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Abstract 22 

Process-based crop simulation models are often over-parameterised and are therefore difficult to 23 

calibrate properly. Following this rationale, the Morris screening sensitivity method was carried out 24 

on the DAISY model to identify the most influential input parameters operating on selected model 25 

outputs, i.e. crop yield, grain nitrogen (N), evapotranspiration and N leaching. The results obtained 26 

refer to the winter wheat-summer maize cropping system in the North China Plain. In this study, four 27 

different N fertiliser treatments over six years were considered based on a randomised field 28 

experiment at Luancheng Experimental Station to elucidate the impact of weather and nitrogen inputs 29 

on model sensitivity. A total of 128 parameters were considered for the sensitivity analysis. The ratios 30 
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[output changes/parameter increments] demonstrated high standard deviations for the most relevant 31 

parameters, indicating high parameter non-linearity/interactions. In general, about 34 parameters 32 

influenced the outputs of the DAISY model for both crops. The most influential parameters depended 33 

on the output considered with sensitivity patterns consistent with the expected dominant processes. 34 

Interestingly, some parameters related to the previous crop were found to affect output variables of 35 

the following crop, illustrating the importance of considering crop sequences for model calibration. 36 

The developed RDAISY toolbox used in this study can serve as a basis for following sensitivity 37 

analysis of the DAISY model, thus enabling the selection of the most influential parameter to be 38 

considered with model calibration. 39 

 40 

Keywords: Morris Sensitivity analysis, Crop modelling, RDaisy toolbox, Crop yield, Nitrogen 41 

leaching, Wheat - Maize cropping system 42 

Introduction 43 

Process-based models have been extensively used to assess how the interaction of genotype × 44 

environment × management may affect crop productivity and dynamics of hydrology and nitrogen 45 

(N) in cropping systems (Chapman, 2008). Simulation models are also considered essential tools for 46 

scenario analyses and decision support for policy making (Ewert et al., 2015). Process-based models, 47 

traditionally contingent on a mathematical formulation of physical processes, typically contain a 48 

broad set of parameters and are therefore often considered over-parameterised (Reichert & Omlin, 49 

1997). Many model parameters are often uncertain because, among other things, of insufficient data 50 

for their estimation. Generally, finding an accurate estimate for all the parameters for which a model 51 

best fits the experimental data is a complicated and computationally expensive process for complex 52 

simulation models (Whittaker et al., 2010). Therefore, rigorous analysis of parameter sensitivity and 53 

reduction of the parameter space are essential to facilitate the calibration process.  54 

Sensitivity analysis (SA) examines how model parameters and/or model inputs affect model outputs 55 

(Song et al., 2015; Pianosi et al., 2016). Through SA, the various parameters can be ranked based on 56 

their relative importance. The parameters having a substantial impact on the model outputs are 57 

considered for model calibration and those that are less-essential in influencing the model response 58 

can be fixed to their nominal values (Sarrazin et al., 2016) reducing hence the model dimensionality. 59 

Identifying those parameters and processes which are most influential on model outputs can guide 60 
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the efforts towards improving the accuracies of the most influential parameters and help to better 61 

understand the model structure and behaviour (Saltelli et al., 2004; Sarrazin et al., 2016), and reduce 62 

model complexity (Crout et al., 2009). This is especially important for complex process-based models 63 

which are often considered as over-parameterised leading to problems of non-uniqueness in 64 

parameter sets (also called equifinality). 65 

There is a wide variety of available approaches to sensitivity analysis (Hamby, 1994; Campolongo et 66 

al., 2007; Saltelli et al., 2010). These techniques vary from the most straightforward approach of One 67 

parameter At a Time (OAT) perturbation to more commonly used global approaches. While OAT 68 

quantifies model output variation in relation to changes of one parameter at a time, global sensitivity 69 

analyses evaluate model output sensitivity to simultaneous changes in several parameters and can 70 

thus provide more robust sensitivity measures accounting for non-linearity and interactions among 71 

model parameters. Despite OAT methods being straightforward to apply, they are usually considered 72 

unreliable for high-dimensional and non-linear models. On the other hand, global methods which are 73 

suitable for models of various complexity are often considered computationally intensive (Borgonovo 74 

& Plischke, 2016). The Morris screening method is considered as a compromise between OAT and 75 

global methods, and it is well-designed to identify influential parameters of large models since it is 76 

computationally inexpensive (Campolongo et al., 2007). Moreover, it has been shown to identify the 77 

same influential parameters as when using global SA methods (Confalonieri et al., 2010a; Qin et al., 78 

2016). The Morris method has been widely used in analysing sensitivities in a wide range of 79 

applications, including chemical (Sin & Gernaey, 2009),  hydrological (Francos et al., 2003; Gan et 80 

al., 2014), biological (Zi, 2011) and environmental (Cartailler et al., 2014) models. 81 

Parameter sensitivities might be influenced by the crop type, the agricultural management (e.g. N 82 

fertilisation) and biophysical environments (e.g. soil and weather) (Confalonieri et al., 2010b; Richter 83 

et al., 2010; Zhao et al., 2014). Also, the influence of agricultural practices and weather may vary 84 

among crops. For example, the importance of the parameters used in the modelling of processes 85 

relevant to water stress could be altered by the timing of the crop growing season, irrigation practices, 86 

soil properties and weather conditions. Further, the sensitivity of parameters used in the modelling of 87 

N losses might be irrelevant when evaluated in conditions of limited N supply. Thus, ignoring the 88 

influence of the specific conditions on parameter sensitivity may produce misleading results.  89 

Despite increasing awareness of the importance of SA in model implementation and particularly in 90 

identifying influential parameters to consider during model calibration (Moriasi et al., 2016; Sarrazin 91 
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et al., 2016; Xu et al., 2016; Hjelkrem et al., 2017), screening SA methods have not yet, to the best 92 

of our knowledge, been applied to the DAISY model; a widely used model for simulating water, 93 

carbon and N transport and transformation processes in soils and plants (Hansen et al., 2012). 94 

Although sensitivities of parts of the model have been studied using simpler local SA techniques with 95 

a limited number of parameters (e.g., Salazar et al., (2013), Krӧbel et al., (2010) and Manevski et al., 96 

(2016)). Therefore, this study aims to analyse the sensitivity of key outputs of a widely used process-97 

based simulation model (DAISY), applied to the winter wheat-summer maize cropping system in 98 

North China Plain (NCP), to crop and soil relating parameters and the extent to which parameter 99 

sensitivities are affected by crop sequence, field management and weather conditions.  100 

Materials and methods 101 

The sensitivity of the four essential model outputs grain yield (Mg ha-1), grain N content at harvest 102 

(kg N ha-1), cumulated evapotranspiration (mm) and N leaching (kg N ha-1) to crop and soil relating 103 

parameters of the DAISY model were considered. The analysis was performed using long-term 104 

experimental data of a winter wheat-summer maize double cropping system from the Luancheng 105 

Experimental Station in the North China Plain. The Morris method (Morris, 1991) was selected in 106 

this study as it shares many of the positive qualities of the variance-based techniques whilst having 107 

the advantage of being able to screen out less influential parameters with a relatively few runs of the 108 

multi-parameter model like DAISY (Campolongo et al., 2007). Because output sensitivity to crop 109 

and soil input parameters may vary across seasons and crop management, the sensitivity was 110 

computed for different cropping seasons with diverse weather conditions (e.g., wet, average, dry 111 

seasons) and under different N fertiliser treatments (e.g. below average, average, high, and very high 112 

N rates). 113 

Experimental data 114 

The data used for model sensitivity analysis were collected from an ongoing experiment using the 115 

conventional double cropping system, with winter wheat (Triticum aestivum L., early October to mid-116 

June) and summer maize (Zea mays L., late June to late September) in the NCP. The field experiment 117 

was conducted at Luancheng Agro-Ecosystem Experimental Station (37°50’N, 114°40’E, elevation 118 

of 50 m) of the Chinese Academy of Sciences, located in the piedmont plain of the Taihang Mountains 119 

in Hebei Province in the NCP. A completely randomized block design with four N fertiliser rates 120 
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(200, 400, 600, and 800 kg urea-N ha-1 year-1) was used. These rates reflect possible fertiliser inputs 121 

