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ABSTRACT
We report on a novel use of metamorphic relations (MRs) in ma-
chine learning: instead of conducting metamorphic testing, we
use MRs for the augmentation of the machine learning algorithms
themselves. In particular, we report on how MRs can enable en-
hancements to an image classification problem of images containing
hidden visual markers (“Artcodes”).

Working on an original classifier, and using the characteristics
of two different categories of images, two MRs, based on separa-
tion and occlusion, were used to improve the performance of the
classifier. Our experimental results show that the MR-augmented
classifier achieves better performance than the original classifier,
algorithms, and extending the use of MRs beyond the context of
software testing.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; • Computing methodologies → Supervised learn-
ing by classification; Bagging;
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1 INTRODUCTION
Over the past two decades, machine learning techniques have been
increasingly adopted by the research community to solve a range
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of practical problems. For researchers in the machine learning and
software testing communities, building accurate learning models
and verifying their quality are major topics. Due to the nature of
machine learning programs, test oracles (mechanisms to determine
if software behaviour is correct) are generally hard to define. Meta-
morphic testing (MT) has been used to alleviate the oracle problem
in testing machine learning software [25, 31, 32]. Machine learning
techniques have also been used to identify metamorphic relations
(MRs) [17]. MT has been used to further analyse classification re-
sults of machine learning systems [4].

In the literature, MRs have been used in software verification
and validation, and to assess the quality of software [34] — in this
paper, we report on expanding the existing role of MRs to use as a
kind of post adjustor to a machine learning program, to build a more
accurate learning model. Compared to the reported use of MT in [4],
in this paper, MR is used to adjust the both the inputs and outputs
of a machine learning system. To the best of our knowledge, this
is the first time MRs have been extended to such a use. Using an
example of the Artcodes classification problem [33] — similar to QR
codes [30], Artcodes are visual codes where bespoke designs can
be scanned — we identify MRs for each category of inputs, and use
them to augment the original classifier, improving its performance.

The rest of this paper is organised as follows. Section 2 gives
a brief explanation of metamorphic relations. Section 3 describes
the Artcode classification. Section 4 presents the details of the
MR-augmented classifier. The experimental evaluation of the MR-
augmented classifier’s performance is given in Section 5. Finally,
Section 6 concludes the paper.

2 METAMORPHIC RELATIONS
In software testing, an inability to determine if software is behaving
correctly, or producing the correct output, is called the oracle prob-
lem [1]. Metamorphic testing (MT) is an approach that can alleviate
the oracle problem [6, 10], MT has been investigated and adopted by
a growing number of researchers and practitioners [7, 16, 20, 21, 28],
successfully uncovering software problems, even in extensively
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Figure 1: Illustration of the components of an Artcode.

tested systems [8, 9, 19]. Central to MT is a set of metamorphic
relations (MRs), which are expected relations among the inputs and
outputs of multiple executions of the intended program’s function-
ality. Instead of examining the behaviour or output for an individual
input, MT checks the SUT against selected MRs, with violations of
an MR indicating the presence of a fault.

An example MR for a database management system is that the
system should return the same results for a query with the search
condition “A and B” and a query with the search condition “B and
A”.

3 ARTCODE CLASSIFICATION
Artcodes1 (Figure 1) are human-designable topological visual mark-
ers, developed based on work in D-touch [11]. These computer-
readable visual codes are embedded into images, allowing a designer
to create codes that are machine-readable and meaningful to hu-
mans. They combine the visibility of the QR codes and the secrecy
of these “invisible” markers [2, 23]. As an augmented reality artefact,
Artcodes can adorn everyday objects with decorative patterns that
enhance their beauty while triggering digital interactions when
scanned — interested readers are referred to Benford et al. [3] for
more details of Artcodes applications.

An Artcode includes two parts: a recognisable foreground and
some background imagery, as shown in Figure 1. The recognisable
part of an Artcode contains a closed boundary that is split into
several regions (usually five), with each region containing one or
more blobs – solid objects disconnected from the region edge, as
shown in Figure 2. Additionally, background imagery can be added
to the core part of an Artcode to enhance the aesthetics, but only if
the background does not break the Artcode’s topological structure.
Moreover, Artcodes allow for redundancy, where multiple Artcodes
with the same topology (but different geometry) can appear in an
Artcode image. More information about Artcodes can be found, for
example, in the work of Meese et al. [23].

