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ABSTRACT

Second order sliding mode has been successfully implemented for solution of real problems
for its inherent features such as finite-time convergence and robustness to disturbances. For
the first order sliding modes, it is common to deal with the issues of stability, robustness, and
convergence rate of the equilibrium by means of a Lyapunov approach. For higher order
sliding modes, however, a similar treatment has not been developed until recently. The focus
of this thesis is the construction of strong Lyapunov function, i.e. for which its time derivative
can be upper bounded by negative-definite functions, for the design of control strategies for
robotic manipulator, which is a nonlinear system, subject to combinations of parametric

uncertainty, bounded disturbances, actuator saturation, and output feedback.

The first contribution of this work is the development of a strong Lyapunov function for a
parameterized family of homogeneous sliding mode based controller comprising twisting
algorithm, continuous finite time control, linear PD control law, and uniformly stable control
law, all of which belongs to a general homogeneous family of control algorithms. The strict
locally Lipschitz homogeneous Lyapunov function proposed permits the estimation of
convergence time for the trajectories of the system to the origin, in finite-time, exponentially,
or uniformly asymptotically, even in the case when it is affected by bounded non-vanishing or
growth bounded vanishing external perturbations. Moreover, the relationship between the

control gains and its convergence performance can be analyzed.

Leveraging on these results, a strong Lyapunov function is developed for a closely related
second order sliding mode algorithm, the super-twisting algorithm based controller. In
particular, the construction of these strong homogeneous Lyapunov function is able to show
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the relationship between the twisting and super-twisting algorithms and allows linear

combination of two homogeneous control of different degree.

Extending the results for MIMO robot manipulator, a type of Euler-Lagrange dynamic
systems, a family of integral sliding mode-based controller is introduced for trajectory
tracking. In particular, the homogeneous dynamics is employed as the desired error dynamics
for the controller. Additionally, the conventional PID control is shown to be a special case and
the present formulation presents the relationship between the gains of the controller and the
desired performance, which provides a systematic method for gain selection for a robust PID
control. In addition, for the special problem of regulation, employing the results of

homogeneous control, finite-time regulation of the robot manipulator is achieved.

Since actuator saturation is a phenomenon that affects the performance of dynamic systems
under closed-loop control, a saturated version of the controller is also developed that achieved
global stability while maintaining the features of the unbounded version of the controller in
terms of trajectory tracking and finite time regulation. Extending the results for system with
position measurements only, a saturated output feedback version of the controller is
introduced that can achieved global stability as well. Each of the proposed controllers
provides advantages over the previous literature in their ability to design desired error

dynamics and the time derivative of the disturbance is not required in the stability analyses.

Throughout the work, Lyapunov-based stability, in particular the nonsmooth Lyapunov
analysis techniques, and numerical experiments are provided to highlight the performance of

each controller design.
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Chapter 1: INTRODUCTION

1.1 Motivation

Sliding mode approach to control design has received great amount of attentions of late due
to its inherent attractive features such as finite-time convergence and robustness to
disturbances. It introduces a nonlinear discontinuous term where its gain must be designed so
that the trajectories of the system are forced to remain on some user-defined sliding
hyperplane in the error state space. The resulting motion is called sliding mode. It is this
discontinuous term that provides the abilities to reject perturbations and some classes of
uncertainties between the actual system and the nominal model used in the control design
stages. In [1], a definition of the sliding mode order is given and consists of trajectories in the
sense of Filippov [2]. The standard sliding mode is of the first order and is known as robust
and very accurate with respect to various classes of internal and external perturbations, but it
is restricted to the case in which the output relative degree is one. Besides, the high frequency

switching that produces the sliding mode may cause chattering effect.

Higher order sliding modes (HOSM) appears sometimes in systems with traditional sliding
mode control or they are deliberately introduced because it has been found that finite time
convergent HOSMs preserve the features of the first order sliding modes and can improve
them, if properly designed, by eliminating the chattering, for instance see [3] and [4]. While
finite-time convergent arbitrary order sliding mode controllers are mostly still theoretically
studied, 2-sliding controller or second order sliding mode(SOSM) with finite-time

convergence have already been successfully implemented for solution of real problems.
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However, there are only few SOSM that are widely used namely, the sub-optimal controller
[3], [5], [6], the terminal sliding mode controllers [7], [8], [9], twisting controller, and the

super-twisting controller; the last two being the most popular.

Particularly, the super-twisting control found its application on wind energy conversion
system [10], velocity observer of mechanical systems [11], and uncertainty observers [12]
[13]. On the other hand, application of twisting algorithm can be found in the adaptive
tracking control of intelligent vehicle system [14] and trajectory tracking of crane [15] and
[16]. Also of interest, are the development of family of controllers that are based upon the
twisting and super-twisting algorithms [17] and [18]. For the first order sliding modes, it is
common to deal with the issues of stability, robustness, and convergence rate of the
equilibrium by means of a Lyapunov approach. For higher order sliding modes, however, a
similar treatment has not been developed until recently. Instead it is usual to use majorant
curves [11], homogeneity based methods [19], or a weak Lyapunov function together with
geometric approach [20]. The focus of Chapter 2 is the development of strict Lyapunov
functions for the super-twisting, twisting algorithms, and the corresponding family of
controllers, which can be used as design and analysis tool whose time derivative can be

bounded by negative definite functions.

The research on the control theory of serial mechanical systems has been a topic that is
actively studied. The asymptotic stability of robot manipulators can be achieved by computed
torque method or inverse-dynamics control [21]. While asymptotic stability implies that the
system have convergence to the origin as time goes to infinity, finite-time stabilization can

ensure convergence to the origin in finite time, as discussed above. On the other hand,
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robustness in control systems is an equally important property as stability and convergence. It
is the property by which a system preserves a tolerable behaviour under the influence of
uncertainty, perturbations, external disturbances, etc. In particular, it is known that finite-time
stabilization of dynamical systems can provide high-precision performance and improved
rejection of low-level persistent disturbances [22] [23]. This can be achieved by continuous
non-Lipschitz feedback controllers such as twisting-based algorithm in [24]. However, the
robustness issue is not specified clearly as the algorithms require exact knowledge of the
dynamics of the manipulators. Leveraging the outcomes developed in Chapter 2, Chapter 3

presents full state feedback approach by integrating SOSM into the controller.

The previous discussion on robot manipulator control assumes that the joint velocity is
available from measurement. If only position information is available, one has to employ
output feedback control, which has received considerable interest in robotics literature due to
its possibility to avoid the need of a tachometer hence simplifying the robot design [12]. The
main problem in output feedback control is the need for the control law to not only
compensate uncertainties of the system but also the lack of link joint velocity measurements.
Employing the outcomes of Chapter 2 and 3, Chapter 4 presents an output feedback controller

for robot manipulator.

While the robust control methods mentioned above for robot manipulators have been shown
to be effective for the compensation of uncertainties and disturbance in their respective
context, generally, the fact that the required input torques may command more actuation than
is physically possible by the system for instances such as large perturbations, initial

conditions that are far from the equilibriums, or fast desired trajectory. These may lead to
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unexpected or undesirable closed-loop behaviours, for instance, in the nonlinear PID control
for the global regulation problem of robot manipulator of [25], it requires unbounded state
dependent control gains, which may easily causes saturation of actuator if the initial
conditions of the system is not restricted. Owing to these risks, control law that is bounded
while ensuring performance when operating within actuator limits are motivated. By means of
the results of Chapter 2 and 3, Chapter 5 presents a bounded full state feedback controller for
robot manipulator which limits the control authority at or below an adjustable a priori limit.
Bounded control designs are available in literature; however, the integration of SOSM into the

bounded structure that has a strict Lyapunov function has remained an open problem.

Motivated by the same concerns presented in Chapter 4 on the lack of joint velocity
measurements and that of actuator constraints in Chapter 5, Chapter 6 develops a control
strategy for robot manipulators with a bounded control approach with output feedback.
Previous techniques and outcomes obtained in Chapter 4 and 5 are utilized which allows for

the bound on the control to be adjusted a priori provided through strict Lyapunov functions.
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1.2 Literature Review
A literature review of Chapters 2-6 is presented below.

Chapter 2: Lyapunov approach on twisting and super-twisting based second order
sliding mode: By means of strong Lyapunov functions, the study of stability on super-
twisting algorithm and its finite time convergent characteristics was carried out for the first
time by [26] and later in [27]. This approach allows a wider class of perturbations and
uncertainties originally admitted by SOSM. Another advantage of the use of Lyapunov
functions is that it is possible to obtain explicit relations for the design parameters. On the
other hand, [17] developed a Lyapunov method for the analysis of a generic second order
algorithm, which is a family of controllers of which the super-twisting algorithm is a special
case. It extends the results of [26] by allowing the positive power of the control terms to range
from less than one to more than one. By doing so, a range of stability results were obtained.
Essentially, three types of stability can be achieved for the generic super-twisting system
namely, finite-time, exponential, and uniform convergence. A remarkable fact from the
approach is that the stability of the equilibrium of the system is completely determined by the
stability of its associated linear counterpart. Additionally, non-homogeneous super-twisting

algorithms have been studied using strict Lyapunov functions as well [28].

A closely related algorithm, which is equivalently important, is the twisting algorithm. The

twisting algorithm [29] is given by
Z, =2y, 2, = —klsign(zl)— kzsign(zz)

where z; and z;€R are scalar state variables, , k& > 0 and k; > 0 are control parameters.
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Similar to that of super-twisting, it is common to find its stability analyses using the
homogeneity approach [1], [20], [30], [31] or a weak Lyapunov function together with
geometric approach [32]. The algorithm is globally uniformly finite time stable if the
inequality k; > k, > 0 i1s satisfied [20]. Of recent, there is a growing interest in identifying
strict Lyapunov function for this algorithm. A strict Lyapunov design and estimation for
reaching time, based on Zubov method, is presented in [33]. It employs the idea of using the
solution of a partial differential equation as the Lyapunov function. For design control
purposes, this methodology becomes difficult. Indeed it requires some handicraft techniques,
like fixing the discontinuities. In [34], a strict non smooth Lyapunov function is proposed for
the twisting algorithm. The strictness of this function allows estimation of the convergence
time of the closed loop system to the origin. While the in work of [35], an alternative proof is
established with the same Lyapunov function as in [34]. It provides additional properties that
are not shown in [34] as well as a simple rule of thumb pertaining to the relationship between

the control gains and the finite settling time of the system.

Similar to the super-twisting algorithm, which has a generic second order algorithm
developed based on it [17], for twisting algorithm, in [18], a parameterized family of

homogeneous continuous controllers, inspired from the twisting algorithm, is proposed

Z,=2,,2,= —k1|zl|ﬁsign(zl)—k2|22|asign(zz)+ o, (1-1)

where o €[0,1), J is an external disturbance, and ki, k&, > 0. Note that the twisting algorithm
is a special case of this generalized controller. This continuous controller with unity gains was

first proposed by [36] to develop a class of continuous second order finite time systems.
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However, the approach employed there for finite time stability does not allow an upper bound

of the settling time to be obtained.

Pertaining to the approaches mentioned above for the twisting algorithm, they cannot be
applied directly for the parameterized family of homogeneous continuous controllers (1 - 1)
that includes the twisting algorithm as its special case. In [18], for a € (0, 1), the use of a
weak Lyapunov function with invariance principle, only global asymptotic stability can be
guaranteed. It requires application of Theorem 4.2 of [20], which depends on the weighted

homogeneity properties to infer finite time convergence for the case of o= 0.

In contrast, from the results of [37] and [38], a strict non-smooth Lyapunov function is
proposed for the family of controllers (1 - 1), where the upper bound of the settling time can
be obtained. On a related development in [24], a non-smooth proportional-derivative (PD)
controller is proposed that is of the same form as the controllers (1 - 1) shown above. There,
an explicit construction of Lyapunov function, based on the method of [39], is given. In spite
of that, the Lyapunov function given cannot accept zero fractional power (i.e. a = 0), the
Lyapunov function does not work for the twisting algorithm. Within the work of [40] the
conditions on the gains of the controllers (1-1) are developed for o €(0, 1) that ensures finite

time stability.

While in [41], an important link between asymptotic stability with finite-time stability is
provided. It is shown that a homogeneous system is finite-time stable if and only if it is
asymptotically stable and has a negative degree of homogeneity. On the other hand, a double

integrator nonlinear system [42],
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2, =2,2, = —f(Zl)—g(Zz)
where f{0) = 0 and g(0) = 0 are continuous functions verifying the sign conditions, z, f (Z1 ) >0

, for z, #0, and z, g(zz)> 0, for z, #0, is shown to be globally asymptotically stable.

Since, the parameterized controllers (1-1) for & €(0, 1) with gains k; and &, > 0 satisfy the

above sign conditions, the system is asymptotically stable.

In addition, it is noted that the parameterized family of system (1-1) is homogeneous of
degree (a — 1), which is negative for a €(0,1), with respect to dilation ((2—-«), 1) (see
definitions of [13]). This implies that the family of controllers are finite time stable when £
and k&, > 0 and a (0, 1). In [37] and [38] the gains are required to be greater than some
positive values. Similarly the strict Lyapunov function of [24] requires k, to be sufficiently
large, while k; has to belong to a certain positive interval in the results of [40]. Thus, it

suggests that the gain restrictions given by these results are conservative.

Pertaining to the robustness of this family of controllers, two types of perturbation are

analyzed in [18], namely|5| <M , and |5| < s |zo|* where & is an external disturbance, M and

4 are positive constants, and o has the same value as that of the controller (1-1). The first one
is a uniform upper bounded type and the second one is a vanishing perturbation. Note that
both conditions are identical when « = 0. However, finite-time stability can only be proved
for the uniform upper bounded type for o = 0 (i.e. the discontinuous control). For the
vanishing perturbation with « # 0, the results of [18] can guarantee asymptotic stability only.
Furthermore, the vanishing perturbation constraints are with respect to one state only. In [43],
a recent survey on robust finite time stability is presented. It suggested that robustness of

20



continuous finite time controllers to disturbances that are bounded by continuous bound with
fractional exponent has not been proven. Furthermore, they noted that a recent result in this
direction without proof appears in [37]. In [44], a similar form of perturbation is considered
as well, however the range of « is limited and it requires additional condition on the gain of
i.e. k1> kp + . This system is also studied in [45] which provides asymptotic stability through
explicit Lyapunov method, and concludes the finite-time stability through implicit Lyapunov
method for the system (1-1) and that of the super-twisting observer. However, due to the
structure of the Lyapunov function, the results are only reported for « € [0, 1). While in [46],
the same upper bound on the perturbation is considered but it allows discontinuity in the
perturbation, which is not considered in prior contributions. However, the analyses are tedious

since no strong Lyapunov function is available.

The vanishing perturbation that is with respect to both state variables,

6] < M\|z|>a + M,)|z,|" (1-2)

where M| and M, are positive constants, are studied in [37] and [38]. Note that the vanishing
perturbation considered in [18] is a special case of this when M; = 0. It should be noted that
this perturbation has a non-Lipschitz continuous bounds that vanish at the origin. While [18]
only manage to guarantee asymptotic stability under the vanishing perturbation, [38] manage
to prove finite-time stability through its strict Lyapunov function. However, similar to its
unperturbed analysis, the gains have to satisfy a more conservative constraints for the case of
a =0 (i.e. twisting algorithm). In particular, when « = 0, with M| + M, = M, the well known

inequality [20] for the twisting algorithm under bounded perturbation, k; — M > k, > M cannot
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be obtained from the results of [38], which suggest the stability properties of the system not

being fully characterize by the Lyapunov function presented there.

Of recent, [47] put forward a stability analysis of second-order sliding mode for a
discontinuous control by means of a Lyapunov function. The main benefits are to fully
characterize the stability properties of the system so that finite-time convergence can be
concluded without resorting to geometric methods, to provide a relationship between the
gains and its estimation of convergence time. Pertaining to Lyapunov function candidate, [48]
provides an important theorem that relates the finite-time stability of a system with the
existence of a Lyapunov function. It states that there exists a strict Lyapunov function for a
system if the origin of the system is a finite time equilibrium. In particular, the Lyapunov
function satisfy the differential inequality V + kV? < 0 where k > 0 and a€(0, 1). That
contribution provides not only an existence of strict Lyapunov for the stability analysis, but
also an estimate on the upper bound of the convergence time of the system based on the

differential inequality.

Regarding the construction of Lyapunov function, [49] provides a method to construct strict
Lyapunov function for a class of HOSM algorithms. In particular, the twisting algorithm is
considered and a Lyapunov function is shown in the work. However, the construction is
highly dependent on the knowledge of an expression for the solutions of the system, which is
difficult to obtain for nonlinear systems in general. In [50] and [51], Lyapunov functions,
obtained through solving partial differential equation, are applied to study the finite-time
stability of some finite-time 2-sliding mode algorithms, including the twisting, and super-

twisting algorithm, and terminal controllers [52]. It is found in a recent study of HOSM
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control schemes [53] that these Lyapunov functions are indeed homogeneous in nature.
However, the form of the function makes it difficult to operate with for applications or

developments [17].

Furthermore, recently a Lyapunov-based homogeneous controllers is presented by [54] for
perturbed integrator chains, of which the results of universal SISO sliding mode of [55] are a
special case of. In particular, greater simplicity in analyses can be achieved by taking
advantage of the homogeneity properties of the system by using a homogeneous Lyapunov
function. In [56], the existence of a homogeneous Lyapunov function for a homogeneous
asymptotically stable system is shown. In particular, a homogeneous Lyapunov functions for
a terminal sliding mode-like second order system is constructed in [57]. Due to the
homogeneous nature of the Lyapunov function, several interesting properties can be obtained
that simplifies the construction of a differential inequality that ultimately concludes finite-

time stability.

Other than finite-time stability, there is another relevant development on homogeneous
systems that provides a convergence time independent of the initial conditions. In [58], a
lemma that relates the convergence rate of a homogeneous system with its degree of
homogeneity is provided. In particular, the origin of a system is rationally stable if it is
homogeneous with degrees greater than zero, exponentially stable if it is equal to zero, and
finite-time stable if it is negative. For the rational stability, the states of the system will
asymptotically converge to zero. It differs from the exponential convergence in the sense that
it converge to a bounded region in finite time independent of the initial conditions of the

system. The upper-bound of the settling time is dependent only on the said bounded region.
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This condition is similar to the uniform convergence shown in [59].

This attractive feature of uniform convergence has attracted numerous attentions lately. For
instance, by employing a control term having exponent greater than unity, fast and uniform
convergence can be found in the work of double power reaching law for sliding mode control
[60], uniform sliding dynamic of [59], generic second order algorithm of [17], and fixed-time
stabilization of [61] and in [62] a fixed-time convergent super-twisting-like control inspired

from [63] is presented, to name a few.

Since the parameterized family of controllers (1 - 1) is homogeneous, it is of interest to
study its uniform convergence characteristic when its range of a<[0, 1) is allowed to extend
beyond unity, which to the best of the authors’ knowledge, has not been reported in the

published literature.

The properties of (1 - 1) and the kind of perturbations that each of the member of the
algorithms can tolerate are different depending on the parameter &. The member with o > 1
has correction terms that are stronger further away from the origin and not as strong near the
origin as those members with 0 < o < 1. These differences are related to the kind of
perturbations that each member of the algorithm is able to tolerate as suggested by the form of

(1 - 2), although no conclusive result has been shown in the literature

Hence a natural question arises whether the linear combination of both members of the
family can inherits the best properties of both. A result that is close to answering the question
is found in [64], where a finite-time dynamics which has a fast transient process is introduced.
Instead of having a linear sum of two homogeneous controls with different exponent, the fast

transient process is achieved by modifying the finite-time homogeneous control law to have
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greater correctional values when the states are far away from the origin. On the other hand,
when the states are smaller than a threshold, the control law is essentially a double integrator
with control (1 - 1) of negative degree of homogeneity hence providing finite-time stability.
Nevertheless, only weak Lyapunov function is given for analysis, as such no conclusion is
obtained on its robustness. Another question is, if a strong homogeneous Lyapunov function
can be developed for the family of algorithms, how can it be employed for this new
combinational algorithm which is not homogeneous, that comprise of sum of two

homogenous algorithm.

The above questions are answered positively however, not for the twisting based family of
controllers (1 - 1), but for a closely-related SOSM based controllers, namely, a generalized
super-twisting algorithm that comprises the super-twisting algorithm with additional linear
correctional term found in [65]. In it a linear framework is put forward for the algorithm that
allows the construction of a strong Lyapunov functions. While in [17] a generic second order
sliding mode (super-twisting based), which extends the result of [65], where two Lyapunov
functions, which are structurally different, are developed to show different aspects of
convergence properties of the system. Both in [65] and [17], the control comprise of linear
combination of two homogeneous control term of different homogeneity plus a additional
term that has an exponent that depends on both the individual component. Hence, several
questions arise here for the super-twisting based family of controllers, as whether the
additional term in the linear combination is necessary in order to attain the best properties of
both components, and whether the structurally different Lyapunov functions are required to

obtain the same results. To that end, it is imperative to study the relationship between the
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super-twisting and the twisting algorithms and their respectively based family of controllers.
In [32] and [66] the same mechanical energy are employed as the basis for constructing
Lyapunov function to analyse the stability of both twisting and super-twisting algorithms.
However, the resulting Lyapunov function is a weak one; i.e. its time derivative is only

negative semi-definite.

While in [67] a super-twisting algorithm plus an adaptive term to compensate structured
uncertainty is proposed. The additional adaptive term is based on the certainty equivalence
principle, in which the controller is designed initially under the assumption of known
parameters by means of a nominal Lyapunov function, in which case an adaptation law is
derived from. There, it shows the importance of having a strong nominal Lyapunov function
for the super-twisting algorithm, as a weak nominal Lyapunov function when applied to
obtain adaptation law, stability of the system states cannot be concluded. At the same time,
the strong Lyapunov function required here have to be at least Lipschitz continuous, since the
strong Lyapunov function for the super-twisting algorithm developed in [26], which is non-
Lipschitz, resulting singularity to appear in the adaptation law. Thus, it is of importance to not
only develop a strong Lyapunov function but a locally Lipschitz one as well for the super-
twisting algorithm in order for it to have a wider applications. In [67], a Lyapunov function
that satisfies these criteria, developed by [68], is used. However, it is mentioned that the said
Lyapunov function requires a more conservative condition on the controller gains than would

be obtained employing the previously weak Lyapunov function or the non-Lipschitz one.

The preceding results and arguments point to the direction of finding strict and locally

Lipschitz Lyapunov functions that are able to characterize the various stability properties of
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the family of controllers (1 - 1), which is a twisting-based algorithm, and correspondingly a
super-twisting based algorithm, together with a derivative algorithm that are based on the sum

of two homogeneous ones.

However, constructing Lyapunov function for a system is difficult, let alone for a family of
system. In essence, some of the works above employ strict Lyapunov function for stability
analyses without considering the homogeneity properties of the system. Interestingly, in [69]
a constructive method is proposed for generating Lyapunov function for a class of
homogeneous systems using Polya's theorem. However, there are some drawbacks mentioned
in the method including the selection of monomials and the exponent in the Polya's theorem
which are unknown in the initial selection process. On the other hand, others rely on a weak
Lyapunov function for asymptotic stability, together with a homogeneity approach to prove
finite-time stability. These methods inevitably provide restrictions on the range of usability of

the Lyapunov function even when the controllers are from the same parameterized family.

At the same time, the system described above may have differential equations with
discontinuous right-hand side (i.e. the twisting or the super-twisting algorithm or having
perturbations that is discontinuous). According to Filippov's theory, a solution to a differential
equation with discontinuous right-hand side is an absolutely continuous function that satisfies
a suitable differential inclusion associated to the differential equation [2]. In particular, for
some nonsmooth dynamic system, it is natural for the system to assume a nonsmooth
Lyapunov function (Example 1, [70]). Due to the lack of differentiability of nonsmooth
Lyapunov function, the usual Lyapunov's theorem [71] cannot be applied. Instead, we need

some tools of generalized Lyapunov analysis for which the stability properties of nonsmooth

27



dynamic systems can be determined such as in [70] [72] [73] [74].

Chapter 3: Robot manipulator control - full state feedback approach: An approach
with sliding mode control has also been followed extensively on robot manipulator systems.
However, such an approach will lead to discontinuous control [75]. In [76] the authors
employ a smooth robust controller that comprises a proportional term and an integral term of
a linear sliding mode variable for the trajectories control of robot manipulator. The stability
analyses ensure the states to have asymptotic convergence. However, to ensure robustness, the
robust gains of the control law have to dominate the first and second derivative of the
uncertainties, which are difficult to obtain. While, in [77] the authors provides a chattering
free sliding mode based control for trajectory tracking of robot manipulator. It can ensure
global invariance by having the system to be on the sliding surface from the initial conditions.
This is achieved through an integral sliding surface, hence producing a high order sliding
manifold. However, due to the formulation, extended state variables, the acceleration, have to
be available for computation o the control law. Higher order sliding mode algorithm for
chattering reduction and finite-time stability for the control of robot manipulator is reported in
[78]. However, the robust gains of the system have a singularity problem. In particular, when
the sliding variable is zero while its derivative is non-zero, singularity will occur. In order to
produce a smooth variable structure control on robot manipulator, the use of a low pass filter
is presented [79]. Essentially, a virtual controller is designed based on sliding mode approach
for a virtual plant that comprises the actual plant in cascade with a low pass filter. Hence, the

switching action will be filtered before being applied to the actual plant.
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Beside the discontinuous control, application of sliding mode control entails a certain
reaching phase. The robustness property that sliding mode is well-known for can be achieved
only after the occurrence of sliding mode. During the reaching phase, however, no guarantee
on robustness is available [75]. In [80], a time-varying sliding manifold that comprise a
conventional linear sliding manifold together with an exponentially decaying term is proposed
to overcome this issue. By designing the initial condition of the decay term to be equal to the
initial value of the linear sliding manifold, the time-varying manifold will be zero initially,
hence avoiding reaching phase altogether. The concept of integral sliding mode to the
trajectory tracking of robot manipulators is put forward in [75]. In particular, a low pass filter
is added to reduce chattering effect of the discontinuous control term. By the means of
adjusting the time constant of the low pass filter, the algorithm has a characteristic of a
perturbation estimator to that of a pure integral sliding mode. Also, due to the use of an
integral sliding surface, initial conditions of the algorithm can be chosen to match those of the
robot manipulators so that the states of the systems are on the sliding manifold initially, thus
having robustness throughout an entire response of the system starting from initial time
instance [81]. Essentially, the integral sliding mode control leads to a sliding manifold that
spans the whole state space [82]. Thus the tuning of the time constant of the filter, the trade-

off between chattering reduction and robustness can be adjusted.

To apply second order sliding mode, in [83] a time varying nonsingular terminal sliding
mode (NTSM) control for robot manipulator is presented. It is able to eliminate reaching
phase by formulating a time-varying nonsingular terminal sliding surface. Essentially, the

surface is augmented by an additional time varying function that provides the sliding function

29



to be zero at the initial time instance and decay to zero in finite time. Together with a
switching type robust control term, the system will be in sliding mode from the initial time
instance. Also, in [84] the NTSM is use as the sliding manifold and a fast terminal sliding
mode type reaching law for ensuring finite time convergence. The control law also comprise
of nominal parts of the robot dynamics for compensation of the nonlinearities. Another
example can be found in [85], where a type of fast nonsingular terminal sliding mode for the
control of robot manipulators is presented. The sliding manifold consists of a nonsingular

terminal sliding mode together with a proportional term.

Effectively, the main feature of sliding mode utilized in the previously mentioned controller
is its inherent robustness properties to uncertainty and disturbances, in which case is also its
main drawback because to have the said robustness properties, its gain for the discontinuous
control term has to be sufficiently larger the upper bound of the disturbances. As such, a lot
of effort has been done to research on the method of reducing the gain of the discontinuous
term while at the same time having the same level of robustness in the system. Towards this
direction, a sliding mode algorithm for the control of robot manipulator with an efficient on-
line compensation for tracking of trajectories is found in [86]. The compensation is computed
from the acceleration information and the torque applied to the robot manipulator. This
method of uncertainties compensation is the essence of time-delay estimation, and the
conventional sliding mode is applied not on the uncertainty of the system itself but on the
error between the uncertainty and its compensated (estimated) form, which is assumed to be

smaller.

A slightly different approach is found in [87], where a gradient estimator, instead of sliding
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mode approach, is applied on time-delay control (TDC) for improving the robustness of robot
manipulator control under the presence of nonlinear friction. The control law consists of a
time-delay estimation term to estimate the nonlinearities of the system, a desired error
dynamics term, and a gradient estimator term as a compensator for the time-delay estimation
error. The algorithm is shown to provide similar performance to the case of time-delay control
with switching action which is sliding mode based. Similarly, an approach called time-delay
control with ideal velocity feedback (TDCIVF) for controlling tracking problem of robot
manipulators is given [88]. The control structure is simple; it has three distinct elements,
namely the soft nonlinearity compensation term, hard nonlinearity cancelling term, and a
desired error dynamics injection term. The soft nonlinearity compensation term is of the time-
delay estimation form, while the hard nonlinearity is taken care of by the ideal velocity
feedback. The so-called ideal velocity feedback term can be viewed as a proportional control

term of an integral sliding surface variable, which its derivative is the desired error dynamics.

It is worth mentioning in [89], a simple decentralized linear time-invariant control for robot
manipulator as a alternative to computation intensive computed torque method. The algorithm
also uses a time-delayed control together with a specially designed constant diagonal gain
matrix for the decoupling and linearization of the robot joint dynamics. The desired error
dynamics are of a linear PD structure. Sufficient condition for ensuring stability for the design
of the gain matrix is given, however, it requires knowledge of the inertial matrix of the robot
manipulator. In [90], a similar robust control for the trajectory tracking of robot manipulators
is developed that is based on a disturbance and uncertainty estimation (UDE), instead of time-

delayed control. The control formulation consists of two parts, one to inject a desired linear
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error dynamics, and another term is based on the UDE [91] to compensate for the
uncertainties and disturbances of the system. Essentially, the compensation includes the
design of a constant diagonal matrix and a time constant for a first order low pass filter. The
stability of the system is dependent on the effectiveness of this compensation. In particular, if
exact compensation is achieved, exponential convergence can be achieved based on the
injected desired linear error dynamics. On the other hand, if the derivatives of the
uncertainties are non-zero but finite, uniform ultimate boundedness can be attained. However,
the existence of the estimation term is not properly shown and it is mentioned that the
compensation does not exist for systems that have discontinuous disturbances and

uncertainties.

It is of interest to note that the time-delay estimation method of TDC has similar structure
as the UDE algorithm above. Similar to the UDE, the time-delay-estimation method for the
estimation of uncertainties includes the design of a constant diagonal matrix for decoupling of
the nonlinear dynamics of the robot manipulator. In particular, it is shown by [92] that the
time-delay estimation does indeed behave like a first-order digital low-pass filter, in the sense
that the diagonal elements of the constant matrix is related to the cutoff frequency of the
digital low-pass filter. Besides that, the time-delay estimation also has similar drawbacks as of
the UDE. For instance in [93] the authors show that the time-delay estimation algorithm have
difficulty in estimating hard nonlinearity or discontinuous uncertainty. Also, the time delay
estimation has an inherent property of an integrator as shown by [94], which is similar to the
integration action of the UDE. Hence, time-delay estimation can be seen as a discrete form of

the UDE algorithm. In [95] UDE-based control was proposed as a replacement of the time-
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delay control [96]. Along the same line of estimating disturbance in robotic manipulators, a
relationship between the discrete TDC and the discrete PID controller is established in [97]. In
particular, the gains of the discrete PID controller can be selected such that it has same
properties as the TDC. While in [98] and [99], based on the concept of modelling error
compensation, the PID control is formulated as a composition of modelling error estimator
and a certainty equivalent feedback function for regulation and tracking problem of robot
manipulators. As most of the literature on the robot joint position control problem deal solely
with the stability problem rather than the system performance in a transient situation, it has
been early recognized that transient performance guarantees deserve further research as noted
by [98], where a PID control scheme with acceptable transient performance guarantee is
proposed. Several works on prescribed performance guarantees have been presented that
utilised error transformation, see [100], [101]. A sliding mode controller with guaranteed
transient performance is proposed for application on robot manipulators, [102], where by

choosing proper initial value of the controller, reaching transient is eliminated

Note that TDE, UDE, and the modelling error observer discussed above, all have a similar
structure, in which they can be reformulated to be PID control that inherently comprise of a
linear desired error dynamics and a form of uncertainty compensation. The closed-loop error
dynamics in all cases above involve the time derivative of the lumped disturbances and
uncertainties, which its upper bound may not be easily evaluated in practical applications.
Also, for both the TDE [97] and modelling error compensation [99] approaches it is necessary

to choose an appropriate inertia matrix estimate term.

Alternatively, robustness of PID-controlled manipulators is studied differently in [103] as
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opposed to the formulation in [99]. It is shown that uniform semiglobal practical asymptotic
stability can be achieved and a tuning procedure of the PID gains is given in order to obtain
any given precision from any given bounded set of initial conditions. It is worth noting that
the results are obtained through analysis of a strict Lyapunov function. Also, the perturbations
that are considered there include the discontinuous functions of the state such as Coulomb
friction and it does not require an appropriate inertia matrix estimate term. Furthermore, in
[104], [105] a tuning procedure for the PID gains that ensures semiglobal asymptotic stability
for the regulation problem of rigid robots. Although the tuning procedure there allows the
selection of PID gains that ensures stability in a specified arbitrary domain, the transient
performance of the closed-loop system is unclear from the gain selection procedures. As such,

the performance in terms of desired error dynamics is not clear in these approaches.

Hence, a natural question arises here as to whether a particular formulation of stability
analysis is available, such that it provides a strict Lyapunov function that ensures semiglobal
practical stability of PID-controlled manipulators and at the same time, provides a linear
desired error dynamics and an uncertainty compensation components that relates directly to
the PID gains. This relationship between conventional PID control and the nonlinear
formulation of TDE or modelling error estimator is useful, as it provides a systematic way of
PID gain selection as opposed to heuristic gain tuning approach which has its own problems

due to too many gains to tune simultaneously [97].

Next, it should be noted that in the previously mentioned integral sliding mode, TDE-based,
UDE-based, and PID control of robot manipulators, even in the case of exact model

compensation, only exponential convergence is attained due to the inherent linear desired
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error dynamics as opposed to that of NTSM, which can ensure finite time convergence [84].
The linear error dynamics is actually the response of linear second order system, and by
designing the desired dynamics gains, the well-known responses such as stable node or stable
focus in the phase portraits can be achieved (see Chapter 2 of [71]). However, due to the
structure of NTSM, which comprise of two first order sliding mode, the type of desired error
dynamics is limited. Essentially, under the conditions of no perturbations, it has two distinct
phases, namely a reaching like phase, which will bring the trajectories towards the NTSM
sliding surface if it is no already there, and once the NTSM surface, it will have a finite time
sliding phase towards the origin, thus it is not possible for it to exhibit stable focus in its phase
portraits. Hence, another question emerges here as to whether one can design a desired error
dynamics that can retain finite time convergence property of NTSM while allowing the
flexibility of selection of desired responses either stable node-like or stable focus-like in its
dynamics. To answer it, one can consider the dynamics (1 - 1), which is a second order sliding
mode based algorithm. In [106], for motion control of permanent-magnet linear motors, an
integral sliding mode control with (1 - 1) as desired error dynamics is presented. It comprise
of the usual discontinuous reaching law to enforce sliding mode, in which case, the system
behaved like (1 - 1) in sliding mode. However, if the sliding surface is not reached exactly but
reached within a bounded region (i.e. when a boundary layer method is employed to reduce
chattering), the convergence of the states are not clearly shown due to the lack of strong

Lyapunov function for the desired error dynamics of (1 - 1).

Chapter 4: Robot manipulator control - output feedback approach: Several outcomes
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in this direction have been developed. For instance, in [12], super-twisting algorithm is
employed as observers for both velocity and uncertainties estimation. The same structure is
employed in [24] as well, but the robot dynamics is required in its implementation. While in
[90] a Luenberger-like plus UDE-based robust observer was proposed to solve the problem of
requiring joint velocities for control. Additionally, a filter based on so-called "dirty-
derivative" is used for finding the velocity from position measurements in [107], [108],

[109], [110].

However, the Luenberger-like observer and the "dirty-derivative" can only provide
asymptotical convergence. On using super-twisting algorithm as a velocity observer, the
admissible upper bound of unknown disturbances and its finite-time convergence properties is
studied in [111]. In addition, it is mentioned that finding the tradeoff between the gains of the
algorithm to minimize chattering amplitude at the presence of unmodelled dynamics is an
open problem. In [112] a modified super-twisting algorithm with double closed-loop feedback
regulation is proposed.

6 = —k |ofsign(o) - k,0 + @,
= —k3sign(0')— kyo+ ¢(t)a

Essentially, it added a linear correction term —k,® to the @ dynamics as opposed to the

linear correction term of the sliding variable proposed by [26]. It is reported in their results
that the modified super-twisting algorithm can improve the convergence of the sliding
variable by accelerating the approaching speed and at the same time limiting the overshoot.
Note that in the observation error dynamics, both the Luenberger-like and the super-twisting

algorithm do not have a velocity observation error term in the dynamics, which in part due to
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the lack of information on the velocity information, and hence the need of this observer in the
first place. However, from the "dirty-derivative" formulation it is indeed possible to get a
linear correction term into the observer error dynamics. Hence, another question arises as to
whether the combination of super-twisting algorithm with "dirty-derivative" can complement
each other, and if yes, can a strict Lyapunov function be developed that characterize its

features.

Chapter 5: Robot manipulator control - bounded control approach with full-state
feedback: Motivated by issues with actuator constraints for robot manipulator control, some
efforts have been proposed in the literature. For instance, assuming exact value of robot
manipulator parameters, a bounded static feedback for trajectory tracking for robot
manipulator is proposed in [113]. In achieving semiglobal finite-time tracking, a saturated
control law plus desired trajectories based dynamics term is found in [114]. It has the ability
to ensure that actuator constraints are not violated by selecting control gains a priori. In [115]
an asymptotic tracking control for robot manipulators with actuator saturation is presented.
The control law comprises saturated hyperbolic tangent function and computed feed-forward
of robot dynamics terms. In [116] a static nonlinear controller is added to an existing PD
control plus exact gravity compensation to guarantee global asymptotic stability for the Euler-
Lagrange system with input saturation. However, these methods require full dynamics of the
system. This is not desirable because it requires a priori knowledge of parameter values of the
system, including that of payload, which is particularly restrictive, because in typical tasks

many different payloads are encountered and it is unrealistic to assume that the properties of
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all payloads are accurately known [117]. Also, the transient performance of these methods is
not clearly linked to the control gains. Particularly, if the desired error dynamics is to be
injected into the control, it should be expected for it to be modified due to the bounded nature

of the actuator.

While in [118] global asymptotic stability for the tracking control of robot manipulators can
be achieved in the presence of sufficiently large viscous friction by additionally including a
feed-forward compensation term of the viscous friction. Additionally, in a frictionless setting,
the control scheme of [119] is proven to only semi-globally stabilize the closed-loop system.
Semiglobal stability for robot manipulator regulation problem is presented through a saturated
linear PID control in [120]. In particular, their stability analysis showed that the semiglobal
stability is due to the Coriolis term. Hence, it is concluded in [120] that the need for nonlinear
integral function is justified to dominate the effects of Coriolis term at high velocities, for
instance see [121], [122], [123], [124]. In the work of [125], theoretical justification is
provided on the exponential stability for regulation problem of classical PID used in industrial
robots in the presence of saturation effects, essentially the controller comprise nonlinear

integral term as well.

Of interest is the new approach for integral action within a continuous sliding mode control
design framework in [126]. The integrator presented is modified to provide integral action
only inside the boundary layer. In particular, the anti-reset windup structure of conditional
integrator is explored in [127]. In essence, the conditional integrator has an inherent anti-reset
windup built-in. The conditional integrator bears resemblance to the above mentioned

nonlinear integral in which it contains an integration of a saturation function.
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Thus, by accounting the presence of viscous friction together with a nonlinear integral term,
yet another question emerges as to whether a bounded control law for global tracking can be
developed that answers all the previously mentioned questions and the modifications that is
required, if necessary. Additionally, when no saturation occurs, it is expected for the system

to behave similarly to its unbounded-control counterpart.

Chapter 6: Robot manipulator control - output feedback bounded control approach:
Bounded controller without velocity measurements for robot manipulator have been studied
in the literature. For example, for global regulation of robots using position measurements
only are achieved in [128] [129]. However, both requires the desired gravity compensation
term. While for global stabilization, in [130] a bounded output-feedback PID-type controller
of robot manipulators is proposed. However, for the velocity observation, they share a

structure similar to that of the "dirty-derivative".

For Luenberger-like observer, a saturated output feedback based PID control is proposed in
[131]. The resulting controller is simple to implement. It is robust to parameter uncertainties,
decentralized, and saturated. However, it only achieves semiglobal stability but for
sufficiently high gains, the controller, locally, can achieve exponential stability for regulation
problem. On the other hand, global regulation is achieved in [132] through adaptive control
that is output feedback-based in a bounded control approach. As per the literature review of
Chapter 4, question arises as to whether the combination of super-twisting algorithm of
Chapter 2 with "dirty-derivative" can complement each other, and if yes, can a strict

Lyapunov function be developed that characterize its features. Moreover, if the answer to the
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question positive, it is of interest to know as to whether it can be extended to a bounded

control approach while maintaining its original features.
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1.3 Problem Statement

With the above motivations, the problems investigated in this dissertation are now

presented.

1. The twisting based dynamics (1 - 1) is to be explored not only for « €[0, 1) as per
the literature, but for all &> 0. In particular, strict Lyapunov is to be constructed that

can allows the full set of stabilizing constant gains.

2. Due to the different convergence properties of the above mentioned system when, 0
< a <1 and that of &> 0, a non homogeneous algorithms that comprise of linear
sum of the two different system is to be studied, as to ascertain whether this new
combination exhibits the properties of their individual components by means of

strict Lyapunov function.

3. The super-twisting based homogeneous algorithm is revisited to study the possibility
of having a single structure of locally-Lipschitz Lyapunov function that can fully
characterize the various convergence properties. The locally-Lipschitz is important

as to avoid singularity in its time derivative (as mentioned in Section 1.1).

4. Similar to point 2, the problem of a linear combination of two different degree of
homogeneity of the super-twisting based algorithms is investigated. In particular, the
necessity of an additional term found in the work of [26] is to be explored and the
possibility of construction of a single strict Lyapunov function that fully

characterize the system while at the same time avoiding singularity.

5. The similarities of the mechanical energy of the super-twisting and twisting based
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10.

algorithms are to be examined. In particular, the idea of combining both algorithms

is to be explored through strict Lyapunov functions.

The types of disturbances that the systems can tolerate for each system (point 1-5)
are to be considered. The possibility of robustness towards non-Lipschitz and
discontinuous disturbances are looked into through the generalized Lyapunov

framework and the construction of strict Lyapunov functions.

The control problem of the highly coupled nonlinear dynamics of robot manipulator,
which is a second-order system, is to be dealt with by investigating the idea of
injecting the second order sliding mode algorithms, mentioned previously, into the

systems and how it affects the type of convergence attainable.

The application of the super-twisting and twisting based algorithms on the issue of

lack of velocity measurements of the robot manipulator is to be investigated as well.

Another practical problem of the control of robot manipulator, the actuation limits
of the control input to the system is looked into for the possibility of application of

the said second order sliding mode based algorithms.

Finally, the idea of combining the constraints point 8 and 9 into the trajectory

tracking control of robot manipulator is explored.
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1.4 Contributions
The contributions of the main chapters of the dissertation are discussed as follows:

Chapter 2: Lyapunov Approach on Twisting and Super-twisting based Second Order
Sliding Mode: Strict Lyapunov functions are developed for twisting and super-twisting based
family of algorithms by using the generalized Lyapunov theorem for non-smooth systems and
using the Filippov solutions. Due to the strictness of the proposed Lyapunov functions, whose
time derivative can be bounded by negative definite functions, settling time for the finite time
convergence member of the algorithms can be obtained. In addition, the strict Lyapunov
functions are employed throughout the chapter to study the type of disturbances that the
algorithms can tolerate, which include the non-Lipschitz type as well (Preliminary conference

version of the some results here can be found in [133] and [134]) .

Chapter 3: Robot Manipulator Control: Full State Feedback Approach: The main
contribution of Chapter 3 is the development of control law that generalised the well-known
PID control, which comprises a desired error dynamics injection and uncertainty and
disturbance compensation. Nonsmooth analysis methods introduced in Chapter 2 are used
throughout the stability analysis. In particular the twisting based algorithms developed in
Chapter 2 are to be employed as the desired error dynamics in the control law. The technical
challenge presented by this aim, is the need to avoid differentiation of the non-Lipschitz
twisting based algorithms, which will lead to singularity. To achieve this objective, an
auxiliary desired error dynamics variable is introduced, which in effect avoid the singularity
problem by having the non-Lipschitz desired error dynamics in to an integral term. Through

this formulation, semiglobal practical trajectory tracking is achieved, where the region of
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attractions is directly dependent on a single gain parameter.

Chapter 4: Robot Manipulator Control: Output Feedback Approach: An observer
based on the super-twisting based algorithms of Chapter 2 is utilised to tackle the problem of
lack of velocity measurements. In particular, due to the non-Lipschitz nature, properties like
finite time convergence of observation errors can be obtained rendering the controller
development to be akin to that of full-state feedback in Chapter 3. However, the non-Lipschitz
gains of the observer can be high even for large initial conditions of the closed-loop system.
To overcome this issue, the proposed observer contains an additional linear damping term that
can aids in reducing the said non-Lipschitz. Not only that, to increase the size of the region of
attraction only the linear damping term of the observer gain has to be increased without

requiring that of the non-Lipschitz gains.

Chapter 5: Robot Manipulator Control: Bounded Control Approach with Full-State
Feedback: The controller in Chapter 3 is redesigned to accommodate the issue of saturation
of actuators. The main problem that hinders global stability of robot manipulator is the
quadratic nature of the Coriolis and centrifugal terms in the dynamics. To tackle this issue, the
stability analysis takes into account of the inherent viscous friction of the robot manipulator,
which has an additional damping effect on the system. In addition, the desired trajectory and
the desired error dynamics that is to be injected to the system through the control law has to
be modified accordingly to account for the bounded nature of the control. At the same time, it
is desired for the control to have the same behaviours as their unbounded counterpart in
Chapter 3 when the control is unsaturated. All of these are achieved through the special form

of the integral term that injects saturated version of the twisting based desired error dynamics,
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and its inherent anti-windup nature that conditionally injects the desired error dynamics

depending on the saturation condition of the control.

Chapter 6: Robot Manipulator Control: Output Feedback Bounded Control
Approach: Based on the previous saturated controller utilized in Chapter 5 and the observer
of Chapter 4, an output feedback version of saturated controller in Chapter 5 is developed.
Due to the inherent boundedness of states of the closed-loop system (by taking into accounts
of the issues mentioned in the previous paragraph), the observer applied here can achieve
global stability results independent of initial conditions. Once the observation error is
stabilized, it essentially acts as additional disturbances to the closed-loop system that affects
the size of the ultimate bound of the states. Due to this nature, the proposed observer-
controller structure is able to assure global practical stability for trajectory tracking, and if the
actuator limits is sufficiently high, the desired error dynamics can be unsaturated, and similar

behaviours observed in the unbounded output feedback control in Chapter 4 can acquired.
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Chapter 2: LYAPUNOV APPROACH ON TWISTING AND SUPER-TWISTING BASED
SECOND ORDER SLIDING MODE

In this chapter, several families of controllers based on twisting and super-twisting

algorithms are presented. Strict Lyapunov functions, whose time derivative are negative

definite, are developed for each family of controllers, with or without perturbations. The

Lyapunov functions presented will fully characterize the type of stability and robustness

properties of each algorithm. For the case of finite time convergence, the estimation of the

finite settling time is provided by means of the Lyapunov function.

2.1 Preliminaries

In this section, several technical lemmas, some important definitions, and theorems for

nonsmooth analysis [135], which will be employed throughout the thesis, are presented.

Lemma 2.1: (Young's inequality [17], and [136] ) For every real numbers a >0, b >0, ¢ > 0,

p>1,9g>1,with LN the following inequality is satisfied

JZE)
P q
ab= (Ca{éj <crdye b
¢ p
Lemma 2.2: Ifq; >0, fori=1, ..., n, while 0 < ¢ < 1, and d > 1, the following inequalities

hold:
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d
a,’ S(Zaij Snd_IZaid, 2-1

and

ll—c ’Zlaic S(iaij <3 a’ (2-2)
i i=1

Proof of lemma 2.2: For (2 - 1) note that when d = 1 or Z a; = 0, the results follow directly.

i=1

Now, consider the case when d > 1 and zai # 0. Let A=Zai and note that

i=1 i=1

d
ﬂsl, Vi=1,...,n, hence, Z 4 < — |=1, since d>1,
A i=1 A i

= i=1

Consider the following,

0 L
Next, let B = (Zaidj ,and C=n ¢ then,
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n n a 1 n 1 a d d—l 1 %
Zai=BC-Z —~Il—=|<BC- = +—| = , fromlemma 2.1, sinced >1,
i=1 T\ B N\NC | d\ B d C

Thus, we obtained (2 - 1).

Now, for (2 - 2), note that when ¢ = 1, the results follow directly as well. So, consider the case

when, 0 <c¢ <1.

Now, consider,

1 c

n ¢ n 1 ¢ n c
(Z al.j =( (ai" )CJ < [( al.cj fromthe left hand side of (2 - 1), sincel >1,
i=1 ‘ i=1 c
= Zaic
i=1

Similarly,
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n ¢ n 1\¢ n c
(Zaij = (Z(aic)cj >{ 11 (Zaicj ] fromthe right hand side of (2 - 1), sinceé >1,

n ¢ 1 n )
(Zal) ZTZaiL
i=l no g

Thus, we obtained (2 - 2). ]

Lemma 2.3: Let 0 < p < r < g with a > 0, then the inequality hold, |a|" +|d|" >|d| .

r .
,since p<r, and

Proof of lemma 2.3: For 0 < |a < 1, note that, |a|p2|a

p q P - p q r .
max{a ,la }=|a ,since p < ¢, hence we have max{a ,|a }2 |a| . While for |a| > 1, note
q o p q q .
that, |a| 2|a , sinceq 2 r,and max{a ,|a }:|a ,sInceq = p , hence,
p q r p q r .
max{a )| }2 |a| . Thus, for all |a] > 0, we have max{a )| }2 |a| . Since

p
)

|a|p + |a|q 2 max{|a ! }, hence for all |a| > 0, one 0btains|a|p + |a|q > |a|r .

a

Consider the vector differential equation,

%= f(x,t), x(z,)=x, (2-3)

49



where xe R" is a state vector, and /: R" x R — R" is defined by almost all points on an open
subset O = R"" and is measurable. For an arbitrary compact set D c 0, a Lebesgue integrable

function A(7) exists and satisfies the following:
|/ Ge,2)| < A(z), ae. in D.

Under the above conditions, the existence of a Filippov solution is guaranteed.

Remark 2.1. Throughout the subsequent discussion, for brevity of notation, let a.e. refer to

almost everywhere, i.e., for almost all ¢ € [0, o).

Definition 2.1: [70]When a vector function x(#) meets the following conditions, the solution

to (1) in the interval [y, #;] in Filippov’s sense is called is called a Filippov solution.
a) x(?) is a absolutely continuous on [, #].

b) For almost every ¢ € [#, t1], the following differential inclusion is satisfied:

e K[f](x1) (2-4)
Here,
K lw)= N N cof(B(x.5)-N.1) 2-5)

In addition, N,y - ¢ is the intersection over all sets N of Lebesgue measure zero , €0 is the

convex hull, and B(x,0) = {y € R" |l y —xl < §} is an open sphere.
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Definition 2.2: [72]A function f/: R" — R, which is locally Lipschitz near x € R" is said to

be regular at x if the following holds. For all directions v € R” there exists the usual one-sided

directional derivative

o+ pr)- flx)

f '(x, v):lim and we have / 'x, v) = f % v), where
piO p
fO(x V):llmsupf(y+pV)_f(y)
’ yox p
piO

is the generalized directional derivative of f at x in the direction v. The function is said to be

regular in R”, if it is regular for any x € R".

Remark 2.2. A useful property is that a locally Lipschitz and convex function in R" is also
regular in R" (see [137], Proposition 2.3.6). A feature of Filippov’s solution is that it is
defined by the condition (2 - 4) for x. This approach leads to generalization of the Lyapunov

stability theory so that the solution x(7) of the differential equation is not needed explicitly.

Lemma 2.4 (Chain rule [70]) Let the vector function x(¢) be Filippov’s solution to (2 - 3) on
an interval containing ¢ and V: R" x R — R be a Lipschitz-continuous regular function. In this
case, V(x(?), t) is absolutely continuous, (d/dt)V(x(?), t) exists for almost everywhere (a.e.), i.e.,

for almost every ¢, and satisfies
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dt feaV(x

Ly (x(ee) < P(xlepe) - m({)ﬁ)gr[K[f](lx(r),t)}

Here I7(x(t), t) is the generalized time derivative of V(x(?), ), while oV(x(f), f) is the

Clarke’s generalized gradient [138], defined as follows:

aV(x,f):c—o{ nmvv(xi,n)|(x[,ti)%(x,t),(x[,zi)ggy}

i—o©

where Qy is the set of measure zero where the gradient of V' is not defined.

Lemma 2.5: (Lyapunov's Theorem Generalized [73], [70]). Suppose that V: R" x R — R is a

Lipschitz-continuous regular function satisfying (0, t) = 0, and

0<V, (“x”)S Vi(x,t)<V, (“x”), for x#0

for some V', V> e class KC. Then,
1) 7 (x, ) <0 in implies x(¢) = 0 is a uniformly stable solution.
2) If in addition, there exists a class /C function «(.) that satisfies 17 < —a)(x)< 0,

then the solution x(#) = 0 is uniformly asymptotically stable.
3)  Furthermore, if the function w(x)=cV*,where ¢ > 0 and a > 0, then we have

a) Finite time convergence [72], for 0 < a < 1, with the settling time estimate,
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< [V(xo Ly )]H

, where x, is the initial states at ¢ = ;.
c(l-a)

T(xo)

b) Exponential convergence [72], fora = 1.

c) Asymptotical convergence, for a > 1, with convergence time to bounded level
set V=, for any p > 0, uniformly upper bounded with respect to the initial

condition [17],

ot

Lemma 2.6: (Uniformly ultimate boundedness [139], Theorem 3.3 of [140]). Assume that
there exists » > 0, 0> 0, and V: D x R — R is a globally Lipschitz continuous function such
that for any initial condition, V x(#y) = xo € D be a domain that contains the origin and |xo|| <

o, any Filippov solution of (2 - 3) x(¢) € S(x¢) satisfies:

1) There exist two functions o and o of the class K, such that

0<a,(x]) <V (x.) < o, ]

2) 30<u<oy (ai(r)) while |Jx|| > 4, there exists a function a3 of the class K such

that 7 < —ar, (||

Then, the origin of the discontinuous system (2 - 3) is globally strongly uniformly ultimately
bounded. In particular, there exist a finite 7(», o) such that V ¢ > #, + T(r, o), all the Filippov
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solutions x(#) € S(xp) of the system (2 - 3) with the initial condition x, satisfy V(x(?), ) <

a(||u)), and by point (1) there holds |x(¢)| < e, (e, (1)) <7, Ve 21, + T(r, o).

For the system described in (2 - 3) with a continuous right-hand side, existing Lyapunov
theory can be used to examine the stability of the closed-loop system using continuous

techniques such as those described in [71]. However, these theorems must be altered for the

set-valued map ?(x(t),t) for systems with right-hand sides which are not Lipschitz
continuous [73], [70]. Lyapunov analysis for nonsmooth systems is analogous to the analysis
used for continuous systems. The differences are that differential equations are replaced with
inclusions, gradients are replaced with generalized gradients, and points are replaced with sets

in several places.

In the following subsections, locally Lipschitz strict Lyapunov functions will be developed

for second order sliding mode that are based on twisting and super-twisting algorithms.

2.2 Twisting Algorithm

In this section, a twisting based family of algorithms is developed. Particularly, the family
of algorithms generalised the twisting and linear proportional-derivative (PD) algorithms.
Different types of convergence (i.e. finite-time, exponential, and uniform) and the
disturbances (i.e. which include non-Lipschitz type) that the algorithms can tolerate are
presented by employing strict Lyapunov function throughout the stability analyses, in which
its time derivative can be bounded by negative definite function. The inherent homogeneity
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properties of the algorithms and that of the proposed strict Lyapunov function are utilised,

together with lemmas shown in the preliminaries (section 2.1), to obtained the results that

characterize the algorithm.

2.2.1 System description

Consider the twisting based family of algorithms:

Zy = 1Z,,

2b 2-6
z) = —k1|zl|bsign(21)—kz|zz|“” sign(22)+d, oo

where z1, z; € R are the scalar state variables, ki, k, are positive constants, b > 0 real number,
and d is time-varying and/or nonlinear term of uncertainty bounded by
b 26
|d| < M1|zl| +M2|zz|l+b + M, with |d| :=supﬂé1 :5eK[d]},

where M} > 0, M, > 0, and M3 > 0, with the same b > 0 as that in (2 - 6). Note that since no
continuity assumption is made on d, it may contain discontinuities and hence we define its
upper bound through Filippov set-valued map. Note that for the case of b = 0, the algorithm

contains discontinuity and the uncertainty is upper bounded by nonvanishing constant.

2.2.2 Stability analysis

For system (2 - 6), the following function

1 2 kl 1+b : ﬂ .
V(zl,zz)z 522 +m|zl| +r|zl| 2 |zz|51gn(zlzz)
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where 7 is a positive constant scalar, will be shown as a strict Lyapunov function.

Remark 2.3. Note that the above function is locally Lipschitz and regular. It is differentiable
everywhere for » > 0, and not differentiable on z; = 0 for » = 0. The proposed Lyapunov
function comprises the energy function, which is known as a weak Lyapunov function, and an
additional cross-term that consists of two states. It is worth mentioning that in studying the
stability of system (2 - 6), only a single structure of Lyapunov function is employed in the
following analysis for both unperturbed and perturbed cases. However, in [37] and [38], a
separate Lyapunov function is required to study the perturbed system. In particular, their
Lyapunov function comprise the upper bound of the disturbance, in which case making it
unclear on extending the analysis to the cases of perturbations that might includes additive
non-Lipschitz vanishing perturbations and non-vanishing perturbations that are considered

here.

