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Throughout biology, geometric hierarchy is a recurrent theme in structures where strength is
achieved with efficient material usage. Acting over vast timescales, evolution has brought about
beautiful solutions to problems of mechanics that are only now being understood and incorporated
into engineering designs. One particular example of structural hierarchy is found in the junction
between stiff keratinised material and the soft biological matter within the hooves of ungulates.
Using this biological interface as a design motif, we investigate the role of hierarchy in the creation
of a stiff, robust interface between two materials. We show that through hierarchical design, we
can manipulate the scaling laws relating constituent material stiffness and overall interface stiffness
under loading. Furthermore, we demonstrate that through use of a hierarchical geometry, we can
reduce the maximum stress the materials experience for a given loading, and tailor the ratio of
maximum stresses in the constituent materials. We demonstrate that when joining two materials
of different stiffness hierarchical geometries are linked with beneficial mechanical properties and
enhanced tailorability of mechanical response.

I. INTRODUCTION

Naturally occurring hierarchical interfaces for adhesion
between two surfaces have been well documented, exam-
ples of such designs are to be found on the feet of geckos,
spiders and insects [1–3]. Although other contributions
have been identified [4], it is understood that the pri-
mary interaction allowing geckos to walk up walls is the
van der Waals interaction [5, 6]. The hierarchical geom-
etry of the gecko’s foot is key in making this adhesion
possible utilising this very weak interaction [7]. This
structure has inspired a research area with the goal of
creating dry adhesive mechanisms [8–11]. Other fractal-
like geometries are found in nature suited to various func-
tionalities including spider capture silk for strength and
elasticity [12], biological composites for stiffness and frac-
ture toughness [13, 14] and trabecular bone for stiffness
and minimal weight [15]. Recently, novel manufacturing
methods have allowed the principles of geometric hierar-
chy to be utilised in engineering design [16–19].

Structures that derive their mechanical properties pre-
dominantly from their geometry rather than their ma-
terial composition are often referred to as mechanical
metamaterials [20]. Utilising geometry to control the me-
chanics of a system can lead to novel, beneficial proper-
ties, including auxetic response [21, 22], energy trapping
[23], mechanical cloaks [24], and high strength to weight
ratios [25]. Here we look to control the mechanical re-
sponse of a system made up of three materials through
controlling the geometry of the structure, in particular,
we investigate the effect of adding geometric hierarchy.
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It is widely observed that naturally occuring interfaces
with non-trivial geometry exhibit remarkable mechanical
properties [26–28]. Suture joints are a prime example
of such geometric specialisation for mechanical purposes,
such joints are typically observed joining two regions of
a given material via an interfacial region comprised of a
second material with a lower stiffness [28, 29]. Exam-
ples of such joints are to be found in bone [2] (includ-
ing the cranium [30]), turtle shell [29] and ammonites
[14, 31]. In all of these cases, mechanical function (includ-
ing stiffness, strength, fracture/penetration resistance) is
hypothesised to be a driving factor in the design of the
interface; other functions for which such designs are spe-
cialised include growth, respiration and buoyancy control
[14, 30, 31]. While a range of geometries joining two do-
mains of a given material utilising a second joining mate-
rial (glue) have been extensively studied [2, 7, 14, 26–31],
the problem of joining two materials of differing stiffness
has received little attention. This problem is of partic-
ular interest where dissimilar materials enables designs
to achieve a high structural efficiency in situations where
stiffness, strength or damage tolerance are all of relevance
[32].

