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Summary. — In the last twenty years, Rydberg atoms have become a versatile
and much studied system for implementing quantum many-body systems in the
framework of quantum computation and quantum simulation. However, even in the
absence of coherent evolution Rydberg systems exhibit interesting and non-trivial
many-body phenomena such as kinetic constraints and non-equilibrium phase tran-
sitions that are relevant in a number of research fields. Here we review our recent
work on such systems, where dissipation leads to incoherent dynamics and also to
population decay. We show that those two effects, together with the strong interac-
tions between Rydberg atoms, give rise to a number of intriguing phenomena that
make cold Rydberg atoms an attractive test-bed for classical many-body processes
and quantum generalizations thereof.
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1. – Introduction9

Atoms excited to high-lying energy states (with principal quantum number larger10

than ≈ 15) are commonly known as Rydberg atoms [1]. Compared to atoms in the11

ground or low-lying excited states, they have considerably longer lifetimes (on the order12

of hundreds of microseconds as opposed to nanoseconds) and larger electric polarizability.13

The latter property leads to small critical electric fields for field ionization as well as14

large van der Waals and dipole-dipole interactions between such atoms (several orders of15

magnitude larger than those of ground state atoms). Rydberg atoms have been studied16

for several decades, with a particularly productive period in the 1970’s just after the17

invention of the laser [2, 3]. More recently, they have enjoyed another renaissance due to18

laser cooling, which made more accurate studies possible, and also due to the advent of19

quantum computation and quantum simulation, for which Rydberg atoms are a promising20
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building block [4]. In fact, in the last two decades the peculiar properties of Rydberg1

atoms have been exploited for realizing two-qubit quantum gates [5] and for implementing2

quantum simulations of Ising systems [6, 7]. There, the strong and widely tunable long-3

range interactions between Rydberg atoms [8] fill a gap in other quantum information4

approaches based on ultra-cold (neutral) atoms in the ground state [9, 10], which only5

interact through the much weaker contact interaction. The combination of controllability,6

strong interactions and long coherence times make Rydberg atoms promising candidates7

for the realization of future quantum information technologies.8

In spite of this justified focus on Rydberg systems exhibiting and exploiting quantum9

coherence, cold Rydberg atoms are not just interesting from the point of view of quantum10

many-body physics, but also offer valuable insight into a number of classical many-body11

phenomena. This is what we aim to show in this review of our recent experimental and12

theoretical work in Pisa and Nottingham. The systems we study are ”classical” in the13

sense that dissipation introduced by coupling to the environment leads to decay of the14

quantum coherences and also to decay of the populations of the Rydberg states back15

to the ground state. In the regime in which decoherence is important but spontaneous16

decay is not yet relevant, the excitation dynamics to Rydberg states of a cloud of cold17

atoms can be viewed in terms of so-called kinetic constraints, which arise naturally from18

the interplay between Rydberg-Rydberg interactions and the detuning from resonance19

of the excitation laser. On the other hand, once the timescales become long enough for20

spontaneous decay to play a role, there is a competition between kinetically constrained21

excitation events and decay. In that case, critical phenomena related to absorbing-state22

phase transitions govern the properties of the system.23

Studying classical many-body phenonema using experimental and theoretical methods24

originating from the world of ultra-cold atoms and quantum optics may, at first sight,25

appear to be a less ambitious aim than realizing quantum many-body systems. Here we26

aim to show that, maybe somewhat surprisingly, studies of dissipative Rydberg systems27

can, indeed, yield valuable information on processes and phenomena typically associated28

with, e.g, soft matter such as glass formers [11], or even farther afield, such as wildfires and29

the spreading of infectious diseases [12]. Moreover, Rydberg systems offer the intriguing30

possibility to move away from this classical limit and to probe quantum generalisations31

of classical processes [13] for which one may anticipate the emergence of new types of32

phases and transitions.33

Taking the example of kinetic constraints, those are related to the dramatic slowdown34

often associated with the complex collective relaxation in classical many-body systems35

[14]. Essentially, kinetic constraints put a condition on the rate for a local transition to36

happen (e.g., a particle inside a glass moving to a neighbouring position) that depends37

strongly on the local environment. This leads to strongly correlated collective and spa-38

tially inhomogeneous relaxation dynamics with properties that go beyond those of the39

stationary state. In spite of the simplicity of this concept, in practice it is not easy to40

establish a clear link between the microscopic processes inside a real material and the41

resulting (emerging) kinetic constraints. Conversely, idealized models involving explicit42

kinetic constraints are typically difficult to realize in an actual physical system. In that43

sense, it turns out that cold Rydberg atoms are an ideal testbed for such models as it is44

possible to clearly identify the microscopic processes and to implement them in a clean45

way in the Rydberg system.46

Adding spontaneous decay as a competing process, cold Rydberg gases can be used47

to study absorbing state phase transitions occurring in some of the simplest models48

displaying critical behaviour [15, 16]. Although conceptually simple, such models are49
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of widespread interest and are the subject of current research across several disciplines.1

As in the case of kinetic constraints, clean implementations of the theoretical models are2

surprisingly difficult to achieve, and cold Rydberg atoms are a versatile platform for such3

models.4

The review is organized as follows. First, we describe our experimental setup and5

theoretical treatment of the Rydberg excitation dynamics in section 2. In section 3 we6

introduce the theoretical concept of kinetic constraints and show experimental results7

confirming their occurrence in a cold Rydberg gas. In particular, we demonstrate the8

fundamental difference between the blockade constraint (for resonant excitation) and9

the facilitation contstraint (for off-resonant excitation). Thereafter, we examine what10

happens when spontaneous decay is added to the system and provide evidence for an11

absorbing state phase transition. In section 4 we re-introduce quantum coherence into the12

theoretical description and provide ideas as to how the phase transition may be affected13

by the coherences. We also discuss how those effects could be observed experimentally.14

Finally, in section 5 we summarize our results and give an outlook on future challenges15

and opportunities in this field.16

2. – Theoretical and experimental methods17

We realize a driven-dissipative many-body system using clouds of cold rubidium atoms18

and model our experiments using a minimal model of many-body effects in such a system.19

In this section we will briefly describe the experimental and theoretical methods necessary20

to understand the main part of this review.21

Our experiments are performed with 87Rb atoms in a magneto-optical trap (MOT)22

containing up to 106 atoms in roughly spherical clouds measuring between 50 and 150µm23

at temperature T ≈ 120µK (measured using a release-and-recapture method). That24

temperature corresponds to a mean thermal velocity of the atoms of around 0.11µm/µs.25

As a consequence, while single excitation events to Rydberg states (details see below),26

occurring on a timescale of a few microseconds, can be considered to take place within27

the frozen gas regime (i.e., the atoms can be considered stationary on the relevant length28

scales of the system), that approximation is no longer valid on the timescales of tens to29

hundreds of microseconds in the experiments on the dissipative phase transitions (sec.30

3.4).31

Based on the number of atoms in the MOT and its size, the atom densities in our32

experiments are typically on the order of a few 1010 cm−3 to 1011 cm−3. In order to33

obtain smaller effective densities, which allow us to explore a greater range of interatomic34

distances, we use a laser pulse of around 2µs duration resonant with the transition35

|5S1/2, F = 2〉 → |5P3/2, F
′ = 2〉, with the MOT repumping laser switched off (see fig.36

1), that pumps a fraction of the atoms into the |5S1/2, F = 1〉 hyperfine sublevel of37

the ground state [17]. As our Rydberg excitation scheme resonantly couples only the38

|5S1/2, F = 2〉 sublevel to the Rydberg state, the fraction of atoms pumped to the F = 139

sublevel (which lies 6.8 GHz below the F = 2 level) does not participate in the excitation40

dynamics. In this way, the effective atom density can be reduced by up to a factor of41

104.42

Rydberg states are excited using a two-photon scheme with a 420 nm laser (power43

up to 12 mW, beam size between 7µm and 40µm), blue-detuned by typically ∆6P =44

2π × 0.5 − 1 GHz from the |5S1/2, F = 2〉 → |6P3/2, F
′ = 3〉 transition, and a 1013 nm45

laser (power up to 70 mW, beam size 40µm) providing the second photon for coupling46
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Fig. 1. – Energy levels of 87Rb. Rydberg states are excited using two laser beams via an
intermediate state 6P that is detuned sufficiently from resonance. The detuning ∆ from the
Rydberg state is used to control the kinetic constraints described in sec. 3. A laser beam
resonant with the transition |5S1/2, F = 2〉 → |5P3/2, F

′ = 2〉 can be used to depump atoms
into the |5S1/2, F = 1〉 that is not coupled to the Rydberg excitation lasers, thus creating lower
effective densitites. From ref. [18]

to the 70S state with a detuning ∆. The Rabi frequency for the two photon transition is1

Ω =

√
Ω2

420Ω2
1013

4∆2
6P

,(1)

where Ω420 and Ω1013 are the Rabi frequencies of the single transitions. The individual2

