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INTERPRETIVE SUMMARY 1 

DHI data and insemination outcome, Hudson 2 

Early lactation milk constituent concentrations are commonly used as a proxy for energy 3 

balance in dairy herds; this study aimed to evaluate associations between these and 4 

insemination outcome during early lactation (whilst accounting for other routinely recorded 5 

factors). A number of milk constituent predictors demonstrated statistically significant 6 

associations with the outcome, but accounted for a very small proportion of the observed 7 

variation in herd-year conception risk. Around 40% of this variation was accounted for by a 8 

herd-level random effect, suggesting there are unmeasured or unmeasurable factors at herd 9 

level which are highly influential in determining conception risk.  10 
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ABSTRACT 24 

Milk constituent concentrations in samples taken during early lactation are often used to 25 

generate proxy measures for energy balance in dairy herds. This study aimed to explore 26 

associations between these and other measures routinely recorded by dairy herd improvement 27 

schemes and insemination outcome, with an emphasis on the likely predictiveness of such 28 

measures for conception risk (the proportion of inseminations that are successful) at herd level. 29 

Data from 312 United Kingdom (UK) dairy herds were restructured so that each unit of data 30 

represented an insemination at less than 100 DIM. Milk constituent concentrations from first 31 

and second test day (corrected for the effects of season and DIM at sampling) were used as 32 

potential predictors of insemination outcome in a logistic regression model. Other predictors 33 

included representations of milk yield and other information routinely collected by DHIAs; 34 

random effects were used to account for clustering at cow and herd level. The final model 35 

included a large number of predictors, with a number of interaction and non-linear terms. The 36 

relative effect sizes of the measures of early lactation milk constituent concentrations were 37 

small. The full model predicted just under 64% of observed variation in herd-year conception 38 

risk (i.e. the proportion of inseminations that were successful in each herd in each calendar 39 

year): however, around 40% was accounted for by the herd-level random effect. The predictors 40 

based on early lactation milk constituent concentrations accounted for less than 0.5% of 41 

observed variation, representations of milk yield (both overall level of yield and early lactation 42 

curve shape) for around 7%, with the remaining 15% accounted for by DIM at insemination, 43 

parity, inter-service interval, year and month. These results suggest that early lactation milk 44 

constituent information is unlikely to predict herd conception risk to a useful extent. The large 45 

proportion of observed variation explained by the herd-level random effect suggests that there 46 

are unmeasured (in this study) or unmeasurable factors which are consistent within herd and 47 

are highly influential in determining herd conception risk. 48 
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INTRODUCTION  52 

It is widely recognised that improving reproductive performance has great scope to improve 53 

the profitability of an individual dairy unit, and has a role in securing the economic and 54 

environmental sustainability of the industry as a whole (Archer et al., 2015). Broadly, a herd’s 55 

overall level of reproductive performance is determined by two factors. The first is the 56 

proportion of eligible cows coming into estrus and being inseminated per unit time (commonly 57 

termed submission rate [SR], and dependent on cow cyclicity, and in herds using artificial 58 

insemination also on estrus detection or cycle manipulation). The second is the proportion of 59 

inseminations which lead to a pregnancy (variously known as pregnancy rate, conception rate 60 

and conception risk [CR]). In the United Kingdom (UK), as in many other dairying nations, 61 

the medium term trend has been a decline in overall reproductive performance (Norman et al., 62 

2009; Hudson et al., 2010; Morton, 2011). Efforts to mitigate or reverse this decline have 63 

mostly focused on improving SR, as this tends to much more amenable to manipulation, and 64 

for most herds there is substantial scope for improvement. There is some evidence that these 65 

strategies have been at least partially successful (Hanks and Kossaibati, 2016), and as SRs 66 

increase the relative importance of CR becomes greater. 67 

A wide range of factors associated with the outcome of an insemination have been described; 68 

one of the most widely explored and likely most important is early lactation energy balance. A 69 

period of negative energy balance (NEB, defined as daily energy output in excess of energy 70 

intake) is considered to be normal in modern early lactation dairy cows (Jorritsma et al., 2003), 71 

but the severity and duration of NEB has been shown to affect CR during early lactation via a 72 
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number of physiological pathways (Villa-Godoy et al., 1988; Butler, 2001; Wathes et al., 2007; 73 

Leroy et al., 2008a). Monitoring early lactation energy balance is therefore likely to be 74 

important in maximising a herd’s CR, as it will allow problems to be identified early, and 75 

strategies to improve EB to be put in place. A number of monitoring approaches exist, with 76 

body condition scoring and evaluation of blood metabolites (e.g. beta-hydroxybutryate and 77 

non-esterified fatty acid) concentrations amongst the most popular. However, these require 78 

time and incur cost, so alternative monitoring approaches are attractive. 79 

Milk constituent concentrations (from routinely collected dairy herd improvement/milk 80 

recording samples) in early lactation have been used as proxy measures of energy balance 81 

(Coulon and Rémond, 1991; de Vries and Veerkamp, 2000), with the ratio of butterfat to 82 

protein concentration (fat:protein ratio [FPR]) being the most widely reported. Although FPR 83 

has been associated with reduced fertility (Heuer et al., 1999; Loeffler et al., 1999; Podpečan 84 

et al., 2008) and increased risk of early lactation disease (Geishauser et al., 1998; Heuer et al., 85 

1999), there is little evidence to suggest that it is a useful direct predictor of energy balance 86 

(Duffield et al., 1997). A study using a large dataset derived from UK herds (Madouasse et al., 87 