1https://www.artcodes.co.uk/

As can be seen from the examples in Figures 2 and 3, visually,
there is no obvious difference in geometrical shape or appearance
between Artcodes and non-Artcodes. The geometrical variations
associated with Artcodes are very different to, and more relaxed
than, those of other well-known markers, such as QR codes [30],
or ARTags [13]. Identification of the presence of Artcodes is not
possible through visual inspection alone (as may be the case for QR
codes). To trigger people’s scan action and read the digital materials
embedded in the Artcodes, it is necessary to detect their presence
in the images or video sequence. This issue is referred to Artcode
classification or detection [33].

Artcode classification is a binary classification problem, classi-
fying an input image or video sequence as either containing an
Artcode or not — labelled Artcode or non-Artcode classes, in this
study. The Artcode class follows the topological definition of Art-
codes, whereas the non-Artcode class comprises images that do not
conform to these topological rules.

4 AUGMENTED CLASSIFIER
Typically, the first step with conventional classifiers involves creat-
ing feature vectors that distinctively describe each class. Machine
learning models can then be used to predict the class of individual
inputs. To date, to the best of our knowledge, no attempt has been
made to make use of the metamorphic properties or MRs inherent
in classification problems to enhance or rectify the classification
outputs. Inspired by the various successes of MT, we examined the
Artcode classification domain to identify MRs which we then used
to augment and enhance the original classifier.

The MRs were identified through observation of the impact on
classification results among different classes (or labels, e.g. Artcode
or non-Artcode) when feeding in predefined inputs. In particular,
the MRs allowed us to express probabilistically the likelihood of a
modified input beingArtcode or not based on the original classifier’s
classification (after performing the operations). This use of MRs
in classification is different from that usually found in MT, which
examines for MR violations to decide whether or not faults exist
in the SUT; in contrast, our use of MRs helps make a probabilistic
classification decision as to whether the input is an Artcode or not.

In the rest of this section, we describe the non MR-augmented
classifier (the original classifier) that we used for Artcodes clas-
sification. We then explain how to augment this classifier with
metamorphic relations identified from the classification model and
input categories.

4.1 Original classifier
For Artcode classification, we built a classifier based on the shape
of orientation histograms (SOH) [33] of input images and ran-
dom forests [5]. The classifier makes use of SOH feature vectors,
which describe the symmetry and smoothness of the orientation
histogram [15] of input images. Random forests were then trained
using these feature vectors.

SOH is constructed from the orientation histogram, and was
first proposed by Freeman et al. [15] for hand gesture recognition.
The orientation histogram is computed using steerable filters [14],
where orientations with weak magnitude (below the predefined
threshold) are suppressed. Unlike previous feature sets used for
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Figure 2: Artcode examples from the Artcodes Dataset.

Figure 3: Non-Artcode examples from the Artcodes Dataset

(a) Separation masks (b) Occlusion masks

Figure 4: Separation and occlusion masks

describing the geometry or structure of fixed objects, SOH is used to
describe the topological structure of images through analysis of the
symmetry and smoothness of the orientation histogram. The SOH
is constructed by quantifying these two aspects of the orientation
histogram using similarity measurements such as procrustes [24]
or Chi-squared (χ2) distance [26].

After calculation of the SOH feature vector of each image, ran-
dom forests were trained and used to predict the newly input image.
As an ensemble learning method, a random forest has a number
of attractive features. It is accurate, robust, and interpretable, and
with little tuning required [5]. The effect of overfitting is seldom
an issue, and it only requires a small amount of parameter tuning
– the original classifier only tunes one parameter, the number of
decision trees (nTrees) in the forests. Therefore, it is an appropriate
method to be used in Artcode classification.

4.2 Metamorphic relations
As described in Section 3, Artcodes are composed of a number of
connected regions. Each region is an independent entity that con-
tains several solid blobs, and therefore has a complete topological
structure. Additionally, an Artcode image might contain several
independent Artcodes, which means that parts of Artcode images
are likely to be complete regions or Artcodes themselves. In other
words, parts of Artcodes are “simplified” Artcodes which will be
classified as “Artcodes” by the original classifier with a relatively
high probability. On the other hand, non-Artcode images (ideally)
should not have those characteristics: parts of non-Artcode images
do not have the predefined topology, and they will be treated as
“non-Artcodes” by the original classifier. Therefore, parts of Artcode
images are more likely to be classified as “Artcodes” than parts of

non-Artcode images. Based on this observation, and the character-
istics of the original classifier, we identified two MRs: Separation
and Occlusion.