(below average, average, high, and very high) currently used in the NCP. The summary of the crop 122 

management details such as tillage, wheat and maize varieties, time for crop sowing and harvest, and 123 

fertilisation and irrigation amounts and application dates used to set up the DAISY model are given 124 

by Hu et al., (2006) and Li et al., (2007). Data from nine consecutive years (1997 to 2006) were 125 

included in our study. The first 3 years (1997-2000) were used as a warm-up period to obtain model 126 

states that are independent of the chosen initial values and were excluded in the following analysis. 127 

The warm-up period was judged to be sufficient for the current analysis.  128 

Daily weather inputs required by the model were measured at a nearby weather station placed at a 129 

distance of 300 m from the field experiment. During the maize growing season, the mean seasonal 130 

precipitation recorded during the study was 310 mm, and the mean air temperature was 23°C. 131 

However, during the wheat growing season, the mean seasonal precipitation was 100 mm, and the 132 

mean air temperature was 5.9°C (Table 1). 133 

<INSERT TABLE 1 HERE> 134 

Model description 135 

The DAISY model is a dynamic agro-ecosystem model combining a hydrological model, a mineral 136 

N model, a soil organic matter (SOM) model and a crop model. It has been successfully evaluated in 137 

different environments (e.g. Denmark (Bruun et al., 2003; Salazar et al., 2013), Poland (Heidmann et 138 

al., 2008) and China (Krӧbel et al., 2010; Manevski et al., 2016)) and at different scales  (Djurhuus 139 

et al., 1999; Hansen et al., 2001; Jensen et al., 2001). The DAISY model has also been used in 140 

comparative studies with other models used worldwide (Palosuo et al., 2011; Rӧtter et al., 2012; 141 

Groenendijk et al., 2014). The model components have been intensively calibrated and verified 142 

against comprehensive field measurements of crop leaf area index, yield, crop evapotranspiration, 143 

soil water content, N2O emissions and N leaching as well as nitrate N concentrations in the soil 144 

solution. 145 

The model structure is comprehensively described by Hansen & Abrahamsen, (2009; 2012), so only 146 

a brief outline is given here. The hydrological model simulates the key processes of water dynamics 147 

in the surface and subsurface of soils: including evapotranspiration, canopy interception, soil water 148 

transport (using Richard’s equation) and soil temperature. The N model simulates transformation and 149 
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transport (using the convection-dispersion equation) of soil mineral N. The SOM model simulates 150 

immobilisation and mineralisation of N, coupled to carbon cycle (Van der Keur et al., 2008). The 151 

crop model simulates plant growth and development, including the accumulation of dry matter and 152 

N in different plant parts, the development of leaf-area index (LAI) and the distribution of root 153 

density. It includes a detailed phenology module that considers three growth phases (i.e. sowing-154 

emergence, emergence-flowering and flowering-maturity phase). Crop phenology is simulated based 155 

on the calculation of the rate of development from functions of temperature, photoperiod and 156 

vernalisation effects. LAI is computed as a function of leaf biomass and specific leaf area, which 157 

varies according to the development stage. Aboveground biomass is partitioned to plant organs using 158 

a set of stepwise linear functions driven by crop developmental stage. The soil is parameterized by a 159 

one-dimensional vertical structure and the soil profile is divided into layers on the basis of physical 160 

and chemical soil properties. DAISY includes as well a management module, which enables 161 

simulation in the agro-ecosystems subject to various system management operations which include 162 

soil tillage, crop sowing, fertilisation, irrigation and crop harvest. The model runs on a daily time step 163 

at field scale and is driven by meteorological and crop biological data. 164 

Model parameterisation 165 

In this study, crop phenology was modelled based on crop × temperature × photoperiod interaction. 166 

In the model, the rate of development towards a specific stage (i.e. flowering and physiological 167 

maturity) for winter wheat and summer maize was characterized by three components: the maximum 168 

rate of crop development; any delay due to a non-optimal temperature; and any delay due to a 169 

photoperiod response. The temperature effect was modelled as follows: below a base temperature 170 

(Tbase), no development occurs; above Tbase, the rate of development increases up to the optimum 171 

temperature (Topt); the rate declines immediately above Topt; and above a maximum temperature 172 

(Tmax), development is assumed to cease. This suite of temperatures represents the cardinal 173 

temperatures for development which are separately defined for the vegetative and reproductive crop 174 

growth stages (Fig.1a). Furthermore, leaf photosynthesis was modelled based on Goudriaan & Van 175 

Laar, (1978). Similarly, the temperature effect on leaf photosynthesis was modelled based on the 176 

concept of cardinal temperature (Tbase, Topt and Tmax). However, in this case, the optimum is spread 177 

over a range of temperatures where the leaf photosynthesis is constant (a plateau response) and 178 

therefore the optimum is defined as having two values lower, Topt1, and upper, Topt2 (Fig. 1b). 179 
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<INSERT FIGURE 1 HERE> 180 

To model soil water transport, the soil water retention curve was described using the Campbell 181 

equation (Campbell, 1974). The soil was modelled as a series of three horizontal layers through which 182 

water and dissolved materials move. The first layer extends from the soil surface to a depth of 35 cm. 183 

The second and third layers extend respectively from a depth of 35 cm to a depth of 90 cm and from 184 

a depth of 90 cm to a depth of 200 cm. The data provided by Yang et al., (2006) on soil water content 185 

at saturation, field capacity and wilting point for each layer were used as default values to estimate 186 

the Campbell equation parameters (Table 2).  187 

<INSERT TABLE 2 HERE> 188 

Sensitivity analysis 189 

The structure of the Daisy model is complex, including many simulated processes and potentially 190 

many interactions; thus no a priori assumption can be made about the linearity or additivity of the 191 

model response to parameter changes. Therefore, commonly applied one-parameter-at-a-time SA is 192 

considered inappropriate (Saltelli & Annoni, 2010). In the present study, the sensitivity method 193 

proposed by Morris, (1991) was adopted. The Morris method is considered a screening method that 194 

provides a good compromise between efficiency and accuracy and it is particularly well-suited for 195 

computationally costly models and/or when a high number of input parameters are considered (Xu & 196 

Mynett, 2006; Campolongo et al., 2007). It has the advantage of being computationally less 197 

demanding compared to the variance-based SA. By using a relatively small number of model 198 

evaluations, a subset of influential and non-influential input parameters in a model could be identified.  199 

The Morris method is based on the calculation of the so-called Elementary Effects (EE) of each input 200 

parameter on model outputs. The EE method can be conceptualised as a randomised OAT design, in 201 

which only one input parameter is modified between two successive runs of the model. This design 202 

can be regarded as a global design covering the entire space over which the parameters may vary 203 

(Wang et al., 2006). For a given parameter set 𝑋 = {𝑥1, ⋯ , 𝑥𝑛}, the elementary effect, 𝐸𝐸𝑌 (𝑥𝑖), of the 204 

parameter, xi, on the output, y, is defined as follows: 205 

𝐸𝐸𝑌 (𝑥𝑖) =
𝑌(𝑥1,⋯,𝑥𝑖−1,𝑥𝑖+∆𝑖,𝑥𝑖+1,⋯,𝑥𝑛)−𝑌(𝑥1,⋯,𝑥𝑛)

∆𝑖
 (1) 206 

where Y(x) is the output variable, 𝑥𝑖 is ith model input parameter, n is number of parameters, and ∆𝑖 207 

is the predefined sampling increment of the model parameter 𝑥𝑖. However, in contrast to local 208 
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methods, the perturbation Δ as defined by Morris, (1991) is a predetermined multiple of 
1

𝑝−1
 in which 209 

p corresponds to the number of intervals/levels that a parameter range is divided by. Saltelli et al., 210 

(2004) suggested the use of ∆ =
𝑝

2(𝑝−1)
 with the number of levels p ranging between 4 and 10. In this 211 

work, the level p was fixed to 10 according to Zhan et al., (2013). 212 

The whole procedure is repeated r times (r is the number of trajectories), providing r elementary 213 

effects for each parameter where r typically varies between 10 and 50 (Campolongo et al., 2007). The 214 

total number of model evaluations is then given by r(n+1). For this study, r = 50 was used and 215 

considered adequate given the complexity of the DAISY model. Moreover, to prevent poor coverage 216 

of the parameter space, the space-filling-design, introduced by Campolongo et al., (2007) was used 217 

to assure a better spread of the points over the parameter space. This was achieved by first generating 218 

