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Abstract.  We derive globally reliable a posteriori error estimators f  or a linear{quadratic optimal
control problem involving the generalized Oseen equations as state equations; control constraints are
also considered. The corresponding local error indicators are locally e cient. The assumptions under
which we perform the analysis are such that they can be satis ed for a wide variety of stabilized
nite element methods as well as for standard nite element m  ethods. When stabilized methods are
considered, no a priori relation between the stabilization  terms for the state and adjoint equations is
required. If a lower bound for the inf{sup constant is availa ble, a posteriori error estimators that are
fully computable and provide guaranteed upper bounds on the norm of the error can be obtained.
We illustrate the theory with numerical examples.
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1. Introduction. In this work we shall be interested in the design and analy-
sis of computable a posteriori error estimators for a linear{quadatic optimal control
problem involving the generalized Oseen equations; control consdints are also con-
sidered. To make matters precise, let RY, with d 2 f2;3g, be an open and
bounded polytopal domain with Lipschitz boundary @ and f 2 L?() 9. Given a
regularization parameter# > 0 and a desired statey 2 L?() ¢, we de ne

1 #
(1.1) J(y;u) = zky y Koy ot Ekukfz() o
We will be interested in the following PDE{constrained optimization pro blem: Find

(1.2) min J (y; u)

subject to the generalized Oseen equations

< y+(c r)y+ y+rp f+u in ;
(1.3) _ ry in
' y = 0 on@;

1
o

and the control constraints
1.4) a u b ae in ;

with a;b 2 RY satisfying a < b; the previous vector inequalities being understood
componentwise. In (L.3), "; 2 Rand are suchthat"> 0and Oandc2 Wt ()
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is a solenoidal eld. The generalized Oseen equations describe the I@Reynolds{
number ow in porous media in situations where velocity gradients arenon{negligible;
they provide a uni ed approach to model ows of viscous uids in a cavity and a porous
media. It is well{known that the following choices of the parametersc and vyield
the following ovf\B/ models:

< c=0; =0 : " y+rp (Stokes)
(1.5) ) c=0 . " y+ y+rp (Brinkman);
' =0 : " y+(cr)y+rp (Oseen)

Our analysis allows for these choices of and . Consequently, we present a uni ed
analysis for the Stokes, Brinkman, Oseen and generalized Oseenugdions.

The design of numerical techniques for approximating the solution o (1.3) has
two major di culties: rst, in view of the so{called inf{sup condition [ 23, 24], arbi-
trary nite element methods are not allowed, and second, consideng standard nite
element methods produces poor approximation results when conedon{dominated
regimes are considered3g]. In order to overcome such di culties, a variety of nite
element techniques have been proposed and analyzed in the literater the family of
stabilized nite element methods. We refer the reader to B8] for an extensive overview.

In the PDE{constrained optimization context, a usual alternative for approximat-
ing the solution to the optimal control problem (1.2){( 1.4) is based on the so-called
optimize{then{discretize approach. This technique discretizes the associated optimal-
ity system: the state equations (L.3), the adjoint equations and a variational inequality
that characterizes the optimal control u. Consequently, the di culties presented in
the discretization of (1.3) are also present in the numerical approximation of the so-
lution to ( 1.2{( 1.4). In addition, ( 1.2{( 1.4) is intrinsically nonlinear and, if c 6 O,
presents a crosswind phenomena; the convection eld of the adijot equations is the
negative of the one appearing in {.3). The latter further motives the development of
an e cient solution technique that, in convection{dominated regime s, properly treats
the oscillatory behaviors that occur when approximating y and its adjoint variable
w and resolves interior or boundary layers exhibited by both variables Failure to
resolve boundary layers can pollute the numerical solution in the erite domain; see
[25] for results involving the scalar version of (L.2){( 1.4). However, numerical schemes
based only on stabilized techniques are not su cient to approximate the solution to
(1.2{( 1.4): in addition to the e cient resolution of either interior or boundary layers,
some possible geometric singularities must be resolved. This motivasethe methods
that we will use in this work: stabilized adaptive nite element methods.

Adaptive nite element methods (AFEMS) are iterative methods tha t improve the
quality of the nite element approximation to a partial di erential eq uation (PDE)
on the basis of an essential ingredient: an a posteriori error estiator. The a poste-
riori error analysis for standard nite element approximations of lin ear second{order
elliptic boundary value problems has a solid foundation B, 36, 46]. When stabilized
approximations are considered, several estimators have been natduced and analyzed
in the literature; see, for instance, [L, 5, 9, 43, 47]. However, the a posteriori error
analysis for nite element approximations of constrained optimal cantrol problems has
not been fully developed. In view of their inherent nonlinear feature which appears
due to the control constraints, the analysis involves more argumets and technicali-
ties. An attempt to unify the available results has been carried out recently in [2§]
where the authors derive an important relationship between the eror in optimal con-
trol problems and estimators, that satisfy a set of suitable assurmtions, for problems
associated with the state and adjoint equations 28, Theorem 3.2].
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In the current work, the assumptions under which we perform theanalysis are such
that they can be satis ed for a wide variety of stabilized nite element methods as well
as for standard nite element methods. This includes using a di eren stabilization
method to approximate the state equation from that used to approximate the adjoint
equation. We derive a posteriori error estimators that are globallyreliable. Moreover,
if a lower bound for the inf{sup constant is available, we can obtain a steriori error
estimators that are fully computable and provide guaranteed uppe bounds on the
norm of the error. Consequently, the estimators can be used as stopping criterion
in adaptive algorithms. The local error indicators that can be used b adaptively
re ne the mesh are locally e cient. Furthermore, we observe that they can be used
to e ciently resolve boundary layers.

The outline of this paper is as follows. In section? we introduce some terminology
used throughout this work. In section 3 we study the optimal control problem (1.2{
(1.4) and obtain the associated optimality system. In section4 we give the general
form of the nite element methods that we consider for approximating the solution to
(1.2{( 1.4). The core of our work is section5, where we devise a family of a posteriori
error estimators. Under suitable assumptions, we obtain abstracreliability results in
section 5.1 and local e ciency of the corresponding error indicators in section5.2. In
section6 we consider the estimators that we can obtain for a particular appoximation
method in more detail. Finally, in section 7 we present a series of numerical examples
to illustrate the theory.

2. Preliminaries.

2.1. Notation. For a bounded domainA R', t 2 1;2;3g, L2(A) and H(A)
denote the standard Lebesgue and Sobolev spaces, respectival§(A) is the subspace
of L2?(A) containing functions with zero mean value onA, and H}(A) is the subspace
of H1(A) containing functions whose trace is zero on@A We use bold letters to
denote the vector{valued counterparts of the aforementionedspaces and an extra
under accent for their matrix{valued counterparts. For instance, for d 2 f 2;3g, we
denote L2(A) = L2(A)? and L2(A) = L2(A)d 9.

We now proceed to de ne notation associated with the discretizatiom of the do-
main. Let T = fKg be a conforming partition of into simplicial elements K
[18, 23]. We assume thatT is a member of a shape regular family of partitions. Let
F denote the set of all element edges(2D)/faces(3D) ands;, F denote the set of
interior edges(2D)/faces(3D).