In this paper, we focus on a novel application of hi-
erarchical design – creating a permanent adhesive con-
nection between two materials of differing stiffness. The
geometry of both sides of the interface is designed to
permit maximal interface stiffness and strength. The ge-
ometry we investigate is biologically inspired, we observe
this particular geometry marking the transition from a
stiff material to a softer material in equine and bovine
hooves (figure 1), here we investigate whether this form
could be a specialization linked with mechanical func-
tion. One of the adaptations of the equine hoof observed
at this junction is its a hierarchical structure of laminae
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or lamellae [33, 34]. Approximately 600 primary epider-
mal lamellae, each bearing 100−150 non-keratinised sec-
ondary epidermal lamellae, increase the area for the ad-
hesion between and dermis and epidermis to more than 2
m2 [35]. Between the dermis and epidermis is a set of bi-
ological molecules allowing tissue to remain bounded to-
gether [36, 37]. The geometry of this interface is assumed
to be an anatomical specialisation key to force mediation
[39]. Clinical signs of laminitis (a disease causing lame-
ness) occur when this hierarchical lamella architecture
disintegrates [40], thus natural selection pressure should
ensure a robust interface [38, 41]. While the extensive
surface area available for adhesion is used as justification
for the ability of the equine hoof capsule to survive large
load [38, 39, 41], no studies have attempted to model
this hypothesis. Given the widespread use of equids in
developing economies [42–44], and well established eco-
nomic cost of lameness in cattle [45, 46], comprehending
laminitis would make great welfare and economic sense.
Understanding the mechanical function of this biological
interface is a critical step in alleviating diseases associ-
ated with its degradation.

In this paper we present a thorough investigation into
the effect of hierarchical geometry on interface stiff-
ness and stress distributions. Using analytic methods,
confirmed through finite element work, we demonstrate
the dependence of scaling relationships defining interface
stiffness on the hierarchical order of the geometry. We
find stiffer interfaces are linked with increased hierarchy.
In higher order structures, we find that more than one
scaling regime exist and we present analytic arguments
linking the different scaling regimes to specific deforma-
tion modes. Furthermore, we establish that hierarchical
geometry leads to a reduced magnitude of stress observed
in the material linking the two sides of the interface.
Based on this observation, we make predictions about
the region of the structure that will first exhibit non-
elastic deformations and show this can be manipulated
through alterations in the geometry of the interface.

II. GEOMETRY AND HIERARCHY

Here we focus on joining two materials of vastly dif-
fering stiffness via an intermediate elastic medium. We
assume that the system is rectangular and that the upper
region of the system is made up of only the stiffer mate-
rial while the lower extreme is made up of only the softer
material. These two materials can only be joined via the
intermediate material. As such, the three materials will
be referred to as “upper”, “lower” and “intermediate”
referring to their position in the composite (see figure 2).
The upper material has a stiffness much greater than the
other materials in the structure and as such will be mod-
eled as infinitely stiff. The remaining two materials are
both linear elastic with Young’s Modulus and Poisson’s
ratio given by Yi, νi and Yl, νl for the intermediate and
lower materials respectively. For a given system dimen-

FIG. 1: A cross sectional image taken perpendicular to the surface
of the hoof wall. The image shows the interface between soft bio-
logical material and stiff keretinized materials found in the bovine
(left) and equine (right) hoof. In both cases the hoof wall is situ-
ated below the region imaged, while the pedal bone is above. This
interface mediates large concussive loads between the two regions
during the animal locomotion. The secondary lamellae are on both
the dermal and epidermal lamellae are clearly visible in the inset
of the right hand image.
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FIG. 2: (a) The generation-0 geometry: a planar connection of two
materials of vastly differing stiffness joined by an adhesive connec-
tion of thickness ti. (b) The generation-1 interface and its pa-
rameterisation. (c) The generation-2 geometry: A pair of primary
lamellae protrude from the deformable domain, from these primary
lamellae, a secondary set of lamellae emanate at a given angle, θ
(θ = π/3 shown). The fixed domain interdigitates these deformable
lamellae. In all three diagrams, the cream region represents an in-
finitely stiff material, which is connected to the deformable material
(shown in red) via a (navy-blue) inter-surface interaction. An im-
posed displacement of ∆ is applied to the lower surface of a given
design and the stiffness of the interface is evaluated.
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sion, a pair of internal boundaries can then be defined
specifying the geometry entirely: one boundary defines
the transition from the lower to the intermediate mate-
rial, the second marking the transition from the interme-
diate to the upper region. The materials at each bound-
aries are assumed to be perfectly bonded. A possible
geometry showing the three material domains is shown
in figure 2 (a). In this work, we focus on geometries
where the width of the intermediate domain is fixed. We
therefore specify a single curve describing the center of
the intermediate domain, and we require that the bound-
aries defining the geometry are a fixed distance ti/2 from
this curve; this width is measured in the direction normal
to the tangent of the curve at that point.

