
PHYSICAL REVIEW A 98, 010103(R) (2018)
Rapid Communications

Making rare events typical in Markovian open quantum systems

Federico Carollo, Juan P. Garrahan, Igor Lesanovsky, and Carlos Pérez-Espigares
School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of

Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom

(Received 12 December 2017; published 10 July 2018)

Large dynamical fluctuations—atypical realizations of the dynamics sustained over long periods of time—can
play a fundamental role in determining the properties of collective behavior of both classical and quantum
nonequilibrium systems. Rare dynamical fluctuations, however, occur with a probability that often decays
exponentially in their time extent, thus making them difficult to be directly observed and exploited in experiments.
Here, using methods from dynamical large deviations, we explain how rare dynamics of a given (Markovian) open
quantum system can always be obtained from the typical realizations of an alternative (also Markovian) system.
The correspondence between these two sets of realizations can be used to engineer and control open quantum
systems with a desired statistics “on demand.” We illustrate these ideas by studying the photon emission behavior
of a three-qubit system which displays a sharp dynamical crossover between active and inactive dynamical
phases.

DOI: 10.1103/PhysRevA.98.010103

Introduction. The exploration and control of quantum mat-
ter far from equilibrium is a current theme in physics. This
interest is rooted in progress in realizing and probing many-
body dynamics with ensembles of cold atoms or trapped ions;
for a few recent examples, see Refs. [1–13]. Beyond enabling
the study of ground states and unitary evolution, these systems
also allow a controlled coupling to an environment. Collective
dynamics, e.g., due to a competition between interactions and
external driving, may then be monitored through the quanta
emitted from the system into the environment [14–17].

Often, such emission output is characterized by a mostly
unstructured sequence of events (e.g., photons emitted from
atoms), but with occasional rare periods of ordered sequences
or bursts of photons. For instance, consider a three-qubit
system coupled to an environment and driven from an external
laser field, as shown Fig. 1: While the typical number of emitted
photons is Ka , a rare dynamical fluctuation is characterized
by the emission of, e.g., Kb ∼ 2Ka photons. Unfortunately,
the experimental observation and control of these atypical
events is in general out of reach as their occurrence probability
is suppressed exponentially in their time duration. Thus, the
question that naturally arises is whether it is possible to modify
the quantum system in such a way that these interesting fluctu-
ations are becoming the typical dynamics, as sketched in Fig. 1.

Here, we explain how to engineer a quantum system whose
typical dynamics is the same as that corresponding to rare
dynamical fluctuations of a given original system. The under-
lying theoretical framework to tackle this problem is provided
by large deviation (LD) theory [18–20] as applied to open
quantum systems [21]. We show here how the LD formalism
allows—if the original dynamics is described by a Lindbladian
master equation [16,22,23]—to obtain the Hamiltonian and
the jump operators of the new quantum system (sometimes, in
the classical context, called “auxiliary” [24] or “driven” [25])
whose statistics of events corresponds to a precise rare behavior
of the original system. This construction can be seen as the

quantum counterpart [21] of the so-called generalized Doob
transform [24–32]. While we focus mostly on the mapping at
long times, we also provide the quantum generalization of the
time-dependent Doob transform which makes the correspon-
dence of the statistics valid for all times [25,32]. This means
that biasing can be even achieved for transient dynamics, which
may be more easily accessible experimentally than stationary
behaviors.

We illustrate our ideas with a three-qubit system charac-
terized by a pronounced crossover at the level of fluctuations
between dynamical regimes of atypically low and atypically
high photon emission rates. For these rare inactive and active
behaviors of the original system, we derive a dynamics where
they become typical. In the inactive case, this system has
collective jump operators that make photon emission dynam-
ically constrained. In contrast, the active case corresponds to
dynamics where qubits are almost independent.

Our findings show the possibility of tuning many-body
quantum systems to dynamical critical points or phase tran-
sitions [33–39]. In addition, the proposed engineering of
open quantum dynamics may become of practical interest
for realizing quantum devices relying on streams of photons,
electrons, or ions [40–44] with not only a controlled average
output but also with tailored fluctuations.

