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Abstract—In recent years, researchers have become increas-
ingly more interested in designing an interpretable Fuzzy Logic
System (FLS). Many studies have claimed that reducing the
complexity of FLSs can lead to improved model interpretabil-
ity. That is, reducing the number of rules tends to reduce
the complexity of FLSs, thus improving their interpretability.
However, none of these studies have considered interpretability
and complexity from human perspectives. Since interpretability
is of a subjective nature, it is essential to see how people perceive
interpretability and complexity particularly in relation to creating
FLSs. Therefore, in this paper we have investigated this issue
using an initial user study. This is the first time that a user
study has been used to assess the interpretability and complexity
of designs in relation to creating FLSs. The user study involved a
range of expert practitioners in FLSs and received a diverse set of
answers. We are interested to see whether, from the perspectives
of people, FLSs are necessarily more interpretable when they are
less complex in terms of their design. Although the initial user
study is based on small samples (i.e., 25 participants), nevertheless
this research provides initial insight into this issue that motivates
our future research.

Index Terms—Fuzzy Logic Systems, Interpretability, Complex-
ity of design, User study

I. INTRODUCTION

Interpretability is acknowledged as one of the most ap-
preciated advantages of Fuzzy Logic Systems (FLSs) [1],
particularly in relation to applications such as knowledge
extraction and decision support [2], [3]. Specifically, one of
the most important motivations for using FLSs for system
modelling is that a fuzzy system uses linguistic variables
and rules [4] that are easy to understand. However, this rule
based structure also poses significant challenges, including
the curse of dimensionality, where the number of required
rules commonly and model complexity increase exponentially
with the number of input variables [5], [6], thus potentially
reducing the transparency and interpretability of FLSs. From
these challenges, we can summarise the relationship between
the number of rules, complexity and interpretability in FLSs
as follows:

1 Number of rules (FLSs), T Complexity (FLSs) 1

1 Complexity (FLSs), | Interpretability (FLSs) 2)

where 1 denotes increasing and | indicates decreasing.

In exploring this problem, several methods have been pro-
posed for optimising the size of the rule-base in FLSs, such as
rule selection [7], feature selection [8], rule interpolation [9],
singular-value decomposition-QR [10], evolutionary algorithm
[11], fuzzy similarity measure [6], rule learning [12] and
hierarchical fuzzy systems (HFSs) [13]. Many of these ap-
proaches are designed to overcome the curse of dimensionality
— thus reducing the model complexity of FLSs [14]. Moreover,
by reducing model complexity, we may also find a way to
improve model interpretability, i.e., a system with a smaller
number of rules requires a smaller effort to be interpreted [15].
However, the following questions arise: (i) “Is it always true
that by reducing the complexity of FLSs, we can improve the
interpretability of FLSs?”; and (ii) “Does an FLS with fewer
rules always have better interpretability compared to an FLS
with more rules?”.

In [16] Ishibuchi et al. demonstrated, using a simple test
problems, that the minimisation of complexity does not always
lead to maximisation of interpretability, particularly in the
design of the fuzzy rule-based system. However, the problem
is that interpretability is a very difficult concept, because of
its subjective nature. Indeed, evaluating how different people
perceive interpretability is not a trivial matter. Therefore, we
believe that it is important to analyse how people perceive
interpretability and complexity of design when it comes to the
creation of FLSs. In other words, from a human perspectives,
“does the minimisation of FLS complexity of design lead to
the maximisation of FLS interpretability?”’. To the authors
knowledge, this intriguing question has never been addressed
through the use of a user study.

This paper introduces an initial user study to assess both
interpretability and complexity of design in relation to creating
FLSs. While the number of participants in the study is still
limited, the paper puts forward a valuable first step both
in terms of using user studies in respect to exploring the
properties of FLSs, and in addressing the key question of
complexity vs interpretability.

The rest of this paper is organised as follows. Section II
discusses the background to interpretability, complexity, HFSs



and user studies. This is followed by Section III that introduces
a user study based approach to assess the interpretability
and complexity of the design of FLSs and also HFSs. In
Section IV, the process to investigate the relationship be-
tween interpretability and complexity of design is carefully
explained. Finally, Section V presents the conclusions and
future works.