Note that the Lyapunov function ¥ can be lower bounded by,

kY, k, . 33
ez Sl (12 ™ (2 el el el e

Using lemma 2.1

3 1
ke Y e (4 kY )L (4)
el 2 (i = 2 ) | (2 e

Hence, for
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(zﬂz)xr -
3 13 2-7

V(Z z )2 l|z |4 +l L 2|Z |2*2” > QZ |4 +|Z |2+2b)
Prrimgln? 1+b 1 i\42 1

+
kY
where 7, '=miny—, — .
8 2\1+b

Similarly, it can be upper-bounded by,

1 kY e (k) b
)< 2l *(E) 2 +[1+lbj|zlll el +rz 2 e

Using lemma 2.1:

kl 1+b 2 kl 242b kl 4
(1+b)4| 2 S(2+2bj|zl| +(2+2b)%|

|4

b 2+2b r
|ZZ|S—ZI| +—|Z2
4

V(Zl,Zz)S T, ([zl|2+2b + |z2|4)

_ 3 (kY (kK k, ro1
where 77, = maxq— + + , +4 =
4 \1+D 2+2b 2+2b) 4 4

Thus, V is positive definite and radially unbounded. Since (2 - 6) is a differential equation

that has discontinuous right-hand side, i.e. when b = 0 and since no continuity assumption is
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made on d, its solutions are understood in the sense of Filippov (see definition 2.1).
According to lemma 2.4, the time derivative of non-smooth Lyapunov function exists almost

everywhere

S Va0.) € Va0~ N )Q”K[?l}(z,z),

EedV (z(0),t )
where z=(z,,z,) and, £=(&, &) € ov(z1).

Since the controller (2 - 6) is discontinuous when b = 0, for ease of presentation, the

analysis is separated for two different cases of >0, i.e. b> 0 and b = 0.

a) Case 1: For b> 0

Note that for » > 0, V'is continuously differentiable, hence

V(znz,)= N )gTKFI } = VVTKFI}
Zy

EedV (z(0),t z,

2k, k Wby 222 3#5b 33 28 35b
—ﬁklr b|22|1+b —klr|zl| 2 —k2r|zl| 2 |zz|1+b51gn(zlzz)—k2|zz|1+b
3r(l+b), [
" V(2+ e ¥
. EACLA 2k + .
+K[d](|zz|351gn(zz)+ rlz,| 2 51gn(zl)+(lle)|zl|1 b|zz|51gn(zz)]
After rearrangement:
< 2k \k, — M + Wbyl — M 35 (k.o —M 345b
R S R

. 3+3b 2k N
+V1+M3(|22|3 +r|zl| 2 +(1le)|21|1 b|zz|j
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where

— 3+5b _ 3+3b 2b
Vl :_r(k1 2M1)|Zl|2 _MPA 1+b +r(k + M ]Zl| 2 |Zz|1+b
3+3b, 2k +
e 2] 2 |l + M2 ]z +(l+1b)M1|Zl|1 A
Applying lemma 2.1,
3+3b 2b
345b 3+5b 345b \3+sp, 33031 5ph 345, 20
_|Zl| 2 _|Z2| b S_(3+3bj |Zl| 2 ( 2b J |Zz|1+b’
1+3b 2+2b
3+5p +5b 34+ 5b 3456, 135345 \345b )
Al = e S_(1+3bj s (2+2bj I
2b 3+3b
3+5b +5b 34+5b\3+56, . 3+5b \3+5b 3
|Zl| 2 —|z |lb S—( b j |Zl| (—3 j |Zz 5
+3b
2+4b 1+b
3+5b +5b 3+5b 356, o 3+5b \3+s6
Al = el S_(2+4bj 21 (1+bj 2}
Thus, if the following inequalities
M 3+5b
N 2b
(k -M )3 3 (k -M ) A 343b °
i }“1 3+5b ’ (k -M )(k M)
min (kz +M2) 26 > I > max 345 3+5b (2-8)
143h k240 M | 2+4p
ﬂvz(kl_Ml)m(kz_Mz) < I+
(k —-M )(k -M )2+4b

where
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3+5b
1 _( 3+5b j (3+5b) 1 _(3+5b }m( 3+5b j[ 2 J“b
"o\ 24+24b 16b >\ 8+24p 16+16b \3+3b ’

343h b 345b
1 16b \(24+24b) 2 I 16+32b\ 8+8b\2+as( 2 \ordo
>\ 3+5p )\ 3+5b o 3+5b \3+5b 1+b

hold then the function V] is negative definite. Then,

< ib k M, 3+5b
V(Zlazz) )| | —)|Zz|”b

o [|zz| s e

Applying lemma 2.1,

|1+b

2
|2, |Zz|£§|zl|2 “L§|Zz|3

together with lemma 2.2, and the bounds of the Lyapunov function, we have:

+5b 3+5b b
Pz.2)< a)l(|zl|2 +|zz|1+bj+Mw2(|zl|2 +|zz|j
2+42b 3+3b 4 éiié 2+2b i 4 i
o [ + el F |+ | (2 + (e

1
3+5b 4 3
< _| W, [ 4+db 4 M 2 ) V4
- T 345b 3

7z' 4+4p 7[12

where
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®, = min r(kl_Ml),(kz_MZ), ®, =maxi{| r + &, , 2k, +11¢,
2 2 3+3b) \3+3b

o, for0<b<1,

-] o
@ ——  forb>1

D 4+4b

Remark 2.4. Note that the nonlinear inequalities (2 - 7) and (2 - 8) are feasible for sufficiently

large k; > 0, and k; > 0. Thus, an r > 0 can always exists. Consider some particular cases:

1. Note that (2 - 8) is feasible with respect to &y, k, for any M; > 0 and M, > 0. This
implies that for any given upper bound on the disturbances M, and M,, sufficiently

large k; and k, always exist to render ¥ positive definite and ¥ negative definite.

2. If M; =0, then (2 - 8) is satisfied for any k, > M,. This coincides with the conditions

obtained through the weak Lyapunov function [18].

Remark 2.5. Hence, when M3 = 0, 1.e. without persistent perturbations, from lemma 2.5-3, the

system (2 - 6) will have finite time convergence for 0 < b < 1, with the settling time estimate,

3+5b

Tzigiz)<| P22 [“%jw(zm,zm)pifb,
@, 1-b

where (zlo,zzo)are the initial states of the system. Similarly, exponential and asymptotical

convergence for a = 1 and a > 1 respectively, can be concluded from lemma 2.5 as well. The

above results are possible due to the negative definiteness of the time derivative of the
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Lyapunov function, i.e. strict Lyapunov function.

Remark 2.6. When persistent perturbations occur on the system, M3 # 0, from (2 - 9)

1

- 1| o o 3w b 24w
< __ 3 4+4b _ T/ 4| 3 242b __ 2
V(ZI’Z2)— 7 3+5b 4 V 7 3+5h 4 M3 3
T 4+4b T, 4+4b T4
2+2b
2i5h 345 1 b
1| w 7T 440 || 24 @
S——| — V%, for V>|2M,| — -
+5b 3
2| = W, 2
T 4+4b T4

hence, from lemma 2.6, the system (2 - 6) is uniformly ultimately bounded.

b) Case 2: For b =10

For 6 =0, V is not differentiable on z; =0

Z‘ .
V(szz): i é:TK{'l}CVI—FVZ
EeoV (z(1).t)

Z,

where

~ ~ 0
= 10N fTK[f](Zlazz): V= ) )éTK|: }’

zeov (z(t),t) EeV (2(1).t d
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Ve ?m it

Vz, #0,z, #0,

2k’ z, }
3 Vz, #0,z, =0,
rlz [>sign(z,)

{ 3.
oV - 2
K|:a—:| { [ 1, 1]]:122 ]}VZI = O, z, +* O’
c Z‘} = z,
0
0 Vz, =0,z, =0,

Let us define:

o oV ov
-~ |=S : K| — |}, and |—
‘621 up{|§1| S € {821 } ‘622

oV 3
<z, + 1z, |2 + 2Kz, |z,

SN 2
0z,

0z,

Thus, the term
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= N &kl
e oz,
5261([522}

3
| < M[|zz|3 Az + 2k 22, |J

where M be defined as, M =M, + M, + M, since for b = 0, d| <M, +M,+M,.

Computing 7, for each case, we have

Forz; #0 and z; #0:

~

3 3 3, 4
Vi = =2k k,|z,|z,| - kyr|z, |2 = K,z |2 s1gn(zlzz)—k2|zz|3 +§r|zl|2|zz|2

Forz; =0 and z; #0: Let (ézklzzz, 2z )Twith & € [-1, 1] be an arbitrary element of 01z, ?),

then

GETK[f](ZwZz):[Q -1, &, +1]k1223 _k2|22|3
hence

4 :g GDI 1 [52 -1, &, +1]klz23 _kz|Zz|3 =_k2|22|3

Forz; #0 and z, = 0:

< 3 3

V= _kl’”|21|2 _[_ 1, 1]k2r|z1|251g11(21)
Forz;=0and z, =0: 171 =0.

Thus, for all (zj, z;) € R?

|2

- 3 3 3 !
V, = —2k1k2|zl||22| —klr|zl|2 —k27”|21|251gn(21 )SGN(Zz)_kz|Zz|3 +7r|zl|2|22
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Hence, the generalized time derivative of the Lyapunov function, after rearrangement:
~ 59 3 3 3r, L 2
V=V +V, <=2k (k2 —M)zl||zz| —r(kl -k, —M]zl|2 —(k2 -M ]zz| +7|zl|2|zz|

Applying lemma 2.1,

2

3 L3
—lz[2 |l S_33|Zl|2(5) 2.
Thus, if the following inequality holds

(k, —ky =M )2 (ky = M)
2

> (2 - 10)

employing lemma 2.2 and the bounds on the Lyapunov function, then

7T, 4

. 3 3 3 3
I7S—a)4[|zl|; +|Zz|3j=—a)4[QZl|2)4 +sz|4)4J3—w4Qzl|2 o' < 2y

3

where @, = min
2 2

r(kl —k, _M) (kz _M)}

Remark 2.7. Note that the nonlinear inequalities (2 - 7) and (2 - 10) can be satisfied for any £
> ky + M, and k, > M, which guarantees the existence of an » > 0. The conditions on the gains
obtained here for the special case of b = 0 coincides with [20]. Utilising lemma 2.5-3, the

system (2 - 6) will have finite time convergence for b = 0, with the settling time estimate,

65



_3
47,4

1
T (Z 105220 ) < [V(Z 105220 )]Z , where (z,,,z,, )are the initial states of the system.

4

2.3 Generic Twisting

Leveraging the results of section 2.2.1, a generic twisting based family of controllers is
presented. Essentially, the algorithm comprise linear sum of two system that have different
homogeneity (hence different convergence properties), thus yielding a family of non-
homogeneous algorithms. By means of strict Lyapunov functions, the family of algorithms
are shown to exhibit the properties of their individual components, i.e. finite-time and uniform
convergence, thus, yielding uniform finite-time convergence that is independent of initial

conditions of the system.

2.3.1 System description

Consider the following generic twisting based dynamics:

Z, =12,,
| 2 2¢-1 . PELI P (2-11)
z)| 51gn(zl)—k2|zz| P 51gn(zz)—k2n|zz| ¢sign(z, )+d

Z,= _k1|21|2pi1 sign(zl )_kln

where z;, z; € R are the scalar state variables, ki, kin, k2, k2, are positive constants, 0.5 < p <

1, and 1 < g. Also, d is time-varying and/or nonlinear term of uncertainty bounded by:
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A< M|z 7 4 M [+ Mz, + Mz, e + M, with [d] = sup{e]: 6 e K[d])

where M| >0, M, >0, M5>0, My >0, and Ms >0 with the same p and ¢ as that in (2 - 11).
Note that for the case of p = 0.5, the algorithm contains discontinuity and the uncertainty is

upper bounded by non-vanishing constant.

2.3.2 Stability analysis

The system above (2 - 11) is essentially a summation of two different degree-of-
homogeneity of the twisting-based algorithm considered in section 2.2.1. Hence, a Lyapunov
function, which consists of linear summation of two different degree-of-homogeneity

Lyapunov functions based on section 2.2.1, is proposed for system (2 - 11).

V(lezz): (%Zzz +§_1p|zl|21’ + l;

n

2
21|2qj +V|Zl|3p|Zz|Sign(lez)+r|21|3q|22|5ign(2122)

where r is a positive constant scalar. Note that the above function is locally Lipschitz and

regular. It is differentiable everywhere for p > 0.5, and not differentiable on z; = 0 for p = 0.5.

Note that the Lyapunov function ¥ can be lower bounded by,

k,’ k
q2

1n

4 klz | l|4p |2q| |2+%
2pq

|2p+2q

4q k' 2p 2
z| "+ Lz |z + 2|z 2, z,
2p
3p 3q
=z, ["|zs| =z ||z,
Using lemma 2.1,
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17+l (2] e

3

4) '
el 2 (3 @l

Hence, for

et 1
k(1 (K, )1
min [61192] (5] , (61(]2J (Ej >r 2-12)
Vez)z el K B s 2 (] 2 ]2
1542 2 2 8p2 1 qu 1 21\4 1 2
here 7, = min 1 klz kl”z
where < 12°8p7 8

Also, it can be upper-bounded by,

el + ok
2pq

|2p+2q

1

k2| s k,’
4p2 4q

7"+ ll e+

V(Z1 , 22) |zz| +

3q
+z [ |z, + 7z [ 2]

Using lemma 2.1,
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kl kl

2p 2 4
|Zl| |Zz| < |Zl

2

el
-
4q

|@+hk

4
b

kl

In

4q

n

|2<k

1 Zy Zy

2q
e

kk

1n

2pq

1n
4pq " 4pq

3r |4p

2p+2q k k 4q
z | < n |

1 b

4

2

+r|
—lz
2
4
3¢ 3r, 4g | 4
”|Zl| |22|S_Zl| _|Zz|
4

_ k> ko kk, 3r) (kS Kk, kk, 3)(1 k Kk, r r
7T, = max e T e R B e el T B e e e T
4p- 4p 4pg 4 4q 4qg 4pg 4 4 4p 49 4 4
Thus, V is positive definite and radially unbounded. Since (2 - 11) is a differential equation
that has discontinuous right-hand side, i.e. when p = 0.5 and since no continuity assumption is

made on d, its solution are understood in the sense of Filippov (see definition 2.1). According

to lemma 2.4, the time derivative of non-smooth Lyapunov function exists almost everywhere

L . P at0)= 1 )g”]{%l}(z,t).

EedV (z(t)t Z,

Since the controller (2 - 11) is discontinuous when p = 0.5, for ease of presentation, the

analysis is separated for the case of p > 0.5 and p = 0.5.
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a) Case l: For 0.5 <p <1, ,and 1l <q

Note that for p > 0.5, V'is continuously differentiable, hence

V(znz)= N )cffl{%1 } = VVTKF.I }
Z,

EeoV (z(t).t Z,

kik, klnkZ RS _ klan

2p 3— 2q 3—l
|Zl| |Zz| p= |Zl| |Zz| b

2p
7| |z, e

cC —

k,k 2 -t
q
MZ]| |zz| ¢ —rk, |z

2q+3p-1
In |

2p+3q-1 k 5—i
| - 2|Zz| r

—rk, |z1

1

5—l 5p-1 5¢g-1 3p 2—l
-k 22| ¢ — rk1|zl| —rk,, Zl| - rk2|zl| |zz| » 51gn(zlzz)

2n
1

3p 2— . ( ) 3 3p-1 2

Zl| |Zz| qSlgn 2122 +7r p|Zl| |Z2|

—rk,,

1
3q 2— . 3g-1 2
z, | |zz| q 51gn(zlz2 ) + r3q|zl | |zz|

|22 |3 sign(z2 ) + ﬁ |Z1 |2p zZ, + ki
+K[d p q

1
3q 2— .
—rk, |z1 | |22| P SIgn(zlz2 ) -rk,,

2q
Zl 2z,

+ r|z1 |3p sign(z1 ) + r|z1 |3q sign(z1 )

After rearrangement,

?(ZI’ZZ)S_k_pl(kz _M3)|Zl|2p|22|3_% - kcl; (k2 _M3121|2q|22|3_%
_k_pl(kzn _M4}21|2p|z2|3_$ B kqln (k2n _M4XZ1|2q|Zz|3_é

_r(k1 _M1)|Zl|2p+3q—1 _ (kz _M3)|Zz|5—;

3p+2q-1

_r(k1 _M2)|21|

n

_(k2n _M4)

1 B }"(kl _M1)|Z |5p—l _r(kln _M2)|Z |5q_1
2 1 1

|Zz|57
2 2
kl

n

+7, +M5(|22|3 +k—l;|z1|2”|z2|+ 2.z, + Hz, | +r|z1|3"J

where
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L k,—M - k, —M -
. |Z2 » . Zz|5 p _’”( 12 1)|Zl|5p1_”( 1;12 2)|Z1|5q1

+ ke, + M, )|Zl|3p|zz|27% +rlk,, + M, )|zl|3p|zz|zi + r3p|zl|3pfl|zz|2

bk, + M| 5+ el + Mo+ g )

oMz %M1|zl|4pl|zz| , (Ml k; M, %J|zl|“’”ql|zz|
"'1\42|Zl|2q_1|22|3 +M, ult Z]|4q_1|22|
Applying lemma 2.1,
Sp 2p-1
—|Z |5p71 —|Z |57% <_| Sp—l 5P71|Z |3p Sp_l 5p71|Z |27i
‘ o7 3p l2p-1 2
3p-1 2
s 222 (B
‘ S ! 2p 2l
5p-1 s L S5p—-1 % w1 Sp—1 % 3
2" -l "=12,-1 2 ETH 2],
4p-1
22 2
1 2 - 4p_1 1 p 210
3 2q-1
e o ) (32
1 S Y 121 B
3g-1 2q

2
’

- .l 5q—1)51, 34 5q—1)3%1
—|Zl|5ql—|22|5q£—(ﬁJq |Zl|3q 1(q2—qjq |Zz
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2¢g-1 3q

- .l 5¢—1)51, 241 5g—1)51
EERRCES o T =

3
s

4g9-1 q

R e e e
3q 2q-1

5p-1 5q-1 s-1 sp-L s-L S5g —1)%1 5, 5g—1)%" 21
_|Zl| _|Zl| _|ZZ| "S_|Zl| ”_|Zz| ¢S |Zl| |Zz| 75

b

3q 2qg—1
3p 2p-1
- - L -4 1 5p—1)*" 5p—1)s3r1 _
e e e R e

5p-1 5¢-1 s-L (2p+2q71)(ﬁj s-L
=2 =z ~lz] e <z 1) =|z,| "

— _P
p—1 »

where lemma 2.3 has been employed in the last three inequalities since

5p—1£(2p+2q—l{ip_i)£5q—l, 5p—1£5q—135q—1, and
p

5p—1£5p—££5q—1,
q

Thus, if the following inequalities
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(k M)zpl(k M)

(k2+M3)ﬁ

4

3p-1

Ak, =M, )20 (ky = M),

—Mz)%(kzn _M4)
5g-1

(k2n + M4 )m

(k 1n

A

min 3g-1
Aoy, =M,) 20 (ky, =M, ),

1n
2 Q)I%(kzn _M4)
5 =
(k,, +M, )Zi—i
3p
a)lm(kz _M3)

Sp-1

(k +M )2!7 1

/16

where

>

3p
), = L
3¢
—1\2g-1
2.3: Sq L] Sq : ’ /14
42 20g-10
3¢
—1\2¢-1
ﬂ“s = Sq 1 ! Sq 1 16
42¢q 20g-10)
27: 28]7_14 36 ’ )VS
S5p—1 \5p-
28¢-14Y 30q
Ay =
5¢—1 \5q-1

>r > max

S5p

5p-1

Mo
(kl —Ml)(kz _M3)%

5p-1 5p-1

kyap1 M ap1
(kl —Ml)(kz _MS)ﬁ

5¢-1

M, 241
(kln -M, )(kzn -M, )m

5q-1 5¢-1

ki, 41 M yaq1
4
M, )4‘1’1
5p-1
k
In +M2 L

Tp_l
q p

a)l(kz _M3)$

//{’7

3

//{’8

b

A

3g °

ﬂ’lO

M

(kl n

[«
A

11

_Mz)(an -

k,

2-13)

» 3p-t o

Sp_l 2 /1 2p Sp—l 1 2p

42p 24p-12) 7 \42p-14 24p \3p)
Sq-1
q

5q

5
”

S5p
42p

s

31
20 (5¢-1 1?2
42q —14 20 )\ 3q

-1 Sp 1
24p—12)

12p

P Sl
1 4p-1
—1] (P] ’

5¢g-1

10g

e
()
el

ﬂll _ 56]?_14 12]7 4p 1’ o, :mil’l{(kl _Ml)a(kln _Mz)}
S5p—1 \5p-1
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hold then function V) is negative definite. Then,

5

I7(21a22)£_w|22|5_; —M|22| ; _M|Zl|5p—l _r(km—_jwz)|zl|5q—1
2 2 ’
el + o

2q 3p 3q
Z1| |Zz|+r|21| +’”|Zl| J

Applying lemma 2.1,

2 1
o7l <2 L

2 1
|Zl|2q|zz| S§|Zl|3q +§|Zz 3,

and lemma 2.3:

5p-1 5q-1 SP—E
=z =[] <z [T

5p-1 5q71< jq,i
B

together with lemma 2.2, and the bounds of the Lyapunov function, we have:

V’;(Zlazz)g—a)z[|zl|5p—1 —|—|Zl|5q_% +|Zz|5_;j_a)3(|21|5q—1 +|Zl|5p—§ +|Zz|5—;j
+M50)4Q22|3 +|Zl|3p +|Zl|3q)
4 Rl 4 Sl 4 Sp-l
ol b o))
Sq-1 5q—1 5q-1
- a){ﬂzqu) 4 4 q21|4p) 4 4 qzz|4) 1q ]

3

saton (e f o o el
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10} 4 10) “a 3w =

< — K 3 Vi e M| —2 (2-14)
_3p b sy 3
i 4 3% 7, 40 2N

where

Remark 2.8. Note that the nonlinear inequalities (2 - 12) and (2 - 13) are feasible for
sufficiently large k; > 0, k1, > 0, k» > 0, k2, > 0. Thus, an » > 0 always exists. Consider some

particular cases.

1. Note that (2 - 13) is feasible with respect to ki, ki,, k2, ko, for any M, >0, M, > 0, M

>0, and M4 > 0.

2. If My =M, =0, then (2 - 13) is satisfied for any k, > M3 and k», > M4. This coincides
with the conditions obtained through the weak Lyapunov function, i.e. the energy

function.

Remark 2.9. Hence, when M5 = 0, i.e. without persistent perturbations, from lemma 2.5-3,

1. For 0 <p <1, and ¢ > Ithe system exhibit uniform asymptotical convergence,

where
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is the time at which the trajectories reach the surface level V= . At the same time,
the system (2 - 11) will have finite time convergence, in particular after reaching
the surface level V=g, from lemma 2.5-3, the settling time estimate,

5p-1

oA |4 -p

P(u)<| == | == [l .

W, lI-p
where the initial starting states is changed to V= . Hence, the total time to reach

the origin can be estimated as

s 5p-1
37w o4 | 4q 1 o4 | 4p -p
T;olal (/’l)_ 1 g-1 1 [/l] 4p
, qg-1 m ®, [l-p
Y7,
4pq
TER pars e
. . . . 3 44 7_2.1 4q a)z

The minimum of this function can be found at y = S
@s T
1 p

Substituting into the function, a finite settling time independent of initial conditions

1S obtained,
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g-1 — P(q’l)
4 — 3q-1 P Spl N gop
o 377, 4 4q , T, 4p
total — g-1
@, q-1)| - _sat w,
3 1 4
1-
o q(l-p) 4(i-p)
5p-1 S R p
_ 27 g =21
7T, 4p 4p j 3Y 7, 4 ,
_ S5p-1
w, I-p @y T, 4p

2. For0<p<1,andq =1, finite time convergence can be concluded.
3. Forp=1,and g > 1, exponential convergence can be concluded.

These results are possible due to the negative definiteness of the time derivative of the

Lyapunov function, i.e. strict Lyapunov function.

Remark 2.10. While if persistent perturbations occur on the system, Ms # 0, from (2 - 14),

1

' 1| o D @ e S e 2 34w
V(zjz,)S—=| —2= [V ¥ - e A A B - R V 4
2 _ Sp-1 q-1 5g-1 _ Sp-1 3
T, 4p 34q 7?1? 7T, 4p T4
4p
1 Z
1 Sp-1 » 5q-1 _E 32 2p-1
. TT, 4p ()
S| 2 W | 2 Y, for V2| 2M,| > 2
27 1 = 5! @, :
T, 4p 344 771 4q T,
or
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~ | @ 3q-1
V(Zl,Zz)S— 52_1 p— p 3 yo
_75 2 = 541
7T, 4p 34 T, 44
1
211 1) 2 3w
n 3 4 4
V4 = - Vo —-M, 3
2 ‘i 5q-1 2
3% T 4 Z
5p-1 5¢-1
<_ 2 w1 @, y 4
- _ _ b
7755—1 2 q—l_sq—l
L 4p 34 7 4y
4q
‘2—_1 5¢-1 1 2q-1
3 qﬂ' 4q 34(0
for V'>|2M ! 34
@5 T4
Thus,
4
5p-1 1 2p-1
T 4p 3460
1 4
2M o 3 ,
: ? 4
V(zl,zz)<0, for V' > min w5
L 1 2q-1
3% 74 | 3w
2M ! 4
5 3
a) =
} T4

in which case, from lemma 2.6, the system (2 - 11) is uniformly ultimately bounded.

b) Case 2: Forp = 0.5, and 1 <q

For p = 0.5, V' is not differentiable on z; = 0:
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17(21,22): N )fTK{§1:|C i+i

EeoV (z(t).t )

where

18
-

10
' e gTK[f](Zl 22 )’ 2 éeaVQ(t),t)g K|:d} ,

eV (z(0)t)

Kl/)z22)e k— ESGN(z, )~k |5 [ 'sign(z,) - £,SGN(, )~k =, + sign(z, )]]

oV =K[vr]
K 8_@
| Oz,
H]
i | Oz,

Vz, #0,z, e R:

(|22|2 + 2k |2+ "; 2 bign(z, )+ rll51z, " +3glz " s

zZ, |2q J(kl +k,

_ (|22|2 42k |z, + B
q

z, |2q j(z2 )+ r|zl|1'5 sign(z1 )+ r|z1 |3q sign(z1 )

Vz, =0,z, eR:

[eaf k[ 1, 1]}

3

Z,

Let us define:

ov oV ov
—=su £, e K| — |, and [—
‘821 ‘ p{|§1| g L’?zl }} ‘622

with 8_V
0z,

= sup{|§2| £, € K{STV} ,

2q 1.5 3q
z[ Yz, |+ z | + 7z

<|z,f + 2k 2 ) +%
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Thus, the term

L

= N fzK[d]

oV
K -
e [322 }

8]

<|r
0z,

g

2q 15 3q
z[zy|+Hz| T +Hz)|

< (M M M M j(|zz|3 20|z ]+
q

where M  be defined as, M=M +M,, since for p = 0.5,
2g-1 P
d| <M, + M, +M,|z|™" +M,|z,| " + M.
Computing 17] for each case, we have
Forz; #0,2z, #0:

2¢+0.5 3q L5
1| —rk1|zl| —rk1|zl|

171 :(222 +2k1|zl|+ki zl|2q]x(—k2|zz|—k2n 22|3qu_lj—rkln z
q

1
g-1 1.5 2—— . 0.5 2
zl| |22| q s1gn(zlz2 )+ 1.5r|zl| |Zz|

—rk —rk, |Z1 |l'5 sign(zlz2 )— rk,,

5
z)|

1n

3q 2L 3g-1 2
Zl| |Zz| q Slgn(zlz2 )+ 3rq|zl| |Zz|

- rk2|21|3q sign(zlzz)— rk,
Forz;=0,2z, #0:
Let (& k27, 2 ) with & € [-1, 1] be an arbitrary element of 8¥(z), z»), then

Z,

T
. | &Kz, .
& K[f](zl,zz)_{ 22232 } {[ [—1, l]k1 —kzsign(zz)—kh|z2 qqlsign(zz)j]
3 3 a1
=&, L& +1kz,’ — &, |z, — k&, |z, ¢

hence
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5q-1

Z,[ ¢

IZ = N [52 -1, &, "'1]]‘71223 _k2|22|3 —k,,

5q-1 3
zz| q :—k2|zz| —k,,
526[*1, 1]

Forz; #0,2z,=0:

~ 1.5 3q
v, = —rkl|zl| —rkl|zl| —rk

In
—rk,[-1, l]z1 |3q sign(z, )

|2q+0.5

—rk

Z 1n

z, |5qi1 —rk,[-1, l]z1 |l'5 sign(z,)

Forz;=0,2z,=0:
V=0

Thus, for all (z1, ) eR*:

1.5

= 2 kln 2q R
Vi, =]z, +2k1|zl|+—zl| X —k2|zz|—k2n zz| ¢ |—rk,|z
q

—rk,,|z,[*" — rk,|z,| " sign(z, )SSGN(z, )~ rk,,

|2q+0.5

3q
. —rk1|zl| —rk1|zl|

1
LS| 2— . 05 |2
Zl| |22| q 81gn(zlz2 )+1.5r|zl| |Zz|

—rk, |Z1 |3q sign(z1 )SGN(Z2 )— rk,,|z, |3q |Z2 |27$ sign(zlz2 )+ 31*q|z1 |3qi1 |Z2 |2

Hence, the generalized time derivative of the Lyapunov function can be obtained, after

rearrangement:
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o .

V=V +

k
< —2](1(/7(72 —M)|ZI||ZZ| —f(k2 —M)|Zl|2q|zz| —r(kl —k, —Mlzqu

_2k1(k2" _M4 )21”22|3_$ - k; (an _M4 121|2q |Zz|3_$ —l’(kln _Mz 121|2‘1+0~5
_@Pzr _wkzr—q _rwhr.s _MPIFH

+V2 +M{|zz|3 +2k1|zl||zz|+% zl|2q|zz|+r|zl|l'5 +r|zl|3qj

where
V2 :_(kz _M)|zz|3 _ (an _M4)|Zz|5; _r(kl —k2 _M)|zl|1'5
2 2
_rlk, ~3,) - I 7 sy, 0 Yo el L5
+ r(an +M, ]zl|3q|zz|27$ Jr?arq|zl|3q71|zz|2

k

1n

2q-1 3 4q-1 2q
+M2|Zl| |22| +M, Zl| |Zz|+2M2k1|Zl| |22|

Applying lemma 2.1,

2

1.5 3 % 0.5 3 5
_|Zl| _|Zz| <-3 |Zl| 5 |Zz

2

b

3q 2q-1
- .l 5q —1)5" 5¢—1)51, 5L
LA e LU RN
3g-1 27‘7

2
9

- ! 5q—1)51, 341 5q—1)5
<3 e ()
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2¢-1 3
5q-1 5-1 5¢-1 53*1 241 5g —1 ?(il 3
-z —|z,| ¢ £+ z, —_— Zy|
1

2q 3q
4g-1
NI LI R R
1 2 4q_1 1 q 21
1 5¢-1 1
_|Zl|1‘5 _|Zl|5q 1 |Zz|5 _|Zl| 24 _|Zz|5

3q 2q-1

< _[5q3— IJSql |Zl|1.5(5q - IJSq 1|Zz|2—7
q 2q -1

15 5q-1 [ J s-1
~[z,|" =z |ZZ| "<_|Z 4a-1 |ZZ| q

49 _4q_
{r e
g-1 q

where lemma 2.3 has been employed in the last three inequalities since

b

S5g—1
2q

1.5<

<5¢ -1, and 1.5£2q(jq_3£5q—1.
q-—

Thus, if the following inequalities

Iy 1 1 _
(EJ{_‘}U{I —ky =M )2 (k, = M) ; M,
32 15 3g °

(ky, = M, Nk, =M, )2a

3q
¥ (kln_MZ)m(an_M4) 5q-1 5q-1
min{ (k, +M, )% ’ > r > maxq A, kot My b — (2-15)
3g-1 (kln -M, )(an -M, )4"’1
/113(k1n _Mz) 24 (k2n _M4)a 5¢-1  5q-1

k41 M 491

3q ﬂ/
2k, —M 17
/1]4 a)5 2q-1 (an 5(1_14) a)S (an _ M4 )ﬁ
(k,, +M )24
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where

3q 3g-1 5g-1

S5q—1 )1 5¢g-1 5¢q-1 (2 (5g—-1) 1 )%

/112 = > /113 = o >
36qg 24g—-12 36g—12 24q 3q

34 39
S5g—1)21 5qg-1 24g—12 | 36q )|2!
/114 =l 5 > /115 = >
3q 24q —12 5¢-1 N 5¢g-1
a4 5q-1 541 a4
48 —12 ) 12g |41 1 |4a! | 4g—1) 12g |4
Aig = - s Ay =2 = 1z 7 )
5g—-1 \5g-1 q 5g—-1\5g—-1
-k, -M) (k, —M
a)s :l’l’lil’l (kl k2 )’( In 2)
6 12

hold then function V; is negative definite. Then,

V< _V(k1 —k, _Mlzqu - (—kz ;M)|Zz|3 ——(kzn ;M4)|22|5_q -

r(kl _kz _M)

1.5
|Zl|

_r(kln _Mz)

2 1.5 3q
2|z, + 7z | + 7z
2

2 M, [|22|3 +2k1|zl||zz|+%

Applying lemma 2.1,

3

b

15 1
| +§|Z

el <3l + 5l

3

el

2
z, 2q|ZZ|S—|Zl )
EYREAEE:
and lemma 2.3:

1
5q-1 15 SZ—
_|Zl| _|Zl| —_|Zl| 75

together with lemma 2.2, and the bounds of the Lyapunov function, we have:
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P <o o [ | )- wg@zqu-l N +|22|5_611j+M5a)6 (2] 412 + )

3 3 3 5q-1 Sq-1 Sq-1
s GRS R G R Y

w, | > , 22l 3w | 2

< =L |7+ 8 VA M | =5 4 2-16
_3 -1 5¢-1 3 3
T4 3% 74 7,4

where

(o))
We =Mmaxy| —+r |, +r | 1+—+=—" |7

3 3q 3 3¢

w, :min{w’ r(k] _kz_M)’ M},

{2r(k,,, -M,) (kzn—Mz*),ms}

@, =min

Remark 2.11. Note that the nonlinear inequalities (2 - 12) and (2 - 15) is feasible with respect
to ki, ki, k2, ko, for any M > 0, M, > 0, and M4 > 0. As such an » > 0 always exists for
sufficiently large ki, k1,, k2, k2,. In particular, consider the case where M, = 0, inequalities (2 -

15) can be easily satisfied for any k1 >k + M >0, ko > M >0, kp, > Ms.

Remark 2.12. Hence, when Ms = 0, it is not difficult to show that the system achieved finite

time convergence for ¢ > 1. In particular for the case of ¢ > 1, following similar arguments in

85



section 2.2.2(a), finite convergence time independent of initial conditions for ¢ > 1,

_ 0.5(¢-1)
%l 5q-1 q-0.5 3 q-0.5
g =21 _3
T 3% 7, 4 4q g T4
total — g-1
W q- L W,
3% 7, 4
0.5¢q
_ — 0.5¢
3 a7t 5y \a-05 705
—_ — 4q [ — q 0.5
Ara | 3™ 7w, 4q W,
3
W, Wy 74
and when Ms # 0, from (2 - 16),
5¢-1 ;
3 q- 3 2g-1 4
< > 1 . 11 . 3w
V- —Z W4 —=| —— Vi -yt | ——— " -M|—
73 2| = 54 2] T sgm T4
1 3Y 7, 4 3T, 4 =1
g
q-1 1 2¢-1
— 5q-1 -
3 5¢g-1 4 — 4 —
=1 @ Ta 3Y7miu | 3to
SH—=SWt—=|———— ", for Vx|2M, 1 =
T 2| i =3 s .
T 3 T, 4q T

and uniform ultimate boundedness is implied from lemma 2.6.

Remark 2.13. Note that even in the case of M5 = 0, the system is able to be exactly robust with
respect to persistent perturbations with an upper bound of M. This interesting feature is

possible due to the discontinuous nature of the algorithm when p = 0.5.
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2.4 Super-twisting

In this section, the super-twisting based algorithm is revisited by presenting a locally-
Lipschitz strict Lyapunov function. The various convergence properties of the algorithm can
be fully described through a single Lyapunov function structure. The time derivative of the
Lyapunov function is able to avoid singularity due to its locally Lipschitz property. Due to the
strictness of the Lyapunov function, different types of disturbances that the algorithm can

withstand are shown, including non-Lipschitz disturbances.

2.4.1 System description

Consider the following super-twisting based family of algorithms:

= —k3|21|::i1gn(zl)+zz o 2-17)
2, =~k |z sign(z, )+,

where z1, z; € R are the scalar state variables, ki, k3 are positive constants, p > 0.5, and d; and

d, are time-varying and/or nonlinear term of uncertainties bounded by:
d,| <M |z|" +M,, and |d,| < M,|z [ + M,
with |d,| = supﬂﬂ :5eKld, ]}, and d,| = supﬂ5| .5 e K[d, ]}

where M; >0, M, >0, M5 >0, and M4 > 0 with the same p > 0 as that in (2 - 17). Note that for
the case of p = 0.5, the algorithm contains discontinuity and the uncertainty d> is upper

bounded by nonvanishing constant.
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2.4.2 Stability analysis

For system (2 - 17), the following function

| k ’ nay
V(Zlazz): (5222 +$|ZI|ZPJ _r|Zl ||Zz|4 pSlgn(lez)

where 7 is a positive constant scalar, will be shown as a strict Lyapunov function. Note that
the above function is locally Lipschitz and regular. It is differentiable everywhere for p > 0.5,

and not differentiable on z; = 0 for p =0.5.

Remark 2.14. 1t should be noted that the above Lyapunov function is still locally Lipschitz
even when the algorithm is discontinuous, i.e. p = 0.5 (the conventional super-twisting
algorithm). On the other hand, the Lyapunov functions presented in the literature, (i.e. [26]
and [27]), for the conventional super-twisting algorithm, are not locally-Lipschitz, which in
turn will cause singularity in its time derivative. This singularity will cause issue as noted by
[77], when the conventional super-twisting algorithm is use in tandem with adaptive
controller. It is also mentioned in [77], that the problem may be resolved whenever a
continuously differentiable Lyapunov function is available. Particularly, they proposed to use
the continuously differentiable Lyapunov function of [68], albeit, it produces a more
conservative condition on the controller gains than would be obtained from the non-Lipschitz
one. Thus, it is important to develop a locally Lipschitz Lyapunov function for this system,

while conforming to the gain conditions of the non-Lipschitz Lyapunov function.
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Note that the Lyapunov function ' can be lower bounded by,

2
V(ZI,ZZ)Z %|Zz|4 +[2k_lJ |Zl|4p +(2k_lpJ|Zl|2p|Zz|2 _7’|Zl ||Zz|4_%

p

Using lemma 2.1,

4p-1
s 4p 4 4t
s e M
Hence, for
4p-1 1

2
V(ZI,ZZ)Z é|zz|4 +l(k_;J |zl|4p > 7_Zlq22|4 +|Zl|4p)

Similarly, it can be upper-bounded by,

2
1 k k !
V(z,,2,)< Z|zz|4 +($J |z,[ +[$)|zl|2"'|zz|2 +rjz, |z, 7
Using lemma 2.1,
1 1
el < 2+ L

R 4p—1
bl < el + {2221
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Thus,

V(Zl’zz)S 7?1(121|4p +|22|4)

2
where 7, = max L + L +L, l+ L +7r 4p-l .
2p 4p 4p 4 4p 4p

Thus, V is positive definite and radially unbounded. Since (2 - 17) is a differential equation
that has discontinuous right-hand side, i.e. when p = 0.5 and since no continuity assumption is
made on d, and d>, its solution are understood in the sense of Filippov (see definition 2.1).
According to lemma 2.4, the time derivative of non-smooth Lyapunov function exists almost

everywhere

EeoV (z(1),t Z,

S Va0.0) € V)= N )éTKFl}(z,r),

Since the controller (2 - 17) is discontinuous when p = 0.5, for ease of presentation, the

analysis is separated for the case of p > 0.5 and p =0.5.

a) Case I1: Forp > 0.5
Note that for p > 0, V'is continuously differentiable, hence

Vi(znz)= N gﬁ{%l } - VVTK{%1 }

Eeov (z(1).t) Z,
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kk 1 1
1 "3 S5p-1 kk 3p-1 2 5— k Y4 4— . ( )
2| N R P B L Lo e

C —

+ r(4 - l)kl |Z1| |22 |3_i
p
2

+ K[d1 {kl |zl|21r)7l |Zz|2 sign(z1 )+ %|Zl |4pi1 Sign(z1 )— r|22 |47% sign(z2 )]

+ K[d2 (223 + £|Z1 |2p z, — r[4 - l]|z1 ||Z2 |3% sign(z1 )J
p p

After rearrangement:

5,7
__|Zz|

3p-1 Z_klz(k3—M1) 5p-1
B e

V(Zl’zz)g _kl(kS _Mllzl 2p

2
VM (k 2[4 +r|22|4;J
P

+M4(|ZZ|3 + £|zl|2p|zz| + r(4 —lJ|zl ||ZZ|3-I1’]
p p

where

4,,

2
K:—M|Zl|5pl——|zz| v ek, + M)z ||
2p
1 YT 2p-1 |3 k,
+r(4—;}(k +Ml | |Zz| M3|Zl| |Zz| +M3;|Z1

4p-1
"z

Applying lemma 2.1,

4p-1
—|Z |5p71 _| |5—7<_ Sp—l 515%|Z|p Sp——l 5'§1|Z |4,l
1 Zy| # » 1 4p—1 2| P>

2 3p-1
sp-1 s-L S5p-1 ?{‘ 2w Sp—1 # 3 b
|2 =z e < BT EA 3ol EA N



2p-1 3p
- L S5p—1)5r1 L Sp—1)5r1
bt (2 (2

4p-1

&= _P
el el < 22 (2

Thus, if the following inequalities

3
s

2

sp-t
]\43 3p
2 2 3kﬂ(k M)zp—l’
ming 4, k (k3_ﬂil_?,/12 k (k3_A54p1_? > 7 > max L 3;_1 13 2-19)
(ks +M)» (k+ M) 2 M,
43 =]
L (k3_M1) p
where
ap-t 3p-1 sp-1
Sp-1)5p-1)»~ Sp-1) S5p—-1 )2 p |2
A= 2 s Ay = 2 A1 >
8p 8p—38 16p 24p -8 4p—-1
201 4p-1
5 _(16p2—8pj 3 [ 24p ) ; _[32102 —SpJ P 8p
3 = ° 4 5p-1
S5p—1 S5p—1 5p-1 2P
’ ! P e

hold then the function V; is negative definite. Then,

. 2 —
Pz, 2, )< _LMI)MW1
2p

2
+M2£k1|zl|2pl|zz|2 +%|zl|4pl N r|22|41]7j

+ M4L|Zz|3 + ﬁ|21|2p|22| + r(4 —lJ|z]”Zz 3_;J
p p

Applying lemma 2.1,

I"| 57l
A
2
2
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- 2p -1 - 2 L
| Kk P

3
s

3p

2 1
|Zl|2p|zz| S§|Zl +§|Zz

3
)

A 1 3p—1
i Ce 8

together with lemma 2.2, and the bounds of the Lyapunov function, we have:

ez, )< —a)l[|zl|5p_l +|ZQ|S'LJ+M2%(|ZI|“P* +|zz|“-2j+M4a)3 (=" +12/")
R RS =] RUa!
:_a’l{(lzd p)4p +sz| )4p ]+M2a)2(021| p)4p +q22| )4,, ]

3 3

+M4w{qzl|4p)4 +qZZ|4)4j

1 1
Sp-1 ap 4p-1 2 3
@, 4 2%, | 2%wy |
<H—a P+ M, el " +M, — V4 (2-20)
Ty 4p 7y 4r 7,4

where

ke* (key =M - k2
@, =min M,ﬁ, @, = maxs k, 2p-1 +——, k, 2P|y,
2p 2 4p-1 p 4p—-1

2 _
03 = maX{i + (4 - lj[L] 1+ Ll + r(4 - lj[—?’p lj}
3p p\3p 3p P\ 3p

o, for 0.5<p<l],

-l o
@y = 14 for p>1

i
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Remark 2.15. Note that the nonlinear inequalities (2 - 18) and (2 - 19) are feasible for
sufficiently large k; > 0, and k3 > 0. Thus, an » > 0 can always exist. Consider some particular

cases:
1. Note that (2 - 19) is feasible with respect to ki, k3 for any M} > 0 and M5 > 0.

2. If M5 = 0, then (2 - 19) is satisfied for any k3 > M,. This coincides with the

conditions obtained through the weak Lyapunov function, i.e. the energy function

Remark 2.16. Hence, when M, = M, = 0, i.e. without persistent perturbations, from lemma
2.5-3, the system (2 - 17) will have finite time convergence for 0.5 < p < 1, with the settling

time estimate,

5p-1
7w oap | 4 1-r
T (zlo,zzo) <| =7 (l—pJ[V(ZIO,ZZO )] 4p , where (zlo,zzo)are the initial states of the system.
, 4

Similarly, exponential and asymptotical convergence for p = 1 and p > 1 respectively, can be
concluded from lemma 2.5 as well. The above results are possible due to the negative

definiteness of the time derivative of the Lyapunov function, i.e. strict Lyapunov function.

Remark 2.17. When persistent perturbations occur on the system, M, # 0 and/or M4 # 0, from

(2 - 20)
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4p-1
Ty 4r

1
. spl apl ' rys
V(zl,zz)S—l BECTE RTIN R T JV“MQ 27 o,

4p-1
a) -
1 5p-1 4 Ty 4r
[0
S—o|— Y, for V>max o
T, 4p s5p-1 1 2p-1

hence, from lemma 2.6, the system (2 - 17) is uniformly ultimately bounded.

b) Case 2: Forp = 0.5

For p =0.5, V'is not differentiable on z; = 0:

Z

eV (z(t).t

I7(21322): N )gTK|: :|CI71+I72

Zy

where

4
EcoV (z(2),t)

o d
T . T 1
Fxlfenz) im0, K|

z.,Z,)€ _k3|21|0-55ign(21)+22
K[f]( 1 2) { _klsGN(Zl) ]
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a
Oz,
ov

oz,
5
0z,
<l Tov
Kl 2=
i [822}

T ) 2 .
(Zz + 2k12|zl|Xk151gn(Z1 ))—r|22| 51gn(22 ):I’ Vz, #0, z, eR
2, +2h[z[z,) - 2rz )

oV =K[VV]=K

Zzzkl[— 1,1]—}"3|22|Zsign(22):|, Vzl :0, Z, eR
2

Let us define:

oV oV
= : K| — |}, and |—
SUP{|§1| i {azl }} ‘822

< k1|22|2 + 2k12|zl| + r|z2

v
0z,

N P
. sup{|¢2| fen }

%
— < |zz|3 + 2kl|z1 ||ZZ| + 2}”|Z1 ||22| .
2

2
, and

with

1

Thus, the term

Vi = Tﬂ §1K[d1]+§2K[d2]
(&1.8,) eor (z(o).r)
oV oV
< a—|d1|+ ——|.|
Z, 0z,

< (V[ + M, N2k Lo+ (b, + el o Ml + 28 2] + 202

dl|£M1|z1

|O.

where M be defined as, M =M, +M,, since for p = 0.5,
dy|<M;+M,.
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Computing 171 for each case, we have
Forz; #0,z, € R:
17] = —2k12k3|zl |l'5 —k, k3|zl |0'5|22|2 — r‘|22|3 +rk, |Z1 |0‘5 |Zz|2 sign(zlz2 )+ 2rk, |Z1 ||ZZ|

Forz; =0,z € R:

Let (fzklzzz —r|zz|zsign(zz), 223)Twith & € [-1, 1] be an arbitrary element of 0V(zj, z»), then

Zy
|3

= [52 -1, +1]]‘71223 _r|Zz

hence 171 = P | [§2 -1,&, +1]k1223 —”|Zz|3 - —r|22|3
&el-1,1

Thus, for all (z1, z,) eR*:
171 = —2klzk3|zl|L5 - klk3|z1 |O'5|22|2 — r|22|3 + 7k, |Zl |O'5 |22|2 Sign(zlz2 )+ 2rk, |Zl ||Zz|
Hence, the generalized time derivative of the Lyapunov function, after rearrangement:

P =4V <k =M )a | =Ll 3,252, + (ky + )l )
where

V, =k’ (k, —Ml]ZJL5 _£|ZZ|3 _[g_Mj|Zz|3 (ke (ky =M, )= r(key + M, ))|Zl|0‘5|22|2

+ 2r(k1 + M)z1 ||zz| +2Mk, |z1 ||zz|
Applying lemma 2.1
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1 1
—|zl|1'5 —|Zz|3 < —(1.5)E|zl|(3)§|zz|

Thus, if the following inequalities

kl(k3 _Ml)
(k3+M1) , aM,
min 1 >r>max{ (4 (8 M3
33V 1|k (ky—M (—j (—j?—
212 BE) : (3 31) 3 3 k1(k _M1)2
4 \ 8 2 2 3
22 (kl+M)2

hold then the function V; is negative definite. Then,

V< k] (k- M)z, Ll s &[]+ (5, + )=l

Employing lemma 2.2, and the bounds of the Lyapunov function, we have:

P <o,z o )+ My, (o] +|f)

ol F ol sl F -

3 1 1

<o) +|af F +M,220,(a) +]| P

where

05 = min{klz(k3 -M,), g}, W5 = maX{Zklz, (k, +r)}
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Remark 2.18. Note that the nonlinear inequalities (2 - 18) and (2 - 21) is feasible with respect
to ki, ks forany M >0 and M, > 0, which guarantees the existence of an » > 0. Also, when

M=0,(2-21) is easily satisfied for any k; > 0 and k3 > M.

Remark 2.19. Thus, when M, = 0, utilising lemma 2.5-3, the system (2 - 17) will have finite

time convergence for p = 0.5, with the settling time estimate,

3
47,4 L

T(Zloazzo)S [V(ZIO’Z2O)]4

5

where (z,,,z,, )are the initial states of the system, in which case the system is able to

withstand persistent perturbations, bounded by M.

Remark 2.20. While for the case of M, # 0, from (2 - 22)

1
1

3 1 5
- 1| o - -1 o - 2%w
V< —— —53 | A = —53 V“—M2 16
20 == 20 == -
T4 T4 T2
3 3 1 !
1| w = 7.4 | 22w
<—— —53 V4, for V= 2M, - —1(’
T4 @s T2

where uniformly ultimately bounded is concluded from employing lemma 2.6.
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2.5 Generic Super-twisting

Employing the results of section 2.2.3, a generic super-twisting based family of controllers
is presented. In a similar spirit as per section 2.2.2 (generic twisting), the algorithm comprise
linear sum of two different homogeneity super-twisting based algorithms. By means of strict
and locally-Lipschitz Lyapunov functions, the family of algorithms are shown to exhibit the
properties of their individual components while at the same time, singularity is avoided in its

time derivative.

2.5.1 System description

Consider the following generic super-twisting based dynamics:

2= ~kyz|"sign(z,) = k;, |z | sign(z, )+ z, + ., 2-23)

Zl|2qilsign(zl)+dz

Z, = _k1|21|21%1 sign(zl )_km

where z;, z, € R are the scalar state variables, ki, kin, k3, k3, are positive constants, 0.5 < p <
1, and 1 <gq. Also, d; and d, are time-varying and/or nonlinear term of uncertainties bounded
by:

2g-1

d\| <M |z)|" + M,|z,|" + M, and |d2|SM4|Zl|2p_l + Mz | +M

6>
with |d,|:=sup{8|: 5 e K[d, ]}, and |d,|:=sup{5|:5 € K[d, ]}

where M| >0, M, >0, M3 >0, My >0, Ms >0, Ms >0 with the same p and g as that in (2 -
23). Note that for the case of p = 0.5, the algorithm contains discontinuity and the uncertainty
d, 1s upper bounded by nonvanishing constant.
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2.5.2 Stability analysis

The system above is essentially a summation of two different degree of homogeneity of the
super-twisting-based algorithm considered in section 2.2.3. Hence, a summation of two
different degree of homogeneity Lyapunov function based on section 2.2.3 is proposed for

system (2 - 23), namely

V(zl,zz):(%zzz +§_;|Zl|2p +%

2 1
2q 4— .
Zl| —V|Zl||Z2| pSIgn(lez)

1
4-= .
—r|zl||zz| q51gn(zlzz)
where r is a positive constant scalar. Note that the above function is locally Lipschitz and

regular. It is differentiable everywhere for p > 0.5, and not differentiable on z; = 0 for p = 0.5.

Note that the Lyapunov function, ¥ can be lower bounded by,

k.’ k,’ k k
V(z,,2,)2 |Zz|4 + 4;2 |Zl|4p + 422 1|4q +$|Zl|2p|22|2 + - 1|2q|22|2
k. k N N
R

Using lemma 2.1,

4p-1
“4p 1
|Zl|4p +|Zz|4 2(4p)41p|Z1|(%j 4p |Zz|4—;,
49-1
il 4 4 i
el 2l 555 )
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Hence, for

N 4p-L SN 4q-1
4p 4 4q 4
min K 4p 1% , ki, 49 1 )% >7,
2p 4p—-112 2q 4g—-112

V(Zl,zz)z QIQ21|4P + |Zl|4q +|22|4)

R
where 7, =min s .

@’ SqZ’E

Also, its upper bound can be obtained as,

1 k.’ k,’ k k
V(Zl,Zz)S Z|Zz|4 + 4]1?2 |Zl|4p + 41q"2 zl|4q +$|Zl|2p|zz|2 4+
k k 1 !
+ 21p1q ,|2”+2q +r|zl||zz|4 r+1z, ||zz|4 g

Using lemma 2.1, we have,

k k k
$|Zl|2p|zz|2 S$|Zl|4p +ﬁ|22 '

k k
bl bl S
% 1|2P+2q Sk1k1n l|4p +k1k1n z, 4q’
2pq 4pq 4pq

4
b

r|Zl||Zz|4_% < Zl|4p + V(4i9p— 1)|Zz
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|4—l r |Z]|4q " l"<4q — 1)

g < —
4q 4q

4
’”|Zl||zz |Zz|

Then,
Vzyz)< 7 2]+l +]2)")

where

k12 kl r klkln klnz kln r klkln
St —Ft—+— ~+ +—+—>,
4p” 4p 4p 4pqg J\4q” 49 49 4pq

(1 k& k r(4p—1)+r(4q—l)J

7T, =max

4 4p 4q 4p 4q

Thus, V' is positive definite and radially unbounded. Since (2 - 23) is a differential equation
that has discontinuous right-hand side, i.e. when p = 0.5 and since no continuity assumption is
made on d, and d», its solution are understood in the sense of Filippov (see definition 2.1).
According to lemma 2.4, the time derivative of non-smooth Lyapunov function exists almost

everywhere

%V(z(t),t)a-ea 17(z(t),t)= N ).»,”KF1 }(z,t).

EeoV (z(1),t Z,

Since the controller (2 - 23) is discontinuous when p = 0.5, for ease of presentation, the

analysis is separated for two different cases of p > 0.5 and p = 0.5.

a) Case I: For 0.5 <p <1, and 1 <q

Note that for p > 0.5, V'is continuously differentiable, hence
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~ z z
Viz,z,)= N &kl |=vr'k| ™"
EcdV (z(1),t) Z, Z,

3p-1 2 2p+q-1 2 p+2q-1 2
C_k1k3|zl| |Zz| RIS | | k| | | 2|
3g-1 2 k[ S5p-1 kl 4p+q-1
-k, ks, Zl| |Zz| __k1k3|21| ——kks, Z1|
p p

kl k |Z |3p+2q—1 _k_

2p+3q-1 . kln k k | |2q+3p—1

5g-1

— kln klan Zl|2p+3q—1 kln k k |Z |p+4q—1 _ k
q

st L kPl sign(z.2,)
—r|22| p—r|zz| q+r3|zl| |22 rsignlz,z,

3L

2"z, |47% sign(z,z, ) + r[4 - %Jkl |z, |2!7 ER

+r(4— 1] i
P

zZ, |" |z2 |4*$ sign(zlz2 ) + r(4 _ é}kl |Zl|2p |22 |3i

+ r(4 - l)kln |zl |2q |z2 |37$
q

p

+rk;,

Zl| |22|3_; + rky|z,|” |22| sign(z,z,)

+rk;,

kk

M™n

Z; |2p+2q_1 Jsign(zl )

+Kl[d,] - rlz, |4_% sign(z, ) - rlz, |4_$ sign(z, )

{ 2ot kk,

|2p+2q—1 n kln

2
- Zl|4q_1 JSign(Zl)
q

|2|+

Z

z, + L |z, |2p z, kq” Mg, — r(4 - %)zl |2 |3§ sign(z, )
+ K[d2 1
1 -
_ {4 _ 5J|zl |z s sign(z, )
After rearrangement:
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NS—kl(]Q _M1)ZI|3P—1|22|2 _kln(k3n -M XZI|3q71|ZZ|2
_kl(k3n _szzl|q+2p—l|z2|2 —k ( M ] |p+2q 1 |2

B klkl" (k3 - Ml {l + l]|Zl |3P+2‘J—1 - k1k1n (k3n - Mz {l + lJ|Z1|2p+3q_1
P 9 p

q

k12 g+4p-1 kln2 p+dg-1
__(kSn_M2lzl| - q (k3_M1)21|
kS k,’ i
Sl ) [ B, ) [ =2l 47,
2 2
%|Zl|4pl n kln Zl|4q—1 +k1| |2p 1 2q—1|22|
M 1 1 2p+2¢-1 1 4t
+kk,, (;+;J|Zl| preas r|22| ) +r|22| q
k k
|Zz|3 +_I|Zl|2p|zz|+l|zl|2q|22|
M, 1 3.1 1 31
+’”(4__j|21”22| P +r[4——j|zl||zz| q
p q
where
. k2 5p-1 k1n2 sl 1y =L or st
v, = k -M le| - 2q (ksn_Mz)|Zl| _§|Zz| p_5|22| g

4_,

+M )|z1 |22 p+r(k3n+M 121 HEANE

jk + M)z, p+r(4——](k +M5121|2q|22|3%
p

4_,

ot

+rlks + M, )z, | |Zz "+”(k +M,)z|"|z,| ¢

O RO MY FR ST S
q

M4|Zl|2pil|zz|3 +M, £|Zl|4p1|22|+(M4 k‘” M ﬁj|zl|2p+2ql|zz|
p q p

2q-1

+M5|Zl|

|4q 1

2 + 0, Bz 7
q
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Applying lemma 2.1,

N 4p-1 1
_ 5 —1 5p1 5 —1 501 1
2p v
- S5p—1)\35r1 5 1)5p-1 1
i (e
21 S
L 5p—1)sr1 1 5p—1)501
el ) (e
4p-1
5p-1 s-L Sp—1 % ap1 Sp—1 #
ol e (220
5g-1 51 5g -1 % q[ S5g—1 % P
_|Zl| —|Z2| g < — T |Z1| m |Z2| q,
2 R
i 5q—1)3! 5 —1 )31 A
241 "
_ _2 S5qg—1 591 a4 5g —1 591
R G M - S
4g-1
5q-1 51 Sq—l % 41 5g—1 %
el el S (S
el < el
1 1 2 1 2

4p-1

{2 (35
p 4p-1
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5—l 5_l

T I = R P A P R P
2 3p-1
< Sp—1 5P—1|Z|zq S5p-1 5P—1|Z |3_%
L 2p T3p-1 o
e el el s )
4p-1 _r
: ‘(—Zﬂ“ lzli“"*“”[—s”p_ IJ 2.
_q
|z =1z <z 5% <z Spif— z S% < — Sq—1 )% z|? >q-1
1 1 2 1 2 q 1 46]—1
Ziq
- - 1 _P L 5g —1 \5¢-1 50 —1 )54
el e s e s (22

where lemma 2.3 has been employed in the last five inequalities since

5p—1S(2p+2q—l{jp_i)£5q—l, sp-1<5¢-T <541,
p

sp-1<5p-L<54-1.
q

Thus, if the following inequalities
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k12(k3 _Ml)
5p-172

(k3 +M1 )T

klz(ks _Ml)
-1

(k+M.,) 7

2

l} kln (k3n AS{IZI),

(k3n +M2 )T
k1n2 (k3n _Mz )

5¢g-1 2

min (kln +M; )Z

5p-1 72

(kSn + M2 )T

5p-1°

(ky, +M )20

In

5¢-1 72

(ky+M,) ¢

5q-1

(ke +M,) 20

where

>r > max
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ap-t 3p-1 sp-1
1= Sp—-1\ S5p-1 | r»r Sp Ly Sp-1 (2 p %
l18p? \sep-14) 777 | 36p |\ 42p-14 4p-1)

4 = 5g-1 -1 J

184° 48q 12

4 _[3p-1Y sp-1 T
> p \sep-14)

391 sq-1
P 5g-1) 5q-1 [ 5g-1) 5¢g-1 2q q 24
! g \48q-12 2g \36g-12 4g-1)

j 4p-i
&

4p7t sp-l
42p 72p2—18p o l4p (1)~
Sp— S5p—-1 Sp—-1\p ’
36¢° —18¢ ) % ( 36g 72q9° —18q
/111 91’12 s
5g -1 5g -1 5g -1
4p1 )
4p-1)» ( 14 .|k
Ay = P 4 , @ =mins— (k3 ) (k Mz)
S5p—1 S5p—1 18p 8

hold then the function V; is negative definite. Then,

2
J = 36p 18pJ
Sp-1

?g_ﬁ(k -M )Z |5p—1 _ klnz (k Y )|Z |5q -1 ——|Z |5_; _£|Z |5_$
2p 3 1 1 2q 3n 2 1 2 2 2
k12| o Lk ?