2010) found that a model including several measures of early lactation milk constituent 88 

concentration and yield was predictive of calving to conception interval, but that FPR at either 89 

first or second test day of lactation had no significant association with this outcome when the 90 

other predictor variables were included.  91 

The objective of this study was to explore associations between the information routinely 92 

recorded as part of dairy herd improvement or milk recording schemes and the outcome of 93 

early lactation inseminations, with an emphasis on the potential predictiveness of such 94 

measures for conception risk at herd level. 95 

 96 
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MATERIALS AND METHODS 97 

Data Collection and Restructuring 98 

A convenience sample of routinely recorded management data was collected from 312 dairy 99 

herds across England and Wales; data collection and initial audit is previously described in 100 

Hudson et al. (2012). Data from lactations beginning between 1999 and 2008 were used, and 101 

lactations were only included where a milk recording test day occurred within both intervals 102 

5-35 days in milk (DIM) and 36-65 DIM. These intervals were considered to represent typical 103 

first and second test days of a lactation. Where there was more than one recording event within 104 

an interval, the nearest recording to the centre of the interval was selected. At each test day, 105 

daily milk yield and concentrations of protein, butterfat and lactose were recorded. In order to 106 

account for the possibility that milk constituent concentrations and yields would be affected by 107 

DIM at time of sampling (such that a daily yield of 45 litres at a first test day at 10 DIM was 108 

treated differently to the same yield at a first test day at 30 DIM) and day of the year, milk 109 

recording data were standardised using the approach described in Madouasse et al. (2010). 110 

Briefly, continuous-outcome linear regression models were constructed using the complete 111 

dataset, taking each milk recording variable in turn as the outcome. Polynomial terms (order 112 

<=6) representing DIM and trigonometric functions representing day of the year at time of 113 

sampling were used as predictor variables, and models built using forward selection. These 114 

models were then used to estimate an expected value for each variable at each milk recording 115 

event in the dataset (given the DIM and day of year of that recording). The expected values for 116 

each lactation were then used to standardise the observed values by subtracting expected from 117 

observed and dividing by standard deviation, such that the standardised values for each variable 118 

had mean 0 and standard deviation 1 across the dataset. In order to illustrate the changes in 119 

these variables associated with DIM and stage of year at time of sampling, these models were 120 
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used to generate predictions across the range of DIM (5-65) and day of year (1-365) and the 121 

predictions represented as 3-dimensional surface plots. 122 

The dataset was then restructured such that each unit of data represented an insemination at up 123 

to 100 DIM, with a total of 134,520 inseminations from 77,803 cows in 312 herds. Potential 124 

explanatory variables at lactation level (including those related to first and second milk 125 

recording test days) were replicated and aligned with each insemination from the same 126 

lactation. Additional insemination level variables were also included; a binary variable was 127 

used to represent the outcome of the insemination. Inseminations were eligible for inclusion if 128 

they were from parities which ended in either a subsequent calving date or an exit date, and 129 

where herd calving and exit records were available for at least one year after insemination date. 130 

Herd-years were excluded if they failed to meet data quality criteria and/or recorded less than 131 

50 inseminations. Inseminations were classified as successful either if they were followed by 132 

a calving event 266-296 days later (McGuirk et al., 1998, 1999) or if the animal exited the herd 133 

following a positive pregnancy diagnosis. Pregnancy diagnosis results were not used where a 134 

subsequent calving event was recorded. Where multiple inseminations occurred 266 to 296 135 

days before a calving event, the insemination giving a gestation period closest to 282 days was 136 

classified as successful, and the others as unsuccessful. Where a positive pregnancy diagnosis 137 

was followed by an exit from the herd, the last recorded insemination was considered to be 138 

successful unless the pregnancy diagnosis event specifically recorded pregnancy to an earlier 139 

insemination. The potential predictor variables used in model building are shown in Table 1. 140 

Data restructuring and standardisation was carried out using R version 3.0.0 (R Core 141 

Development Team, 2010). 142 

Inter-service interval (number of days since previous insemination) was included as potential 143 

explanatory variable as it was considered plausible that it could influence CR (for example, CR 144 

may be lower where the interval from the previous insemination is very short, potentially 145 
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representing insemination outside of an estrus event). In order to explore the potential 146 

importance of the choice of inter-service interval categories (reflecting the possibility that 18 147 

to 24 days does not represent an appropriate choice of “normal” range, (Remnant et al., 2015; 148 

Blavy et al., 2016), model building was repeated using categories based on a 19 to 26 day 149 

“normal”. This comparison of category choices (18 to 24 day versus 19 to 26 day normal) was 150 

repeated using a dataset comprising inseminations up to 200 DIM (cf 100 DIM for the main 151 

analysis described). 152 

Model construction 153 

A multilevel logistic regression model was built to explore associations between the outcome 154 

(establishment of pregnancy following insemination) and the potential predictors. A 3-level 155 

structure was used to account for the hierarchically clustered structure of the data (with 156 

inseminations nested within cow, which were nested within herds). A 4-level structure (with 157 

lactations as the additional level) was rejected owing to the large number of cows contributing 158 

inseminations from a single lactation. The model took the form: 159 

 Pregijkl ~ Bernoulli(mean= μijkl)  

 
ln (

μijkl

1-μijkl
) =α+β1Xijkl+β2Xjkl+ukl+v𝑙 

(1) 

 vl ~ normal distribution (0, 𝜎𝑣
2) (2) 

 ukl ~ normal distribution (0, 𝜎𝑢
2) (3) 

where i represents a given insemination from lactation j of cow k in herd l; µijkl the fitted 160 

probability of Pregijkl (the outcome insemination i leading to a pregnancy); α the regression 161 

intercept; β1 the vector of coefficients corresponding to the vector of insemination-level 162 

predictors Xijkl; β2 the vector of coefficients corresponding to the vector of lactation level 163 

predictors Xjkl; ukl the random effect to reflect variation between individual cows and vl the 164 
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random effect representing variation between herds, with 𝜎𝑢
2 and 𝜎𝑣

