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Abstract 
Solid particles and liquid droplets widely coexist in many industrial processes. 

Particle-droplet interactions critically influence the dynamics of those processes. In 

this study, the interactions between a freely moving solid particle and a freely moving 

liquid droplet are numerically investigated using the lattice Boltzmann method. Until 

now the open literature on such topic is quite sparse. Through the present numerical 

investigation, two regimes to classify the interactions between a freely moving solid 

particle and a freely moving liquid droplet are proposed. In addition, it is found that 

the particle-to-droplet size ratio and particle’s wettability play critical roles in such 

interactions.    
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1. Introduction  
Liquid–gas–particle (LGP) systems widely exist in many industrial applications 

such as electronics fabrication by ink-jet printing [1] and emulsion stabilization in 

food [2], cosmetics [3], and petroleum industries [4,5]. In LGP systems, the 

interactions between droplets and particles critically influence the performance of the 

systems. Up to date, the particle-particle interactions have been investigated 

extensively [6-10]. A so-called DKT (drafting, kissing, and tumbling) process may 

happen during interaction between two solid particles. For collisions between two 

droplets, many studies [11-17] observed four types of collision regimes: bouncing, 

coalescence, stretching and reflexive, based on the Weber number (We) and impact 

parameter (b). Compared with its particle-particle and droplet-droplet counterparts, 

the open studies on particle-droplet interactions are relatively sparse. Shen et al. [18] 

analyzed the effects of the droplet’s velocity, size ratio of the droplet to solid, and 

temperature difference on liquid attachment during droplet-particle collisions. The 

authors found that the percentage of liquid attachment decreases against increasing 

droplet impact velocity. In addition, the authors concluded that a center-to-center 

collision would result in more liquid attachment than an off-center collision. Mitra et 

al. [19] investigated the collision behavior of a small solid particle against a large 

stationary droplet. They analyzed the processes of the solid particle penetrating 
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through the droplet and claimed that the capillary force dominated the whole process. 

Gac et al. [20, 21] investigated the influences of some dimensionless parameters, such 

as the Weber number, capillary number and droplet-to-particle diameter ratio, on the 

kinetics of central collision between a droplet and a particle. The authors observed 

three types of collision behavior: coalescence, ripping and coating, and skirt 

scattering. The authors also found that the behavior of central collision were nearly 

insensitive to the particle’s shape. Hardalupas et al. [22] investigated the dynamics of 

small droplets impacting against a large solid surface. Their results showed that an 

impinging droplet could form a crown, which was influenced by surface roughness, 

droplet kinematics and liquid properties. Bakshi et al. [23] conducted experiments to 

investigate the effects of droplet Reynolds number and particle-to-droplet size ratio on 

the behavior of a liquid film on a solid surface. Three transitional phases of the film 

kinetics, namely the initial drop deformation phase, inertia dominated phase, and 

viscosity dominated phase, were observed. Fakhari et al.[24] conducted a simulation 

for a droplet’s impingement on a hydrophilic or superhydrophobic cylinder under 

gravity. Their results indicated that a droplet tended to adhere to the surface of a 

hydrophilic cylinder while it tended to break up and detach from the surface of a 

hydrophobic cylinder. Malgarinos et al. [25] simulated the impact processes of a 

liquid droplet against a spherical stationary solid particle. Two different regimes: the 

partial/full rebound and coating regime were identified. Malgarinos et al. [26]-[27] 

investigated the collisions between heavy gasoil droplets and solid catalytic particles. 

In their studies, phase-change phenomena and catalytic cracking surface reactions 

were taken into account. 

In the all above-mentioned studies, the investigated solid particles or liquid 

droplets are stationary, rather than freely moving. For the scenarios where both a 

particle and a droplet can freely move, Dubrovsky et al. [25] carried out a pioneering 

experimental study on particle-droplet collisions. For the cases where the 

droplet-to-particle size ratio was greater than 1, they observed four collision modes: 

particle capture, “shooting through” with satellite droplet formation, “shooting 

through” with gas bubble formation and droplet destruction. Then, Deen et al. [30] 

simulated collisions of a falling particle against a rising bubble by a front tracking 

approach combined with an immersed boundary (IB) scheme. They studied the effect 

of particle’s density on the interaction between the particle and the bubble. Higher 

