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Abstract. We derive globally reliable a posteriori error estimators f or a linear{quadratic optimal
control problem involving the generalized Oseen equations as state equations; control constraints are
also considered. The corresponding local error indicators are locally e�cient. The assumptions under
which we perform the analysis are such that they can be satis� ed for a wide variety of stabilized
�nite element methods as well as for standard �nite element m ethods. When stabilized methods are
considered, no a priori relation between the stabilization terms for the state and adjoint equations is
required. If a lower bound for the inf{sup constant is availa ble, a posteriori error estimators that are
fully computable and provide guaranteed upper bounds on the norm of the error can be obtained.
We illustrate the theory with numerical examples.
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1. Introduction. In this work we shall be interested in the design and analy-
sis of computable a posteriori error estimators for a linear{quadratic optimal control
problem involving the generalized Oseen equations; control constraints are also con-
sidered. To make matters precise, let 
 � Rd, with d 2 f 2; 3g, be an open and
bounded polytopal domain with Lipschitz boundary @
 and f 2 L 2(
) d. Given a
regularization parameter # > 0 and a desired statey
 2 L 2(
) d, we de�ne

(1.1) J (y; u) =
1
2

ky � y
 k2
L 2 (
) d +

#
2

kuk2
L 2 (
) d :

We will be interested in the following PDE{constrained optimization pro blem: Find

(1.2) min J (y; u)

subject to the generalized Oseen equations

(1.3)

8
<

:

� " � y + ( c � r ) y + � y + r p = f + u in 
 ;
r � y = 0 in 
 ;

y = 0 on @
 ;

and the control constraints

(1.4) a � u � b a.e. in 
 ;

with a; b 2 Rd satisfying a < b; the previous vector inequalities being understood
componentwise. In (1.3), "; � 2 R and are such that" > 0 and� � 0 andc 2 W 1;1 (
)
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is a solenoidal �eld. The generalized Oseen equations describe the low{Reynolds{
number ow in porous media in situations where velocity gradients arenon{negligible;
they provide a uni�ed approach to model ows of viscous uids in a cavity and a porous
media. It is well{known that the following choices of the parameters c and � yield
the following ow models:

(1.5)

8
<

:

c = 0; � = 0 : � " � y + r p (Stokes);
c = 0 : � " � y + � y + r p (Brinkman) ;
� = 0 : � " � y + ( c � r ) y + r p (Oseen):

Our analysis allows for these choices ofc and � . Consequently, we present a uni�ed
analysis for the Stokes, Brinkman, Oseen and generalized Oseen equations.

The design of numerical techniques for approximating the solution to (1.3) has
two major di�culties: �rst, in view of the so{called inf{sup condition [ 23, 24], arbi-
trary �nite element methods are not allowed, and second, considering standard �nite
element methods produces poor approximation results when convection{dominated
regimes are considered [38]. In order to overcome such di�culties, a variety of �nite
element techniques have been proposed and analyzed in the literature: the family of
stabilized �nite element methods.We refer the reader to [38] for an extensive overview.

In the PDE{constrained optimization context, a usual alternative for approximat-
ing the solution to the optimal control problem ( 1.2){( 1.4) is based on the so-called
optimize{then{discretize approach. This technique discretizes the associated optimal-
ity system: the state equations (1.3), the adjoint equations and a variational inequality
that characterizes the optimal control �u. Consequently, the di�culties presented in
the discretization of (1.3) are also present in the numerical approximation of the so-
lution to ( 1.2){( 1.4). In addition, ( 1.2){( 1.4) is intrinsically nonlinear and, if c 6= 0,
presents a crosswind phenomena; the convection �eld of the adjoint equations is the
negative of the one appearing in (1.3). The latter further motives the development of
an e�cient solution technique that, in convection{dominated regime s, properly treats
the oscillatory behaviors that occur when approximating �y and its adjoint variable
�w and resolves interior or boundary layers exhibited by both variables. Failure to
resolve boundary layers can pollute the numerical solution in the entire domain; see
[25] for results involving the scalar version of (1.2){( 1.4). However, numerical schemes
based only on stabilized techniques are not su�cient to approximate the solution to
(1.2){( 1.4): in addition to the e�cient resolution of either interior or boundary layers,
some possible geometric singularities must be resolved. This motivates the methods
that we will use in this work: stabilized adaptive �nite element methods.

Adaptive �nite element methods (AFEMs) are iterative methods tha t improve the
quality of the �nite element approximation to a partial di�erential eq uation (PDE)
on the basis of an essential ingredient: an a posteriori error estimator. The a poste-
riori error analysis for standard �nite element approximations of lin ear second{order
elliptic boundary value problems has a solid foundation [3, 36, 46]. When stabilized
approximations are considered, several estimators have been introduced and analyzed
in the literature; see, for instance, [1, 5, 9, 43, 47]. However, the a posteriori error
analysis for �nite element approximations of constrained optimal control problems has
not been fully developed. In view of their inherent nonlinear feature, which appears
due to the control constraints, the analysis involves more arguments and technicali-
ties. An attempt to unify the available results has been carried out recently in [28]
where the authors derive an important relationship between the error in optimal con-
trol problems and estimators, that satisfy a set of suitable assumptions, for problems
associated with the state and adjoint equations [28, Theorem 3.2].
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In the current work, the assumptions under which we perform theanalysis are such
that they can be satis�ed for a wide variety of stabilized �nite element methods as well
as for standard �nite element methods. This includes using a di�erent stabilization
method to approximate the state equation from that used to approximate the adjoint
equation. We derive a posteriori error estimators that are globallyreliable. Moreover,
if a lower bound for the inf{sup constant is available, we can obtain a posteriori error
estimators that are fully computable and provide guaranteed upper bounds on the
norm of the error. Consequently, the estimators can be used as astopping criterion
in adaptive algorithms. The local error indicators that can be used to adaptively
re�ne the mesh are locally e�cient. Furthermore, we observe that they can be used
to e�ciently resolve boundary layers.

The outline of this paper is as follows. In section2 we introduce some terminology
used throughout this work. In section 3 we study the optimal control problem (1.2){
(1.4) and obtain the associated optimality system. In section4 we give the general
form of the �nite element methods that we consider for approximating the solution to
(1.2){( 1.4). The core of our work is section5, where we devise a family of a posteriori
error estimators. Under suitable assumptions, we obtain abstract reliability results in
section5.1 and local e�ciency of the corresponding error indicators in section5.2. In
section6 we consider the estimators that we can obtain for a particular approximation
method in more detail. Finally, in section 7 we present a series of numerical examples
to illustrate the theory.

2. Preliminaries.

2.1. Notation. For a bounded domainA � Rt , t 2 f 1; 2; 3g, L 2(A) and H 1(A)
denote the standard Lebesgue and Sobolev spaces, respectively; L 2

0(A) is the subspace
of L 2(A) containing functions with zero mean value onA, and H 1

0 (A) is the subspace
of H 1(A) containing functions whose trace is zero on@A. We use bold letters to
denote the vector{valued counterparts of the aforementionedspaces and an extra
under accent for their matrix{valued counterparts. For instance, for d 2 f 2; 3g, we
denote L 2(A) = L 2(A)d and L

�

2(A) = L 2(A)d� d.

We now proceed to de�ne notation associated with the discretization of the do-
main. Let T = f K g be a conforming partition of �
 into simplicial elements K
[18, 23]. We assume thatT is a member of a shape regular family of partitions. Let
F denote the set of all element edges(2D)/faces(3D) andF I � F denote the set of
interior edges(2D)/faces(3D).
For an element K 2 T , let:

� Pn (K ) denote the space of polynomials onK of total degree at mostn;
� F K � F denote the set containing the individual edges(2D)/faces(3D) ofK ;
� hK denote the diameter ofK ;
� n K

 denote the unit exterior normal vector to the edge(2D)/face(3D)  2 F K .
For an edge(2D)/face(3D)  2 F , let:

� Pn ( ) denote the space of polynomials on of total degree at mostn;
� 
  = f K 2 T :  2 F K g;
� h denote the diameter of the edge(2D)/face(3D) .

To simplify the exposition of the material, we de�ne V = H 1
0(
) and Q = L 2

0(
)
with norms jjj � jjj V ;
 and jjj � jjj Q; 
 de�ned, for all � 2 V and � 2 Q, by

(2.1) jjj � jjj 2
V ;
 :=

X

K 2 T

jjj � jjj 2
V ;K and jjj � jjj 2

Q; 
 :=
X

K 2 T

jjj � jjj 2
Q;K
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where

(2.2) jjj � jjj 2
V ;K := "kr � k2

L
�

2 (K ) + � k� k2
L 2 (K ) and jjj � jjj 2

Q;K := k� k2
L 2 (K ) :

The relation a . b indicates that there exists a constant C such that a � Cb.
The constant C may be di�erent at each occurrence but is independent ofa, b and
the size of the elements in the mesh.