The geometry investigated here can be described as be-
ing of varying “generation”, each generation introduces a
new lengthscale into the problem. The generation-0 ge-
ometry is shown in figure 2 (a): the boundaries between
the different materials form a pair of straight parallel
lines. The generation-1 structure is designed such that
the two materials to be joined (the upper and lower ma-
terials) form a set of interdigitating lamellae whose tips
are rounded with semicircular caps. The lamellae intro-
duced are both of equal length h1,1 and thickness t1,1,
this geometry is shown in figure 2 (b). To form the final
geometry, we take the generation-1 structure and add a
secondary set of interdigitating lamellae along the sides
of the primary lamellae, this geometry is shown in fig-
ure 2 (c). The angle at which the secondary lamellae
protrude from the primary lamellae is set to be θ. We
follow the notation used in similar work on hierarchi-
cal structures [18, 19, 25]: the parameter X describing
the geometry on the i−th lengthscale in a generation G
structure is denoted XG,i, where i = G is the longest
lengthscale, and i = 1 is the shortest (thus, for exam-
ple, t2,1 denotes thickness of the secondary lamellae in
a generation-2 structure). These geometries along with
the notation used in their parameterization is shown in
figure 2. An important variable governing the mechanics
of these structures is the aspect ratio of the lamellae, we
define this as

aG,i ≡
hG,i

tG,i
. (1)

When non-zero forces are applied to the upper and lower
boundaries, a relative displacement between the two
boundaries will be observed. Due the infinite stiffness
of the upper material, the relative displacement of these
boundaries signifies deformation in the lower and inter-
mediate materials only. We aim to investigate the effect
of geometry, and in particular the addition of substruc-
ture, on the stiffness and strength of the interface.

III. RESULTS

Here we present the results of finite element simula-
tions calculating the stiffness of geometries with varying

degrees of hierarchy, alongside analytic scaling results.
The finite element simulations are undertaken using the
two-dimensional structural mechanics module of COM-
SOL 5.1 Multiphysics [47] with a plane strain assump-
tion. Mesh refinement studies were undertaken to ascer-
tain accuracy of the results, required mesh density was
highly dependent on the relative thickness of interface to
lamellae and other parameters (further information on
the finite element work performed here can be found in
the methods appendix).

A. Stiffness

In order to test the stiffness of the interface, we fix the
upper external boundary of the system and investigate
the magnitude of force must be applied to the lower ex-
ternal boundary of the system to create a displacement
of a given size and direction. The fixed boundaries in the
geometries are labeled “fixed” in figure 2, and the dis-
placement considered along the lower external boundary
is indicated with a grey dashed line. We only consider
small deformations such that the response of the struc-
ture is close to linear. Here we investigate structure being
loaded under tension as this are the biologically relevant
loading codition [48–50]. In order to find the stiffness of a
given geometry under tension, we investigate what load-
ing is required to create a deformation of magnitude ∆ in
the -y direction relative to the upper boundary. Here we
report the total loading resulting from the displacement
of magnitude ∆ and refer to it as a “reaction force” as it
arises in response to the imposed displacement.

