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Abstract  

Lung cancer is considered a major health concern and is responsible for most 

cancer-related deaths. Nasopharyngeal carcinoma (NPC) is another type of cancer 

that is predominantly in China  and has a low survival rate, which makes it a serious 

health issue. There is currently no cure for lung cancer and NPC, so it was decided 

to investigate derivatives of the highly bioactive natural product, cardamonin, for a 

potential drug candidate. 19 analogues of cardamonin were synthesised and tested 

against A549 (lung) and HK1 (NPC) cell lines. The techniques employed in 

synthesising the analogues were one-step reactions which included alkylation, 

acylation, reduction, condensation, cyclisation and complexation reactions. The 

analogues were fully characterised. MTS assay showed that several derivatives, 

such as the allyl derivative of cardamonin (2) and cardamonin’s Cu (II) complex 

(19), had more potent cytotoxic activities than cardamonin. Furthermore, the active 

analogues have generally demonstrated lower toxicity towards normal MRC5 cells. 

Structure-activity relationship (SAR) analysis showed the importance of the ketone 

and alkene groups for bioactivity, while substituting cardamonin’s phenolic groups 

with more polar moieties resulted in activity enhancement. As part of the SAR study 

and further exploration of chemical space, the effect of metal coordination on 

cytotoxicity was also investigated, but it was only possible to successfully obtain 

the Cu (II) complex of cardamonin (19), and the metal ion enhanced bioactivity. 19 

was the most potent analogue possessing IC50 values of 13.2 µM and 0.7 µM against 

A549 and HK1 cells, corresponding to a 5- and 32-fold increase in activity, 

respectively. It was also able to inhibit the migration of A549 and HK1 cells. Mode 
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of action studies revealed that 19 induced DNA damage in both cell lines resulting 

in G2/M-phase arrest, which further led to apoptosis via the activation of caspase-9 

and caspase-3/7. Moreover, qPCR analysis showed that 19 inhibited the expression 

of the mammalian target of rapamycin (mTOR) by >50% in A549 and HK1 cells 

which indicated that it exerted its anticancer activity, at least in part, via inhibition 

of the mTOR signalling pathway. So molecular docking of cardamonin and 19 to 

mTOR was performed and the study showed that the higher activity of 19 might be 

due to formation of further hydrogen bond interactions with the receptor resulting 

in a higher binding free energy of -9.8 kcal/mol. Therefore, all these assays have 

further proven the high bioactivity of 19. However, further in vivo and animal model 

studies would have to be conducted in order to confirm the potential of 19 as an 

anticancer agent.  
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1 Introduction 

Cancer is considered to be a major health concern and a leading cause of death 

worldwide with about 14 million new cases and 8.2 million deaths due to cancer in 

2012. It is expected that the number of new cancer cases would increase by 70% 

over the next two decades. Lung cancer is responsible for most cancer-related deaths 

globally with more than 1.3 million deaths yearly, while the number of deaths is 

continuously rising in the Far East in countries such as China. Another type of 

cancer that is mostly prevalent in Asia is nasopharyngeal carcinoma (NPC) and this 

cancer is known to have a low survival rate making it a serious health problem. NPC 

is more specifically prevalent in Southern China and Southeastern Asia with a peak 

incidence rate of 50 cases per 100,000 people per year. It is also common amongst 

the Inuits of Alaska and people in North Africa. There is currently no cure for any 

of these two types of cancer and the drugs approved for treatment are usually 

accompanied with undesired side effects such as vomiting, hair loss, diarrhoea and 

weakness in the body. Therefore there is a need for further research aimed at 

developing more effective anticancer compounds (Wei and Sham 2005; Pastorino 

2010; Cancer Research UK 2014; Cancer Research UK 2016; World Health 

Organization 2017; Wang et al. 2018).  

Natural products are considered to be a rich source of bioactive molecules and have 

been studied extensively for the purpose of finding potent anticancer compounds. 

This is due to their biologically active and diverse chemotypes that enable the 

discovery of novel drugs. In the field of cancer, natural products or their derivatives 
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still make a large percentage of the approved drugs. Chalcones are naturally 

occurring compounds that are characterised by the presence of an α,β-unsaturated 

ketone with two aromatic rings and belong to the flavonoid family of compounds. 

This group of compounds have been reported to possess a wide range of 

bioactivities including antitumour, antioxidant, antimitotic and anticancer activities 

(Albuquerque et al. 2014; Newman and Cragg 2016; Rodrigues et al. 2016).  

Cardamonin is a chalcone that has been extracted from several plants including 

Alpinia rafflesiana and was proven to possess cytotoxic properties against a wide 

variety of cancer cells while its mode of action has been studied extensively 

(Gonçalves, Valente and Rodrigues 2014; Lu et al. 2018; Shi et al. 2018). However, 

there have been no studies performed on semi-synthetic analogues of cardamonin 

with anticancer properties nor were there any detailed investigations on the 

structure-activity relationship of cardamonin specifically. Therefore, it has been 

decided to investigate the anticancer potential of cardamonin and its analogues 

against lung cancer cells (A549) and NPC cells (HK1) with the aim of producing 

novel and potent compounds. 

In this chapter, the objectives, rationale and hypothesis of the present research study 

will be covered. Furthermore, crucial basic concepts that should be known to fully 

understand and appreciate the current study will be introduced in this chapter. This 

will include a brief introduction on lung cancer, nasopharyngeal cancer and 

chalcones. Introducing these basic concepts will ensure that essential information 

have been covered before going into the main research study.   
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 Summary of Research Problem and Hypothesis: 

- Research Problem: Lung cancer and NPC are responsible for the deaths of 

many people worldwide and there is currently no cure for any of these types 

of cancer. Therefore, it has been decided to investigate the natural product, 

cradamonin, to search for a potential treatment for these types of cancer. 