1000 different trajectories and then selecting the r = 50 trajectories with the largest distance between 219 

couples of trajectories over the parameter space. More details of the method are given in Campolongo 220 

et al., (2007). 221 

Because the units of the EEs are the units of the model output over the units of the parameter 222 

increment, they cannot be readily compared to each other. We, therefore, used a scaled dimensionless 223 

elementary effect as was defined by Sin & Gernaey, (2009) and which was also used inter alia by 224 

Ruano et al., (2012): 225 

𝑆𝐸𝐸𝑌 (𝑥𝑖) = 𝐸𝐸𝑌 (𝑥𝑖)

𝜎𝑥𝑖

𝜎𝑌
 (2) 226 

where 𝜎𝑌 and 𝜎𝑥𝑖
 are the standard deviations of output Y and inputs xi, respectively. 227 

The mean μ and standard deviation σ from the obtained SEEs are used to assess the importance of an 228 

input parameter. A parameter with high overall importance on the output will have a high μ while a 229 

parameter with a nonlinear effect or interacting with other parameters will have a high σ. To avoid 230 

the cancelling of positive and negative effects on the mean, Campolongo et al., (2007) suggested the 231 

use of the mean of the absolute values of the elementary effects (𝜇∗) instead of the mean: 232 

𝜇𝑖
∗ =

∑ |𝑆𝐸𝐸𝑖|𝑟
𝑖=1

𝑟
 (3) 233 

To decide whether a given parameter is influential or non-influential, the Morris sensitivity distance, 234 

defined as the Euclidian distance 𝜖𝑖 = √𝜇𝑖
∗2 + 𝜎𝑖

2 of (𝜇𝑖
∗, 𝜎𝑖) from the origin (0,0), was used. A high 235 

value of 𝜖𝑖 (> 0.1) indicates a relevant effect of the related ith parameter on the model output hence, 236 

considered as influential. In order to facilitate the comparison of the SA outputs, the same cut-off 237 
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value was used. The parameters tested were further ranked according to 𝜖 values in order of 238 

importance. The threshold value of 0.1 was also employed for the scaled 𝜇∗ by Cosenza et al., (2013). 239 

The aforementioned sensitivity index (𝜖) was also used in other modelling applications (Xu & Mynett, 240 

2006; Ciric et al., 2012; Pappas et al., 2013; Ojeda et al., 2014).  241 

Parameters considered for sensitivity analysis  242 

DAISY contains a large number of inputs and model parameters. Ideally, all parameters should be 243 

screened to determine their relative importance. However, this would result in a large number of 244 

simulations making such a study impractical. Based on experience, only a few parameters account for 245 

most of the variability of model outputs. Therefore, the sensitivity analysis was restricted to 39 crop 246 

parameters which for two crops sum to 78 parameters (including parameters referring to, among other 247 

things, phenology, assimilation and respiration characteristics, and partitioning of assimilates to plant 248 

organs). Furthermore, the analysis was also restricted to 28 soil parameters that for the three soil 249 

layers sum to 46 (including among other things soil hydraulic parameters, SOM and soil microbial 250 

biomass turnover rates). The parameters were believed to be potentially relevant parameters 251 

controlling most of the processes represented by DAISY, and they have been reported in different 252 

studies aiming at the calibration of DAISY for different output variables and different locations with 253 

different climates, soils, crops and field management scenarios. The initial values of the selected crop 254 

parameters were based partly on the values recommended for DAISY in the model crop library and 255 

partly on literature screening and results from experimental studies at the Luancheng station. The 256 

depth-dependent hydraulic parameters were provided by (Yang et al., 2006). The nominal values of 257 

the cardinal temperatures (Tbase, Topt and Tmax) for vegetative and reproductive stages were 258 

obtained for winter wheat and summer maize from Porter & Gawith, (1999) and Sánchez et al., 259 

(2014), respectively. The default maximum rate of development DSRate1 and DSRate2 were adjusted 260 

to be within the range of observed flowering and maturity dates, respectively, as recorded in the NCP. 261 

Since there is not enough information about the prior probability distributions for each parameter, we 262 

assumed an independent uniform distribution for each parameter. The bounds were set at 20% of 263 

either side of a parameter nominal value as was also used by Xu & Mynett, (2006), Sourisseau et al., 264 

(2008), Esmaeili et al., (2014) and more recently by Casadebaig et al., (2016). The groups of 265 

parameters and the nominal values of all parameters are given in Table A1 (Annex A). The model 266 

outputs investigated in this study are grain yield, grain N content, cumulated crop evapotranspiration 267 
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(ETa) and cumulated N leaching below the root zone during the cropping seasons of both crops.  268 

Modelling procedure and statistical analysis 269 

A total of 50*(128+1) = 6450 parameter sets were generated using the Morris method. The model is, 270 

therefore, run for each parameter sets for the six cropping seasons simultaneously as winter wheat 271 

and summer maize are grown in rotation (double cropping) in the NCP. This way the possible 272 

contribution of the parameters of one crop on the model output of the following crop could be 273 

investigated. This step is then repeated for each of the N fertiliser treatments. Finally, the model 274 

selected outputs where extracted for each combination of crop × cropping season × N fertiliser 275 

treatment and used to calculate the different Morris sensitivity measures. The outcomes of the 276 

sensitivity analyses were then compared within each crop, to evaluate if and to which extent the 277 

relative importance of crop and soil parameters varies (i) across the different seasons and (ii) among 278 

the four fertiliser N treatments, and to evaluate the stability of the parameter sensitivity. This resulted 279 

in 24 sensitivity analyses for each crop.  280 

The effect of the different cropping seasons with different weather conditions and N fertilisation rates 281 

on the number of influential parameters were tested using generalized linear models (GLM) for each 282 

crop and output variable. In order to model these effects, all GLMs were carried out using Poisson 283 

distribution with log link as we have count data (Zeileis et al., 2007). All GLM models were computed 284 

using ‘glm’ function of R. Over-dispersion was investigated using ‘dispersiontest’ function of the 285 

AER package (Kleiber & Zeileis, 2008) and was not found to be significant. 286 

To measure the similarity between the parameter ranks resulting from different input combinations 287 

(crop × fertiliser treatment × cropping season) and for each output variable, we used the top-down 288 

coefficient of concordance (TDCC). This method was introduced by Iman & Conover, (1987) to test 289 

the agreement between multiple rankings. The method emphasises the agreement between rankings 290 

assigned to influential parameters and reduces the weight for disagreement between rankings assigned 291 

to non-influential parameters (Helton et al., 2005; Confalonieri et al., 2010a). The Savage scores and 292 

TDCC are calculated using Eq. 6 and 7, respectively. 293 

𝑠𝑠(𝜖𝑖𝑗) = ∑
1

𝑘

𝑛
𝑘=𝑅(𝜖𝑖𝑗)  (6) 294 

𝑇𝐷𝐶𝐶 =
∑ [∑ 𝑠𝑠(𝜖𝑖𝑗)𝑚

𝑗=1 ]
2

−𝑚2∙𝑛𝑛
𝑖=1

𝑚2(𝑛−∑ 1 𝑖⁄𝑛
𝑖=1 )

     (7) 295 
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where m designates the number of rankings to compare (in this study, m represents either the number 296 

of seasons or the number of treatments N); 𝜖𝑖𝑗is the sensitivity index/measure for parameter pi (i = 297 

1,…, n) and ranking j (j = 1,…, m), and 𝑅(𝜖𝑖𝑗) is the rank of 𝜖𝑖𝑗within ranking j. A rank of 1 is 298 

assigned to the parameter pi with the largest value of 𝜖𝑖𝑗, a rank of 2 is assigned to the parameter with 299 

the second largest value of 𝜖𝑖𝑗 and so on. In case of equal values of 𝜖𝑖𝑗, averaged ranks are assigned 300 

to parameters. Values of TDCC close to one indicate a high level of concordance between compared 301 

rankings, with agreement declining as TDCC decreases from one. Under the null hypothesis of zero 302 

concordance between parameter rankings, the p-values for each TDCC can be calculated using the T 303 

statistics (approximating a 2-distribution with n-1 degrees of freedom), derived from TDCC using 304 

the following equation:  305 

𝑇 = 𝑚 ∙ (𝑛 − 1) ∙ 𝑇𝐷𝐶𝐶 (8) 306 

Additionally, the comparison regarding the similarity of classification into the most influential 307 

parameters among contrasting weather conditions during the seasons 2003-04 and 2004-05 was 308 

performed by analysing Venn diagrams. To further endorse the differences across seasons, we 309 

performed a Multi-Dimensional Scaling (MDS) analysis (Hout et al., 2013), which allows 310 

representing the distance among different rankings in a reduced number of dimensions. The 311 

proximities among the Savage-score transformed ranks are computed using Euclidean distance for 312 

each fertiliser treatment-season combination and presented in a two-dimensional plot as outlined by 313 