1n

p q

+kk, (l + l]|zl|2p+2ql +7z, |47% +7z, |4%
P g

4q-1 2p-1 2g-1 2
AR A |2,

+ M,

e Bz [ o B ) 4 ,{4 _ l]|zl||22|3'é
q P
N {4 _ l]|zl Iz,
q

Applying lemma 2.1,

+ M

(=}
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- 2p—1 - 2 4p-1

1\ (2g ).
Z—1j|21|4ql+(4qq—1j|22| s

2pi2g-1 _ 1y jap1 1, jaga
|21 S T I =
2 2

N

[N}

2¢-1 2
|Zl| |ZZ| = (

B

3

2p 3p 1
|21 | +§|Zz ’

2
|22|§§|Zl

2 1
|Zl|2q|22| < §|Zl|3q +§|Zz|3’

1 1 3p—-1
2]}z < (5}4 I + (f;_p)zz

1 1 3g-1
les <L+ 22

and lemma 2.3,

3
’

3
’

p q
S5p-1 5¢—-1 Sp—— S5p-1 5¢-1 5q—
—|Zl| —|Zl| < —|Zl| 4, and —|Zl| —|Zl| < —|Zl| r,

together with lemma 2.2, and the bounds of the Lyapunov function, we have:
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Sqfi

7 s o[ +1a" e Yo Jaf 4l 4z

+M3(04(|Zl|4p—1 |z +|22|$ +|zz|4qq_lj+]\46a)5 qzl|3p tla [ +|Zz|3)

. S5p-l A 5p-1 ) 5p-1
_ P a4 9\, 74
=70 Qzl| ) : +Qzl| ) ! +sz| ) b
i YL V! 3!

94 P4 1

B A A

4p-1

4p-1 4q-1 4g-1
4p |4, 4q 4\ VI
+ Mo, 0Z1| )4p +QZ1| )4q +qzz| )4,, +Qz2| )4q

Spl 3q-1 2 4p 4p-1
. ) W
2 V 4p 3 4q 4 4p
= 5p-1 P 14 + M| ———

T 4p e e - =
L 3% T, 4q T, 4p
! 1
4q 4g-1 — 3
24q (0] — 34 . 2
+M LM oM 5 e
3 4g-1 6 3
Ty 44 T4
where
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@, = max

@®; = max

Tk’
o, =min{——(k, - M), w,,
18p

k-
p

2p -1
+k1( P
4p -1

J k.k
+
2

k
_l_

1n (l
p

lkln

be( 2]

r ) 7k1n2 r
— ¢, ®; =min —(k3n—M2), @, —
2 18¢ 2

)

k, ’ -
( 1n +kln(2q 1j
q 4g -1
r+k, 2 , |+ kK, 24
4p -1 4qg -1

28]
o

k k
1+—L+ ‘”+r[4—lj
3p 3q p

Remark 2.21. Note that the nonlinear inequalities (2 - 24) and (2 - 25) is feasible for

sufficiently large ki, k1., k3, k3,. Thus, an r > 0 always exists. Consider some particular cases.

l.

Note that (2 - 25) is feasible with respect to &y, ki, k3, k3, for any M; >0, M, > 0, My

>0, and M5 > 0.

If My = M5 =0, then (2 - 25) is satisfied for any k3 > M; and ks, > M,. This coincides
with the conditions obtained through the weak Lyapunov function, i.e. the energy

1

k k
5222 +2—]|Zl|2p + 1z

2q

function E(z1 22, ):

2q
z)|

Remark 2.22. Hence, when M3 = My = 0, i.e. without persistent perturbations, from lemma

2.5-3,
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1.

For 0 <p <1, and ¢ > lthe system exhibit uniform asymptotical convergence,

where

is the time at which the trajectories reach the surface level V= . At the same time,
the system (2 - 23) will have finite time convergence, in particular after reaching
the surface level V=g, from lemma 2.5-3, the settling time estimate,

5p-1

(<) L [ A2

o, l-p

where the initial starting states is changed to V= . Hence, the total time to reach

the origin can be estimated as
a—_l 5¢q-1 S5p-1
3" | 4q 1 T 4 | 4p -p
T;olal (/’l): g-1 [/l] 4p
, g-1 m ®, [l-p
Y7
2pq 4
G e o s
.. . . 347 1 4 W,
The minimum of this function can be found at x = 0
, — =
7T, 4p

Substituting into the function, a finite settling time independent of initial conditions

is obtained,

113



e T e
o 3M T, 4 4q w, T, 4p
total — » ~1 q-1 S0
3 q _ %t W,
3% 7T, 44
1-
ol 4(_17) q(l—p)
_ s R B q-p
R (4p 3% 7, 4 @,
1_ _ S5p-1
a)Z p a)3 72'1 4p

2. For0<p<1,andq =1, finite time convergence can be concluded.

3. Forp=1,and g > 1, exponential convergence can be concluded.

The above results are possible due to the negative definiteness of the time derivative of the

Lyapunov function, i.e. strict Lyapunov function.

Remark 2.23. While if persistent perturbations occur on the system, M; # 0 and/or Ms # 0,

from (2 - 26),
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5p-1 5q-1 4p-1 1 4
i~ 1| o e 1) v 1l o -~ 27 w
4
V<—— 52 r 3 | ZZREIY /g ) [t [ Ve -M, 4
2 _3pt L 2| _3p Ap-1
7T, 4p 34 77 4y 7Ty 4p 7y 4r
1
1 1
4g-1 1 T 3 2g-1 -
11 10} - 2" @ 211 10} - 3t
4
-V - : Ve —M, Ll l—p 3 Vi M, 2
3 et s, 491 3] L s 1
4q R T, 4q q — 2= T4
3 | 44 =1 3% T, 44 =1
1 S5p-1 5q-1
< __ C()2 4p (03 V 4q
- 2
_spl ol s
4 I
7T, 4p 34 T, 44
4 4
5p-1 % UL 4i
o | 27 o, 37T |2V,
2M, : .| 3M, )
) p-1 ) 4g-1
2 T, 4p 3 Ty 44
for V >max 4q
q-1 5q-1 1 2q-1
3% T, 4q 3t
1 5
3M, " 3
3 T4

thus, uniform ultimate boundedness is achieved by applying lemma 2.6.

b) Case 2: Forp = 0.5, and 1 <q

For p =0.5, V'is not differentiable on z; = 0, hence

2 z RS
V(szz): N fTK .1 <V +V,
cedV (z(1).t) Z,

where

-

T = I
=0 K Nzz) o= NS K{ dj,

! eV (z(0),t)
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zZ, |q sign(z1 )+ z,
|2qi1 sign(zl )

—ky|z,| sign(z, )~k
K , 3“1 1 3n
[f](Zl 22)6 _klsGN(Zl)_kln Z)

ov
0z,
oV

o,

oV =K[VV]=K

N

0z,

= Tor
Kl 2=
i |:822i|

Vz, #0,z, eR:

_ . : _l i
Zl|2q l}lgﬂ(zl)—]/|22|281gn(zz)_r|22|4 qSlgn(Zz)

z,[ j(k1 +k,

zZ, |2q j(z2 )— 2rz, |Zz| - r(4 - é]zl |Z2 |3_$

(222 + 2k1|zl| + ki
q

(222 + 2k1|zl|+ ki,
q

Vz, =0,z, eR:

3
Z;

2,k [-1,1]- r|22|2 sign(z, )1z, |4_$ sign(z, )}

Let us define:

oV oV oV
— = : K| — |, and |—
- sup{lal en }} 2

with

el ed 2]

oV

2
<2k |z + ki, (l + 2J|Zl|2q LT R N e N AN R EA r|22|4%,

1

116

3



and

<|y| + 2k, ]z, ||Zz|+%

1 1
zZ, |2q |Z2| + 2r|zl ||Zz| + r(4 — ;j|21 ||Z2 |3 q

2

Thus, the term

172 = Tﬂ §1K[d1]+§2K[d2]
(&.6,) o (z(0).1)
oV oV
< 8_|d1|+ —|d.|
Z, 0z,
By 1 2 klnz 4g-1 21 |2
2k, |z, |+ Kk, ;+2 |z,[ + p LAy M EA A

< (M1|Zl

|0.

5+M2|zl|q+M3

k 2 2 4L
+ 1|z2| +r|22| +r|22| g

1 1
zZ, |2q |22| + 2r|z1 ||Zz| + 1{4 — ;j|Z] ||Z2 |3 q j

ot 2

Computing 17] for each case, we have

Forz; #0,z, € R:

2

q 2 2¢g-0.5 3g-1 2 2
Zl| |Zz| _klnk3|zl| |Zz| —ky, ks, Zl| |Zz| -2k, k3|21
1

+ k kk
—klklnk3(2+—j|z]|°'5 = —2kk, ks, 30 KKK,
q

I71 = _k1k3|21|0.5|22|2 —kks,

|1.5

1+q 3q

—2k’k,,

Zl| Zl| Zl|

_ —k1"2”k3 |z, |4q_0'5 _ Rk ks, z, |5q_1 - r|zz|3 — 7z, |5_i +rk; |z, |0'5 |zz|2 sign(z,z, )
+rk;, |z, |q |22 |2 sign(z,z, )+ r2k, |Z1 ||Zz| +7r2k,, |Zl |2q |Zz|

+ rk, |Z1 |0'5 |22 |4i sign(zlz2 )+ rk,, |z, |q |22 |47$ sign(zlz2 )

N ,{4 _ ljk1|zl||zz|3; N {4 _ ljkln
q q

Forz; =0,z e R:

2q 37l
2|z, e
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2 . FEL
Let {222]{152 —1lz,| 51gn(z32)—r|zz| ssign(z, )]with & € [-1, 1] be an arbitrary element of

Z;

0V (z1, z), then

; [-1,1]

Zy

KNz z,) - [(zzzklfz —lz,|"sign(z, ) - |z, |4i sign(z, )j]T L ) z, }

1
= [fz -1,¢, +1]k1223 _’”|Zz|3 _r|22|57

hence,

~ _1 _1
v, = N [52 -1,¢, +1]k1223 —r|22|3 —r|zz|5 q = —r|zz|3 —r|22|5 q
&el-1,1]

Thus, for all (z1, z;) eR*:

~ 0.5 2
Vlz_klk3|21| |Zz| —kks,

|2

_klnk3|zl

|2q—0.5| |2 —k k

1n""3n

|3q _ klnk1k3n

q 3g-1 2
Zl| |Zz | |

Z, Z; |Zz

—2k’k; 2,

|1.5

—2k’k,,

3q
z, |z,|

Z) |1+q - klklnk3(2 + 5)21 |0'5+2q =2k k,, ks,

1
klnklnkS |Z |4q—0.5 . klnklnk3n |5q—1 |3 5—
1

0.5 2 .
—r|zz| q +rk3|zl| |zz| SIgn(zlzz)

zZ, - r|z2

+rk;,|z, |q |z2 |2 sign(z,z2 )+ 12k, |z1 ||zz| +7r2k,, |z, |2q |zz| + 1k, |z1 |0'5 |zz|4i sign(zlz2 )
+rks, |z,|" |z, |4_$ sign(z,z, )+ 1{4 - éjkl |z,||z, |3_$ + r[4 - é)kln z, |2q |z, |3_$

Hence, the generalized time derivative of the Lyapunov function, after rearrangement:
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V:ﬁ+z

—k,, k -M ]Zl 24-0.5 Zz|2 _kln(k3n -M, ]ZI|31H|ZZ|2 _klkln(z_'-éj(k:i _M]]ZI|2q+0.5

2
_2k12(k3n -M, 121|q+l - qun (ks -M, ]Zl|4q_0.5 u 1251;1 [2"' ;](kn -M, lzqu

s k)’ - B
_klz(ks_M1MZ1|]5 - 21; (kSn_MZMZIFq 1_§|Zz|3_§|22|5 4 +V

M, (2k12|zl| +kk,, (1 + 2]|zl I +
q

2q 1 3.l
. |22| + Z(k1 + r)z1 ||Zz| + r(4 - 5]|Zl ||Zz| q J

2q1

4g-1
1 q
n Zl|

|zz| +(k, +r)|zz| +r|zz| :zj

+M6[|22|3 + b, z
q

where

v, =—%(2 +éj(k3n M, )z [ =k (ke — M)z - kzl:; (ky, =M, )z
-2l —gwé (b = M)l
(b, =M.~ rlk, + Ml =[5, Jef
20k M Y2+ 27y, + M)z ]+ ey 5 0, )2 e

+r{kh-+ﬂ42]quk2r;—kr(4—~$}(kw-+A45}2J2ﬂzzrh

+ {4 - éj(kl M)z e o+ 20 k|2 2]

4q9-1

+[k:]” M, +2klM5]|Zl|2q|Zz|-I-M5|Z1|2q_1|zz|3 +M; %' | |ZZ|

Applying lemma 2.1,

2

4 3)\3 1
—|Z1|1 : —|Zz|3 < _(Ejs |Z1 |(3)3|22 ,
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. O (5g=1)5 1, o Sq-1)
_|zl|5q 1_|Zz|5 q S—(qTJ ! |Zl|q[$] ! |Zz|4 q,

- L 5 —1 )% 5g—1)5a1, 3t

5g-1 51 5g—-1 zzj 24-1( 5 —1 % 3

_|zl| _|Zz| g < — —Zq—l |Zl| —3q |22 s
4q-1 q

_|Zl|5q71 —|Zz|5i < _(iz :iqul |Zl|4q1(5qq— 1j5q1 |22

2
|3q _|Zz|3 < _(%j3|21|2q (3)%|Z2

b

q 4q-1

. - = 591 L (5g=1)e1 s 5g =154 -l
I R R RS e A o M
2 3g-1
e e e el {2
1 1 2 - 1 2 - 2q 1 3q—1 2 ’

where lemma 2.3 has been employed in the last two inequalities since

S5g—1
2q

1.5<

<5¢q -1,

Thus, if the following inequalities
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M
kl(k3_Ml) kl(k3n _Mz) AM s Aoy kl(k3 —4M1)2’
(k3+M1) ’ (k3n+M2) ’ ME
3
ﬂm klz(k3_M31),ﬂ]5 kl,,z(k3n_A51q:), 2'k s 5 39 >
o0 (ke +0)S o (b, =)
min > r > max 20— (2-27)
A klnz(kSn_MZ) A k1k1n(k3n _Mz) Ay 3 1M5 i —,
5q-1 > M7 3 3g-1 4g-1
(kln+M )q (kln_'_j\45)E kln q (k?an_MZ) q
3
/118 w6 5¢-1 2 /119 a)6 5g-1 (kln M4 +2k1M5J
s+ d ) (kM )20 e ,
k12k1nz(k3n _Mz )2
where

1 4g-1
3 3) 1 5g-1Y 5¢g-1 )4
/114 = _](_j 3 ;1’15 1= 1 5
sA16) 3 12¢% )\ 48g—12
3q| Sql 1 3
Sq—l 5qg-1 3 2g+1Y) 3)2(1):
116: 24 ,217:— — —_ ,
g’ \36q-12 4q 1 s\ ¢ M\ie) \2
391 sg-1
P Sq 1) 59-1 [3g-1) 5q-1 )2 q 2
. 48q —12 A 29 \36g-12 4g-1)
, 2g-1
2 _ 3
120:(§j (E)23,/121: 249" —12q ) % [ 364 ’
3)3 5g-1 59 -1

-1

4g-1 Sq-1 5 5
48q> —12q ) ¢ ( 12 Y1) ¢ 8 q 16
Ay = - s Ay = -~ b
5g -1 5¢-1)\¢q 3)\2g+1 3
2
a)6 :mln k (k M )’ _kln (k3n_M2)
4 12¢q

hold then the function V5 is negative definite. Then,

121



~ 1 ’ k 2
V<- 121” [2+5j(k3n —Mz]zqu _k12(k3 _Mllzlrs _21_nq(k3n _M2)|ZI|

5¢g-1

7"| 3 r 5—l
——|z| ==z
2 2
2 2

2

2k |z, |+ ki, (1 + 2]|Zl|24 L 2" ke |2z
+ M, q 9
+(k, + r}z2 |2 + r|zz|4_$
3k, 2 1 3.0
+ M, |Zz| + Zl| |Zz| + 2(k1 + r)z1 ||Zz| + r[4 — ;]|Zl ||Zz| q J

Applying lemma 2.1,

- 2g -1 - 2q 4q-1
|2t] 1|Zz|2 S(E}erq 1 +(4q_1J|22| ¢,

|4q—1

|Zl

2 05) 2¢-05 _ 1 1
[ =z lal" < Slal+ S e
2 2

b

3

2q 3q
| | ,

|Zl |Zz| < g|Zl +l|22
3 3

3
s

il 1 3g—1
ke <L+ (22,

and lemma 2.3

2. 2 1
|z]}z.] < §|Zl|2 +§|Zz

3

b

15 5q-1 sq-1
|z 2" <z ]2

together with lemma 2.2, and the bounds of the Lyapunov function, we have:
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P <o) +[a " +[o.f )- %UZIF‘H N +|Zz|5-3,j
_ 1 3
+M3a)9(|z,|+|zz|2 7 )+M a)lo(|z]|2 el |Zz|3j
3 5 3 sg-1 5q-1 sg-1
=—a)7[ﬂzl|2)4 +Qzl|4q)4 +QZ2|4)4 j—w{ﬂzqu)‘*q +Qzl|2)4q +sz|4)4q j

l l 4q-1 4q9-1
+Mawg[ﬂzllz)2+ﬂzzl“)2 ez o+ e’ )ﬂ

2 % 4q % A\
+Mw, QZ1| ) +QZ1| + Z2| )4

3 5q-1 2; 1
<_&VZ_LV4¢1 + M, (09 y2
B g1 1

T4 3 44 ”152‘11 512
N , 2 - 28)
4q71 3
2 4
+ M, ff A AT
T, 4q T4
where
2
®, = min ky (k3_M1)’ klkln(k3n_M2) 2+l ’1 ,
4 2 q) 2
Sk, (ky, — M
W, :mln{ i (132"q 2), 6> %},
®, = max

\.

2
k,, ik, 2g -1 +k1k1n 2g+1 s 2q oy
q 4q -1 2 q 4q -1
@®,, = max 4(k1+r), ki%+r 4—l 1 l+kl+m+r 4—l E
3 qg 3 3q 3q 3 g\ 3q

123




Remark 2.24. Note that the nonlinear inequalities (2 - 24) and (2 - 27) is feasible with respect
to ki, kin, ks, ks, for any My >0, M, > 0, M4 > 0, and Ms > 0. As such an » > 0 always exists
for sufficiently large ki, ki, ks, k3,. In particular, consider the case where My = Ms = 0,
inequalities (2 - 27) can be easily satisfied for any k3 > M) and k3, > M,. This coincides with

the conditions obtained through the weak Lyapunov function, i.e. the energy function

zZ, |2q (similar to that observed when p > 0).

E(zl,zz):%zzz +£|Zl|+ bi

Remark 2.25. Hence, when M3 = Mg = 0, it is not difficult to show that the system achieved
finite time convergence for ¢ > 1. In particular for the case of ¢ > 1, following similar

arguments in section 2.2.4(a), finite convergence time independent of initial conditions for g >

1,
5 05(4-1) 0.5(¢-1)
q-1 _ 5¢-1 q-0.5 B 3 7-05
37, 4 4q [N T4
Ttotal - g-1
oy \q-1)| s @
3 7T, 4q
0.5¢
_ 0.5¢g
3 Ll 5¢-1 q-0.5 m
Az | 3% 7T 4
7T 4 T, 44 0)7
+ 3
w 0] = —
7 8
T4

and when M3 # 0 or M # 0, from (2 - 28),
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1
3 5¢-1 1 1 5
-~ 1| @ = o =1 - 22w
VS—E e p— vi—vr | Lt - M, =
— — 5q-1 e —
T4 34 7 g T4 7,2
1
4q-1 1 4
| 1 w - 2 w
. 49 | 8 V4 M 9
3] ¢ s . 4a-1
34 771 4q T, 44
1
3 2q-1 ”n
=11 w o 3tw
_V4 5 - 8 V 4q _M6 310
- 5¢-1 2
3 q 771 4q z14
3 5¢g-1
1| o -1 10) T
S—— 73 V4__ 1 : V ! s
2\ 73 o = !
1 3% T, 4q
ER
T4 | 22w,
2M, " - ,
X 1
T2
for V =max 4q
1 4 1
‘i‘; -1 = ‘i‘; -1 1 2q-1
4 7 i q 17 4
37 3% 7w 4 | 2V @, I 3% 7w e | 3wy,
3 Z > 6
Wy 2a2 g 3
Ty 44 T4

thus, uniform ultimate boundedness is implied from lemma 2.6.

Remark 2.26. Note that even in the case of M3 = Mg = 0, the system is able to be exactly
robust with respect to persistent perturbations in d, with an upper bound of M,. This

interesting feature is possible due to the discontinuous nature of the algorithm when p = 0.5.

Remark 2.27. It is worth mentioning that the system presented here is able to achieve the same

type of convergence and robustness properties as the one in [17], in which a second order
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system also based on the super-twisting algorithm is studied. Of significance is in [17], an

additional term in the Z, dynamics that has an exponent value p + ¢ + 1, which satisfy
2p—-1<p+q+1<2g-1, for 0.5 <p <1, and ¢ > 1. The function of this additional term is

not clearly stated there, besides that of a notational simplification in the stability analysis.
Indeed if that is the case, then it is clearly not needed in our development, lemma 2.3 is
available in our development. In addition, there, it requires two different Lyapunov function
structure in order to extract different stability properties of the system. In particular, for
ascertaining the finite time property, their strict Lyapunov function exhibit singularity in its
time derivative, due to the non Lipschitzness of the said Lyapunov function. This is not
desirable, as mentioned in [141], if such a system is to be applied for further applications. On
the other hand, the results presented here do not have such a problem as the proposed strict

Lyapunov function is locally Lipschitz.

2.6 Generic second order algorithm

Due to the similarities of their mechanical energy function in forming the respective strict
Lyapunov function for twisting and super-twisting based algorithms, in this section, a generic
second order algorithm, which consists of linear sum of the generic twisting algorithm (2 - 11)
and generic super-twisting algorithm (2 - 23), is presented. Leveraging the results of previous
sections, a strict and locally-Lipschitz is presented for the algorithm to study its stability and

robustness properties.
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2.6.1 System description

Consider the following generic second order algorithm dynamics:

z |q sign(z1 )+ z,+d,,

21 = _k3|Zl |pSign(Zl )_k3n
) (2 -29)
22|% Sign(z2 )+ d,

2=k |z sign(z, )~k |2 sign(z, )~ klz,| # sign(z, ),

where z), z; € R are the scalar state variables, ki, kin, k2, kon, k3, k3, are positive constants, 0.5
<p<1,and 1 < ¢q. While d; and d, are time-varying and/or nonlinear terms of uncertainty

bounded by:
)| <Mi[z|" + Mz, [" + M, and

2p-1 2g-1

1 1
| < M|z, |77+ M|z |+ M|z, + M|z, |+ My,

with |d1| = supﬂ5| .0 e K[d, ]}, and |d2| = sup{jé] :5eK[d, ]},

where M1 >0, M, >0, M5>0, My, >0, Ms >0, Mg >0, M; >0, and Mg > 0 with the same
p and g as that in (2 - 29). Note that for the case of p = 0.5, the algorithm contains

discontinuity and the uncertainty is upper bounded by nonvanishing constant.

2.6.2 Stability analysis

The following Lyapunov function is proposed for the system (2 - 29),

2
2q
z)|

V(szz ): [%Zzz +2k_lp|zl|2p +%
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Remark 2.28. The system (2 - 29) can be viewed as the combination of the generic twisting
algorithm and the generic super-twisting algorithm considered in section 2.2.2 and 2.2.4
respectively. Observed that the structure of Lyapunov functions proposed in the previous
sections are motivated by the mechanical energy of the system [66], which by itself is a weak
Lyapunov function, i.e. only negative semidefinite can be attained in its time derivative taken
along the solutions of the system. To ensure negative definiteness, a cross term, that contains
both state variables, is added accordingly. In particular, for the case of twisting based
algorithm (Section 2.2.1 and 2.2.2), the cross term can only have a z, with unity exponent, in
order to obtain a negative definite z; term in the time derivative of the Lyapunov function.
While the exponent of the z; part of the cross term, it is selected as to maintain the
homogeneity of the energy function. However, in using the original energy function, the
resulting cross term is non-Lipschitz in order to maintain homogeneity of the function. Hence,
to overcome it, the energy function is simply squared, consequently a locally Lipschitz and
strict Lyapunov function is produced. The same arguments applied to super-twisting based
algorithm as well. Of interest, is that both twisting and super-twisting based algorithm
embodies the same mechanical energy term, moreover in this section, the algorithm (2 - 29)
has the same energy function as well. As will be shown in the following development, the
energy function is complete by itself without the need for cross term, to generate a negative

definite time derivative.

Note that the Lyapunov function, V" can be lower and upper bounded by
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22 (e +al el | <V(z)< 72 (af +[al +|af ]

k k
‘Vlrlere 771 = max l,ﬂ’i )andzl :mln l’ﬂjl
2°2p  2¢ 2 2p 2q

Thus, V is positive definite and radially unbounded. Since (2 - 29) is a differential equation
that has discontinuous right-hand side, i.e. when p = 0.5 and since no continuity assumption is
made on both d; and d, its solution are understood in the sense of Filippov (see definition

2.1). According to lemma 2.4, the time derivative of non-smooth Lyapunov function exists

almost everywhere,

Ly EPa0)= )gTKH(Z,t),

EedV (z(1).t Z,

In accordance to the analysis performed in previous sections, the case of p > 0.5 and p = 0.5

are analyzed separately, due to discontinuity of the controller (2 - 29) when p = 0.5.

a) Case 1: For 0.5 <p <1, and 1l <q

Note that for p > 0.5, V'is continuously differentiable, hence

EeoV (z(t).t Z,

V(z,z)= N )ngr } :VVTKFI}
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c—kk |Zl|3pfl|zz|2 —k, k3n

3g-1 2
| |Zz| —kiks, |z

k,

-1
2q+p-1 2p —_—
k| | | 2| __k |Zl| |Zz| ——ky,

2p+q-1 2
TR

Z;

2p —
Zl| |Zz|

kln k 2q et kln k 2q 31
- 2|Zl| |Z2| - 2 Zl| |Zz| 7
q q

—kk, k( +—j| |3f’”q1—k1k1nk3n[l+lj|zl|2””‘f1
P 9 P 4

k apig—1 k _
1 p+q-1 n 4q+p-1
_;klkSn Zl| - p klnk3|Zl|
k sp-1 k spl 3971
1 P In 5¢-1
__k1k3|Z1| - ky, ks, Zl| —k |Zz| k,, Zz|
p q

2

- ) k, )
k1|21|2p1|22|2s1gn( )+7|21| 51gn( )

klkln Zl |2p+2q—1 Sign(zl )

+K[d,] + "z, | sign(z,)

+ sign(zl)

klkln Zl |2q+2p—1 Sign(z1 )+ ﬁ Zl |4q—l

kln

2q
Zil 2,
q

+K[a’2(zz3 -i-ﬁ|zl|2pz2 +
p

After rearrangement:
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3g-1 2
|Zz|

(S V0 N P L O S V3 BN
_kl(k3n _M2)|Zl|2p+qil|zz|2 _kln(k3 _‘]\4)1|Zl|p+2qil|22|2

_ﬁ(kz _M")Zl|2p|22|3ii _ﬁ(kzn _M7)21|2p|22|37$
P p
k k

2q 3_i
In (kz_MGXZI| |ZZ| p —

1n 2q 3_1
q (k2n_M7le| |Zz| q

_Q

— k] kln (l + l](/% - M1 ]Zl |2q+3p—1 _ k] kln {l n l](kSn _ M2 MZI |3q+2p—1
P4 p 4

2 5 5
kl kln p+dg-1 kl

_?(an _]\12]Z1|4pﬂr1 _7(1‘% _M1]Z1| _E(lﬁ _]‘41)21|5p71
k,’ G (k,-M b (ky, -M R
— 21n (k3n _lezqu 1 _( 2 : 6)|Zz|5 » _( 2n . 7)|Zz|5 ¢4V
2 2
k;|21|4p71 +k1—" zl|4‘]71 + lcl|zl|2!771|22|2 +k, Zl|2(]71|22|2
+ M,
+kk,, (l+lj|zl 2p2a]
2
+ My |Zz|3 Jrﬁ|zl|2p|22|jL k(l; Zl|2q|ZZ|J
where
.k Gk 0 (k,-M 1
4 :_Z(lﬁ _M1121|5p ] _21_’;](](3;1 _M2)21|5q l _( 2 > 6)|Zz|5 P
e R L i A TR T RO A Y e
p

A VR F ™

Applying lemma 2.1,

2p-] 3p

_|Zl|5p—l _|ZZ|5‘% < _(SP__IJSP—I |Zl|2p_l [Sp——lJSp—l |ZZ

2p-1 3p

3
s
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4p-1 P

L 5 5p-1 5 1 \5p-1
|Zl|5p -1 _| 2|5 B <_(4§_1j pP= | |4[7 1( pp J P |Zz

b

2471 3q.
L 5g —1 )5¢-! 2 5g—1 541
LM O MG o
4g-1
3q-1 5 5q—1 ﬁ ag-1{ 5q =1 i
_|Zl| |Zz| ¢S m |Zl| T |Zza
_| ]|5p—1 _|Z1|5q 1 |Zz|5—; <_| |2p+2q 1)[ e j |Zz|5_%

b

4p P
— S5p-1 20— — 5p-1
S—(Sp IJ P |Z]|(2p 2q l)(sp lj p |Z2
4p-1 p

where lemma 2.3 has been employed in the last inequality since

5p—1£@p+2q—1{5p_1j£5q—L
4p -1

Thus, if the following inequalities
-1 3p
Ak, 5p 1(k -M )5p 1(k2 —Mﬁ)Spfl,
A, k5p 1(k -M )sp ;(k —Mé)#,
2q-1 3q
nml%hﬁ?ﬂhnﬁMﬁij@h—Aﬁﬁﬁh > max{M,, M, | (2 -30)
3g-1 4q-1
l4klnﬁ(k3n -M )m (an -M; )Sq‘l )

4p1
X{Llesi 1(k -M )Spl
Pk, +qk

where
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ﬂ’l

2p-1 3p 4p-1 P
Sp—1 pri(5p—1)3r-! Sp—-1 prif5p—1)51
2 Jﬂ’zzp 2 >
12p~—6p 18p 24p-—6p 6p
2q-1 3q 4q-1 q
Sg—1 % 5¢—1 )5 Sg—1 [ 5g—1)5¢1!
A= 2 g Ay =q qz— - )
12~ —6q 12¢q 24q° —6q 4q

4p-l _r_
A = 5p—1)ri(5p-1 5p71’a)1:min klz(k3—Ml)’kln2(k3n—M2)
4p-1 6p 6p 6q

hold then the function V is negative definite. Then,

~ ) i ) )
VS_E(k’j._Mllzlrp1_21_nq(k3n_M2M21|5q1
_kz_TAm|ZZ|Sp _(kz%]\mkzri
2 2
£|Zl|4p—l 4 kln Zl|4q—1 n k]|Z]|2p—l|Zz|2
+ M, p q .
+k,, Zl|2q—1|22|2 4 klkln(—Jf _J|Zl 2p+2q-1
P 4q
+M8 |ZZ|3 +£|Zl|2p|zz|+k1n Zl|2‘1|22|j
p q

Applying lemma 2.1,

_ 2p—1 - 2

- 2qg -1 - 2 4q-1
|z]|2q 1|Zz|2 g(mjhrq 1 +(4qq—1j|22| a,

2g+2p1 _ 1y qag1 1, apa
21| <SSl
2 2

2 1
2 (5 el +(3)-

4p-1
p

b

3

b
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3

M

2 1
<2l +(3)-

and lemma 2.3,

5p-1 5q-1 5q-4 5p-1 5¢-1 sp-L2
A R A I =1

—|z1 r, —|z

since 5p—1£5q—1S5q—1, and 5p—1£5p—££5q—1,
P q

together with lemma 2.2, and the bounds of the Lyapunov function, we have:

V<o, (|Zl|5p_1 + |Zl|5q_% + |Zz|5_’]’j — o, (|Zl|5q_] + a)1|zl|5”_§ + |zz|5_;J

+M3a)4(|zl|4p_l +z, % +|zl|4q_1 +|z,| o j+M8wSQZ1|3P +|z,|3q +|Zz|3)
Lot RCIE] ot
oo e
Sq-1 Sq-1 Sq-1
ol o e
41 4t 4q1 4a1
+M3a)4[qZ1|2”)2P +sz|2)21’ +qzl|2q)2‘f +Q22|2)2qJ

Sp-1 @ 5q-1 4p-1
[0) 4, 44 [0 T
< - 2 v : VoM |
3p-1 3g-1 3 4p-1
Syl YRl T 2y
3 ? 72-1 2p 3 gl 1 2q -1 p
4q-1 3
w . I
4 4q 5 4
M i VM|
Ty 24 7,2
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a)zzmin{klz(k3_M1) @ (kZ_Mé)}’ a)3=min{k1"2(k3” _Mz) a) (k2n_M7)}’

6p s Wis 2 6q > 1°

2
k;+k1(2p—_lj+klﬁ[l+lj],
p 4p-1 2 \p ¢
2
kln +k1n 2q—1 +klk1n l+l , k1 2p ’kln 2q
q 4q -1 2 \p ¢ 4p-1 4q -1

2k, 2k, k. k,
@; =maxy —, ——, | |+ —+—"
3p 3q 3p 3¢

@, = max

Remark 2.29. Note that the nonlinear inequalities (2 - 30) is feasible with respect to ki, ki, , k2,
kon , k3, k3, for any My >0, My >0, My > 0, M5 >0, Mg >0, and M7 > 0. If My =Ms =0, (2 -
30) is satisfied for any ky > Mg, koy > M7, ks > M\, ks, > M, and any k; > 0, ky, > 0. This
coincides with the conditions obtained through energy function for the generic twisting and

generic super-twisting algorithm studied in the previous sections.

Remark 2.30. Hence, when M3 = Mg = 0, i.e. without persistent perturbations, from lemma

2.5-3,

I. For 0 <p <1, and ¢ > lthe system exhibit uniform asymptotical convergence,

where

is the time at which the trajectories reach the surface level V= . At the same time,
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the system (2 - 29) will have finite time convergence, in particular after reaching

the surface level V=g, from lemma 2.5-3, the settling time estimate,

-1
3l 5,

2p = -
()< 32 72 (14}7 J[ﬂw’

@, -pP

where the initial starting states is changed to V= . Hence, the total time to reach

the origin can be estimated as

3g-1 3p-1
Sl p

3% 7,2 | 4
]-;Otal(ll'l): — ( 9 j

, qg-1

The minimum of this function can be found at

4prq 4pq
A sg-1 a4 q-p

37 7w

Substituting into the function, a finite settling time independent of initial conditions

1S obtained,

%  Sg1 g-p % sp-1 | 4P
377 2 4q o, 37 7w
T;()tal - 3g-1
@, q- = 51 10}
29 = 2
3771 2
q(1-p) q(1-p)
32p—l spi 312]—1 5g-1 q-p q-p
+3”7712p 4p 3 7 2 ,
3p-1
w, I-p @y S s
377 7o

2. For0<p<1,andgq=1, finite time convergence can be concluded.
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3. Forp=1,and g > 1, exponential convergence can be concluded.

The above results are possible due to the negative definiteness of the time derivative of the

Lyapunov function, i.e. strict Lyapunov function.

Remark 2.31. While if persistent perturbations occur on the system, M3 # 0 and/or Mg # 0,

from (2 - 31),

2 2 -
377 7w 377 2

4p-1

T, 2p =
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< _l 0)2 V 4p w} V 4q
- L 3q-1 4 ’
2 = 2 —
37 7w 377 2
4 4
% S5p-1 ? q-1
P =5 q = 5
M 37 7w W, 37 377, 2 @,
3 W 4p-1 > 3 W 4q-1 ’
: T, 2p : 7y 24
for V' > max 4q
% 5q-1 2q-1
377 2 [0
1 5
3M, - 3
’ 7,2

uniform ultimate boundedness is concluded by using lemma 2.6.

b) Case 2: Forp =0.5, and 1 <q

For p = 0.5, V' is not differentiable on z; = 0, hence

17(21722)2 N )GZTK{%}CIZ‘FIZ

geov (z(0)t Z,

where
F= 0 Kz = 0 K|
b ceor (e PEEET T con(aon) d, ’
_k3|zl|0'5Sign(Zl)_k3n Zl|qSign(Zl)+ Zy
K[f](zpzz)e 2g-1 . E .
_kISGN(Zl)_kln Zl| Slgn(zl)_kszN(Zz)_k2n|Zz| 7 Slgn(Zz)
where
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-1 x<0
SGN(x)={[-1,1] x=0

1 x>0
ov [GV}
B _ oz, oz,
oV =K[VV]=K| 5} |= o
— | |K
0z, oz,

Vz, #0,z, eR:
(222 T2k |z, |+ K |zllz”]( , " Kign(z,)
q
— (222 + 2k, |Zl| + %|Zl |2q J(z2)

Vz, =0,z, e R:

2,2k -1, 1]}

B

3
Z;

Let us define:

oV oV oV
‘—‘ = sup{|§1| & € K{@zl }} and ‘822 = sup{|§2| & e K{@zz },

,|2q+k

2

2P+ 2kik |+ R
q

with |— or

b

4q-1
|

< k|l + 2k, 7z, |+ ik
q

ln
1

1n

2q
z,||z,]-

S|22|3 +2k1|zl||zz| +

Thus, the term
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172 = N é:lK[dl]+§2K[d2]
(&.6) eov (z().t)

Jor

Oz,

oV
[+ £|d2|

I P LA

1n

2¢g-1
|

|ZZ|2
< (M2 + b))+

2
2q k
z|" + 2z

+ 2k k,,

4q-1
|

. (M M M M, j@er w2k [+

k 2q
A"
q

|()

where M be defined as, M =M, + M, since for p = 0.5,

d|<M|z," + M,|z|" + M, and

1
2¢-1 2—
dy| S M, + M|z, | + Mg+ M,|z,|  + M, .
Computing 7, for each case, we have
Forz; 20,2z, #0:

~ 0.5 2 q 2 2¢-0.5
V1__k1k3|21| |Zz| _k1k3n|Zl| |Zz| _klnk3|zl| |Z

k
— 2k, |z, 2, —fk2|zl|2q|zz| —2kk,,

"~k k

In""3n

24 3g-1
z)["|z,| ¢

3g-1 2
A

2 Z)

3g-1
ALY
Z1)\22| ¢ 2

—2k’k,,

2
Zl|1+q _ klklnk3 [2 n $]|Zl |2q+0.5 _ klklnk3n (2 i éjpl |3q _ klnqk3 |Z1 |4qfO.5

5g-1

2
|1‘5 _ kln k3n

5¢q-1
q

—2k’k; 2,

3
Zl| _k2|22| —k,,

z,|
Forz;=0,2z,#0:

Let (fzklzzz, 223 )Twith & € [-1, 1] be an arbitrary element of 0V(zy, z;), then
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2,

T - 2 & k2, 2¢-1
° K[f]( ; 2) [ z, } {_[_19 I]kl_k Sign(z2) 2n 22| / 51gn(zz)

-
= [552 -1, +1]](122 -k |Zz| ks,

22|

hence

5¢-1
z,| ¢

29-1 3
Zz| q =_k2|22| ks,

171 = [étz -1, &, 7L1:|1(1223 _kz|22|3 —k,,

fze[*L 1]

Forz; #0,2,=0:

|I+q ok, (21J|Zl|2q+o.5 ik k. (2+1J|Zl|3q kln k3 | |4q 0.5
q q q

I71 = _2k12k3n Z

_2k12k3|21|1<5 ky, ks, k 1|5q—l
q
FOI'Z]ZO,ZZZOI 171 =0.
Thus, for all (z1, ) eR*:
IZ =—kk |Zl|0A5|Zz|2 —kks, Z1|q|Zz|2 —ky,k |Zl|2q70.5|22| —ky, ks, Zl|3q71|22|2
— 2k k, |z, |z,| - ; ky |z, |2, | - 2k K, Zl||zz| LTy |2q|22| q

2
’ 3n Zl e - klklnk3 [2 + l]|Zl|2q+05 — klklnk3 (2 =+ j| |3q k In k3 |Zl|44*0-5
q p .

2
|1'5 kln k3n

) 5q-1 3q-1
— 2k, ks |z, 2" —k|zs| —k|2,| @

Hence, the generalized time derivative of the Lyapunov function, after rearrangement:
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3g-1

—k, k -M )Z1| |Zz kln(ksn _M2]Z1| |Zz|2 _kl(k3n _]\42)|Zl|q|zz|2

1
_km(k -M ]Zl 24703 |2 —2k1(k2 —M}zl||22|—2k1(k2n —M7]ZI||22|3 q

(e =M e —%(kz,, OGN T ER R S

klzfl,, (2 éj(ksn -M 121 - 2k, (kSn _lez1|q+l

2 2
- ut (k3 _M1)Z1|4q—0.5 _2k12(k3 _]\41121“5 - kzlzl (k3n M 1Z1|5{]71
- (kz ;M)|zz|3 _ (k2n ;M7)|22|5_; +V2
2 2 l 2q 2q -1 kan 4q-1
+M3[k1|zz| + 2k, |Zl|+k1kl"(g+2j|zl| |z | + z,| j

Mg(|22|3 + 2k, |Z1 ||Zz| + —ln

k 2q
) |zz|j
q

where

2
v, :_%£2+$](k3n _M2)21|3q _kzl_nq(ksn _Mz)|zl|5(r1 _(ICZ%M)PZFI

k, —M
_(2—)|Zz|3 +M5|Zl|

2q-1 4q-1

k
|Zz|3 +2k1M5|Zl|2q|Zz|+ﬁM5|zl| |Zz|

Applying lemma 2.1,

= 7
_|Zl|5ql |Zz|5:,<_(§‘]—1 5q]|21|2q1(? 5q71|Z23’
7" q
4q-1
o 5_i 5 -1 % ag-1{ 5q —1 é
Rl n) BT R
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2
3\ 1
_|Zl|3q _|Zz|3 S_(Ej |Zl|2q(3)3|zz

b

Thus, if the following inequalities

4q9-2 2g-1 3q
/16k1 Sg-1 ks _Mz)m(kzn M7)ﬁ7
3g-1 4g-1 q
min ﬂ7k1nﬁ(k3n _MZ )ﬁ (an _M7 )ﬁ’
2
k 3 2
2’8 lnl (k3n Mz )3 (kz _M)3
k3

where

3 4q-1

> M,

29-1 3q 4q-1 4
5g—1 |31 5g—1 %! 5g—1 | 5q—1 )51
As = <2 _ 40 | A= .
q° —4q 12¢q 16g° —4q 4q

W | =

2
3
A= ( 1Y3)[6g+3)
2 N2 4q
hold then the function V5 is negative definite. Then,

V<—2k](ky - M, )z, | —%(ml}(kh — M, )z - (k, - M)
q 2

ky,” G (kM) st

- 21; (k3n _M2M21|5q 1 _( 2n—2 7)|ZZ|5 q

+M3{k1|22|2 +2k12|zl|+k1k1n(l+2J|Zl|241 +k1n
q

k

In

2g-1) |2
|z +

+M8(|zz|3 + 2k |z ]+

2q

n

Zl| |Zz|j
q

Applying lemma 2.1,
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- 2g -1 _ 2q 4971

4g-1

1 1
S§|Zl|+§|zl| 5

2q 0.5 2g-0.5
|Zl| = |Zl| |Zl|

2\ 2 (1

alials (3 e +[3 )l
2 1

e < 2 +(3 )

and lemma 2.3,

5

M

_|Z]|1'5 _|zl|5q_l < —|z]|5;17;1 since 1.5< 5(]2—1 <5¢ -1,
q

together with lemma 2.2, and the bounds of the Lyapunov function, we have:
= q L5 3q 3) 5¢-1 a1 5L
V< - zl| +|Zl| +|zz| -, |zl| +|zl|2q +|zz| q
2 4g-1 4q-1 3 3q 3
+ M, |zl|+|zz| +|zl| +|zz| ¢ |+Mgo, |zl|2 +|zl| +|zz|
5¢g-1

sq-1 : 5q-1

- _w6(|21|]'5 +Qzl|2q )1'5 +q22|2)1'5)—a){ﬂzl|2q) 2 +|Zl|5;]Tl +Qz2|2) K J
41 4g-1 ; : ;
Jr]v[sw{|zl|+|22|2 +Q21|2q) 2q +Q22|2) . J+M8w{|zl|2 +Qzl|2q)2 +sz|2)2]
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where

W = min{klz(lﬁ -M, )a klkl”(k;n _MZ)[2+1} —(k2 _M)}:

2
CO7 = min{%(k% _MZ )9 min{klz(k3 _Ml ), k41-n (k3n —M2 )}’ (kzn _M7 )}’

q q 2
2k’ +%(1+2D, k,,
2 \¢g
@y = max , ,
— k
ﬂ l+2 +k1n M _|_1_”’k1n 2—q
2 \gq 4qg -1 q 4q -1
4k, \ 2k, 2k, k,,
Wy, =maxs| — |, —, | 1+ —+—
3 3q 3 3¢

Remark 2.32. Note that the nonlinear inequalities (2 - 32) is feasible with respect to &y, ki, k2,
kon, and k3, for any M > 0, M, > 0, Ms > 0 and M7 > 0. In particular, consider the case where
Ms = 0, inequalities (2 - 32) can be easily satisfied for any k, > M, ky, > M7, ks, > M, and any

ki >0, k,>0.

Remark 2.33. Hence, when M3 = Mg = 0, together with ks > M, it is not difficult to show that
the system achieved finite time convergence for g > 1. In particular for the case of ¢ > 1,
following similar arguments in section 2.6.1, finite convergence time independent of initial

conditions can be found to be,
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% 51 q-0.5 0515 0.5(¢-1
3% 7 | 4q o, 3Vm, 0
7-vtotal - 3g-1
w qg-1 5¢-1 )
7 3 2 = —— 6
Ty 29
0.5¢
29-1 5 \q-05 0.5¢
_15 — -
N ) S 0, |
05— 15
@y @, 37,

37 2 N
M @ 1 ) 2 @ 2ol @
Vo= ’ Ve-M S |-V+4] = ’ Vi — M| —
3g-1 3 4q-1 3g-1 8 3
3 ) 5q-1 5 3 oS-l 5
3q7712q T, 24 3qﬂ.]2q T,
5¢q-1
< _l Wy ya _l @, 4
05 —15 31 >
2( 3™ 7, _ Sq-l
377 2
4
o5 — 15 4 —3;171 5q-1
3T ) 3% 72 0)
2M, L Rty , | 3M, L 43_1 >,
Wy T @, T, 2
for V > max .
312]—1 g1 2g-1
3% 1 2¢q ),
1 9
3M, - 3
! T2

uniform ultimate boundedness is implied from lemma 2.6.

Remark 2.34. Note that even in the case of M3 = Mg = 0, the system is able to be exactly
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robust with respect to persistent perturbations with an upper bound of M. This interesting

feature is possible due to the discontinuous nature of the algorithm when p =0.5.

2.7 Numerical Simulations

In this section, numerical simulations pertaining to the algorithms discussed in the previous
sections are presented. The simulation setups for each algorithm are described. Discussion

and analysis of the results are presented accordingly.

2.7.1 Simulation Setup

1) Twisting based algorithm: Recall from (2 - 6), the dynamics of the algorithm are,

0 b 2b
2 ith |dl < '
Z :_k1|Zl|bSign(Zl)_k2|zz|l+b sign(z,)+d, with [d] < M, [z|" + M|z, 10 + M,

2b
The parameter values of the dynamics are k, =1, k, =2, and d = |22|m sign(z1 ).sin(t). The

simulations are performed for three different values of b= {0.6, 0.7, 1.2}. The initial
conditions are z,(0)=-2 and z,(0)=—2. Note that the disturbance satisfy the upper bound
of the system description of section 2.2 with M, =M, =0,and M, =1. The type of

disturbance chosen here is typical in the literature (see [18], [37], [38], [46]). The specific
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nature of the disturbance is selected to show that past results on this algorithm are
conservative. Similarly, the values of b are to demonstrate that the present results are less
conservative.

Then, the another set of parameter values, b=0,k, =4, k, =2, and d =1, is performed to

show the exact robustness property of the algorithm under persistent disturbance.

2) Super-twisting based algorithm: Recall from (2 - 17), the dynamics of the algorithm are,

s 2
Z = k3|Zl| sign(z, )+ 2, +d,, with |d1|£M1|Zl|p + M, and |d2|SM3|21|2p_1 M,

Z, = _k1|Zl |2p_1 Sign(zl )+ d,

The parameter values of the dynamics are k, =2, k, =0.3, and d, =|z,|"sign(z, ).sin(z).
The simulations are performed for three different values of p=1{0.5,0.7,1.2}. The initial
conditions are z, (0) =-2 and z, (O) = —2. Note that the disturbances satisfy the upper bound
of the system description of section 2.4 with M, =M, =M, =0, and M, =1. The type of
disturbance chosen here is typical in the literature (see [26], [27], [68]). The disturbance and
values of p are selected as such to show the conservativeness of previous results.

Another simulation is performed with the parameter values of &, =1, k&, =1, and d = 0 with

p = 0.5 for the unperturbed case.

3) Generic super-twisting based algorithm: Recall from (2 - 23), the dynamics of the

algorithm are,
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Z) =—k3|Zl|pSign(Zl)—k3n Zl|qsign(zl)+zz +d,, with |d1| SM1|Zl|p +M2|Zl|q M,

zl|2q_1sign(zl)+ d, |d2| < M4|Zl|2p_1 —i—M5|Zl|zq_1 +M6'

z, =—k, |Zl |2p_l Sign(zl )_ ki,

1 1
The parameter values of the dynamics are &k, =k, =4, k; =k, =2, p= T2 and g = 04

under perturbations d, = sign(z, ).sin(t)([zf +|zl|q) and d, =sign(z, ).Sin(t)021|2p_l +|zl|2q_l)

. The simulations are performed with three different values of initial conditions

(2,(0),2,(0)) = {(~ 0.1,=0.1), (= 1,— 1),(~10,~10)}. Note that the disturbances satisfy the upper
bound of the system description of section 2.5 with
M, =M,=1M,=0M,=M,=1, and M;=0. The type of disturbances chosen are
typical in the literature (see [46], [17]). The three different initial conditions, each being an

order of magnitude greater than the previous one, are selected as such to show the uniform

finite-time capabilities of the algorithm.

4) Generic twisting based algorithm: Recall from (2 - 11), the dynamics of the algorithm
are,

Z, = Z,,

[

1 1
: sign(zl )— k, |z2 |2_; sign(z2 ) —k,, |22|2_3 sign(z2 ) +d

Z, = _k1|Zl|2p_1 sign(z] )_kln

Z

2q-1

with |d| <M,z [ + Moo 4 M|z o+ M=+ M,

The parameter values of the dynamics are k, =k, =4,k, =k, =2,p=—, and g =—
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1 1
under perturbations  d = sign(z, ).sin(t).Qzlrpfl + |zl|2q71)+ sign(z, ).sin(t).[|zz|2p +|zz|2qj.

The simulation is performed with the initial conditions (z, (0), z, (O))= (=3, =3). Note that the

disturbances satisfy the upper bound of the system description of section 2.3 with

M, =M,=1,M,=M, =1, and M, =0. The type of disturbances chosen is based on the

sum of disturbances considered in twisting-based simulations that are of different exponent.

5) Generic second-order based algorithm: Recall from (2 - 29), the dynamics of the

algorithm are,

z = _k3|Zl|pSign(Zl)_k3n Zl|qSign(Zl )+Zz +d,,

|2p 2g-1

z, |T Sign(z2 )+ d,

[

151gn(zl)—k2|zz| 2 51gn(zz)—k2n

Z,= _k1|21 7ISign(Zl)_k1n Z
with
|d1| SM1|Zl|p +M2|Zl|q + M, and

2¢g-1

) <Mz M P Mz M e+

The parameter values of the dynamics are

1 1
ky=k, =k =k, =4k =k, =2,p=—,and g=—
1 In 2 2n 3 3n p 14 q 04

under perturbations d, =sign(zz).sin(t)021|p +|zl|q) and d, = sign(z, ).sin(t)([zl|2”_1 +|zl|2q_1)
+sign(z, ).Sin(t).(|zz|2_jv +|zz|2_<11j. The simulation is performed with the initial conditions of
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(2,(0),2,(0))= (=3,-3). Note that the disturbances satisfy the upper bound of the system

description of section 2.6 with M} =M, =1, M3 =0, My = Ms = Ms= M =1, and Mg = 0. The
type of disturbances chosen is based on the sum of disturbances considered in generic super-

twisting and generic twisting-based simulations that are of different exponent.
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2.7.2 Results and Discussions

For better visualization of the plots, some figures are shown in two windows; each with

different time intervals.

0s ‘ ! ‘ , 0.03 : : :
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i s i i 0005 i R i |
0 2 4 53 g 10 10 12 14 16 18 20
Window 1,1=[0,10) = Window 2,1=[10,20] =

(a) State z; for time ¢ = [0, 10) s. (b) State z; for time =10, 20] s.

1
16 10 20

(=]}
ra
.
m
=z}
=
=
]
=

Window 1, 1= [0 100 s Window 2,1=[10 20] s
(c) State z; for time ¢ = [0, 10) s. (d) State z, for time ¢t =[10, 20] s.

Figure 2.1 Twisting based algorithm. States of (2 - 6) with k, =1, k, =2, and three different
values of b ={0.6, 0.7, 1.2}.
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Window 1,t= [0, 10) 5 Window 2, 1= 10, 20] 5
(a) Disturbance, d for time ¢ = [0, 10) s. (b) Disturbance d for time ¢ =[10, 20] s.

2b
Figure 2.2 Twisting based algorithm. Disturbance d =|z,|+tsign(z, ).sin(¢) for

b=1{0.6,0.7,1.2}.
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i i L
2 4 B g 10
tima (s) time (s)

(a) State z; for time = [0, 10] s. (b) State z, for time ¢ = [0, 10] s.

Figure 2.3 Twisting based algorithm. States of (2 - 6) for » = 0 with k, =4, and k, =2 under

persistent disturbance d = 1.

153



05 . . . :

z1

i
20
tirme ()

(a) State z; for time ¢ = [0, 40] s.
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(c) State z; for time ¢ = [0, 40] s.
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(b) State z; for time r=[10, 20] s.
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(d) State z, for time ¢t =[10, 20] s.

Figure 2.4 Super-twisting based algorithm. States of (2 - 17) with &, =2, &k, =0.3,and three

different values of p = {0.5, 0.7,1.2}.
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(a) Disturbance d; for time 7 = [0, 40] s. (b) Disturbance d, for time ¢t =[10, 20] s.

Figure 2.5 Super-twisting based algorithm. Disturbance d, =|z,|"sign(z, ).sin(¢) for

p=1{0.5,07,12}.
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u] 2 4 <1 3 10 [u} 2 4 5 3 10
time (s) tirne (5]

(a) State z; for time ¢ = [0, 10] s. (b) State z, for time ¢ = [0, 10] s.

Figure 2.6 Super-twisting based algorithm. States of (2 - 17) for p = 0.5 with &k, =1 and £, =1

without perturbation.
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(d) State z; for time ¢ =[5, 10] s.

Figure 2.7 Generic super-twisting based algorithm. States of (2 - 23) with

k, =k, =4, and k; = k;, =2 under three values of initial conditions,

(2,(0),2,(0)) = {(- 0.1,- 0.1), (- 1,- 1), (- 10,~ 10)}.
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(a) Disturbance d; for time 7= [0, 10] s. (b) Disturbance d, for time = [0, 10] s.

Figure 2.8 Generic super-twisting based algorithm. Disturbance
d, =sign(z, ).sin(z‘)(]zI | +]z, |q) and d, =sign(z, ).sin(t)([zlf”_l +|z]|2q_1) for three different

values of initial conditions, (z,(0),z,(0))={(-0.1,-0.1),(=1,—1),(= 10,~ 10)}.
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(c) Disturbance d for time ¢ = [0, 10] s.