2.2. Inequalities. For K 2 T and nonnegative integersl , we denote by � K;l

the L 2(K ){orthogonal projection operator onto Pl (K )d. This operator is de�ned as

(2.3) � K;l : L 2(K ) ! Pl (K )d; (t � � K;l (t ); v )L 2 (K ) = 0 8v 2 Pl (K )d:

Throughout the manuscript we will frequently make use of the following inequal-
ities. First, if K 2 T and � 2 V , we have the Poincar�e inequalities [10, 33, 37]

(2.4) k� kL 2 (
) � CP; 
 kr � kL
�

2 (
) and k� � � K; 0(� )kL 2 (K ) �
hK

�
kr � kL

�
2 (K ) ;

where

(2.5) CP; 
 =
1
�

 
dX

i =1

1

jl i j
2

! � 1=2

with jl1j ; : : : ; jld j being the sides of ad-dimensional box containing 
. We immediately
comment that these inequalities imply that, for � 2 V and K 2 T ,

(2.6) k� kL 2 (
) � C
 jjj � jjj V ;
 and k� � � K; 0(� )kL 2 (K ) � CK jjj � jjj V ;K ;

where

(2.7) C
 =

( CP; 
p
" ; if � = 0 ;

min
n

CP; 
p
" ; 1p

�

o
; if � 6= 0 ;

and

(2.8) CK =

( hK
�

p
" ; if � = 0 ;

min
n

hK
�

p
" ; 1p

�

o
; if � 6= 0 :

We de�ne A : V � V ! R, B : V � Q ! R and C: V � V ! R by

(2.9)

8
>><

>>:

A(� ; � ) := " (r � ; r � )L
�

2 (
) + ( � � + ( c � r ) � ; � )L 2 (
) ;

B(� ; � ) := ( �; r � � )L 2 (
) ;

C(� ; � ) := " (r � ; r � )L
�

2 (
) + ( � � � (c � r ) � ; � )L 2 (
) :

The fact that c is a solenoidal vector �eld and integration by parts implies that

(2.10) A(� ; � ) = C(� ; � ) 8� ; � 2 V :

Moreover, for all � 2 V ,

(2.11) A(� ; � ) = C(� ; � ) = jjj � jjj 2
V ;




ERROR ESTIMATION FOR PDE{CONSTRAINED OPTIMIZATION 5

and, for all � ; � 2 V ,

(2.12) A(� ; � ) � Cct jjj � jjj V ;
 jjj � jjj V ;
 ; C(� ; � ) � Cct jjj � jjj V ;
 jjj � jjj V ;
 ;

where

(2.13) Cct = 1 +
C
p

"
kjcjkL 1 (
) ;

with kjcjkL 1 (
) being the L 1 (
) norm of jcj and C
 being given by (2.7).
We now recall the standard inf{sup condition [23, 24]: there exists a positive

constant � such that

(2.14) � k� kL 2 (
) � sup
� 2 V nf 0g

B(� ; � )
kr � kL

�
2 (
)

8� 2 Q:

Notice that, in view of jjj � jjj 2
V ;
 � (" + � C2

P; 
 )kr � k2
L
�

2 (
) , we have that

(2.15) jjj � jjj Q; 
 � Cis sup
� 2 V nf 0g

B(� ; � )
jjj � jjj V ;


8� 2 Q;

where

(2.16) Cis =

q
" + � C2

P; 


�
:

3. Optimal control problem: optimize. In this section we briey analyze the
optimal control problem ( 1.2){( 1.4). To accomplish this task, we begin by introducing
the following weak version of the state equations (1.3): Find ( y; p) 2 V � Q such that

(3.1)
�

A (y; � ) � B (� ; p) = ( f + u; � )L 2 (
) 8 � 2 V ;
B(y; � ) = 0 8 � 2 Q;

where the bilinear formsA and B are de�ned by (2.9) and we recall that " > 0, � � 0,
c 2 W 1;1 (
) is a solenoidal �eld, f 2 L 2(
), V = H 1

0(
) and Q = L 2
0(
). In view of

the fact that A satis�es (2.11) and (2.12) and B satis�es the inf{sup conditions (2.14)
and (2.15), we conclude the well{posedness of problem (3.1) [23, 24]. We also mention
that, due to de Rham's Theorem (see Section 4.1.3 and Theorem B73 in[23]), we can
consider the following equivalent formulation of problem (3.1): Find y 2 V 0 such that

(3.2) A(y; � ) = ( f + u; � )L 2 (
) 8� 2 V 0;

where V 0 := f v 2 H 1
0(
) : r � v = 0 g.

To analyze our optimal control problem, we follow [30, 44] and introduce the so{
called control to state map S : L 2(
) ! V 0 which, given a control u, associates to it
the state y that solves (3.2). In addition, we de�ne, for a; b 2 Rd with a < b, the set

(3.3) U ad := f v 2 L 2(
) : a � v � b a.e. in 
 g;

the vector inequalities being understood componentwise. The setU ad is a bounded,
convex, closed and nonempty subset ofL 2(
) and consequently weakly sequentially
compact. Thus, in view of the fact that the reduced cost functional

f (u) :=
1
2

kS(u) � y
 k2
L 2 (
) +

#
2

kuk2
L 2 (
)
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is weakly lower semicontinuous and strictly convex (# > 0), we conclude the existence
and uniqueness of an optimal control�u and an optimal state �y that satisfy ( 3.2),
or equivalently (3.1); see Theorem 2.14 in [44]. The existence of�p such that (�y; �p)
solves (3.1) follows from de Rham's Theorem. In addition, we have that �u satis�es
the �rst{order optimality condition

(3.4) f 0( �u)(u � �u) � 0 8 u 2 U ad ;

see [44, Lemma 2.21]. To explore this variational inequality, and to obtain optimality
conditions, we de�ne, on the basis of the formal Lagrange method(see [21, Section
3.3] and [44, Section 2.10]), the adjoint state (w; q) as the unique solution to the
following weak problem: Find (w; q) 2 V � Q such that

(3.5)
�

C(w; � ) + B(� ; q) = ( y � y
 ; � )L 2 (
) 8 � 2 V ;
B(w;  ) = 0 8  2 Q:

With this adjoint state at hand, the variational inequality ( 3.4) can be rewritten as

(3.6) ( �w + #�u; u � �u)L 2 (
) � 0 8 u 2 U ad :

We have thus arrived at the following optimality system: ( �y; �p; �u) 2 V � Q � U ad

is optimal for the PDE{constrained optimization problem ( 1.2){( 1.4) if and only if
(�y; �p; �w; �q; �u) 2 V � Q � V � Q � U ad solves

(3.7)

8
>>>><

>>>>:

A(�y; � ) � B (� ; �p) = ( f + �u; � )L 2 (
) ; 8 � 2 V ;
B(�y; � ) = 0 ; 8 � 2 Q;

C( �w; � ) + B(� ; �q) = ( �y � y
 ; � )L 2 (
) ; 8 � 2 V ;
B( �w;  ) = 0 ; 8  2 Q;

( �w + #�u; u � �u)L 2 (
) � 0; 8 u 2 U ad ;

see also [39, Section 2] and [34, Section 2] for similar results when the state equations
(1.3) are the Stokes equations.

We �nally recall the projection formula for the optimal control var iable: the
variational inequality in ( 3.6) can be equivalently written as [44, Chapter 2]

(3.8) �u = � [a;b]

�
�

1
#

�w
�

a.e. in 
 ;

where � [a;b] (� ) (x ) := min f b; max f a; � (x )gg and it is understood componentwise.
We note that

(3.9)

 � [a;b](� ) � � [a;b](� )




L 2 (K ) � k � � � kL 2 (K ) 8� ; � 2 V :

4. Finite element discretization. We follow the optimize{then{discretize ap-
proach and introduce a numerical scheme to approximate the solution to (3.7). The
scheme allows for the incorporation of stabilization terms into the standard Galerkin
discretizations of the state and adjoint equations; no a priori relation between the
stabilized terms is required. We refer the reader to Remark4.1 below for a discussion
regarding the advantages of the proposed approach when solving(1.2){( 1.4).

The stabilized scheme reads as follows: Find (�yT ; �pT ; �wT ; �qT ; �uT ) 2 V (T ) �
Q(T ) � V (T ) � Q(T ) � U ad (T ) such that

(4.1)

8
>>>><

>>>>:

A(�yT ; � ) � B (� ; �pT ) + S(�yT ; �pT ; f + �uT ; � ) = ( f + �uT ; � )L 2 (
) ;
B(�yT ; � ) + H(�yT ; �pT ; f + �uT ; � ) = 0 ;

C( �wT ; � ) + B(� ; �qT ) + Q( �wT ; �qT ; �yT � y
 ; � ) = ( �yT � y
 ; � )L 2 (
) ;
B( �wT ;  ) + K( �wT ; �qT ; �yT � y
 ;  ) = 0 ;

( �wT + #�uT ; u � �uT )L 2 (
) � 0;
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for all ( � ; �; � ;  ; u) 2 V (T ) � Q(T ) � V (T ) � Q(T ) � U ad (T ); the bilinear forms
A; B and Cbeing de�ned as in (2.9). We consider the setting where the discrete spaces
V (T ) and Q(T ) are subspaces ofV and Q, respectively, and the discrete setU ad (T )
is a subset ofU ad . Hence,V (T ) � V , Q(T ) � Q and U ad (T ) � U ad . The terms
S and H, and Q and K in (4.1), correspond to stabilization terms for the state and
adjoint equations, respectively. Finally, we assume thatV (T ), Q(T ), U ad (T ), S,
H , Q and K are such that at least one solution to (4.1) exists.

