbolic tangent function and computed feed-forward 

of robot dynamics terms. In [116] a static nonlinear controller is added to an existing PD 

control plus exact gravity compensation to guarantee global asymptotic stability for the Euler-

Lagrange system with input saturation. However, these methods require full dynamics of the 

system. This is not desirable because it requires a priori knowledge of parameter values of the 

system, including that of payload, which is particularly restrictive, because in typical tasks 

many different payloads are encountered and it is unrealistic to assume that the properties of 
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all payloads are accurately known [117].  Also, the transient performance of these methods is 

not clearly linked to the control gains. Particularly, if the desired error dynamics is to be 

injected into the control, it should be expected for it to be modified due to the bounded nature 

of the actuator.  

While in [118] global asymptotic stability for the tracking control of robot manipulators can 

be achieved in the presence of sufficiently large viscous friction by additionally including a 

feed-forward compensation term of the viscous friction. Additionally, in a frictionless setting, 

the control scheme of [119] is proven to only semi-globally stabilize the closed-loop system. 

Semiglobal stability for robot manipulator regulation problem is presented through a saturated 

linear PID control in [120]. In particular, their stability analysis showed that the semiglobal 

stability is due to the Coriolis term. Hence, it is concluded in [120] that the need for nonlinear 

integral function is justified to dominate the effects of Coriolis term at high velocities, for 

instance see [121], [122], [123], [124]. In the work of [125], theoretical justification is 

provided on the exponential stability for regulation problem of classical PID used in industrial 

robots in the presence of saturation effects, essentially the controller comprise nonlinear 

integral term as well. 

Of interest is the new approach for integral action within a continuous sliding mode control 

design framework in [126]. The integrator presented is modified to provide integral action 

only inside the boundary layer. In particular, the anti-reset windup structure of conditional 

integrator is explored in [127]. In essence, the conditional integrator has an inherent anti-reset 

windup built-in. The conditional integrator bears resemblance to the above mentioned 

nonlinear integral in which it contains an integration of a saturation function. 
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Thus, by accounting the presence of viscous friction together with a nonlinear integral term, 

yet another question emerges as to whether a bounded control law for global tracking can be 

developed that answers all the previously mentioned questions and the modifications that is 

required, if necessary. Additionally, when no saturation occurs, it is expected for the system 

to behave similarly to its unbounded-control counterpart.  

 

Chapter 6: Robot manipulator control - output feedback bounded control approach: 

Bounded controller without velocity measurements for robot manipulator have been studied 

in the literature. For example, for global regulation of robots using position measurements 

only are achieved in [128] [129]. However, both requires the desired gravity compensation 

term. While for global stabilization, in [130] a bounded output-feedback PID-type controller 

of robot manipulators is proposed. However, for the velocity observation, they share a 

structure similar to that of the "dirty-derivative". 

For Luenberger-like observer, a saturated output feedback based PID control is proposed in 

[131]. The resulting controller is simple to implement. It is robust to parameter uncertainties, 

decentralized, and saturated. However, it only achieves semiglobal stability but for 

sufficiently high gains, the controller, locally, can achieve exponential stability for regulation 

problem. On the other hand, global regulation is achieved in [132] through adaptive control 

that is output feedback-based in a bounded control approach. As per the literature review of 

Chapter 4, question arises as to whether the combination of super-twisting algorithm of 

Chapter 2 with "dirty-derivative" can complement each other, and if yes, can a strict 

Lyapunov function be developed that characterize its features. Moreover, if the answer to the 
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question positive, it is of interest to know as to whether it can be extended to a bounded 

control approach while maintaining its original features. 
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1.3 Problem Statement 

With the above motivations, the problems investigated in this dissertation are now 

presented. 

1. The twisting based dynamics (1 - 1) is to be explored not only for  [0, 1) as per 

the literature, but for all  ≥ 0. In particular, strict Lyapunov is to be constructed that 

can allows the full set of stabilizing constant gains. 

2. Due to the different convergence properties of the above mentioned system when, 0 

  < 1 and that of  > 0, a non homogeneous algorithms that comprise of linear 

sum of the two different system is to be studied, as to ascertain whether this new 

combination exhibits the properties of their individual components by means of 

strict Lyapunov function. 

3. The super-twisting based homogeneous algorithm is revisited to study the possibility 

of having a single structure of locally-Lipschitz Lyapunov function that can fully 

characterize the various convergence properties. The locally-Lipschitz is important 

as to avoid singularity in its time derivative (as mentioned in Section 1.1).   

4. Similar to point 2, the problem of a linear combination of two different degree of 

homogeneity of the super-twisting based algorithms is investigated. In particular, the 

necessity of an additional term found in the work of [26] is to be explored and the 

possibility of construction of a single strict Lyapunov function that fully 

characterize the system while at the same time avoiding singularity. 

5. The similarities of the mechanical energy of the super-twisting and twisting based 
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algorithms are to be examined. In particular, the idea of combining both algorithms 

is to be explored through strict Lyapunov functions. 

6. The types of disturbances that the systems can tolerate for each system (point 1-5) 

are to be considered. The possibility of robustness towards non-Lipschitz and 

discontinuous disturbances are looked into through the generalized Lyapunov 

framework and the construction of strict Lyapunov functions. 

7. The control problem of the highly coupled nonlinear dynamics of robot manipulator, 

which is a second-order system, is to be dealt with by investigating the idea of 

injecting the second order sliding mode algorithms, mentioned previously, into the 

systems and how it affects the type of convergence attainable. 

8. The application of the super-twisting and twisting based algorithms on the issue of 

lack of velocity measurements of the robot manipulator is to be investigated as well. 

9. Another practical problem of the control of robot manipulator, the actuation limits 

of the control input to the system is looked into for the possibility of application of 

the said second order sliding mode based algorithms. 

10. Finally, the idea of combining the constraints point 8 and 9 into the trajectory 

tracking control of robot manipulator is explored. 
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1.4 Contributions 

The contributions of the main chapters of the dissertation are discussed as follows: 

Chapter 2: Lyapunov Approach on Twisting and Super-twisting based Second Order 

Sliding Mode: Strict Lyapunov functions are developed for twisting and super-twisting based 

family of algorithms by using the generalized Lyapunov theorem for non-smooth systems and 

using the Filippov solutions. Due to the strictness of the proposed Lyapunov functions, whose 

time derivative can be bounded by negative definite functions, settling time for the finite time 

convergence member of the algorithms can be obtained. In addition, the strict Lyapunov 

functions are employed throughout the chapter to study the type of disturbances that the 

algorithms can tolerate, which include the non-Lipschitz type as well (Preliminary conference 

version of the some results here can be found in [133] and [134]) . 

Chapter 3: Robot Manipulator Control: Full State Feedback Approach: The main 

contribution of Chapter 3 is the development of control law that generalised the well-known 

PID control, which comprises a desired error dynamics injection and uncertainty and 

disturbance compensation. Nonsmooth analysis methods introduced in Chapter 2 are used 

throughout the stability analysis. In particular the twisting based algorithms developed in 

Chapter 2 are to be employed as the desired error dynamics in the control law. The technical 

challenge presented by this aim, is the need to avoid differentiation of the non-Lipschitz 

twisting based algorithms, which will lead to singularity. To achieve this objective, an 

auxiliary desired error dynamics variable is introduced, which in effect avoid the singularity 

problem by having the non-Lipschitz desired error dynamics in to an integral term. Through 

this formulation, semiglobal practical trajectory tracking is achieved, where the region of 
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attractions is directly dependent on a single gain parameter. 

Chapter 4: Robot Manipulator Control: Output Feedback Approach: An observer 

based on the super-twisting based algorithms of Chapter 2 is utilised to tackle the problem of 

lack of velocity measurements. In particular, due to the non-Lipschitz nature, properties like 

finite time convergence of observation errors can be obtained rendering the controller 

development to be akin to that of full-state feedback in Chapter 3. However, the non-Lipschitz 

gains of the observer can be high even for large initial conditions of the closed-loop system. 

To overcome this issue, the proposed observer contains an additional linear damping term that 

can aids in reducing the said non-Lipschitz. Not only that, to increase the size of the region of 

attraction only the linear damping term of the observer gain has to be increased without 

requiring that of the non-Lipschitz gains. 

Chapter 5: Robot Manipulator Control: Bounded Control Approach with Full-State 

Feedback: The controller in Chapter 3 is redesigned to accommodate the issue of saturation 

of actuators. The main problem that hinders global stability of robot manipulator is the 

quadratic nature of the Coriolis and centrifugal terms in the dynamics. To tackle this issue, the 

stability analysis takes into account of the inherent viscous friction of the robot manipulator, 

which has an additional damping effect on the system. In addition, the desired trajectory and 

the desired error dynamics that is to be injected to the system through the control law has to 

be modified accordingly to account for the bounded nature of the control. At the same time, it 

is desired for the control to have the same behaviours as their unbounded counterpart in 

Chapter 3 when the control is unsaturated. All of these are achieved through the special form 

of the integral term that injects saturated version of the twisting based desired error dynamics, 
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and its inherent anti-windup nature that conditionally injects the desired error dynamics 

depending on the saturation condition of the control. 

Chapter 6: Robot Manipulator Control: Output Feedback Bounded Control 

Approach: Based on the previous saturated controller utilized in Chapter 5 and the observer 

of Chapter 4, an output feedback version of saturated controller in Chapter 5 is developed. 

Due to the inherent boundedness of states of the closed-loop system (by taking into accounts 

of the issues mentioned in the previous paragraph), the observer applied here can achieve 

global stability results independent of initial conditions. Once the observation error is 

stabilized, it essentially acts as additional disturbances to the closed-loop system that affects 

the size of the ultimate bound of the states. Due to this nature, the proposed observer-

controller structure is able to assure global practical stability for trajectory tracking, and if the 

actuator limits is sufficiently high, the desired error dynamics can be unsaturated, and similar 

behaviours observed in the unbounded output feedback control in Chapter 4 can acquired. 
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Chapter 2: LYAPUNOV APPROACH ON TWISTING AND SUPER-TWISTING BASED 

SECOND ORDER SLIDING MODE  

In this chapter, several families of controllers based on twisting and super-twisting 

algorithms are presented. Strict Lyapunov functions, whose time derivative are negative 

definite, are developed for each family of controllers, with or without perturbations. The 

Lyapunov functions presented will fully characterize the type of stability and robustness 

properties of each algorithm. For the case of finite time convergence, the estimation of the 

finite settling time is provided by means of the Lyapunov function. 

 

2.1 Preliminaries 

In this section, several technical lemmas, some important definitions, and theorems for 

nonsmooth analysis [135], which will be employed throughout the thesis, are presented.  

 

Lemma 2.1: (Young's inequality [17], and [136] ) For every real numbers a > 0, b > 0, c > 0, 

p > 1, q > 1, with 1
11


qp
 the following inequality is satisfied 
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Lemma 2.2: If ai ≥ 0, for i = 1, ..., n , while 0 < c  1, and d ≥ 1, the following inequalities 

hold: 
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Thus, we obtained (2 - 1).    

 

Now, for (2 - 2), note that when c = 1, the results follow directly as well. So, consider the case 
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Thus, we obtained (2 - 2).   ■ 

 

Lemma 2.3: Let 0 < p  r  q with a ≥ 0, then the inequality hold, 
rqp

aaa  . 

 

Proof of lemma 2.3: For 0  |a|  1, note that, r,paa
rp

  since,  and 

  qpaaa
pqp

  since,,max , hence we have   rqp
aaa ,max . While for |a| ≥ 1, note 

that, , since, rqaa
rq

 and   pqaaa
qqp

  since,,max , hence,    

  rqp
aaa ,max . Thus, for all |a| ≥ 0, we have   rqp

aaa ,max . Since 

 qpqp
aaaa ,max , hence for all |a| ≥ 0, one obtains
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Consider the vector differential equation, 

     00,, xtxtxfx   (2 - 3) 
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where x ℝn
 is a state vector, and f: ℝn

  ℝ  ℝn
 is defined by almost all points on an open 

subset Q  R
n+1

 and is measurable. For an arbitrary compact set D  Q, a Lebesgue integrable 

function A(t) exists and satisfies the following: 

    tAtxf , , a.e. in D. 

Under the above conditions, the existence of a Filippov solution is guaranteed. 

 

Remark 2.1. Throughout the subsequent discussion, for brevity of notation, let a.e. refer to 

almost everywhere, i.e., for almost all t  [0, ). 

 

Definition 2.1: [70]When a vector function x(t) meets the following conditions, the solution 

to (1) in the interval [t0, t1] in Filippov’s sense is called is called a Filippov solution. 

a) x(t) is a absolutely continuous on [t0, t1]. 

b) For almost every t  [t0, t1], the following differential inclusion is satisfied: 

   txfKx ,  (2 - 4) 

Here, 

 
     tNxBfcotxfK

N

,,,
00






  (2 - 5) 

In addition, ∩N = 0 is the intersection over all sets N of Lebesgue measure zero , c̅o̅ is the 

convex hull, and B(x,) = {y  ℝn
 | ‖ y  x‖ <  } is an open sphere. 
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Definition 2.2: [72]A function f : ℝn
   ℝ, which is locally Lipschitz near x  ℝn

, is said to 

be regular at x if the following holds. For all directions v  ℝn
, there exists the usual one-sided 

directional derivative 

 
   







xfvxf
vxf
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lim,'  and we have f '(x, v) = f 

0
(x, v), where 
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vxf

xy
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
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0

0 suplim,  

is the generalized directional derivative of f at x in the direction v. The function is said to be 

regular in ℝn
, if it is regular for any x  ℝn

. 

 

Remark 2.2. A useful property is that a locally Lipschitz and convex function in ℝn
 is also 

regular in ℝn
 (see [137], Proposition 2.3.6). A feature of Filippov’s solution is that it is 

defined by the condition (2 - 4) for ẋ. This approach leads to generalization of the Lyapunov 

stability theory so that the solution x(t) of the differential equation is not needed explicitly. 

 

Lemma 2.4: (Chain rule [70]) Let the vector function x(t) be Filippov’s solution to (2 - 3) on 

an interval containing t and V: ℝn
  ℝ  ℝ be a Lipschitz-continuous regular function. In this 

case, V(x(t), t) is absolutely continuous, (d/dt)V(x(t), t) exists for almost everywhere (a.e.), i.e., 

for almost every t, and satisfies 
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Here V ̇ (x(t), t) is the generalized time derivative of  V(x(t), t),  while ∂V(x(t), t) is the 

Clarke’s generalized gradient [138], defined as follows: 

          


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






Viiiiii
i

txtxtxtxVcotxV ,,,,|,lim,  

where V is the set of measure zero where the gradient of V is not defined. 

 

Lemma 2.5: (Lyapunov's Theorem Generalized [73], [70]). Suppose that V: ℝn
  ℝ  ℝ is a 

Lipschitz-continuous regular function satisfying V(0, t) = 0, and 

       0for,,0 21  xxVtxVxV  

for some V1, V2  class K. Then, 

1) V
~

 (x, t)  0 in implies x(t)  0 is a uniformly stable solution. 

2) If in addition, there exists a class K function (.) that satisfies   0
~

 xV 


, 

then the solution x(t)  0 is uniformly asymptotically stable. 

3) Furthermore, if the function   ,acVx  where c > 0 and a > 0, then we have 

a) Finite time convergence [72], for 0 < a < 1, with the settling time estimate, 
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00

0 , where x0 is the initial states at t = t0. 

b) Exponential convergence [72], for a = 1. 

c) Asymptotical convergence, for a > 1, with convergence time  to  bounded level 

set V  =  , for any  > 0, uniformly upper bounded with respect to the initial 

condition [17], 
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Lemma 2.6: (Uniformly ultimate boundedness [139], Theorem 3.3 of [140]). Assume that 

there exists r > 0,  > 0, and V: 𝒟  R  R is a globally Lipschitz continuous function such 

that for any initial condition, ∀ x(t0) = x0  𝒟  be a domain that contains the origin and ||x0||  

, any Filippov solution of (2 - 3) x(t)  S(x0) satisfies: 

1) There exist two functions 1 and 2 of the class K such that 

     ,,0 21 xtxVx     

2)  0 <  < 2
1

(1(r) ) while ||x||  , there exists  a function 3 of the class K such 

that  xV 3

~


  

Then, the origin of the discontinuous system (2 - 3) is globally strongly uniformly ultimately 

bounded. In particular, there exist a finite T(r, ) such that ∀ t  t0 + T(r, ), all the Filippov 
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solutions x(t)  S(x0) of the system (2 - 3) with the initial condition  x0  satisfy V(x(t), t)  

2(||||), and by point (1) there holds        ,, 02

1

1 rTttrtx 
 . 

 

For the system described in (2 - 3) with a continuous right-hand side, existing Lyapunov 

theory can be used to examine the stability of the closed-loop system using continuous 

techniques such as those described in [71]. However, these theorems must be altered for the 

set-valued map   ttxV ,
~

 for systems with right-hand sides which are not Lipschitz 

continuous [73], [70]. Lyapunov analysis for nonsmooth systems is analogous to the analysis 

used for continuous systems. The differences are that differential equations are replaced with 

inclusions, gradients are replaced with generalized gradients, and points are replaced with sets 

in several places. 

In the following subsections, locally Lipschitz strict Lyapunov functions will be developed 

for second order sliding mode that are based on twisting and super-twisting algorithms. 

 

2.2 Twisting Algorithm 

In this section, a twisting based family of algorithms is developed. Particularly, the family 

of algorithms generalised the twisting and linear proportional-derivative (PD) algorithms. 

Different types of convergence (i.e. finite-time, exponential, and uniform) and the 

disturbances (i.e. which include non-Lipschitz type) that the algorithms can tolerate are 

presented by employing strict Lyapunov function throughout the stability analyses, in which 

its time derivative can be bounded by negative definite function. The inherent homogeneity 
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properties of the algorithms and that  of the proposed strict Lyapunov function are utilised, 

together with lemmas shown in the preliminaries (section 2.1), to obtained the results that 

characterize the algorithm.  

 

2.2.1 System description 

Consider the twisting based family of algorithms: 

 
    ,signsign

,

2
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b

b
b








 (2 - 6) 

where z1, z2  ℝ, are the scalar state variables, k1, k2 are positive constants, b ≥ 0 real number, 

and d is time-varying and/or nonlinear term of uncertainty bounded by 

 3
1

2

2211 MzMzMd b

b
b

   with   ,:sup: dd K   

where M1 ≥ 0, M2 ≥ 0, and M3 ≥ 0, with the same b ≥ 0 as that in (2 - 6). Note that since no 

continuity assumption is made on d, it may contain discontinuities and hence we define its 

upper bound through Filippov set-valued map. Note that for the case of b = 0, the algorithm 

contains discontinuity and the uncertainty is upper bounded by nonvanishing constant.  

 

2.2.2 Stability analysis 

For system (2 - 6), the following function  
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where r is a positive constant scalar, will be shown as a strict Lyapunov function.  

 

Remark 2.3. Note that the above function is locally Lipschitz and regular. It is differentiable 

everywhere for b > 0, and not differentiable on z1 = 0 for b = 0. The proposed Lyapunov 

function comprises the energy function, which is known as a weak Lyapunov function, and an 

additional cross-term that consists of two states. It is worth mentioning that in studying the 

stability of system (2 - 6), only a single structure of Lyapunov function is employed in the 

following analysis for both unperturbed and perturbed cases. However, in [37] and [38], a 

separate Lyapunov function is required to study the perturbed system. In particular, their 

Lyapunov function comprise the upper bound of the disturbance, in which case making it 

unclear on extending the analysis to the cases of perturbations that might includes additive 

non-Lipschitz vanishing perturbations and non-vanishing perturbations that are considered 

here.
 

 

Note that the Lyapunov function V can be lower bounded by, 
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Similarly, it can be upper-bounded by, 
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Thus, V is positive definite and radially unbounded. Since (2 - 6) is a differential equation 

that has discontinuous right-hand side, i.e. when b = 0 and since no continuity assumption is 
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made on d, its solutions are understood in the sense of Filippov (see definition 2.1). 

According to lemma 2.4, the time derivative of non-smooth Lyapunov function exists almost 

everywhere 
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Since the controller (2 - 6) is discontinuous when b = 0, for ease of presentation, the 

analysis is separated for two different cases of b ≥ 0, i.e. b > 0 and b = 0. 
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hold then the function V̇1 is negative definite. Then, 
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Applying lemma 2.1, 

3

2
2

33

12

1

1
3

1

3

2
zzzz

b
b






 

together with lemma 2.2, and the bounds of the Lyapunov function, we have: 
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Remark 2.4. Note that the nonlinear inequalities (2 - 7) and (2 - 8) are feasible for sufficiently 

large k1 > 0, and k2 > 0. Thus, an r > 0 can always exists. Consider some particular cases: 

1. Note that (2 - 8) is feasible with respect to k1, k2 for any M1 ≥ 0 and M2 ≥ 0. This 

implies that for any given upper bound on the disturbances M1 and M2, sufficiently 

large k1 and k2 always exist to render V positive definite and V̇1 negative definite. 

2. If M1 = 0, then (2 - 8) is satisfied for any k2 > M2. This coincides with the conditions 

obtained through the weak Lyapunov function [18]. 

 

Remark 2.5. Hence, when M3 = 0, i.e. without persistent perturbations, from lemma 2.5-3, the 

system (2 - 6) will have finite time convergence for 0 < b < 1, with the settling time estimate, 
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where  2010 , zz are the initial states of the system. Similarly, exponential and asymptotical 

convergence for a = 1 and a > 1 respectively, can be concluded from lemma 2.5 as well. The 

above results are possible due to the negative definiteness of the time derivative of the 
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Lyapunov function, i.e. strict Lyapunov function. 

 

Remark 2.6. When persistent perturbations occur on the system, M3  0, from (2 - 9) 
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hence, from lemma 2.6, the system (2 - 6) is uniformly ultimately bounded. 

 

b) Case 2: For b = 0 

For b = 0, V is not differentiable on z1 = 0 
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where M be defined as, 
321: MMMM  , since for b = 0, 321 MMMd  .  

Computing 
1

~
V
  for each case, we have 

For z1 ≠ 0 and z2 ≠ 0: 

 
2

2
2

1

1

3

2221
2

3

12
2

3

1121211
2

3
sign2

~
zzrzkzzzrkzrkzzkkV 



 

For z1 = 0 and z2 ≠ 0: Let ( 2 k1z2
2
, z2

3
 )

T 
with  2 ∈ [-1, 1] be an arbitrary element of ∂V(z, t), 

then 

     3

22

3

212221 1,1, zkzkzzfKT    

hence 

 
 

  3

22

3

22

3

2122
1,1

1 1,1
~

2

zkzkzkV 







 

For z1 ≠ 0 and z2 = 0: 

   1
2

3

12
2

3

111 sign1,1
~

zzrkzrkV 


 

For z1 = 0 and z2 = 0: 
1

~
V


 = 0. 

Thus, for all (z1, z2) ∈ ℝ2 

   
2

2
2

1

1

3

2221
2

3

12
2

3

1121211
2

3
SGNsign2

~
zz

r
zkzzzrkzrkzzkkV 


 



 

 

65 

 

Hence, the generalized time derivative of the Lyapunov function, after rearrangement: 
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Remark 2.7. Note that the nonlinear inequalities (2 - 7) and (2 - 10) can be satisfied for any k1 

> k2 + M, and k2 > M, which guarantees the existence of an r > 0. The conditions on the gains 

obtained here for the special case of b = 0 coincides with [20]. Utilising lemma 2.5-3, the 

system (2 - 6) will have finite time convergence for b = 0, with the settling time estimate, 
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2.3  Generic Twisting 

Leveraging the results of section 2.2.1, a generic twisting based family of controllers is 

presented. Essentially, the algorithm comprise linear sum of two system that have different 

homogeneity (hence different convergence properties), thus yielding a family of non-

homogeneous algorithms. By means of strict Lyapunov functions, the family of algorithms 

are shown to exhibit the properties of their individual components, i.e. finite-time and uniform 

convergence, thus, yielding uniform finite-time convergence that is independent of initial 

conditions of the system. 

 

2.3.1 System description 

Consider the following generic twisting based dynamics: 
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where z1, z2  ℝ, are the scalar state variables, k1, k1n, k2, k2n are positive constants, 0.5  p  

1, and 1  q. Also, d is time-varying and/or nonlinear term of uncertainty bounded by: 
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where M1 ≥ 0, M2 ≥ 0, M3 ≥ 0, M4  ≥ 0, and M5  ≥ 0  with the same p and q as that in (2 - 11). 

Note that for the case of p = 0.5, the algorithm contains discontinuity and the uncertainty is 

upper bounded by non-vanishing constant.  

 

2.3.2 Stability analysis 

The system above (2 - 11) is essentially a summation of two different degree-of-

homogeneity of the twisting-based algorithm considered in section 2.2.1. Hence, a Lyapunov 

function, which consists of linear summation of two different degree-of-homogeneity 

Lyapunov functions based on section 2.2.1, is proposed for system (2 - 11). 
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where r is a positive constant scalar. Note that the above function is locally Lipschitz and 

regular. It is differentiable everywhere for p > 0.5, and not differentiable on z1 = 0 for p = 0.5. 