- Hypothesis: Cardamonin has been proven to possess high cytotoxic activity 

across a variety of cancer cell-lines. Therefore, it has been hypothesised that 

it would be an appropriate starting material for the production of compounds 

or analogues with higher cytotoxic activity. The analogues were produced 

via semi-synthesis and tested for their anticancer potential against A549 

(lung) and HK1 (NPC) cancer cell lines. 

 Objectives and Rationale of the Study: 

1) Semi-synthesis of cardamonin analogues and testing them against A549 

and HK1 cell lines 

As it has been mentioned earlier, the need for a cure for NPC and lung cancer 

has made these two types of cancer the main focus of this study. Therefore, 

it was decided to investigate cardamonin on these cancer types due to its 

high bioactivity as has been also mentioned earlier. However, in this study, 

it was intended to optimise cardamonin’s cytotoxic activity via synthesising 

a variety of analogues and testing them against A549 and HK1 cells.  

A549 cells were used as a disease model for lung cancer cells because they 

are derived from a human source and are readily cultured. Moreover, A549 

cells belong to a subtype of lung cancer known as non-small cell lung cancer 
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(NSCLC), and this subtype is responsible for the majority of lung cancer 

cases. Therefore, another reason for A549 cells being a suitable disease 

model for lung cancer was because this cell type reflects the majority of lung 

cancer cases, which will increase the relevance of this study’s results 

(Koparal and Zeytinoglu 2003; Shen et al. 2009; Li et al. 2011). 

HK1 cells were used as a disease model for NPC. It has been often 

challenging to establish NPC cell lines due to the small size of the biopsy 

and because it is infiltrated with lymphoid cells and connective tissue. 

Therefore, this resulted in a very limited number of available cell lines for 

NPC. Moreover, the available NPC cell lines suffer from authentication 

issues, as usually this disease is mainly in China so there are no global 

authentication efforts for NPC cell lines. This authentication issue resulted 

in several cell lines being falsely identified as NPC cell lines, such as CNE-

1, CNE-2, AdAH, NPC-KT and HONE1 which were found to be 

contaminated with HeLa cells. However, HK1 has been authenticated and is 

regarded as a valid disease model for NPC and this is the main reason for 

choosing it for studies concerning NPC (Cheung et al. 1999; Chan et al. 

2008; Strong et al. 2014; Wasil et al. 2015). 

2) Testing the toxicity of the active analogues towards normal MRC-5 cells 

Most marketed anticancer drugs cause severe side-effects and this has been 

a major issue when developing these drugs. Therefore, one of the main aims 

of this study is to ensure that the active cardamonin analogues would have 

higher selectivity towards cancer cells and less effect on normal cells. 
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Human normal lung fibroblast cells (MRC-5) were chosen to represent 

healthy cells of the body and analogues would have to be tested against it. 

MRC-5 has been often used across the field of cancer research to assess 

compounds’ toxicities, even when the cancer cells were from an organ other 

than the lungs, such as ovarian cancer cells, MRC-5 was still used to assess 

the compound’s toxicity. In fact, MRC-5 cells were used even outside the 

field of cancer, such as in developing antivirals and antiprotozoals in order 

to assess the compounds’ toxicities. One of the main reasons for using MRC-

5 cells for toxicity studies is because they are sensitive to the toxicity of 

exogenous chemicals. Therefore, for these reasons, it was decided to use 

MRC-5 cells to test for the cytotoxicity of cardamonin’s active analogues 

towards normal cells for this study (Shigeta et al. 2002; Vik et al. 2009; 

Damião et al. 2014; Lu et al. 2015). 

3) Conduct the first ever Structure-Activity Relationship (SAR) study on 

cardamonin and it analogues 

There have been no SAR studies on cardamonin and its analogues before, 

this study is the first one to have considered doing so. This would help in 

identifying crucial chemical groups for bioactivity and aid in future 

optimisation efforts of cardamonin. 

4) Investigate the mode of action of the most active analogue, especially 

the analogue’s effect on Mammalian Target of Rapamycin (mTOR) 

One of the main aims of this study is to further study the cytotoxic mode of 

action of the most active analogue with more focus on its effect on the 
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mTOR. mTOR is a 289 kDa serine/threonine kinase and a major regulator 

of cell growth and proliferation. It functions in two complexes, mTORC1 

and mTORC2, and together these complexes play a major role in regulating 

several cellular processes such as protein synthesis, cell-cycle, autophagy 

and lipid synthesis. However, it has been found that mTOR is abnormally 

activated in several types of cancer and inhibiting its activity has been a 

known strategy in cancer treatment. One of the inhibitors of mTOR activity 

is cardamonin. Several studies have shown that cardamonin exerts its 

cytotoxic activity via inhibiting the mTOR pathway, so it was suggested that 

the most active analogue in this study would act via a similar mechanism. 

This was the main reason for deciding to investigate the effect of 

cardamonin’s most active analogue on mTOR (Ekman, Wynes and Hirsch 

2012; Tang et al. 2014; Nui et al. 2015; Xue et al. 2015). 

5) Perform in silico studies on cardamonin’s most active analogue 

This study also aims to perform computational studies on cardamonin’s 

most active analogue for a better understanding of the way the compound 

would interact with its potential receptor (mTOR). This could provide a 

possible explanation for the observed bioactivity of the analogue. 