Rabi frequencies were calibrated as follows. To determine Ω420, we measured the Autler-3

Townes splitting [19] (using the second step laser as a probe), which yielded a maximum4

value of Ω420 ≈ 2π×40 MHz. The second step Rabi frequency was measured by resonantly5

de-exciting Rydberg atoms to the 6P intermediate state (see sec. 3.4). The frequency of6

the resulting (damped) Rabi oscillations was measured, giving a maximum value Ω1013 ≈7

2π × 4 MHz. From these values, the maximum resonant two-photon Rabi frequency is8

found to be around 2π × 250 kHz for typical parameters of our experiment.9

The two excitation lasers, together with the atomic density distribution in the MOT,10

define the effective interaction volume and geometry governing the excitation dynamics.11

In particular, we use two different sizes for the laser at 420 nm, resulting in a three-12

dimensional interaction volume for a beam size of 40µm and an effective one-dimensional13

geometry for a beam size of 7µm. In the latter case, the fact that the radial size of14

the 420 nm-beam is smaller than or comparable to the length scales that govern the15

many-body correlated dynamics of the system means that the creation of more than one16

excitation in the radial direction is strongly suppressed.17

To theoretically describe the excitation dynamics, we focus here on the simplest18

possible scenario in which atoms are described within a two level (or effective spin-19
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1/2) approximation. The two states we are considering are an electronic ground state1

|g〉 = |5S1/2, F = 2〉 ≡ |↓〉 and a high-lying Rydberg S-state denoted as |r〉 ≡ |↑〉.2

Dynamics is driven by a laser field which couples the ground state |↓〉 to the excited3

state |↑〉. The coupling is parameterised by the Rabi frequency Ω (denoting the coupling4

strength) and the detuning ∆ (characterising the frequency mismatch between the laser5

and the atomic transition). In our convention ∆ > 0 when the laser is ”blue-detuned”.6

Employing the rotating wave approximation and introducing the Pauli spin operators σβk7

(β = x, y, z), as well as the projection operator on the Rydberg state, nk = (1 + σzk)/2,8

we can now formulate the Hamiltonian of N interacting atoms in the presence of the9

laser field:10

H =
Ω

2

N∑
k=1

σkx + ∆

N∑
k=1

nk +
1

2

N∑
k,m=1

Vkmnknm.(2)

Here11

Vkm =
C6

|rk − rm|6
(3)

parameterises the interaction strength between atoms at positions rk and rm, with C612

being the so-called dispersion coefficient related to the van der Waals interaction. For the13

70S state of rubidium used in our experiments, C6 = 869.7 GHzµm6. The interaction is14

only non-zero provided that both the k-th and the m-th atom are simultaneously excited15

to the Rydberg states, i.e., the expectation value of the number operator nk is non-zero16

for both atoms.17

The formulation of the Rydberg problem in terms of Hamiltonian (2) implies a de-18

coupling of the internal dynamics from the external degrees of freedom. Often — and19

here we assume that this is the case as well — this is approximately true due to a separa-20

tion of timescales provided by the frozen gas limit introduced above. In addition to the21

coherent dynamics effectuated by Hamiltonian (2) there are dissipative processes which22

render the system open. An established way of modelling these effects within the two-23

level approximation is to describe the dynamics of the density matrix ρ of the Rydberg24

gas through a Markovian master equation of the form25

∂ρ

∂t
= −i [H, ρ] + κ

∑
k

(
σ−k ρσ

+
k −

1

2

{
σ+
k σ
−
k , ρ

})
+ 2γ

∑
k

(
nkρnk −

1

2
{nk, ρ}

)
.(4)

Here the first commutator term describes the coherent von-Neumann evolution of the26

density matrix. The terms proportional to κ represent the (radiative) decay of the27

Rydberg state to the ground state (with the operators σ±k = 1
2 [σxk ± iσ

y
k ]) and the terms28

proportional to γ describe the dephasing of quantum superpositions between the two29

considered atomic states (note that the factor 2 in front of γ in eq. (4) is simply chosen30

for convenience, so that γ directly corresponds to the dephasing rate.).31

This model description is an idealisation. This assumes that, indeed, radiative decay32

of the Rydberg state leads to an immediate relaxation to the electronic ground states.33

While this is typically the predominant channel, it is known that there can be a cascaded34

decay which leads to the transient population of other Rydberg states. Furthermore, the35

model assumes that dephasing takes place for all atoms independently, i.e., the dephasing36
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Fig. 2. – Setup of the Rydberg experiment. In a) the field ionization plates and the channeltron
used for the ionization and detection of the Rydberg atoms are shown. The channeltron signal
(an example is shown in b)) is acqiured by an oscilloscope and analyzed on a computer. Each
of the downward spikes in b) corresponds to the arrival of a single ion at the channeltron (from
ref. [18]).

noise is uncorrelated. Typically dephasing is a result of external field (or laser field)1

fluctuations that result in random atomic levels shifts. The spatial variations of these2

fields can occur on length scales that are larger than the typical interatomic distance,3

which would lead to correlated noise. In this sense the uncorrelated noise model employed4

here can only be regarded as a simple approximation, which, however, so far has turned5

out to usually yield a rather accurate description of experimental data [20].6

Experimentally, once the excitation dynamics has taken place, we interrogate our7

system by applying a brief (on the order of a few microseconds) electric field pulse8

(see fig. 2) that field ionizes the Rydberg atoms (the critical field for the 70S state is9

around 20 V/cm) and accelerates the resulting ions to a channeltron charge multiplier,10

where they are detected with an overall detection efficiency η ≈ 0.4 (the experimental11

values reported in this review have been corrected for that detection efficiency) [19]. The12

channeltron signal is acquired using a fast oscilloscope, and the number of detected ions13

in each experimental shot is determined using a peak-finding routine on a computer.14

Typical experimental runs consist of several hundred shots, the results of which are used15

to calculate the mean value and standard deviation of the number of detected ions, as16

well as histograms of the full counting statistics [21]. In particular, from the mean 〈N〉17
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and standard deviation 〈N2〉, the Mandel Q-parameter1

Q =
〈N2〉
〈N〉2

− 1(5)

is calculated, which yields information on the super- or sub-Poissonian character of the2

counting statistics (see sec. 3.2 for a detailed discussion).3

3. – The incoherent driving regime: semi-classical dynamics4

3
.
1. Kinetic constraints: Theory . – Although there is a fairly good understanding of5

the microscopic dynamics of Rydberg gases, through Eq. (4), the theoretical exploration6

of collective behavior remains a challenge. This is owed to the lack of numerical methods7

permitting the study of large ensembles of quantum particles. A significant simplification8

of the problem - computationally and conceptually - can be achieved by focussing on the9

dissipative limit. On the one hand this allows to obtain effective equations of motion10

that are computationally tractable, even for large ensembles and in arbitrary dimensions.11

On the other hand this procedure very naturally leads to the notion of so-called kinetic12

constraints, i.e., one manifestly observes that certain relaxation pathways are strongly13

suppressed, which in turn leads to a highly correlated and complex dynamical behavior.14

In the strongly dissipative limit the dephasing rate γ is the dominant energy scale. In15

this regime superposition states of atoms dephase rapidly (on a timescale 1/γ) to become16

mixed states, e.g.,17

1

2
(|↓〉+ |↑〉)(〈↓| +〈↑|)→ 1

2
[|↓〉〈↓| + |↑〉〈↑|] .(6)

Over sufficiently long timescales one thus no longer needs to consider coherences between18

atomic basis states. The dynamics is then described by a classical Master equation19

acting on the probability vector p which contains the populations of the classical atomic20

many-body basis states, e.g., |↓↓↓ ...〉, |↑↓↓ ...〉, etc. This classical Master equation can21

be obtained via second order perturbation theory, which is discussed in detail in Refs.22

[22, 23, 24]. It reads23

∂

∂t
p =

∑
k

Γk
[
σ+
k − (1− nk)

]
p +

∑
k

Γk
[
σ−k − nk

]
p + κ

[
σ−k − nk

]
p,(7)

with24

Γk =
Ω2

2γ

1

1 +
[

∆
γ + C6

γ

∑
q 6=k

nq
|rk−rq|6

]2 .(8)

Let us now consider for the sake of simplicity the case in which radiative decay is25

absent, i.e., κ = 0. In this case the dynamics of Eq. (8) is solely determined through26

kinetic constraints that are realized via the operator valued rates Γk (due to their de-27

pendence on nq). It is interesting to note that the stationary state pss is in fact trivial.28