R
141" 0

Figure 2.9 Generic twisting based algorithm. States of (2 - 11) with p =

k, =k, =4, andk, = k,, =2 under the disturbance,

1n

d =sign(z, ).sin(t).Qzlrpfl + |zl|2qf1 )+ sign(z, ).sin(t).(|zz|2; +|22|2c17j .
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Figure 2.10 Generic second order based algorithm. States of (2 - 29) with p = a, q= a,
k, =k, =k, =k,, =4, and k, =k,, =2 under the disturbances,

d, =sign(z, ).sin(t)([zl|p +|Z||q) and

d, =sign(z, )sin(t) [ +|2 " )+ sign(z, ).sin(t).[|zz|2_zl> . |Zz|2-éj.
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1) Twisting based algorithm:

Figure 2.1 shows the convergence of the states, z; and z, in finite time for 5 = 0.6 and 0.7.
For b = 1.2 the states are converging to the origin asymptotically. Figure 2.2 shows the non-
Lipschitz disturbances acting on the system. For the system (2 - 6), with parameters as stated
in the simulation setup section, i.e. if M; = M3 = 0, as per weak Lyapunov function [18], the
requirements for finite time stability are k, > M, with any k; > 0. The gains of the simulation

are selected to satisfy these conditions.

The following are the conditions on the gains, of the same dynamics under the same

perturbations, obtained from the literature for comparison purposes.

1. In the results of [37] (see Theorem 2 of [37]), the conditions on the gains are

6 3
kl(k2 —M2)>m, k2 >max{M2,M2 +m},
kl>0’ &>M>O

2 1+«

2b
with ¢ = —— for b €[0,1).
1+b

2. In Theorem 2 and 3 of [38], the conditions on gains are

0

k, >0, k, >max{M2,M2 +

ky (kz_Mz) 6 3
L2 00, ki -M,)> ———, k7 >1
27 T 1va & 2)>(l+a)(2—a) e
and
3(1- 1 3( 1+
k,>M, +%, k, >mmax{M2,a}, k, (k, —M2)>5[(2_Z)j

with a :ﬁ for b €[0,1).
1+b
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3. In [44] (see Theorem 1 of [44]) and [46] (see theorem 3.2 of [46]), the conditions

: : 2b 2
arek, — M, >k, > M, >0 with are need only applicable for 123 € (g,lj .

2
4. In [45] only for % €[0,1) it requires
+

k, > (k, +M2)(2;a) and k, >M,

Clearly, the simulation choice of k, =1, k, =2 with M, =1 does not satisfy all of the above

conditions. Also, the simulation parameters of b ={0.6, 0.7,1.2} do not belong to the range
considered there. However, as per remark 2.4, the strict Lyapunov function presented in
section 2.2 allows the conditions imposed on the simulations, showing different convergence
properties dependent on the parameter b. Thus, the results show that conservativeness of
previous results mentioned above. In particular, the Lyapunov results of [18], [37] and [38]
are not able to extend to exponent greater than 1. It is also worth mentioning that the types of
disturbances are also extended, specifically, in [18], only global asymptotic stability is
achieved for 0 < b <1 under disturbances upper bounded by one state variable only, which in
part due to the weak Lyapunov function employed. In contrast, the strict Lyapunov function

of section 2.2 allows disturbances upper bounded by the sum of both states.

Figure 2.3 shows the finite time convergence of system (2 - 6) under persistent disturbance
d=1 for b=0 with k, =4, and k, = 2. From remark 2.7, finite time convergence is achieved

when for any k; > k, + M, and k, > M, which coincides with the well-known result [20]. On

the other hand, the results of [37] and [38], while applicable to » = 0.5, it is unclear on how to
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obtain this conditions.

As a result, the strict Lyapunov function presented here is able to fully characterize the
stability of the twisting based algorithm for any » > 0, which essentially fills the gaps in the
literature, in the sense that those prior results are only applicable to certain range of » while at

the same time requiring conservative conditions on gains with respect to disturbances.

2) Super-twisting based algorithm:

Figure 2.4 shows the convergence of the states, z; and z, in finite time for p = 0.5 and 0.7.
For p = 1.2 the states are converging to the origin asymptotically. Figure 2.5 shows the non-
Lipschitz disturbances acting on the system. For the system (2 - 17), with parameters as stated
in the simulation setup section, i.e. if M, = M3 = My = 0, as per energy based Lyapunov
function (see remark 2.15), the requirements for stability (finite time if p = [0,1), exponential
if p = 1, and asymptotical if p > 1) are k3 > M, with any k; > 0. The gains of the simulation are

selected to satisfy these conditions.

In [26], the Lyapunov function presented is for the special case of p = 0.5 of the super-
twisting based algorithm studied here. Under the same disturbances as per the simulation, the

conditions given for finite time stability are

2
SM k, + 4[MIJ
ks

2(k3 _2M1)

k, >k, and k; >2M,
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which is clearly not satisfied by the simulation parameter values for the gains, which shows

the conservativeness of prior results.

Meanwhile, the Lyapunov function for the super-twisting algorithm presented by [26] and
[27] (for p = 0.5) will cause singularity issue when used in further application such as with
certainty-equivalence method in [67]. This issue is due to the non-Lipschitz nature of their
proposed Lyapunov functions, in which case, is not a issue with our proposed Lyapunov
function which is locally Lipschitz and strict (see section 2.4). Pertaining to the issue of
solving singularity, a continuously differentiable Lyapunov function for the super-twisting

algorithm (p = 0.5) is presented in [68], albeit, it comes with conservative gain conditions,
namely, for the unperturbed system, k32 > 2k, >0, while in the present results, as per remark
2.18 and (2 -21), for the unperturbed system, finite time is achieved with any k; > 0 and k3 >
0, which is shown in Figure 2.6 with k; =1and k, =1. Also worth mentioning is that the

mentioned prior results is only applicable to the case of p = 0.5, while the results shown here

is for any p > 0.5 as per results shown in Figure 2.4.

3) Generic super-twisting based algorithm:

Figure 2.7 shows the uniform finite time convergence of the states, z; and z, under three
different values of initial conditions that differ by an order of magnitude. In fact, for all three
different initial conditions cases, all of them reach the origin in time, ¢ less than 5 seconds
even though the furthest initial conditions are of two order of magnitudes difference than the

closest one. This strong convergence feature is due to the strong control terms that have
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exponent greater than 1, namely, |z,|"sign(z,) and |z | 'sign(z,).

Figure 2.8 shows the non-Lipschitz disturbances acting on the system. Similar forms of
disturbances are also studied in [46] and [17]. Particularly, the Lyapunov function proposed in
[17] is able to show uniform finite time convergence as well under disturbances that are
upper-bounded in a form similar to that in the simulation. However, these prior results require
two distinct Lyapunov functions to ascertain different convergence properties of the system,
i.e. uniform and finite time convergence, in which case for the finite time convergence, their
Lyapunov function suffer the same singularity issue mentioned in the super-twisting based
results above. In addition, due to the two different structure of Lyapunov functions employed

1sign(zl), to

there, the control requires an additional term in the Z, dynamics, i.e. |z,

ensure strictness of Lyapunov functions. The proposed strict and locally-Lipschitz Lyapunov

function (see section 2.5) is able to overcome these shortcomings.

4) Generic twisting based algorithm:

Figure 2.9 shows the uniform finite time convergence of the states, z; and z; under the
influence of non-Lipschitz disturbances. The disturbances, which comprise both states of the
system, considered in this simulation satisfy the upper bound of the system description in
section 2.3. In fact, as per remark 2.9, since p = 1/1.4 <1 and ¢ = 1/0.4 > 1, uniform finite
time convergence is guaranteed. The generic twisting algorithm is based on the results of
twisting based algorithm by combining control term of different homogeneity with the intent

of combining different stability properties within an algorithm
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5) Generic second order based algorithm:

Figure 2.10 shows the uniform finite time convergence of the states, z; and z, under the
influence of non-Lipschitz disturbances. The disturbances, which comprise both states of the
system, considered in this simulation satisfy the upper bound of the system description in
section 2.6. In fact, as per remark 2.30, since p = 1/1.4 <1 and ¢ = 1/0.4 > 1, uniform finite
time convergence is guaranteed. The generic second order algorithm is based on the results of
combining the generic twisting and generic super-twisting based algorithm. Through such
combination, the inherent energy based function of the system (which is found to be a weak
Lyapunov function when applied on either twisting or super-twisting based algorithm alone),

is a strict and locally Lipschitz Lyapunov function as per remark 2.28.

Remark 2.35. The disturbances considered here (see Figure 2.2, 2.5, 2.8, 2.9(c), and 2.10(c))
comprise bounded discontinuity, which corroborates with the results of the stability analysis

which employ the generalized Lyapunov theorem (see section 2.1).
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2.8 Summary

Two twisting-based family of algorithms, two super-twisting based family of algorithms and a
generic second order algorithm that combines the super-twisting and twisting algorithms are
developed. In each case, strict Lyapunov functions have been introduced, that can fully
characterize different stability properties of a parameterized family of algorithms. For the
twisting based algorithm, it generalize the well-known twisting algorithm, continuous finite-
time second order system, linear PD control, and uniform convergence algorithm. While for
the super-twisting based algorithm, it generalize the super-twisting algorithm, homogeneous
and linear PI control, and uniform convergence algorithm. Then we show that the linear
combination of two homogeneous algorithms with different degree of homogeneity can
indeed produce a system that has the characteristics of its individual component. Due to the
availability of strict Lyapunov functions, settling time for finite time convergence can also be
obtained. Finally, the robustness to different classes of perturbations can be easily considered

as well.

166



Chapter 3: ROBOT MANIPULATOR CONTROL: FULL STATE FEEDBACK

APPROACH

In this chapter, a family of controllers is developed for the trajectory tracking of robot
manipulator. Based on the twisting based family of algorithms presented in the previous
chapter, the proposed controller is able to generalised PID control to a homogeneous PID-like
control. Semiglobal practical tracking stability is achieved despite uncertainty and additive
disturbances in the robot dynamics. For the special case of regulation problem, the proposed
controller is able to achieve finite-time or exponential convergence, depending on the chosen
parameters. The stability analysis allows selection of control gains based on desired
performance instead of gains tuning. Numerical simulations using two-link robot manipulator

demonstrate the performance of the proposed controller.

3.1 System Description

A nonlinear mechanical system with n-degree of freedom in closed loop with a nonlinear

controller that generalised the PID control is considered.

3.1.1 Manipulator Dynamics

A class of rigid, fully actuated, unconstrained mechanical systems which can be modelled
by the Euler-Lagrange principle that results in a class of nonlinear systems modelled by a set
of highly coupled nonlinear differential equations is considered. The dynamics of n-joint
serial rigid robotic manipulators can be described by the following differential equation [117]
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M(q)i+Clq.4)q + Fg+Glq)+D(g.4.t)=r, G-1)

nxn

where ¢ eR" is the vector of generalized joint coordinates, M(g) € R"" is the inertia matrix,

and C(q, q) 4, Fq4, G(q), D(q, ¢, t), = € R" are, respectively, the vectors of Coriolis and
centrifugal, viscous friction, gravity, disturbances, and input generalized forces, with F being
a constant, positive definite , diagonal (viscous friction coefficient) matrix and D(g, ¢, f) being
a locally bounded disturbances. The terms of the robot manipulator dynamics satisfy some

well-known properties (see for instance [117], [142]), in which several are recollected here.

Property 3.1: The inertia matrix M(q) is a positive definite symmetric matrix satisfying

m< ||M(q]| <m, Vg eR", for some positive constants m <m .

Property 3.2: The Coriolis matrix C(q, q) satisfies:

3.2.1. xT{%M(q,q')—C(q,q')}x=0,‘v’x,q,q'e]R”;

322, Mlg.4)=Clg.4)+C"(4:). Vg.4 €R";
323, Cwx+y)z=Cw,x)z+C(w,y)z, VYw,x,y,zeR";
3.24. C(x, y)z = C(x, z)y, Vx,y,zeR";

325, |Clxy)=C, |

Z

, Vx,y,zeR", for some constant C,, > 0.

Property 3.3: The gravitational torques vector for robots having only revolute joints

satisfies (see [142] page 101):
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3.1.||G(q}| <G,, VqeR", for some constant G, > 0.

3.2. ||G(x)— G(y]| <k, e =

, Vx,yeR", for some constant k, > 0.

Property 3.4: The viscous friction coefficient matrix satisfies f <|F|< f,where

O</_’:=ml_in{fl.}£m?x{ﬂ}:=f.

In this chapter, it is assume that both joint positions and velocities are available from
measurement, i.e. full state feedback is viable. The control objective here is to design a robust
full state feedback controller that ensures the robot configuration vector ¢ tracks a desired
trajectory vector, g, (f) with an ultimately bounded error that can be made as small as

required, from any initial conditions that belong to an arbitrarily large compact set.

The desired trajectory vector, g, (f) is assumed to be twice continuously differentiable
44(t)

This is a standard assumption in the trajectory tracking control of robot manipulator (see for

vector-function such that ||g, (¢) ,and |¢, (¢)|are bounded by a priori known constants.

b

instance [103], [131], [113]).

Note that no continuity assumption is made on D(q, ¢, ), so it may have discontinuity, such
as Coulomb friction. In particular, the form of D(g, ¢, f) considered here is assumed to be

upper bounded by the function

?, with ||D|| = supﬂ|g|| G € K[D]}

10 < 2y + prllei] + plldl+ psllel]” + Pl

where po, p1, p2, p3, and ps are some nonnegative constants, while e, :=g—g¢g,€R" , and

e, =q—q,R".
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3.1.2 Control Development

The following notions, which were used in [36] and [7], are introduced for simplicity of

notation and will be used in the analysis and design of the controller.

“sign(x, )T,‘v’x eR".

X

n

sig(x)' = hxlrsign(x1 oes

The controller proposed is given by
r=—Ksig(s)', (3-2)

where K is a positive definite diagonal matrix, i.e. K = diag{k }"

i)i=1°

with &k, >0,Vi=1,...,n,a
> 0 constant, and s €R" is the desired error dynamics defined as s =e, + o, with

2b

6 =K,sigle, )rv + K sigle, ), (3-3)

where K| and K, are positive definite diagonal matrices, i.e. K, =diagik, };, with &, >0,

K, =diag{k,, |. ,with k,, >0 Vi=1,...,n, b >0 constant.

3.2 Stability Analysis

The closed-loop system of (3 - 1), (3 - 2), and (3 - 3) can be written as

o= Kzsig(ez )% + KISig(el )b >

€ =e€,,

&, =—M " (q)K sig(s)' —M " (¢)Clq.4)q + Fg +Glg)+ D) g,
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To rewrite the closed-loop system in a form more convenient for analysis, let us define the

change of variable z, = ¢, and z, = -0, and we obtain the following form of closed-loop

system,
Z, =2z, +S,
2b
z, = —K,sig(z, +s)we - K siglz, ), -4

§==M"(z, +q,)Ksig(s)" +A(),
where

A(~)=—M‘l(zl +‘I4)C(Zl +4,,2, +S+q.d)(zz +S+q.d)_M_l(Z1 +Qd)F(Zz +S+Qd)

2
-M™ (Zl +q, )G(Zl +Qd)_M_l (Z] +4q, )D_Qd +K25ig(zz +S)E +K15ig(zl )b

3.2.1 Construction of Lyapunov Function

From the closed-loop dynamics (3 - 4), the structure (z;, z;) 1s essentially the desired error
dynamics injected by the controller through (3 - 3). Essentially, for any i € 1,...,n, when s; =0,
the dynamics of the subsystem (zj;, z»;) is identical to that of the twisting-based family of
algorithm studied in section 2.2 of Chapter 2. In other words, s; can be viewed as a
perturbations on the (zy;, zo;) dynamics. While in the s-dynamics, its structure is akin to that of

sliding mode control.

Since the differential equations (3 - 4) have discontinuous right-hand side, i.e. when a = 0
and/or b = 0, or D, and since no continuity assumption is made on D, its solutions are

understood in the sense of Filippov (see definition 2.1).

The following Lyapunov functions will be used in the analysis:
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fori=1,...,n,

2
>

k,

a3
Zli| 2 Slgn(zli)ZZi+M|Zu

|2+2b

|1+b

|Zzi

k.’
V. (Zli’ZZ[): ( .

A e L
1+b)2 1i 4 2i zi

and

1
VS(SQQ)=§STM(Q)S

Remark 3.1. Note that the Lyapunov function for the (z};, z») -subsystem is a strict Lyapunov
function proposed for the twisting-based family of algorithms (section 2.2.2) of Chapter 2,

where Vg € R" :

242b 4 _ 2426 4
Eu(‘zli| |ZZi| )S Vzi(zli’ZZi)S ”1iqzli| +|22i| )

with

)11k |- 3r; ky; ’ ky; ky; ry 1
Ty =mng—, —| —— |, T =maxy—+ + , | —|+=+—,
8 2\1+b 4 1+b 2+2b 2+2b) 4 4

while for Vi,

S|’ <v, < Sl

Let us define the following sets,
Qz (R) = {(ZI’ZZ )e RZ" : szi(zli’ZZi)S Ioli (R)” °t Vzn (ZIH’ZZn )S pli (R)’ for = 1" "9n}’

Q. (R)={seR":¥, <R*/2},
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QR)={(z,,2,.5)e R :Q_(R), Q,(R)},
where

fori=1,...,n

4 1 4
3+5b
= Ta 242b
AT 4+4b 2 @,,;
1+2b >
Wy 7T, 2+2b 4
ST R
max 212b x(—} , forb>0,
P (R) _ 3+5b 1 b \m
li 47, 420 || 2% @y,
ali 3
Wy, T4
0
max . V(21220 ) for b=0,
(Zli’z2i)Ebd %:(E}

Jm

bd ¢,, {i] is the boundary of the region

R

N

R

N

2%,
k2i

Zzl.| <

o meg ieng]

which is a compact set, with the constant as; > 0 (see Appendix A.1).

Let also 7, (R) = diag{yli (R)}:':l with ,(R)>0, Vi=1,...,n, such that V(z1 25 s) € Q(R):

n

S MORIAOT 5" MC)s < X, (R)s

i=l

5

Remark 3.2. Note that such an upper bound always exists for any given compact set Q(R)

since M, C, F, G, D, and the desired trajectories are locally bounded, it implies that A(.) is
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locally bounded as well (i.e. it compose of summation of locally bounded function). From

[143], the multi-valued function K[A(.)] is locally bounded as well. Also, using the skew-
1 ..
symmetry property 3.2.2, the function, 5 s"M(-)s=s"C()s is locally bounded as well. Hence,

within a compact set, an upper bound on the above function exists.

3.2.2 Stability Criterion Determination

The time derivatives of the Lyapunov functions, in accordance to lemma 2.4,

‘v’(z1 yZ, ,S) € Q(R) of the closed-loop system satisfy the following inequalities:

Differential inequalities for the z-subsystem (see Appendix A.1):

Vi=1,..,n,
for b>0:
345b 1
; e 1| o, o 1 w, S200 Ax, avap | 272 @,
Vzi(zlivzm)S Y vl T o [Vt Vit _|Si| @ 1+2b
TT);4+4b TT,; 4+4b 4i TT,;2+2b
(3-5)
3+5b 1
1| o, 3l b 20147 v | 2% 0y,
- — V_.a V.2+2b—a.|s.|1+b
4 3+5h zi zi 1|7 W 3
i
TT,;4+4b i T4
for b= 0:
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. ae. &, 3 1 3 1
Vzi(Zli9ZZi) eV, < 2k1i2|211‘||si| +§rz‘|21i|2|22i||si| +ky, |22i|2|Si| +Erz’|Zli|2|ZZi|2
_2k1ik2i|Zli|ZZiSGN(ZZi +s5;)

k21|ZZ| Slgn(zz )SGN(Zz +S) ( i k2zle

<0 for V_ 2> Viz.,z, 3-6
or zi (Zl ,zzgel};adxﬁi(‘si‘) zi (le 221) ( )

Differential inequality for the s-subsystem:

V. e V_gng( s )j VVSTK[f](s)+%sTM(-)S
o sTMO) K[ 7 (Ksigls) + A(.)]+lsTM(.)s
:—STK[Ks1g ]+s K[A()]+;s M{()s

=Yk T MORIAOT 57

< _;ki|si e + ;7/11' (R)Si|

Remark 3.3. Note that the above analysis for the s-subsystem also apply to the case of a = 0.

In particular, when a = 0, using the following notation,
N+(S)={l€{ s |S|¢O} N°(s)={ie{l,...,n}:s, =0},

if N* (s);é 0, then for at least one index i € {i, . n}, ls,|#0, observe that

—s"KK[sign(s)] Zk|s|— Zk ~L+1]= Zk|s| 0=

1eN 1eN0 lGN s
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if N*(s)=0=>s,=0,Vieli,...,n}, hence, —s" KK[sign(s)]=0

Thus, whena =0,V s; eR,Vie {i,..,n}: —sTKK s1gn Zk |s

——min(k, ~7, (R)}] G-7

fora > 0:

Piin(K) le - Z% (R)s/|
S_AmmSK) ;'S’U +a+/1 RS

s;l, using lemma 2.2 of chapter 2,
n i=1
_ ﬂ’min (K) N Q 2 % . q
= DR Y O

1 I+a 1
S_lminSK) (anlsilzﬂ A (R (ZM j using lemma 2.2 of chapter 2,

7+ A (7 (RN 5] (3-8)

ualK),
na
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Remark 3.4. For ease of presentation, note that the above differential inequalities are stated for
two cases for each subsystems. This is due to the fact that the subsystems are discontinuous

when b =0 and a = 0 respectively.

Theorem 3.1: For any given K, K, > 0, suppose that the initial conditions for the closed-loop
system (3 - 4) belong to a given compact set, there always exists a ¢ > 0 such that initially, (z|,

2, 8) € Q(c). Depending on the value of a:

1. For the case of @ > 0, a > 0 can be selected such that ¢ > g > 0 and by selecting K

such that

a

(K) S A (71 (C)Z”M'Sﬁz
Y7,

A

‘min H

all the trajectories will enter the compact set (2(x), in finite time, and stay there for all
future times.

2. For the case of @ = 0, by selecting K such that
k, >y, (c), Vi=1,...,n,,.

all the trajectories will enter the compact set (2.(c) x Q4(0) in finite time, and stay there
for all future times. Additionally, the states (z;, z,), have finite time convergence for 0

< b <1, exponential convergence for b = 1, or for asymptotical convergence for b > 1.
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Proof of Theorem 3.1: The stability analysis proceeds in two steps.

1. Obviously, for a given compact set of initial conditions, there exists ¢ > 0 such that initially
(z1, 22, 5) belong to some compact set strictly inside Q(c). A trajectory may leave the set

Q(c) only through one of the boundaries:
I/zi(zli’Z2i):pli(c)’ Vi=l..,n,orV = 02/2 .

Let us show that it is impossible.

N

(a) For the s-subsystem, V, = %STM (q)s = %02 implies ||s|| > % .

Hence, for a = 0, from (3 - 7), 175 m1n (k =7, )|

c

175 < —c,, where ¢, = min(k, - 7/”(0){?) ,
' m

For a > 0, from (3 - 8)

e N
= _||s||[lm:—a(K) " = 2 (7 ()W }

. ae.
LV, <-c,

where ¢, =

mm(K)I c

c |4
\/%|: 0 \/%| _//Lmax(yl(c))\/;:| (3'9)

Hence, for k; sufficiently big, c; is positive for a = 0, or Ayin(K) sufficiently big, c; is

positive for a > 0, such that, ¥, < 0 almost everywhere. If the gain K satisfy the
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conditions of the Theorem 3.1, then, V;is a decreasing function of ¢, so s stays in

Q(c) and

||s||£i, together with the fact that |si|£||s,fori=1,...,n, we have
m

|s,|SL, fori=1,...,n
m

(b) For the z-subsystem, for » > 0, at the boundary, it implies

Vi=1,...,n
. 242b
3150 \* 1 345b ! b 4
47, 4+ab 272 @, 47,440 || 2% c
V.= pli(c) = max P 142b | Qi ® 3 X N~
4i 72-” 242b 4i Ell 4 m
242b
3456 \* 1 N 3+5b 1 b
A7, 4+4b D 2+2b @, 47,4+ | 2 4 @,
> max ! ! a,. ! : X |s|
= » 1+2b > li W 3 !
4 T0,;2+2b 4 ATR

Thus, we have from (3 - 5),

ae. | w,; 3+5b

LV 4 <0

3456 | zi
TT,;4+4b

So, V.; is a decreasing function of ¢ for all i = 1, ..., n and (21, 2,) stay in Q.(c).
While, for b = 0, at the boundary,
V. :pll.(c), Y i=1,...,n, it implies
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), (see the above definition of the region ¢, (-))

£ ]eMzbi=al £ ]onl

=V, =p,(c)> pli(\/Z|si|), fori=1,...,n

since . hnax (‘ ‘)Vzi(zli,zzi)z P (\/Z|S,|) (see the above definition of function
2);,25; Jebd ¢ (|s;

Pii(.))

Hence, from (3 - 6), it implies V, <0, Vi=1...n.

So, V,; is a decreasing function of ¢ for all i = 1, ..., n and (z, z3) stay in Q.(c) for the
case of b =0.

As a result, the set Q(c) is positively invariant, i.e. the trajectories of (3 - 4) stay in it once

they have entered it.

2. Now we have shown boundedness, next is to show convergence to a smaller compact set

Q(u) with ¢ > u> 0.

(a) For the s-subsystem, for a =0, from (3 - 7)

17 < _rniin( ki — i (C)mS”

N

Hence, for the case of case of a =0,V i=1, ..., n, if k, >y,(c), 17 <0 fors=0, which
implies that the s trajectory will converge to zero in finite time and stay there for all
future times, 1.e. all (z}, z2, 5) € Q.(c) x Q4 (c) will enter the set Q.(c) x 24(0) in finite

time.
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While, for the case of or a > 0, observed that (z1, z3, s) € Q(c) \ Q(r) implies that

”S” 2 % , hence from (3 - 8)

cae A (K l+a
S AN
A (K)o
= _”S”(%| S| = A (711(6))\/;J
AV <, (3 - 10)
where ¢, = \/’L;:{/Im;:SK)IX/%[ —ﬂmax(yl(c))\/Z} 3-11)

Thus, for the case of a > 0, with Ayin(K) sufficiently big, c3 is positive, such that, V.
< 0 almost everywhere. Then, V; is a decreasing function of #, so s enters the set

(1) 1n finite time and stays in it for all future times, in particular”s” < % together
m

, fori=1,...,n, we have |si|£%, fori=1,...,n.
m

S

with the fact that |sl.| £|

(b) For the z-subsystem, for all b > 0, if a = 0, once the s reaches zero (inside the set

Q.(c) x Q4(0)), the z-subsystem becomes:

Z, = Z,,
2b b
>

Z, = —Kzsig(z2 )lTb —Klsig(zl)
which is a multi-dimensional version of the planar homogeneous twisting-based

control proposed in Chapter 2 (see section 2.2.1). Its convergence properties is based
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on the b parameters, where for 0 < b <1 finite time convergence can be achieved, for
b =1 will provide exponential convergence, while for » > 1 the system exhibits

asymptotical convergence.

While, for b > 0, if a > 0, following the same arguments presented in point (1) - (b),
it is not hard to see that, once s(7) is inside the set Q,(u), (z1, z2) will enter the set
Q_(¢)in finite time and stay in it for all future times. Hence, the set Q,(u)xQ. (1) is

positively invariant and attracting for all trajectories of the system (3 - 4) originating

inside the set Q (c) x Q(c).

Remark 3.5. Note that the results above show that the control law achieves semiglobal
practical stability for the case when a > 0. Its region of attraction can be given as the set 4(c)
x Q,(c), while its ultimate invariant set given by Qs(y)x Qz(y). The semiglobal nature of the
control law can be seen where the estimate of region of attraction for each set of initial states
can be increased by choosing a sufficiently big gain K. While the practical stability nature,
pertaining to the set where the solutions converge is stable and may be reduced at will, can be
achieved also by tuning the gain K (see the conditions on K in Theorem 3.1). On the other
hand, when a = 0, the control law achieves semiglobal stability in which its convergence is
dependent on the parameter b (i.e. finite time with 0 < b < 1, exponential for b = 1, and
asymptotical for b > 1). Similarly, its region of attraction is € (c) x Q,(c).
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Remark 3.6. Note that for the special case of a = b = 1, the proposed controller (3 - 2)

becomes the well-known PID control, indeed when written in original coordinates

t
r=-K,e, _erl _KiJ-el(G)dg+Kiel (to),

)

where K, =K, K » =KK,, and K, = KK,. Thus, based on the stability analysis above, one

can select the gains of the conventional PID control based on the desired error dynamics (K},
K>) and the desired region of attraction with respect to the ultimate bound (K). This is a great
simplification to the heuristic PID gain tuning method, where tuning a particular gain will
affect the tuning of all the other gains of the system [97]. It is worth mentioning that in [99], a
similar gain selection method is presented, but due to their specific formulation, the bounds
on the inertia matrix are required to compute the PID gains. The need for the inertia matrix is
echoed by TDE and UDE based PID approach as well [90] [88]. On the other hand, our
proposed controller is model-free. Another issue in [99], is its stability formulation requires
the time derivative of the robot dynamics, in which case is not directly applicable if
discontinuity is to be considered in the type of disturbances affecting the system.
Additionally, in the work of [103], semiglobal PID control results is achieved which is model-
free without requiring time derivative of the robot dynamics, however, the gains selection
only pertains to the desired region of attraction and ultimate bound, the transient performance

or the desired error dynamics is not clearly specified with respect to the PID gains.

183



Theorem 3.2: In addition to the conditions in Theorem 3.1, consider the special case of
regulation problem, where the desired trajectory of the robot dynamics (3 - 1) is a constant

value, qo, (i.e.q, =q,, 4, =G, =0), the control (3 - 2) with the parameter b restricted to 0 <

2b : o :
b <1, and parameter a selected as a = 25 while the additive disturbance is upper bounded
_+_

by |ID|| < pilleill + p2llgll + p3||e1||2 + p4||q'||2, i.e. vanishing perturbation. Then, for b = 1,
semiglobal exponential regulation is guaranteed, provided that K is large enough with respect
to initial error conditions. While, for 0 < b < 1, semiglobal finite-time regulation is assured,
provided that K is large enough with respect to initial error conditions, and the gravity vector

at the constant desired position, G(gq,) is zero.

Proof of Theorem 3.2: For this section, the exponent of the control law (3 - 2), a is selected as

2b
a= T30 for 0 <b < 1. Let us define the following variables,
+

1+b

where s, = —‘k;l g (qo)(zibsign(kf] g.(q, )) and g,(g, )is the i - th element of the vector G(g, ).

Remark 3.7. Note that g is a constant vector, and as a result the vector, 5 is a constant vector
as well since the matrix K comprises constants as well. Also, 5 is a constant that is defined for

stability analyses only, its actual value, which require knowledge of gravity vector, G(gq), is
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not required in the control law. Also note that D comprise vanishing perturbations only, i.e. po
= 0 (note that this is the general assumption on regulation problem , however, if constant

perturbation do exists, the s can be redefined to accommodate this extra constant term).

Hence the closed-loop system (3 - 4) could be rewritten as

Z =%, +7,
?2 = _KZSig(Zz + E)% - KISig(El )b

2b 2b 2b

§=—M" (Z +q, )Ksig(?)% + M7z +q, )K(sig(i)nb —sig(s )i+ +sig(§)1+bj + Z()

where

Z('):_]\471(31 +q(1)C(El +q,,2, +§+quEZ +§J+q.d)_M71(El +qd)F(Ez +E+q¢1)
26

_M_I(El +4, )(G(El +qd)_G(q0))_M_l(El +4q, )D_éd +Kzsig(32 "'E)E +K1sig(31 )b

2b

Remark 3.8. Note that the fact of sig(s )i =—K 'G(g,) has been employed based on the

above definition. Also, observe that the s and Z subsystem have the same form as the s and z

subsystem discussed in Theorem 3.1 (i.e. by replacing (s, z, z2) with (s, 21, 2,) ).

Hence using a similar Lyapunov function structure, consider the following Lyapunov

function

V(§> 21 > Ez ) = [VN (5)]2 +V; (21 > Ez )’

N
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with V(5 )_ES M5, and V.(Z,.2,) ZVN' %1221 )

2
k, |N |2+2b 1

B ~ |4 ki < b~ 2
—th _ZZi| +r z | |

I
Zli| 2 Slgn(zli)zzi"‘m 1 Zy;

4

Note the following properties of the Lyapunov functions:

%n_1||§||2 <V (E)S%n_a”E”z @%[V; &) <[5 g%[vg G

Also, from Appendix A.1,

242b o |4
21922 2”1: Zl| 22i|

n
1i e + Z|22i|4j’ where 7, = miin{7_fl,~ }’
i=1

3
| LSk (S

i=1 i=1

| |
Sl 2l

>Z Z, 2y 224 since min L,l _1 forO0<b<1 and n=>1
n n"’n) n

>

2
1N
[SRIEN

} using lemma 2.2 of chapter 2,

I
N

and the term,
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2 b b
b —_— 2+2b 4
= = — W= 2+2b i~ 2+2b
[ +IE ]+ —QZIH ) +sz” )

b
< p2e2b Qzl ||2+2b + ||32 ”4 )TZ') , using lemma 2.2 of chapter 2,

b

2+b
2+2b
n
2+2b > 5
<n (—V;(ZI,ZZ)J

n b

= b [VZ(EI’EZ )]2+2b .

Consider the time derivative of the Lyapunov function V; along the solutions of the system

for the § subsystem:

a.e 2

~

V.eV.
Eedl; 1

=V KLAR)+ 5 M o)

-M™ (El +q, )Ksig(?)%

~T
cs M 2b 2b 2b

5 s (3-12)
MG 4, )K(sig(s)wb ~sigs)is +sig(§)]+bj+ k30| 2

Remark 3.9. Note that the following three properties that will simplify (3 - 12):

1. From Theorem 3.1, the states (s, zj, z;) will reach and stay inside the compact set,
Q (1) x Q.(w) 1n finite time, and note that s, z;, z; are constants, we have, for 0 <5 <

1, the following upper bounds (Note that upper bound of the perturbation, ||D|| has
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been expressed in terms of state variables of the closed-loop system):

~ ~ | A ~12 T~ 1 ~ll [~

5 MOK[BOL S5 W5 <= £51 + FIE] + 7 lla |+ 1, 2
+ CuE M + CalldallsT + IS b
+25NC, Jau Iz + [Tk 2l + [T, . = a0
+lpi B+ 5122+ 2T+ [5]p2a]

~ ~ |12 ~ ~ |12 ~|3 ~ .12

t[Sles L + Bl + 25T+ [5]p. 4]
+2p. Bl + 252 Bl + 2241l

1-b 1-b b
_ I - b TS =
e ([P <y 2 I S5, 2426 ||
+ |G ||+ ke[S 2 2] + ks [S 220 2 0

1-b
+ ik, [§n>2 |5

~12 ek il =1t e
S~ + Gl 7 G + ol

+ e[ f)y s (w)F]

where
];1 :/)l’max(Kl )’ 122 :/q’max(KZ)’

T U D
Pl +3p 51 + ik n> 2 [S5] e | <, ()] e
— _ =2 b _ 1= 2b
SINEN+mken > [SY[Z] + mk,n>= |52, |+ .

e [~ [~ il b i~
+k[SNE]+ 2B E]+ 252 AN II(IIZI | +||Zz||1+bj
+2C,[FIE +3p.BIE] + paSIET +C.2NB1

k[¥llas = aol+ Colda T +3p.05Mal” + o2l
+2C, 5.l + 715 g |+ (5114

<allp(o))y. ()]

with 7(.), 7(.), sa(.) are positive functions and «f(.) is a class /C function, and the
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vector 7(¢) is defined as:

7" (=g, ()~ q0)".q," ()4, ()] R™

2. Next, let us define the diagonal matrix,

S S

1 1

2b 2b
T \1+b T 1+b 25
A= diag[sig(?} - sig(? + IJ +1J , and since, sig(§)ﬁ =-K" G(q0 ),

then, anikl(ﬁhﬁ sign(Fi)—|si|% sign(si)+|§i|%sign(§i )j =-5"AG(q,) .

i=1

3. Next, using lemma 2.2,

n 143b 1 143b

S| 1+b S| 1+6
Z|Si| w2 2b ”S” I
— 2b

n 1+b

Substituting the properties of remark 3.9 into (3 - 12), 173 :

N V. o e
<=5 [ +[s11AG(gs )| = 751 + 72 ()5

n 1+b

e[+ el

MS'

where k = /lmm(K )

Employing the bounds on the Lyapunov functions and lemma 2.2, one obtains,
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1+3b 1+3b

~ k A2 1+b 1+3b (2) l2 1+b 1+3b

V;S— —— | 7= V32+2b—f — I/E-F}/ H) — I/§2+2b
n% (V"_’J A 2 {\@

+75(u Lﬂb V2V +[a(lln(f)i|)74(ﬂ)+IIAG(qo)ﬂ(%]Vs;

(3-13)

Next, we compute the time derivative of the Lyapunov function for the Z subsystem, recall

that:
£ (51 > E2 ) = z Vai (Eli > 521' )

From Appendix A.1, we have

~

n 345b n 142b n 2 3
Vz(zl,zz)ﬁ _dOZVEi4+4b +dlZ|Si |VEi2+2b + d2Z|Si |1”’ V4
=1 P =1

where
! 1
a,. 22+2b - 24 ..
_ : 4i _ 2i _ 3i
d, =min —5- |, d, =max| —— 5 |, and d, =maxa, 3
7?11,4+4b TT,;2+2b T4

Using lemma 2.2,

3+5b

n 3+5b n 4+4b
- dOZV5[4+4b <-d, V.. ,
i1 1

i=

1+2b

n 1+2b L n 242b
P 2+2b
dleEi 226 Sn*0d, ZVEi >

i=1 i=1
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and the fact that

'=1,...,n, xeR", it follows that

T G ﬂ ; " ﬂ l ~ ﬁ E
V. (Z1 32, ) <—d V. 44 +n*?%d, ||s ||V32+2b +nd, ||s ||l+b V.4
Employing the bounds on the Lyapunov functions and lemma 2.2, one obtains,

2b

3+5h ! 1 142b 1 b p 3
V. (zl,zz)< d,V.avap + n>2d (\EJV 2V, 226 +ntd, (\5] Voo V.4 (3-14)

Jm Jm Z

With the above results, we are now in a position to find the time derivative of the Lyapunov

function for the closed-loop system, recall that
V(s,2,.%,)=lG) +7.(.%,)

hence

V(5,2,,2,)=2V.V. + Vs,

Thus, substituting results from (3 - 13) and (3 - 14), after rearrangement,

1+3b

ae (3) k| N2 ) e
V < —(Ej ;i [EJ VF 2+2b —1(
n

1+b

jVFZ - doorfgiii +7
+ 2a(ln(e))y. («) +"AG(q°)”L/j

where
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n
3 b _r 1 142
+2y, (,U{Lnb Vo2V 22 + nwbd, (QJngV; 2+2b

For ¥, applying lemma 2.1,

343b 2b
3+5b 3+5b 3456 3 3456 b
_V?2+2b—VE4+4b < - 3+5b 2 SbVEE 3+5b 2 Sszm,
) 3+3b 2b
b 2+4b
3+5b 3+5b T 1 : 142b
—Ve2e2p =V 4440 < — 3+3b ) SbV?E 3430 |3 V2420,
‘ 1+b S \2+4b
2 3+3b
3+5b 3+5b - b T 3
Vo~V < | 20y 350 sy, 4
‘ 2b ’ 3+3b

thus if the following inequalities
345
k> max{/147/3 (,u), As [74 (:u)]3*3b e }a

where
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1+3b

2b [— \ 1+b
T m
— 1+b
A, =8n| 22|
\Nm
3+5b
143b

2b
ﬂ_2§:§§(36+36bj[ 24b jwnfj’b[ V2n 33[)(\/%]1”’
5 = ’
d

3+5b ,(3+5b) \/Egiszb NG

2+4b 3+5b 143

* "\ 3456 \d,(3+5b) \ T ol
3+3b 2b % 1435

24b \( 36+36b Y22 2| L (2 )% N
A, = n"*\ ntd,| ——= — ,
3+5b \ d,(3+5b) Jm V2

hold then the function 7 is negative definite. Then, we have,

y<- (%)[;i }(%T}:V s — J_f[%jV; - G)dOV;ZZ

Al e ) 22
(Viii’; +V~iiiiij f(%)nf +20aln(o)). () + |AG(, m{%n
( = V] [ ) ol aca, m{%

3+5b

< 2l )+ G, 1|{

I\)\w

N | W

3

2oy

@\%

3+5b

el )+ acta )| 619

where
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1+3b

st 6 oy 5 O

i

3+5b
4+4b

Note that lemma 2.2 with <1 and the bounds of the Lyapunov functions

V= [V~ (5)]2 + V. (El 22, ) > [V; (E)]2 have been employed in the above inequality.

S

Consider the case of b = 1, recall that the term from remark 3.9,

2 2

AG(g, )= diag sig(?]mj _ sig(i + 1]1”7 +1|G(q, )= diag(~1+1)G(q, )= 0,

1 l

while for the case of 0 < b < 1, consider the case when the final desired position corresponds
to the rest position of the manipulator where G(qo) = 0, or the gravitational torque of the
manipulator dynamics is absent (i.e. in space where gravity is absent or in a planar horizontal
configuration) where G(g) = 0 for V ¢ € R", the term AG(qo) vanishes to zero. From (3 - 15),

s LA e

Thus, for ||7(¢)]] > 0 as t — oo (where the desired trajectory approaches a constant final
desired position), then we have V(s, zi, z;) = 0 as ¢t — o as well. Obviously, if ||7(?)|| = 0
(regulation problem), when b = 1, the system will converge to the equilibrium exponentially,
while for 0 < b < 1, the system achieves finite-time regulation, in which the states reach the

origin in finite time with the estimate of reaching time as,
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1-b

~ o~ o~ 4+4b ~ o~ o~
T(SOoZWaZzo)S (m(l——b)j[V(So’Zm’Zzo )]4“”’

where (So, Z10, Z20) are the states of the system when it first enters the region Q, (y)x Q_,(y). ]

Remark 3.10. The stability analysis presented above is akin to the conventional sliding mode
one, in which the sliding variable is forced to zero or to be made as small as possible followed
by the desired error dynamics, i.e. sliding manifold, being perturbed by that value of sliding
variable. There is a major difference, in which the conventional sliding mode has a first order
sliding manifold, and hence there is a reaching phase. While in our proposed controller, due to
its integral nature, it has the same properties of an integral sliding mode, i.e. the ability to
eliminate or reducing the effect of the reaching phase. In particular, the initial condition of the
integrator can always be selected such that initially s(0) = 0. From the above analysis, having
s(0) = 0 implies initially the states are inside (u)x Qz(c) and will remain in it for all future

times. Thus, from initial time, the system will behave as per the desired error dynamics under

the influence of a bounded perturbations of |s|| < z/\/m .

3.3 Numerical Simulations

In this section, numerical simulations on a two-link robot manipulator were carried out to
illustrate the results discussed in this chapter. The setups for each simulation are described.

Discussion and analysis of the results are presented accordingly.
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3.3.1 Simulation Setup

1) Simulation 1:

A two-link rigid robot manipulator is adopted in the simulation. The dynamics of robot

manipulator (3 - 1) with the following parameter values (the dynamic parameters are from

[144]):

) {3.511+0.19lcos(q2) 0.072+o.096cos(q2)}
q)= :

0.072+0.096¢c0s(g,) 0.072
Clg.d)= ~0.0964, sin(g,) —0.096(¢, + 4, )sin(g, )
U] 0.0964, sin(g, ) 0 ,

6lq) = 40.888sin(g, )+ 2.079sin(g, + ¢, )
1= 2.079sin(q1 + qz) ’

0.764 0
F= :
0 0328

Note that Properties 3.1, 3.2, 3.3 and 3.4 are satisfied. The desired trajectory vector and the

additive disturbances Coulomb friction vector was defined as,

0(0)= {z +0.5 sin(t)} Dg)= {0.7sign(q1 )}

0.5cos(z) 0.3sign(q, )

The initial conditions were,

10| a0)- |

00| 5 0=

The control (3 - 2) gains were selected as follows,

196



150 0 18 0 11 0
K= K, = K, = ,b=0.6
0 15 0 18 0 11

where the simulations were performed for each value of a ={0.7,0.8,0.9} to examine its

effect on the maximal position error. The initial conditions of the vector o were selected as

a(o)z_ez(o):qd(o)—q'(O){O'SHO} {0'5}

0 0 0

The o(0) is selected as such so that the state s(0) is zero initially, i.e. s(0) = e(0) + o(0).

Hence, by theorem 3.1, the state s will stay inside the region Q(x) as per remark 3.10.

2) Simulation 2:

The setup of Simulation 2 is exactly the same as that of Simulation 1. In this simulation, the
value of the parameter, a was fixed at @ = 0.9, while the simulations were performed for each

control gains of K

o 150 07][225 0 1[300 0
o 15| 0o 225/ o 30|

for examining its effect on the maximal position error.

3.3.2 Results and Discussions

For better visualization of the plots, some figures are shown in two windows; each with

different time intervals.
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1) Simulation 1:

Figure 3.1 shows the tracking errors under control (3 - 2) with three different values of
a= {0.7,0.8,0.9}. Particularly, the smaller the value of a, the smaller the ultimate bound on

the position errors. Indeed, recall from the stability analysis (3 - 11), for ¢; to have a positive

value,

o> ﬁ[ A (7 ()" j;.

Ain (K)

Thus, by satisfying the conditions of Theorem 3.1, the term within the bracket is less than
unity, while for 0 < @ < 1, the exponent 1/a is greater than unity, which implies the ultimate
bound on s can be reduced significantly by lowering @ while maintaining the same control
gain K. As can be seen in figure 3.2, reducing the value of a does not alter the control effort

by much but the precision gained are more significant in comparison.
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(c) Trajectory, g, for time ¢ =[0,15] s. (d) Tracking error, e, for time ¢t =[5, 15] s.

Figure 3.1 Simulation 1. Tracking errors using control (3 - 2) for three different values of

a=1{0.7,0.8,0.9.
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Figure 3.2 Simulation 1. Control input of joint 1 and joint 2.
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Figure 3.3 Simulation 2. Tracking errors using control (3 - 2) with a = 0.9 with three different

values of control gains, K.
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Figure 3.4 Simulation 2. Control input of joint 1 and joint 2.

2) Simulation 2:

Figure 3.3 shows the tracking errors under control (3 - 2) with a fixed at the value of 0.9
while changing the gain K. In essence, larger value of K results in smaller ultimate bound on

the position error. Following (3 - 11), the ultimate bound x indeed is smaller for larger K but
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not as dramatic as lowering the value a as shown in simulation 1. It is worth mentioning that
in figure 3.4, the plots with larger control gain K exhibit larger slope initially. This high rate

of change is not desirable as it may excite unmodelled dynamics in the system.

3) Comparative Study:

Comparative results are difficult to obtain because any comparative result can be
dangerously biased. Besides, it is difficult to quantitatively compare controllers that are
structurally different. Therefore, the comparative discussions presented here will be limited to
PID controllers [90], [99], [103], [104], and [105] because the controller proposed here have a
PID structure when a = b = 1 (see remark 3.6). Particularly, the discussions will focus on the
analysis aspects of the controller, which governs the gains selection through the

corresponding stability analysis.

1. In [90] the PID control is analysed to be a combination of feedback linearization term
plus uncertainty disturbance estimation term. The structure allows injection of desired
error dynamics (similar to the proposed controller) and an estimation term to cancel
the effect of uncertainty. However, the existence of the estimation term is not shown
and it is mentioned that the compensation does not exist for systems that have

discontinuous disturbances and uncertainties.

2. Similar to [90], in [99] the PID control is analysed into a modelling error estimator
and a desired error dynamics function. However, since the analysis requires taking the
time derivative of the robot manipulator dynamics, the stability results is not

applicable for discontinuous disturbances and uncertainties. In addition, the analysis
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showed that it is necessary to have an accurate estimate, M of the inertia matrix of the
robot manipulator (requires ||/ - M "M || < 1) to ensure negative definiteness of the
time derivative of Lyapunov function there. However, as remarked by the author, even
when such condition is violated, stability is still observed in their simulations. Hence,
it clearly shows the conservativeness of the results notwithstanding the

aforementioned shortcomings.

3. In[103] a strict Lyapunov function is given that allows the selection of gains based on
region of attraction and ultimate bound. Also, the analysis does not require taking the
time derivative of the robot dynamics. However, it lacks the simple structure of
desired error dynamics selection and modelling error compensation found in point 1
and 2. Particularly, although the author claimed the analysis is applicable for tracking
control, the proof shown for regulation is not directly clear on how it can be extended
for the tracking purposes. In fact, the analysis requires the time derivative of the
gravity vector G(qg) in its auxiliary variable, which is zero for regulation
problem(since g, is a constant vector in regulation problem) but for tracking g, is no

longer a constant(it requires the time derivative of gravity vector) .

4. For regulation, in [104] and [105] , the procedure for PID tuning is extracted from the
stability analysis which allows gain selection for stability to specified arbitrary
domain. Nevertheless, its extension to tracking and the abilities to inject desired error

dynamics are unclear.

Note that the stability analyses mentioned above are all for the same PID control structure

for the control of robotic manipulators. The present results of this chapter are able to
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overcome the shortcomings mentioned. Particularly, recall from remark 3.6, for the special
case of @ = b = 1, the proposed controller (3 - 2) becomes the well-known PID control, indeed
when written in original coordinates

t
r=-K,e, _erl _Kijel(G)dg+Kiel (to),

)

where K, =K, K » =KK,,and K, = KK, . For the injection of desired error dynamics, it is

done through the selection of gain K; and K,. As per Theorem 3.1, after selecting K} and K5,
control gain K is selected to ensure stability and ultimate boundedness. Since the vector o can
be selected to have an initial value such that s(0) is zero, from the stability analysis, desired
error dynamics, under bounded s, will begin without reaching phase. Thus, the gain selections
method is similar to that of point 1 and 2; albeit without requiring an estimate of inertia
matrix and time derivative of robot dynamics (As such discontinuous disturbances are
allowed in the analysis through generalized Lyapunov theorem). Additionally, the results
pertains to semiglobal trajectory tracking(regulation is a special case of tracking), in which
case the region of attraction and ultimate bound can be ascertained through the strict
Lyapunov functions in section 3.2.1. namely the regions Q(c) (which can be arbitrarily
enlarged by increasing gain K )and (). Besides, the stability analysis presented here allows
the extension of the results to allow non-Lipschitz desired error dynamics through strict

Lyapunov functions of Chapter 2, which allows finite time regulation as per Theorem 3.2.

205



3.4 Summary

In this chapter, the trajectory tracking control of robot manipulator is developed. In
particular, semiglobal practical stability is assured where the ultimate bound of the states can
be made arbitrarily small and the region of attraction arbitrarily large by tuning a single
parameter. Also, the stability analysis permits the disturbances to have discontinuity, i.e.
hence controller is robust to disturbances such as Coulomb friction. Of interest is the ability of
the proposed controller in generalizing the well-known PID control. From the stability
analysis, the PID gains selection is transform into the selection of desired error dynamics and
the selection of acceptable precision of error. For the special case of position regulation
problem, sufficient conditions on the gains are obtained to ensure either finite-time or
exponential convergence of the system towards the regulation point. In addition, due to
integral nature of the controller, it is possible for the system to behave as per the desired error

dynamics from the onset of control even in the presence of disturbances.
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Chapter 4: ROBOT MANIPULATOR CONTROL: OUTPUT FEEDBACK APPROACH

This chapter considers the tracking control design of robot manipulator when joint velocity
measurement is not available. Building on previous results in Chapters 2 and 3, an observer
inspired from the super-twisting based family of algorithms is proposed to achieve semiglobal
practical stability in the presence of unknown robotic model parameters and additive bounded
disturbances. By adding a linear velocity observation error correction term into the proposed
observer, the observer gains for the non-Lipschitz terms can be reduced without affecting the
region of attractions. For the special case of regulation problem, the controller-observer
structure is able to achieve finite-time or exponential convergence depending on parameter of

the structure.

4.1 Observer Dynamics

Motivated by the results of section 2.4 and so-called "dirty-derivative" filter found in the
literature, an observer dynamics is presented here. Essentially, it comprises a linear
combination of the super-twisting based algorithm of Chapter 2 with a linear damping term.

Its stability analysis that supports the main results of this chapter is described in this section.

4.1.1 System Description

Consider the super-twisting based dynamics,

él = _Llsig(gl ) +e

éz = —Lzsig(gl )21)71 —Lye, +d
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where ¢,,¢,€ R”  are the vector state variables, Lj, Ly, L3 € R2 ™7 are positive definite

diagonal matrices, 0.5 < p < 1, and d R” is time-varying and/or nonlinear vector of bounded

uncertainty and disturbances.

Consider element wise, Vi=1,...,n,

%i = _lliSig(ai)p +521‘ > 4-1)
Ezi = _lzl'Sig(gli)zpi1 _131'52[ + di

with |dl.| = sup{jg,.| 6. eK[d, ]}

4.1.2 Stability Analysis

Consider the following Lyapunov function:

VEi(Eli’g%): %Eziz + i Zli|2p

Note that the above function is locally Lipschitz and regular. It is differentiable everywhere

for p > 0.5, and not differentiable on é;; = 0 for p = 0.5.

It can be bounded by
(1 1 e L PSERPS
mln{E’E}qezl-lz Jr|eu|2p)S Var < max{i’ﬁ}qezif + eli|2p)’

thus, V7, is positive definite and radially unbounded. Since (4 - 1) is a differential equation

that has discontinuous right-hand side, i.e. when p = 0.5 and since no continuity assumption is
made on d,, its solutions are understood in the sense of Filippov (see definition 2.1).
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According to lemma 2.4, the time derivative of non-smooth Lyapunov function exists almost

everywhere

d - - a.e. 2, éi [
—V, (enaezi) €Vy = N §TK *ll
dt EedVy(2,.8,) €,;

- _l3i|gzi |2 - lli|gli v + (1 - lZi )Eurpil |gzi |Sign(gligzi )+ K[di ]gzi

Forp=0.5, V,, isnot differentiable on é;; = 0:

~ N ~
{?” } € B lliSig(eli )2 Téy , oV, (5” ,€5; ) = {SGI:I(e” )} ,
—L,K [di]

&, [Sign(ai )] —le, + K

1

foré;;#0,V é; € R:

1751‘ = _lsi|52i |2 - ln zli|3p7] + (1 - lZi ]Eli|2p4 |Ezi |Sign(zli52i)+ K[di ]5
foré;; =0,V é; e R:

Let [52, e, ]T with &, € [-1, 1] be an arbitrary element of 0V, then
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K & = (&, -1, &, +1,, )8, - 1,,[e,,|” + K[d, ],
§ |:Ezl:| [529 821]|: 12[ [_ 1’ 1]_131_521_ +K[dl ]:| ([4:2 21’&2 + 2i ])621 3l|821| + [ l]éZI

implies

VEi = P EDI 1]([52 - 121‘952 +lzi ])521‘ - l3i |E2i|2 + K[di ]521‘ < |1 _lzi ||Ezi| - Z3i |g2i|2 + |di||52i|

0, for /,, =1,
Note that p ]([52 _lzia§2 +12i ])= [l_lzmlzi _l]a forln >1,
Hel-1,1
: 0, for 0</,, <1

where the convention for the empty set of max V= —o0, if V=0 is employed.(see [74])

Thus, for all (é);, &;)e R" andV 0.5<p <1, we have

2p-1

e o~ YO ~ 12 ~ 13p-1 ~ ~ ~
VEi(eli’eZi)S_l3i|e2i| _lli|eli| +|1_lzi||eli| |ezi|+|di”ezi| 4-2)

For the ease of analysis, the state space is divided into the following three regions:

q {(ell’e2t )}
v, (¢)ht)= {62 e R 3| = B¢ L e < B¢ )

l//3q il

By A

L)
L)

l.} and the functions £, and f, are of class-IKCL (see [145])

3i

2)=1@.a)eR? 5| < B &)1 M| < B (&)

3i

where || := max {

Ll

defined by:
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1
[3ﬂzq§i’l3i)|§i|Jp
L, ’
IBI(‘é/i’ISi)::ma’X 1 B
3ﬂzq§ialzi)|§i| 3p71
lli
3l§i|, for p =1,
3i
3p-1
3. 1=
ﬂz(lg,-,l3,.):= max |l§l|’ A |i’|1 pp , for 0.5< p<1,
N A
4q§i|), for p=0,
l3i
2p-1 r
. 4p-2\ 3p P B _ 4p-2\r( 3p \-»
with llil3i>(3p—1}(3p—lj|l L,|", for p=1, and 4, (319—1] (—317_1}
In the region: qug’i ,131.): {(Eli,EZi)e]Rz e, €R, Ezi| Zﬂz(];’i . )}

Applying lemma 2.1 (for 0.5 <p < 1):

2p-1 i
e Ly, “1\, VP e e IRV TS
- <32 | 2 e
2 3 2p-1)2 p )3

From (4 - 2), we have
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. ae. [ 3p-1 l. 2 l.
~ o~ 1i |~ |°P 3i | ~ 3i |
VEi(eli’eZi)S_?kli _?|82i _|ezi| ?|e2i|_|di|

2p-1

= _r
o (((3p=1\0, Vo ((3p=1)1, )P o 2
e (s () e

While for p = 0.5, from (4 - 2)
S\ ae l3i o 105 N l3i -
VEi(eli’eZi)S_?|eZi _lli|eli - 62i|(?|62i|_ql_ZZi|+|di|)j

If the following inequalities hold, for different cases of p:

forp=1:
3, —

| = | ’|,with 11, > =2 3P 1-1,|", for p=1,
Ly 3p—1 \3p-1

or

for0.5<p<1:

3p-1
3d. 1-1,.|1- —2)\ - -
e,;| > max | ’|, A | _2’| ’ where A, = ap-2 |\ 3p |**
’ ! 2, 2 'l3p-t 3p-1
3 Lvp Lyip P P

or for p =0.5:

then V_.(e,,2,,) < 0, which is sufficiently satisfied by the states in this region.
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)

Next, consider the region: v, (|¢],,, )= {(51[,521.)6 R®:[e,| > A< Me < B¢,

Thus, from (4 - 2),

L)+l g (¢ y)

1y )j

e~ N\ ~ |2 ~ 13p-1 ~ 12p-1
VEi(eli’eZi)S_l3i|eZi| _lli|eli| +|l_lzi”eli| ﬂz(]@-

- Lo ot e 2ot 4y e
=—1; ezi|2 _% eli|3p - eli|2p 1(? eli|p _|l_12i|ﬂzq;i

1y )]

. 1
al3i)|1_12i| » 3ﬂ2q§i’l3i)|di| 3l
ll. ’ lli

L. 3
_[§|eu|3p 1 _|di|ﬁzq§i

<0

1

if [e,[2 max{( 352043

which is sufficiently satisfied for the states in this region.