 

Note that the Lyapunov function V can be lower bounded by, 
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Using lemma 2.1, 



 

 

68 

 

  2
4

1
3

1

4

3

4

2

4

1 4
3

4
zzzz

pp









  

  2
4

1
3

1

4

3

4

2

4

1 4
3

4
zzzz

qq









  

Hence, for 

 

r
q

k

p

k n 

























































 4

1
4

3

2

2

1
4

1
4

3

2

2

1

3

1

6
,

3

1

6
min

 

(2 - 12) 

   4

2

4

1

4

11

4

12

2

14

12

2

14

221
8812

1
, zzzz

q

k
z

p

k
zzzV

qpqnp
 

 

where 













2

2

1

2

2

1

1
8

,
8

,
12

1
min

q

k

p

k n . 

Also, it can be upper-bounded by, 

 

2

3

12

3

1

22

1
112

2

2

1
12

2

2

1
14

12

2

14

12

2

14

221
222444

1
,

zzrzzr

z
pq

kk
zz

q

k
zz

p

k
z

q

k
z

p

k
zzzV

qp

qpnqnpqnp






 

Using lemma 2.1, 



 

 

69 

 

.
44

3

,
44

3

,
442

,
442

,
442

4

2

4

12

3

1

4

2

4

12

3

1

4

1

114

1

1122

1

11

4

2

14

1

12

2

2

1

1

4

2

14

1

12

2

2

1

1

z
r

z
r

zzr

z
r

z
r

zzr

z
pq

kk
z

pq

kk
z

pq

kk

z
q

k
z

q

k
zz

q

k

z
p

k
z

p

k
zz

p

k

qq

pp

qnpnqpn

nqnqn

pp













 

Then,  

   4

2

4

1

4

1121 , zzzzzV
qp
   

where 





















































44444

1
,

4

3

444
,

4

3

444
max 11111

2

2

1111

2

2

1
1

rr

q

k

p

kr

pq

kk

q

k

q

kr

pq

kk

p

k

p

k nnnnn  

Thus, V is positive definite and radially unbounded. Since (2 - 11) is a differential equation 

that has discontinuous right-hand side, i.e. when p = 0.5 and since no continuity assumption is 

made on d, its solution are understood in the sense of Filippov (see definition 2.1). According 

to lemma 2.4, the time derivative of non-smooth Lyapunov function exists almost everywhere 

    
 

 t
z

z
KttVttV

dt

d T

ttV

ea

,),(
~

),(
2

1

),(

..

zzz
z











 








.   

Since the controller (2 - 11) is discontinuous when p = 0.5, for ease of presentation, the 

analysis is separated for the case of p > 0.5 and p = 0.5. 
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a)  Case 1: For 0.5 < p  1, and 1  q 

Note that for p > 0.5, V is continuously differentiable, hence 
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hold then function V̇1 is negative definite. Then, 
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together with lemma 2.2, and the bounds of the Lyapunov function, we have: 
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Remark 2.8. Note that the nonlinear inequalities (2 - 12) and (2 - 13) are feasible for 

sufficiently large k1 > 0, k1n > 0, k2 > 0, k2n > 0. Thus, an r > 0 always exists. Consider some 

particular cases. 

1. Note that (2 - 13) is feasible with respect to k1, k1n, k2, k2n for any M1 ≥ 0, M2 ≥ 0, M3 

≥ 0, and M4 ≥ 0. 

2. If M1 = M2 = 0, then (2 - 13) is satisfied for any k2 > M3 and k2n > M4. This coincides 

with the conditions obtained through the weak Lyapunov function, i.e. the energy 

function. 

 

Remark 2.9. Hence, when M5 = 0, i.e. without persistent perturbations, from lemma 2.5-3, 

1. For 0 < p < 1, and  q > 1the system exhibit uniform asymptotical convergence, 

where  
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is the time at which the trajectories reach the surface level V  =  . At the same time, 
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Substituting into the function, a finite settling time independent of initial conditions 

is obtained, 
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2. For 0 < p < 1, and q = 1, finite time convergence can be concluded. 

3. For p = 1, and q ≥ 1, exponential convergence can be concluded. 

These results are possible due to the negative definiteness of the time derivative of the 

Lyapunov function, i.e. strict Lyapunov function.  

 

Remark 2.10. While if persistent perturbations occur on the system, M5  0, from (2 - 14), 

 

12

4

4

3

1

4
4

1

2

4

15

1
5

4

15

4

15

1

4

1

34

15

4

15

1

2

4

3

1

4
4

1

5

4

12

4

15

1

24

3

4

15

4

15

1

4

1

34

15

4

15

1

2
21

3
2for   ,

3
2

1

3

2

1

3
2

1
,

~

























































































































































































p

p

p

p

q

q

q

q
q

q

p

p

p

p

p

p

p

p

q

q

q

q
q

q

p

p

p

p

MVVV

MVVVVzzV

































 

or 



 

 

78 

 

 

.
33

2for 

,

3
2

1

3

3
2

1

3
2

1
,

~

12

4

4

3

1

4
4

1

3

4

15

1

4

1

5

4

15

4

15

1

4

1

34

15

4

15

1

2

4

3

1

4
4

1

5

4

12

4

15

1

4

1

34

3

4

15

4

15

1

4

1

34

15

4

15

1

2

21












































































































































































































q

q

q

q
q

q

q

q

q

q
q

q

p

p

p

p

q

q

q

q
q

q

q

q

q

q
q

q

p

p

p

p

MV

VV

MVV

VVzzV

































 

Thus, 

 












































































































































12

4

4

3

1

4
4

1

3

4

15

1

4

1

5

12

4

4

3

1

4
4

1

2

4

15

1

5

21

33
2

,
3

2

minfor ,0,
~

q

q

q

q
q

q

p

p

p

p

M

M

VzzV


















, 

in which case, from lemma 2.6, the system (2 - 11) is uniformly ultimately bounded. 

 

b) Case 2: For p = 0.5, and 1  q 

For p = 0.5, V is not differentiable on z1 = 0: 
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where M be defined as, 
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For z1 = 0, z2  0: 
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Hence, the generalized time derivative of the Lyapunov function can be obtained, after 

rearrangement: 
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Remark 2.11. Note that the nonlinear inequalities (2 - 12) and (2 - 15) is feasible with respect 

to k1, k1n, k2, k2n for any M  ≥ 0, M2 ≥ 0, and M4 ≥ 0. As such an r > 0 always exists for 

sufficiently large k1, k1n, k2, k2n. In particular, consider the case where M2 = 0, inequalities (2 - 

15) can be easily satisfied for any k1 > k2 + M > 0, k2 > M > 0 , k2n > M4.  

 

Remark 2.12. Hence, when M5 = 0, it is not difficult to show that the system achieved finite 

time convergence for q ≥ 1. In particular for the case of q > 1, following similar arguments in 



 

 

86 

 

section 2.2.2(a), finite convergence time independent of initial conditions for q > 1, 
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and when M5  0, from (2 - 16), 
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and uniform ultimate boundedness is implied from lemma 2.6. 

 

Remark 2.13. Note that even in the case of M5 = 0, the system is able to be exactly robust with 

respect to persistent perturbations with an upper bound of M. This interesting feature is 

possible due to the discontinuous nature of the algorithm when p = 0.5. 
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2.4 Super-twisting 

In this section, the super-twisting based algorithm is revisited by presenting a locally-

Lipschitz strict Lyapunov function. The various convergence properties of the algorithm can 

be fully described through a single Lyapunov function structure. The time derivative of the 

Lyapunov function is able to avoid singularity due to its locally Lipschitz property. Due to the 

strictness of the Lyapunov function, different types of disturbances that the algorithm can 

withstand are shown, including non-Lipschitz disturbances. 

 

2.4.1 System description 

Consider the following super-twisting based family of algorithms: 

 
 

  21
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121131

sign

,sign

dzzkz

dzzzkz

p

p









 (2 - 17) 

where z1, z2  ℝ,  are the scalar state variables, k1, k3 are positive constants, p ≥ 0.5, and d1 and 

d2 are time-varying and/or nonlinear term of uncertainties bounded by: 

 2111 MzMd
p
 , and 4

12

132 MzMd
p




, 

with   ,:sup: 11 dd K   and   ,:sup: 22 dd K    

where M1 ≥ 0, M2 ≥ 0, M3 ≥ 0, and M4  ≥ 0 with the same p ≥ 0 as that in (2 - 17). Note that for 

the case of p = 0.5, the algorithm contains discontinuity and the uncertainty d2 is upper 

bounded by nonvanishing constant.  
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2.4.2 Stability analysis 

For system (2 - 17), the following function 
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1
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1
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k
zzzV p
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
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


  

where r is a positive constant scalar, will be shown as a strict Lyapunov function. Note that 

the above function is locally Lipschitz and regular. It is differentiable everywhere for p > 0.5, 

and not differentiable on z1 = 0 for p = 0.5. 

 

Remark 2.14. It should be noted that the above Lyapunov function is still locally Lipschitz 

even when the algorithm is discontinuous, i.e. p = 0.5 (the conventional super-twisting 

algorithm). On the other hand, the Lyapunov functions presented in the literature, (i.e. [26] 

and [27]), for the conventional super-twisting algorithm, are not locally-Lipschitz, which in 

turn will cause singularity in its time derivative. This singularity will cause issue as noted by 

[77], when the conventional super-twisting algorithm is use in tandem with adaptive 

controller. It is also mentioned in [77], that the problem may be resolved whenever a 

continuously differentiable Lyapunov function is available. Particularly, they proposed to use 

the continuously differentiable Lyapunov function of [68], albeit, it produces a more 

conservative condition on the controller gains than would be obtained from the non-Lipschitz 

one. Thus, it is important to develop a locally Lipschitz Lyapunov function for this system, 

while conforming to the gain conditions of the non-Lipschitz Lyapunov function. 
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Note that the Lyapunov function V can be lower bounded by,
 

  p
pp

zzrzz
p

k
z

p

k
zzzV

1
4

21

2

2

2

1

14

1

2

14

221
224

1
,






















 
Using lemma 2.1, 

  p

p

p

p
p

z
p

p
zpzz

1
4

2

4

14

1
4

1
4

2

4

1
14

4
4















  

Hence, for 

rk
pp

p
p

pp

p






















2

1

1

4

1

4

14

2

1

28
  (2 - 18) 

   pp
zzz

p

k
zzzV

4

1

4

21

4

1

2

14

221
22

1

8

1
, 








 

 
where 























2

1

1
22

1
,

8

1
min

p

k
 . 

Similarly, it can be upper-bounded by, 
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Thus, 
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Thus, V is positive definite and radially unbounded. Since (2 - 17) is a differential equation 

that has discontinuous right-hand side, i.e. when p = 0.5 and since no continuity assumption is 

made on d1, and d2, its solution are understood in the sense of Filippov (see definition 2.1). 

According to lemma 2.4, the time derivative of non-smooth Lyapunov function exists almost 

everywhere 
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Since the controller (2 - 17) is discontinuous when p = 0.5, for ease of presentation, the 

analysis is separated for the case of p > 0.5 and p = 0.5.  

 

a) Case 1: For p > 0.5 

Note that for p > 0, V is continuously differentiable, hence 
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Applying lemma 2.1, 
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together with lemma 2.2, and the bounds of the Lyapunov function, we have: 
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Remark 2.15. Note that the nonlinear inequalities (2 - 18) and (2 - 19) are feasible for 

sufficiently large k1 > 0, and k3 > 0. Thus, an r > 0 can always exist. Consider some particular 

cases: 

1. Note that (2 - 19) is feasible with respect to k1, k3 for any M1 ≥ 0 and M3 ≥ 0. 

2. If M3 = 0, then (2 - 19) is satisfied for any k3 > M1. This coincides with the 

conditions obtained through the weak Lyapunov function, i.e. the energy function 
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,  . 

 

Remark 2.16. Hence, when M2 = M4 = 0, i.e. without persistent perturbations, from lemma 

2.5-3, the system (2 - 17) will have finite time convergence for 0.5 < p < 1, with the settling 

time estimate, 
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, where  2010 , zz are the initial states of the system. 

Similarly, exponential and asymptotical convergence for p = 1 and p > 1 respectively, can be 

concluded from lemma 2.5 as well. The above results are possible due to the negative 

definiteness of the time derivative of the Lyapunov function, i.e. strict Lyapunov function.  

 

Remark 2.17. When persistent perturbations occur on the system, M2  0 and/or M4  0, from 

(2 - 20) 
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hence, from lemma 2.6, the system (2 - 17) is uniformly ultimately bounded. 

 

b) Case 2: For p = 0.5 

For p = 0.5, V is not differentiable on z1 = 0: 
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Computing 
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  for each case, we have 

For z1  0, z2  ℝ: 
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Hence, the generalized time derivative of the Lyapunov function, after rearrangement: 
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Applying lemma 2.1 



 

 

98 

 

    2
3

1

1
5.1

1
3

2

5.1

1 35.1 zzzz   

Thus, if the following inequalities 

 
 

 

 
  





































































































2

131

3
3

2

2

3

1

13

2

1

2

3

2

1

13

131

2
3

8

3

4

,4

max

2

1

8

3

4

3

,

min

Mkk

M

M

r

Mk

Mkk

Mk

Mkk

 (2 - 21) 

hold then the function V̇2 is negative definite. Then, 
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Employing lemma 2.2, and the bounds of the Lyapunov function, we have: 
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Remark 2.18. Note that the nonlinear inequalities (2 - 18) and (2 - 21) is feasible with respect 

to k1 , k3  for any M  ≥ 0 and  M1 ≥ 0, which guarantees the existence of an r > 0. Also, when 

M = 0, (2 - 21) is easily satisfied for any k1 > 0 and k3 > M1.  

 

Remark 2.19. Thus, when M2 = 0, utilising lemma 2.5-3, the system (2 - 17) will have finite 

time convergence for p = 0.5, with the settling time estimate, 
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where  2010 , zz are the initial states of the system, in which case the system is able to 

withstand persistent perturbations, bounded by M.  

 

Remark 2.20. While for the case of M2  0, from (2 - 22) 
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where uniformly ultimately bounded is concluded from employing lemma 2.6. 
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2.5 Generic Super-twisting 

Employing the results of section 2.2.3, a generic super-twisting based family of controllers 

is presented. In a similar spirit as per section 2.2.2 (generic twisting), the algorithm comprise 

linear sum of two different homogeneity super-twisting based algorithms. By means of strict 

and locally-Lipschitz Lyapunov functions, the family of algorithms are shown to exhibit the 

properties of their individual components while at the same time, singularity is avoided in its 

time derivative. 

 

2.5.1 System description 

Consider the following generic super-twisting based dynamics: 
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 (2 - 23) 

where z1, z2  ℝ, are the scalar state variables, k1, k1n, k3, k3n are positive constants, 0.5  p  

1, and 1  q. Also, d1 and d2 are time-varying and/or nonlinear term of uncertainties bounded 

by: 

312111 MzMzMd
qp
 , and 6
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with   ,:sup: 11 dd K   and   ,:sup: 22 dd K   

where M1 ≥ 0, M2 ≥ 0, M3 ≥ 0, M4  ≥ 0, M5  ≥ 0, M6  ≥ 0 with the same p  and q as that in (2 - 

23). Note that for the case of p = 0.5, the algorithm contains discontinuity and the uncertainty 

d2 is upper bounded by nonvanishing constant.  
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2.5.2 Stability analysis 

The system above is essentially a summation of two different degree of homogeneity of the 

super-twisting-based algorithm considered in section 2.2.3. Hence, a summation of two 

different degree of homogeneity Lyapunov function based on section 2.2.3 is proposed for 

system (2 - 23), namely 
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where r is a positive constant scalar. Note that the above function is locally Lipschitz and 

regular. It is differentiable everywhere for p > 0.5, and not differentiable on z1 = 0 for p = 0.5. 
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Thus, V is positive definite and radially unbounded. Since (2 - 23) is a differential equation 

that has discontinuous right-hand side, i.e. when p = 0.5 and since no continuity assumption is 

made on d1, and d2, its solution are understood in the sense of Filippov (see definition 2.1). 

According to lemma 2.4, the time derivative of non-smooth Lyapunov function exists almost 

everywhere 
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Since the controller (2 - 23) is discontinuous when p = 0.5, for ease of presentation, the 

analysis is separated for two different cases of p > 0.5 and p = 0.5. 

 

a) Case 1: For 0.5 < p  1, and 1  q 

Note that for p > 0.5, V is continuously differentiable, hence 
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After rearrangement: 
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Applying lemma 2.1, 
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hold then the function V̇1 is negative definite. Then, 
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Applying lemma 2.1, 
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together with lemma 2.2, and the bounds of the Lyapunov function, we have: 
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Remark 2.21. Note that the nonlinear inequalities (2 - 24) and (2 - 25) is feasible for 

sufficiently large k1, k1n, k3, k3n. Thus, an r > 0 always exists. Consider some particular cases. 

1. Note that (2 - 25) is feasible with respect to k1, k1n, k3, k3n for any M1 ≥ 0, M2 ≥ 0, M4 

≥ 0, and M5 ≥ 0. 

2. If M4 = M5 = 0, then (2 - 25) is satisfied for any k3 > M1 and k3n > M2. This coincides 

with the conditions obtained through the weak Lyapunov function, i.e. the energy 

function  
qnp
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Remark 2.22. Hence, when M3 = M6 = 0, i.e. without persistent perturbations, from lemma 

2.5-3, 
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1. For 0 < p < 1, and  q > 1the system exhibit uniform asymptotical convergence, 

where  
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is the time at which the trajectories reach the surface level V  =  . At the same time, 

the system (2 - 23) will have finite time convergence, in particular after reaching 

the surface level V  =  , from lemma 2.5-3, the settling time estimate, 
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Substituting into the function, a finite settling time independent of initial conditions 

is obtained, 
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2. For 0 < p < 1, and q = 1, finite time convergence can be concluded. 

3. For p = 1, and q ≥ 1, exponential convergence can be concluded. 

The above results are possible due to the negative definiteness of the time derivative of the 

Lyapunov function, i.e. strict Lyapunov function.  

 

Remark 2.23. While if persistent perturbations occur on the system, M3  0 and/or M6  0, 

from (2 - 26), 
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thus, uniform ultimate boundedness is achieved by applying lemma 2.6. 

 

b) Case 2: For p = 0.5, and 1  q 

For p = 0.5, V is not differentiable on z1 = 0, hence 
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For z1 = 0, z2  ℝ: 



 

 

118 

 

Let    

















3

2

2

1
4

22

2

221

2

2 signsign

z

zzrzzrkz q with  2 ∈ [-1, 1] be an arbitrary element of 

∂V(z1, z2), then 

  
   

 

  q

q

zrzrzk

k

z

z

zzrzzrkz
zzfK

1
5

2

3

2

3

2122

1

2

T

3

2

2

1
4

22

2

221

2

2

21

T

1,1

1,1

signsign
,

















































 

hence, 

 
  qq zrzrzrzrzkV

1
5

2

3

2

1
5

2

3

2

3

2122
1,1

1 1,1
~

2





 





 

Thus, for all (z1, z2) ℝ2
: 

 

   

  q
q

n
qq

q

n

q
q

n

q

n

q
qnnnqnn

qnnq

nn

q

n

q

n

q

nn

q

n

q

n

zzk
q

rzzk
q

rzzzzrk

zzzzrkzzkrzzkrzzzzrk

zzzzrkzrzrz
q

kkk
z

q

kkk

z
q

kkk
zkkkz

q
kkkzkk

zkkzzkkzzkkzzkkzzkkV

1
3

2

2

11

1
3

21121

1
4

213

21

1
4

2

5.0

132

2

1121121

2

213

21

2

2

5.0

13

1
5

2

3

2

15

1

3115.04

1

311

3

1

3113

1311

25.0

1311

1

13

2

1

5.1

13

2

1

2

2

13

131

2

2

5.02

131

2

2131

2

2

5.0

1311

1
4

1
4sign

sign22sign

sign

2
1

22

2
~















































 

Hence, the generalized time derivative of the Lyapunov function, after rearrangement: 
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hold then the function V̇2 is negative definite. Then, 
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Remark 2.24. Note that the nonlinear inequalities (2 - 24) and (2 - 27) is feasible with respect 

to k1, k1n, k3, k3n for any M1  ≥ 0, M2 ≥ 0, M4 ≥ 0, and M5 ≥ 0. As such an r > 0 always exists 

for sufficiently large k1, k1n, k3, k3n. In particular, consider the case where M4 = M5 = 0, 

inequalities (2 - 27) can be easily satisfied for any k3 > M1 and k3n > M2. This coincides with 

the conditions obtained through the weak Lyapunov function, i.e. the energy function 
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,   (similar to that observed when p > 0). 

 

Remark 2.25. Hence, when M3 = M6 = 0, it is not difficult to show that the system achieved 

finite time convergence for q ≥ 1. In particular for the case of q > 1, following similar 

arguments in section 2.2.4(a), finite convergence time independent of initial conditions for q > 

1, 
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and when M3  0 or M6  0, from (2 - 28), 
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thus, uniform ultimate boundedness is implied from lemma 2.6. 

 

Remark 2.26. Note that even in the case of M3 = M6 = 0, the system is able to be exactly 

robust with respect to persistent perturbations in d2 with an upper bound of M4. This 

interesting feature is possible due to the discontinuous nature of the algorithm when p = 0.5. 

 

Remark 2.27. It is worth mentioning that the system presented here is able to achieve the same 

type of convergence and robustness properties as the one in [17], in which a second order 
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system also based on the super-twisting algorithm is studied. Of significance is in [17], an 

additional term in the ż2 dynamics that has an exponent value p + q + 1, which satisfy 

12112  qqpp , for 0.5  p  1, and q ≥ 1. The function of this additional term is 

not clearly stated there, besides that of a notational simplification in the stability analysis. 

Indeed if that is the case, then it is clearly not needed in our development, lemma 2.3 is 

available in our development. In addition, there, it requires two different Lyapunov function 

structure in order to extract different stability properties of the system. In particular, for 

ascertaining the finite time property, their strict Lyapunov function exhibit singularity in its 

time derivative, due to the non Lipschitzness of the said Lyapunov function. This is not 

desirable, as mentioned in [141], if such a system is to be applied for further applications. On 

the other hand, the results presented here do not have such a problem as the proposed strict 

Lyapunov function is locally Lipschitz.  

 

2.6 Generic second order algorithm 

Due to the similarities of their mechanical energy function in forming the respective strict 

Lyapunov function for twisting and super-twisting based algorithms, in this section, a generic 

second order algorithm, which consists of linear sum of the generic twisting algorithm (2 - 11) 

and generic super-twisting algorithm (2 - 23), is presented. Leveraging the results of previous 

sections, a strict and locally-Lipschitz is presented for the algorithm to study its stability and 

robustness properties. 
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2.6.1 System description 

Consider the following generic second order algorithm dynamics: 
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 (2 - 29) 

where z1, z2  ℝ, are the scalar state variables, k1, k1n, k2, k2n, k3, k3n are positive constants, 0.5 

 p  1, and 1  q. While d1 and d2 are time-varying and/or nonlinear terms of uncertainty 

bounded by: 

312111 MzMzMd
qp
 , and  
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, 

with   ,:sup: 11 dd K  and   ,:sup: 22 dd K   

where M1 ≥ 0, M2 ≥ 0, M3 ≥ 0, M4  ≥ 0, M5  ≥ 0, M6  ≥ 0 , M7  ≥ 0 , and M8  ≥ 0 with the same 

p and q as that in (2 - 29). Note that for the case of p = 0.5, the algorithm contains 

discontinuity and the uncertainty is upper bounded by nonvanishing constant.  

 

2.6.2 Stability analysis 

The following Lyapunov function is proposed for the system (2 - 29), 
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Remark 2.28. The system (2 - 29) can be viewed as the combination of the generic twisting 

algorithm and the generic super-twisting algorithm considered in section 2.2.2 and 2.2.4 

respectively. Observed that the structure of Lyapunov functions proposed in the previous 

sections are motivated by the mechanical energy of the system [66], which by itself is a weak 

Lyapunov function, i.e. only negative semidefinite can be attained in its time derivative taken 

along the solutions of the system. To ensure negative definiteness, a cross term, that contains 

both state variables, is added accordingly. In particular, for the case of twisting based 

algorithm (Section 2.2.1 and 2.2.2), the cross term can only have a z2 with unity exponent, in 

order to obtain a negative definite z1 term in the time derivative of the Lyapunov function. 

While the exponent of the z1 part of the cross term, it is selected as to maintain the 

homogeneity of the energy function. However, in using the original energy function, the 

resulting cross term is non-Lipschitz in order to maintain homogeneity of the function. Hence, 

to overcome it, the energy function is simply squared, consequently a locally Lipschitz and 

strict Lyapunov function is produced. The same arguments applied to super-twisting based 

algorithm as well. Of interest, is that both twisting and super-twisting based algorithm 

embodies the same mechanical energy term, moreover in this section, the algorithm (2 - 29) 

has the same energy function as well.  As will be shown in the following development, the 

energy function is complete by itself without the need for cross term, to generate a negative 

definite time derivative. 

 

Note that the Lyapunov function, V can be lower and upper bounded by 
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Thus, V is positive definite and radially unbounded. Since (2 - 29) is a differential equation 

that has discontinuous right-hand side, i.e. when p = 0.5 and since no continuity assumption is 

made on both d1 and d2, its solution are understood in the sense of Filippov (see definition 

2.1). According to lemma 2.4, the time derivative of non-smooth Lyapunov function exists 

almost everywhere, 
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In accordance to the analysis performed in previous sections, the case of p > 0.5 and p = 0.5 

are analyzed separately, due to discontinuity of the controller (2 - 29) when p = 0.5. 