It is given by the product state29

pss =
∏
k

1

2

(
1
1

)
≡
∏
k

1

2
[|↓〉k〈↓| + |↑〉k〈↑|] ,(9)
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in which each classical many-body configuration occurs with equal probability. The in-1

teresting aspect is, however, that the relaxation dynamics towards this stationary state is2

rather non-trivial. This fact makes kinetic constraints a relevant tool for the construction3

of models of glass formers [11]. These substances can be also thought of as possessing4

a trivial stationary state, which is however never reached on accessible timescale due to5

the intricacy and slowness of the constrained relaxation dynamics.6

How kinetic constraints work in Rydberg gases is probably best illustrated by consid-7

ering two atoms: an excited one placed at the origin of the coordinate system (r1 = 0)8

and another other one in its ground state positioned at r2 = r. In this setting the rate9

for a state change of the second atom is given by10

Γ2 =
Ω2

2γ

1

1 +R12
[

1
r6
fac

− 1
|r|6

]2 ,(10)

where we have introduced the dissipative blockade radius R6 = C6

γ and the facilitation11

radius — which will be discussed later in detail — defined through r6
fac = −γR

6

∆ .12

In the case of ∆ = 0, i.e., resonant laser excitation, one encounters the so-called13

blockade constraint. This means the excitation rate of the second atom is strongly sup-14

pressed when its distance to the excited atom is closer than the dissipative blockade15

radius (|r| < R). Conversely, if |r| > R the second atom can change its state at the16

maximum rate Ω2/2γ, i.e., it behaves like a quasi free particle. Already this simple17

constraint gives rise to a highly intricate relaxation dynamics in which the Rydberg gas18

shows self-similar behaviour. This becomes for instance manifest in the fact that the19

density of excited atoms n = 1
N

∑
k〈nk〉 exhibits a power-law time dependence of the20

form21

n(t) ∝ t
d

12+d ,(11)

with d being the dimensionality of the system. This scaling behaviour is illustrated in fig.22

3 in which snapshots of the density of Rydberg atoms in a two-dimensional setting are23

shown. One sees clearly that by properly adapting the field of view as a function of time24

the density remains constant, which is a confirmation that the density is not a function25

that depends separately on space and time but indeed only on a specific combination of26

both. This is discussed in detail in refs. [14, 25].27

We now turn to the situation in which the detuning is positive, ∆ > 0 (for our28

case of a positive van der Waals interaction coefficient C6). Here one realises the so-29

called facilitation constraint [26], which means that the excitation of an atom is strongly30

enhanced, provided that it is positioned the facilitation radius rfac. Here the rate of31

excitation is maximal and given by32

Γfac = Ω2/2γ.(12)

Unfacilitated atoms undergo spontaneous state changes at a rate which is on the order33

of34

Γspon ≈ (Ω2/2γ)(rfac/R)12 = [Ω/(2∆)]22γ.(13)
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Fig. 3. – Sketch of the self-similar evolution of a two-dimensional Rydberg gas under the blockade
constraint. Blue dots correspond to excited atoms. As time passes the density of excited atoms
increases. This increase can be exactly ”compensated” by increasing the magnification, i.e.,
reducing the field of view. Thus, under an appropriate rescaling of the spatial length scale x as
a function of time t, such that the product t x12+d remains constant, the system appears static.
Note, that this scaling regime is reached only in the absence of radiate decay (or observation
times much shorter than the inverse Rydberg lifetime) and for densities at which the average
distance between excitations is smaller or equal than the blockade radius. See refs. [14, 25] for
further details.

The dynamics on the many-body level is drastically different compared to the blockade1

constrained, as is shown in fig. 4. Starting from a state without initial excitations the2

first excitation is created at a slow rate Γspon. This acts subsequently as a nucleus (or3

”seed”) that spawns clusters of excitations to which excitations are added at a rate Γfac.4

3
.
2. Kinetic constraints: Experiment . – For an experimental demonstration of the5

kinetic constraints introduced above, we start by verifying that for our parameters the6

excitation dynamics is, indeed, in the incoherent regime, so that the approximations of7

sec. 3.1 can be applied. From an estimate of the intrinsic linewidths of the two excitation8

lasers and the residual Doppler shift due to the thermal motion of the atoms we find a9

dephasing rate γ ≈ 2π×700 kHz, which is also confirmed by the de-excitation experiments10

reported in sec. 3.4. The dephasing rate of our system is, therefore, expected to be larger11

than the largest two-photon Rabi frequencies we realize in our experiments, meaning12
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Fig. 4. – Sketch of the evolution of a Rydberg gas under the facilitation constraint. Red dots
correspond to excited atoms. Blue atoms are facilitated atoms whose excitation rate is enhanced.
In these simulations the initial state is devoid of excited atoms and the proliferation of excitations
takes place at the slow rate Γspont. Once excitations are created they act as nuclei for the creation
of larger excitation clusters. These clusters grow until they fill up the available volume. From
here onwards facilitated excitation is strongly suppressed. For details see [26].

that for all intents and purposes we can neglect the coherent part of the evolution and1

describe the excitation dynamics by the incoherent spin-flip rate Γspon for individual, non-2

interactiong atoms (eq. 12), which can take on values up to 280 kHz for our experimental3

parameters. Since the experimentally measured lifetime of the 70S state is τ ≈ 80µs,4

the spontaneous decay rate is κ ≈ 12.5 kHz and hence more than an order of magnitude5

smaller than the excitation and dephasing rates. This separation of timescales allows us6

to neglect spontaneous decay for now.7

A simple way of testing whether the excitation dynamics is incoherent is to measure8

how it scales with the Rabi frequency Ω [27]. For incoherent excitation we expect a scaling9

with Ω2 [28] rather than with Ω (which is found in the coherent excitation regime [29]).10

To test this, we resonantly excite the 70S Rydberg state and measure the average number11

of excitations as a function of time (see fig. 5). Repeating this experiment for different12

values of Ω and then plotting the resulting curves on the same graph, with the horizontal13

axis scaled in terms of the expected incoherent excitation rate ∝ Ω2/γ, we find that the14

curves collapse on top of each other. From this, we conclude that the excitation dynamics15

of single Rydberg states is largely incoherent, as expected.16

3
.
2.1. The blockade constraint. In fig. 5, a tell-tale sign of the expected blockade17

constraint for resonant excitation is already evident: as time goes on, the slope of the18

excitation curve diminishes, indicating that the probability per unit time of an atom19
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Fig. 5. – Incoherent excitation of Rydberg states. The inset shows the mean number of excita-
tions as a function of time for three different Rabi frequencies: Ω/2π = 81 (open diamonds), 43
(green squares) and 20 kHz (red circles). When multiplying the excitation times by Ω2/γ, the
three curves collapse onto each other (main figure), demonstrating the expected Ω2 scaling in
the incoherent excitation regime. From ref. [27]

being excited to a Rydberg state is suppressed as the number of Rydberg excitations1

grows, and hence an increasing fraction of the interaction volume is excluded from the2

dynamics through the blockade constraint.3

In order to study the blocakde constraint more systematically, we excite the atoms4

resonantly, with ∆ = 0, and vary the number of atoms per blockade length R
a (where5

a =
(
Vexc
Ng

) 1
3

is the mean distance between Ng ground state atoms in the excitation6

volume Vexc, and R = 11.1µm for our parameters) by changing the effective density of7

the MOT as described in sec. 2. In this way, we can prepare samples with atom numbers8

corresponding to values of R
a between around 1.3 (i.e., close to the non-interacting case9

R
a < 1 ) and R

a = 4.2.10

The results of these experiments are shown in fig. 6, together with a numerical sim-11

ulation based on the theoretical model described above. Qualitative agreement between12

experiment and theory is excellent, with the cross-over between the initial non-interacting13

excitation regime (reflected by a linear increase of N with time), and the blockade regime14

with reduced excitation probability due to interactions clearly visible [25]. To obtain15

quantitative agreement we had to scale the theory curves (in N) by factors between16

0.5 and 2. These quantitative discrepancies can be understood from the experimen-17

tal uncertainties in the measurements of absolute atom numbers, MOT sizes and Rabi18

frequencies.19
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Fig. 6. – The blockade constraint in a gas of Rydberg atoms. In a) the number of excitations is
plotted as a function of time for different ground state atom numbers (5600 (open diamonds),
715 (green squares) and 180 (red circles)). The blockade constraint is visible as a reduction
in the slope of the curves. The solid lines are the results of numerical simulations based on
the model described in sec. 3.1. Dividing the data in a) by the respective ground state atom
numbers gives the fraction f of excitations plotted in b). In theory, for very long times all the
curves are expected to level off at f = 0.5 (adapted from ref. [27]).