Open quantum dynamics and thermodynamics of quantum
trajectories. The LD formalism provides a method to study
ensembles of dynamical trajectories using an approach equiv-
alent to that of standard statistical mechanics for ensembles of
configurations in equilibrium. The state ρt of the Markovian
quantum system we consider here evolves according to the
master equation ρ̇t = L[ρt ], where the Lindbladian generator
is given by [16,22,23]

L[·] = −i[H,·] +
NJ∑

μ=1

(
Lμ · L†

μ − 1

2

{
L†

μLμ,·}
)

. (1)
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FIG. 1. Three-qubit system with dynamics described by Eqs. (4)
and (5) with � = V = γ = 1, and an initial state with all qubits in
the excited state. A photon is emitted whenever the excited state |↑〉
decays into the ground state |↓〉. Photons are detected (blue vertical
lines) and their statistics Pt (K), with K being the total amount of
emitted photons, is sampled up to time t = 10. Top: Typical records of
emissions show that the average number of emitted photons is Ka ∼ 7.
Bottom: Modified quantum system for which the rare event Kb = 13
of the original dynamics becomes typical, as shown by P̃t (K); green
points are obtained by sampling quantum trajectories of the modified
dynamics H̃ ,L̃ discussed in the last section, while the red solid line
corresponds to the biased ensemble of probabilities (2) for s = −0.5.

Here, H = H † is the system Hamiltonian, Lμ (μ = 1, . . . ,NJ )
are the jump operators, and {·,·} stands for the anticommutator.
Each of these jump operators corresponds to a specific type of
event detected in the environment. For example in Fig. 1 this
describes the emission of a photon, but in general can be, e.g.,
bath quanta emission and absorption, or particle injection and
ejection.

Assuming ideal detectors for these events, one is able to
obtain their time records or quantum trajectories [21]. To
any trajectory one can then associate a vector of outcomes �K
whose components are the total counts of the detected events
of each kind (or linear combinations of these total counts). The
corresponding probability distribution Pt ( �K), in the quantum
framework, is given by Pt ( �K) = Tr (ρ �K

t ), where ρ
�K

t is the state
of the system obtained by conditioning trajectories on having
outcomes �K up to time t [21,45,46]. In the long-time limit,
these probabilities are assumed to satisfy a LD principle [20],
Pt ( �K) ≈ e−t φ(�k), with �k = �K/t . The function φ(�k) is known
as the LD function (LDF), and is minimized at 〈�k〉. This
asymptotic form shows that dynamical realizations sustaining
atypical outcomes away from 〈�k〉 are exponentially suppressed
in time.

Formally, the standard way of tilting or biasing these
probabilities towards desired values of the outcomes is by
defining an ensemble of trajectories such that [21,25,29,47]

P �s
t ( �K) = e−�s· �K

Zt (�s)
Pt ( �K), (2)

Zt (�s) :=
∑

�K
e−�s· �KPt ( �K), (3)

where the entries of �s are parameters conjugated to the ob-
servables which quantify the strength of the bias. For example,
in Fig. 1, an appropriate biasing transforms the probability
Pt (K) with average emission Ka , into the probability P̃t (K)
with average Kb. The same information is contained in
the moment generating function (3). The change from the

conditioned ensemble where all trajectories have fixed �K
to the biased one defined by Eq. (2), where only 〈 �K〉�s is
fixed, is analogous to the change from the microcanonical to
the canonical ensemble in equilibrium statistical mechanics
[29,48]. Trajectories with outcomes �K different from the
typical ones can be favored or suppressed, varying the vector of
the conjugate parameters �s. At long times, the whole statistics
of the time-averaged observables �k in these biased ensembles
is encoded in the scaled cumulant generating function (SCGF)
θ (�s) = limt→∞ t−1 logZt (�s) [47].

The parameters �s, however, are not physical quantities that
can be directly tuned in experiments [49]. In order to practically
access the rare dynamical behavior that mathematically is con-
trolled by �s �= 0, we show below how to define an alternative
system in terms of a different Hamiltonian and jump operators
whose unbiased (and therefore physical) dynamics has biased
probabilities given by Eq. (2).