 

a) Case 1: For 0.5 < p  1, and 1  q 
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where lemma 2.3 has been employed in the last inequality since 
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hold then the function V̇1 is negative definite. Then, 
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Remark 2.29. Note that the nonlinear inequalities (2 - 30) is feasible with respect to k1, k1n , k2, 

k2n , k3, k3n for any M1 ≥ 0, M2 ≥ 0, M4 ≥ 0, M5 ≥ 0, M6 ≥ 0, and M7 ≥ 0. If M4 = M5 = 0, (2 - 

30) is satisfied for any k2 > M6, k2n > M7, k3 > M1, k3n > M2 and any k1 > 0, k1n > 0. This 

coincides with the conditions obtained through energy function for the generic twisting and 

generic super-twisting algorithm studied in the previous sections. 

 

Remark 2.30. Hence, when M3 = M8 = 0, i.e. without persistent perturbations, from lemma 

2.5-3, 

1. For 0 < p < 1, and  q > 1the system exhibit uniform asymptotical convergence, 
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is the time at which the trajectories reach the surface level V  =  . At the same time, 
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the system (2 - 29) will have finite time convergence, in particular after reaching 

the surface level V  =  , from lemma 2.5-3, the settling time estimate, 
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where the initial starting states is changed to V  =  . Hence, the total time to reach 

the origin can be estimated as 
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Substituting into the function, a finite settling time independent of initial conditions 

is obtained, 
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2. For 0 < p < 1, and q = 1, finite time convergence can be concluded. 
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3. For p = 1, and q ≥ 1, exponential convergence can be concluded. 

The above results are possible due to the negative definiteness of the time derivative of the 

Lyapunov function, i.e. strict Lyapunov function.  

 

Remark 2.31. While if persistent perturbations occur on the system, M3  0 and/or M8   0, 

from (2 - 31), 
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uniform ultimate boundedness is concluded by using lemma 2.6. 
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Hence, the generalized time derivative of the Lyapunov function, after rearrangement: 
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hold then the function V̇2 is negative definite. Then, 

   
 

 
 






















































2

2

1
1

211

3

28

14

1

2

12

2

12

11

2

1111

2

1

2

213

1
5

2
7215

123

2

1

3

2
23

123
115.1

113

2

1

2

2
1

2

22

2

1
2

2
2

~

zz
q

k
zzkzM

z
q

k
zzkz

q
kkzkzkM

z
Mk

zMk
q

k

z
Mk

zMk
q

kk
zMkkV

qn

qnq

n

q

n

qnq

n
n

q

n
n

 

Applying lemma 2.1, 



 

 

144 

 

,
14

2

14

12 14

2

14

1

2

2

12

1
q

q
qq

z
q

q
z

q

q
zz



























  

,
2

1

2

1 14

11

5.02

1

5.0

1

2

1




qqq
zzzzz  

,
3

1

3

2 3

2
2

3

121 zzzz 
















  

,
3

1

3

2 3

2

3

12

2

1 zzzz
qq


















  

and lemma 2.3, 

q

q
q

zzz 2

15

1

15

1

5.1

1




  since ,15
2

15
5.1 


 q

q

q
 

together with lemma 2.2, and the bounds of the Lyapunov function, we have: 

 

       

       



















































 










































2

3
2

2
2

3
2

1
2

3

198
2

14
2

2
2

14
2

1

2

2183

2

15
2

2
2

15

1
2

15
2

17

5.12

2

5.12

1

5.1

16

3

2

3

1
2

3

198

14

2

14

1

2

2183

1
5

2
2

15

1

15

17

3

2

3

1

5.1

16

~

zzzMzzzzM

zzzzzz

zzzMzzzzM

zzzzzzV

q
q

q

q

q
q

q

q

q

q
q

q
qq

q
q

q
q

qq

q
qq










  

4

3

2

3

1

9

8

4

14

2

14

1

8

3

2

1

1

8

3

4

15

2

15

1

2

13

74

3

5.1

1

5.0

6

3
3

VMVM

VMVV

q

q

q

q

q

q

q

q
q

q







































































































 (2 - 33) 



 

 

145 

 

where 

 
   

     
 





































































































































 





















 














q

kk

q

kk

q

q
k

q

k

q

q
k

q

kk

k
q

kk
k

Mk
Mk

q

k
MkkMk

q

k

Mk

q

Mkkk
Mkk

nn

n

n

n

n

n

n

n

n

n

n

nn

33

2
1,

3

2
,

3

4
max

,

14

2
,

14

12
2

1

2

,,2
1

2
2

max

,
2

,
4

,min,
4

min

,
2

,
1

2
2

,min

1111
9

1

2

1

1

11

1

112

1

8

72

23

2

1

13

2

123

2

1

7

22311

13

2

16









 

 

Remark 2.32. Note that the nonlinear inequalities (2 - 32) is feasible with respect to k1, k1n, k2, 

k2n, and k3n for any M  ≥ 0, M2 ≥ 0, M5 ≥ 0 and M7 ≥ 0. In particular, consider the case where 

M5 = 0, inequalities (2 - 32) can be easily satisfied for any k2 > M, k2n > M7, k3n > M2 and any 

k1 > 0, k1n > 0.  

 

Remark 2.33. Hence, when M3 = M8 = 0, together with k3 > M1, it is not difficult to show that 

the system achieved finite time convergence for q ≥ 1. In particular for the case of q > 1, 

following similar arguments in section 2.6.1, finite convergence time independent of initial 

conditions can be found to be, 
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and when M3  0 and/or M8  0, from (2 - 33), 
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uniform ultimate boundedness is implied from lemma 2.6. 

 

Remark 2.34. Note that even in the case of M3 = M8 = 0, the system is able to be exactly 
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robust with respect to persistent perturbations with an upper bound of M. This interesting 

feature is possible due to the discontinuous nature of the algorithm when p = 0.5. 

 

 

 

2.7 Numerical Simulations 

In this section, numerical simulations pertaining to the algorithms discussed in the previous 

sections are presented. The simulation setups for each algorithm are described. Discussion 

and analysis of the results are presented accordingly. 

 

2.7.1 Simulation Setup 

1) Twisting based algorithm: Recall from (2 - 6), the dynamics of the algorithm are,  
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  The 

simulations are performed for three different values of  2.1,7.0,6.0b . The initial 

conditions are     .20  and20 21  zz  Note that the disturbance satisfy the upper bound 

of the system description of section 2.2 with .1and,0 231  MMM  The type of 

disturbance chosen here is typical in the literature (see [18], [37], [38], [46]). The specific 
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nature of the disturbance is selected to show that past results on this algorithm are 

conservative. Similarly, the values of b are to demonstrate that the present results are less 

conservative.  

Then, the another set of parameter values, 1and,2,4,0 21  dkkb , is performed to 

show the exact robustness property of the algorithm under persistent disturbance. 

 

2) Super-twisting based algorithm: Recall from (2 - 17), the dynamics of the algorithm are, 
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The simulations are performed for three different values of  .2.1,7.0,5.0p  The initial 

conditions are     .20and20 21  zz  Note that the disturbances satisfy the upper bound 

of the system description of section 2.4 with .1and,0 1432  MMMM  The type of 

disturbance chosen here is typical in the literature (see [26], [27], [68]). The disturbance and 

values of p are selected as such to show the conservativeness of previous results. 

Another simulation is performed with the parameter values of ,1,1 13  kk  and d = 0 with 

p = 0.5 for the unperturbed case. 

 

3) Generic super-twisting based algorithm: Recall from (2 - 23), the dynamics of the 

algorithm are, 
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The type of disturbances chosen are 

typical in the literature (see [46], [17]). The three different initial conditions, each being an 

order of magnitude greater than the previous one, are selected as such to show the uniform 

finite-time capabilities of the algorithm.  

 

4) Generic twisting based algorithm: Recall from (2 - 11), the dynamics of the algorithm 
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5) Generic second-order based algorithm: Recall from (2 - 29), the dynamics of the 
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    ..sin.sign
1
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2

1
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
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
qp zztz  The simulation is performed with the initial conditions of 
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    0,0 21 zz = (3,3). Note that the disturbances satisfy the upper bound of the system 

description of section 2.6 with M1 = M2 = 1, M3 = 0, M4 = M5 = M6 = M7 = 1, and M8 = 0. The 

type of disturbances chosen is based on the sum of disturbances considered in generic super-

twisting and generic twisting-based simulations that are of different exponent.  
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2.7.2 Results and Discussions 

For better visualization of the plots, some figures are shown in two windows; each with 

different time intervals.  

 

 

(a) State z1 for time t = [0, 10) s. 

 

(b) State z1 for time t = [10, 20] s. 

 

(c) State z2 for time t = [0, 10) s. 

 

(d) State z2 for time t = [10, 20] s. 

Figure 2.1 Twisting based algorithm. States of (2 - 6) with ,2,1 21  kk and three different 

values of  .2.1,7.0,6.0b  
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(a) Disturbance, d for time t = [0, 10) s. 

 

(b) Disturbance d for time t = [10, 20] s. 

Figure 2.2 Twisting based algorithm. Disturbance    tzzd b

b

sin.sign 1
1

2

2
  for 

 .2.1,7.0,6.0b  

 

 

 

(a) State z1 for time t = [0, 10] s. 

 

(b) State z2 for time t = [0, 10] s. 

Figure 2.3 Twisting based algorithm. States of (2 - 6) for b = 0 with 2and,4 21  kk  under 

persistent disturbance d = 1. 
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(a) State z1 for time t = [0, 40] s. 

 

(b) State z1 for time t = [10, 20] s. 

 

(c) State z2 for time t = [0, 40] s. 

 

(d) State z2 for time t = [10, 20] s. 

Figure 2.4 Super-twisting based algorithm. States of (2 - 17) with ,3.0,2 13  kk and three 

different values of  .2.1,7.0,5.0p  
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(a) Disturbance d1 for time t = [0, 40] s. 

 

(b) Disturbance d1 for time t = [10, 20] s. 

Figure 2.5 Super-twisting based algorithm. Disturbance    tzzd
p

sin.sign 211   for 

 .2.1,7.0,5.0p  

 

 

 

(a) State z1 for time t = [0, 10] s. 

 

(b) State z2 for time t = [0, 10] s. 

Figure 2.6 Super-twisting based algorithm. States of (2 - 17) for p = 0.5 with 1and1 13  kk

without perturbation. 
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(a) State z1 for time t = [0, 5) s. 

 

(b) State z1 for time t = [5, 10] s. 

 

(c) State z2 for time t = [0, 5) s. 

 

(d) State z2 for time t = [5, 10] s. 

Figure 2.7 Generic super-twisting based algorithm. States of (2 - 23) with 

2and,4 3311  nn kkkk  under three values of initial conditions, 

           10,10,1,1,1.0,1.00,0 21 zz . 
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(a) Disturbance d1 for time t = [0, 10] s. 

 

(b) Disturbance d2 for time t = [0, 10] s. 

Figure 2.8 Generic super-twisting based algorithm. Disturbance 

    qp
zztzd 1121 sin.sign   and     12

1

12

122 sin.sign



qp

zztzd  for three different 

values of initial conditions,            10,10,1,1,1.0,1.00,0 21 zz . 
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(a) State z1 for time t = [0, 10] s. 
 

(b) State z2 for time t = [0, 10] s. 

 

(c) Disturbance d for time t = [0, 10] s. 

Figure 2.9 Generic twisting based algorithm. States of (2 - 11) with ,
4.0

1
,

4.1

1
 qp

,411  nkk  and 222  nkk  under the disturbance, 

         










qp

qp
zztzzztzd

1
2

2

1
2

21

12

1

12

12 .sin.sign.sin.sign . 
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(a) State z1 for time t = [0, 10] s. 

 

(b) State z2 for time t = [0, 10] s. 

 

(c) Disturbance d1 for time t = [0, 10] s. 

 

(d) Disturbance d2 for time t = [0, 10] s. 

Figure 2.10 Generic second order based algorithm. States of (2 - 29) with ,
4.0

1
,

4.1

1
 qp  

2and,4 332211  nnn kkkkkk  under the disturbances, 

    qp
zztzd 1121 sin.sign   and 

         










qp

qp
zztzzztzd

1
2

2

1
2

21

12

1

12

122 .sin.signsin.sign . 
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1) Twisting based algorithm: 

Figure 2.1 shows the convergence of the states, z1 and z2 in finite time for b = 0.6 and 0.7. 

For b = 1.2 the states are converging to the origin asymptotically. Figure 2.2 shows the non-

Lipschitz disturbances acting on the system. For the system (2 - 6), with parameters as stated 

in the simulation setup section, i.e. if M1 = M3 = 0, as per weak Lyapunov function [18], the 

requirements for finite time stability are k2 > M2 with any k1 > 0. The gains of the simulation 

are selected to satisfy these conditions.  

The following are the conditions on the gains, of the same dynamics under the same 

perturbations, obtained from the literature for comparison purposes.   

1. In the results of [37] (see Theorem 2 of [37]), the conditions on the gains are 

 

 
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with 
b

b




1

2
  for b [0,1).  

2. In Theorem 2 and 3 of [38], the conditions on gains are 
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3. In [44] (see Theorem 1 of [44]) and [46] (see theorem 3.2 of [46]), the conditions 

are 02221  MkMk  with are need only applicable for 










1,

3

2

1

2

b

b
. 

4. In [45] only for )1,0[
1

2


b

b
it requires 

    
 

2

2
221


 Mkk   and  22 Mk   

Clearly, the simulation choice of 2,1 21  kk with 12 M  does not satisfy all of the above 

conditions. Also, the simulation parameters of  2.1,7.0,6.0b  do not belong to the range 

considered there. However, as per remark 2.4, the strict Lyapunov function presented in 

section 2.2 allows the conditions imposed on the simulations, showing different convergence 

properties dependent on the parameter b. Thus, the results show that conservativeness of 

previous results mentioned above. In particular, the Lyapunov results of [18], [37] and [38] 

are not able to extend to exponent greater than 1. It is also worth mentioning that the types of 

disturbances are also extended, specifically, in [18], only global asymptotic stability is 

achieved for 0 < b < 1 under disturbances upper bounded by one state variable only, which in 

part due to the weak Lyapunov function employed. In contrast, the strict Lyapunov function 

of section 2.2 allows disturbances upper bounded by the sum of both states.  

Figure 2.3 shows the finite time convergence of system (2 - 6) under persistent disturbance 

d = 1 for b = 0 with 2and,4 21  kk . From remark 2.7, finite time convergence is achieved 

when for any k1 > k2 + M, and k2 > M, which coincides with the well-known result [20]. On 

the other hand, the results of [37] and [38], while applicable to b = 0.5, it is unclear on how to 
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obtain this conditions. 

As a result, the strict Lyapunov function presented here is able to fully characterize the 

stability of the twisting based algorithm for any b ≥ 0, which essentially fills the gaps in the 

literature, in the sense that those prior results are only applicable to certain range of b while at 

the same time requiring conservative conditions on gains with respect to disturbances. 

 

2) Super-twisting based algorithm: 

Figure 2.4 shows the convergence of the states, z1 and z2 in finite time for p = 0.5 and 0.7. 

For p = 1.2 the states are converging to the origin asymptotically. Figure 2.5 shows the non-

Lipschitz disturbances acting on the system. For the system (2 - 17), with parameters as stated 

in the simulation setup section, i.e. if M2 = M3 = M4 = 0, as per energy based Lyapunov 

function (see remark 2.15), the requirements for stability (finite time if p = [0,1), exponential 

if p = 1, and asymptotical if p > 1) are k3 > M1 with any k1 > 0. The gains of the simulation are 

selected to satisfy these conditions.  

In [26], the Lyapunov function presented is for the special case of p = 0.5 of the super-

twisting based algorithm studied here. Under the same disturbances as per the simulation, the 

conditions given for finite time stability are 
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which is clearly not satisfied by the simulation parameter values for the gains, which shows 

the conservativeness of prior results.  

Meanwhile, the Lyapunov function for the super-twisting algorithm presented by [26] and 

[27] (for p = 0.5) will cause singularity issue when used in further application such as with 

certainty-equivalence method in [67]. This issue is due to the non-Lipschitz nature of their 

proposed Lyapunov functions, in which case, is not a issue with our proposed Lyapunov 

function which is locally Lipschitz and strict (see section 2.4). Pertaining to the issue of 

solving singularity, a continuously differentiable Lyapunov function for the super-twisting 

algorithm (p = 0.5) is presented in [68], albeit, it comes with conservative gain conditions, 

namely, for the unperturbed system, 02 1

2

3  kk , while in the present results, as per remark 

2.18 and (2 -21), for the unperturbed system, finite time is achieved with any k1 > 0 and k3 > 

0, which is shown in Figure 2.6 with 1and1 13  kk . Also worth mentioning is that the 

mentioned prior results is only applicable to the case of p = 0.5, while the results shown here 

is for any p ≥ 0.5 as per results shown in Figure 2.4. 

 

3) Generic super-twisting based algorithm: 

Figure 2.7 shows the uniform finite time convergence of the states, z1 and z2 under three 

different values of initial conditions that differ by an order of magnitude. In fact, for all three 

different initial conditions cases, all of them reach the origin in time, t less than 5 seconds 

even though the furthest initial conditions are of two order of magnitudes difference than the 

closest one. This strong convergence feature is due to the strong control terms that have 
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exponent greater than 1, namely,  11 sign zz
q

 and  1

12

1 sign zz
q

.  

Figure 2.8 shows the non-Lipschitz disturbances acting on the system. Similar forms of 

disturbances are also studied in [46] and [17]. Particularly, the Lyapunov function proposed in 

[17] is able to show uniform finite time convergence as well under disturbances that are 

upper-bounded in a form similar to that in the simulation. However, these prior results require 

two distinct Lyapunov functions to ascertain different convergence properties of the system, 

i.e. uniform and finite time convergence, in which case for the finite time convergence, their 

Lyapunov function suffer the same singularity issue mentioned in the super-twisting based 

results above. In addition, due to the two different structure of Lyapunov functions employed 

there, the control requires an additional term in the ż2 dynamics, i.e.   1

1

1 sign zz
qp 

, to 

ensure strictness of Lyapunov functions. The proposed strict and locally-Lipschitz Lyapunov 

function (see section 2.5) is able to overcome these shortcomings. 

 

4) Generic twisting based algorithm: 

Figure 2.9 shows the uniform finite time convergence of the states, z1 and z2 under the 

influence of non-Lipschitz disturbances. The disturbances, which comprise both states of the 

system, considered in this simulation satisfy the upper bound of the system description in 

section 2.3. In fact, as per remark 2.9, since p = 1/1.4 < 1 and q = 1/0.4 > 1, uniform finite 

time convergence is guaranteed. The generic twisting algorithm is based on the results of 

twisting based algorithm by combining control term of different homogeneity with the intent 

of combining different stability properties within an algorithm 
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5) Generic second order based algorithm: 

Figure 2.10 shows the uniform finite time convergence of the states, z1 and z2 under the 

influence of non-Lipschitz disturbances. The disturbances, which comprise both states of the 

system, considered in this simulation satisfy the upper bound of the system description in 

section 2.6. In fact, as per remark 2.30, since p = 1/1.4 < 1 and q = 1/0.4 > 1, uniform finite 

time convergence is guaranteed. The generic second order algorithm is based on the results of 

combining the generic twisting and generic super-twisting based algorithm. Through such 

combination, the inherent energy based function of the system (which is found to be a weak 

Lyapunov function when applied on either twisting or super-twisting based algorithm alone), 

is a strict and locally Lipschitz Lyapunov function as per remark 2.28. 

 

Remark 2.35. The disturbances considered here (see Figure 2.2, 2.5, 2.8, 2.9(c), and 2.10(c)) 

comprise bounded discontinuity, which corroborates with the results of the stability analysis 

which employ the generalized Lyapunov theorem (see section 2.1).  
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2.8 Summary 

Two twisting-based family of algorithms, two super-twisting based family of algorithms and a 

generic second order algorithm that combines the super-twisting and twisting algorithms are 

developed. In each case, strict Lyapunov functions have been introduced, that can fully 

characterize different stability properties of a parameterized family of algorithms. For the 

twisting based algorithm, it generalize the well-known twisting algorithm, continuous finite-

time second order system, linear PD control, and uniform convergence algorithm. While for 

the super-twisting based algorithm, it generalize the super-twisting algorithm, homogeneous 

and linear PI control, and uniform convergence algorithm. Then we show that the linear 

combination of two homogeneous algorithms with different degree of homogeneity can 

indeed produce a system that has the characteristics of its individual component. Due to the 

availability of strict Lyapunov functions, settling time for finite time convergence can also be 

obtained. Finally, the robustness to different classes of perturbations can be easily considered 

as well. 
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Chapter 3: ROBOT MANIPULATOR CONTROL: FULL STATE FEEDBACK 

APPROACH 

In this chapter, a family of controllers is developed for the trajectory tracking of robot 

manipulator. Based on the twisting based family of algorithms presented in the previous 

chapter, the proposed controller is able to generalised PID control to a homogeneous PID-like 

control. Semiglobal practical tracking stability is achieved despite uncertainty and additive 

disturbances in the robot dynamics. For the special case of regulation problem, the proposed 

controller is able to achieve finite-time or exponential convergence, depending on the chosen 

parameters. The stability analysis allows selection of control gains based on desired 

performance instead of gains tuning. Numerical simulations using two-link robot manipulator 

demonstrate the performance of the proposed controller. 

 

3.1 System Description 

A nonlinear mechanical system with n-degree of freedom in closed loop with a nonlinear 

controller that generalised the PID control is considered. 

 

3.1.1 Manipulator Dynamics 

A class of rigid, fully actuated, unconstrained mechanical systems which can be modelled 

by the Euler-Lagrange principle that results in a class of nonlinear systems modelled by a set 

of highly coupled nonlinear differential equations is considered. The dynamics of n-joint 

serial rigid robotic manipulators can be described by the following differential equation [117] 
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         ,,,,  tqqDqGqFqqqCqqM   (3 - 1) 

where q ℝn
 is the vector of generalized joint coordinates, M(q)  ℝnn

 is the inertia matrix, 

and C(q, q̇) q̇, Fq̇, G(q), D(q, q̇, t),   ℝn
 are, respectively, the vectors of Coriolis and 

centrifugal, viscous friction, gravity, disturbances, and input generalized forces, with F being 

a constant, positive definite , diagonal (viscous friction coefficient) matrix and D(q, q̇, t) being 

a locally bounded disturbances. The terms of the robot manipulator dynamics satisfy some 

well-known properties (see for instance [117], [142]), in which several are recollected here. 

 

Property 3.1: The inertia matrix M(q) is a positive definite symmetric matrix satisfying 

  nqmqMm  , , for some positive constants mm  . 

Property 3.2: The Coriolis matrix C(q, q̇) satisfies: 

3.2.1.     ;,,,0,,
2

1 nT qqxxqqCqqMx 







   

3.2.2.       ;,,,,, nT qqqqCqqCqqM    

3.2.3.       ;,,,,,,, nzyxwzywCzxwCzyxwC   

3.2.4.     ;,,,,, nzyxyzxCzyxC   

3.2.5.   ,,,,, n

m zyxzyCzyxC 
 
for some constant Cm  ≥ 0. 

Property 3.3: The gravitational torques vector for robots having only revolute joints 

satisfies (see [142] page 101): 
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3.1.   ,, n

m qGqG 
 
for some  constant Gm > 0. 

3.2.     ,,, n

g yxyxkyGxG 
 
for some constant kg > 0. 

Property 3.4: The viscous friction coefficient matrix satisfies ,fFf  where 

    .:maxmin:0 ffff i
i

i
i

  

In this chapter, it is assume that both joint positions and velocities are available from 

measurement, i.e. full state feedback is viable. The control objective here is to design a robust 

full state feedback controller that ensures the robot configuration vector q tracks a desired 

trajectory vector, qd (t) with an ultimately bounded error that can be made as small as 

required, from any initial conditions that belong to an arbitrarily large compact set. 

The desired trajectory vector, qd (t) is assumed to be twice continuously differentiable 

vector-function such that   ,tqd
   ,tqd
 and  tqd

 are bounded by a priori known constants. 

This is a standard assumption in the trajectory tracking control of robot manipulator (see for 

instance [103], [131], [113]). 

Note that no continuity assumption is made on D(q, q̇, t), so it may have discontinuity, such 

as Coulomb friction. In particular, the form of D(q, q̇, t) considered here is assumed to be 

upper bounded by the function 

2

4

2

132110 qpepqpeppD   , with   DKD   :sup:
 

where p0, p1, p2, p3, and p4 are some nonnegative constants, while 
dqqe :1
ℝn

 , and 

dqqe  2
ℝn

. 
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3.1.2 Control Development 

The following notions, which were used in [36] and [7], are introduced for simplicity of 

notation and will be used in the analysis and design of the controller. 

       .,sign,,sign 11

n
T

n

a

n

aa
xxxxxxsig    

 

The controller proposed is given by 

  asK sig , (3 - 2) 

where K is a positive definite diagonal matrix, i.e.   ,diag
1

n

iikK


 with niki ,,1,0  , a 

≥ 0 constant, and s ℝn
  is the desired error dynamics defined as ,2  es  with

  

     ,sigsig 11
1

2

22

b
b

b

eKeK    (3 - 3) 

where K1 and K2 are positive definite diagonal matrices, i.e.   ,diag
111

n

iikK


  with ,01 ik  

  ,diag
122

n

iikK


 with 02 ik  ni ,,1 , b  ≥ 0 constant.  