For an elementK 2 T , let:

P, (K) denote the space of polynomials orK of total degree at mostn;

F x F denote the set containing the individual edges(2D)/faces(3D) ofK ;

hx denote the diameter ofK ;

nKX denote the unit exterior normal vector to the edge(2D)/face(3D) 2 F .
For an edge(2D)/face(3D) 2 F, let:

P, ( ) denote the space of polynomials on of total degree at mostn;

=fK 2T : 2Fkg;

h denote the diameter of the edge(2D)/face(3D) .

To simplify the exposition of the material, we dene V = H é() and Q= L3()
withnorms j . andj ] o dened, forall 2V and 2 Q, by

X X
(2-1) ] ]\2/ = ] j\2/;l< andj ]é = l jé;K
K2T K2T
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where

= =2 _— = =2 —— .
(2.2) Jivk = ke Ko+ kKo andf dgx =k Ky

The relation a . b indicates that there exists a constantC such that a Ch.
The constant C may be di erent at each occurrence but is independent ofa, b and
the size of the elements in the mesh.

2.2. Inequalities. For K 2 T and nonnegative integersl, we denote by g
the L 2(K ){orthogonal projection operator onto P;(K )9. This operator is de ned as

(2.3) kLAY P(K)Y (E ka (0)iV) ey =0 8V 2 PI(K)™:

Throughout the manuscript we will frequently make use of the following inequal-
ities. First,if K 2 T and 2 V, we have the Poincae inequalities [LO, 33, 37]

h
(24) k kLZ() Cp; kr kLZ() and k K;O( )kLZ(K) —Kkr kLZ(K);

where
I 1=
1 X
(2.5) G, =
e
with jl1j;:::;jlqj being the sides of ad-dimensional box containing . We immediately
comment that these inequalities imply that, for 2V andK 2 T,
(2.6) K k2 CjJy., andk kool Jkizky Gy
where
( $T if =0;
2.7 C =
@0 min %— if 60;
and
( R o I =0;
2.8 =
(2.8) B min el if 60:

WedeneA'V VI RRB:V Q! RandC:V V! Rby

5 A(; )= "(r Tz O +(er) 5 )z s
(2.9) 5 B(; )=(; Lz() s
;)= ( o)z *( (cr);e:

The fact that c is a solenoidal vector eld and integration by parts implies that
(2.10) A(C;)=¢C;) 8, 2V:
Moreover, forall 2 V,

(2.11) AC)=C)=10 07,
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and, forall ; 2V,

(212)  A(3) Gy, ddv, s X)) Gy iy,
where

c ..
(2.13) Gt =1+ p=KjckLr (y 5

with kjcjk_1 ¢y being the L1 () norm of jcj and C being given by (2.7).
We now recall the standard inf{sup condition [23, 24]: there exists a positive
constant such that

B(; )
2.14 k k sup ———— 8 2Q:

( ) L0 2anf309 kr ki z(y Q
Notice that, in view of j j\z,; "+ G kr kfz() , we have that
- B( ;

(2.15) Jiog Gs sup .(. ) 8 2Q;
’ 2vniogl Jv:
where
q___
. G
(2.16) Gs= ——
3. Optimal control problem: optimize. In this section we brie y analyze the

optimal control problem (1.2){( 1.4). To accomplish this task, we begin by introducing
the following weak version of the state equations 1.3): Find (y;p) 2 V  Q such that

(3.1) Aly; ) B(;p = (f+u )y 8 2V;
' By; ) = 0 8 2Q;
where the bilinear formsA and B are de ned by (2.9) and we recall that " > 0, 0,

c2 WL ()is asolenoidal eld, f2L2(), V=H3()and Q= L3(). Inview of

the fact that A satis es (2.11) and (2.12) and B satis es the inf{sup conditions (2.14)
and (2.15), we conclude the well{posedness of problem3(1) [23, 24]. We also mention
that, due to de Rham's Theorem (see Section 4.1.3 and Theorem B73 {23]), we can
consider the following equivalent formulation of problem 3.1): Find y 2 V o such that

(3.2) Aly; )=(f+u; )2y 8 2Vy;

whereVo:=fv2H3(): r v=0g.

To analyze our optimal control problem, we follow [30, 44] and introduce the so{
called control to state mapS:L2() ! Vg which, given a control u, associates to it
the state y that solves (3.2). In addition, we de ne, for a;b 2 RY with a < b, the set

(3.3) Uag:=fv2L%(): a v b ae. in g

the vector inequalities being understood componentwise. The sdil 4 is a bounded,
convex, closed and nonempty subset of 2() and consequently weakly sequentially
compact. Thus, in view of the fact that the reduced cost functioral

1 #
f(u)= SkS(u) y ki2g) + Ekukfz()
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is weakly lower semicontinuous and strictly convex # > 0), we conclude the existence
and uniqueness of an optimal controlu and an optimal state y that satisfy (3.2),
or equivalently (3.1); see Theorem 2.14 in44]. The existence ofp such that (y;p)
solves @3.1) follows from de Rham's Theorem. In addition, we have thatu satis es
the rst{order optimality condition

(3.4) fou)(u u) 0 8u2Uag;

see fi4, Lemma 2.21]. To explore this variational inequality, and to obtain optimality
conditions, we de ne, on the basis of the formal Lagrange methodsee R1, Section
3.3] and P4, Section 2.10]), the adjoint state (w;q) as the unique solution to the
following weak problem: Find (w;q) 2 V  Q such that

Cw; )+ B( ;0 (y vy, 8 2V,
(3.5) Bw: ) = 0 "0 g %0

With this adjoint state at hand, the variational inequality ( 3.4) can be rewritten as
(3.6) (W+ #u;u ULz 0 8u2Ugy:

We have thus arrived at the following optimality system: (y;p;u) 2 V. = Q Ugg
is optimal for the PDE{constrained optimization problem ( 1.2}{( 1.4) if and only if
(y;ipsw;q;u) 2V Q V. Q Uyg solves

8
% Aly; ) B(;p) = (f+u; )2 8 2V;
B(y; ) = 0; 8 20Q;
3.7) Qw; )+ B(:a) = (Y Yz 8 2V
3 Bw; ) = 0; 8 2Q;
Co(wH AU ULz 0; 8 U2 Ugg;

see also 39, Section 2] and B4, Section 2] for similar results when the state equations
(1.3) are the Stokes equations.

We nally recall the projection formula for the optimal control var iable: the
variational inequality in ( 3.6) can be equivalently written as [44, Chapter 2]

(3.8) U= [ab %W a.e.in ;

where ap () (x) := min fb;maxfa; (x)gg and it is understood componentwise.
We note that

(39) [a;b]( ) [a;b]( ) LZ(K) k kLZ(K) 8 ; 2 V:

4. Finite element discretization. We follow the optimize{then{discretize ap-
proach and introduce a numerical scheme to approximate the solubn to (3.7). The
scheme allows for the incorporation of stabilization terms into the sandard Galerkin
discretizations of the state and adjoint equations; no a priori reldion between the
stabilized terms is required. We refer the reader to Remarkit.1 below for a discussion
regarding the advantages of the proposed approach when solvind..2){( 1.4).