Remark 4.1 (optimize{then{discretize approach). In general, there are two ap-
proaches to approximate the solution to an optimal control problem: the optimize{
then{discretize approach, that discretizes the associated optimality system, andthe
discretize{then{optimize approach, that �rst discretizes the continuous problem and
then optimizes the obtained �nite dimensional problem. We must immediately com-
ment that these techniques do not always coincide [16, 19, 26, 29]. For a detailed
discussion on these approaches and their respective advantagesand disadvantages,
we refer the reader to [26, Section 3.2] and [15, Chapter 3]. In [19], it was observed
that, when solving an optimal control problem for a convection{reaction{difussion
equation on the basis of the SUPG method, both approaches lead tosubstantially dif-
ferent results. Later, in [25], the authors continue with the study started in [19] and
show that the failure to resolve boundary layers exhibited by the solution can pollute
the numerical solution in the entire domain. In order to develop our aposteriori error
analysis, we follow theoptimize{then{discretize approach. This allows for the simple
formulation ( 4.1) of the discrete optimality system and the incorporation of stabi-
lization terms into the discrete state and adjoint equations; no a priori relationship
between such stabilization terms is required. We remark that the latter property is
particularly convenient since it allows for the use of the a posteriorierror estimators
that are already available in the literature. In contrast, the use of the discretize{then{
optimize approach imposes a relationship between the stabilization terms which could
result in the presence of undesirable stabilization terms in the discrete formulation. If
both terms S and H are symmetric andQ = S and K = H, then the aforementioned
approaches coincide; we refer the reader to [16] for details.

Before proceeding with the analysis of our method, it is instructive to comment
on those advocated in the literature. Regarding the a priori theory, in the absence of
control constraints, the design and analysis of numerical techniques for solving (1.2){
(1.3), with c = 0 and � = 0, have been investigated in several papers; see [14, 40, 42]
and references therein. To the best of our knowledge, and again,for c = 0 and � = 0,
the �rst work that incorporates control constraints and analyz es stabilized schemes
for (1.2){( 1.4) is [39]; the optimal control is discretized by using piecewise constant
functions. The authors, on the basis of postprocessing techniques, provide a quadratic
error estimate for the approximation of the optimal control varia ble [39, Theorem 2.8].
Subsequently, the authors of [34] extend the results of [39] and analyze nonconforming
schemes for the discretization of the state and adjoint equations; in contrast to [39],
the vector �eld is not assumed to be in H 2(
) \ W 1;1 (
). In addition, [ 34] analyzes
an anisotropic scheme for approximating the solution to (1.2){( 1.4) when 
 is not
convex; a domain with a reentrant edge (d = 3) is considered. We conclude this
paragraph by mentioning the reference [22], where the authors investigate numerical
techniques for solving a modi�cation of problem (1.2){( 1.4) that, in addition, includes
constraints on the state variable.

Regarding the a posteriori error analysis, to the best of our knowledge, the �rst
work to propose an error estimator for (1.2){( 1.4), with c = 0 and � = 0, is [32]. In this
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work, the authors follow the discretize{then{optimize approach and obtain a discrete
optimality system with no stabilization terms [ 32, equation (2.9)]. They propose an
error estimator in a two{dimensional setting and analyze its reliability properties [32,
Theorem 3.1]. However, there is no e�ciency analysis. Later, an asymptotically exact
ZZ{type a posteriori error estimator was proposed in [31]. The authors derive upper
and lower bounds for the error in terms of the proposed estimator[31, Theorem 5.1]
that relies on an error non{degeneracy condition [31, inequality (2.24)] and strong
regularity assumptions on (�y; �p): it is assumed to belong toH 3(
) \ V � H 1(
) \ Q
[31, Lemma 4.2]. In [20], the authors propose an a posteriori error estimator for (1.2){
(1.4) but with the state equations (1.3) replaced by a Stokes-Darcy system: they study
the reliability and e�ciency properties of the proposed estimator. W e also mention
[35], where a similar PDE{constrained optimization problem has been analyzed but
with the control constraint ( 1.4) replaced by the state constraint kykL 2 (
) �  , where
 > 0: an error estimator is proposed and its reliability and e�ciency prop erties are
investigated. All the aforementioned references consider plain Galerkin discretizations
for the state and adjoint equations, i.e., no stabilization terms are considered. We
conclude this paragraph by mentioning the so{called dual weighted residual method
(DWR) [ 13] and its applications to the optimal control of ow problems [ 11, 12].

Recently, the authors of [28] propose and analyze an a posteriori error estimator
for problem (1.2){( 1.4) when � = 0 [28, Section 5]. The associated discrete opti-
mal system incorporates stabilized terms, into the state and adjoint equations, that
are based on the streamline{di�usion �nite element method (SDFEM) . On the ba-
sis of proposed and analyzed a posteriori error estimators for the state and adjoint
equations, the authors derive an estimator for (1.2){( 1.4). We comment that the ob-
tained upper bound for the error, in terms of the a posteriori error estimator, is not
computable.

In this work we analyze a family of a posteriori error estimators in a unifying
framework that incorporates a wide variety of standard and stabilized �nite element
methods.

5. A posteriori error analysis. In this section we derive and analyze a poste-
riori error estimators for the solution to the discretization ( 4.1) of the optimal control
problem (3.7).

5.1. Reliability analysis. We begin this section by introducing the following
notation. Let ey := �y� �yT , ep := �p� �pT , ew := �w� �wT , eq := �q� �qT and eu := �u� �uT ,
where (�y; �p; �w; �q; �u) 2 V � Q � V � Q � U ad is the solution to the optimality system
(3.7) and (�yT ; �pT ; �wT ; �qT ; �uT ) 2 V (T ) � Q(T ) � V (T ) � Q(T ) � U ad (T ) is its
numerical approximation given as the solution to (4.1). The goal of this section is to
obtain an upper bound for

(5.1) jjj (ey; ep; ew ; eq; eu)jjj 2

 :=

X

K 2 T

jjj (ey; ep; ew; eq; eu)jjj 2
K

where

jjj (ey; ep; ew ; eq; eu)jjj 2
K := jjj eyjjj 2

V ;K + %jjj epjjj 2
Q;K + jjj ew jjj 2

V ;K + %jjj eqjjj 2
Q;K + keuk2

L 2 (K ) :

The norms jjj � jjj V ;K and jjj � jjj Q;K are de�ned as in (2.2) and the parameter %is a
nonnegative constant that will be arbitrary in the analysis but �xed in the numerical
experiments of Section7.
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The upper bound for the error (5.1) that we obtain is constructed using upper
bounds on the error between the solution to the discretization (4.1) and auxiliary
variables that we de�ne in what follows. Let ( ŷ; p̂) 2 V � Q be the solution to

(5.2)
�

A (ŷ; � ) � B (� ; p̂) = ( f + �uT ; � )L 2 (
) 8 � 2 V ;
B(ŷ; � ) = 0 8 � 2 Q:

We notice that, in view of (4.1), we have that (�yT ; �pT ) 2 V (T ) � Q(T ) satis�es

(5.3)
�

A (�yT ; � ) � B (� ; �pT ) + S(�yT ; �pT ; f + �uT ; � ) = ( f + �uT ; � )L 2 (
)

B(�yT ; � ) + H(�yT ; �pT ; f + �uT ; � ) = 0

for all � 2 V (T ) and � 2 Q(T ). Consequently, (�yT ; �pT ) can be seen as a �nite ele-
ment approximation of the solution to ( 5.2). We thus make the following assumption:

Assumption 1. There exist quantities � y and � p which depend on the discrete
solution and data and are such that

(5.4) jjj ŷ � �yT jjj V ;
 � � y and jjj p̂ � �pT jjj Q; 
 � � p:

Let ( ŵ; q̂) 2 V � Q be the solution to

(5.5)
�

C(ŵ; � ) + B(� ; q̂) = ( �yT � y
 ; � )L 2 (
) 8 � 2 V ;
B(ŵ;  ) = 0 8  2 Q:

We notice that, again in view of (4.1), ( �wT ; �qT ) 2 V (T ) � Q(T ) satis�es

(5.6)
�

C( �wT ; � ) + B(� ; �qT ) + Q( �wT ; �qT ; �yT � y
 ; � ) = ( �yT � y
 ; � )L 2 (
) ;
B( �wT ;  ) + K( �wT ; �qT ; �yT � y
 ;  ) = 0 ;

for all � 2 V (T ) and  2 Q(T ), and hence (�wT ; �qT ) corresponds to a �nite element
approximation of the solution to ( 5.5). We thus make the following assumption:

Assumption 2. There exist quantities � w and � q which depend on the discrete
solution and data and are such that

(5.7) jjj ŵ � �wT jjj V ;
 � � w and jjj q̂ � �qT jjj Q; 
 � � q:

We introduce the auxiliary control variable

(5.8) ~u = � [a;b]
�
� 1

# �wT
�

:

We de�ne the error between this auxiliary control variable and �uT as follows:

(5.9) � u :=

 
X

K 2 T

� 2
u;K

! 1=2

; with � u;K := k~u � �uT kL 2 (K ) :

We also de�ne

(5.10) Cy = 2 + 2 � C6

 + 4(1 + %!)(C4


 + � C8

 + 2 � C12


 );

(5.11) Cw = 2 + � C2

 + 2 � (1 + %!)(C4


 + 2 C8

 );

and

(5.12) Cu = 2 + 2 � C8

 + 4(1 + %!)(C2


 + 2 C6

 + � C10


 + 2 � C14

 );

with � = 4 #� 2 and ! = C2
is(1 + Cct )2.

We now present the analysis through which we obtain an upper boundfor the
total error.
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Theorem 5.1 (global reliability). If Assumptions 1 and 2 hold, then

(5.13) jjj (ey; ep; ew ; eq; eu)jjj 2

 � � 2

where

(5.14) � 2 := Cy� 2
y + 2 %�2p + Cw� 2

w + 2 %�2q + Cu� 2
u ;

and Cy, Cw and Cu are de�ned by (5.10), (5.11) and (5.12), respectively.