2 the variances of the normal 165 

distributions of the random effects terms representing cow and herd respectively. 166 

Model building was by forward selection, with terms retained in the model if the magnitude of 167 

the estimated coefficient was greater than double the standard error of the estimate. Univariable 168 

associations between the proportion of successful inseminations and each predictor variable in 169 

turn were evaluated, and where this suggested a non-linear pattern a polynomial representation 170 

of that predictor variable was tested in the model. Categorical variables where several 171 

categories had similar parameter estimates were recoded by combining categories for model 172 

parsimony. All possible first order interactions were tested in the model, and retained where 173 

they met the criteria described above, or altered the estimate for at least one other parameter 174 

by at least 10%. For terms relating to early lactation milk records, interactions with the natural 175 

logarithm of DIM at insemination were tested, to allow for the possibility that these have 176 

decreasing strength of association with inseminations further into lactation. All rejected 177 

predictor variables were re-tested in the final model and retained if they met the criteria above. 178 

Model building was carried out in MLwiN version 2.29 (Rasbash et al., 2010), with iterative 179 

generalized least squares used for exploratory model building and Markov chain Monte Carlo 180 

(MCMC) with diffuse prior distributions used over 20,000 iterations for final parameter 181 

estimation (Browne, 2009). Visual assessment of MCMC chain behavior was carried out to 182 

ensure satisfactory convergence had occurred. 183 

In order to evaluate model fit, full posterior predictions were generated for each insemination 184 

using the full MCMC chain for each parameter. The dataset was subset in a variety of ways, 185 

including subsets based on variables included in the model (e.g. subset by parity) and subsets 186 

based on other variables (e.g. subset by month of calving). Model fit was considered acceptable 187 

where the observed CR across a subset of inseminations fell within the 95% coverage interval 188 
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of the predicted posterior distribution for that subset. MCMC chains were exported to R version 189 

3.0.0 for generation and analysis of model predictions. 190 

Illustration of results using posterior predictions 191 

Posterior predictions were also used for out-of-sample predictions, to demonstrate how the 192 

probability of a successful insemination would be expected to vary if one predictor was varied 193 

over a given range while the others were held at their population means. For each milk 194 

recording variable, the range chosen was -2 to 2: as these variables were standardised, this 195 

represented 2 standard deviations either side of the population mean. Line plots were used to 196 

represent each relationship. The same approach was used to illustrate interactions between 197 

predictor variables.  198 

In order to evaluate the proportion of variation in a herd’s CR explained by each element of 199 

the model, the data were subset into herd-years (such that each subset contained all the 200 

inseminations for one herd in one calendar year; herd-years containing less than 50 201 

inseminations were excluded). Different elements of the model (e.g. full fixed and random 202 

effects, fixed effects only, fixed effects for restricted groups of predictors) were used to 203 

generate a predicted CR for each herd-year, which was compared to the observed CR in that 204 

herd year, with the overall relationship presented using scatterplots and Pearson correlation 205 

coefficients. Comparison of r2 values for correlations between each set of predicted herd-year 206 

CRs and the corresponding observed values allowed estimation of the proportion of variation 207 

in a herd’s CR explained by the different model components. 208 

Cross-validation 209 

To evaluate potential predictiveness of the model on new data, cross validation was performed. 210 

This involved subsetting the data randomly (stratified for insemination outcome and herd) into 211 

a training dataset containing 80% of the inseminations, and a testing dataset containing the 212 
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remainder. The training dataset was then used to estimate model parameters (using the same 213 

random effects structure as described above, but using least-squares estimation rather than 214 

MCMC for computational reasons), which were then used to derive predictions for the 215 

inseminations in the test dataset. This process was repeated 10 times (with a different stratified 216 

random split of data into training and testing sets each time), resulting in a set of predictions 217 

twice as big as the original dataset. These predictions were then summarized as mean CR in 218 

each herd-year (excluding those with less than 50 inseminations), which were compared to the 219 

observed CR in each herd-year as described for the main model. 220 

RESULTS 221 

A total of 190,324 inseminations at up to 100 DIM were retrieved from herd-years meeting the 222 

data quality criteria. Of these, 12,655 were excluded as no outcome was determined by the 223 

rules described in the Method section; a further 43,149 were excluded due to other lactation-224 

level data quality issues (most commonly missing test day milk recording information). A 225 

dataset containing 134,520 inseminations was therefore used for the final analysis, of which 226 