The cross-over can also be nicely seen in a plot of the fraction f = N/Ng of excited1

atoms. In this case, for small numbers of ground state atoms leading to R
a < 1 the2

excited fraction is expected to approach 0.5, i.e., on average half of the atoms are in the3

excited state. Conversely, for R
a � 1 a single Rydberg atom inhibits the excitation of4

a large number of ground state atoms inside a blockade radius, and hence the excited5

fraction grows much more slowly. In our experiment, f seems to level off around 0.02 for6

the largest values of Ng, but in theory even in that regime one expects f to reach 0.57

(i.e., the fully mixed state), albeit on extremely long timescales. This is an indication of8

the glass-like relaxation dynamics due to the blockade constraint, which was referred to9

in the previous section.10

The experimental results of fig. 6 can also be analyzed independently of numerical11

simulations by calculating the average growth rate of excitations per atom, (dN/dt)/Ng,12

as a function of the average distance a between Rydberg atoms. To this end, the N vs t13

data from fig. 6 is smoothed (in order to avoid artefacts due to noise), and the growth14

rate is then extracted by numerical differentiation. Intuitively, one expects that quantity15

to be essentially constant for a above the blockade radius R, for which the excitation16

events are indepenent, and to decrease sharply below R as the blockade constraint slows17

down the excitation dynamics.18

In fig. 7 , both effects can be clearly seen. In particular, for d < R, in the region19

between 11µm and 6µm the growth rate decreases by four orders of magnitude. Contrary20

to the usual interpretation of the blockade radius (which was originally conceived in the21

coherent excitation regime [30, 31]) indicating a volume in which no more than a single22

atom can be excited to a Rydberg state, the blockade constraint refers to a drastic slowing23

down of the dynamics: further excitations can be created, but the excitation rate drops24

sharply as the distance between the atom to be excited and one or more already excited25

atoms drops below the blockade radius. In the context of many-body physics this leads26

to glass-like dynamics and the emergence of the hierarchical, i.e., self-similar, relaxation27

behaviour discussed in sec 3.1.28

Making some reasonable assumptions (as to the number of nearest neighbours in29
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Fig. 7. – Excitation rate and fluctutations in the blockade constraint. In a) the normalized
single-particle excitation or growth rate is plotted as a function of the mean distance a between
excited atoms. The dashed line is obtained from the theoretical excitation rate in a mean-field
approach. In addition to the reduction of the growth rate, another signature of the blockade
constraint is the reduction of fluctuation around the mean number of excitations, reflected in
a negative Mandel Q-parameter. In b) that parameter is plotted together with the numerical
simulation (solid line). Symbols are as in fig. 6. Adapted from ref. [27]

the quasi 1D configuration used in the experiment as well as the distribution of the1

laser intensity and the atom density inside the MOT) and using eq. 8 (with the mean2

interparticle distance replacing the sum over individual distances, which corresponds to3

a mean-field approximation), we can obtain a theoretical prediction for the normalized4

growth rate per atom, which is plotted in fig. 7 . The main features of the experiment5

are well reproduced. In particular, with the theoretical curve as a reference point it is6

evident that the three experimental curves, which were taken for different ground state7

atom densities, overlap and connect to each other. This highlights the fact that the8

growth rate only depends on the mean distance between excited atoms, as it should.9

Another way of characterizing the blockade constraint is in terms of correlations. As10

long as the distance a between excited atoms is much larger than the blockade radius11

R, excitation events are uncorrelated, i.e., a new excitation is essentially independent12

of the instantaenous distribution of excitations inside the system. As a approaches R,13

however, this picture changes. Now, the number of ”independent” ground state atoms14

that do not feel the van der Waals interaction of some already excited atom in the15

cloud is greatly reduced. Consequently, the system has fewer choices for distributing16

additional excitations, which in turn should lead to reduced fluctuations around the17

mean of the number of excitations. In the non-interacting regime, those fluctuations18

are Poissonian, whereas in the blockaded regime they are sub-Poissonian, reflecting their19

correlated character (to emphasize the ”exclusion” character of the blockade constraint,20

we also call this ”anti-correlated”). The different characteristics of the fluctuations can21

be quantified through the Mandel Q-parameter [32] (eq. 5), which by definition is 0 for22

perfectly Poissonian statistics and negative for sub-Poissonian fluctuations (which, in the23

coherent regime, were investigated in [33, 34]).24
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The experimental results on the Q-factor are plotted as a function of the mean number1

of excitations in fig. 7. As expected, for large N the Q-factor is negative and becomes2

less negative as N decreases. For N below ≈ 15 the experimentally measured value of3

Q is greater than zero, which can be explained by the inevitable additional sources of4

fluctuations such as laser noise, variations in the atom number, and other experimental5

imperfections leading to slightly super-Poissonian fluctuations. At the other extreme, for6

large N , the measured Q-value drops below −1, which is in contrast to the theoretically7

expected minimum of −1 (in the case of vanishing fluctuations). In our experiments, this8

artefact is due to a possible systematic error in estimating the detection efficiency η (by9

which the experimentally measured values are divided to obtain the actual value of Q) as10

well as possible saturation effects of the detection process and of the peak finding routine,11

which can yield artificially low values of the variance due to imperfect counting. In spite12

of these experimental problems, the fact that, again, the three sets of data obtained for13

different values of Ng collapse onto a single cuve as a function of N shows that Q depends14

on the number of excited atoms, as expected.15

3
.
2.2. The facilitation constraint. We now turn to the second type of constraint in-16

troduced in sec. 3.1: the facilitation constraint, which occurs for off-resonant excitation17

with ∆ > 0 (for our case of repulsive interactions between the 70S Rydberg states).18

In contrast to the blockade constraint, which causes anti-correlations in the dynamics,19

the facilitation constraint should lead to a strongly (posititvely) correlated evolution20

[28, 35, 36]. In order to explore this regime, we choose a detuning ∆/2π = +19 MHz, for21

which rfac = 6.4µm and the width of the facilitation shell δrfac = 39 nm. Since we ex-22

pect the predicted facilitation dynamics to be the more pronounced the larger the overall23

facilitation volume, which grows with an increasing number of excitations, we choose the24

3D configuration for this experiment.25

Similarly to the discussion of the blockade constraint, we can qualitatively predict the26

excitation dynamics by considering the processes expected to occur in the facilitation27

regime. Most importantly, as at t = 0 all atoms are in the ground state and, hence, no28

Rydberg atoms are present, no facilitation events can occur. However, even if off-resonant29

single particle excitations are suppressed by a factor Γfac/Γspon = 1
1+(∆/γ)2 ≈ 1.4× 10−3

30

compared to the resonant excitation regime, at a certain point a single excitation, also31

called ”seed”, will appear in the cloud. At that point, the facilitation mechanism can32

proceed, creating excitations that, in turn, can facilitate further excitations, and so forth33

(see fig. 4 ).34

Of course, the occurrence of the first excitation is not a deterministic process (contrary35

to the controlled creation of seed excitations discussed below), and so one does not expect36

to see a sudden onset of the dynamics at some well-defined time, but rather a slow37

and gradual start of the dynamics for short times and an acceleration as soon as the38

probability of there being at least one seed excitation in the cloud approaches unity. The39

ensuing avalanche-like chain reaction of facilitation events will continue until it reaches40

the edges of the interaction volume. At that point the excitation dynamics should slow41

down, and further excitations inside the cloud will be governed by the blockade constraint42

which, combined with the intrinsic suppression of the excitation rate due to the off-43

resonant condition, will lead to a dramatic slowing down of the dynamics.44

The experimental results shown in fig. 8 confirm that this intuitive picture is correct.45

There, the three stages of the dynamics can clearly be distinguished: the initial nucle-46

ation stage (for t < 10µs), in which N grows slowly due to off-resonant single particle47

excitations; the facilitation stage (10µs < t < 50µs), in which the number of excitations48
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Fig. 8. – The facilitation constraint in a gas of Rydberg atoms. In a) the mean number of
excitations is shown as a function of time for detuning ∆/2π = +19 MHz (blue circles), ∆/2π =
−19 MHz (red circles) and ∆ = 0 (grey circles). For positive detuning, the facilitation constraint
is evident in the initially slow but then acceleration excitation dynamics (as opposed to the
initially fast and then slow dynamics for the blockade constraint with ∆ = 0). The data
for negative detuning underline the importance of the interactions (and their matching to the
detuning) for the facilitation constraint. The Mandel Q-parameter plotted in b) is further
evdience for the facilitation constraint. Adapted from ref. [27].

grows increasingly fast due to successive facilitation events starting from an initial seed;1

and a saturation stage (t > 50µs), in which the dynamics decelerates due to the finite2

size of the atomic cloud. This regime is visible in the experimental data but already3

affected by spontaneous decay, which is not included in the simulations. Apart from4

that, the experimental results agree well with the numerical simulations.5

Similarly to the blockade constraint, also in the case of the facilitation constraint6

the underlying correlations in the excitation dynamics can be seen in the behaviour of7

the Mandel Q-parameter. Whereas the signature of the blockade constraint is the sub-8