1. Generation-0

The generation-0 structure is composed of a planar in-
terface between a deformable and an infinitely rigid ma-
terial connected by an intermediate elastic medium, see
figure 2. When imposing a displacement on the base of
the deformable surface (the lower external boundary of
the system) relative to the infinitely stiff material, the
nature of the deformation across the structure will be
dependent on the stiffness of the intermediate material,
Yi, and that of the lower material, Yl, the ratio of the
stiffness will be denoted η:

η =
Yl
Yi
. (2)

We also introduce the non-dimensional load parameter,

fR(G) ≡ FR(G)

Yl∆
, (3)

where ∆ is the imposed displacement on the structure, G
denotes the generation of the structure investigated and
FR is the reaction load parallel to the imposed displace-
ment per unit length in the remaining spatial dimension.
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FIG. 3: The stiffness of a generation-0 interface. The reaction
force shown is for a structure with parameters Lx = 3 × 10−4m
ti = 1 × 10−6m, Yi = 100MPa, ∆ = ti

10
.

For a fixed geometry and Poisson’s ratios, this parame-
terization collapses all pairs of (Yi, Yl) onto a single line.
The value of FR(0) for η � 1 can be calculated noting
that in this limit the system closely approximates two
rigid bodies exerting a force on the intermediate layer.
Thus, the reaction force for a given displacement will be
given by,

FR(0) =
YiLx

ti
∆. (4)

From Eq. (3), we thus expect that for sufficiently large η,
fR ∼ η−1; this scaling is shown in figure 3 against results
of finite element simulations. This result is used as a
benchmark for the more complex hierarchical geometries.

2. Generation-1

For the generation-1 and generation-2 designs, we in-
troduce γ as the ratio of the total reaction force of the
structure of interest to that of the generation-0 structure
of the same width (Lx in figure 2), undergoing the same
deformation,

γ ≡ fR(G)

fR(0)
. (5)

As shown in figure 2, the generation-1 geometry is made
up of a flat interface between a deformable (with Young’s
Modulus Yl) and infinitely stiff material with a series of
interdigitated lamellae protruding perpendicular to the
interface from either side. The two materials are joined
by an intermediate material with Young’s Modulus Yi.
The parameters used in obtaining the below results are
t1,1 = 5 × 10−4m, ti = 1 × 10−6m, ts = 5 × 10−5m,
Yi = 1× 108Pa, ∆ = ti/10, and νl = νi = 0.3.

We consider tension imposed on the deformable sur-
face: a displacement in the −y direction is imposed along

the lower external boundary of the system, as indicated
in figure 2, and the reaction force, FR on the structure
is measured (see appendix A). The maximum value of
γ can be approximated through physical considerations.
The upper limit of FR(1) can be calculated noting that
for η � 1 (Yl � Yi) the deformation in the structure will
be limited to the intermediate material, thus the system
will approximate two infinitely stiff bodies joined by the
intermediate material of stiffness Yi (see right hand side
colour map in figure 4, the upper and lower material are
displaced by uniform amounts). Due to the geometry of
the system, the response will be dominated by the re-
gion on the intermediate material that experiences shear
loading. The force that will be required to induce a dis-
placement of ∆ across this material in shear will be

FR(1) =
Yia1,1t1,1
(1− νi)ti

∆. (6)

Thus, in the limit of η � 1, the increase in stiffness
compared to a the generation-0 structure (Eq. (4)) will
be given by,

γ =
a1,1

2(1− νi)
. (7)