MR1-Separation. Separation involves splitting the input im-
age uniformly into a number of sections, or blocks. For example,
Figure 4(a) presents separation masks to generate four uniform
blocks by intersecting them with input images. This MR is based on
the observation that the blocks of Artcodes could be classified as
“Artcode” with a higher probability than the blocks of non-Artcode
images. If we select the number of blocks appropriately, this differ-
ence in the total probability of all blocks may provide more clues
for classification. MR1-Separation can be formulated as:

n∑
i=1

Pr(BiSa ) ≥
n∑
i=1

Pr(BiSn ) (1)

where n is the number of image blocks; Pr() is the probability
to be classified as Artcode by the original classifier; and BiSa

and
BiSn

denote the ith block of the Artcode and non-Artcode image
generated after MR-Separation, respectively.

MR2-Occlusion. Occlusion is similar to Separation, but the
image blocks are not separated uniformly — blocks with overlapped
areas are permitted. As shown in Figure 4(b), four occlusion masks
are provided to intersect with the input image and output the image
blocks outlined by white regions. Based on this, we have:

m∑
i=1

Pr(BiOa
) ≥

m∑
i=1

Pr(BiOn
) (2)

Occluded images generally keep half of the properties of the
input images: half Artcode images have a high probability to be
classified as “Artcode” by the original classifier, occluded images of
non-Artcodes are still as likely to be labeled as “non-Artcode.”

Pr(BiOa
) ≥ Pr(BiSa ) (3)

where m is the number of masks; BiOa
= ∩(Ia ,Mi ) and BiOn

=

∩(In ,Mi ) outputs the overlapped areas of Artcode and non-Artcode
images Ia and In and the ith maskMi ; and BiOa

and BiOn
denote the
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Figure 5: The MR-augmented classifier framework. This framework includes three stages: Follow-up input generation, Pre-
diction, and Rectification. Follow-up input generation involves splitting the input image into blocks based on the two MRs;
Prediction makes predictions of these image blocks using the original classifier; and Rectification involves the calculation of
the total probability (p) of belonging to the Artcode, and then rectifies the predictions of the original classifier on the basis of
the p value and the two predefined thresholds t1 and t2.

ith block of the Artcode and non-Artcode images generated after
MR-Occlusion, respectively.

We next explain how to use these relations to enhance the clas-
sification performance.

4.3 MR-augmented classifier
Unlike most deterministic software, classification is based on statis-
tics, or is learned from prior experience. Given an input, the output
of the classifier is a probabilistic classification of belonging to a
class or not. In other words, after execution of the classifier, we
only learn the probability of an input to be classified as a partic-
ular class or not. Therefore, to enable incorporation of the MRs
described above, we designed an augmented classifier integrating
the identified MRs, and adding an adjustor (or rectifier) to the orig-
inal classifier. As shown in Figure 5, the augmented classifier first
separates the input image into a number of blocks following the
rules of MR1-Separation and MR2-Occlusion, and then predicts
the label for each block using the original classifier, producing the
prediction vector. As defined in Equations 1, 2 and 3, the probability
of each class generated by separation and occlusion is different, and
therefore we give different weights to them, thereby constructing a
weight vector, which has the same dimensionality as the prediction
vector. Given a prediction vector v = (c1, ..., cN ) and weight vector
w = (w1, ...,wN ), where each ci is the predicted class of the ith
block according to the original classifier;wi is the weight assigned
to the ith block; and N is the dimensionality of both vectors (and is
equal to the total amount of blocks in separation and occlusion),
the inner product of v andw (p = v ·w =

∑N
i=1 ci ×wi ) is the prob-

ability of belonging to the Artcode class (p value). The augmented
classifier predicts the class of the input depending on the value of
p and the given thresholds t1 and t2, using the following decision
rules: if p ≥ t2, then it is Artcode; if p < t1, then it is non-Artcode;
otherwise, the input retains the original classifier’s predicted class.