Poissonian statistics corresponding to a negative Q-parameter, the facilitation constraint9

is reflected in a positive value of Q. This can be understood as follows: since the facil-10

itation dynamics is triggered by randomly appearing seed excitations, the fluctuations11

inherent in the Poissonian statistics of the seed excitations are amplified by the facili-12

tation avalanche triggered by them. The variance expected for such a process is clearly13

larger than that of a simple single-atom Poissonian excitation event. In our experiments,14

therefore, we expect to see an increase in Q towards positive values in the facilitation15

stage, whilst in the saturation stage Q should decrease again as the facilitated dynamics16

slows down. Experimental results on the Mandel Q-parameter are shown in fig. 8. As17
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expected from the intuitive picture, Q grows up to 30µs, becoming large and positive,1

and then decreases again. The fact that for long times Q does not tend to 0 is, again, a2

result of additional experimental fluctuations.3

While the above results and intuitive pictures convincingly show the effects of the fa-4

cilitation constraint, they are slightly complicated by the interplay between spontaneous5

(off-resonant) seed excitations and facilitated excitations. In the remainder of this sec-6

tion, we demonstrate how the two processes can be studied separately in order to obtain7

a more complete understanding [37].8

First, we consider the off-resonant seed excitations. As shown in sec. 3.1, the rate9

for those excitations is proportional to 1
1+(∆/γ)2 and hence depends on the square of the10

detuning. Therefore, if we choose the same modulus of the detuning as in the above11

experiments, but with the opposite sign (i.e., negative or red detuning), we expect the12

excitation dynamics for single off-resonant excitations to be the same, but without the13

facilitation events, which are absent for negative detuning. Fig. 8 shows the results for14

such an experiment, with ∆/2π = −19 MHz. Clearly, the dynamics is much slower for15

long times than in the blue-detuned (facilitation) case, and for t < 10µs the curves for16

the two values of ∆ are practically indistinguishable. This is exactly what is expected,17

as in the nucleation stage only single off-resonant excitations occur, and those do not18

depend on the sign of the detuning.19

Second, in order to isolate the first facilitation event, we conduct an experiment20

similar to the one described above, but with a larger value of ∆ such as to suppress21

the spontaneous seed excitations as much as possible (here we use ∆/2π = +75 MHz).22

Compared to the above experiment, the off-resonant excitation rate is suppressed by a23

further factor ≈ 15, meaning that the duration of the nucleation stage is expected to be24

≈ 150µs rather than 10µs, which is longer than the entire duration of the experiments25

reported thus far. In order to see any significant dynamics, therefore, we inject seed26

excitations into the cloud using a short (around 0.5µs) resonant pulse. In fig. 9 we show27

typical experimental results in which around 2 seed excitations at some finite time tseed.28

In those experiments, between t = 0 and t = tseed the mean number of excitations grows29

very slowly at around 10−3 µs−1, but for t > tseed that rate is close to 0.2µs−1, i.e., 20030

times higher. This clearly demonstrates that it is the first seed excitation that triggers31

the avalanche-like facilitation process. It is also evident from fig. 9 that the excitation32

dynamics after the injection of the seed is largely independent of the time at which the33

seeds are created, as one might expect.34

Further confirmation of our interpretation of the role of the seed excitation can be35

obtained by creating a variable number 〈Nseed〉 of seed excitations at t = 0 and then36

off-resonantly exciting the atoms for 100µs. The mean number of seeds 〈Nseed〉 created37

at the beginning of the dynamics is varied between 0 and around 5 by changing the38

resonant pulse duration. From the results shown in fig. 9 one might expect that each39

time at least one seed is created at t = 0, a facilitation avalanche is triggered and at40

100µs the system has reached the saturation regime. This behaviour is confirmed by the41

experimental data of fig. 10.42

We can now also confirm our intuitive picture of the reason for the large and positive43

Q-parameter in the facilitation regime (see above), which we attributed to the amplifi-44

cation of the fluctuations created by the random creation of initial seeds. If we create a45

small and variable number of seeds at t = 0, we effectively vary the probability of there46

being at least one seed excitation at t = 0. We model our experimental results of fig.47

10 using a simple bimodal approach described by the following probability distribution48
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Fig. 9. – Isolating the facilitation constraint by seeding. This graph shows the mean number
〈Nobs〉 of Rydberg excitations as a function of time for off-resonant excitation at ∆/2π =
+75 MHz and different values of the time tseed at which≈ 2 seeds are created (tseed = 10µs (red),
tseed = 25µs blue, and 45µs (green)). The onset of the facilitation dynamics in correspondence
with the creation of the seeds is evident. From ref. [37].

P (N):1

P (N) = αδ(N −N1) + (1− α)δ(N −N2),(14)

where for a given number of seeds 〈Nseed〉/η, the quantity α is the probability of having2

no seed3

α = e−
〈Nseed〉

η ,(15)

and N1 and N2 represent the number of Rydberg excitations for the two modes of4

the model. The basic assumption is that in the absence of a seed at t = 0 the number of5

excitations in the system will be N1 ≈ 0, whereas when a seed is created the successive6

facilitation processes lead to a final number N2 of excitations. For the above distribution7

P (N) the mean number and the Mandel Q-parameter are8

〈N〉 = 〈Nobs〉
η = αN1 + (1− α)N2,

Q = Qobs
η = α(〈N〉−N1)2+(1−α)(〈N〉−N2)2

〈N〉 − 1.(16)

We use these expressions to reproduce the dependence of 〈Nobs〉 and Qobs on Nseed re-9

ported in 10 by using reasonable values for N1 and N2. The agreement between the10
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Fig. 10. – Origin of the super-Poissonian fluctutations in the facilitation constraint. Plotting the
the mean number 〈Nobs〉 of Rydberg excitations (red circles and left axis) and the Mandel Q-
parameter Qobs (grey circles and right axis) after 100µs excitation as a function of the number
of seed excitations 〈Nseed〉, one observes that while the mean number increases steadily, the
Q-parameter becomes large and positive between 0 and 1 seed excitations. In that regime, the
final number of excitations depends on the probability of creating at least one seed excitation
at t = 0. Adapted from ref. [37].

experiment and the model is good. For small values of 〈Nseed〉 the fluctuations in the1

mean number of excitations at 100µs are large as the system will sometimes (when a2

seed is created at t = 0) end up with a large number of excitations, and sometimes with3

very few. As the mean number of seeds (and hence the probability of creating at least4

one seed) grows, the Q-parameter decreases and becomes slightly negative, indicating5

a sub-Poissonian distribution that is compatible with the interpretation of almost de-6

terministically triggering an avalanche that always results in the same final number of7

excitations.8

While in 10 the (small) mean number of seeds essentially determined only the proba-9

bility of starting the facilitation avalanche, in fig.11 we report results for larger numbers10

of seed excitations and a fixed excitation time of 70µs. From the above discussion one11

expects that for large seed numbers each seed will start its own avalanche, up to the12

point where the seeds are so close together that no further facilitated excitations are13

possible. This interpretation is confirmed by fig. 11 , where 〈Nfac〉 = 〈Nobs〉 − 〈Nseed〉,14

i.e., the number of facilitated excitations, is plotted as a function of the number of seeds.15
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Fig. 11. – Facilitation dynamics with large numbers of seed excitations. The plot in a) shows the
number 〈Nfac〉 of facilitated excitations as a function of the excitation time for different numbers
〈Nseed〉 of initial seeds (〈Nseed〉 = 1.6 (green), 〈Nseed〉 = 3.4 (blue), 〈Nseed〉 = 8.6 (black), and
〈Nseed〉 = 18 (red)) with a detuning ∆/2π = +30 MHz. In b), 〈Nfac〉 is plotted as a function
of 〈Nseed〉 for a fixed excitation time of 70µs. It is evident that beyond 10 seed excitations,
additional seeds do not increase the number of facilitated excitations. This is also visible in the
inset, where the number of facilitated excitations per seed is shown. From ref. [37].

Clearly, 〈Nfac〉 decreases sharply beyond around 10 seed excitations, for which the mean1

distance between seeds is around 2rfac (for the detuning ∆/2π = +24 MHz used in fig.2

11 , rfac = 5.7µm). Plotting the ratio of the number of facilitated excitations and the3

number of seeds, one finds that for small numbers of seeds (up to about 2) each seed4

triggers an avalanche of around 4 facilitated excitations, whereas above 5 seed excita-5

tions that ratio drops below 1. Again, this confirms the picture of a large number of6

seed excitations ”getting in the way” of each other and not permitting the onset of a7

facilitation avalance.8

3
.
3. Non-equilibrium phase transitions: Theory . – In our discussion of kinetic con-9

straints so far we have neglected radiative decay of Rydberg states back to the ground10

state level. However, in practice these dissipative processes are always present (in par-11

ticular at long times) and interestingly their competition with the facilitation constraint12

leads to an intricate stationary-state behaviour of the Rydberg gas [38, 39]. To illustrate13

this we consider a simple one-dimensional lattice model in which we take into account14

three processes:15

1. the facilitated (de-)excitation of an atom next to an excited one, at rate Γfac;16

2. the spontaneous (de-)excitation of atoms, at rate Γspon;17

3. the radiative de-excitation of an excited atom, at rate κ.18

Combining these processes leads within a meanfield approximation — in which we assume19

the system to be homogeneous — to the following equation for the dynamics of the20
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excitation density n:1