Example: Three-qubit system. To make our ideas concrete,
we apply them to the open three-qubit system depicted in
Fig. 1, which can be experimentally realized, for example, by
means of trapped ions [8,50] or Rydberg atoms [2,12,51]. The
quantum dynamics is described by a Lindblad generator of the
form (1), with the Hamiltonian

H = �

3∑
k=1

σ (k)
x + V

3∑
k>h=1

σ (k)
z σ (h)

z , (4)

and jump operators describing independent decay (and photon
emission) from each qubit (k = 1,2,3) at rate γ ,

Lk = √
γ σ

(k)
− . (5)

Here, σ (k)
α (α = 0,x,y,z) are the Pauli matrices for kth qubit

with σ0 the identity and σ± = 1
2 (σx ± iσy).

In Fig. 2(a) we show the SCGF θ (s), together with the
mean emission rate 〈k〉s = −θ ′(s) and the fluctuations θ ′′(s)
as functions of � and s. For almost all choices of � we
observe that the mean emission rate 〈k〉s = −θ ′(s) displays
a sharp change from an active to an inactive regime, in
which trajectories are characterized by either a large or small
photon count rate. Directly at the crossover, s = sc ≈ −0.68,
trajectories are a mixture of both active and inactive ones [21].
Here, the two dynamical phases coexist [52,53]. In order to
access the active phase as well as the coexistence region, the
system needs to be biased. This means that the Hamiltonian and
the jump operators are adjusted such that the rare dynamics that
is currently assumed at values of s away from 0 is becoming
the typical dynamics. The technical details of this procedure
are discussed in the following section, but we already illustrate
the results in Figs. 2(b) and 2(c). Here, we bias the three-qubit
system such that the dynamics is in the active phase. In Fig. 2(b)
we see that the resulting SCGF, θ̃ (s), is the original SCGF but
shifted in a way that the crossover (formerly at sc < 0) is now
found at s > 0. Thus, the modified system is indeed within the
active phase, which is also reflected in the distribution function
of the photon counts, Fig. 2(c).

Quantum Doob transform. We will now show how
the desired transformation of the Hamiltonian and jump
operators is achieved. The starting point is the tilted
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FIG. 2. (a) Top: Scaled cumulant generating function (SCGF) of the original three-qubit system and its first two derivatives for V = 10.
The first-order derivative displays an abrupt crossover from an inactive phase to an active one. Bottom: Emission time record for � = 1; each
blue line corresponds to the detection of a photon. Trajectories are obtained performing quantum jump Monte Carlo for the modified dynamics.
(b) SCGF of the original system (solid blue line) and the modified system (red dashed line) for s0 = −2 and � = 1. (c) Top: Original LDF
(solid blue line) with average activity 〈k〉0 = 2 × 10−3 and the modified one (red dashed line) with average activity 〈k〉s0 = 1.75. Bottom:
Corresponding probability distributions for t = 100, whose maximum is at the average activity in each case.

generator [21,54–57],

L�s0 [·] = −i[H,(·)] +
NJ∑

μ=1

(
efμ(�s0)Lμ(·)L†

μ − 1

2

{
L†

μLμ,(·)}
)

,

(6)

where the functions {fμ(�s0)}NJ

μ=1, such that∀μ,fμ(�s0 = 0) = 0,
are linear in �s0 and encode the dependence of the observables
of interest on the various kind of jumps. The generator (6)
generates the ensemble associated with the probabilities
P

�s0
t ( �K) [cf. Eq. (2)], but it does not represent a physical

dynamics, i.e., it is not trace preserving at �s0 �= 0.
At long times, the link to the probabilities P

�s0
t ( �K) is through

the largest eigenvalue of L�s0 , which gives the SCGF θ (�s0)
associated with the biased ensemble. To this leading eigen-
value belong left and right eigenmatrices, L∗

�s0
[	�s0 ] = θ (�s0)	�s0

and L�s0 [r�s0 ] = θ (�s0)r�s0 , normalized such that Tr (	�s0r�s0 ) =
Tr (r�s0 ) = 1, with L∗