 

3.2 Stability Analysis 

The closed-loop system of (3 - 1), (3 - 2), and (3 - 3) can be written as  

   

           ,,sig

,

,sigsig

11

2

21

11
1

2

22

d

a

b
b

b

qDqGqFqqqCqMsKqMe

ee

eKeK
















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To rewrite the closed-loop system in a form more convenient for analysis, let us define the 

change of variable ,11 ez  and 2z , and we obtain the following form of closed-loop 

system, 

   

     ,sig

,sigsig

,

1

1

11
1

2

222

21











a

d

b
b

b

sKqzMs

zKszKz
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3.2.1 Construction of Lyapunov Function 

From the closed-loop dynamics (3 - 4), the structure (z1, z2) is essentially the desired error 

dynamics injected by the controller through (3 - 3). Essentially, for any i  1,...,n, when si = 0, 

the dynamics of the subsystem (z1i, z2i) is identical to that of the twisting-based family of 

algorithm studied in section 2.2 of Chapter 2. In other words, si can be viewed as a 

perturbations on the (z1i, z2i) dynamics. While in the s-dynamics, its structure is akin to that of 

sliding mode control.  

Since the differential equations (3 - 4) have discontinuous right-hand side, i.e. when a = 0 

and/or b = 0, or D, and since no continuity assumption is made on D, its solutions are 

understood in the sense of Filippov (see definition 2.1).  

The following Lyapunov functions will be used in the analysis: 
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Remark 3.1. Note that the Lyapunov function for the (z1i, z2) -subsystem is a strict Lyapunov 

function proposed for the twisting-based family of algorithms (section 2.2.2) of Chapter 2, 
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which is a compact set, with the constant a3i  > 0 (see Appendix A.1). 
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Remark 3.2. Note that such an upper bound always exists for any given compact set (R) 

since M, C, F, G, D, and the desired trajectories are locally bounded, it implies that (.) is 
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locally bounded as well (i.e. it compose of summation of locally bounded function). From 

[143], the multi-valued function K[(.)] is locally bounded as well. Also, using the skew-

symmetry property 3.2.2, the function,    sCssMs TT 
2

1
 is locally bounded as well. Hence, 

within a compact set, an upper bound on the above function exists. 

 

3.2.2 Stability Criterion Determination 

The time derivatives of the Lyapunov functions, in accordance to lemma 2.4, 

   Rszz  ,, 21  of the closed-loop system satisfy the following inequalities: 

Differential inequalities for the z-subsystem (see Appendix A.1): 
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for b = 0:  

 



 

 

175 

 

 

 

      2

3

12122

3

22

22121

2

2
2

1

1

2

212
2

1

11

2

1

..

21

SGNsign

SGN2

2

3

2

3
2

~
,

iiiiiiiii

iiiiii

iiiiiiiiiiiiizi

ea

iizi

zkkrszzzk

szzzkk

zzrszkszzrszkVzzV








 

   
 iizi

szz
zi zzVV

iiii

21
bd,

,maxfor   0
321 

  (3 - 6) 

Differential inequality for the s-subsystem: 
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Remark 3.3. Note that the above analysis for the s-subsystem also apply to the case of a = 0. 

In particular, when a = 0, using the following notation, 
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Remark 3.4. For ease of presentation, note that the above differential inequalities are stated for 

two cases for each subsystems. This is due to the fact that the subsystems are discontinuous 

when b = 0 and a = 0 respectively.  

 

Theorem 3.1: For any given K1, K2 > 0, suppose that the initial conditions for the closed-loop 

system (3 - 4) belong to a given compact set, there always exists a c > 0 such that initially, (z1, 

z2, s)  (c). Depending on the value of a: 

1. For the case of a > 0, a  > 0 can be selected such that c >  > 0 and by selecting K 

such that 
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all the trajectories will enter the compact set (), in finite time, and stay there for all 

future times. 

2. For the case of a = 0, by selecting K such that 

  ,,,1,1 nick ii  ,. 

all the trajectories will enter the compact set z(c)  s(0) in finite time, and stay there 

for all future times. Additionally, the states (z1, z2), have finite time convergence for 0 

 b < 1, exponential convergence for b = 1, or for asymptotical convergence for b > 1.  
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Proof of Theorem 3.1: The stability analysis proceeds in two steps. 

1. Obviously, for a given compact set of initial conditions, there exists c > 0 such that initially 

(z1, z2, s) belong to some compact set strictly inside (c). A trajectory may leave the set 

(c) only through one of the boundaries: 
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Hence, for ki sufficiently big, c1 is positive for a = 0, or min(K) sufficiently big, c2 is 

positive for a > 0, such that,  V̇s < 0 almost everywhere. If the gain K satisfy the 
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conditions of the Theorem 3.1,  then,  Vs is a  decreasing function of t, so s stays in 

s(c) and 
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Thus, we have from (3 - 5), 
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So, V̇zi is a decreasing function of t for all i = 1, ..., n and (z1, z2) stay in z(c).  

While, for b = 0, at the boundary,  
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 (see the above definition of function 

1i(.)) 

Hence, from (3 - 6), it implies niV
ea

zi ,,1,0
..

  .  

So, V̇zi is a decreasing function of t for all i = 1, ..., n and (z1, z2) stay in z(c) for the 

case of b = 0. 

As a result, the set (c) is positively invariant, i.e. the trajectories of (3 - 4) stay in it once 

they have entered it. 

 

2. Now we have shown boundedness, next is to show convergence to a smaller compact set 

() with c >  > 0. 

(a) For the s-subsystem, for a = 0, from (3 - 7) 
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i

s 1min
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Hence, for the case of case of a = 0, ∀ i = 1, ..., n, if  ck ii 1 , 0for 0
~

 sVs


, which 

implies that the s trajectory will converge to zero in finite time and stay there for all 

future times, i.e. all (z1, z2, s)  z(c)  s(c) will enter the set z(c)  s(0) in finite 

time.  
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While, for the case of or a > 0, observed that (z1, z2, s)  (c) \ () implies that 

m
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 (3 - 11) 

Thus, for the case of a > 0, with min(K) sufficiently big, c3 is positive, such that,  V̇s 

< 0 almost everywhere. Then, Vs is a decreasing function of t, so s enters the set 

s() in finite time and stays in it for all future times, in particular
m

s


  together 

with the fact that  ,,,1for , nissi   we have ni
m

si ,,1for  , 


. 

(b) For the z-subsystem, for all b ≥ 0, if a = 0, once the s reaches zero (inside the set 

z(c)  s(0)), the z-subsystem becomes: 
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which is a multi-dimensional version of the planar homogeneous twisting-based 

control proposed in Chapter 2 (see section 2.2.1). Its convergence properties is based 
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on the b parameters, where for 0  b < 1 finite time convergence can be achieved, for 

b = 1 will provide exponential convergence, while for b > 1 the system exhibits 

asymptotical convergence.  

 

While, for b ≥ 0, if a > 0, following the same arguments presented in point (1) - (b), 

it is not hard to see that, once s(t) is inside the set  s , (z1, z2) will enter the set 

 z in finite time and stay in it for all future times. Hence, the set     zs   is 

positively invariant and attracting for all trajectories of the system (3 - 4) originating 

inside the set s(c)  z(c).    

  ■ 

 

Remark 3.5. Note that the results above show that the control law achieves semiglobal 

practical stability for the case when a > 0. Its region of attraction can be given as the set s(c) 

 z(c), while its ultimate invariant set given by     zs  . The semiglobal nature of the 

control law can be seen where the estimate of region of attraction for each set of initial states 

can be increased by choosing a sufficiently big gain K. While the practical stability nature, 

pertaining to the set where the solutions converge is stable and may be reduced at will, can be 

achieved also by tuning the gain K (see the conditions on K in Theorem 3.1). On the other 

hand, when a = 0, the control law achieves semiglobal stability in which its convergence is 

dependent on the parameter b (i.e. finite time with 0  b < 1, exponential for b = 1, and 

asymptotical for b > 1). Similarly, its region of attraction is s(c)  z(c). 
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Remark 3.6. Note that for the special case of a = b = 1, the proposed controller (3 - 2) 

becomes the well-known PID control, indeed when written in original coordinates 

    01112

0

teKdeKeKeK i

t

t

ipd    , 

where ,, 2KKKKK pd   and 
1KKKi  . Thus, based on the stability analysis above, one 

can select the gains of the conventional PID control based on the desired error dynamics (K1, 

K2) and the desired region of attraction with respect to the ultimate bound (K). This is a great 

simplification to the heuristic PID gain tuning method, where tuning a particular gain will 

affect the tuning of all the other gains of the system [97]. It is worth mentioning that in [99], a 

similar gain selection method is presented, but due to their specific formulation, the bounds 

on the inertia matrix are required to compute the PID gains. The need for the inertia matrix is 

echoed by TDE and UDE based PID approach as well [90] [88]. On the other hand, our 

proposed controller is model-free. Another issue in [99], is its stability formulation requires 

the time derivative of the robot dynamics, in which case is not directly applicable if 

discontinuity is to be considered in the type of disturbances affecting the system. 

Additionally, in the work of [103], semiglobal PID control results is achieved which is model-

free without requiring time derivative of the robot dynamics, however, the gains selection 

only pertains to the desired region of attraction and ultimate bound, the transient performance 

or the desired error dynamics is not clearly specified with respect to the PID gains.  
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Theorem 3.2: In addition to the conditions in Theorem 3.1, consider the special case of 

regulation problem, where the desired trajectory of the robot dynamics (3 - 1) is a constant 

value, q0, )0,(i.e. 0  ddd qqqq  , the control (3 - 2) with the parameter b restricted to 0 < 

b  1, and parameter a selected as 
b

b
a




1

2
, while the additive disturbance is upper bounded 

by ||D|| ≤ p1||e1|| + p2||q̇|| + p3||e1||
2
 + p4||q̇||

2
, i.e. vanishing perturbation. Then, for b = 1, 

semiglobal exponential regulation is guaranteed, provided that K is large enough with respect 

to initial error conditions. While, for 0 < b < 1, semiglobal finite-time regulation is assured, 

provided that K is large enough with respect to initial error conditions, and the gravity vector 

at the constant desired position, G(qd) is zero.   

 

Proof of Theorem 3.2: For this section, the exponent of the control law (3 - 2), a is selected as 

b

b
a




1

2
for 0 < b  1. Let us define the following variables, 
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Remark 3.7. Note that q0 is a constant vector, and as a result the vector, s̅ is a constant vector 

as well since the matrix K comprises constants as well. Also, s̅ is a constant that is defined for 

stability analyses only, its actual value, which require knowledge of gravity vector, G(q), is 
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not required in the control law. Also note that D comprise vanishing perturbations only, i.e. p0 

= 0 (note that this is the general assumption on regulation problem , however, if constant 

perturbation do exists, the s̅  can be redefined to accommodate this extra constant term).  

 

Hence the closed-loop system (3 - 4) could be rewritten as 
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Remark 3.8. Note that the fact of    0

1
1

2

sig qGKs b

b


   has been employed based on the 

above definition. Also, observe that the s  and z  subsystem have the same form as the s and z 

subsystem discussed in Theorem 3.1 (i.e. by replacing (s, z1, z2) with (s ̃, z 1, z 2) ).  

 

Hence using a similar Lyapunov function structure, consider the following Lyapunov 

function 
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Note the following properties of the Lyapunov functions: 
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Also, from Appendix A.1, 
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and the term, 
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Consider the time derivative of the Lyapunov function Vs  along the solutions of the system 

for the s  subsystem: 
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 (3 - 12) 

 

Remark 3.9. Note that the following three properties that will simplify (3 - 12): 

1. From Theorem 3.1, the states (s, z1, z2) will reach and stay inside the compact set, 

s()  z() in finite time, and note that  s̅, z̅1, z̅2 are constants, we have, for 0 < b  

1, the following upper bounds (Note that upper bound of the perturbation, ||D|| has 
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been expressed in terms of state variables of the closed-loop system): 
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with 2(.), 3(.), 4(.) are positive functions and (.) is a class K function, and the 
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vector (t) is defined as: 
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Substituting the properties of remark 3.9 into (3 - 12), 
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where  Kk min . 

Employing the bounds on the Lyapunov functions and lemma 2.2, one obtains, 
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Employing the bounds on the Lyapunov functions and lemma 2.2, one obtains, 

  4

3

~1~

1

2

2
4

1

22

21

~2

1

~1
22

1

44

53

~0

..

21~

22~,~
z

b

b

s

b

b

b

b

zs
b

b

b

z

ea

z VV
m

dnVV
m

dnVdzzV 








































  (3 - 14) 

With the above results, we are now in a position to find the time derivative of the Lyapunov 
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hold then the function V̇1 is negative definite. Then, we have, 
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Consider the case of b = 1, recall that the term from remark 3.9, 
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while for the case of 0 < b < 1, consider the case when the final desired position corresponds 

to the rest position of the manipulator where G(q0) = 0, or the gravitational torque of the 

manipulator dynamics is absent (i.e. in space where gravity is absent or in a planar horizontal 

configuration) where G(q) = 0 for ∀ q  ℝn
, the term G(q0) vanishes to zero. From (3 - 15), 
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Thus, for ||(t)||  0 as t   (where the desired trajectory approaches a constant final 

desired position), then we have V(s , z 1, z 2)  0 as t   as well. Obviously, if ||(t)||  0 

(regulation problem), when b = 1, the system will converge to the equilibrium exponentially, 

while for 0 < b < 1, the system achieves finite-time regulation, in which the states reach the 

origin in finite time with the estimate of reaching time as, 
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where (s 0, z 10, z 20) are the states of the system when it first enters the region     zs  . ■ 

 

Remark 3.10. The stability analysis presented above is akin to the conventional sliding mode 

one, in which the sliding variable is forced to zero or to be made as small as possible followed 

by the desired error dynamics, i.e. sliding manifold, being perturbed by that value of sliding 

variable. There is a major difference, in which the conventional sliding mode has a first order 

sliding manifold, and hence there is a reaching phase. While in our proposed controller, due to 

its integral nature, it has the same properties of an integral sliding mode, i.e. the ability to 

eliminate or reducing the effect of the reaching phase. In particular, the initial condition of the 

integrator can always be selected such that initially s(0) = 0. From the above analysis, having 

s(0) = 0 implies initially the states are inside    czs    and will remain in it for all future 

times. Thus, from initial time, the system will behave as per the desired error dynamics under 

the influence of a bounded perturbations of ms  . 

 

 

3.3 Numerical Simulations 

In this section, numerical simulations on a two-link robot manipulator were carried out to 

illustrate the results discussed in this chapter. The setups for each simulation are described. 

Discussion and analysis of the results are presented accordingly. 
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3.3.1 Simulation Setup 

1) Simulation 1: 

A two-link rigid robot manipulator is adopted in the simulation. The dynamics of robot 

manipulator (3 - 1) with the following parameter values (the dynamic parameters are from 

[144]): 
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Note that Properties 3.1, 3.2, 3.3 and 3.4 are satisfied. The desired trajectory vector and the 

additive disturbances Coulomb friction vector was defined as,  

 
 

 
 

 
 

,
0.3sign

0.7sign
,

cos5.0

sin5.0

2

1

















 


q

q
qD

t

t
tqd 





 

The initial conditions were, 
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The control (3 - 2) gains were selected as follows, 
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where the simulations were performed for each value of  9.0,8.0,7.0a  to examine its 

effect on the maximal position error. The initial conditions of the vector  were selected as 
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The (0) is selected as such so that the state s(0) is zero initially, i.e. s(0) = e2(0) + (0). 

Hence, by theorem 3.1, the state s will stay inside the region s() as per remark 3.10. 

 

2) Simulation 2: 

The setup of Simulation 2 is exactly the same as that of Simulation 1. In this simulation, the 

value of the parameter, a was fixed at a = 0.9, while the simulations were performed for each 

control gains of K  
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for examining its effect on the maximal position error. 

 

3.3.2 Results and Discussions 

For better visualization of the plots, some figures are shown in two windows; each with 

different time intervals.  
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1) Simulation 1: 

Figure 3.1 shows the tracking errors under control (3 - 2) with three different values of 

 9.0,8.0,7.0a . Particularly, the smaller the value of a, the smaller the ultimate bound on 

the position errors. Indeed, recall from the stability analysis (3 - 11), for c3 to have a positive 

value,  
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Thus, by satisfying the conditions of Theorem 3.1, the term within the bracket is less than 

unity, while for 0 < a < 1, the exponent 1/a is greater than unity, which implies the ultimate 

bound on s can be reduced significantly by lowering a while maintaining the same control 

gain K. As can be seen in figure 3.2, reducing the value of a does not alter the control effort 

by much but the precision gained are more significant in comparison. 
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(a) Trajectory, q1 for time t = [0, 15] s. 

 

 

(b) Tracking error, e11 for time t = [5, 15] s. 

 

(c) Trajectory, q2 for time t = [0,15] s. 

 

(d) Tracking error, e12 for time t = [5, 15] s. 

Figure 3.1 Simulation 1. Tracking errors using control (3 - 2) for three different values of 

 9.0,8.0,7.0a . 
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(a) Torque, 1 for t = [0, 15] s. 

 

(b) Torque, 1 for t = [5, 15] s. 

 

(c) Torque, 2 for t = [0, 15] s. 

 

(d) Torque, 2 for t = [5, 15] s. 

Figure 3.2 Simulation 1. Control input of joint 1 and joint 2. 
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(a) Trajectory, q1 for time t = [0, 15] s. 

 

(b) Tracking error, e11 for time t = [5, 15] s. 

 

(c) Trajectory, q2 for time t = [0,15] s. 

 

(d) Tracking error, e12 for time t = [5, 15] s. 

Figure 3.3 Simulation 2. Tracking errors using control (3 - 2) with a = 0.9 with three different 

values of control gains, K. 
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(a) Torque, 1 for t = [0, 15] s. 

 

(b) Torque, 1 for t = [0, 1] s. 

 

(c) Torque, 2 for t = [0, 15] s. 

 

(d) Torque, 2 for t = [0, 1] s. 

Figure 3.4 Simulation 2. Control input of joint 1 and joint 2. 

 

 

2) Simulation 2: 

Figure 3.3 shows the tracking errors under control (3 - 2) with a fixed at the value of 0.9 

while changing the gain K. In essence, larger value of K results in smaller ultimate bound on 

the position error. Following (3 - 11), the ultimate bound   indeed is smaller for larger K but 
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not as dramatic as lowering the value a as shown in simulation 1. It is worth mentioning that 

in figure 3.4, the plots with larger control gain K exhibit larger slope initially. This high rate 

of change is not desirable as it may excite unmodelled dynamics in the system. 

 

 3) Comparative Study: 

Comparative results are difficult to obtain because any comparative result can be 

dangerously biased. Besides, it is difficult to quantitatively compare controllers that are 

structurally different. Therefore, the comparative discussions presented here will be limited to 

PID controllers [90], [99], [103], [104], and [105] because the controller proposed here have a 

PID structure when a = b = 1 (see remark 3.6). Particularly, the discussions will focus on the 

analysis aspects of the controller, which governs the gains selection through the 

corresponding stability analysis.  

1. In [90] the PID control is analysed to be a combination of feedback linearization term 

plus uncertainty disturbance estimation term. The structure allows injection of desired 

error dynamics (similar to the proposed controller) and an estimation term to cancel 

the effect of uncertainty. However, the existence of the estimation term is not shown 

and it is mentioned that the compensation does not exist for systems that have 

discontinuous disturbances and uncertainties. 

2. Similar to [90], in [99] the PID control is analysed into a modelling error estimator 

and a desired error dynamics function. However, since the analysis requires taking the 

time derivative of the robot manipulator dynamics, the stability results is not 

applicable for discontinuous disturbances and uncertainties. In addition, the analysis 
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showed that it is necessary to have an accurate estimate, M̅ of the inertia matrix of the 

robot manipulator (requires ||I - M 
-1
M̅ || < 1) to ensure negative definiteness of the 

time derivative of Lyapunov function there. However, as remarked by the author, even 

when such condition is violated, stability is still observed in their simulations. Hence, 

it clearly shows the conservativeness of the results notwithstanding the 

aforementioned shortcomings. 

3. In [103] a strict Lyapunov function is given that allows the selection of gains based on 

region of attraction and ultimate bound. Also, the analysis does not require taking the 

time derivative of the robot dynamics. However, it lacks the simple structure of 

desired error dynamics selection and modelling error compensation found in point 1 

and 2. Particularly, although the author claimed the analysis is applicable for tracking 

control, the proof shown for regulation is not directly clear on how it can be extended 

for the tracking purposes. In fact, the analysis requires the time derivative of the 

gravity vector G(qd) in its auxiliary variable, which is zero for regulation 

problem(since qd is a constant vector in regulation problem) but for tracking qd is no 

longer a constant(it requires the time derivative of gravity vector) . 

4. For regulation, in [104] and [105] , the procedure for PID tuning is extracted from the 

stability analysis which allows gain selection for stability to specified arbitrary 

domain. Nevertheless, its extension to tracking and the abilities to inject desired error 

dynamics are unclear. 

Note that the stability analyses mentioned above are all for the same PID control structure 

for the control of robotic manipulators. The present results of this chapter are able to 
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overcome the shortcomings mentioned. Particularly, recall from remark 3.6, for the special 

case of a = b = 1, the proposed controller (3 - 2) becomes the well-known PID control, indeed 

when written in original coordinates 

    01112

0

teKdeKeKeK i

t

t

ipd    , 

where ,, 2KKKKK pd  and
1KKK i  . For the injection of desired error dynamics, it is 

done through the selection of gain K1 and K2. As per Theorem 3.1, after selecting K1 and K2, 

control gain K is selected to ensure stability and ultimate boundedness. Since the vector  can 

be selected to have an initial value such that s(0) is zero, from  the stability analysis, desired 

error dynamics, under bounded s, will begin without reaching phase. Thus, the gain selections 

method is similar to that of point 1 and 2; albeit without requiring an estimate of inertia 

matrix and time derivative of robot dynamics (As such discontinuous disturbances are 

allowed in the analysis through generalized Lyapunov theorem). Additionally, the results 

pertains to semiglobal trajectory tracking(regulation is a special case of tracking), in which 

case the region of attraction and ultimate bound can be ascertained through the strict 

Lyapunov functions in section 3.2.1. namely the regions (c) (which can be arbitrarily 

enlarged by increasing gain K )and (). Besides, the stability analysis presented here allows 

the extension of the results to allow non-Lipschitz desired error dynamics through strict 

Lyapunov functions of Chapter 2, which allows finite time regulation as per Theorem 3.2. 
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3.4 Summary 

 

In this chapter, the trajectory tracking control of robot manipulator is developed. In 

particular, semiglobal practical stability is assured where the ultimate bound of the states can 

be made arbitrarily small and the region of attraction arbitrarily large by tuning a single 

parameter. Also, the stability analysis permits the disturbances to have discontinuity, i.e. 

hence controller is robust to disturbances such as Coulomb friction. Of interest is the ability of 

the proposed controller in generalizing the well-known PID control. From the stability 

analysis, the PID gains selection is transform into the selection of desired error dynamics and 

the selection of acceptable precision of error. For the special case of position regulation 

problem, sufficient conditions on the gains are obtained to ensure either finite-time or 

exponential convergence of the system towards the regulation point. In addition, due to 

integral nature of the controller, it is possible for the system to behave as per the desired error 

dynamics from the onset of control even in the presence of disturbances.  

 

  



 

 

207 

 

Chapter 4: ROBOT MANIPULATOR CONTROL: OUTPUT FEEDBACK APPROACH 

This chapter considers the tracking control design of robot manipulator when joint velocity 

measurement is not available. Building on previous results in Chapters 2 and 3, an observer 

inspired from the super-twisting based family of algorithms is proposed to achieve semiglobal 

practical stability in the presence of unknown robotic model parameters and additive bounded 

disturbances. By adding a linear velocity observation error correction term into the proposed 

observer, the observer gains for the non-Lipschitz terms can be reduced without affecting the 

region of attractions. For the special case of regulation problem, the controller-observer 

structure is able to achieve finite-time or exponential convergence depending on parameter of 

the structure. 

 

4.1 Observer Dynamics 

Motivated by the results of section 2.4 and so-called "dirty-derivative" filter found in the 

literature, an observer dynamics is presented here. Essentially, it comprises a linear 

combination of the super-twisting based algorithm of Chapter 2 with a linear damping term. 

Its stability analysis that supports the main results of this chapter is described in this section.  

 

4.1.1 System Description 

Consider the super-twisting based dynamics, 
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where 21
~,~ ee   ℝn , are the vector state variables, L1, L2, L3  ℝn n are positive definite 

diagonal matrices, 0.5  p  1, and d ℝn  is time-varying and/or nonlinear vector of bounded 

uncertainty and disturbances. 

Consider element wise, ∀ i = 1,...,n, 
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with   .:sup: iiii dd K 
 

 

4.1.2 Stability Analysis 

Consider the following Lyapunov function: 
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Note that the above function is locally Lipschitz and regular. It is differentiable everywhere 

for p > 0.5, and not differentiable on ẽ1i = 0 for p = 0.5.
 