The stabilized scheme reads as follows: Findyg ;pr ;wr ;ar;ur) 2 V(T)
Q(T) V(T) Q(T) Ua(T) such that

8
E A(yr; ) B (spr)+ S(yrpr:f+ur;) (f_+uT: Lz
3

B(yr; )+ H(yr:pr;f+ur; ) = 0;
(4.1) Cwr; )+ B(iar)+ QMwridariyr Y5 ) = (¥yr Yz
Bwr; )+ Kwr:ar;yr y; ) = 0;

(Wr +#ur;u Ut )Lz 0;
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forall ( ;; ;;,W2V(T) QM) V(T) Q(T) Ugu(T);the bilinear forms
A; B and Cbeing de ned as in (2.9). We consider the setting where the discrete spaces
V (T ) and Q(T ) are subspaces of and Q, respectively, and the discrete set) ;4(T )

is a subset ofU,q. Hence,V(T) V,Q(T) QandUyx(T) Ug. The terms
S and H, and Q and K in (4.1), correspond to stabilization terms for the state and
adjoint equations, respectively. Finally, we assume thatV (T ), Q(T ), Ua(T ), S,
H, Q and K are such that at least one solution to @.1) exists.

Remark 4.1 (optimize{then{discretize approach). In general, there are wo ap-
proaches to approximate the solution to an optimal control problem: the optimize{
then{discretize approach, that discretizes the associated optimality system, andhe
discretize{then{optimize approach, that rst discretizes the continuous problem and
then optimizes the obtained nite dimensional problem. We must immedately com-
ment that these techniques do not always coincide 16, 19, 26, 29]. For a detailed
discussion on these approaches and their respective advantagaasd disadvantages,
we refer the reader to 6, Section 3.2] and L5, Chapter 3]. In [19], it was observed
that, when solving an optimal control problem for a convection{reaction{difussion
equation on the basis of the SUPG method, both approaches lead tsubstantially dif-
ferent results. Later, in [25], the authors continue with the study started in [19] and
show that the failure to resolve boundary layers exhibited by the stution can pollute
the numerical solution in the entire domain. In order to develop our aposteriori error
analysis, we follow theoptimize{then{discretize approach. This allows for the simple
formulation (4.1) of the discrete optimality system and the incorporation of stabi-
lization terms into the discrete state and adjoint equations; no a piori relationship
between such stabilization terms is required. We remark that the later property is
particularly convenient since it allows for the use of the a posteriorierror estimators
that are already available in the literature. In contrast, the use of the discretize{then{
optimize approach imposes a relationship between the stabilization terms whitcould
result in the presence of undesirable stabilization terms in the discre formulation. If
both terms S and H are symmetric andQ = S and K = H, then the aforementioned
approaches coincide; we refer the reader talf] for details.

Before proceeding with the analysis of our method, it is instructive b comment
on those advocated in the literature. Regarding the a priori theoy, in the absence of
control constraints, the design and analysis of numerical techniges for solving (.2){
(1.3), with ¢ = 0and =0, have been investigated in several papers; seé4, 40, 42]
and references therein. To the best of our knowledge, and agaifgrc = O and =0,
the rst work that incorporates control constraints and analyz es stabilized schemes
for (1.2{( 1.4) is [39]; the optimal control is discretized by using piecewise constant
functions. The authors, on the basis of postprocessing techniags, provide a quadratic
error estimate for the approximation of the optimal control varia ble [39, Theorem 2.8].
Subsequently, the authors of 4] extend the results of B9 and analyze nonconforming
schemes for the discretization of the state and adjoint equationsin contrast to [39)],
the vector eld is not assumed to be inH?() \ W1 (). In addition, [ 34] analyzes
an anisotropic scheme for approximating the solution to (.2){( 1.4) when is not
convex; a domain with a reentrant edge ¢ = 3) is considered. We conclude this
paragraph by mentioning the reference 22|, where the authors investigate numerical
techniques for solving a modi cation of problem (1.2){( 1.4) that, in addition, includes
constraints on the state variable.

Regarding the a posteriori error analysis, to the best of our knodedge, the rst
work to propose an error estimator for (L.2){( 1.4), with c = Oand =0, is[32]. In this
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work, the authors follow the discretize{then{optimize approach and obtain a discrete
optimality system with no stabilization terms [ 32, equation (2.9)]. They propose an
error estimator in a two{dimensional setting and analyze its reliability properties [32,
Theorem 3.1]. However, there is no e ciency analysis. Later, an asgnptotically exact
ZZ{type a posteriori error estimator was proposed in B1]. The authors derive upper
and lower bounds for the error in terms of the proposed estimatof31, Theorem 5.1]
that relies on an error non{degeneracy condition B1, inequality (2.24)] and strong
regularity assumptions on (y; p): it is assumed to belong toH3() \ V. H() \ Q
[31, Lemma 4.2]. In [20], the authors propose an a posteriori error estimator for (.2{
(1.4) but with the state equations (1.3) replaced by a Stokes-Darcy system: they study
the reliability and e ciency properties of the proposed estimator. We also mention
[35], where a similar PDE{constrained optimization problem has been analyed but
with the control constraint ( 1.4) replaced by the state constraintkyky 2y , Where
> 0: an error estimator is proposed and its reliability and e ciency prop erties are

investigated. All the aforementioned references consider plain Garkin discretizations
for the state and adjoint equations, i.e., no stabilization terms are considered. We
conclude this paragraph by mentioning the so{called dual weighted esidual method
(DWR) [ 13] and its applications to the optimal control of ow problems [ 11, 17].

Recently, the authors of Rg| propose and analyze an a posteriori error estimator
for problem (1.2){( 1.4 when = 0 [28, Section 5]. The associated discrete opti-
mal system incorporates stabilized terms, into the state and adjmt equations, that
are based on the streamline{di usion nite element method (SDFEM). On the ba-
sis of proposed and analyzed a posteriori error estimators for # state and adjoint
equations, the authors derive an estimator for (.2){( 1.4). We comment that the ob-
tained upper bound for the error, in terms of the a posteriori error estimator, is not
computable.

In this work we analyze a family of a posteriori error estimators in a wifying
framework that incorporates a wide variety of standard and stalilized nite element
methods.

5. A posteriori error analysis. In this section we derive and analyze a poste-
riori error estimators for the solution to the discretization (4.1) of the optimal control
problem (3.7).