This expression is plotted in figure 4 alongside the results
of simulations. It is observed in figure 4 that prior to this
plateau, γ increases with increasing η, in this regime, the
scaling of γ with η can be established through energy
considerations: while γ is increasing with increasing η,
it is observed that the tips of the lower set of lamellae
are displaced less than the lamellae base, the color map
on the left in figure 4 shows a typical displacement in
this regime. The majority of the deformation within the
structure is then limited to a region of the deformable ma-
terials close to the lamellae base. Here we introduce the
parameter l?G,i, this length describes the distance from
the base of the lamellae within which the structure expe-
riences significant deformation, it is defined by an equiv-
alence in energy stored in the deformation of the lamel-
lae structure and an isolated structure of length l?G,i with
suitable boundary conditions experiencing uniform strain
(it is noted that l? is not a quantity related to the ge-
ometry of the structure, it is a parameter that varies as
a function of η, representing the extent to which the de-
formations penetrates into the interface structure). The
strain energy stored in the lamella structure of the lower
material scales in the same way as an isolated beam of
width t1,1 and length l?1,1 fixed at one end and subject to
a displacement ∆ extending the structure parallel to its
length:

Ul ∼
Ylt1,1
l?1,1

∆2. (8)

The strain energy in deforming the intermediate material
will scale in the same manner as an elastic material of
length l?1,1 subject to a shear displacement of magnitude
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ative to a flat geometry (generation-0) as a function of η. The
interface loaded under tension and the stiffness of the interface is
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ious aspect ratios of structure, a1,1, as defined in Eq. (1). The
maximum values of γ as predicted in Eq. (7) are shown in green
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in the limit of large η. The scaling of γ ∼ η
1
2 is shown in red,

this scaling was predicted in Eq. (10). (b) Colour maps indicating
the magnitude of the displacement of the lamella (a1,1 = 32); for
η = 104 close to zero displacement is observed at the tip of the
lamella structure while for η = 106, the whole lamella approxi-
mates a rigid body and thus the value of γ plateaus. For both left
and right, the parameters used are described in the main text.

∆:

Ui ∼
Yil

?
1,1

(1− νi)ti
∆2. (9)

Selecting the value of l?1,1 that minimizes the internal en-
ergy (Ui +Ul) in the system, assuming non-zero displace-
ment ∆, we find the scaling l?1,1 ∼ η1/2. Using Eq. (4, 5
and 7), for fixed t1,1, we see that in this regime,

γ ∼ η 1
2 . (10)

This scaling is plotted in figure 4 alongside the results of
finite element simulations.

Fitting the results of finite element work within an
appropriate range of η gives a scaling of γ ∼ η0.50, where
the error in the power is ±0.01.
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FIG. 5: (a) The stiffness increase of a generation-2 interface rela-
tive to a generation-0 geometry for various values of aspect ratio.
The interface loaded under tension and the stiffness of the interface
is measured. The results are shown for various structures where the
aspect ratio of both the primary and secondary lamellae (a2,2 and
a2,1 respectively) have been varied. (b) Snapshots of simulations
showing the displacement on the lamella structure for various η
with a2,2 = 4, a2,1 = 16: η = 3 × 103 is in the regime whereby
increasing η serves to increase displacement towards the tips of the
primary and secondary lamellae; at η = 106 the primary lamella
acts close to a rigid body (the displacement at the tip of the lamella
is over 90% of that at the base), increasing η serves primarily to in-
crease the displacement towards the tip of the secondary lamellae;
for η = 108 all lamellae structures move as rigid bodies, almost all
strain is observed in the intermediate material. These three snap-
shots are from the regimes of γ ∼ η5/8, γ ∼ η1/4 and γ independent
of η respectively.

3. Generation-2

Here, we establish the mechanical response of the
generation-2 structure when the lower external bound-
ary is displaced under tension. In this structure, the
lower material makes up two sets of lamellae: the pri-
mary lamellae of length and thickness h2,2 and t2,2 and
the secondary lamellae described by the parameters h2,1
and t2,1. We perform finite element simulations on struc-
tures whose primary and secondary lamellae have a range
of aspect ratios between 4 and 64; the effect of other pa-
rameters can be elucidated from the analytic work pre-
sented below. The parameters used in the simulations
presented here are h2,1 = 8 × 10−5m, t2,2 = 5 × 10−4m,
ti = 10−6m, ts = 5× 10−5m, Yi = 108Pa, ∆ = ti/10 and
νl = νi = 0.3, other geometric and material parameters
are given by a specific aspect ratio and η value.