It can be bounded by 
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thus, 
ieV~  is positive definite and radially unbounded. Since (4 - 1) is a differential equation 

that has discontinuous right-hand side, i.e. when p = 0.5 and since no continuity assumption is 

made on di, its solutions are understood in the sense of Filippov (see definition 2.1). 
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According to lemma 2.4, the time derivative of non-smooth Lyapunov function exists almost 

everywhere 
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Note that for 0.5 < p  1, 
ieV~  is continuously differentiable: 
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For p = 0.5, 
ieV~   is not differentiable on ẽ1i = 0: 
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for ẽ1i = 0, ∀ ẽ2i  ℝ : 

Let  Tie22
~, with  2 ∈ [-1, 1] be an arbitrary element of ∂Vẽi , then 
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where the convention  for the empty set of 0
~

  if,
~

max  VV


 is employed.(see [74]) 

 

Thus, for all (ẽ1i , ẽ2i ) ℝn
  and ∀  0.5  p  1, we have 
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  (4 - 2) 

For the ease of analysis, the state space is divided into the following three regions: 
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        iiiiiiiiii leleeel 322311
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2133 ,~,,~:~,~,   

 

where  iii dl ,1max: 2  and the functions 1 and 2 are of class-KL  (see [145]) 

defined by:  
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In the region:
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Applying lemma 2.1 (for 0.5 < p  1): 
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From (4 - 2), we have 
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While for p = 0.5, from (4 - 2) 
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If the following inequalities hold, for different cases of p: 
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iiie eeV  , which is sufficiently satisfied by the states in this region. 
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Next, consider the region:         iiiiiiiiii leleeel 322311
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Thus, from (4 - 2), 
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which is sufficiently satisfied for the states in this region. 

 

Next consider the compact set:  
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Next, define a Lyapunov level set       iiiieiiiiie lVeel 33~
2

213~ ,:~,~,    , where the 

class KL function 3i is defined as, 
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which exists since the boundary of the set is compact and Vẽi is continuous. Then we observe 

that 3 (|i|, l3i)  ẽi (|i|,l3i). As a result, we have 
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which implies that each of the trajectories for the i-th planar system will enter their respective 

compact level set ẽi (|i|,l3i) in finite time and stay in it once entered.  

 

Remark 4.1. Note that for any given l1i , l2i > 0, and a bounded |i|, 3i (|i|, l3i) can be made 

arbitrarily small by increasing l3i > 0. Hence, it can be observed that for 0.5  p  1, the 

increase of observer gain L3 will result in a smaller upper bound on the observation errors. 

 

Remark 4.2. The finite time property of the observer is not shown here yet. The homogeneity 

of 0.5  p < 1 will be utilised for showing the finite time capability of the observer in the 

following sections of this chapter, as the controller is developed.  
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4.2 Manipulator Dynamics 

Recall the dynamics of an n-joint serial rigid robotic manipulators as in (3 - 1) of Chapter 3 

          tqqDqGqFqqqCqqM ,,,   (4 - 3) 

where q ℝn
 is the vector of generalized joint coordinates, M(q)  ℝnn

 is the inertia matrix, 

and C(q, q̇) q̇, Fq̇, G(q), D(q, q̇, t),   ℝn
 are, respectively, the vectors of Coriolis and 

centrifugal, viscous friction, gravity, disturbances, and input generalized forces, with F being 

a constant, positive definite , diagonal (viscous friction coefficient) matrix and D(q, q̇, t) being 

a locally bounded disturbances. The robot manipulator satisfies the same properties as that in 

Chapter 3 and will not be repeated here. Also, similar assumptions on the bound of D(q, q̇, t) 

and twice differentiability of the desired trajectory qd(t) apply here. The only exception is that 

only joint positions measurement is available. No velocity information from the system is 

assumed in this chapter. As such, the following development will follow an output feedback 

approach. 

 

4.2.1 Control Development 

The proposed controller has the following form, 

  a
sK ˆsig ,  (4 - 4) 

where K is a positive definite diagonal matrix, i.e.   ,diag
1

n

iikK


 with niki ,,1,0  , a 

≥ 0 constant, and ŝ ℝn
  is the velocity-estimate-based desired error dynamics defined as 

,ˆˆ
2  es  with
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where K1 and K2 are positive definite diagonal matrices, i.e.   ,diag
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 is 

the output of the observer defined as, 
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where nee 21
ˆ,ˆ ,  L1, L2, and L3 are positive definite diagonal matrices, i.e.   ,diag
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 , then the 

closed-loop system of (4 - 3), (4 - 4), (4 - 5) and (4 - 6) can be written as 
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To rewrite the closed-loop system in a form convenient for analysis, let us define ,11 ez   

,2 z  with   2222
~ˆˆˆ eseeses   , and we obtain the following form of closed-

loop system, 
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4.2.2 Stability Analysis 

From the closed-loop dynamics (4 - 7), the structure (z1, z2) is essentially the desired error 

dynamics injected by the controller through (4 - 5). Essentially, for any i  1, ..., n, when si = 

ẽ2i = 0, the dynamics of the subsystem (z1i, z2i) is identical to that of the twisting-based family 

of algorithm studied in section 2.2 of Chapter 2. In other words, si and ẽ2i can be viewed as a 

perturbations on the (z1i, z2i) dynamics. While in the s-dynamics, its structure is akin to that of 

sliding mode control with ẽ2i as perturbations. 
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Since the differential equations (4 - 7) have discontinuous right-hand side, i.e. when a = 0 

or b = 0 or p = 0.5, and since no continuity assumption is made on D, its solutions are 

understood in the sense of Filippov (see definition 2.1).  

The following Lyapunov functions will be used in the analysis: 
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Note that the Lyapunov function for the (z1i, z2)-subsystem is a strict Lyapunov function 

proposed for the twisting-based family of algorithms in Chapter 2, where q  ℝn
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which is a compact set, with the constant, a3i  > 0 (see Appendix A.1), while the positive 

constants a4 and a5 defined as 
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Define the positive diagonal matrix,     n
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where such an upper bound always exist since M, C, F, G, D and  desired trajectories are 

locally bounded, it implies that 1(.), and 2(.) are locally bounded as well (i.e. it compose of 

summation of locally bounded functions). From [143], the multi-valued function K[1(.)] and 

K[2(.)] are locally bounded as well. Also, using the skew-symmetry property 3.2.2, we have 

   sCssMs TT 
2

1
 

which is locally bounded as well. Hence, within a compact set, an upper bound on the above 

function exists. 

 

The time derivatives of the Lyapunov functions, in accordance to lemma 2.4, 

   Reeszz  2121
~,~,,,  of the closed-loop system satisfy the following inequalities: 

Differential inequalities for the z-subsystem: (see Appendix A.1) 
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for b > 0: 
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for b = 0: 
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Differential inequalities for the s-subsystem: 
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For a = 0: 

Using the following notation: 

         ,0:,,1,0:,,1 0 

ii snisNsnisN  observe that 

  
 

   
   







n

ii

ii

sNi

ii

sNi

i

sNi

ii skskksksKs 01,10sign
0

T
K , 

Also, note that,       2sign~sign 2  iii sesK , and observe that for 0~
2  ii es , 



 

 

223 

 

              

      iiiiiii

iiiiiiii

eksesks

sssesses

22

22

~2sign~sign

0signsignsign~signsign~sign





K

K

 
Hence, 

 
            

   
 

            

     

 

 

 
   

           

 
    2),chapter  of 2 lemma using(,

2
min~2

2

2
min~2

2

2
min~2

2

2

~2
2

1

~2

sig~sig

sign~sign
2

1

2sig~sig

sign~signsign

12max
min

1

2

1
2

1

1

2

1
2

2max

1

2

1
2min

1

1

1

2max

1

min

1

1

1

2

1

1

2

1

1

1

1

2

2
1

2

222

2

T

1

T

1

T

1

2

2
1

2

222

2

1

1

1

T
..

sR
k

eKns
K

sR
k

eKs
K

sR
k

eKs
K

R
k

seksk

eksRsk

szeszKMs

sesKssMsMssk

sMs

szeszK

sesKMsKM

MsV

i

i

i

n

i

ii

i

i

n

i

i

n

i

i

n

i

ii

i

i

n

i

i

n

i

i

n

i

i

i

i

n

i

ii

n

i

ii

n

i

ii

n

i

ii

n

i

ii

b

b

b

b
T

T
n

i

ii

b

b

b

b

ea

s































































































































KK

K






 where lemma 2 of chapter 2 has been employed in the last inequality. 

For a > 0: 

From Appendix A.2-proposition 1, one obtains 
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where positive constants a4, a5  ℝ+ are as defined earlier. 

Then, 
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Note that the property of iee i  ,~~
22

and lemma 2 of chapter 2 have been employed. 

 

Differential inequalities for the ẽ-subsystem: (see Section 4.1) 
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where   Rl iii 22 ,1max:   , the class KL    function,  
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which is a compact set, with functions 1(.) and 2(.) are of class-KL.  

 

Theorem 4.1: By redefining the control gain K, as   ,
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can be selected a priori independent of the control gain, k̂ > 0. Thus, for any given K1, K2, L1, 

L2, and k i, suppose that the initial conditions for the closed-loop system (4 - 7) belong to a 

given compact set, there always exists a c > 0 such that initially,    ceeszz 2121
~,~,,, . Also, a 

 > 0 can be selected such that c >  > 0. Then, by selecting k̂ such that 
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and L3 such that 
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all the trajectories will enter the compact set (), in finite time, and stay there for all future 

times.

 
 

Proof of Theorem 4.1: The stability analysis proceeds in two steps. 

1. Obviously, for a given compact set of initial conditions, there exists c > 0 such that initially 

(z1, z2, s, ẽ1, ẽ2) belong to some compact set strictly inside (c). A trajectory may leave the 

set (c) only through one of the boundaries:  

    ,,,1  ,, 121 niczzV iiizi         
2

2

2

c
Vs  ,   or  ni

c
V ie ,,1,

2

2

~   

Let us show that it is impossible: 

(a) For the ẽ-subsystem, on the boundary (c): ni ,,1 , ,
2

2

~
c

V ie   

now, in order for    0~,~
..

21~

ea

iiie eeV   on the boundary, we need:
 



 

 

228 

 

   iiii lcl
c

3223

2

,,1max
2

     (4 - 8) 

To satisfy the inequality, recall that (see Section 4.1) 3i is a class KL function, thus, it 
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(b) For the s-subsystem, on the boundary (c):     
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Note that on the boundary of the set (c), the first term of the above inequality is non-

positive: 
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Hence, for ki sufficiently big, c1 is positive and, correspondingly,  V̇s < 0 almost 

everywhere. If the gain K satisfy the conditions of the Theorem 4.1, then,  Vs is a  
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Note that on the boundary of the set (c), the first term of the above inequality is non-
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Hence, for min(K) sufficiently big, c2 is positive and, correspondingly,  V̇s < 0 almost 

everywhere. Then, Vs is a decreasing function of t, so s stays in s(c) and 
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s
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(c) For the z-subsystem, on the boundary of the set (c):  

For b > 0: At the boundary, it implies 
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So, V̇zi is a decreasing function of t for all i = 1, ..., n and (z1, z2) stay in z(c).  

For b = 0: At the boundary, 
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Thus,   nizzV
ea

iizi ,,1for ,0,
..

21   . So, V̇zi is a decreasing function of t for all i = 

1, ..., n and (z1, z2) stay in z(c) for the case of b = 0. 

 

In the (b) section for the s-subsystem, the trajectories will stay inside the boundary
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such that 2 remains as a constant. The increment of the gain K will cause the upper bound 

of the function 2(c) to increase as well, since vector 2(.) consists of term proportional to 

the gain K and     c22 K   

This in turn, implies that the observer gains, elements of the vector L3, have to be increased 

accordingly for the same compact region c, such that   0~,~
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iiie eeV  . 
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As a result, the set (c) is positively invariant, i.e. the trajectories of (4 - 7) stay in it once 

they have entered it. 

 

2. Now we have shown boundedness, next is to show convergence to a smaller compact set 

() with c >  > 0. 

(a) For the ẽ-subsystem: 

Recall from the above that by increasing the observer gains, one can satisfy the 

following inequality for a given c: 
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now if the gain L3i of the observer is much higher such that 
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all the trajectories starting in ẽ(c)  will enter ẽ() within finite time and stay in it for 

all future times. Then, the upper bound on (ẽ1, ẽ2) can be found to be 
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(b) For the s-subsystem, consider the states           szsz ccszz  \,, 21
 and 
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Note that the first term of the above inequality is non-positive, 
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which implies that the s trajectory will enter the set s() in finite time and stay there 

for all future times. 
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Note that by choosing sufficiently big K, as per the conditions of the Theorem 4.1 

(while maintaining the ratio 
 
 

constant
min
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







K

K




) , c4 is positive. 

Thus, for all a ≥ 0, the states           szsz ccszz  \,, 21
 and 
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will enter the set         esz ceeszz ~2121
~,~,,,   in finite time and in it for 

all future times, in particular 

m
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  together with the fact that ,,,1for , nissi   we have 
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2 
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(c) For the z-subsystem, consider the states      zz czz  \, 21  and

      esees ~21
~,~,  . Following the same arguments presented in point (1)-(c), 

it is not hard to see that, once (ẽ1(t), ẽ2(t)) enter the set ẽ(), and s(t) is inside the set 

s(), (z1, z2) will enter the set z() in finite time and stay in it for all future times. 

Hence, the set () = ẽ()  s()  z() is positively invariant and attracting for all 

trajectories of the system (4 - 7) originating inside the set (c) = ẽ(c)  s(c)  z(c) with  

< c.   ■ 
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Remark 4.4. Note that the results above show that the control law achieves semiglobal 

practical stability. Its region of attraction can be given as the set ẽ(c)  s(c)  z(c), while 

its ultimate invariant set given by ẽ()  s()  z(). The semiglobal nature of the control 

law can be seen where the estimate of region of attraction for each set of initial states can be 

increased by choosing a sufficiently big gains K, and L3, for any K1, K2, and L1, L2. While the 

practical stability nature, pertaining to the set where the solutions converge is stable and may 

be reduced at will, can be achieved as well by tuning the gains K and L3, (see the conditions 

on K and L3 in Theorem 4.1). 

 

Remark 4.5. The observation error dynamics comprise of the homogeneous super-twisting 

based observer plus a linear damping term. Note that the linear term depends on the velocity 

observation error, which is not available. However, it is not necessary in implementation by 

formulating as per (4 - 6).  

 

Next, consider the special case of Theorem 4.1 with the observer parameter p = 0.5. In 

particular, when p = 0.5, the non-Lipschitz terms of the observer (4 - 7) will contain 

discontinuity and becomes a super-twisting observer with a linear damping term. From the 

results of Chapter 2 (see section 2.4.2), it has been shown that when p = 0.5, the super-

twisting algorithm is able to be exactly robust with respect to persistent, non-vanishing, 

additive disturbances. Thus, these properties will be examined in the following. 
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Theorem 4.2: Consider the special case of the observer with p = 0.5. Using Theorem 4.1 with 

the following additional inequality,  
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which can be satisfied for sufficiently large L1 and L2, the observation error,   21
~,~ ee  will 

converge to zero in finite time and stay there for all future times.  

 

Proof of Theorem 4.2: The inequality of Theorem 4.2 can be satisfied by sufficiently large L1 

and L2.  Then, using similar arguments as in the proofs of Theorem 4.1, for any compact set of 

initial conditions, there always exists a c > 0 such that initially,    ceeszz 2121
~,~,,, . Also, 

a  > 0 can be selected such that c >  > 0. Then, by selecting k̅ and L3 as per Theorem 4.1, all 

the trajectories starting in (c) will enter the compact set () in finite time and stay in it for 

all future times.  

Next, recall that the observer error dynamics for p = 0.5, 

 

   



223

0

122

2

5.0

111

~~sig~

,~~sig~

eLeLe

eeLe




 

with element wise, ∀ i = 1,...,n, 

 

   



iiiiii

iiii

elele

eele

223122

2

5.0

111

~~sign~

,~~sig~




  (4 - 10) 



 

 

238 

 

Note that inside (), we have the upper bound 
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Consider the Lyapunov function, 
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(Note that this Lyapunov function has appeared as a strict Lyapunov function for the super-

twisting based algorithm in Section 2.4.2) 