Richter et al., (2010). 314 

 315 

RDAISY toolbox 316 

Several software packages enabling the automation of the SA of process-based models have been 317 

developed and used to study the influence of model parameters on model outputs. In particular, the 318 

‘Sensitivity’ package (Pujol et al., 2017) implemented in the open source software R includes 319 

algorithms for global SA including the Morris, Sobol’ and FAST methods, among others. However, 320 

using these methods with process-based models is not always straightforward and require that the 321 

model is first coupled to the R platform in order to use one of the available functions of the 322 

‘Sensitivity’ package. Therefore, a set of functions were created and wrapped into the RDAISY 323 

toolbox to be able to operate the DAISY model through the R environment (Jabloun et al., 2014). 324 

This process allows reducing programming efforts necessary for conducting sensitivity analysis, 325 
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model calibration and model output visualisation by taking advantage of R’s extensive statistical, 326 

mathematical, and visualisation packages. The RDAISY toolbox comprises three main functions, 327 

update.InputFiles which update the DAISY input files given specified parameter values, runDaisy to 328 

run the DAISY model from the R environment given the main DAISY setup file to run and 329 

read.OutputFiles, which reads the generated output files with the possibility to restrict the columns 330 

to read. These functions, even though written to operate DAISY from within the R environment, are 331 

written in a way to be model independent. Therefore, it can be easily adapted to manipulate any model 332 

that uses text files as inputs. The interactions between RDAISY toolbox and the DAISY model are 333 

shown in Fig. 2.  334 

<INSERT FIGURE 2 HERE> 335 

 336 

The update.InputFiles function requires that a text template for each of the input files be created. 337 

Each text template complies precisely with the format required by DAISY and contains markers 338 

(unique parameter identifier/name) for all the parameters that need to be updated. These templates 339 

can be created from the study case related input files by replacing each parameter value by its unique 340 

text marker. Additionally, the update.InputFiles function requires that a data.table (Dowle et al., 341 

2017) is created which stores the information about the parameter names to be updated, their default 342 

values, the full path to the template file where the parameter is used as well as the full path to which 343 

the newly updated input file will be saved to. An example of a template file for crop input file with 344 

markers and their replacement by current values is shown in Fig. 3a and b respectively.  345 

<INSERT FIGURE 3 HERE> 346 

 347 

The runDaisy requires that the full path to the main setup file and daisy.exe is provided. The 348 

read.OutputFiles is designed in a way to allow reading several output variables from different output 349 

files at once. Therefore, a data.table with the full path to each of the output files to read and the names 350 

of each output variable is required. For the function to work correctly it is crucial to set print_header 351 

and print_dimension to false when specifying the output variables to log in DAISY (e.g. (output 352 

("Soil Water Content" (when daily) (print_header false) (print_dimension false)))). The RDAISY 353 

toolbox is given in the supplementary material. 354 
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Results 355 

Screening sensitive parameters 356 

The results of the Morris analysis showed a linear relationship between µ* and σ, suggesting that 357 

DAISY parameters with higher overall impacts had a higher nonlinear effect and/or interacted with 358 

other parameters. The coefficient of determination (R2) considering all cropping seasons, N 359 

treatments and model outputs ranged from 0.67 to 0.94 and from 0.77 to 0.96 for maize and winter 360 

wheat, respectively. A subset of the results for the treatment N400 and the cropping season 2004-05 361 

is shown in Fig. 4. 362 

<INSERT FIGURE 4 HERE> 363 

 364 

The number of sensitive parameters varied across cropping seasons and output variables and remained 365 

relatively constant among N treatments. The number of influential parameters for each crop, model 366 

output and for the seasons 2003-04 and 2004-05 and the N400 treatment is shown in Fig. 5. 367 

Regardless of the cropping season, N leaching exhibited the highest number of influential parameters 368 

for both crops (more than 38 parameters) and the number of parameters of major importance is 369 

generally higher for hot and dry seasons (e.g. 2004-5, Fig. 5) as compared to average and wet seasons 370 

(e.g. 2003-04). 371 

<INSERT FIGURE 5 HERE> 372 

 373 

In fact, the GLM models showed that cropping season characterised by different weather conditions 374 

have a significant influence (p-value < 0.05) on the number of sensitive parameters (results not 375 

shown). This observation was true for both crops and all model outputs except for N leaching for 376 

which the number of influential parameter does not seem to be affected by weather conditions during 377 

the investigated years. Besides, the N fertiliser rates have only a significant effect (p-value < 0.05) on 378 

the number of influential parameters of the grain N content of both crops. The differences observed 379 

between seasons was due to the model response to dry and wet conditions. In fact, when the dry 380 

seasons 2004-05 and 2005-06 are excluded from the data used with the GLM models, the season 381 

factor no longer have a significant effect on the number of sensitive parameters for both crops and all 382 

model outputs. As for the N treatments, excluding the N200 treatment resulted in no significant effect 383 

of N fertiliser rates on the number of influential parameters on the grain N content output. 384 



14 

 

To compare the relative importance of the input parameters, the calculated Morris distances (𝜖) were 385 

plotted against each input parameter for each response variable. Part of the results are reported in Fig. 386 

6, where the parameter importance (in terms of 𝜖) obtained for winter wheat and maize is shown for 387 

the N400 treatment over two cropping seasons 2003-04 and 2004-05. Parameters with 𝜖 below 0.1 388 

were regarded as non-influential and were omitted from the figures. The season 2003-04 was chosen 389 

as the one with optimal growing conditions, whereas the season 2004-05 was hot during summer and 390 

dry during the wheat growing season (Table 1) and was therefore considered as dry and hot.  391 

<INSERT FIGURE 6 HERE> 392 

The Morris sensitivity analysis for the N400 treatment during the 2003-04 season revealed that 21 393 

out of 39 crop parameters (54 %) and 28 out of 46 soil parameters (60 %) showed negligible effects 394 

when all response variables were considered together. Low impact on model outputs was given inter 395 

alia by parameters related to N concentration in the different plant parts (CrpNRoot, CrpNLeaf, 396 

CrpNStem, CrpNOrg), maintenance respiration of the different plant parts (r_Root, r_Leaf, r_Stem, 397 

r_SOrg), maximum NH4 and NO3 uptake per unit root length (MxNH4Up, MxNO3Up) and to a set 398 

of parameters that govern crop phenology and crop photosynthesis (Tmax1, Tmax2, PhotTopt2, 399 

PhotTmax). These parameters could be fixed at their nominal values without having a substantial 400 

effect on model predictions. However, the sensitivity of the remaining parameters changed 401 

substantially between the different response variables and their rankings differed between the two 402 

crops (Fig. 6). For instance, while 13 crop parameters affected maize yield, we found 16 crop 403 

parameters that affect wheat yield. When considering only those parameters having a significant 404 

effect on all response variables, we found 11 influential crop parameters for wheat but only 6 for 405 

maize, and 6 soil parameters were influential for wheat but none of them for maize (Fig. 7). 406 