∂n

∂t
= Γfacn(1− 2n) + Γspon(1− n)(1− 2n)− κn.(17)

We analyse the stationary state of this equation by first considering the limit Γspon/Γfac →2

0, i.e., when only the competition between facilitation and radiate decay governs the dy-3

namics. If Γfac < κ the stationary state is devoid of excitations, i.e., nss = 0. This is4

the so-called absorbing phase which is only stable up to the point where κ exceeds the5

value Γfac. From here onwards the stationary state density becomes finite and reaches6

the value nss = 1
2

[
1− κ

Γfac

]
. The meanfield calculation thus predicts a continuous phase7

transition between an absorbing phase without excitations and a so-called active phase8

with a finite density of excitations. This is shown in fig. 12.9

Concomitant with a continuous transition is scaling behavior, e.g., in the vicinity of10

the critical value of the control parameter (here Γfac), one observes a power-law behaviour11

of the form12

nss ∼ |Γfac − Γc
fac|β ∼ |Ω− Ωc|β ,(18)

where β is the so-called static exponent and Γcrit
fac = γ. Obviously, meanfield predicts β =13

1 but an exact numerical simulation of the one-dimensional model shows that β ≈ 0.2714

[40]. This, together with the fact that there is a scalar order parameter (excitation density15

n) and the absence of any apparent symmetries, suggests that the phase transition may16

in fact belong to the directed percolation universality class, see refs. [15].17

The presence of spontaneous excitation processes, parameterised by the rate Γspont,18

has a drastic impact on the physics. It removes the absorbing state, i.e., the solution19

n = 0. As shown in fig. 12 this leads to a smoothing of the phase transition which is20

rendered into a crossover [39]. Nevertheless, for sufficiently weak Γspont one still expects21

the occurrence of a scaling region in which one can observe behaviour of the form (18).22

3
.
4. Non-equilibrium phase transitions: Experiment . – In sec. 3.2 we experimentally23

demonstrated the facilitation process and the controlled creation of seed excitations in24

our system. In the language of absorbing state phase transitions introduced above, the25

facilitation process corresponds to offspring production, which is one of the ingredients26

needed to physically implement a model for an absorbing state phase transition. The27

creation of seed excitations, on the other hand, is a prerequisite for studying the phase28

transition itself: without such a process, the system would remain in the absorbing state29

(= all atoms in the ground state) forever, and the regions in the phase diagram with a30

finite fraction of excited atoms could not be studied.31

Finally, in order to fully implement a model system exhibiting an absorbing state32

phase transition, we need a dissipative process corresponding to the ”sudden death” of33

an excited atom. One way of implementing that process is through spontaneous decay of34

the Rydberg states, as introduced in the previous section. Later in this section we will35

also study a mechanism for induced dissipation through de-excitation of excited atoms.36

To obtain some experimental insight into the behaviour of our experimental ”driven-37

dissipative” model system for an absorbing state phase transition, we study the stationary38

state of our system as a function of the two control parameters ∆, which controls rfac and39

δrfac, and Ω [39]. The protocol for this is as follows. At the beginning of an experimental40

cycle (during which the MOT beams are switched off), we excite around 6 seed excitations41
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Fig. 12. – Stationary state solution of the meanfield equation (17). In the absence of spontaneous
(de-)excitation events (Γspon = 0) the system undergoes a continuous phase transition when
the rate of facilitated excitation, Γfac, is increased. Below the transition point the reaches an
absorbing stationary state does not exhibit fluctuations and in which the density is nss = 0.
The phase transition turns into a cross-over once Γspon > 0. Note, that numerical simulations
beyond the meanfield approximation suggest that the observed transition belongs to the directed
percolation universality class. For further discussions see refs. [15, 38, 39].

(according to a Poissonian distribution) in 0.3µs with the excitation laser on resonance1

with the Rydberg transition. Thereafter, the atoms are excited at finite detuning ∆ > 02

and Rabi frequency Ω for a duration of 1.5 ms, which is around 10 times longer than the3

lifetime of the 70S state. The procedure is repeated 100 times for each set of parameters,4

with a repetition rate of 4 Hz, in order to get reliable estimates of the mean NI and the5

variance ∆NI
2 of the number of detected ions.6

The resulting phase diagram is plotted in fig. 13. The crossover between the absorbing7

phase with essentially zero excitations for sufficiently small Ω, and an active phase with a8

finite number of excitations for larger Ω can be clearly seen. The point of this crossover9

depends on ∆, with larger ∆ corresponding to a larger value of Ω for the crossover.10

This dependence is due to the interplay between different effects. First, the creation of11

spontaneous seed excitations scales as 1/∆2, and hence we expect to see the offset of the12

critical point discussed in the previous section. Second, the width of the facilitation shell13

and hence the probability of finding an excitable ground state atom inside it depends14

on ∆, with larger ∆ resulting in a smaller probability. This, together with the effect15

of the thermal motion of the atoms, results in the critical value of Ω increasing with ∆16

and, eventually, diverging. In practice, this means that in order to realize as ”clean”17

a realization of the absorbing state phase transition as possible, we need to choose a18

value of ∆ that results in a compromise between those two trends - larger ∆ meaning19
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Fig. 13. – Experimental phase diagram for a driven-dissipative Rydberg gas exhibing an absorb-
ing state phase transition. Plotted here as a function of Ω and ∆ is the number of excitations
after 1.5µms off-resonant excitation of a gas prepared with 6 seed excitations. The crossover
between the absorbing phase with 0 excitations and the active phase with up to 50 excitations
is clearly visible. Adapted from ref. [39].

fewer spontaneous seed excitations that ”hide” the critical point, but also reducing the1

probability of establishing the long-range correlations associated with the active phase.2

For our experimental conditions, we find a detuning ∆ = 2π × 10 MHz to be a good3

compromise and choose that value for a more in-depth study of the phase transition.4

Again, we seed the system with around 6 excitations and measure the steady-state num-5

ber of excitations as a function of Ω, obtaining the curve shown in fig. 14. Up to around6

Ω = 2π × 30 kHz the number of excitations is close to zero, indicating that the system7

is in the absorbing phase. Between Ω = 2π × 30 kHz and Ω = 2π × 100 kHz the number8

of excitations increases rapidly, after which the rate of increase diminishes as the system9

reaches the fully active phase.10

Qualitatively, the experimental curve bears a strong resemblance to the theoretical11

prediction shown in fig. 14. We can also make this comparison more quantitative by12

extracting the critical exponent β from the data (see sec. 3.3). To do so, we pick a13

probable value for the critical driving strength Ωc and fit a power-law curve to N as a14

function of |Ω−Ωc| (see eq. 18). We then optimize Ωc by maximizing the goodness of that15

fit, thus obtaining the curve shown in fig. 14. This procedure yields Ωc ≈ 2π × 80 kHz,16

which corresponds roughly to the inflection point of the experimental curve, and the17

exponent β ≈ 0.31 of the power law fit agrees well with the critical exponent expected18



DISSIPATIVE MANY-BODY PHYSICS OF COLD RYDBERG ATOMS 23

Fig. 14. – Evidence for an absorbing state phase transition in a Rydberg gas. In a) the number
of excitations in the stationary state is plotted as a function of Ω (the solid line is a sliding
average to guide the eye). The inset shows a power-law fit around the critical value Ωc. In
b) the peak in the variance plotted as a function of Ω indicates the critical point; its position
coincides with the value found from the fit in a) (dashed vertical line). Adapted from ref. [39].

for 1D direction percolation.1

Another clear sign of the phase transition occurring is an increase in the fluctuations2

around the mean of the number of excitations. At the critical point the correlations in3

the system, and consequently also the fluctuations, diverge for an infinite system size.4

In practice, for a finite system such as ours we expect a maximum of the fluctuations at5

the critical point. Fig. 14 shows this clearly: at Ω ≈ 2π × 80 kHz, there is a peak in the6

fluctuations plotted against Ω. Above that critical value for Ω, which coincides with the7

Ωc found above by optimizing the power-law fit, the fluctuations decrease slightly and8

level off at a fixed value beyond Ω ≈ 2π × 120 kHz9

In the above experiments we relied on spontaneous decay to provide the necessary10

de-excitation mechanism for the absorbing state phase transition. While this approach11

yielded good results, it still has some shortcomings. Firstly, decay back to the ground12

state is not the only decay channel. Rather, the population of nearby Rydberg states13

by absorption or emission of black-body photons can significantly complicate the picture14

[2]. Secondly, the timescale for spontaneous decay is fixed. It would be useful, however,15

to be able to reduce that timescale in order to shorten the overall time needed to reach16

the stationary state, thus avoiding issues related to the thermal motion of the atoms and17

other mechanical effects due to, e.g., the van der Waals repulsion ref. [42].18

One possible method to artificially shorten the lifetime of the Rydberg state is to19

actively de-excite (or de-pump) the Rydberg state via a fast decaying intermediate state.20