5 EXPERIMENTAL EVALUATION
5.1 Dataset
In order to study the Artcodes classification problem, we created a
dataset containing 47 Artcode and 116 non-Artcode images. The
non-Artcode images (comprising logos, drawings, and graphics)
were all created by humans, and were deliberately selected such
that they would appear very similar to actual Artcode images. This
means that this dataset is very challenging for Artcodes classifi-
cation. Because Artcodes are manually created by designers, the
number of available Artcodes is currently small, but work is ongo-
ing to extend the dataset.

5.2 Cross validation
Cross-validation is a commonly usedmodel validation technique for
assessing how a learning model will generalize to a dataset [12, 18].
One of the main reasons for using cross-validation rather than con-
ventional validation (partitioning the dataset into two sets of 70%
for training and 30% for testing) is that there is not sufficient data
available to partition into separate training and test sets without
losing significant modeling or testing capability. In these cases, a
fair way to properly estimate model prediction performance is to
use cross-validation [29]. We used k-fold cross-validation, which in-
volves randomly partitioning a dataset into k equally-sized subsets,
and keeping one single subset as the validation data for testing the
trainedmodel, and using the remainingk−1 subsets as training data.
The cross-validation process is then repeated k times (the folds).
Considering the limited number of samples in the Artcodes dataset,
a 5-fold cross-validation was used to ensure sufficient training and
testing set sizes for the performance evaluation.

5.3 Experimental setting
We implemented an augmented classifier based on the framework
shown in Figure 5 using Matlab, and evaluated its performance
using cross-validation on the Artcodes dataset. As there is no ex-
isting research on Artcodes classification, we only compare the
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Figure 6: Performance comparison between the original and MR-augmented classifier with different nTrees values and t1, t2 =
0.2.

Table 1: Confusion matrix

Predicted
Artcode non-Artcode

Actual Artcode True Positive (TP) False Negative (FN)
non-Artcode False Positive (FP) True Negative (TN)

MR-augmented classifier with the original classifier presented in
Section 4.1. Because random forests are used in the classifier, the
performance exhibits a certain level of variation on each execution
due to the random variable selection from the feature vector. Ten
runs of cross-validation were therefore conducted to calculate the
average performance.

Considering the imbalance of the dataset (withmore non-Artcode
images) we selected five performance metrics to provide an infor-
mative view of the augmented classifier’s performance: Precision,
Reall, Accuracy, F2 measure, and MCC (Matthews correlation coeffi-
cient) [22]. These five measures are calculated based on a confusion
matrix (Table 1). A confusion matrix, also known as an error matrix,
is a specific table layout that allows visualization of the performance
of an algorithm — each row represents the instances in an actual
class while each column represents the instances in a predicted
class (or vice versa) [27].

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

Accuracy =
TP +TN

TP + FP + FN +TN
(6)

Accuracy (as defined in Equation 6) is the overall proportion of
correct predictions, for both the Artcodes and non-Artcodes class,
and is a simple way of describing a classifier’s performance on
a given dataset. However, Accuracy is sensitive to the dataset’s
imbalance. F2 measure is a special case of the Fβ measure:

Fβ =
(1 + β2) · Precision · Recall
β2 · Precision + Recall

(7)

where β = 2. As shown in Equations 4 and 5, Precision is the
proportion of true positives among the all predicted positives, and
Recall is the proportion of true positives over the total amount
of actual positives. The F2 measure uses a weighted average of
Precision and Recall to evaluate the classification effectiveness,
giving twice as much importance to recall as to precision.

Compared with Accuracy, the F2 measure provides more insight
into the performance of a classifier, but can be sensitive to data dis-
tributions. MCC (Equation 8) is in essence a correlation coefficient
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Figure 7: Performance comparison between the original and MR-augmented classifier with different nTrees values and t1 =
0.15, t2 = 0.3.

between the observed and predicted classifications, incorporating
true and false positives and negatives.

MCC =
TP ·TN − FP · FN√

(TP + FP ) (TP + FN ) (TN + FP ) (TN + FN )
(8)

MCC is generally regarded as one of the best measures for clas-
sifier performance evaluation [27], and remains effective even if
the dataset is imbalanced. The tuning parameters — the number of
decision trees (nTrees) in the random forests, and the thresholds t1
and t2 — were studied in the experiment, as was their impact on
the classifier.