Next consider the compact set:

’l3i): {(gliaazi)ER2 :|Zli| Sﬁ10§i ’l3i)>|22i| Sﬂzq; ’131')}

W3Q§i

1y).

Note that, ;,(@,,,2,) < 0 for (2,.2,) 2 v (¢,

Next, define a Lyapunov level set =, (¢ |.2,,)={@,.2,) e R* : ¥, < p,,(¢|.1,, )} where the

class ICL function ps; is defined as,
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psfqgi

,13[)=( max )Va‘(gwazi)

Eli’EZi)Ebd W}(‘gi‘J}i

1,\, 2 1 ~ |2p
= max —ezl. +— €1i|
(En,gzl')Ebd U/Z(‘gi"lh' 2 2p

:G[ (¢ bt )F + =1 104’13")]219

1
+ _
2p
which exists since the boundary of the set is compact and Vs is continuous. Then we observe

that ys (|4, 3:) < Zsi (|<il./3:)- As a result, we have

’131')

Ly (6,.2,) < 7,(8,.2,)<0 for Vo= py(¢,

which implies that each of the trajectories for the i-th planar system will enter their respective

compact level set X (|j|,/3;) in finite time and stay in it once entered.

Remark 4.1. Note that for any given /; , ,; > 0, and a bounded ||, ps3: (|i], [3;) can be made
arbitrarily small by increasing /3; > 0. Hence, it can be observed that for 0.5 < p < 1, the

increase of observer gain L3 will result in a smaller upper bound on the observation errors.

Remark 4.2. The finite time property of the observer is not shown here yet. The homogeneity
of 0.5 < p <1 will be utilised for showing the finite time capability of the observer in the

following sections of this chapter, as the controller is developed.
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4.2 Manipulator Dynamics

Recall the dynamics of an n-joint serial rigid robotic manipulators as in (3 - 1) of Chapter 3
M(g)j +Cg.4) + Fg+Glg)+ Dlg.g.t)=7 4-3)

where ¢ eR" is the vector of generalized joint coordinates, M(g) € R"" is the inertia matrix,
and C(q, q) 4, Fq, G(q), D(q, ¢, t), T € R" are, respectively, the vectors of Coriolis and
centrifugal, viscous friction, gravity, disturbances, and input generalized forces, with F being
a constant, positive definite , diagonal (viscous friction coefficient) matrix and D(g, ¢, ) being
a locally bounded disturbances. The robot manipulator satisfies the same properties as that in
Chapter 3 and will not be repeated here. Also, similar assumptions on the bound of D(q, ¢, )
and twice differentiability of the desired trajectory g.(¢) apply here. The only exception is that
only joint positions measurement is available. No velocity information from the system is
assumed in this chapter. As such, the following development will follow an output feedback

approach.

4.2.1 Control Development

The proposed controller has the following form,
7 =—Ksig(§)", (4-4)

where K is a positive definite diagonal matrix, i.e. K = diag{k }

n
i)i=1°

with k£, >0,Vi=1,...,n,a
> 0 constant, and § €R" is the velocity-estimate-based desired error dynamics defined as

s=e, +0, with
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2b

o= Kzsig(é2 Jieo + K sigle, )b (4-5)
where K; and K, are positive definite diagonal matrices, i.e. K, =diag{k, |/, with k, >0,
K, :diag{kzl.};,with k,, >0 Vi=1,...,n,b >0 constant, and ¢, =q—¢q,€R", ¢,eR" is
the output of the observer defined as,

é] = _L]Sig(gl )p + éz >

w=—L,sig(e, )" - L;é, (4 - 6)
e, =w+ Le,

where ¢,,e, e R", Li, L,, and L3 are positive definite diagonal matrices, i.e. L, = diag{lll}

Sicr>
with /,, >0, L, =diag{l,, |, with 7, >0, and L, =diag{l,,}" , with [, >0, Vi=L,...,n, and
0.5 < p <1. Let us definee, =g—¢,cR", ¢, =¢,—¢, €R", and ¢, =¢, —e, eR", then the
closed-loop system of (4 - 3), (4 -4), (4 - 5) and (4 - 6) can be written as

. (A V22 . b
o= K2s1g(e2 )1+b + K131g(el)
e =e,
¢, =M (q)r - M (q)Clg.9)d + Fg + Glg)+ D)~ 4,
él = _LlSig(El )p +e, ,

éz :_Lzsig(gl)zpil - Lse, _(Mil(CI)T_Mil(CI)(C(C]aQ)q+Fq+G(Q)+D)_éjd)

To rewrite the closed-loop system in a form convenient for analysis, let us define z, =¢,,

z, =—0, with s=e, +c=§—-(&, —e,)=§—2,, and we obtain the following form of closed-

loop system,
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zZ, =2, +,

2, =—Ksig(z, )% - Ksiglz, ) _KZ(Sig(ZZ +5+¢, )% —sig(z, )lzf;’j

§ =M (2, + g, )Ksigls )+, ()= M7 (2, + g, K sigls + 2. - sigls)') 4-7)
+K2(sig(z2 +5+¢, )% —sig(z, +S)12+b,,)

él = _LISig(El )p te, ,

éz = —Lzsig(a )prl —Le, +A, ()
where

Al('):_Mil(Z1 +qd)C(ZI +4,,2, +S+g'd)(22 +S+q.d)_M71(Zl +Qd)F(Zz +S+qd)
1 . . . 2b . 5
-M (Z1 +4q, )G(Zl +qd)_M (Zl +4q, )D_qd +K251g(22 +S)'+b +K151g(21) )

Az('):M_l(Zl +Qd)K(Sig(S+Ez)a)+M_l(Zl +qd)C(Zl +4,,2, +S+%)(Zz +S+Qd)
+M71(Zl +qd)F(22 +S+q.d)+M71(Zl +Qd)G(Z1 +qd)+M71(Zl +qd)D+éjd’

4.2.2 Stability Analysis

From the closed-loop dynamics (4 - 7), the structure (z;, z;) is essentially the desired error
dynamics injected by the controller through (4 - 5). Essentially, for any i € 1, ..., n, when s; =
&,; = 0, the dynamics of the subsystem (zj;, z»;) is identical to that of the twisting-based family
of algorithm studied in section 2.2 of Chapter 2. In other words, s; and é,; can be viewed as a
perturbations on the (zy;, z2;) dynamics. While in the s-dynamics, its structure is akin to that of

sliding mode control with é; as perturbations.
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Since the differential equations (4 - 7) have discontinuous right-hand side, i.e. when a = 0

or b =0 or p = 0.5, and since no continuity assumption is made on D, its solutions are

understood in the sense of Filippov (see definition 2.1).

The following Lyapunov functions will be used in the analysis:

k.’ w1 33
Vzi(zli’z2i): (1 _:Ib)z |le‘|2 . +Z|Z2i|4 +r, Zli| 2 Slgn(zli)ZZi
+%|zu|l+b|zy 2, fori =1,...,n,
Vs :lSTM(q)S’
Vzi(zli,zzi):%zzf +$ai|2”, for i=1,...,n.

Note that the Lyapunov function for the (zj;, z;)-subsystem is a strict Lyapunov function

proposed for the twisting-based family of algorithms in Chapter 2, where Vg € R":

2126, |4 _ 2426 4
ZIiQZIi| |ZZi| )S Vzi(Zliazzi)S ﬂliqzli| +|22i| )’

where

. 1 1 kli ? — 37’21- kli ’ kli
0, =mmny—, —f —— , 7T, = max + + N
8 2\1+b 4 1+b 2+2b

while for Vi,

kli rzi 1
2
2+2b 4 4

Sl <7, <l

3
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and for v,

Let us define the following sets:

Q.(R) = {(Zlazz)e R*" : Vzi(Zli’Z2i)S pli(R)""’Vzn(Zln’ZZn)S pli(R)’ for i = l,...,n},

RZ
QS(R):{S eR":V <p, 7},

2 2
QE(R):{(E],%)E]R”:VEiSR?,...,VN £ forizl,...,n},

en

QAR)={z.2,,5.2.,)eR" :Q,(R), @, (R). Q.(R)|
where

fori=1,...,n

3456 \* 1
= 2+2b
( )2 ATT, a+ab 27 @,
P> 1+2b ’

Wy,

1

Eli 2+42b R 4
max 5eap X LT} , forb>0,
Pii (R) = [ o i ' -

= 4
47, avab | 24 @,

4i 7[1[4

max V. (zli VZi ) for b=0,

(211,22 Jebd ¢3{[%+ﬁ]RJ
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P>

[ VP2 | Jn RJ is the boundary of the region

Jm

|
{85

Jm
= (zli,zzl.)e]R2 :|zli|Sa3i [[\/\/%+\/;]RJ ,

22i| < %[(%+\EJRJ ,

which is a compact set, with the constant, a;; > 0 (see Appendix A.l), while the positive

constants a4 and as defined as

as+2

((a5 + 1)5 —1j

a, = —>0, for any 0<a, <1

Ao (K)

Remark 4.3. By selecting | 222
y g [ A’min (K)

j to be a constant ratio, p is a constant.

Define the positive diagonal matrix, y, (R)zdiag{)/li (R)}:’:] with, y,, (R)>O, Vi=1,..,n, and

the following positive vector
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7/2(R)=(yZi(R),...,yzn(R))Twith 7, (R)>0, Vi=1,..,n, such that V(zl,zz,s,a,EZ)EQ(R):

STMOK, (s 2shr )+ STM(-)Kz(sig(zz 548, )oh —siglz, + s)ff;j <7 R)s

i=1

b

K[A,()]<7,(R),

where such an upper bound always exist since M, C, F, G, D and desired trajectories are
locally bounded, it implies that A;(.), and A,(.) are locally bounded as well (i.e. it compose of
summation of locally bounded functions). From [143], the multi-valued function K[A;(.)] and

K[Ay(.)] are locally bounded as well. Also, using the skew-symmetry property 3.2.2, we have

%STM(')S = STC(')S

which is locally bounded as well. Hence, within a compact set, an upper bound on the above

function exists.

The time derivatives of the Lyapunov functions, in accordance to lemma 2.4,

V(z1 1 Z5,8,€,6, ) € Q(R) of the closed-loop system satisfy the following inequalities:
Differential inequalities for the z-subsystem: (see Appendix A.1)
Vi=1,...,n:

for b>0:
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TT);4+4b

3+5b 1
) b 47 s | 2% @,.
H V 4| V 2020 —a |s +e |1+b li 3i
315 li 2i o 3
TT,;4+4b 4i T4

—1u

3+5b 1
. . 1| w. 56 11 w 142b ! AF w | 222 g
4i 4i 1i 2i
Va (Zli’zzi)g__ sy |Vt —— el R V4 _|S | 1+2b
2| = 4 w,

rl i
TT,; 4+4b 7T, 2+20

1
4

for b=0:

. e. 3 1 3 1
Voenzs) < 20 Ja s+l 2zl + o lea Pl Dl el
- 2k1ik2i|zli |ZZiSGN(ZZi +s;+ 521‘)

3
k21|221| s1gn(zz )SGN(Zz +5,+e, ) (klz _kzi)21i|2
< 0 for VZI h (Zli»ZZi)Ebd ‘ﬁl;{}max{‘si‘a‘sﬂrgm‘})yzj (Zli’ZZi)

Differential inequalities for the s-subsystem:

0 &(Meon wtg0- Lo

§EEV
Fora=0:

Using the following notation:

N+(s)= {i € {l,...,n}:sl_ ;tO}, NO(S): {ie {l,...,n}:si =0},0bserve that

—s" KK[sign(s) Zk|s|— Zk ~L+1]= Zk|s| 0=- Zk|s

ieN* teNO ieN*

Also, note that, K[(sign(s, +2,,)—sign(s,))]<2, and observe that for |s,| > [&,,| >0,
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K[(sign(sl. + ey, )_ sign(sl. ))] = (sign(si + ey, ) - sign(si )) = sign(s,. ) - sign(s,. ) =0

Hence,

oo ~M()Ksign(s)+ A, ()= M (K (signls + 2 )-sien(s)) | oy

V,cs'M()K —r
LestMb) +K2(sig(zz+s+52)12+l;—sig(zz+s)12+lz>j T

=

< —Zn:ki|sl.| +s"MOK[A )+ %STM(‘)S —s"K K](sign(s + €, )—sign(s))]

- 26 2

+sTM(-)K2(sig(zz 542, )08 —sig(z, +s)l+bj

< _Zki|si| + Zyli(RlsJ_ szi|z2i|

) i=1 i=1

1 n n N n k
= __Zki|si| + szi|e2i| _Z|Si|( _1_711‘(R)j

2 i=1 i=1 i=1 2

/1 ) K n n N . k n
<2 |+ 22, (13 - min] 2 (R S

i=1 i=1 i=1

A (K U n( U . k. n U

Y T FEYING) S CH) S L))y M)

i=l1 i=1 i=1

=

s|, (using lemma 2 of chapter 2),

NS TR m,_in[% 7 (R)J

where lemma 2 of chapter 2 has been employed in the last inequality.

Fora > 0:

From Appendix A.2-proposition 1, one obtains
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—sTK(sig(s+E2 )" —sig(s )”)ZSTK(Sig( )" —sig(s +¢, )a)

_zszk,q | Slgn ) |Si +Ezi|a5ign(si +Z2i))
< Sl ks, | sign(s, )~ Is, +2, " sign(s, +2,)
i=1
n
< ks fafes | +ask, )
i=1
l n - ¢ n
= a4Z|Si |ki|e2i Zki|si
i=1 i=1

l+a

where positive constants a4, as € R* are as defined earlier.

Then,
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» — M (Ksigls)” +A, ()M (K [sigls +2, )" —sig(s)’)
V.cs'™M()K

S

(s
2b 26\ |+
+K2(sig(z2 +5+8, )b —sig(z, +S)l+b) 2

I+a

< —i k,-|S,-
- 2b 2b
+s"M()K, (sig(z2 +5+8& ) —sig(z, + S)ij
< _Zki|si e + Z?/li (R)|Si| + a42|si|ki |Ezi ’ Zki |Si
i=1 i=1 i=1 i=1
:_(l_as )Zki|si " +a42|si|ki|g2i ’ (R]Si|
1 as )A’mm Z|S |+;l' 711 Z|S |

(1 aS)j“mm( ) |+ﬂ. ]/], Z|S

P ZMJ A ( |e2

(l as )ﬂ’mm(

ﬂ
Pl o | vt

T (KA, )+ %STM(.)S_STK(Sig(s +2,) —sigls)’)

" with ag <1,

I+a
+ a4 max ||62

\_/

1

"%fﬁ+%4mm»"@r%

i=1 i=1

+a, A, (K )«/_||e2
- Lol

_” ”((I as )ﬂ“mln (K)

2 a

Ljﬂﬂa% (R (zwjl

“—%m4>f%2j
(RN

S

S

Note that the property of [e,,| <[],

Differential inequalities for the é-subsystem: (see Section 4.1)

225



Vi=1,...,n:

3p-1

=t e[ e+ 72 (R)2,
H l3i

. a.e. 2
Vi (eli’eZi) < _l3i|e2i| - lli|eli|

<0, for V; > Ps;QC;

s Vi (R)}, the class ICL function,

where |¢;| = max{|1- 1,

P3iqu ’131‘)::( max Vai (ai’EZi)9

En,?zf)Ebd ‘/’3:’(‘ 4;‘“&')

I ,-) is the boundary of the region

bd v, (¢,

1)

which is a compact set, with functions f(.) and f,(.) are of class-ICL.

L <8¢

9131'): {(Zli,ZZi)eRz |211| 351051-

l//3qgi

Theorem 4.1: By redefining the control gain K, as K = k x diag {lz }; eR™, where k>0 is

the control gain, k; is positive constant selected a priori for all i = 1, ..., n. Then, the ratio,

= = — = constant

fu (K))_ MK, maxk,
mink;  mink,

ﬂ’min (K)

can be selected a priori independent of the control gain, k> 0. Thus, for any given K, K», Ly,

L,, and £;, suppose that the initial conditions for the closed-loop system (4 - 7) belong to a
given compact set, there always exists a ¢ > 0 such that initially, (z,,z,,s,¢,,2, )€ Q(c). Also, a

1> 0 can be selected such that ¢ > 12> 0. Then, by selecting & such that
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k> 3
a+0.5—
22 (1 (2 | L foraso,

and L; such that

> Vi (c)}

L), with [¢,| = max{|1-1,,

2
N (1
2 = p 3i qu
all the trajectories will enter the compact set Q(u), in finite time, and stay there for all future

times.

Proof of Theorem 4.1: The stability analysis proceeds in two steps.

1. Obviously, for a given compact set of initial conditions, there exists ¢ > 0 such that initially

(z1, 22, S, €1, €2) belong to some compact set strictly inside Q(c). A trajectory may leave the

set Q(c) only through one of the boundaries:

2

Vzi(zli’ZZi):pli(c)’ Vi=l...,n, V, :pz%, or V., :%,

Let us show that it is impossible:

(a) For the é-subsystem, on the boundary Q(c):Vi=1,...,n, V,, 5

. a.e.
now, in order for ¥,.(€,,,2,,) < 0 on the boundary, we need:
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(b)

2

€ > o (max{| 1-1,

5 > Vi (C)}’ l3i) (4-8)

To satisfy the inequality, recall that (see Section 4.1) ps; is a class KL function, thus, it

can be observed that for any given L, L,, and ¢, by increasing the observer gain, L3,

s Vo (c)},ly) can be arbitrarily reduced such that the

the value p, (max{|1-4,

inequality (4 - 8) is satisfied. Thus, selecting L3 as per Theorem 4.1, (4 - 8) is satisfied.

2 a.e.

o~ ~ . . ,
Hence, at the boundary, V7, = > V.(2.,2,,)<0 ,s0 V,isa decreasing function of

time, and (&,,,&,, ) stays in Q_(c), and

2 1 1
vy e = (p)ire” 2[e, |5 Vnlp)e” 2[e

2

2
and =V, 2[5, e[, = Vn ez

2

1
For the s-subsystem, on the boundary Q(c): V. ()z ESTM ()S =p, % implies

Jo

2c¢  and =le,| <& < Jne

N

HE

Fora=0:
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pl ﬂmm( )||S||+zf P K)||e2||—m1n[——7u( )jllsll
{2l ol Pl i R i 7,0

Note that on the boundary of the set Q(c), the first term of the above inequality is non-

positive:
(22 () { K0P o, <K>CJ o
Hence,
. a.e. . k )
SV, <- mim(z’ -7y (C)j”S” < —c,, where ¢, = miin(% e (c)j[% c}

Hence, for k; sufficiently big, ¢, is positive and, correspondingly, ¥, < 0 almost
everywhere. If the gain K satisfy the conditions of the Theorem 4.1, then, V; is a

decreasing function of ¢, so s stays in ) (c) and

<2,
/n

Fora > 0:

e N2

—||s||(w o~ 2 N

2 a

)

Note that on the boundary of the set )(c), the first term of the above inequality is non-
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(©)

positive:

S

_((l—as)ﬂmm(K)

2n*

"y, (KWAE, J
S{“”““WafmeWWJ}o

2n*

Hence,

S

. ae. 1—-a ﬂ’min K
.-.ng_||s||(( VulK)

~ AunlrfINE <

where

, {g 0]{(1-%2 )”(K)(J"—] - (71,(0))\/;J (4-9)

Hence, for Amin(K) sufficiently big, ¢, is positive and, correspondingly, ¥, < 0 almost

everywhere. Then, V is a decreasing function of ¢, so s stays in {)4(c) and

s

m

< ¥Pe.

For the z-subsystem, on the boundary of the set (2(c):
For b > 0: At the boundary, it implies
Vi=1,...,n:
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4
3155 \* 1
- 2+2b
( )2 47[1[ 4+4b 2 a)zi
2 1+2b ’
@y T, 2+2b 4
C
7= P (C): max 2426 (X T
3+5b 1 b m
4 A7 s | 24 ..
+ 1i 3i
NPy Tynmj 1 ay; o 3
4i 1
! AR
4
3456 \* 1
AT, 4+4p 2% @, 4
W 1+2b |Si| ’
4i T ;2420
2 max 2+2b
345h 1 b
47, avab || 2% @y, - 1\
: A s+ )
ay; R 3 S; 2
4 T

, hence, we have

sl.| +|Ez;| > |s,. +e,

Noting that,

3+5b

. a.e. 1 @,.
4i T s
VZ[(Zli’Zzi)S_E W Vzi4+4b < 0, VZ - 1,...,”,
7711,4+4b

So, V,; is a decreasing function of ¢ for all i = 1, ..., n and (z1, z,) stay in Q.(c).
For b = 0: At the boundary,

V.(z,.2,)=p,(c) Vi=l...n,

it implies

2

\/\/%02"s||2|s,.| and \/\/%+ nle=ls,|+[e,| s, + ¢,

Hence,
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= ¢3:[(£ ++/n C} -] ¢3iqsi +e,

|Si +ezi| |Sz'|

:Vzi:pli(c)zpli \/,0_— ,;and V., :pli(c)zpli \/p——
2 _'_\/; 2 +\/Z
(&) (%)

Thus, V,(z,,z,;) <0, for Vi=1,...,n. So, V. is a decreasing function of ¢ for all i =

1, ..., n and (z1, z) stay in €,(c) for the case of b = 0.

In the (b) section for the s-subsystem, the trajectories will stay inside the boundary

2
C

I/S(.)ZPZ 2 9

provided that A,in(K) or £; is sufficiently high while maintaining the ratio

=

J = constant,

such that p, remains as a constant. The increment of the gain K will cause the upper bound
of the function y»(c) to increase as well, since vector Ay(.) consists of term proportional to

the gain K and K [A2 ()] <7, (c)
This in turn, implies that the observer gains, elements of the vector L3, have to be increased

accordingly for the same compact region c, such that Vgi (Eh. , 521.) <0.
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As a result, the set QQ(c) is positively invariant, i.e. the trajectories of (4 - 7) stay in it once

they have entered it.

2. Now we have shown boundedness, next is to show convergence to a smaller compact set

Q) with ¢ > u> 0.
(a) For the é-subsystem:

Recall from the above that by increasing the observer gains, one can satisfy the

following inequality for a given c:

> Vi (C)}’lsi)’

% > p3i(max{| 1-1,,

now if the gain Lj; of the observer is much higher such that

2

> Vi (C)}’ l3i)’

> %2 2 Py (max{| 1-1,,

all the trajectories starting in Qx(c) will enter Q4 ) within finite time and stay in it for
all future times. Then, the upper bound on (€}, &;) can be found to be
1

2 1 1
5= Zzi 2" = (p)er 1”2, |= Nn(p)er " = [
p

2

2
| ~ ~
and — = Va 25|62i|2 = H Z|62i| = \/;'u 2”62”.

(b) For the s-subsystem, consider the states (z,,z,,5)e Q.(c)xQ, (c)\ Q. (1)xQ, (1) and
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P2 4 and ] < Vi

=

@:2)<0.(u) it

Hence, for a = 0:

p ( Auin (K )”S” Wi K)||e2||j mln[ ~7ule )J”S”

Note that the first term of the above inequality is non-positive,

-V c_ mlln[% -7 (c)j”s” < —c;, for ||s|> \/\/% 7,

k. N
where ¢, = min(—’ - 7/11-(0)] P | which is positive for k,,>2y,. (c), Vi=1,...,n,
) \/%

which implies that the s trajectory will enter the set Q(x) in finite time and stay there

for all future times.

Fora > 0:

||s||((l a5) mm(K) <
_”S”((l aﬁ)ﬂ“mln(K)S

2 a

“—a, A (K) \/_||e2
A @Wj

)

Note that the first term of the above inequality is non-positive

o[t W e = Y

0
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where c, = (\/\/% yZi J (l — asz)lj;mm(K)(\/\/% H ] — A (71:‘(0))‘/;

Note that by choosing sufficiently big K, as per the conditions of the Theorem 4.1

Ao (K)

(while maintaining the ratio ( ( )j = constant ) , ¢4 18 positive.

Thus, for all a > 0, the states(z,,z,,5)eQ.(c)xQ, (c)\Q.()xQ, () and
(€.2)e (1)

will enter the set (z,,z,,5,¢,,8,) € Q.(c)xQ, (1)xQ, (u) in finite time and in it for

all future times, in particular

s

||s||£y together with the fact that |si|S|s,fori =1,...,n, we have

S

P>

ls.|<u , fori=1,...,n

S

(c) For the z-subsystem, consider the states (zl,zz)e Q. (c)\ QZ(,u) and
(S,a,EZ)EQS(‘u)X Q. (,u) Following the same arguments presented in point (1)-(c),

it is not hard to see that, once (&)(¢), €x(¢)) enter the set Q4 x), and s(7) is inside the set

Q(1), (z1, z2) will enter the set (2.(x) in finite time and stay in it for all future times.

Hence, the set Q(n) = QA1) x Q) x Q. () is positively invariant and attracting for all
trajectories of the system (4 - 7) originating inside the set Q(c) = Q4c) x Qy(c) x Q(c) with u

<c. |
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Remark 4.4. Note that the results above show that the control law achieves semiglobal
practical stability. Its region of attraction can be given as the set Qs(c) x Q,(c) x Q.(c), while
its ultimate invariant set given by Q) x Q (1) x Q.(17). The semiglobal nature of the control
law can be seen where the estimate of region of attraction for each set of initial states can be
increased by choosing a sufficiently big gains K, and L3, for any K, K5, and L;, L,. While the
practical stability nature, pertaining to the set where the solutions converge is stable and may

be reduced at will, can be achieved as well by tuning the gains K and L3, (see the conditions

on K and L3 in Theorem 4.1).

Remark 4.5. The observation error dynamics comprise of the homogeneous super-twisting
based observer plus a linear damping term. Note that the linear term depends on the velocity
observation error, which is not available. However, it is not necessary in implementation by

formulating as per (4 - 6).

Next, consider the special case of Theorem 4.1 with the observer parameter p = 0.5. In
particular, when p = 0.5, the non-Lipschitz terms of the observer (4 - 7) will contain
discontinuity and becomes a super-twisting observer with a linear damping term. From the
results of Chapter 2 (see section 2.4.2), it has been shown that when p = 0.5, the super-
twisting algorithm is able to be exactly robust with respect to persistent, non-vanishing,

additive disturbances. Thus, these properties will be examined in the following.
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Theorem 4.2: Consider the special case of the observer with p = 0.5. Using Theorem 4.1 with

the following additional inequality,

. 3Y3)2| 1 1.1, 4 2(8) 7. (1)
mindl, | = | = | | = [—2— V> max<{4y, (u), | = | | = 2P 22250
* (4)@ ; {yz’(ﬂ) @ 34,

22 ) () +1y,)

which can be satisfied for sufficiently large L, and L,, the observation error, (51,52) will

converge to zero in finite time and stay there for all future times.

Proof of Theorem 4.2: The inequality of Theorem 4.2 can be satisfied by sufficiently large L,

and L,. Then, using similar arguments as in the proofs of Theorem 4.1, for any compact set of
initial conditions, there always exists a ¢ > 0 such that initially, (21,22 )5, €56, ) € Q(c). Also,
a 1> 0 can be selected such that ¢ > > 0. Then, by selecting k and L as per Theorem 4.1, all
the trajectories starting in Q(c) will enter the compact set () in finite time and stay in it for

all future times.

Next, recall that the observer error dynamics for p = 0.5,

él = _LISig(g] )0'5 te, ,

~ . '~ \0 ~
€, = —Lzslg(el ) —Lse, + Az(’)
with element wise, Vi=1,...,n,

~ . (e \O5 o~
€y :_lliSIg(eli) te,, ,

1

5 - y (4-10)
€ = _lziSIgn(eu)_lsiezi +A,, ()
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Note that inside (), we have the upper bound

K[A, ()] <7, (u)

Consider the Lyapunov function,
~ o~ 1 ~ 2 ~ 2 ~ |~ 12 . ~ o~
VVE:’ (eli’e2i): 5621' +l2i|eli| _r’5|eli”ezi| Slgn(elieZi)

(Note that this Lyapunov function has appeared as a strict Lyapunov function for the super-

twisting based algorithm in Section 2.4.2)

where z,(2,,[* +[2,")< W, < 7. (@, +[a. )

Thus, W5 is positive definite and radially unbounded (see section 2.4.2). Since (4 - 10) is a
differential equation that has discontinuous right-hand side, its solutions are understood in the
sense of Filippov (see definition 2.1). According to lemma 2.4, the time derivative of non-

smooth Lyapunov function exists almost everywhere

iWEi (gliagy)aé WE:‘ = N §TK|:*C|

dt ey, (Eli’EZi)

Note that for p = 0.5, W, is not differentiable on é;; = 0:
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{E“ } c { _lliSig(Eli % +e, ,
€2 - lzl.K[sign(E” )] —1e, + K[A2i ()]

and aWN‘(g EA): (22:’2+2lzi|51i|xlziSGN(Eu)_’%|gzi|25ign(gzi))
. 2, +20,e,|)2, )~ 22,2,

Foreé;; 0,V é; € R:

) 3 1
<~ 2 12 |4 ~ L2 i 12
Wy =211, |eli|2 _l3i|ezi| _Ililzi|eli|2|ezi| _212il3i|e1i”62i|

~ 3 ~ f~
eZi| +2r512i|eli”e2i|

eli| |e2i| sign\e;;e,; )= r;

+ 2rzlsi51i|gzi |2 Sign(gzi )+ K[A2i (')](212i|51i|52i + 521‘3 - 2r551i|52i |)

+75l,

Foreée;;=0,V &, € R:

Let

[(lziEZiz )fz - r5|52i|zsign(52i ) 52,.3]Twith & € [-1, 1] be an arbitrary element of 0W;;, then

K|
€

implies

WZi B Ql 1]([ 2~ L +1])12ig2i3 1

13
Z2i|3 - l3i|52i|4 + K[A2i (')]52i3

[(IZieZiz )52 —r;[ey, |2 sign(@, ) & ]{— ; }

lzi [_ lal] - 131'?21' + K[A2i ()]

EZ:’|3 _131' |Ezi|4 + K[AZi (')TéZi}

= ([éjz -1,¢, +1])lzi52i3 —

Ezi|3 - l3i |EZi|4 + K[AZi (.)],521‘3

= —]/’E
Thus, for all (é);, &; )e R", after rearrangement:

a.e.
. ~ o~ 21~ (1.5 I”E
VVE;’ (eli’e2i)g_llil2i |elz’ TS

~ |3 ~ 14 .
) e2i| _l3i|ezi| +V1
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where

) -~
Vi=-ll, |eli

15 s~ pp (1 -3 105~ |2
| 4 eZi| _(__7/21‘(/1)}|62i| _lli(lzi_”z]e1i| |eZi|

4 4
+20,,7,; (ﬂ}glz'”52i| +2r; (72;’ (:U)"' Ly lglz ||Ezi| =21, (lzi =7 }511 ”gzi

|2
Applying lemma 2.1:
1 1

_|51i|1-5 _|52i|3 < _(I'S)E |Eli|(3)§|gzi|

Thus, if the following inequalities

33 1 L, 4Y'(8 (u)
ming /y;, (ﬂ[g) o e >maX{472,- (1), (5] (gjf %}
22 (7/2[(/‘1)‘%12;)E bl

hold then the function V; is negative definite. Then,

a.e.
. ~ o~ 21~ |1.5 12
VVEi(eli’eZz')S_llilZi |eli| -

iz P
2i

Employing lemma 2.2, and the bounds of the Lyapunov function, we have:

—_

. Lae L _ _ 3 _ 3
Wai(ewezi)g_wsﬂenrs +|ezi|3):_a){ﬂ i|2)4 +q62i|4)4J

. 2 T
where @ = mln{llilzi , —e}
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Hence, the states (&,,,&,, ) will converge to the origin in finite time. ]

Remark 4.6. The addition of a linear damping term to the observer, L3 has the benefit of
reducing the gain of the super-twisting part of the observer (i.e. when p = 0.5) in achieving
exact robustness property with respect to persistent, non-vanishing disturbances. Essentially,
from Theorem 4.1, the L; term is instrumental for all the trajectories starting in (c) to enter a
smaller compact set Q(g). In particular, note that the term y, (,u) <7, (c) (see definition in (4 -
7) and section 4.3), thus, from the condition of Theorem 4.2, a smaller gain pair of L;, L, is

required to dominate 7, (,u) as opposed to that of y, (C)

Remark 4.7. Once the observation error converge to zero in finite time as per Theorem 4.2,
the control law (4 - 4) will be identical to that of (3 - 2) presented in Chapter 3 for full-state

feedback.

Theorem 4.3: In addition to the conditions in Theorem 4.1, consider the special case of
regulation problem, where the desired trajectory is a constant value, g, of the robot dynamics
(4 - 3) and control (4 - 4) and observer (4 - 6) with the parameter b restricted to 0 <b < 1, and

a and p selected as

g 2b 1+b
T
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and the disturbance is upper bounded by |D| < p,|e, |+ p,|d] + psle; ||2 + p,|d| ? i.e. vanishing

perturbation. Then, for b = 1, semiglobal exponential regulation is guaranteed, provided that
K and L; are large enough with respect to initial error conditions. While, for 0 < b < 1,
semiglobal finite-time regulation is assured, provided that K and L; are large enough with
respect to initial error conditions, and the gravity vector at the constant desired position, G(q,)

1s zero.

Proof of Theorem 4.3: For this section, power of the control law a is selected as

azz—b,p:ﬁfor0<b£1.
1+b 2
Let,
@
=0, z,=-3, 5=-sig(K"G(q,))>,
Z,=z-2,,2,=2,-2,,8§ =5—§
where

1+b
5, = —‘ki_lgi (QOX 2b sign(kl._lg,. (g, )) and g, (g, )is the i - th element of the vector G(g, )
Note that g, is a constant vector, and as a result the 5 vector is a constant vector since the
matrix K comprises constants as well. Also, 5 is a constant that is defined for stability analyses
only, its actual value, which require knowledge of gravity vector, G(gq) is not required in the
control law. Also note that D comprise of vanishing perturbations only, i.e. po = 0 (note that

this is the general assumption on regulation problem, however, if constant perturbation do
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exists, the constant vector, 5 can be redefined to accommodate this extra constant term).

Hence the closed loop system (4 - 7) could be rewritten as

~

Z,=Z,+5,
?2 = _Kzsig(zz +5+e, )% - KISig(El )b
. 2b 2b 2b 2b
§=-M"(Z, +q,)Ksig(3)ie + M (2, +q, )K(sig(s)m —sig(s )i +Sig(§)1+bj
(4-11)

2b 2b

MG g, )K(Sig(s £3, )i - sig(s)m,j V&, ()

5 =-Lsigz) > +2, .

éz = —LzSig(El )b —Lje, + Z2 ()

where

Zl(')z_Mil(Z +qd)C(EI +4,,2, +§+éd)(22 +§+q‘d)_M71(31 +qd)F(32 +§+c}d)
_Mil(zl +qd)(G(EI +qd)_G(q0))_M71(Zl +qa!)D_q(1

+K,sig(Z, +5 +2, )% + K sig(z,)

2b

A, ()= -M"(Z +q,)Ksig(s)es + M (Z +q, )Ksig(s + &, oo
+M71(El +Qd)C(EI +q,,2, +§+4d)(32 +F+4d)
+]\4_1(51 "‘Qd)F(Zz +E+gd)+M_l(El +Qd)(G(El +Qd)_G(%))
+M_1(31 +q(1)D+an

2b

Note that the fact of sig(5)s =—K "G(g, ) has been employed based on the above definition.

Consider the Lyapunov function

V(E,Z,EZ,EI,%): [VE(E)]Z +VE(51952)+WE(EI’EZ)
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with VE(E)Z%ETME= VE(EI’ZZ):ZVZi(EIi’EZi)’ WE(ZI,%):ZWEI.(Z”,EE).

Note that the § and z subsystem have the same form as the s and z subsystem discussed above
in Theorem 4.1 (i.e. by replacing (s, z1, z2) with (s, 1, z;). Hence, a similar Lyapunov function

structure is employed here, where

kli2 |3
(1+py "

1+b

S N i e
Zli| 2 Slgn(zli)z2i+(l+b) Zy;

2+2b ~ |2
| z 2i|

Vs (Zli7Z2i):

1~ 4
+Z 22i| +r,

eu”ezi| b Slgn(e”ezi)

2
and W, (Enazzi): (% EZ[Z * ll-iz-ib |E” Hbj o

Note that 7., >0always exists for any ki; > 0 and k»; > 0 such that Vz > 0. While

1+2b

1
EYETS EYC YR
AW (2,2,)20 forVi=1,..,n |2 PP L s
8+4) \1+b

where 7> 0 is a constant . This Lyapunov function is positive definite (see Section 2.4.2 in

Chapter 2).

Remark 4.8. Note that an additional term is included for the observer Lyapunov function (see
Section 4.1) to reflect its finite time nature, which will be shown in the following

development.

Note the following properties of the Lyapunov functions:
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1 1_ V2 i
Sml <V E)<m I"= [ (5 )]2<||S||<T[V~( 5))

Also, (see Appendix A.1)

242b
ZI’ZZ Z”lz Zl| |Zz|
~ |242b ~ 4 .
ZEI(Z|ZU| +Z|22i| j’ where 7, = ml.m{Zn}’
i=1 -1

2+2b
1 LIy Ty 1 nof
o g (s
| R S I
n (B Rl

> sz ”mb + ||32 ||4), since min{ib, l} _1 for0<b<1 and n=>1,
n n’ n n

SN

], using lemma 2 of chapter 2,

and the term,

b b
2+2b 4
2+2b = 2+2b
||le| +||ZZ||“I’ —QIZ [ ) mZz” )

2+b b
< nmmzl ||2*2” || || )2+2b, using lemma 2 of chapter 2,
b
2+b
<n 2:2/; [ﬂ V. (El ,Z, )] e
z;

= [ nb ][Vz (2.7 )]“bzb

7Ti2+2b

Consider the time derivative of the Lyapunov function V; along the solutions of the system

for the s-subsystem:
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v. eV =vr. K[f)5)+ %STM(.)S

cS"™M()+M7(Z +q, )K(sig(?)ub —sig(s)i+s +sig(s)is

- M (2, +q, )Ksig(§ )i

M 4, )K(sig(s+€2 )i —sig(s)12+i7J+K[Zl(-)]

2b

2b 2b 2b j 1 T

2b

Note the following four properties that will simplify the above expression:

1. From Theorem 4.1, the states (s, z|, z;) will reach and stay inside the compact set, Q5()

x Qg () x Q.(u), and 5, zj, z; are constants, we have, for 0 < b < 1, the following upper

bounds (Note that the upper bound of the disturbance, ||D|| has been expressed in terms

of the state variables of the closed-loop system):

S MOR[, O 5010 <=

where

~ [lll~12
Al

ST + 7B+ 75Tl |+ FICa 21 + €.

+C,

+5

GalF1 +[FIC Jaal + 2R, 4.z |

kBl + 5T lgs = a0l + 1o, Bl + 5. 22 |

+palST + 5l + Sl 2] + 21

+ Pl +Flpslaal” + 22, EIFT + 205142 .|
1-b

+2p, 5 g+ 7l . |+ 7ok T =

1-b 2 1-b
ks [$n> 2 2,0+ iy [§ 2 5]

1-b 2h
ks [ &

~2 el il 1 18 e
SIS+ 7: Gl + 7, (BT ] + 2

1-b

_ = 20 ~
+ mkeyn > 2§65 [ + e (e f)ys (5]
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kl = ﬂ’max(Kl )9 k2 = /lmax(KZ )’

~2 o 2 2
ol +3p, [+ mken> 2 [ | < s ()]
_ _ ,
SIBNE] +mken =[S+ mrkon? 1|2, .

~|| |~ ~|l|~ ~||[|~ ~IIl 11~ 118 ~ ||

+h SN+ 2l TE+ palSTIE] AN II(IIZI I+ IIZzll“bj
+2C, Iz +3p. 5l + pFIEL + C.lENIST

2b
1+b

ke$llaa = ol + Collda 1T +3p:[F gl + P2l
+2C, |5l + 711+ s 4.

< alln(eflys ()]

with #5(.), 74(.), 7s5(.) are positive functions and «(.) is a class /C function, and the vector

7(?) 1s defined as:

7" ()=, ()-a0)" a0, (1d," (1) e R

2b 2b

G T S
sigl — —sigl —+1
S, S,

2. Let, us define the diagonal matrix A := diag| — +11, and

2b

since, sig(E)ﬁ =-K"' G(‘]o ) )

then, izki@gﬁggﬂ(z = [s,| % sign(s, ) +[5, [+ signfG, )j . 5"AG(g, ).

i=1

3. From lemma 2.2:

n 1+3b 1

A ||N|
22—
i=1

n

1+3b
| 1+b

2

7
, and Z|§,| S\/;”E
i=1

1+b

4. From Appendix A.3 - Proposition 2,
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2b 2b 1-b 2b
2 ~ 2 s 2
|5, + &, |+ sign(s, + &, )—|s |+ sign(s, ) < 2" [&), [+,

and the fact that |, | <|e,

,Viel,...,n.

Substituting these properties, V. becomes,

n

- n 1+3b 2b 2b
7, <S5 3k i) s sign(s )+
i=1 i=1

2
1+b sign(E, )J

n 2b 2b
- Zgi(ki |Si + EZi|ESign(Si + E2i)_ ki|si|ESign(Si )]
i=1

2
1+b

1+3b
SIS + 7 (sl e+, (ﬂllfll(llfl I+

1-b

_ -
+mkon2 2§, [ + alln(e) s ()]

oyt e 3 s e 12
S g+ ST G+

n1+b

1-b 1

_ =2 2
a5+ F1IAG G, m{mkw 2 jnsnna &

where

k = ﬂ“max (K)7 k = Z’min(K)'

Employing the bounds on the Lyapunov functions and lemma 2.2, one obtains,
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143b 143b

- b 143b b 143p

Ve <— ]_;) ii Vb _f(%)VF +7; (ﬂ £ Vz2e2h
| ue Jn

\/_n

mn 72' 2+2b

1-b 1-b
o A 2 b |22 A
Jm

+7,(u

V~2V~2+2b +[a(“77 ]D}/S +||AG qom(\/g]V;;

(4-12)

Similarly, we compute the time derivative of the Lyapunov function for the z-subsystem,

(see the appendix A.1):

217 z i le’ZZI

Hence,

V.(2,.,2,)<~d ZVN car +d Z|s |V~,2+2b +d Z|s +e, |1+bV~.

where
! il
2+2b 4
_ . 4i _ 2i — 3i
dO - miln 3456 | dl - mlax 1426 d2 mla_x ay; 3P
T, 4+4b 7T, 2+2b T4

Using lemma 2.2:
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1+2b
1+2b 24+2b

n 1 n
Y 242b
dle7i2+2b <n dl(E:VEij )
=1 =

and the fact that |xl.| < | ,Vi=1,...,n, xe R" , thus it follows that

X

. ae. 345p _1 1+2b 26 1 3
~ _ o I3, 2+20 75 +If + 5 4 "
V. (zl,zz) <—d V.40 + ”S ||n d,\V.2+2 +||S +e, ||1+b ntd,V.4

55 L w2 L 2 31 2 3
<—dyVowa +n220d 5|V, 20 +ntd, S| Vs +ntd, |6, |10 V. 4

where in the last inequality, we have employed the following inequality:

||F + 52”% < (“E” - ||E2 ||)%, using triangle inequality

< ||§||% + ||52||%, for 0 <b <1, using lemma 2 of chapter 2

Employing the bounds on the Lyapunov functions and lemma 2.2, one obtains,

VE(EI’EZ)S_ d,V- a4 +n2+2bd1 V2V 2+2

Jm

2 (4-13)

1 by 3 L 2% 3
+n*d, [QJ Vi Voa+nid,[e,|me V. +

In

ae. 3+5b 1 (/2} 1 142

Next for the é-subsystem, the derivative of the Lyapunov function is:
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V?z = VWETK|:il ](51 ,52)
)

SR )l S - 2 [ -
— ,Z;: + rgll,.|E”|%|Ezl.|%sign(g”gm)+ rg(%jlh N1,|1+b|e2 | lfbb
o (2 e i@z,
SR O 2 el (2
Define &) := sup{|}: # €K[Ax()] }, then, we obtain:
W, < —Z[i aflﬂjb}r—?f]aﬁﬁf’ o
o\ 1+b 2 &
N0 (ff’b RN ‘l‘?”j|gh||g%|‘fffj
where
il Ak ~Lle, — e 2 e _ 2ty 2™

~ ~ 12 I”E —~ ﬂ
n 1+b 1,'| 2 1+b 82i| —?|62i|1+b

VV]:i:I b 2 2+4b), o b 2P 244b), o o 2
R A e N A T b A

Applying lemma 2.1 we have Vi=1, ..., n:

1+h 2+4b
3+5b 3+5b 3+5b \3+sb,_ (34 5p 3456, 2t
|ell| 2 —|e | 1+h < - 15 eli| 2 >+ 4h |82i| I+b
2+2b 1+3b
~ 222 22 345b \3+5b o 1en( 34 5b (356 130
Sl Rl s {3 )
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b
Sy [y 2 < 1+b6\i+p, i”b bLNNLb
- |eZi| - |eli| |€2i| = T |€2i|l+ (1 + )”b |eli||62i|l+

Thus, if the following inequalities

L, b o
ming 4, W s Aol Lily2eas |, Aslyveb 2,

ll 1+b

3+5b 2+4b

(1)1+b 6+10b (3+5b}1+b
A== - ,
6 (1+5)* \2+4b

1+3b
A _( (1+5) jm 3+5b (3+5bjz+2b 1 (1+bjl+b( 1+b jzw
*\12+24b (1+b? N1+36)  ~ 77 Ub 2+4b)

hold then the function W is negative definite. Note that such an r;; > 0 always exists for any

hi>0,5L;>0.

Then,

A R =
2hy 15 ~ 244b ) g [P
+HA )HZ( 2 1b|€z,| |eZ[|3+r5[+—j|eli”e2i|l+bJ

1+b

(4 -14)

Note the following properties that will aid in simplifying the above expression:
1. Note the above definition of the diagonal matrix, A, we have

2b

(Ksig(E)lii - Ksig(s)lzThb + Ksig(§)1+bj =—-AG(g,),
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2. While from Appendix A.3-Proposition 2,

2b 1-b

Ksig(s + &, )b — Ksig(s)% < 2EK|Z2 )T,

2b
1+b, where |ez|:(je21

eZn

geeey

3. From the property 1 of the manipulator dynamics, 0 < m, < ||M - || <m,,

4. From lemma 2 of chapter 2,

1 1

n 2b 232 n 2b 2
() (SN

i=1

2b

sig(3 o

, using lemma 2 of chapter 2,

IA
=»—- —_
Tt
7 N\
T NM=

N
T o
~———
zl

1-b

— | (& 2 — a2
| Dt A

2b 1=b 2b
and similar arguments we obtained ||[2, |1+ | < n*2 &, |1+,

5. From lemma 2.1 of chapter 2,

2
’

2021+ 202 M |+ 205 Ml < 2021 + 2057 + 2l

6. From Theorem 4.1, the states (s, z;, zo) will reach and stay inside the compact set,
Q) x Qu(p) x Q.(u), and since s, z;, and z, are constants, for 0 < b < 1, the
following functions can be upper bounded by,
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1-b

2b
m, K2 5+ 3m,C, 5+, 715+, 5]+ 30, J 7ol

i e |2+ 7, |2 |+ 7, o+, |z2||} {” I+ ”H,,j
2
+m[f||zz||+3m1p4||zz|| +3m[Cm||zz||

ke T Mk o+ C ML J w0 A )
ek, -]+l 7 |AGla, )

with 5%(.), and p4(.), are positive functions and a»(.) is a class K function, and the

vector 7(?) is defined as: 1" (¢)= l(qd t)-q,)" 4, (¢)q," (t)J eR”
7. Employing the above properties, after algebraic rearrangement,

1-b —
1 o £2 e o+

T, (“77(t )”)+ m, [AG(g, )|

Note that the upper bound of the disturbance, ||D|| has been expressed in terms of

the state variables of the closed-loop system in obtaining the above inequality.

8. From lemma 2.2 of chapter 2, the following can be obtained,

— — — - 2
Zlellz -l Zlezlw <-—z Zlezl <nilesf

n 2 nl+b

3

since g | > e, |,

n n
~ |1+b |~ ~ ||1+b ~
2ol Tl <ol X[,
i=1 i=1
~ ||1+D |~
<nle ]
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n n

1+3b 1+3b
Z|eu [ A T Z|€u

i=1 i=1

since ||e2 || 2 |e2i

5 3

143b
1+b

<[l

Substituting the above properties into (4 - 14), one obtains,

. ae | 122} 1|35 (o 1| 3
e e R (e i
(Hb LJ ) e

2b _ b 1 2b 21_2 o (114D (o %Nz»
Ve (,Ums ||l+b + 77, J 2 1+b 3y 2+2b ”ez ||1+b Th \/I’l”e1 ” ”82” +n ”e2 ”

2b X .
e+ el mIAG | | n 220 e

+

where

;i’min (Ll ) = ll > /’i’min (LZ ) = l_2’ //Lmax (L2 ) = l_2’

Employing the bounds on the Lyapunov functions and lemma 2.2, one obtains,
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. ae. l l 2 1 N 3+5b 7 1 +5b
i, [1 < mJneln : (;)[ ]n I
1+b

n? n
2 2
_ \/§1+b2\/_ b g\/EHbLN
+1276(/" ﬁ 1+}; V§1+b||el||lb||ez||+7/6(/u)n2 ﬁ Vsl“’b”ez”3
2b
V2 (24 4p) b
s 2| (2 e
b 1-b 442b .
| B el 2 B
1
+rg(2+4bj2”b 1, k nt e ||||62|| "
1+b
— 24Jn b by
e (ﬂ{l +Z HL ]V22+2b ”el ”l b”ez”
Ei2+2b
5 3
. 244b\ 2 | e e
rlil el e | S s
T 242b T, 2+2b

(4 - 15)

21— 1+b 3 3
] i A RR S A

1430
e 32 Nl

1+b

+ [a2 (“77(t]|)+ i, [AG(g, )”]X

With the above results, we are now in a position to find the time derivative of the Lyapunov

function for the closed-loop system, namely:
V(5.2,,2,.6.,2 )=V, &) +V.(2,.2,)+ W, (¢,,2,) and hence V =2V, V, +V. + W, .

Thus, substituting results (4 - 12), (4 - 13) and (4 - 15), after rearrangement,
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1+b

_(%j[ o ]||e2 |0 + 7, + 7, + 2alfn(e))ys (1) +|AG qo)||{

+ [, (o)) + 72, | AG (g, )| 1+b

where

1436

. A+b 345b 345b
I/l = — l l_zb £ ng — ﬁVE4+4b

4 = m 4

n

1+3b 1435
1 k ﬁ y ) ( ﬁ 1+b . 345h
N = ~= — _2+2b

3 b 1
+2y, (,U 4 ViaVi2ab +n??0d, (i
\/E T, 2+2b

21,

Jalel| .+l
2+4b - i 22
e e A

1 142b
Vs 2 Vz 2+42b

2
Jm
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1+3b
] 1 k 2\ s g 345h 1\ ! L. 1  345h
v, —(EJ[ ]_% }(EJ V.22 — TOVZ4+41; _(EJ[_;fb J[ij}”el ” 2
n n
. 1| 30 . 1 T
() s [l | (%) [ e
b i
1-b 1-b
+n4d e ||l+b V.4 +2{mk n2+2h +21”’k\/_J[\/E V5%||Zz||%
\/E
2b
7 \/_ 2\/_ + 2 \/E 1+ LN
+z2y6<u{ﬁ e A A

2b

V2 VP (244bY b
o[ ) (e
1-b
" 2(2’\/_}21#7— kn2+2b|| || ||ez|| +[, + 7 (24_—4-[)}
1 1+b

2\n

+l—277(ﬂ{

b
n ~ (114D ||~
5 ]Vz2+2b||61|| [.]

1
2%, Kt g

1 + b Ei2+2b
5 3
2 b3 2+4b n? b e 22
+ 7. (u — V.22 ||e2|| +77, (,u)( i j — V. 242 ||e1 ||||ez|| 1+h
T, 2426 + T, 2426
For Vy, applying lemma 2.1
3+3b 26
3+5b 3+5b + 3 + b
T T —(3+5bJ3 ” V?2(3+5b)3 "V,
‘ 3+3b ‘ 2b
b 2+4b
3+5b 3+5b + 1 + 1+2b
Vrian — Vs <o S0y 30 ey,
‘ 1+b S\ 2+4b
20 3+3b
3+5b 3+5h + b + 3
_ V?2+2b - VE4+4b < —(3 + SbJB * VFHb[3 + SbT » VEZ,
) 2b ’ 3+3b
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thus if the following inequalities
3456
k > rnax{ﬂ,4}/3 () Aslya (e, 26, 2, }a

where

143b
2b [— \1+b
A, =8nt0| X2
4 = ONn T >
Nm
345b
143b

2b 7

A _2§1§i[36+36bj( 24b J" Jan (@J

; 3+5b \d,(3+5b) Jmz o V2)
3+5b

2+4b Ranid 1435
5 :(12+12bj 244480 10 2 (N2 ] (Vm "
© \ 3+50 \d,(3+5b) W \m V2

3+5b
3+3b 26\ 2 1+3b

Ease) =2 b b
; :( 24b j 36+36b | | L [N2 ) NCRES
7 \3+5b )\ d,(3+5b) | Jm V2 )

hold then the function ¥, is negative definite. The above inequalities can be satisfied by a

sufficiently large gain K.

For Vs, applying lemma 2.1,

3+3b

e -, < (“SZ’J“”” ||(3+5”j“”ni,
: 3+3b :

3+3b
e i< (3 *51’}“" ; ||[3 *5”]“" v,
‘ 3+3b
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3+3b 2b

_ﬂa”if_Jgiiig_{§+§z)“ﬁ” ”(3+5bj“%
+

b
~1+b

2+2b 1+3b

JUTEAC LAl 34+5b \3+5b \  yisn( 3+ 5b \3+5b 3P
T Y (R e T el A

2 1+5b

3t 3+5h 3+ 5b \3+5b 3+ 5b \3+5b
el -l {222 (222

|e2||1+b N

3+3b 2b

_4@ﬂﬁi’_V5iiig_{3+5bj“ﬁn ”(3+55)“” Vi,

3+3b

3
SR A A —kﬂ3 Kl
2

3+5b 3+5b 3+5b 3+3b \3+3
e+ [l - -
’ 2

2
<_ 34+5b\3+3b\3+30(3+3b 343
1 B+3 N 2 1+3b

2
3+5h 3+5b 3+5h 3 g 3+5h 1 3+5b
[l = el Ve << Sl s G|
Z 2 1 2

<{@;§{3iﬁyﬁnwwq(
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3+5b 5 l R,
Yy | e

3+5b
|3+3b — V 242b

3+3b

1436

3+ 3b \3+3b
(2 s

3+3b
1+3b

+ 3+5b
|3+3b — Vs 4+4p

3+3b

3+5b b
3+5b
] il 2522 )

2b

3+ 5b}3+5b b
N1+b,

(3+5b)(143b) 3+5b
(1+5)(3+3b) I/§2+2b

2b

2b

3+5bj%% b
~2+2b



2 1+3b
3+5h 3+5b + N N (3+5b)(1+3b) +
_”51”7 —||Zz|| 1+h —Vz% < —(3—’_23[))3 » ||e ||3+3b(:1;+3b]3 » || ”( 1+h 3+3b)] V;Hi];
+3b
. 3+3b .
2 1436 \ 34 2
3455 343b ) (3436 o | 345h s b
G| 2 1+3b il 2 722
thus if the following inequalities
3+5b
/18[_1 l_z’ A A A Ay [76( )]3+3b ,
LI 3+5b
[ %] 1 7 \1+3p "
min; 4, = 31+5bb o> 7 > maxy A 2+2b1 b UZJ ’}“16[77(,“)]2*;2» , (4-16)
[yé(lu)]zub l_l 143b 1_2@ 2
L 3+5h 3+5b
[ 3+5b N 3t5b N,
R s o)l (L) [ (4]
3+3b 117 1-b > /118 2+42b 1-b
[7/7 (,u ]2+2b Z Z 1+b L [, b 1y mb 1_2
where
1+5b 3+5h
- 2
_( 3+5b j 1 3+5b 1 1+b
" \24+24b) ") 80+400p| 2 1= ! ’
n n' 21t (2 +4b)m, k n'+®
1 1+3b
3+3b b 2+2b
3+5b 226 1 3+3b
3+3b Leld 2i4b
8n 2 (80+240p)n 1+

2b

3+5b
2+42b

13 i
) [(3+5b)@]{«/§]‘”’
ﬁ —
16bn'+* Vi

|
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2 1+3b

343 2+2b 2+2b
(345D 2| 1 3+3b 1
Y343 15 80+240p )| x4
8,1 2 n 1+b
3+5b
2b 3+5b b 2126
y 3+5b do 2420 14+ pH \2+2b T 2+2b
2b 16 2+4b 2 ’
n
4+2b _ 442b  2+4b 2b 48+48b % 2+4b  3+5b 345h
111 =D b mn, kn*?p i 112 — 80( ] n by 8b d27
3+5h \ (3+5b)d,
3+3b
b 2+4b 2z L 2
3 oo (26 ) (244240 nt |V )
h 3+56 )\ 3+50 ) k | 2
3+5b 3+5b
_ 1 =0 2b 2b
x| mk,n 2+ +2% e n £ ’
Jm
1 _gg[3+3bY( 166 ) n™ NCRRT i | 3 N2
" 3+56 J\3+50) k | 2 Jm ’
143b) 2*((24+24b L Yicw 2\, b_ - &
Qs =80 —— [n ¥ || === |1+b) n 2 2%, ka2 |
3+5b 3+5b 1+b
3+5b
2b 5 "
2 343h 36 Y| ar |
As =80n 1+ ( j p ,
3+5b )\ d,(3+5b)
ZZi2+2b
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2 2+4b 3
A= (24+ 24bj (@annwp + 3bj
3 3 3+5b

2b 1+3b fTbb 2b %
y ( 16b ) 1+h [\/%)Hb [ﬁ]nb[&]
3+5 )| k |2 Jm ) 1+b ’
80 325 i 3+3b T 2 e\ 2vn & B
S A DR AN P
3 \(B+5b)d, ) \3+5b 1+b T

hold then the function ¥, is negative definite. Note that the inequalities (4 - 16) is feasible

with respect to /,,/, . Thus, for a given K, K>, and K, there exists a sufficiently large L, Lo,

with the ratio,

L,
— | =constant
[,

remaining constant, such that a positive s > 0 exists that satisfy all the above conditions.