We tested such a method (see fig. 15 ) [41], in wich initially an excitation pulse of duration21

tex is applied with both lasers, where the two-photon excitation is detuned by ∆ex from22

resonance (the MOT beams are switched off during the entire excitation and de-excitation23

sequence). After a variable dark time tdark, during which both lasers are switched off,24

only the 1013 nm laser is switched on for tdeex, with the AOM frequency set to a value25

that shifts the frequency of that laser to be resonant with the transition 70S1/2 − 6P3/226

to within a detuning ∆. The 6P3/2 state has a lifetime τ6P ≈ 120 ns. Finally, 300 ns after27

the de-excitation pulse the number of Rydberg excitations is measured.28
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Fig. 15. – Protocol for controlled deexcitation. After the usual Rydberg excitation with detuning
∆ex, the laser at 1013 nm is tuned into resonance (to within a variable detuning ∆) with the
fast-decaying 6P state. From ref. [41]

We first illustrate the de-excitation technique in the non-interacting regime, i.e., for1

sufficiently low Rydberg densities such that the van der Waals interaction can be ne-2

glected. As we shall see later, that interaction can significantly affect the de-excitation3

dynamics . Fig. 16 shows the fraction 〈N〉/〈Nin〉 of Rydberg atoms remaining after the4

excitation pulse as a function of tdeex for different values of Ω1013. For large values of5

Ω1013 around 2π×4 MHz (which is larger than the frequency associated with decay from6

the 6P3/2 state, 1/τ6P ≈ 2π × 1.3 MHz), the dynamics shows signs of residual coherent7

oscillations (which we use to calibrate the Rabi frequency of the 1013 nm transition),8

whereas for Ω1013 below 2π × 2 MHz those oscillations are strongly damped and the de-9

excitation dynamics can, to a good approximation, be described by an exponential decay.10

Fig. 16 also shows the results of a numerical integration of a simple (coherent) two-level11

system with a loss term from the 6P3/2 state [43] . If the de-excitation Rabi frequency is12

sufficiently small (Ω1013 < γ), then similarly to the excitation process discuss in sec. 2,13

the single-atom de-excitation dynamics can always be described by a rate equation with14

Γ =
Ω2

1013

2γ ·
1

|1+(∆/γ)2| .15

We now proceed to systematically study the de-excitation dynamics. As shown above,16

in the non-interacting (and incoherent) regime the dynamics can be described by a rate17

equation, leading to an exponential decrease of 〈N〉 with tdeex. For resonant excitation18

one, therefore, expects to see a minimum in the remaining fraction of Rydberg excitations19

after the de-excitation pulse as a function of the detuning ∆ for ∆ = 0. This is confirmed20

in fig. 17 (a), where for an initial 〈Nin〉 = 20, 〈N〉/〈Nin〉 is plotted as a function of ∆ for21
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Fig. 16. – Deexcitation dynamics from the 70S Rydberg state. Plotted here is the normalized
population of the Rydberg state as a function of the de-excitation time tdeex for different de-
excitation Rabi frequencies Ω1013 (Ω1013 ≈ 2π × 4 MHz (red diamonds), Ω1013 (2π × 2 MHz,
black squares, and 2π × 1.4 MHz, blue circles). The experimental data are well reproduced by
a simple damped two-level model (solid lines). From ref. [41].

a fixed tdeex = 2µs and Ω1013 = 2π × 1 MHz. When 〈Nin〉 is increased to 50, for which1

the van der Waals interaction is expected to be non-negligible, the remaining fraction at2

∆ = 0 also increases, indicating that the interactions shift the Rydberg levels and hence3

the de-excitation laser is no longer resonant.4

This effect is shown more systematically in Fig. 17 (b), where the remaining fraction5

of Rydberg excitations at ∆ = 0 is plotted as a function of 〈Nin〉. Between the non-6

interacting regime (〈Nin〉 ≈ 2, corresponding to an interatomic distance a ≈ 70µm >7

R) and the strongly interacting regime (〈Nin〉 ≈ 80, for which a ≈ 2µm < R), the8

remaining fraction increases from 0.1 to 0.6. This crossover from the non-interacting to9

the interacting regime is also visible in the de-excitation dynamics. Fig. 17 (c) shows the10

remaining fraction as a function of tdeex for different values of 〈Nin〉. The de-excitation11

rate decreases appreciably (by up to a factor 6) as 〈Nin〉 is increased. The effect of the12

van der Waals interactions is also reflected in the fact that the dynamics of the remaining13

fraction does not follow a simple exponential decay. Rather, the rate of the exponential14

decay decreases as tdeex is increased. We interpret this as a consequence of the spread of15

inter-atomic distances between the excited atoms, which means that Rydberg atoms with16

more distant neighbours are de-excited faster, whereas those interacting more strongly17

with their closer neighbours exhibit reduced de-excitation rates.18

The effect of the interactions on the de-excitation process is even more evident if19

we initially create excitations by the facilitation mechanism, i.e., with positive detun-20
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Fig. 17. – De-excitation process following resonant excitation for different initial mean numbers
〈Nin〉: 25 (blues circles), 34 (green triangles) and 50 (white squares). The different values of
〈Nin〉 (ranging from the non-interacting to the interacting regime) are obtained by varying tex
between 0.5µs and 5µs. In (a), the remaining fraction of Rydberg atoms 〈N〉/〈Nin〉 is plotted
as a function of the de-excitation detuning ∆. Here, tdark = 0.5µs and tdeex = 2µs. The solid
lines are Lorentzian fits to guide the eye. The expected shift in the de-excitation detuning is
visible mainly as an increase in the remaining fraction at ∆ = 0, shown systematically in (b).
Here, the remaining fraction after a de-excitation pulse of duration tdeex = 1µs is plotted as a
function of 〈Nin〉 . In (c), the de-excitation dynamics is shown for ∆ = 0. Adapted from ref.
[41].

ing. In that case, atoms excited by that mechanism have an interaction energy with1

their respective seed atoms that, by definition, is equal to the detuning. In the quasi2

one-dimensional geometry used in these experiment, this process results in a chain of3

excitations at a fixed spacing rfac. Atoms at the edges of this chain have a single neigh-4

bour and hence an interaction energy h̄∆ex, whereas atoms inside the chain have two5

neighbours and a resulting energy shift of 2h̄∆ex. The de-excitation resonances for those6

two classes of atoms should, therefore, be centred around ∆ = ∆ex and ∆ = 2∆ex,7

respectively. Furthermore, due to the residual thermal motion of the atoms (and also8

the van der Waals repulsion [44, 45, 42]) the distances between the atoms will increase9

over time, so that eventually each atom will have a de-excitation resonance at ∆ = 0 as10

the interactions decrease.11

We test the above picture by off-resonantly exciting around 〈Nin〉 = 20 atoms at12

∆ex = 2π × 16 MHz using a 5µs excitation pulse. As the 70S1/2 Rydberg state used13

here interact repulsively, the facilitation condition correspond to a positive detuning. A14

de-excitation pulse of duration tdeex = 2µs follows after two different values of a dark15

time: tdark = 0.5µs and tdark = 5µs. In Fig. 18, for tdark = 0.5µs three de-excitation16

resonances can be seen, corresponding to atoms with two neighbours at distance rfac17

(∆ = 2∆ex), with one neighbour (∆ = ∆ex), and without any neighbours (∆ = 0 ).18

The latter class of atoms corresponds to single off-resonantly excited Rydberg atoms19

that did not lead to further facilitation events, or else to atoms whose neighbours at20

rfac have already moved sufficiently so as to reduce the interaction energy effectively to21

zero (due to the 1/r6 dependence of the van der Waals interaction, a 50% increase in22

the interatomic distance leads to a reduction in the interaction energy by one order of23

magnitude).24

When tdark is increased to 5µs, the effects of thermal motion are clearly visible. The25

de-excitation resonance at ∆ = 0 is now more pronounced, whereas those at ∆ = ∆ex26

and ∆ = 2∆ex are substantially reduced. This observation agrees with the fact that for27
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Fig. 18. – De-excitation process following off-resonant excitation in the facilitation regime. The
remaining fraction 〈N〉/〈Nin〉 after excitation of 〈Nin〉 ≈ 20 excitations (tex = 5µs) at ∆ex =
2π× 16 MHz is plotted as a function of ∆. The blue circles correspond to de-excitation (tdeex =
2µs) after a dark time tdark = 0.5µs, whereas the green diamonds are obtained for tdark = 5µs.
The solid lines are triple-Lorentzian fits to guide the eye. Adapted from ref. [41].

our MOT temperatures the atoms move, on average, 0.6µm in 5µs, which leads to a1

reduction of the interaction energy between excited atoms to around 50% of its initial2

value.3

From the above discussion it is clear that, at least in principle, resonant de-pumping4

from a Rydberg state can be used as a technique to artificially shorten the lifetime5

of the Rydberg state, However, the strong dependence of the de-excitation dynamics6

on Rydberg-Rydberg interactions means that in order for the de-excitation rate to be7

independent of the spatial distribution of Rydberg atoms (which it must be if it is to8

implement a true ”forced dissipation”), the linewidth of the de-excitation laser has to9

be much larger than the largest interaction energy to be expected in the system. Since10

that interaction energy can be on the order of tens of MHz (depending, largely, on the11

chosen detuning of the excitation lasers), one would have to use a laser with a linewidth12

of that order of magnitude, necessitating an appropriately high power to compensate for13

the linewidth.14
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Fig. 19. – Stationary state phase transition with coherent facilitation. (a) Stationary density nss

with the meanfield approximation. By construction there is always an absorbing state solution
with nss = 0. Beyond the transition point at Ω = κ/

√
2 two further solution emerge. One is

unstable and the second one represents an active state with finite excitation density nss. This
result is suggestive of a first order phase transition. (b) Steady-state histogram P (n) of the
excitation density n for a system consisting of 12 spins. The data was obtained via numerically
exact quantum-jump Monte Carlo simulations. For sufficiently large Ω a bimodal structure
emerges. The two peaks correspond to the absorbing state and the active state, respectively.
This feature is compatible with the expected first-order character of the phase transition. For
further details the reader is referred to Refs. [46, 47].

