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Abstract

In this thesis, we study modern variational and partial differential equation (PDE)-
based methods for three image analysis applications, namely, image denoising, image
segmentation, and surface reconstruction from point clouds. A common feature these
applications have is the use of novel variational formulations.

For image denoising, we focus on higher order variational functionals in which the
regulariser incorporates second order derivatives or is a sophisticated combination of first
and second order derivatives. We study seven representative first and/or second order
functionals, implement them using the efficient split Bregman algorithm, and compare
their performances. With the knowledge of the main properties of each of the denoising
approaches, we can then select and adapt them for image segmentation.

For image segmentation, we are in particular interested in images of three types: red
blood cell (RBC) images, histology images of the microglial cells, and optical coherence
tomography (OCT) images of the retina. For RBC images we develop an automated and
accurate image analysis framework for an image-based cytometer that uses variational
total generalised variation, adaptive thresholding and support vector machine. The
framework can 1) detect and numerically count malaria parasite infected RBCs acquired
from Giemsa-stained smears; 2) classify all parasitic subpopulations by quantifying the
area occupied by the parasites within the infected cells; 3) predict if the RBC image
has been infected by malaria parasites. We show the effectiveness of the framework by
quantifying and classifying both RBC and infected RBC images.

For histology images of the microglial cells, we introduce an automated image segmen-
tation method that is capable of efficiently extracting microglial cells from the images.
The method uses variational Mumford-Shah total variation and split Bregman for image
denoising and segmentation and is fast, accurate and robust against noise and inhomo-
geneity in the image. We evaluate the method on the image data from wild type mice
and transgenic mouse models of Alzheimer’s disease. The method is scalable to large
datasets, allowing microglia analysis in regions of interest and across the whole brain.

For OCT images of the retina, we propose a novel and accurate geodesic distance
method to segment healthy and pathological OCT images, in both two and three



dimensions. The method uses a weighted geodesic distance by an exponential function,
taking into account horizontal and vertical intensity variations. The fast sweeping
method is used to derive the geodesic distance from an Eikonal equation, a special case of
Hamilton-Jacobi equations that belongs to the family of nonlinear PDEs. Segmentation
is then achieved by solving an ordinary differential equation using the resulting geodesic
distance. The proposed method is also extensively compared with the parametric active
contour model and graph theoretic methods.

Finally, we study surface reconstruction from point clouds. We treat this reconstruc-
tion problem as an image segmentation problem and hence develop a novel variational
level set method. Th method is capable of reconstructing implicit surfaces from unorgan-
ised point clouds while preserving fine details of the surfaces. A distance function, derived
from the point cloud using the fast sweeping algorithm, is used as an edge indicator
function and to find an initial image enclosed by the point cloud. A novel variational
segmentation functional is then proposed that effectively integrates the initial image
and edge indicator. Gradient descent optimisation finally minimises the functional and
ensures an accurate and smooth reconstruction.
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Chapter 1

Introduction

1.1 Digital images and their mathematical represen-
tation

In today’s society, we almost encounter digital images everyday, from photography in our
daily life to medical imaging, remote sensing, astronomical imaging, etc. For example,
microscopy images are used in visualising biological processes, observing cell structure,
studying cancers at molecular level, and detecting the smallest items of evidence for
forensic sciences; medical images are used in revealing internal structures hidden by
the skin and bones, diagnosing and treating diseases, identifying abnormalities, and
testing the effectiveness of medical treatment and therapy; satellites images are used in
tracking earth resources and geographical mapping, studying agricultural crops and urban
population, forecasting weather, and controlling flood and fire; astronomical images are
used in studying stars, planets and space.

However, the images produced in these scenarios usually have to be processed so as to
gain more meaningful information. The pre-processing of digital images is a common task
in image processing or computer vision. Since images in reality are often suffering from
noise, blur, or incompleteness, it is imperative to develop image processing methods that
are capable of improving the quality of these images. Examples of incomplete images
can come from medical imaging such as magnetic resonance imaging (MRI) of the brain,
positron emission tomography (PET) imaging of the heart, and X-ray imaging of human
bones. These imaging devices usually introduce noise to the image. Other examples
include satellite images of our earth and telescope images of the universe, which are often
blurred. In summary, effective digital image restoration methods are needed to remove
noise and/or blur from the image or to recover lost information.
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Image segmentation simplifies and/or changes the representation of an image into
something that is more meaningful and easier to analyse. For example, if we are interested
in certain objects in an image and then employ a segmentation algorithm to exact them
out of it, the rest of content in that image can be completely ignored. The objects
extracted are normally used to derive certain statistics for high-level image analysis and
understanding. Finally, there is also an important issue of organising image data in a
meaningful way. To do so, we have to think about image classification. Classification is
to assign new date samples to target categories or classes. The ultimate goal of image
classification is to accurately predict the target class for each sample in a new dataset.
It is a very powerful tool for digital image analysis. There are also many other image
processing applications we will not discuss here. We however refer to [3] for a more
comprehensive introduction to digital image processing.

Although there exist a great amount of image processing applications, there are still
problems in this area that have not yet been fully and satisfactorily resolved. It is not
surprising, therefore, that this is still a very active research field. From mathematicians,
statistics, engineers to computer scientists, a large group of people have been and are
still working in this area.

This thesis is concerned with modern techniques that use variational methods and
partial differential equations (PDEs) for different image analysis problems. Before we
go deeper into the methodologies, we need to first understand what an image, or more
specifically a digital image, really is. Generally speaking, a digital image, acquired from
some imaging device (i.e. microscope, digital camera, medical scanner, satellite, telescope,
etc.), normally represents a certain scene in the continuous universe. By sampling the
image acquisition device first establishes a discrete regular grid on the scene and then
assigns a value (e.g. the brightness) to each grid element (quantisation). These grid
elements are often referred to as pixels in two dimension (2D) or voxels in three dimension
(3D). Depending on the image acquisition device used, the image content and its value
range for each pixel/voxel are different. For example, the image content can be brightness
(grayscale) values that are scalar values ranging from [0, 255] in an 8-bit imaging device
or [0, 232 − 1] in a 32-bit imaging device.

Let Ω be an open bounded subset of Rn and x ∈ Ω, the mathematical representation
of a digital image f is

f(x) : (Ω ⊂ Rn)→ Rd, (1.1)

where n = 2 and n = 3 respectively correspond to the 2D and 3D images. d = 1 denotes
the real valued grayscale images, while d > 1 represents the multispectral (hyperspectral)
images. For example, an RGB colour image can be represented in the case when d = 3.
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1.1 Digital images and their mathematical representation

(1.1) is the continuous representation of a digital image. The discrete representation of a
typical image is the form of

f : {1, ..., N} × {1, ..., M} → {0, ..., 255}3. (1.2)

Such a discrete representation in (1.2) indicates the image is an RGB colour image defined
on a 2D rectangular grid with resolution N ×M . Analogically, a discrete grayscale image
defined on a 3D box-shaped grid with resolution N ×M ×H is given by

f : {1, ..., N} × {1, ..., M} × {1, ..., H} → {0, ..., 255}. (1.3)

For the sake of clarity, in Figure 1.1 we visualise the connection between a discrete digital
image and its image function f for the case when n = 2 and d = 1 in (1.1). We note that
in order to apply the mathematical theory of variational and PDE-based methods, the
derivation and analysis is first done in the continuous setting and then returning to the
discrete setting for numerical computation.

Figure 1.1: Digital image and image function. Left: an en-face retinal image; Middle:
the function of the image where the grayvalue f is plotted against the x, y coordinates;
Right: matrix from the grayvalues highlighted in the red rectangle in the left image.

Since we can represent a digital image with a mathematical function, it is then
straightforward for us to apply mathematical operations to manipulate it. There exist a
large number of well-established mathematical theories that can be used to process an
image. Popular techniques range from statistical methods, wavelet methods, morphologi-
cal operators, combinatorial optimisation, variational and PDE-based methods. In this
thesis, we are particularly interested in the variational and PDE-based methods. We will
develop and implement these methods for different imaging applications such as image
denoising, image segmentation and surface reconstruction. In the following sections, we
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shall first introduce the variational and PDE-based methods, which are central to the
image analysis applications in the later chapters.

1.2 Variational methods

Mathematicians use the term ‘energy functional’ or ‘functional’ to describe an object
that takes a function as an input and gives another function as an output. In such a
case, ‘variables’ within the object are functions rather than the conventional variables
represented by generic symbols such as x and y. The main idea of variational methods is
to find the solution of a problem through minimising a certain energy functional based
on certain assumptions on the problem solution. Let us consider the following general
functional with derivatives up to the second order

E (u) =
∫

Ω
L
(
x, u (x) ,∇u (x) ,∇2u (x)

)
dx. (1.4)

Here u(x) is the function to be minimised over. L is the Lagrangian which represents
the assumptions and is associated with input image function f as defined in (1.1). ∇u

and ∇2u represent the gradient vector and the Hessian operator which are respectively
defined in (1.5) and (1.6)

∇u (x) =
(

∂u

∂x1
, ...,

∂u

∂xn

)
∈ Rn, (1.5)

∇2u (x) =



∂2u

∂x1∂x1
· · ·

∂2u

∂x1∂xn... . . . ...
∂2u

∂xn∂x1
· · ·

∂2u

∂xn∂xn


∈ Rn×n. (1.6)

These differential operators are expressed in a general form so they can represent arbitrary
dimension (depending on n). For compact notations, we often abbreviate ∂u

∂xi
as uxi

or
∂xi

u and ∂2u
∂xi∂xj

as uxixj
or ∂xi

∂xj
u. For a 2D image case, x1 = x and x2 = y. The order

of derivatives in L may vary depending on the requirements of the problem. The energy
functional E in (1.4) is practically meaningful once its minimiser with respect to u is
found. This minimisation process inevitably entails the calculus of variations, which we
discuss in the next section.
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1.2.1 Calculus of variation

Calculus of variations is a mathematical tool that deals with the problem of optimising
functionals. Such a tool offers a necessary condition called Euler-Lagrange equations
which are the resulting formulations by minimising a given functional associated with
multiple function variables. The role of this criterion is similar to that of the first order
necessary condition for optimality in standard differential calculus, that is, the first
order derivatives with respect to variables of a given function must vanish at extrema.
Analogously to the classical differential calculus, if the given energy functional is strictly
convex, a unique minimiser may be able to find. In contrast, if the functional is non-
convex, it may have multiple local extrema. Sometimes, the functional may not has a
solution or even if it has a solution it may be hard to identify if the solution is global.

Let us now present the Euler-Lagrange equation of the general form (1.4), which can
be derived by integration by parts and the Gauss’s theorem along with the fundamental
lemma in calculus of variation. Thus, for an equivalent energy functional of (1.4) in 2D
cases

E (u) =
∫

Ω
L (x, y, u, ux, uy, uxx, uxy, uyx, uyy) dxdy, (1.7)

we have its Euler-Lagrange equation that is the form of

Lu −
∂

∂x
Lux −

∂

∂y
Luy + ∂2

∂x2Luxx + ∂2

∂x∂y
Luxy + ∂2

∂y∂x
Luyx + ∂2

∂y2Luyy = 0,

with the natural boundary conditions imposed on the boundary ∂Ω

nT

 Lux − ∂
∂x
Luxx − ∂

∂y
Luxy

Luy − ∂
∂x
Luyx − ∂

∂y
Luyy

 = 0,

where n is an outer normal vector (n1, n2)T. Because (1.7) contains the second order
differential operator, the following conditions must be further imposed

nT

 Luxx

Luxy

 = 0 and nT

 Luyx

Luyy

 = 0.

1.2.2 Regularisation

So far, we have shown how to compute the Euler-Lagrange equation of a functional using
calculus of variations. We now consider to integrate regularisation and energy functional
for general image processing applications. The variational framework we have introduced
above is a natural way of performing this integration.
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The nature of most image processing problems is often ill-posed, meaning that there
may not exist a solution for these problems. In order to alleviate the ill-posedness, the
regularisation process must be adopted. The underlying theory behind regularisation
is that the ill-posed problem may be reformulated in a way such that an appropriate
solution to the reformulated problem can be found. Such solution is usually sufficient to
approximate the original problem in an admissible level. Furthermore, the reformulation
process can be improved by imposing some constraints such as smoothness (regularity)
on the given problem. In other words, the conditioning of the given problem can be
improved by imposing smoothness. Afterwards, a desirable numerical solution can be
obtained by minimising the regularised energy functional using the calculus of variation
introduced in the last section.

In the context of image analysis, a functional normally has a data fidelity term and a
regularisation/smoothness term. Therefore, one may represent general image processing
problems with the following energy functional

E (u) =
∫

Ω
Df(x) (u(x))dx + α

∫
Ω
R (u(x))dx, (1.8)

where f(x) : (Ω ⊂ Rn)→ Rd (n = 2 and d = 1 in this thesis) is the input image function.∫
ΩDf(x) (u(x))dx denotes the data fidelity term associated with f . It has different forms

depending on applications. For example, in image denoising it is formulated according to
the noise type. Df(x) (u(x)) = (u(x)− f(x))2 if f(x) is corrupted by Gaussian white noise,
or Df(x) (u(x)) = |u(x)− f(x)| if f(x) is corrupted by impulsive noise.

∫
ΩR (u(x))dx is

the regularisation term, and α is a positive regularisation parameter. Technically, the
robust behaviour of variational methods is in fact attributed to the smoothness term∫

ΩR (u(x))dx that is capable of taking into account information of neighbouring data
points. It is worth mentioning that this feature is particularly useful especially when
the image contains missing information and noise. In this context, the regularisation
parameter plays a role in controlling the level of smoothness of the solution. We will
show different definitions in detail for R in Chapter 2.

1.3 PDE-based methods

A PDE is an equation that involves functions as variables and their partial derivatives.
PDEs arise in many areas of physical science, since they are very effective in modelling
a wide variety of phenomena such as sound, heat, electrostatics, electrodynamics, fluid
dynamics, elasticity, or quantum mechanics. Throughout the thesis, we will experience
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two types of PDEs for image processing and analysis, including linear and nonlinear
cases.

1.3.1 Second and fourth order linear PDEs

For the first type of PDEs, we are interested in the following second order linear equation

u(x)− θ∆u(x) = g(x). (1.9)

Here, g(x) : (Ω ⊂ Rn)→ Rd, x ∈ Ω (n = 2 and d = 1 in this thesis), which is associated
with the input image f(x) as defined in (1.1). u is the function to be calculated. ∆ is
the Laplace operator or Laplacian which is also denoted as ∆ = ∇ · (∇u) = div(∇u),
where ∇ is the gradient operator in (1.5) mapping scalar functions to vector functions
and ∇· is the divergence operator (also symbolised “div”) mapping vector functions to
scalar functions. The divergence of a vector function, i.e.,

p = (p1, ..., pn) ∈ Rn,

is given by
div (p) = ∂x1p1 + · · ·+ ∂xnpn. (1.10)

We note that the divergence notations ∇· and div are used interchangeably in the thesis.
With the divergence and gradient at hand, it is easy to check that

∆u = ∂x1∂x1u + · · ·+ ∂xn∂xnu. (1.11)

In (1.9), u and g are real valued functions on an image grid, and g is given and u is
sought. θ is a positive coefficient resulted from applying a variable splitting algorithm
for an image processing problem. We shall see how this parameter arise in Chapter
2. (1.9) is said to be second order linear because the Laplacian in (1.11) is a second
order linear differential operator and after (1.9) is fully discretised on an image grid the
resulting equations are a linear system. Boundary condition also needs to be considered
for (1.9). To benefit from the discrete fast Fourier transform (FFT) solver, which leads
to a closed-form solution of u, we apply the periodical boundary condition for (1.9) in
the thesis. See Appendix A for the detailed implementation of (1.9) with the FFT.

A fourth order linear PDE is also studied, which has the form of

u (x) + θdiv2
(
∇2u (x)

)
= g (x) , (1.12)
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where θ and g have the same meaning as those in (1.9). ∇2 is the Hessian operator
defined in (1.6), and div2 represents the second order divergence operator. If it is applied
to a matrix valued function

q =


q11 · · · q1n

... . . . ...
qn1 · · · qnn

 ∈ Rn×n,

we have

div2 (q) = ∂x1∂x1q11 + · · ·+ ∂x1∂xnq1n + · · ·+ ∂xn∂x1qn1 + · · ·+ ∂xn∂xnqnn. (1.13)

Hence, one can easily check that

div2
(
∇2u

)
= ∂x1∂x1∂x1∂x1u + · · ·+ ∂x1∂xn∂x1∂xnu + · · ·

+ ∂xn∂x1∂xn∂x1u + · · ·+ ∂xn∂xn∂xn∂xnu.
(1.14)

(1.12) is a fourth order linear equation because the differential operators in (1.14) are the
fourth order linear operator. After (1.12) is discretised on an image grid, the resulting
equations are a linear system. Since the image is defined on a regular grid, the FFT
solver can be employed very efficiently to solve (1.12). To use such a solver in a similar
fashion as in Appendix A, we assume that the periodical boundary condition has been
imposed on (1.12).

Another fourth order linear PDE we are concerned about has the form of

u (x) + θ∆ (∆u (x)) = g (x) . (1.15)

where θ and g have the same meaning as those in (1.9). If we use the definition (1.11),
we have the following equation for the fourth order differential operator

∆ (∆u) = ∂x1∂x1∂x1∂x1u + · · ·+ ∂x1∂x1∂xn∂xnu + · · ·
+ ∂xn∂xn∂x1∂x1u + · · ·+ ∂xn∂xn∂xn∂xnu.

(1.16)

If we compare the mixed fourth order partial derivatives in (1.16) against those in (1.14),
we can notice that the order of the first order partial derivatives is slightly different.
However, in accordance with the Clairaut’s theorem, the mixed derivatives are equal if in
each derivative we differentiate with respect to each variable the same number of times.
In this sense, (1.12) is equivalent to (1.15) in a continuous setting.
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Other PDEs that will appear in Chapter 2 are either a combination of (1.9), (1.12)
and (1.15) or a part of them. Thereby, they can be well handled in the analogous manner
to the second and fourth order linear PDEs present here. Later on in Chapter 2, we shall
study how these PDEs can be discretised in an 2D image grid with the finite different
method and what sort of numerical results they can lead to in terms of image denoising.

1.3.2 Hamilton-Jacobi equation

As mentioned previously, another category of PDEs is the nonlinear version. To this end,
we present a Hamilton-Jacobi equation that belongs to the family of nonlinear PDEs
and is also pervasive, especially in classical mechanics and geometrical optics. There
exist modern mathematical tools that not only allow to analyse the properties of the
solutions of Hamilton-Jacobi equations but also lay the foundation for many effective
numerical algorithms, such as the fast sweeping method. These numerical methods are
in general very efficient for solving the considered type of Hamilton-Jacobi equations in
the viscosity sense.

A very famous example of a first order nonlinear PDE is the Eikonal equation, which
has applications in geometric optics, wave propagation, and level set methods. It is the
special case of Hamilton-Jacobi equations and has the form of

|∇u(x)| = v(x), for x ∈ Ω ⊂ Rn, (1.17)

which is subject to u|∂Ω = 0. Here v : Ω→ (0, +∞) is an input function with positive
values and is closely related to the input image function f in image processing applications.
∇ is the gradient operator defined in (1.5) and | · | is the Euclidean norm. From physical
point of view, the solution u(x) is the shortest time required to travel from the boundary
∂Ω to x inside Ω, with v(x) being the speed at x. In the special case when v(x) = 1,
the solution reduces to the distance function from the boundary ∂Ω to x. (1.17) is said
to be first order nonlinear because the Euclidean norm |∇u| is a first order nonlinear
differential operator. There is no way to express the discretised version of (1.17) in terms
of a system of linear equations.

There are many computational tools that can seek a numerical solution to this
nonlinear equation. For instance, an optimal control based approach which makes use of
the Dijkstra’s shortest path algorithm [4] was proposed in [5]. Label-correcting methods
such as the Bellman–Ford algorithm [6, 7] were also used to solve the discretised Eikonal
equation. Moreover, the fast marching method (FMM) [8, 9] and the fast sweeping
method (FSM) [10, 11] are two very efficient approaches for this task. FMM uses an
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upwind finite difference approximation. Its computational complexity is O(Nlog(N))
where N is the total number of grid points and the log term comes from the use of a heap
(typically binary). FSM is based on a pre-defined sweep strategy, replacing the heap
priority queue to find the next point to process, and thereby has the linear complexity of
O(N). FSM is faster than FMM for simple geometry problems. However, the situation
may be reversed for complex geometry. In addition, hybrid methods [12, 13] have also
been introduced that take advantage of FMM’s efficiency and FSM’s simplicity. For
example, the heap cell method was developed to first decompose the computational
domain into cells. Then FMM was performed on the cell-domain, while FSM was
performed on the local gridpoint-domain that lies within that cell.

Solving the Eikonal equation (1.17) has two very important image processing applica-
tions in this thesis. The first one is the optical tomography image segmentation, which
will be introduced in Chapter 4. Another one is surface reconstruction from point clouds,
which will be detailed in Chapter 5. In Appendix B, we show the full implementation
procedures of FSM on both 2D and 3D image grids.

1.3.3 Connections between variational and PDE-based meth-
ods

In general, PDE-based methods are closely related to variational methods. Minimisation
of a variational functional normally results in a Euler-Lagrange equation that can be
regarded as the steady-state of a suitable PDE [14]. On the other hand, certain PDEs can
be also derived from the corresponding variational functionals. For instance, minimising
the total variation energy functional

∫
Ω |∇u|dx [15] gives rise to the Perona–Malik model

[16], which is a PDE. Nevertheless, for several interesting types of PDEs, like the
first order Hamilton-Jacobi equations, the corresponding PDEs are normally directly
designed, without any known variational interpretation. To this end, PDE-based and
variational methods have their own advantages when compared to each other. PDE-based
methods are very easy to design and use, while variational approaches can easily integrate
constraints imposed by problems and allow to employ powerful modern optimisation
techniques such as primal dual [17, 18], fast iterative shrinkage-thresholding algorithm
[19, 20], split Bregman [21–25], and augmented Lagrangian [26–28]. Recent advances
[18, 20, 29] on how to automatically select parameters for different optimisation algorithms
dramatically boost performance of variational methods, leading to further research interest
in this field.

10
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In summary, the basis of variational methods is the variational principle used in
the calculus of variations, a field of mathematical analysis that deals with optimising
functionals. These functionals are often expressed as integrals involving functions and
their derivatives and thus variational methods involve solving PDEs. A PDE is an
equation that involves function variables and their partial derivatives, which can be either
linear or nonlinear.

1.4 Image processing applications

1.4.1 Image denoising

For image denoising, a functional normally has a data fidelity term and a regularisation
term. The former allows the similarity between the recovered image and the original
image, whilst the latter imposes some kind of smoothness/regularity on the recovered
image. In the following, we use such a functional to model the image denoising problem.

Let us start with a more general image processing problem. Assume that a 2D
grayscale image u can be considered as a real valued function, which is defined as

u : (Ω ⊂ R2)→ R. (1.18)

In the following, we omit the function variable x for simplicity (e.g., we use a shorthand
u for u(x)). Suppose that we have some image acquisition device, and we want the device
to provide us with a perfect image u. However, due to imperfections and limitations in
the acquisition process, we often get a corrupted version f of u. For example, corruptions
can be noise, blur, etc. If we model such acquisition process mathematically, we have

f = Tu + η, (1.19)

where η denotes a random noise component that follows a certain distribution. T is a
forward operator mapping from u to f . Choices of T are various depending on different
imaging tasks. For example, T is an identity in image denoising, T is a convolution blurring
kernel in image deblurring, T is the Fourier transform in MRI image reconstruction, T is
the Radon transform in computerised tomography (CT) image reconstruction, and T is
a characteristic/indicator function in image inpainting, to name a few.

Now we need to solve u from (1.19) to get the clearer image. Note that this equation
has a unique solution if it is a well-posed system. However, because the operator T in
reality is most likely non-invertible (or even if it would be invertible, its inversion may be
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ill-conditioned), (1.19) is ill-posed most time. In addition, it contains measurement noise
and there may exist modelling errors, so solving the equation may be further complicated.
In this case, some prior information is often added to the model, which in general is given
by a certain regularity assumption on u. This procedure is the regularisation process
introduced above. Specifically, the following functional is minimised in order to recover
u from f .

E (u) = 1
2

∫
Ω

(Tu− f)2dx + α
∫

Ω
R (u)dx, (1.20)

where the first term on the right-hand side is the quadratic data fidelity or similarity
term, which measures the distance between the data f and the reconstruction u. This
fidelity term assumes that the random noise η is a Gaussian distribution. Other choices
for this term based on different noise distribution are also available. We however only
consider the Gaussian distribution in the thesis. The second term is the regulariser or
regularisation term, which imposes extra regularity on u. These two terms are balanced
by the positive parameter α, which controls the level of smoothness of resulting recovered
image. Images acquired by medical devices usually contain a significant amount of noise
which reduces the image quality, so (1.20) is adapted to merely image denoising as follows

E (u) = 1
2

∫
Ω

(u− f)2dx + α
∫

Ω
R (u)dx. (1.21)

The minimisation of (1.21) with a right selection of α usually leads to a desirable
denoising result, which can be used for next stage image processing tasks, such as image
segmentation. R (u) in the regularisation term should be designed appropriately for
different type images, e.g., piecewise constant, piecewise smooth, texture, etc. In Chapter
2, we shall use (1.21) with different regularisation terms associated with first or/and
second derivative to denoise images with different features.

1.4.2 Image segmentation

Image segmentation is to partition an image into multiple regions of similar characteristics
such that computers can further understand and analyse the content within the image.
To facilitate clinical studies of diseases, in this thesis we are particularly interested in
segmenting images of three categories, that are red blood cell (RBC) images, histology
images and optical coherence tomography (OCT) images. The clinical applications are
as follows.

RBC image segmentation is to detect malaria parasite infected blood cells (iRBCs) and
study anti-malarial drugs. Malaria, one of the most devastating infectious diseases around
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Figure 1.2: Automated classification of malaria parasite iRBCs by the developed image-
based algorithm in Chapter 3. (A): Original image taken by objective 20X image
cytometer. (B): The segmented iRBCs are classified into two groups by quantifying the
area of them.

the globe, is caused by protozoan parasites of the genus Plasmodium. There are five major
species of plasmodia that infect humans, out of which Plasmodium falciparum causes
the majority of morbidity and mortality in Africa, followed by less lethal Plasmodium
vivax infections across South East Asia. Altogether, they are infecting 200 million
people and resulting in over half a million deaths every year [30]. Early diagnosis and
treatment are required to avoid malaria-associated deaths [31]. Although anti-malarial
drugs have been widely used to prevent and cure parasite-related diseases, parasites have
acquired resistance to most of drugs both in Africa and South-East Asia, rendering new
anti-malarial drug tests imperative. This is how image segmentation comes to play an
important role. The idea is to segment the images formed using Giemsa-stained smears1

on iRBCs, as shown in Figure 1.2 (A). Afterwards, we can detect and numerically counts
malaria parasite iRBCs and classify all parasitic subpopulations by quantifying the area
occupied by the parasites in iRBCs, as shown in Figure 1.2 (B). In this way, the efficacy
of the anti-malarial drug can be tested by quantitatively comparing the iRBCs within
the image before and after the drug is administrated.

Histology image segmentation is to detect microglial cells and study brain related
diseases. Microglia are immune cells exclusive to the central nervous system and about
1.5 trillion of them reside in the brain and spinal cord [32]. They are essential to learning
and memory [35, 36] and protect neurons from damage and they also mediate pain
[33]. Microglial activation is a hallmark of chronic neuroin ammation, which plays

1A method designed primarily for the demonstration of parasites in malaria.
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Figure 1.3: Segmentation of microglial cells from a histology image. (A): Whole brain
slice of a healthy mouse; (B): Image region highlighted in the black rectangle in (A);
(C) Segmentation results of the microglial cells in (B) using the method developed in
Chapter 3.

an important role in a range of brain disorders, including stroke, multiple sclerosis,
Parkinson’s, Huntington’s and Alzheimer’s diseases [34–36] and other chronic conditions.
Extracting the microglial cells is normally the first step to analyse microglial activation.
One of the major challenges in quantitative microglial analysis from histology images is the
development of automated microglial segmentation methods. Manual or semi-automated
segmentation methods are extremely time-consuming and require user intervention [37, 38]
with an element of subjectivity and inter-observer variability. Image analysis approaches
that are commonly used for quantifying histology and that rely on thresholding, such as
ImageJ [39], struggle with intensity inhomogeneity within histology images. Figure 1.3
shows an example of segmenting the microglial cells from a part of histology image
derived from the whole brain slice of a healthy mouse.

OCT image segmentation is to delineate retinal layers and study optical nerve diseases.
OCT is a powerful imaging modality used to image various aspects of biological tissues,
such as structural information, blood flow, elastic parameters, change of polarization
states and molecular content [40]. By using the low coherence interferometry, OCT can
generate 2D/3D images from biological samples and provide high-resolution cross-sectional
backscattering profiles. With a long period development of this technique, OCT has
become a well-established modality for depth resolved imaging of eyes. Ophthalmology
has drastically benefited from the inventions and improvements made to OCT systems.
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Figure 1.4: A en-face fundus image (A) overlaid with lines representing the locations
of B-scans in a volumetric OCT image. The red line in (A) corresponds to the B-scan
shown in (B). Nine target intra-retinal layer boundaries in 2D (C) and 3D (D) detected
by the proposed method in Chapter 4.

In order to aid the diagnosis of pathologies by physicians, measurements are normally
required to perform on the in-vivo imaging of retina in OCT images. One example of
various measurements is to determine the thickness of retinal layers and segmentation thus
has to be done before the measurement can be made. This segmentation task involves
determining the location of nine retinal boundaries/surfaces in the OCT image. Once these
retinal layers are delineated separately, spatial extent, statistics distribution and gradation
of pixel intensities of the region between retinal layers can be calculated straightforwardly.
Furthermore, the segmented retinal layers can be individually visualised, manipulated
and analysed. Figure 1.4 shows an example of segmenting the retinal layers from the
2D/3D OCT images obtained from a healthy human in-vivo eye.