II. BACKGROUND

In this section, we briefly provide background in respect to
interpretability, complexity, HFSs and user studies.

A. Interpretability

Interpretability refers to the capability of FLSs to express
the behavior of the system in an understandable way [17]. In
FLSs, fuzzy sets are used to describe the domains of values of
certain variables. As in human thinking, linguistic terms can
be used for this purpose. This property makes fuzzy systems
rather unique among other modelling systems because while
maintaining some intuitive conditions about the collection of
fuzzy sets, they possess the ability to be easily interpreted,
even for layman users [18]. Nevertheless, while fuzzy sets can
generally be used to model perceptions, this does not always
imply their straightforward interpretation in natural language.
This is because interpretability is a subjective property that
depends on several factors, mainly the model structure, the
number of input variables, the number of fuzzy rules, the
number of linguistic terms, and the shape of the fuzzy sets
[17] - as well as of course the background and context of the
individual.

There is substantial research on interpretability measure-
ment that proposes interpretability indices for FLSs [19]-
[24]. However, the choice of an appropriate interpretability
measurement is still an open discussion.

B. Complexity

In FLSs, complexity is expressed by the number of rules,
variables, and fuzzy terms. For instance, an FLS with fewer
rules is easier to configure and requires less memory and
execution time than an FLS with more rules. Thus, in the
literature, most studies have used indices, i.e., the number of
rules, to measure the complexity of FLSs [6], [25]-[27].

The complexity in FLSs grows exponentially with their
input variables [6], which is also known as complexity ex-
plosion. Model complexity can have a significant impact on
the accuracy, efficiency and interpretability of FLSs [28]. For
example, as shown in (2), increasing the complexity in FLSs
may reduce their interpretability.

While complexity is commonly measured by the number of
rules in FLSs, we believe that the topologies of the FLSs,
i.e. flat, serial and parallel, also have an impact on their
complexity.

C. Interpretability-Complexity Tradeoff

As discussed earlier, the interpretability of fuzzy systems is
still being debated among researchers due to its subjective

nature. Thus far, complexity is often used as an indirect
measurement of interpretability in FLSs. Furthermore, several
researchers claim that the reduction of complexity in a system
can lead to better interpretability of the fuzzy system [6], [29],
[30].

However, Ishibuchi er al. [16] illustrate that complexity
minimisation does not always lead to interpretability maximi-
sation using a test problem, particularly in pattern classification
problems. Going beyond this, since interpretability is subjec-
tive in nature, we believe that this interpretability-complexity
tradeoff should also be considered from the human perspective,
ie., “how do people actually perceive interpretability and
complexity of design in relation to creating FLSs?”. To the
authors’ knowledge, no one has conducted a study with people
to explore the interpretability and complexity of design when
creating FLSs.

D. Hierarchical Fuzzy Systems

HFSs were introduced by Raju et al. [13] as an approach to
overcome the curse of dimensionality arising in conventional
FLSs. In HFSs, the original FLSs (e.g., as in Fig. 2) are
decomposed into a series of low-dimensional FLSs—fuzzy
logic subsystems (e.g., as shown in Figs. 3 and 4). Moreover,
the rules in HFSs commonly have antecedents with fewer
variables than the rules in FLSs with equivalent function, since
the number of input variables of each subsystem is lower [31].
Thus, HFSs tend to reduce rule explosion, thus minimising
complexity, and improving model interpretability.

However, it is not clear how users may perceive the inter-
pretability and complexity of design particularly in HFSs that
have multiple subsystems, layers and varied topologies.

E. User Studies

A user study is a method that can be used to conduct
design research. Examples of user studies in the context of
FLSs include that of Balazs and Koczy [18], who conducted
interviews to ask users to define fuzzy sets. In their study,
they investigate fuzzy sets by analysing how users interpret
the meaning of ‘hot’. Based on user-defined linguistic terms,
fuzzy rules and rule bases can be constructed easily, and the
paper puts forward that that this can lead to a complexity
reduction.