�s0
the dual map acting on the system

operators.
The remaining task is to convert Eq. (6) to a proper

Lindbladian generator, i.e., to remedy the lack of trace preser-
vation. To this end we define, generalizing Ref. [21], the
operator

W̃�s,�s0 [·] = 	
1/2
�s0

L�s+�s0

[
	

−1/2
�s0

(·)	−1/2
�s0

]
	

1/2
�s0

− θ (�s0)(·).
This is a completely positive map obeying W̃∗

�s=0,�s0
[1] = 0. We

can rewrite this in a more convenient way [58],

W̃�s,�s0 [·] = −i[H̃�s0 ,(·)]

+
NJ∑

μ=1

(
efμ(�s)L̃�s0

μ (·)L̃�s0†
μ − 1

2

{
L̃�s0†

μ L̃�s0
μ ,(·)

})
, (7)

with the modified jump operators

L̃�s0
μ = e

1
2 fμ(�s0)	

1/2
�s0

Lμ	
−1/2
�s0

, (8)

and the modified Hamiltonian

H̃�s0 = 1

2
	

1/2
�s0

⎛
⎝H − i

2

NJ∑
μ=1

L†
μLμ

⎞
⎠	

−1/2
�s0

+ H.c. (9)

For �s = 0, the map is clearly in Lindblad form, and its steady
state is given by ρ�s0∞ = 	

1/2
�s0

r�s0	
1/2
�s0

.

We shall prove now that the map W̃�s=0,�s0 generates trajec-
tories whose statistics, for long times, is given by P

�s0
t ( �K) ≈

e−t(φ(�k)+θ(�s0)+�k·�s0), which is nothing but the asymptotic form of
Eq. (2).

Theorem. The dynamical generator W̃�s=0,�s0 describes a
quantum system, for which the long-time statistics of the
time-averaged observables �k = �K/t is characterized by the
following SCGF and LDF:

θ̃ (�s) = θ (�s + �s0) − θ (�s0), φ̃(�k) = φ(�k) + θ (�s0) + �k · �s0.

(10)

Proof. W̃�s=0,�s0 is a Lindblad map, and thus represents a
quantum generator. Moreover, with respect to the observables
�K , W̃�s,�s0 is the tilted operator of W̃�s=0,�s0 . Recalling that r�s is

the right eigenmatrix corresponding to the largest eigenvalue
of the map L�s , the eigenvalue with the largest real part of
W̃�s,�s0 can be simply found noticing that W̃�s,�s0 [R] = θ̃ (�s)R,
with R = 	

1/2
�s0

r�s+�s0	
1/2
�s0

. This map is not uniquely defined: The

same result is obtained for the generator U ◦ W̃�s,�s0 ◦ U−1, with
eigenmatrix U [R], where U is a unitary map U [·] = U · U †.
The LDF φ̃(�k) is related to θ̃ (�s), via the Legendre transform
φ̃(�k) = max�s[−�k · �s − θ̃(�s)]. Adding and subtracting �k · �s0, the
above relation can be rewritten as

φ̃(�k) = max
�s

[−�k · (�s + �s0) − θ (�s + �s0)] + θ (�s0) + �k · �s0.

Changing variables in the maximization procedure, and notic-
ing that φ(�k) := max�s [−�k · �s − θ (�s)], one obtains the second
relation in (10). �

The SCGF of the modified dynamics is just a shift of the
original one, as depicted in Fig. 2(b). We stress that this SCGF
is associated with the LDF φ̃(�k) which clearly shows that the
biased probability P

�s0
t ( �K) is now given by the typical behavior

of the physical dynamics W̃�s=0,�s0 as displayed in Fig. 2(c). The
Doob transformation enables thus the tuning of the system to
any point in the dynamical phase diagram.