1.4.3 Surface reconstruction

We reconstruct 3D object surfaces from point clouds. A point cloud is a set of data points
in some coordinate system. In a 3D coordinate system, these points are usually defined
by x, y, and z coordinates, and often are intended to represent the external surface of
an object. Point clouds may be created by 3D scanners. These devices measure a large
number of points on an object’s surface. As the output of 3D scanning processes, point
clouds are used for many purposes, including to create 3D models for manufactured parts,
metrology/quality inspection, and a multitude of visualization, animation, rendering
and mass customization applications. While point clouds can be directly rendered and
inspected, point clouds themselves are usually not directly usable in most 3D applications,
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and therefore are usually converted to polygon mesh or triangle mesh through a process
commonly referred to as surface reconstruction.

A major difference between surface reconstruction from point clouds and image
segmentation is that there is no initial 2D or 3D image for the segmentation. All we
know is the locations of the scattered 2D or 3D points. Since there exist effective and
efficient algorithms for image segmentation using variational methods, we transform the
surface reconstruction task to the variational image segmentation task, partitioning the
computational domain into two regions, interior and exterior. To do so, we will need to
create an initial image and an edge indicator directly from the given point cloud. The
initial image should provide a good initialisation for the segmentation task, and the edge
indicator function should provide more information about the precise location of the
image boundary. Statistically speaking, the initial image function gives the likelihood of
a grid point being inside or outside, and the edge indicator function gives the likelihood
of a grid point on the image boundary. The initial image and edge indicator can be
then effectively integrated to an energy functional capable of reconstructing the volume,
as shown in Figure 1.5. The point cloud data used in the thesis are downloaded from
https://graphics.stanford.edu/data/3Dscanrep/.

Figure 1.5: Surface reconstruction from a point cloud. Left: Point cloud of the Stanford
Bunny; Right: Surface reconstruction result using the proposed method in Chapter 5.

1.5 Organisation of the thesis

The remaining chapters of this thesis are organised as follows:
In Chapter 2, we study image denoising. We present some representative first and

second order variational models for image denoising, provide detailed descretisation of
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1.5 Organisation of the thesis

the partial derivatives in the resulting PDEs, and perform numerical implementation of
these models based on the FFT and the split Bregman algorithm. We also demonstrate
the advantages and disadvantages of these variational models through extensive image
denoising experiments.

In Chapter 3, we study image segmentation for two types images. First, we developed
a novel image analysis framework for an image-based cytometer. Such a framework can
detect, count and analyse malaria parasite iRBCs from Giemsa-stained smears. The
image analysis framework includes the variational total generalised variation, adaptive
thresholding and support vector machine classification. Second, we introduce an auto-
mated image approach framework capable of efficiently segmenting microglial cells from
histology images. We show the complete implementation of the Mumford-Shah total
variation using the split Bregman algorithm for denoising and segmentation of microglial
cells. We test the accuracy of the developed methods using the manual segmentation
results and large datasets.

In Chapter 4, we study OCT image segmentation. We introduce a novel and accurate
geodesic distance method for segmentation of both healthy and pathological OCT images
in either 2D or 3D. The results of the proposed method are evaluated using manual
segmentation. We also compare the proposed approach with the parametric active
contour algorithm and graph-based approaches through extensive numerical results.

In Chapter 5, we study surface reconstruction from point clouds. We introduce a
novel variational level set method for reconstructing an accurate implicit surface from
a set of unorganised points. Implementation details of the variational model are given,
including the discretisiation of the 3D differential operators and the use of the gradient
descent flow. Extensive experiments are conducted to compare the proposed method
with the state-of-the-art surface reconstruction approaches.

In Chapter 6, we conclude the thesis and give some comments on future work.
In Appendix A, we present the FFT solver for a second order linear PDE.
In Appendix B, we present the numerical implementation of fast sweeping in both

2D and 3D.
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Chapter 2

Image pre-processing

In this chapter, we introduce image denoising as an image pre-processing step for the
segmentation problems described in the later chapters. Specifically, we focus on the
variational method, a powerful approach that has been widely used in image processing
community. We briefly review some representative first and second order variational
models for this task. The investigated denoising approaches include the quadratic
Tikhonov (QT), total variation (TV), absolute Laplacian (AL), bounded Hessian (BH),
hybridised TV and Laplacian (TVL), hybridised TV and bounded Hessian (TVBH),
total generalised variation (TGV), and absolute curvature (AC) models. The differential
operators appeared in these models and their corresponding Euler-Lagrange equations
are then discretised via the finite difference scheme, followed by the fast numerical
implementation of these denoising models based on the split Bregman algorithm. We
end the chapter by drawing the conclusions about the advantages and disadvantages of
these models through extensive comparative experiments. We denote

∫
Ω as

∫
Ω dx in the

following sections.

2.1 First order variational models

In the last three decades or so, numerous variational models [41, 3, 42, 43] have been
applied to image processing. One of the most popular variational models for image
denoising is the quadratic Tikhonov (QT) model, and its energy functional is given by

E (u) = 1
2

∫
Ω

(u− f)2 + α
∫

Ω
|∇u|2, (2.1)

where f : (Ω ⊂ R2)→ R is the input noisy image and u is the output denoised image.
Minimising the model through the variational method gives a linearly smoothed image u
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in which the smoothing strength for each pixel is isotropic. Therefore, the underlying
structures like edges are blurred, even though the model eliminates noise in the given
data. See Figure 2.1.

(a) Clean image (b) Noisy image (c) QT (d) TV

Figure 2.1: Illustration of the isotropically smoothed denoising result using QT and the
edge preservation denoising result using TV.

(a) Clean image (b) Noisy image (c) TV

(d) Middle slice of (a) (e) Middle slice of (b) (f) Middle slice of (c)

Figure 2.2: Illustration of the staircase effect in TV denoising.

This observation motivates a new class of regularisers, which aims to remove noise
and smooth the image in homogeneous areas, while preserve edges and boundaries of
objects in the image. In their pioneering work, Rudin Osher and Fatemi [15] proposed to
use the total variation (TV) model, and the energy functional of the model is as follows

E (u) = 1
2

∫
Ω

(u− f)2 + α
∫

Ω
|∇u|. (2.2)

This first order TV model is effective in preserving object edges while removing noise, as
shown in Figure 2.1 (d). A desirable property of image denoising algorithms is to restore
images without losing important features (i.e. edges, corners, contrast, etc.). However,
the TV model has several undesirable side effects, one of which is the staircase effect, that
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is, the restored image appears jagged, see Figure 2.2. Higher order variational models
have been extensively proposed to eliminate the side effect.

2.2 Higher order variational models

These higher order variational models studied in this thesis are briefly reviewed below.
The simplest higher order models involve only second order derivatives. For instance, a
model that uses the second order absolute Laplace regulariser, named the AL model in
this thesis, was proposed in [44]

E (u) = 1
2

∫
Ω

(u− f)2 + α
∫

Ω
|∆u|, (2.3)

where the Laplacian is defined as ∆u = ∂x∂xu + ∂y∂yu, with ∂x and ∂y being the first
order partial derivatives along x and y directions, respectively.

A model that uses the second order bounded Hessian regulariser, named the BH
model in this thesis, was proposed by Lysaker et al [45], Scherzer et al [46, 47], Lai at al
[48], and Bergounioux et al [49]. The model minimises the following energy functional

E (u) = 1
2

∫
Ω

(u− f)2 + α
∫

Ω

∣∣∣∇2u
∣∣∣, (2.4)

where the symmetric Hessian matrix of u (i.e. ∇2u) in the image domain Ω is given as
follows

∇2u =
 ∂x∂xu ∂y∂xu

∂x∂yu ∂y∂yu

 . (2.5)

A model that combines the TV and Laplacian regulariser, named the TVL model in
this thesis, was proposed in [50–52]

E(u) = 1
2

∫
Ω

(u− f)2 + α
∫

Ω
|∇u|+ β

∫
Ω
|∆u|. (2.6)

A model that combines the TV and bounded Hessian regulariser, named the TVBH
model, was proposed in [22, 23]

E(u) = 1
2

∫
Ω

(u− f)2 + α
∫

Ω
|∇u|+ β

∫
Ω

∣∣∣∇2u
∣∣∣. (2.7)

A model named the total generalised variation (TGV) was proposed in [53] for image
denosing. The main feature of TGV is that it can deal with different image characteristics
(e.g. piecewise constant, piecewise affine, piecewise quadratic, etc.). The second order
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TGV model is considered here and is of the following form

E (u, p) = 1
2

∫
Ω

(u− f)2 + α
∫

Ω
|∇u− p|+ β

∫
Ω
|ε (p)|, (2.8)

where ε (p) is the symmetrised derivative and defined as

ε (p) =
 ∂xp1

∂yp1+∂xp2
2

∂yp1+∂xp2
2 ∂yp2

 . (2.9)

The minimum of (2.8) is taken over all gradients of the deformation field p = (p1, p2) on
image space Ω.

A model that uses the absolute curvature of an image as a regulariser, named the AC
model in this thesis, was introduced in [54–57] for image denoising. The AC model is
given as

E (u) = 1
2

∫
Ω

(u− f)2 + α
∫

Ω

∣∣∣∣∣div

(
∇u

|∇u|

)∣∣∣∣∣. (2.10)

In fact, the curvature-based models were first introduced by Nitzberg and Mumford [58]
in early 1990s and then extended for image inpainting [59–61], segmentation with depth
[62], construction of illusory shapes [63] etc.

Despite of the effectiveness of these higher order models in removing the staircase
effect, it is often a challenge to minimise the corresponding functionals. Technically, the
Euler-Lagrange equations of the regularisers are fourth order nonlinear partial differential
equations (PDEs), which are very difficult to discretise to solve computationally. In
this thesis, the split Bregman algorithm [21, 64, 65] is applied to transform the energy
minimisation problem of a given model into several subproblems. These subproblems are
then efficiently solved by the fast Fourier transform (FFT) [25, 66, 26, 27, 56], analytical
soft thresholding equation [67] and projection formula [27, 56] without any iteration.

2.3 Discretisation of differential operators

In order to solve the variational models above using the efficient split Bregman method
[21, 68, 69], the first, second and fourth order derivative operators are discretised using
the finite difference scheme. These differential operators are respectively ∂+

x , ∂−
x , ∂+

y ,
∂−

y , ∂−
x ∂+

x , ∂+
x ∂−

x , ∂−
y ∂+

y , ∂+
y ∂−

y , ∂+
y ∂+

x , ∂+
x ∂+

y , ∂−
y ∂−

x , ∂−
x ∂−

y , ∂+
x ∂−

y , ∂+
y ∂−

x , ∂+
x ∂−

x ∂−
x ∂+

x ,
∂+

y ∂−
y ∂−

y ∂+
y , ∂−

y ∂−
x ∂+

y ∂+
x and ∂−

x ∂−
y ∂+

x ∂+
y . The gradient, Hessian matrix (2.5) and sym-
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metrised derivative (2.9) are discretised as follows respectively

∇u =
(
∂+

x u ∂+
y u
)

, (2.11)

∇2u =
 ∂−

x ∂+
x u ∂+

y ∂+
x u

∂+
x ∂+

y u ∂−
y ∂+

y u

 , (2.12)

ε (p) =
 ∂−

x p1
∂−

y p1+∂−
x p2

2
∂−

y p1+∂−
x p2

2 ∂−
y p2

 . (2.13)

Theoretically, ∂x∂yu should be equal to ∂y∂xu in the Hessian matrix (2.5), so it is
necessary to define its discrete form such that ∂+

x ∂+
y u = ∂+

y ∂+
x u in (2.12). The issue of

boundary conditions also should be addressed, as it describes how discrete derivatives
are defined on boundaries. Unlike the Neumann boundary condition used in [70–72], we
apply the periodic boundary condition. By choosing such boundary condition, FFT can
be conveniently utilised for the split Bregman algorithm such that the computational
speed can be improved.

The first order forward and backward difference schemes are first given. Let Ω →
RM×N denote a 2D greyscale image space with size M ×N . The coordinates x and y

are oriented along columns and rows respectively. So the first order forward differences
of u at point (i, j) along x and y directions are respectively

∂+
x ui,j =

 ui,j+1 − ui,j if 1 ≤ i ≤ M, 1 ≤ j < N
ui,1 − ui,j if 1 ≤ i ≤ M, j = N

, (2.14)

∂+
y ui,j =

 ui+1,j − ui,j if 1 ≤ i < M, 1 ≤ j ≤ N
u1,j − ui,j if i = M, 1 ≤ j ≤ N

. (2.15)

The first order backward differences are respectively

∂−
x ui,j =

 ui,j − ui,j−1 if 1 ≤ i ≤ M, 1 < j ≤ N
ui,j − ui,N if 1 ≤ i ≤ M, j = 1

, (2.16)

∂−
y ui,j =

 ui,j − ui−1,j if 1 < i ≤ M, 1 ≤ j ≤ N
ui,j − uM,j if i = 1 , 1 ≤ j ≤ N

. (2.17)
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For every p = (p1 p2) ∈ (RM×N)2 and u ∈ RM×N , the discrete version of the first order
adjoint divergence operator satisfies

∑
1≤i≤M
1≤j≤N

−div
(
pi,j

)
· ui,j =

∑
1≤i≤M
1≤j≤N

pi,j · ∇ui,j.

Therefore, according to the definition of discrete gradient operator, it is easy to check
the discrete divergence as

div
(
pi,j

)
= ∂−

x p1i,j + ∂−
y p2i,j. (2.18)

The discrete second order derivatives ∂−
x ∂+

x u, ∂+
x ∂−

x u, ∂−
y ∂+

y u, ∂+
y ∂−

y u, ∂+
y ∂+

x u, ∂+
x ∂+

y u,
∂−

y ∂−
x and ∂−

x ∂−
y at point (i, j) can be written down as follows respectively. These

operators are just the corresponding compositions of the discrete first order derivative.

∂+
x ∂−

x ui,j = ∂−
x ∂+

x ui,j =


ui,N − 2ui,j + ui,j+1 if 1 ≤ i ≤ M, j = 1
ui,j−1 − 2ui,j + ui,j+1 if 1 ≤ i ≤ M, 1 < j < N
ui,j−1 − 2ui,j + ui,1 if 1 ≤ i ≤ M, j = N

, (2.19)

∂+
y ∂−

y ui,j = ∂−
y ∂+

y ui,j =


uM,j − 2ui,j + ui+1,j if i = 1, 1 ≤ j ≤ N
ui−1,j − 2ui,j + ui+1,j if 1 < i < M, 1 ≤ j ≤ N
ui−1,j − 2ui,j + u1,j if i = M, 1 ≤ j ≤ N

, (2.20)

∂+
x ∂+

y ui,j = ∂+
y ∂+

x ui,j =


ui,j − ui+1,j − ui,j+1 + ui+1,j+1 if 1 ≤ i < M, 1 ≤ j < N
ui,j − u1,j − ui,j+1 + u1,j+1 if i = M, 1 ≤ j < N
ui,j − ui+1,j − ui,1 + ui+1,1 if 1 ≤ i < M, j = N
ui,j − u1,j − ui,1 + u1,1 if i = M, j = N

,

(2.21)

∂−
x ∂−

y ui,j = ∂−
y ∂−

x ui,j =


ui,j − ui,N − uM,j + uM,N if i = 1, j = 1
ui,j − ui,j−1 − uM,j + uM,j−1 if i = 1, 1 < j ≤ N
ui,j − ui,N − ui−1,j + ui−1,N if 1 < i ≤ M, j = 1
ui,j − ui,j−1 − ui−1,j + ui−1,j−1 if 1 < i ≤ M, 1 < j ≤ N

.

(2.22)
Note that the constraint ∂x∂yu = ∂y∂xu in the Hessian matrix (2.5) is satisfied as now
the discrete form ∂+

x ∂+
y ui,j = ∂+

y ∂+
x ui,j in (2.21).

Based on (2.19) and (2.20), the definition of discrete Laplace operator is given as

∆ui,j = div(∇ui,j) = ∂−
x ∂+

x ui,j + ∂−
y ∂+

y ui,j. (2.23)
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In addition, we need the discrete second order divergence operator that also has adjointness

property: for every q =
 q1 q2

q3 q4

 ∈ (RM×N)4 and u ∈ RM×N , we have

∑
1≤i≤M
1≤j≤N

div2(qi,j) · ui,j =
∑

1≤i≤M
1≤j≤N

qi,j · ∇2ui,j.

Then the discrete second order divergence reads

div2
(
qi,j

)
= ∂+

x ∂−
x q1i,j + ∂−

y ∂−
x q2i,j + ∂−

x ∂−
y q3i,j + ∂+

y ∂−
y q4i,j. (2.24)

In order to implement these higher order variational models, we give the discrete definitions
of another two second order derivatives

∂+
x ∂−

y ui,j =


ui.j+1 − ui,j − uM,j+1 + uM,j if i = 1, 1 ≤ j < N
ui.1 − ui,j − uM,1 + uM,j if i = 1, j = N
ui,j+1 − ui,j − ui−1,j+1 + ui−1,j if 1 < i ≤ M, 1 ≤ j < N
ui,1 − ui,j − ui−1,1 + ui−1,j if 1 < i ≤ M, j = N

, (2.25)

∂+
y ∂−

x ui,j =


ui+1,j − ui,j − ui,N + ui,N if 1 ≤ i < M, j = 1
u1,j − ui,j − u1,N + ui,N if i = M, j = 1
ui+1,j − ui,j − ui+1,j−1 + ui,j−1 if 1 ≤ i < M, 1 < j ≤ N
u1,j − ui,j − u1,j−1 + ui,j−1 if i = M, 1 < j ≤ N

, (2.26)

and the discrete fourth order derivatives

∂−
x ∂+

x ∂−
x ∂+

x ui,j = ∂+
x ∂−

x ∂−
x ∂+

x ui,j = 6ui,j + ui,j+2 + ui,j−2 − 4ui,j+1 − 4ui,j−1, (2.27)

∂−
y ∂+

y ∂−
y ∂+

y ui,j = ∂+
y ∂−

y ∂−
y ∂+

y ui,j = 6ui,j + ui+2,j + ui−2,j − 4ui+1,j − 4ui−1,j, (2.28)

∂−
x ∂+

x ∂−
y ∂+

y ui,j = ∂−
y ∂+

y ∂−
x ∂+

x ui,j = ∂−
x ∂−

y ∂+
x ∂+

y ui,j = ∂−
y ∂−

x ∂+
y ∂+

x ui,j

= 4ui,j + ui+1,j+1 + ui−1,j+1 + ui+1,j−1 + ui−1,j−1

− 2 (ui,j+1 + ui,j−1 + ui+1,j + ui−1,j)
. (2.29)

For simplicity, the finite differences on the boundaries for the discrete fourth order
derivatives are not listed. One can easily compose the already-defined second order
derivatives in (2.19)-(2.22) for the boundary conditions of the fourth order derivatives in
(2.27)-(2.29). Based on (2.27)-(2.29), we can obtain following two discrete fourth order
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differential operators

div2
(
∇2ui,j

)
= ∂+

x ∂−
x ∂−

x ∂+
x ui,j + ∂−

y ∂−
x ∂+

y ∂+
x ui,j + ∂−

x ∂−
y ∂+

x ∂+
y ui,j + ∂+

y ∂−
y ∂−

y ∂+
y ui,j,

(2.30)
∆(∆ui,j) = ∂−

x ∂+
x ∂−

x ∂+
x ui,j + ∂−

x ∂+
x ∂−

y ∂+
y ui,j + ∂−

y ∂+
y ∂−

x ∂+
x ui,j + ∂−

y ∂+
y ∂−

y ∂+
y ui,j. (2.31)

Note that div2 (∇2ui,j) = ∆(∆ui,j). Figure 2.3 describes the behaviour of all the
above discrete differential operators. Having defined all necessary discrete quantities,
the numerical optimisation of the variational models in sections 4.1 and 2.2 can be
implemented in the next.

(a) ∂+
x (b) ∂+

y (c) ∂−
x (d) ∂−

y (e) ∂+
x ∂−

x = ∂−
x ∂+

x (f) ∂+
y ∂−

y = ∂−
y ∂+

y

(g) ∂+
x ∂+

y = ∂+
y ∂+

x (h) ∂−
x ∂−

y = ∂−
y ∂−

x (i) ∂+
x ∂−

y (j) ∂+
y ∂−

x

(k) Derivatives in (2.27) (l) Derivatives in (2.28) (m) Derivatives in (2.29)

Figure 2.3: Graph illustration of the discrete first, second and fourth order derivative
approximations.
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2.4 Fast numerical implementation

In this section, we shall detail how to apply the fast split Bregman based numerical
algorithms to the image denoising models introduced above. Since the QT model can
be optimised directly, its implementation will be not given here. However, its solution
process is similar to solving the subproblem with respect to u in the TV model.

2.4.1 Split Bregman for total variation (TV)

First, we introduce an auxiliary splitting vector variable w = (w1 w2) ∈ (RM×N)2, a
Bregman iterative parameter b = (b1 b2) ∈ (RM×N )2 and a positive penalty parameter θ,
transforming the functional (2.2) into the following form

E (u, w; b) = 1
2

∫
Ω

(u− f)2+α
∫

Ω
|w|+θ

2

∫
Ω
|w −∇u− b|2, (2.32)

In order to find the minimiser of the functional (2.2), we use an alternating optimisation
method to search all the saddle points of the functional (2.32). To do so, we first fix the
variable w, deriving the Euler-Lagrange equation with respect to u of (2.32)

u− θdiv (∇u) = f − θdiv (w − b) , (2.33)

which is a linear Possion equation, for which there are many existing efficient solvers.
In the next, we will see how the FFT solver can be applied to the equation. A detailed
mathematical derivation can be found in Appendix A. We note that the FFT derivation
for a fourth order linear PDE can be done in a similar fashion.

According to the definition of the discrete gradient (2.11), divergence (2.18) and
Laplacian (2.23) in section 2.3, the discretisation form of (2.33) can be written as

ui,j − θ
(
∂−

x ∂+
x ui,j + ∂−

y ∂+
y ui,j

)
= Gi,j, (2.34)

with Gi,j = fi,j − θ
(
∂−

x (w1i,j − b1i,j) + ∂−
y (w2i,j − b2i,j)

)
. As the periodic boundary

condition has been imposed on the discrete derivatives in section 2.3, the discrete Fourier
transform can be directly applied to the both sides of the equation (2.34)

F
(
ui,j − θ

(
∂−

x ∂+
x ui,j + ∂−

y ∂+
y ui,j

))
= F (Gi,j) ,
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where F denotes the discrete Fourier transform. For the discrete frequencies r and s, we
have (

1− 2θ
(

cos 2πs

N
+ cos 2πr

M
− 2

))
︸ ︷︷ ︸

κ

F (ui,j) = F (Gi,j) . (2.35)

Here i ∈ [1, M ] and j ∈ [1, N ] are the indexes in the discrete time domain. r ∈ [0, M) and
s ∈ [0, N) are the frequencies in the discrete frequency domain. Appendix A shows how
the coefficient κ can be derived by using the FFT (2.35) provides us with a closed-form
solution of u as

ui,j = ℜ
(
F−1

(
F (Gi,j)

κ

))
, (2.36)

where F−1 denotes the discrete inverse Fourier transform. ℜ is the real part of a complex
number. “—” stands for pointwise division of matrices, and κ is defined in (2.35).

After u is solved, we fix u for the vector w and obtain its Euler-Lagrange equation as
follows

α
w

|w|
+ θ (w −∇u− b) = 0,

which can be solved component-wisely through the following discrete 2D analytical
generalised soft thresholding equation with the convention that 0/0 = 0

wi,j = max
(
|∇ui,j + bi,j| −

α

θ
, 0
) ∇ui,j + bi,j

|∇ui,j + bi,j|
. (2.37)

Finally, we update the Bregman iterative parameter b, which is given in the step 6 in
Algorithm 2.4.1. The overall algorithm for (2.2) reads as follows

Algorithm 2.4.1: Split Bregman algorithm for TV model (2.2)
1: function TVDenoising(f)
2: Initialisation: Set (w; b) = 0, (α, θ) > 0
3: repeat
4: Compute u according to (2.36)
5: Compute w according to (2.37)
6: Update Bregman iterative parameter b← b +∇u−w
7: until some stopping criterion is satisfied1

8: return u
9: end function

1In this thesis, we use |Ek −Ek−1|/Ek ≤ ϵ as the stopping criterion, where E is the model energy, k
is iteration number and threshold ϵ is fixed to ϵ = 10−5. Alternatively, one can identify the convergence
of function u by checking if the value of u changes below a threshold value between two consecutive
iterations.
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2.4.2 Split Bregman for absolute Laplacian (AL)

In order to minimise the AL model (2.3), an auxiliary splitting scalar variable w ∈ RM×N ,
a Bregman iterative parameter b ∈ RM×N and a penalty positive parameter θ are
introduced, transforming (2.3) into

E (u, w; b) = 1
2

∫
Ω

(u− f)2 + α
∫

Ω
|w|+ θ

2

∫
Ω

(w −∆u− b)2.

Applying the alternating optimisation technique, we first fix w for u and obtain the
following Euler-equation

u + θ∆ (∆u) = f + θ∆ (w − b) . (2.38)

Referring to the definitions of (2.23) and (2.31) in section 2.3, (2.38) is discretised as

ui,j + θ
(
∂−

x ∂+
x ∂−

x ∂+
x ui,j + ∂−

x ∂+
x ∂−

y ∂+
y ui,j + ∂−

y ∂+
y ∂−

x ∂+
x ui,j + ∂−

y ∂+
y ∂−

y ∂+
y ui,j

)
= Gi,j,

(2.39)
with Gi,j = fi,j +θ

(
∂−

x ∂+
x (wi,j − bi,j) + ∂−

y ∂+
y (wi,j − bi,j)

)
. Applying the discrete Fourier

transform to the both sides of the equation (2.39) gives

F
(
ui,j + θ

(
∂−

x ∂+
x ∂−

x ∂+
x ui,j + ∂−

x ∂+
x ∂−

y ∂+
y ui,j + ∂−

y ∂+
y ∂−

x ∂+
x ui,j + ∂−

y ∂+
y ∂−

y ∂+
y ui,j

))
= F (Gi,j) .

(2.40)
For the discrete frequencies r and s, we have the following equivalent of the equation
(2.40) (

1 + 4θ
(

cos 2πs

N
+ cos 2πr

M
− 2

)2)
︸ ︷︷ ︸

χ

F (ui,j) = F (Gi,j) . (2.41)

(2.40) provides us with a closed-form solution of u as

ui,j = ℜ
(
F−1

(
F (Gi,j)

χ

))
. (2.42)

Next fixing the variable u to derive the following Euler-equation with respect to the
scalar variable w

α
w

|w|
+ θ (w −∆u− b) = 0,
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which can be solved component-wisely through the following discrete 1D analytical
generalised soft thresholding equation with the convention that 0/0 = 0

wi,j = max
(
|∆ui,j + bi,j| −

α

θ
, 0
)

sign (∆ui,j + bi,j) . (2.43)

Lastly, we give the overall implementation of the AL model (2.3), where the Bregman
iterative parameter b is updated accordingly.

Algorithm 2.4.2: Split Bregman algorithm for AL model (2.3)
1: function ALDenoising(f)
2: Initialisation: Set (w; b) = 0, (α, θ) > 0
3: repeat
4: Compute u according to (2.42)
5: Compute w according to (2.43)
6: Update Bregman iterative parameter b← b + ∆u− w
7: until some stopping criterion is satisfied
8: return u
9: end function

2.4.3 Split Bregman for bounded Hessian (BH)

To solve the BH model (2.4) using the split Bregman method, we transform it into the
following multivariable energy functional

E (u, w; b) = 1
2

∫
Ω

(u− f)2 + α
∫

Ω
|w|+ θ

2

∫
Ω

∣∣∣w −∇2u− b
∣∣∣2, (2.44)

where w =
 w1 w2

w3 w4

 ∈ (RM×N )4 is introduced to replace the Hessian of the function

u. |w| =
√∑

1≤n≤4 (wn)2 represents the Frobenius norm of matrix w. By introducing

the Bregman iteration parameter b =
 b1 b2

b3 b4

 ∈ (RM×N)4 and applying the Bregman

distance technique [21], the constraint w = ∇2u can be effectively enforced.
Using the same manner to optimise (2.44), we first fix the variable w for u

u + θdiv2
(
∇2u

)
= f + θdiv2 (w − b) . (2.45)
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The discretisation form of (2.45) is given as follows according to the definition (2.24) and
(2.30) in section 2.3

ui,j + θ
(
∂+

x ∂−
x ∂−

x ∂+
x ui,j + ∂−

y ∂−
x ∂+

y ∂+
x ui,j + ∂−

x ∂−
y ∂+

x ∂+
y ui,j + ∂+

y ∂−
y ∂−

y ∂+
y ui,j

)
= Gi,j,

(2.46)
with G = f + θ

(
∂+

x ∂−
x (w1 − b1) + ∂−

y ∂−
x (w2 − b2) + ∂−

x ∂−
y (w3 − b3) + ∂+

y ∂−
y (w4 − b4)

)
.

Applying the discrete Fourier transform to the both sides of the equation (2.46) gives

F
(
ui,j + θ

(
∂+

x ∂−
x ∂−

x ∂+
x ui,j + ∂−

y ∂−
x ∂+

y ∂+
x ui,j + ∂−

x ∂−
y ∂+

x ∂+
y ui,j + ∂+

y ∂−
y ∂−

y ∂+
y ui,j

))
= F (Gi,j) .