53,909 (40%) were determined to have led to pregnancy (by subsequent calving in 227 

approximately 96% of successful inseminations; in approximately 4% the outcome was 228 

determined by a positive pregnancy diagnosis prior to culling). 229 

 Regression planes illustrating the relationship between early lactation milk recording 230 

parameters and DIM/day of year at sampling are shown in Figure 1. Interactive versions of 231 

these plots are available online (https://plot.ly/~cdhudsonx/73/, https://plot.ly/~cdhudsonx/76/, 232 

https://plot.ly/~cdhudsonx/79/, https://plot.ly/~cdhudsonx/67/, https://plot.ly/~cdhudsonx/82/, 233 

https://plot.ly/~cdhudsonx/85/). The concentrations of butterfat, protein and lactose all fell 234 

markedly while milk yield increased over the first 30 DIM. FPR also increased through early 235 

lactation, showing a peak which was earlier and more pronounced than the nadir demonstrated 236 

https://plot.ly/~cdhudsonx/73/
https://plot.ly/~cdhudsonx/76/
https://plot.ly/~cdhudsonx/79/
https://plot.ly/~cdhudsonx/67/
https://plot.ly/~cdhudsonx/82/
https://plot.ly/~cdhudsonx/85/
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by butterfat or protein concentration. Daily milk yields showed a seasonal trend, increasing 237 

through winter to a peak in spring followed by a decline through the summer months. Milk 238 

constituent concentrations tended to show a converse trend (decreasing as daily yield 239 

increased), with butterfat percentage also decreasing sharply in spring. 240 

Parameter estimates for the logistic regression model are shown in Table 2. Of the potential 241 

predictors (see Table 1) based on milk constituent concentrations (standardized for DIM and 242 

day of year at sampling), butterfat, protein and lactose percentages at first test day and protein 243 

and lactose percentages at second test day were significantly associated with the probability of 244 

pregnancy to an insemination (CR). Of these, lactose concentration (at both test days) and 245 

protein concentration at second test day had significant interaction terms with DIM at 246 

insemination (broadly such that the effect of each was greater on inseminations earlier in 247 

lactation). These relationships are illustrated using model predictions in Figure 2. It is worth 248 

noting that these graphs illustrate the direct components of each relationship only, as they show 249 

the relationship between the outcome and one predictor variable after accounting for the effects 250 

of all the other predictor variables in the model. For example, if the same factors influence the 251 

concentration of lactose at both first and second test day in the same direction, the observed 252 

relationship between lactose at first test day and the outcome would be expected to appear 253 

stronger if lactose at second test day was not accounted for. 254 

Associations between milk yield related predictors and the outcome are illustrated using 255 

predictions in Figure 3. There was a different relationship between 305-day lactation yield and 256 

CR for first lactation animals and mature cows; although in each category predicted CR 257 

increased to a peak around 6,000 litres then declined with increasing yield beyond this. For 258 

first lactation animals, the size of the relationship was larger and the peak CR occurred at a 259 

slightly lower yield. Test day yield at both first and second test day was also significantly 260 

associated with CR, and there was a significant interaction between the two test day yield terms. 261 
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For a given level of lactation yield, predicted CR was generally higher where yields at first and 262 

second test day were higher (i.e. where yield increased more quickly after calving). This 263 

relationship was relatively simple where corrected first test day yield was greater than zero (i.e. 264 

yield at first test day was greater than predicted for a test day at that DIM and day of year), but 265 

below zero became more complex. This relationship is illustrated using a predicted regression 266 

plane in Figure 4, and an interactive version is available at https://goo.gl/F35QR9. The 267 

associations between CR and the yield-based predictors were generally much larger than those 268 

with the constituent-based predictors. 269 

Inseminations during the summer months and in later years were associated with lower CR, 270 

and CR increased with DIM although the gradient of this increase became smaller at around 271 

70 DIM. Predicted CR was lowest for parity 1 and highest for parity 2; parities 3 and 4 were 272 

similar to 2. In order to explore this association further, predictors were removed from the 273 

model sequentially and parameters re-estimated. The decrease in predicted CR in parities above 274 

1 was observed where the terms relating to 305-day adjusted lactation milk yield were retained 275 

in the model; where these terms were removed the association changed such that increasing 276 

parity was associated with decreasing CR.  277 

Inseminations at an interval of 18 to 24 days after a previous insemination had a very slightly 278 

higher CR than first inseminations; other categories of inter-service interval (ISI) were 279 

associated with lower CR. Odds of a successful insemination were lowest for ISI less than 18 280 

days, at around 50% lower than for a first insemination. Adoption of ISI categories based on a 281 

19 to 26 day “normal” interval made very little difference to model fit (as measured by deviance 282 

information criterion, (Spiegelhalter et al., 2002)); although when analysis was repeated with 283 

a dataset containing inseminations up to 200 DIM, use of the alternative ISI categories did 284 

improve model fit. 285 

https://goo.gl/F35QR9


14 

 

Figure 5 illustrates the use of model predictions to partition observed variation between herd-286 

year subsets (i.e. the subset of inseminations from each herd in each year) of the data. 287 

Predictions based on the full model, including herd- and cow-level random effects, accounted 288 

for around 64% of the variation in observed herd-year CR; removing the cow-level random 289 

effect made negligible difference to this, while removing the herd-level random effect reduced 290 

the r2 value to around 22%. A fixed-effect model without any milk constituent predictors 291 

accounted for a very similar proportion of variation (just below 22%), and removal of milk 292 

constituent and yield predictors reduced this to 15%, representing the proportion of observed 293 

variation in herd-year CR explained by days in milk, parity, inter-service interval, year and 294 

month of insemination. 295 

These changes in r2 value were used to partition variance in herd-year CR across the fixed and 296 

random effects in the model; this is shown in Figure 5 (f). When predictions generated using 297 

10-fold cross validation were used, the fixed-effect model explained around 19% of the 298 

observed variation in herd-year CR. This is similar to the value derived using the full dataset 299 

both to estimate model parameters and to generate predictions (22%), suggesting that the model 300 

would be similarly predictive if applied to new data from the same population. 301 