5.1. Reliability analysis. We begin this section by introducing the following
notation. Letey ==y y;,6:=p Pr.,ew =W Wr,€:=0 0or ande,:=u ur,
where (y;p;w;q;u) 2V  Q V Q Uy is the solution to the optimality system
(8.7 and (yr ;priwr;qri;ur)2V(T) Q(T) V(T) Q(T) Ual(T)isits
numerical approximation given as the solution to (4.1). The goal of this section is to
obtain an upper bound for

X
(5.1) i(eyieewiegel)i’ = i(eyieniewiegenig
K2T

where
ieyiaevieneniy = ieiy + Baigx * iewivx + Aegigx + keuklziy:

The normsj j . andj jo« are dened as in (2.2) and the parameter %is a
nonnegative constant that will be arbitrary in the analysis but xed in the numerical
experiments of Section?.
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The upper bound for the error (5.1) that we obtain is constructed using upper
bounds on the error between the solution to the discretization ¢.1) and auxiliary
variables that we de ne in what follows. Let (9;0) 2 V  Q be the solution to

(5.2) A9 ) B (D) (f+ur; g 8 2V,

- B(f; ) = O 8 2Q
We notice that, in view of (4.1), we have that (yr ;pr)2 V(T ) Q(T ) satises
(5.3) Alyr; ) B (ipr)+ S(yrsprif+ur; ) = (f+ur; )iz

' B(yr:; )+ H(yr:prif+ur; ) = 0
forall 2 V(T )and 2 Q(T ). Consequently, (yr ;pr ) can be seen as a nite ele-
ment approximation of the solution to (5.2). We thus make the following assumption:

Assumption 1.  There exist quantities y and |, which depend on the discrete
solution and data and are such that

(5.4) 19 yriv. yandjp prijo p:
Let (W;) 2V Q be the solution to
(5.5) Cidv; )+ B( :0) § (yr ¥y 3y 8 2V;

B(#; ) 0 8 2Q:

We notice that, again in view of (4.1), (wr ;gr )2 V(T ) Q(T ) satises
e  AWri )+ BOiar)+ QWwriariyr y i) = (yr ¥ 5z s

' B(wr; )+ K(wriar;yr vy ) 0;
forall 2 V(T )and 2 Q(T ), and hence (v ;qgr ) corresponds to a nite element
approximation of the solution to (5.5). We thus make the following assumption:

Assumption 2. There exist quantities  and ¢ which depend on the discrete
solution and data and are such that

(5.7) v owr gy, wandjq arijq q!
We introduce the auxiliary control variable
(5.8) U= b FWT

We de ne the error between this auxiliary control variable and ur as follows:
|

X P 1=2
(5.9) ui= K s with gk = Kot ur K2y
K2T
We also de ne
(5.10) C=2+2 C+4(1+ %)(C + C+2 C?;
(5.11) Ch=2+ C+2 (1+%)(C +2C);
and
(5.12) Ci=2+2 C+401+ %)(C +2C + C%+2 C%;

with  =4# 2and! = G(1+ Cy)2
We now present the analysis through which we obtain an upper boundor the
total error.
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Theorem 5.1 (global reliability). If Assumptions 1 and 2 hold, then

(5.13) ieyiepiewiegen)i’ 2
where
(5.14) 2= C J+2%5+ Cy 5 +2%5+ Cu 4

and G, C, and C, are de ned by (5.10), (5.11) and (5.12), respectively.

Proof. We proceed in 6 steps.
Step 1. The goal of this step is to control the termke,k, 2(y . We begin with a simple
application of the triangle inequality to write

wheret =[5y #WT and  is de ned as in (5.9).
Let us now bound the rst term on the right hand side of (5.15. To accomplish
this task we rst observe a key property that the auxiliary contro | variable o satis es:

(5.16) (Wr + #thu ) 2y 0 8u2 Ug;

see Lemma 2.26 and Theorem 2.28 intfll. Setu = u in the variational inequality of
(3.7 and u= uin (5.16). We thus obtain that

(W+ #ujg U2y 0, (wr + #uiu ) 2 0;
and, consequently, that
(5.17) #ku wkfo) (W wrie U)zg

In order to bound the right hand side of (5.17), we rstdene (y;p)2V Q as
the solution to

A(y; ) B (;p)
B(y: )

In addition, we dene (w; &) 2V  Q as the solution to

(f+e )2y 8 2V
(5.18) 0 8 20

Cw; )+ B(i&) = (¥ v iz 8 2V;
(5.19) B(w; ) 0 -0 8 2Q:

Utilizing the states W and w de ned as the solutions to (5.5) and (5.19), respectively,
we arrive at

#ku ukfz() (W wig u) 2y +(w Wie Uy (R wrie u) 2
(W wit U)o + gk WkZo + 3kW  wr klo) + Sku o owkPa
upon using Cauchy{Schwarz and Young's inequalities. Hence,

(5.20) ku &k?>,  E(W Wit U)z) +Z& kw  WkPo, + kW wrkPz,

We proceed to bound (v w;t Uu)_2(y . To accomplish this task, we rst notice
that, since (w; q) solves the adjoint problem of the optimality system (3.7) and (w; )
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solves 6.19), the fact that p p 2 Q implies that B(w w;p p) =0. Thus, since
(y; p) and (y; p) solve (3.7) and (5.18), respectively, we arrive at

(U mw W) 2) = Ay WBw w):

We now invoke (2.10) and, again, the fact that (w; ) and (w; ) solve (3.7) and (5.19),
respectively, to obtain that

(5.21) (v uw w) 2y = A(y y;w w)=Cw wy y)= ky ykfz() 0;

upon noticing that, since (y;p) solves the state equations of the optimality system
(3.7) and (y; p) solves 6.18), the factthat q 2 Q implies that B(y ¥,q &) =0.
Using the previous estimate in 6.20) we obtain that

The control of the second term on the right hand side of §.22) follows from (2.6)
and Assumption 2 :

We now turn our attention to bounding the term kw ¥k >y . Applying similar
arguments to the ones that lead to 6.21) we obtain that

W Wiy, =W Ww W) =(y yrw o W)

(5.23) ] ’
Cky vyrkizgiw Wiy, |

where we have also used?(6). Consequently, kw \’Nkfz() C'ky yr kfz() ; upon

using, again, @.6). It thus su ces to bound ky y; k.2, . We proceed as follows:

ky yrkiz —2ky 9kio *+2K)  yrKPa

To control the second term on the right hand side of the previous gpression, we
invoke Assumption 1 and (2.6). We thus conclude that

To bound the rst term, we employ that ( ¢;¢) and (y;p) solve (5.2) and (5.18),
respectively. This, on the basis off ¢ =0 and (2.6), yields

iy 9ii. = Al iy 9=(v ursy iz

(5.24) ) )
C ka ur k|_2() 1y 9]\/; ;

which allows us to conclude, in view of 6.9) and (2.6), that
ky 9ki., C &
On the basis of 6.15 and (5.22), we combine our previous ndings and arrive at

(5.25) kejkfzy 2C J+ C G+ 242 C %

u:r
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where =4# 2.
Step 2. The goal of this step is to boundjeyj, . . To accomplish this task, we apply
the triangle inequality and invoke Assumption 1 . In fact,

(5.26) ieic. 2y 9iv. +2i9 yriv. 2y 9y +2 &

To control the remaining term we employ similar ideas to the ones thatlead to (5.24).
These arguments reveal that

(5.27) iy 9iv,  Cku ur ki ;
which combined with (5.25 and (5.26), implies the error estimate
(5.28) jeiy. 22C+1 2+2 C 2+2C 2+2 C 2

Step 3. We now bound the termjeyj, . . To accomplish this task, we use, again,
the triangle inequality and Assumption 2 to obtain that

(5.29) jeuiy. 2w Wil +2 2

To bound jw Wj\zl; we invoke the optimality system (3.7) and (5.5). In fact, the
arguments that allow us to obtain (5.23) immediately yield

iwowiy, = aw ww W =(y yriw W)e
Ky yrkezy kw k2,
upon using a Cauchy{Schwarz inequality. In view of @.6), we conclude that
(5.30) iw Wiy, Ciy yriv
which, combined with the estimates 6.28 and (5.29), yields
(5.31) jewjy. 4C 2C+1 242 2C+1 2+4C 2+2 C 2