(2.47)
The equivalent of (2.47) reads

(
1 + 4θ

(
cos 2πs

N
+ cos 2πr

M
− 2

)2)
︸ ︷︷ ︸

χ

F (ui,j) = F (Gi,j) . (2.48)

Note that the left-hand side of (2.48) is the same as that of (2.42). (2.48) gives the
following closed-form

ui,j = ℜ
(
F−1

(
F (Gi,j)

χ

))
. (2.49)

Algorithm 2.4.3: Split Bregman algorithm for BH model (2.4)
1: function BHDenoising(f)
2: Initialisation: Set (w; b) = 0 and (α, θ) > 0
3: repeat
4: Compute u according to (2.49)
5: Compute w according to (2.50)
6: Update Bregman iterative parameter b← b +∇2u−w
7: until some stopping criterion is satisfied
8: return u
9: end function

Now fixing the variable u to derive the following Euler-Lagrange equation with respect
to the 4D vector variable w

α
w

|w|
+ θ

(
w −∇2u− b

)
= 0,
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which can be analytically solved by the discrete 4D generalised soft thresholding equation
with the convention that 0/0 = 0

wi,j = max
(∣∣∣∇2ui,j + bi,j

∣∣∣− α

θ
, 0
) ∇2ui,j + bi,j

|∇2ui,j + bi,j|
. (2.50)

2.4.4 Split Bregman for hybridised TV and Laplacian (TVL)

As the TVL model (2.6) includes both the first and second order derivatives, we should
introduce two splitting variables w ∈ (RM×N)2, v ∈ RM×N , two Bregman iterative
parameters b ∈ (RM×N)2, d ∈ RM×N , and two penalty parameters (θ1, θ2), transforming
the original functional (2.6) into

E (u, w, v; b, d) = 1
2

∫
Ω

(f − u)2

+ α
∫

Ω
|w|+ θ1

2

∫
Ω
|w −∇u− b|2

+ β
∫

Ω
|v|+ θ2

2

∫
Ω

(v −∆u− d)2

.

The Euler-Lagrange equations with respect to u is

u− θ1div (∇u) + θ2∆ (∆u) = f − θ1div (w − b) + θ2∆ (v − d) . (2.51)

This formulation is a combination of (2.33) and (2.38), which can be also solved by the
discrete Fourier transform. Its analytical solution is given as

ui,j = ℜ
(
F−1

(
F (Gi,j)

ξ

))
, (2.52)

where G is the right-hand side of (2.51). ξ = ξ1 + ξ2 − 1 where ξ1 and ξ2 are (2.53) and
(2.54), respectively.

ξ1 = 1− 2θ1

(
cos 2πs

N
+ cos 2πr

M
− 2

)
, (2.53)

ξ2 = 1 + 4θ2

(
cos 2πs

N
+ cos 2πr

M
− 2

)2
. (2.54)

The discretisation problems of w and v are given by the following two equations
respectively

wi,j = max
(
|∇ui,j + bi,j| −

α

θ1
, 0
) ∇ui,j + bi,j

|∇ui,j + bi,j|
, (2.55)
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vi,j = max
(
|∆ui,j + di,j| −

β

θ2
, 0
)

sign (∆ui,j + di,j) . (2.56)

Algorithm 2.4.4: Split Bregman algorithm for TVL model (2.6)
01: function TVLDenoising(f)
02: Initialisation: Set (w, v; b, d) = 0, (α, β, θ1, θ2) > 0
03: repeat
04: Compute u according to (2.52)
05: Compute w according to (2.55)
06: Compute v according to (2.56)
07: Update Bregman iterative parameter b← b +∇u−w
08: Update Bregman iterative parameter d← d + ∆u− v
09: until some stopping criterion is satisfied
10: return u
11: end function

2.4.5 Split Bregman for hybridised TV and BH (TVBH)

Using the same manner as for the TVL model, we first transform the original (2.7) model
into the following multivariable formulation

E (u, w, v; b, d) = 1
2

∫
Ω

(f − u)2

+ α
∫

Ω
|w|+ θ1

2

∫
Ω
|w −∇u− b|2

+ β
∫

Ω
|v|+ θ2

2

∫
Ω

∣∣∣v −∇2u− d
∣∣∣2

.

To minimise the functional, we first fix w ∈ (RM×N)2, v ∈ (RM×N)4, b ∈ (RM×N)2, d ∈
(RM×N)4 for u and obtain its Euler-Lagrange equations

u− θ1div (∇u) + θ2div2
(
∇2u

)
= f − θ1div (w − b) + θ2div2 (v − d) . (2.57)

This formulation is a combination of (2.33) and (2.45), which can be solved via the
discrete fast Fourier transform. Its closed-form solution is given as

ui,j = ℜ
(
F−1

(
F (Gi,j)

ξ

))
, (2.58)

where G is the right-hand side of (2.57). ξ = ξ1 + ξ2 − 1 where ξ1 and ξ2 are (2.53) and
(2.54), respectively.
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The solution of the variable w is same as (2.55), and the vector v can be updated by

vi,j = max
(∣∣∣∇2ui,j + di,j

∣∣∣− β

θ2
, 0
)
∇2ui,j + di,j

|∇2ui,j + di,j|
. (2.59)

Algorithm 2.4.5: Split Bregman algorithm for TVBH model (2.7)
01: function TVBHDenoising(f)
02: Initialisation: Set (w, v; b, d) = 0, (α, β, θ1, θ2) > 0
03: repeat
04: Compute u according to (2.58)
05: Compute w according to (2.55)
06: Compute v according to (2.59)
07: Update Bregman iterative parameter b← b +∇u−w
08: Update Bregman iterative parameter d← d +∇2u− v
09: until some stopping criterion is satisfied
10: return u
11: end function

2.4.6 Split Bregman for total generalised variation (TGV)

In order to solve the TGV model (2.8) using the split Bregman method, we introduce
the auxiliary variables (w, v; b, d) and positive penalty parameters (θ1, θ2), transforming
it to

E (u, p, w, v; b, d) = 1
2

∫
Ω

(u− f)2

+ α
∫

Ω
|w|+ θ1

2

∫
Ω
|w −∇u + p− b|2

+ β
∫

Ω
|v|+ θ2

2

∫
Ω
|v − ε (p)− d|2

. (2.60)

The meaning of the primal and dual variables in (2.60) is listed as follows:
• u ∈ RM×N denotes the denoised image we need to find;
• p = (p1 p2) ∈ (RM×N)2 is the symmetrised gradient of the deformation field;
• w = (w1 w2) ∈ (RM×N)2 is a 2D vector valued function related to the vector field
∇u− p;

• v =
 v11 v3

v3 v22

 ∈ (RM×N )4 is a 4D matrix valued function related to the symmetrised

derivative ε (p);
• b = (b1 b2) ∈ (RM×N)2 denotes the Bregman iterative parameter for enforcing w =
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∇u− p;

• d =
 d11 d3

d3 d22

 ∈ (RM×N)4 denotes the Bregman iterative parameter for enforcing

v = ε (p).
Applying the alternating optimisation method, we first fix the variables (p, w, v; b, d)

to obtain the following Euler-Lagrange equations with respect to u

u− θ1div (∇u) = f − θ1div (w + p− b) . (2.61)

The solution of this linear PDE is given as

ui,j = ℜ
(
F−1

(
F (Gi,j)

ξ1

))
, (2.62)

where G is the right-hand side of (2.61) and ξ1 is defined as (2.53).
Fixing the variables (u, w, v; b, d) next, the Euler-Lagrange equations with respect

to p = (p1 p2) can be derived. For each p1 and p2, we have the following two discrete
formulations (

θ1 − θ2∂
+
x ∂−

x −
θ2

2 ∂+
y ∂−

y

)
p1i,j −

θ2

2 ∂+
y ∂−

x p2i,j = h1i,j, (2.63)

(
θ1 −

θ2

2 ∂+
x ∂−

x − θ2∂
+
y ∂−

y

)
p2i,j −

θ2

2 ∂+
x ∂−

y p1i,j = h2i,j, (2.64)

where the differential operators in (2.63) and (2.64) can be found in section 2.3 and

h1 = θ1
(
∂+

x u + b1 − w1
)
− θ2∂

+
x (v11 − d11)− θ2∂

+
y (v3 − d3) ,

h2 = θ1
(
∂+

y u + b2 − w2
)
− θ2∂

+
y (v22 − d22)− θ2∂

+
x (v3 − d3) .

By applying the discrete Fourier transform to both sides of (2.63) and (2.64), we have
the following system of linear equations a11 a12

a21 a22

 F(p1i,j)
F(p2i,j)

 =
 F(h1i,j)
F(h2i,j)

 ,
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where the coefficients are

a11 = θ1 − θ2

(
2 cos 2πs

N
− 2

)
− θ2

2

(
2 cos 2πr

M
− 2

)
a12 = −θ2

2

(
−1 + cos 2πr

M
+
√
−1 sin 2πr

M

)(
1− cos 2πs

N
+
√
−1 sin 2πs

N

)
a21 = −θ2

2

(
−1 + cos 2πs

N
+
√
−1 sin 2πs

N

)(
1− cos 2πr

M
+
√
−1 sin 2πr

M

)
a22 = θ1 −

θ2

2

(
2 cos 2πs

N
− 2

)
− θ2

(
2 cos 2πr

M
− 2

)
.

Each component of the coefficient matrix
 a11 a12

a21 a22

 is a M ×N sized matrix, and the

determinant of the coefficient matrix is

D =
(

θ1 − 2θ2

(
cos 2πs

N
+ cos 2πr

M
− 2

))(
θ1 − θ2

(
cos 2πs

N
+ cos 2πr

M
− 2

))
,

which is always positive for all discrete frequencies if (θ1, θ2) > 0. After the systems of
linear equations are solved for each frequency r and s over the discrete frequency domain,
we use the discrete inverse Fourier transform to obtain the analytical forms of p1 and p2

p1i,j = ℜ
(
F−1

(
a22F (h1i,j)− a12F (h2i,j)

D

))
, (2.65)

p2i,j = ℜ
(
F−1

(
a11F (h2i,j)− a21F (h1i,j)

D

))
. (2.66)

Fixing the variables (u, p, v; b, d) for the 2D vector w, we have

α
w

|w|
+ θ1 (w −∇u + p− b) = 0,

which can be solved by the following discrete 2D analytical generalised soft thresholding
equation with convention that 0/0 = 0

wi,j = max
(∣∣∣∇ui,j − pi,j + bi,j

∣∣∣− α

θ1
, 0
) ∇ui,j − pi,j + bi,j∣∣∣∇ui,j − pi,j + bi,j

∣∣∣ . (2.67)

After w is solved, the Euler-Lagrange equations with respect to v is given as

β
v

|v|
+ θ2 (v − ε (p)− d) = 0,
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whose solution is following 4D analytical generalised soft thresholding equation with the
convention that 0/0 = 0

vi,j = max
(∣∣∣ε (pi,j

)
+ di,j

∣∣∣− β

θ2
, 0
)

ε
(
pi,j

)
+ di,j∣∣∣ε (pi,j

)
+ di,j

∣∣∣ . (2.68)

Finally, the overall Algorithm 2.4.6 is presented as

Algorithm 2.4.6: Split Bregman algorithm for TGV model (2.8)
01: function TGVDenoising(f)
02: Initialisation: Set (p, w, v; b, d) = 0, (α, β, θ1, θ2) > 0
03: repeat
04: Compute u according to (2.62)
05: Compute p according to (2.65) and (2.66)
06: Compute w according to (2.67)
07: Compute v according to (2.68)
08: Update Bregman iterative parameter b← b +∇u−p−w
09: Update Bregman iterative parameter d← d + ε (p)− v
10: until some stopping criterion is satisfied
11: return u
12: end function

2.4.7 Split Bregman for absolute curvature (AC)

In order to solve the AC model (2.10), we first consider the following splitting

E(u) = 1
2

∫
Ω

(u− f)2dx + α
∫

Ω
|q| dx. (2.69)

s.t. q = div (n) , p = ∇u, n = p/|p|

We note that constraint n = p/|p| is equivalent to the following two constraints according
to the well-known H..older inequality

|n| ≤ 1, |p| = n · p. (2.70)

A new auxiliary vector m is then introduced to replace variable n in (2.70), which can
be deemed as a relaxation of n and FFT can be thus applied. After that, we have the
following five constraints

q = div (n) , p = ∇u, |m| ≤ 1, |p| = m · p, m = n. (2.71)
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For |m| ≤ 1 in image domain, we have Ω, |p| ≥ m · p. By introducing the auxiliary
variables and penalty parameters, the split Bregman method can be employed to transform
(2.69) with the constraints in (2.71) into the following constrained energy functional

E (u, q, p, n, m; b1, b2, b3, b4) = 1
2

∫
Ω

(u− f)2 + α
∫

Ω
|q|

+
∫

Ω
(θ1 + b1)(|p| − p ·m) + θ2

2

∫
Ω
|p−∇u− b2|2

+ θ3

2

∫
Ω

(q − div(n)− b3)2 + θ4

2

∫
Ω
|n−m− b4|2

, (2.72)

s.t. |m| ≤ 1.

Note that for the constraint |p| = m · p, we use the augmented Lagrangian method with
L1-norm for the penalisation in the functional (2.72) as it is true that |p| −m · p > 0
when |m| ≤ 1. The meaning of the primal and dual variables in (2.72) is listed as in the
following:
• u ∈ RM×N denotes the denoised image we need to find;
• q ∈ RM×N is a scalar valued function related to the divergence of vector function n;
• p = (p1 p2) ∈ (RM×N)2 is a vector valued function related to the gradient of the
function u;
• n = (n1 n2) ∈ (RM×N)2 is a vector valued function related to the unit vectors of the
level curves of u;
• m = (m1 m2) ∈ (RM×N)2 is a vector valued function used to relax n and thus FFT
can be used;
• b1 denotes a scalar Lagrangian multiplier for the constraint |p| = m · p;
• b2 = (b21 b22) ∈ (RM×N)2 denotes a vector Bregman iterative parameter for the
constraint p = ∇u;
• b3 denotes a scalar Bregman iterative parameter for the constraint q = div(n);
• b4 = (b41 b42) ∈ (RM×N)2 denotes a vector Bregman iterative parameter for the
constraint m = n.

Using the alternating optimisation technique and first fixing (q, p, n, m; b1, b2, b3, b4),
we obtain the Euler-Lagrange equations with respect to u as follows

u− θ2div (∇u) = f − θ2div (p− b2) . (2.73)
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The solution of this second order linear PDE is given as

ui,j = ℜ
(
F−1

(
F (Gi,j)

ξ1

))
, (2.74)

where G is the right-hand side of (2.73) and ξ1 is defined as (2.53).
(u, p, n, m; b1, b2, b3, b4) are fixed next, and we obtain the following equation

α
q

|q|
+ θ3 (q − div (n)− b3) = 0.

Its solution reads as

qi,j = max
(∣∣∣div(n)i,j + b3i,j

∣∣∣− α

θ3
, 0
)

sign (div(ni,j) + b3i,j) . (2.75)

Fixing (u, q, n, m; b1, b2, b3, b4), we obtain the Euler-Lagrange equations with respect
to p

(θ1 + b1)
p

|p|
+ θ2 (p−∇u− b2)− (θ1 + b1)m = 0,

which can be solved by the analytical soft thresholding equation as

pi,j = max
(
|Si,j| −

(θ1 + b1i,j)
θ2

, 0
)

Si,j

|Si,j|
, (2.76)

where Si,j = ∇ui,j + b2i,j + (θ1+b1i,j)mi,j

θ2
. If |Si,j| is 0, we have 0 · (0/0) = 0.

Fixing (u, q, p, m; b1, b2, b3, b4), the following two Euler-Lagrange equationss for the
vector variable n = (n1 n2) are derived, respectively

(
θ4 − θ3∂

+
x ∂−

x

)
n1 − θ3∂

+
x ∂−

y n2 = h1i,j, (2.77)

(
θ4 − θ3∂

+
y ∂−

y

)
n2 − θ3∂

+
y ∂−

x n1 = h2i,j, (2.78)

where
h1 = θ4 (m1 + b41)− θ3∂

+
x (q − b3) ,

h2 = θ4 (m2 + b42)− θ3∂
+
y (q − b3) .

By applying the discrete Fourier transform to both sides of (2.77) and (2.78), we have
the following linear system a11 a12

a21 a22

 F(n1i,j)
F(n2i,j)

 =
 F(h1i,j)
F(h2i,j)

 ,
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where the coefficients are

a11 = θ4 − 2θ3

(
cos 2πs

N
− 1

)
a12 = −θ3

(
1− cos 2πr

M
+
√
−1 sin 2πr

M

)(
−1 + cos 2πs

N
+
√
−1 sin 2πs

N

)
a21 = −θ3

(
1− cos 2πs

N
+
√
−1 sin 2πs

N

)(
−1 + cos 2πr

M
+
√
−1 sin 2πr

M

)
a22 = θ4 − 2θ3

(
cos 2πr

M
− 1

)
.

The coefficient matrix
 a11 a12

a21 a22

 is a M×N numbers of 2×2 system, whose determinant

is
D = θ2

4 − 2θ3θ4

(
cos 2πs

N
+ cos 2πr

M
− 2

)
which is always positive for all discrete frequencies if (θ3, θ4) > 0. After the systems of
linear equations are solved for each frequency r and s over the discrete frequency domain,
we use the discrete inverse Fourier transform to obtain the analytical forms of n1 and n2

n1i,j = ℜ
(
F−1

(
a22F (h1i,j)− a12F (h2i,j)

D

))
, (2.79)

n2i,j = ℜ
(
F−1

(
a11F (h2i,j)− a21F (h1i,j)

D

))
. (2.80)

Fixing (u, q, p, n; b1, b2, b3, b4), m can be derived from the following closed-form

m̃i,j =
(θ1 + b1) pi,j

θ4
+ ni,j − b4i,j.

In order to satisfy the constraint |m| ≤ 1, the following projection formulation is then
imposed on m̃i,j

mi,j = m̃i,j

max(|m̃i,j| , 1) . (2.81)

Finally, we update the auxiliary variables (b1, b2, b3, b4), which are listed from the
step 09 to 12 in Algorithm 2.4.7. The split Bregman algorithm for the AC denoising
problem (2.10) is as follows
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Algorithm 2.4.7: Split Bregman algorithm for AC model (2.10)
01: function ACDenoising(f)
02: Initialisation: Set (q, p, n, m; b1, b2, b3, b4) = 0, (α, θ1, θ2, θ3, θ4) > 0
03: repeat
04: Compute u according to (2.74)
05: Compute q according to (2.75)
06: Compute p according to (2.76)
07: Compute n according to (2.79) and (2.80)
08: Compute m according to (2.81)
09: Update Lagrangian multiplier b1 ← b1 + θ1(|p| −m · p)
10: Update Bregman iterative parameter b2 ← b2 +∇u− p
11: Update Bregman iterative parameter b3 ← b3 + div(n)− q
12: Update Bregman iterative parameter b4 ← b4 + m− n
13: until some stopping criterion is satisfied
14: return u
15: end function

2.5 Numerical experiments

In this section, the performance of different image denoising models is compared quan-
titatively and qualitatively. The models and their energy functionals are summarised
in Table 2.1 for easy comparison. The metrics used for quantitative comparison are
peak signal-to-noise ratio (PSNR), signal-to-noise ratio (SNR), root mean square error
(RMSE), and structure similarity index map (SSIM). Experiments are performed using
Matlab 2014b on Windows 7 with Intel Xeon CPU E51620 at 3.7GHz and 32GB memory.

Table 2.1: Models for comparison
No. Model Energy functional
1 TV E (u) = 1

2
∫

Ω (u− f)2 + α
∫

Ω |∇u|
2 AL E (u) = 1

2
∫

Ω (u− f)2 + α
∫

Ω |∆u|
3 BH E (u) = 1

2
∫

Ω (u− f)2 + α
∫

Ω
∣∣∇2u

∣∣
4 TVL E(u) = 1

2
∫

Ω (u− f)2 + α
∫

Ω |∇u|+ β
∫

Ω |∆u|
5 TVBH E(u) = 1

2
∫

Ω (u− f)2 + α
∫

Ω |∇u|+ β
∫

Ω
∣∣∇2u

∣∣
6 TGV E (u, p) = 1

2
∫

Ω (u− f)2 + α
∫

Ω |∇u− p|+ β
∫

Ω |ε (p)|
7 AC E (u) = 1

2
∫

Ω (u− f)2 + α
∫

Ω |div( ∇u
|∇u| )|

2.5.1 Comparison of edge and contrast preserving ability

In Figure 2.4, we test the edge preservation ability of different models on a piecewise
constant image (a) through visual inspection. From (b) to (h), it is clear that the TV
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and AC models perfectly maintain the edges of the strips. TGV also shows very good
edge preservation result. However, it results in additional lines on the denoised stripes
because it approximates the image with the piecewise affine function. (c) illustrates that
directly applying the BH regulariser blurs the edges of objects, whilst (b) shows that the
AL model using the Laplace regulariser is the worst approach for edge preservation. By
incorporating the TV regulariser to the BH and AL models, TVL and TVBH improve
the denoised quality, as shown in (e) and (f). However, the image boundaries have been
slightly smeared by these two models.

(a) Noisy image (b) TV (c) AL (d) BH

(e) TVL (f) TVBH (g) TGV (h) AC

Figure 2.4: Comparison of edge preserving ability. The methods in Table 2.1 are
performed on the noisy image (a) and their corresponding denoised results are shown in
(b)-(h), respectively.

In Figure 2.5, we present the associated residual images f − u for all the models
compared, where f is the input noisy data, as shown in Figure 2.4 (a), and u denotes
each corresponding denoised image, as shown in Figure 2.4 (b) to (h). As can be seen
from Figure 2.5, the residual (h) from the AC model contains almost all noise, whilst
the rest of residual images contain more or less structural information of the noisy data.
This indicates some contrast information has been lost in Figure 2.4 (b) to (g). The AC
model is the best in terms of image contrast preservation.

In Figure 2.6, we show the middle slices of the denoised images in Figure 2.4. It can
be seen from (h) that there is almost no difference between the denoised slice curve (red)
and the noise free slice curve (blue). This demonstrates the capability of the AC model
for image contrast and edge preservation. Due to the contrast loss, the red curve in (b)
obtained by the TV model sightly deviates from the blue one in the vertical direction.
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As compared to the TV and AC models, the rest of denoising models impose too much
smoothness on their curves, leading to less pleasant fitting results.

(a) Original noise (b) TV (c) AL (d) BH

(e) TVL (f) TVBH (g) TGV (h) AC

Figure 2.5: Residual images of the denoised examples in Figure 2.4

(a) Noisy slice (b) TV (c) AL (d) BH

(e) TVL (f) TVBH (g) TGV (h) AC

Figure 2.6: Plotting the middle slices of the denoised images in Figure 2.4. The blue
curve is the ground truth.

2.5.2 Comparison of smoothness preserving ability

We now test the smoothness preservation ability of different models on a piecewise smooth
image. In order to do this, the clean image Figure 2.2 (a) is corrupted with the Gaussian
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noise of 0.005 variance, and the corrupted image is shown in Figure 2.7 (a). The noise is
produced with MATLAB’s built-in function imnoise.

(a) Noisy image (b) TV (c) AL (d) BH

(e) TVL (f) TVBH (g) TGV (h) AC

Figure 2.7: Performance comparison of different methods on the noisy image (a).

(a) Noisy slice (b) TV (c) AL (d) BH

(e) TVL (f) TVBH (g) TGV (h) AC

Figure 2.8: Plotting the middle slices of the denoised images in Figure 2.7. Blue curve is
the ground truth.

In Figure 2.7, the denoised results from (a) obtained by different methods are shown.
As evident, the TV model leads to the staircase effect, which is confirmed in (b) where
jagged appearance is seen. In addition, the cleaned results, as shown in (e) and (f),
illustrate that the hybridised higher order models involving the TV regulariser also have
such artefact. Further, the AC model is unable to remove the side effect entirely, as
observed in (h). Although the AL and BH models appear to eliminate the unfavourable
artefact, their denoised results are not very visually satisfactory. For the AL model, there
exists some undesirable spikes at the image boundaries, whilst the BH model slightly
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blurs the object edges. The visual effect in (g) shows that TGV completely gets rid of
the artefact and meanwhile preserves the shape edges in the image. The values of PSNR,
SNR, SSIM and RMSE shown in Table 2.2 quantitatively validate that TGV is the best
for denoising the piecewise smooth image.

Table 2.2: Comparison of PSNR, SNR, RMSE and SSIM using different methods on the
noisy image Figure 2.7 (a).

Figure 2.7: noise variance 0.005.
PSNR SNR RMSE SSIM

Noisy image 23.6978 19.1788 7.9693 0.3278
TV 32.6621 26.1032 3.6633 0.9015
AL 27.8122 23.2933 3.9571 0.8812
BH 30.0447 25.5257 3.7131 0.8985

TVL 30.6670 26.1480 3.4764 0.9049
TVBH 32.3548 27.8358 3.2725 0.9118
TGV 34.4020 29.8830 3.2120 0.9243
AC 34.2254 29.7064 3.2412 0.9039

In Figure 2.8, we plot the middle slices of the examples in Figure 2.7. Note that the
results are overlapped with the ground truth curve, shown in blue. From the figure, one
can see that the AL, BH and TGV models lead to smoother curve fitting results than
the TV, TVL, TVBH and AC models. Among all the methods compared, TGV gives
the best fitting result.

(a) Noisy image (b) TV (c) AL (d) BH

(e) TVL (f) TVBH (g) TGV (h) AC

Figure 2.9: Comparison of different methods on a real noisy image (a) (size 480× 320).
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2.5.3 Test on a real image

In this experiment, a real image is used to further evaluate different models. In order
to make the denoising evaluation more objective and convincing, the clean image is
corrupted by additive Gaussian noise with zero-mean and different variance. Six variance
values from 0.005 to 0.03 at 0.005 intervals are used.

Table 2.3: Comparison of PSNR, SNR, RMSE and SSIM using different methods for
different noise variance.

PSNR test SNR test
Noise variance 0.005 0.01 0.015 0.02 0.025 0.03 0.005 0.01 0.015 0.02 0.025 0.03
Noisy image 23.1360 20.2415 18.5938 17.4469 16.5558 15.8704 16.4828 13.5883 11.9405 10.7936 9.9026 9.2171

TV 27.5911 26.7111 24.8781 24.5730 24.4611 24.3582 20.1908 19.2579 18.0248 17.8397 17.7578 17.5949
AL 26.8441 24.5273 23.4462 23.2245 23.1309 22.8787 20.1908 17.8740 16.7929 16.5712 16.4776 16.2254
BH 27.1086 25.5418 23.8114 23.6834 23.5913 23.4151 20.4554 18.8885 17.1582 17.0302 16.9380 16.7619

TVL 27.6490 26.8506 25.3305 25.1088 24.6049 24.3680 20.7958 19.8373 18.6773 18.4555 17.9517 17.7147
TVBH 28.8336 27.8218 25.9831 25.6466 25.0526 24.5616 22.1803 20.1685 19.3298 18.8680 18.3994 17.8083
TGV 28.8697 28.4359 27.5416 27.0896 26.7111 26.5212 22.2064 20.8092 20.1619 19.9746 19.4216 19.0020
AC 28.8479 28.0366 26.6016 25.9456 25.6491 24.9981 22.1824 20.1791 19.4009 18.9976 18.6411 18.0981

RMSE test SSIM test
Noise variance 0.005 0.01 0.015 0.02 0.025 0.03 0.005 0.01 0.015 0.02 0.025 0.03
Noisy image 8.4469 9.2784 9.6300 9.8620 10.0313 10.1224 0.4166 0.3138 0.2617 0.2296 0.2067 0.1890

TV 5.1521 5.5854 5.9036 5.9226 5.9854 6.0803 0.8210 0.7901 0.7611 0.7416 0.7303 0.7259
AL 5.4106 5.7604 5.9893 6.0573 6.0969 6.1873 0.7962 0.7415 0.7059 0.6964 0.6896 0.6795
BH 5.2352 5.7011 5.9699 5.9932 6.0424 6.1005 0.8155 0.7739 0.7327 0.7179 0.7130 0.7055

TVL 5.0821 5.5556 5.8444 5.9194 5.9214 6.0699 0.8259 0.7926 0.7674 0.7551 0.7386 0.7302
TVBH 5.0036 5.4678 5.7115 5.8550 5.8968 6.0401 0.8412 0.8008 0.7781 0.7581 0.7469 0.7323
TGV 4.9287 5.3898 5.5003 5.6452 5.7459 6.0159 0.8487 0.8109 0.7952 0.7794 0.7717 0.7600
AC 4.9403 5.4081 5.5569 5.7095 5.8216 6.0299 0.8420 0.8015 0.7806 0.7601 0.7503 0.7465

Table 2.4: Comparison of time per iteration, total CPU time and total iterations of
different models for 6 noise levels.

Noise variance TV AL BH TVL TVBH TGV AC

0.005
Time per iteration (s) 0.0471 0.0390 0.0551 0.0581 0.0741 0.1003 0.1278
Total CPU time (s) 2.6864 3.6391 3.4713 5.1863 3.6246 13.5646 7.6698

Total iterations 62 100 63 96 57 147 70

0.01
Time per iteration (s) 0.0463 0.0340 0.0628 0.0515 0.0747 0.0956 0.1070
Total CPU time (s) 2.7551 4.8098 3.4373 4.8496 3.9162 20.2070 22.8778

Total iterations 61 121 57 90 61 218 215

0.015
Time per iteration (s) 0.0457 0.0386 0.0499 0.0566 0.0735 0.1034 0.1175
Total CPU time (s) 2.6152 5.5070 2.8969 4.7385 4.3204 18.7648 12.6513

Total iterations 61 156 55 91 67 204 117

0.02
Time per iteration (s) 0.0447 0.0368 0.0536 0.0576 0.0734 0.1113 0.1241
Total CPU time (s) 2.9139 6.4935 3.4635 4.5916 5.6789 19.5086 8.3592

Total iterations 62 177 65 87 86 212 77

0.025
Time per iteration (s) 0.0463 0.0379 0.0528 0.0577 0.0760 0.1083 0.1303
Total CPU time (s) 2.5942 7.3905 3.4833 4.8650 5.5162 30.8093 14.2515

Total iterations 60 203 69 90 83 335 130

0.03
Time per iteration (s) 0.0456 0.0368 0.0520 0.0552 0.0793 0.1102 0.1205
Total CPU time (s) 2.6202 6.6830 3.9454 4.9202 5.9294 24.2398 10.4639

Total iterations 62 185 74 91 92 262 96

In Figure 2.9, we show the denoising results of the noisy image (a) which contains
the Gaussian noise with 0.015 variance. For each denoised image, the corresponding
close-up region is displayed on the bottom right corner for detailed comparison. The
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visual inspection illustrates that the TV, TVL, TVBH and AC models yield the staircase
effect, whilst the AL and BH models smear the image edges. Again, TGV achieves a
more pleasant result, entirely eliminating the artefact while nicely preserving the sharp
boundaries. Hence, TGV used as a penalty functional prefers images which appear more
natural and leads to a more faithful denoising for real images.
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Figure 2.10: Plots of quantitative evaluation matrices for different methods on real data
with different noise variance. (a) PSNR index; (b) SNR index; (c) RMSE index; (d)
SSIM index.