The 95% coverage interval of model posterior predictions for a wide selection of different 302 

subsets of the data included the observed result for each subset, confirming that the model fitted 303 

the data well. Visual assessment of MCMC chain behavior revealed a small number of chains 304 

amongst the milk constituent concertation predictors where convergence had not clearly been 305 

achieved. Parameters were re-estimated using a larger number of iterations (100,000, compared 306 

to 20,000 initially): this resulted in very similar parameter estimates, although in some cases 307 

chains had again not clearly converged. Recoding the problematic variables from continuous 308 

values into five categories each and removal of their interaction terms with DIM resulted in a 309 

model with good chain behavior. Again, parameter estimates were very similar to the original 310 
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model, and deviance information criterion was higher. This suggested that the model could be 311 

reparamaterized to improve MCMC chain behavior, and that this resulted in a model that gave 312 

very similar information but had a poorer fit to the data. The model using continuous milk 313 

constituent predictors was therefore reported. 314 

DISCUSSION 315 

The main objective of this study was to investigate the relationship between routinely recorded 316 

dairy herd management information and insemination outcomes at up to 100 DIM. One aspect 317 

of interest was the association between CR and early lactation milk constituent concentrations, 318 

as it is highly plausible that CR is the element of the reproductive process most influenced by 319 

energy balance, and a number of milk constituent based indicators are commonly used as proxy 320 

measure for herd-level energy status. As in previous work using a similar approach in data 321 

from UK herds (Madouasse et al., 2010), a large number of statistically significant associations 322 

were revealed (Table 2). Many of these relationships were not simple to interpret from model 323 

parameters, as there were a number of interaction terms, both with early lactation variables and 324 

between these and stage of lactation. Graphical presentation of these results (Figure 2) using 325 

model predictions provides a more intuitive interpretation. Broadly, these findings agree with 326 

earlier work (Madouasse et al., 2010), with increased protein concentration at either of the first 327 

two test days and decreased butterfat concentration at the first test both generally associated 328 

with an increased probability of pregnancy. The association between early lactation lactose 329 

concentration and the outcome was more variable with DIM at insemination; this was 330 

especially marked for lactose at first test day. 331 

For most of the relationships, the predicted CR varied relatively little over the range illustrated 332 

(2 SD below to 2 SD above population mean). For example, an insemination at 50 DIM which 333 

was average in every respect would be expected to have a CR of just over 30% if lactose 334 
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concentration at first test day was – 2 (i.e. 2 SD below population mean); this would increase 335 

to just over 40% for a concentration of +2 (2 SD above the population mean). This range is 336 

likely to represent almost the full range of observed lactose concentrations (as 95% of values 337 

would be expected to lie within 2 SD of the mean). So although this is one of the larger 338 

associations between milk constituent concentration and CR, lactose concentration would have 339 

to alter from close to the lowest observed level to close to the highest observed level in order 340 

to produce a meaningful change in CR. 341 

Taking all the milk constituent variables together, it appears that they collectively account for 342 

an extremely small proportion of observed variation in herd-year CR (Figure 5). There are a 343 

number of possible explanations for this: for example, that these parameters are not reliable 344 

predictors of early lactation energy balance in UK herds, or that early lactation energy balance 345 

has little impact on CR in early lactation. The latter seems highly unlikely, as there as a 346 

considerable body of evidence demonstrating a strong link between energy balance and CR 347 

(Butler, 2003; Roche, 2006; Leroy et al., 2008b; Ospina et al., 2010). This study would 348 

therefore seem to suggest that milk constituent concentrations in early lactation do not predict 349 

energy balance at lactation level to a clinically useful extent in this sample of herds. This was 350 

despite the correction of these variables to account for variation introduced by DIM at time of 351 

test day and seasonality; Figure 1 (and the interactive online equivalents) shows that this 352 

variation is substantial, and implies that use of uncorrected values is likely to be considerably 353 

less useful. For example, even within the typical sampling window of the first test day of 354 

lactation, FPR (the most commonly used proxy measure) would be expected to vary from 355 

below 1.2 for a cow sampled at 5 DIM in early August to over 1.3 for a cow sampled at 23 356 

DIM in February. However, it is also useful to remember that there are other reasons why these 357 

predictors would perhaps be expected to explain little of the herd-year variation in CR: for 358 

example, the possibility that milk constituents vary mostly at cow level within herds, and the 359 
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large number of other factors known to affect CR (in general, the more factors affect an 360 

outcome, the smaller the proportion of outcome variance explained by any individual factor). 361 

The inclusion of 305-day adjusted lactation yield as well as daily yields at first and second test 362 

days of lactation allowed the effects of overall level of production, and shape of the lactation 363 

curve through early lactation to be evaluated together. Broadly, higher levels of production (as 364 

measured by 305-day yield) were associated with lower CR, although for both first lactation 365 

and older cows very low yields were associated with a decreased CR. This apparently novel 366 

finding could plausibly be a result of a very low lactation yield acting as a marker of some 367 

(unrecorded or unmeasurable) disease event which had an impact on both production and 368 

fertility. For a given level of 305-day yield, CR was generally higher in lactations where daily 369 

yield rose steeply post-calving; this is in agreement with previous work in this field (Cook and 370 

Green, 2016), and measures based on yield at first test day or related to peak production have 371 

previously been suggested as markers of successful transition and early lactation health 372 

(Nordlund and Cook, 2004). Clearly, these findings do not imply a directly causal relationship 373 

between 305-day yield and CR (for example, because events occurring after conception may 374 

influence 305-day yield, and pregnancy itself is associated with a reduction in milk yield), and 375 

parameter estimates for the same model without the terms relating to 305-day yield are included 376 

as an Appendix. However, it is expected that events occurring well after peak lactation are 377 

likely to have a small role in determining 305-day yield in most herds, and the effect of 378 

pregnancy on daily yield is relatively small and only measurable in mid to late gestation 379 