Step 4. We now boundj ey] o - We start with a simple application of the triangle
inequality and Assumption 1

isin AP Pin +2ip prin 2P fi5 +2 5

we recall that (9;p) solves 6.2). To control the rst term on the right hand side of
the previous expression, we utilize the inf-sup condition 2.15):

. . B( ;
(5.32) ip Pig G sup Bl B,
2vniog 1 Jv:

Since {y; p) and (9;p) solve (3.7) and (5.2), respectively, we conclude that
B(:p O=Al ¥ ) (U ur; )iz
Qtjy 9jv; +Cku ur kLz() j jv; ;

upon using (2.6) and (2.12). In view of (5.27) we thus arrive at

B(:p p) C @+ CGoku urkpzg J Jy. :
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This and (5.32 imply that jp fj. GsC (1 + G)ku ur ki 2() @ Thus,
(5.33) ismig, 2 Cku urkl., +2 %

where! = G(1+ Cy)?. We conclude the estimate forj eyj é; by invoking (5.25):

(5.34) jeih 41 C 2+21C 2+21C 242 C 242 2

Step 5. We boundj egj o - Similar arguments to the ones employed in the previous
step yield

jedn  2ia G5 +2i6 aris  2ig Gig +2 3

and

, n ; C(w W;
iq qu; Ce sup vy vyr )L-Z(Z ( )
2V nf0g ] ]v;

Gs C?jy yij; +Ccth ij;

We nally use (5.30), and conclude that jq @], GC 1+ C)iy VYt Iv.
and then that

(5.35) iy, 2CHy yriv, 2 %
where, we recall that,! = C(1 + Cy)2. Consequently,
(5.36) jejas MC 2C+1 2441 C 2+41C 242 C 2+2 X

Step 6. Combining (.25, (5.28, (5.31), (5.34 and (5.36) allows us to arrive at
(5.13. a0

It is important in a posteriori error analysis to have an upper bound for the error
that is in terms of local error indicators. Such a bound follows from Theorem5.1
under the following two assumptions.

Assumption 3. There exist quantities y,x and pk that depend on the discrete
solution and data and are such that

X X
(5.37) i vy, Zx andjp prig e
K2T K2T

Assumption 4. There exist quantities wx and gk thatdepend on the discrete

solution and data and are such that
X X

(5.38) i owr iy Zx andja arjg, O
K2T K2T

Theorem 5.2 (global reliability). If Assumptions 3 and 4 hold, then

X
(5.39) i ey &prewi &g eu)j? ?
K2T
where
(5.40) K =G Gk ¥2%hk + Cw g +2%5k *+ Cu Gk

and C;, C, and C, are de ned by (5.10), (5.11) and (5.12), respectively.
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Proof. In view of Assumptions 3 and 4, the proof follows from a simple appli-
cation of the result of Theorem5.1. O

Remark 5.3 (Assumptions 1 {4). Assumptions 3 and 4 are at the heart of a
posteriori error analysis B, 36, 46]. They guarantee the existence of local quantities
yKs pK, wK,and gk that satisfy the estimates (5.37) and (5.39). This allows
us to derive the a posteriori error estimate 6.39 which gives an upper bound for
the error that is in terms of the local quantities . The quantities that are de ned
by (5.40 provide information beyond asymptotics and can be used to adapvely

re ne the underlying mesh. Although it may seems that, in view of Assumptions

3 and 4, the weaker Assumptions 1 and 2 are super uous, there are a posteriori
error estimators, such as the one developed irl], which are such that the bounds in
(5.4) and (5.7) are tighter than the ones in (5.37) and (5.39); see [L, Theorem 5.4].
Consequently, the upper bound in 6.13 that is in terms of , de ned as in ( 5.14),

is tighter than the upper bound that is in terms of . In such a setting, if the
quantity is computable, it would be preferable to use as a stopping criterion in

an adaptive algorithm.

Theorem 5.2 can be used to obtain guaranteed upper bounds on the error if the
value of a satisfying (2.14) is known and the quantities yx , pk, wk and gk
are computable. If this is not the case then Theorenb.2 can still be used to arrive at
an a posteriori error estimator under the following assumption.

Assumption 5. There exist computable quantities vk , ik, ~wx and gk

which are such that yx . ~x, pk . Kk, wk - ~wk and gk . =gk forall
K2T.
Corollary 5.4 (global reliability). If Assumptions 3 , 4 and 5 hold, then

X

(5.41) ey ieneviepe)i’. ~2:= ~%
K2T

where

(5-42) ~§ = ~3;K + ~[2);K + ~$V;K + ~§;K + ~I.21;K .

Proof. Upon invoking Assumptions 3 , 4 and 5, the estimate (5.41) is a conse-
guence of Theorem5.2. d

Remark 5.5 (Assumptions 5 ). The upper bounds that feature in the estimates
of Assumptions 3 and 4 may not be computable. In fact, in the literature there
are several a posteriori error estimates where the upper boundannot be computed
because of the presence of unknown constants; see, for instan 2, 9, 43, 45, 47]. In
order to include this type of a posteriori error estimate in our analysis, we consideAs-
sumption 5 , which guarantees that the upper bounds that feature inAssumptions
3 and 4 can be bounded by constants, whose value may not be known, multiigd by
computable quantities. Note that these constants are equal to If the upper bounds
in Assumptions 3 and 4 are computable.

5.2. E ciency analysis. In this section we prove the local e ciency of the a
posteriori error indicators ¢ and ~k de ned by (5.40) and (5.42), respectively. In
what follows we will assume that Assumptions 3 , 4 and 5 are satis ed and that
%6 0. In addition, we make two further assumptions. To state them, we rst de ne,
for nonnegative integersl, the discrete space

(5.43) P(T)= v2L?): Vik 2 P(K)l forall K 2T
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Our rst additional assumption reads as follows:

Assumption 6. The spacesV (T ) and Q(T ) and the setU o4(T ) are such that
V(T )= V\ P, (T ) for some positive integerly ,
Q(T )= Q\ P, (T ) for some nonnegative integettq or Q(T ) = Q\ Py, (T )\
H () for some positive integer |q,
Uad(T ) = Uag \ P, (T ) for some nonnegative integerly or Uaq(T ) =
Uag\ Py, (T )\ HY() for some positive integer Iy .

For K 2 T , we de ne the following residuals and oscillation terms:

(GA4) RY = wm O+ Urjk +" yrjx  km (€ r)yrix)  Yrik ' Prik;

GA5) R =yrix  km (Y )+" Wrjk+ wm ((C r)Wrjk) Wrjk+r Orjk;

(5.46) osqg =f km () ((c r)yrix  wkm((c r)yr )

and

(547)  osi= (y km (Y D+((c r)wrjk  km((c r)wrik));

wherem = max fly;lg 1lyg. We recall that the operator «.m is de ned as in
(2.3), and notice that, in view of the choice of m, we have the following invariance
property:  km (RY)= R and m (R = R For 2F,, we dene

X
(5.48)  JRSK:= R% with R% = " n" r yrc+prgn;
K2
and
adpe. X ad ; ad . " K K.
(5.49) JR “K:= R% with R% = N r Wrjx GQrjkh":
K2

We now state our nal assumption.
Assumption 7. Forall K 2 T , the computable quantities .k , J:x , ~w;x , and
~qK , introduced in Assumption 5 , are such that

X
~§ . kl’ yT kEZ(K) + kr WT kEZ(K) + hi kR SKtOkEZ(K 0) + kR ﬁdeEZ(K 0)
X K 02 T
d

+ hk kIR 5Kz ) + kIR K2
2F%
X d 2 2

(5.50) + ik koSG¥ ok 2 o + KOSGUK 2 (o) + G

K 92 Tk

whereTx T andFx F .