According to the Morris sensitivity distance (Fig. 6), the parameters related to crop phenology, crop 407 

photosynthesis and assimilate partitioning were key parameters. In particular, maximum development 408 

rate (DSRate1), the optimum temperature for growth (Topt1) and the quantum efficiency (Qeff) had 409 

a high influence on all the output variables for both crops. Cumulated ETa over the cropping cycle 410 

was also quite sensitive to the crop coefficient (EpCrop) and specific leaf area (SpLAI), particularly 411 

for winter wheat. Interestingly, the results of the Morris analysis over the 2003-04 season suggest that 412 

the parameters associated with the previous crop affected the cumulated N leaching of the following 413 

crop. In the case of cumulated N leaching during the maize seasons, sensitive parameters were related 414 

to crop phenology and crop photosynthesis of winter wheat grown the season before (Fig. 6). 415 
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Similarly, N leaching and to a lesser extent grain N content over the winter wheat season were affected 416 

by parameters related to maize. However, ETa, Yield and grain N content of maize were unaffected 417 

by parameters relating to winter wheat. 418 

<INSERT FIGURE 7 HERE> 419 

 420 

Similar results were found for the soil parameters, and their importance also varied considerably 421 

depending on the crop and the output variable considered. For instance, while maize yield was not 422 

sensitive to any soil parameter, cumulated N leaching over the maize cropping season was highly 423 

sensitive to water retention at field capacity (FC35 and FC90) and to the saturated hydraulic 424 

conductivity (Ksat35 and Ksat90) of the topsoil (0-35 cm) and subsoil (35-90 cm) soil layer. On the 425 

other hand, the output variables over the winter wheat cropping season were all sensitive to water 426 

retention at field capacity and saturated hydraulic conductivity. Moreover, the soil organic matter 427 

content (humus35) was a key parameter for both cumulated N leaching and grain N content of winter 428 

wheat. 429 

During the 2004-05 season, the results of the Morris method highlighted the importance of the 430 

previous crop in affecting all the output variables of the following crop (Fig. 6). Besides the 431 

parameters relating to crop phenology, crop photosynthesis and assimilate partitioning, the 432 

parameters relating to root growth (PenPar1, PenPar2 and MaxPen) also had a substantial impact on 433 

all outputs for both crops during this dry and hot season. Furthermore, it is remarkable that parameters 434 

relating to the soil (i.e. hydraulic parameters) rank higher under limited water conditions for all model 435 

outputs and both crops. In contrast to the wet season, 7 and 10 parameters relating to soil were shared 436 

between the different outputs for maize and wheat, respectively (Fig. 7).  437 

Morris SA excluding phenology-related parameters 438 

Since most of the crop parameters considered in this analysis depend on crop phenology, the strong 439 

sensitivity of DAISY to the parameterisation of crop phenology may mask the importance of other 440 

parameters and processes. To investigate this, we repeated the SA with the crop phenology parameters 441 

being excluded. Specifically, DSRate1, DSRate2 and cardinal temperatures (Tbase, Topt, Tmax) were 442 

fixed to their pre-assessed values (Table A1, Annex A), and the Morris sensitivity indices were 443 

calculated for the remaining parameters. By excluding phenology relating parameters, the importance 444 
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of crop photosynthesis, assimilate partitioning, and root growth was further scrutinized, and their high 445 

impact on model outcomes was also confirmed (results not shown). Most of the non-influential 446 

parameters remain the same whether or not we considered the parameters related to phenology. 447 

However, it is noteworthy that there are differences among the influential parameters, specifically the 448 

parameters related to maize crop and influencing the output variables of the next wheat crop. We 449 

found that the effect of the previous crop was more accentuated (i.e. higher overall ranks) when the 450 

parameters related to phenology were included especially for crop yield. Overall, the effects of the 451 

parameters relating to the previous crop and the differences between the sensitive parameters for wet 452 

and dry years remained consistent and were not affected by fixing the parameters relating to crop 453 

phenology.  454 

Influence of weather conditions and crop management 455 

The Morris SA was applied for each combination of crop × fertiliser treatment × cropping season, 456 

which resulted in different Morris distance sensitivity indices. Fig. 8 depicts the variability over the 457 

different cropping seasons of the Morris distance for winter wheat calculated for the N400 treatment. 458 

In general, the Morris distance of the less influential parameters had low variability over seasons. 459 

However, substantial variations in the Morris distance of the most influential parameters (with high 460 

𝜖 values) driven by the variations in weather over seasons could be observed (Fig. 8), which might 461 

result in different rankings over the different seasons (Fig. 9). The parameters DSRate1, DSRate2, 462 

Topt1 and EpCrop presented the highest variability over seasons. These findings apply to all model 463 

outputs. Similar results were also found for the other treatments. However, the results (not shown) 464 

also revealed that the considered N treatments had no noticeable impact on the parameter ranking for 465 

the considered output variables. In fact, the TDCC values obtained for the six cropping seasons from 466 

the comparisons between parameter rankings obtained across fertilizer treatments were greater than 467 

0.95 for both crops and for all output variables and years. 468 

<INSERT FIGURE 8 HERE> 469 

<INSERT FIGURE 9 HERE> 470 

 471 

The TDCC coefficients were calculated for each output variable to provide a quantitative measure of 472 

the concordance of the parameter rankings of the different combinations crop × fertiliser treatment × 473 

cropping season. All parameters were then ranked in the decreasing order of the Morris distance 474 
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values for each output. Summarized TDCC values are given in Table 3, where the TDCC values for 475 

each output variable are displayed for each combination. The corresponding p-values are not reported 476 

but were all 0.05. We obtained a different behaviour for different outputs. TDCC values were higher 477 

than 0.92 for the N leaching output for both crops and around 0.9 for grain N content of winter wheat 478 

suggesting that the rankings of important parameters remained relatively stable over seasons. 479 

However, TDCC values were less than 0.9 for the rest of the output variables for both crops, which 480 

implies that the ranks were different across years as was highlighted above.  481 

<INSERT TABLE 3 HERE> 482 

 483 

Fig. 10 shows the MDS plots obtained for grain yield for summer maize and winter wheat. The years, 484 

which stand apart from the other years, in such a plot are considered with different parameter ranks. 485 

From Fig. 10, it is clear that clusters around the season 2004-05 and 2005-06 (qualified as dry seasons) 486 

and the rest of the seasons (qualified as wet seasons) were obtained for winter wheat when yield is 487 

considered. Additionally, there is a cluster around season 2002-2003 for maize yield, which was also 488 

a wet season. Generally, there were more explicit clusters around the different seasons for winter 489 

wheat than for summer maize. The same observations were also obtained for ETa and to a lesser 490 

extent for grain N output for both crops. No clear pattern was observed for N leaching for both crops, 491 

which is in accordance with the TDCC values. We conclude from this that the low TDCC values and 492 

the lack of similarity between the sensitive parameter ranks among years might be mostly due to the 493 

differences between parameter ranks for wet and dry years. 494 

<INSERT FIGURE 10 HERE> 495 

Discussion 496 

It is worth mentioning that the Morris method is traditionally used for parameter screening with a 497 

very low number of sampled points. Based on the findings of Ciric et al., (2012), Zhan et al., (2013) 498 

and Vanuytrecht et al., (2014) a small sample size would not be adequate to obtain a stabilised Morris 499 

sensitivity distance for a complex model such as DAISY thus the high trajectory number (r = 50) used 500 

in this study. This choice can be further justified by the nonlinear behaviour depicted by the high 𝜎 501 

values (Fig. 4). We further acknowledge the subjectivity in the choice of the parameter ranges which 502 

might not represent the full extent of the parameter uncertainty. When it comes to parameter 503 
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screening, narrowing or broadening the range of the parameter values could significantly influence 504 

the parameter sensitivity as was delineated by Shin et al., (2013) and Paleari & Confalonieri, (2016). 505 

Shin et al., (2013) also highlighted the importance of using ranges yielding plausible parameter sets, 506 

which was believed to be the case for the ±20% used in this study. Therefore, we believe the results 507 

of this SA were not biased by implausible model realizations. However, it should be stressed that 508 

more work is needed to assist in the determination of parameter uncertainty ranges.  509 

It is also important to recognise that the results of this SA were conditional on the cut-off used to 510 

select the most sensitive parameters. Interestingly, using a different measure 𝛽𝑖 =
𝜖𝑖

𝜎
 (σ is the standard 511 

deviation of 𝜖𝑖 of all parameters) instead of using 𝜖𝑖 and a threshold of 0.85 to separate the most 512 

important parameters from the less-important ones as was suggested by Lu et al., (2013) we found 513 

the same set of most influential parameters for each combination crop × fertiliser treatment × season 514 

× model output. These findings put more confidence on the parameters classified as most influential 515 

for winter wheat and maize investigated in this study.  516 

Model-dependent parameter sensitivity 517 

Our analysis showed that for the N400 treatment, among the 124 parameters tested, only 34 and 36 518 

common parameters were identified as being influential (𝜖 > 0.1) for the different model outputs 519 

during season 2003-04 and 2004-05, respectively. This applied to both crops. A similar high number 520 

of sensitive parameters was also found for other models. For instance, Hjelkrem et al., (2017) in a 521 

recent study found that the BASGRA model was sensitive to a relatively large number of parameters 522 