particle’s density led to more significant deformation of the bubble and increasing the 

possibility of the particle penetrating through the bubble. In their work, only head-on 

collisions were considered. Sasic et al. [31] numerically studied the interaction 

between settling particles and rising microbubbles. They observed that the particles 

would attach to the bubbles when the initial horizontal distance between their centers 

was small enough, while the particles would pass through the bubbles if such initial 

distance was large. Kan et al. [32] simulated the processes of particle-particle 

combination by a droplet. The authors discussed the effect of particle’s wettability on 

the critical velocity for particle-particle combination. They concluded that such 

critical velocity varied non-monotonically with the particle’s wettability. They also 

investigated the effect of droplet size on the adhesiveness of two colliding particles 

[33]. It was found that against the increasing of droplet’s diameter, the adhesiveness 

of particles became weak. Recently, Pawar et al. [34] experimentally investigated 

particle-droplet collisions at low capillary numbers. The collision behavior was 

classified into two regimes: agglomeration (merging) and stretching separation 

(breaking), based on the Weber number and impact parameter. In addition, they 

proposed a map based on the droplet-to-particle size ratio to illustrate the regimes.  
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Through the above literature survey, it is clear that the open literature on 

interactions between a freely moving droplet and a freely moving particle is extremely 

sparse. In addition, the in-depth knowledge about the effect of particle’s wetting 

property on particle-droplet collisions is still absent. To bridge the gap, in this study, 

the interactions between a freely moving particle and a freely moving droplet are 

investigated numerically. Moreover, the effects of particle’s wettability on collision 

behavior are also discussed.  

 

2. Numerical method 
It is difficult to conduct experiments to study interactions between a freely moving 

solid particle and a freely moving droplet, so numerical methods are chosen for the 

present research. Until now the lattice Boltzmann method (LBM) has matured to 

model particle dynamics [6-10] and multi-phase multi-component flow [35-[40]. 

Consequently, in this work the LBM-based Shan-Chen multi-phase multi-component 

(MCMP) model [35] is adopted for simulating liquid droplets and the LBM-based 

particle dynamics modelling approach [41] is employed for simulating particle’s 

motion.  

2.1 Multiphase flow 

In the MCMP model, the pseudo fluid particle distribution function (PDF) for each 

fluid component satisfies [35]: 

 ,1
( , ) ( , ) ( ( , ) ( , ))eq

i i i i if t t t f t f t f t   
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where ( , )if t
x is the PDF for the σth fluid component and τσ is its relaxation time, 

which is determined by the kinematic viscosity as 2( 0.5 )sc t     . , ( , )eq
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where ω0=4/9, ω1-4=1/9 and ω5-8=1/36, and ei is the discrete velocity. For the D2Q9 
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In this paper c=∆x=∆t=1. The macroscopic density ρσ and velocity uσ for the σth fluid 

component are obtained by 

 1
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The equilibrium velocity eq

u  is calculated by 
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where uc is the composite macroscopic velocity and given by  
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The pressure P is obtained by 

 
2 2( ) 3sP c Gc                                           (7) 

The inter-particle force on the σth component is defined as [37] 

 int, ( , t) ( , t) ( t, t)i i i

i

F G  
     x x x e e                         (8) 

where the σ and indicate two different fluid components and G is a parameter that 

controls the interaction strength of inter-particle force. 

Solid surface forces are incorporated into the MCMP model through  

 ads, ads,( , t) ( , t) ( t, t)i i i

i

F G s      x x x e e                         (9) 

where s is an indicator function, which equals to 1 or 0 for a solid or fluid node, 

respectively. The parameter Gads controls the interaction strength between fluid and 

solid nodes. 

To reduce the spurious velocity currents, we adopt the improvement scheme of 

sufficient isotropy (up to 8 order) to calculate the gradient of the density [36] and the 

explicit forcing (EF) scheme to discrete the inter-particle force [38, 40]. 