(Coulon et al., 2010), although other studies have found larger effects (van Amburgh et al., 380 

1997). Taking this into consideration, inclusion of 305-day yield to represent overall level of 381 

production and provide better insight into other factors (such as parity) having accounted for 382 

this was felt to be useful.  383 
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In this study, inseminations in parity 1 (i.e. first lactation animals) were associated with a lower 384 

CR compared to other lactation numbers (once the other predictors in the model are accounted 385 

for). Several previous studies have reported higher CR in parity 1 (Gröhn and Rajala-Schultz, 386 

2000; Cook and Green, 2016); including one using a smaller subset of the same data as was 387 

used in the current work (Hudson et al., 2012). Indeed, in a simple univariable analysis of the 388 

dataset used in this study, parity 1 animals have a higher mean CR (44%) than those in later 389 

parities (41%, 40%, 39% and 35% for parities 2 to >5 respectively). This suggests that the 390 

relationship between CR and parity is confounded by other predictors accounted for in the 391 

model. Since many of the other variables in the model reported here were also included in other 392 

studies which found first lactation animals to be more fertile than older individuals (for 393 

example, in [Hudson et al., 2012]), it is more likely that a novel element of the model reported 394 

here which was not included in previous work sheds new light on the relationship. Sequential 395 

removal of model terms revealed that the representation of 305-day milk yield was key – when 396 

this was accounted for using separate polynomial terms for parity 1 and parity >1 (represented 397 

in Figure 3), a lower predicted CR for parity 1 was observed. This suggests that previous work 398 

may have found higher CR in first lactation animals because these animals have lower milk 399 

yields, and lower milk yields have tended to be associated with increased fertility. Where yield 400 

is accounted for in a more complex way, it becomes clear that first lactation animals tend to 401 

have a lower CR than would be expected given their level of production. Clear potential 402 

explanations for this finding exist: cows in the first lactation are usually amongst the least 403 

dominant animals in a group, so are more likely to have restricted access to any limited 404 

resources (for example, where feed or water space is limited). It is also possible that this 405 

association is only present in early lactation: this study used inseminations at <100 DIM, whilst 406 

previous studies often cover different time periods. 407 
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Model predictions for CR across herd-years were used to explore how observed variation in 408 

CR is accounted for by the various elements of the model. Herd-years were used as the units 409 

in this case partly as these would represent the way in which such data is often assessed in the 410 

field, and because herd-years were not directly included in the model as a random effect (as 411 

was, for example, herd). Collectively, all of the fixed effect predictors in the model (see Table 412 

2) explained just over 22% of the observed variation, with less than 1% accounted for by the 413 

predictors relating to early lactation milk constituent concentration and around 7% by 414 

predictors relating to milk yield (both overall level of production and shape of early lactation 415 

curve). This reinforces the suggestion that early lactation milk constituents are not likely to be 416 

predictive of energy balance to a clinically useful extent. 417 

The remaining variation in herd-year CR was split relatively evenly between the herd-level 418 

random effect and the bottom level model residuals (i.e. the variation not explained by any 419 

elements of the model). This suggests that a large proportion of variation in CR is attributable 420 

to factors which are relatively consistent within herd over time, but which were not measured 421 

in this dataset, or indeed are not measurable. This could cover a wide range of factors (including 422 

environmental and feeding management, disease status and insemination related factors), and 423 

it is notable that the association between these unmeasured herd-level factors and herd-year 424 

CR is several times larger than that between CR and milk yield. The cow-level random effect 425 

term explained a negligible amount of variation in herd-year CR, suggesting that unmeasured 426 

factors that are consistent within cow across inseminations and parities are unimportant as 427 

drivers of herd CR.  428 

The use of predictions across herd-years also serves as an example of the value of carrying out 429 

further analysis to explain and contextualise the results of (especially logistic) regression 430 

analysis. Conventional presentation of model results as odds ratios alone (Table 2) would be 431 

difficult to interpret in this situation. In part this is because of the complexity of the model – 432 
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interaction terms and non-linear representations of continuous predictors are inherently non-433 

intuitive to interpret in a numerical format. Additionally, the intuitive tendency to interpret 434 

odds ratios as relative risks would also be a problem in this case – as the overall risk of 435 

pregnancy resulting from an insemination is relatively large, the odds of a successful serve are 436 

substantially different from the probability, and odds ratios will tend to exaggerate effect size 437 

(Davies et al., 1998). There are a number of approaches which can be useful to aid 438 

interpretation of such models – in addition to those reported here, population attributable risk 439 

(for example, Peeler et al., 2000) and stochastic simulation modelling (for example, Hudson et 440 

al., 2015) can be highly useful. 441 

It is relevant to consider the potential for misclassification of the outcomes of inseminations 442 

with the methods used in this study. Subsequent calving date was the main determinant of the 443 

insemination success, this was largely due to the source of the data: use and recording of 444 

pregnancy diagnosis was according to each herd’s usual practice, so was highly variable 445 

between herds. Clearly, this approach has potential for misclassification of outcome in both 446 

directions – for example, where two inseminations occur close together, or where a cow aborts. 447 