Furthermore, the study aims to predict the active analogues’ 

pharmacokinetics, which is concerned with how a compound gets processed 

in the body. 
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1.1 Lung Cancer 

Lung cancer is a type of cancer that involves the uncontrolled growth of abnormal 

cells in one or both lungs and can start in the cells lining the bronchi in addition to 

the alveoli and bronchioles. It is thought that the cancer starts with initial changes 

in the lung cells prior to the disease, whereby DNA of the lung cells causes them to 

grow faster but no tumour is formed at this stage and symptoms are not clear. 

However, it is possible that certain genetic mutations might cause these cells to 

develop into cancer cells and these cells might later develop their own blood supply 

system to ensure their survival and growth until a tumour forms which can be easily 

observed on imaging tests.  

Moreover, lung cancer cells might spread (metastasise) from the original tumour to 

other parts of the body and this phenomenon is responsible for making lung-cancer 

a life-threatening disease as this process can occur at an early stage even before the 

cancer can be detected via any imaging tests such as chest X-ray. One of the main 

ways by which lung cancer cells spread is through the lymphatic system. In this 

case, cancer cells tend to enter the lymphatic vessels and grow in lymph nodes in 

addition to the mediastinum. Once these cells have reached the lymph nodes then it 

is highly probable that the cancer has spread to other parts of the body. It is also 

possible for the cancer to spread through the blood by entering the blood vessels 

and spreading to other parts of the body (American Cancer Society 2015).  
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1.1.2 Types of Lung Cancer 

There are two types of lung cancer, namely; Small-cell lung cancer (SCLC) and 

Non-small cell lung cancer (NSCLC). This classification is highly essential as 

both types are treated differently. 

SCLC constitutes approximately 10%-15% of lung cancers and has been called as 

such due to the size of cancer cells as observed through the microscope. It is very 

different from other lung cancer types. It usually starts around the chest’s centre in 

the bronchi but later tends to spread throughout the body. SCLC is the most 

aggressive of lung-cancer subtypes and is characterised by high response rates to 

chemotherapy in addition to having higher chances of metastasis.  It is responsible 

for the death of around 250,000 people yearly. Smoking has been the major cause 

for developing SCLC whereby almost all patients with SCLC are current or former 

heavy smokers. There have not been significant therapeutic advances with regards 

to SCLC in the past 30 years mainly due to pharmaceutical disinterest as it has 

proven to be a graveyard for drug development (American Cancer Society 2015; 

Gazdar, Bunn and Minna 2017; Oronsky et al. 2017).  

NSCLC makes up the majority of lung cancers with a proportion of 85%-90% and 

they consist of 3 types, but these types are not similar in size, chemical make-up or 

shape; they were placed under the same group due to their similarities when it comes 

to the approach to treatment and prognosis. The types are as follows (American 

Cancer Society 2015; Herbst, Morgensztern and Boshoff 2018): 

 Squamous cell carcinoma: This type usually affects early versions of a type 

of flat cells called squamous cells, and these cells tend to line the inside of 
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the airways in the lungs. This type of cancer accounts for 20%-30% of all 

lung cancers and has been often linked to smoking. 

 Adenocarcinoma: This type of cancer makes about 40% of lung cancers, 

and usually starts in cells that are known for secreting substances as mucus, 

and often affects smokers but is also considered the main type of lung 

cancer in non-smokers. Adenocarcinoma is mostly found in the outer part 

of lungs and its relatively slower growth progress enables its discovery 

before spreading outside the lungs. This is the most common type of cancer 

in non-smokers. 

 Large cell (undifferentiated) carcinoma: This type of cancer can occur in 

any part of the lung and usually accounts for 10%-15% of all lung cancers. 

It grows and spreads very quickly which makes it difficult to treat. 

1.1.3 Symptoms, Risk Factors, Diagnosis and Treatment 

Symptoms of lung cancer include continuous coughing, chest pain, wheezing, blood 

in sputum, weight loss, feeling tired and trouble in breathing.  

Smoking is the main factor which increases the risks of a person being diagnosed 

with lung cancer and this includes passive smoking, while air pollution can also 

contribute to the development of lung cancer. Moreover, the risks of developing 

lung cancer might increase if a person was infected with human immunodeficiency 

virus (HIV), undergone previous treatment with radiotherapy to the chest or neck 

or had a family history of lung cancer (National Cancer Institute 2014).       

http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=44366&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=44366&version=Patient&language=English
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One of the main reasons for treatment failure in lung cancer is the late diagnosis of 

the disease. The disease would have usually reached the metastatic phase upon 

diagnosis which makes it extremely challenging to treat at that stage. There are 

several ways by which lung cancer can be diagnosed and one of the first detecting 

methods that are usually used are chest X-ray tests in order to ensure that nothing 

abnormal is present in the lungs. Further methods include computed tomography 

(CT) scan which involves taking several X-ray images to obtain more detailed 

information regarding the structure of the tumours. Moreover, another testing 

method known as Magnetic resonance imaging (MRI) detects tumours via 

radiowaves and strong magnets rather than X-rays. The doctors may also study 

samples of a person’s sputum or any fluid build-up in the chest in order to check for 

the presence of any cancer cells, and such method of diagnosis might also include 

obtaining samples of suspicious matter within the lungs for examination (Pastorino 

2010; National Cancer Institute 2014). 