2.2 Particle treatment  

In this work we adopt the half-way bounce back scheme for particle boundary 

treatment as it can guarantee mass conservation during simulation. Boundary nodes 

are located at the midway between a fluid node and a solid node. The normal 

streaming step happens when pseudo fluid particles stream from a fluid node to a 

neighboring fluid node. If the adjacent node of a fluid node is solid, the half-way 

bounce-back scheme acts as 

 ( , 1) 6 ( )i w i b ii
f t f     x u e                                    (10) 

where i indicates the direction opposite to i, ub is the velocity of the boundary node 

and ρw is set to be the density of external fluid node. The second term at the right hand 

of Eq. (10) represents the change of PDF due to wall-fluid interaction. The force and 

torque exerting on a particle are calculated by  

,
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         r R e x e x e u e            (12) 

where rbn and R are the distance between a boundary node and the center of the 

particle, and the radius of the particle, respectively. The force and torque exerting on a 

particle due to interaction between fluid and solid surface are obtained by 

 , ( , )ad ads i i i
bn

G t t 



  F x e e                                  (13) 
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    r R x e e                            (14) 

The fluid domain will be updated after the particle moves: some fluid nodes will be 

covered by the particle and some solid nodes will change to fluid nodes, which will 

lead to momentum exchange between the particle and fluid. The impulse force and 

torque exerting on the particle due to particle movement are computed by [41] 
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where C and U denote the covered and new fluid nodes, respectively, and ρb is the 

average density of neighboring fluid nodes. 

When a solid particle moves across lattice nodes, some solid nodes will become to 

new fluid nodes. As in this algorithm the interior fluid is excluded, fluid information 

is unknown at the new fluid nodes, and therefore a refill procedure is required. We use 

the direct extrapolation of PDF for new fluid nodes. 

The total force and torque exerting on a particle, Fp, Tp, are the sum of Fb, Fad, Fim 

and Tb, Tad, Tim, respectively. According to the Newtonian dynamic law, the following 

equations are solved to capture the motion of a particle. 

    
( )

( )
p

p p

d t
M t

dt


U
F                                          (17)

    
( )

( ) [ ( )] ( )
p

p p p p p

t
I t t T t

dt
    
Ω

Ω I Ω                             (18) 

where Mp, Ip are the mass and inertial tensor of the particle, Fp(t) and Tp(t) are the total 

force and toque exerting on the particle, and Up(t) and Ωp(t) are the translational and 

angular velocity of the particle, respectively. 

 

3. Model validation 

3.1 Contact line motion on a stationary circular cylinder 

The contact line motion on a single circular cylinder has been simulated by Shao et 

al. [42] and Li et al. [43]. It is used here to validate the capability of our computer 

code for simulating complicated wetting phenomena. A stationary cylinder with a 

dimensionless radius of 40 is fixed at the center of a fluid domain and the size of the 

domain is 200x200. Periodic boundary conditions are applied at the left and right 

boundaries and neutral wetting conditions are adopted for the upper and lower walls. 

Initially, the lower half part of the domain is occupied by fluid 1 with density of 2.05 

while fluid 2, whose density reads 0.01, occupies the rest space. The kinematic 

viscosity of fluid 1 and fluid 2 both are 0.167. We set the fluid-fluid interaction 

strength G12 to be 0.2 and adjust the fluid-solid interaction strength Gads to achieve 

various wetting conditions. Three choices: Gads,1=-Gads,2=-0.05, Gads,1=-Gads,2=0.0 and 

Gads,1=- Gads,2=0.05 are used and they lead the contact angle to be 60, 90 and 120 

degree, respectively. Fig. 1 shows the contact angles of the stationary cylinder under 

these three wetting conditions, which agree well with the previous predicted results 

[43].   
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Fig. 1 The contact angles on a stationary cylinder under three different wetting conditions. 

Red: fluid 1; Blue: fluid 2; White: solid cylinder. The color bars indicate the densities of 

fluids. 