Proof. We proceed in 6 steps.
Step 1. The goal of this step is to control the termkeukL 2 (
) . We begin with a simple
application of the triangle inequality to write

(5.15) keuk2
L 2 (
) � 2k�u � ~uk2

L 2 (
) + 2 k~u � �uT k2
L 2 (
) = 2 k�u � ~uk2

L 2 (
) + 2 � 2
u ;

where ~u = � [a;b]
�
� 1

# �wT
�

and � u is de�ned as in (5.9).
Let us now bound the �rst term on the right hand side of ( 5.15). To accomplish

this task we �rst observe a key property that the auxiliary contro l variable ~u satis�es:

(5.16) ( �wT + #~u; u � ~u)L 2 (
) � 0 8u 2 U ad ;

see Lemma 2.26 and Theorem 2.28 in [44]. Set u = ~u in the variational inequality of
(3.7) and u = �u in (5.16). We thus obtain that

( �w + #�u; ~u � �u)L 2 (
) � 0; ( �wT + #~u; �u � ~u)L 2 (
) � 0;

and, consequently, that

(5.17) #k�u � ~uk2
L 2 (
) � ( �w � �wT ; ~u � �u)L 2 (
) :

In order to bound the right hand side of (5.17), we �rst de�ne ( ~y; ~p) 2 V � Q as
the solution to

(5.18)
�

A (~y; � ) � B (� ; ~p) = ( f + ~u; � )L 2 (
) 8 � 2 V ;
B(~y; � ) = 0 8 � 2 Q:

In addition, we de�ne ( ~w; ~q) 2 V � Q as the solution to

(5.19)
�

C( ~w; � ) + B(� ; ~q) = ( ~y � y
 ; � )L 2 (
) 8 � 2 V ;
B( ~w;  ) = 0 8  2 Q:

Utilizing the states ŵ and ~w de�ned as the solutions to (5.5) and (5.19), respectively,
we arrive at

#k�u � ~uk2
L 2 (
) � ( �w � ~w; ~u � �u)L 2 (
) + ( ~w � ŵ; ~u � �u)L 2 (
) + ( ŵ � �wT ; ~u � �u)L 2 (
)

� ( �w � ~w; ~u � �u)L 2 (
) + 1
# k~w � ŵk2

L 2 (
) + 1
# kŵ � �wT k2

L 2 (
) + #
2 k�u � ~uk2

L 2 (
)

upon using Cauchy{Schwarz and Young's inequalities. Hence,

(5.20) k�u � ~uk2
L 2 (
) � 2

# ( �w � ~w; ~u � �u)L 2 (
) + 2
# 2

�
k~w � ŵk2

L 2 (
) + kŵ � �wT k2
L 2 (
)

�
:

We proceed to bound (�w � ~w; ~u � �u)L 2 (
) . To accomplish this task, we �rst notice
that, since ( �w; �q) solves the adjoint problem of the optimality system (3.7) and ( ~w; ~q)
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solves (5.19), the fact that �p � ~p 2 Q implies that B( �w � ~w; ~p � �p) = 0. Thus, since
(�y; �p) and (~y; ~p) solve (3.7) and (5.18), respectively, we arrive at

(�u � ~u; �w � ~w)L 2 (
) = A(�y � ~y; �w � ~w):

We now invoke (2.10) and, again, the fact that ( �w; �q) and ( ~w; ~q) solve (3.7) and (5.19),
respectively, to obtain that

(5.21) (~u � �u; �w � ~w)L 2 (
) = A(~y � �y; �w � ~w) = C( �w � ~w; ~y � �y) = �k �y � ~yk2
L 2 (
) � 0;

upon noticing that, since (�y; �p) solves the state equations of the optimality system
(3.7) and (~y; ~p) solves (5.18), the fact that �q � ~q 2 Q implies that B(�y � ~y; �q � ~q) = 0.

Using the previous estimate in (5.20) we obtain that

(5.22) k�u � ~uk2
L 2 (
) � 2

# 2 k~w � ŵk2
L 2 (
) + 2

# 2 kŵ � �wT k2
L 2 (
) :

The control of the second term on the right hand side of (5.22) follows from (2.6)
and Assumption 2 :

kŵ � �wT k2
L 2 (
) � C2


 � 2
w :

We now turn our attention to bounding the term k~w � ŵkL 2 (
) . Applying similar
arguments to the ones that lead to (5.21) we obtain that

(5.23)
jjj ~w � ŵjjj 2

V ;
 = C( ~w � ŵ; ~w � ŵ) = ( ~y � �yT ; ~w � ŵ)L 2 (
)

� C
 k~y � �yT kL 2 (
) jjj ~w � ŵjjj V ;
 ;

where we have also used (2.6). Consequently,k~w � ŵk2
L 2 (
) � C4


 k~y � �yT k2
L 2 (
) ; upon

using, again, (2.6). It thus su�ces to bound k~y � �yT kL 2 (
) . We proceed as follows:

k~y � �yT k2
L 2 (
) � 2k~y � ŷk2

L 2 (
) + 2 kŷ � �yT k2
L 2 (
) :

To control the second term on the right hand side of the previous expression, we
invoke Assumption 1 and (2.6). We thus conclude that

kŷ � �yT k2
L 2 (
) � C2


 � 2
y :

To bound the �rst term, we employ that ( ŷ; p̂) and (~y; ~p) solve (5.2) and (5.18),
respectively. This, on the basis ofr � c = 0 and (2.6), yields

(5.24)
jjj ~y � ŷjjj 2

V ;
 = A(~y � ŷ; ~y � ŷ) = ( ~u � �uT ; ~y � ŷ)L 2 (
)

� C
 k~u � �uT kL 2 (
) jjj ~y � ŷjjj V ;
 ;

which allows us to conclude, in view of (5.9) and (2.6), that

k~y � ŷk2
L 2 (
) � C4


 � 2
u :

On the basis of (5.15) and (5.22), we combine our previous �ndings and arrive at

keuk2
L 2 (
) � 2� C6


 � 2
y + � C2


 � 2
w +

�
2 + 2� C8




�
� 2

u ;(5.25)
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where � = 4 #� 2.
Step 2. The goal of this step is to boundjjj eyjjj V ;
 . To accomplish this task, we apply
the triangle inequality and invoke Assumption 1 . In fact,

(5.26) jjj eyjjj 2
V ;
 � 2jjj �y � ŷjjj 2

V ;
 + 2 jjj ŷ � �yT jjj 2
V ;
 � 2jjj �y � ŷjjj 2

V ;
 + 2 � 2
y :

To control the remaining term we employ similar ideas to the ones thatlead to (5.24).
These arguments reveal that

(5.27) jjj �y � ŷjjj 2
V ;
 � C2


 k�u � �uT k2
L 2 (
) ;

which combined with (5.25) and (5.26), implies the error estimate

(5.28) jjj eyjjj 2
V ;
 � 2

�
2� C8


 + 1
�

� 2
y + 2 � C4


 � 2
w + 2 C2




�
2 + 2� C8




�
� 2

u :

Step 3. We now bound the termjjj ew jjj V ;
 . To accomplish this task, we use, again,
the triangle inequality and Assumption 2 to obtain that

(5.29) jjj ew jjj 2
V ;
 � 2jjj �w � ŵjjj 2

V ;
 + 2 � 2
w:

To bound jjj �w � ŵjjj 2
V ;
 we invoke the optimality system (3.7) and (5.5). In fact, the

arguments that allow us to obtain (5.23) immediately yield

jjj �w � ŵjjj 2
V ;
 = C( �w � ŵ; �w � ŵ) = ( �y � �yT ; �w � ŵ)L 2 (
)

� k �y � �yT kL 2 (
) k �w � ŵkL 2 (
)

upon using a Cauchy{Schwarz inequality. In view of (2.6), we conclude that

(5.30) jjj �w � ŵjjj 2
V ;
 � C4


 jjj �y � �yT jjj 2
V ;
 ;

which, combined with the estimates (5.28) and (5.29), yields

(5.31) jjj ew jjj 2
V ;
 � 4C4




�
2� C8


 + 1
�

� 2
y + 2

�
2� C8


 + 1
�

� 2
w + 4 C6




�
2 + 2� C8




�
� 2

u :

Step 4. We now boundjjj epjjj Q; 
 . We start with a simple application of the triangle
inequality and Assumption 1 :

jjj epjjj 2
Q; 
 � 2jjj �p � p̂jjj 2

Q; 
 + 2 jjj p̂ � �pT jjj 2
Q; 
 � 2jjj �p � p̂jjj 2

Q; 
 + 2 � 2
p ;

we recall that (ŷ; p̂) solves (5.2). To control the �rst term on the right hand side of
the previous expression, we utilize the inf-sup condition (2.15):

(5.32) jjj �p � p̂jjj Q; 
 � Cis sup
� 2 V nf 0g

B(� ; �p � p̂)
jjj � jjj V ;


:

Since (�y; �p) and (ŷ; p̂) solve (3.7) and (5.2), respectively, we conclude that

B(� ; �p � p̂) = A(�y � ŷ; � ) � ( �u � �uT ; � )L 2 (
)

�
�

Cct jjj �y � ŷjjj V ;
 + C
 k�u � �uT kL 2 (
)

�
jjj � jjj V ;
 ;

upon using (2.6) and (2.12). In view of (5.27) we thus arrive at

B(� ; �p � p̂) � C
 (1 + Cct)k�u � �uT kL 2 (
) jjj � jjj V ;
 :
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This and (5.32) imply that jjj �p � p̂jjj Q; 
 � CisC
 (1 + Cct)k�u � �uT kL 2 (
) : Thus,