We analyze the response of the structure when a dis-
placement in the −y direction is imposed on lower ex-
ternal boundary, as indicated in figure 2. In the limit
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of large η (Yi � Yl), any imposed displacement on the
external boundary of the lower material will indicate a
deformation in the intermediate material, a typical de-
formation in this regime is shown in the right hand side
color map in figure 5 where the lower material shows a
uniform displacement. The force required to impose a
given displacement in this limit can be approximated as:

F2 =
4h2,2h2,1Yi

2tit2,1
. (11)

Using Eq. (4), the maximum value for γ can then be cal-
culated, this maximum value is indicated in figure 5 for
a2,2 = 4. For small a2,2 and large a2,1, we observe a
scaling law immediately before γ reaches its plateau. We
hypothesize that this scaling law is observed when the
primary lamellae in the structure closely resemble rigid
bodies, and the secondary lamellae experience a defor-
mation within a distance l?2,1 of their connection with the
primary lamellae, a snapshot from a simulation showing
typical deformation in this regime is shown in figure 5
(middle). We support this hypothesis with a scaling ar-
gument: in this regime the secondary lamellae will bend,
the energy associated with this slender structure of length
l?2,1 and thickness t2,1, bending with a displacement ∆ at
its tip scales as:

Ul ∼
Ylt

3
2,1

l?32,1
∆2. (12)

The strain energy in the interface will scale as a ten-
sion/compression strain of magnitude ∆/ti imposed over
a region l?2,1 in length, thus

Ui ∼
Yil

?
2,1

ti
∆2. (13)

Selecting the value of l?2,1 so as to minimize the internal
energy of deformation (assuming non-zero ∆), we find
that l?2,1 ∼ η1/4. Given the force the structure will sup-
port will be proportional to the area over which strain is
spread (Eq. (11)), we see that in this regime

γ ∼ η 1
4 . (14)

For sufficiently large values of a2,2 and a2,1 prior to

the γ ∼ η1/4 regime we observe a second scaling law. In
this regime both the primary and secondary lamellae will
deform within a characteristic length l?2,2 and l?2,1 respec-
tively (where l?2,2 < h2,2 and l?2,1 < h2,1). Here, increas-
ing η will serve to increase l?2,1 and l?2,2. The scaling of
l?2,2 can be calculated by considering the energy of defor-
mation of both the lower material and the intermediate
material, these are given by

Ul ∼ Ys

(
t2,2
l?2,2

+
t2,1l

?
2,2

l?2,1t2,1

)
∆2, Ui ∼

Yil
?
2,1l

?
2,2

tit2,1
∆2.

(15)
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FIG. 6: (a) Semi-log plot of σyy down the centre of the primary
lamella as a function of distance from the lamella base for a par-
ticular structure (a2,2 = 16, a2,1 = 4 with all other dimensions as
given in previous section), for values of η = 10n with integer n
from 0 to 7. An exponential decay in the magnitude of the stress
for values of η smaller than that taken for γ to plateau (see figure
5) is observed. (b) A schematic showing the region in which σyy is
evaluated.

The expression for Ul is made up of two terms, the
stretching of the primary lamellae (first term) and the
bending of the secondary lamellae (second term). Select-
ing the value of l?2,2 that minimizes the total energy of
the system (for a non-zero displacement ∆), noting that
l?2,1 ∼ η1/4, we see that for η � 1, l?2,2 ∼ η3/8. Thus from
Eqs. (4, 5 and 11), we see that in this regime,

γ ∼ η 5
8 . (16)

These scaling laws are shown in figure 5 alongside the
results of finite element simulations.