3.2 Dynamics of single solid particle at liquid-vapor interface 

We simulate the motion of a single solid particle at the liquid-vapor interface to 

validate the capability of our computer code for modelling the interaction between 

moving particles and fluids. The grid resolution for the investigated domain is 

101x101, and the particle, whose dimensionless radius reads 6, is initially located on 

the center of the domain. The fluid-fluid interaction strength G11 is set to be -0.65 and 

the fluid-solid interaction strength Gs is -0.04. The kinematic viscosities of the fluids 

both are 0.167. At the beginning, the lower half of the domain is occupied by fluid 2 

whose density is 2.54 and the upper half of the domain is occupied by fluid 1 whose 

density is 0.01. The solid particle’s density reads 5.0. The parameters and conditions 

used in this simulation are the same as those adopted in [41]. As shown in Fig. 2, we 

observe that the equilibrium contact angle θ reads 77.46, which agrees well with that 

reported in [41]. In the equilibrium state, the liquid-liquid interface is flat, which is 

consistent with the conclusion of Onishi et al. [44]. 

 

Fig. 2 Equilibrium contact angle at 50000 steps. 

4. Results and discussion  
In this section, we investigate the interaction between a freely moving solid solid 

particle and a freely moving liquid droplet. The investigated domain is illustrated by 

Fig. 3. In order to reduce the research complicity, here only a two-dimensional 

domain is investigated. The initial radius of the liquid droplet (marked in red) Rd=20. 

The droplet is made up by fluid 2, whose density reads 2.33. The radius of the solid 

particle (depicted in white) is Rp=20 (namely Rp/Rd =1.0) but its density is 5.0. The 

rest space of the domain is filled with fluid 1 whose density reads 2.33. The particle 

and the droplet move oppositely and their initial velocities are U0 and -U0 (U0=0.1), 

respectively. After t-=0, the particle and the droplet keep on moving due to their 

inertia. The size of simulation domain is 401x201. Periodic boundary conditions are 

adopted for the upper and lower boundaries. The initial horizontal distance between 

the particle and the droplet is L=3Rd=60. The eccentricity ratio B=Δy/(Rp+Rd), where 

Δy is the initial vertical distance between the droplet and the particle. The interaction 

strength between two fluid components is G12=0.2 and the corresponding surface 

tension is σ=0.112. The Weber number of the droplet is We=4ρdDdU0
2/σ=33.3, where 

Dd is the diameter of the droplet. The above parameters all are in lattice units.  
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Fig. 3 Schematic diagram of the investigated domain. 

Based on the numerical results of particle-droplet interaction at various B, an 

agglomeration regime and a separation regime are proposed in this work. Meanwhile 

the effect of the particle’s wettability is considered. It is found that the particle’s 

wettability can lead to obviously different phenomena, which will be discussed in 

detail below.  

4.1 Agglomeration regime  

When B=0, namely central collision, a particle and a droplet will experience an 

agglomeration process, in which the particle and the droplet will merge together. Fig. 

4 shows the collision process between a neutral particle and a droplet at B=0. In this 

paper, the lattice time is normalized by 2Rd/U0. It can be observed that the droplet 

firstly stretches in the vertical direction, and its left side becomes nearly flat until it 

attaches to the particle. Then the droplet becomes long and thin in the horizontal 

direction, indicating that the capillary force overcomes the droplet surface tension. 

Later, the droplet recovers its circular shape slowly, and moves along with the neutral 

particle. Finally the neutral particle and the droplet form a stable combination and a 

contact angle of 90 degree is observed between their interfaces.  

The variation of the neutral particle’s horizontal velocity is shown in Fig. 5. The 

particle’s velocity is normalized by U0. As shown in Fig. 5 (b), the horizontal velocity 

decreases linearly when t<0.2 due to the hydrodynamic resistance force. Then it 

increases linearly when 0.2<t<0.4, which results from an attraction effect due to 

capillary force. As the droplet stretches in the vertical direction, the horizontal 

velocity experiences a decreasing process at 0.4<t<2.0. During the process of the 

droplet attaching to the neutral particle (2.0<t<5.0), the horizontal velocity increases 

slowly with some fluctuations. As shown in Fig. 5 (a), since t>5.0 the horizontal 

velocity decreases slowly with fluctuations.  Fig. 5 (c) depicts the variation of drag 

force of the neutral particle. The drag force experiences significant oscillations. To 

illustrate the variation trend of the drag force more clearly, the drag force curve is 

smoothed by the polynomial interpolation method, as shown in Fig. 5 (d). For 0<t<0.2 

the resistance (Fx<0) dominates the motion of the neutral particle, which causes the 

reduction of the horizontal velocity, as shown in Fig. 5 (b). Hower, during 0.2<t<0.4 