Although the rules for determining the outcome in this study were designed to minimise such 448 

errors, some misclassification is still possible. However, the alternative approach of relying 449 

more heavily on pregnancy diagnosis records also has potential for misclassification, and 450 

would also have led to the exclusion of a large number of inseminations, plausibly in such a 451 

way that would introduce substantial bias (for example, it is possible that a higher proportion 452 

of inseminations with no pregnancy diagnosis outcome are unsuccessful). Even if classification 453 

errors were evenly distributed, this would still have potential to influence the results of the 454 

study, generally by reducing the size of estimated coefficients and shifting variance from herd- 455 

and cow-level towards the bottom (unexplained) level. This is a feature inherent in such large-456 

scale, retrospective studies.  457 
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Some features of the statistical modelling approach used in this study also merit discussion. As 458 

with all regression modelling, there were a number of somewhat subjective choices to be made 459 

during the model building process (such as interaction terms and non-linear representation of 460 

continuous explanatory variables). In such cases, a balance needs to be struck between model 461 

complexity, informativeness and the biological questions being explored. Whilst formal 462 

statistical methods balancing model fit against degree of complexity exist, and were used to 463 

some extent here (such as deviance information criterion), the potential for overfitting also 464 

needs to be considered (Babyak, 2004). Use of internal cross-validation here helped to provide 465 

some evidence that overfitting had not occurred, as well as providing some indication of 466 

potential out-of-sample predictiveness. MCMC was used for final estimation of the reported 467 

model parameters. This has a number of advantages over conventional methods, including 468 

generally more robust parameter estimates for multilevel models (Browne and Draper, 2006) 469 

and a more intuitive “Bayesian” interpretation of results than is the case for frequentist 470 

methods. For example, this approach produces a full posterior distribution for each model 471 

parameter, allowing probabilistic statements about results (such as “it is 95% probable that the 472 

true value for this parameter is between X and Y”) without relying on an understanding of the 473 

concept of long-run repetition. However, MCMC is substantially more computationally 474 

intensive than conventional methods. Evaluation of chain behavior should be a standard aspect 475 

of parameter estimation using MCMC: this study presents a robust approach to dealing with 476 

unexpected behavior of MCMC chains. 477 

 478 

CONCLUSIONS 479 

This study demonstrates that measures based on early lactation milk constituent concentrations 480 

are unlikely to predict herd-level CR to a clinically useful extent, even when corrected for 481 
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potential nuisance factors such as season and DIM at sampling. A relatively sophisticated 482 

representation of milk yield (accounting both for overall level of yield and shape of lactation 483 

curve) was much more predictive of CR, but still accounted for only around 7% of observed 484 

herd-year variation. After accounting for milk yield in this way, predicted CR was highest in 485 

parities 2 and 3. Unmeasured effects which were consistent at herd level (represented by a herd-486 

level random effect) accounted for over 40% of the variation, and further investigation into the 487 

herd-level factors explaining this would be highly valuable. 488 

  489 
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TABLES AND FIGURES 612 

Table 1. Potential explanatory variables at each level of data used to build a logistic regression 613 

model with the outcome of insemination success or failure. 614 

  Distributional characteristics 

Variable Representation Insemination 

level1 

Herd-year level2 

Insemination level    

  Outcome Binary Mean = 0.4 0.42 (0.17–0.70) 

  Days in milk at insemination Polynomial (order <4) Mean = 72d, 

SD =17d 

73 (63–87) 

  Month of insemination Categorical; months as 

individual categories 

  

  Inter-service interval Categorical (<18d, 18-

24d, 25-35d, 36-48d, 

>48d, NA3) 

[0.02, 0.12, 

0.04, 0.027, 

<0.01, 0.78] 

18-24d: 0.10 (0.00-0.27) 

NA: 0.82 (0.52-1.00) 

Lactation level    

  305-day lactation yield Centred around 

population mean, 

polynomial (order <4) 

Mean = 8,230 

litres, SD = 

2,167 litres 

8,067 (4,944-10,433) 

  Month of calving Categorical; months as 

individual categories 

  

  Lactation number Categorical (1, 2, 3, 4, 

5+) 

[0.26, 0.23, 

0.18, 0.12, 

0.20] 

Lact 1: 0.25 (0.00-0.54) 

Lact 5+: 0.20 (0.00-0.46) 

Butterfat % at recording 1 

Linear, standardised for DIM and day of 

year at recording (such that 0 represents 

expected population mean given DIM 

and day of year, and a 1 unit change 

represents one population standard 

deviation) 

-0.02 (-0.80-1.03) 

Butterfat % at recording 2 -0.05 (-0.79-1.12) 

Protein % at recording 1 0.01 (-0.65-1.21) 

Protein % at recording 2 -0.02 (-0.79-1.35) 

Lactose % at recording 1 0.00 (-0.71-0.98) 

Lactose % at recording 2 -0.02 (-0.78-098) 

Fat:protein ratio at recording 1 -0.05 (-0.82-0.87) 

Fat:protein ratio at recording 2 -0.04 (-0.88-0.94) 

Daily yield at recording 1 -0.04 (-1.48-0.95) 

Daily yield at recording 2 -0.04 (-1.58-0.98) 

                                                 615 
1 Distributional characteristics across inseminations in the dataset –  means and standard deviations are reported 

for continuous variables, and proportion in each category (reported in the order the categories are listed in the 

“Representation” column) for categorical variables. 
2 Herd-year level distributional characteristics are median and 95% coverage interval for the means of each 

continuous variable for each herd-year (i.e. the first value represents the median herd-years, and the numbers in 

brackets the range covering 95% of herd-years). For categorical variables, the variation in proportion of the herd 

in certain categories is reported in the same way. 
3 NA in the inter-service interval category indicates the first insemination of a lactation. 
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Table 2. Parameter estimates from a multivariable logistic regression model with the 616 

outcome representing pregnancy resulting from a given insemination. 617 

  