Under Assumptions 3 , 4, 5, 6 and 7 we present an e ciency analysis. We start
by noting that, since x . Tk, we only need to bound terms that appear on the
right hand side of (5.50).
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We rst invoke integration by parts and ( 3.1) to conclude that

X
(RR: DLz + (RK )iz )
K2T 2F

X
=A(ey; )+ B( ,ep) (eu; )LZ() (OS(it; )LZ(K) 8 2V:
K2T

We now apply standard bubble function arguments B, 46] to this equation to obtain
(551)  KR¥K ). he® Geyivy + Aeping  + keuk?o ) + kosglkZ:
for K 2 T, and that, for 2 F,,

X
KR SMC 2 - hed Fedy ot el o
K 02

(5.52) + hio keykf 2 o + KOSCY ok 2 o)
On the other hand, using (3.5) and, again, integration by parts we obtain that

X
(RE iz + (R¥K )iz
K2T 2F

X
=Clew; ) B ( ;&) (& )iz (0s&%; Jzky 8 2V:
K2T

Applying standard bubble function arguments, again, to this equaton yields
(553) KRPKZ2, . he® Tewigx + Aeqine  + keykPz ) + kosck?:
forK 2T ,and, for 2F,

X
kIR K, hed Tewis o+ Aeqiing o

K 02
(5.54) + hio keyk? 2 o) + kOSROK? 2 i o)
We now proceed to bound the termskr |_2 «y andkr  wr k LZ(K) in (5.50).
To accomplish this task, we notice thatr 2 Q for afl 2 V. Then, it follows from

the second equation of 8.7) that r y =0, and thus that
(5.55) ke yr kZoy = ki oeykPa) - Teyie
Similarly, it follows from the fourth equation of ( 3.7) that
(5.56) ke wr ko) = ki ewk?a) - Tewiy
We conclude with an estimate for the term ,.x de ned by (5.9):
u;K k eukLz(K) + [a;b]( %W) [a;b]( #WT) L2(K) k eukLz(K) + #kekaz(K)
upon invoking the triangle inequality, (3.8), and (3.9). Hence,
2 .
(557) 5;K . keUkLZ(K) + keWkEZ(K).

The following theorem then follows upon combining 6.50{( 5.57).
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Theorem 5.6 (local e ciency). If %6 0 and Assumptions 3 , 4, 5, 6 and 7
hold, then
2 2 2 X . .2
K Tk kewkfog) t J(eyiepiewieqel)io
K 02 ~¢
+ hﬁo keukfz(K o keykfz(K ot kOSd(tokEZ(K ot kOSC%dOkEZ(K o) ;

[

2F
The following corollary follows upon using (2.6) and the fact that is bounded.

with ~x = Tk [

Corollary 5.7 (global e ciency). If %6 0 and Assumptions 3 , 4, 5, 6 and
7 hold, then

X X
~ H . . . . -2
% ' 2 . ](ey’ep,eWyeqyeu)] + hﬁ |(OS(,|‘S<I kEZ(K) + kos@dkfz(K)
K2T K2T
6. A particular example.  Henceforth, we shall consider a particular case of

the approximation scheme @¢.1). We setV (T )= V \ Py(T ), Q(T )= Q\ Po(T ),
Uad(T )= Uad\ Po(T ),

X
(6.1) S(yr ;prif+ur; )= Sk (yr:prif+ur; );
K2T
X
(6.2) H(yr;pr if+ur; )= h (lpr KL Doz ys
2F
X
(6.3) Qwriariyr y ;)= Qu(wrariyr Y )
K2T
and
X
(6.4) Kwriariyr Yy )= h (far LT Dezgys
2F
where

Sc(yrsprif+ur; )= k(cr)yr + yr (frur)i(c r) ek

Quwriariyr y ;)= k(e r)wr wr+yr yi(Cr) ek

and [v] denotes the jumps inv. The stabilization parameters and g are such that
> 0and 0< x . hZ. Note that these choices correspond to solving the state
equations using a particular case of the method given by38, equation (3.6)] and are
such that Assumption 6 is satis ed.
We note that alternative methods for solving the state equations @n be found in
[17] but we restrict our attention to the method described above in oder to simplify
the presentation.
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6.1. Fully computable a posteriori error estimators. In this section we
obtain a posteriori error estimators that satisfy the assumptions of Section5 and are
fully computable if the value of a  satisfying (2.14) is known. We rst de ne some
guantities that we will make use of.

For &= st and &= ad, let the equilibrated uxes g‘g;‘K 2 P1( )Y be such that

(6.5) 0% + 9% 0=0,if 2Fk \F ko, K;K°2T ,K 6 K&

(Frurs Jzwy "(ryrsr deky (yr +(c r)yrs ek
X
+Hprir ey Sk(yrsprif+ur; )+ (0% : Lz()=0
2F
forall 2P;(K)¥andallK 2P,
Yr Y ey "(rwrar )ieky (wroo (Cr)wr; )iz
X
(grir ek Q k(Wrsarsyr  y )+ (9% : JL2()=0
2F «
forall 2 P;(K)%andallK 2P, and
X & & 2 X 2 1o & 12 X &q,2
(66) hK kg ;K +R ;K kLZ( ) . hK kR KOkLZ(K0)+ hK kJR I‘«Lz( )
2F « K 02 T 2Pk
for all K 2 P, where
[
Tk =fK°2T : Vk \Vko6 ;g and Fg = f °2F, 1 V \V 06 g
2F «

with Vi denoting the set containing the vertices of elementK and V denoting the
set containing the vertices of the edge/face . For information that will help with the
construction of such g‘g;‘K we refer the reader to B, Chapter 6] and [5, 6].