the accelerating force (Fx>0) dominates the movement of the neutral particle. This 

accelerating force may stem from capillary force, which has an attractive effect due to 

the presence of the fluid-fluid interface [45]. During 0.4<t<5.0, the drag force 

fluctuates obviously around 0, which corresponding to the process of the droplet 

approaching to the neutral particle. When t>5.0, the drag force approaches to 0 slowly 

with very weak fluctuations.                          
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Fig. 4 The collision process between a neutral particle and a liquid droplet at B=0, in which 

the white cylinder represents the particle and the red deformable represents the droplet. 
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Fig. 5 (a) Variations of horizontal velocity of the neutral particle; (b) Enlarged figure of the 

horizontal velocity history of the neutral particle during 0<t<5; (c) Variations of drag force of 

the neutral particle; (d) Smoothed drag force curve. In (c, d), the negative values indicate 

resistance and the positive values indicate accelerating force. 

Fig. 6 depicts the collision process between a hydrophobic particle and a droplet. 

The contact angle of the droplet on the hydrophobic particle reads 60 degree. 

Compared to their neutral counterpart (see Fig. 4), during 0<t<2.5 the droplet 

stretches more significantly. When t>2.5 the droplet and the hydrophobic particle bear 

a repulsion force and thus they separate from each other slowly. During the separating 

process, the area of the droplet attached to the hydrophobic particle begins to 

decrease, and eventually the droplet departs away from the hydrophobic particle with 
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a sharp tail. After the detachment, the droplet recovers its origin circular shape and 

leaves away from the hydrophobic particle.  

Fig. 7 illustrates the collision process between a hydrophilic particle and a droplet. 

Compared to their neutral and hydrophobic counterparts at t=2.5 (see Fig. 4 and Fig. 

6), the left side of the droplet is completely attached to the hydrophilic particle 

surface. Then the hydrophilic particle begins to penetrate the droplet, thus the droplet 

is split into two fragments, both of which are attached to the hydrophilic particle 

surface. The two fragments slip on the surface of the hydrophilic particle, and finally 

two small droplets are formed and keep attaching to the particle surface.  

Fig. 8 (a) show the comparison of particle’s horizontal velocity among these three 

cases. For the neutral particle, its horizontal velocity decreases to 0.04 at t=2.0. After 

that it fluctuates weakly and is in the range of 0.04-0.1. For the hydrophobic particle, 

its horizontal velocity decreases to 0.0 at t=2.5, and continues to decrease until t=5.2, 

which leads to a negative value. Later it begins to increase up to -0.43 at t=12.5, 

which implies that the solid particle completely exchange its momentum with the 

droplet and surrounding fluid. For the hydrophilic particle, its horizontal velocity 

experiences four stages in which its velocity increases and decreases alternatively and 

obviously. Finally its velocity approaches to 0.08. Fig. 8(b) depicts the variations of 

smoothed drag forces exerting on the particles with different particle wettability. 

Compared to its neutral and hydrophobic counterparts, the smoothed drag force 

exerting on the hydrophilic particle experiences more significant fluctuations. During 

2<t<4 the hydrophilic particle experiences a strong accelerating force and it is sucked 

into the droplet due to the hydrophilic solid surface (see Fig. 7). Thus its horizontal 

velocity increases sharply. During 4<t<6 the two fragments originated from the 

droplet are observed on the hydrophilic particle surface, which causes an additional 

hydrodynamic resistance exerting on the hydrophilic particle. When t>6 the two 

fragments form two small droplets and thus the hydrophilic particle experiences a 

relatively weak oscillating force. For the hydrophobic particle, during 2<t<4 the 

interaction behaves like a resistance force, resulting in a velocity decreasing process 

(see Fig. 8(a)). In addition, according to Fig. 8 (b), one can observe that the difference 

of smoothed drag force between a neutral and a hydrophobic particle is very small.  

     

 

 
 

Fig. 6 The collision process between a hydrophobic particle (θca=60
。
) and a liquid droplet at 

B=0.0, in which the white cylinder represents the particle and the red deformable represents 

the droplet. 
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Fig. 7 The collision process between a hydrophilic particle (θca=120
。
) and a liquid droplet at 

B=0.0, in which the white cylinder represents the particle and the red deformable represents 

the droplet. 
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Fig. 8 Comparisons of (a) particle horizontal velocity and (b) smoothed drag forces exerting 

on particle among the neutral, hydrophilic and hydrophobic case at B=0.0. 