(5.33) jjj epjjj 2
Q; 
 � 2! C2


 k�u � �uT k2
L 2 (
) + 2 � 2

p ;

where ! = C2
is(1 + Cct)2. We conclude the estimate forjjj epjjj 2

Q; 
 by invoking (5.25):

(5.34) jjj epjjj 2
Q; 
 � 4�! C8


 � 2
y + 2 �! C4


 � 2
w + 2 ! C2




�
2 + 2� C8




�
� 2

u + 2 � 2
p :

Step 5. We boundjjj eqjjj Q; 
 . Similar arguments to the ones employed in the previous
step yield

jjj eqjjj 2
Q; 
 � 2jjj �q � q̂jjj 2

Q; 
 + 2 jjj q̂ � �qT jjj 2
Q; 
 � 2jjj �q � q̂jjj 2

Q; 
 + 2 � 2
q

and

jjj �q � q̂jjj Q; 
 � Cis sup
� 2 V nf 0g

(�y � �yT ; � )L 2 (
) � C ( �w � ŵ; � )

jjj � jjj V ;


� Cis

�
C2


 jjj �y � �yT jjj V ;
 + Cct jjj �w � ŵjjj V ;


�
:

We �nally use ( 5.30), and conclude that jjj �q � q̂jjj Q; 
 � CisC2

 (1 + Cct ) jjj �y � �yT jjj V ;
 ;

and then that

(5.35) jjj eqjjj 2
Q; 
 � 2! C4


 jjj �y � �yT jjj 2
V ;
 + 2 � 2

q;

where, we recall that, ! = C2
is(1 + Cct)2. Consequently,

(5.36) jjj eqjjj 2
Q; 
 � 4! C4




�
2� C8


 + 1
�

� 2
y + 4 �! C8


 � 2
w + 4 ! C6




�
2 + 2� C8




�
� 2

u + 2 � 2
q :

Step 6. Combining (5.25), (5.28), (5.31), (5.34) and (5.36) allows us to arrive at
(5.13).

It is important in a posteriori error analysis to have an upper bound for the error
that is in terms of local error indicators. Such a bound follows from Theorem 5.1
under the following two assumptions.

Assumption 3. There exist quantities � y;K and � p;K that depend on the discrete
solution and data and are such that

(5.37) jjj ŷ � �yT jjj 2
V ;
 �

X

K 2 T

� 2
y;K and jjj p̂ � �pT jjj 2

Q; 
 �
X

K 2 T

� 2
p;K :

Assumption 4. There exist quantities � w;K and � q;K that depend on the discrete
solution and data and are such that

(5.38) jjj ŵ � �wT jjj 2
V ;
 �

X

K 2 T

� 2
w;K and jjj q̂ � �qT jjj 2

Q; 
 �
X

K 2 T

� 2
q;K :

Theorem 5.2 (global reliability). If Assumptions 3 and 4 hold, then

(5.39) jjj (ey; ep; ew ; eq; eu)jjj 2

 �

X

K 2 T

� 2
K

where

(5.40) � 2
K := Cy� 2

y;K + 2 %�2p;K + Cw � 2
w;K + 2 %�2q;K + Cu� 2

u;K ;

and Cy, Cw and Cu are de�ned by (5.10), (5.11) and (5.12), respectively.



14 A. ALLENDES, E. OT �AROLA, AND R. RANKIN

Proof. In view of Assumptions 3 and 4, the proof follows from a simple appli-
cation of the result of Theorem 5.1.

Remark 5.3 (Assumptions 1 { 4). Assumptions 3 and 4 are at the heart of a
posteriori error analysis [3, 36, 46]. They guarantee the existence of local quantities
� y;K , � p;K , � w;K , and � q;K that satisfy the estimates (5.37) and (5.38). This allows
us to derive the a posteriori error estimate (5.39) which gives an upper bound for
the error that is in terms of the local quantities � K . The quantities that are de�ned
by (5.40) provide information beyond asymptotics and can be used to adaptively
re�ne the underlying mesh. Although it may seems that, in view of Assumptions
3 and 4, the weaker Assumptions 1 and 2 are superuous, there are a posteriori
error estimators, such as the one developed in [1], which are such that the bounds in
(5.4) and (5.7) are tighter than the ones in (5.37) and (5.38); see [1, Theorem 5.4].
Consequently, the upper bound in (5.13) that is in terms of �, de�ned as in ( 5.14),
is tighter than the upper bound that is in terms of � K . In such a setting, if the
quantity � is computable, it would be preferable to use � as a stopping criterion in
an adaptive algorithm.

Theorem 5.2 can be used to obtain guaranteed upper bounds on the error if the
value of a � satisfying (2.14) is known and the quantities � y;K , � p;K , � w;K and � q;K

are computable. If this is not the case then Theorem5.2 can still be used to arrive at
an a posteriori error estimator under the following assumption.

Assumption 5. There exist computable quantities ~� y;K , ~� p;K , ~� w;K and ~� q;K

which are such that � y;K . ~� y;K , � p;K . ~� p;K , � w;K . ~� w;K and � q;K . ~� q;K for all
K 2 T .

Corollary 5.4 (global reliability). If Assumptions 3 , 4 and 5 hold, then

(5.41) jjj (ey; ep; ew; eq; eu)jjj 2

 . ~� 2 :=

X

K 2 T

~� 2
K

where

(5.42) ~� 2
K := ~� 2

y;K + ~� 2
p;K + ~� 2

w;K + ~� 2
q;K + ~� 2

u;K :

Proof. Upon invoking Assumptions 3 , 4 and 5, the estimate (5.41) is a conse-
quence of Theorem5.2.

Remark 5.5 (Assumptions 5 ). The upper bounds that feature in the estimates
of Assumptions 3 and 4 may not be computable. In fact, in the literature there
are several a posteriori error estimates where the upper boundcannot be computed
because of the presence of unknown constants; see, for instance, [2, 9, 43, 45, 47]. In
order to include this type of a posteriori error estimate in our analysis, we considerAs-
sumption 5 , which guarantees that the upper bounds that feature inAssumptions
3 and 4 can be bounded by constants, whose value may not be known, multiplied by
computable quantities. Note that these constants are equal to 1if the upper bounds
in Assumptions 3 and 4 are computable.

5.2. E�ciency analysis. In this section we prove the local e�ciency of the a
posteriori error indicators � K and ~� K de�ned by ( 5.40) and (5.42), respectively. In
what follows we will assume that Assumptions 3 , 4 and 5 are satis�ed and that
%6= 0. In addition, we make two further assumptions. To state them, we �rst de�ne,
for nonnegative integersl , the discrete space

(5.43) Pl (T ) =
�

v 2 L 2(
) : vjK 2 Pl (K )d for all K 2 T
	

:



ERROR ESTIMATION FOR PDE{CONSTRAINED OPTIMIZATION 15

Our �rst additional assumption reads as follows:
Assumption 6. The spacesV (T ) and Q(T ) and the set U ad (T ) are such that

� V (T ) = V \ Pl V (T ) for some positive integerlV ,
� Q(T ) = Q\ Pl Q (T ) for some nonnegative integerlQ or Q(T ) = Q\ Pl Q (T )\

H 1(
) for some positive integer lQ ,
� U ad (T ) = U ad \ Pl U (T ) for some nonnegative integerlU or U ad (T ) =

U ad \ Pl U (T ) \ H 1(
) for some positive integer lU .
For K 2 T , we de�ne the following residuals and oscillation terms:

(5.44) R st
K := � K;m (f ) + �uT jK + " � �yT jK � � K;m ((c � r ) �yT jK ) � � �yT jK � r �pT jK ;

(5.45) R ad
K := �yT jK � � K;m (y
 )+ " � �wT jK +� K;m ((c � r ) �wT jK ) � � �wT jK + r �qT jK ;

(5.46) oscst
K := f � � K;m (f ) � ((c � r ) �yT jK � � K;m ((c � r ) �yT jK )) ;

and

(5.47) oscad
K := � (y
 � � K;m (y
 )) + (( c � r ) �wT jK � � K;m ((c � r ) �wT jK )) ;

where m = max f lV ; lQ � 1; lU g. We recall that the operator � K;m is de�ned as in
(2.3), and notice that, in view of the choice of m, we have the following invariance
property: � K;m (R st

K ) = R st
K and � K;m (R ad

K ) = R ad
K . For  2 F I , we de�ne

(5.48) JR st
 K:=

X

K 2 
 

R st
;K with R st

;K := � "
�
n K

 � r
�

�yT jK + �pT jK n K
 ;

and

(5.49) JR ad
 K:=

X

K 2 
 

R ad
;K with R ad

;K := � "
�
n K

 � r
�

�wT jK � �qT jK n K
 :

We now state our �nal assumption.
Assumption 7. For all K 2 T , the computable quantities ~� y;K , ~� p;K , ~� w;K , and

~� q;K , introduced in Assumption 5 , are such that

~� 2
K . kr � �yT k2

L 2 (K ) + kr � �wT k2
L 2 (K ) +

X

K 02 ^T K

h2
K

�
kR st

K 0k2
L 2 (K 0) + kR ad

K 0k2
L 2 (K 0)

�

+
X

 2 F̂ K

hK

�
kJR st

 Kk2
L 2 (  ) + kJR ad

 Kk2
L 2 (  )

�

+
X

K 02 ^T K

h2
K

�
koscst

K 0k2
L 2 (K 0) + koscad

K 0k2
L 2 (K 0)

�
+ � 2

u;K(5.50)

where T̂ K � T and F̂K � F I .
Under Assumptions 3 , 4, 5, 6 and 7 we present an e�ciency analysis. We start

by noting that, since � K . ~� K , we only need to bound terms that appear on the
right hand side of (5.50).
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We �rst invoke integration by parts and ( 3.1) to conclude that
X