Then, we have,
1+3b

L ae. T+b 345h d 3+5b 1.7 3+5b
V<- ]l;b ﬁ Vi — f é Vsz - _OVz‘“‘”’ - l == 115b ”51” ?
Jm =\ m 2 2) 1+b *

n1+b n 2

5 i 5 bt cta 2

3
AN A +r5(2+4

b
1+b

1+b

L)+ ||AG<%1|]>{ Lol

1+b

ltgé
il
Note that from lemma 2.1, we have
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21 Vi e e
[—”]zz e

s 244bY o ..
R e T AR (Tt

1+b 1+b
where
24nl, )2 e dn[2EAY 2]
1+6 N3 1+b N3+3b
7T, = max

7 3
2Vnl, (1Y), 3 o[ 24D 130
1+b \3 1+b \3+3b
Next, note that (see Section 2.4 of chapter 2) we have the following bounds on the Lyapunov

function, W5,

n 1n
~ 2426~ |4 ~ ~\_ — ~ 2426 |~ |4
Ezzqeli| + eZi| )SWE(elaez)Sﬁz Qeli| + eZi| )
i=1 ‘

_ LY (1 noo1 (1 142b
7T, = max + + , —+ +7; ,
1+b 2+2b 24+2b 4 2+2b 2+2b

Using lemma 2.2,

L 12420 N (4 (2 220 -2 N
ICAREED Y AN 3 CA K A
- e e e
1 1 1 ﬁ i
n n
Zib(zqaf)j ’ +l( Q52i|2)j2, using lemma 2.2,
no\ iz n\ iz

1~ 1~
=—[el™ +— el

> g™ + ) m{L l} 1 for0<b<l and n2l
n n n

S

264



and

2+42b

Sfel - Sl -3+ Sl
(8]

e 2+2b
=[al" +lel’

(Z|€zl| j , using lemma 2.2,

Hence,

Lo ol ) w@2) < mlal ™+l

Next, note the following inequalities (using lemma 2.2):

3
2 2+2b ~ 114 |a
el el = el F+ (e
! b
n 2+2
4Q|elll el

P
< 2‘{—) /8
T,

3+5b 3+5b
2+42b
4+4b 4-+4b
o e

242b s 3+5b
~ + ~ . .
> Q|el || + ||e2 || )“‘“’ , using lemma 2.2, since 114

A

3+5b 3+5b
&l > +le] v

<1, forO<bh <1,
3+5b

1 4+4b 3+5b
> b WE 4+4b

T,

Thus, the time derivative of the Lyapunov function becomes,
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e e e Y Y AN 0 (AR
=\ m
3 3
+ 75 ”AG(‘IO ]|(V§2 + WE4)
, 3+5b 3+5b 3+5b 4 2 2 2 2
=7, (V )‘”4” + V. avab + W av4p _f(:jVE ta; (“77(4%(1/? )4 * W54j
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Note that lemma 2.2 with

<1land the bounds of the Lyapunov functions,
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V=

K

G 7.2+ 7.@8) 2 [ G+,

have been employed in the above inequality.

Note that when b = 1, recall that the term

2b 2b

AG(q0 ) = diag| — sig(ijhb — sig(? + leb +1 G(q0 ) = diag(— |— l| Jrl)G(q0 ) =0.
S. S.

1 l

Also for the case of 0 < b < 1, consider the case when the final desired position vector g
corresponds to the rest position of the manipulator where G(go) = (0, ..., 0)', or the
gravitational torque of the manipulator dynamics is absent (i.e. in space where gravity is
absent or in a planar horizontal configuration) where G(g) = 0 for V ¢ € R”, the term AG(g)

vanishes to zero. We obtain,

3+5b 1 3

4+4b 4 22 a, (“n(t)DVZ

. a.e.
V<-mnJ

Thus, for ||7()]] > 0 as t — oo (where the desired trajectory approaches a constant final
desired position), then we have V(s, z|, 2, €], &) — 0 as t —> oo as well. Obviously, if ||7(¢)|| =
0 (regulation problem), when b = 1, the system will converge to the equilibrium
exponentially, while for 0 < b < 1, the system achieves finite-time regulation, in which the

states reach the origin in finite time with the estimate of reaching time as,

1-b

4+4b e e o~ o~
WJ[V(SOazloazzoaemaezo)]4*‘”’

T(Soazloazzovelmezo)s(
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where (S0, Z10, 220, €10, €20) are the states of the system when it first enters the region Q1) x

Qu(1) x Q(p). ]

Remark 4.9. Note that a smaller value of & can help lower the required observer gains L, and
L, (see (4 - 16)). This is useful for the case of 0 < b < 1, since both gains L;, and L,
corresponds to the non-Lipschitz component of the observer, while x can be reduced by

increasing the linear observer gain L; (see Section 4.1).

Remark 4.10. As per remark 4.5 and 4.8, the "dirty-derivative" inspired linear damping term
of the observer, L3;é; has a synergistic effect on the performance of the observer by allowing
the reduction on the level of gains of the non-Lipschitz part of the observer while maintaining
special properties of the super-twisting algorithm such as finite-time convergence and exact

robustness.
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4.3 Numerical Simulations

In this section, numerical simulations on a two-link robot manipulator were carried out to
illustrate the results discussed in this chapter. The setups for each simulation are described.

Discussion and analysis of the results are presented accordingly.

4.3.1 Simulation Setup
1) Simulation 1:

The same two-link rigid robot manipulator considered in section 3.3 is adopted in
simulation. The dynamics of robot manipulator (4 - 3) have the same parameter values as that
in section 3.3. The desired trajectory vector and the additive disturbances Coulomb friction

vector were defined similarly as well.

The control (4 - 4) parameter values were selected as follows,

150 0 18 0 11 0
a=09,K = K, = K, = b=0.6
0 15 0 18 0 11

The initial conditions of the vector o were selected as

o]

since no velocity measurement is available.

The observer (4 - 6) parameter values were selected as follows,
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L [20], iso 0]
1T o T o sl P

The initial conditions of the observer were selected as

Note that the initial conditions for the velocity observation error were selected to be non zero
to show the convergence of the observer through simulations, by having the initial conditions

for the manipulator,

0= b= 3|

00| 5} a,0-[)

2) Simulation 2:

The setup of Simulation 2 is exactly the same as that of Simulation 1 except, in this
simulation, only the parameter values of the observer (4 - 6) were changed to examine the

effect of removing the linear damping term from the observer as follows,
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First case:

2 0 0 0
Li=Ly=| o JbL=| o} P=08,

Second case:

125 0 800 0 0 0
L = L, = L, = , p=0.8,
0 125 0 800 0 0

3) Simulation 3:

The setup of Simulation 3 is exactly the same as that of Simulation 1 except the observer
parameter p was selected as p = 0.5 to demonstrate the observation errors converge to origin

in finite time under uncertainties with

L, [z 0], s 0] .
1T Ty 2T o 1sof 2T

For comparison purposes, under the same setup, a simulation with the full-state feedback

control (3 - 2) of Chapter 3 were performed with

G(O)z —e, (0), so that initially S(O) = 0, i.e. since full-state is available

4.3.2 Results and Discussions

For better visualization of the plots, some figures are shown in two windows; each with

different time intervals.
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Figure 4.1 Simulation 1. Tracking errors and control input of joint 1 and joint 2.
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Figure 4.5 Simulation 2. Observation errors without Ls, large L; and L,.

276

(d) Velocity observation error, é;, for time ¢ =



3 -4
10 (a) 10 ()
05t , 4t .

D-[“'-‘ 2 4
| S B — ] g o
— (]
E B2 -
2 A - =
=] =1
E § ,4_ ............................................................... 4
T T LS R L LT R PP PPN ET PP P i =
E S _6 ................................................................. 4
= PP =
H = P PP PP PP PP
% 2.5 E 'Lgn
— - ’ .................... T — ‘]D_ ............................................................ 4
) o

3 """"""""""""""""""""""""""""""""" | _12 ................................................................. -

a5 1 1 14 1 I
0 g 10 15 1] 5 10 18
time (s) time (g)

(a) Position observation error, €1 for time = (b) Position observation error, €, for time ¢ =
[0, 15] s. [0, 15]s.

(o) (]

0.1 T 02 T

0 b : :

= r\ A = 01 ....................... e -
g g
- : =
g0 : i E g
— : o]
o0k e ] € :
E. : 5_0_1 ...................... PP 4
=} N = N
E_Da .......................................... i .o Ié
g 2 _02_ . ...........................................
LT I O P, L = :
o : T :
E : E _DS_.. ................. RN -
g _05_ B R - g :
2 : 2
Fé N ('] N

0B : . T naAr : 1

a7 ‘ i 15 i :

] 5 10 15 0 A 10 15
tirme () tirne (s)

(c) Velocity observation error, &, for time t = (d) Velocity observation error, &, for time ¢ =
[0, 15] s. [0, 15] s.
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1) Simulation 1:

Figure 4.1 shows the tracking errors and control inputs under the output-feedback control (4
- 4) and the observer (4 - 6). As per Theorem 4.1, for initial conditions inside the region Q(c)
will enter the region () infinite time. In fact, in Figure 4.2 and Figure 4.3, the observation
errors converge to a bounded region in about 2.5 seconds. Once the observation errors are
sufficiently bounded, boundedness of the other states will follow provided gain K satisfy the
sufficient conditions of Theorem 4.1. Particularly, the stability is highly dependent on the
boundedness of the observation errors. In step 2 of the proof of Theorem 4.1 shows that the
boundedness of observation error &, affects the ultimate bound of the tracking errors. In order
to achieve better observer convergence, a linear damping term L; &, is added. This term is
instrumental to achieve semiglobal stability. As a matter of fact, from remark 4.1, increase in
Lj will reduce the ultimate bound on the observation error while at the same time the region

Q. (c) remains unchanged due to its Lyapunov region V. that is independent of Ls.

2) Simulation 2:

To study the impact of the linear damping term L; &, Simulation 2 were performed under
the same setup as Simulation 1 by removing the damping term from the observer (4 - 6).
Figure 4.4 shows the observer estimates with respect to its actual values with the same small
gains of L; and L, as per Simulation 1. The simulation was stopped at 2 seconds due to
instability of the systems. The observation errors were too large for such a small gains to

compensate as per the inequality in Theorem 4.2. In fact, to ensure stability the L; and L,
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gains have to be increased to a very large value to compensate for the nonlinearities as shown

in Figure 4.5. This is in part due to the non-Lipschitz terms of the observer sig(Eli )P and

sig(é’li )2” ' which are slow to grow when the observation error is from the origin due to 0.5 < p
< 1. However, there are some interesting features of the observer, particularly when p = 0.5
that enable the observer to be exactly robust to persistent disturbances and ensures

convergence in finite time (see section 2.4). This feature will be discussed in the next

simulation.

3) Simulation 3:

After showing the importance of L3é, in the previous discussions, the exact robustness of
the observer when p = 0.5 is shown in Figure 4.6. Note that the observation errors were able
to converge in finite time with such small non-Lipschitz gains of 2, is due to the synergistic
effect of the linear damping term. As per remark 4.6, after the convergence of the states of the
system into the region (), the nonlinearities and state-dependent disturbances will be
smaller. Thus, uncertainties that were initially unable to cope with by the non-Lipschitz gains
(see Figure 4.4) are now much smaller when the states are inside () thanks to the term, L3
é, as per Theorem 4.1. In fact, when the observation errors converge to zero and stay in it in
all future times, the control (4 - 4) becomes that of the full-state feedback of (3 - 2). In fact,
from Figure 4.7, it can be observed that the ultimate bound on the tracking errors were the

same for both controllers.
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4.4 Summary

Trajectory tracking control of robot manipulator without velocity measurement in a
semiglobal practical manner is achieved with the results of this chapter. Effectively, the
proposed controller is an output feedback version of that develops in Chapter 3. The velocity
measurement is substituted with the output of an observer that combines the super-twisting
based algorithm develop in Chapter 2 with a damping term that is termed in the literature as
"dirty-derivative". Through the non-Lipschitzness of the super-twisting based part of the
observer, several finite time properties is produced, such as finite time exact robustness to
achieve finite time convergence of observation error and finite time regulation. While the
added linear damping term aids in reducing the level of gains of the non-Lipschitz part of the

observer while maintaining performance.
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Chapter 5: ROBOT MANIPULATOR CONTROL: BOUNDED CONTROL APPROACH

WITH FULL-STATE FEEDBACK

In this chapter, a bounded controller is developed for the tracking control of robot
manipulator. The proposed controller is based on the non-saturated results in chapter 3. By
having an integral of nonlinear function in the controller, a conditional integrator-like
behaviour is attained, and is able to achieve global practical stability results for trajectory
tracking despite bounded uncertainties and disturbances. Similar performance as the non-

saturated controller is obtained when the bounded controller is not saturated.

5.1 Nonlinear Robot Dynamics

The dynamic model of a rigid n-link serial robot manipulator, described in Section 3.1,
M(q)i+Cl(g,4)q+ Fg+Glg)+D(g,4,t)=7 (5-1)

where ¢, ¢, § €R" are, respectively, the position (generalized coordinates), velocity and

nxn

acceleration vectors, M(q) € R™" is the inertia matrix, and C(q, ¢)q4, Fq, G(q), T € R" are,
respectively, the vectors of Coriolis and centrifugal, viscous friction, gravity, and torque
input, with F' being a constant, positive definite, diagonal (viscous friction coefficient) matrix

and D(q, ¢, t) being a bounded disturbances. The properties that the dynamics satisfied can be

found in Section 3.1.

In this chapter, let us suppose that the absolute value of each joint input 7 is constrained to

be smaller than a given saturation bound 7; . > 0, 1.€., |7 | £ Ti, max, Vi = 1,..., n. The control
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objective here is to design a robust full state feedback saturated control that ensures the robot
configuration vector ¢ tracks a desired trajectory vector, g, () with an ultimately bounded
error that can be made as small as required globally even under the presence of bounded

disturbances.

The desired trajectory vector, g4 (f) is assumed to be twice continuously differentiable

vector-function such that |lg, (). ||¢, ()}, and |G, (¢)|are bounded by a priori known constants.

While the type of disturbances considered here has to be upper bounded by a constant, due to
the limited actuation, (Note that no continuity assumption is made so that discontinuous

models of friction may be used in D), i.e.
If<sat, | pu+ el + poldl + pilel” + pildl” |

where ||D|| = supﬂ|g||:geK[D]}, Po, P1, P2, D3, P4 , Ps are some nonnegative constants,

e, =q—q,<R",ande, =¢—¢g, €R".

5.1.1 Control Development

Let us define the following scalar saturation function as

X, if |x| <eg,
sat, [x]= i ) VxeR,
esign[x] if [x]> e,

if & = 1, it will become the standard saturation function (see p.19 of [71]) and the subscript
will be omitted, while the vector saturation function, given a set of positive number ¢ €{¢,,

vees & }, define
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satg[x] = [satgl [xl], ...,sat, [xn ]],‘v’x eR”

and recall the following notation (see Section 3.1.2)

“sign(x, )]I,Vx eR".

X

n

sig(x)’ = hxl |“sign(x, )....,

Under the above assumptions, the proposed control law is of the form
r=-K sat[sig(,uls)a }, seR", 5-2)

where K and u are positive definite diagonal matrix, i.e. K =diag{ki }" with £, >0,

i=1?

U= diag{yl. }:’:l , with g, >0, Vi=1,...,n a>0 constant, and s e R"

a

| {|St | ] .
Le. 7, =—k,sat —as1gn(sl.) for i=1...n.
H;

When a = 0, the control becomes a discontinuous control law,
r=—Ksign(s), seR".
Note that the control is bounded, i.e. such that |7(¢) | < k;, fori=1, ..., n, V £ > 0.

The s is the desired error dynamics defined as s =e, + o, with

oc=-K,o+ Ka,usat[,u"]s]— K, sat [ez]+ sat,_ {Kzsig(e2 )ibb} +sat, [Klsig(e1 )b] (5-3)
ij 2b

where K,, K;, and K, are positive definite diagonal matrices, i.e. K, = diag{k }”:l,with

at)j
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k, >0, K, =diag{k, |, with k, >0, K, =diag{k,, |, with k,, >0, k, € {k,,,....ks, },

gle{gll,...,gln},with £,>0, & ele,,....e,, pwith &,>0,vi=1...n, and b > 0

1+b
. &, |
constant, with ¢,, > k.| — | +¢&,,,
2i

1.e.

. P
o, = _kaio-i + kailu[ Sa{_l:| - kai sat 1+b [eZi]
H; [&jﬁ
k2i

2
+sat, {kzi |eZi |ﬂ Sign(e2i )} +sat, [ku |en |b Sign(eu )]

for i=1...n.

Note that when b = 0, let the element of & equal to that of K;, and & to that of K, i.e.

&, =k, VieN and ¢, =k, ,VieN,1ie.

1n>

S

} —k, Sat[eZi ]+ kZiSign(eZi )+ anign(en )
H;

G; =—k,0, +k,u, Sa{

Then, the closed-loop system of (5 - 1), (5 - 2), and (5 - 3) can be written as

c=-K,oc+K, u sat[,u’ls]— K, sat ., [e, ]+ sat, [Kzsig(e2 )123;} +sat,_ [Klsig(e] )bl
Zf 2b

é =e,,
&, =—M"(q)K sat[sig(u‘ls)a } ~M™(g)C(g,4)g + Fq+G(q)+ D)—g,,
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To rewrite the closed-loop system in a form more convenient for analysis, let us define the
change of variable v, =¢,and v, = -0, and we obtain the following form of closed-loop
system,

v, =V, +8,

v, =—K v, —Ka,usat[,u"ls]+ K, sat 128 [v, +5]
R
ky

(5-4)

2b

—sat, [Kzsig(v2 + S)Hb} —sat, [K]sig(v1 )b ] ,

s=-M"(z,+q,)K sat[sig(ﬂls)“ } -M™(q)C(g.4)q + Fg+Glg)+D)-g, +0,

5.1.2 Stability Analysis

Theorem 5.1: Consider the robot dynamics (5 - 1), with the bounded controller given by (5 -
2), global practical trajectory tracking of the desired trajectory ¢, can be assured, provided
that the gain, K is sufficiently large up to the saturation bound 7; ma, Vi = 1,...,n, and the

desired trajectory sufficiently slow.

Proof of Theorem 5.1: The stability analysis proceeds in three steps.

1. First we will show the boundedness of o, by the following Lyapunov function

V =10'[2, Vi=1,...,n
2

o 2

the time derivative of the Lyapunov function, along its solution of (5 - 3), gives rise to:

286



Va = _kaio-iz +ok, 1, Sat(i] —ok,sat ., (ezf)
“ )
2b b
+osat, (kzi|ezi|”b Sign(em )]"‘ o;sat, (k1i|eli| Sign(eli ))

1+b

<_Kai o ki k k &y |
=7 o; _70-1' +|Gi| aitly TR, T +é&y, té,
2i

)

&, 1% g, &

N A T e

i i k >
2i

ai ai

Since i, &1, & > 0 constants, |og;| is bounded. Also, from (5 - 3), we can see that |o; | is

bounded as well.

Now, we proceed to show the boundedness of s by the following Lyapunov function

Note that ¢ = s +(¢, — o),

The s dynamics is described by,
==t (g sigls) |01 (@XCla. i+ Fy+Glg)+ D)=, +6 65-9)

Since the differential equation (5 - 5) has discontinuous right-hand side, i.e. when a = 0
or since no continuity assumption is made on D, its solutions are understood in the sense
of Filippov (see definition 2.1), and in accordance to lemma 2.4, the time derivative of

the Lyapunov function, V; along the dynamics (5 - 5) for all a > 0:
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€~

vV, eV,

C [STM(.)]K[M_1 (q)T—M_l (q)(C(q,q')q' + Fg + G(q)+ D)— g, + G']+ %STM(')S

=s'K[r]+s" (- Glg)-M(q)i, + M(q)6)~s"K[D]~s"Fg~s"Clq.4)q
+5"Clg.4)s

=s'K[z]+s"(-Glg)-M(q)j, + M(q)6)-s"K[D]-s"F(¢, o)
—-5"[C(g,(¢, —0)Ngs —o)-s"Fs =s"[Clq.(¢, — ))ls

<s"K[e]+s"a-|s[ (£ - C,l(d, - o))
with the vector

A=-Glq)-M(q)i, +M(q) - K[D]-F(q, —0)-Clg.(¢, —o)d, — o).

Remark 5.1. Observe that for a > 0, STK[ ]— —STKsatLu 51g J while for a = 0, using

the following notation:

- Zk|s|— Zk —1,+1]
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Also, let us define  the set of real number,Ne {l,..., n}, and

A= supﬂ8i| g eK[Ai]}, Vie N, with A; as elements of A, where
K[A,]

K[Alc|
K[a,]

Since ¢4, ¢4, are bounded from the assumptions and o, o are bounded (see step (1)), the
vector A is bounded as well. Hence from [143], the multi-valued function K[A] is

bounded as well. Thus, if

S> GG, —o)

b

which is possible by selecting appropriate desired trajectory and the desired error

dynamics, we have:
Fora=0:

7, <= D kfs|+sTA
I YY
=Dl -

¥, <0 forVs|#0

if the control gain is selected as k, > |Ai| . Thus, the state s will reach zero in finite time

and stay there for all future times.
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While for the case of a > 0:
V. <- sTKsat[sig(,u_ls)a } +5 A

and it can be rewritten as

a

. a.e. |SA
V<Y ks fsa] 2|45
ieN ,Lll-a
a a
‘Sf |Si
:—k,.‘sj‘sat - +‘AJ.HSJ.‘+ Z |s,.| — k;sat| —— +|Al.|
’ j ieN\j yz

Remark 5.2. Note that the last equality has single out one of its element, j € N from

the summation for ease of analysis.

Due to the saturated nature of the control, it is necessary for stability that k; > |A,|, Vi €
N. Then the maximum of the last term in the above inequality occurs when [s;| < z. In

particular, by taking the derivative of the term w.r.t. |s;] and equating it to zero, the

maximum is found to occur at

1
a

A
(1+a)k,

|Si| =

M, Vie N\j

and the corresponding maximum,
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, Vie N\j

1

a |A, a
— A,
[(1+a)1;a }( kl) e

Hence, one obtains,

1

. ae. 5|’ a ['AJJ“
<-k.|s, —_ s — A,
Vv < ]‘S]‘Sat[ ﬂja +‘AJHSJ‘+ (l+a)1+7a ,‘;j k[ 1U1|Az|

1° ) I ) I
= —(1 - H)kj ‘sj ‘sa‘{%] - Ekj ‘sj ‘sa{%} + ‘AJ. “Sj ‘ - Ekj ‘sj ‘sat[%]

1

a |A, a
+| — — A
[(Ha)ljlg‘f( k:) |

with any constant 0 < 8 <1,

a

‘Sf
a

Hj

V. "'é'_(l_g)kj‘s/‘sa{ }, fOl"Sj‘Zﬂ'j, and |s,.|e]R,VieN\j

with

1
1 1 1

! s . ! e
o3/ A CH 770 L] (R A1
S=maxs| ——— | U, | ——— — | A, ,
" (6 k./' ] H [ij ] (1+a)1+7a ie;j ki IU| |

1
2IA . 1\a
and k; > max ‘ j‘, 2 a — Z[Mj ,ul.|Al.| (5-6)
0 01\ (1+a)a Jeml K

Note that with the above conditions, we have 7, < u,. Thus, selecting each k; , V j €
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N that satisfy (5 - 6), we have
VS <— ¢, Vs g Q)

where the compact set is defined as: Q_ = {s eR": Sl.| <rm,Vie N}

with

Zi

¢, =min,{(1—- B)kiiz'{
Hj

J ,VieN,

Note that this compact set can be made arbitrarily small by increasing &; up to the
maximal allowable control bound, 7; max. In particular note that by having large &;

implies a smaller 7; since

which further implies that a smaller compact set Q.

Now with each given 4, let ¢; be a positive constant 0 < ¢; < 1, consider the following

compact set

Q, :{SE]R” : s[|£cl,ul.,VieN},

2, :{SER" V., Skﬂ},

where k,,> 0 is defined as k, = min V,
sebd Q, °
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which exists since the boundary, bd Q,, is a compact set. Note that £, < Q,. Since X,
is a Lyapunov level set, if the states, s can be confined within this set, all s;'s are not
saturated. Hence, if the states s stay inside the Lyapunov level set X, all s/'s are not
saturated. To achieve this, we simply need the set 2, — X, which can be attained

when £; is large enough, such that 7; being negative the outside of the set T,

V. a.<€'0, forV, 2k,

which implies that the trajectories of s will enter the set X, in finite time and stay in it

once entered. Hence, we have
|si| <o < U <:>|s,.| <p, VieN

In particular, a sufficient condition on k; such that each s; is unsaturated can be shown

as following:

Note that:

k,= min V > min —m||s|| = —m(mlnc ,ul)z
sebd Q,, sebd Q, 2

Also,
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max V, < max l17_1||s||2

sebd Q, sebd Q, D
)2 1 _
—m
2

Al
—m
2
n 2
Z |7zl. |j , fromlemma?2,

n
2
Z|”z|

1

max s
sebd Q.

|

<—m

N | —

N | —

where k =mink;,

a
l+a

l1+a)a

I

1

2[A,

ieN\j

Hence, to satisfy the condition Q, < X, it is sufficient for:

k,> max V,
A sebd Q,

= %m (mlm Cllui)z

g

2
a

>

|

I
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2 \k .
2u,

%

a

Ita

(1+a) a

1

[

Z|Al

ieN\j

L e
a /Ji|Ai|]

L T
¢ ﬂi|Ai|J




1
J a l+a —
2)u l+a a 1 l+a
gj J I+a ( Z|Al|aﬂl|Al|]

ieN\j

Sk> 5-7)

It is not difficult to show that selecting K that satisfies (5 - 7) implies that (5 - 6) is
sufficiently satisfied as well. Thus, for the case of @ > 0 the control will be unsaturated

in finite time and remain so thereafter.

Having shown the boundedness of ¢ in step 1 and s being unsaturated and bounded or
zero through step 2, depending on the parameter a, we are going to show the stability

analysis of the desired error dynamics (5 - 3).
For the case of b > 0:

For a = 0, we have, since s will reach zero in finite time, from (5 - 4) the (v, v2)

dynamics

Vv, =V,,

v, =-K,v, +K sat ., [vz]—satg2 [Kzsig(v2 )12:;} —sat, [Klsig(v1 )b]

&) 2b
k2

where element-wise, we have
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2
Vy =~k (Vzi)_ sat L [VZi] —sat, |:k2i|v2i|1+b Slgn(VZi ):|
& |20
ko,

i

—sat, [ku |V1,- |b Sign(vli )]
While for a > 0:

Thus, we have, since the control will be unsaturated in finite time, sat[,u’ls] =u s,

from (5 - 4) the (vi, v2) dynamics

v, =V, +s,

2b
v, ==K, v,-K,s+K,sat [v2 +s]—sat€2 {Kzsig(v2 +s)1+b}
&y |20
2]

—sat, [Klsig(v1 )b]

where element-wise,

Vii =Vy T8,

2b
‘.}2:' = _kai (v2i +S1)_ sat % [Vzi + Si] - Sat.sz,. |:k2[|v2[ + Si|l+b Sign(vzi +5; )} (5 - 8)
£
ka;

—sat, [kn |V1,» |b Sign(vli )]

Remark 5.3. Note that the desired error dynamics, after the convergence of s, for the

case of a = 0 is identical to that of the case of @ > 0 when s = 0.

From Appendix B.1, with the Lyapunov function
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Y : Vi b

V= (%vzf - ‘([satgu [ku|r|hsign(r)] drj +r1(3+23bj !).|r|;sat . ;[r|32] dr | v,
kli
e 2| 3 3
+r(1+ bk, [k—“j I|r| 2sign(r)—sat {|r| 2 sign(r)} dr
1i 0 %: 2”

where r; > 0 is a constant, it is shown that
V< 0, for V= pli([si|),
where the class IC function, py; is defined as, p;, (]si|) = max v,

(vli V2i )Ebd Ws; (‘ Si ‘)

with bd ¥, (jsi|) as the boundary of the compact set

). )}, and

Py, qSiD: {(vli’VZ[) eR’ :|Vu| s QS,- V2i| s a, (JS,-

oy, o are class IC functions defined in Appendix B.1. Hence, invoking lemma 2.6

together with the boundedness of s (see step 2), the states (vi, v;) are uniformly

ultimately bounded.
For the special case of b = 0:

Let the elements of & equal to that of K, and & to that of K>, 1.e. ¢, =k,,,Vie N

1n>

and ¢,, =k,,, Vie N,hence the desired dynamics becomes

Vip =Vy TS,

‘.)21' = _kai ((Vzi +5; )_ Sat[vzi +5; ])_ k2iSign(V2i +5; ) o kliSign(vli ) (5 - 9)
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From Appendix B.1, with the Lyapunov function

V1i

2
3
V- [% v2i2 +k, '[sign(r) er + r1|vh.|5 Sign(Vli) Vy T h (%jk‘ﬂ

0

5
2
v1i|

Vii

3
-nk, {sat] [|r|2]}sign(r) dr

0

where r; > 0 is a constant, it is shown that

I7<O, for V 2 p,, (]siu

2

where the class KC function, p»; is defined as Pz,-(IS,-D: s
Vii>v2; Jebd @y (s

with bd ¢, (]s[|) as the boundary of the compact set

Py, (JSi|)= {(Vli’VZi)e R’ : |V1i| < allqsi|)>|v2i| qp, (JSI|)} and

ou1, oy are class IC functions defined in Appendix B.1. Hence, invoking lemma 2.6

together with the boundedness of s (see step 2 0), the states (v, v,) are uniformly

ultimately bounded.

Remark 5.4. Hence, for K satisfying (5 - 7), the trajectories of the closed-loop system (5 - 4),
are globally stable, with the ultimate bound being reduced as desired up to the saturation limit
of the actuator, 7; max > 0, Vi = 1,...,n. Another way to view the stability results is, for a given

bounds on the actuator limit, and hence K, if the bounds on the uncertainties,
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A:_G(C])_M(Q)éd +M(Q)6_K[D]_F(Qd _O-)_C(Qa(q'd _O-)Xq.d _O-)

are sufficiently small to satisfy (5 - 7), the global practical stability results are still assured.
Essentially, besides the bounds on the parameters of the robot manipulator dynamics and
disturbances, the term A is also dependent on the desired acceleration, velocity and the
desired error dynamics through the term o and o. In which case, a slower desired trajectory or

slower desired error dynamics can, in effect, produce a smaller upper bound of |A|.

Remark 5.5. 1t is desired for the controller (5 - 2) to behave as per its non-bounded counterpart
(Chapter 3) when the controller is not saturated so that it exhibits the same properties such as
the ability to inject desired error dynamics, and desired performance. Indeed from stability
proof above (step 2), the control (5 - 2) will be unsaturated in finite time and stay so in all
future times. Particularly, if the upper bound of |s; is sufficiently small (by selecting gain K
satisfying (5 - 7) up to the allowable control bound, 7; max), from step 3 above, the states (vi,

V) of the dynamics (5 - 8) and (5 - 9) will become unsaturated as well (see Appendix B.1),
for b >0,

Vi

=Vy TS,
2
Vy = _k1i|vli |b Sign(vli )_ ks |V2i +5; |ﬁ Sign(VZi + Si)

forb =0,

Vi =V S,

Vy = _kziSign(Vzi +; )_ kliSign(vli)
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which is similar to the z-subsystem (3 - 4) considered in Chapter 3, and hence will exhibit the

same properties, since the states will remain unsaturated for all future times, provided |Si| is

sufficiently small.

Remark 5.6. Note that the desired error dynamics injected by the controller through (5 - 3) is a
modified version of (3 - 3) in Chapter 3 to account for the bounded control structure
considered in this chapter. Specifically, it is an integral of saturation functions that provides
boundedness of o as per step 1 of the proof of Theorem 5.1. This in turn, helps to dominate
the effects of Coriolis term as shown in step 2 above, which is essential for global practical

stability by accounting the inherent viscous friction of the robot manipulator.

Remark 5.7. Observe that in step 2 above, it is necessary for the viscous friction term to

satisfy the inequality / > C, (g, —o)| . This condition that is commonly found in the literature

of global stability of robot manipulator with bounded control (see, for instance, [118] and
[113]). This condition can be met by selecting the desired trajectories (through the desired
velocity vector) and desired error dynamics (through (5 - 3)) appropriately. This condition
restricts the desired velocity and acceleration (i.e. through the desired error dynamics) vectors
but not the location of the desired task (i.e. g;). Essentially, the desired trajectory may be
defined anywhere within the workspace of the robotic manipulator provided it has sufficiently

slow motions.
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Remark 5.8. It is worth mentioning that the desired error dynamics injection term have an

inherent anti-windup structure, rewriting (5 - 3) by adding and subtracting K, s,

6=-K,o+K,s—K, (s — ,usat[u‘ls])— K, sat ,le]
% 2b

anti—windup

2b

+sat, {Kzsig(e2 )b } +sat, [Klsig(e1 )b l

hence when the control is saturated, the above feedback signal tries to drive the "control input
error" (s - ,usat[,u_ls]) to zero. Anti-windup prevents control loop from severe stability and

performance degradation induced by integral action winding [117].

5.2 Numerical Simulations

In this section, numerical simulations on a two-link robot manipulator were carried out to
illustrate the results discussed in this chapter. The setups for each simulation are described.

Discussion and analysis of the results are presented accordingly.

5.2.1 Simulation Setup
1) Simulation 1:

The same two-link rigid robot manipulator considered in section 3.3 is adopted in
simulation. The dynamics of robot manipulator (5 - 1) have the same parameter values as that

in section 3.3. The desired trajectory vector and the additive disturbances Coulomb friction
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vector were defined similarly as well. The initial conditions of the robot manipulator were

selected as,

0-[efs0-[1 a0} ac0-]

The control (5- 2) parameter values were selected as follows,

150 0 18 0 11 0
a=09,K = K, = K, = b=0.6
0 15 0 18 0 11

1 0 10 O
H= 0 1,8”26‘12218, £y =6p=11 K, = 0o 1ol

The initial conditions of the vector o were selected as

ooy

Note that the initial velocity is purposefully made to be far from the origin in order to bring

the controller to saturation.

2) Simulation 2:

The setup of Simulation 2 is exactly the same as that of Simulation 1. The simulation is
repeated using the unbounded full-state feedback control (3 - 2), to examine its maximal

tracking errors compared to that of control (5 - 2), with the parameter values selected as
150 0 18 0 11 0
a=09,K = , K, = , K, = ,b=0.6
0 15 0 18 0 11
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Note that the same parameter values are attained when the control (5 - 2) vectors of

Simulation 1 are unsaturated.

5.2.2 Results and Discussions

For better visualization of the plots, some figures are shown in two windows; each with

different time intervals.
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Figure 5.1 Simulation 1. Tracking errors, sigma, and control input of joint 1 and joint 2.
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Figure 5.2 Simulation 2. Tracking errors using control (3 - 2), control (5 - 2).

mulation 1:

As can be observed Figure 5.1(e), the large initial conditions caused the control (5 - 2) to

saturate. From Theorem 5.1, the state o will converge to a bounded region in finite time, due
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to the saturated nature of the integral (see (5 - 3)), which is clearly shown in Figure 5.1(¢c)-(d).
According to the stability proof, once the state o converge to a bounded region and stay in it
for all future times, with control gain K satisfying (5 - 6), the control will be unsaturated in
finite time and stay in it for all future times. In fact, from Figure 5.1(e)-(f) the control inputs

for both joints of the robot manipulator remained unsaturated after the initial saturation.

2) Simulation 2:

Figure 5.2 shows that both controllers (3 - 2) and (5 - 2) have similar ultimate bound on the
tracking errors. This is expected as when the controller (5 - 2) becomes unsaturated, it has an
identical structure of the unbounded control (3 - 2). However, a more important issue is how
the control (5 - 2) can remain unsaturated once it becomes unsaturated. The controller (5 - 2)
solve this issue in two-fold. Firstly, through its saturated integral structure (5 - 3), it ensures
the boundedness of the states of o. This in turns, provide boundedness of the vector
A(including the Coriolis term), together with the inherent viscous friction of the dynamics, the
global boundedness of both o and s are achieved. Secondly, through sufficiently high
saturation levels of the control, i.e. such that for a = 0, k, >|A,| while for a > 0, need (5 - 6),
by means of strict Lyapunov functions, the state s will become unsaturated and remain so for

all future times.

Hence, due to the specific design (5 - 3) of control (5 -2), a saturated controller that inherits

interesting properties (such as gain selection based on desired error dynamics injection and
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performance bound) of its unbounded counterpart is shown.
5.3 Summary

A saturated controller is developed for the trajectory tracking or robot manipulators under the
influence of bounded disturbances. Global stability is assured by taking into account of the
viscous friction and the proposed nonlinear integrator. Effectively, the controller allows the
injection of desired error dynamics similar to the unbounded control of Chapter 3, hence
allowing simple gain selection as well. When the saturation level is sufficiently high for the
user-defined speed of desired trajectory, global finite-time and exponential regulation can be

achieved.
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Chapter 6: ROBOT MANIPULATOR CONTROL: QUTPUT FEEDBACK BOUNDED

CONTROL APPROACH

Leveraging the results of Chapter 4 and 5, this chapter explore an output feedback bounded
tracking control of robot manipulators with bounded disturbances. Lyapunov based stability
analysis is provided to show global practical tracking results, while global finite time or
exponential convergence can be obtained as well for regulation problem. Simulation results

are provided to display the control performance.
6.1 Observer Dynamics

Inspired by the results of Chapter 4, the observer that exhibits properties of super-twisting
algorithms with the addition of a linear damping term will be employed. Essentially, the same
observer dynamics of section 4.1 will be considered in this chapter for the robot manipulator

under bounded control approach.

6.1.1 System Description

Recall from section 4.1, the observer dynamics,

él = _LISig(El )p +52 >

32 = —Lzsig(é1 )2”71 —Le, +d

where ¢,e,e R”  are the vector state variables, Li, L,, L3 € R” ™7 are positive definite
1 2 ’

diagonal matrices, 0.5 < p < 1, and d comprise elements of bounded perturbations.

Consider element wise, Vi=1,..., n,
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?11‘ = _lliSig(Eli)p +ey, 6-1)

L . [~ \2p-1 ~
€, = _IZiSIg(eli) —-1e, +d,

with |di| = sup{]gl.| s eK[d,.]}.

The stability analysis that supports the main results of this chapter is described in the

following.

6.1.2 Stability Analysis

Consider the following Lyapunov function:

2
1 2 l ; 2 @

~ o~ \_ ~ 2 I~ [2P ~ |~ . ~ ~
Vai (eli’eZi)_ (E €, + 2p eli| — Tz eli”eZi P Slgn(elieZi)

(Note that this Lyapunov function is presented for the super-twisting based algorithms in
section 2.4.2)

where Ezi052i|4 +|Zh.|4p)s V., <7, (]E2i|

el

2 2
. LY L on L. r(4p—1
T,; :=min l,l 2L L 7, o =maxd| 5 |+ 4 e 1ih +—re( ) ,
8 2\ 2p 2p 4p 4p 4 4p 4p

thus, V;, is positive definite and radially unbounded. Since (6 - 1) is a differential equation

that has discontinuous right-hand side, i.e. when p = 0.5 and since no continuity assumption is

made on dj, its solutions are understood in the sense of Filippov (see definition 2.1).
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Remark 6.1. The stability analysis of (6 - 1) will be considered with a different Lyapunov
function as in section 4.1. This is due to the fact that in Chapter 4, the results pertain to
semiglobal stability, while on a bounded control approach of Chapter 5, global stability is
achieved. Since in this chapter, the observer (6 - 1) will be utilised under a bounded control
approach in the subsequent sections, to show global stability, the observer dynamics analysis

is repeated with a different Lyapunov function.

According to lemma 2.4, the time derivative of non-smooth Lyapunov function exists almost

everywhere

Since (6 - 1) is discontinuous when p = 0.5, for ease of presentation, the analysis is

separated for the case of 0.5 <p<1landp=0.5.

a) Case I: For 0.5 <p <1:

Note that for 0.5 <p <1, 7, is continuously differentiable:
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11,7 1.1 p-1

5
1:%2i Sp—l ~ 4 ~ 3]7—1 ~ 2 2i%3i |~ 2]7 ~ 2 ~ |
(S e1i| _l3i|e2i| - llil2i|eli| eZi| - eli| |ezl'| — I eZi| P

+r5l,

P 4p—1\o 2p0 227!

e1i|p|ezi ? Slgn(elieZi)+rEIZi(pTJ|eli|2p|eZi| ’
4p -1\ o (2228 . o

+7l, T |en‘”ezi P Slgn(elieZi)

K4 (Z—|| [4” 1j||]
P P

After rearrangement,

2

. ae. [ [ Spol 7 5p-1 X .
~ o~ 1i°2i |~ |°P e |~
VEi(eli’eZi)S_ 3p eli| _362i| ro+V 4V,
where
2
) 1. sp1 L, a L. 2 2 3p-1 2
_ 1i°2i |~ |°P 3i |~ 2i°3i |~ |*P | ~ 2P|~
Vi=——"—|e | - | - eli| |eZi| _llilzi|eli| |ezi|

3p li 2 2i 2p

7 sp-l
e |N
e,
2i eli
2

" rgl”[ﬂ)airq%i % + l’gl3i(EJ|gu||EZi|T
P P

4
_ P~ sp1
€l |€x| ?

. 117 spa Lo Ll 2pi
v, =——1;; €1i|5p 1 _%eb’r_ ;; eli|2p ezi|2
L. 2pie N 4p—1\o o 222t
+|dl.|(i eli|2p|e2i|+|e2i|3+rg( P j|eli||e2i| ) J
p p
For V1:

Applying lemma 2.1,
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- Sp—1)5r _ 2 Sp—1Y3-1_ 22
o el v <{ gp jp |elf|2p(3§—1jp oI
2p-1
~ ~ 2P|~ e 2 A2
Bl Rl -Gl 2] T
Thus, if the following inequalities
L’ al
ming 4, —=, Ay, lzlzp, Aly2p p>1, >0
lli P
where
4p-1 3p-1 5p-1
P Sp-1| S5p-1 )~ 1= Sp-1| Sp—-1 |2 p |
Yolepr N1ep—-4) 777 12p* \12p-4 4p-1)

2p-1
T O e B
P l2p-1 4p-1)

hold then the function ¥ is negative definite. Note that such an 7; > 0 always exists for any /;;

>0, ;> 0.
For sz

Applying lemma 2.1,

371 p3 | - 2p—1)\~
N e A Eo A

2p D
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Then,

L

. spot Ly 4 Ly~ 20~ 2
1 1 1 1
v, < eli| - | - en| |e2i|

3p 27 2p

+|dl.| (Zﬁ+rg(4p__zljJEli|2p 52i|+(1+rg(ﬁj(£]jgzi|3
p 2p p 2p

The state space is divided into the following three regions for ease of analysis:

¢1,~qd,~ >l3i): {(zwgzi)eRz e, €R, Ezi| Zﬂzqdl‘ Ly, )}>
o). 1) =@, a) e R? [, = B (d.|. 1, Mew| < B (d )., )}
¢3iqdi 9131'): {(Eliagzi)e R* |511| = /qudi 713[)‘|52i| < 182 qdi 9131‘ )}9

where the functions £ and /3, are of class-/CL defined by:

ﬂzqdialzi)|di| 6lzi+r5(12p_3j m’
Lily p

@dﬂ 20di2,l3i)]3 [6p+rz[4p_lj(6p3)ﬂspl
lliZZi P
ﬂ2Qdi ,Z3i):=@xmax{(2+rg(ﬁj(£j} (2+V_gg(4p—l }
b p p Ly p

&> p,(a,

,131,):: max

(.

N—

Consider the region: ¢1,~(Jd,~ e {EU,Z%)ERZ e, €R, L, )}

Thus,
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o L7 s [ 1, 4p-1)2p-1
V. =— 1i%2i 3 =t > 30 5= dl1 . p p
2 3p ell| eZl| (2 e21| | l|( +re[ p ]( 2p }JJ
2p |~ 121131 "‘ 2i 4p 1
-l 42

<0

for the states in this region.

Next, consider the region: ¢,, Qdi , 31.): {(ai,ZZi)e R’ :[e,| > ﬂIQdi 1 L8| < By Qdi WL )}
Thus,
v <_lli12i2 g‘|5p—l _13, ~ | Ll |2P ~ |

2 = 3p Li 2

1)

o[ e 2 1D ot o ey
:—a,r{’g’; e }
e e )

where 7, <0 for

1

AN 61‘%(1219—3) it
1111212 2i e p >

€| = max i

(e, (10)e, )

which is sufficiently satisfied for the states in this region.
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Next consider the compact set:

)

7131‘ )>|Zzi| <p, qd,-

1,):

’131‘): {(gwgzi)E]Rz :|Eu| < ﬁlqdi

¢, (a,

Note that, V2 <0 for (El,»,zzi)é ¢3iqdi

Thus,

-1

5p-1
g21'| » <0, for (gwgzi)¢¢3iqdf

1)

. a.e. 11_12_2 5p-1 7~
~ ~ 1 1 ~ e
Vi (eli 5 €y, ) <- |eu | - 3

3p

Next, define a Lyapunov level set:

ZEi(Idi ,l3l.)= {(aiDEZi)e R*: VEi = pli(ldi 9131' )}

where the class ICL function py; (|di|, 13;) is defined as follows:

al3i): Vi (gwgzl‘)

pliqdi

max
(&2 )ebd ¢y (|| 1)

which exists since the boundary of the set is compact and V; is continuous. Then we observe

that ¢s; (|di|, [5;) < Zs (|di, I3;). As a result, we have

ae. o, 2 . 5p-1
Va2 )< B S T R tor v 2 py (a1

which implies that each of the trajectories for the i-th planar system will enter their respective

compact level set X5 (|di|,/3;) in finite time and stay in it once entered.
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b) Case 2: Forp =0.5

Note that or p = 0.5, V,, is not differentiable on é;; = 0:

|:élz} c ~1,sig(@, )% +e
e, — lz,-K[Sign(zn )] — e, + K[di ]

5V~.(5. 5_): (g2i2 +212[|Eu|X12iSGN(EU)_VE|Ezi|25ign(Ez[))
a EZiz +212i|21i| EZi)_erai|22i|

foré;;#0,V é; € R:

1
~ e 12 . (e~
e1i|2|eZi| Slgn(elie2i)

Bl 420 |+ 272 2 sign(,, )+ K[d, N2 62, + 2, — 21,2, 2

. 3 1
~ D 1= ~ |4 ~ =~ |2 ~ f~ 12
VE;‘ - _2llilzi |eli|2 _l3i|e2i| _lli12i|eli|2|e2i| _2l2il3i|eli”62i| +rElli

for 51[: 0, A e~2i eR:

Let

[(121‘521‘2 )fz —1%

Ezl.|zsign(52i ) EZf]Twith & € [-1, 1] be an arbitrary element of 0V, then

2i

= ([52 -L¢, +1])12i22i3 -7

implies

T ai_ ~ 2 s 1P ~ ~ 3 gZi
o R e ) PN S

~ |3 ~ 4 3
eZi| _l3i|e2i| +K[di €2

~

Va= N ([*fz -L¢, +1])lzing3 — 1%

52i|3 _13i|52i|4 +K[di ]52,'3
&el-11]

52i|3 _13i|52i|4 + K[di ]521'3 =1

Thus, for all (é);, é,; )e R", after rearrangement:

2

. a.e. 2[ l ) 15
~ 1021 |= |

Vai (eliaezi ) <- eli|

~ ~ 3 . .
3 eyl +V, +V,

[— re
2
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where

2
. 211, 15 7 3 2 0.5 2
— ll 21 ~ N _e ~ _ _ ~ ~ _ _ ~ - ~ ~ ~
Vs = 3 eli| eZi| l3i(lzi 2r, )eli”62i| l; (lzi s ]eli| |ezi| +2r512i|eli”ezi >
2
. 211, 15 4 2 3
_ ibai s |t ~ ~ Iy ~ Iz ~
Vy=- 3 eu| _l3i|e2i| - lzil3i|eli”e2[| + |d;| 2(121‘ +7; )|eu||ezi| + |e2i|
For V3:

Applying lemma 2.1,

2

o5 e 3V~ 1t~
el -l <3 o

Thus, if the following inequalities

hold then the function V5 is negative definite. Note that such an r; > 0 always exists for any /y;

>0,105,>0.
For Vy:
The state space is divided into the following three regions for ease of analysis:

1))
LM < B,(d,

¢1iqd[ ’l3i): {(EIHEZI)E R e, eR, Z21'| 2 @Qdi

)b
L))

6. (d].1,)=1C,.2,)eR* |5, = 5,(d,

9131'): {(Eli’gZi)ERz :|ai| Sﬁ3qdi »l3i)>|gzi| Sﬁ4qdi

é,(d,
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where the functions £(.) and f£(.) are class x functions defined by:

A

2
2 3\ 5
1) ma {Mw )] | £3|di|[ 14961;,&)] J |
1i%2i

lli12i2

B4,

,l3i):= |7—"|><max{l, 2+2l£}

3i 2i

Consider the region: g, (d, ,l3l.)=*{51i,52i)e]R2 2, R[> B,(d, L., )}
Thus,
- L7 s e B e ~ I~ ~
V= R eli| _|e2i| (l3i|ezi| _|di|)_|eli||e2i|(12il3i|62i| _2|di|(lzi Ty ))
<0

for the states in this region.

Next, consider the region: ¢,,(d,,Z,,)= {(EWEZ,.)E R’ :[e,| > B,(d.|. 1 b [e,| < B.(d.]., )}

Thus,

, 20.0,° . - ~ i~ ~
V, < _% eli|15 _l3i|ezi|4 _lzilzi|eu”ezi|2 +|di|(2(lzi +7; ]eu |ﬂ4 Qd

b+ 18 ))

Ll 1~ s :
Ly, )J_[% eli| _|d1‘|[ﬂ4qdi oLy, )] ]

~ llilzi2 ~ 105
S_|eli| 3 eu| _|di|(12i+r2) 4(10'[

where 7, <0 for

2

2 N

m ).l )\d,; 3|d, d|, L 3
2, > max {164(1 i 32)| |3(12i+rE)J ’ ( | |[ 1192[2 3 )] ]

1i12i
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which is sufficiently satisfied for the states in this region.

Next consider the compact set:

L)

9131' )’|52i| < B, (Jdi

9131'): {(ngzi)ERZ :|51i| Sﬁ3qdi

1):

¢, (a,

Note that, V, <0 for (2.2, )¢ 4,(d,

Thus,

2
Vol -2 | - [ <0 or (6, )2 (0

1)

Next, define a Lyapunov level set:

)

where the positive definite function p»; (|di|, /3;) is defined as follows:

Eaiqdi ’l3i)= {(Eli’gZi ) eR*: Vé‘i = pZiqdi

pziqdi 7131’):( )V?z’i(gli’g%)

o max
%1.8, )ebd ¢ (d;| 1y

which exists since the boundary of the set is compact and V; is continuous. Then we observe

that ¢ (|di|, [5;) < Zs (|di, I3;) As a result, we have

d . et 2lil,~2~ -
EVEi(eli7ezi)€Va‘(ewezi)g_ 132 |eli15_%

~

€;

1)

3’ for V; 2 pZiqdi

which implies that each of the trajectories for the i-th planar system will enter their respective

compact level set X5 (|di|, /3;) in finite time and stay in it once entered.
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6.2 Manipulator Dynamics

The dynamic model of a rigid n-link serial nonredundant robot manipulator, with all

actuated revolute joints described in joint coordinates, is given as follows:
M(q)j+Clg.q)q +Fg+Glq)+Dlg.q.1)=7 (6-2)

where ¢, ¢, § eR" are, respectively, the position (generalized coordinates), velocity and

acceleration vectors, M(g) € R"™ is the inertia matrix, and C(q, ¢)q, Fq, G(q), T € R" are,
respectively, the vectors of Coriolis and centrifugal, viscous friction, gravity, and torque
input, with F being a constant, positive definite, diagonal (viscous friction coefficient) matrix.
D(q, g, t) is a an additional bounded uncertainty or perturbation term. (Note that no continuity
assumption is made so that discontinuous models of friction may be used in D). The robot
manipulator satisfies the same properties as that in Chapter 3 and will not be repeated here. In
this chapter, only joint positions measurement is available. No velocity information from the
system is assumed in this chapter. As such, the following development will follow an output
feedback approach. In addition, let us suppose that the absolute value of each joint input 7 is
constrained to be smaller than a given saturation bound 7 max > 0, 1.€., |7 | < T} max, Vi =1, ...,

n.

The control objective here is to design a robust output feedback saturated control that
ensures the robot configuration vector g tracks a desired trajectory vector, g (f) with an
ultimately bounded error that can be made as small as required globally even under the

presence of bounded disturbances.

The desired trajectory vector, g, (f) is assumed to be twice continuously differentiable
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2

vector-function such that |g,,(¢)

G.,(t)

While the type of disturbances considered here has to be upper bounded by a constant, due to

,and |, (¢)|are bounded by a priori known constants.

the limited actuation (Note that no continuity assumption is made so that discontinuous

models of friction may be used in D), i.e.
I <sat, [ oo+ pled+ polil il + pl” |

where ||D|| = supﬂ|g||:geK[D]}, Po, P1, P2, D3, P4 , Ps are some nonnegative constants,

e, =q—q,<R",ande, =¢—¢g, €R".

6.2.1 Control Development

Under these constraints, the following controller is proposed,

7=—Ksat sig(,u’1§)a l , (6-3)

where K and p are positive definite diagonal matrices, 1.e. K :diag{kl. }”

i=1°

with k&, >0,
p=diag{y, |’ , with g, >0, a>0 constant, and § eR"

a

. S
Le. 7, =—k, sat[—amgn(si )} fori=1...n.
H;

When a = 0, the control becomes a discontinuous control law,

r=—K sig11(§), seR”
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Note that the control is bounded, i.e. such that |7(¢) | < k;, fori=1, ..., n,V t > 0. The § is the

velocity-estimate-based desired error dynamics defined as §=¢, + o, with

c=-K,0+ Kaysat[y*1§]—Ka sat ., [é2]+satg2 [Kzsig(é2 )125)} +sat, [Klsig(e1 )b] (6-4)
Zf 2b

where K,, Ki, and K, are positive definite diagonal matrices, i.e. K, = diag{k }" with

ai)i=1?
k,; >0, K, =diaglk, ", with k, >0, K,=diaglk,, |' ,with &, >0, k, €l{ky,....ks, };

& €6y, pWith &, >0, &, €ley,....5, Lwith &, >0,Vi=1...,n, and b > 0

1+b

: PR .
constant, with &, > k_ u, + kw.(k—z’J +&,,and é, eR",

2i

1.e.

A

) S .
o, = _kaio-i + kailui Sat|:_l} - kai sat 1+ [eZi]
H; [&]?
k2[

2
+sat, |:k2i |é2i |1Tb Sign(ézi ):l +sat, [kli |en |[J Sign(eli )1

for i=1...n.

Note that when b = 0, , let the element of & equal to that of K;, and & to that of K, i.e.

&, =k, VieN and ¢, =k, ,VieN,1ie.

S

G, =—k,0; + k1 Sat|: :| —k,; sat [éZi]+ kZiSign(éZi )+ kliSign(eli)

for i=1...n.
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Note that é; is the output of the observer defined as:

él = _LISig(gl )p te, ,
W= _Lzsig(gl )2p_] —Lse, (6-5)

e, =w+L,e,

n
i=1’

where ¢,é, eR", Ly, Ly, and L3 are positive definite diagonal matrices, i.e. L, = diag{l1 l.}
with , >0, L, =diag{l,,}" ,with /,, >0, and L, =diag{l,,}" ,with 1, >0, Vi=1...,n,

and 0.5 < p <1. Let us definee, =¢, —¢, eR", and €, =¢é, —e, eR" , then, the closed-loop

system (6 - 2), (6 - 3), (6 - 4) and (6 - 5) can be written as

6 =-K,0+K,usat|ju”'§|- K, sat ,[é,]
)
+sat,, [Kzsig(éz )Z} +sat, [Klsig(el ) l
¢ =e,,
¢, =—M"(q)K sat[sig(ﬂ_l§)a } - M (q)Clg,4)q + Fq+Glg)+ D),
e =-Lsig(e) +¢, ,

éz = —Lzsig(El )2p—1 —Lse,

—(—M’l (q)Ksat[sig(,u_ILG)a ]—M‘l(q)(C(q,q')q' +Fq+ G(q)+D)—édj

To rewrite the closed-loop system in a form convenient for analysis, let us define v, =¢,,
v, =—0, with s=e, +o=5§—(é, —e,)=5§—&,, and we obtain the following form of closed-

loop system,
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v, =V, t+s,

v, ==K v, —Ka,usat[,u“ (s +2, )]+ K sat s [v, +5+&]
b

—sat, [Kzsig(v2 +s5+e, )12+bb} —sat, [Klsig(v1 )i ],
§=—M7(z, +q, )Ksat[sig(y‘lﬁ)a ]—M‘l (¢XClg:d)i + Fi+Glg)+D)—ii, +&,  (6-6)

31 = _LISig(El )p te, ,

‘?2 = _Lzsig(gl )2p_1 —Lse,

—(—M‘l (9)k sat[sig(,u_lﬁ)a }—M_l (gXClg.4)g + Fg +Glg)+ D)~ édj

6.2.2 Stability Analysis

Theorem 6.1: Consider the robot dynamics (6 - 2) with the bounded controller given by (6 -
3), and the observer (6 - 5), global practical trajectory tracking of the desired trajectory, ¢, can
be assured, even under bounded disturbances and without velocity measurement, provided
that the gain K is sufficiently large up to the saturation bound 7jm.x, Vi = 1,...,n, and the

observer gain Lj sufficiently large and the desired trajectory sufficiently slow.

Proof of Theorem 6.1: The stability analysis will proceeds in three steps.

1. First we will show that o and s are bounded globally, and then the observer is perturbed

by bounded disturbances only.

a. First we will show the boundedness of o, by the following Lyapunov function
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Its time derivative along its solution (6 - 4), gives rise to

A

S

H;

Vo‘ = _kuiaiz +0k 1, Sat(
kZi

2b
J —ok, sat 1 (éZi )+ o;sat, (kZi |é2i |E Sign(ézi )j
[fzi

+osat, (ku |en |b sign(e“ ))

)

k . k . . )2

2 2 <

<——o0, 2o Ho| kg k| | +ey ey

2 i 2 i i ail”i ai k 2i 1i
2i

)

g, 12 g, &,.
o <2 'uiJ{ij o A A
k 4

2i

Since w, &1, £; > 0 are constants, |o;| is bounded. Also, from (6 - 4), we can see that

|oi | is bounded as well.