When B is not equal to 0, eccentric collisions will happen. A small value of B also 

can lead to agglomeration. Here the eccentric collision between a neutral particle and 

a droplet is taken as an example to analyze such interaction. Fig. 9 depicts the 

collision process between a neutral particle and a droplet when B=0.2. Compared to 

the case of B=0 discussed above, the droplet is attached to the upper right part of the 

neutral particle. When the neutral particle moves, the droplet slips on the particle’s 

surface. In this paper, we use the droplet-to-particle angle (θdp) to describe the relative 

position between the droplet and the particle. θdp is the included angle between the 

horizontal line and the line connecting the center of particle and of droplet. θdp is 

about 82
。
at t=37.5. We compare the magnitude of θdp at steady states for different B. 

It’s found that the increasing of B results in an increasing θdp. Fig. 10 shows the 

comparisons of particle’s velocity for different B. As shown in Fig. 10 (a), the 

differences among the four cases are very little, although during 1<t<10 the increasing 

of B leads to the increasing of particle’s horizontal velocity. However, as shown in 
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Fig. 10 (b), the variations of particle’s vertical velocity are more significant for the 

cases with larger B. In addition, it's worth noting that there are slight differences 

between the two cases where B=0.2 and 0.3, and between the two cases of B=0.5 and 

0.6. When 0<t<6.7 the four vertical velocity curves look like sinusoids with 

oscillations. The result indicates that during the interaction process, the neutral 

particle firstly experiences repulsion force and then attraction force. Fig. 10 (c) and 

(d) illustrate the comparisons of smoothed horizontal and vertical force exerting on 

the neutral particle for these four cases. One can observe that there is no obvious 

differences among them. Here we take the case B=0.2 to discuss the variations of the 

force curves: during 0<t<5 the horizontal and vertical forces both experience strong 

fluctuations, corresponding to the droplet attachment process. Then the two force 

curves oscillate weakly around 0.  

We also simulated the eccentric collisions (with a small B) of a hydrophobic and a 

hydrophilic particle.  Their interaction processes are similar with their central 

collision counterparts (B=0) discussed above. According to the above discussion, for 

the cases investigated in this study, it can be concluded that for a small B (or the 

agglomeration regime), the wettability of a solid particle is the predominant parameter 

to determine interaction processes.    

 

 

 Fig. 9 The collision process between a neutral particle and a liquid droplet at B=0.2, in 

which the white cylinder represents the particle and the red deformable represents the droplet.    
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Fig. 10 Variations of (a) horizontal and (b) vertical velocities of the neutral particle at various 

B. Variations of smoothed (c) horizontal and (d) vertical force exerting on the neutral particle 

at various B. 

4.2 Separation regime 

When the eccentricity ratio B is very large, a particle and a droplet will pass 

through the investigated domain without direct contact. In the present work such 

interaction process is classified by a separation regime. What should be stressed is 

that the present definition of separation regime is different from the stretching 

separation regime reported by Pawar et al. [34]. In the so-called stretching separation 

regime a droplet will directly contact a particle [34]. Fig. 11 depicts the interaction 

process between a neutral particle and a droplet at B=0.7. In the separation regime, the 

droplet stretches very little and passes over the particle without collision. Fig. 12 

shows the variations of the particle’s velocities for different B. We take the case B=1.0 

as a representative to analyze it. As shown in Fig. 12 (a), the horizontal velocity 

experiences a sharp decreasing process until it decreases to 0.36. After a short-time 

increasing process it decreases again, but relatively slowly. As shown in Fig. 12 (b), 

the vertical velocity experiences strong oscillations during 0<t<5. When t>5 the 

oscillations become weak and the vertical velocity approaches zero slowly. There are 

little differences among these three cases, especially for the particle’s horizontal 

velocity. Compared to the agglomeration regime shown in Fig. 10 (b), during 0<t<5 

the particle’s vertical velocity in the separation regime experiences more significant 

fluctuations. In addition, in the separation regime the particle’s vertical velocity 

approaches to zero faster than its counterpart in the agglomeration regime.  
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Fig. 11 The collision process between a neutral particle and a liquid droplet at B=0.7, in which 

the white cylinder represents the particle and the red deformable represents the droplet. 
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Fig. 12 Variations of (a) horizontal and (b) vertical velocities of neutral particle at various B. 