where    2

1

4

22~
2

1

4

22
~~~~

iiieii eeWee  

 























224

1
,

22
max:,

2
,

8

1
min:

~2~22

22

2

2

2

eiei

i

i rlrl
l

l


 

with (see section 2.4.2) ∀ i = 1,...,n, 
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Thus, Wẽi is positive definite and radially unbounded (see section 2.4.2). Since (4 - 10) is a 

differential equation that has discontinuous right-hand side, its solutions are understood in the 

sense of Filippov (see definition 2.1). According to lemma 2.4, the time derivative of non-

smooth Lyapunov function exists almost everywhere 
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Note that for p = 0.5, 
ieW~   is not differentiable on ẽ1i = 0: 
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For ẽ1i  0, ∀ ẽ2i  ℝ:  
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For ẽ1i = 0, ∀ ẽ2i  ℝ: 
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Thus, for all (ẽ1i , ẽ2i ) ℝn
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Applying lemma 2.1: 
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Employing lemma 2.2, and the bounds of the Lyapunov function, we have: 
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Hence, the states  ii ee 21
~,~  will converge to the origin in finite time. ■ 

 

Remark 4.6. The addition of a linear damping term to the observer, L3 has the benefit of 

reducing the gain of the super-twisting part of the observer (i.e. when p = 0.5) in achieving 

exact robustness property with respect to persistent, non-vanishing disturbances.  Essentially, 

from Theorem 4.1, the L3 term is instrumental for all the trajectories starting in (c) to enter a 

smaller compact set (). In particular, note that the term    c22    (see definition in (4 - 

7) and section 4.3), thus, from the condition of Theorem 4.2, a smaller gain pair of L1, L2 is 

required to dominate   2  as opposed to that of  c2 .  

 

Remark 4.7. Once the observation error converge to zero in finite time as per Theorem 4.2, 

the control law (4 - 4) will be identical to that of (3 - 2) presented in Chapter 3 for full-state 

feedback. 

 

Theorem 4.3: In addition to the conditions in Theorem 4.1, consider the special case of 

regulation problem, where the desired trajectory is a constant value, q0, of the robot dynamics 

(4 - 3) and control (4 - 4) and observer (4 - 6) with the parameter b restricted to 0 < b  1, and 

a and p selected as  
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and the disturbance is upper bounded by 
2

4

2

13211 qpepqpepD   , i.e. vanishing
 

perturbation. Then, for b = 1, semiglobal exponential regulation is guaranteed, provided that 

K and L3 are large enough with respect to initial error conditions. While, for 0 < b < 1, 

semiglobal finite-time regulation is assured, provided that K and L3 are large enough with 

respect to initial error conditions, and the gravity vector at the constant desired position, G(qd) 

is zero.   

 

Proof of Theorem 4.3: For this section, power of the control law a is selected as 
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Note that q0 is a constant vector, and as a result the s̅ vector is a constant vector since the 

matrix K comprises constants as well. Also, s̅ is a constant that is defined for stability analyses 

only, its actual value, which require knowledge of gravity vector, G(q) is not required in the 

control law. Also note that D comprise of vanishing perturbations only, i.e. p0 = 0 (note that 

this is the general assumption on regulation problem, however, if constant perturbation do 
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exists, the constant vector,  s̅  can be redefined to accommodate this extra constant term).  

 

Hence the closed loop system (4 - 7) could be rewritten as 
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Consider the Lyapunov function 
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Note that the s  and z  subsystem have the same form as the s and z subsystem discussed above 

in Theorem 4.1 (i.e. by replacing (s, z1, z2) with (s , z 1, z 2). Hence, a similar Lyapunov function 

structure is employed here, where 
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where rẽ > 0 is a constant . This Lyapunov function is positive definite (see Section 2.4.2 in 

Chapter 2). 

 

Remark 4.8. Note that an additional term is included for the observer Lyapunov function (see 

Section 4.1) to reflect its finite time nature, which will be shown in the following 

development. 

 

Note the following properties of the Lyapunov functions: 
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Consider the time derivative of the Lyapunov function Vs  along the solutions of the system 

for the s -subsystem: 
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Note the following four properties that will simplify the above expression: 

1. From Theorem 4.1, the states (s, z1, z2) will reach and stay inside the compact set, ẽ() 

 s()  z(), and s̅, z̅1, z̅2 are constants, we have, for 0 < b  1, the following upper 

bounds (Note that the upper bound of the disturbance, ||D|| has been expressed in terms 

of the state variables of the closed-loop system): 
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with 3(.), 4(.), 5(.) are positive functions and (.) is a class K function, and the vector 

(t) is defined as: 
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where  

   ., minmax KkKk    

Employing the bounds on the Lyapunov functions and lemma 2.2, one obtains, 
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Similarly, we compute the time derivative of the Lyapunov function for the z -subsystem, 
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Employing the bounds on the Lyapunov functions and lemma 2.2, one obtains, 
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Next for the ẽ-subsystem, the derivative of the Lyapunov function is: 
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 (4 - 14) 

Note the following properties that will aid in simplifying the above expression:  

1. Note the above definition of the diagonal matrix,  , we have 
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2. While from Appendix A.3-Proposition 2, 
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3. From the property 1 of the manipulator dynamics,
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4. From lemma 2 of chapter 2, 
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and similar arguments we obtained b
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5. From lemma 2.1 of chapter 2, 
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6. From Theorem 4.1, the states (s, z1, z2) will reach and stay inside the compact set, 

ẽ()  s()  z(), and since s̅, z̅1, and z̅2 are constants, for 0 < b  1, the 

following functions can be upper bounded by , 
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with 6(.), and 7(.), are positive functions and 2(.) is a class K function, and the 

vector (t) is defined as:           n
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7. Employing the above properties, after algebraic rearrangement, 
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Note that the upper bound of the disturbance, ||D|| has been expressed in terms of 

the state variables of the closed-loop system in obtaining the above inequality. 

 
8. From lemma 2.2 of chapter 2, the following can be obtained, 
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Substituting the above properties into (4 - 14), one obtains, 
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      ,,, 22max22min11min lLlLlL    

Employing the bounds on the Lyapunov functions and lemma 2.2, one obtains, 
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With the above results, we are now in a position to find the time derivative of the Lyapunov 

function for the closed-loop system, namely: 
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Thus, substituting results (4 - 12), (4 - 13) and (4 - 15), after rearrangement, 
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hold then the function V̇1 is negative definite. The above inequalities can be satisfied by a 

sufficiently large gain K. 
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hold then the function V̇2 is negative definite. Note that the inequalities (4 - 16) is feasible 
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Note that from lemma 2.1, we have 
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Next, note that (see Section 2.4 of chapter 2) we have the following bounds on the Lyapunov 

function, Wẽ , 
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Thus, the time derivative of the Lyapunov function becomes,  
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Also for the case of 0 < b < 1, consider the case when the final desired position vector q0 

corresponds to the rest position of the manipulator where G(q0) = (0, ..., 0)
T
, or the 

gravitational torque of the manipulator dynamics is absent (i.e. in space where gravity is 

absent or in a planar horizontal configuration) where G(q) = 0 for ∀ q  ℝn
, the term G(q0) 
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desired position), then we have V(s , z 1, z 2, ẽ1, ẽ2)  0 as t   as well. Obviously, if ||(t)||  

0 (regulation problem), when b = 1, the system will converge to the equilibrium 

exponentially, while for 0 < b < 1, the system achieves finite-time regulation, in which the 
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where (s 0, z 10, z 20, ẽ10, ẽ20) are the states of the system when it first enters the region ẽ()  

s()  z().  ■ 

 

Remark 4.9. Note that a smaller value of  can help lower the required observer gains L1, and 

L2 (see (4 - 16)). This is useful for the case of 0 < b < 1, since both gains L1, and L2 

corresponds to the non-Lipschitz component of the observer, while  can be reduced by 

increasing the linear observer gain L3 (see Section 4.1). 

 

Remark 4.10. As per remark 4.5 and 4.8, the "dirty-derivative" inspired linear damping term 

of the observer, L3ẽ2 has a synergistic effect on the performance of the observer by allowing 

the reduction on the level of gains of the non-Lipschitz part of the observer while maintaining 

special properties of the super-twisting algorithm such as finite-time convergence and exact 

robustness. 
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4.3 Numerical Simulations 

In this section, numerical simulations on a two-link robot manipulator were carried out to 

illustrate the results discussed in this chapter. The setups for each simulation are described. 

Discussion and analysis of the results are presented accordingly. 

 

4.3.1 Simulation Setup 

1) Simulation 1: 

The same two-link rigid robot manipulator considered in section 3.3 is adopted in 

simulation. The dynamics of robot manipulator (4 - 3) have the same parameter values as that 

in section 3.3. The desired trajectory vector and the additive disturbances Coulomb friction 

vector were defined similarly as well.  

The control (4 - 4) parameter values were selected as follows, 
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The initial conditions of the vector  were selected as 
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since no velocity measurement is available. 

The observer (4 - 6) parameter values were selected as follows, 
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The initial conditions of the observer were selected as 
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since position measurement is available, so that initially, the observation error 
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Note that the initial conditions for the velocity observation error were selected to be non zero 

to show the convergence of the observer through simulations, by having the initial conditions 

for the manipulator, 
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2) Simulation 2: 

The setup of Simulation 2 is exactly the same as that of Simulation 1 except,  in this 

simulation, only the parameter values of the observer (4 - 6) were changed to examine the 

effect of removing the linear damping term from the observer as follows, 
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3) Simulation 3:  

The setup of Simulation 3 is exactly the same as that of Simulation 1 except the observer 

parameter p was selected as p  = 0.5 to demonstrate the observation errors converge to origin 

in finite time under uncertainties with  
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For comparison purposes, under the same setup, a simulation with the full-state feedback 

control (3 - 2) of Chapter 3 were performed with  

   ,00 2e  so that initially   00 s , i.e. since full-state is available 

 

4.3.2 Results and Discussions 

For better visualization of the plots, some figures are shown in two windows; each with 

different time intervals.  
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(a) Trajectory, q1 for time t = [0, 15] s. 

 

(b) Trajectory, q2 for time t = [0, 15] s. 

 

(c) Torque, 1 for time t = [0, 15] s. 

 

(d) Torque, 2 for time t = [0, 15] s. 

Figure 4.1 Simulation 1. Tracking errors and control input of joint 1 and joint 2. 

 

 

 

 



 

 

273 

 

 

(a) Position estimate, ê11 for time t = [0, 15] s.  

 

(b) Position observation error, ẽ11 for time t = 

[0, 15] s. 

 

(c) Position estimate, ê12 for time t = [0, 15] s. 

 

(d) Position observation error, ẽ12 for time t = 

[0, 15] s. 

Figure 4.2 Simulation 1. Position observation errors using observer (4 - 6) of joint 1 and joint 

2. 
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(a) Velocity estimate, ê21 for time t = [0, 15] 

s. 

 

(b) Velocity observation error, ẽ21 for time t = 

[0, 15] s. 

 

(c) Velocity estimate, ê22 for time t = [0, 15] 

s. 

 

(d) Velocity observation error, ẽ22 for time t = 

[0, 15] s. 

Figure 4.3 Simulation 1. Velocity observation errors using observer (4 - 6) of joint 1 and joint 

2. 
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(a) Position estimate, ê11 for time t = [0, 2] s. 

 

(b) Position estimate, ê12 for time t = [0, 2] s. 

 

(c) Velocity estimate, ê21 for time t = [0, 2] s. 

 

(d) Velocity estimate, ê22 for time t = [0, 2] s. 

Figure 4.4 Simulation 2. Observation errors without L3, small L1 and L2 . 
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(a) Position observation error, ẽ11 for time t = 

[0, 15] s. 

 

(b) Position observation error, ẽ12 for time t = 

[0, 15] s. 

 

(c) Velocity observation error, ẽ21 for time t = 

[0, 15] s. 

 

(d) Velocity observation error, ẽ22 for time t = 

[0, 15] s. 

Figure 4.5 Simulation 2. Observation errors without L3, large L1 and L2. 
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(a) Position observation error, ẽ11 for time t = 

[0, 15] s. 

 

(b) Position observation error, ẽ12 for time t = 

[0, 15] s. 

 

(c) Velocity observation error, ẽ21 for time t = 

[0, 15] s. 

 

(d) Velocity observation error, ẽ22 for time t = 

[0, 15] s. 

Figure 4.6 Simulation 3. Observation errors with p = 0.5. 
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(a) Trajectory, q1 for time t = [0, 15] s. 

 

(b) Tracking error, e11 for time t = [5, 15] s. 

 

(c) Trajectory, q2 for time t = [0, 15] s. 

 

(d) Tracking error, e12 for time t = [5, 15] s. 

 

(e) Torque, 1 for time t = [0,15] s. 

 

(f) Torque, 2 for time t = [0,15] s. 

Figure 4.7 Simulation 3. Tracking errors using control (3 - 2), control (4 - 4) with p = 0.5, and 

control input of joint 1 and 2. 
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1) Simulation 1: 

Figure 4.1 shows the tracking errors and control inputs under the output-feedback control (4 

- 4) and the observer (4 - 6). As per Theorem 4.1, for initial conditions inside the region (c) 

will enter the region () infinite time. In fact, in Figure 4.2 and Figure 4.3, the observation 

errors converge to a bounded region in about 2.5 seconds. Once the observation errors are 

sufficiently bounded, boundedness of the other states will follow provided gain K satisfy the 

sufficient conditions of Theorem 4.1. Particularly, the stability is highly dependent on the 

boundedness of the observation errors. In step 2 of the proof of Theorem 4.1 shows that the 

boundedness of observation error ẽ2 affects the ultimate bound of the tracking errors. In order 

to achieve better observer convergence, a linear damping term L3 ẽ2 is added. This term is 

instrumental to achieve semiglobal stability. As a matter of fact, from remark 4.1, increase in 

L3 will reduce the ultimate bound on the observation error while at the same time the region 

 ce~  remains unchanged due to its Lyapunov region 
ieV~  that is independent of L3.  

 

2) Simulation 2: 

To study the impact of the linear damping term L3 ẽ2, Simulation 2 were performed under 

the same setup as Simulation 1 by removing the damping term from the observer (4 - 6). 

Figure 4.4 shows the observer estimates with respect to its actual values with the same small 

gains of L1 and L2 as per Simulation 1. The simulation was stopped at 2 seconds due to 

instability of the systems. The observation errors were too large for such a small gains to 

compensate as per the inequality in Theorem 4.2. In fact, to ensure stability the L1 and L2 
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gains have to be increased to a very large value to compensate for the nonlinearities as shown 

in Figure 4.5. This is in part due to the non-Lipschitz terms of the observer  p

ie1
~sig  and 

  12

1
~sig

p

ie which are slow to grow when the observation error is from the origin due to 0.5 ≤ p 

< 1. However, there are some interesting features of the observer, particularly when p = 0.5 

that enable the observer to be exactly robust to persistent disturbances and ensures 

convergence in finite time (see section 2.4). This feature will be discussed in the next 

simulation. 

 

3) Simulation 3: 

After showing the importance of L3ẽ2 in the previous discussions, the exact robustness of 

the observer when p = 0.5 is shown in Figure 4.6. Note that the observation errors were able 

to converge in finite time with such small non-Lipschitz gains of 2, is due to the synergistic 

effect of the linear damping term. As per remark 4.6, after the convergence of the states of the 

system into the region (), the nonlinearities and state-dependent disturbances will be 

smaller. Thus, uncertainties that were initially unable to cope with by the non-Lipschitz gains 

(see Figure 4.4) are now much smaller when the states are inside () thanks to the term, L3 

ẽ2 as per Theorem 4.1. In fact, when the observation errors converge to zero and stay in it in 

all future times, the control (4 - 4) becomes that of the full-state feedback of (3 - 2). In fact, 

from Figure 4.7, it can be observed that the ultimate bound on the tracking errors were the 

same for both controllers. 
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4.4 Summary 

Trajectory tracking control of robot manipulator without velocity measurement in a 

semiglobal practical manner is achieved with the results of this chapter. Effectively, the 

proposed controller is an output feedback version of that develops in Chapter 3. The velocity 

measurement is substituted with the output of an observer that combines the super-twisting 

based algorithm develop in Chapter 2 with a damping term that is termed in the literature as 

"dirty-derivative". Through the non-Lipschitzness of the super-twisting based part of the 

observer, several finite time properties is produced, such as finite time exact robustness to 

achieve finite time convergence of observation error and finite time regulation. While the 

added linear damping term aids in reducing the level of gains of the non-Lipschitz part of the 

observer while maintaining performance. 
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Chapter 5: ROBOT MANIPULATOR CONTROL: BOUNDED CONTROL APPROACH 

WITH FULL-STATE FEEDBACK 

In this chapter, a bounded controller is developed for the tracking control of robot 

manipulator. The proposed controller is based on the non-saturated results in chapter 3. By 

having an integral of nonlinear function in the controller, a conditional integrator-like 

behaviour is attained, and is able to achieve global practical stability results for trajectory 

tracking despite bounded uncertainties and disturbances. Similar performance as the non-

saturated controller is obtained when the bounded controller is not saturated. 

 

5.1 Nonlinear Robot Dynamics 

The dynamic model of a rigid n-link serial robot manipulator, described in Section 3.1,  

          tqqDqGqFqqqCqqM ,,,   (5 - 1) 

where q, q̇, q̈ ℝn  are, respectively, the position  (generalized coordinates), velocity and 

acceleration vectors, M(q)  ℝnn  is the inertia matrix, and C(q, q̇)q̇, Fq̇, G(q), τ  ℝn
 are, 

respectively, the vectors of Coriolis and centrifugal, viscous friction, gravity, and torque 

input, with F being a constant, positive definite, diagonal (viscous friction coefficient) matrix 

and D(q, q̇, t) being a bounded disturbances. The properties that the dynamics satisfied can be 

found in Section 3.1.  

In this chapter, let us suppose that the absolute value of each joint input i is constrained to 

be smaller than a given saturation bound Ti, max > 0, i.e., |i |  Ti, max, ∀i = 1,..., n. The control 
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objective here is to design a robust full state feedback saturated control that ensures the robot 

configuration vector q  tracks a desired trajectory vector, qd (t) with an ultimately bounded 

error that can be made as small as required globally even under the presence of bounded 

disturbances. 

The desired trajectory vector, qd (t) is assumed to be twice continuously differentiable 

vector-function such that   ,tqd    ,tqd
 and  tqd

 are bounded by a priori known constants.  

While the type of disturbances considered here has to be upper bounded by a constant, due to 

the limited actuation, (Note that no continuity assumption is made so that discontinuous 

models of friction may be used in D), i.e. 

 




 

2

4

2

1321105
sat qpepqpeppD p


 

where   DKD   :sup: ,  p0, p1, p2, p3, p4 , p5 are some nonnegative constants, 

dqqe 1
ℝn

 , and
dqqe  2
ℝn

. 

 

5.1.1 Control Development 

Let us define the following scalar saturation function as 

 

 
 

,
,  if

,  if

,sign

,
sat 








 x

x

x

x

x
x








 

if i = 1, it will become the standard saturation function (see p.19 of [71]) and the subscript 

will be omitted, while the vector saturation function, given a set of positive number  {1, 

…, n }, define 
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       n

nε xxxx
n

 ,sat,...,satsat 11 

 and recall the following notation (see Section 3.1.2) 

       .,sign,,signsig 11

n
T

n

a

n

aa
xxxxxx  

 

 

Under the above assumptions, the proposed control law is of the form  

   na
ssμK 





  ,sigsat 1 , (5 - 2) 

where K and  are positive definite diagonal matrix, i.e.   ,diag
1

n

iikK


 with ,0ik  

  ,diag
1

n

ii 
   with ,0i ni ,,1  a ≥ 0 constant, and s ℝn

  

 

i.e.   













 ia

i

a

i

ii s
s

k signsat


  for  i = 1 … n. 

When a = 0, the control becomes a discontinuous control law, 

  nssK  ,sign . 

Note that the control is bounded, i.e. such that |i(t) |  ki, for i = 1, …, n, ∀ t  0. 

The s is the desired error dynamics defined as ,2  es  with 

        b
b

b

k

aaa eKeKeKsKK
b

b 11
1

2

222

1 sigsatsigsatsatsat
12

2

1

2

2




 






 













   (5 - 3) 

where Ka, K1, and K2 are positive definite diagonal matrices, i.e.   ,diag
1

n

iiaa kK


 with 
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,0iak   ,diag
111

n

iikK


  with ,01 ik    ,diag
122

n

iikK


 with 02 ik ,  ,,, 2212 nkkk 
 

 ,,, 1111 n  with ,01 i   ,,, 2212 n  with ,02 i ni ,,1 , and b  ≥ 0 

constant, with i

b

b

i

i

aii
k

k 2

2

1

2

2

1 


 













, 

i.e.  

 

    i

b

iii
b

b

ii

i

k

ai

i

i

iaiiaii

eekeek

ek
s

kk

i

b

b

i

i

1112
1

2

22

2

signsatsignsat

satsat

12

2

1

2

2











































,  

for  i = 1 … n. 

 

Note that when b = 0, let the element of 1 equal to that of K1, and 2 to that of K2, i.e. 

Nik nn  ,11  and Nik nn  ,22 , i.e. 

     iiiiiai

i

i

iaiiaii ekekek
s

kk 11222 signsignsatsat 












 

 

Then, the closed-loop system of (5 - 1), (5 - 2), and (5 - 3) can be written as  

        

           ,,sigsat

,

,sigsatsigsatsatsat

111

2

21

11
1

2

222

1

12
2

1

2

2

d

a

b
b

b

k
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qDqGqFqqqCqMsμKqMe
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eKeKeKsKK
b

b












































 




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To rewrite the closed-loop system in a form more convenient for analysis, let us define the 

change of variable ,11 ev  and 2v , and we obtain the following form of closed-loop 

system, 

   

    

           ,,sigsat

,sigsatsigsat

satsat

,

11

1

1

11
1

2

22

2

1

22

21

12

2

1

2

2





















































d

a

d

b
b

b

k

aaa

qDqGqFqqqCqMsμKqzMs

vKsvK

svKsKvKv

svv

b

b

 (5 - 4) 

 

5.1.2 Stability Analysis 

Theorem 5.1: Consider the robot dynamics (5 - 1), with the bounded controller given by (5 - 

2), global practical trajectory tracking of the desired trajectory qd can be assured, provided 

that the gain, K is sufficiently large up to the saturation bound Ti, max, ∀i = 1,...,n, and the 

desired trajectory sufficiently slow. 

 

Proof of Theorem 5.1: The stability analysis proceeds in three steps. 

1. First we will show the boundedness of , by the following Lyapunov function 

niV i ,,1,
2

1 2
  , 

the time derivative of the Lyapunov function, along its solution of (5 - 3), gives rise to: 
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Since i, 1i, 2i > 0 constants, |i| is bounded. Also, from (5 - 3), we can see that | ̇i | is 

bounded as well. 

 

2. Now, we proceed to show the boundedness of s by the following Lyapunov function 

 sMsVs .
2

1 T . 

Note that  , dqsq   

The s dynamics is described by, 

            





 

d

a
qDqGqFqqqCqMsμKqMs ,sigsat 111

 (5 - 5) 

Since the differential equation (5 - 5) has discontinuous right-hand side, i.e. when a = 0 

or since no continuity assumption is made on D, its solutions are understood in the sense 

of Filippov (see definition 2.1), and in accordance to lemma 2.4, the time derivative of 

the Lyapunov function, Vs  along the dynamics (5 - 5) for all a ≥ 0: 
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with the vector  

               dddd qqqCqFDqMqqMqG  ,K , 

 

Remark 5.1. Observe that for a > 0,     ,sigsat 1TT a
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Also, let us define the set of real number,  nN ,...,1 , and 

   Niiii  ,:sup: Ki  , with Δi as elements of Δ,  where 

  
 

 


















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nK

K

K 
1

. 

 

Since q̇d, q̈d, are bounded from the assumptions and ,  ̇ are bounded (see step (1)), the 

vector  is bounded as well. Hence from [143], the multi-valued function K[] is 

bounded as well. Thus, if 

  , dm qCf   

which is possible by selecting appropriate desired trajectory and the desired error 

dynamics, we have: 

For a = 0: 
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 if the control gain is selected as
iik  . Thus, the state s will reach zero in finite time 

and stay there for all future times. 
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While for the case of a > 0: 
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Remark 5.2. Note that the last equality has single out one of its element, j  N from 

the summation for ease of analysis. 

 

Due to the saturated nature of the control, it is necessary for stability that ki > |i|, ∀i  

N. Then the maximum of the last term in the above inequality occurs when |si|
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 Note that with the above conditions, we have 
jj   . Thus, selecting each kj , ∀ j  
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N that satisfy (5 - 6), we have 
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 which further implies that a smaller compact set .  

 Now with each given i, let c1 be a positive constant 0 < c1 < 1, consider the following 

compact set 
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 where k > 0 is defined as s
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 which exists since the boundary, bd  is a compact set. Note that    . Since  

is a Lyapunov level set, if the states, s can be confined within this set, all si's are not 

saturated. Hence, if the states s stay inside the Lyapunov level set , all si's are not 

saturated. To achieve this, we simply need the set   , which can be attained 

when ki is large enough, such that V̇s being negative the outside of the set , 

  kVV s

ea

s  for ,0
..

  

 which implies that the trajectories of s will enter the set  in finite time and stay in it 

once entered. Hence, we have 
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 In particular, a sufficient condition on ki such that each si is unsaturated can be shown 

as following: 
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  (5 - 7) 

 It is not difficult to show that selecting K that satisfies (5 - 7) implies that (5 - 6) is 

sufficiently satisfied as well. Thus, for the case of a > 0 the control will be unsaturated 

in finite time and remain so thereafter.  

 

3. Having shown the boundedness of   in step 1 and  s being unsaturated and bounded or 

zero through step 2, depending on the parameter a, we are going to show the stability 

analysis of the desired error dynamics (5 - 3). 

For the case of b > 0: 

For a = 0, we have, since s will reach zero in finite time, from (5 - 4) the (v1, v2) 

dynamics  
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While for a > 0: 

Thus, we have, since the control will be unsaturated in finite time,   ss 11sat    , 
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 (5 - 8) 

 

Remark 5.3. Note that the desired error dynamics, after the convergence of s, for the 

case of a = 0 is identical to that of the case of a > 0 when s = 0. 

 

From Appendix B.1, with the Lyapunov function 
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where r1 > 0 is a constant, it is shown that  
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where the class K  function, 1i is defined as,  
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with bd  ii s3  as the boundary of the compact set 
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1, 2 are class K      functions defined in Appendix B.1. Hence, invoking lemma 2.6 

together with the boundedness of s (see step 2), the states (v1, v2) are uniformly 

ultimately bounded. 

For the special case of b = 0: 

Let the elements of 1 equal to that of K1, and 2 to that of K2, i.e. Nik nn  ,11  

and ,,22 Nik nn  hence the desired dynamics becomes 

        iiiiiiiiiaii

iii

vksvksvsvkv

svv

1122222

21

signsignsat 






 (5 - 9) 



 

 

298 

 

From Appendix B.1, with the Lyapunov function 
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where r1 > 0 is a constant, it is shown that  
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where the class K  function, 2i is defined as  
   

Vs
iiii svv

ii
321 bd,

2 max



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 , 

with bd  ii s3  as the boundary of the compact set  

        iiiiiiii svsvvvs 122111

2

213 ,:,     and  

11, 12 are class K      functions defined in Appendix B.1. Hence, invoking lemma 2.6 

together with the boundedness of s (see step 2 0), the states (v1, v2) are uniformly 

ultimately bounded.  

  ■ 

  

Remark 5.4. Hence, for K satisfying (5 - 7), the trajectories of the closed-loop system (5 - 4), 

are globally stable, with the ultimate bound being reduced as desired up to the saturation limit 

of the actuator, Ti, max > 0, ∀i = 1,...,n. Another way to view the stability results is, for a given 

bounds on the actuator limit, and hence K, if the bounds on the uncertainties, 
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                dddd qqqCqFDqMqqMqG  ,K  

are sufficiently small to satisfy (5 - 7), the global practical stability results are still assured. 

Essentially, besides the bounds on the parameters of the robot manipulator dynamics and 

disturbances, the term   is also dependent on the desired acceleration, velocity and the 

desired error dynamics through the term  and  ̇. In which case, a slower desired trajectory or 

slower desired error dynamics can, in effect, produce a smaller upper bound of |Δ|. 

 

Remark 5.5. It is desired for the controller (5 - 2) to behave as per its non-bounded counterpart 

(Chapter 3) when the controller is not saturated so that it exhibits the same properties such as 

the ability to inject desired error dynamics, and desired performance. Indeed from stability 

proof above (step 2), the control (5 - 2) will be unsaturated in finite time and stay so in all 

future times. Particularly, if the upper bound of |si| 
is sufficiently small (by selecting gain K 

satisfying (5 - 7) up to the allowable control bound, Ti, max), from step 3 above, the states (v1, 

v2) of the dynamics (5 - 8) and (5 - 9) will become unsaturated as well (see Appendix B.1), 

for b > 0, 
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which is similar to the z-subsystem (3 - 4) considered in Chapter 3, and hence will exhibit the 

same properties, since the states will remain unsaturated for all future times, provided is is 

sufficiently small.  

  

Remark 5.6. Note that the desired error dynamics injected by the controller through (5 - 3) is a 

modified version of (3 - 3) in Chapter 3 to account for the bounded control structure 

considered in this chapter. Specifically, it is an integral of saturation functions that provides 

boundedness of  as per step 1 of the proof of Theorem 5.1. This in turn, helps to dominate 

the effects of Coriolis term as shown in step 2 above, which is essential for global practical 

stability by accounting the inherent viscous friction of the robot manipulator. 

 

Remark 5.7. Observe that in step 2 above, it is necessary for the viscous friction term to 

satisfy the inequality   dm qCf  . This condition that is commonly found in the literature 

of global stability of robot manipulator with bounded control (see, for instance, [118] and 