K 2 T

(R st
K ; � )L 2 (K ) +

X

 2F I

(JR st
 K; � )L 2 (  )

= A(ey; � ) + B(� ; ep) � (eu; � )L 2 (
) �
X

K 2 T

(oscst
K ; � )L 2 (K ) 8� 2 V :

We now apply standard bubble function arguments [3, 46] to this equation to obtain

(5.51) kR st
K k2

L 2 (K ) . h� 2
K

�
jjj eyjjj 2

V ;K + %jjj epjjj 2
Q;K

�
+ keuk2

L 2 (K ) + koscst
K k2

L 2 (K )

for K 2 T , and that, for  2 F I ,

kJR st
 Kk2

L 2 (  ) .
X

K 02 
 

�
h� 1

K 0

�
jjj eyjjj 2

V ;K 0 + %jjj epjjj 2
Q;K 0

�

+ hK 0

�
keuk2

L 2 (K 0) + koscst
K 0k2

L 2 (K 0)

� �
:(5.52)

On the other hand, using (3.5) and, again, integration by parts we obtain that
X

K 2 T

(R ad
K ; � )L 2 (K ) +

X

 2F I

(JR ad
 K; � )L 2 (  )

= C(ew; � ) � B (� ; eq) � (ey; � )L 2 (
) �
X

K 2 T

(oscad
K ; � )L 2 (K ) 8� 2 V :

Applying standard bubble function arguments, again, to this equation yields

(5.53) kR ad
K k2

L 2 (K ) . h� 2
K

�
jjj ew jjj 2

V ;K + %jjj eqjjj 2
Q;K

�
+ keyk2

L 2 (K ) + koscad
K k2

L 2 (K )

for K 2 T , and, for  2 F I ,

kJR ad
 Kk2

L 2 (  ) .
X

K 02 
 

�
h� 1

K 0

�
jjj ew jjj 2

V ;K 0 + %jjj eqjjj 2
Q;K 0

�

+ hK 0

�
keyk2

L 2 (K 0) + koscad
K 0k2

L 2 (K 0)

� �
:(5.54)

We now proceed to bound the termskr � �yT k2
L 2 (K ) and kr � �wT k2

L 2 (K ) in (5.50).
To accomplish this task, we notice that r � � 2 Q for all � 2 V . Then, it follows from
the second equation of (3.7) that r � �y = 0, and thus that

(5.55) kr � �yT k2
L 2 (K ) = kr � eyk2

L 2 (K ) . jjj eyjjj 2
V ;K :

Similarly, it follows from the fourth equation of ( 3.7) that

(5.56) kr � �wT k2
L 2 (K ) = kr � ewk2

L 2 (K ) . jjj ew jjj 2
V ;K :

We conclude with an estimate for the term � u;K de�ned by ( 5.9):

� u;K � k eukL 2 (K ) +

 � [a;b](�

1
# �w) � � [a;b](�

1
# �wT )




L 2 (K )
� k eukL 2 (K ) + 1

# kewkL 2 (K )

upon invoking the triangle inequality, ( 3.8), and (3.9). Hence,

(5.57) � 2
u;K . keuk2

L 2 (K ) + kewk2
L 2 (K ) :

The following theorem then follows upon combining (5.50){( 5.57).
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Theorem 5.6 (local e�ciency). If %6= 0 and Assumptions 3 , 4, 5, 6 and 7
hold, then

� 2
K . ~� 2

K . kewk2
L 2 (K ) +

X

K 02 ~
 K

�
jjj (ey; ep; ew; eq; eu)jjj 2

K 0

+ h2
K 0

�
keuk2

L 2 (K 0) + keyk2
L 2 (K 0) + koscst

K 0k2
L 2 (K 0) + koscad

K 0k2
L 2 (K 0)

� �
;

with ~
 K = T̂ K [
[

 2 F̂ K


  :

The following corollary follows upon using (2.6) and the fact that 
 is bounded.

Corollary 5.7 (global e�ciency). If %6= 0 and Assumptions 3 , 4, 5, 6 and
7 hold, then

X

K 2 T

� 2
K . ~� 2 . jjj (ey; ep; ew; eq; eu)jjj 2


 +
X

K 2 T

h2
K

�
koscst

K k2
L 2 (K ) + koscad

K k2
L 2 (K )

�
:

6. A particular example. Henceforth, we shall consider a particular case of
the approximation scheme (4.1). We set V (T ) = V \ P1(T ), Q(T ) = Q \ P0(T ),
U ad (T ) = U ad \ P0(T ),

(6.1) S(�yT ; �pT ; f + �uT ; � ) =
X

K 2 T

SK (�yT ; �pT ; f + �uT ; � );

(6.2) H(�yT ; �pT ; f + �uT ; � ) = � 

X

 2F I

h ([�pT ]; [� ])L 2 (  ) ;

(6.3) Q( �wT ; �qT ; �yT � y
 ; � ) =
X

K 2 T

QK ( �wT ; �qT ; �yT � y
 ; � );

and

(6.4) K( �wT ; �qT ; �yT � y
 ;  ) = � � 

X

 2F I

h ([�qT ]; [ ])L 2 (  ) ;

where

SK (�yT ; �pT ; f + �uT ; � ) = � K ((c � r ) �yT + � �yT � (f + �uT ); (c � r ) � )L 2 (K ) ;

QK ( �wT ; �qT ; �yT � y
 ; � ) = � K ((c � r ) �wT � � �wT + �yT � y
 ; (c � r ) � )L 2 (K )

and [v] denotes the jumps inv. The stabilization parameters �  and � K are such that
�  > 0 and 0 < � K . h2

K . Note that these choices correspond to solving the state
equations using a particular case of the method given by [38, equation (3.6)] and are
such that Assumption 6 is satis�ed.

We note that alternative methods for solving the state equations can be found in
[17] but we restrict our attention to the method described above in order to simplify
the presentation.
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6.1. Fully computable a posteriori error estimators. In this section we
obtain a posteriori error estimators that satisfy the assumptions of Section5 and are
fully computable if the value of a � satisfying (2.14) is known. We �rst de�ne some
quantities that we will make use of.

For &= st and &= ad, let the equilibrated uxes g&
;K 2 P1( )d be such that

(6.5) g&
;K + g&

;K 0 = 0, if  2 F K \ F K 0, K; K 0 2 T , K 6= K 0;

(f + �uT ; � )L 2 (K ) � " (r �yT ; r � )L
�

2 (K ) � (� �yT + ( c � r ) �yT ; � )L 2 (K )

+( �pT ; r � � )L 2 (K ) � S K (�yT ; �pT ; f + �uT ; � ) +
X

 2F K

(gst
;K ; � )L 2 (  )= 0

for all � 2 P1(K )d and all K 2 P ,

(�yT � y
 ; � )L 2 (K ) � " (r �wT ; r � )L
�

2 (K ) � (� �wT � (c � r ) �wT ; � )L 2 (K )

� (�qT ; r � � )L 2 (K ) � Q K ( �wT ; �qT ; �yT � y
 ; � ) +
X

 2F K

(gad
;K ; � )L 2 (  ) = 0

for all � 2 P1(K )d and all K 2 P , and

(6.6)
X

 2F K

hK kg&
;K + R &

;K k2
L 2 (  ) .

X

K 02 T̂ K

h2
K kR &

K 0k2
L 2 (K 0) +

X

 2 F̂ K

hK kJR &
 Kk2

L 2 (  )

for all K 2 P , where

T̂ K = f K 0 2 T : VK \ V K 0 6= ;g and F̂K =
[

 2F K

f  0 2 F I : V \ V  0 6= ;g

with VK denoting the set containing the vertices of elementK and V denoting the
set containing the vertices of the edge/face . For information that will help with the
construction of such g&

;K we refer the reader to [3, Chapter 6] and [5, 6].
For &= st and &= ad, we also de�ne � &

K 2 P2(K )d� d to be such that
�

� div � &
K = R &

K in K;
� &

K n K
 = g&

;K + R &
;K on ; 8  2 F K ;

and k� &
K kL

�
2 (K ) is minimized. We note that the g&

;K are such that the data in the

above problem are compatible in the sense that� &
K exists. Moreover, for all K 2 T ,

(6.7) (� &
K ; r � )L

�
2 (K ) = ( R &

K ; � )L 2 (K ) +
X

 2F K

(g&
;K + R &

;K ; � )L 2 (  ) 8 � 2 V

and

(6.8) k� &
K k2

L
�

2 (K ) . h2
K kR &

K 0k2
L 2 (K ) +

X

 2F K

hK kg&
;K + R &

;K k2
L 2 (  ) :

For information on the construction of such � &
K we refer the reader to [4, 5].