In Table 2.3, the performance metrics are shown to quantitatively compare different
methods for 6 noise levels. In Figure 2.10 we plot the values of PSNR, SNR, RMSE
and SSIM against increasing levels of noise. From these, we can rank the models for
denoising a real image in decreasing order as TGV>AC>TVBH>TVL>TV>BH>AL.

Table 2.4 demonstrates the computational efficiency of the different models. We set
stopping criteria for all as |Ek −Ek−1|/Ek ≤ ϵ, where E is the value of energy functional
of each model, k is the current iteration and ϵ is a small tolerance used to stop the
iteration. ϵ = 10−5 in all cases. Statistical analysis of Table 2.4 is shown as boxplots in
Figure 2.11, where each box represents variations of the denoising results of a model for
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6 noise levels. It is clear that TGV is the slowest, TV is the fastest, and AL, TGV and
AC are less efficient than BH, TVL and TVBH.

Figure 2.11: Boxplots of the experimental data in Table 2.4. (a) Boxplot of time per
iteration for 6 noise levels; (b) Boxplot of total CPU time for 6 noise levels; (c) Boxplot
of total iterations for 6 noise levels.

Table 2.5: Computational speed comparison over different methods with a fixed time
budget, i.e., T = 1s, 2s, 3s, 4s, 5s, 10s. In each time budget, the maximum iteration
number (mean±standard deviation in 5 runs) of different methods is recorded.

Method Iter. # (1s) Iter. # (2s) Iter. # (3s) Iter. # (4s) Iter. # (5s) Iter. # (10s)
TV 39.40 ± 2.2 83.40 ± 6.3 128.6 ± 4.0 170.2 ± 9.7 214.8 ± 18.6 444.2 ± 12.1
AL 58.80 ± 3.9 103.4 ± 6.2 165.8 ± 4.4 214.8 ± 8.6 272.2 ± 14.2 531.0 ± 20.7
BH 35.00 ± 1.6 69.20 ± 2.5 107.2 ± 1.9 142.0 ± 2.5 181.8 ± 2.90 348.4 ± 22.6

TVL 15.00 ± 0.7 29.80 ± 1.3 46.00 ± 2.5 58.80 ± 1.3 165.0 ± 4.20 325.2 ± 14.0
TVBH 25.60 ± 1.1 51.40 ± 0.5 76.80 ± 1.3 101.4 ± 4.9 127.8 ± 2.80 156.2 ± 3.40
TGV 9.600 ± 0.5 19.20 ± 0.4 27.60 ± 2.1 37.80 ± 0.8 47.20 ± 0.80 94.00 ± 3.40
AC 8.800 ± 1.1 20.00 ± 0.7 29.20 ± 1.3 39.40 ± 1.5 49.80 ± 1.90 97.80 ± 2.30

In this experiment, we further compare the speed of different methods with a fixed
time budget. In Table 2.5 and its corresponding plot (Figure 2.12 left), we show how
many iterations each algorithm can reach within time T = 1s, 2s, 3s, 4s, 5s, 10s. It is
obvious that the split Bregman algorithm for the TV and TL models runs the most
iterations, whilst the split Bregman for the TGV and AC models are the two slowest
methods among all compared. In addition, the hybridised models (i.e. TVL and TVBH)
are less efficient than their counterparts (i.e. AL and BH). The computational speed

Table 2.6: Comparison of root mean square error (RMSE) produced by different methods
in each time budget, i.e., T = 1s, 2s, 3s, 4s, 5s, 10s.

RMSE (1s) RMSE (2s) RMSE (3s) RMSE (4s) RMSE (5s) RMSE (10s)
TV 40.1639 40.1772 40.1784 40.1787 40.1786 40.1788
TL 40.3041 40.3277 40.3373 40.3427 40.3455 40.3490
BH 33.7715 33.7590 33.7592 33.7604 33.7611 33.7655

TVL 39.3741 39.4300 39.4381 39.4406 39.4433 39.4467
TVBH 14.2322 14.0752 13.7411 13.5165 13.4761 13.4410
TGV 13.1190 12.6023 12.5028 11.7634 11.7782 11.0737
TC 14.2470 12.9305 12.5531 12.4920 12.4850 12.4711
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comparison in this experiment shows a same consistency with that in Table 2.4 and
Figure 2.11

Lastly, in Table 2.6 and its corresponding plot (Figure 2.12 right), we compare the
root mean square error (RMSE) produced by each method in different time budgets,
i.e., T = 1s, 2s, 3s, 4s, 5s, 10s. As can be seen, as iteration proceeds their RMSEs
drops gradually. However, due to the fast FFT-based split Bregman implementation,
these models have achieved stable results after 1s. That is why the plots shown in
Figure 2.12 right have little changes at different time points. In addition, TVG has a
slower convergence rate as compared to other methods, as its RMSE is still decreasing.
Note that the quantitative numbers are acquired by testing different methods on the
noisy image Figure 2.9 (a) with 0.015 variance Gaussian noise
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Figure 2.12: Plots of the experimental data in Table 2.5 and 2.6. Left: maximum
iteration number (mean±standard deviation in 5 runs) versus different time budgets.
Right: RMSE versus different time budgets.

2.6 Summary

In this chapter, several first and second order variational models have been studied and
their application for image denoising has been demonstrated. Detailed descretisation
process based on the finite difference scheme is given, so is the numerical implementation
based on the FFT and split Bregman algorithm. We draw the following conclusions
about the advantages and disadvantages of these denoising models.

Among all the models compared, the first order TV and second order AC models are
the best at preserving edges of objects in the piecewise constant image. However, TV
causes image contrast loss while AC does not. TGV produces the best denoising results
for the piecewise smooth image, and is able to remove the staircase effect associated with
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the TV regulariser. However, TGV is the most computationally expensive approach. We
also notice that the higher order models that involve the TV regulariser (i.e. TVL and
TVBH) suffer from the staircase artefact, and applying directly the Laplace regulariser
(i.e. AL model) or bounded Hessian regulariser (i.e. BH model) cannot achieve desirable
denoising result. However, combining them with the TV regulariser (i.e. TVL and
TVBH) improves the quality of denoising results. Moreover, higher order models that
use the bounded Hessian regulariser (i.e. BH and TVBH) outperform their counterparts
that use the Laplace regulariser (i.e. AL and TVL) in terms of both denoising results
and computational efficiency.

With the knowledge of these models for image denoising, we can then use them
appropriately for the different image segmentation tasks in the following chapters.
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Chapter 3

Automated detection and
quantification of RBC and histology
images

In this chapter, we describe methods for segmenting red blood cell (RBC) images and
histology images of microglial cells for diagnosis of diseases, namely, malaria parasite
detection and microglia quantification, respectively.

3.1 Rapid malaria parasite detection and quantifica-
tion

Malaria, one of the most devastating infectious diseases in the world, is caused by
protozoan parasites of the genus Plasmodium. There are five major species of plasmodia
that infect humans, out of which Plasmodium falciparum causes the majority of morbidity
and mortality in Africa followed by less lethal Plasmodium vivax infections across South-
East Asia, altogether infecting 200 million people and resulting in over half a million
deaths every year [30]. Although drugs have been widely used to prevent and cure
parasite-related diseases, parasites have acquired resistance to most of drugs both in
Africa and South-East Asia, rendering them inefficient for future usage [73–75].

Early diagnosis and treatment are required to avoid anemia, organ failure [31] and
deaths [76]. The lack of reliable methods and tools for use in field settings impedes early
diagnosis in malaria endemic areas such as Africa. Traditional and widely practised
method for malaria diagnosis relies on observable clinical symptoms, which are results
of general host response to an infection. These methods demand expensive laboratory
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facilities and highly trained personnel to conduct complicated analytical procedures and
data analyses, which may not be feasible in malaria endemic countries.

The current gold standard for detecting malaria is microscopic examination of Giemsa-
stained thin and thick blood smears [77] both in the field as well as in laboratory. This
method allows detection of densely stained parasites against a background of lightly
stained red blood cells (RBCs) and widely accepted owing to cost effectiveness, simplicity
and rapidity. Though this method detects parasitemia levels of up to 1 infected cell
in 106 cells [78], the microscopic examination requiring traditional bulky microscope is
laborious and often fails when the parasitemia is low, a situation very common in the
case of Plasmodium vivax infections. In addition, logistic issues and challenges associated
with transporting the traditional bulky microscopes to remote and rural malaria endemic
regions [79] and fulfilling operational and maintenance requirements could be challenging.
On the other hand, manual counting from Giemsa-smears is known to vary depending on
the personnel engaged and quality of smears. It can misinterpret other microorganisms
(e.g., bacteria and fungi) as Plasmodium parasites and has difficulties identifying different
Plasmodium strains [80]. Previously, several laboratories explored image processing
based automated cell counting for parasitemia estimation, but most of them suffered
from high false positive values [81–83], inferior accuracy [84], inability to differentiate
parasitic stages [85] and the requirement of fluorescent dyes [86, 87].

To address these problems, our collaborators at the Singapore University Technology
and Design have developed a low-cost, portable image-based cytometer that allows to
image malaria parasite infected red blood cells (iRBCs). While in the University of
Nottingham, we have tailored an image analysis framework for quantifying and classifying
iRBCs imaged by the image-based cytometer. The proposed image analysis framework
detects parasitic infections at levels as low as 0.2% and reliably classifies all parasitic
life stages at different scales. We show the effectiveness of the proposed framework
by comparing our results with those obtained by manual counting as well as by the
commercial flow cytometer. In the following sections, we shall detail our image analysis
framework.

3.1.1 Image acquisition

Blood used to simulate malaria parasite infection was purchased from Interstate Blood
Bank. Before culturing malaria parasites, blood was transferred to EDTA Tubes
(VACUETTE EDTA Tubes, Greiner Bio−One), washed three times in RPMI 1640
(Sigma−Aldrich) by centrifuging at 600g for 10 minutes to remove the buffy coat. RBCs
were stored at 50% hematocrit in malaria culture medium (MCM), which is RPMI sup-
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plemented with bovine serum (Albumax II, Gibco−Singapore), 2.5 µg/mL gentamycin
and hypoxanthine. Standard laboratory strains of Plasmodium falciparum, 3D7, were
used in all experiments. Parasites were cultured in human O+ erythrocytes at 2.5%
haematocrit in MCM under standard conditions [88]. Parasites were synchronized by
magnetic selection at late stages (46−48h) with the help of a SuperMACS magnet (Mil-
tenyi Biotech, Bergisch Gladbach, Germany) and introduced into fresh RBCs, followed
by sorbitol synchronization three hours later to allow a tight window of invasion [89].

A low-cost, portable image-based cytometer was then built for image acquisition from
Giemsa-stained smears on the infected blood. As illustrated in Figure 3.1, it consists of
a fine-focus (Z axis) adjustment platform (Dino-Lite, Model RK-10 Rack, Singapore),
a 14 MP colour camera (ToupTek, P/N:TP114000A, Hangzhou, China), 20X objective
or 100X oil immersion objective, two-dimensional translation stage and a white light
source with tunable light intensity. Giemsa-stained smears were prepared carefully to
obtain uniform cell distribution and placed on the 3D-printed sample holder for imaging.
Images were captured with a commercial software (ToupTek, Hangzhou, China) by
manually translating the smear slide on the stage. Only fields containing obvious debris
were discarded. A 20X objective was used to capture large fields for imaging at high-
throughput. However, the use of 20X objective is not sufficient to identify ring stage.
In this case, a 100X oil immersion objective was utilized for ring forms imaging and
parasitemia analysis.

Figure 3.1: The image-based cytometer used to acquire RBC images. (A) Schematic
experimental setup of the cytometer. (B) Photograph of the image-based cytometer. (C)
An image of the blood smear taken by the cytometer, where the purple dots represent
the RBCs infected by malaria parasites.
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3.1.2 Image analysis framework

We used image processing and machine learning algorithms to analyse the smear images
captured by the image-based cytometer. The image analysis algorithm consists of three
key steps. First, a pre-processing total generalised variation (TGV) denoising method
was used to remove the unavoidable noise in the original images. Second, an efficient and
robust local adaptive thresholding approach was used to segment the smoothed image
with possible intensity inhomogeneity. Finally, a machine learning method was performed
to prevent false detections when the image does not contain any parasites. Details of
each step will be discussed in the following.

The denoising of the original image was implemented by the TGV method [53],
which is a powerful image pre-processing tool that has been extensively used in image
processing community [66, 90, 91]. The TGV regularisation is capable of representing
image characteristics up to an arbitrary order of differentiation (piecewise constant,
piecewise affine, piecewise quadratic etc.). As detailed in Chapter 2, among all the
compared methods TGV is the best higher order variational model for denoising a
piecewise smooth image. The TGV model is of the following form

E (u, p) = 1
2λ

∫
Ω

(u− f)2 +
∫

Ω
|∇u− p|+ α

∫
Ω
|ε (p)|, (3.1)

where E(u, p) means the energy functional with respect to two variables u and p, u is the
denoised/smoothed image, p = (p1 p2) is a symmetrised gradient vector which is closely
related to ∇u = (∂xu ∂yu), f is the input original image with intrinsic noise, and the
operator ϵ(p) is the symmetrised derivative which is defined as 0.5(∇p +∇pT ). The first
energy term on the right hand side of (3.1) is the data fidelity term which constrains
the smoothed image u to be similar to the original image f . The second term preserves
edges of objects in u and removes the noise from f in the meantime. The third term
imposes smoothness on u and also eliminates the staircase artefact produced by the
second term. The minimum of (3.1) is taken over all the symmetrised gradient of the
deformation field p = (p1 p2) on the image space Ω. The positive λ coefficients and α

in (3.1) balance the data fidelity term (the first energy term), the first order derivative
(the second energy term) and the second order derivative (the third energy term). The
value of α is normally set to 2 and this setting is suitable for most applications [91] and
does not need to be tuned. In our experiment, we therefore set α = 2 and only vary λ to
achieve different smoothness scales.

As TGV takes both first and second derivatives into consideration, it can highlight the
edges of objects and smooth image without creating additional artefacts. This property
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also enables TGV to overcome the problem of intensity inhomogeneity that has been
found to widely exist in our captured images. Moreover, since the TGV functional
(3.1) is convex, it guarantees a global optimal solution as well as allows the use of
powerful modern optimization techniques. Finally, TGV is translationally invariant and
rotationally invariant, meaning that the denoising results are not affected by the viewpoint
of the images taken from different angles. In spite of the outstanding performance of TGV
for image denoising, it is difficult to minimise such functional due to its nonlinear and
nonsmooth nature. In this chapter, we minimise TGV with a fast numerical algorithm
based on the split Bregman algorithm [21]. For a complete implementation on this
algorithm, please refer to Chapter 2.

The smoothed image can be then segmented via a simple local adaptive thresholding
approach, which is given as

p =
 0 ls (I, ws)− I > C

1 otherwise
, (3.2)

where p is the binary image, I = u in this case, and ls(I, ws) means that I is convolved
with a suitable operator, i.e. the mean or median filter. ws is the window size of the
filter and C is a user-defined threshold value. The adaptive thresholding produces binary
segmentation with fewer isolated points, giving a better result than a simple high-pass
threshold. It is worth mentioning that this approach can segment large sized images (e.g.
2000 × 2000 pixels) with real-time computational speed, making it an ideal segmentation
tool for the images used in the experiments. In addition, previous studies have shown
that it is robust against inhomogeneity in medical images and can also obtain higher
accuracy [92, 93].

To prevent false alarm for images that do not contain any parasites, we used machine-
learning algorithms to automatically classify the parasite and non-parasite images.
Specifically, 50 images were first selected manually as a training dataset, and divided into
two groups, one containing 25 parasite images and the other group with 25 non-parasite
images. Some of RBC images used for training purpose are shown in Figure 3.2 for
visualisation. These 50 representative images were then segmented separately. For each
RGB channel of the segmented image, the average intensity of all the pixels that fall
in the segmented cells was calculated, thus forming a three-dimensional feature that
can be effectively used for training a precise classification model. In this chapter, we
choose Support Vector Machine (SVM) classifier. For the kernel function used in SVM,
we tested the linear, quadratic and Gaussian radial basis kernel functions, as shown in
Figure 3.3. We found that they led to comparable classification results. The simpler
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linear kernel is finally used for SVM to train these extracted features. SVM classifies two
different datasets by finding an optimal hyperplane that has the largest margin distance
between them. It is more robust and accurate than other machine learning techniques.
We therefore use the trained model by SVM to automatically classify the rest of unseen
parasite and non-parasite images. The overall classification accuracy is around 95% on a
unseen dataset of 140 RBC images.

Figure 3.2: Selected RBC images. Row 1 and 2 show the RBC images without and with
parasites, respectively.

Figure 3.3: SVM classification. From left to right: classification results using SVM with
the linear, quadratic and Gaussian radial basis kernel functions, respectively. Red and
blue dots respectively represent the average RGB intensity of pixels in the parasite and
non-parasite cells. 3D Gray plans are the optimal hyperplane that divides the training
samples into two groups.

3.1.3 Quantifying iRBCs

After performing the proposed image analysis framework on the infected RBC images, we
are able to quantify and classify the final segmentation results. As shown in Figure 3.4,
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the flowchart of the quantification and classification is composed of three sections: 1)
to estimate the total number of all RBCs; 2) to estimate the number of iRBCs; and
3) to classify distinct developmental stages of the parasite. For images acquired under
objective 20X, we used the mean filter with the window size ws = 120 and set C = 0.03,
λ = 3 for the segmentation of all RBCs, which produces binary segmentation with
isolated RBCs and clustered RBCs. The number of RBCs in the clustered region was
estimated by dividing the whole clustered area by the average area of a single RBC. For
iRBCs segmentation, a high threshold value C = 0.2 was used with ws = 100, λ = 3.
Similarly, under 100X oil immersion objective, ws = 300, C = 0.01 and λ = 5 were
used for RBCs segmentation and ws = 300, C = 0.15 and λ = 10 were set for iRBCs
segmentation. It should be noted that the C value can be affected by the light intensity.
After standardisations, we kept a constant, optimum light intensity and fixed exposure
time of camera for our further assays. To address the possible risk of counting multiply
infected parasites in one single iRBC as multiple iRBCs, we performed the following
calculation: if the distance between two segmented parasites is less than 150 pixels, these
parasites will be considered as single iRBCs. It might still cause the false classification
when two overlapping iRBCs are observed, but this was an extremely rare case due to
the careful preparation of thin and uniform smear slides.

Figure 3.4: Flowchart of classification of parasites’ developmental stages. Image A was
taken by objective 20X and image B was taken by oil immersion objective 100X.

3.1.4 Classification of parasites’ developmental stages

After estimating the number of iRBCs, we performed the stage classification based
on the area occupied by individual parasites within an iRBC. Figure 3.4 depicts the
criteria of parasites’ stage classification under 20X and 100X magnifications. For 100X oil
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immersion objective, if the area occupied by the parasite is larger than 2830 pixels and
less than 4500 pixels, then it was identified as a ring-stage parasite. It was classified as
trophozoite stage when the area is greater than 4500 pixels and less than 16000 pixels. If
the parasite-occupied area is greater than 16000 pixels and less than 48000 pixels, it was
considered as a schizont. For 20X objective, the magnification was insufficient to image
the rings, thus we only identify the two late stages under this low magnification. All
these threshold pixel numbers for stage classification were verified independently based
on conventional cytological examination. The developed system was used to determine
parasitemia from seven independent samples. Each sample set included three smears
and a minimum number of 30 fields were captured continuously resulting in counting at
least 4000 RBCs for each smear. Imaging 30 fields for each smear took about 10 minutes,
meaning it took 20 seconds to image each field.

3.1.5 Results and discussion

Image analysis results under 20X objective. The 20X objective was used for high-
throughput imaging, and the analysis of images captured by the image-based cytometer
were performed automatically using our image analysis algorithm, as shown in Figure 3.5.
Table 3.1 shows the results from six randomly selected images from the same smear by
using the image analysis algorithm and manual counting. Errors of total RBCs, iRBCs
and parasitic classification were less than 5%. These negligible errors of total RBC
number were primarily in regions where RBCs were clustered, minimally compromising
the counting accuracy. Estimation of the number of iRBCs and life cycle stages were
mildly influenced by debris. Nevertheless, error values less than 5% showed the excellent
performance and reliability of the proposed image analysis framework compared to
manual counting.
Image analysis results under 100X objective. Since 20X objective is insufficient
to image the ring stages with high accuracy, a 100X oil immersion objective was used for
malaria parasite detection and classification. As illustrated in Figure 3.6, image-based
cytometer equipped with 100X allowed us to reliably classify all the three stages of
parasites. Table 3.2 shows the inspection results of RBCs, iRBCs segmentation and
stage-specific classification. The ability of our proposed image analysis framework to
classify and identify different developmental stages may lead to potential pharmacolog-
ical applications in identifying the potential blockers of egress, invasion and parasitic
development inhibitory molecules [86]. In a single image, errors of a specific parasite
stage may be large (due to limited number of parasites in the field), but the total error of
randomly selected 6 images was well below 5%, which shows the robustness of our system.
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Giemsa-stained images taken at 20X and 100X objective lens for the aforementioned
experiments are respectively shown in S1 and S2 figures in the supplementary of [94].

Figure 3.5: Images captured by the cytometer in Figure 3.1 are automatically analysed
by the developed image analysis framework. (A) Original image taken by objective 20X.
(B) Representation of all the extracted RBCs. (C) Extracted schizont stage iRBCs. (D)
Extracted trophozoite stage iRBCs.

Table 3.1: Comparison of cell counting and developmental stage classification (Objective
20X). MC represents the average value of two manual counting performed in the same
image which was analysed by the image-based cytometer. iRBCs - infected Red Blood
Cells. IBC indicates the result analysed using the proposed image analysis framework
within the image-based cytometer.

Image No. 1 2 3 4 5 6 Total
MC (RBCs) 1933 2381 2788 2870 2821 1942 14735
IBC (RBCs) 2000 2340 2810 2753 2801 1972 14676
Error (RBCs) 3.35% 1.72% 0.79% 4.10% 0.71% 1.55% 4.00%
MC (iRBCs) 103 90 127 131 134 78 663
IBC (iRBCs) 106 94 126 131 137 78 672
Error (iRBCs) 2.91% 4.44% 0.78% 0% 2.24% 0% 1.36%
MC (Schizont) 50 36 70 63 71 25 315
IBC (Schizont) 51 35 72 64 72 25 319
Error (Schizont) 2.00% 2.78% 2.86% 1.59% 1.40% 0% 1.27%

MC (Trophozoite) 53 54 57 68 63 53 348
IBC (Trophozoite) 55 59 54 67 65 53 353
Error (Trophozoite) 3.77% 9.26% 5.26% 1.47% 3.17% 0% 1.44%
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Figure 3.6: Images captured by the cytometer in Figure 3.1 are automatically analysed
by the developed image analysis framework. (A) Original image taken by immersion
objective 100X. (B) All the extracted RBCs. (C) All the extracted iRBCs. (D) Extracted
ring stage. (E) Extracted trophozoite stage. (F) Extracted schizont stage.

Table 3.2: Comparison of cell counting and developmental stage classification (Immersion
objective 100X). MC represents the average value of two manual counting performed
in the same image which was analysed by image-based cytometer. iRBCs - infected
Red Blood Cells. IBC indicates the result analysed using the proposed image analysis
framework within the image-based cytometer. The error rate is not computed if the
number of iRBCs is below 20.

Image No. 1 2 3 4 5 6 Total
MC (RBCs) 189 132 170 182 122 160 955
IBC (RBCs) 183 133 162 184 123 165 950
Error (RBCs) 3.17% 0.76% 4.71% 1.10% 0.82% 3.13% 0.52%
MC (iRBCs) 10 13 9 8 9 7 56
IBC (iRBCs) 10 13 8 8 9 7 55
Error (iRBCs) − − − − − − 1.79%
MC (Schizont) 6 5 5 4 5 4 29
IBC (Schizont) 6 5 4 4 6 4 29
Error (Schizont) − − − − − − 0%

MC (Trophozoite) 4 7 4 4 3 1 23
IBC (Trophozoite) 4 7 4 3 2 2 22
Error (Trophozoite) − − − − − − 4.35%

MC (Ring) 0 1 0 0 1 2 4
IBC (Ring) 0 1 0 1 1 1 4
Error (Ring) − − − − − − −

We evaluated the capability of our image analysis framework over a range of parasites
and the results were compared against those obtained by the commercial flow cytometry.
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Mixed stage parasites were diluted to obtain parasitemia (the demonstrable presence of
parasites in the blood) ranging between 0.2% and 9%. Giemsa-stained smears were taken
for assessing the parasitemia (in a blind manner to not reveal sample identity) using
image-based cytometer and flow cytometry-based. As shown in Figure 3.7, parasitemia
obtained using the image-based cytometer with our image analysis framework is totally
comparable to those obtained from the flow cytometric experiments as confirmed through
two-tailed paired T test.

Figure 3.7: Comparison of parasitemia values using image-based cytometer (with the
proposed image analysis framework) and flow cytometer. The results were comparable
with flow cytometer values with no significant difference. Each sample has 20+ RBC
images.

In summary, we have proposed a novel image analysis framework for scoring and
staging malaria parasites for an image-based cytometer. By comparing the results
obtained by our image analysis framework to those of manual counting and flow cytometry,
we have validated its robustness and accuracy for scoring and staging malaria parasites.
The image analysis framework enpowers the cytometer, making it a fast, reliable and
affordable tool for detecting and screening malaria, providing comparable results to
commercialised flow cytometry.
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3.2 Microglia segmentation and quantification

Microglia are immune cells exclusive to the central nervous system (CNS) and about 1.5
trillion of them reside in the brain and spinal cord [32, 95]. In response to a variety of
signals, microglia show a range of phenotypes, from protective to detrimental associated
with motility and morphological changes [96]. In the healthy brain, microglia constantly
survey the surrounding tissue with extended processes, clear debris from dead cells, and
prune and maintain brain synapses. They are also essential to learning and memory
[97, 98], protect neurons from damage, and mediate pain [99, 100]. In response to an
injury or infection, microglia initiate an early, protective response by moving towards
the site of injury, where they release a cascade of chemicals leading to repair of the
damaged area. Microglial activation is a hallmark of chronic neuroinflammation, which
is believed to play an important role in a range of brain disorders, which has yet to
be fully understood, including stroke, multiple sclerosis, Parkinson’s, Huntington’s and
Alzheimer’s disease [34–36], and can also reflect a neuroprotective behaviour in these
chronic conditions [96].

The heterogeneity of microglial functions is in part linked to their shape and activation
state, and much information can be obtained from their morphological characteristics
[101]. Microglial cell shape evolves from a resting fully ramified shape with extending
processes and smaller soma, to the fully activated amoeboid shape with a larger soma
and shorter processes [102, 103]. To date, microglia activation has been linked to three
distinct functions: a classical pro-inflammatory activation state, an alternative activated
anti-inflammatory state and a complementary deactivation state associated with an
anti-inflammatory and functional repair phenotype [96]. Classifying microglia activation
states in histological images can help pathologists with disease diagnosis [104], provides
key information for understanding diseases of the central nervous system [105] and
is essential for the validation of in vivo biomarkers that allow the stratification and
monitoring of patients and populations at risk [1], [106].

In order to study microglia quantitatively and classify microglia activation states
in a histology image, the first step is normally to extract these microglia such that the
number, size and shape of microglia can be analysed subsequently within regions of
interest. Manual or semi-automated segmentation methods are time-consuming and
require user intervention [37, 38] with an element of subjectivity and inter-observer
variability. Developing an automated microglial segmentation method is thus curial for
such an analysis task. Image analysis approaches commonly used for quantifying histology
images that rely on thresholding struggle with intensity inhomogeneity within the images.
In this chapter, new methods are developed for quantitative analysis of microglial images.
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3.2 Microglia segmentation and quantification

Microglia are segmented using the Mumford-Shah total variation [107, 15, 108, 68, 109]
and the fast split Bregman [21, 25, 24, 66] methods. We also show that this framework
offers advantages over manual analysis of histology data of wild type mice and transgenic
mouse models of Alzheimer’s disease. The proposed segmentation method is fast, robust
and accurate and is scalable to large datasets, allowing the quantitative analysis of
microglia in regions of interest as well as across the whole brain.

3.2.1 Development of segmentation method

One of the major tasks of microglia analysis is to calculate the sizes of microglial bodies
and processes. As such a weak smoothing (α=10) and a strong smoothing (α=300) are
applied to the grayscale image for segmenting microglia process and soma respectively.

(a) (b) (c)

(d) (e) (f)

Figure 3.8: Workflow of the proposed segmentation for a sample image. (a) Original
histology image. (b) Smoothed image (α=10). (c) Smoothed image (α=300). (d) Soma
segmentation. (e) Soma and processes segmentation. (f) Automatically labelled microglia
overlaid onto the histology image. Inclusion criteria: soma size larger than 16.7µm.