[113]). This condition can be met by selecting the desired trajectories (through the desired 

velocity vector) and desired error dynamics (through (5 - 3)) appropriately. This condition 

restricts the desired velocity and acceleration (i.e. through the desired error dynamics) vectors 

but not the location of the desired task (i.e. qd). Essentially, the desired trajectory may be 

defined anywhere within the workspace of the robotic manipulator provided it has sufficiently 

slow motions. 
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Remark 5.8. It is worth mentioning that the desired error dynamics injection term have an 

inherent anti-windup structure, rewriting (5 - 3) by adding and subtracting Ka s, 
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hence when the control is saturated, the above feedback signal tries to drive the "control input 

error"   ss 1sat    to zero. Anti-windup prevents control loop from severe stability and 

performance degradation induced by integral action winding [117]. 

 

 

5.2 Numerical Simulations 

In this section, numerical simulations on a two-link robot manipulator were carried out to 

illustrate the results discussed in this chapter. The setups for each simulation are described. 

Discussion and analysis of the results are presented accordingly. 

 

5.2.1 Simulation Setup 

1) Simulation 1: 

The same two-link rigid robot manipulator considered in section 3.3 is adopted in 

simulation. The dynamics of robot manipulator (5 - 1) have the same parameter values as that 

in section 3.3. The desired trajectory vector and the additive disturbances Coulomb friction 
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vector were defined similarly as well. The initial conditions of the robot manipulator were 

selected as, 
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The control (5- 2) parameter values were selected as follows, 

,
100

010
,11,18,

10

01

6.0,
110

011
,

180

018
,

150

0150
,9.0

22211211

21
















































aK

bKKKa



 

The initial conditions of the vector  were selected as 
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Note that the initial velocity is purposefully made to be far from the origin in order to bring 

the controller to saturation. 

 

2) Simulation 2: 

The setup of Simulation 2 is exactly the same as that of Simulation 1. The simulation is 

repeated using the unbounded full-state feedback control (3 - 2), to examine its maximal 

tracking errors compared to that of control (5 - 2), with the parameter values selected as 
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Note that the same parameter values are attained when the control (5 - 2) vectors of 

Simulation 1 are unsaturated. 

5.2.2 Results and Discussions 

For better visualization of the plots, some figures are shown in two windows; each with 

different time intervals.  
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(a) Trajectory, q1 for time t = [0,15] s. 

 

(b) Trajectory, q2 for time t = [0, 15] s. 

 

(c) Sigma, 1 for time t = [0, 15] s. 

 

(d) Sigma, 2 for time t = [0, 15] s. 

 

(e) Torque, 1 for time t = [0, 15] s. 
(f) Torque, 2 for time t = [0, 15] s. 

Figure 5.1 Simulation 1. Tracking errors, sigma, and  control input of joint 1 and joint 2. 
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(a) Tracking error, e11 for time t = [0, 15] s. 

 

(b) Tracking error, e11 for time t = [5, 15] s. 

 

(c) Tracking error, e12 for time t = [0, 15] s. 

 

(d) Tracking error, e12 for time t = [5, 15] s. 

Figure 5.2 Simulation 2. Tracking errors using control (3 - 2), control (5 - 2). 

 

 

1) Simulation 1: 

As can be observed Figure 5.1(e), the large initial conditions caused the control (5 - 2) to 

saturate. From Theorem 5.1, the state  will converge to a bounded region in finite time, due 
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to the saturated nature of the integral (see (5 - 3)), which is clearly shown in Figure 5.1(c)-(d). 

According to the stability proof, once the state  converge to a bounded region and stay in it 

for all future times, with control gain K satisfying (5 - 6), the control will be unsaturated in 

finite time and stay in it for all future times. In fact, from Figure 5.1(e)-(f) the control inputs 

for both joints of the robot manipulator remained unsaturated after the initial saturation.  

 

2) Simulation 2: 

Figure 5.2 shows that both controllers (3 - 2) and (5 - 2) have similar ultimate bound on the 

tracking errors. This is expected as when the controller (5 - 2) becomes unsaturated, it has an 

identical structure of the unbounded control (3 - 2). However, a more important issue is how 

the control (5 - 2) can remain unsaturated once it becomes unsaturated. The controller (5 - 2) 

solve this issue in two-fold. Firstly, through its saturated integral structure (5 - 3), it ensures 

the boundedness of the states of . This in turns, provide boundedness of the vector 

(including the Coriolis term), together with the inherent viscous friction of the dynamics, the 

global boundedness of both  and s are achieved. Secondly, through sufficiently high 

saturation levels of the control, i.e. such that for a = 0, 
iik   while for a > 0, need (5 - 6), 

by means of strict Lyapunov functions, the state s will become unsaturated and remain so for 

all future times. 

 

Hence, due to the specific design (5 - 3) of control (5 -2), a saturated controller that inherits 

interesting properties (such as gain selection based on desired error dynamics injection and 
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performance bound) of its unbounded counterpart is shown. 

5.3 Summary 

A saturated controller is developed for the trajectory tracking or robot manipulators under the 

influence of bounded disturbances. Global stability is assured by taking into account of the 

viscous friction and the proposed nonlinear integrator. Effectively, the controller allows the 

injection of desired error dynamics similar to the unbounded control of Chapter 3, hence 

allowing simple gain selection as well. When the saturation level is sufficiently high for the 

user-defined speed of desired trajectory, global finite-time and exponential regulation can be 

achieved. 
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Chapter 6: ROBOT MANIPULATOR CONTROL: OUTPUT FEEDBACK BOUNDED 

CONTROL APPROACH 

Leveraging the results of Chapter 4 and 5, this chapter explore an output feedback bounded 

tracking control of robot manipulators with bounded disturbances. Lyapunov based stability 

analysis is provided to show global practical tracking results, while global finite time or 

exponential convergence can be obtained as well for regulation problem. Simulation results 

are provided to display the control performance. 

6.1 Observer Dynamics 

Inspired by the results of Chapter 4, the observer that exhibits properties of super-twisting 

algorithms with the addition of a linear damping term will be employed. Essentially, the same 

observer dynamics of section 4.1 will be considered in this chapter for the robot manipulator 

under bounded control approach.  

 

6.1.1 System Description 

Recall from section 4.1, the observer dynamics, 
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where 21

~,~ ee   ℝn , are the vector state variables, L1, L2, L3  ℝn n are positive definite 

diagonal matrices, 0.5  p  1, and d comprise elements of bounded perturbations. 

Consider element wise, ∀ i = 1,..., n, 
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The stability analysis that supports the main results of this chapter is described in the 

following. 

 

6.1.2 Stability Analysis 

Consider the following Lyapunov function: 
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(Note that this Lyapunov function is presented for the super-twisting based algorithms in 

section 2.4.2) 
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thus, ieV~  is positive definite and radially unbounded. Since (6 - 1) is a differential equation 

that has discontinuous right-hand side, i.e. when p = 0.5 and since no continuity assumption is 

made on di, its solutions are understood in the sense of Filippov (see definition 2.1).  
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Remark 6.1. The stability analysis of (6 - 1) will be considered with a different Lyapunov 

function as in section 4.1. This is due to the fact that in Chapter 4, the results pertain to 

semiglobal stability, while on a bounded control approach of Chapter 5, global stability is 

achieved. Since in this chapter, the observer (6 - 1) will be utilised under a bounded control 

approach in the subsequent sections, to show global stability, the observer dynamics analysis 

is repeated with a different Lyapunov function. 

 

According to lemma 2.4, the time derivative of non-smooth Lyapunov function exists almost 

everywhere 
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Since (6 - 1) is discontinuous when p = 0.5, for ease of presentation, the analysis is 

separated for the case of 0.5 < p  1 and p = 0.5. 

a) Case 1: For 0.5 < p  1: 

Note that for 0.5 < p  1, ieV~  is continuously differentiable: 
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For V̇1 : 

Applying lemma 2.1, 
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hold then the function V̇1 is negative definite. Note that such an rẽ > 0 always exists for any l1i 

> 0, l2i > 0. 

For V̇2 : 

Applying lemma 2.1, 
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The state space is divided into the following three regions for ease of analysis: 
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for the states in this region. 
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which is sufficiently satisfied for the states in this region. 
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Next consider the compact set: 

        iiiiiiiiiii ldeldeeeld 322311

2

2133 ,~,,~:~,~,   
 

Note that,    iiiii ldeeV 33212 ,~,~for0  .  

Thus, 
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which exists since the boundary of the set is compact and Vẽi is continuous. Then we observe 

that 3i (|di|, l3i)  ẽi (|di|, l3i). As a result, we have 
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which implies that each of the trajectories for the i-th planar system will enter their respective 

compact level set ẽi (|di|,l3i) in finite time and stay in it once entered.  
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b) Case 2: For p = 0.5 

Note that or p = 0.5, ieV~   is not differentiable on ẽ1i = 0: 
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Thus, for all (ẽ1i , ẽ2i ) ℝn
 , after rearrangement: 
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For V̇3: 

Applying lemma 2.1, 

  iiii eeee 2
3

1

1

3

2

3

2

5.1

1
~3~

2

3~~










 

Thus, if the following inequalities 

eii

i

i rll
l

l ~2

1

212

2

1

2

2
2

3
,

2
,min 

































 

hold then the function V̇3 is negative definite. Note that such an rẽ  > 0 always exists for any l1i 

> 0 , l2i > 0. 

For V̇4: 

The state space is divided into the following three regions for ease of analysis: 
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where the functions 1(.) and 2(.) are class  functions defined by: 
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for the states in this region. 
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which is sufficiently satisfied for the states in this region. 

Next consider the compact set: 
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Next, define a Lyapunov level set: 
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where the positive definite function 2i (|di|, l3i) is defined as follows: 
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which exists since the boundary of the set is compact and Vẽi is continuous. Then we observe 

that 3 (|di|, l3i)  ẽi (|di|, l3i) As a result, we have 
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which implies that each of the trajectories for the i-th planar system will enter their respective 

compact level set ẽi (|di|, l3i) in finite time and stay in it once entered.  
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6.2 Manipulator Dynamics 

The dynamic model of a rigid n-link serial nonredundant robot manipulator, with all 

actuated revolute joints described in joint coordinates, is given as follows: 

          tqqDqGqFqqqCqqM ,,,   (6 - 2) 

where q, q̇, q̈ ℝn  are, respectively, the position  (generalized coordinates), velocity and 

acceleration vectors, M(q)  ℝnn  is the inertia matrix, and C(q, q̇)q̇, Fq̇, G(q), τ  ℝn
 are, 

respectively, the vectors of Coriolis and centrifugal, viscous friction, gravity, and torque 

input, with F being a constant, positive definite, diagonal (viscous friction coefficient) matrix. 

D(q, q̇, t) is a an additional bounded uncertainty or perturbation term. (Note that no continuity 

assumption is made so that discontinuous models of friction may be used in D). The robot 

manipulator satisfies the same properties as that in Chapter 3 and will not be repeated here. In 

this chapter, only joint positions measurement is available. No velocity information from the 

system is assumed in this chapter. As such, the following development will follow an output 

feedback approach. In addition, let us suppose that the absolute value of each joint input i is 

constrained to be smaller than a given saturation bound Ti, max > 0, i.e., |i |  Ti, max, ∀i = 1, ..., 

n.  

The control objective here is to design a robust output feedback saturated control that 

ensures the robot configuration vector q tracks a desired trajectory vector, qd (t) with an 

ultimately bounded error that can be made as small as required globally even under the 

presence of bounded disturbances.  

The desired trajectory vector, qd (t) is assumed to be twice continuously differentiable 
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vector-function such that   ,tqd
   ,tqd
 and  tqd

 are bounded by a priori known constants.  

While the type of disturbances considered here has to be upper bounded by a constant, due to 

the limited actuation (Note that no continuity assumption is made so that discontinuous 

models of friction may be used in D), i.e. 
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where   DKD   :sup: ,  p0, p1, p2, p3, p4 , p5 are some nonnegative constants, 

dqqe 1
ℝn

 , and
dqqe  2
ℝn

. 

 

6.2.1 Control Development 

Under these constraints, the following controller is proposed, 

   ,ˆsigsat 1 a
sμK  , (6 - 3) 

where K and  are positive definite diagonal matrices, i.e.   ,diag
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When a = 0, the control becomes a discontinuous control law, 

   nssK  ˆ,ˆsign  
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Note that the control is bounded, i.e. such that |i(t) |  ki, for i = 1, …, n, ∀ t  0. The ŝ is the 

velocity-estimate-based desired error dynamics defined as ,ˆˆ
2  es  with

  
 

        b
b

b

k

aaa eKeKeKsKK
b

b 11
1

2

222

1 sigsatˆsigsatˆsatˆsat
12

2

1

2

2




 






 













   (6 - 4) 

where Ka, K1, and K2 are positive definite diagonal matrices, i.e.   ,diag
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 for  i = 1 … n. 

Note that when b = 0, , let the element of 1 equal to that of K1, and 2 to that of K2, i.e. 
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Note that ê2 is the output of the observer defined as: 
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where nee 21
ˆ,ˆ ,  L1, L2, and L3 are positive definite diagonal matrices, i.e.   ,diag

111

n

iilL




with 01 il ,   ,diag
122

n

iilL


 with 02 il , and   ,diag
133

n

iilL


 with 03 il , ni ,,1 , 

and 0.5  p 1. Let us define 111
ˆ~ eee  ℝn

, and 222
ˆ~ eee  ℝn

 , then, the closed-loop 

system (6 - 2), (6 - 3), (6 - 4) and (6 - 5) can be written as  
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To rewrite the closed-loop system in a form convenient for analysis, let us define ,11 ev   

,2 v  with   2222
~ˆˆˆ eseeses   , and we obtain the following form of closed-

loop system, 
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 (6 - 6) 

 

6.2.2 Stability Analysis 

Theorem 6.1: Consider the robot dynamics (6 - 2) with the bounded controller given by (6 - 

3), and the observer (6 - 5), global practical trajectory tracking of the desired trajectory, qd can 

be assured, even under bounded disturbances and without velocity measurement, provided 

that the gain K is sufficiently large up to the saturation bound Ti,max, ∀i = 1,...,n, and the 

observer gain L3 sufficiently large and the desired trajectory sufficiently slow. 

 

Proof of Theorem 6.1: The stability analysis will proceeds in three steps. 

1. First we will show that  and s are bounded globally, and then the observer is perturbed 

by bounded disturbances only. 

a. First we will show the boundedness of , by the following Lyapunov function 

.,,1,
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1 2
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Its time derivative along its solution (6 - 4), gives rise to 
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Since i, 1i, 2i > 0 are constants, |i| is bounded. Also, from (6 - 4), we can see that 

| ̇i | is bounded as well. 

b. Next, we proceed to show the boundedness of s by the following Lyapunov function 

 sMsVs .
2

1 T ,  with  
22

2

1

2

1
smVsm s  , 

Note that  , dqsq   

The s dynamics is described by, 
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 (6 - 7) 

Since the differential equation (6 - 7) has discontinuous right-hand side, i.e. when a = 

0 or since no continuity assumption is made on D, its solutions are understood in the 

sense of Filippov (see definition 2.1), and in accordance to lemma 2.4, the time 

derivative of the Lyapunov function Vs along the dynamics (6 - 7) for all a ≥ 0: 
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with ||1|| ≔ sup{|| ||:  K[1(.)]}, and the vector    
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 and    1ˆsigsat 1 





  a
sμK . 

Note that the upper bound of the vector 1(.) is determined by the physical properties 

of the robot dynamics, desired trajectory, and the desired error dynamics. Since q̇d, q̈d, 

are bounded from the assumptions and , ̇  are bounded (see step (1-a)), the vector 1 

is bounded as well. Hence from [143], the multi-valued function K[1] is bounded as 
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well. Thus, if 
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Hence, ||s|| is bounded by 
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Note that from above: 
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where the velocity is bounded globally since the right hand side of the inequality is 

bounded, i.e. s is upper bounded by the 1(.) and the control gain K, while desired 

trajectory and desired error dynamics are upper bounded by design. 

 

c. The observer dynamics, from (6 - 6), 

For ∀ i=1, ..., n: 
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Let us define    .:sup: 22  iiii K
 

 

Remark 6.2. Note that 2(.) is upper bounded by the physical properties of the robot 

dynamics, desired trajectory, control gain K, and velocity of the robot manipulator. 

Since q̇d, q̈d, are bounded from the assumptions, , q̇ and s are bounded (see step (1-a 

to 1-b)), the vector 2 is bounded as well. Hence from [143], the multi-valued function 

K[2i] is bounded as well.  

 

To show the boundedness of (ẽ1, ẽ2), consider the following Lyapunov function (see 

section 6.1),
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The differential inequalities for the (ẽ1, ẽ2)-subsystem satisfy (see section 6.1): 
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where the functions 1i and 2i are of class-KL    , 
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which is a compact set, with functions 1,  2, 3, and 4 are of class-KL. (See section 

6.1). 

Define the following Lyapunov level set, 
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Thus, it implies that each of the trajectories for the i-th planar system will enter their 

respective compact level set ẽi(|di|,l3i) in finite time and stay in it once entered.  

In particular, once inside the compact set ẽi(|di|,l3i) and since ,   ie
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 (6 - 10)
 

 

Hence, it can be observed that for 0.5  p  1, the increase of observer gain L3 will 

result in a smaller upper bound on the observation errors, since  the functions 1i and 

2i are of class-KL  .  
   

Remark 6.3. It is worth mentioning that increasing the control gain K, the upper bound 

of the vector 2(.) will increase as well (see (6 - 9)), requiring a larger observer gains 

L3 to obtain the same upper bounds on the observation errors. 

 

2. Now recall the analysis for s-dynamics, with this new-found bound on observation error, 

we are going to show that the bound on s can be made arbitrarily small; in particular the 
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control will be unsaturated. 

Recall that from (6 - 8), since   0:  dmmc qCFk   
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Remark 6.4. Note that for a given desired trajectory and given desired error dynamics 

(hence an upper bound on the vector 1(.)), there exist ki such that the above condition 
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on control gains K is satisfied. Accordingly, for a given control gain K, desired 

trajectory, and desired error dynamics (hence an upper bound on the vector 2(.)), 

there exist observer gains L3 such that the observation velocity error ẽ2 is bounded. 

 

Since ẽ2 is bounded, the state s will reach the above Lyapunov level set in finite time 

and stay in it for all future times. In particular, the ultimate bound on s can be obtained 

as: 
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Note that the desired dynamics (6 - 4) comprise a term of the form: 
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while the ultimate bound on s is dependent on that of the observation error for a given 

K, recall from (6 - 10) and (6 - 11), 
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Thus, it is possible for the term  ii es 2
~sat   to be unsaturated in finite time, provided 

a sufficiently big observer gain L3. 

 

b. For a > 0: 

Then we can rewrite the above inequality as: 
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Note that the last equality has single out one of its element, j  N from the summation 

and rearranged to separate terms due to observation errors and uncertainties. To show 

sign definiteness, the two terms are considered separately: 
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where 0 <  < 1 constant.

 

Note that with the above conditions, we have 
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Note that the above conditions can be satisfied by having sufficiently high observer 

gain L3 for a given control gain K (see step (1-c)). With the above conditions, we have 
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maximal allowable control bound Ti,max, to reduce 1i  and the increase of the observer 

gain, L3 (for a given control gain K) to reduce 2i. Now with each given i, let c1 be a 

positive constant 0 < c1 < 1, consider the following compact set 

 Nicss ii

n  ,: 1 
 
and
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ss Vk
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which exists since the boundary, bd  is a compact set. Note that    . Note that 

if the states, s can be confined within , which is a Lyapunov level set, 
ii cs 1 .

 
To 

achieve this, we simply need the set M  , which can be attained when K, and L3  

are large enough, such that V̇s being negative the outside of the set  , 
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which implies that the trajectories of s will enter the set  in finite time and stay in it 

once entered. Hence, we have 
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Next, observed that for a given K, the observer gain, L3 can be chosen to be 

sufficiently high such that 

,,21 Njjj  to that effect, recall that
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Then, we have 
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Hence, to satisfy the condition M  , it is sufficient for: 
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 (6 - 17) 

It is not difficult to show that selecting K that satisfies (6 - 17) implies that (6 - 14) is 

sufficiently satisfied as well. Thus, for the case of a > 0 the control will be unsaturated 

in finite time and remain so thereafter.  

 

Note that for any 0 < c1 < 1, there always exist a positive constant c2 such that 0 < c2 < 

(1  c1).  
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Together with the above conditions, it is sufficient for the observer gains to satisfy the 

following (for a given control gain K) by combining (6 - 15), (6 - 16) and 
ii ce 22

~  : 
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,  (6 - 18)  

and the control will be unsaturated in finite time and remain so thereafter.  

 

3. Having shown the boundedness of  ii ee 21
~,~ , and  ŝ  being unsaturated, we are going to 

show the boundedness property of the desired error dynamics (6 - 4).  

From step 2, we have 0for    ,~, 221  aNicecs iiii  , and 

0for ,,~
2  aNies iii  , then, in this region, the following is equivalent: 
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From Appendix B.1, with the Lyapunov function, 
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where r1 > 0 is a constant, it is shown that  
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with bd  ii 3  as the boundary of the compact set  
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1, 2 are class K      functions defined in Appendix B.1. Hence, invoking lemma 2.6, 

the states (v1, v2) are uniformly ultimately bounded. 

 

For the special case of b = 0: 

Let the elements of 1 equal to that of K1, and 2 to that of K2, i.e. Nik nn  ,11  

and ,,22 Nik nn  hence the desired dynamics becomes 
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From Appendix B.1, with the Lyapunov function 
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where r1 > 0 is a constant, it is shown that  
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defined as  
   
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 , with bd  ii 3  as the boundary of the compact 
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213 ,:,      

and 11, 12 are class K      functions defined in Appendix B.1. Hence, invoking lemma 

2.6, the states (v1, v2) are uniformly ultimately bounded. Hence, invoking lemma 2.6, 

the states (v1, v2) are uniformly ultimately bounded. 

  ■ 

 

Remark 6.5. Hence, for K satisfying (6 - 17), and observer gain L3 sufficiently high such that 

(6 - 18) is satisfied through (6 - 10), the trajectories of the closed-loop system (6 - 6), are 

globally stable, with the ultimate bound being reduced as desired up to the saturation limit of 

the actuator, Ti, max > 0, ∀i = 1,...,n, and correspondingly that of the observer L3. Another way 

to view the stability results is for a given bounds on the actuator limit, and hence K, if the 

bounds on the uncertainties, 

  
                 dddd qqqCqFDqMqqMqG  ,1 K

 

are sufficiently small to satisfy (6 - 17), and observer gain L3  sufficiently large for (6 - 18) the 

global practical stability results are still assured. Essentially, besides the bounds on the 

parameters of the robot manipulator dynamics and disturbances, the term 1  is also dependent 

on the desired acceleration, velocity and the desired error dynamics through the term  and ̇. 

In which case, a slower desired trajectory or slower desired error dynamics can in effect 

produce a smaller upper bound of |Δ1|. 
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Remark 6.6. It is desired for the controller (6 - 3) to behave as per its non-bounded counterpart 

(Chapter 4) when the controller is not saturated so that it exhibits the same properties such as 

the ability to inject desired error dynamics, and desired performance. Indeed from stability 

proof above (step 2), the control (6 - 3) will be unsaturated in finite time and stay so in all 

future times. Particularly, if the upper bound of |i| 
is sufficiently small (by selecting gain K 

satisfying (6 - 17) up to the allowable control bound, Ti, max  and observer gain L3 satisfying (6 

- 18) through (6 - 10)) , from step 3 above, the states (v1, v2) of the dynamics (6 - 19) and (6 - 

20), will become unsaturated as well (see Appendix B.1), 

for b > 0, 
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which is similar to the z-subsystem (4 - 7) considered in Chapter 4, and hence will exhibit the 

same properties, since the states will remain unsaturated for all future times, provided i is 

sufficiently small.   

 

Remark 6.7. Since the same observer structure of that in Chapter 4 is used here, for the special 
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case of p = 0.5, if the gains of the observer, L1 and L2 are sufficiently large to satisfy 

conditions of Theorem 4.2, the observation error  ii ee 21

~,~  will converge to zero in finite time 

and stay there for all future times (refer to step 1-c of proof of Theorem 6.1).  In that case, the 

closed-loop system (6 - 6) will be identical to the bounded full-state feedback control of (5 - 

4) considered in the previous chapter, Chapter 5. 

 

Remark 6.8. Since the control (6 - 3) follows a similar bounded approach as Chapter 5 , it has 

some similar inherent properties as that of (5 - 2) such as the use of integral of saturation 

functions that give rise to the boundedness of  (see step 1-a of the proof of Theorem 6.1), the 

need to satisfy inequality   dm qCf  (see step 1-b of the proof of Theorem 6.1) by 

having sufficiently slow desired motions, and the anti-windup structure (recall from (6 - 4), by 

adding and subtracting Ka ŝ ),  
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6.3 Numerical Simulations 

In this section, numerical simulations on a two-link robot manipulator were carried out to 

illustrate the results discussed in this chapter. The setups for each simulation are described. 

Discussion and analysis of the results are presented accordingly. 
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6.3.1 Simulation Setups 

1) Simulation 1: 

The same two-link rigid robot manipulator considered in section 3.3 is adopted in 

simulation. The dynamics of robot manipulator (6 - 2) have the same parameter values as that 

in section 3.3. The desired trajectory vector and the additive disturbances Coulomb friction 

vector were defined similarly as well. The initial conditions of the robot manipulator were 

selected as, 
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The initial conditions for the vector  were selected as 
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with the following initial conditions, 

       00,00ˆ
1311 eLwee   

since position measurement is available. 

 

2) Simulation 2: 

The setup of Simulation 2 is exactly the same as that of Simulation 1. The simulation is 

repeated using the unbounded output-state feedback control (4 - 4), to examine its maximal 

tracking errors compared to that of control (6 - 3), with the parameter values selected as 
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Note that when the control (6 - 3) vectors of Simulation 1 are unsaturated, it has the same 

parameter values as those employed in Simulation 2. 

 

6.3.2 Results and Discussions 

For better visualization of the plots, some figures are shown in two windows; each with 

different time intervals.  
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(a) Trajectory, q1 for time t = [0, 15] s. 

 

(b) Trajectory, q2 for time t = [0, 15] s. 

 

(c) Sigma, 1 for time t = [0, 15] s. 

 

(c) Sigma, 2 for time t = [0, 15] s. 

 

(e) Torque, 1 for time t = [0, 15] s. 

 

(f) Torque, 2 for time t = [0, 15] s. 

Figure 6.1 Simulation 1. Tracking errors, sigma and control input of joint 1 and joint 2. 
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(a) Position observation error, ẽ11 for time t = 

[0, 15] s. 

 

(b) Position observation error, ẽ12 for time t = 

[0, 15] s. 

 

(c) Velocity observation error, ẽ21 for time t = 

[0, 15] s. 

 

(d) Velocity observation error, ẽ22 for time t = 

[0, 15] s. 

Figure 6.2 Simulation 1. Observation errors for joint 1 and joint 2. 
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(a) Tracking error, e11 for time t = [0, 15] s. (b) Tracking error, e11 for time t = [5, 15] s. 

 

(c) Tracking error, e12 for time t = [0, 15] s. 

 

(d) Tracking error, e12 for time t = [5, 15] s. 

Figure 6.3 Simulation 2. Tracking errors using control (4 - 4), control (6 - 3). 

 

 

1) Simulation 1: 

As can be observed Figure 6.1(e)-(f), the large initial conditions caused the control (6 - 3) to 

saturate. From Theorem 6.1, the state  will converge to a bounded region in finite time, due 
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to the saturated nature of the integral (see (6 - 4)), which is clearly shown in Figure 6.1(c)-(d). 

According to the stability proof, once the state  converge to a bounded region and stay in it 

for all future times, with control gain K satisfying (6 - 14), the control will be unsaturated in 

finite time and stay in it for all future times, provided the observation errors ẽ2 are sufficiently 

small, which in turn are governed by the observer linear damping gain L3. In fact, from Figure 

6.1(e)-(f) the control inputs for both joints of the robot manipulator remained unsaturated after 

the initial saturation. The performance of the observer, as shown in Figure 6.2, is very good in 

terms of estimation speed and residual error. This is due to the synergistic combination of the 

super-twisting based algorithm and a linear damping term. 

 

2) Simulation 2: 

Figure 6.3 shows that both controllers (4 - 4) and (6 - 3) have similar ultimate bound on the 

tracking errors, which is expected since the unsaturated (6 - 3) is identical to (4 - 4). Similar to 

the argument of the bounded control of Chapter 5, the vital point of the control (6 - 3) is for it 

to become unsaturated and remain so for all future times. The controller (6 - 3) is structurally 

identical to that of Chapter 5 (5 - 2), hence the design of the saturated integral (6 - 4) has the 

same properties as that in Chapter 5. The only difference is that the velocity measurement is 

considered not available in this chapter, hence the use of the observer introduced in Chapter 4. 