Fig. 13 shows the interaction process between a hydrophobic particle and a liquid 

droplet at B=0.7. Compared to its neutral counterpart shown in Fig. 11, the droplet 

experiences a tumbling process and its obvious deformation occurs when it passes 

over the hydrophobic particle. Then the droplet runs away from the hydrophobic 

particle and recovers its origin circular shape. During the separation process, the 

distance between the droplet and the hydrophobic particle is much larger than its 

neutral counterpart. This phenomenon indicates that the droplet and the hydrophobic 

particle bear a repulsion force, which promotes their relative motion. In addition, 

obviously unlike its neutral counterpart, the hydrophobic particle moves in an oblique 

route. 

 Fig. 14 shows the interaction process between a hydrophilic particle and a liquid 

droplet at B=0.7. Compared to its neutral counterpart, the relative motion between the 

droplet and the hydrophilic particle is suppressed. Particularly when t>20, their 

relative motion almost disappears, and their relative position does not change any 

longer. This result indicates the droplet and the hydrophilic particle bear an attraction 

force, which hinders their relative motion.    
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Fig. 13 The collision process between a hydrophobic particle (θca=60
。
) and a liquid droplet at 

B=0.7, in which the white cylinder represents the particle and the red deformable represents 

the droplet. 

 

Fig. 14 The collision process between a hydrophilic particle (θca=120
。
) and a liquid droplet at 

B=0.7, in which the white cylinder represents the particle and the red deformable represents 

the droplet. 

4.3 Effect of particle-to-droplet size ratio 

In this section, the effect of particle-to-droplet size ratio α=Dp/Dd on 

particle-droplet interaction is investigated by adjusting the size of the solid particle. In 

this section only a neutral solid particle is considered. The Weber number 

We=4ρdDdU0
2/σ=33.3 keeps constant but the capillary number Ca=2μU0Dd/σDp will 

change depending on α. According to the above discussion on particle-droplet 

collisions at α=1.0, we can deduce that a critical value of eccentricity ratio (Bc) exists, 

beyond which the separation regime happens. Fig. 15 presents the distribution map of 

particle-droplet interaction regimes for various α (0<α<2.5) and B (0<B≤1). 
Obviously, the agglomeration regime appears in the lower half of the map and the 

separation regime emerges in the upper half of the map. For each α, there is a specific 

Bc. The peak value of Bc is achieved for a middle α (for example 1.0≤α≤1.6 in this 

study)  
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Fig. 15 A regime map for interaction between a freely moving particle and a freely moving 

droplet.     

     

5. Conclusion 
In this work, the interactions between a freely moving particle and a freely moving 

droplet are investigated. Depending on the magnitude of eccentricity ratio, the 

agglomeration and separation regime are observed, respectively. It is found that in the 

separation regime the droplet will pass over the particle without direct contact. In 

addition, the effect of particle-to-droplet size ratio on particle-droplet interaction are 

also studied. Some new phenomenon are observed. The conclusions of this work read: 

(1) The effect of particle’s wettability on the agglomeration regime is critical. For a 

neutral solid particle, the particle and the droplet can merge to form a stable 

combination with a contact angle of 90 on their interface. For a hydrophobic solid 

particle, the particle and the droplet bear a repulsion force after their agglomeration 

and thus they will separate from each other eventually. For a hydrophilic solid 

particle, the particle passes through the droplet, so the droplet is split into two 

fragments. 

(2) The effect of particle’s wettability on the separation regime is also critical. For a 

hydrophobic solid particle, the relative motion between the droplet and the particle is 

enhanced due to a repulsion force. For a hydrophilic solid particle, the relative motion 

between the droplet and the particle is suppressed due to an attraction force. 

(3) The particle-to-droplet size ratio α influences the critical value of eccentricity 

ratio Bc significantly. Generally, the peak value of Bc is achieved for a middle α.  
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