B. Stress distribution and hierarchy

In this section we investigate the stress distributions
present within the hierarchical lamellae structures to fur-
ther elucidate the mechanics of the system. First, we
establish the nature of the stresses within the primary
lamellae as a function of distance from the lamellae base.
We then show the dependence of the maximal von Mises
stress within the structure on the interface geometry. Fi-
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nally, we make a hypothesis on the region in which failure
is likely to initiate for various geometries.

We first examine the magnitude of the σyy component
of stress down the center of the primary lamellae in the
generation-1 and 2 structures. We find that for both
the generation-1 and 2 structures, the magnitude of the
stress decreases with an exponential decay as a function
of distance from the lamella base, s, that is, |σyy| ∼
exp(−ks), see figure 6. For a given geometry, the value
of k varies as a function of η, the relative stiffness of the
intermediate and lower materials. For sufficiently large η
the decay is no longer exponential, this coincides with γ
reaching its plateau value.

In figure 7, we present the maximum value of the

von Mises stress (σvm =
√
σ2
xx + σ2

yy − σxxσyy + 3τ2xy)

present within the intermediate material, scaled by the
reaction force at the boundary where the displacement is
imposed. This measure gives an indication of how effec-
tive the geometry is at creating a strong adhesive connec-
tion utilizing a weak connective material. It is found that
for values of η greater than approximately 103, hierarchi-
cal geometries provide an advantage in terms of loading
withstood for a given intermediate material stress. The
generation-2 structure investigated here provides advan-
tages over the generation-1 for values of η larger than
approximately 103.

Finally we look at the expected failure region of the
structure, and the effect of hierarchy. The structure con-
sidered here is made of two deformable materials, the
intermediate material and the lower material (navy and
red in figure 2). These two materials can be assigned
a yield stress, σY 1 and σY 2 for the intermediate and
the lower materials respectively. When the structure is
loaded, either material can initiate plastic deformation,
this will occur when the maximum von Mises stress ex-
ceeds the yield stress of the material. For a given ge-
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FIG. 8: (a) The expected region of failure in the structure con-
necting two different materials. Above the curve describing a given
geometry, the material making up the lamella structure will experi-
ence non-elastic deformation before the interface material, and the
reverse occurs below. (b) The location of the maximum stresses in
a particular generation-2 structure where the colour-map indicates
the magnitude of the von Mises stress at that point.

ometry, the region in which non-elastic deformation first
occurs depends on the value of η considered and the ra-
tio of σY 1/σY 2. To establish the region that will ex-
hibit non-elastic deformation first, we use the following
procedure: impose a displacement on the lower external
boundary of the structure in the -y direction (as in the in-
vestigations into stiffness); then establish the maximum
von Mises stress in the two deformable domains; assum-
ing non-elastic deformations occur before large geometric
non-linearities are observed, the ratio of these maximum
stresses indicate the ratio of σY 1 to σY 2 for which the re-
gion of failure transitions from the interface to the lamal-
lae. The space (η, σY 1/σY 2) can then be split into the
two regions shown in figure 8. For low values of η and a
low ratio σY 1/σY 2, we see the intermediate material will
fail first for both generation-1 and -2 structures, while
for sufficiently high values of η and high ratios σY 1/σY 2,
plastic deformation in the lower material will occur first.

IV. SUMMARY

We have shown that a geometry based on that ob-
served in the equine hoof is conducive to a stiff interface
between two materials of vastly differing stiffness. We
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have demonstrated that through increasing the number
of length-scales within the structure, the scaling laws re-
lating stiffness of the constituent materials to the global
interface stiffness can be manipulated in a systematic
manner. We have linked these different scaling regimes
with different deformation modes within the structure
and supported these hypotheses with scaling law argu-
ments. Furthermore, we have found through altering the
aspect ratio of the lamellae, the value of η at the transi-
tion from one scaling regime to another can be manipu-
lated.