4. – The coherent driving regime: signatures of coherent dynamics in non-1

equilibrium phase transitions2

4
.
1. Theoretical results. – The discussion so far focussed entirely on the strongly3

dissipative limit in which dephasing term in eq. (4) represents processes with the fastest4

timescale. In the future it would certainly be interesting to probe the dynamics and the5

stationary state of the Rydberg gas in the ”coherent” limit, i.e., when dephasing can6

be approximately neglected and radiate decay remains the only significant dissipative7

process.8

The theoretical investigation of this limit is substantially more complicated since the9

dynamics can no longer be effectively described by a set of classical rate equations. This10

makes numerical simulations significantly more challenging. In order to get an idea of11

what to expect in this coherent limit we consider a one-dimensional model for quantum12

facilitated dynamics with the Hamiltonian [46, 47]13

H = Ω
∑
k

(nk−1 + nk+1)σkx =
∑
k

Ck σ
k
x.(19)

Here a given spin can change its state, through the operator σkx, only if at least one of14

its neighbors is in the excited state, which is probed by the operator Ck. While this is15

an idealised model it has been shown in refs. [48, 49, 50] that, indeed, quantum kinetic16

constraints of this or a similar form are naturally realised within Rydberg gases.17

We proceed by investigating the stationary that results from a competition between18

the quantum facilitated dynamics and radiative decay. To this end we substitute Hamil-19
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tonian (19) into the Master equation (4), set the dephasing rate γ = 0, and derive a1

meanfield equation for the stationary excitation density nss:2

0 = nss

[
nss(2nss − 1) +

γ2

16Ω2

]
.(20)

Similar to the classical limit this equation features an absorbing state solution, nss = 0.3

Moreover, there are two further solutions, as shown in fig. 19a, that emerge beyond a4

critical driving strength Ω ≥ Ωc = κ/
√

2, out of which the stable one is given by5

nss =
1

4

[
1 +

√
1 +

γ2

8Ω2

]
.(21)

This solution does not smoothly connect to nss = 0 at the transition point, which indi-6

cates the presence a first-order rather than a second-order (continuous) phase transition.7

This is thus strikingly different to the classical case and numerically exact small scale8

calculations, conducted via quantum-jump Monte Carlo simulations, appear to be qual-9

itatively consistent with the prediction (see fig. 19b).10

In refs. [46, 47] this phase transition, and also the competition between quantum11

and classical facilitation, was discussed in great detail by employing a field-theoretical12

approach. This study confirmed the first-order nature in the fully coherent limit, within13

the approximation employed there. However, it is still a matter of ongoing research to14

fully characterise the transition.15

4
.
2. Towards experimental realizations. – To experimentally realize the coherent limit16

described above, in our experiments it would be necessary to increase the coherence17

time of the Rydberg excitation or to increase the decay rate, or a combination of both.18

Increasing the coherence time (currently on the order of a microsecond) is mainly a19

technical challenge related to the linewidths of the two excitation lasers and the quality20

of the lock to a Fabry-Perot cavity, which we use to stabilize the wavelengths of the two21

lasers relative to a reference laser. Recent experiments [6, 7] have shown that coherence22

times of tens of microseconds are achievable, which would take us to within a factor of ten23

from the spontaneous decay rate of the 70S state. Increasing that decay rate is possible24

using the de-excitation technique described in sec. 3.2, so that, at least in principle, a25

regime for which κ > γ should be realizable using state-of-the-art techniques.26

5. – Conclusions27

The aim of this review was to show that even in the incoherent, dissipative excitation28

regime, the many-body dynamics of cold Rydberg gases has intriguing features that make29

it possible to study classical many-body phenomena. In particular, we demonstrated the30

existence of kinetic constraints reminiscent of those found in glassy systems, and the31

emergence of non-equilibirum phase transitions. A profound understanding of those pro-32

cess not only offers opportunities for using cold Rydberg gases as classical many-body33

simulators, but is also a first step towards developing quantum many-body simulators,34

which were first proposed by Richard Feynman almost forty years ago [51]. A full char-35

acterization of a Rydberg many-body systems containing hundreds of excited atoms (or36

”spins”) in the incohrerent regime, with an appropriate validation using the numerical37

simulations described in this review, will make it possible to make a connection with the38
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coherent regime. To do so, one will have to re-introduce coherent effects (as described1

in sec. 4.2) in a controlled way by appropriately tuning the coherence and decay times.2

As some point, numerical simulations will no longer be possible due to the number of3

spins involved and the increasing importance of the coherences. In that regime, the cold4

cloud of Rydberg atoms will, for all intents and purposes, be a quantum simulator. The5

connection with the incoherent regime will then allow one to perfom a ”check” or vali-6

dation in that regime (which can be simulated classically), thus enhancing the reliability7

of the quantum simulator. Also, Rydberg gases can generally be used as a platform for8

simulating synthetic classical and quantum matter,e.g., quantum glasses [52], quantum9

versions of epidemic processes [13], and so forth. Much work remains to be done before10

we get there, but it seems to be an achievable - and highly worthwhile - goal to pursue.11
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[6] Barredo D., de Léséleuc S., Lienhard V., Lahaye T. and Browaeys A., Science,32

354 (2016) 1021.33

URL http://science.sciencemag.org/content/354/6315/102134

[7] Bernien H., Schwartz S., Keesling A., Levine H., Omran A., Pichler H., Choi35

S., Zibrov A., Endres M., Greiner M., Vuletic V. and Lukin M., Nature, 55136

(2017) 579, cited By 2.37

URL https://www.scopus.com/inward/record.uri?eid=2-s2.0-8503649803238

doi=10.103839

[8] Comparat D. and Pillet P., J. Opt. Soc. Am. B, 27 (2010) A208.40

[9] Simon J., Bakr W. S., Ma R., Tai M. E., Preiss P. M. and Greiner M., Nature, 47241

(2011) 307.42

URL http://dx.doi.org/10.1038/nature0999443

[10] Bloch I., Dalibard J. and Nascimbène S., Nat. Phys., 8 (2012) 267.44

URL http://dx.doi.org/10.1038/nphys225945

[11] Biroli G. and Garrahan J. P., J. Chem. Phys., 138 (2013) 12A301.46

URL https://doi.org/10.1063/1.479553947

[12] Grassberger P., Math. Biosci., 63 (1983) 157.48



DISSIPATIVE MANY-BODY PHYSICS OF COLD RYDBERG ATOMS 31

[13] Pérez-Espigares C., Marcuzzi M., Gutiérrez R. and Lesanovsky I., Phys. Rev.1

Lett., 119 (2017) 140401.2

URL https://link.aps.org/doi/10.1103/PhysRevLett.119.1404013

[14] Lesanovsky I. and Garrahan J. P., Phys. Rev. Lett., 111 (2013) 215305.4

URL https://link.aps.org/doi/10.1103/PhysRevLett.111.2153055

[15] Hinrichsen H., Adv. Phys., 49 (2000) 815.6

URL http://dx.doi.org/10.1080/000187300501981527

[16] Hinrichsen H., Physica A, 369 (2006) 1.8

URL http://dx.doi.org/10.1016/j.physa.2006.04.0079

[17] Valado M. M., Hoogerland M. D., Simonelli C., Arimondo E., Ciampini D. and10

Morsch O., J. Phys. Conf. Ser., 605 (2015) 012038.11

[18] Simonelli C., Ph.D. thesis, University of Pisa (2018).12

[19] Viteau M., Radogostowicz J., Bason M. G., Malossi N., Ciampini D., Morsch O.13

and Arimondo E., Opt. Express, 19 (2011) 6007.14

URL http://www.opticsexpress.org/abstract.cfm?URI=oe-19-7-600715
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