(45 parameters). Similarly, Casadebaig et al., (2016) identified 42 parameters to substantially affect 523 

wheat yield in different tested environments in Australia using the APSIM-wheat model, and Specka 524 

et al., (2015) identified a subset of 28 relevant model parameters from a set of 117 analysed 525 

parameters for the agro-ecosystem model MONICA applied to different crops in Germany. It is 526 

noteworthy that the same sensitive parameters, albeit differently ranked, were found for both crops 527 

when all model outputs were considered. However, when model outputs were analysed separately, 528 

the sensitive parameters and their number varied substantially with N leaching having the highest 529 

number of sensitive parameters for both crops. Regardless of crop and season, N leaching was always 530 

controlled by parameters relating to crop and soil; however, the other model outputs had the number 531 

of their influential parameters differentiated by season whether it is a wet or dry season as was 532 

suggested by the results of the GLM models. The high number of parameters controlling leaching 533 
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reflects on the complex processes (i.e. the integrated effect of the redistribution of soil water and 534 

subsequent convection-dispersion of nitrate) driving the N leaching (Manevski et al., 2016). It is 535 

interesting to notice that some parameters, specifically soil related parameters, are shown to be 536 

significantly more sensitive when evaluated in water-limited conditions especially for yield and grain 537 

N. Thus, the sensitive (and non-sensitive) parameters cannot be assumed to be consistent across 538 

seasons. These findings were confirmed for the different N treatments investigated in our study which 539 

corroborates the findings of van Werkhoven et al., (2008) who demonstrated that when sensitivity 540 

analyses are applied for watersheds spanning a hydroclimatic gradient, the most sensitive model 541 

parameters might vary significantly across watersheds.  542 

Similarly, Song et al., (2013) found that as the climate scenarios changed from wet to warmer and 543 

drier conditions, the overall sensitivities of some parameters increased. In a recent study, Casadebaig 544 

et al., (2016) found that the impacts of the influential parameters were strongly dependent on 545 

environmental and management conditions. However, Tan et al., (2016) found that the weather 546 

conditions had negligible effects on the identification of influential parameters of the ORYZA model 547 

and that they only had slight effects on the ranks of the parameters' sensitivity for outputs in the 548 

panicle-formation phase and the grain-filling phase of rice grown in China. The effect of dry and wet 549 

years observed in our study might also be confounded with the effect of irrigation management since 550 

irrigation amounts varied across seasons (Table 1). It should be noted, however, that the seasons 551 

2004-05 and 2005-06, which are relatively hot and dry with a high cumulative ETo of 875 and 863 552 

mm, respectively, showed relatively similar tendencies of parameter sensitivities (results not shown) 553 

despite the difference in irrigation amounts for the two seasons (Table 1). Thus, the combined effect 554 

of seasons and irrigation management would be worthy of further study. 555 

Generally, the DAISY output responses were strongly influenced by the parameters related to crop 556 

phenology, corroborating the findings of Krӧbel et al., (2010) and Manevski et al., (2016) who also 557 

conducted a local SA on key parameters of the DAISY model for winter wheat and summer maize in 558 

the NCP. We speculate that this is because many of the parameters in DAISY are formulated to 559 

depend on crop phenology (Hansen et al., 2012). 560 

The model behaviour proved to be highly consistent with the nature of the different processes that it 561 

integrates. For instance, simulations of grain yield were influenced by the parameters related to crop 562 

photosynthesis and to assimilate partitioning. Besides, simulations of crop evapotranspiration were 563 

influenced by the crop coefficient and the soil water retention at field capacity at the surface layer on 564 
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the one hand, and by other parameters linked with the responses of plants to light (Qeff) and 565 

temperature (Topt1) on the other hand. In fact, a lower FC value means that the soil water holding 566 

capacity is very low and thus a smaller amount of water is available for evapotranspiration and vice 567 

versa (Abebe et al., 2010). These results are in concordance with the findings of Salazar et al., (2013) 568 

who showed that the soil water balance simulated by DAISY was most sensitive to the potential 569 

evapotranspiration and soil hydraulic parameters included in the Campbell model. Similarly, Esmaeili 570 

et al., (2014), who conducted a global sensitivity analysis on the RZWQM model, found that the field 571 

capacity in the upper 30 cm of the soil horizon had the most significant contribution (>30%) to 572 

evapotranspiration uncertainty. The high sensitivity to the EpCrop parameter in all N treatments and 573 

especially during dry and hot years reflects the role of evapotranspiration as a process of direct loss 574 

of water from the soil-plant system, which has a considerable impact on the water balance 575 

components of the winter wheat-summer maize double cropping system. Similarly, EpCrop and top 576 

and sub-soil hydraulic properties were identified as sensitive parameters in simulating N leaching for 577 

both crops, because these parameters directly affect soil water movement and the root water 578 

uptake.The root water uptake also depends on the rooting depth and the root density distribution, as 579 

well as on the soil water status in the rooting depth which was also depicted by the SA. In fact, the 580 

parameters related to the root penetration rate (PenPar1) and root maximum penetration depth 581 

(MaxPen) were identified as sensitive parameters in simulating ETa, N leaching, grain yield and grain 582 

N content of winter wheat under water shortage conditions. 583 

The absence of influence of parameters affecting N uptake (e.g., parameters related to N concentration 584 

in the different plant parts) on simulated crop yield and N content indicate that N was not limiting 585 

crop growth with current management setup. These results agree with the findings of Hu et al., (2006) 586 

who, using the same dataset, found no statistically significant difference in grain yield and grain N 587 

content between the different N treatments, implying no N shortage for the investigated N treatments. 588 

It could also explain the strong rank concordance between the different fertiliser treatments. A 589 

potential explanation of the similarities between N treatments is the issue of over-fertilisation. In fact, 590 

a recent investigation by Ju et al., (2009) shows that the fertilisation rate in the NCP exceeds crop 591 

requirements for maximum grain yield. In reality, the results of the SA might have been different if 592 

there had been a zero N treatment. In fact, Zhao et al., (2014) found that N input with two fertilisation 593 

rates (0 and 100 kg N ha−1) influenced the rank order of parameter sensitivities of the APSIM model. 594 

It is noteworthy that N leaching depended mainly on the soil hydraulic parameters of the three soil 595 

layers, which presented the highest ranks among the other sensitive parameters. We also found that 596 
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humus content and C/N ratio of the surface soil layer (0-35 cm) as well as the leaf photosynthetic 597 

capacity (Fm) and photosynthetic quantum efficiency (QEff), were among the influential parameters. 598 

This corroborates the findings of Manevski et al., (2016) who found, based on a sensitivity analysis 599 

applied to 10 parameters of the DAISY model setup for the NCP, that a 10% change in humus content 600 

and C/N ratio affected simulated nitrate leaching. They also found that nitrate leaching was strongly 601 

affected by parameters governing crop vegetative development and growth (DSRate1 and Qeff). 602 

Based on the Morris results, parameters associated with the previous crop showed major effect on 603 

cumulated N leaching for the following crop and this was true for winter wheat and summer maize 604 

regardless of the weather conditions. Besides, parameters relating to the previous crop also showed 605 

major effect on crop yield, grain N content and cumulative ETa of the following crop only under dry 606 

conditions (e.g. 2004-05 season). We speculate that the effect of the previous crop is driven by the 607 

soil status (i.e. soil water content, organic matter and soil nutrients) left after crop harvest and before 608 

sowing of the following crop, This has generally been referred to as the carry-over effects (Kollas et 609 

al., 2015) such as N mineralising from the harvest residues of the previous year or altered soil water 610 

content due to crop water uptake by the previous crop which was mainly the case in our study. For 611 

instance, Li et al. (2007) showed that soil moisture before sowing of summer maize in the NCP is a 612 

crucial factor that determines seedling growth, yield, and water use. 613 

Practical implications for model calibration 614 

Parameterization and identification of reliable estimates of the different parameters are a crucial issue 615 

in modelling. Sensitivity analysis identifies the parameters that deserve more attention (Ma et al., 616 