. Next, we proceed to show the boundedness of s by the following Lyapunov function

1 o] 1_
14 =5STM(.)S, with Eﬂ_i”S”z <V, SEm”S

2
s

Note that ¢ = s+ (¢, — o),
The s dynamics is described by,

§= M (g)Kksathigla5) |- M (g)Clg.d)i + Fi + Glg)+ D) -, + 6 (6-7)

Since the differential equation (6 - 7) has discontinuous right-hand side, i.e. when a =
0 or since no continuity assumption is made on D, its solutions are understood in the
sense of Filippov (see definition 2.1), and in accordance to lemma 2.4, the time

derivative of the Lyapunov function ¥ along the dynamics (6 - 7) for all a > 0:
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K[f]s)

Vi:ﬂfT[ 1

zeo,

j =VV. K[f]s)+ %STM(-)S

c[mo]'{_MW{Sat il )| L%STM(.)S

- M (q)Clg.9)i+ Fg+Glg)+D)-i, +o

= —s"K Ksatlsig(u ') ]]+ s"(-Glq)-M(q)i, + M(q)6)-s"K[D]-s"Fg
~5"C(g,q)3 +5"Clg.4)s

= —s'K K|sat sig(,u_l§)a ]]+ ST(— G((])—M(Q)qcz +M(Q)d)_STK[D]
_STF(Qd _O-)_ST[C(Q’(%I _0))](qd _O-)_STFS _ST[C(q’(Qd _O-))]S

<—s"K K|sat sig(,u"l§)a]]+ sTAl(.)_”s”z(j_‘ -C, [, - 0)”)

<[s10& 1+, DIl (£ = €.l — o)) (6-8)

with ||A;|| == sup{||¢||: € eK[Ai(.)]}, and the vector
Al('):_G(Q)_M(‘J)éjd +M(q)d'—K[D]—F(q'd _‘7)_(;(%(9.61 _G)Xq.d _O_),

K[sat[sig(,u *l§)a ] }

and <1.

Note that the upper bound of the vector A;(.) is determined by the physical properties
of the robot dynamics, desired trajectory, and the desired error dynamics. Since ¢4, §u,
are bounded from the assumptions and o, ¢’ are bounded (see step (1-a)), the vector A,

is bounded as well. Hence from [143], the multi-valued function K[A,] is bounded as
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well. Thus, if
f> C —O')|

Definek, = =f-C || —G]| >0, which is possible by selecting appropriate desired

trajectory and the desired error dynamics. Then we have,

AT (”S" e, ||)J

_ 2
VS a.<e‘ 0, for ||s|| > (w] =for V, > ﬂ(z(“K” + ”AIH)J

2 k

c c

Hence, ||s|| is bounded by

\/é {2(J|K IIk+ . II)J

=|s]<

Note that from above:

g=s+ (C}d - G),
~ gl =ls +(Ga =) < sl +[gal + [

where the velocity is bounded globally since the right hand side of the inequality is
bounded, i.e. s is upper bounded by the A;(.) and the control gain K, while desired

trajectory and desired error dynamics are upper bounded by design.

. The observer dynamics, from (6 - 6),

ForVvVi=1,..,n
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L . e \p o~
€ __lliSlg(eli) te,, ,

éz‘ = lziSig(Ey )zpil — e, + A, ()

1

where
A, ()=(Aa,()....A,, ()", Vi=1,...n, and

A()=M" (q)Ksat[ﬂ’lsig(§)“ ]+ M (q)C(q,4)q+M " (q)Fq (6-9)
+ M (q)G(q)+ M (g)D+d,,

Let us define |A2i| = supﬂ5i| cg, € K[A,, ()]}

Remark 6.2. Note that Ay(.) is upper bounded by the physical properties of the robot
dynamics, desired trajectory, control gain K, and velocity of the robot manipulator.
Since ¢4, g, are bounded from the assumptions, o, ¢ and s are bounded (see step (1-a
to 1-b)), the vector A, is bounded as well. Hence from [143], the multi-valued function

K[ A,;] is bounded as well.

To show the boundedness of (é;, é;), consider the following Lyapunov function (see

4p-1
€ ||e2i p Slgn(elie2i )

2
. -~ ~ | L, -
section 6.1), V3,(2,,8,,)=| =&,” + 2|, -
2 2p

The differential inequalities for the (&), &;)-subsystem satisfy (see section 6.1):
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2 _
_ﬁﬁirlﬂ e ZA% for V3, > Pquzi ,l3l.)and 05<p<l,

Vgi Eli’EZI S 3p 2 2
2017 s P oo
- 11321 |eli|1 ok i 3 , for V, 2 pziqAZi ’l3i) and p =0.5,

where the functions pj; and p,; are of class-KCL

9131'):: Vzi(gliagzi)’

P qui

max
(@1,8; Jebd %(‘An‘,lsi)

9131'): VEi(Eli’EZi)’

p2iqA2i

max
(@22 Jebd ¢ (A5 ;)

bd ¢, qui ,131.) is the boundary of the region

¢3i qui ’Z3i)
i {{@,ai)e R*:[2,[< 4, (A,
(@2)e R 1| < (o

L )}, for 0.5<p<1,
1)} for p=0.5,

g2z'| = ﬁz qui
Ezi| < 184 qui

9131’ )’

5131‘)’

which is a compact set, with functions S, [/, s, and S, are of class-ICL. (See section

6.1).

Define the following Lyapunov level set,

1, )} for 0.5< p<1,
1y, )}, for p=0.5,

in(IAZi

L,)= {(E""ng)ERz Vi Spliqui
B {(E“’EZi)ERZ :Ve?i SpZi(IAZi

Thus, it implies that each of the trajectories for the i-th planar system will enter their

respective compact level set Zs(|di|,/3;) in finite time and stay in it once entered.

ei’

In particular, once inside the compact set s(|di|,/3;) and since , 7, (}52114 +le,[* )s V.
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2.

it implies

NI

(Pu (IAzi

-
3')] , for 0.5< p<1,
Uy

(pZi(IAZi

1
)\
3’)J , for p=0.5,
7o

€

(6 - 10)

Hence, it can be observed that for 0.5 < p < 1, the increase of observer gain L3 will

result in a smaller upper bound on the observation errors, since the functions py; and

2 are of class-ICL .

Remark 6.3. It is worth mentioning that increasing the control gain K, the upper bound

of the vector A,(.) will increase as well (see (6 - 9)), requiring a larger observer gains

L3 to obtain the same upper bounds on the observation errors.

Now recall the analysis for s-dynamics, with this new-found bound on observation error,

we are going to show that the bound on s can be made arbitrarily small; in particular the
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control will be unsaturated.

Recall that from (6 - 8), since £, =

—G]| >0
V. <5k K[sat[sig(u*1§)a ]]+ sTA ()
ands = § _Zza

a. Fora=0:

Then we can rewrite the above inequality as:

V, <~ s"K K[sign(s +2,)]+ s™A, ()
=—s"K K[sign(s)]+ s"A, () - s"K K[sign(s + &, )]+ s" K K[sign(s)]

Using the following notation:

N*(s)={ie{l,...,n}:s, 20}, N°(s)=fie{l,...,n}:s, =0},

—s"KK][sign(s) Zk|s|— Zk —1,+1]
ieN* ieN®
== ZkISI 0
ieN*

z—zk,.|si|

Thus,

v “é'_i";k,.|s,,|+STA1(.)_STK(K[sign(s+az - K[sign(s))

< —[Z:;ki ls,|+sTA Zs k.(K[sign(s, +€,, )] - K[sign(s, )])

Note that:
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Klsign(s, +2, )] - Ksign(s, )]<2,

Also, for|s,| > [&,|>0:
K[sign(si + E21’ )]—K[sign(si )] = (Sign(si + g2i )_ sign(si ))

= sign(si )— Sigﬂ(si)
=0

|SikiK[(Sign(Si +e, )_ sign(si ))] < 2ki|52i|

Hence we have:

v, <=3k s ]+ Yls A+ > 24,2,
i=i i=l i=l
<—(1=0)> k|s.|+ D2k, [, |- DOk |s. |+ D s, |A]
i=i i=1 i=i i=1
< —(1=0) 2, (K )] + 24/ 2, (K )& - Z|si 0k, —|A,])
V2

1 n
< _(1 - e)ﬂ'min (K)E Vsi + 2\/; ﬂ“max (ngz ”_ Z|Si|(9 ki - |A15|)

where the following property has been employed,

A, <, <l v < R

7 a§-_§|si|(0ki —[a,)<0, for ¥, z@j&(zﬁ j(/umax(K)j”az”j , with

1- ‘9) j‘min (K)

PV
. >——, VieN.
0

1

Remark 6.4. Note that for a given desired trajectory and given desired error dynamics

(hence an upper bound on the vector A;(.)), there exist k; such that the above condition
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on control gains K is satisfied. Accordingly, for a given control gain K, desired

trajectory, and desired error dynamics (hence an upper bound on the vector A,(.)),

there exist observer gains L3 such that the observation velocity error é; is bounded.

Since &, is bounded, the state s will reach the above Lyapunov level set in finite time

and stay in it for all future times. In particular, the ultimate bound on s can be obtained

as:

(2 (5 [ e

Note that the desired dynamics (6 - 4) comprise a term of the form:

S +e,.
Ly Sat(s_l) =kaH; Sa{u}
H; H;

For this term to be unsaturated, it is sufficient for
s |+ <
and since

|sl. +52[| < |sl.| +|52,.

2

6-11)

while the ultimate bound on s is dependent on that of the observation error for a given

K, recall from (6 - 10) and (6 - 11),
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=

|E <( iqAZi

’lSi)) , where piqui
7[21'

{25 i

R RO =)= ol
e )

where the following property has been employed:||x| < |x], < Jnlx

; )__ anAZi,l3,.), for 0.5< p<1,
S pZi(JAzi’ly)» for p=0.5,

b

~

==

I3 |3

_» VxeR", then

the sufficient condition such that no saturation occur, is

o P (2 (2 2t 6-12

Thus, it is possible for the term sat(s, +&,,) to be unsaturated in finite time, provided

a sufficiently big observer gain Ls.

b. Fora > 0:

Then we can rewrite the above inequality as:

334



V. < sTKsat[sig(ﬂfls)a ]+ sTA () - STK(sat[sig(u*ILG)a ]— sat[sig(,ufls)a])

< —s" Ksat sig(ufls)a ]+ sTA () - sTK(sat sig(/[1 (s +2, ))a ]— sat sig(,ufls)a])

a

<> -k, |sl|sat[|s'—a] +s, A
i=1 H

i

PS, +2, | sign(s, +2, >] Ps,rsign(s, 1‘
sat —sat —_—

‘ H;

+ |Sl. |ki

i

Note that from Appendix B.2-proposition 1, the following inequality is satisfied

[|si +2,|"sign(s, +2,, )} [|s,.|“sign(si )}
sat —sat T —

a

< sat, [ 8(,|)]
M

i

where £ is a class K function.

Now, let wus define the set of real number Nefl

A= supﬂ8i| g, KA, ]}, Vie N, then V, becomes
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a

ieN

V < Z k. |s |sat[| ] |s ||A1l|+|s |k sat [,B(jem )]
/Ji

{ Hsa{ }A[z (At

b 2L ol . )

+[4;,ki|s,‘|{—;sat[';—t]+sat2[ﬁ052i|>J}J .

[C2%)

i)

a

Note that the last equality has single out one of its element, j € N from the summation

and rearranged to separate terms due to observation errors and uncertainties. To show

sign definiteness, the two terms are considered separately:

For wy;:

_ R at + S, sat| " +
W, = ‘ ‘ { } ‘ HA”‘ [,;} { {M } |Ah|]]

Note that it is necessary that 0.5k; > |A;], Vi € N, then the maximum of the last term in

the above equation occurs when |s;| < z; . In particular, by taking the derivative of the

term w.r.t. |s;| and equating it to zero, the maximum is found to occur at

1
a

2A,|
(1+a)k,

|Si|=

M, VieN\j
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and the corresponding maximum,

1
a (2|A15|Jalu
(l+a)e N K )

1i |

Hence, one obtains,

k, Ps
o, <— ‘ ‘sat
2 J

a l

a Al
K, } ‘ HA ‘ + {(l . a)HTa ]igj( k. j IUi|Ali|
a 0 N a
] ‘ ”AU‘_ij‘SJ‘SatPﬁ;ja ]

=—(1- H)k ‘ ‘satps a]——k‘ ‘satp
K '

1
a 2A, e
+
[(1+a)l;al§\:f( k, ] g

<—(1-9) —‘s ‘sat!‘
Hy

1i ]

} for‘s ‘_ﬂl/,and |s|e]R VieN\j

with

. } (6-14)



where 0 < 6< 1 constant. Note that with the above conditions, we have 7, < x,

For wy:

a

‘Sf

,, :—%‘sj‘sat 7 +‘Sj‘kjsat2[ﬁq52j‘)]

J

n kls, —lsa‘[ﬂ +sat, |B\e )| |
3 ks -2l L ,

ieN\j

Note that it is necessary that
sat, |82, ||< 0.5, vi=1,...,n

such that the maximum of the last term occurs when |s;| < g .

This can be achieved by having sufficiently high observer gain, L3 for a given control
gain K (see step (1-c)). In particular, by taking the derivative of the term w.r.t. |s;| and

equating it to zero, the maximum is found to occur at

S

|S | _ 25at2[ﬂq52_/‘) ]
: (1+a)

U, VieN\j

and the corresponding maximum,

1+a

(12% kiﬂi(satz[ﬂqEZj‘)])a , VIEN\]
+a)a

Hence, one obtains,
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N \sat[‘ ‘} sl - [ ( 1)H }zkuem e I

1+a N\

=—(1- 0)/‘2‘ ‘Sa{‘;‘a] Sl ‘Sat[‘ q ‘S.i‘kfsatz[ﬁquf“)]
0 |,
oL [ . Jz( ble

<—(1- H—‘s ‘sa‘{‘ ‘] for‘s‘>7z2 and |s|eRVzeN\]

Hj
with
%SatZ[ﬂqEZj‘)]jaﬂja
7r,; = max | ﬁ ,
4u’ Dag O
. Tra k.p\sat, |Bley,|)]) «
ok ((ldra)ale;j b q ‘)]) J
satz[ﬂquj‘)]ﬁ min{g,O.S}, Vi=1,..., n,
( )1+a ﬁ (6 - 15)
- 0 k, U, l+a)a
usmz[ﬂqez|>1\{4(n_l)[ﬁm ) ﬂ |
where sat2[/3(|52|)]:(sat2[ﬁquD ..... satz[ﬁ(]52n|)IDT, and 0<@<1.
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Note that the above conditions can be satisfied by having sufficiently high observer

gain L3 for a given control gain K (see step (1-¢)). With the above conditions, we have

Taj S H;,

Now, from (6 - 13) we have:

. ae.

Vv < a)sl + a)s27

and by selecting each k; , V j € N that satisfy (6 - 14), and having the observer gain, L3

sufficiently high that satisfy (6 - 15), we have

o, <

N

VseQ

w,<-c,, VsegQ ,

sl»

where the compact sets are defined as: Q_, = {s eR” :|sl.| <m,,VieN }, and

Q, ={seR":|s,|<x,,VieN}

with positive constants,

Define max{ﬂl,. STy }: 7, , VjeN,then, we have:
yl

V<0, VseQ,,

where Q) :{SER” : s[|£7rM,‘v’ieN}, sinceQ, ©(Q,, UQ_,).

Note that this compact set can be made arbitrarily small by increasing k; up to the
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maximal allowable control bound 7; max, to reduce 7j; and the increase of the observer
gain, L3 (for a given control gain K) to reduce ;. Now with each given g, let ¢ be a

positive constant 0 < ¢; < 1, consider the following compact set

Q, :{SERn : sl.|£cl,ul.,‘v’ieN} and X | :{SER” W Skﬂ},

where k,,> 0 is defined as

k,u = mlnsebd Q, I/s

which exists since the boundary, bd €, is a compact set. Note that X, < €2,. Note that

if the states, s can be confined within X, which is a Lyapunov level set,

sl.|Scl,ul..To

achieve this, we simply need the set Qs < Z,, which can be attained when K, and L3

are large enough, such that V; being negative the outside of the set X,
V. a.<e.0, forV, 2k,

which implies that the trajectories of s will enter the set X, in finite time and stay in it

once entered. Hence, we have

|si| Sop < i c>|si| <u, VieN

In particular, a sufficient condition on the control gain, k; and observer gain, /; such
that the control is unsaturated can be obtained as follows,

Firstly note that:

. .1 2 1 )
k,= min V > min —m||s|| =—m{minc, 4,
“ sebd Q, sebd Q, D T 2=V
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Next, observed that for a given K, the observer gain, L3 can be chosen to be

sufficiently high such that
7, >7,;, VjeN,to that effect, recall that

R
1 1 1+a

~ N 4\a du’| 2eq
7, < |(sat,|p(e,|)]J|* x max (—j U, 4 — k.,
2j H( 2 [ q 2 D:u ) J Hk] (1 N a)lT ie;j

Thus, tosatisty 7z, >x,,, Vje N, we need

1
afsl)
0 kj 'uj’
max 0 1 0
4y l+a JIA - - I+a
,u—,aM Z(%} Hi|A ]
0k (1+a)a | |=Vu\ %
1
4}11
5 ,Uj,
1
>H(satz[ﬂ(}52|)]}Z X max ' i ﬁ
/,lj 2"a k .
o0k, (l+a)I+Ta i;f HUZ
< |(sat, [, )]«
sy N
max [@ k, ] Hj> [Gk (1+a)lza] ie%\:j[ k. J /~li|An|
J (6 - 16)

<

1 1 1+a

a 44" a
max (4j luj’ ﬂj 2 a1+a Zkilui
0 ij (1 +a . |iENV

342



Then, we have

Ty =m;;1x{7r1j,7rzj}=mja_1x{7rlj}, VjeN

Hence,

I 2
max V, < max —m ||s||
sebd Q, sebd Q0 2

1 2
=37 ) =
2 sebd Q

1
afpf)
0k |
n__
= —m| max 1
2 J a
4u‘a
- 1+a} Z\:
ieN\j
6’kj(l+a)a J
1
4A,,|)
n_ (1)
<—m|— max |
2 (’_J / o
4u‘a (
1+a
49(1+a)7

where k= mink;,

(gt |

2A,|
k.

1

n__ 2
—m|7rM|
2

1

j /ui|A1i|

Hence, to satisfy the condition Q< 2, it 1s sufficient for:
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l+a

1

1 l+a
z(z|A],.|)w,.|Al,-|j

ieN\j

,for jeN,




1
FMUT
2 0 ”
:lm(mjnclyi)z >2m 1y max 1
2 i 2 ]_( J 4y Tia e
,U a l l+a
— ( Z(2|A1i )“ M|A1i|}
9(1 +a) a ieN\]

1 1 1

4A. | e 4y l+a 1 —
m?'x ( "91]] H;» % [Z(2|Ali|)alui|Ali|]

ieN\j

S k> (6-17)

(ﬁ;]@@qu

It is not difficult to show that selecting K that satisfies (6 - 17) implies that (6 - 14) is

SRR

sufficiently satisfied as well. Thus, for the case of @ > 0 the control will be unsaturated

in finite time and remain so thereafter.

Note that for any 0 < ¢; < 1, there always exist a positive constant ¢, such that 0 < ¢, <
(1 - Cl).
Thus, with|s,| <c¢,4,, Vie N , a sufficient condition for the control to be unsaturated

is, for,

&y|<c,p, such that,

S

=|Si +€2i| < |Si|+|€2i|

Se o

< u,, since ¢, +c, <1,
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Together with the above conditions, it is sufficient for the observer gains to satisfy the

following (for a given control gain K) by combining (6 - 15), (6 - 16) and |Ez l.| <ol

max{[%i , |Isat, [ﬂq%m‘}
p k (+a)" dl
) y7y +a)a
205 r J
C2blis > B 4(n—1)(/1max(1<)j{ max(“)] 2éa |
1
afp)
ok |
max 1 1
4 p l+a 2|A l e
‘ U, a il |
< min j . Z{li Iui|Ali|
ij (l+ a) a = l
1 4 a l ﬁ
4 \a H; 2%
max (Hj ;uja ij l+a Zkiﬂi

j (1+a)7 ieN\j

) (6_ 18)

and the control will be unsaturated in finite time and remain so thereafter.

Having shown the boundedness of (¢,,¢,,), and § being unsaturated, we are going to

show the boundedness property of the desired error dynamics (6 - 4).

From step 2, we have |s,|<c, 4,

ey|<c,u, VieN, fora>0,and

|Si| +|Ezi| <u,, VieN, fora=0, then, in this region, the following is equivalent:
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kaiﬂisat|:LeZi):| =k, (Si + EZ:‘ ) =k,s; + kaisat,ui [Ezi]a and
H;

Vv, +S8. +€, =V, +5, +sat,, [EZi] , since |52,.| < U,
For the case of > 0:

Then, the desired error dynamics can be written element-wise as (6 - 6), Vi = 1,...,n,

Vip =V t5;
v, =—k, (vzl. +5, +sat, [Ezi ])+ k,sat ., [vzl. +5, +sat, [521. ]]
()"
26 (6-19)
—sat, {k%‘vzi +s, +sat, [52,. ]E sign(vzl. +s, +sat, [EZi ])}

—sat, [ku |V1i |b Sign(vli )]

From Appendix B.1, with the Lyapunov function,

Y 2 Vi b
(J [kl,.wsignw]drj w52 fifsa %1 ar v,
0 0 & |?

k;

2 £

1i

3

+r,(1+b)k, (%Jz j.|r|% sign(r) - sat[ ]3 [
0 & |2

li

r|% sign(r)} dr

klr

where | > 0 is a constant, it is shown that
V<0, for V> pli0§i|),

]}, and the class I function, py; is

where || is defined as|é’i|=maxﬂsi ,sat, HEZi

defined as, pli(]§[|):(

max
Vli’VZi)Ebd ‘3 (‘ 4")
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with bd ‘P},.(Ig“ |) as the boundary of the compact set

\PSi(Jé/iD: {(Vliavzi)ERz :|V1i| Salqgi )’ V2i| = azqé/i )}’ and

oy, ap are class IC functions defined in Appendix B.1. Hence, invoking lemma 2.6,

the states (v;, v2) are uniformly ultimately bounded.

For the special case of b = 0:

Let the elements of & equal to that of X, and & to that of K>, i.e.g,, =k,,,Vie N

1n>

and ¢,, =k,,, Vie N,hence the desired dynamics becomes

Vi =V S,

vy, =—k, (v2i +s, +sat, [Ezi ])-1— k,sat|v,, +s, +sat, [EZi ]] (6 - 20)

- k2iSign(v2i +s; +sat, [Ezi ])_ k]iSign(vli)
From Appendix B.1, with the Lyapunov function

V1i

2
V= (% V2i2 +k; J.Sign(r) d’”] + ”1|V1i|%Sign(V1i) Vo + rl(%jkai
0

2
vli|
Vi

-rk, {satl [|r|% ]:|sign(r) dr

0

where r; > 0 is a constant, it is shown that
V <0, for VZpZi(](iD,

where || is defined as|¢, l.|:maxﬂsl. ]}, and the class K function, py; is

,sat Uezl.
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max v, with bd ¢3,-(|§ |) as the boundary of the compact

defined as pZi(IéViD: (vii2v2: Jebd g,(¢31)

set ¢3iqsi|): {(Vliavzi)e R’ :|V1i| < allqsi|)>|v2i| < alquiD}

and a1, i, are class IC functions defined in Appendix B.1. Hence, invoking lemma

2.6, the states (vi, v) are uniformly ultimately bounded. Hence, invoking lemma 2.6,

the states (v;, v2) are uniformly ultimately bounded.

Remark 6.5. Hence, for K satisfying (6 - 17), and observer gain L; sufficiently high such that
(6 - 18) is satisfied through (6 - 10), the trajectories of the closed-loop system (6 - 6), are
globally stable, with the ultimate bound being reduced as desired up to the saturation limit of
the actuator, 7; max > 0, Vi = 1,...,n, and correspondingly that of the observer L3 Another way
to view the stability results is for a given bounds on the actuator limit, and hence K, if the

bounds on the uncertainties,
A, () = _G(Q)_M(Q)éid +M(q)o"—K[D]—F(q'd - O-)_ C(Qa(q.d - G)XQd _O-)

are sufficiently small to satisfy (6 - 17), and observer gain L3 sufficiently large for (6 - 18) the
global practical stability results are still assured. Essentially, besides the bounds on the

parameters of the robot manipulator dynamics and disturbances, the term A, is also dependent

on the desired acceleration, velocity and the desired error dynamics through the term o and o.
In which case, a slower desired trajectory or slower desired error dynamics can in effect

produce a smaller upper bound of |A,|.
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Remark 6.6. 1t is desired for the controller (6 - 3) to behave as per its non-bounded counterpart
(Chapter 4) when the controller is not saturated so that it exhibits the same properties such as
the ability to inject desired error dynamics, and desired performance. Indeed from stability
proof above (step 2), the control (6 - 3) will be unsaturated in finite time and stay so in all
future times. Particularly, if the upper bound of || is sufficiently small (by selecting gain K
satisfying (6 - 17) up to the allowable control bound, 7; m.x and observer gain Lj satisfying (6
- 18) through (6 - 10)) , from step 3 above, the states (v, v») of the dynamics (6 - 19) and (6 -

20), will become unsaturated as well (see Appendix B.1),
for b >0,

Vi

=V, Tt
2
vy, =~k |V1i |b Sign(vli ) —ky, ‘Vzi +s, +sat, [gzi ] b Sign(VZi +s, +sat, [Ezi ])

forb =0,

Vip =V, S,

Vy == k2iSign(v2i +s; + Saty, [E2i ])_ kliSign(Vli )

which is similar to the z-subsystem (4 - 7) considered in Chapter 4, and hence will exhibit the

same properties, since the states will remain unsaturated for all future times, provided |¢|is

sufficiently small.

Remark 6.7. Since the same observer structure of that in Chapter 4 is used here, for the special
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case of p = 0.5, if the gains of the observer, L; and L, are sufficiently large to satisfy
conditions of Theorem 4.2, the observation error (¢,,2,,) will converge to zero in finite time
and stay there for all future times (refer to step 1-c of proof of Theorem 6.1). In that case, the
closed-loop system (6 - 6) will be identical to the bounded full-state feedback control of (5 -

4) considered in the previous chapter, Chapter 5.

Remark 6.8. Since the control (6 - 3) follows a similar bounded approach as Chapter 5 , it has
some similar inherent properties as that of (5 - 2) such as the use of integral of saturation

functions that give rise to the boundedness of o (see step 1-a of the proof of Theorem 6.1), the

need to satisfy inequality f>C, (qd —0']| (see step 1-b of the proof of Theorem 6.1) by

having sufficiently slow desired motions, and the anti-windup structure (recall from (6 - 4), by
adding and subtracting K, s ),

A . A - . a2 . b
c=-K,0+K,s-K, (s - ,usat[,u" s])— K, sat ., [62 ]+ sat, [szg(e2 )1+b } +sat, [K151g(e1 ) ] .

&) 2b
k2

anti—windup

6.3 Numerical Simulations

In this section, numerical simulations on a two-link robot manipulator were carried out to
illustrate the results discussed in this chapter. The setups for each simulation are described.

Discussion and analysis of the results are presented accordingly.
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6.3.1 Simulation Setups

1) Simulation I:

The same two-link rigid robot manipulator considered in section 3.3 is adopted in
simulation. The dynamics of robot manipulator (6 - 2) have the same parameter values as that
in section 3.3. The desired trajectory vector and the additive disturbances Coulomb friction
vector were defined similarly as well. The initial conditions of the robot manipulator were

selected as,

ool fo-[s]

The control (6 - 3) parameter values were selected as follows,

150 0 18 0 11 0
a=09,K = K, = K, = b=0.6
0 15 0 18 0 11

1 0 10 0
H= 0 1>511:512:18>521:522:11a K, = 0 10/

The initial conditions for the vector o were selected as

o]

The observer (6 - 5) parameter values were selected as,
L_L_2OL_1500 08
T 2T o 1sof T
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with the following initial conditions,
é (O) =4 (0)’ W(O) =—Lye, (0)

since position measurement is available.

2) Simulation 2:

The setup of Simulation 2 is exactly the same as that of Simulation 1. The simulation is
repeated using the unbounded output-state feedback control (4 - 4), to examine its maximal

tracking errors compared to that of control (6 - 3), with the parameter values selected as

150 0 18 0 11 0
a=09, K = K, = K, = b=0.6
0 15 0 18 0 11

Note that when the control (6 - 3) vectors of Simulation 1 are unsaturated, it has the same

parameter values as those employed in Simulation 2.

6.3.2 Results and Discussions

For better visualization of the plots, some figures are shown in two windows; each with

different time intervals.
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Figure 6.1 Simulation 1. Tracking errors,
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sigma and control input of joint 1 and joint 2.
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Figure 6.2 Simulation 1. Observation errors for joint 1 and joint 2.

354
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0z

Cutput-feadback unbounded ||
= == Qutput-fesdback bounded

tirme (s)

Output-feedback unbounded
— — = Quiput-feedback hounded

045
0

tirme ()

w1t

joint 1 position error (rad)

Ouiput-feedback unbounded
== = Quiput-feedback bounded

10 18
Wyindow 1,1 =[5,15] 5

(b) Tracking error, e;; for time ¢t =[5, 15] s.

(d)

gk g

joint 2 position error (rad)

Output-feadback unbounded
—— = Output-feedback bounded

tirne (s)

(d) Tracking error, e, for time ¢t =[5, 15] s.

Figure 6.3 Simulation 2. Tracking errors using control (4 - 4), control (6 - 3).

1) Simulation 1:

As can be observed Figure 6.1(e)-(f), the large initial conditions caused the control (6 - 3) to

saturate. From Theorem 6.1, the state o will converge to a bounded region in finite time, due
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to the saturated nature of the integral (see (6 - 4)), which is clearly shown in Figure 6.1(c)-(d).
According to the stability proof, once the state o converge to a bounded region and stay in it
for all future times, with control gain K satisfying (6 - 14), the control will be unsaturated in
finite time and stay in it for all future times, provided the observation errors &, are sufficiently
small, which in turn are governed by the observer linear damping gain Ls. In fact, from Figure
6.1(e)-(f) the control inputs for both joints of the robot manipulator remained unsaturated after
the initial saturation. The performance of the observer, as shown in Figure 6.2, is very good in
terms of estimation speed and residual error. This is due to the synergistic combination of the

super-twisting based algorithm and a linear damping term.

2) Simulation 2:

Figure 6.3 shows that both controllers (4 - 4) and (6 - 3) have similar ultimate bound on the
tracking errors, which is expected since the unsaturated (6 - 3) is identical to (4 - 4). Similar to
the argument of the bounded control of Chapter 5, the vital point of the control (6 - 3) is for it
to become unsaturated and remain so for all future times. The controller (6 - 3) is structurally
identical to that of Chapter 5 (5 - 2), hence the design of the saturated integral (6 - 4) has the
same properties as that in Chapter 5. The only difference is that the velocity measurement is
considered not available in this chapter, hence the use of the observer introduced in Chapter 4.
From the stability proof of Theorem 6.1, the stability of this control (6 - 3) boils down to the
boundedness of the velocity observation errors, ;. i.e. if é; is sufficiently small, the bounded

output-feedback control will be unsaturated and remain so for all future times.
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Hence, by combining the observer of Chapter 4 together with the integral of saturated
functions designed in Chapter 5, a bounded output-feedback control (6 - 3) that inherits the

properties of it unbounded and full-state feedback controller (3 - 2) is shown.

6.4 Summary

In this chapter, globally stabilizing saturated controller for the trajectory tracking of robot
manipulators without velocity measurements with additive bounded disturbances were
proposed. The velocity is being observed through a super-twisting based plus linear damping
observer. Strict Lyapunov functions developed in the previous chapter 2 are being modified to
accommodate the bounded nature of the desired error dynamics. Essentially, after the
controller forces the states to have unsaturated control, similar properties of their unbounded

counterpart can be obtained.
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Chapter 7: CONCLUSION AND FUTURE WORK

7.1 Dissertation Summary

The focus of this research is to develop strict Lyapunov functions for algorithms that are
based on twisting and super-twisting algorithms and applying them to the control of robot
manipulators with real world problem considerations including output feedback without
velocity measurements and actuator saturation. Due to the non-Lipschitz nature of the
algorithms and the type of disturbances are allowed to exhibit discontinuity, nonsmooth
Lyapunov theorem is employed throughout the work to obtain important results from the
proposed strict Lyapunov functions such as settling time estimate for the finite-time
convergence and robustness to non-Lipschitz disturbances. Real world systems are always
affected by nonlinear behaviours that are often not considered; i.e. such as saturation in
control channels, lack of velocity measurements, Coulomb friction, the work in this
dissertation aims to compensate for these phenomena with practical control designs that can

be implemented easily.

Family of algorithms based on second order sliding mode algorithm, namely that of twisting
and super-twisting, are introduced in Chapter 2. Due to the non-Lipschitzness of the system,
using the generalized solutions in the sense of Filippov, strict Lyapunov functions proposed
are analysed using the generalized Lyapunov theorem. In particular, the strict Lyapunov
function can fully characterize different stability properties of a parameterized family of
controllers. Effectively, the family of controllers generalized the proportional-derivative (PD)

control and twisting algorithm, and that of proportional-integral (PI) control and super-
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twisting algorithm. At the same time the strict Lyapunov functions proposed can similarly
generalized the type of stability of these systems, from finite-time convergence to exponential
convergence to uniform asymptotic convergence. Leveraging on this results, algorithms that
combines the family of controllers with different degree of homogeneity are develop, and the
corresponding strict Lyapunov functions are similarly develop by combining the one from the
individual family, and the stability properties of each algorithm remains in the new
combination. In essence, it is possible to achieve finite-time with uniform convergence, which
in effect produces finite time convergence with fixed- settling time that is independent of

initial conditions of the system.

Chapter 3 focuses on the trajectory tracking control of robot manipulator. Semiglobal
practical stability is assured where the ultimate bound of the states can be made arbitrarily
small and the region of attraction arbitrarily large by tuning a single parameter. Due to the
generalized Lyapunov theorem and the proposed Lyapunov function, the stability analysis
permits the disturbances to have discontinuity, such as Coulomb friction. Of interest is the
ability of the proposed controller in generalizing the well-known PID control. In particular,
for this special case, the PID gains selection is transform into the selection of desired error
dynamics and the selection of acceptable precision of error. This gain tuning simplification to
gains selection is important, as it allows the nonlinear robust control of desired error
dynamics injection and disturbance compensation into an existing PID control, which is of
great benefit since PID control is widely used in industrial robot manipulator. In addition, for
the special case of position regulation problem, sufficient conditions on the gains are obtained

to ensure either finite-time or exponential convergence of the system towards the regulation
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point. In addition, due to integral nature of the controller, it is possible for the system to
behave as per the desired error dynamics from the onset of control even in the presence of

disturbances.

Trajectory tracking control of robot manipulator without velocity measurement is tackle in
Chapter 4. The velocity measurement is substituted with the output of an observer that
combines the super-twisting based algorithm develop in Chapter 2 with a damping term that is
termed in the literature as "dirty-derivative". The addition of the linear damping term has the
benefit of reducing the gain required of the non-Lipschitz part of the observer that is
responsible for finite-time convergence. At the same time it allows the definition of the region
of attraction to grow with the linear damping term, in which case is not possible if the term is
not added and peaking phenomenon will occur if the initial observation error is not small
enough. With the addition of this observer structure, the controller can maintain its useful
feature from Chapter 3, where effectively, the controller here is an output feedback version of

that proposed in Chapter 3.

The problem of saturated control is developed in Chapter 5 for the trajectory tracking or
robot manipulators under the influence of bounded disturbances. By taking into account of the
viscous friction and the proposed nonlinear integrator that injects a bounded desired error
dynamics, global practical stability is achieved. Also, when the saturation level is sufficiently
high for the user-defined speed of desired trajectory, the finite-time and exponential
regulation of the unbounded control in Chapter 3 is recovered but in a global manner instead

of semiglobal.

In the final chapter, the control robot manipulator is assumed to have both constraints; no
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velocity measurements available and the control is bounded. For the velocity observation, the
observer proposed in Chapter 4 is employed while the framework of bounded control in
Chapter 5 is applied. As a result, a globally stabilizing saturated controller for the trajectory
tracking of robot manipulators without velocity measurements under the influence of additive
bounded disturbances is developed. Essentially, after the controller forces the states to have
unsaturated control, similar properties of its unbounded counterpart in Chapter 4, can be

obtained.

7.2 Limitations and Future Work

The work in this dissertation complements the SOSM algorithms and control designs for the
trajectory tracking of robot manipulator. At the same time, it reveals new information on
existing nonlinear systems. Hence in this section, open problems related to the research in this

dissertation are presented.

In Chapter 2, the strict Lyapunov proposed are for the algorithms with constant gains. In
particular, the mechanical energy of the system is utilized as part of the strict Lyapunov
function. However, in doing so, if the gains of the system is allowed to be time varying, the
construction of Lyapunov function is not as straightforward. An example of a strict Lyapunov
function for super-twisting algorithm can be found in [146] where the structure of the
Lyapunov functions dictate the type and form of the variable gains, which is restrictive.
Hence, it is of interest if strict Lyapunov function can be developed that allows a full range of
variable gains. As the task of finding strict Lyapunov function is not straightforward
especially for higher order sliding mode algorithms, it is hoped that the work in this
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dissertations help sheds light on through employing the inherent structure of the algorithms

into the Lyapunov function.

For chapter 3, the stability result achieved is semiglobal which implies that the gains of the
control are selected based on the initial conditions of the closed-loop system. If the gains are
allowed to vary in accordance to the initial conditions by means of an adaptive algorithm, for
instance, global stability may be attained. Particularly, given the strictness of the Lyapunov
function proposed, utilizing certainty equivalence techniques similar to [147], an adaptive

version of the controller may be possibly developed.

An output feedback version of the controller in Chapter 3 is presented in Chapter 4, by
utilizing a super-twisting based algorithm plus a linear damping term observer. The stability
analysis here is also dependent on satisfying sufficient conditions pertaining to the initial
conditions of the closed-loop system. Hence, similar arguments as in Chapter 3 applies here,
in which case, an adaptive version of the output feedback controller seems plausible through

the strict Lyapunov functions of both the observer and controller produced here.

From Chapter 5, global results are achieved for the bounded controller by taking into
account of the damping effect of the viscous friction and a bounded desired error dynamics in
counteracting the effect of Coriolis and centrifugal terms of the dynamics. However, as a
result, the type of desired trajectory, in particular the speed and acceleration of the desired
trajectory is affected in order to satisfy the sufficient conditions for stability. Although, it is
understood that, given a limit on the actuation, there is a bound on the speed at which the
system can operate, it is useful if the limit on the desired trajectory be variable instead of a

constant bound, depending on the configuration of the robot manipulator, so that the
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bandwidth of the control can be utilised optimally.

Chapter 6 combines the results of the observer based control in Chapter 4 and the bounded
control framework of Chapter 5 to produce a global practical stability result on trajectory
tracking with the real world considerations of actuator limits and the lack of velocity
measurements from the system. All controllers proposed from Chapter 3 to Chapter 6 for
robot manipulator can achieved finite time convergence for the regulation problems by
satisfying sufficient conditions, including the need for the gravity vector, G(g) to be zero at
the point of regulation. However, such a need is not necessary for the exponential
convergence for the regulation problem. This is mainly due to the non-Lipschitzness of the
control, for finite-time convergence, occur at the origin, when a change of variable is applied
to the desired gravity point, the new equilibrium point is locally Lipschitz, hence the control
cannot render the convergence in finite time unless the desired gravity exactly compensated or

ZC10.
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Appendix A

A.l PROOF OF DESIRED DYNAMICS (CH3 & 4)

Consider the following dynamics:

Z, =z,+d,,
. ‘ , ‘ 26 (A1-1)
Z; :_klslg(zl) —kZSIg(ZZ )”b +0

where z;, z, € R are the scalar state variables, &, k, are positive constants, » > 0 real number
2 2

witho = k2|zz|l+b sign(zz)—k2|z2 +d2|l+b sign(z, +d,) and d), d» € R are bounded

disturbances:

|di| == sup{|el |: & €K[ d1 ]}, |d2] == sup{|ex |: & €K[ d>] } and || = sup{|&; |: & €K[ O]
+(Note that no continuity assumption is made so that discontinuous disturbances may be used
ind).

The results in this section are applicable to the desired dynamics section of both chapter 3 &

4. In particular, by applying the following change of variable:
For chapter 3:

Z,=2,2, =2,,d, =d, =5,

For chapter 4:

Z,=2,,2, =2,,d, =d, =s,,

the same differential equations are obtained.

Next, we take the Lyapunov function candidate of the form
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ki

k’ 1, 4 30
! +‘ZI|ZZ| 4'I1ZI| 2 Slggl(zl)zz +‘Zii;3;5|21

V(ZI’Z2):(1+—b)2|Zl

2+2b |1+b

2
|Zz|

where 7 > 0 is a constant. Note that V' is positive definite (with »; > 0 exist, see Chapter 1).

gl(lzl|2+2b|zz|4)ﬁ V(Zl,z2 )S 771(121|2+2b +|22|4)

1 1( . J _ 3 (kY k, k, ro1
where 7z, :=min{—, —| —| }, 7, = maxq—+ + ) +ot—t,
8" 2\1+b 4 1+b 2+2b 2+2b) 4 4

In accordance to lemma 2.4, taking the time derivative of the Lyapunov function along the

solutions of the system (A1 - 1) exists almost everywhere:

O E O R I i 0

EeoV (z(1),t z,

For ease of presentation, the analysis is separated for the case of »> 0 and b = 0.

For the case of b > 0:

Note that for » > 0, V' is continuously differentiable:

EedV (z(0),t Z,

V(z,z)= N )51{%1} - VVTKP}
Zy
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2kky e 20 3+3b 33b 3+3b LLELI.
N AN e FEyN
- (l+b) 2172 111 2 1 2
3+3b 2b . .
_rk2|21| : |22|1+b81gn(zl)51gn(22)

2k e 3+3p) L3 .

+K[d1 {(lle)Wl ZbSIgn(Zl)+’{ +2 j|zl| 2z +k1|Zl|b|ZZ|ZSIgn(Zl)j|
3. 303b 2k, 1+b )

+K[5] |zz| sign(z, )+ r|zl| 2 sign(z, )+ m|zl| |zz|51gn(zz)

Also, from the results of the planar system (Appendix A.2-proposition 1):

6 < a|do[i5 + @y, |5 with 0<a, <k, and

a, +2k,

al :kZ 2bh s

(( fk) —k 125)“

Then, after rearrangement:

2k w0k
e el Tl -5t

+ 3+3b 136
e e S

£ ook
+a1|d2|1+b (|ZZ|3 +r|zl| 2 +(1T1b)|zl|]+b|zz|]

17(Zl’zz)s_ |Zz|%+V1

1

Sasl (kz _az)
T

where

R e e R RN S

Note that from Section 2.2 (twisting algorithm): if the following inequalities
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3456 ?

343 ,

— 1+3

min{ A, ko (ky~a) Aok 2 (ky —a, )b >r >0
(ky, +a,) 2

P 3+5b )2 (3+5b P 3+5b \2+20( 3+5b 2 a2
"o\ 24+24p 16b 7 \8+24b 16+16b \ 3+3b ’

hold, then the function V] is negative definite. Such an » > 0 always exists for any k; > 0 and

with

kz >qap > 0. Then,

3+5b (kz _ az) 3+5b

- k 3+56 3456
V(Zlazz)g_r_zl|21| 2 - ) |Zz|1+b
2k 3+3b) 3%
+|d1|((lle)|zl|‘ ” +F(Tj|zl| 2 |zz|+k1|zl|b|zz|2J
2b 33b 2k +
+a1|d2|l+b (|22|3+r|zl| 2 +(1le)|21|1 b|22|j

Applying lemma 2.1,

|l+b 3

|Zl s

2 2
|22|S§|Zl| ? +§|Zz

1+3b 1+3b " 1+b 2+4b
R e S ey i

b + 1 b 2+4b
2 feaf < (mjw i +(1++2bJ|zz| o

together with lemma 2.2, and the bounds of the Lyapunov function, we have:
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~ ﬂ 3+5h 142b L“b Lb ﬂ 3
V(zl,zz)ﬁ—a)l(|zl| : +|zz|1+bJ+|d1|a)2(|zl| +|Z2|1+bj+a1|d2|1+ha)3(|zl : +|ZZ|J
2+2b 3+5b 3+5b 2+2b 1+2b 4 142b
:_wl[ﬂ )4+4h +Q | )WJ |d |w2[ﬂ )2+2b +Q | )2+2bJ
+a1|d2|12+l;a){QZ1 +2bT q ) )4J
1

1

3+5b Py 1+2b 2b 2 3

b w 2024, | =

_ 4+4b 2 2+2b 3 4
S { 3+5b ]V +|d | 1+2b V +a |d2 b 3 V

T4

T 4+4b T, 2+2b

where

2k’ (3+3bj(1+3bj ( b j
+7 +k, ,
(1+5) 2 N\2+4b 1+2b
X
[3+3bj 1+bj (1+bj
r +k,
2 2+4b 1+2b
o, for0<b<1,

@, =max1| r+ 4k, 1+ 2k, w =1 O
. G+36) ) (B+3p)) "t | forb>1

0 4+4b

It can be further arranged into the following form to dominate the positive term,
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3+5b
[0

3+5b
1

1
1+2b

Sioh 3+5b
X ) 22+2b )
- 4 4+4b _ 4 4+4b | | 2 2426 _ 4 4+4b
V(Zl’zz)— ) 3+5b 4 3+5b 4 + dl 1+2b 4 3+5b 4
5?14+4b ffi4+4b T, 2+2b }fl4+4b
1
2| H4 3
“b In) =
3 4
+al|d2|1+b 3 V
T4
1
3+5b
3+5b 1+2b l _— 242b
:_l @, V7 4+db _l @, y 22| 4 —|d| 47z e || 22 o,
3+5h 3+5b 1 1+2b
TT, 4+4b T 4+4b 4 7T, 2+2b
; . 3+5b 1
1| o 2 2V 4 4 | 24w
_ = 4 4 242b _ 1 3
el A R a|d, |1+ P 3
TT 4+4b 4 T4
4
3456 \4 1
T 2+2b
|d |4 472'14+4b 2 a)2
1 » 1+2b >
4
1l 345b Ty 2+2b
4 4+4b —
Sl == ,VV(z,2,)2 A= max 2425
TT, 4+4b 345h 1 b
21 47 4vap | 24 @,
al|d2 1+b 3
@4 T4

Hence, invoking lemma 2.6, the states will reach the compact set

Q, = {(zl,zz ) eR*: V(z1 22, ) < A} in finite time. Note that when |d,| = |d>| = 0, everywhere

. ® 3+5b
V(Z)S — —= [, ‘v’(zl,z2)e R’
TT, 4+4b

For the case of 5 =0:

First we consider the planar case:
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Now let us consider the planar dynamics with » =0 and k; > k, > 0.

Z, =z,+d,,
Z, = —klsign(zl)—kzsign(zz +dz)

1 3.
V(Zl,Zz): k12|zl|2 +Z|Zz|4 +r|zl|251gn(zl)z2 +k1|Z1||Zz|2

Now, for b = 0, the Lyapunov function is not differentiable at z; = 0 but Lipschitz continuous

and the system is described by the differential inclusion:

V(ztnt)= N )éTKFI}(z,r)c%Vi
Z,

EedV (z(2)t

where

171: N /;:TK[f](Zl,ZZ), IZ: N QZTK{LQ}

geov(z(n) geov (z(1),t)

{( }vzl d,|
k,sign(z k ,sign 22
{(_k -1, 1]22’k sign(z }vzl d,)|
K[f](zlazz): 1 z
{[ k,sign(z, ) - k,SGN(z, +d2)J}VZ1 |<|d,|
{(_ kl [_ 17 1]_k28GN(22 +d2)j}vzl =Y —|d2|

and

-1 x<0
SGN(x)={[-1,1] x=0

1 x>0
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v
0z,
oV

oz,

oV =K[VV]=K

3,4 .
K{aV} 2k’ z, +§r|zl|2 z, +k151gn(zl)|zz|2

8_Zl 223 + r|zl|% sign(z1 )+ 2k, |Z1 |22

= [ov
K|l — . 2
|:aZz:| {([ 1’ 1]13(122 J}vzl — 0,22 c R

Z,
Let us define:

oV oV oV
‘6— = sup{|§1| = K{g}, =
Z 1 and Z

2
s

with |—

3 1
< 2k12|zl| +5r|zl|2 |Zz| +k, |Z2

1

Thus, the term

~

2 = N é:lK[dl]S

flEKB*V}

21

3 1
nE |d1|(2k12|zl| 2ol k |zz|2j

r
0z,

Computing 17] for each case, we have

Forz; 20, |Zg| > |d2|2

3 1
Vi = 5r|zl|2222 =2k 2|72 | = K,

|3

For z;=0, |z >|d):

Vz, #0,z, eR

= sup{|§2| & eK [STV}}

3 3
—rky|z,|? —rk, |z, |2 sign(z,z,)

Let (§2k]zz2, 223)Twith & € [-1, 1] be an arbitrary element of 0V(z, ¢), then
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I71 = : EDI 1][52 -1, &, "'1]1(1223 _kz|Zz|3 = _k2|22|3

Forz;#0, |z5| < |dy] :
~ 3 1 .
V= Er|Zl|2|Zz|2 _2k1k2|zl|zszN(Zz +d2)_k2|22|351gn(22 )SGN(Zz +d2)
3 3
— 1k, |z, —rk,|z,|2 sign(z, )SGN(z, +d,)
For  z;=0,|z|<|d):

I71 = : EDI 1][52 -1, &, +1]k1|22|3sign(z2)—k2|zz|3sign(22 )SGN<22 +d2)

= —k,|z,| sign(z, )SGN(z, +d, )
Thus, for V (z;, 25) € R?
V< %r|zl|;|zz|2 kik||z,SGN(z, +d,)
|zl sign(z, SON(z, +d, )= vk |2, 2 + k2,2

Hence, the generalized time derivative of the Lyapunov function, after rearrangement:

o 3 ! 3 1
V=V+V,< 2k12|zl||dl|+Er|zl|2|zz||dl|+kl |22|2|d1|+5r|zl|2|22

|2
— 2k k,|z,|z,SGN(z, +d, )

3
_k2|22|35ign(22 )SGN(Zz +d2)—r(k1 -k, )|Zl|5

For analysis, the state space is divided into three regions:
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¢IQ§|):{(ZI,ZZ)GR2:ZIGR, zz|22k—k'|§},

¢ZQ§|)={(21,22)€R2:|Zl|2a3|é'2,zz|£2k—kl|§},
) 2 2k,

¢304|)={(z1,zz)eR Jnl<alg ,zz|£k—|;},

where |§| = max{[dl d2|} and

b

since k, >k,

Consider the region:

[ Qﬂ): {(Zl 722)6 R* 1z, eR,

2k
22301

Note that in this region, the following properties apply:

z,SGN(z, +d, )= |z, |sign(z2 JSGN(z, +d,)= |z, |

since 2—kl|§i| >|d,
k,

also when |d,| =0, the above is trivially satisfied,

when |d2| #0, we have SGN(z, +d,)=sign(z, +d, ), (since(z, + d,)# 0 in thisregion)

= sign(z, ) since |zz| > |d2| in this region

,where the equality only occur when |d1| = |d2| =0;
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Then, the time derivative of the Lyapunov function becomes:

1 2

- k LS| 2
V< _k1|21|(k2|22| _2k1|d1|)_ |Zz|2(?2|22|_k1 |d1|j_k2|zz|{(k1|zl|)2 _(E|Zz|2j2]
1, ot 1, Lo 3
—5|Zl|2|22| 22 k2k, =3r —E|Zl|2|22| 22 kk,|z,| - 3r|d,| |-k, —k, )z, |2

and ¥ < 0 for any positive

1

22 1
0<r<?k12k2 , with k, >k, >0

2k1|d1| 3r

zz|2max ST

2 222k,

2k, |d,|

forallVz; e R, _
k2

9

)} = > d,| and |z,] >|d,

which is sufficiently satisfied for the states in this region.
Next, consider the region:

2
s

2 2k,
¢2Q§|):{(zlazz)€R :|Z1|2a3|§ 22|SE|§|}

Then, the time derivative of the Lyapunov function becomes:

- ) 3 1 2 3 1 2

V <2k°|z|d)| +Er|zl|2 \z,|d\| + &, |z,| || +5r|z1|z |z,
3

+ 2k, |7, |2,] + Koz, | = 1k — ke, )z, |2

After rearrangement,
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= 2 3 1 2 3 3
V <|z,|(2k,2)d,| + 2k ke |25])+ Sz Pl 22+ e + ol =l =k )2 -
Note that in this region, we have:

%,

2

b

|ZZ|S

Hence,

- 2/(1 2
VS—|ZI|[4 (k, —k )|zl 2 —6k,’|¢, |j—r|zl| [4 k —k,)z |_E( a j|§i| J
[4 (k, —k )|zl|z 12( j|.,/| J ~(k, —k )|Zl|2

where ¥ < 0 for any positive »>0, with k >k, >0

for all

2
X |§l 5

|Z1| 2 max

and |22|£2k—]?|§i|

which is sufficiently satisfied for the states in this region.

Finally, consider the region ¢3QC|)= {(z1 ,zz)e R’ :|zl < | < 2k—k'|§|} which is a

2

compact set. Hence, with the above results, we have
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V< 0, for (z,,z,)¢ ¢3Q§|)

Now, define a Lyapunov level set:

Q, ={z.2.)eR* ¥ < p (¢])}

where the positive definite function p;(|{]) is defined as follows:

Pl(lé’l)= 4

max
(Zl 22 )Ebd 2 (M‘)

which exists since the boundary of the set is compact and 7 is continuous. Then we observe

that ¢(|4]) < Q. As aresult, we have

a.e. 2

d s
EV(ZI,Z2) € V(ZI,ZZ)<0 for V2p10§|)

which implies that the trajectories will enter the compact level set ), in finite time and stay in

it once entered. |
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A2 PROPOSITION 1

For every real numbers k>, d», z, € R, b >0, and |d»| :=sup{|& |: & €K[ d>] } the following

inequalities is satisfied

k2|z2

2 2
vesign(z, ) - k,|z, +d, [+ sign(z, +d, )1

2 2
1+b _k2|22 +b

k, sz| +|d,|
ax

b

2 2
14b — _ 1+b Qi _
k2|zz|1+b k2H22| |d2| + 51ganz| |d2|)

2b 2b 2713 27[)
k|2 sign(z, )= Koz, +ds o sign(z, +d2)‘ < a|d,[75 +ay|z,h,

with some positive constants a;, a; define by 0 < a, <k, and

+ 2k
a, =k, 2 2

>0

2b

W\
((a2+k2)2b _kzzbj

2b 2b
Proof of Proposition 1: Let 5:k2|zz|ﬁsign(zz)—kz|z2 +dz|ﬁsign(z2 +d,) and |5 | =

sup{|&; |: & €K[ d] }.

First we are going to show that V z, € R, and any & €K[ d: ],

2 2 2
les] < max{k2 Hz2| +le, ||t —ky |z, |10, kylz,|e —k, H22| —l&,|

2b
signqz2|—|ez|>}
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Let us note that when |&| = 0, the above is trivially satisfied. Hence, for |&| > 0, we consider

the two cases of sign(&) < 0 or sign(&) > 0.

For sign(&) > 0:

|"33| =

b 2b
ozl sign(z, ) — ks 2, -+, sign(z, + |gzq
In the region of z; > 0, it becomes:

2b 2b 2b 2b
— —_ 1+b 1+ —
5| = ko2, |10 k2||22|+|‘92| k, |z, |1+

ky||z,|+ e,

In the region of z; < 0, it becomes:

2b
&3] = [~ Ky |2, 140 _kz‘_|22|+|‘92|

&
sign<—|z2|+|ezq

2 2
=|- k2|zz|1+b +k, ||zz| — |32| 1+b sign(]zz| — |52q

2
I N PP

= |k, |22

2
1+b sig1Q22| - |82q
For sign(&) <0:

2
k2|22|”75ign(22)_k2|22 - |‘92|

&5 =

2b
1+ sign(22 - |52q
In the region of z; > 0, it becomes:

2
ke |z, |1+ _k2||Zz|_|‘92|

|‘93| =

25
l+b sign(]zz| - |82q
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which is identical to the case of sign(&) > 0 in the region z; < 0.

In the region of z; < 0, it becomes:

2b 26
— = 1+b — _ _ 1+b
|&3]= |~ Ky |2, | k2| EARIEN

2b 2b
sign<—|zz|—|ezqz \ et + ko] +led|

2 2
1+b — 1+b
k2||zz|+|52| key|z,| b

which is identical to the case of sign(&;) > 0 in the region z, > 0.

Hence, for all |&| >0 and |z5| > 0:

2 2 £
1+ — —_ —
k2H22|+|‘92| k|2, |1, [z, [ k2H22| &,

3

|£3| < max{

2b
b sign(z, | "32'*} (A2-1)

2b
Next, note that the function f q-|):k2|-|ﬁis strictly increasing for |z;] > 0 and

|2,]+ &, = |z,| » We have

2b 2b 2b 2b
1+b 1+b I+b _ 1+b
k2H22|+|€2| * 2k2|zz|1+b :>k2‘|22|+|82| * k2|zz|1+b >0

2b
Also, note that the following is an increasing function, k2|zz|ﬁsign(zz) and since

|zz| > |zz| —|{;‘2| we have

2 £
k, |Zz|”b Sign(‘ZzD2 k, H22| _|‘92| o sign(]zz| _|‘92|)

26 26
= k2|22|1+7 —k, sz| — |52 1+b sigr1sz| — |52|)2 0
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Hence we can write (A2 - 1) as:

2b 2

2 b 2 2
1+b _k2|22|1+b’ k2|22|1+b —k2‘|22|_|82| ]+bS1gIlq22|—|82|)

|83| < max{k2 sz| + |52|

Now, since |d>| := sup{|&: |: & €K[ d»] }, we have

2 2
|2,| +1do| 2 |2, ]+ |6 = K2 + o | 2 Ky |2, +]es

2b 2b 2b 2b
1+b — 1+b 1+b —
:>k2\|zz|+|d2| b — |z, |10 2k2‘|22|+|82| th —k, |z, |1

also, we have
|2,| = [e2] 2 |z,| d,]

£ £
=k, sz| ~le, ] sigr1Qz2| _|‘92|)2 k, sz| ~|d, | sigan2| _|d2|)

» 2 2 »
=k, |z,[ _k2H22| ~|d, | sign(]zz| _|"12|)Z ey |z, | _kzuzz| ~le, [+ sign(jzz| _|52|)

Hence we have V & € K[ d,], V |z2| > O:

2 2 £
1+ — — _
b —kylz, [0, K|z, |1 k2H22| |d,|

e, <0 < max{kz [EXEN"A

2b
“snl] [
Thus, to determine the upper bound of |6 |, it is sufficient to consider two cases only for |z;| >

0 where both cases are greater than or equal to zero for |z| > 0 and |d,| =0

Case 1:

Consider the following function:

2b
(a, +k,)z,|+0, with O<a, <k,
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and for the following inequality to be satisfied

26 26
k2||zz| + |d2| I+ < (a2 +k, ]zz|@

we need

|z,| > Cld,

1+b
k, 2
. 2
, where C= = =

(ay + k)26 —k,2
where C > 0 for any a, > 0, which implies for |z;| > C d

2 2 2
+b —
k2|22|l+b < a, |Zz|1+b

k2||zz| +|d,)|

and, for |z;| < C |d,| , we have

26 2b 26 26
ky|lz,| +|d, |1+ < k| Cld, | +|d, |1+ =k, (C + 1) |, |

which also implies

2z 20 2b 2b 2
k] +[d [ — k2| <y (C o+ 1)ioa|d, [0 — ko, |15,

2b 2b 2b 2b 2B
since &, (C+1)isb|d, |10 — k|2, 100 <k, (C+1)b|d, 100

2b 2b 2h 2b
sk, ||22| +|d, | — &, |z, [0 <k, (C +1)i|d, |0

where the equality holds only when both |z;| = |d>| = 0.