Almost 40% of diagnosed lung cancer cases are stage IV and treatment is more 

concentrated on increasing survival time and reducing effects of the disease. 

Treatment of lung cancer depends on the type of cancer, however, both SCLC and 

NSCLC can be treated via surgery, radiation therapy and chemotherapy. 

Chemotherapy involves the administration of drugs into the body to treat cancer and 

some of the currently approved drugs for treatment of both types of cancers include 

etoposide and methotrexate, while paclitaxel, cisplatin, carboplatin and docetaxel 

are used to for treating specifically NSCLC. In the case of NSCLC, it may be treated 

using a combination of a platinum (cisplatin or carboplatin) and another drug such 



11 | P a g e  
 

as paclitaxel and docetaxel. However, these therapies are usually accompanied with 

some side-effects. Radiation therapy could damage the nearby healthy cells 

resulting in side-effects such as fatigue, cough and shortness of breath. Side-effects 

resulting from surgery are not expected to be life-threatening and these could 

include bleeding and pain. As for chemotherapy, side-effects could be severe and 

include vomiting, fatigue, hair loss, diarrhoea, kidney and bladder problems 

(National Cancer Institute 2014; Zappa and Mousa 2016; American Cancer Society 

2018).  

1.2 Nasopharyngeal Cancer 

Nasopharyngeal cancer is a type of cancer that usually starts in the squamous cells 

of the epithelial lining of the nasopharynx and is considered to be a type of head and 

neck cancer. The nasopharynx is the upper part of the throat behind the nose. 

Nasopharyngeal cancer starts initially as abnormal cells existing in the lining of the 

nasopharynx and these cells can later develop into cancer that is either located in 

the nasopharynx only or has started spreading to the oropharynx, nasal cavity and 

the lymph nodes. Later stages of the disease involve it spreading to other parts of 

the body beyond the nasopharynx such as the cranial nerves, hypopharynx, areas 

beside the skull or jawbone and to lymph nodes on the neck and behind the pharynx  

There are several types of tumours that can develop in the nasopharynx, but they 

can generally be divided into benign and malignant, with the former being rare, not 

life-threatening and do not usually spread to other parts of the body. On the other 

hand, malignant tumours can spread to other parts of the body and the most common 

type of malignant tumours of the nasopharynx is NPC. In fact, NPC has the highest 
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invasive and metastasis potential relative to the other types of head and neck cancers 

whereby 15%-30% of cases develop distant metastasis   (Wei and Sham 2005; 

National Cancer Institute 2014; American Cancer Society 2015; Wang et al. 2018). 

1.2.1 Symptoms, Risk Factors, Diagnosis and Treatment 

Symptoms of NPC include having difficulty in breathing or speaking, sore throat, 

nose bleeds, ringing in the ear and headaches. Factors that increase the risk of 

developing NPC include having Asian ancestry, previous exposure to the Epstein-

Barr virus and drinking large amounts of alcohol. 

There are several tests used to identify the presence of NPC in an individual, 

including biopsy and imaging tests such as MRI, positron emission tomography 

(PET) and CT scan. Moreover, a blood test can be performed in order to check for 

antibodies to the Epstein-Barr virus as well as DNA markers for the same virus 

while a hearing test can also be conducted to examine if each ear can hear different 

types of sounds.  

There is currently no cure for NPC and advancements in the treatment of NPC have 

not resulted in an improvement in the 5-year survival rate of 34%-52% over the 

decades. Treatment options for NPC include radiotherapy, surgery or 

chemotherapy. Radiotherapy involves directing a beam of high energy radiation 

towards cancer cells in order to stop their growth. It may be external, whereby 

radiation is applied to the cancer cells from outside the body or it could involve 

placing a radioactive substance inside the body near to the tumour. Surgery can also 

be used to treat NPC, especially if radiation therapy was not effective, whereby 

cancer tissues and lymph nodes might be removed in order to treat cancer. Finally, 
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chemotherapy can be considered for NPC treatment, and some of the currently-

approved drugs for NPC treatment include cisplatin, methotrexate, docetaxel and 

fluorouracil. However, it is important to note that high-dose radiotherapy is 

considered one of the most effective treatments. This is because NPC is highly 

sensitive to radiotherapy. Moreover, NPC usually occurs at an anatomical site that 

is not easily accessible to surgeons, making surgical treatment challenging, so 

radiotherapy becomes the most effective treatment. Side-effects related to treatment 

options for NPC are similar to the ones mentioned earlier for lung cancer in section 

1.1.3. However, radiotherapy in this case could result in further side-effects than the 

ones that were mentioned in the case of lung cancer. Radiotherapy against NPC 

could affect the mouth and cause taste changes in addition to resulting in a less 

active thyroid gland (Yang et al. 2013; National Cancer Institute 2014; Wang et al. 

2018). 

1.3 Chalcones 

1.3.1 Structure and Chemistry 

Chalcones, also known as 1,3-diaryl-2-propen-1-ones, are a group of naturally 

occurring compounds that are usually responsible for the yellow pigmentation in 

plants and belong to the flavonoid family, while they are also considered as 

precursors of flavones. Chalcones are characterised by the presence of an α,β-

unsaturated ketone with two aromatic rings. The aromatic rings are usually called 

A and B while the numbering system for such compounds involves the A-ring being 

numbered from 1’ to 6’ while the B-ring is numbered from 1 to 6 (Figure 1.1) 

(Yadav et al. 2011; Albuquerque et al. 2014).  
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Figure 1.1 General structure of chalcones with their numbering scheme 

The molecular structure of these compounds is very flexible enabling it to adopt 

several structural conformations. The Cα=Cβ of the structure can exist in either the 

(E)- or (Z)- configuration with the former being more thermodynamically stable 

which explains the reason behind most of the isolated chalcones existing as (E)-

isomers. Moreover the O=C-Cα=Cβ can adopt the s-cis or s-trans conformation 

with the former being the more stable conformer, and there were also structures of 

chalcones possessing different degrees of planarity reported (Figure 1.2) 

(Albuquerque et al. 2014). 