From the stability proof of Theorem 6.1, the stability of this control (6 - 3) boils down to the 

boundedness of the velocity observation errors, ẽ2; i.e. if ẽ2 is sufficiently small, the bounded 

output-feedback control will be unsaturated and remain so for all future times. 
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Hence, by combining the observer of Chapter 4 together with the integral of saturated 

functions designed in Chapter 5, a bounded output-feedback control (6 - 3) that inherits the 

properties of it unbounded and full-state feedback controller (3 - 2) is shown. 

 

6.4 Summary 

In this chapter, globally stabilizing saturated controller for the trajectory tracking of robot 

manipulators without velocity measurements with additive bounded disturbances were 

proposed. The velocity is being observed through a super-twisting based plus linear damping 

observer. Strict Lyapunov functions developed in the previous chapter 2 are being modified to 

accommodate the bounded nature of the desired error dynamics. Essentially, after the 

controller forces the states to have unsaturated control, similar properties of their unbounded 

counterpart can be obtained. 
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Chapter 7: CONCLUSION AND FUTURE WORK 

 

7.1 Dissertation Summary 

The focus of this research is to develop strict Lyapunov functions for algorithms that are 

based on twisting and super-twisting algorithms and applying them to the control of robot 

manipulators with real world problem considerations including output feedback without 

velocity measurements and actuator saturation. Due to the non-Lipschitz nature of the 

algorithms and the type of disturbances are allowed to exhibit discontinuity, nonsmooth 

Lyapunov theorem is employed throughout the work to obtain important results from the 

proposed strict Lyapunov functions such as settling time estimate for the finite-time 

convergence and robustness to non-Lipschitz disturbances. Real world systems are always 

affected by nonlinear behaviours that are often not considered; i.e. such as saturation in 

control channels, lack of velocity measurements, Coulomb friction, the work in this 

dissertation aims to compensate for these phenomena with practical control designs that can 

be implemented easily. 

Family of algorithms based on second order sliding mode algorithm, namely that of twisting 

and super-twisting, are introduced in Chapter 2. Due to the non-Lipschitzness of the system, 

using the generalized solutions in the sense of Filippov, strict Lyapunov functions proposed 

are analysed using the generalized Lyapunov theorem. In particular, the strict Lyapunov 

function can fully characterize different stability properties of a parameterized family of 

controllers. Effectively, the family of controllers generalized the proportional-derivative (PD) 

control and twisting algorithm, and that of proportional-integral (PI) control and super-
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twisting algorithm. At the same time the strict Lyapunov functions proposed can similarly 

generalized the type of stability of these systems, from finite-time convergence to exponential 

convergence to uniform asymptotic convergence. Leveraging on this results, algorithms that 

combines the family of controllers with different degree of homogeneity are develop, and the 

corresponding strict Lyapunov functions are similarly develop by combining the one from the 

individual family, and the stability properties of each algorithm remains in the new 

combination. In essence, it is possible to achieve finite-time with uniform convergence, which 

in effect produces finite time convergence with fixed- settling time that is independent of 

initial conditions of the system. 

Chapter 3 focuses on the trajectory tracking control of robot manipulator. Semiglobal 

practical stability is assured where the ultimate bound of the states can be made arbitrarily 

small and the region of attraction arbitrarily large by tuning a single parameter. Due to the 

generalized Lyapunov theorem and the proposed Lyapunov function, the stability analysis 

permits the disturbances to have discontinuity, such as Coulomb friction. Of interest is the 

ability of the proposed controller in generalizing the well-known PID control. In particular, 

for this special case, the PID gains selection is transform into the selection of desired error 

dynamics and the selection of acceptable precision of error. This gain tuning simplification to 

gains selection is important, as it allows the nonlinear robust control of desired error 

dynamics injection and disturbance compensation into an existing PID control, which is of 

great benefit since PID control is widely used in industrial robot manipulator. In addition, for 

the special case of position regulation problem, sufficient conditions on the gains are obtained 

to ensure either finite-time or exponential convergence of the system towards the regulation 
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point. In addition, due to integral nature of the controller, it is possible for the system to 

behave as per the desired error dynamics from the onset of control even in the presence of 

disturbances. 

Trajectory tracking control of robot manipulator without velocity measurement is tackle in 

Chapter 4. The velocity measurement is substituted with the output of an observer that 

combines the super-twisting based algorithm develop in Chapter 2 with a damping term that is 

termed in the literature as "dirty-derivative". The addition of the linear damping term has the 

benefit of reducing the gain required of the non-Lipschitz part of the observer that is 

responsible for finite-time convergence. At the same time it allows the definition of the region 

of attraction to grow with the linear damping term, in which case is not possible if the term is 

not added and peaking phenomenon will occur if the initial observation error is not small 

enough. With the addition of this observer structure, the controller can maintain its useful 

feature from Chapter 3, where effectively, the controller here is an output feedback version of 

that proposed in Chapter 3. 

The problem of saturated control is developed in Chapter 5 for the trajectory tracking or 

robot manipulators under the influence of bounded disturbances. By taking into account of the 

viscous friction and the proposed nonlinear integrator that injects a bounded desired error 

dynamics, global practical stability is achieved. Also, when the saturation level is sufficiently 

high for the user-defined speed of desired trajectory, the finite-time and exponential 

regulation of the unbounded control in Chapter 3 is recovered but in a global manner instead 

of semiglobal. 

In the final chapter, the control robot manipulator is assumed to have both constraints;  no 
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velocity measurements available and the control is bounded. For the velocity observation, the 

observer proposed in Chapter 4 is employed while the framework of bounded control in 

Chapter 5 is applied. As a result, a globally stabilizing saturated controller for the trajectory 

tracking of robot manipulators without velocity measurements under the influence of additive 

bounded disturbances is developed. Essentially, after the controller forces the states to have 

unsaturated control, similar properties of its unbounded counterpart in Chapter 4, can be 

obtained. 

 

7.2 Limitations and Future Work 

The work in this dissertation complements the SOSM algorithms and control designs for the 

trajectory tracking of robot manipulator. At the same time, it reveals new information on 

existing nonlinear systems. Hence in this section, open problems related to the research in this 

dissertation are presented. 

In Chapter 2, the strict Lyapunov proposed are for the algorithms with constant gains. In 

particular, the mechanical energy of the system is utilized as part of the strict Lyapunov 

function. However, in doing so, if the gains of the system is allowed to be time varying, the 

construction of Lyapunov function is not as straightforward. An example of a strict Lyapunov 

function for super-twisting algorithm can be found in [146] where the structure of the 

Lyapunov functions dictate the type and form of the variable gains, which is restrictive. 

Hence, it is of interest if strict Lyapunov function can be developed that allows a full range of 

variable gains. As the task of finding strict Lyapunov function is not straightforward 

especially for higher order sliding mode algorithms, it is hoped that the work in this 
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dissertations help sheds light on through employing the inherent structure of the algorithms 

into the Lyapunov function. 

For chapter 3, the stability result achieved is semiglobal which implies that the gains of the 

control are selected based on the initial conditions of the closed-loop system. If the gains are 

allowed to vary in accordance to the initial conditions by means of an adaptive algorithm, for 

instance, global stability may be attained. Particularly, given the strictness of the Lyapunov 

function proposed, utilizing certainty equivalence techniques similar to [147], an adaptive 

version of the controller may be possibly developed. 

An output feedback version of the controller in Chapter 3 is presented in Chapter 4, by 

utilizing a super-twisting based algorithm plus a linear damping term observer. The stability 

analysis here is also dependent on satisfying sufficient conditions pertaining to the initial 

conditions of the closed-loop system. Hence, similar arguments as in Chapter 3 applies here, 

in which case, an adaptive version of the output feedback controller seems plausible through 

the strict Lyapunov functions of both the observer and controller produced here. 

From Chapter 5, global results are achieved for the bounded controller by taking into 

account of the damping effect of the viscous friction and a bounded desired error dynamics in 

counteracting the effect of Coriolis and centrifugal terms of the dynamics. However, as a 

result, the type of desired trajectory, in particular the speed and acceleration of the desired 

trajectory is affected in order to satisfy the sufficient conditions for stability. Although, it is 

understood that, given a limit on the actuation, there is a bound on the speed at which the 

system can operate, it is useful if the limit on the desired trajectory be variable instead of a 

constant bound, depending on the configuration of the robot manipulator, so that the 
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bandwidth of the control can be utilised optimally. 

Chapter 6 combines the results of the observer based control in Chapter 4 and the bounded 

control framework of Chapter 5 to produce a global practical stability result on trajectory 

tracking with the real world considerations of actuator limits and the lack of velocity 

measurements from the system. All controllers proposed from Chapter 3 to Chapter 6 for 

robot manipulator can achieved finite time convergence for the regulation problems by 

satisfying sufficient conditions, including the need for the gravity vector, G(q) to be zero at 

the point of regulation. However, such a need is not necessary for the exponential 

convergence for the regulation problem. This is mainly due to the non-Lipschitzness of the 

control, for finite-time convergence, occur at the origin, when a change of variable is applied 

to the desired gravity point, the new equilibrium point is locally Lipschitz, hence the control 

cannot render the convergence in finite time unless the desired gravity exactly compensated or 

zero.  
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Appendix A 

A.1 PROOF OF DESIRED DYNAMICS (CH3 & 4) 

Consider the following dynamics: 

    
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b
b
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22112
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sigsig

,




  (A1 - 1) 

where z1, z2  ℝ, are the scalar state variables, k1, k2 are positive constants, b ≥ 0 real number 

with    22
1

2

2222
1

2

22 signsign dzdzkzzk b

b

b

b

 
 

and d1, d2  ℝ 
are bounded 

disturbances:  

|d1| ≔ sup{|1 |: 1 K[ d1 ] }, |d2| ≔ sup{|2 |: 2 K[ d2 ] } and | | ≔ sup{|3 |: 3 K[  ] 

}(Note that no continuity assumption is made so that discontinuous disturbances may be used 

in d) . 

The results in this section are applicable to the desired dynamics section of both chapter 3 & 

4. In particular, by applying the following change of variable: 

For chapter 3: 

,,, 212211 iii sddzzzz   

For chapter 4: 

,,, 212211 iii sddzzzz   

the same differential equations are obtained. 

Next, we take the Lyapunov function candidate of the form 
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where r > 0 is a constant. Note that V  is positive definite (with ri > 0 exist, see Chapter 1). 

     4

2

22

1121

4

2

22

11 , zzzzVzz
bb





 

where 
























2

1

1
12

1
,

8

1
min:

b

k
 , 














































4

1

422
,

2214

3
max: 11

2

1

1

r

b

k

b

k

b

kr
 , 

In accordance to lemma 2.4, taking the time derivative of the Lyapunov function along the 

solutions of the system (A1 - 1) exists almost everywhere: 
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For ease of presentation, the analysis is separated for the case of b > 0 and b = 0. 

 

For the case of b > 0: 
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Also, from the results of the planar system (Appendix A.2-proposition 1): 
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Note that from Section 2.2 (twisting algorithm): if the following inequalities 
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hold, then the function V̇1 is negative definite. Such an r > 0 always exists for any k1 > 0 and 

k2 > a2 > 0. Then, 
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together with lemma 2.2, and the bounds of the Lyapunov function, we have: 
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It can be further arranged into the following form to dominate the positive term, 
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     21

2

21 ,:, zzVzz   in finite time. Note that when |d1| = |d2| = 0, everywhere  

    2

21
44

53

44

53

1

4 ,, 














 






zzVzV b

b

b

b



   ■ 

 

For the case of b = 0: 

First we consider the planar case: 
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Now let us consider the planar dynamics with b = 0 and k1 > k2 > 0. 
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Now, for b = 0, the Lyapunov function is not differentiable at z1 = 0 but Lipschitz continuous 
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Hence, the generalized time derivative of the Lyapunov function, after rearrangement: 
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For analysis, the state space is divided into three regions: 
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Then, the time derivative of the Lyapunov function becomes: 
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which is sufficiently satisfied for the states in this region. 
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Then, the time derivative of the Lyapunov function becomes: 
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A.2 PROPOSITION 1 

For every real numbers k2, d2, z2  ℝ, b > 0, and |d2| ≔ sup{|2 |: 2 K[ d2 ] } the following 

inequalities is satisfied 
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Let us note that when |2| = 0, the above is trivially satisfied. Hence, for |2| > 0, we consider 

the two cases of sign(2) < 0 or sign(2) > 0. 

 

For sign(2) > 0: 
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In the region of z2  0, it becomes: 
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For sign(2) < 0:
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which is identical to the case of sign(2) > 0 in the region z2  0.
 

In the region of z2  0, it becomes: 
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which is identical to the case of sign(2) > 0 in the region z2 ≥ 0. 

 

Hence, for all |2| ≥ 0 and |z2| ≥ 0: 
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Hence we can write (A2 - 1) as: 
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Hence we have ∀ 2  K[ d2 ], ∀ |z2| ≥ 0: 
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Thus, to determine the upper bound of | |, it is sufficient to consider two cases only for |z2|  

0 where both cases are greater than or equal to zero for |z2|  0 and 02 d  
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Consider the following function: 

  22
1

2

222 0    with   , kazka b

b

   



 

 

381 

 

and for the following inequality to be satisfied 
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where the equality holds only when both |z2| = |d2| = 0. 
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Now consider case 2: 

Consider the following function: 
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Also, for |z2|  D |d2| , we have 
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Note that D > 1 from above. 

Hence, for all |z2|  0, we have 
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where a2  is chosen as 0 < a2 < k2.  ■ 
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Remark: The reason for having a2 < k2 will be apparent in the subsequent stability analysis. 

A.3 PROPOSITION 2 

 

For x  ℝ, y  ℝ, p ≥ 1, the following inequality is satisfied 
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Proof of proposition 2:  (We extend the proof from Lemma 2.3 of [148] where it is 

originally for integer p only.): 

It is straightforward to prove that the function 
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arrives its minimal value at  = 1/2. Thus, f() ≥ f(1/2) = 0. Consequently, 
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. 

In the case when x + y ≠ 0, set  = x/(x + y). Then, the proposition follows immediately. When 

x + y = 0, the proposition is trivial. Hence, the proposition is true ∀x  ℝ, y  ℝ. ■ 
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Appendix B  

B.1 PROOF OF DESIRED ERROR DYNAMICS (CH 5 &6) 

For the case of b > 0: 

Consider the following dynamics: 
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where v1i, v2i, si, ẽ2i  ℝ, are the scalar state variables, k1i, k2i, kai, 1i, 2i, i are positive 

constants, b ≥ 0 real number 
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The results in this section are applicable to the desired dynamics section of both chapter 5 & 

6. In particular, for Chapter 5, let 0~
2 ie , while for chapter 6, no changes required, and the 

same differential equations are obtained. 

Lyapunov function: 
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where r1 is a positive constant scalar, will be shown as a strict Lyapunov function. Note that 

the above function is locally Lipschitz and regular. It is differentiable everywhere for b > 0, 

and not differentiable on v1i = 0 for b = 0. In particular, when none of the terms of the 

dynamics are saturated, the Lyapunov function is indeed identical to that proposed in Section 

2.2 for the twisting-based family of algorithms.
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Now, firstly note that the upper bound on the Lyapunov function: 
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which is positive definite and radially unbounded. 
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Next, the lower bound on the Lyapunov function, using the above properties, can be obtained 

as:
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Using lemma 2.1, 
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Note that such an r1 > 0 always exists for any positive ik1  and b. Thus, the Lyapunov function 

is positive definite and radially unbounded. In accordance to lemma 2.4, the time derivative of 

the Lyapunov function along the solutions of the system exists almost everywhere: 

 

Time derivative of Lyapunov function b > 0: 
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Note  that V̇2 is negative definite for 3i > 0. V̇s is considered as perturbation term.

 

We are going to show that an r1 > 0 exists such that the V̇1 is negative definite. 
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Note that in this region the term |v1i| is lower bounded, thus 
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From lemma 2.1, 
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It can be easily verified that, for any c > 0 and (v1i, v2i)  3:  
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Let us define the boundary of this region, bd 3, which encircles the origin that can be written 

as the union of the sets  

2,31,33bd  
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Due to this homogeneity property (B1 - 1), to show sign definiteness, it suffices to prove sign 

definiteness on the set bd 3, which encircles the origin, since for every (v1i, v2i) 

    3  \  *(0,  0)+ there exists a c   >   0 such that (c
2/(1+b)

 v1i,  cv2i)    bd 3. Note that the sign 

definiteness of V̇1 has been shown to be negative definite on bd 3 already since 3,1  1 

and 3,2  2. Thus, by the homogeneity property (B1 - 1), we have V̇1 < 0 in this region as 

well. 

As a result, V̇1 < 0, negative definite for all (v1i, v2i)  ℝ2 with r1 > 0 chosen as: 
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Observe that such an r1 > 0, always exists for any k1i > 0, k2i > 0, 1i > 0, 2i > 0, and b > 0. 

 

Sign definiteness of V̇2 + V̇s: 

From the previous development, we have shown that V̇1 is negative definite and since V̇2 is 

negative definite, the idea is to dominate the V̇s term with it. Before we proceed, from 

Appendix B.2-proposition 1, we have the following inequalities 
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where   is a class K function. (Refer to the definition of class K function in [71]). Hence, 

after simple algebraic manipulation: 
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The z1i  z2i plane is divided into the following three regions for analysis: 
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with the additional class K functions defined as: 
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and using lemma 2.2, we have: 
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Thus, 02  sVV 
 in this region. 

 

Next, for region:         iiiiiiii vvvv  2211
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and in this region, |v2i| is upper bounded by  iiv 22  , 
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Thus, 02  sVV 
 
in this region. 

 

Hence, we have shown that 
1

~
VV 

  < 0, outside the compact set:

  

        iiiiiiii vvvv  2211

2

213 ,:,    

   iii vvVV 3211 ,for,0
~

 


 

Now using Lyapunov argument, define a Lyapunov level set, 
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2
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where the class K  function, 1i is defined as,  
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which exists since the boundary of the sets 3 are compact. Note that 3 (|i|)  v (|i|). 

Consequently,  

  ,for,0
~

11 iiVVV  


  

since 3 (|i|)  v (|i|) which implies that the trajectories of (v1i, v2i) will enter the set v (|i|) 

in finite time and stay in it once entered. 

 

For sufficiently small |i| 



 

 

413 

 

Consider the compact set  









































b

b

i

i

i

b

i

i

iiii
k

v
k

vvv
2

1

2

2

2

1

1

1

1

2

214 ,,:,



 

and the Lyapunov level set,   satiiisat Vvv ,
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which exists since the boundary of the sets 4i are compact. Note that sat   4i. 
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Then, inside the set v (|i|), the upper bound on (v1i, v2i) can be found. In particular, 
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Note that, to ensure that the desired error dynamics is unsaturated, it is necessary that: 
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Hence, from the above upper bounds on the states, to ensure that no saturation occurs, it is 

sufficient for the following class K  function to satisfy the inequality, 
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which is possible for sufficiently small |i| > 0. Thus, the control will be unsaturated in finite 

time and remain so thereafter for sufficiently small |i| > 0. Once the states are unsaturated, 

the desired error dynamics become 
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which is similar to the one considered in the section where no saturation is considered the 
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control law (see chapter 3, 4). 

 

Special case, when |i| = 0 

When |i| = 0 and remains so for all future times, the system is asymptotical stable which 

implies that the trajectories of the system will reach the Lyapunov level set sat  in finite time 

and remain in it for all future times, where we can see that for (v1i, v2i)  inside the region sat, 

the control will be unsaturated. Essentially, it will become homogenous double integrator 

system and the Lyapunov function is homogeneous as well, where its stability has been 

studied by the author in [133]. In essence, once the system enters the unsaturated Lyapunov 

level set in finite time, its convergence properties is dependent on the parameter b, in 

particular for 0 < b < 1, we have finite time convergence, for b  = 1 we have exponential 

convergence, and for b > 1 we have asymptotical stability to the origin. 

 

For the case of b = 0: 

Consider the following dynamics: 

     
    iiiiii

iiiaiiiiaii

iii

vkesvk

esvkesvkv

svv

i

ii

11222

22222

21

sign~satsign

~satsat~sat














 

where v1i, v2i, si, ẽ2i  ℝ, are the scalar state variables, k1i, k2i, kai, i are positive constants, b ≥ 

0 real number with 
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The results in this section are applicable to the desired dynamics section of both chapter 5 & 

6. In particular, for Chapter 3, let 0~
2 ie , while for Chapter 4, no changes required, and the 

same differential equations are obtained. 

Lyapunov function 
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where r1 is a positive constant scalar, will be shown as a strict Lyapunov function. Note that 

the above function is locally Lipschitz and regular. It is differentiable everywhere for b > 0, 

and not differentiable on v1i = 0 for b = 0. In particular, when none of the terms of the 

dynamics are saturated, the Lyapunov function is indeed identical to that proposed in Section 

2.2 for the twisting-based family of algorithms.

 
 

Sign definiteness of V : 

Firstly, note that the term 
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Using lemma 2.1, 
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Note that such an r1 > 0 always exists for any positive 

ik1
. Thus, the Lyapunov function is 

positive definite and radially unbounded. In accordance to lemma 2.4, the time derivative of 

the Lyapunov function along the solutions of the system exists almost everywhere. 

 

Time derivative of Lyapunov function b = 0: 

For b = 0, V is not differentiable on v1i = 0: 
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Computing 2

~
V


: 

Since si is a Filippov solution, it is absolutely continuous,   ii ssK  : 
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For v1i  0, ∀ v2i  ℝ : 
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For v1i = 0, ∀ v2i  ℝ : 
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For v1i = 0, ∀ v2i  ℝ: 
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Hence, the generalized time derivative of the Lyapunov function, after rearrangement: 
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 (B1 - 2) 

Next, the state space is divided into three regions for analysis: 
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Note that in this region, the following properties apply: 

        iiiiiiiiii vesvvvesvv
ii 22222222

~satSGNsign~satSGN    



 

 

422 

 

   

    

     

    regionthisin~satsincesign

,~satsign~satSGN  

have   weThus,

,~sat
3

  since,0~sat that note  ,0when  

satisfied,y    triviallis  above  the,0,0~,0when

222

2222

2

2

1

222

TT

2

iiii

iiiiii

iii

i

i

iiiii

iii

esvv

esvesv

es
k

k
vesv

es

i

ii

ii





 











 

Similarly, we have 

     

     
0

~satsat~sat

~satsat~sat

22222

22222







iiiiiii

iiiiiii

esvesvv

esvesvv

ii

ii





 

Hence, we have, from (B1 - 2), 
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Note that in this region the term |v2i| is upper bounded and recall that 
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Also, 
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where V
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< 0 in this region. 

 

Now consider the compact region         iiiiiiii vvvv  122111
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From the analysis in the other regions, we have shown that V
~

< 0 outside of the region 3. 

Now, define a Lyapunov level set: 

      iiiiii Vvv  2

2

212 :,    

where 2i is a class K  function defined as: 

 
   

V
iii vv

ii



321 bd,

2 max


  

which exists since the boundary of the set is compact and V is continuous. Then we observe 
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that 3 (|i|)  2i (|i|). As a result, we have 
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which implies that the trajectories will enter the compact level set 2i (|i|) in finite time and 

stay in it once entered. 

 

For sufficiently small |i| 

Consider the compact set   1,1:, 21
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which exists since the boundary of the sets s = 0 are compact. Note that s = 0   s = 0. 

Then, if |i| is sufficiently small, such that   02  sii k , we have 2v (|i|)  s = 0 ,note that 

inside s = 0, the Lyapunov function becomes, 
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Then, inside the set 2v (|i|), the upper bound on (v1i, v2i) can be found. In particular, 
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Note that, to ensure that the desired error dynamics is unsaturated, it is necessary that: 
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Hence, from the above upper bounds on the states, to ensure that no saturation occurs, it is 

sufficient for the following class K  function to satisfy the inequality, 
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which is possible for sufficiently small |i| > 0. Thus, the control will be unsaturated in finite 

time and remain so thereafter for sufficiently small |i| > 0. Once the states are unsaturated, 

the desired error dynamics become 
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which is similar to the one considered in the section where no saturation is considered the 
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control law (see chapter 3, 4). 

 

 

Special case, when |i| = 0 

Consider the special case of b = 0 and |i| = 0, (i.e. si = 0, and ẽ2i = 0), it is possible to show 

convergence to the origin in finite time. 

In particular, from the above development, we obtain, 

    .0for  00\,,0
~ 2

21  iii ,vvV 
 

since 13(0) = 0 and 14(0)   = 0. Hence, the system is asymptotically stable which implies 

that the trajectories of the system will reach the Lyapunov level set 

  0210 :,   s

n

iis kVvv   

in finite time and stay in it in all future time, 

where Vk
sss 0bd0 min
   , and  
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where ks = 0 > 0 exist since the boundary of the set s = 0 is a compact set.  

Note that s = 0   s = 0. Now note that once inside this region, the system becomes 
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and the Lyapunov function becomes 
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Essentially, it will become homogenous double integrator system (also known as the twisting 

algorithm in the literature) and the Lyapunov function is homogeneous as well, where its 

finite time stability has been studied by the author in [133]. In essence, once the system enters 

the unsaturated Lyapunov level set in finite time, it will begin to behave like a twisting 

control that will converge to the origin in finite time (see [133] for the time of convergence 

estimation).   ■ 

 

B.2 PROPOSITION 1 

For v2i, si, ẽ2i  ℝ, k2i, 2i, i are positive constants and b > 0, the following inequalities are 

satisfied, 
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where   is a class K function.

 

Proof of Proposition 1: Note that from Appendix A.2-proposition 1, 
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Note that we only need to consider, for the right hand side of the above inequality, v2i on the 

range 

 






























b

b

i

i

iii
k

esv
i

2

1

2

2

22
~sat,0


  since for  

b

b

i

i

iii
k

esv
ai

2

1

2

2

22
~sat 1


















 

    

    
0

~satsatsat

,sat~satsat

max

222

222

2

1

2

2
2

1

2

2

2

1

2

2
2

1

2

2




















































































iii

k

i

k

i

k

iii

k

esvv

vesv

i
b

b

i

i
b

b

i

i

b

b

i

i

i
b

b

i

i









 

Hence, for all |v2i| ≥ 0: 
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Thus, the above proposition follows for all |v2i| ≥ 0 and   0~sat 2  ii es
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Note that from Appendix A.2-proposition 1, 
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Note that we only need to consider, for the right hand side of the above inequality, v2i on the 
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Hence, for all |v2i| ≥ 0: 
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where the function (si) is defined as 
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which is a continuous nondecreasing function of |si|, zero at zero,  and strictly positive. Also 

note that due to the saturation structure, we have 

  iiii ss 22 2for 2  
 

and due to the nondecreasing nature of the function, we have 
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Thus, for all |v2i| ≥ 0 and |si| ≥ 0, 
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Since the function (|si|) is zero at zero, continuous, strictly positive, and nondecreasing, from 

Lemma 1 of [145], there exists a class K function (|si|) such that 
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