Mencar and Fanelli [32] conducted a survey that attempted
to provide a complete presentation of interpretability con-
straints in the literature. The survey aims (i) to give a homo-
geneous description of all interpretability constraints; (ii) to
provide a critical review of such constraints; and (iii) to iden-
tify potentially different meanings of interpretability. Alonso
et al. in [33] evaluate the most used interpretability indices
with a user study (in the form of a web poll) to get useful
information regarding interpretability assessment. The results
show that a fuzzy index is easily adapted to the context of
each problem as well as the users’ quality criteria.

In this paper, a user study is conducted to assess how users
perceive the interpretability and complexity of FLS designs in
relation to creating FLSs.
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Fig. 1. Four steps towards developing a user study

TABLE I
IRIS SYSTEMS

Sets Systems ~ Number of inputs ~ Number of MFs ~ Number of rules
FLS 4 2 16

Set MF-2  HFS-P 4 2 12
HFS-S 4 2 12
FLS 4 3 81

Set MF-3  HFS-P 4 3 27
HFS-S 4 3 27

III. THE USER STUDY APPROACH

Setting it apart from the existing research on interpretability,
we look at the interpretability and complexity of design in
relation to creating FLSs using a user study.

Specifically, we propose an initial user study to assess the
interpretability and complexity of the designs in relation to
creating FLSs and HFSs. Fig. 1 shows the steps involved in
developing this user study:

1) Step I - Reviewing the Literature: We begin by carefully
reviewing the literature that focuses on the problems and issues
in relation to interpretability and complexity.

2) Step 2 - What are the questions? How to ask people?:
We have decided to use a simple Iris flower classification as an
example in our questionnaire. The Iris flower consists of four
attributes as input features: sepal length, sepal width, petal
length and petal width. Three classes of Iris flowers are output
features: Setosa, Versicolor and Virginica.

In this paper, three Iris systems, are introduced (flat FLS
(FLS), Parallel HFS (HFS-P) and Serial HFS (HFS-S)) as can
be seen in topologies Fig. 2, Fig. 3 and Fig. 4, respectively.
They are classified into two configurations: three systems with
two membership functions (MFs), referred to as Set MF-2, and
three systems with three MFs, referred to as Set MF-3. The
description of these Iris systems can be seen in Table I.

3) Step 3 - Paper-based Surveys and Card Systems: As it
is challenging to present Set MF-2 and Set MF-3 in a paper-
based survey, we decided that each of the Iris systems in Set
MEF-2 and Set MF-3 should be printed on an A4 card — called
a card system. The topology, membership functions and rule
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Fig. 3. Iris topology: Parallel HFS

set of each system in Set MF-2 and Set MF-3 were printed
on the card system (as can be seen in Fig. 5).

In their study, Alonso et al. [33] found that, when it comes
to interpretability, participants will feel much more confident
in giving rankings rather than giving numerical values. By
following their method, in the design of questions we decided
to ask the participants to provide a rank for the interpretability
and complexity of the design of each system in Set MF-2 and
Set MF-3.

4) Step 4 - Implementation: We carried out this paper-based
survey at the IEEE International Conference on Fuzzy Systems
2017, Naples, Italy. For example, as shown in Fig. 6, the
participants were asked to rank the three Iris systems on the
card systems (namely FLS, HFS-P and HFS-S cards) based on
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Fig. 4. Iris topology: Serial HFS
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Fig. 5. Card system: HFS-P

Fig. 6. Participants rank FLS, HFS-P and HFS-S based on the interpretability
and complexity of design in relation to creating the Iris systems

their view of the interpretability and complexity of the designs.
In terms of the ranking of interpretability, the participants may
provide rank 1 to indicate the most interpretable of the Iris
systems, and rank 3 to indicate the least interpretable of the
Iris systems. In contrast, in terms of ranking complexity of
design, the participants may provide rank 1 to indicate the
least complex to design, and rank 3 for the most complex.