 

Figure 1.2 Structural conformations of chalcones  
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The α,β-unsaturated moiety of chalcones enables them to act as electrophilic 

reactive centres due to the delocalisation of electrons across the O=C-C=C system 

and this manages to allow addition reactions via attacking the carbonyl group or the 

β-carbon. Therefore, chalcones can be used as synthons for the synthesis of several 

molecules such as pyrazolines, isoxazolines, pyrimidines, indoles and imidazoles 

(Albuquerque et al. 2014). 

1.3.2 Formation of Chalcones 

Chalcones can be either produced naturally or synthetically via several methods. 

The biosynthetic pathway for the formation of chalcones in plants involves initially 

the stepwise addition of L-phenylalanine with the simultaneous removal of one 

molecule of ammonia to produce trans-cinnamate which is later converted to p-

coumarate. Ligation of p-coumarate with CoA-SH leads to the formation of 4-

coumaroyl-CoA which later results in the formation of the flavonoid skeleton 

(Yadav et al. 2011). Figure 1.3 Summarises the biosynthetic pathway for the 

formation of chalcones. 
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Figure 1.3 Biosynthesis of chalcones naturally (adapted from: Yadav et al. 2011) 
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It is also possible to produce chalcones synthetically and this can be done through 

various ways. One of the most widely used methods is the production of chalcones 

via the Claisen-Schmidt condensation reaction. This reaction involves the 

condensation of acetophenones and benzaldehydes to produce the desired chalcones 

(Figure 1.4) and that is usually performed under a base such as KOH or NaEtO- at 

room temperature. It is also possible to conduct the reaction under acidic conditions 

by using HCl or p-toluenesulfonic acid for instance. Moreover, the reaction can be 

performed using solid-phase catalysts, heterogeneous catalysis or acidic ionic 

liquids, and recently better strategies have been implemented whereby it is possible 

to conduct the reaction under solvent-free conditions or by using microwave and 

ultrasound radiation (Albuquerque et al. 2014).  

The base-catalysed Claisen-Schmidt condensation reaction is considered to be the 

primary method of choice for the synthesis of chalcones due to the feasibility of 

obtaining the reactants (acetophenones and benzaldehydes); while in acidic 

conditions, the most preferred method is the one involving BF3•OEt2. This is 

because the method involving BF3•OEt2 results in better yields, shorter reaction time 

and a simple work-up with no side reactions. Moreover, it can be used in solvent-

free conditions and have been found to be suitable for compounds possessing 

functional groups that are sensitive to basic conditions (Albuquerque et al. 2014). 
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Figure 1.4 General reaction scheme for the synthesis of chalcones by the Claisen-Schmidt 

condensation reaction 

There are further reactions that can be used to produce chalcones such as the 

palladium catalysed coupling reaction of benzoyl chlorides and potassium 

styryltrifluoroborates under microwave heating. Furthermore, chalcones can also be 

synthesised via a Suzuki cross-coupling reaction involving benzoyl chlorides with 

arylvinylboronic acids under the presence of Pd(PPh3)4 and cesium carbonate. It has 

also been reported that the Friedel-Crafts reaction of phenols with cinammoyl 

chloride can be regarded as a method for synthesis of chalcones (Albuquerque et al. 

2014).     

1.3.3 Bioactivity of Chalcones 

Chalcones have been found to possess a wide range of biological activities that 

made them seem attractive to medicinal chemists and such activities included 

antibacterial, anti-inflammatory, antifungal, antimalarial, antitumour, 

antimicrobial, antiviral, antitubercular, antioxidant, antimitotic, antileishmanial, 
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antiplatelet and anticancer activities (Albuquerque et al. 2014). The information on 

the bioactivity of chalcones in literature is vast, however, since this study focuses 

on the anticancer potential of cardamonin, it seemed appropriate to summarise the 

anticancer effects of some naturally-occurring chalcones (other than cardamonin) 

in Table 1.1. This should provide a glimpse on the potential of naturally-occurring 

chalcones as anticancer agents. Synthetic chalcones have also been shown to 

possess interesting bioactivities, but they are numerous and do not exactly lie within 

the scope of this study. 
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Table 1.1 Summary of the anticancer effects of some naturally-ocuuring 

chalcones  

 Anticancer 

Activity 

Reference 

 
 

Licochalcone A 

A chalcone that 

was found in 

the roots of 

Glycyrrhiza 

uralensis.. It 

exhibited 

anticancer 

activities and 

induced 

apoptosis in 

PC-3 cancer 

cells.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         

(Fu et al. 

2004) 

 
 

Xanthoangelol 

 

This is a 

chalcone that 

has been 

isolated from 

Angelica 

keiskei. It 

showed 

cytotoxic 

activity against 

neuroblastoma 

and leukemia 

cells via the 

activation of 

caspase-3. 

(Tabata et 

al. 2005) 

 
 

4-hydroxyderricin 

This compound 

has been also 

isolated from 

Angelica 

keiskei, and it 

induced 

apoptosis in 

HL60 cells via 

intrinsic and 

extrinsic 

pathways. 