For &= stand &= ad, we also dene & 2 P,(K)¢ ¢ to be such that
dv & =RE&inK;
= g% +R% on; 8 2F;
and k ﬁ K_2(k) Is minimized. We note that the g‘g;‘K are such that the data in the
above problem are compatible in the sense that ﬁ‘ exists. Moreover, forallK 2 T ,

X
6.7) (& ey = (RES iz + (0% +R% )2y 8 2V

2F ¢

and
X

(6.8) k K kP2cy - hR KRk 2y + hk kg% + R kP2
2F ¢

For information on the construction of such ﬁ we refer the reader to f, 5].
Finally, for &= st and &= ad, we de ne

1
(6.9) ek = P=K g kizn) + G koscE K 2k y:

We thus have the following result.
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Theorem 6.1. Assumption 3 holds with

(6.10) gk =3 G+ G 142G ko yr Kok
and
(6.11) S;K =2C|25 1+3C’t2t gt;K + C,ZSC% 1+2C(2:t kryr I(EZ(K)

Moreover, Assumption 1 holds with

I e !
X 1=2

(6.12) y= 2K and p= 2k
K 2P K 2P

Proof. Let Ey 2 V Dbe the solution to
(6.13) "(r Eyir Jizgy + (Eys ez =A@ yr: ) B(:p pr) 8 2V:

Letting = pr in(2.15 yields that

. . B( ;
P prig G sup BL:P pr),
2vnfog 1 Jv:

To control the right{hand side of the previous estimate we use 6.13) and obtain that
B(:p pr)=A@ vyr:) "(rEyr )iz (Ey; Lz
Cd¥ yriv. 1 iy, tiEyly. § dyv.
upon using (2.12). Hence,
(6.14) 10 prig  Gs iEyiy. *Gd¥ vyriy,

We now estimatej9 yrj,. . Sincep pr 2 Q, by using the second equation
of (5.2) we have that

B yrip pr)= B (yr:ib pr) ki yrkee ip prig
Thus, by using the previous estimate and letting = § y; in (6.13, we arrive at
i9 yriv, =CERT @ vz + (Eyi® Yrdizg +BO vrip pr)
J Eviv. 19 yriy, tke yrkeegjp prig -
This, in view of (6.14), then yields that
i yriv,  Gkroyr ke QEyiy,
+ iEij; + GsGutkr  yr kizgy 19 Yriv.
%kr yr K2y + %jEyi\z/;

2
+3 §Eyiy. + GGukr yrkieg  + 39 yriv.



20 A. ALLENDES, E. OT AROLA, AND R. RANKIN

from which it follows that

2
19 YTi\z/; Gk yr kEZ() +jEyj\2/; + JEyiy. + GGukr  yr Kiz)

Hence, upon observing that
2

1Eyiy. + GsGakr yr kiz() 2iEyi\2/; +2GGkr  yr kP
we can arrive at
(6.15) i vriv,  BiEyy, * G 1+2G ki yrkiy

Furthermore, (6.14) allows us to conclude that
ip prig 26 QEyy, + GdY yriv,

Applying (6.15) then yields that
(6.16) ip prig 26 1+3G JEyiy, + GG 1+2G kr vy kiy

Now, letting = E in (6.13) yields that

iEyiy. =A@ T iEv) B (Eyip pr) .

X
@RYEy)2k)+ (@% + Rk 1Ey)iz() +(0sGEy)ep)A
K2T 2F «

by (5.2), integration by parts, (5.44), (5.46), (5.48 and (6.5). Applying (6.7) and
(2.3) then yields that

X
iEviy. = ( ¥ir Ey)iow) +(0SGHEy ko o(Ey))Lzk)
K2T |
P 1=2
X
gt;K jEyj\/;
K2T

by the Cauchy{Schwarz inequality and (2.4). Consequently,

ie :2 X 2 .
(6.17) 1EVIY. StK
K2T
The theorem then follows upon combining 6.15), (6.16) and (6.17). d

We note that the above theorem is an improvement and adaptation b the case
considered in this section of the results fromJ]. The below theorem can be proved
similarly to how the above theorem was proved.

Theorem 6.2. Assumption 4 holds with

(6.18) Gk =3 Aak t G 142G krowr Kok
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and
(6.19) S;K =2G, 1+3G gd;K + GG 1+2G, kr wy kEZ(K)

Moreover, Assumption 2 holds with
I o !
X 1=2
(6.20) w= 2K and o= K
K 2P K 2P

We note that, if the value of a  satisfying (2.14) is known, then Assumption 5
holds with ~x = yk, 5k = pKk, wk = wk and wk = gk . Furthermore, by
(6.6) and (6.8) we have that

X
5;K + S;K krooyr kEZ(K) + hk kJR StK(Ez( )

X 2P
(6.21) + hk KR ok? 2 o) + KOS okf 2 i o
K 92 Tk
and
X
2kt ek - krowrkE,t hk kIR 29K 2
2Pk
X
(6.22) + g KREOKE: o) + KOSCROK? 2 i o)
K 92 Tk

from which it follows that Assumption 7 is also satis ed. We note that it also
follows that

. -2 - -2 X 2 X styq, 2
]9 yT]V; +]p pT]Q; . kr Yt kLZ(K)+ thJR K(Lz()
K2T 2F
(6.23) +hi KREK 2y + kosGT k2 k)
and
i 32 : :2 X 2 X adpg,2
W wrjy, +10 arjg - ke wr KE2gc) + hk kIR 2K
K2T 2F
(6.24) +hg KREWKZ: ) + kosg?2
6.2. Residual{based a posteriori error estimators. From (6.23) and (6.24)

the following result follows.
Theorem 6.3. Let
X
Jk = ok =K yr Koy hic kIR K 2
2F «

(6.25) +hg KRRK 2y + koSG KZ 2 ()
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X
_ _ d
Sk = ek Skroowr kfz(K) + hg kJR & K(Ez( )
oF «

(6.26) +hg KRz + kosGoKE2 ()

yk = Cvyk, pk = Cok, wk = Cwk, gk = Cyqgk .,
X X X X
. 2 — 2 .
y=-— p~— yK = p;K w= q= wiK T q;K 1
K2T K2T K2T K2T

and Tk = Fx = fK 0, where C is a positive constant that is independent of the size
of the elements in the mesh. TherAssumptions 1 , 2, 3, 4, 5 and 7 hold.

7. Numerical examples.  We conduct a series of numerical examples that il-
lustrate the performance of the devised a posteriori error estirators. These have
been carried out with the help of a code that we implemented usingC++ All matri-
ces have been assembled exactly and the global linear systems weved using the
multifrontal massively parallel sparse direct solver (MUMPS) [7, 8].

For a given partition T we seek {1 ;pr ;wr;0r;ur )2 V(T) Q(T) V(T)
Q(T ) Uy(T ) that solves the discrete optimality system (4.1) using the approx-
imation method described in Section6 with « = hﬁ forall K 2 T and =1
forall 2 F,. We considered# = 1 and %= 1. The number of degrees of freedom
Ndof = 2dNy + (d + 2) N, where Ny is the number of vertices in the mesh and\e is
the number of elements in the mesh.

We solve the ensuing nonlinear system of equations using a Newtorfie primal-
dual active set strategy @4, x2.12.4]; see alsd/]. Once a discrete solution is obtained,
we calculate the local error indicators, in order to drive an adaptivemesh re nement
procedure, and the global error estimator, in order to assess # accuracy of the
approximation. The particular global error estimator and local error indicators that
we use depends on the dimensiod of the domain as follows:

whend = 2, we compute from Theorem 5.1and g from Theorem 5.2,
with the aid of Theorems 6.1 and 6.2
when d = 3, we compute "and Tk from Corollary 5.4, with the aid of
Theorem 6.3.
These local error indicators are used to drive the adaptive proceares described in
Algorithms 7.1 and 7.2

Algorithm 7.1 Adaptive Primal-Dual Active Set Algorithm for d=2:
Input: An initial mesh T and data#,a, b,",c, ,y andf.

1: Compute (y7 ;pr ;Wr ;dr ;ur ) that solves (4.1) using the active set strategy of
[44, x2.12.4].