We have shown that the hierarchical geometry leads to
a reduced maximal stress observed in the intermediate
material for a given magnitude of loading. Furthermore,
we have demonstrated that the ratio of maximal stresses
in the intermediate material to those in the lamellae can
be manipulated over orders of magnitude through alter-
ations in the geometry of the structure. These findings
are of particular relevance given the recent growth of dig-
ital manufacturing techniques which allow for the fab-
rication of 2-d structures with features on nano/micro
length-scale [51]. In many areas of application, the ma-
terials to be joined may be specified by the functional-
ity of the desired structure, thus the parameter η is set
by the application. For a given η, we have shown that
through close control of geometry, it is possible to create
interfaces with high stiffness, a selectable failure mode,
and tailorable stresses within the interface material. This
methodology thus allows for enhanced functionality of
structures through permitting a less restricted choice of
constituent materials.

In principle higher generation structures could be cre-
ated by adding further substructure to the generation-2
geometry proposed here. It is hypothesised that the addi-
tion of extra substructures would further alter the scaling
relationships established here, and it is thought that such
a structure would exhibit similar trends to those observed
in other hierarchical metamaterials whereby the scaling
tends towards a well defined limit [25]. Though this work
shows the tailorability of interface stiffness through hier-
archy, open questions remain regarding the fracture prop-
erties, ductility and strength of these intricate architec-
tures.

This work highlights the general importance of geome-
try in the creation of joints between dissimilar materials,
allowing for composite and hybrid structures with en-
hanced structural efficiency [32]. A natural application
for this composite joint is to be found in medical implants
where high performance joints between dissimilar mate-
rials is of key importance. Here, the tailorability of the
resultant joint and the use of an intermediate material
that experiences minimal mechanical stresses is of great
practical importance as it permits the reduction of stress
concentrations and greater biocompatibility [32]. Our
work also offers a new perspective on the development
of tendon-bone interfaces where the low success rates of
graft implantation alongside the increased occurrence of
musculoskeletal injuries necessitate the development of

novel repair strategies [53]. Furthermore, it is widely
observed that natural composites simultaneously exhibit
high stiffness and fracture resistance [13, 14], it is hypoth-
esized here that through designing the interface between
the different constituent materials, one can achieve meta-
materials that match or exceed their naturally occurring
analogues.

Not only does this work have implications for the de-
sign of geometry in the engineering challenge of joining
two materials of differing stiffness, this work also lends
credence to the long assumed role of hierarchical interface
geometry in the equine hoof: such geometry has been se-
lected by evolutionary pressures (among other reasons)
for mechanical purpose. Despite the undoubted com-
plexity of the biological system, it is expected that the
main findings of this work apply to the interface observed
within the hoof: increasing the hierarchy of the interface
serves to increase the mechanical stiffness of the interface
(this is also notable for the previously reported link be-
tween stiffness and strength of composite structures, it
is widely observed that the presence on one implies the
other [52]). We believe that with more theoretical anal-
ysis of hierarchical structures, together with increased
ability to fabricate these intricate architectures, hierar-
chical architectures will become more widely utilised in
engineering designs of the future.
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Appendix A: Methods

All simulations presented in this work have been un-
dertaken using solid mechanics module of COMSOL 5.1
performing ‘stationary’ (quasi-static) studies. The geom-
etry is made up of three materials, as shown in figure 2,
the upper material is modeled as infinitely stiff (using
the inbuilt ‘rigid domain’ option of COMSOL). The re-
maining two materials are linear elastic and described by
the parameters given in the main text. Meshing was per-
formed using the inbuilt COMSOL routines, mesh refine-
ment studies to be performed establishing the accuracy
of the results (checking for convergence of results). The
upper external boundary was then fixed in space, while
the lower external boundary had a displacement imposed
on it in the −y direction, as shown in figure 2. The equi-
librium position of the structure was then obtained and
the reaction force on the lower boundary was evaluated
through integration (inbuilt COMSOL routine). This re-
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action force is equivalent to the force that would be re- quired to induce the considered displacement.
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