(Akihisa 

et al. 

2011) 
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Butein 

This is a 

polyphenol that 

was extracted 

from Rhus 

verniciflua and 

exhibited an 

antiproliferative 

effect on 

adenocarcinoma 

cells. Moreover, 

it caused 

apoptosis in 

HL-60 cells via 

the activation of 

caspase-3. 

(Yit and 

Das 1994; 

Kim et al. 

2001) 

 

  

 

Pinostrobin chalcone 

A chalcone 

which was 

extracted from 

Alpinia mutica. 

It demonstrated 

pronounced 

anticancer 

activity against 

KB, MCF7 and 

Caski cell lines. 

(Zhang et 

al. 2013) 

 
 

Isobavachromene 

The compound 

has been 

isolated from  

Millettia 

pachycarpa and 

showed 

selective 

inhibition 

against 7860, 

A549, A2780, 

Hela, K562.  

(Su et al. 

2012) 

 
Pyranochalcone 

It has been 

isolated from 

Millettia 

pachycarpa and 

exhibited 

cytotoxic 

effects against 

HepG2, C26, 

LL2 and B16 

cells.  

(Ye et al. 

2012) 
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HTMC 

This is a natural 

chalcone 

extracted from 

Caesalpinia 

pulcherrima, 

and it 

demonstrated 

potent and 

selective 

activity against 

A549 cells. It 

showed G1-

phase cell cycle 

arrest.  

(Rao et al. 

2010) 

 
 

Flavokawain C 

The compound 

has been 

isolated from 

Boesenbergia 

pandurate and 

kava. It showed 

anticancer 

effects against 

bladder cancer 

cells and 

pancreatic 

cancer (PANC-

1) cell line. 

(Zi and 

Simoneau 

2005; 

Nwet et 

al. 2007)  
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It is important to note that despite the fact that there are several studies reporting the 

medicinal effects of chalcones, there have been few structure-activity relationship 

(SAR) studies conducted (Albuquerque et al. 2014). If there happened to be some 

SAR studies, then they often involved the synthesis of a set of chalcones to 

investigate the effect of certain substituents on biological activity but these studies 

usually do not refer to a specific chalcone and study it, rather they involve random 

derivatives which are different in their overall structure. For instance, they would 

not consider a specific chalcone like cardamonin and perform their study by 

modifying cardamonin’s chemical groups specifically. Instead, these studies just 

focus on making chalcones that do not have a common starting material, such as 

cardamonin in this study, rather each chalcone is independently made from different 

starting materials.  Therefore, this results in obtaining a more generalised SAR 

rather than an SAR specific to a certain chalcone.  

The SAR of chalcones depends on the disease being targeted, and since this study 

focuses on the anticancer potential of chalcone (cardamonin) derivatives, it would 

seem appropriate to briefly discuss the anticancer SAR of chalcones. However, it is 

crucial to note that discussing SAR of chalcones with regards to their anti-cancer 

activity is also dependent on the type of cancer investigated and the molecular target 

being studied, which makes it difficult to define a general SAR for chalcones. 

Despite the difficulty in defining a general SAR for chalcones due to the factors 

mentioned; it is still possible to identify certain chemical groups that have been 

shown to enhance cytotoxic activity in several studies. It has been shown that 

addition of methoxy groups, especially at the 3, 4 and 5 positions of the B-ring of 
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the chalcone, has managed to enhance cytotoxic activity and this has been attributed 

to the ability of this moiety to bind efficiently to the colchicine binding site of 

tubulin. Moreover, the presence of hydroxyl groups and electron-withdrawing 

groups such as halogens have also been found to increase cytotoxic activity while 

the α, β-unsaturated bond has been proven to be essential for bioactivity (Orlikova 

et al. 2011; Mahaptra, Bharti and Asati 2015).    
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2 Literature Review 

In the previous chapter, crucial background concepts with regards to cancer and 

chalcones have been introduced, in addition to the objectives and rationale behind 

the present study. This was done in order to facilitate the understanding and 

appreciation of the main subject of the present study, which is the cytotoxic 

bioactivity of cardamonin and its analogues. In this chapter, cardamonin will 

specifically be further discussed and studies related to its chemistry and bioactivity 

will be reviewed in order to provide the latest research updates in the field.  This 

literature review is crucial as the present study needs to build upon the previous 

studies that were done and avoid unnecessary repetition. 

Cardamonin is a natural product belonging to the chalcone class of compounds 

under a larger family known as flavonoids (Gonçalves, Valente and Rodrigues 

2014). Studies on cardamonin have recently increased, and the following review 

aims to initially cover the chemistry of cardamonin followed by a detailed literature 

review of cardamonin’s bioactivity.  

2.1 Structure and Analysis of Cardamonin 

The structure of cardamonin (2′,4′-dihydroxy-6′-methoxychalcone) involves an α,β-

unsaturated ketone between two aromatic rings with “ring A”  bearing two phenolic 

groups in addition to a methyl ether group. Figure 2.1 shows the structure of 

cardamonin.  
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Figure 2.1 Structure of cardamonin 

As for analysis, cardamonin has been detected and quantified via several techniques. 