2 2 w2 2
b _ sl |1 f
b —k, |Zz|1+b <k, (C+ 1)1+b |d2|1+b +a, |ZZ|1+b

Hence, for all |z;| > 0, we have, £, ||zz| +|d,|
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Now consider case 2:

Consider the following function:

ﬁ
(ay +k, )|z,| = |d, | sign(z,| - |d,)

and for the following inequality to be satisfied:

2 2
k2|zz|1+b < (a2 +k, j|zz| —|d2| 1+b 51gn(|22| —|d2|)

we need:

1+b 1+b

I+b
z,|>D|d,|, where D= (a2+k2)2b
|2,] 2 Did, |

(ay +hky) 20 —k, 2

where D > 1 for any a, > 0, which implies for |z5| > D |d,|

2 2, 2
ko2, | _k2||22| AR Sign(lzz| _|012|)S a2||Zz| ARG sign(|22| _|d2|)

2b
Note that a, |z, [ 2 a, || ~|d, |+ sign(z| ~|d,])

2 26 2
— — 1+b g — 1+b
= ky|z, | k2||zz| |d, ||+ s1gn(]zz| |d2|)s a,|z,|

Also, for |z5| £ D |d,| , we have

2b 2 2b 2
ey |2, _k2H22| A RE sign(}zz| —|d2|)g ky |2, |10 + k2H22| A RE

2b - 2h 2 2b
<k, D" |d, |0 +k, (D —1)iss|d, 140

20 2 2
= kz[DHb +(D_1)M,J|d2|1+b

382



Note that D > 1 from above.

Hence, for all |z;| > 0, we have

2b

2b 2b 20 2b 20 2b
bz, |0 = ky|l2,| = |d, || e sign(z,| - |d,]) < &, (D“b +(D-1)is J|d2|1+b +a, |z, |1

Thus,

2 2% £
1+ — — —
b~ |z, |10, Ky |2, | k2H22| |d,|

5] < max{k2 |z,| +|d,|

2
siglqzz|—|dz|)}

2b 2b 2b 2 2b 2b
b A 1+b 1y b Py
d2|1+b +a, |Zz|1+ba k2 D +(D 1)1+b |d2|1+b +d2|Z2|1+b

< rnax{kz (C+1)is
2b 2b
s B < a5 +ay |z, 0

where
2b 20 2
a, =k, x max{(C +1)is, (D”b +(D 1)1 J}

a, +k, a, + 2k,
2b ° 2b

Wb 1\ 1 i
(a, + k)20 —ky 2 (ay +hy) 20 —ky 2

= k, x max

a, + 2k,

2b

((a2 +k, )% —kzlifjl”’
2b 2b
3|5| < al|a?2|E —i—az|zz|E

where a, is chosen as 0 < a, < k».
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Remark: The reason for having a; < k, will be apparent in the subsequent stability analysis.

A3 PROPOSITION 2

Forx e R,y € R, p > 1, the following inequality is satisfied

1 1

e+ )] < 2 ‘sig(x)p + sig(y)P‘P :

Proof of proposition 2: (We extend the proof from Lemma 2.3 of [148] where it is
originally for integer p only.):

It is straightforward to prove that the function
£(2)=(sig(2)” +sigli-2) o -1
arrives its minimal value at A = 1/2. Thus, f{4) > f(1/2) = 0. Consequently,
(sig(2) +sigl- Ay P 21, VieR

In the case when x +y # 0, set A = x/(x + y). Then, the proposition follows immediately. When

x +y =0, the proposition is trivial. Hence, the proposition is true Vx € R, y € R. ]
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Appendix B

B.1 PROOF OF DESIRED ERROR DYNAMICS (CH 5 &6)

For the case of b > 0:

Consider the following dynamics:

Vi =Vy 1S,

1
v, =—k, (vzi +s, +sat [ezi])+ k,sat ., [vzi +s, +sat, [€2i]]
@ 2b
ki
2b

—sat,_ {kz,' ‘vzi +s, +sat [52,. ]E sign(vzi +s, +sat, [EZi ])} —sat, [ku |v1,,|b sign(v“ )]

where vy;, Vo, S;, €2 € R are the scalar state variables, ky;, kai, kui, €15, &, M are positive

constants, b > 0 real number
with

1+b

&Ey; 2 ~
T kai/ui - kai [k_] — &5 for |62i| =0,
2i

i 1+b

2b
e, —k, (%j —-¢,, fore, =0 (forthecaseof fullstate feedback)

2i

The results in this section are applicable to the desired dynamics section of both chapter 5 &

6. In particular, for Chapter 5, let e,, =0, while for chapter 6, no changes required, and the

same differential equations are obtained.

Lyapunov function:
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vii 2
V= (% v, + J-satgh [k1i|r|bsign(r)] dr} (3 *3b j I|r|2 sat ] dr|v,
0

I
kl

Nl
J I|r|2sig11(r)—sat
0

1i

il 2 [ i) a

£
ki

where 7] is a positive constant scalar, will be shown as a strict Lyapunov function. Note that
the above function is locally Lipschitz and regular. It is differentiable everywhere for 5 > 0,
and not differentiable on v;; = 0 for b = 0. In particular, when none of the terms of the
dynamics are saturated, the Lyapunov function is indeed identical to that proposed in Section

2.2 for the twisting-based family of algorithms.

Sign definiteness of V'

Note the following properties:

_([satgh_ [kll_|r|bsign(r)] dr = %sa‘c . s ﬂvll_|1+ ]+ &, |v11 . thH

kli kli
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3+3b\%, L 3b
’”1( +2 ]Jo.|r|2sati;[|r|2] dr

] g,% 3
s [l ] 2 s

a2 L 1i
kli
3+3b ]

=|rsat |v1i |T +7 (1 + b)sat N @v“ |% :|{|Vn |% —sat
[ij % | | [ijz
k” kli

3b 3 3+3b
= [rl (1 + b)sat s {|v1,.| 2 }|vn| 2 —nbsat {|vli| 2 ﬂsign(vh)
& 12 & 2b

o ]fh D"n |% }ﬂsign(vh )
a ]; D"u |% ﬂ}ign(v“ )

kli

kli

ky ky;
Using lemma 2.2,

3 3 3

2 2 2

|v1l|z{|vll|—sat ol sat ,th”} S2{|vll|—sat ,M]} +2{sat ,M}
& |b & jb & |b [@jb

ki ky;

3
2
1 1 3
=2 [|vlf| —sat lei |]J +27 [sat £l [|Vli|2:|J
[%‘ijb [%:ijzz;

ky; ky;

Note that the term

3

e 2| 2 3
r(l+ b)kai(k—hj I|r| 2sign(r)—sat ]3 {|r| 2 sign(r)} dr|=0
. 0 &y |26

1i

kli
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r1(1+b)sat[gh]{

»] 2
i o
3b k-
i[|r| 2] dr | v, 22— ’
2 —rbsat

3+3b | e
343b "1,-| 2
(a’lIJZb

kli

3430\ 'Fi L
’”1( +2 j .!.|r|28at

£

kli

1 3b
S [ (Y EE )
> (%f] kT: |V2i|

| i 343b
+l”1(22 _,_(22 1ijsat[ Jw|:vli| 2 }

1i

kyi |V21-|

Now, firstly note that the upper bound on the Lyapunov function:

2
1 k,.
< | Sl + st ﬂv|]+g ol =sat |

an
ky;

kli

3+3b e 22 e

+ 7, sat 3+3{|vli| 2 }|v2,»| +7 (1+b{#J |V1i|2 —sat |V1i|2} |"2i|
O W !

ky; ki

r|% sign(r)} dr

1i

i .
+r(1+ b)kai(%Jz J.|r|% sign(r)— sat( ]3 [
0 & |20

kli

which is positive definite and radially unbounded.
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Next, the lower bound on the Lyapunov function, using the above properties, can be obtained

as:

2

1 2 k . 1+b
V>l—v, ' + sat o vl [+ e | - sat Uv |]
2 2i 1 1+b 1i 1i 1i 1i
+b &, ) b &
kl[ kl

3

1 E
—n22(1+b)(%]2 ol =sat [l 2
1i ’

1 1 343b ]
_1,1{22 +(22 _1ijsat( JW{VJ 2 |V2i|

ki

&1

21|v A|4+l by 2sat 22bhv.|2+2b]+g“ v, | —sat Uv |]
g ¥ 2l1+b U i 2 | .

ki ki
2 3 2
2 2
|2,| b 2 |v1,| sat ) le |] ;"122 1+b){k.j |vll.|—sat ) %Uv“” |v2i|
2y " T
2 1 1 "
+%|vz[|4 +%[%) sat L., hvlirﬂb]—r{% +[22 —lJbJsat w[v“r;b }|"2i|
&) )"
Using lemma 2.1,
2 1 3 3
1 1)+, [ 4e,
Lt s o Z(Z]4|vzl|[ “;J st le,|]
kI kli

and
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2 ! 2 % .
L|Vz,-|4 +l(k_') sat ., ﬁv”|2+2b]2£lj4|v2i| z(k—‘j sat .. [|V1i|323bi|
16 2{1+b [&JT 4 3\1+b (ET

kli

Consequently:

Uvn|]

1 s 1( k; ’ 242b —8“2
V> _|V2i| +—| —— | sat ., hv1i| ]+ |v1i| —sat !
8 2\1+5 Ana 2 Ly

k“ kl[

with

; 1 1 3
22 | k2 | |22 22 k.,

R PRV A R [1+bj
6* 6* )1 22 4|22 -1p

min

Note that such an r; > 0 always exists for any positive k, and b. Thus, the Lyapunov function

is positive definite and radially unbounded. In accordance to lemma 2.4, the time derivative of

the Lyapunov function along the solutions of the system exists almost everywhere:

Time derivative of Lyapunov function b > 0:

Note that for b > 0, V' is continuously differentiable:

- V.. v, . . )
V=N &K "|=VVTK| " |V, +V, +V,
ceav (v(1),e) Vo Vo,

1 1

with
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1 2 - b . 20 .
_(EVZi + .[satg“ [kh.|r| mgn(r)] a’r}x(vzisatgh {k2i|v2i|1+b s1gn(v2i)D
0

1 3b
+ 7”1(3 +23bJ|vll.|Zsat vli|7]v2i (Vzi)

o[

ka[v2i - kaisat 1+ [v2i]
@ 2b
[kzij

| »
(kill +sat, |:k2i |V2i | b+b Slgn(VZi ):l

’,.l 3+3b 5
mosat v 2 Jsat, [ky|v]

)"
3
M(&Jz |v1-|% —sat s |:

2 kli i 2b

kli

3
Vii | 2 :| Sign(vu )

X km.satﬂ[ [ezl.]— k,sat ., [in +s, +sat, [ezi ]]
@ 2b
ko

3
rl(l-l—b)(ijz |V1'|% —sat s |:
2 ki) | [&Jfb

- kl!

3
Vi |2} Sign(vli )

2b
xsat, {kzi‘vzi +s, +sat,, [ZZi ] L+b sign(vzl. +s, +sat,, [Ezi ])}

3
AN s [ et it )

li

en
kli
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h
——sat
2

ky;

2

2

2

_M(

“

r1(1+b)(

kl

N
k&i

3+3b
33 |"1i| :

3

x| k,sat, ¢, ]-k,sat

3
g2 3
#J |v,;|2 —sat {
kli [ijzb

1

3
& |?
1i
J |V1i
i

2 3
|v1i|2 —sat

}Sat &1 [kli |V1i |b ]

& 2b
klr

£ |20
ki

ky;

2b

3
|5—sat 3[

&; |
kli

3
[m@ﬁ@m>
1oh [v2i +s, +sat, [ZZi ]]

3
Vi |2} Sign(vli)

xsat, [kZi ‘vz. +s, +sat, [521. ]E sign(vzl. +s, +sat, [EZi ])}

e it ot o s,

—2{%‘@2 + _[satgli [k1i|r|hsign(r)] a’rjx Vyik vy — vk, sat
0

392

i 26
_ (% v, + J'satg” [ku Ir’ sign(r)] dr} x (vzl.satgzl_ {kzl. [v,, [+ sign(v,, )D
0

1+ [VZi]

£ |20

ki




Vyk,s +v,k, sat | €]
4
-,k ;sat

kZi

2b

—V,;sat £ |:k2i |v25|

. 3+43b) 7
V, = +Vl[ +2 J|vli|zsat §[|Vli| 2 ]v2i(si)
& )2
kh
3+3b
}"1 sat 3+3b|:|v1,‘| 2 :|Sign(vli)
fli 2b
ky;

k, (sl. +sat,, [c,, ])+ k;sat
&2i
ko

—k;sat
& 2b
k2i

+sat. | k,.[v, +s. +sat |e,.
&9 2i |V 2i i o L-2i

2
—sat, |:k2i |V2; |E Sign(VZi ):|

2[% v, + vj:satg“ [kn |r|h sign(r)] dr]

L [Vzi +s; +sat, [Ezi ]]+ VZikaisaty,» [VZi]
£

+v,sat, {kzl.‘vzi +s, +sat, [52,.]

1+h Sign("zi ):l 5 sat,, [kli |V11 |b sign(vl,- )]

- [vzl, +s, +sat, [521. ]]

2b

1+ sign(vzl. +s, +sat, [52,. ])}

Lh [sz]

2b

2b

1+ Sign(vzi +s; +sat, [E” ])j|

Note that the following property has been employed:

7, sat

ans
ku

3+3

5 bjj.i|r|;sat
0

3b
Vl( A2 1 dr=

Eli

ki

3+3b

3
2
+rl(l+b)(%]
1i

3+3b
2

i)

3
|V1i|2 —sat ][

2b
ki

2b

Sign(vn)

&

3
v1i|2
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Let us define the following terms V| and V :

Lo [ b . ] 2
—{E|v2[| + jsatg” k|| sign(r)| dr | x| [v,[sat,, |y lvy, |1+
0

3+3b) L
+r1( > ]|v1i|2 sat

.
g[hﬁi|2 HVZi

& |2
ki

. 343

Vi=|+|nrsat vh.| 2 | Ix| k,
&); | 2b &5; |20

ki kai

, 3436 b
_Esat 303 V1i| 2 Satg” k1i|vli|

[&] )
klr
3

_(rl(l—-l_b)ji EgA |VA|%—Sat |:
2 kli 3i 1i [%j;b

kli

3
‘ﬁi|2

’”1 3+3b b
——sat v1i| 2 |sat, k1i|v1i|
. 2b

3
—[rl(“_b)Ji 25. |v.|%—sat [
2 kﬁi : " (En)zz

3
v |2

2b
v21.| —k,sat ., Uvzi |]+ sat, [kzl, |v21.|1+b}

Vz — | ky;
1 : ot [ b . ] 2b
_(5|v2i| + J.satgu ke, || sign(r)| dr | x| [v,[sat, | kv, |10
0
- 2[%|v2i|2 + J-satgh_ [k1i|r|bsign(r)] dr}x Vailk Vo | = [V K st s Uvzi”
' o
with
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[

&,y | ¥ ~
&~k _kaz{k_J — &, for |62i|¢07
) 2i

it 1+b

2
e, —k, (%J —¢&,, fore, =0 (forthecaseof fullstate feedback)

Note that ¥, <V, and V,, <V,, thus,
V<V +V,+V.
Note that V5 is negative definite for &, > 0. V, is considered as perturbation term.

We are going to show that an 7, > 0 exists such that the ] is negative definite.

Sign definiteness of 7;:

Let us divide the entire state space into three regions:

1
e 2
V2z|2( 21] 5
k
2i
b
£, |2
Wl |
2i
1 1+b

e\ e |2
— 2. Li 2
Q, = (vli,vzl.)e]R .vliﬁ[k j , vziS£—k’J
li 2i

Q, = (vh.,vzl.)e R? :|v1i|e]R,

1i

1
Q,= (vli’vzt')ERz :|V1i|2(%Jb,

14

o 2
V2i| > [i}
k
2

For region: ), = (vll.,vzl.)e R? 1|V1,-| eR,

Note that:
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and

2b 2b
|v21.|sat52l_ {k2i|v2i|l+b} =&, |v2i| —sat ., Uvzl” +sat, {kz,- |v2i|1+b}sat

&y, |20
kZi

and

3+3b b I+
sat .. ||v| 2 |=sat ﬂﬁvh} ]sat |l 2 [<sat
&) ) ()

ky; ky; ky;

and using lemma 2 of chapter 2, we have:

2

1
|vh.|5 = |vll.|—sat l([v”|)+ sat l(]vll.|)
i b i b
ky; ky;

Then,

£ |20
ky;

kli

< |v.|—sat QV|) + S »
) 51% ' ku
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2
2

Vi <— §|Vzi| — &2 |V1,-| —sat i QV1i|) X [|v2i|satgzl_ [kzl. |v2i|1+b D
&
o
’ 3
2b
R |v2,|{ehésatm[mvz,Hb}nf?ﬂ(%ﬂ
af li
k]i

L+b
1+ | k, g, | %
—sat ., hv1i| |V2i| —sat Uv2i|] & mh | |k

e : £ )2 1+b ky;
kli k2i

Thus, V7 <0 for:

1+3b 1436
C(E) (a5 )
1i s + ’
3+3b &, 6+ 6b kb_% &,
min >7
1+3b 143 b
ky; 2 &y ( 1 k2 | & j 2
+b | = || .
k,(1+b) . b ) g, N

l b
g \b &, |2
O - 2, I 2
For region: Q, =1(v,,,v,;)eR .|vli|2£k—’j , v2i|g(k_’j
1i 2i



Note that in this region the term |vy;| is lower bounded, thus
1+b

1
[ : k.. b Y
o fo st = B [ 2

0 1i

also in this region the term |v,;| is upper bounded, thus we have,

kai

V2i| —k,;sat 1+ UV2i|] =0 and
@ 2b
ky;

5 5 2+6b | 4
|v2i| = sat ﬂﬁvzl.| ]=sat 13 v2i|3+3b sat |v2i|3+3b
@ b i 3b a i 3b
kZi k2i k2i
2
2+6b | 3b
< sat |v |3+3b &ai
— 1+3b 2i
i 3b n kzi
ki
or
> ) 25 2
ol? =sat o [val ]=sat[gz_j vy [ fsat |y [
&y | P : & |P
7 kZi
k2i (ka’]

SR

2 e

<sat |v <|1+b 2
&2i 2i k

ky, 2i

and using lemma 2.2:

o
W
W
o
&“"
| =
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1
; gy b 136
l
<-g, |V1i|_ T sat ., k2i|v2i| b
li (@J” &5

kZi
3 3 1+
3 143b
_’”1(1"'[7) S 2531‘ |V1i|5_ Gu | —(LJ T k,sat {|v2i|l+b}
2 ki k, 1+b \ k,; [ijﬁ
k2i
1
3 2 3\3
3430 &, Vx| 3_&53 2460
+n |V1-|2 sat b |v2‘|3+3h
2 kli k2i l kli [%]T l
n 51:'3;? n gli% lk ‘ { |31*5bb:|
- " - I — S Ky 8al s | [Voi| 'F
4 k1i322b 4 k”322b 2 [%j 2
1+3b 1 1
4| S0 N (—3+3bj Sau Z+ ‘i ;k sat @v |12+[;7}
1 ky; 2 ks, ky; B [%] i
From lemma 2.1,
3 3 I+b
2 3 2b b 143b
—r1(1+b) ﬁ &y |Vll-|E - i —(L) i kzisat 1435 {|V2i|l+b}
2 ky; ky; 1+b )\ k, [@]7
k21
3 3)3 1+ %
H(3+3b) &, |? 2o(e, | 3kky [ &, ]° 13
S -hs | |v1i|2 7 PO sat 143 |v2i|l+b
2 ky k, 2+2b\ k, [@]7
k21

and
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3+5b

e o 1 345b
1| €
4 S —Ek%sat s {|"2i| t
&y 2b
k20 ;f:
3436 2b
3+5b '\ \3+5h 3+5b
3361 (34+5h\ 1) &, 2 3+5b 3+5b
< —1,345b — TS — |k,sat ., |V2[| 1+b
3+3b \ 4 4b o) 20
k20 o
2i

Thus, ¥ <0 in this region for:

3

2
El 31)3 1+b 3
1 2k 3 R 3kky, (€,)°" 143
r 3+3b i &, |V1i|2 _ & 1"V 2i & sat . |V2,-| 140
2 \k, k, 2+2b e V3

b 3 1
1( 2 j Skyky \ €y | (K )P Ry )
=N e e e
3+3b N\ 2+2b )\ k, &y ) &y
Also,
3436 2b
3+5h 3455 3+5b
3301 (345p\ 1| &, 2 3+5b 3+3b
1Y TR | e ) A [
i =
1436 1 1
26 b b 26
S rl(glij (3+3bj(&} +(i] k2i sat . |:|V2i|1+b:|
k 2 Nk )k, (2]
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343h 3+5b
3+3b 3456 \ 25 130\ 2

3+5b Y2 (3+5b) ¢, 2 ki )2
12+12b 4bh 3+3b ka
k; 26 &

<~

)

2 &y b &, |?
1 . — . 1 i
For region: Q, = (v“,vzl.)eR v S| — |, vy, < _k

2i

Note that in this region:

. 1 ky i
=gl gl I kol
3+5b

3+3b 1430 2 3+3b 2b 7
+n |V1i| 2 |V2i| +’"1|V1i| 2 k21|V2i|l+b __lkli |v1i| 2
2 2

It can be easily verified that, for any ¢ > 0 and (vy;, v2;) € Q3:

2 3+5b

V](cmvnacvzi) =c' VI(VIMVZi) (B1-1)

Let us define the boundary of this region, bd (23, which encircles the origin that can be written

as the union of the sets

bd Q; =Q,;, UQ,, where the sets
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! )

Q,, = (Vli’VZi):|v1i| < (%J 5

b 2b
| €
V2[| B [ j ,
k
1i 2i

1 1+

& |° & )2
Q, = (vli’VZi): |V1i| = (k_h] , V2i| < (k_bj
1i 2i

Due to this homogeneity property (B1 - 1), to show sign definiteness, it suffices to prove sign
definiteness on the set bd Qs;, which encircles the origin, since for every (vi;, Vvi)
e Q3\{(0,0)} there exists a ¢ > 0 such that (¢?"™® vy;, cvy;) € bd Q3. Note that the sign
definiteness of ¥; has been shown to be negative definite on bd Qs already since Q3; € Q
and Q35 € Q. Thus, by the homogeneity property (B1 - 1), we have V; <0 in this region as

well.

As aresult, V; <0, negative definite for all (vy;, v2;) € R? with r; > 0 chosen as:

1+3b 1436
2 jk ;(82ij [ 1 j klij &y |
Ul R b || . >
3+3b E 6+ 6b k2 NE
ky; 20 €y ( 1 ky; 20 (521']2}’
+b P 1+b - )
km. (1 + b) 6‘1in 1+b kZin &y
1+b 3 1
c % 2 3kiky Y € || ki )2[ ki |
mine " 3435 N 2426 )\ k,, e, ) L&y ) >h
3+3b 3+5b
[ 3+5b sz (3+5b} £, (kll)% L
3+3b 2i
12+12b 4b k, 2 &y
3+5b
L 1 2b
343bY &y )P | &u bsz
2 ky; ky;
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Observe that such an »; > 0, always exists for any ki;> 0, k2, > 0, &, >0, &; >0, and b > 0.

Sign definiteness of V> + V;:

From the previous development, we have shown that V] is negative definite and since V5 is
negative definite, the idea is to dominate the V. term with it. Before we proceed, from

Appendix B.2-proposition 1, we have the following inequalities

sat [v,,]-sat " [vzl. +s, +sat, ¢, ]] <sat usi +sat, [ZZi]]

[@ 2b PR zijzb
ky; ki ki

2b
sat, {kzi‘vzi +s, +sat, [52,. 1+b sign(vzi +s, +sat,, [ZZi ])}
Lb Ssat,, [;(QSI. +sat [ezl. ])]
—sat £, |:k2i |v2i | I+b Slgn(vzi )

<sat,, [ﬂqsi +sat, [52,- ])]

where £ is a class IC function. (Refer to the definition of class /C function in [71]). Hence,

after simple algebraic manipulation:
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. . 7, 3+3b [ b]
V,+V, S—Esat v | V| 2 Jsat, vyl
& 2b

3
3 V1i|2
en 26
kli

1, o ¢ b 26
- 5|v2l.| + Isatgli [k1i|r| mgn(r)] dr}x£|v2i|satgzl_ {k2i|v2i|l+b D

0

kli

3
_ Mj{&jz% v, |2 —sat

2 kﬁ

kﬁi

V2i| B |V2i kysat Uv2i|]
£2i |2

ki

_2(%|v2i|2 + Isatg]i [kli|r|bsign(r)] dr}x |v2i
0
V1i
2[%|v2i|2 + J-satg” [k1i|r|b sign(r)] dr]
0
+ |v2i ks, + sat, [ZZi] + |v2i k sat s || +sat, [52,]
y 5 ;ifJZh
+ |v2i |sat262i [ﬁQSi +sat, [EZi ])]

n 2{%|v2i|2 + jsatg“ [k1i|r|bsign(r)] dr] &ysi|

0
3+3b) L td
e T
an
iy
3+3b
rpsat [|vh.| 2 }
i 2b
ky;
[ kgl +sat, 2, ]‘+kaisat " ﬂs[ +sat, [Ez,l
: {2
+sat,, [ﬂﬂsi +sat, [Ezi ])]

The z;— zp; plane 1s divided into the following three regions for analysis:
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W ()= va ) e R 2 € R, o] 2 e ()

\le‘qgiD: {(vli’VZi)e R”: |V|i| =yes Q§l|), |V2i| <a, quD}’

\P3i0§i|)= {(vli’VZi)e R’ :|V1i| SalqgiD’ |V2i| < 052(1511)},

where || is defined as|¢| = max{jsi|,satﬂi U52i|]},

while ¢, Q§i|)and a, (]é’i|) are class IC functions defined by

a, ([é’l.|):: max

& | 2k
[k ] €1
1i

i ler, QC |)]

2 2
1+5b Sat
a,(¢))
7
+ 3’|
g, )2
[kllj &y
1i
2
2sh ag(]é’iD—sat 243
& 2b
)"
* 3
AR
kf €
1
2
3
sat
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i

— Satgm_ [6 (o4 (2|§i |)]

a, Q§l|) =: max

ar, oo (z|a|)]ff e (k)

&2i

k2x

ks

&2i
“2i
k2i

ky; 6k,
b
sat o [oalg ) (el -sa L [6a/4]
ky &y
1eh
sat o [a4([§i|)] 1435 a4(]§i|)—sat o [a4Q§i|)]
ky; &y
1+b
sat e [asqgiD] 2rab 1 sat L [as(lé“im
o (asla)y | (&)~
ks &y
ﬂ
sat N [a6(2|§i|)] b a6(2|§i|)_sat tse [a6(2|é/i|)]

+
&y,

with the additional class & functions defined as:
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o, (2l )= kai(2|4f|)+kmsat 2 [+ sats,, [ )]

s (oo

o= [2) 5l e )

N | W

)= 09of 2| £ e )

1i

ki) [gj(j—;j[[azq;wr(%m)-a3<z|;,»|>+|;,»|gn>+n ()" a3<z|¢f|>J

Note that, 2|¢,| > ‘si +sat, [52,.] :

For region: ¥, QQD = {(vli >V ) eR*: |V1i| eR, |V2i| Za, q§z|)}’

Consider the following properties,

sat [ku|’”| sign(r )]dr— llib sat ]t,,hvhl+b]+gh{vhsat (]vh)},

14

3+3b 1+b 2b
207 1+b - 1+b || &y;
sat . v1i| 2 | =sat ﬁﬁvh} ]Sat b |v1,.| 2 | <sat ﬂﬂv“| ] —
({;”] 2 [{;”] b (;}UJZI) [gl,j b kli

ki ki ky ki

and using lemma 2.2, we have:
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2 2

|v”|—sat 1(Jv11-|) + | sat l([v”|)

1
V|2 =] |v,|—sat l(]v”|)+ sat l(}v”|) <
i b & b & b i b
kli klf kli kli
1
2 €
2b
&y
<|v,|—sat (v, +|—
& | kli
kli

Then, after rearrangement:
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20
sat, [k2i|v2i|1+b}

| —|v2[|
Vz + V5 < - §|V2i| vii + 6kai | —sat b UVZi |]
+ Isatg]i I:k”|l"|b Slgn(r)] dr (,%] 2
0

-6a, QS + sat [62[])

i 2b
_ l 1|Vz,~|2 + J‘satgli [k1[|r|bsign(r)] er@vz,. |sat€2i |:k25 |v2i|1+b} - 66‘1[|S,-| j

3( 2 )
2b

2

2

{1 1
e L ER IR )| B (NP

143b
1 2b
E|v2i|[|vzl|2sat [k |v2|1+b}—r1(18+18b)(k”j |sl|]

26
1+b

1+b

(%) at ﬂh"ur% 1h
Lo s

klt kll

|V2i |Sat £, |:k2i |v2i

Thus, V, +V, < 0 in this region.

Next, for region: W,,(¢,[)= (Vv ) eR? il = e (€] [vail < QQV,D}
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Consider the following property,

3+3b 3+3b
r —_— b v & 222 b
1 1 3i
—Lsat .||y, 2 jsat, [kh.|vh.| ]S— L2 gsat ||y 2 jsat, [k”|v”| ],
2 & 2 G | 2

) o)

since from the above definition, (8—3J <1.
gli

S—(r_l] Si | |V'|%_Sat B{Vﬁ:l
2 k” 3i 1i [i]ﬁ 1i H
ky;
3+43b
_ (%j(i_?:j Sat[g”jzzib Dvli > }Sat & [kli vy |b ]

(i) e e —sat |l
2 kli 3i 1i [ijﬁ 1i
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0

LMMmm%hfbﬁﬂﬁﬂﬂmeﬂmJ

ki

=—sat Nk |v]| ]sat | Vu

o

+sat, [kh, |V1,~ |b [|V11| —sat qvli |)J
i)
= sat, [k |v1| ]v1| ( fbjsat [k |v1| ]Sat( )b Vl |)

ky;

< 51i|"1i|a
and in this region, |v,; is upper bounded by |v21.| <a, q;’ l.|),

Then, after rearrangement:

k

-@E%%%ﬁhmﬂ

1i
kli

3

"o € . b &y | € 2
B P e | kv 2 |- (9+9p) )
[6]{8“ J|V1,|2 |VIl|sat[.s]]2£l|: 11|V1,|2:| ( + {8% ][kll) aZ(Mz') |sl|J

343b

+ [Ol2 qumz (0!2 Q§z|) a; qsi +sat, [Ezi ])+ ‘911'|Si|)+ n (%J : a, qsi +sat, [Ezi ]‘)}

li
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Thus, ¥, + V7, <0 in this region.

Hence, we have shown that V' < V1 <0, outside the compact set:

\P3iqgi|)= {(V1i9v2i)G]R2 :|V1i| Salqgi ) 5 V2i| Saz(JQD}

17 < Vl <0, for (Vliﬂvzi)¢l{l3qgi|)
Now using Lyapunov argument, define a Lyapunov level set,
ZV(MJ): {(Vliﬂv2i)e R*:¥V < pliqgip}

where the class IC function, py; is defined as,

pli(‘é/iD:(

max
V]i:VZi)Ebd W3 (‘4‘)

which exists since the boundary of the sets y; are compact. Note that s (|¢]) < Z, (|S).

Consequently,

)

?SVI <0, for VZpli(jé’A

since Y3 (&) < X, (&) which implies that the trajectories of (vy;, v2;) will enter the set Z, (/&)

in finite time and stay in it once entered.

For sufficiently small ||
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1 1+b

: ) g, ) £y |2
Consider the compact set ‘¥, = (vn,vm)e R :|v1i| < k—’ , | < 7
1i 2i

and the Lyapunov level set, X = {(vl Vo )e R*:V < P; s },

where p. = min V
pmm (v]iﬂvzi)Ebd Wi

which exists since the boundary of the sets y4; are compact. Note that Xg < ya;.

Then, if |{j| is sufficiently small, such that pliq;’ l.|)£ Pisar » W€ have 2, (|]) < Zgar. Note that

inside Xy, the Lyapunov function becomes,

1 k, ’ 33
V= (5 V2i2 + ﬁ|‘)li|l+bJ + ”1|V1f| 2 SlgnqvliDVZi

. 4 2+2b
where from section 2.2, we have 7, 0V2i| +|vi| )S v

2
with 7, :=min l 1 ke
8 2\1+b

Then, inside the set X, (|£;]), the upper bound on (v;, v2;) can be found. In particular,

- 2+2b )S V< puq ) P sat
2+2b )’ and 7, |V2i|4 gp”q ; ),

:>£'|v1i| Spqui
2425 1
=P 1"{%;')}2%, and |v2i|g[¢§i|)}"

1
A

Note that, to ensure that the desired error dynamics is unsaturated, it is necessary that:
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1+b

1
g, b - £y |2
|vh.|£[#J , and ‘vzl. +5, + sat ,[ez.]é[iJ
k Hi ! k

1i 2i

Hence, from the above upper bounds on the states, to ensure that no saturation occurs, it is

sufficient for the following class K function to satisfy the inequality,

)

1
Pliq5i|)ﬁ pl.sa,,and am([gipg min {ijb,(ij 2b ’
’ k ks

li

A=

3

A |

where o, Q§i|):: max (—p“qu)JM, (—p“qu)J +2|¢,
7 7

iy |

since

b I
|v1i|s(—p ”qg"DjM S[Z—lJb and
T 1i

| ‘ T

N

1+b

£, ) 2b
25| 2
vaels( 8],

1 2i

which is possible for sufficiently small |£;| > 0. Thus, the control will be unsaturated in finite
time and remain so thereafter for sufficiently small |} > 0. Once the states are unsaturated,

the desired error dynamics become

Vi

=V, tS,
2
vy =~k |V1i|b Sign(vli )_ k,, ‘Vzi +s, +sat, [Ezi ] b Sign(VZi +s, +sat, [221‘ ])

which is similar to the one considered in the section where no saturation is considered the
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control law (see chapter 3, 4).

Special case, when || =0

When || = 0 and remains so for all future times, the system is asymptotical stable which

implies that the trajectories of the system will reach the Lyapunov level set X, in finite time

at
and remain in it for all future times, where we can see that for (vy;, v»;) inside the region X,
the control will be unsaturated. Essentially, it will become homogenous double integrator
system and the Lyapunov function is homogeneous as well, where its stability has been
studied by the author in [133]. In essence, once the system enters the unsaturated Lyapunov
level set in finite time, its convergence properties is dependent on the parameter b, in
particular for 0 < b < 1, we have finite time convergence, for » = 1 we have exponential

convergence, and for b > 1 we have asymptotical stability to the origin.

For the case of b = 0:

Consider the following dynamics:

vl[

=V, tS;
v, =—k, (vzl. +s, +sat,, [eZi ])+ k,satlv, +s, + sat, [ezl. ]]

- kZiSign(VZi +s; +sat, [Zzi ])_ kliSign(vli)

where vy;, v, 5i, €2; € R are the scalar state variables, ky;, k2, kqi, 14 are positive constants, b >

0 real number with
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. ky, —k,u; —k, —k,, for |EZi| #0,
o k, -k, —k,, fore, =0 (forthecaseof fullstate feedback)

The results in this section are applicable to the desired dynamics section of both chapter 5 &

6. In particular, for Chapter 3, let e,, =0, while for Chapter 4, no changes required, and the

same differential equations are obtained.

Lyapunov function

2
Vi |

vii 2 3
V= [%sz +k, J.Sign(r) d’”} + ”1|V1i|55ign(v1i) Vy t rl(%)kai

0

ik, 1i[saﬁ[|rﬁ]}sign(r) dr
0

where 7, is a positive constant scalar, will be shown as a strict Lyapunov function. Note that
the above function is locally Lipschitz and regular. It is differentiable everywhere for b > 0,
and not differentiable on v;; = 0 for » = 0. In particular, when none of the terms of the
dynamics are saturated, the Lyapunov function is indeed identical to that proposed in Section

2.2 for the twisting-based family of algorithms.

Sign definiteness of V :

Firstly, note that the term
W3 3

rlkm(“d 2 sign(r)— sat, {|r| 2 sign(r)} dr |20,
0

the function is upper bounded by
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Vii

2
V< lv .2+k,jsig11(r)dr +r|v4|%|v4|+r 2 k.
2 2i li 17l 2i 1 5 ai

0

3
2
V1i|

Vi 3
-nk, {satl[|r|2]}sign(r) dr
0

which is positive definite and radially unbounded, next for the lower bound,

1 2 :
V= (Evziz + k1i|v1i|j _”1|V1t|2 |v2,-|

k.’ 1 k.’
|4 4 Vli|2 +§|v2i|4 +‘—2’

2

1 ) 3
2 §|V2i |V1i| - ’”1|V1i|2 |V2i|

Using lemma 2.1,

1 3

1 k.’ 14, 4k ) 2
EARC S A

Consequently:

1

2 3| A3
V2é|vzi|4+%|vn|2 with 2* % klz% >n.

64

Note that such an 7y > 0 always exists for any positive k. Thus, the Lyapunov function is

positive definite and radially unbounded. In accordance to lemma 2.4, the time derivative of

the Lyapunov function along the solutions of the system exists almost everywhere.

Time derivative of Lyapunov function b = 0:

For b =0, V'is not differentiable on v,; = 0:
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a.e.

d s Vv, RS
zV((vli’VZi)’t) € V((v1i7v2i)3 t): N ‘fTK[.I :|((vliﬂv2i)’ t)C Vs,
t Eeav (v(n)t) vy

where

> T = 7 Si
i= N )5 K[f](vli’vzi)a V, _feé’Vr(]'(t),t)é: K|: },

Ecov (v(ne 0
Vv, #0,v,, eR:

4 i
{— k, ((VZi +s, +sat, [525 ])2— sat|v,, +s, +sat, [52[ ]D} ’

-k, SGN (Vzi +s; +sat, [EZi ])_ kliSign(vli )

Vv, =0,v, eR:

)4 i
[— k, ((vzi +s, +sat, [521, ])2— sat|v,, +s, +sat [’521. ]D] ,

—ky,SGN(v, +s+sat, [&,])~k,[-1, 1]

o
oV =K[VV]=K g"ly
ov,,
2 3 l . 2 ]
2k1i Vit E n |V1i | 2 Vy T+ kliSIgn(vli )|V2i|
K{(?_V} + rlkai( V1i|% - Sat@"liﬁDSign(Vu) vy #0vy €R,
- Vie ] | _ 3
z{ jV} v+ sign(, )+ 26, o
Vai - 5
|:[_ 1, 1]k13,- |V2i| jl) vvli — 0’ v, € R,
Vai

Computing 172:
Since s; is a Filippov solution, it is absolutely continuous, K [s,, ] =5,
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Forv;;#0,Vvy; e R:

v, |% - sat@vli |% DSign(Vu )s,

- 3 L .
V,= 2k1i2V1iSi + 5”1 |V1i|2v2isi + kliSIgn(Vli)|v2i|2Si + rlkai(

Forv;;=0,Vvy e R:

Let (& k| vai |2, vzi3)T with & € [-1, 1] be an arbitrary element of 0V, then

f;2 = &k |v2i|2Si =0
&el-11]

where by convention max Vz =—o0, if 172 =0 .(see [74])

Thus, for V (vi;, v2;) € R

v, |% - sat@vn |% DSign(Vn )s,

~ 3 1
v, < 2k1i2|vli ||Si| + 5”1 |V1i|2 |V2i ||Si| + k1i|v2i|2|si| + ’ﬂka{

Computing 17] for each case, we have

Forv; 20,V vy € R:

=3 el — 2k ( 2]
V= 5”1 |V1i|2|v2i| —zky; 2i|vli |V2iSGN vy +s; +sat, [eZi]

3
- k2iv2i3SGN(v2i +s; +sat [EZi ])_ kyn, |V1i|2

—nk,, |V1i |% Sign(vn )SGN (V2i +s; +sat,, [Ezi ])_ nkaisat@"n |% }sign(vu )(VZi )

Vi |§ Sign(vli )(Si +sat, [EZi ])+ 1k v |% Sign(vli )Sat [VZi +s; +sat, [Zzi ]]

3 ~ ~
-v,, k, ((Vz,- +s, +sat, [ezl. ])— sat[v,, +s, +sat,, [ezl. ]D

- rlkai

- 2k1i|v1,.|v2ikm ((vm +s, +sat, [52,. ])— sat|v,; +s, +sat,, [EZi ]])

Forv;=0,V vy € R:
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Let (&kyi| vai [2 vai®) " with & € [-1, 1] be an arbitrary element of 8V, then

~

4 [‘fz -L&, + l]kliv2i3 _kZiV2i3SGN(V2i +s; +sat,, [Ezi ])

fze[*L 1]
- v2i3km. ((vzl. +s, +sat, [EZi ])— sat[v,, +s, +sat,, [Ezi ]])
= —kzl.vszGN(vzl. +s, +sat, [521- ])

- vszai ((v2i +s, +sat,, [Zzi ])— sat[v,, +s, +sat,, [521, ]])
Thus, for V (vi;, v2;) € R%:
~ 3 l 2 '~
v, = 5’”1 |vli|2|v2i| =2k, k,, |vli|v2iSGN(V2i +s; +sat, [eZi ])

3
- kziV2i3SGN(Vzi +s; +sat, [Ezf ])_ k. |V15|2

3
—nk,, |V1i |E Sign(vli )SGN (VZi +s; +sat, [Ezi ])_ rlkaisat@‘}li |% i|Sign(V1i )(Vzi )

Vi |% Sign(vli )(Si +sat, [Ezi ])"’ rk, V1i|% Sign(vli )sat[VZi +s; +sat [Ezi ]]
- vszm. ((vzl. +s, +sat, [ZZi ])— sat|v,; +s, +sat,, [Zm ]D

- 2k1i|v”|v2ikal. ((Vz,- +s, +sat, [Ezl. ])— sat|v,, +s, +sat, [ZZi ]])

i

_rlkai

Hence, the generalized time derivative of the Lyapunov function, after rearrangement:

i
2 3 L 2 3 Lo
<2k, |V1i||Si| + E”l |Vlz‘|2 |v2i||si| + k1i|v2i| |Si| + 57”1 |V1i|2 |V2i|
-2k, k,, |v1l. |v2iSGN (vzl. +s, +sat, [Ezl. ])
_kziV2i3SGN(v2i +s; +sat [521' ])_ n |v1i|%(kli —ky, _kaisat,ui UEZi”_ kai) (B1-2)
+r1kaisat{|v“|§}0v2i| )
- vszm, ((VZi +s, +sat, [Ezi ])— sat|v,, +s, +sat [52,. ]D

-2k, |V1i |v21.kai ((Vz,- +s, +sat, [Ez,- ])— sat|v,, +s, +sat, [521. ]])

Next, the state space is divided into three regions for analysis:
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¢1iq§i|): {(Vuavzi ) eR?: vV, € R’|v2i| 2 a12q5i|)},
¢2iqgi|)= {(vli’VZi)e R :|V1i| 2 allqgi|)>|‘}2i| < alzq;iD}s

¢3iqgi|) {(Vlnvzi)e R’ :|V1[| < allqg[|)>|v21| <ap, q§l|)}’

where |¢] is defined as:|¢;|=max{s,|sat, [&,[]} while cns(1&l) and aua(&]) are class K

functions defined by:

(ri A (2k1i2|é/i| + 2k1ik2i "y, (Jé/z|)+ 2k1ikai 24P (JC:ZD (alz Q§z|)+ 2|§i|))2’
4 3 3 2
“110§i|):: max (lﬂky (5”1 alzqgi|)'|é/i|+5r1 [alzq§i|)] ja
( 4 [k o (6 I+ e (T ]
1Ky +rk, (0!12 Q§i|)+|§i|)+[a12 qgi|)]3kai (alz q§l|)+ 2|§,|)

3 1 2
3k, 32y 2 3 4 )
a é/i = max _ll]é/l-, ! 4/,': ( ] ( J zrkai é/i s
lzq |) {( k2[ | | [2k1l;k2i J| | kZi 3]"1k3i 1 |

For region: ¢, q;i|): {(vli,vy JeR:v, eR,|v, |2 alz([é’l.D}
Note that in this region, the following properties apply:

vzl.SGN(vzl. +s, +sat, [Zzl. ]) = |v21. |sign(v21. )SGN(vzl. +s, +sat, [Ezl. ]) = |v2i|
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when |¢,|=0= (s,,2,)" =(0,0)", the above is trivially satisfied,
when |{,|# 0, note that (Vz,- +s, +sat, [Ez,-])i 0,since |v,;| > %M’J > ‘si +sat, [, ],
2i

Thus, we have
SGN(vzl. +s5, +sat, [52,- ]): sign(vzl. +s, +sat, [521. ]),

= sign(v,, ) since |v, | > ‘Si +sat [Ezl.] in this region

Similarly, we have

v, (vzi +s, +sat, [521. ] - sat[vzl. +s, +sat, [Ezl. ]J)
= |v2i|q\12i +s, +sat, [521.] - satﬂvzl, +s, +sat, [521. ]])
>0

Hence, we have, from (B1 - 2),

2
< k. 1 o1
V <—k, |v1i|(k2i|v2i| - 2k1i|Si |)_ |V2i |2( ;l |V2i| —k, |Si U - k2i|v2i|{ T |V2i| — k2 |V1i|2 J

32
1 1
. ky2k,, 3 . 2| ky2k,, 3
—(v,.[2|v,. Vo l=——r sl |—=1v.12|v,. —_— 7
|Vlz| | 2z| T | 2z| 5 1| ,| | 1,| | 2z| T 5
32 32
k. 3 I”k. 3 [ 3 3
2i 17V3i
__|V2i| __|V1i|2 +nk,sat |V1z'|2 |V2i|+rlkaisat |v1i|2 |Si|
6 2 L
3
ky; 3 nky, >
- Vail — Vii|?
6 2

3 '~ '~
- |v2,.| ka[qu +s, +sat, [eZ[] - satHVZi +s, +sat, [eZi]])

-2k, |V1i ||V2i

k, QVZ[ +s, +sat, [ezl. ]‘ - satuvzl. +s, +sat, [ezl. ]])

From lemma 2.1,

2

1
k. k. 3 k,. \3 3rk, \3
_%|V2i|3 - ’”1231 [vl2 < {%) |V2[|(%] il

422



and note that

. 3
, since —>1
2

3
sat[|v1i |2} < satﬂvli |]£ v

Thus,

2
= k,, 1 LI
A e S i RV Y |[—1|v2,.| k w}

32
1 1
! k .2k, 3 ! k2k, 3
—|V1,|2|Vz,|( 1l21 > |v2,-|—5r1 |Sz|]_|"1z|2|"21|2[ 1121 ; o J
32 32
1 2 1 2
1( ky, \3(3nk, )3 1( ky, \3(3nk,, )3
|V1i||Vzi|[5(%) ( 7”14 31} rlkai]|vli|[5(?j ( 7”1431] |V2i|_rlkai Si|]
k,. k.
_%|V2i|3 _ 7’123, |V1i|2
—|v2l.|3km. qul. +s5, +sat, [Ezl.] —satﬂvzl. +s5, +sat, [EZi]])
—2kll.|v1l.||v2i k, QVZi +s, +sat, [Ezi ]‘ —satuvzl. +s, +sat, [Ezl.]])

where ¥ < 0 in this region for any positive

1 1 2
0 <7 <min 2k"ik2" = (k—2j3 (—3”](3" ]3
. 2%k, \ 2 4

For region: ¢2iqgi|): {(vli ’V2i)€ R? : |V1i| 2 aqui|)>|vzi| = alzq§i|)}
Note that in this region the term |v,;| is upper bounded and recall that

|é’i| = max{jsi ,sat, U52i|]}.
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Also,
‘(Vz,- +s; +sat,, [ezl. ])— sat|v,, +s, +sat [ezi ]] < ‘Vz,- +s; +sat,, [92[]

Then we have, from (B1 - 2),

< , 1
V< _|V1i| liks |V1i|2 - <2k1i2|§i| +2k, k- a12q5i|)+ 2k,k,; 'alzqgiD' (alzqgiD_l_ 2|§z|))
4

Yk, 3 3 )
-l (bl (Znanle el 3 kle} )

LY |v |% N [kli [alz (Jé/;|)]2|é/z| +hy, [a12Q§i|)]3 +rk, (alz (JQD"’ |§z|)}
0 el ke () 220)

3
rk., 2
_ N |V1,'|2

4

where ¥ <0 in this region.

Now consider the compact region ¢3l.Q§i|) = {(vazi JeR?:|v,| < 0511QQV[|)>|V2,~| < alzq5[|)}.

From the analysis in the other regions, we have shown that ¥ < 0 outside of the region .

Now, define a Lyapunov level set:
Z2iqgi|)= {(Vli’v2i)e R*:V < sz(lgiD}

where p; is a class K function defined as:

Pai qu |): (Vli,vzir)gt%ixﬁa(\é\)

which exists since the boundary of the set is compact and ¥ is continuous. Then we observe
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that ¢ (|¢)]) < Z2:(|&])- As a result, we have

d ae. 2,
EV(VINVZi) € V(v1i9v2i)< 0 for V= p2i(l§i|)

which implies that the trajectories will enter the compact level set Z; (|£;]) in finite time and

stay in it once entered.

For sufficiently small ||

Consider the compact set Q _, = {(vli7V2i ) eR*: |v]i| <1, v2i| < 1}

and the Lyapunov level set, X _, = {(Vu J Vs, ) eR":V<k,_, },
where k_, =min__,, V
which exists since the boundary of the sets Q- are compact. Note that X;— o < Q.

we have X, (|¢)]) < ;- ,note that

5=07°

Then, if || 1s sufficiently small, such that pzl.(jé’ l.|)£ k

inside X -, the Lyapunov function becomes,
1 ’ 3
2 - .

V= (5 Vy kli|v1i|j +n |V1i|2 SlganuD"zi
where from section 2.2, we have r, (]1)2i|4 + v )s v

. !
with 7z, := min{—, —k,

8 2

Then, inside the set X, (|£;|), the upper bound on (vy;, v;) can be found. In particular,
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N A o ) Y
|2 sziqgiD’ and £1|V2i|4 sziqgip’

= vl < (MJZ, and |v,|< (MT ,

T, T,

= El|vli

Note that, to ensure that the desired error dynamics is unsaturated, it is necessary that:
v, +s, +sat, [Zzl. ]‘ <1,

Hence, from the above upper bounds on the states, to ensure that no saturation occurs, it is

sufficient for the following class /C function to satisfy the inequality,

pZi(Jé/iDS k,_,,and (MJA‘ + 2|é/i| <1,
T

A |

since

B

vy, +s, +sat, [52,-] < v, |+ ‘s[ +sat , [52,-] < (M] +2|¢,| <1,
72-1

which is possible for sufficiently small |£;| > 0. Thus, the control will be unsaturated in finite
time and remain so thereafter for sufficiently small |{j > 0. Once the states are unsaturated,

the desired error dynamics become

vy,

1

Vy = _kliSign(vli )_ kZiSign(v2i +5; +sat, [Ezi ])

=V, tS;

which is similar to the one considered in the section where no saturation is considered the
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control law (see chapter 3, 4).

Special case, when || =0

Consider the special case of b =0 and |{;] = 0, (i.e. s; = 0, and &; = 0), it is possible to show

convergence to the origin in finite time.

In particular, from the above development, we obtain,
V<0, V(v,.v,)eR*\(0, 0) for |£,]=0.

since 13(0) = 0 and o14(0) = 0. Hence, the system is asymptotically stable which implies

that the trajectories of the system will reach the Lyapunov level set

Ly = {(Vli >V ) eR":V <k, }
in finite time and stay in it in all future time,

where ks:() = minsebd Qo v ’ and

Q= {(Vli’VZi)e R* :|V1i| <1, V2i| < 1}

where k- > 0 exist since the boundary of the set ;- is a compact set.

Note that X,-¢ < Q,-¢. Now note that once inside this region, the system becomes

and the Lyapunov function becomes
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1 4 2 2 3.
V= Z|Vzl'| +hky, |V1i| + kli|vli||v2i| + ”1|V1i|2 Slgn(vli) Vi

Essentially, it will become homogenous double integrator system (also known as the twisting

algorithm in the literature) and the Lyapunov function is homogeneous as well, where its

finite time stability has been studied by the author in [133]. In essence, once the system enters

the unsaturated Lyapunov level set in finite time, it will begin to behave like a twisting

control that will converge to the origin in finite time (see [133] for the time of convergence

estimation).

B.2 PROPOSITION 1

For vy;, 54, €2; € R, kaj, &, 1 are positive constants and b > 0, the following inequalities are

satisfied,

sat ., [vzi]—sat " [vzl. +s, +sat, [Zzi ]] < sat o nsi +sat, [Ezl.]l

(@J 2b [QJ 2b 2(&)27
kli kZi k2i

2b

“7 2b
> 1+b Q1 > _ 1+h i
sat, {k%‘v% +s, +sat, [ezl. + s1gn(v2i +s, +sat, [e% ])} sat, [k2i|v2i|1+b s1gn(v2i )}‘

<sat,, [ﬂqsi +sat, [EZ"])]

where £ is a class K function.

Proof of Proposition 1: Note that from Appendix A.2-proposition 1,
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sat 1h [vzi +s, + sat#i [ezi ]]— sat b [Vz,-
& 2b &y; |20

ky; ki

sat ., nv2i| + ‘si +sat, [ezl. ]]— sat ., Uvzl. |],
(521' 2b &9; |20

ky; ki

sat ﬂU\/2i|]—s21‘[ ﬁhv2i|—‘si +sat, [’e”zj]u
@ 2b 52i 2b

kZi kZi

Note that we only need to consider, for the right hand side of the above inequality, v,; on the

range

1+b |

— g, || .
s; +sat »[ez<]+ — since for |v,,| >
s i k i

2i

1+b

2b
~ &ai
s; +sat | |e, |+|—
a k
Hia 2i

|v2i| €| 0,

sat ., “v2[|+‘si +sat [ezl.] —sat ., Uvzl.”,
£ )20 ; : £ |2

kZi k2i

sat anzi”—sat ﬂﬂvzl}—‘si+sa‘[ﬂi[22l.]]
& 2b

[ij : [ S j
k2[ kZi

max

Hence, for all [v,;] > 0:
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£y |20
ki

sat nv2i| + ‘si +sat, [2,, ]]— sat Uv2i |],

max
sat ., []vzl.”— sat ., ﬂv2i| - ‘Si +sat,, [%]]
ﬁ 2b i 2b
kZi kZi
sat ., ﬂv2i| + ‘si +sat [ezl. ]]— sat ., Uvzi |l
(21 2b & 2
[kziJ [kzx‘]
= max
1+b ~
e |[sat o Uv.]—sat +,nv‘—‘s.+sat e.]]
vz,‘{o,sﬁrsatﬂi [Ezi]Jr[iz'jﬂﬂ £, 12*: 21| &5 % 21| ' ,u,-[ o
2i —=b 22
[km ko
b
- - £, |
‘Si +sat, [ezl.], for‘si +sat, [c,, ]‘ < 2(k_ i
— 2i

1+b

7 L2 E,
k2i

1+b

2
for‘si +sat, [Ezl.] > 2[%}

2i

Thus, the above proposition follows for all |v,;| > 0 and ‘si +sat [5211 >0.

Next, for the

2b
i| —sat, |:k2i |V2i |E Sign(VZi )j”

2b
e {k [vy, + 5,1 sign(v,, +5,)

Note that from Appendix A.2-proposition 1,

< max

2 2b
sat, |:k2i |V2i +5, |E Sign(VZi +5; )} —sat, [kzi |V2i |1Tb Sign(vzi )}‘

» »
sat,, {k o s, } _sat,, {k2i|v2i|1+b }

2b
sat, [k2l. vy, |1+b} —sat, {k% Hvzi |- s,

&
sign0v2i|—|si|>}

Note that we only need to consider, for the right hand side of the above inequality, v,; on the

range
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i) i)

Si| + [ij 2b since for |V2i| > |Si| +(&j 2b
k2i kZi

ﬁ 2b

1+b } —sat, {km |v2i |E }

2 2
sat, {kzi [vai[ 1+ } —sat, {kzi Hvzi| ~ s+ Signqui| ~s, |)}

|v2,.| €0,

sat, {kﬂ Hv2i| +1s,|
=0

Hence, for all [v;| > 0:

26 2
1+6 | — —
sat &; kzi”V2i| + |Si + sat &, k2i|v2i | 4 |

2 2
sat, {k2f|"2i EZ } —sat, {kzi H"2t| = s [+ Signqui| ~s, D}

:ZQS:'D

where the function y(s;) is defined as

2 %
| —sat, ey Vo,

26 2
=1 _ls [ si _
sat,, |:k2i|V2i|1+b} sat, |:k2i“V2i| |Si| " Slgnqui| |Sz|):|

sat, {kZ[‘|v2i| +s]
2i

which is a continuous nondecreasing function of |s;], zero at zero, and strictly positive. Also

note that due to the saturation structure, we have
2s,|)=2¢,, forls,|>2s,,

and due to the nondecreasing nature of the function, we have
ZQS,.DS 2¢,, f0r|si| <2¢,,

Thus, for all |v5;| >0 and |s] > 0,
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2b

sat, |:k2i |V2i +5; |% Sign(v2i +5; )} —sat, {kzi |V2i|m Sign("zi ):| <sat,, [qui |)]

Since the function y(|s;|) is zero at zero, continuous, strictly positive, and nondecreasing, from

Lemma 1 of [145], there exists a class JC function f(|s;) such that

;((]s,.|)ﬁ ﬂQSill V|s,.| 20

Hence,

< sat,, [qui |)]

<sat,, [ﬂqsi |)]

2b 2b
sat, |:k2i |V2i t+5; |E Sign(VZi +s; ):l —sat, [ky |V2i |1Tb Sign(VZi )}
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[4]
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