Noise is inherent in histology images. Research for quantitative analysis of microglial
often relies on thresholding (manual or automatically) [110–112]. These methods are
not suitable for dealing with noisy and inhomogeneous histological images of microglia.
A preprocessing step is therefore needed to remove noise/outlines whilst preserving
the details of microglia in the image. An adaptive thresholding algorithm (3.2), which
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automatically determines threshold values for different parts of the image, is then applied
to the denoised images to extract the microglia. Tiny microglia with a soma size smaller
than 16.7µm are also removed, as suggested in [110]. In Alzheimer’s disease, clusters
of microglia with the morphological appearance of an activated phenotype are found
around amyloid plaques [113]. These clusters are detected by their abnormal soma sizes
and analysed separately. Finally, the segmented microglia processes are skeletonised and
combined with the segmented microglia soma, and the isolated microglial processes, not
connected to any microglia soma, are removed. Figure 3.8 shows the workflow of the
proposed segmentation method.

3.2.2 Denoising with Mumford-Shah total variation segmenta-
tion

If we look at the histology image in Figure 3.8 (a), we can see that there exist unfavourable
outlines outside the regions highlighted in the red circles. Their intensity values are
very closed to the microglia in the circles, while the scale of these outlines are much
smaller than that of the microglia. The idea here is to segment the image and only
get the microglia, so we intend to use a filter to smooth the outlines out while remain
the microglia we intend to segment. Ideally one would like such a smoothing method
which does not destroy the edge information. This dilemma between smoothing noise
and preserving edges and corners has been commonly considered as a “chicken and egg”
problem: An object of interest is more easily segmented, if one smooths the grey value
across the area corresponding to the object; however, in order not to smooth across the
boundaries of the object, one already needs to know where the object is.

Interestingly, this “chicken and egg” dilemma can be tackled by a variational approach.
Mumford and Shah [107] proposed to approximate a given input image f with a piecewise
smooth function u by minimising the functional

E (u, C) = 1
2

∫
Ω

(f − u)2dx + α

2

∫
Ω/C
|∇u|2dx + β |C| (3.3)

simultaneously with respect to the image u and with respect to the contour C. The first
term is a fidelity term, which enforces that the function u is similar to the input image
f in the L2 sense. The second term enforces smoothness of the segmented image but
permits discontinuities of u across a boundary denoted by C. The last term gives the 1D
Hausdorff measure of the length of the boundary. The parameter α defines the spatial
scale on which smoothing is done. β measures the length of the object boundary.
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3.2 Microglia segmentation and quantification

This free discontinuity problem in (3.3) triggered a large number of detailed studies on
the region-based segmentation. However, it is very difficult to minimise the non-convex
Mumford-Shah functional (3.3) as it includes energy terms that are defined in spaces of
different dimensions. In order to implement the Mumford-Shah model mathematically, it
is necessary to unify the energy terms in the model to a space of same dimension. There
are two numerical approaches to do so. The first approach [114–117] applies the concept
of shape derivatives (i.e., contour normal), transforming the energy terms in the model
defined in 2D image space into the ones defined in 1D contour space. Consequently, the
Mumford-Shah model becomes a parametric active contour model. The level set scheme
[118] is then integrated into the parametric model for handling topological changes
during contour evolution. The second approach involves the use of the characteristic
functions for different phases or classes in an image (a phase/class contains pixels having
similar characteristic), transforming the 1D terms into the 2D ones. Example methods
of this approach include: 1) the variational level set method [119–123, 65] that combines
the classical level set method with the variational method; 2) the variational label
function method, also known as the piecewise constant level set method [124–126] or
the fuzzy membership function method [127, 128]; 3) the Γ-convergence elliptic function
approximated method [129, 108, 109, 68].

The main advantage of the Γ-convergence approximated method over the others
is that it can denoise and segment a piecewise smooth image simultaneously. In this
section, we will therefore focus on this method. Ambrosio and Tortiroilli [129] first
implemented the original Mumford-Shah functional by using the Γ-convergence elliptic
function approximation. Their model is given by

Eε (u, v) =
∫

Ω
(u− f)2dx + α

∫
Ω

v2 |∇u|2 dx + β
∫

Ω

(
ε|∇v|2 + (v − 1)2

4ε

)
dx. (3.4)

The regularisation term of this model is defined in the quadratic L2 space (Tikhonov),
which can over-smooth/blur image edges and lead to incomplete segmentation boundaries.
A better edge preservation regulariser, the first order total variation [15], was thus
intoduced by Shah [108] to replace the quadratic L2 regularisation term in (3.4). However,
as the total variation favours piecewise constant solutions, Shah’s model (named the
Mumford-Shah total variation model in the chapter) suffers from the undesirable staircase
artefact. However, as we can see, such staircase artefact would not appear since the
histology images we are concerned about tend to be piecewise constant. Our previous
research [68, 109, 130] has shown that Shah’s model is fast and accurate and is therefore
chosen to denoise the histology images here. It can smooth noise out and preserve the
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edges of microglia, making it easier to detect them from histology images. Furthermore,
the model can benefit from fast imaging solvers such as the FFT and shrinkage, which
makes it very efficient to implement. The Mumford-Shah total variation model works as
follows [108]

Eε (u, v) =
∫

Ω
(u− f)2dx + α

∫
Ω

v2 |∇u| dx + β
∫

Ω

(
ε|∇v|2 + (v − 1)2

4ε

)
dx, (3.5)

where α, β and ε are three positive parameters balancing the energy terms, u is a
piecewise constant function to approximate the original image f , and v is a piecewise
function to represent object edges in the image (v takes value 0 on the edges and 1 in
smooth regions). This energy functional can be used to smooth microglia as well as find
the edges of microglia in a histology image.

A fast split Bregman algorithm [21] is designed for discretising and solving (3.5). This
algorithm has been widely used to solve L1-based variational models [65, 131, 64, 25,
24, 66], as introduced in Chapter 2. An auxiliary vector w = (w1 w2) and a Bregman
iteration parameter b = (b1 b2) are introduced to transform the minimisation of (3.5) into
optimising the energy functional as follows

Eε (u, v, w) =
∫

Ω
(u− f)2dx + α

∫
Ω

v2 |w| dx

+ θ

2

∫
Ω

(w −∇u− b)2dx

+ β
∫

Ω

(
ε|∇v|2 + (v − 1)2

4ε

)
dx,

(3.6)

where θ is positive penalty parameter. In practice, each variable u, w and v in functional
(3.6) is minimised separately. For example, the variables v and w are fixed first, and the
Euler-Lagrange equation of u is as follows

u + θ∆u = f + θdiv
(
wk − bk

)
, (3.7)

where div and ∆ denote the divergence operator and Laplace operator respectively, and
k stands for the current iteration. By applying the discrete Fourier transform to both
sides of the equation, the closed-form solution of u is obtained as

uk+1 = ℜ
F−1

F (f) + θF (div)F
(
wk − bk

)
1 + θF (∆)

 , (3.8)
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where F (·) and F−1 (·) denotes the discrete Fourier transform and inverse Fourier
transform respectively. ℜ (·) is the real part of a complex number, “—” stands for
pointwise division of matrices. The minimisation with respect to w can be expressed as
follows

wk+1 = argmin
w

{
E (w) = α

∫
Ω

v2 |w| dx + θ

2

∫
Ω

(w −∇u− b)2dx

}
. (3.9)

It is easy to check that

wk+1 = max
(∣∣∣∇uk+1 + bk

∣∣∣− α

θ
v2, 0

) ∇uk+1 + bk

|∇uk+1 + bk|
, (3.10)

with the convention 0/0 = 0.
The above equation is known as the analytical soft thresholding equation or shrinkage.

Note that the shrinkage (3.7) includes two subshrinkages for each component of the
vector w. Next, the Euler-Lagrange equation of v with u and w fixed is obtained as
follows

2αv
∣∣∣wk+1

∣∣∣− 2βε∆v + β
(v − 1)

2ε
= 0. (3.11)

This equation can be efficiently solved approximately by one iteration of Gauss-Seidel.
Finally, the Bregman parameter is updated using

bk+1 = bk +∇uk+1 − wk+1. (3.12)

Note that the equations (3.8), (3.10), (3.11) and (3.12) are iteratively updated until a
convergence criterion is met. The parameters α, θ, β and ε in (3.6) should be adjusted.
α is a smoothing parameter and larger α gives smoother result. We set α=10 as a weak
smooth and α=300 as a strong smooth. The selection of α was based on the results of a
series of experiments using different smoothing values on microglial images. Figure 3.9
shows example results of a single microglial cell that was smoothed using different α

values. It can be seen that the method produced the best results when α=10 and α=300
were chosen for, removing noise, and simultaneously preserving the details of microglial
cell body and processes in the images respectively. As compared to the total variation
denoising results in Figure 3.10, the Mumford-Shah total variation better preserves the
shape edge of the cell, thus enabling more accurate segmentation results.

Due to the Bregman iteration technique used, different penalty parameter θ will
provide similar smooth result. However, the algorithm may have different rate of
convergence with different values of θ. In all the experiments, the value of θ is fixed
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.9: Smoothed a single microglial cell using Mumford-Shah total variation. (a)
α=0. (b) α=10. (c) α=20. (d) α=30. (e) α=100. (f) α=200. (g) α=300. (h) α=400.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.10: Smoothed a single microglial cell using total variation denoising. (a) α=0.
(b) α=10. (c) α=20. (d) α=30. (e) α=100. (f) α=200. (g) α=300. (h) α=400.

as 5 in order to achieve a fast convergence rate. Parameter β balances the last energy
term against the other three terms in model (3.6). It is empirically chosen as 0.1 for all
experiments. The approximation of the Mumford-Shah regulariser term in the Mumford-
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Shah total variation model (i.e., the last two energy terms in (3.5)) is based on the phase
field theory under Γ-convergence [129]. Theoretically, the parameter ε should be close
enough to zero to satisfy such approximation. Therefore, we set ε = 0.0001 for all the
experiments.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.11: Challenges described in [1] and the proposed method overcomes these
problems. (a) Image shows microglia cells with strong and weak intensities. (b) Image
has a large complex artefact with microglia located partly inside the artefact. (c) image
shows two regions that exhibit different visual textures. (d) Image displays a complex
texture appearance that blurs the distinction between microglia cell and background
pixels. (e)-(h) Microglia soma labelled using the proposed method.

3.2.3 Experimental data acquisition

The data used in this chapter were generated from brain tissue from female mice,
transgenic APPswe/PS1dE9, a mouse model of Alzheimer’s disease, or their wild-type
littermate. All mice were were bred in the University of Nottingham’s Biomedical
Service Unit as previously described [132]. Some of these mice had been treated 10 days
before with a lipopolysaccharide immune challenge (LPS, 100ug/kg) known to selectively
activate microglia or its vehicle Phosphate Buffered Saline (PBS, Sigma Aldrich, St.
Louis, MO, USA). The genotype and treatment condition ensured a wider representation
of morphological states but were not analysed systematically as the focus on the chapter
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is on classification. All procedures were approved as required under the UK Animals
(Scientific Procedures) Act 1986. Brains were fixed in 4% Paraformaldehyde for at least
24 hours at 4◦C and embedded in paraffin wax on a tissue embedding station (Leica
TP1020). 7µm-thick coronal sections were cut throughout the hippocampus using a
microtome, mounted on 3-Aminopropyltriethoxysilane-coated slides and dried overnight
at 40◦C. Immunostaining was carried out using standard procedures at room temperature,
as described below.

All the solutions were freshly prepared using PBS + 1% Tween 80, except DAB
solution that was prepared in distilled water. Briefly, the tissue was re-hydrated in
consecutive rinses in Xylene, 100% ethanol, 70% ethanol and distilled water. Antigen
retrieval was performed by 20 minutes incubation in Sodium Citrate buffer at 95-99◦C,
followed by incubation in 1% H2O2 (Sigma Aldrich, St. Louis, MO, USA). Tissue
was then blocked in 5% normal goat serum (Vector Laboratories, Burlingame, CA),
incubated in rabbit polyclonal anti-Iba-1 primary antibody (1:6000; WAKO Chemicals,
VA, USA) for 1 hour followed by 30 minutes incubation with anti-rabbit secondary
antibody (1:200; Vector Laboratories Inc. Burlingame, CA). After washing, sections
were incubated with Vectastain Elite ABC kit (Vector Laboratories Inc. Burlingame,
CA) and labelled with DAB peroxidase substrate (Vector Laboratories, Burlingame, CA)
according to manufacturer’s instructions. To reveal histologic morphology, sections were
then lightly counterstained with haematoxylin (purplish-blue nuclear stain) and eosin
(pink cytoplasmic stain) and mounted with DPX-mount media.

Digital focused photo-scanning images were acquired using a Hamamatsu NanoZoomer-
XR with TDI camera technology at a magnification of 20X. Rectangular regions of interest
(ROIs) were drawn within the hippocampus subfields with an area of 0.2 mm2 or 0.1mm2

using NDP.view2.

3.2.4 Validation of segmentation method

Previous studies have identified the limitations of the existing microlia segmentation
methods [1]. This includes: microglia contrast issues within the same image, large
artefacts, different visual textures within the same field of view and textures that blur
the distinction between microglia cell and background. Experiments show that the
proposed segmentation method is accurate and overcomes these problems. Some example
segmentation results are shown in Figure 3.11.

20 images randomly selected from all experimental condition were used for validation
of the proposed automated technique against manual analysis. For manual segmentation,
the soma of microglial cells was delineated using the freehand line tool in NDP.view2 at
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a magnification of 40X and the data (number of soma per ROI and soma size in µm2)
extracted. ROIs were exported 20X and saved as Jpeg images for subsequent analysis of
the percentage of area stained, using ImageJ [39]. Images were split into red, green and
blue using the RGB stack command, prior to thresholding. The blue stack was chosen
to eliminate non-specific highlighting of the neuronal nuclei. The threshold level was
adjusted manually for each image to highlight the soma and processes, as well as the
percentage area stained. For details see Figure 3.12.

(a) (b) (c)

(d) (e) (f)

Figure 3.12: Examples of soma area estimation and estimation of the percentage of
the area stained. (a) and (d) Iba-1 positive microglial cells in unprocessed images. (b)
Freehand delineation of microglial somas and annotation of the soma size calculated by
NDP.viewer2 software. (c) Soma segmentation by the proposed method. (e) Example of
manually adjusted threshold level for the estimation of the percentage of area stained by
Iba-1. (f) Example of automatic estimation of the percentage of area stained by Iba-1.

Example of an automated segmentation result by the proposed method for analysing
the number of soma per ROIs and soma size in µm2 is shown in Figure 3.12 (c). The
automatic estimation of the percentage of area stained is shown in Figure 3.12 (f). The
results by the proposed automatic method and the manual method on the image dataset
are compared. As shown in Figure 3.13, the proposed method has produced similar
results as those obtained by the manual method for the number of cells per ROI. From
Figure 3.13 (a) and (b), one can see that the green solid areas segmented by our method
better overlap the true soma in the image as compared to manual contours annotated
by an experienced expert. Differences between scorers for the manual analysis are due
to differences in judgement in defining the border of the soma. For percentage area
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stained, the proposed method achieves expert desired results as compared to the manual
thresholding method. Such a method is very dependent upon the scorer’s judgement
leading to inconsistencies between scorers, as shown in Figure 3.12 (e).

(a) (b)

(c) (d) (e)

Figure 3.13: Comparison of segmentation results using the proposed segmentation method
and the manual segmentation method. (a) Microglia soma segmented using the proposed
automatic segmentation method. (b) Microglia soma manually segmented by an expert.
Analysis results calculated using automatic and manual segmentation methods within the
hippocampus. (c) Soma number (d) Soma area. (e) Percentage area stained. Automatic:
results produced by the proposed method. Manual A and Manual B: results produced by
the experts. Data are presented as means + standard error.

The scalability of the proposed methods on large datasets is tested in the analysis of
microglial distribution in images of both healthy mouse brain and Alzheimer’s Disease
mouse brain models, each of which is 8640×15360 in size. Two examples of these images
are shown in Figure 3.14 (a) and (b). Processing an image with this size is very time-
consuming for most image processing algorithms. Our method is however fast, accurate
and robust for segmenting microglia cells from the whole brain in a histology image. The
density map images are shown in Figure 3.14 (c) and (d), from which it can be seen that
there are more microglia cells particularly in the hippocampal region of the Alzheimer’s
Disease brain.
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(a) (b)

(c) (d)

Figure 3.14: Analysis results of a typical (a) Alzheimer’s mouse brain slice (b) healthy
mouse brain slice. (c) and (d) Heat map of the microglia density image and the
corresponding colour bar, representing the number of microglia within a square region.

3.2.5 Summary

In this chapter, automated image analysis methods were introduced for segmenting the
microglia from histology images. Segmentation of both microglia process and soma
was achieved through a variational method in combination with a fast split Bregman
algorithm which overcomes the problems caused by inhomogeneity of histology images.
Experiments showed that the proposed methods are accurate, thus eliminating the inter-
rater variability seen with manual analysis, and scalable to analysing large microglial
datasets. To the best of our knowledge, this is the first time that the Mumford-Shah
total variation is used to extract microglia from histology images. For future work,
the microglia segmentation framework described in this chapter will be tested on large
histology datasets of healthy and diseased brains, along with ground truth images, to
validate its sensitivity to disease progression and pro-inflammatory states and therefore
a viable tool for studying microglial biology.
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Chapter 4

Automated segmentation of OCT
images

4.1 Introduction

Optical coherence tomography (OCT) is a powerful imaging modality that uses low
coherence interferometry to provide high-resolution cross-sectional images of biological
tissues, from which structural and molecular information of the tissues can be obtained
[40]. Over the past two decades, OCT has become a well-established imaging modality
and widely used by ophthalmologists for diagnosis of retinal and optical nerve diseases.
One of the OCT imaging biomarkers for retinal and optical nerve disease is the thickness of
the retinal layers. Automated OCT image segmentation to detect retinal layer boundaries
is therefore required.

However, since the intensity patterns in OCT images are the result of light absorption
and scattering in tissues, OCT images usually contain a significant amount of inhomogene-
ity and speckle noise, posing significant challenges to automated segmentation to identify
tissue boundaries and other specific features. With retinal OCT imaging, disrupted
retinal structures caused by pathologies and shadows by retinal blood vessels further
complicate the segmentation process, leading to inaccuracy or failure of automated retinal
layer segmentation algorithms.

In recent years many automatic and semi-automatic OCT segmentation approaches
have been proposed. These approaches can be largely divided into three groups: A-scan
based methods, B-scan based methods and volume based methods, as illustrated in
Figure 4.1. A-scan based methods [133–136] detect intensity peak or valley points on
the boundaries in each A-scan profile and then connect the detected points to form a
continuous boundary using model fitting techniques. These methods can be inefficient
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and inaccurate. B-scans methods [137–146, 131] outperform A-scan methods in general.
However, they are prone to speckle noise in OCT images and likely to fail on pathological
images. Common approaches to segmenting two-dimensional (2D) B-scans include
active contour methods [147, 137–140], shortest-path based graph search [141–143] and
statistical shape models [144–146] (i.e., active shape and appearance models [148, 149]).
Popular volume based methods are graph based[150–156] and pattern recognition methods
[157–160]. Computation of these methods can however be very complex and slow. Pattern
recognition methods for retinal layer segmentation normally require manually segmented
training data for classification. Automated segmentation of retinal layers from OCT
images remains a challenge.

A-scan

x

z

x

y

z

Fovea

Fovea

B-scan

Figure 4.1: A en-face fundus image (left) overlaid with lines representing the locations
of B-scans in a volumetric OCT image. The red line corresponds to the B-scan in the
image (top right). One vertical A-scan of the B-scan is shown in the plot (bottom right).
The fovea region is characterised by a depression in the centre of the retinal layer.

In this chapter, we present a new algorithm for retinal layer segmentation from OCT
images based on a novel geodesic distance weighted by an exponential function. In contrast
a single horizontal gradient used in other approaches [141, 155, 156], the exponential
function in our method integrates both horizontal and vertical gradient information and
can thus account for intensity variations in both directions. The exponential function
also plays the role of enhancing weak retinal layer boundaries. As a result, the proposed
geodesic distance method (GDM) is able to segment complex retinal structures with
large curvatures and other irregularities caused by pathologies. We compute the weighted
geodesic distance via an Eikonal equation using the fast sweeping method [10, 11, 161].
Retinal layer boundaries can then be detected using the geodesic distance by solving an
ordinary differential equation via a time-dependent gradient descent. A local search region
is identified based on the detected boundary to detect all the nine retinal layer boundaries
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and overcome the local minima problem of the GDM. The retinal layer boundaries
detected by the proposed GDM are shown in Figure 4.2. We evaluate the proposed
GDM through extensive numerical experiments and compare it with state-of-the-art
OCT segmentation approaches on both healthy and pathological images.

In the following sections, we will first review the state-of-the-art methods for compar-
ison with the proposed GDM, such as parallel double snakes [140], Chiu’s graph search
[141], Dufour’s method [153], and OCTRIMA3D [155, 156]. This will be followed by
the details of the proposed GDM, ground-truth validation, numerical experiments, and
comparison of the GDM with the above mentioned state-of-the-art methods.

4.2 Related work

In this section, we will limit our review of the state-of-the-art methods to only those that
we will compare our GDM with in Section 4.3 (i.e., parallel double snakes [140], Chiu’s
method [141], OCTRIMA3D [155, 156], Dufour’s method [153]). For a complete review
on related subjects, we refer the reader to [162]. Among the four methods reviewed,
the first two are for segmenting 2D B-scans, and the latter two are for segmenting 3D
volumes.

Parallel double snakes (PDS): Rossant et al. [140] detected the pathological
(retinitis pigmentosa) cellular boundaries in B-scan images by minimising an energy
functional that includes two parallel active parametric contours. Their proposed PDS
model consists of a centreline C(s) = (x(s), y(s)) parametrised by s and two parallel
curves C1(s) = C(s) + b(s)n(s) and C2(s) = C(s)− b(s)n(s) with b(s) being a spatially
varying half-thickness and n(s) = (nx(s), ny(s)) the normal vector to the centreline C(s).
Specifically, their PDS model is defined as

E(C, C1, C2, b) = EImage(C1) + EImage(C2) + EInt(C) + R (C1, C2, b) , (4.1)

where the image energy EImage(C1) = −
∫ 1

0 |∇I(C1)|2ds (∇ is the image gradient operator)
attracts the parametric curve C1 towards one of retinal borders of the input B-scan
I, whilst EImage(C2) handles curve C2 which is parallel to C1. The internal energy
EInt(C) = α

2
∫ 1

0 |Cs(s)|2ds + β
2
∫ 1

0 |Css(s)|2ds imposes both first and second order smooth
regularities on the central curve C, with α and β respectively controlling the tension and
rigidity of this curve. R(C1, C2, b) = ϕ

2
∫ 1

0 |b′(C)|2ds is a parallelism constraint imposed
on C1 and C2. Nine retinal borders have been detected by the method, i.e., ILM, RNFLo,
IPL-INL, INL-OPL, OPL-ONL, ONL-IS, IS-OS, OS-RPE and RPE-CH.
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Figure 4.2: An example cross-sectional B-Scan OCT image centred at the macula, showing
nine target intra-retinal layer boundaries detected by the proposed method. The names
of these boundaries labelled as notations B1,B2...B9 are summarised in Table 4.1.

Table 4.1: Notations for nine retinal boundaries/surfaces, their corresponding names and
abbreviations

Notation Name of retinal boundary/surface Abbreviation
B1 internal limiting membrane ILM
B2 outer boundary of the retinal nerve fibre layer RNFLo

B3 inner plexiform layer-inner nuclear layer IPL-INL
B4 inner nuclear layer-outer plexiform layer INL-OPL
B5 outer plexiform layer-outer nuclear layer OPL-ONL
B6 outer nuclear layer-inner segments of photoreceptors ONL-IS
B7 inner segments of photoreceptors-outer segments of photoreceptors IS-OS
B8 outer segments of of photoreceptors-retinal pigment epithelium OS-RPE
B9 retinal pigment epithelium-choroid RPE-CH

Chiu’s method: Chiu et al. [141] considered retinal layer boundary detection in
a B-scan image as determining the shortest-path that connects two points in a graph
G = (V, E), where V is the set of nodes in the graph corresponding to pixels in the
B-scan image, and E is the set of weights assigned to pairs of nodes in the graph. Each
node is connected only to its eight nearest neighbours, resulting in a sparse adjacency
matrix of weights representing intensity variations in vertical direction. For example,
an M ×N sized image has an MN ×MN sized adjacency matrix with 8MN non-zero
entries. The weights are calculated from the intensity gradient of the image in vertical
direction. Mathematically, the weights are calculated as

w (a, b) =
 2− (ga + gb) + wmin if |a− b| ≤

√
2

0 otherwise
, (4.2)

where g is the vertical gradient of the B-scan image; a and b denote two separate nodes
in V respectively and wmin is a small positive value to stabilise the system. The most
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prominent layer boundary is then detected as the minimal weighed path from the first to
the last vertex in V using the Dijkstra’s algorithm. A similar region refinement technique
to Section 4.3.4 was used to detect seven retinal boundaries, i.e., ILM, RNFLo, IPL-INL,
INL-OPL, OPL-ONL, IS-OS and RPE-CH.

Dufour’s method: Dufour et al. [153] proposed a modification of optimal graph
search approach [163] to segment retinal layers in 3D OCT images. By using soft
constraints and prior knowledge, they improve the accuracy and robustness of the original
framework. Specifically, their Markov random field based model is given by

E (S) =
n∑

i=1
(Eboundary (Si) + Esmooth (Si)) +

n−1∑
i=1

n∑
j=i+1

Einter (Si, Sj),

where S is a set of layer boundaries S1 to Sn. The external surface energy Eboundary (Si) is
computed from 3D OCT images. The surface smoothness energy Esmooth (Si) guarantees
the connectivity and regularises the layers. The interaction energy Einter (Si, Sj) integrates
soft constraints to regularise the distances between two simultaneously segmented layer
boundaries. This model is then built from training datasets consisting of fovea-centered
OCT slice stacks. Their method is capable to segment six retinal layers (n = 6 in above
formulation) in both healthy and macular edema subjects, i.e., ILM, RNFLo, IPL-INL,
OPL-ONL, IS-OS and RPE-CH.

OCTRIMA3D: Tian et al. [155, 156] proposed a real-time automatic segmentation
method for 3D OCT images. The segmentation was done frame-by-frame in each 2D
B-Scan by considering the spatial dependency between each two adjacent frames. Their
work is based on Chiu’s graph search framework [141] for B-Scan OCT images, with added
inter-frame flattening to reduce the curvature in the fovea region and thus improving the
accuracy. They also use inter-frame or intra-frame information to limit the search region
in current or adjacent frame so as to increase the computational speed. The method can
segment eight retinal layers, i.e., ILM, RNFLo, IPL-INL, INL-OPL, OPL-ONL, IS-OS,
OS-RPE and RPE-CH. Table 4.2 reports the retinal boundaries detected by the four
methods as well as our GDM method detailed in the next section.

Table 4.2: Target boundaries of the five methods compared in this chapter (check mark
means the layer boundary can be detected, while cross mark means the boundary cannot
be detected).
Method ILM (B1) RNFLo (B2) IPL-INL (B3) INL-OPL (B4) OPL-ONL (B5) ONL-IS (B6) IS-OS (B7) OS-RPE (B8) RPE-CH (B9)
PDS [140] X X X X X X X X X
Chiu’s method [141] X X X X X × X × X
Dufour’s method [153] X X X × X × X × X
OCTRIMA3D [155, 156] X X X X X × X X X
Proposed GDM X X X X X X X X X
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4.3 Proposed geodesic distance method

In this section, we present our GDM method for segmentation of OCT images to detect
nine retinal layers defined in Figure 4.2 and Table 4.1. We will describe the method
for 2D segmentation in detail. For 3D segmentation, we first calculate the 3D geodesic
distance volume in a manner similar to that of 2D segmentation, followed by minimal path
detection on each slice of the geodesic distance volume. In Appendix B, we present the
implementation details of geodesic distance calculation for both 2D and 3D segmentation.

4.3.1 Geodesic distance

We use geodesic distance to identify the pixels on the boundaries of retinal layers in OCT
images. The geodesic distance d is the smallest integral of a weight function W over all
possible paths from two points s1 and s2. The weight function determines how the path
goes from s1 to s2. Small weight at one point indicates that the path has high possibility
of passing that point. Specifically, the weighted geodesic distance between two endpoints
s1 and s2 is given by

D (s1, s2) = min
C

∫ 1

0
W −1 (C (s)) ds. (4.3)

Above C (s) is the set of all possible paths that link s1 to s2, the path length is normalised
to unity, and the start and end locations are C(0) = s1 and C(1) = s2, respectively. The
infinitesimal contour length ds is weighted by a non-negative function W (C (s)). This
minimisation problem can be interpreted as finding a geodesic curve (i.e., a path with
the smallest weighted length) in a Riemannian space. It is known that the solution of
(4.3) satisfies the Eikonal equation (4.5).