Engineering an active and inactive dynamics. Let us now
return to the three-qubit system. We have previously seen that
we can indeed construct a dynamics that brings the system
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FIG. 3. Coefficients of the operator decomposition of the mod-
ified Hamiltonian and jump operators on the Pauli matrix basis as
a function of s. (a) Real coefficients of H̃s . (b) Absolute value
of the complex coefficients of L̃s

k . For s0 = −11.5 (active phase),
�′ ∼ 26.5 and γ ′ ∼ 4.8 give an emission rate of 〈k〉 ∼ 55.4. For
s0 = 12 (inactive phase), withα = 0.95,β = 0.4, the typical emission
rate is reduced to 〈k〉 ∼ 10−5.

from the inactive into the active phase. The question we
are asking now is what additional terms in the Hamiltonian
and Lindblad operators are generated by the Doob transform
that make the system undergo this change in dynamics. To
answer this question we decompose the Hamiltonian and jump
operators H̃s0 ,L̃

s0
μ into the Pauli matrix basis. In this way it

is possible to identify relevant terms of the Doob dynamics.
In Fig. 3(a), it is clear that, for large negative s, the main
contribution to the Hamiltonian is given by σ (k)

x . Analogously
[see Fig. 3(b)], when biasing deep into the active phase, jump
operators are dominated by the terms σ (k)

x and σ (k)
z , and one

can approximate them as L̃
s0
k ≈ √

γ ′(σ (k)
x − iσ (k)

z ). Unitarily
rotating the basis in such a way that x → x, y → −z, and z →
y, the biased dynamics is approximately implemented by jump
operators {2√

γ ′σ (k)
− }

k
, and Hamiltonian H̃s0 ≈ �′ ∑

k σ (k)
x ,

where �′ and γ ′ depend on the value of s0. This shows that
in order to produce high emission rates, the system becomes
noninteracting.

We now look at the (inactive) dynamics biased to large
positive s. The Hamiltonian remains virtually unchanged
compared to the original one [see Fig. 3(a)], whereas Fig. 3(b)
does not allow us to identify a clear dominant contribution to
the jump operators. However, inspecting directly the matrix
elements, we find that they are well approximated by L̃

s0
k ≈

α
∏

h σ
(h)
− + βσ

(k)
−

∏
h �=k (1 − σ (h)

z ). This shows that activity is
not simply reduced by reducing the decay rate γ , but rather
by constraining the photon emission: From L̃

s0
k we see that

photons can be emitted either if all qubits are in the excited
state, or if one is in the excited state and the others in the
ground state. Note that such collective jump operators may
be challenging to implement experimentally. They may be
realized as an emergent dynamics of a strongly interacting
system in a perturbative limit—similar to kinetic constraints
in dissipative Rydberg gases [59–61]. A further possibility is
to engineer them using digital quantum simulation protocols
which have been demonstrated in ion traps [62].

Time-dependent quantum Doob transform. So far we have
focused on the stationary state dynamics, but now we ask
whether it is in principle possible to generate the biased dynam-
ics also during the approach to stationarity. This is achieved
by a time-dependent Doob transform (see Refs. [25,32] for
classical stochastic systems), for which the statistics of events

is given by Eq. (2) for all observation times tf . The tilted
evolution up to the final time tf can be divided into N time
steps, etfL�s0 = ∏N

k=1 eδtL�s0 , with δt = tf/N . Introducing the
map gt [X] = GtXGt and its inverse g−1

t , being Gt an arbitrary
Hermitian time-dependent operator, we rewrite the tilted evo-
lution as etfL�s0 = g−1

tf
◦ (

∏N
k=1 gtk ◦ eδtL�s0 ◦ g−1

tk−δt ) ◦ g0. The
product is from largest to smallest times tk = (N + 1 − k)δt .

For δt � 1, one has gtk ◦ eδtL�s0 ◦ g−1
tk−δt ≈ e

∫ tk
tk−δt du L̃u , with

L̃t [ρ] = GtL�s0

[
G−1

t ρG−1
t

]
Gt + ĠtG

−1
t ρ + ρG−1

t Ġt .