IV. EXPERIMENTS AND RESULTS

The aim of this study is to investigate the relationship be-
tween interpretability and complexity of different FLS designs
when creating various Iris classification systems, as discussed
in Section III. The analysis process consists of three main
steps: (i) descriptive analysis of the survey data; (ii) analy-
sis of individual differences in perceived interpretability and
complexity of each of the FLSs — MF-2 and MF-3; and

TABLE II
FREQUENCY OF THE INTERPRETABILITY RANKINGS IN SET MF-2 AND

SET MF-3
Iris systems Rank Total
4 1 2 3
Count (%) Count (%) Count (%) Count (%)

Set MF-2:

FLS 5 20 8 32 12 48 25 100
HFS-P 19 76 4 16 2 8 25 100
HFS-S 2 8 9 36 14 56 25 100
Set MF-3:

FLS 5 20 5 20 15 60 25 100
HFS-P 18 72 4 16 3 12 25 100
HFS-S 4 16 11 44 10 40 25 100

(iii) statistical analysis of the interpretability and complexity
of design data.

A. Descriptive Analysis of the Survey Data

We received responses from 25 participants at Fuzz-IEEE
2017 who answered this survey. From this data, we first
summarize and describe the survey data in a meaningful way
using basic frequency tables.

Table II shows the frequency of the interpretability rankings
given by the participants for the Iris systems in Set MF-2 and
Set MF-3. For the case of Set MF-2, most of the participants
found the HFS-P to be more interpretable than the FLS and
HFS-S (i.e., rank 1 indicates the most interpretable of the
Iris systems). The results show that 76% of the participants
chose HFS-P, 20% chose FLS, and 8% chose HFS-S as more
interpretable. Further, for the case of Set MF-3, it can be seen
that most of the participants found that the HFS-P is more
interpretable than the FLS and HFS-S. The results show that
72% of participants chose HFS-P, 20% chose FLS, and 16%
chose HFS-S as more interpretable.

On the other hand, Table III shows the frequency of the
complexity of design rankings given by the participants in Set
MEF-2 and MF-3. Here, for the case of Set MF-2, most of the
participants chose FLS as less complex to design than HFS-P
and HFS-S (i.e., rank 1 indicates the least complex to design).
The results show that 48% of the participants chose FLS, 40%
for chose HFS-P, and 24% for chose HFS-S as less complex in
terms of the design of the FLS based Iris classification system.
Meanwhile, for the case of Set MF-3, the participants chose
FLS, HFS-P and HFS-S as equally complex. The results show
that 40% of participants chose FLS, 40% chose HFS-P, and
40% chose HFS-S as equally complex in terms of the design.

B. Analysis of Individual Differences in Interpretability and
Complexity of Design for Each System

In this Section, we focus on the following questions, “Are
the FLSs that participants ranked as more interpretable, those
that they ranked as the less complex to design?” or indeed “Are
the FLSs that participants ranked as more interpretable, those
that they ranked as the more complex to design?”’. To explore
this, Figs. 7, 8, 9, 10, 11 and 12 present the distribution of



TABLE III
FREQUENCY OF THE COMPLEXITY RANKINGS IN SET MF-2 AND SET
MF-3
Iris systems fank Total
Y 1 2 3
Count (%) Count (%) Count (%) Count (%)
Set MF-2:
FLS 12 48 1 4 12 48 25 100
HFS-P 10 40 10 40 5 20 25 100
HFS-S 6 24 7 28 12 48 25 100
Set MF-3:
FLS 10 40 2 8 13 52 25 100
HFS-P 10 40 10 40 5 20 25 100
HFS-S 10 40 6 24 9 36 25 100
Complexity of design
Less More
Rank 1 2 3
More 1 3 0 2
Interpretability 2 7 0 1
Less & 2 1 9

Fig. 7. Interpretability vs complexity for FLS in Set MF-2

the participants answers in relation to the interpretability and
complexity of the design of each Iris system.

Figs. 7, 8 and 9 present the distribution of participants
answers in relation to the interpretability and complexity of
the designs for creating FLS, HFS-P and HFS-S respectively,
in Set MF-2. It is apparent from these figures that there is
substantial diversity in terms of the answers in respect to the
interpretability and complexity of the design/creation of FLS,
HFS-P and HFS-S. Overall, in the case of FLS, the most
salient relationship from Fig. 7 shows that nine participants
(36%) ranked FLS as less interpretable and more complex
to design. Similar to FLS, the most salient relationship from
Fig. 9 shows that nine participants (36%) ranked HFS-S as
less interpretable and more complex to design. However, for
the case of HFS-P, the most salient relationship from Fig. 8
shows that eight participants (32%) ranked HFS-P as more
interpretable and less complex to design.