Finally, for &= st and &= ad, we de�ne

(6.9) 	 &;K =
1

p
"

k� &
K kL

�
2 (K ) + CK kosc&

K kL 2 (K ) :

We thus have the following result.
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Theorem 6.1. Assumption 3 holds with

(6.10) � 2
y;K = 3	 2

st;K + C2
is

�
1 + 2C2

ct

�
kr � �yT k2

L 2 (K )

and

(6.11) � 2
p;K = 2 C2

is

� �
1 + 3C2

ct

�
	 2

st;K + C2
isC

2
ct

�
1 + 2C2

ct

�
kr � �yT k2

L 2 (K )

�
:

Moreover, Assumption 1 holds with

(6.12) � y =

 
X

K 2P

� 2
y;K

! 1=2

and � p =

 
X

K 2P

� 2
p;K

! 1=2

:

Proof. Let E y 2 V be the solution to

(6.13) " (r E y; r � )L
�

2 (
) + � (E y; � )L 2 (
) = A(ŷ � �yT ; � ) � B (� ; p̂ � �pT ) 8 � 2 V :

Letting � = p̂ � �pT in (2.15) yields that

jjj p̂ � �pT jjj Q; 
 � Cis sup
� 2 V nf 0g

B(� ; p̂ � �pT )
jjj � jjj V ;


:

To control the right{hand side of the previous estimate we use (6.13) and obtain that

B(� ; p̂ � �pT ) = A(ŷ � �yT ; � ) � " (r E y; r � )L
�

2 (
) � � (E y; � )L 2 (
)

� Cct jjj ŷ � �yT jjj V ;
 jjj � jjj V ;
 + jjj E yjjj V ;
 jjj � jjj V ;
 ;

upon using (2.12). Hence,

(6.14) jjj p̂ � �pT jjj Q; 
 � Cis

�
jjj E yjjj V ;
 + Cct jjj ŷ � �yT jjj V ;


�
:

We now estimate jjj ŷ � �yT jjj V ;
 . Sincep̂ � �pT 2 Q, by using the second equation
of (5.2) we have that

B(ŷ � �yT ; p̂ � �pT ) = �B (�yT ; p̂ � �pT ) � kr � �yT kL 2 (
) jjj p̂ � �pT jjj Q; 
 :

Thus, by using the previous estimate and letting � = ŷ � �yT in (6.13), we arrive at

jjj ŷ � �yT jjj 2
V ;
 = "(r E y; r (ŷ � �yT ))L

�
2 (
) + � (E y; ŷ � �yT )L 2 (
) + B(ŷ � �yT ; p̂ � �pT )

� jjj E yjjj V ;
 jjj ŷ � �yT jjj V ;
 + kr � �yT kL 2 (
) jjj p̂ � �pT jjj Q; 
 :

This, in view of (6.14), then yields that

jjj ŷ � �yT jjj 2
V ;
 � Ciskr � �yT kL 2 (
) jjj E yjjj V ;


+
�

jjj E yjjj V ;
 + CisCctkr � �yT kL 2 (
)

�
jjj ŷ � �yT jjj V ;


� C2
is
2 kr � �yT k2

L 2 (
) + 1
2 jjj E yjjj 2

V ;


+ 1
2

�
jjj E yjjj V ;
 + CisCctkr � �yT kL 2 (
)

� 2
+ 1

2 jjj ŷ � �yT jjj 2
V ;
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from which it follows that

jjj ŷ � �yT jjj 2
V ;
 � C2

iskr � �yT k2
L 2 (
) + jjj E yjjj 2

V ;
 +
�

jjj E yjjj V ;
 + CisCctkr � �yT kL 2 (
)

� 2
:

Hence, upon observing that

�
jjj E y jjj V ;
 + CisCctkr � �yT kL 2 (
)

� 2
� 2jjj E yjjj 2

V ;
 + 2 C2
isC

2
ctkr � �yT k2

L 2 (
) ;

we can arrive at

(6.15) jjj ŷ � �yT jjj 2
V ;
 � 3jjj E yjjj 2

V ;
 + C2
is

�
1 + 2C2

ct

�
kr � �yT k2

L 2 (
) :

Furthermore, (6.14) allows us to conclude that

jjj p̂ � �pT jjj 2
Q; 
 � 2C2

is

�
jjj E yjjj 2

V ;
 + C2
ct jjj ŷ � �yT jjj 2

V ;


�
:

Applying ( 6.15) then yields that

(6.16) jjj p̂ � �pT jjj 2
Q; 
 � 2C2

is

� �
1 + 3C2

ct

�
jjj E yjjj 2

V ;
 + C2
isC

2
ct

�
1 + 2C2

ct

�
kr � �yT k2

L 2 (
)

�
:

Now, letting � = E y in (6.13) yields that

jjj E yjjj 2
V ;
 = A(ŷ � �yT ; E y) � B (E y; p̂ � �pT )

=
X

K 2 T

0

@(R st
K ; E y)L 2 (K ) +

X

 2F K

(gst
;K + R st

;K ; E y)L 2 (  ) + ( oscst
K ; E y)L 2 (K )

1

A

by (5.2), integration by parts, ( 5.44), (5.46), (5.48) and (6.5). Applying ( 6.7) and
(2.3) then yields that

jjj E y jjj 2
V ;
 =

X

K 2 T

�
(� st

K ; r E y)L
�

2 (K ) + ( oscst
K ; E y � � K; 0(E y))L 2 (K )

�

�

 
X

K 2 T

	 2
st;K

! 1=2

jjj E yjjj V ;


by the Cauchy{Schwarz inequality and (2.4). Consequently,

(6.17) jjj E yjjj 2
V ;
 �

X

K 2 T

	 2
st;K :

The theorem then follows upon combining (6.15), (6.16) and (6.17).

We note that the above theorem is an improvement and adaptation to the case
considered in this section of the results from [5]. The below theorem can be proved
similarly to how the above theorem was proved.

Theorem 6.2. Assumption 4 holds with

(6.18) � 2
w;K = 3	 2

ad;K + C2
is

�
1 + 2C2

ct

�
kr � �wT k2

L 2 (K )
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and

(6.19) � 2
q;K = 2 C2

is

� �
1 + 3C2

ct

�
	 2

ad;K + C2
isC

2
ct

�
1 + 2C2

ct

�
kr � �wT k2

L 2 (K )

�
:

Moreover, Assumption 2 holds with

(6.20) � w =

 
X

K 2P

� 2
w;K

! 1=2

and � q =

 
X

K 2P

� 2
q;K

! 1=2

:

We note that, if the value of a � satisfying (2.14) is known, then Assumption 5
holds with ~� y;K = � y;K , ~� p;K = � p;K , ~� w;K = � w;K and ~� q;K = � q;K . Furthermore, by
(6.6) and (6.8) we have that

� 2
y;K + � 2

p;K . kr � �yT k2
L 2 (K ) +

X

 2 F̂ K

hK kJR st
 Kk2

L 2 (  )

+
X

K 02 ^T K

h2
K

�
kR st

K 0k2
L 2 (K 0) + koscst

K 0k2
L 2 (K 0)

�
(6.21)

and

� 2
w;K + � 2

q;K . kr � �wT k2
L 2 (K ) +

X

 2 F̂ K

hK kJR ad
 Kk2

L 2 (  )

+
X

K 02 ^T K

h2
K

�
kR ad

K 0k2
L 2 (K 0) + koscad

K 0k2
L 2 (K 0)

�
(6.22)

from which it follows that Assumption 7 is also satis�ed. We note that it also
follows that

jjj ŷ � �yT jjj 2
V ;
 + jjj p̂ � �pT jjj 2

Q; 
 .
X

K 2 T

�
kr � �yT k2

L 2 (K ) +
X

 2F K

hK kJR st
 Kk2

L 2 (  )

+ h2
K

�
kR st

K k2
L 2 (K ) + koscst

K k2
L 2 (K )

� �
(6.23)

and

jjj ŵ � �wT jjj 2
V ;
 + jjj q̂ � �qT jjj 2

Q; 
 .
X

K 2 T

�
kr � �wT k2

L 2 (K ) +
X

 2F K

hK kJR ad
 Kk2

L 2 (  )

+ h2
K

�
kR ad

K k2
L 2 (K ) + koscad

K k2
L 2 (K )

� �
:(6.24)

6.2. Residual{based a posteriori error estimators. From (6.23) and (6.24)
the following result follows.

Theorem 6.3. Let

~� 2
y;K = ~� 2

p;K = kr � �yT k2
L 2 (K ) +

X

 2F K

hK kJR st
 Kk2

L 2 (  )

+ h2
K

�
kR st

K k2
L 2 (K ) + koscst

K k2
L 2 (K )

�
;(6.25)
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~� 2
w;K = ~� 2

q;K = kr � �wT k2
L 2 (K ) +

X

 2F K

hK kJR ad
 Kk2

L 2 (  )

+ h2
K

�
kR ad

K k2
L 2 (K ) + koscad

K k2
L 2 (K )

�
;(6.26)

� y;K = C~� y;K , � p;K = C~� p;K , � w;K = C~� w;K , � q;K = C~� q;K ,

� y = � p =
X

K 2 T

� 2
y;K =

X

K 2 T

� 2
p;K ; � w = � q =

X

K 2 T

� 2
w;K =

X

K 2 T

� 2
q;K ;

and T̂ K = F̂K = f K g, where C is a positive constant that is independent of the size
of the elements in the mesh. ThenAssumptions 1 , 2, 3, 4, 5 and 7 hold.

7. Numerical examples. We conduct a series of numerical examples that il-
lustrate the performance of the devised a posteriori error estimators. These have
been carried out with the help of a code that we implemented usingC++. All matri-
ces have been assembled exactly and the global linear systems weresolved using the
multifrontal massively parallel sparse direct solver (MUMPS) [7, 8].

For a given partition T we seek (�yT ; �pT ; �wT ; �qT ; �uT ) 2 V (T )� Q(T )� V (T )�
Q(T ) � U ad (T ) that solves the discrete optimality system (4.1) using the approx-
imation method described in Section6 with � K = h2

K for all K 2 T and �  = 1
for all  2 F I . We considered# = 1 and %= 1. The number of degrees of freedom
Ndof = 2 dNv + ( d + 2) Ne, where Nv is the number of vertices in the mesh andNe is
the number of elements in the mesh.