95% HPD1 interval 

Model term Odds ratio Lower Upper 

Butterfat % at recording 12 0.98 0.97 1.00 

Protein % at recording 1 1.05 1.03 1.06 

Protein % at recording 2 1.44 1.21 1.75 

Lactose % at recording 1 1.59 1.26 1.97 

Lactose % at recording 2 0.72 0.59 0.89 

(Protein % at recording 2).(lnDIM3) 0.92 0.88 0.96 

(Lactose % at recording 1).(lnDIM) 0.91 0.86 0.96 

(Lactose % at recording 2).(lnDIM) 1.08 1.03 1.14 

Daily milk yield at recording 1 1.16 1.14 1.19 

Daily milk yield at recording 2 1.25 1.22 1.28 

(Yield at recording 2)^2 1.03 1.02 1.04 

(Yield at recording 1).(Yield at rec’g 2) 1.04 1.03 1.06 

(Yield at recording 1).((Yield at rec’g 2)^2) 0.97 0.97 0.98 

305-day lactation yield (‘000 litres) 0.75 0.74 0.76 

(305-day lactation yield)^2 0.96 0.96 0.96 

(305-day lactation yield)^3 1.01 1.00 1.01 

(305-day lactation yield).(Parity 1)4 0.86 0.84 0.88 

(305-day lactation yield)^2.(Parity 1)4 1.03 1.03 1.04 

                                                 
1 HPD: highest posterior density 
2 Butterfat, protein, lactose and yield values are standardised to account for DIM and day of year at sampling, 

such that a value of 0 would represent expected population mean (given DIM and day of year at sampling), with 

a unit change representing 1 population standard deviation away from mean. Odds ratios are for a 1 unit change 

in each variable, adjusted for all other terms in the model. 
3 lnDIM: natural logarithm of days in milk at insemination 
4 The relationship between 305-day yield and CR was very similar for all parity categories except parity 1, so for 

model parsimony only the interaction with this parity group was included.  
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(305-day lactation yield)^3.(Parity 1)4 1.00 1.00 1.01 

DIM5 1.12 1.12 1.13 

(DIM)^2 1.00 1.00 1.00 

(DIM)^3 1.00 1.00 1.00 

Parity 1 Reference   

Parity 2 1.54 1.48 1.61 

Parity 3 1.52 1.46 1.59 

Parity 4 1.40 1.34 1.47 

Parity >4 1.15 1.10 1.20 

ISI6 N/A (first insemination)  Reference   

ISI <18 days 0.49 0.45 0.53 

ISI 18-24 days 1.05 1.01 1.08 

ISI 25-35 days 0.81 0.76 0.86 

ISI 36-48 days 0.90 0.84 0.97 

ISI >48 days 0.75 0.65 0.87 

Summer (June – September) 0.84 0.82 0.86 

Year <2003 Reference   

Year 2003 0.98 0.93 1.02 

Year 2004 0.93 0.89 0.97 

Year 2005 0.87 0.83 0.91 

Year 2006 0.82 0.78 0.86 

Year 2007 0.80 0.77 0.84 

Year 2008 0.78 0.73 0.84 

618 

                                                 
5 DIM: days in milk at insemination 
6 ISI: inter-service interval (days since previous insemination)   
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FIGURE CAPTIONS 

Figure 1: Regression surfaces illustrating relationship between test day milk parameters and 

DIM/season at sampling. 

Figure 2: Predictions (from the model reported in Table 2) for example scenarios to illustrate 

relationships between conception risk (CR) and early lactation milk constituent concentrations. 

Each plot shows probability of pregnancy resulting from a set of example inseminations where 

all predictor values are set at their population means except for the variable indicated in the x-

axis of the plot and days in milk (DIM). Each line shows the variation in predicted CR across 

the range of the variable, with line colors/types representing inseminations at different stages 

of lactation. Milk constituent variables are standardised (such that 0 represents population mean 

and 1 represents mean plus one standard deviation compared to expected value given season 

and DIM at test day), and numeric suffixes represent test day number. 

Figure 3: Predictions (from the model reported in Table 2) for example scenarios to illustrate 

relationships between conception risk (CR) and milk yield. Each plot shows probability of 

pregnancy resulting from a set of example inseminations where all predictor values are set at 

their population means except for the variables indicated in the plot legend and x-axis. The left-

hand plot shows predicted CR across a range of 305-day lactation yields (with line color 

representing parity). The central and right-hand plots show the association between CR and 

daily yield at first and second test day (standardised such that 0 represents population mean 

and 1 represents mean plus one standard deviation compared to expected value given season 

and DIM at test day). Numeric suffixes represent test day number. Y1: yield at first test day; 

Y2: yield at second test day. 

Figure 4: Regression surface illustrating the predicted relationship (from the model reported 

in Table 2) between conception risk (CR) and daily yield at first and second test day 
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(standardised such that 0 represents population mean and 1 represents mean plus one standard 

deviation compared to expected value given season and DIM at test day). 

Figure 5: a) – e) Predicted versus observed herd-year conception risk (CR) generated using 

different elements of the model reported in Table 2. Plot titles show which elements of the 

model were used to create each set of predictions, and plot text shows Pearson r2 value for each 

correlation. f) Proportion of variance in herd-year CR attributable to each model element. Yield 

includes all variables representing milk yield; constituent% includes all variables based on milk 

constituent concentrations; other includes all other fixed effects in the model. Herd-level, cow-

level and unexplained show residual variation at each level of the model. 
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