This procedure, which is equivalent to the gauge transfor-
mation used for the classical case in Ref. [32], defines a class
of time-dependent maps generating the same ensemble as L�s0 .
The Doob generator is then obtained by fixing the gauge, i.e.,
choosing Gt , such that L̃∗

t [1] = 0. This leads to ∂t (G
†
t Gt ) =

−L∗
�s0

[G†
t Gt ], that we solve with the final condition G2

tf
= 1,

obtaining Gt =
√

e
(tf −t)L∗

�s0 [1]. This dynamics can be written
in a time-dependent Lindblad form with jump operators L̃μ =
efμ(�s0)/2GtLμG−1

t and the time-dependent Hamiltonian,

H̃ = 1

2

⎡
⎣Gt

⎛
⎝H − i

2

NJ∑
μ=1

L†
μLμ

⎞
⎠G−1

t +i∂tGtG
−1
t +H.c.

⎤
⎦,

(11)

reducing, for long observation times tf → ∞, to the time-
independent result Eqs. (7)–(9). In the next section we present
numerical results demonstrating the validity of our finding on
the finite-time Doob dynamics.

Examples of the finite-time quantum Doob transform. In
the following, we provide some examples in which we use the
finite-time quantum Doob transform to generate the probability
distribution of the emitted photons when biasing the system to
a more active or inactive behavior with respect to the typical
value. In all cases we take V = γ = � = 1 and we start from
the initial configuration where the three qubits are in the up
state.

In Fig. 4(a) we display the same data as Fig. 1, where we bias
the original system towards a more active dynamics by taking
a negative value of the tilting field (s = −0.5). We observe
how the photon emission statistics up to t = 10 obtained via
the Doob dynamics (green triangles) is equal to the biased
probability distribution P s

t (K) = e−sKPt (K)/Zt (s) (red
squares) obtained from the original probability distribution
Pt (K) (black circles). Both the Doob and the original
distribution have been obtained by sampling 5 × 105

trajectories generated via quantum jump Monte Carlo for
the (time-dependent) finite-time Doob dynamics (with H̃ and
L̃) and the original dynamics (with H and L), respectively.
The Doob dynamics gives rise to an average photon emission
〈K〉 ∼ 13 which is larger than the average of the original
system 〈K〉 ∼ 7. The same results are displayed in Fig. 4(b)
when biasing the system towards a more inactive dynamics
by taking a positive tilting or biasing field (s = 0.5). In this
case the average of the modified system is shifted to 〈K〉 ∼ 4.

In Fig. 4(c) we condition the original system to be more
active [s = −0.5, as in Fig. 4(a)], but we study the statistics
of the photons emitted up to a larger time t = 40. Again, the
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FIG. 4. (a) Biasing towards an active dynamics (s = −0.5) for t = 10. Black circles correspond to the numerical probability distribution of
the photon emission outcome for the original dynamics of three-qubit system. Red squares stand for the biased probability P s

t (K) obtained from
the original distribution Pt (K) while green triangles are the numerical results obtained with the time-dependent Doob dynamics. (b) Analogous
results when biasing towards an inactive dynamics (s = 0.5). (c) Same results biasing towards an active dynamics (s = −0.5) for t = 40. The
apparent discontinuous behavior of P s

t (K) stems from the undersampling of the far tails of the original distribution Pt (K) due to the exponential
suppression in time of atypical events. Green triangles are the numerical results obtained with the time-dependent Doob dynamics.

number of trajectories to sample the original and the finite-time
Doob dynamics is equal to 5 × 105. However, we observe how
in this case the biased probability P s

t (K) obtained from the
sampled probability of original dynamics is not meaningful.
This is due to the fact that as time increases, the tails of the
original distribution (black circles) are not properly sampled,
i.e., obtaining quantum rare trajectories from simulation of
the original dynamics becomes more and more difficult. This
problem is overcome by considering the quantum trajectories
via the Doob dynamics (green triangles) which allows us
to make typical the rare trajectories of the original system,
thus having a faithful sampling even in the far tails of the
distribution.

Conclusions. We have derived by means of dynamical large de-
viation techniques a constructive way for making rare dynam-
ical fluctuations typical in open quantum systems. Our results
here open up the possibility of tailoring open quantum systems
in order to obtain a desired statistics of emissions on demand.
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