A flow injection chemiluminescence method was employed for the determination 

or quantification of cardamonin based on the chemiluminescent reaction between 

cerium (IV) and rhodamine 6G in sulphuric acid. The chemiluminescence of this 

reaction is supposed to be enhanced by cardamonin (Zhang et al. 2005). Another 

analytical technique for cardamonin determination used an electokinetic capillary 

chromatography method with reverse sodium dodecyl sulfate micelles as a pseudo-

stationary phase (Wang et al. 2007). Other researchers used a combination of flow 

injection and micellar electrokinetic chromatography coupled with direct UV 

detection at 214 nm for the first time for the determination of cardamonin in Alpinia 

katsumadai Hayata (Liu et al. 2007). Finally, a very recent study discussed a method 

for routine analysis of cardamonin in Alpinia katsumadai Hayata by using short-end 

injection microemulsion electrokinetic chromatography in combination with 

microwave-assisted extraction (Zhao, Lu and Xu 2017).  

As for cardamonin’s structure, there were several techniques used for characterising 

it. Table 2.1 summarises the techniques employed by previous authors to elucidate 

cardamonin’s structure as well as the data obtained from the techniques used. 
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Table 2.1 Summary of the analytical methods used for cardamonin 

characterisation 

Analytical 

method 

Data 

FTIR (KBr, cm-1) - 3140, 1630, 1495, 1340, 1220, 1180, 1120, 

980, 795, and 750 (Itokawa, Morita and 

Mihashi 1981) 

 

- 3154, 1628,1542, 1486, 1286, 1320, 1224, 

1188, 1114, and 926 (Sukari et al. 2007) 

 

- 3400 (OH), 2924 (C-H), and 1638 (C=O) 

(Derita and Zacchino 2011) 

ESI-MS - Negative mode: 269 (M-H)+, 177, 165, 139, 

124 (He et al. 2009) 

 

- Positive mode: 271 (M+H)+, 167, 139 

(Carvalho et al. 2012) 
1H-NMR (δ ppm)  - (CD3)2CO: 3.87 (3H,s, MeO), 5.91 (1H, d), 

6.00 (1H, d), 7.40-7.80 (5H, m), 7.63 (1H, d, 

α-position), 7.80 (1H, d, β-position), 13.65 

(1H,s, broad) (Xiao et al. 2011) 

 

- DMSO-d6: 3.87 (3H,s, MeO), 5.93 (1H, d), 

6.02 (1H, d), 7.43-7.72 (5H, m), 7.67 (1H, d, 

α-position), 7.85 (1H, d, β-position), 13.71 

(1H,s, broad) (Aderogba et al. 2012) 
13C-NMR (δ ppm) - CDCl3:136.5 (C-1), 129 (C-2), 129.7 (C-3), 

130.7 (C-4), 129.7 (C-5), 129 (C-6), 128.6 (C-

7), 142.4 (C-8), 193 (C-9), 106.4 (C-1’), 168.3 

(C-2’), 92.3 (C-3’), 165.8 (C-4’), 97 (C-5’), 

164.3 (C-6’), 56.3 (OCH3) (Itokawa, Morita 

and Mihashi 1981) 

 

- DMSO-d6: 135.4 (C-1), 128.8 (C-2), 128 (C-

3), 130.8 (C-4), 129.5 (C-5), 128.8 (C-6), 

142.3 (C-7), 128 (C-8), 192.2 (C-9), 105.5 (C-

1’), 166.7 (C-2’), 92.2 (C-3’), 165.6 (C-4’), 

96.3 (C-5’), 163.1 (C-6’), 55.5 (OCH3) 

(Derita and Zacchino 2011) 

Melting point 

(oC) 

- 195-196 (Itokawa, Morita and Mihashi 1981) 

 

- 199-200 (Jaipetch et al. 1982) 

 



28 | P a g e  
 

2.2 Sources of Cardamonin 

Cardamonin’s name is derived from one of it sources which is the cardamom spice 

(Figure 2.2), but it has been also extracted from other plant species. The following 

is a list of plant species from which cardamonin was successfully extracted 

(Gonçalves, Valente and Rodrigues 2014): 

- Alpinia blepharocalyx      

-  Alpinia conchigera  

- Alpinia hainanensis  

- Alpinia malaccensis 

- Alpinia mutica  

- Alpinia pricei  

- Alpinia rafflesiana  

- Alpinia speciose  

- Amomum subulatum 

- Artemisia absinthium 

- Boesenbergia pandurate 

- Boesenbergia rotunda 

- Carya cathayensis 

- Cedrelopsis grevei 

- Combretum apiculatum 

- Comptonia peregrine 

- Desmos cochinchinensis 

- Elettaria cardamomum 

- Helichrysum forskahlii 

- Kaempferia parviflora 

- Morella pensylvanica 

- Piper dilatatum 

- Piper hispidum 

- Polygonum ferrugineum 

- Polygonum lapathifolium 

- Polygonum persicaria 

- Populus fremontii 

- Syzygium samarangense 

- Vitex leptobotrys 

- Woodsia scopulina 
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Figure 2.2 Cardamom seeds (adapted from: Gonçalves, Valente and Rodrigues 

2014) 

2.3 Medicinal Applications of Cardamonin 

2.3.1 Anti-inflammatory Activity 

Inflammation is a physiological immune response to an injury or infection of a 

tissue. The process involves the activation of macrophages and monocytes by 

components of the invading bacteria which also initiate several intracellular 

cascades of cytokines and chemokines. There are several inflammatory mediators 

secreted by the activated macrophages which include interleukin (IL)-6, tumor 

necrosis factor (TNF)-α, prostaglandin (PG)E2, and nitric oxide (NO) (Lee et al. 

2006). 

Several studies have shown the anti-inflammatory effect of cardamonin (Lee et al. 