2: With the aid of Theorems 6.1 and 6.2, compute the local error indicators g,
given in Theorem 5.2, for eachK 2 T, and the error estimator , given in
Theorem 5.1. X

3. Mark an elementK 2 T forrenementif 2 N,1! 2o

Ko2T
4;. Re ne the mesh T using a longest edge bisection algorithm and return to stef.

7.1. Two dimensional examples. We perform two dimensional examples on
polygonal domains for which the value of a satisfying (2.14) is known. To accomplish
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Algorithm 7.2 Adaptive Primal-Dual Active Set Algorithm for d=3:
Input: An initial mesh T and data#,a, b,",c, ,y andf.

1: Compute (Y1 ;pr ;Wr ;dr ;ur ) that solves (4.1) using the active set strategy of
[44, x2.12.4].
2: With the aid of Theorem 6.3, compute the local error indicators ~k , for each
K 2T, and the error estimator 7 given in Corollary 5§.4.
3: Mark an elementK 2 T for re nementif ~2 N,1! ~2..
Ko2T
4: Re ne the meshT using a longest edge bisection algorithm and return to stef.

this task we used the adaptive procedure described in Algorithm7.1. We note that
the involved estimator provides a guaranteed upper bound on j (ey; &; ew; €; €u)]

A sequence of adaptively re ned meshes was generated from theiiial meshes shown
in Figure 7.1

Fig. 7.1: The initial meshes used for Examples.1, 7.2, 7.3 and 7.4.

Example 7.1. We consider the square domain = (0;1)?>. From [41] we have
that (2.14) holds with = sin( =8). We took " =1, c(x1;X2) = (X2; X1), =1,
a=( 05 05)andb=(0:5,0:5). Thedataf andy were chosen to be such that

y(x1;%2) = curl (x1(1  x1)x2(1  x2))® ;  p(X1;X2) = COS(2 X 1) COS(2X 2);

W(x1;x2) = curl (sin(2x 1)sin2 x 2))? ;  a(X1;X2) = siN2 X 1)siN2 X 5):

The results are shown in Figures7.2 and 7.3. We observe that the estimator and
the error j(ey; &) ew; &;€)j are decreasing at the optimal rate.

Example 7.2. We consider the triangular domain = f(x3;X2) : X1 > 0;x2 >
0;x1 + X2 < 1g. From [41] we have that (2.14) holds with = sin( =16). We took
"=0:01,c=(0;0), =1, a=(0;0)andb =(0:1;0:1). The dataf andy were
chosen to be such that

exp( 100x;) exp( 100)

- —_— 2 2
y(x1;x2) = curl xax3(1 x1 x2)° 1 1 exp( 100) '

p(x1;X2) = cos(2 x 2)=1024

exp( 10Qxp) exp( 100)

w(xi;X2) = curl  x2xp(1 X1 x2)? 1 1 exp( 100) ;

and
g(x1;X2) =cos(2 x 1)=1024
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Fig. 7.2: Example 7.1: The error j(ey; &); €w; €;€u)] and estimator (left) and the
16th adaptively re ned mesh (right).

The results are shown in Figures7.4 and 7.5. We observe that, once the mesh has
been su ciently re ned, the error j(ey; & ew; € €u)j and the estimator decrease
at the optimal rate. We also observe that more re nement has bea performed in the
regions where the solution has boundary layers.

Example 7.3. We consider the L-shaped domain =( 1;1)°2n([0;1) ( 1;0]).
From [41] we have that (2.14) holds with = 0:1601. We took" =1, ¢ = (0;0),
=0, a=(0;0),b=1;1),f=(@;1) andy (Xx1;%x2) = (X2; X1). The results
are shown in Figures7.6 and 7.7. We observe that the estimator decreases at
the optimal rate and that more re nement is being performed in regions close to
the reentrant corner. The true solution to this problem is unknown and hence we
cannot compute j(ey; €y; ew; &;€4)] . However, from Theorem 5.1 we know that

J(ey;ep; ew;eq eli

Example 7.4. We considered the same problem as in the previous example with
the exception that we took the domain to be the T-shaped domain = (( 1.5; 1.5)
©O; 1) [ (( 0:5;0:5) ( 2;0]) on which we have that (2.14) holds with = 0:1076
from [41]. The results are shown in Figures7.8 and 7.9. Similar observations to those
made about the previous example can be made.

7.2. Three dimensional examples. Unfortunately, we are not aware of any
polyhedral domains for which the value of a satisfying (2.14) is known. Hence, when
the domain is three dimensional, the estimator from Theorem 5.1and the local error
indicators g from Theorem 5.2 are not computable. Consequently, we performed
numerical examples by following the adaptive procedure described irlgorithm 7.2.
A sequence of adaptively re ned meshes was generated from theiiial meshes shown
in Figure 7.10. We note that we have not proved that the estimator ~provides a
guaranteed upper bound onj(ey; &;ew; €;e4)] . However, from Theorem 5.4 we
know that j(ey; &; ew; €g; €u)] T

Example 7.5. We consider the cuboidal domain = (0;1)3. We took " = 1,
C(X1;X2;X3) = (X2 XzjX3z X1;X1  Xg), =1, a=( 05 05 O05)andb =
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Fig. 7.3: Example 7.1: The rst (left) and second (right) entries of y; (top), wr
(second row) andur (third row), as well as pr (bottom left) and gr (bottom right),
obtained on the nal adaptively re ned mesh.
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Fig. 7.4: Example 7.2 The error j(ey; &); €w; €;€u)] and estimator (left) and the
16th adaptively re ned mesh (right).

(0:5;0:5;0:5). The data f andy were chosen to be such that
Y(X1;X2;%3) = curl  (x2(1  x1)x2(1  X2)x3(1 x3))2 ; P(X1;X2;X3) =c0s(2 X 3);

W(X1;X2:X3) = curl  (sin(2 x 1)sin(2 x 2)sin(2 X 3))? ; q(X1;X2;X3) = sin(2 X 3):

The results are shown in Figures7.11and 7.12. We observe that the estimator ~and
the error j(ey; &) ew; €;€)j are decreasing at the optimal rate.

Example 7.6. We consider the tetrahedral domain = f(x1;X2;X3) : X1 > 0;x, >
0;X3 > 0;x1 + X2+ x3< 1g. We took " =0:01,c=(1;1;1), =0, a=(0;0;0) and
b=(0:1;0:1;0:1). The data f andy were chosen to be such that

exp( 100x;) exp( 100)

ot ya) = 2
y(X1;X2;X3) = curl  x1x5 1 1 exp( 100) ’

P(X1;X2;X3) = cos(2x 3) 3=(2 ?) =1024

exp( 10Qxp) exp( 100)
1 exp( 100) '

W(X1;X2;x3) = curl  x3xp 1 x»

and

g(x1;X2;X3) =(sin(2 x 3) 3=(2 ))=1024
where = x3(1 x1 Xz x3)2. The results are shown in Figures7.13and 7.14. We ob-
serve that, once the mesh has been su ciently re ned, the errorj(ey; &; ew; &; €u)j

and the estimator ~decrease at the optimal rate. We also observe that more re ne-
ment has been performed in the regions where the solution has bodary layers.
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