The retinal layer boundaries in OCT images are normally near horizontal so the
largest intensity changes at the layer boundaries are likely to be in the vertical direction.
The gradient in the vertical direction is thus taken to compute weight W in (4.3) in
order to determine the path that passes the points with maximum gradient changes.
For instance, each of the two prominent boundaries, e.g., ILM (B1) and IS-OS (B7) in
Figure 4.3 (a) and (e), is at the border of a dark layer above a bright layer. As a result,
pixels in the region around the two boundaries have high gradient values, as shown in
Figure 4.3 (b) and (f). As the retinal layers at each side of the boundary are either
transiting from dark to bright or bright to dark, the non-negative weight function W in
this chapter is defined based on intensity variation as follows

W (x) =
 1− exp (−λ (1− n (∇xI)) n (|∇yI|)) dark-to-bright

exp (−λ (1− n (∇xI)) n (|∇yI|)) bright-to-dark
, (4.4)
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(𝑎) (𝑏) (𝑐) (𝑑)

(𝑒) (𝑓) (𝑔) (ℎ)

Figure 4.3: Effectiveness of the weight W defined in (4.4) on real OCT images. (a) and
(e): normal B-scan OCT data and pathological B-scan from an eye with age-related
macular degeneration (drye-AMD); (b) and (f): vertical dark-to-bright gradient maps
of (a) and (e), respectively; (c) and (g): dark-to-bright gradient maps calculated using
equation (4.4) with λ = 1. Note that the pixel gradients have been enhanced in the blue
rectangular region where large curvature and bumps occur; (d) and (h): layer boundary
detection results using the method described in Section 4.3.3 with different gradient
maps: the yellow lines are computed using (b) and (f), and the red lines using (c) and
(g).

where I is an input OCT image; n (·) is a linear stretch operator used to normalise
values to between 0 and 1; exp is the exponential function, and λ is a user-define
parameter, which together enhance the foveal depression regions and highlight the weak
boundaries [164]; ∇x and ∇y are the first-order gradient operator along x (vertical) and
y (horizontal) direction respectively, which are discretised using a central finite difference
scheme under the Neumann boundary condition; and n (|∇yI|) is positive horizontal
gradient, without which only vertical direction is accounted for and is thus only applicable
to flat boundaries, as evident in Figure 4.4. Consequently, the GDM with the weight W

defined in (4.4) is robust against curved features (e.g., the central region of the fovea) as
well as other irregularities (e.g., bumps or large variations of boundary locations) caused
by pathologies, as illustrated in Figure 4.3 as well as in the experimental section.

4.3.2 Selection of endpoints s1 and s2

For fully automated segmentation, it is essential to find a way to initialise the two
endpoints s1 and s2 automatically. Since the retinal boundaries in the OCT images used
in this chapter run across the entire width of the image, we add an additional column
on each side to the gradient map computed from (4.4). As the minimal weighted path
is sought after, a weight Wmax larger than any of the non-negative weights calculated
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(𝑎) (𝑏) (𝑐) (𝑑)

(𝑒) (𝑓) (𝑔) (ℎ)

Figure 4.4: Eeffectiveness of the weight W defined in (4.4) on two synthetic images. (a)
and (e): synthetic images with changes in both vertical and horizontal directions; (b) and
(f): pure vertical dark-to-bright gradient maps of (a) and (e), respectively; (c) and (g):
dark-to-bright gradient maps calculated using equation (4.4) with λ = 1 - both vertical
and horizontal gradients are enhanced using the proposed method, leading to robust
gradient maps for segmentation; (d) and (h): boundary detection results via the method
described in Section 4.3.3 using different gradient weights. Yellow lines are computed
using (b) and (f), whilst red lines using (c) and (g).

from (4.4) is therefore assigned to each of the newly added vertical columns (note that
we use W −1 for the geodesic distance (4.3), the minimal weighted path thereby prefers
large weights). This forces the path traversal in the same direction as the newly added
vertical columns with maximal weights, and also allows the start and end points to be
arbitrarily assigned in the two columns. Once the retinal layer boundary is detected,
the two additional columns can be removed. Row 1 and 2 in Figure 4.5 respectively
show different initialisations of two endpoints as well as the corresponding path evolution
results.

4.3.3 Eikonal equation and minimal weighted path

The solution of (4.3) can be obtained by solving the Eikonal equation after the endpoints
are determined. Specifically, over a continuous domain, the distance map D(x) to the
seed point s2 is the unique solution of the following Eikonal equation in the viscosity
sense

|∇D (x)| = W −1 (x) , x ∈ Ω\{s2} (4.5)
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and
D (x) = 0, x ∈ {s2}.

The equation is a first order nonlinear partial differential equation and its solution can
be found via the classical fast marching algorithm [8, 9] using an upwind finite difference
approximation with the computational complexity O(MNlog(MN)) (MN is the total
number of grid points). Recently, the fast sweeping algorithm [10, 11] has been proposed.
This technique is based on a pre-defined sweep strategy, replacing the heap priority queue
to find the next point to process, and thereby has the linear complexity of O(MN).
Fast sweeping is faster than fast marching for simple geometry problems. However, the
situation may be reversed for complex geometry. In this chapter, we apply fast sweeping
for (4.5) and its detailed implementation has been given in Appendix B. Figure 4.6 shows
two distance maps calculated using the weight and end points defined in Figure 4.5.

Figure 4.5: Two set of segmentation examples using different automatic endpoints
initialisations on a dark-to-bright gradient map. s1 and s2 are start and end points,
respectively. Row 1 and 2 respectively show the path evolution results using Equation
(4.7). The paths start at s1 and end at s2.

Once the geodesic distance map to the end point s2 is found, the minimal weighted
path (geodesic curve γ) between point s1 and s2 can be extracted from the following
ordinary differential equation through the time-dependent gradient descent

γ′ (t) = −ηt∇D (γ (t)) , γ (0) = s1, (4.6)

where ηt > 0 controls the parametrisation speed of the resulting curve. To obtain
unit speed parametrisation, we use ηt = |∇D (γ (t))|−1

ε . Since the distance map D is
nonsmooth at point s2, a small positive constant ε is added to avoid dividing by zero.
Note that γ is guaranteed to end at the point s2 by solving the ordinary differential
equation, because the distance field is monotonically decreasing from s1 to s2, as observed
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in Figure 4.6. This technique can achieve sub-pixel accuracy for the geodesic path even
if the grid is discrete.

𝑠1𝑠1

𝑠2𝑠2

Figure 4.6: Distance maps calculated using the fast sweeping method on the gradient
weights in Figure 4.5. The left distance map is computed using the end point s2 in the
1st row of Figure 4.5, while the right distance map using the end point s2 in the 2nd row
of Figure 4.5. The range of distance values is represented by the color bar at the bottom.

The geodesic curve is then numerically computed using a discretised gradient descent,
which defines a discrete curve γk using

γk+1 = γk − τG
(
γk
)

, (4.7)

where γk is a discrete approximation of γ(t) at time t = kτ , and the time step size
τ > 0 should be small enough. G (x) is the normalised gradient ∇D(γ(t))/|∇D(γ(t))|ε
parametrised by the arc length. Once γk+1 reaches s2, one of the retinal boundaries can
be found. The following Algorithm 1 concludes the proposed GDM for extracting one
retinal border from an OCT B-scan.

Algorithm 1: Proposed GDM for one retinal boundary detection
1: Input OCT B-scan data I
2: calculate dark-to-bright or bright-to-dark weight W using (4.4)
3: pad two new columns to the weight and assign large values to them
4: select two endpoints s1 and s2 on the two newly padded columns
5: calculate distance map D in (4.5) using fast sweeping algorithm
6: find one retinal layer boundary γ using the gradient descent flow (4.7)
7: remove the additional columns in the edge detection result
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4.3.4 Detection of nine retinal layer boundaries

In this section, we show the implementation details of the proposed approach to segment
nine retinal layer boundaries, as shown in Figure 4.2 and Table 4.1. Since the proposed
model (4.3) is not convex due to the image gradient used, its solution can easily get
stuck in local optima. For example, Figure 4.3 (c) and (g) have high gradient values
in the region around both the ILM and IS-OS boundaries. However, in Figure 4.3 (d)
the algorithm detected the ILM boundary while in Figure 4.3 (h) it detected IS-OS. In
order to eliminate such uncertainty, we dynamically define the search region based on
the detected boundaries. The following describes the detection of the nine boundaries in
a hierarchical fashion.

Detection of the IS-OS boundary

The intensity variation between two layers divided by the IS-OS (B7) border are normally
the most prominent in OCT B-scans. However, since OCT images are always corrupted
by speckle noise as a result of light absorption and scattering in the retinal tissue, it is
not always the case. For example, the intensity variation around the IML (B1) border
sometimes can be more obvious than that around IS-OS, as shown in the gradient image
Figure 4.3 (c). To make sure the first segmentation being the IS-OS boundary we first
enhance it via a simple local adaptive thresholding approach1, which is given as follows

p =
 0 ls (I, ws)− I > C

1 otherwise
, (4.8)

where I is the input OCT image, and ls (p, ws) means that I is convolved with a suitable
operator, i.e., the mean, Gaussian or median filter. We mention that the purpose of
using a filter in (4.8) is to overcome the inhomogeneity effect by oversmoothing the input
image such that the resulting image can be simply segmented by the thresholding method.
Our previous research [92, 94] has shown that such a method is very robust against
intensity inhomogeneity appeared in different medical images. ws is the window size of
the filter and C a user-defined threshold value. In the chapter, we use the mean filter
with window size ws = 100 and set C = 0.01. The enhanced image can then be obtained
by multiplying the original image I with p. The first two images in Figure 4.7 illustrate
that the contrast of the IS-OS border has been enhanced and the most obvious intensity
variation now takes place around the IS-OS layer boundary. The IS-OS boundary is

1http://homepages.inf.ed.ac.uk/rbf/HIPR2/adpthrsh.htm

85



Automated segmentation of OCT images

then detected on a dark-to-bright gradient image. Consequently, the detected line is
guaranteed to pass IS-OS, as shown in the last two images in Figure 4.7.

Figure 4.7: Detecting the IS-OS boundaries in the normal and pathological images after
image enhancement via a local adaptive thresholding method (4.8).

Detection of the RPE-CH, OS-RPE and ONL-IS boundaries

Once IS-OS (B7) is segmented, it can be used as a reference to limit the search region
for segmenting the RPE-CH (B9), OS-RPE (B8) and ONL-IS (B6) boundaries. RPE-CH
and OS-RPE are below IS-OS and they are detected in the following way: RPE-CH can
be extracted by applying the GDM on the bright-to-dark gradient weight obtained from
the region pixels below IS-OS (i.e., the bright-to-dark weight is set to zeros above IS-OS);
OS-RPE is then detected on the bright-to-dark gradient weight in the region between the
IS-OS and RPE-CH boundaries (i.e., the bright-to-dark gradient weight is set to zeros
outside of the region between IS-OS and RPE-CH). ONL-IS is above IS-OS. The search
region can be constructed between IS-OS and a parallel line above it with a diameter of
15 pixels. The dark-to-bright gradient weight outside of the region is then set to zeros.
Hence, the only layer boundary in the search region is ONL-IS which can be extracted
using the GDM on the dark-to-bright gradient weight.

Detection of the ILM and INL-OPL boundaries

Both ILM (B1) and INL-OPL (B4) are at the border of a darker layer above a bright
layer. The intensity variation around the IML boundary is much more prominent and
thus it is segmented first. The detected ONL-IS boundary is taken as a reference and
the dark-to-bright gradient weight below ONL-IS is set to zeros. INL-OPL can be then
easily detected on the dark-to-bright gradient weight by simply limiting the search region
between ILM and ONL-IS (i.e., the dark-to-bright gradient weight is set to zeros outside
of the region between ILM and ONL-IS).
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Detection of the OPL-ONL, IPL-INL and RNFLo boundaries

OPL-ONL (B5), IPL-INL (B3) and RNFLo (B2) demonstrate a bright layer above a darker
layer and thus can be detected on the bright-to-dark gradient weight. The segmented
INL-OPL and ONL-IS boundaries are taken as two reference boundaries, and OPL-ONL
can be found by limiting the search region between INL-OPL and ONL-IS. The search
region for IPL-INL can be then constructed between the INL-OPL boundary and a
parallel line above it with a diameter of 20 pixels. IPL-INL can be located on a bright-
to-dark gradient weight which is set to zeros outside of the search region constructed.
Finally, RNFLo can be found in the search region between the two reference boundaries
IPL-INL and IML. However, because the IPL-INL and IML boundaries are very close
to each other in the central region of the fovea, the search region for the RNFLo are
sometimes missing around the fovea region. This leads to segmentation errors of RNFLo,
as shown in Figure 4.8 (a). These errors however can be avoided by simply removing
the spurious points detected on RNFLo in the region above IML, as shown in Figure 4.8
(b). For clarity, the proposed method for segmenting nine retinal layer boundaries is
summarised in the flow chart shown in Figure 4.9.

( )ܽ ( )ܾ ( )ܿ

IML

IPL-INL
INL-OPL

ONL-IS

OS-RPE
RPE-CH

OPL-ONL

IS-OS

RNFLo

Figure 4.8: Segmentation results of the nine retinal layer boundaries on both normal and
dye-AMD pathological B-scans, as shown in (a) and (c). The detection of the RNFLo

boundary however shows errors due to the absence of a search region for this boundary
in, as evident in (a). (b) shows that these errors have been corrected.

4.4 Experiment setup

To evaluate the performance of the proposed GDM qualitatively and quantitatively,
numerical experiments are conducted to compare it with the state-of-the-art approaches
reviewed in Section 4.2 on both healthy and pathological OCT retinal images. As the
GDM is able to segment both 2D and 3D OCT images, we perform numerical experiments
on both B-scans and volumetric OCT images. A pre-processing method [68] is used to
reduce noise prior to determining the layers boundaries for all segmentation methods. In
the following, we introduce the detailed procedure of OCT data acquisition, evaluation
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metrics used to quantify segmentation results, final numerical results, and computational
complexity of different methods.
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Figure 4.9: The overview of the proposed framework for dynamically detecting nine
retinal layer boundaries defined in Figure 4.2 and Table 4.1. Section 4.3.4 describes this
flow chart in detail.

4.4.1 Clinical data

30 Spectralis SDOCT (ENVISU C class 2300, Bioptigen, axial resolution = 3.3µm, scan
depth = 3.4mm, 32, 000 A-scans per second) B-scans from 15 healthy adults (mean age
= 39.8 years, SD = 8.6 years; 7 male, 8 female) were used for the research. All the data
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was collected after informed consent was obtained and the study adhered to the tenets of
the Declaration of Helsinki and Ethics Committee approval was granted.

2D B-scan data: The B-scan was imaged from the left and right eye of 15 healthy
adults using a spectral domain OCT device with a chin rest to stabilise the head. The
B-scan located at the foveal centre was identified from the lowest point in the foveal pit
where the cone outer segments were elongated (indicating cone specialisation). To reduce
the speckle noise and enhance the image contrast, every B-scan was the average of aligned
images scanned at the same position. In addition to the 30 OCT images from the healthy
subjects, another 20 B-scans from subjects with pathologies are also used to compare the
proposed GDM with other approaches in pathological cases. These B-scans are from an
eye with dry age-related macular degeneration (drye-AMD), which is available from the
Dufour’s software package’s website2. Segmentation accuracy by the three automated
2D methods (i.e., PDS, Chiu’s method and GDM) over these healthy and pathological
B-scans is evaluated using the ground truth datasets, which were manually detected with
carefulness by one observer.

3D OCT data: 10 Spectralis SD-OCT (Heidelberg Engineering GmbH, Heidelberg,
Germany) volume data sets from 10 healthy adult subjects are used in this study. Each
volume contains 10 B-scans, and the OCT A-scans outside the 6mm × 6mm (lateral ×
azimuth) area and centred at the fovea were cropped to remove low signal regions. All
volumetric data can be downloaded from [155], where also contains the results of the
OCTRMA3D, and the manual labellings from two graders. In this study we choose
the manual labelling of grader 1 as the 3D ground truth.

4.4.2 Evaluation metrics

Performance metrics are defined to demonstrate the effectiveness of the proposed GDM
and compare it with the existing methods. Three commonly used measures of success for
retinal layer boundary detection are signed error (SE), absolute error (AE) and Hausdorff
distance (HD). Among them, SE indicates the bias and variability of the results. AE
is the absolute difference between automatic segmentation and ground truth, while HD
measures the distance between the farthest point of a set to the nearest point of the

2http://pascaldufour.net/Research/software_data.html
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other and vice versa. Specifically, these metrics are denoted as

SE
(
Bi, B̃i

)
= 1

n

n∑
j=1

(
Bij − B̃ij

)
,

AE
(
Bi, B̃i

)
= 1

n

n∑
j=1

(∣∣∣Bij − B̃ij

∣∣∣),
HD

(
Bi, B̃i

)
= max

(
max
x∈Bi

{
min
y∈B̃i

∥x− y∥
}

, max
x∈B̃i

{
min
y∈Bi

∥x− y∥
})

.

Above Bi and B̃i are respectively the detected boundaries and ground truth boundaries
(i.e., manual labellings). n is the number of pixels/volexs that fall on the retinal layer
boundary. In our comparison, when the SE value is close to zero, the difference between Bi

and B̃i is normally small. In this case, the result is less biased. The measurements of AE
and HD (varies from 0 to ∞ theoretically) signify the difference between two boundaries,
e.g., 0 indicates that both retinal structures share exactly the same boundary, and larger
AE and HD values mean larger distances between the measured boundaries. We also
monitor the overall SE (OSE), AE (OAE) and HD (OHD) during all the experiments.
They are defined as

OSE = 1
s

s∑
i=1

SE
(
Bi, B̃i

)
,

OAE = 1
s

s∑
i=1

AE
(
Bi, B̃i

)
,

OHD = 1
s

s∑
i=1

HD
(
Bi, B̃i

)
.

Here s is the total number of retina boundaries one method can detecte.

4.4.3 Parameter selection

There are five parameters in the PDS model: three smooth parameters α, β, ϕ and two
time step sizes γC and γb used within the gradient descent equations to minimise the
functional (4.1) with respect to C and b. In this chapter we use α = 10, β = 0, ϕ = 700,
γC = 10 and γb ≥ 2 suggested in [140]. In addition, as PDS is a nonconvex model and
its segmentation results depend on initialisation. We initialise the parallel curves very
closely to the true retinal boundaries for fair comparison with other methods. A maximal
number of iterations number 500 is used to ensure convergence of the PDS model. The
graph theoretic based methods, i.e., Chiu’s method, OCTRIMA3D and Dufour’s method,
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require no parameter input. Finally, our GDM has two build-in parameters: λ in (4.4)
and τ in (4.7). We set λ = 10 and τ = 0.8 to detect the retinal layers in the OCT images.

4.4.4 Numerical results

We first visually compare the segmentation results of the GDM, PDS and Chiu’s graph
search method on both healthy and pathological B-scans, which are shown in Figure 4.10
(a)-(d). The PDS results shown in (e)-(h) have some errors on some of detected boundaries.
For instance, the detected B1 and B2 boundaries cannot converge to the true retinal
boundaries around the central fovea region, as shown in (f) and (h). This is because
PDS is the classical nonconvex snake-driven model which has difficulty handling concave
boundaries. Moreover, because the B7 retinal layer has a much stronger image gradient
than the B6 and B8 layers, some parts of the segmented B6 and B8 boundaries have
been mistakenly attracted to the B7 layer. Since Chiu’s graph search method merely
considers intensity changes in the vertical direction (4.2), it also fails to segment the fovea
region layers with strong curvature, as shown in (j) and (l). Moreover, the algorithm
cannot handle the irregular bumps caused by pathologies very well, as observed from
the bottom B9 boundaries detected in (k) and (l). In general, Chiu’s method works very
nicely when retinal structures are flat or smooth without large changes at boundary
locations. As compared to the ground truth in the last row, the results by the proposed
GDM method are the best, as shown in (m)-(p). As analysed in Section 4.3, the gradient
weights defined in (4.4) account for both vertical and horizontal variations, making it
very suitable for both flat and nonflat retinal structures. Hence, GDM is a better clinical
tool for detecting retinal layer boundaries from normal and pathological images.
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Figure 4.10: Comparison of different OCT segmentation methods using healthy and
pathological B-scans. 1st row: original healthy B-scans (first two columns) and patho-
logical B-scans (last two columns); 2nd row: results by the PDS model (4.1); 3rd row:
results by Chiu’s method; 4th row: results by the proposed GDM; 5th row: ground truth.
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The accuracy of the segmentation results by different methods against ground truth
on 30 healthy and 20 pathological B-scans is indicated in Table 4.3 and Table 4.4,
respectively. In order to make the comparison clearer, we plot the data in the tables in
Figure 4.11 and Figure 4.12, respectively.

Table 4.3: Mean and standard deviation of SE (µm), AE (µm) and HD (µm) calculated
using the results of different methods (PDS, Chiu’ method and GDM) and the ground
truth manual segmentation, over 30 healthy OCT B-scans. • (◦) indicates that GDM is
better (worse) than the compared methods (paired t-tests at 95% significance level).

SE (µm) AE (µm) HD (µm)
Boundary PDS Chiu et al. GDM PDS Chiu et al. GDM PDS Chiu et al. GDM
ILM (B1) -3.92±1.90• -1.22±0.68• 0.273±0.33 4.615±2.03• 2.605±1.12• 0.924±0.26 36.56±15.9• 22.12±9.23• 3.702±1.62
RNFLo (B2) -2.57±1.38• -1.67±1.34• -0.53±0.37 3.864±1.49• 2.676±0.82• 1.262±0.34 29.00±11.6• 21.25±5.98• 7.340±2.16
IPL-INL (B3) -0.55±0.83◦ -1.04±1.21• -0.38±0.61 1.876±0.60• 2.020±0.79• 1.314±0.32 8.619±3.77• 10.53±5.25• 7.258±1.92
INL-OPL (B4) 0.012±0.58• -0.90±0.61◦ -0.71±0.71 1.708±0.39◦ 1.699±0.40◦ 1.807±0.51 6.772±2.53◦ 7.036±2.84◦ 7.505±2.96
OPL-ONL (B5) -0.23±1.29• -1.51±1.30• -1.12±1.17 2.127±1.00• 2.133±1.05• 1.949±0.94 10.22±3.70 • 9.044±3.48• 7.463±3.24
ONL-IS (B6) 6.010±0.83• — -0.73±0.49 6.055±0.86• — 1.376±0.36 9.969±1.58• — 4.630±1.05
IS-OS (B7) -0.09±0.61• 0.194±0.49◦ 0.291±0.63 0.823±0.29• 0.720±0.25◦ 0.771±0.36 3.676±1.63• 3.240±1.60• 2.611±0.74
OS-RPE (B8) 5.202±2.25• — -0.78±0.47 5.570±1.76• — 1.125±0.36 8.913±2.28• — 3.601±0.96
RPE-CH (B9) -0.31±0.79• -0.84±0.58• -0.74±0.69 1.291±0.25• 1.228±0.47• 1.213±0.45 4.237±1.47• 4.027±1.31• 3.831±1.08
Overall 0.394±0.39• -1.00±0.54• -0.49±0.23 3.103±0.74• 1.869±0.59• 1.305±0.32 13.11±4.25• 11.04±3.75• 5.327±1.11
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Figure 4.11: Plots of mean and standard derivation obtained by different methods in
Table 4.3 for healthy B-scans. The 1st and 2nd rows respectively show the mean and
standard derivation of SE (µm), AE (µm) and HD (µm) for segmenting boundaries
B1 − B9 using PDS, Chiu’s method and GDM. The overall value is the average result
over all boundaries.
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Table 4.4: Mean and standard deviation of SE (µm), AE (µm) and HD (µm) calculated
using the results of different methods (PDS, Chiu’s method and GDM) and the ground
truth manual segmentation, over 20 pathological OCT B-scans. • (◦) indicates that
GDM is better (worse) than the compared methods (paired t-tests at 95% significance
level).

SE (µm) AE (µm) HD (µm)
Boundary PDS Chiu et al. GDM PDS Chiu et al. GDM PDS Chiu et al. GDM
ILM (B1) -0.41±0.59• -0.34±0.25◦ -0.36±0.29 0.932±0.44• 0.796±0.17• 0.683±0.09 6.461±4.86• 4.087±1.01• 3.337±1.10
RNFLo (B2) -0.93±0.93• -0.38±0.33• -0.49±0.50 1.792±0.63• 1.717±0.53• 1.257±0.32 6.145±1.84• 8.464±4.55• 6.109±2.49
IPL-INL (B3) -0.23±0.62◦ -0.22±0.27◦ -0.32±0.32 1.228±0.21• 1.149±0.20• 0.926±0.16 7.640±1.31• 5.857±0.98• 5.151±1.82
INL-OPL (B4) 0.578±0.64• 0.555±0.39• 0.392±0.26 1.546±0.28• 1.563±0.30• 1.419±0.16 7.165±1.07• 8.194±1.36• 5.942±1.32
OPL-ONL (B5) -0.04±1.08◦ 0.286±0.55• -0.07±0.64 2.371±0.76• 2.255±0.60• 2.019±0.65 11.28±1.95• 9.858±2.76• 9.281±2.25
ONL-IS (B6) 3.339±1.22• — -0.57±0.72 4.484±0.50• — 1.442±0.34 15.23±4.03• — 6.205±1.01
IS-OS (B7) -0.23±0.86• 1.030±1.06• 0.350±0.50 2.415±1.25• 2.399±1.05• 1.055±0.22 15.95±10.2• 17.66±11.3• 6.795±4.65
OS-RPE (B8) 2.371±4.17• — 0.028±0.41 5.927±2.34• — 1.821±0.47 22.63±12.9• — 9.673±1.30
RPE-CH (B9) 3.315±2.59• 3.011±2.98• 0.027±0.35 4.797±2.59• 5.146±2.70• 2.252±0.46 31.23±12.9• 32.63±13.2• 13.19±3.50
Overall 0.863±0.59• 0.563±0.44• -0.11±0.22 2.832±0.83• 2.146±0.70• 1.430±0.20 13.75±4.72• 12.39±4.06• 7.300±0.67
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Figure 4.12: Plots of mean and standard derivation obtained by different methods
in Table 4.4 for pathological B-scans. The 1st and 2nd rows respectively denote the
mean and standard derivation of the SE (µm), AE (µm) and HD (µm) for segmenting
boundaries B1−B9 using PDS, Chiu’s mehtod and GDM. The overall value is the average
result over all boundaries.

In Table 4.3 and Figure 4.11, the SE values show that PDS leads to large segmentation
bias with the largest error being 7.45µm, whilst GDM results in small bias with the largest
error being 0.92µm. The mean SE plot of GDM is close to zero, meaning that GDM is
less biased than PDS and Chiu’s method. Large errors from PDS normally take place at
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B1, B2, B6 and B8, which is consistent with visual inspection on the segmentation results
of healthy B-scans in Figure 4.10. Furthermore, the AE values show that GDM performs
better for most of the segmented boundaries. Particularly at B1 and B2 where the curved
fovea region is located, the HD values from GDM {3.702± 1.62µm, 7.340± 2.16µm} are
significantly lower than those from PDS {36.56± 15.9µm, 29.00± 11.6µm} and Chiu’s
method {22.12± 9.23µm, 21.25± 5.98µm}. However, the accuracy of different methods
are comparable at flat or smooth retinal boundaries such as B4, B7 and B9. Finally, since
the manual segmentation traces small bumps of the true boundaries and the segmentation
results by PDS are however very smooth, the overall accuracy of PDS is the lowest among
all the approaches compared.

In Table 4.4 and Figure 4.12, we can see that GDM is more accurate and robust
compared with the other two methods for pathological data. Larger errors have been found
at the last four boundaries B6, B7, B8 and B9 for all the segmentation methods. This is
because the dry age-related macular degeneration has led irregularities to these retinal
boundaries, making them less accurate and robust. The overall accuracy measured by
the three quantities (SE, AE and HD) has also decreased compared with the counterparts
listed in Table 4.3. Chiu’s method using the Dijkstra’s algorithm can be deemed as a
discrete approximation of the proposed GDM. Therefore, its results are comparable to
the GDM results at some flat retinal boundaries while much better than the PDS results.
However, the fast sweeping algorithm used to solve the Eikonal equation guarantees local
resolution for the geodesic distance, which reduces grid bias significantly and attains
sub-pixel accuracy for the geodesic path result from GDM. In addition to the novel
weight function proposed in (4.4), GDM also resolves the metrication problem caused by
discrete graph methods and thus can achieve more accurate results than Chiu’s method.

In the next section, GDM is used to segment OCT volume dataset that includes
samples from ten healthy adult subjects, named as Volume 1 to 10 respectively. Dufour’s
method and OCTRIMA3D are also used to segment the same dataset for comparison
purposes. In Figure 4.13, we demonstrate four representative segmentation results using
GDM on Volume 1, 2, 7 and 9.

Two representative B-scans in Volume 4 are shown in Figure 4.14 and their segmen-
tation results by the three approaches are shown in Figure 4.15. Note that one B-scan
retinal structures are quite flat and the other contains the nonflat fovea region. Dufour’s
method has lower accuracy than OCTIMA3D and GDM for both cases. OCTRIMA3D
extends Chiu’s method to 3D space and improves it by reducing the curvature in the
fovea region using the inter-frame flattening technique, so the method performs very
well for both flat and nonflat retinal structures. However, there are still some errors at

95



Automated segmentation of OCT images

B5. OCTRIMA3D is able to flatten B1 and in the meanwhile it also increases curvature
of its adjacent boundaries such as B5, which might be the reason leading to the errors.
Compared with the other two, GDM results show less green lines, verifying that the
results are closer to ground truth and thus it is the most accurate among the three
compared. In addition to the 2D visualisation, the 3D rendering of the results segmented
by the three approaches on Volume 4 is given in Figure 4.16. The experiment furthermore
shows that Dufour’s results deviate more from ground truth, while OCTRIMA3D is
better than Dufour’s method and is comparable to GDM. GDM results cover less grey
ground truth and are the best.

Figure 4.13: 3D rendered images of human in vivo intra-retinal layers obtained through
segmenting 3D SD-OCT images with the proposed GDM method. Samples are named
Volume 1, Volume 2, Volume 7 and Volume 9. The colour used for each individual retinal
layer is the same as in Figure 4.2.
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Figure 4.14: Two B-scans extracted from Volume 4. The left shows the en-face representa-
tion of the OCT scan with the overlaid green and red lines representing the corresponding
two B-scans in the right.