Complexity of design
Less More
Rank ! 2 3
More | 1 8 7 4
Interpretability I 2 1 3 0
Loss |3 1 0 1

Fig. 8. Interpretability vs complexity for HFS-P in Set MF-2

Complexity of design
Less More
Rank ! 2 3
More | 1 1 0 1
Interpretability 2 3 4 2
Less 8 2 3 9

Fig. 9. Interpretability vs complexity for HFS-S in Set MF-2

Complexity of design
Less More
Rank 1 2 3
More | 1 3 1 1
Interpretability I 2 3 1 1
Loss |3 4 0 11

Fig. 10. Interpretability vs complexity for FLS in Set MF-3

Meanwhile, for the case of Set MF-3, Figs. 10, 11 and
12 present a distribution of participant answers ranking the
interpretability and complexity of the designs for creating FLS,
HFS-P and HFS-S respectively. As shown in these figures,
there is also substantial difference in the answers in relation
to the interpretability and complexity of design for creating
FLS, HFS-P and HFS-S. Likewise, the relationship in Set
MF-3 show the same pattern as in Set MF-2. The pattern
indicates that the most meaningful relationship from Fig. 10
identified that eleven participants (44%) ranked FLS as less
interpretable and more complex to design. Similar to FLS,
the most important relationship from Fig.12 shows that six
participants (24%) ranked HFS-S as less interpretable and
more complex to design. However, in the case of HFS-P, the
most important relationship from Fig. 11 shows that eight
participants (32%) ranked HFS-P as more interpretable and
less complex to design.

Although only the most important relationships (based on
the highest participant answers) were discussed for each sys-
tem, there were also other relationships between interpretabil-

Complexity of design
Less More
Rank ! 2 3
More | 1 8 7 3
Interpretability I 2 1 3 0
Loss |3 1 0 2

Fig. 11. Interpretability vs complexity for HFS-P in Set MF-3



Complexity of design

Less More

Rank ! 2 3

More | 1 2 1 1
Interpretability 2 5 4 2
Less |3 3 1 6

Fig. 12. Interpretability vs complexity for HFS-S in Set MF-3

ity and complexity of design in relation to the creation of
FLS, HFS-P and HFS-S for both Set MF-2 and Set MF-3.
For instance, some participants ranked a less interpretable
system as less complex to design. Also, some participants
ranked a less interpretable system as more complex to design
as can be seen in Figs. 7, 8, 9, 10, 11 and 12. Thus, while
weaker, these relationships also should be taken into account in
order to investigate the significance of the relationship between
interpretability and complexity of designs when creating FLSs.

C. Statistical Analysis

We have investigated the significance of the relationships
between interpretability and complexity of design for creating
Iris systems that have been captured in Section IV-B, using
Pearson’s correlation coefficient (r). The latter statistically
establishes how influential a relationship is between two
variables where +1 indicates a strong positive relationship and
—1 indicates a strong negative relationship [34].

Table IV provides the summary of the statistics for in-
terpretability and complexity of design for Iris systems in
Set MF-2 and Set MF-3 that were computed using Pearson’s
correlation coefficients. First, results indicate that a positive
correlation was found between interpretability and complexity
of design in relation to creating FLS, HFS-P and HFS-S for
both Set MF-2 and Set MF-3. However, as shown in Table IV,
although FLS, HFS-P and HFS-S in Set MF-2 and Set MF-
3 gave positive correlations (r) between interpretability and
complexity of design, only FLS shows statistical significance
of this positive correlation (r). The computed p-value for
FLS is less than 0.05 in both Set MF-2 and Set MF-3. The
positive correlations (r) in HFS-P (r = 0.052, r = 0.231) and
HFS-S (r = 0.316, » = 0.275) in Set MF-2 and Set MF-3
respectively, are both not statistically significant.