The values of t1 and t2 are strongly related to the given values
in the weight vector, and, according to Equation 3, the weights of
blocks generated by Occlusion are greater than those for Separation.
We separated the input images uniformly into four blocks, and
overlapped with four occlusion masks, and thus had 8-dimensional
prediction and weight vectors. Assuming we assign x to Pr(BiOa

)

and Pr(BiOn
) and y to Pr(BiSa ) and Pr(BiSn ) (x > y), as the total

amount of weight vector is 1, then we have x + y = 0.25, (x > y).
Any combinations of values of x and y satisfying this condition
can be used as the weights. For computational simplicity, in this
experiment, we assigned both Pr(BiSa ) and Pr(BiSn ) a value of 0.1,
and Pr(BiOa

) and Pr(BiOn
) both a value of 0.15, which gave the

resulting weight vector:

w = (0.1, 0.1, 0.1, 0.1, 0.15, 0.15, 0.15, 0.15)

To simplify calculations, we also used 1 and 0 in the prediction
vector p to represent the “Artcode” and “non-Artcode” classes, re-
spectively.

5.4 Experimental results
All performance metric values reported are the average values
calculated from ten executions of k-fold cross-validation [18]. As
explained in Section 5.2, because of the limited number of samples
in the Artcodes dataset, a 5-fold cross-validation was used to en-
sure sufficient training and testing set sizes for the performance
evaluation. Two combinations of the thresholds t1 and t2 combined
with different numbers of nTrees were used to study the classifier’s
tuning parameters. In all graphs in Figures 6 and 7, higher values
indicate better performance.

The impact of nTrees on the augmented classifier’s performance
is illustrated in Figures 6 and 7, which show a stable performance
across different numbers of nTrees in terms of the five evaluation
metrics. This means that the augmented classifier is not sensitive
to changes in the number of nTrees, a property it inherits from the
original classifier.
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For various numbers of nTrees and fixed thresholds t1 and t2, the
augmented classifier outperforms the original classifier in terms of
all five metrics. The augmented classifier performs better in terms
of both precision (Figures 6(a) and 7(a)) and recall (Figures 6(b) and
7(b)) than the original classifier, with an average of about 10-15%
improvement for both threshold combinations. As shown in Fig-
ures 6(c) and 7(c), for both threshold combinations, the augmented
classifier has slightly better Accuracy than the original classifier,
about 2-3% improvement on average. Although the MR-augmented
classifier shows improved performance with the Artcodes class,
the small percentage of artcodes in the dataset does not contribute
strongly to the overall evaluation of Accuracy, which is influenced
by both true positives and true negatives.

In contrast, F2 measure and MCC are more informative mea-
sures of overall performance, even when the dataset is imbalanced.
As shown in Figures 6(d)(e) and 7(d)(e), the augmented classifier
obtains better values (approximately 15-20% improvement) than
the original for different numbers of nTrees, showing an overall
improved performance of the MR-augmented classifier. However,
due to the imbalance of the dataset, the MCC values for the two
classifiers are relatively low.

Overall, the MR-augmented classifier achieves improved per-
formance according to the five evaluation metrics. This improved
performance is sensitive to the threshold values for t1 and t2, but
not to nTrees. The impact of nTrees on the classifier’s performance
is relatively small, but larger numbers of nTrees require more time
to train the classifier and make the classification predictions. Thus,
careful selection of the tuning parameter values is necessary to
ensure the performance improvement of the original classifier.

6 CONCLUSION
In this paper, we have reported on a study using metamorphic rela-
tions (MRs) to improve binary classification in machine learning.
To the best of our knowledge, this is the first use of MRs in such
an application. Two MRs were identified based on properties of
the input data and the usage of the classification model, and an
augmented classifier using these two MRs was designed to show
the applicability of the technique. Experimental evaluation showed
the performance improvement across certain aspects of the orig-
inal classifier, demonstrating the potential to apply MT theories
and techniques to machine learning applications. The experimental
evaluation also showed the importance of the tuning parameters
t1 and t2 on the performance of the augmented classifier. Our fu-
ture work will include further examination of other parameters,
including the number of blocks in the separation and occlusion
MRs, the given values of the weight vector, and the adaptive values
of thresholds t1 and t2.

Although this has been a preliminary study, the results are
very promising, and clearly demonstrate the potential for MR-
augmentation of classifiers. More practical and theoretical work
will be necessary to fully investigate this new research direction,
including more case studies examining application of MRs to other
well-known machine learning problems, such as face and object
detection.
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