2012; Hjelkrem et al., 2017). The high 𝜎 values associated with the most relevant parameters (Fig. 4) 617 

indicated a high degree of parameter non-linearity/interactions. Moreover, our findings showed that 618 

there are multiple influential parameters for a single output variable that was considered sensitive for 619 

multiple other processes (Fig. 4). This might substantially increase the frustration and subjectivity 620 

that often characterize manual calibrations with increasing risk of calibrating parameters with 621 

compensating effects. We therefore argue that the multi-objective calibration estimating all 622 

parameters related to all output variables at once might be the best approach in this case. 623 

Our analysis showed that about 34 parameters greatly influenced the outputs of the DAISY model for 624 

both crops in the NCP. It is a valuable indication for the DAISY model users who may opt for 625 

approximating the other less-influential parameters to their nominal values while focusing efforts on 626 



22 

 

calibrating the parameters that have the most substantial impact on winter wheat and summer maize 627 

grown in the NCP. Because of high N fertiliser rates in the NCP, the N treatments did not affect 628 

parameter rankings. Therefore the calibration of the DAISY model in Luancheng could be limited 629 

under these conditions to only one treatment. Consequently, the remaining treatments could be used 630 

to validate the calibrated model. This approach was adopted by Hu et al., (2006) who used crop and 631 

soil data of the same field experiment with N fertiliser at 200 kg N ha-1 yr-1 (N200) for the calibration 632 

of the RZWQM model, which was subsequently evaluated using the other N treatments.  633 

Moreover, our results suggest that the parameter rankings may differ between cropping seasons 634 

depending on whether the cropping season is dry or wet. Specifically, the parameters relating to the 635 

soil are more sensitive to seasons than other parameters, and significant uncertainty might be 636 

introduced if the calibration is based only on wet years or dry years and the parameters are transferred 637 

thereafter to conditions different from the calibration period. These findings support the idea that both 638 

wet and dry periods should be included in the calibration and validation periods which was also 639 

supported by Gan et al., (1997) and Arnold et al., (2012). Similarly, Li et al., (2012) stressed that a 640 

sufficiently long period of records for model calibration should be used to ensure proper 641 

representation of climate variability and to achieve stable model parameters. Furthermore, Bastola et 642 

al., (2011) and Li et al., (2012) recommended that if model parameters are calibrated against a long 643 

time series of historical data containing both wet and dry periods then these parameters can be 644 

assumed to be valid also under future climates, with a higher degree of confidence. Moriasi et al., 645 

(2016) also stressed that it is very important to ensure that the calibration period captures dry, average 646 

and wet years to ensure that parameter values obtained are representative of the study area climate. 647 

Our SA results further imply the importance of including different irrigation and/or nitrogen 648 

treatments in the calibration process to have more representative parameter sets. 649 

Another insight from our analysis is that parameters related to the previous crop could affect some of 650 

the model outputs of the following crop, suggesting the need to consider the continuous crop rotation 651 

when calibrating the most relevant parameters of both winter wheat and summer maize, especially 652 

when calibrating ETa and/or N leaching. This is in line with the Teixeira et al., (2015) and Kollas et 653 

al., (2015) who recently demonstrated the advantage of simulating continuous crop rotations 654 

compared to single crops and years in New Zealand, particularly under limited growing conditions as 655 

the carry-over effects could affect the growth of the next crop to some degree. 656 

In the end, it is worth mentioning that using a higher threshold will result in a lower number of 657 
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sensitive parameters. This signifies that it would be necessary to examine to which extent the 658 

performance of the DAISY model will be affected with respect to reduction in the number of 659 

influential parameters. 660 

Conclusions 661 

The dependence of process-based models on input parameters makes it particularly important to 662 

understand their effects on model response outputs. The Morris screening analysis used in this study 663 

helped identify the parameters with the greatest impact on the simulated grain yield, grain N content, 664 

cumulated ETa and cumulated N leaching below the root zone of winter wheat and summer maize. 665 

Our application of the Morris method to DAISY successfully tracked changes in sensitivities of the 666 

most influential parameters with model outputs. The sensitivities of most parameters changed 667 

substantially with cropping season, which represented different weather conditions. We also explored 668 

the influence of N fertiliser rates on parameter sensitivities.  669 

Out of 128 parameters, the Morris method identified 34 parameters to be most influential for the 670 

simulation of investigated model output. These parameters mainly cover processes associated to crop 671 

phenology, crop photosynthesis, assimilate partitioning, and root growth. The parameters associated 672 

to soil hydraulics had major effect on winter wheat outputs and exhibits considerable influence on 673 

the cumulative N leaching simulations and the water balance through their effects on the cumulative 674 

ETa, as well as on the simulation of crop yield. Their effect on maize yield and grain N content, 675 

however, was only apparent under hot and dry conditions suggesting that greater attention should be 676 

paid to soil hydraulic parameters when the model is evaluated under dry weather and/or deficit water 677 

conditions. The remaining 94 parameters only showed minor sensitivity. The large number of 678 

parameters of minor importance indicates that the DAISY model could be simplified. 679 

The parameterisation of the previous crop was shown to substantially affect cumulative N leaching 680 

of the following crop as well as crop yield and grain N content depending on whether the cropping 681 

season is dry or wet suggesting the importance of considering crop rotations especially when N 682 

leaching is the target output. Ranking and relevance of most influential parameters hence depended 683 

on weather conditions. Conversely, parameter rankings were shown to be consistent across N input 684 

treatments when the amounts of N exceeds crop requirements for maximum grain yield. 685 

The SA presented here has provided a deeper insight into how those sensitivities change depending 686 

on the considered crop, model output and weather condition combinations. The application of the 687 
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Morris method has considerably improved the understanding of the complex DAISY model and 688 

enabled an extensive insight into the model response under limited conditions in the NCP. 689 

Furthermore, the obtained results will considerably accelerate the calibration process of the DAISY 690 

model when used in the NCP. Nevertheless, it should be noted that the most sensitive parameters 691 

highlighted in this study might differ substantially if the model is used in different soil and weather 692 

conditions. However, we believe that the developed RDAISY toolbox will serve as a basis for 693 

following sensitivity analysis of DAISY. The primary functions developed for RDAISY are not 694 

limited to the DAISY model, besides they could be readily applied to process-based models that 695 

consider text files as inputs. These functions can also serve as a basis to implement automatic 696 

calibration for the DAISY model by taking advantage of R’s extensive optimisation packages. 697 

 698 
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Annex A 1018 

 1019 

Table A.1. List of input parameters considered in the sensitivity analysis. 1020 

No. Parameter Name Nominal Value Units Description 

Crop parameters*    

1 DSRate1 0.026 (0.031) - Development rate in the vegetative 

stage 

2 Tbase1 8 (4) °C Development base temperature 

during vegetative stage 

3 Topt1 30.5 (21) °C Development optimum temperature 

during vegetative stage 

4 Tmax1 37.3 (31) °C Development maximum 

temperature during vegetative stage 

5 DSRate2 0.03 (0.046) - Development rate in the 

reproductive stage 

6 Tbase2 8 (9.2) °C Development base temperature 

during reproductive stage 

7 Topt2 26.4 (20.7) °C Development optimum temperature 

during reproductive stage 

8 Tmax2 36 (35.4) °C Development maximum 

temperature during reproductive 

stage 

9 Fm 6 (5) g CO2 m
-2/h Maximum assimilation rate 

10 Qeff 0.04 (0.05) g CO2 h
-1/W Quantum efficiency at low light 

11 PhotTopt1 25 (10) °C Photosynthesis optimum 

temperature 

12 PhotTopt2 35 (25) °C Photosynthesis optimum 

temperature 

13 PhotTmax 45 (45) °C Photosynthesis maximum 

temperature 

14 DSLAI05 0.13 (0.15) - DS at CAI=0.5; initial phase 

15 SpLAI 0.03 (0.022) (m2/m2)/(g 

DM/m2) 

Specific leaf weight 

16 LeafAIMod 1 (1) - Specific leaf weight modifier 

17 PARext 0.6 (0.6) - PAR extinction coefficient 

18 IntcpCap 0.5 (0.5) mm Interception capacity 

19 EpCrop 1.15 (1.15) - Crop coefficient 

20 EpFacDS 1 (1) - Crop coefficient modifier 

21 PenPar1 0.25 (0.25) cm/°C/d Penetration rate coefficient 

22 PenPar2 4 (4) °C Penetration rate threshold 

23 MaxPen 120 (150) cm Maximum penetration depth 

24 MxNH4Up 2.5 10-7 (2.5 10-7) g/cm/h Maximum NH4 uptake per unit 

root length 

*The first entry is the nominal value for maize. Nominal values for winter wheat are given between 1021 

parentheses. 1022 

 1023 
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Table A.1. Continued. 1024 