TABLE IV
PEARSON CORRELATION COEFFICIENT (r) BETWEEN INTERPRETABILITY
AND COMPLEXITY OF DESIGN FOR IRIS SYSTEMS IN SET MF-2 AND SET

MF-3
. Set MF-2 Set MF-3
Iris systems
r p-value r p-value
FLS 0.421  0.036 0.410 0.042
HFS-P 0.052  0.804 0.231  0.266
HFS-S 0.316  0.123 0.275 0.184

D. Discussion

The study in this paper was conducted as an initial explo-
ration of the relationship between FLS interpretability and
complexity of design. It was focused specifically on FLSs
designed to implement the Iris classification system, and
consisted of three main steps.

For the first step, we presented the survey data, which
consists of the interpretability and complexity of designs
ranked by participants, as shown in Tables II and III. We
found that the majority of the participants chose HFS-P as
more interpretable than FLS and HFS-S for both Set MF-2
and Set MF-3. In the case of complexity of design, we also
found that HFS-P was chosen by most of the participants as
less complex to design when compared to FLS and HFS-S
in Set MF-2. Surprisingly, in Set MF-3, participants ranked
FLS, HFS-P and HFS-S as equally complex to design. It seems
possible that these results are due to different topologies, the
number of membership functions, and also the number of
rules in each system for both Set MF-2 and Set MF-3, which
influence the participants in their ranking of the interpretability
and complexity of the designs.

For the second step, an analysis of the individual differences
in the interpretability and design complexity rankings for each
system was performed as captured in Figs. 7, 8, 9, 10, 11 and
12. We found considerable diversity of relationships between
interpretability and complexity of design as given by the
participants. For example, some participants stated that the
less interpretable a system was, the more complex it was to
design. However, some participants also stated that the less
interpretable a system was, the less complex it was to design.
Some possible explanations of this finding include: (i) partic-
ipants ranked the system as more interpretable because they
perceived it as being more intuitive and easy to understand for
both Set MF-2 and Set MF-3; (ii) the difference in the number
of rules between FLS and HFS in Set MF-3 is larger than Set
MF-2— therefore, participants feel that it will be challenging
to design an FLS model; and (iii) some participants find it
challenging to design HFS-P and HFS-S as they are composed
of multiple subsystems and layers.

In order to examine the significance of the relationship
between interpretability and complexity of design, the Pearson
correlation was established for the third step. A key outcome
from the evaluation is that a positive correlation (r) between
interpretability and complexity of design was found for FLS,
HFS-P and HFS-S in both Set MF-2 and Set MF-3, as shown
in Table IV. That is, it indicates that the more interpretable a
system is, the less complex it is to design the system, and, also,
the less interpretable a system is, the more complex it is to
design the system — at least in the context of the Iris systems
considered. However, this positive relationship is statistically
significant only for FLS and not for HFS-P and HFS-S for both
Set MF-2, and Set MF-3. It is hard to interpret the cases for
HFS-P and HFS-S because the statistical power is low due to
the small sample size. Nevertheless, it suggests that the effect
is weak for the positive correlation for HFS-P and HFS-S.



V. CONCLUSIONS

In this paper, an initial user study has been used to explore
the relationship between interpretability and complexity of
design when creating FLSs. This has never been addressed
by researchers in this field. Although the current study is
based on a small sample of participants and focuses on the
particular case of FLSs designed for Iris classification, the
findings suggest that, in creating fuzzy systems, it does not
always hold true that the less complex the design of a system
is, the more interpretable the system is. This seems especially
true when a FLS is hierarchical. We also observed that the
topologies of the FLSs (e.g. ‘flat’, ‘parallel’ and ‘serial’) have
a significant influence on the interpretability and complexity
of the design of FLSs.

While this initial study provides intriguing insight on the
relationship between interpretability and complexity as per-
ceived by people (users, participants, etc.), more research
on this topic needs to be undertaken, with a larger sample
size, in order to develop a fine-grained understanding of the
relationship between interpretability and complexity of design
when creating FLSs.
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