We solve the ensuing nonlinear system of equations using a Newton-type primal-
dual active set strategy [44, x2.12.4]; see also [27]. Once a discrete solution is obtained,
we calculate the local error indicators, in order to drive an adaptivemesh re�nement
procedure, and the global error estimator, in order to assess the accuracy of the
approximation. The particular global error estimator and local error indicators that
we use depends on the dimensiond of the domain as follows:

� when d = 2, we compute � from Theorem 5.1 and � K from Theorem 5.2,
with the aid of Theorems 6.1 and 6.2;

� when d = 3, we compute ~� and ~� K from Corollary 5.4, with the aid of
Theorem 6.3.

These local error indicators are used to drive the adaptive procedures described in
Algorithms 7.1 and 7.2.

Algorithm 7.1 Adaptive Primal-Dual Active Set Algorithm for d = 2 :
Input: An initial mesh T and data #, a, b, " , c, � , y
 and f .

1: Compute (�yT ; �pT ; �wT ; �qT ; �uT ) that solves (4.1) using the active set strategy of
[44, x2.12.4].

2: With the aid of Theorems 6.1 and 6.2, compute the local error indicators � K ,
given in Theorem 5.2, for each K 2 T , and the error estimator �, given in
Theorem 5.1.

3: Mark an element K 2 T for re�nement if � 2
K � N � 1

e

X

K 02 T

� 2
K 0.

4: Re�ne the mesh T using a longest edge bisection algorithm and return to step1.

7.1. Two dimensional examples. We perform two dimensional examples on
polygonal domains for which the value of a� satisfying (2.14) is known. To accomplish
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Algorithm 7.2 Adaptive Primal-Dual Active Set Algorithm for d = 3 :
Input: An initial mesh T and data #, a, b, " , c, � , y
 and f .

1: Compute (�yT ; �pT ; �wT ; �qT ; �uT ) that solves (4.1) using the active set strategy of
[44, x2.12.4].

2: With the aid of Theorem 6.3, compute the local error indicators ~� K , for each
K 2 T , and the error estimator ~�, given in Corollary 5.4.

3: Mark an element K 2 T for re�nement if ~� 2
K � N � 1

e

X

K 02 T

~� 2
K 0.

4: Re�ne the mesh T using a longest edge bisection algorithm and return to step1.

this task we used the adaptive procedure described in Algorithm7.1. We note that
the involved estimator � provides a guaranteed upper bound on jjj (ey; ep; ew ; eq; eu)jjj 
 .
A sequence of adaptively re�ned meshes was generated from the initial meshes shown
in Figure 7.1.

Fig. 7.1: The initial meshes used for Examples7.1, 7.2, 7.3 and 7.4.

Example 7.1. We consider the square domain 
 = (0; 1)2. From [41] we have
that ( 2.14) holds with � = sin( �= 8). We took " = 1, c(x1; x2) = ( x2; � x1), � = 1,
a = ( � 0:5; � 0:5) and b = (0 :5; 0:5). The data f and y
 were chosen to be such that

�y(x1; x2) = curl
�
(x1(1 � x1)x2(1 � x2))2�

; �p(x1; x2) = cos(2�x 1) cos(2�x 2);

�w(x1; x2) = curl
�
(sin(2�x 1) sin(2�x 2))2�

; �q(x1; x2) = sin(2 �x 1) sin(2�x 2):

The results are shown in Figures7.2 and 7.3. We observe that the estimator � and
the error jjj (ey; ep; ew; eq; eu)jjj 
 are decreasing at the optimal rate.

Example 7.2. We consider the triangular domain 
 = f (x1; x2) : x1 > 0; x2 >
0; x1 + x2 < 1g. From [41] we have that (2.14) holds with � = sin( �= 16). We took
" = 0 :01, c = (0 ; 0), � = 1, a = (0 ; 0) and b = (0 :1; 0:1). The data f and y
 were
chosen to be such that

�y(x1; x2) = curl
�

x1x2
2(1 � x1 � x2)2

�
1 � x1 �

exp(� 100x1) � exp(� 100)
1 � exp(� 100)

��
;

�p(x1; x2) = cos(2�x 2)=1024;

�w(x1; x2) = curl
�

x2
1x2(1 � x1 � x2)2

�
1 � x2 �

exp(� 100x2) � exp(� 100)
1 � exp(� 100)

��
;

and
�q(x1; x2) = cos(2�x 1)=1024:
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Fig. 7.2: Example 7.1: The error jjj (ey; ep; ew; eq; eu)jjj 
 and estimator � (left) and the
16th adaptively re�ned mesh (right).

The results are shown in Figures7.4 and 7.5. We observe that, once the mesh has
been su�ciently re�ned, the error jjj (ey; ep; ew; eq; eu)jjj 
 and the estimator � decrease
at the optimal rate. We also observe that more re�nement has been performed in the
regions where the solution has boundary layers.

Example 7.3. We consider the L-shaped domain 
 = (� 1; 1)2 n ([0; 1) � (� 1; 0]).
From [41] we have that (2.14) holds with � = 0 :1601. We took " = 1, c = (0 ; 0),
� = 0, a = (0 ; 0), b = (1 ; 1), f = (1 ; 1) and y
 (x1; x2) = ( x2; � x1). The results
are shown in Figures7.6 and 7.7. We observe that the estimator � decreases at
the optimal rate and that more re�nement is being performed in regions close to
the reentrant corner. The true solution to this problem is unknown and hence we
cannot compute jjj (ey; ep; ew; eq; eu)jjj 
 . However, from Theorem 5.1 we know that
jjj (ey; ep; ew ; eq; eu)jjj 
 � �.

Example 7.4. We considered the same problem as in the previous example with
the exception that we took the domain to be the T-shaped domain 
 = (( � 1:5; 1:5) �
(0; 1)) [ (( � 0:5; 0:5) � (� 2; 0]) on which we have that (2.14) holds with � = 0 :1076
from [41]. The results are shown in Figures7.8 and 7.9. Similar observations to those
made about the previous example can be made.

7.2. Three dimensional examples. Unfortunately, we are not aware of any
polyhedral domains for which the value of a� satisfying (2.14) is known. Hence, when
the domain is three dimensional, the estimator � from Theorem 5.1and the local error
indicators � K from Theorem 5.2 are not computable. Consequently, we performed
numerical examples by following the adaptive procedure described inAlgorithm 7.2.
A sequence of adaptively re�ned meshes was generated from the initial meshes shown
in Figure 7.10. We note that we have not proved that the estimator ~� provides a
guaranteed upper bound onjjj (ey; ep; ew ; eq; eu)jjj 
 . However, from Theorem 5.4 we
know that jjj (ey; ep; ew; eq; eu)jjj 
 . ~�.

Example 7.5. We consider the cuboidal domain 
 = (0 ; 1)3. We took " = 1,
c(x1; x2; x3) = ( x2 � x3; x3 � x1; x1 � x2), � = 1, a = ( � 0:5; � 0:5; � 0:5) and b =
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Fig. 7.3: Example 7.1: The �rst (left) and second (right) entries of �yT (top), �wT

(second row) and�uT (third row), as well as �pT (bottom left) and �qT (bottom right),
obtained on the �nal adaptively re�ned mesh.
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Fig. 7.4: Example 7.2: The error jjj (ey; ep; ew; eq; eu)jjj 
 and estimator � (left) and the
16th adaptively re�ned mesh (right).

(0:5; 0:5; 0:5). The data f and y
 were chosen to be such that

�y(x1; x2; x3) = curl
�
(x1(1 � x1)x2(1 � x2)x3(1 � x3))2�

; �p(x1; x2; x3) = cos(2�x 3);

�w(x1; x2; x3) = curl
�
(sin(2�x 1) sin(2�x 2) sin(2�x 3))2�

; �q(x1; x2; x3) = sin(2 �x 3):

The results are shown in Figures7.11and 7.12. We observe that the estimator ~� and
the error jjj (ey; ep; ew; eq; eu)jjj 
 are decreasing at the optimal rate.

Example 7.6. We consider the tetrahedral domain 
 = f (x1; x2; x3) : x1 > 0; x2 >
0; x3 > 0; x1 + x2 + x3 < 1g. We took " = 0 :01, c = (1 ; 1; 1), � = 0, a = (0 ; 0; 0) and
b = (0 :1; 0:1; 0:1). The data f and y
 were chosen to be such that

�y(x1; x2; x3) = curl
�

x1x2
2�

�
1 � x1 �

exp(� 100x1) � exp(� 100)
1 � exp(� 100)

��
;

�p(x1; x2; x3) =
�
cos(2�x 3) � 3=(2� 2)

�
=1024;

�w(x1; x2; x3) = curl
�

x2
1x2�

�
1 � x2 �

exp(� 100x2) � exp(� 100)
1 � exp(� 100)

��
;

and
�q(x1; x2; x3) = (sin(2 �x 3) � 3=(2� )) =1024;

where� = x2
3(1� x1 � x2 � x3)2. The results are shown in Figures7.13and 7.14. We ob-

serve that, once the mesh has been su�ciently re�ned, the errorjjj (ey; ep; ew ; eq; eu)jjj 


and the estimator ~� decrease at the optimal rate. We also observe that more re�ne-
ment has been performed in the regions where the solution has boundary layers.
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Fig. 7.10: Exterior views of the initial meshes used for Examples7.5 and 7.6.
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Fig. 7.11: Example7.5: The error jjj (ey; ep; ew ; eq; eu)jjj 
 and estimator ~� (left) and an
exterior view of the 16th adaptively re�ned mesh (right).
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 and estimator ~� (left) and an
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