Figure 4.15: Comparison between Dufour’s method (left), OCTRIMA3D (middle) and
GDM (right) on the two B-scans in Figure 4.14. The segmentation lines by these methods
are marked with red lines while the manual labelled ground truth with green lines.
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(a) (b) (c) (d) (e) (f) (g)

Figure 4.16: 3D comparison between Dufour’s method, OCTRIMA3D and GDM by
segmenting the intra-retinal layers from Volume 4. Column (a)-(d) are respectively
Dufour’s results, OCTRIMA3D results, GDM results and ground truth. Column (e)-(g)
are respectively the segmentation results of the three methods, overlaid with ground truth.
Row 1-6 represent the B1, B2, B3, B5, B7 and overall retinal layer surfaces, respectively.
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Table 4.5: Comparison of SE (µm), AE (µm) and HD (µm) calculated using the results of
different methods (Dufour’s method, OCTRMIA3D and GDM) and manually segmented
ground truth, for the OPL-ONL (B5) layer surface in each of 10 OCT volumes.

SE (µm) AE (µm) HD (µm)
Volume # Dufour et al. OCTRIMA3D GDM Dufour et al. OCTRIMA3D GDM Dufour et al. OCTRIMA3D GDM

1 -1.194 0.4559 0.3782 2.3816 1.3490 1.0720 25.688 15.273 10.449
2 -2.170 -0.036 -0.128 4.5250 0.9089 0.7814 56.667 11.570 7.0938
3 -2.576 0.4182 0.5983 3.6129 1.3237 1.0989 25.203 16.719 9.5326
4 -2.296 1.0987 0.6774 3.8185 1.5175 1.0753 51.522 18.364 9.6151
5 -1.680 1.3288 0.5909 4.3327 1.5012 0.9005 56.223 11.889 8.8419
6 -2.623 1.0732 0.2974 4.0682 1.4838 0.9493 43.070 19.201 9.5281
7 -2.326 0.5294 0.4529 3.1506 0.9378 0.7433 31.782 8.6701 6.4803
8 -0.636 1.1355 0.6833 2.3955 1.4455 1.0069 25.481 17.930 11.685
9 -4.206 0.3077 0.0859 4.5813 1.0780 0.7678 43.223 8.9694 5.7191
10 -2.648 0.6701 0.2606 4.4903 1.0627 0.7877 41.017 11.666 10.961

Table 4.6: Comparison of SE (µm), AE (µm) and HD (µm) calculated using the results of
different methods (Dufour’s method, OCTRMIA3D and GDM) and manually segmented
ground truth, for the IS-OS (B7) layer surface in each of 10 OCT volumes

SE (µm) AE (µm) HD (µm)
Volume # Dufour et al. OCTRIMA3D GDM Dufour et al. OCTRIMA3D GDM Dufour et al. OCTRIMA3D GDM

1 -0.432 -0.148 -0.019 1.1013 0.5391 0.4437 16.559 4.7616 4.5805
2 0.7476 -0.276 -0.079 2.0329 0.5539 0.3971 20.309 5.2093 3.7743
3 -0.311 -0.291 -0.106 1.4347 0.5406 0.4629 18.432 2.9790 4.0176
4 0.3652 -0.116 0.3363 1.6954 0.5271 0.4601 27.853 5.3672 2.7882
5 0.6057 -0.098 0.0994 1.7567 0.4756 0.3500 26.556 3.7573 3.4150
6 0.9825 -0.592 -0.139 2.4970 0.7247 0.4066 23.487 5.9301 3.9297
7 -1.247 -0.536 0.0237 1.3895 0.7501 0.3716 10.016 3.1398 3.6980
8 -0.311 -0.069 0.1740 1.0438 0.4053 0.3466 15.044 4.2301 4.3940
9 -0.755 -0.111 0.1407 0.8068 0.5422 0.3939 3.5210 3.4263 3.3868
10 -0.099 -0.220 0.1028 1.2941 0.5609 0.4246 13.313 3.1210 3.5361

Table 4.7: Comparison of OSE (µm), OAE (µm) and OHD (µm) calculated from the
results of different methods (Dufour’s method, OCTRMIA3D and GDM) and manually
segmented ground truth, for the overall retinal layer surfaces in each of 10 OCT volumes

OSE (µm) OAE (µm) OHD (µm)
Volume # Dufour et al. OCTRIMA3D GDM Dufour et al. OCTRIMA3D GDM Dufour et al. OCTRIMA3D GDM

1 -1.271 0.3607 0.4338 1.8358 1.1204 0.9538 17.486 9.3358 7.9163
2 -1.161 0.0246 0.0640 2.5380 0.9652 0.7238 29.682 7.7987 6.1267
3 -1.513 -0.052 0.3456 2.1470 0.9343 0.7838 19.985 8.3491 6.9920
4 -1.431 0.4272 0.3560 2.5278 1.0374 0.8667 31.346 9.4042 7.3130
5 -1.020 0.6369 0.5021 2.4119 1.0794 0.8289 32.607 8.6822 7.1379
6 -1.434 0.4216 0.3969 2.6754 1.1371 0.8606 28.629 9.5267 7.2548
7 -2.010 0.0059 0.3283 2.2458 0.9682 0.7407 21.788 7.0644 6.8279
8 -1.031 0.5815 0.5785 1.7462 1.1063 0.9067 17.610 10.100 8.5112
9 -1.951 0.0542 0.2014 2.1368 0.8771 0.6922 21.344 5.7482 5.4794
10 -1.513 0.1022 0.2109 2.3315 0.8397 0.6596 24.841 6.3250 6.7132

Table 4.5-4.7 contain the quantitative accuracy comparison of the three methods on
10 OCT volumes. Table 4.5 shows the results for layer boundary B5 around the fovea
region, while Table 4.6 presents the results for boundary B7 which is flatter and smoother.
In Table 4.5, the SE values indicate that Dufour’s method produces larger segmentation
bias than OCTRIMA3D and GDM. The SE values by GDM are in the range of [-0.128µm
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0.6833µm], showing less variability than those by the other two methods. Moreover,
GDM leads to the smallest AE and HD values in all 10 cases, indicating that GDM is
the most accurate among all the methods. Compared with Table 4.5, Table 4.6 shows a
significant improvement of all the methods. For example, the range of the HD values by
Dufour’s method has dropped from [25.688µm 56.667µm] to [3.521µm 27.853µm]. In
addition, the accuracy gap between OCTRIMA3D and GDM has been reduced, and in
Volume 3, 7 and 10 the HD values by OCTRIMA have even become smaller than those
by GDM. These improvements are due to the fact that the retinal layer boundary B7

is flatter and smoother than B5. From the values of OAE and OHD in Table 4.7, we
observe that the accuracy of GDM is the highest for the segmentation of total retinal
boundaries from each of 10 OCT volume.
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Figure 4.17: Boxplots for SE (µm), AE (µm), HD (µm), OSE (µm), OAE (µm) and
OHD (µm) obtained by different methods in Table 4.5-4.7 for 10 OCT volumes. 1st row:
boxplots of Table 4.5; 2nd row: boxplots of Table 4.6; 3rd row: boxplots of Table 4.7.

The corresponding boxplots of Table 4.5-4.7 are shown in Figure 4.17. These boxplots
show that the proposed GDM method performs consistently better, with higher accuracy
and lower error rates for both flat and nonflat retina layers. There is little variation in
performance across different structures and even in the worst case scenario the proposed
method yields lower error rate than the average performance of other methods. In
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Figure 4.18 we present 3D plots of the SE, AE and HD values computed by the three
methods on the 10 volumes. For GDM, its SE values are closer to zero and its AE and
HD values remain smaller. The overall distribution of these data points also indicates
that the GDM results are less oscillating. We can thus conclude that GDM performs the
best among all the methods compared for extracting intra-retinal layer layers from 3D
OCT volumes.
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Figure 4.18: 3D plots of SE (µm), AE (µm) and HD (µm) obtained using Dufour’
method, OCTRMIA3D and GDM on 10 OCT volumes.

101



Automated segmentation of OCT images

4.4.5 Computational time

In this section the performance of the different approaches in terms of the computation
time is demonstrated. We implemented PDS, Chiu’s method and GDM using Matlab
2014b on a Windows 7 platform with an Intel Xeon CPU E5-1620 at 3.70GHz and
32GB memory. For a 633× 496 sized B-scan, with initialisation close to the true retinal
boundaries, it takes 3.625s (500 iterations) for PDS to detect two parallel boundaries.
Chiu’s method needs 1.962s to detect one layer boundary, while GDM only takes 0.415s.
Note that the time complexity of Chiu’s graph search method is O(|E|log(|V |)), where |V |
and |E| are the number of nodes and edges and |V | = MN and |E| = 8MN in boundary
detection in an image. Hence the time complexity of the method is O(MNlog(MN)). In
contrast, our GDM solved using fast sweeping has linear complexity of O(MN), which is
more efficient than Chiu’s method. For 3D segmentation, OCTRMIA3D explores spatial
dependency between two adjacent B-scans and applies Chiu’s method to each 2D slice
independently. OCTRMIA3D is thus able to track retinal boundaries in 3D OCT images
efficiently. It was reported in [155] that the processing time of the OCTRMIA3D for
the whole OCT volume of 496 × 644 × 51 voxels was 26.15s, which is faster than our
GDM (40.25s is used to segment a 496× 633× 10 sized volume). Finally, Dufour’s graph
method needs 14.68s to detect the six intra-retinal layer boundaries on a 496× 633× 10
sized volume. Dufour’s method was implemented using a different programming language
(C) and it detected different number of retinal layers from that of GDM, so comparison
cannot be made between the two methods.

4.5 Summary

In this chapter, we presented a new automated retinal layer segmentation method based
on the geodesic distance for both 2D and 3D OCT images. The method integrates
horizontal and vertical gradient information and can thus account for intensity changes
in the both directions. Furthermore, the exponential weight function employed within
the approach enhances the foveal depression regions and weak retinal layer boundaries.
As a result, the proposed method is able to segment complex retinal structures with
large curvatures and other irregularities caused by pathologies. Extensive numerical
results, validated with ground truth, demonstrate the effectiveness of proposed method
for segmenting both normal and pathological OCT images. The proposed method has
achieved higher segmentation accuracy than the state of the art methods compared, such
as the parametrised active contour model and the graph theoretic based approaches.
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4.5 Summary

Ongoing research includes integrating the segmentation framework into a system for
detection and quantification of retinal fractures and other eye diseases.
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Chapter 5

Surface reconstruction from point
clouds

5.1 Introduction

Reconstructing an accurate and smooth 3D surface from a point cloud is a challenging
problem as the point cloud consists of unorganised and unconnected points. In general,
there are two approaches to represent a surface: explicit or implicit. Explicit repre-
sentation [165, 166] describes the location of points as well as the local geometry of a
surface explicitly. It can be accurate and efficient, but less robust and less flexible in
handling arbitrary and dynamically changing surface topology. Implicit representation
[2, 167, 168] usually constructs a surface as an evolving level set function [169], starting
with an initial surface. This approach is topologically flexible and robust in dealing with
noisy and non-uniform point clouds [167, 168].

One of the most successful implicit surface reconstruction methods based on the
variational level set method was proposed by Zhao et al. [2, 170]. The model however
has some drawbacks. First, periodical reinitialisation is needed to keep the evolving level
set close to a signed distance function to maintain stable surface evolution. This is a
tedious and expensive procedure and may even cause the surface to shrink [171]. Second,
the model is non-convex, and the reconstruction result is sensitive to the initial condition.
In addition, if the point cloud contains fine details or concave regions, the evolving level
set surface often gets stuck in a local minimum even if the initial surface is very close to
the true surface.

To overcome the problems with existing implicit reconstruction methods, in this
chapter we introduce a novel variational model for reconstructing accurate surfaces
from point clouds. We transform the surface reconstruction problem into an implicit
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Surface reconstruction from point clouds

image segmentation problem. To do so, we will need to create an edge indicator, an
enclosed image and an initial surface directly from the given point cloud. The edge
indicator function provides information about the precise location of the surface (to be
reconstructed). The enclosed image provides a indication of a grid point to be inside or
outside of the surface. The initial surface provides a good initialisation for the level set
function used in the proposed model.

There are two main steps in our reconstruction process. Step 1: a distance function
is derived from a point cloud using the fast sweeping algorithm. It is then used: 1) as
an edge indicator function, 2) to calculate an image (2D or 3D) enclosed by the point
cloud, and 3) to find an initial surface. Step 2: this initial surface is then evolved by the
proposed variational level set model, which effectively integrates the edge indicator and
the image derived from Step 1. Gradient descent optimisation is then adopted to minimise
the proposed variational model and thereby accurately reconstruct the surface from a
given point cloud. Experiments show that the proposed method is more accurate than
state-of-the-art methods including the Poisson method [172]. The two reconstruction
steps are detailed in the following sections.

5.2 The initial image and the edge indicator

5.2.1 Calculation of distance function using fast sweeping

One of the earliest successful implicit surface reconstruction methods was developed by
Zhao et al. [2, 170]. Assume we have a unorganised point cloud {xi}, where x ∈ Ω and
i = 1, ..., N (N is the number of the point cloud). The reconstructed surface/curve is
obtained by minimising the weighted geodesic active contour (GAC) energy

E (Γ) =
∫

Γ
d (x)dΓ, (5.1)

where Γ is a curve in R2 and a surface in R3. dΓ is the arc length element or the surface
parametrisation. The variational method is known as the GAC model or snake model,
which was first proposed in [173] and extended to the level set framework by Caselles,
Kimmel, and Sapiro [174]. d(x) in (5.1) is the distance function of the point cloud, which
satisfies the following Eikonal equation

|∇d(x)| = W (x), ∀x ∈ Ω\ {xi} , (5.2)
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5.2 The initial image and the edge indicator

where
W (x) = 1

and
d(xi) = 0, ∀x ∈ {xi} .

Appendix B shows the detailed implementation of (5.2) using fast sweeping [11, 175]
in both 2D and 3D. Figure 5.1 (c) and (d) show the distance maps calculated from the
point clouds (a) and (b) using fast sweeping. The distance d(x) is further used as an
edge indicator function to derive an initial image enclosed by the point cloud.

(a) (b)

(c) (d)

Figure 5.1: Calculating the distance function for the original point cloud. (a)-(b) are
2D and 3D point clouds respectively. (c) is the distance function for (a). (d) is a cross
sectional view of the distance function for (b).

5.2.2 Initial image calculation using the distance function

In [167], the authors calculate the image enclosed by a point cloud using a distance
function d(x) calculated from the point cloud. Suppose an image f(x) is given, then a
natural choice of an edge indicator function for f(x)

g (x) = 1
ε + |∇f(x)|p ,
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where p and ε are positive parameters, and g is close to zero at edge locations. The next
step is to view the distance function d(x) as the edge indicator, i.e., g(x) = d(x). By
regularising the distance function through g(x) = d(x) + ε. The initial image f(x) is
calculated by solving the following Eikonal equation

|∇f(x)| = 1
ε + g(x)1/p

.

(a) (b)

(c) (d)

Figure 5.2: Finding enclosed image from annular binary images. (a) and (b) are two
annular binary images. (c) and (d) are the images calculated from (a) and (b) respectively.
(b) and (d) are cross sections of the corresponding images.

In [168], the authors used the inner product field to give a good indication of interior
and exterior regions of a point cloud. The underlying idea to computing an image f(x)
is given by

f (x) = (x− cp (x)) · n (cp (x)) .

At a point x in the domain Ω, cp(x) denotes a point on the point cloud that is closest to
x, and n(cp(x)) is the outward normal at cp(x). The calculated f(x) is positive when x

is outside the point cloud and negative when x is inside the point cloud.
We propose a simpler method to compute the initial image enclosed by the point

cloud, which is different from the above two methods. Specifically, we first threshold the
distance function d(x) in (5.2) to get an annular binary image I(x), as shown in the first
two images in Figure 5.2. The fast sweeping algorithm is then used on I(x) to find the
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(a) (b)

(c) (d)

Figure 5.3: Calculate a signed distance function from the binary image. (a) and (b) are
two binary images. (c) and (d) are corresponding signed distance maps of (a) and (b)
respectively. (b) and (d) stand for one slice of the 3D data.

image. Mathematically, W (x) = I(x) replaces W (x) = 1 on the right-hand side of (5.2),
rendering d(x) no longer a distance function. To solve d(x) using fast sweeping with
eight directional sweeping Gauss-Seidel iterations, the grid points on the 6 boundary
faces in the domain Ω are set to zero and other interior grid points are set to very large
values. Once d(x) are found, and the image is set to f(x) = d(x), as shown in the last
two images in Figure 5.2. f(x) is then used to find a good initial surface to speed up
the level set evolution in Section 5.5. f(x) is first thresholded to obtain a new binary
image shown in the first two images in Figure 5.3. A simple algorithm (such as March
Cube) can be employed to find all the points {x̃i} on the boundary of the object in the
binary image. These new points {x̃i} are very close to the original unorganised point
cloud {xi}. The fast sweeping algorithm is applied again to the new point cloud {x̃i} to
obtain a signed distance function φ0 with the sign information obtained from the binary
image (i.e., inside is negative and outside is positive). φ0 now is a good initialisation for
the proposed method in Section 5.5.
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5.3 Mathematical representation of implicit surfaces

After the initial image f(x) and distance function d(x) are obtained from the point
cloud, the implicit surface reconstruction problem can be posed as a variational image
segmentation problem. We will first introduce how to mathematically define an implicit
closed curve C (surface in 3D) and its corresponding arc length term. The theory can be
easily extended to higher dimensions. A new variational level set segmentation model,
that use the arc length term defined by an implicit contour, will be proposed subsequently
for surface reconstruction.

5.3.1 Implicit contours

Implicit contours are contours of the form

C = {x ∈ Ω | φ (x) = 0} . (5.3)

which means that the contour C is given by the zero level set of a function φ : Ω→ R
A number of well-known segmentation methods have been formulated in terms of

implicit contours. The initial contour is embedded in a surface, for example by the signed
distance function. The contour evolution is replaced by an evolution of the embedding
surface, and the corresponding contour at a given time is obtained by determining the
zero level set of the evolving surface.

Implicit contour representation has several advantages and disadvantages:

+ The evolving contours can be automatically adapted to topological changes (i.e.,
contours can be merging or spiting), as shown in Figure 5.4.

+ The evolution of level set function is on fixed grids on which the grid points never
collide or drift apart. This guarantees the stability of contour evolution as well as
permits the usage of high efficient numerical scheme.

− As contours are expressed implicitly, the computational space is extended from two
dimension to three dimension. The computational cost thus becomes much more
expensive.

− Without touching the image boundaries, single level set function can only represent
closed curves in the image. To define open curves, at least two level set functions
are required, which further reduces the computational speed.
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5.3 Mathematical representation of implicit surfaces

Figure 5.4: Level set evolution. 1st row: 3D level set functions with their zero level sets
marked in black. 2nd row: zero level set contours. This example shows level set methods
can automatically adapt to topological changes (i.e., contours merging or spiting).

5.3.2 Length of implicit contours

So far, we have introduced how to represent a moving contour with an implicit expression.
It is yet remaining unclear that what the explicit mathematical expression of the length
of a curve is. Therefore, it is infeasible to derive the Euler-Lagrange equations of the
variational formulations and apply a straightforward numerical scheme to implement
them. Technically, to implicitly define the length of a contour, it often requires the
introduction of the Heaviside and Dirac functions, which are defined as

H (x) =
 1 x ≥ 0

0 x < 0
and δ (x) = d

dx
H (x) , (5.4)

where the Dirac function is the derivative of the Heaviside function in the distributional
sense. According to the coarea formula of a binary function, we have

|C| =
∫

Ω
|∇H (φ)|dx =

∫
Ω
|∇φ| δ (φ)dx. (5.5)

Here Ω ⊂ Rn and n=2 and 3 receptively denote 2D image and 3D image spaces. Function
φ normally stands for the signed distance function, a commonly used level set function.
Note that by applying formulation (5.5), the original length |C| has been converted to a
higher dimensional space Ω. As (5.5) combines both the level set method and variational
framework, energy functionals that are utilising such term is normally referred to as
variational level set methods [119–123, 65].
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Nevertheless, the respective energies that involve (5.5) are not convex and can
only determine local optima, meaning that different initialisations will lead to different
segmentation results. Since 2005, researchers have proposed novel variational approaches
which aim to approximate the original energies with convex functionals. Rather than
minimising the original energy locally, they minimise an approximation of the original
energy globally. For a two-region image segmentation problem, this can be done by using
following convex length term instead of (5.5)

|C| =
∫

Ω
|∇u|dx, (5.6)

where u : Ω→ {0, 1}, Ω = Ω1 ∪ Ω2, u (x) = 1 if x ∈ Ω1 and u (x) = 0 if x ∈ Ω2. Chan et
al. [176] then employ the relaxation technique by simply dropping the constraint that u

must be binary. They allow u to take on values in the entire interval [0, 1], which is the
convex hull of the original domain {0, 1}. Afterwards, the problem becomes a convex
relaxation optimisation problem, which guarantees a global optimum and can be solved
by more sophisticated convexification algorithms in addition to the gradient descent flow.

5.4 Convexified variational methods for image seg-
mentation

In this section, we introduce some state-of-the-art convexified variational image segmen-
tation methods that will be compared against the proposed method for the purpose of
implicit surface reconstruction.

5.4.1 Convex relaxation model based on binary function

One popular segmentation method using (5.6) as an implicit length term is as follows

min
u∈[0,1],c1,c2

{∫
Ω
|∇u|dx + λ

∫
Ω

Q (c1, c2)udx
}

. (5.7)

Above Q(c1, c2) = (c1 − f(x))2 − (c2 − f(x))2, where f(x) is a given image that is not
necessarily binary and c1, c2 are two constants. The above model is a convex constrained
version of the original Chan-Vese model [177], because the relaxation technique is
employed to relax u to [0, 1]. The functional in (5.7) is convex in u and (c1, c2), separately.
However, it is not biconvex. In fact, (5.7) coincides with the piecewise constant Mumford-
Shah segmentation model. In [126], the authors modified the problem to incorporate
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information from an edge indicator function and proposed the weighted total variation
(TV) regularisation. Their method has the form of

min
u∈[0,1],c1,c2

{∫
Ω

g (x) |∇u|dx + λ
∫

Ω
Q (c1, c2)udx

}
, (5.8)

where g(x) is an edge indicator function, which is equivalent to the distance function
d(x) in the surface reconstruction problem. In fact, the weighted TV term in (5.7) alone
is the geodesic active contour model (5.1) with convex binary length approximation. The
proof of convexity of (5.4.2) with respect to u can be found in Theorem 3 in [126]. This
weighted term identifies objects using the edge indicator function, which takes small
values near boundaries (where the image gradient is large) and large values where the
image is smooth. Analogously, in surface reconstruction this term is small near or on the
scattered points, and becomes increasingly large further away from the point cloud.

Once this optimisation problem is solved, the reconstructed surface is found by
thresholding the level set function to get

Ω = {x : u (x) > α} (5.9)

for some α ∈ (0, 1).
In summary, (5.7) approach for surface reconstruction proceeds as follows

1: while “not converged” do
2: Define Qk = (ck

1 − f)2 − (ck
2 − f)2

3: Solve uk = min0≤u≤1
{∫ k

Ω g (x) |∇u|dx + λ
∫

Ω Qudx
}

4: Find Ωk = x : uk(x) > α

5: Update ck+1
1 =

∫
Ωk fdx and ck+1

2 =
∫

(Ωk)c fdx

6: end while

The bottleneck of this segmentation algorithm is the computation of the minimiser
of step 3 above. The split Bregman approach, which has been introduced to minimise
the different variational denoising model in Chapter 2, can be adopted to minimise this
problem. Such method has the advantage of being a more efficient solver for step 3.

5.4.2 Convex formulation based on mean curvature motion

In this section, we show how the GAC/snake model (5.1) can be well approximated using
the convex TV functional. Conventional techniques for evolving the GAC contour rely
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on the following explicit discretisations of the gradient flow

∂tC = (dκ− ⟨∇d,N⟩)N . (5.10)

Equivalently to (5.10), in [178] Chambolle introduced an implicit scheme that evolves
the contour using a sequence of convex variational problems involving the TV functional.
The derivation presented here follows the approach presented in [179, 180], which adapts
Chambolle’s mean curvature motion to the GAC energy. Given an initial curve C, let sC

be its representation as a signed distance function and now consider the following convex
minimisation problem

φ∗ = arg min
φ

{∫
Ω

d (x) |∇φ|dx + 1
2h

∫
Ω

(φ− sC)2dx
}

. (5.11)

Again we recall d(x) here is the distance function computed from those discrete points,
which is equivalent to an edge indicator. Now assume the new curve C ′ is the zero level
set of the level set function φ∗(x), that is, C ′ = {x : φ∗(x) = 0}. We now show that this
process of obtaining C ′ from C is equivalent to applying discretistiaon of (5.10) to the
initial curve C. The Euler-Lagrange equation for (5.11) reads

−d∇ ·
(
∇φ

|∇φ|

)
−
〈
∇d,

∇φ

|∇φ|

〉
+ 1

h
(φ− sC) = 0.

If we choose x ∈ C ′, then φ∗(x) = 0 and

sC (x) = −h

[
d∇ ·

(
∇φ

|∇φ|

)
+
〈
∇d,

∇φ

|∇φ|

〉]
(x)

= −h [dκ− ⟨∇d,N⟩] (x) ,

(5.12)

where κ and N respectively denote the mean curvature and normal to C ′. If x0 on C is
the projection of x on C ′, and N (x0) is the exterior normal to C. Then we have

x = x0 + sC(x)N (x0). (5.13)

Then substituting (5.12) to (5.13) gives

x = x0 − h [dκ− ⟨∇d,N⟩]N (x0), (5.14)
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which corresponds to the discretisation of the GAC motion given in Equation (5.10),
with time step h. Minimising solution of (5.11) thus provides an approximation of the
evolution flow of GAC with time step h.

In summary, the following TV-based algorithm can be used for the evolution of the
GAC model.
1: while “not converged” do
2: Define φk+1 = arg minφ{

∫
Ω d (x) |∇φ|dx + 1

2h

∫
Ω (φ− sk)2dx}

3: sk+1 = SDF (φk+1)
4: end while

To reconstruct a surface from the point cloud {xi}, we need an additional data fidelity
term related to the image f(x) calculated from the point cloud. In this case, step 2 is
modified to

φk+1 = arg min
φ

{∫
Ω

d (x) |∇φ|dx + 1
2h

∫
Ω

(
φ− sk

)2
dx + λ

∫
Ω

Q (c1, c2)φdx
}

. (5.15)

In the algorithm, SDF (φ) denotes the signed distance function obtained by re-initialising
φ, which can be achieved by applying the fast sweeping to the zero level set of φ, or using
the reinitalisation method in [181–183]. The advantages of this algorithm are threefold:
First, the TV-based formulation of the GAC model allows to use much larger time steps
than the standard explicit discretisation, and thus the speed of the algorithm is not
limited by the CFL condition [184]. Second, the model (5.11) is convex, meaning that
given sC there is an unique φ to be solved. This makes the algorithm robust to the
initialisation of φ. Third, it can be easily and efficiently implemented using a fast TV
solver, such as the split Bregman method introduced in Chapter 2 or [180]. However,
the overall algorithm presented here is iterative, which means that several weighted TV
problems need to be solved. Also, the signed distance function φk must be recomputed
at each iteration. This makes it less efficient than the convex methods introduced in
Sections 5.4.1 and 5.4.3.

5.4.3 TVG-L1

Another convexified binary image segmentation model is the TVG-L1 model proposed in
[126]. which has the form of

min
u

{∫
Ω

g (x) |∇u|dx + λ
∫

Ω
|u− f |dx

}
, (5.16)
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Figure 5.5: Comparison between the TVG-L1 model (5.16) and the TV model (5.17).
1st row: results from TGV-L1 with different λ. 2st row: results from TV with different
λ. λ used in (5.16) and (5.17) is decreasing from left to right.

where the first term is the edge weighted TV-norm and the second term volumetric L1
data fidelity term. u is the function close to binary, and f ∈ [0, 1] is the given image.
Note that if we drop g in (5.16), the model is simply TV-L1. Next, let us recall the TV
denoising minimisation problem and compare TV and TVG-L1 in detail

min
u

{∫
Ω
|∇u|dx + λ

∫
Ω

(u− f)2dx
}

. (5.17)

The differences between them (5.17) and (5.16) are the introduction of the weighted
TV-norm and the replacement of the L2-norm by the L1-norm as a fidelity measure.
These modifications have two important consequences. First, the L1-norm, which has
been widely studied in [185–188], outperforms the standard TV model with the L2-norm
for some applications and presents important geometric properties concerning global
minimisers of functionals. Second, the introduction of the weight function g in the
TV-norm build a link between the GAC model and the weighted TV-norm. To further
compare the standard TV model (5.17) with the TVG-L1 model (5.16), we develop the
experiment shown in Figure 5.5.
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As can be seen from Figure 5.5, TVG-L1 with the L1-norm fidelity better preserves
the contrast and the order in which the squares disappear is completely determined in
terms of the geometry (i.e., area) of the squares. Conversely, TV with the L2-norm
fidelity results in contrast loss, does not have any geometry interpretation, and cannot
preserve important geometric properties, such as corners.

We note that in the surface reconstruction problem, if f in TVG-L1 is close to a
binary image, the minimiser is also close to a binary image with sharp transitions located
at the places where g(x) (i.e., d(x)) is small. Efficient algorithms are available for the
convex TVG-L1 minimisation problem. For example, the split Bregman can be adopted.
Here, we consider to use the first order primal dual projection method, which is fast and
easier to implement. In the following, we develop such an algorithm for TVG-L1 for
surface reconstruction.