No. Parameter Name Nominal Value* Units Description 

25 MxNO3Up 2.5 10-7 (2.5 10-7) g/cm/h Maximum NO3 uptake per unit 

root length 

26 Partit 1 (1) - Assimilate partitioning 

27 r_Root 0.015 (0.015) - Maintenance respiration 

coefficient, root 

28 r_Leaf 0.016 (0.016) day-1 Maintenance respiration 

coefficient, leaf 

29 r_Stem 0.01 (0.01) day-1 Maintenance respiration 

coefficient, stem 

30 r_SOrg 0.01 (0.01) day-1 Maintenance respiration 

coefficient, storage organ 

31 ShldResC 0.35 (0.4) - Capacity of shielded reserves 

(fraction of stem dry matter) 

32 ReMobilDS 1 (1.5) - Remobilization of stem reserves, 

Initial DS 

33 ReMobilRt 0.1 (0.03) day-1 Remobilization, release rate 

34 ExfoliationFac 0.9 (0.7) - Exfoliation factor 

35 LfDR 1 (1) - Death rate of Leafs 

36 CrpNRoot 1 (1) - N-concentration in roots 

37 CrpNLeaf 1 (1) - N-concentration in leaves 

38 CrpNStem 1 (1) - N-concentration in stem 

39 CrpNOrg 1 (1) - N-concentration in storage organ 

Soil parameters**    

40 BD 1.44;1.49; 1.55 g/cm3 Soil bulk density 

41 clay 0.07; 0.12; 0.35 % Clay fraction 

42 silt 0.86; 0.84; 0.55 % Silt fraction 

43 humus 0.5; 0.2; 0.1 % Humus content of the soil 

44 CN 11; 11; 11 g C/g N Soil C/N ratio 

45 SAT 43.3; 43.1; 45.1 % Soil water content at saturation 

46 FC 35.6; 33.8; 37.1 % Soil water content at field capacity 

47 WP 9.6; 13.9; 14.4 % Soil water content at wilting point 

48 Ksat 3.9; 1.8; 0.08 cm/h Soil water conductivity at 

saturation 

49 SOMs_turnRate 0.00000179 h-1 Turnover rate of the slow SOM 

pool 

50 SOMf_turnRate 0.00000583 h-1 Turnover rate of the fast SOM pool 

51 SOMs_CN 6.7 
 

C/N ratio of slow SOM pool 

52 SMBs_turnRate 0.00000771 h-1 Turnover rate of the slow SMB 

pool 

*The first entry is the nominal value for maize. Nominal values for winter wheat are given between 1025 

parentheses. 1026 

**the three values given are the values corresponding to the three soil layers, 0-35cm, 35-90cm and 1027 

90-200cm, respectively. 1028 

 1029 
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Table A.1. Continued. 1030 

No. Parameter Name Nominal Value* Units Description 

53 SMBs_maint 0.000075 h-1 Maintenance respiration of the 

slow SMB pool 

54 SMBf_CN 6.7 - C/N ratio of the slow SMB pool 

55 SMBf_turnRate 0.000416667 h-1 Turnover rate of the fast SMB pool 

56 SMBf_maint 0.000416667 h-1 Maintenance respiration of the fast 

SMB pool 

57 OMinit 5000 kg C/ha/year Initial organic matter content 

58 KNH4 0.5 day-1 Maximal immobilization rate for 

ammonium 

59 KNO3 0.5 day-1 Maximal immobilization rate for 

nitrate 

60 RMax 0.5 g DM/m2/h Maximal speed of AOM 

incorporation 

61 Resp 0.5 - Fraction of Carbon lost in 

respiration 

62 F_turnRate 0.002 (0.002) h-1 Turnover rate of the fast AOM 

pool 

63 S_CN 90 (90) - C/N of the slow AOM pool 

64 S_turnRate 0.0002 (0.0002) h-1 Turnover rate of the slow AOM 

pool 
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Table 1. Weather and irrigation data for winter wheat and summer maize growing seasons at 

the NCP during the study period. 

Winter wheat   Summer maize 

Season Tmean* ETo P I ETo-P  Tmean ETo P I ETo-P 

2000-01 6.2 395 86 200 309  24.3 311.1 215.6 150 95.5 

2001-02 7.2 363 107 373 256  23.9 312.3 263.4 325 48.9 

2002-03 5.0 297 156 233 141  23.5 340.2 292.6 187 47.6 

2003-04 6.0 396 121 140 275  22.2 350.4 434.4 0 -84.0 

2004-05 5.1 448 99 70 349  24.9 426.8 312.5 140 114.3 

2005-06 6.4 490 34 280 456  24.2 372.9 347.2 140 25.7 

*Tmean: Mean temperature (°C); ETo: Reference evapotranspiration (mm); P: Precipitation 

(mm); I: Irrigation (mm) 

 

 

Table 2. Hydrological properties of the soil profile used in the DAISY model for Luancheng 

Experimental Station (Yang et al., (2006)) 

 Soil layer (cm) 

0-35 35-90 90-200 

Organic carbon content (%) 0.5 0.2 0.1 

Bulk density (g cm-3) 1.44 1.49 1.55 

Soil water at saturation (cm3 cm-3) 0.433 0.431 0.451 

Field capacity (cm3 cm-3) 0.356 0.338 0.371 

Permanent wilting point (cm3 cm-3) 0.096 0.139 0.144 

Clay (<0.002 mm) content (%) 7.0 12.0 35.0 

Silt (>0.002 and <0.05 mm) content (%) 86.0 84.0 55.0 

 

Table 3. Top-down concordance coefficients (TDCC) obtained for the four fertiliser treatments 

from the comparisons between parameter rankings obtained across cropping seasons.  

 

   Summer Maize   Winter Wheat 

Treatment  Yield Grain N ETa N Leaching  Yield Grain N ETa N Leaching 

N200  0.88 0.92 0.90 0.92  0.89 0.92 0.83 0.93 

N400  0.87 0.88 0.89 0.93  0.89 0.90 0.82 0.93 

N600  0.87 0.87 0.89 0.92  0.89 0.90 0.82 0.92 

N800  0.87 0.86 0.89 0.92   0.89 0.90 0.82 0.92 

 

 



Fig 1. Cardinal temperatures for the effect of temperature on (a) crop development and (b) crop 

photosynthesis. 

 

Fig. 2. Flow chart demonstrating the interactions between RDAISY toolbox and the DAISY 

model. 

 

Fig. 3. An example of a template file for crop input file with markers (a), and their 

replacement by default values (b). The example is shown for maize. 

 

Fig. 4. Average Morris mean effects (m*) and spread (s) for different conditions. The labels of 

the first 10 most sensitive parameters are shown and their abbreviations are given in Table A1 

(Annex A). 

 

Fig. 5. Number of most influential parameters for winter wheat and summer maize. 

Fig. 6. Morris sensitivity analysis results for all DAISY output responses for the N400 

treatment during the wet and dry seasons 2003-04 and 2004-05, respectively. Morris distance 

(𝜖) indicates the importance of each parameter. Parameter abbreviations on the y-axis are given 

in Table A1 (Annex A). 

Fig. 7. The Venn diagram for crop and soil parameters indicating the number of shared 

important parameters between all DAISY output responses for summer maize and winter 

wheat. The results are shown for the N400 treatment during the season 2003-04. 

Fig. 8. Box-plots of Morris distance showing the sensitivity of all key output variables to crop 

parameters, calculated over all six cropping seasons. The results are shown for winter wheat 

under the N400 treatment. 

 

Fig. 9. The 10 highest ranked parameters of all key output variables, calculated for each 

cropping season. The ranks are shown for winter wheat under the treatment N400. The 

parameters were ranked from 1 to 10 based on the ascending order of the Morris sensitivity 

distance. (W) and (M) denote crop parameters for winter wheat and preceding maize crop, 

respectively. The numbers represent the ranks for each parameter. 

Fig. 10. Proximity of Morris sensitivity distance represented in a common space using multi-

dimensional scaling, displaying the effect of different fertilizer treatments and years on 

sensitivity analyses results of summer maize and winter wheat yield. 
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