First, we introduce an auxiliary variable v to decouple u in (5.16) and reformulate it
to the problem

min
u,v

{∫
Ω

g|∇u|dx+λ
∫

Ω
|v|dx + 1

2θ

∫
Ω

(u + v − f)2dx
}

, (5.18)

where θ is a positive penalty parameter. In theory, if θ → 0, (5.18) is exactly the TVG-L1
model (5.16). However, practice showed that the algorithm is robust even when θ is large.
The problem (5.18) is a convex optimisation problem with respect to two variables u

and v, which can be solved efficiently with the fast alternating minimisation technique.
We first solve the problem (5.18) for u by fixing v. The resulting minimisation problem
becomes

min
u

{∫
Ω

g|∇u|dx+ 1
2θ

∫
Ω

(u + v − f)2dx
}

, (5.19)

which is similar to the TV model (5.17). The only difference lies in the edge weighted
TV-norm used in (5.19). We can solve this problem using the fast primal dual projection
method proposed in [189] with an extrapolation step as follows

ξk+1 = Pr ojK
(
ξk − σ∇Uk

)
uk+1 = f − v − θ∇ · ξk+1

Uk+1 = uk+1 + α
(
uk+1 − uk

) , (5.20)

where ξ is the dual variable and σ is a time step. In order to ensure that the iterative
scheme remains stable, σ ≤ 1/8. α ∈ (0, 2) is an over- or under-relaxation factor. It is
normally set to 1 for fast convergence. Pr ojK denotes the back projection on set K, i.e.,
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{x : |ξ (x)| ≤ 1}, and it is defined as

Pr ojK (ξ) = ξ

max (|ξ| , g) .

After u is solved using (5.20), we need to optimise the following problem for v

min
v

{
λ
∫

Ω
|v|dx + 1

2θ

∫
Ω

(u + v − f)2dx
}

, (5.21)

which is solved analytically by the 1D shrinkage equation as follows

v =


f − u− λθ if f − u ≥ λθ

f − u + λθ if f − u ≤ −λθ

0 if |f − u| ≤ λθ

.

5.5 The proposed variational level set method

We propose a local optimisation technique based on the level set method for the surface
reconstruction task. There are two main reasons for this choice: 1) in numerical studies,
our reconstructed targets are all single closed object, so the proposed model has few
minima such that local optimisers can be expected to produce similar results as those of
global optimisers; 2) compared to the aforementioned convex optimisation problems, in
our case even local extrema represent a sensible segmentation of a given input image.
In fact, in our case a local optimum is often more desirable, because it corresponds to
the closest segmentation for a given initialisation. The truth is that we have already
obtained a nice initialisation that is very close to true segmentation in Section 5.2.2.

5.5.1 The proposed variational model

The functional of the proposed variational model consists of three energy terms, which
read

E(φ, c1, c2) = ER(φ) + λEI(φ, c1, c2) + βEB(φ). (5.22)

The first term ER is a regularisation term to keep the reconstructed surface smooth while
maintain the level set function φ as a signed distance function:

ER(φ) =
∫

Ω
d(x)|∇H(φ)|dx + µ

2

∫
Ω
(|∇φ| − 1)2dx, (5.23)
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where d(x) is the distance function calculated from the original point cloud {xi} in
Section 5.2.1, and µ is a positive parameter penalising the deviation of φ from a signed
distance function. Larger µ leads to more similarity between φ and the signed distance
function. The first term in this functional is equivalent to the GAC model (5.1) under
the level set framework. It still can be understood as the weighted TV-norm as before.
The second term is to ensure that the level set function φ remains a signed distance
function, thus eliminating the need of reinitialisation.

The second data fitting term EI incorporates the information derived from the dataset
which is given by

EI(c1, c2, φ) =
∫

Ω
Q(c1, c2)H(φ)dx, (5.24)

where c1 and c2 represent the mean values inside and outside of the zero level set of φ.
Q(c1, c2) = (c1 − f(x))2 − (c2 − f(x))2, and f(x) is the image computed from Section
5.2.2. This term follows the work of the two-phase piecewise constant Chan-Vese model
[177] to maintain regions of similar intensity values. The term can help improve the
accuracy of reconstruction by capturing fine features of the object with similar intensity
values. The penalty parameter λ on this term in (5.22) is positive.

The third balloon force term EB includes the area information inside the zero level
set of φ to speed up surface evolution as well as segment concave objects:

EB(φ) =
∫

Ω
d(x)H(−φ)dx. (5.25)

The parameter β for this term can be positive or negative depending on whether inside
or outside of the zero level set. If the initial boundary is placed outside the object, the
coefficient takes a positive values so that the zero level set can shrink during level set
evolution. If the initial boundary is placed inside the object, the coefficient takes a
negative value to expand the boundary.

The proposed model (5.22) can be solved by an optimization procedure. First φ is
fixed to optimise c1 and c2 as follows

c1 =
∫

Ω fH(φ)dx∫
Ω H(φ)dx

and c2 =
∫

Ω f(1−H(φ))dx∫
Ω(1−H(φ))dx

.

Then c1 and c2 are fixed using the following gradient descent flow starting with φ = φ0

to minimise (5.22), where φ0 comes from Section 5.2.2.

∂φ

∂t
=
(
∇·
(

d
∇φ

|∇φ|

)
− λQ(c1, c2) + βd

)
δ(φ) + µ

(
∆φ−∇·

(
∇φ

|∇φ|

))
. (5.26)
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In practice, the Heaviside function H(φ) and Dirac function δ(φ) in (5.22) and (5.26) are
approximated by their regularised versions with a small positive number ϵ

Hϵ(φ) = 1
2 + 1

π
arctan

(
φ

ϵ

)
,

δϵ(φ) = 1
π

ϵ

ϵ2 + φ2 .

5.5.2 3D discretisation with finite difference scheme

∇ ·
(

d
∇φ

|∇φ|ε

)
i,j,k

= di,j+ 1
2 ,k

∂+
x φi,j,k√

(∇+
x φi,j,k)2 +

(
∇0

yφi,j+ 1
2 ,k

)2
+
(
∇0

zφi,j+ 1
2 ,k

)2
+ ε2

−di,j− 1
2 ,k

∂−
x φi,j,k√

(∇−
x φi,j,k)2 +

(
∇0

yφi,j− 1
2 ,k

)2
+
(
∇0

zφi,j− 1
2 ,k

)2
+ ε2

+di+ 1
2 ,j,k

∂+
y φi,j,k√(

∇+
y φi,j,k

)2
+
(
∇0

xφi+ 1
2 ,j,k

)2
+
(
∇0

zφi+ 1
2 ,j,k

)2
+ ε2

−di− 1
2 ,j,k

∂−
y φi,j,k√(

∇−
y φi,j,k

)2
+
(
∇0

xφi− 1
2 ,j,k

)2
+
(
∇0

zφi− 1
2 ,j,k

)2
+ ε2

+di,j,k+ 1
2

∂+
z φi,j,k√

(∇+
z φi,j,k)2 +

(
∇0

xφi,j,k+ 1
2

)2
+
(
∇0

yφi,j,k+ 1
2

)2
+ ε2

−di,j,k− 1
2

∂−
z φi,j,k√

(∇−
z φi,j,k)2 +

(
∇0

xφi,j,k− 1
2

)2
+
(
∇0

yφi,j,k− 1
2

)2
+ ε2

(5.27)

In order to evolve the level set function φ in (5.26), discretisations are needed for
∇ · (d ∇φ

|∇φ|) and ∇ · ( ∇φ
|∇φ|) in 3D based on the finite difference scheme. Let Ω → RMNL

denote the 3D grid space of size MNL. The second order coupled (with the distance
function d) curvature term ∇ · (d ∇φ

|∇φ|) at voxel (i, j, k) can be discretised as (5.27), where
ϵ is a small positive number to avoid division by zero. Note that the half-point difference
scheme is used here for (5.27) in order to satisfy rotation-invariant characteristics. The
distance function d on half-points between each two integer voxels are given as

di,j+ 1
2 ,k = di,j+1,k + di,j,k

2 , di,j− 1
2 ,k = di,j−1,k + di,j,k

2

di+ 1
2 ,j,k = di+1,j,k + di,j,k

2 , di− 1
2 ,j,k = di−1,j,k + di,j,k

2
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5.5 The proposed variational level set method

Figure 5.6: 3D grid space for calculating the discrete differential operators used in
equation (5.27). Sphere dots (yellow) represent voxels. Cube points (blue) are half points
between two integer voxels.

di,j,k+ 1
2

= di,j,k+1 + di,j,k

2 , di,j,k− 1
2

= di,j,k−1 + di,j,k

2
The first order forward ∂+

x and backward ∂−
x discrete derivatives along x, y and z

directions on voxel (i, j, k) can be defined as

∂+
x φi,j,k = φi,j+1,k − φi,j,k, ∂−

x φi,j,k = φi,j,k − φi,j−1,k

∂+
y φi,j,k = φi+1,j,k − φi,j,k, ∂−

y φi,j,k = φi,j,k − φi−1,j,k

∂+
z φi,j,k = φi,j,k+1 − φi,j,k, ∂−

z φi,j,k = φi,j,k − φi,j,k−1

The central differences are applied to approximate the following discrete first order
derivatives on half-points between each two integer voxels in (5.27).

∇0
yφi,j+ 1

2 ,k = φi+1,j+1,k + φi+1,j,k − φi−1,j+1,k − φi−1,j,k

4

∇0
zφi,j+ 1

2 ,k = φi,j+1,k+1 + φi,j,k+1 − φi,j+1,k−1 − φi,j,k−1

4
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∇0
yφi,j− 1

2 ,k = φi+1,j,k + φi+1,j−1,k − φi−1,j,k − φi−1,j−1,k

4

∇0
zφi,j− 1

2 ,k = φi,j,k+1 + φi,j−1,k+1 − φi,j,k−1 − φi,j−1,k−1

4

∇0
xφi+ 1

2 ,j,k = φi+1,j+1,k + φi,j+1,k − φi+1,j−1,k − φi,j−1,k

4

∇0
zφi+ 1

2 ,j,k = φi+1,j,k+1 + φi,j,k+1 − φi+1,j,k−1 − φi,j,k−1

4

∇0
xφi− 1

2 ,j,k = φi,j+1,k + φi−1,j+1,k − φi,j−1,k − φi−1,j−1,k

4

∇0
zφi− 1

2 ,j,k = φi,j,k+1 + φi−1,j,k+1 − φi,j,k−1 − φi−1,j,k−1

4

∇0
xφi,j,k+ 1

2
= φi,j+1,k+1 + φi,j+1,k − φi,j−1,k+1 − φi,j−1,k

4

∇0
yφi,j,k+ 1

2
= φi+1,j,k+1 + φi+1,j,k − φi−1,j,k+1 − φi−1,j,k

4

∇0
xφi,j,k− 1

2
= φi,j+1,k + φi,j+1,k−1 − φi,j−1,k − φi,j−1,k−1

4

∇0
yφi,j,k− 1

2
= φi+1,j,k + φi+1,j,k−1 − φi−1,j,k − φi−1,j,k−1

4
To discretise the curvature term ∇· ( ∇φ

|∇φ|), we set di,j+ 1
2 ,k = di,j− 1

2 ,k = di+ 1
2 ,j,k = di− 1

2 ,j,k =
di,j,k+ 1

2
= di,j,k− 1

2
= 1 in (5.27).

5.6 Experiments

Some 2D and 3D reconstruction results using the proposed method are presented. In
Figure 5.7, a 2D contour is given of the dataset shown in Figure 5.1 (a). The initial
contour obtained in Section 5.2.2 is very close to the true point cloud, which can speed
up convergent rate. As the evolution proceeds, the reconstruction by Zhao’s method [2]
loses the small features of the original data (i.e., the two convex parts). However, the
term (5.24) in the proposed model is able to preserve these features.

Figure 5.8 shows the reconstructed 3D surface of the Bunny point cloud shown in
Figure 5.1 (b). Zhao’s method failed to reconstruct Bunny’s ears and feet, while the
proposed method succeeded. In addition, we compare our method with the Poisson
reconstruction [172], where the authors show that surface reconstruction from oriented
points can be cast as a spatial Poisson problem. They considered the relationship between
the gradient of indicator function and an integral of the surface normal field. In detail,
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(a) (b) (c) (d)

(e) (f) (g)

Figure 5.7: Comparison of the proposed model (5.22) with the Zhao’s method described
in [2]. (a): Initialisation for both methods; (b)-(d): Intermediate and final results by
Zhao’s method; (e)-(g): Intermediate and final results by our method with β = 0.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.8: Comparison with state-of-the-art. (a): Same initialisation for models to be
compared; (b)-(d): Intermediate and final results by Zhao’s method; (e)-(g): Intermediate
and final results by our method with β = 0; (h): Result by Poisson.

the gradient of an indicator function should be zero nearly everywhere except these
points on a surface where their gradients are consistent with the inward surface normals.
Based on this, the Poisson reconstruction problem can be simply deemed as calculating
indicator function from the gradient field of a surface. As can be seen in this experiment,
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Figure 5.9: Effectiveness of the balloon force term (5.25) in the proposed model using
2D and 3D point clouds. 1st column: original data points; 2nd column: initialisation
obtained using the method proposed in Section 5.2.2; 3rd column: results by Zhao’s
method; 4th column: results by the proposed model without using balloon force term
(i.e., β = 0 in (5.22)); 5th column: results by the proposed model.

(a) (b) (c) (d)

Figure 5.10: Comparison with Poisson. (a) and (b) are reconstructions by the proposed
model; (c) and (d) are reconstructions by the Poisson method; (b) and (d) are zoomed-in
versions of (a) and (c), with the original data points added.

the reconstruction of Bunny by Poisson loses some texture and looks smoother than that
by the proposed method. This experiment demonstrates the effectiveness of the image
data fitting term (5.24) in the proposed model.

Figure 5.9 shows the reconstruction results of a 2D concave object and a 3D human
hand that contains fine details (i.e., fingers) and concave regions (i.e., the spaces between
fingers). Zhao’s method gets stuck in the concave regions and also loses the fingers. The
proposed model with only the (5.24) term can preserve the fingers and partially go down
the concave regions. The proposed model with both terms (5.24) and (5.25) succeeds
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in preserving all features as well as the concave regions in both 2D and 3D cases. This
validates the capability of the balloon force term (5.25) in the proposed model.

Figure 5.11: Surface reconstruction from point clouds using the proposed method. 1st
and 3rd rows: point clouds; 2nd and 4th rows: reconstructed results.

Figure 5.10 shows that Poisson result is smoother than that of the proposed method,
but some fine details/texture, i.e., palm prints, are smeared by the Poisson method.
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Figure 5.10 (b) and (d) show that the Poisson result also misses several original data
points, and the reconstructed fingers by Poisson are thinner than those by the proposed
method. The proposed method thus performs better than the Poisson method.

Figure 5.11 shows the surface reconstruction results from the point clouds that contain
more complex geometries. As can be seen, the proposed method performs consistently
well for these complicated objects. The reconstructed surfaces are smooth and visually
pleasant due to the continuous nature of the signed distance function used in our method.
We also implemented the binary based segmentation models, such as the convex method
(5.8) or the TVG-L1 model (5.16), and found that the resulting reconstructed shapes
are not as smooth as the proposed method. This is because the binary representation is
discontinuous as compared to the continuous level set function in our method.

5.7 Summary

In this chapter, a novel variational level set method is proposed to reconstruct implicit
surfaces from unorganised point clouds. Implementation details of the variational model
are given and the three energy functional terms are illustrated through numerical ex-
periments. Major advantages of the proposed method over existing approaches include
accuracy and detail preservation, without the need for reinitialisation. Since the proposed
method effectively integrates the region and edge information, it would not get stuck at
the local minimum which is commonly associated with edge-based implicit reconstruction
methods. The components of the proposed variational model are explained and details
of the discretisation procedure for implementing the variational model are also given.
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Chapter 6

Conclusion and future work

In this thesis, we have systematically studied modern variational and PDE-based methods
and their applications to image processing, such as image denoising, image segmentation
and surface reconstruction. While image denoising is used as a pre-processing tool,
the thesis is more focusing on image segmentation problems. For example, we have
successfully applied these approaches to detect and quantify malaria parasites from red
blood cell (RBC) images, extract micgrila cells from histology images, delineate retinal
layer boundaries from optical coherence tomography (OCT) images, and reconstruct
surfaces from a set of unorganised point clouds. Technically, we have introduced how these
approaches can be numerically implemented in detail, and validated the performance
and effectiveness of our methods via extensive experimental results as well as comparison
with state-of-the-art methods

6.1 Contributions

This thesis consists of four main distinguishable parts associated with the publications
that have been produced by the author as a part of his PhD [24, 94, 92, 93, 161]. In
what follows, we conclude our contributions which have been introduced in more details
in Chapters 2, 3, 4 and 5.

• We performed a systematic comparison of up to 7 (6 higher order) variational
methods for denoising images with different features. The comparison includes
abilities of sharp edges recovery, smoothness preservation, robustness against noise
levels, as well as computational efficiency. We discretised various first, second, fourth
order partial derivatives using the finite difference method and solved the compared
variational models under a unified framework—the FFT-based split Bergman. To
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our knowledge, this is the first systematic study in the area of variational image
denoising in terms of so comprehensive numerical implementations and results
provided.

• We developed an image analysis framework for an image-based cytometer, which
detects and numerically counts malaria parasite infected red blood cells (iRBCs)
from Giemsa-stained smears derived from iRBCs. Our framework is able to ac-
curately classify all parasitic subpopulations by quantifying the area occupied by
the parasites within iRBCs. Moreover, we compared the efficacy of our proposed
image algorithms (used in the image-based cytometer) against a commercial flow
cytometer and demonstrate comparable results between the two methods. Collec-
tively, these results highlighted the possibility to use our image analysis framework
together with the image-based cytometer as a cheap, rapid and accurate alternative
for antimalarial testing without compromising on efficiency and minimal processing
time. Our image analysis framework therefore might be used for field diagnosis of
malaria.

• We developed a method for neuroscientists to quantitatively analyse microglia
histology data. Microglial cells are segmented using the Mumford-Shah total
variation, fast split Bregman method, and adaptive thresholding. We show that
this framework offers advantages over existing image analysis methods by validating
against manual analysis of imaging data from wild type mice and a transgenic
mouse model of Alzheimer’s disease. The proposed segmentation method is fast,
and accurate and robust. These properties ensure that the proposed segmentation
method is scalable to large datasets, allowing the analysis of microglia in regions of
interest as well as across the whole brain.

• We proposed a fully automated method that is able to segment healthy and
pathological retinal layers from optical coherence tomography images. The method
uses a weighted geodesic distance which is efficiently calculated from an Eikonal
equation via the fast sweeping method. Segmentation then proceeds by solving
an ordinary differential equation for the geodesic distance. The contribution of
this work is twofold, clinically and technically: 1) providing a precise individual
OCT segmentation system for clinical use; 2) introducing an OCT-specific weight
function into the geodesic distance framework. To our knowledge, this is the first
work on 2D/3D segmentation of intra-retinal layer structures using the geodesic
distance method.
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• We viewed the problem of surface reconstruction from point cloud as the variational
image segmentation problem, and proposed a novel variational level set method for
surface reconstruction. The proposed variational model is capable of accurately
reconstructing smooth surfaces from point clouds whilst preserving the fine details
of the underlying point cloud. The model also completely eliminated the need for
reinitialisation, a common time-consuming procedure associated with the level set
method. Extensive experiments are conducted to show that the proposed method
outperformed the state-of-the-art surface reconstruction approaches

6.2 Future work

The image segmentation methods proposed in this thesis have achieved significant success
in automatically segmenting RBC, histology and OCT images, but there is still room
for improvement of these methods. For example, the above automatic segmentation
approaches only considered gray intensity values or image gradient as a feature. As a
result, they tend to fail to segment meaningful objects from images when the objects
are occluded by other objects or some parts of them are in low signal to noise or even
missing. These situations in fact always exist in a lot of medical imaging applications. In
these cases, shape information can be used to successfully extract the desirable objects
from low quality images. Studying segmentation methods incorporated with shape prior
is therefore one of our future work.

Image segmentation in essence is about how to extract good features that saliently
represent the objects of interest in an image. While image intensity and gradient are two
conventional options sometimes insufficient to represent complex segmentation targets,
good feature extractors designed by hand normally require a considerable amount of
engineering skill and domain expertise. This however can be avoided if good features
can be learned automatically using a general-purpose learning procedure. This is why
deep learning starts to play an important role in medical image analysis by automatically
learning morphological and/or textural patterns from images without using man craft
features. Deep learning methods have achieved state-of-the-art performance across various
medical image segmentation applications. Breakthrough improvements were achieved by
using a large data set of medical images from which deep models can find more generalised
features and thus lead to improved performance. Our next future work therefore will
focus on image segmentation using deep learning techniques.
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Appendix A

Fast Fourier transform solver

This Appendix details how to implement the fast Fourier transform to solve a second
order linear PDE. Normally, if one uses the variable splitting algorithm for a total
variation type optimisation problem, one of the resulting equations is the linear elliptic
PDE, which has the form of

u(x)− θ∆u(x) = g(x), (A.1)

with a suitable boundary condition often imposed by a specific problem. A numerical
solution for (A.1) on a rectangle grid can be sought via the finite difference method. If
we rewrite (A.1) using the discrete definition of the Laplace differential operator, we have

ui,j − θ (ui,j+1 + ui,j−1 + ui+1,j + ui−1,j − 4ui,j) = gi,j. (A.2)

Now let us transform ui,j into frequency domain via the discrete Fourier transform as
follows

F (ui,j) =
M−1∑
i=0

N−1∑
j=0

ui,je
−

√
−1( 2πri

M
+ 2πsj

N ) (A.3)

where F denotes the discrete Fourier transform. F (ui,j) is the map of ui,j in the Fourier
domain. i, j are the discrete indices in the discrete time domain, while r, s are the
discrete indices in the frequency domain. i ∈ [1, M ] and j ∈ [1, N ], r ∈ [0, M) and
s ∈ [0, N). For the discrete frequencies, r and s, we have

F [ui±1,j] = e±
√

−1 2πr
M F (ui,j) ,

F [ui,j±1] = e±
√

−1 2πs
N F (ui,j) .

(A.4)
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(A.4) is known as the time shift property of the discrete Fourier transform. In addition,
note that (A.4) holds only if the periodical boundary condition on u is imposed, which
means that if the FFT is applied to solve the linear PDE, the periodical boundary
condition is automatically assumed.

Applying the discrete Fourier transform to the both sides of the equation (A.2), we
have

F [ui,j − θ (ui,j+1 + ui,j−1 + ui+1,j + ui−1,j − 4ui,j)] = F [gi,j] . (A.5)

In (A.5), let
Ui,j = ui,j − θ (ui,j+1 + ui,j−1 + ui+1,j + ui−1,j − 4ui,j) ,

and with (A.4) we have the following formulation for the left-hand side of (A.5)

F [Ui,j] =
[
1− θ

(
e

√
−1 2πs

N + e−
√

−1 2πs
N + e

√
−1 2πr

M + e−
√

−1 2πr
M − 4

)]
F (ui,j) . (A.6)

With the help of the famous Euler equation e±
√

−1x = cos x±
√
−1 sin x, we can obtain

an equivalent form of (A.6) in terms of the trigonometric function form, which is

F [Ui,j] =

1− θ


cos 2πs

N
+
√
−1 sin 2πs

N

+ cos 2πs
N
−
√
−1 sin 2πs

N

+ cos 2πr
M

+
√
−1 sin 2πr

M

+ cos 2πr
M
−
√
−1 sin 2πr

M
− 4



F (ui,j) ,

which is equal to

F [Ui,j] =
[
1− 2θ

(
cos 2πr

M
+ cos 2πs

N
− 2

)]
︸ ︷︷ ︸

κ

F (ui,j) = F [gi,j] ,

which leads to a closed-form solution of u as

ui,j = ℜ
(
F−1

(
F [gi,j]

κ

))
, (A.7)

where F−1 denotes the discrete inverse Fourier transform. ℜ(·) is the real part of a
complex number. “—” stands for pointwise division of matrices.
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Fast sweeping

In both OCT segmentation and surface reconstruction problems, we intend to solve a
distance function from a first order nonlinear PDE. More specifically, let us consider the
following generalised Eikonal equation

|∇d(x)| = f(x), ∀x ∈ (Ω\Γ) ⊂ Rm (B.1)

with
d(x) = 0, ∀x ∈ Γ ⊂ Rm. (B.2)

Above m = 2 and m = 3 respectively correspond to 2D and 3D cases. For OCT
segmentation, Γ = {s2} where {s2} is a seed point in 2D or multiple seed points in
3D, and f(x) is W −1(x) where the weight function W is defined in (4.4). For surface
reconstruction, Γ = {xi} where {xi} represent the positions of the scattered points, and
f(x) is 1 or the annular binary input. For 2D implementation, we use xi,j to denote a
pixel point in the computational domain Ω, and di,j to denote the numerical solution
at xi,j. For 3D implementation, we use xi,j,k to denote a voxel point in Ω, and di,j,k to
denote the numerical solution at xi,j,k. The pixel or voxel size is set to 1 for all the cases.

B.1 2D Implementation

The 2D Godunov upwind difference scheme is used to discretise (B.1) as follows
[
(dn

i,j − dn
xmin)+

]2
+
[
(dn

i,j − dn
ymin)+

]2
= f 2

i,j,k, (B.3)
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where dn
xmin = min(dn

i,j+1, dn
i,j−1), dn

ymin = min(dn
i+1,j, dn

i−1,j) and

x+ =
 x x > 0

0 x ≤ 0
. (B.4)

Boundary conditions need to be handled appropriately for (B.3) in the computational
grid space Ω. A one-sided upwind difference is used for each of 4 boundaries in the grid
space. For example, at the left boundary xi,1, a one-sided difference along the x direction
is computed as [

(dn
i,1 − dn

i,2)+
]2

+
[
(dn

i,1 − dn
ymin)+

]2
= f 2

i,1.

If we denote a = dn
xmin and b = dn

ymin, numerically solving the equation (B.3) with its
boundary condition needs to iteratively update

di,j = min(dn
i,j, d̃i,j), (B.5)

where

d̃n+1
i,j =


min (a, b) + fi,j |a− b| ≥ fi,j

a+b

√
2f2

i,j−(a−b)2

2 |a− b| < fi,j

. (B.6)

Initialisation. The hard constraint d(x) = 0, x ∈ Γ in (B.2) should be satisfied over
iterations. For initialisation, we assign exact values d(x) = 0 for the pixel points on Γ.
These values are forced to be zeros at each iteration to satisfy such hard constraint. For
the rest of pixel points in Ω, we assign large positive values for d(x). These values will
be updated later.
Gauss-Seidel iterations with alternating sweeping orderings. (B.5) is not ana-
lytical so iterations are needed to seek its numerical solution. The Gauss-Seidel iterative
method is used here for fast convergence. There are different sweeping schemes that
can be applied to Gauss-Seidel, such as the red-black sweeping, Lexicographic ordering
sweeping, etc. In [175], the whole domain Ω is swept with the four alternating orderings
repeatedly

(1) i = 1 : M, j = 1 : N ; (2) i = M : 1, j = N : 1;
(3) i = 1 : M, j = N : 1; (4) i = M : 1, j = 1 : N.

Note that for simple geometry of Γ it may be sufficient for (B.5) to converge after applying
such sweeping technique only once. However, for non-uniform problems and/or complex
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geometry, such sweeping might be required to repeat multiple times in order for (B.5) to
converge.

B.2 3D Implementation

The 3D Godunov upwind difference scheme is used to discretise (B.1) as follows
[
(dn

i,j,k − dn
xmin)+

]2
+
[
(dn

i,j,k − dn
ymin)+

]2
+
[
(dn

i,j,k − dn
zmin)+

]2
= f 2

i,j,k. (B.7)

In Equation (B.7), dn
xmin = min(dn

i,j+1,k, dn
i,j−1,k), dn

ymin = min(dn
i+1,j,k, dn

i−1,j,k), dn
zmin =

min(dn
i,j,k+1, dn

i,j,k−1) and x+ is defined as (B.4). Boundary conditions need to be handled
as well in the grid space Ω. The one-sided upwind difference is used for each of the 6
boundary faces of the grid space. For example, at the left boundary face, a one-sided
difference along the x direction is computed as

[
(dn

i,1,k − dn
i,2,k)+

]2
+
[
(dn

i,1,k − dn
ymin)+

]2
+
[
(dn

i,1,k − dn
zmin)+

]2
= f 2

i,1,k.

dn
xmin, dn

ymin and dn
zmin are then sorted in a increasing order and the sorted version is

recorded as a1, a2 and a3. So, the unique solution to (B.7) is given as follows:

dn+1
i,j,k = min(dn

i,j,k, d̃i,j,k), (B.8)

where d̃i,j,k is a piecewise function containing three parts

d̃i,j,k =


1
3

(
a1 + a2 + a3 +

√
3f 2

i,j,k − (a1 − a2)2 − (a1 − a3)2 − (a2 − a3)2
)

1
2

(
a1 + a2 +

√
2f 2

i,j,k − (a1 − a2)2
)

a1 + fi,j,k

.

The three parts correspond to the following intervals, respectively

f 2
i,j,k ≥ (a1 − a3)2 + (a2 − a3)2

(a1 − a2)2 ≤ f 2
i,j,k < (a1 − a3)2 + (a2 − a3)2

f 2
i,j,k < (a1 − a2)2.

To solve (B.8), which is not in analytical form, the fast Gauss-Seidel iteration with
alternating sweeping orderings is used. For initialisation, the value of grid points on Γ is
set to zero, and this value is fixed in later calculations. The rest of the points are set to
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large values, and these values will be updated later. The whole 3D grid is traversed in
the following orders for the Gauss-Seidel iteration

(1) i = 1 : M, j = 1 : N, k = 1 : H; (2) i = M : 1, j = N : 1, k = H : 1;
(3) i = M : 1, j = 1 : N, k = 1 : H; (4) i = 1 : M, j = N : 1, k = H : 1;
(5) i = M : 1, j = N : 1, k = 1 : H; (6) i = 1 : M, j = 1 : N, k = H : 1;
(7) i = 1 : M, j = N : 1, k = 1 : H; (8) i = M : 1, j = 1 : N, k = H : 1.
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