2006; Lee et al. 2012; Chow et al. 2012; Kim et al. 2016) and further attempted to 

explain cardamonin’s anti-inflammatory mode of action. Some studies attempted to 

link the anti-inflammatory effect of cardamonin to its effect over the signalling 

pathway of a protein complex that controls DNA transcription and regulates 

immune responses to infections called nuclear factor-κB (NF-κB) (Lee et al. 2006; 

Lee et al. 2012). Moreover, other studies have shown that cardamonin seemed to 
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inhibit prostaglandin E2, tumour necrosis factor α (TNF-α) release, thromboxane 

B2 production in addition to intracellular reactive oxygen species generation 

(Tewtrakul et al. 2009). 

Sepsis is a type of inflammatory response that can result in organ failure, and lungs 

are usually the organs affected by this response which might lead to hypoxemia and 

pulmonary oedema (Gonçalves, Valente and Rodrigues 2014). It has been found 

that cardamonin can decrease systemic inflammatory responses during sepsis via 

the down-regulation of interleukins and TNF-α (Wei et al. 2012). 

Carrageenan-induced (Carr-induced) paw oedema is a model used to measure the 

contribution of mediators that are involved in the production of acute inflammatory 

response in a rat hindpaw after the administration of carrageenan. A study has 

shown that cardamonin demonstrated anti-inflammatory activity by decreasing 

Carr-induced paw oedema (Li et al. 2015). This was accomplished by the inhibition 

of NF-κB and MAPK signalling pathways, in addition to the induction of heme-

oxygenase-1. Cardamonin was also found to have an effect on inflammatory bowel 

disease via a mechanism involving the suppression of toll-like receptor 4 expression 

and blockage of NF-κB and MAPK pathways (Ren et al. 2015).  

2.3.2 Antioxidant Activity 

The antioxidant activity of cardamonin seemed to be dependent on the assay 

employed to study the activity as it showed potent activity in an oxygen radical 

absorbance capacity assay (Bajgai et al. 2011), however, no significant activity was 

observed in a DPPH and superoxide anion assay (Li et al. 2008). Moreover, it has 

been shown in another study that cardamonin had a fifth of the IC50 of gallic acid’s 
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antioxidant activity in a DPPH assay (Simirgiotis et al. 2008), while another study 

(Zhu et al. 2007) showed that cardamonin at a concentration of 50 µM resulted in a 

10%-20% antioxidant activity using Vitamin C as a positive control. 

Selenoenzymes and nuclear factor erythroid 2-related factor 2 (Nrf2)-regulated 

phase II enzymes are considered to be important components of the cellular 

antioxidant systems. It was found that cardamonin was involved in the biosynthesis 

of important Nrf2-regulated antioxidant enzymes but the authors suggest further 

studies to be performed in order to determine other factors responsible for the 

observed effects of cardamonin on antioxidant enzymes (De Spirt et al. 2016). A 

similar result was achieved by another study which found that cardamonin was an 

activator of Nrf2 in PC12 cells and that resulted in upregulation in the expression 

of phase II antioxidant molecules (Peng et al. 2017)  

2.3.3 Vasorelaxant Activity 

It has been shown that cardamonin can act as a vasodilator by preventing the entry 

of calcium to the cell via the voltage-dependent Cav2.1 channel, while at the same 

time encouraging the exit of potassium by the calcium-activated KCa1.1 channel 

(Fusi et al. 2010). Such findings were further strengthened by other studies that 

showed the vasorelaxant activity of cardamonin (Wang et al. 2001). Cardamonin 

was also able to have a relaxing effect on agonist-induced vascular contraction via 

the inhibition of Rho-kinase and MEK activity (Je and Jeong 2016).   
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2.3.4 Hypoglycaemic Activity  

It was found that cardamonin can enhance the uptake of glucose by glucose 

transporter-4 (GLUT4), whereby it was shown that a 30 µM cardamonin solution 

could cause GLUT4 to be stimulated for 1-4 h, in levels comparable to that caused 

by a 0.1 µM insulin solution (Yamamato et al. 2011). 

2.3.5 Anti-infectious Activity 

Leishmaniasis is a disease caused by protozoan parasites from the genus Leishmania 

and is usually spread via bites of infected female sand-flies. Cardamonin showed 

strong activity against Leishmania amazonensis with an IC50 of 8 µM (Ruiz et al. 

2011). Moreover, it has been found that cardamonin possessed anti-fungal activity 

against Epidermophyton floccosum and it was thought that the mode of action was 

that of a wall inhibitor type, but it did not exhibit any significant activity against 

other fungi such as Candida albicans (Lopez et al. 2011). 

Cardamonin has been also found to possess activity against bacterial and viral 

infections. It has been found that cardamonin had antibacterial activity against 

Staphylococcus aureus, Escherichia coli and Bacillus subtillis with minimum 

inhibitory concentration (MIC) of 25 µg/ml, 25 µg/ml and 50 µg/ml, respectively. 

Furthermore, cardamonin was shown to exhibit antiviral activity against HIV-1 by 

targeting its protease which is considered highly essential for the virus’s lifecycle, 

and it showed an IC50 of 115 µM. Dengue was another virus that cardamonin was 

able to exert an effect on, as it was shown that cardamonin had some inhibitory 

action over the dengue virus type 2 (DV2) NS3 protease (Gonçalves, Valente and 

Rodrigues 2014). 
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2.3.6 Pain Management 

It has been shown that cardamonin has the ability to manage pain. Cardamonin was 

able to demonstrate anti-nociceptive effects by blocking the expression of 

cyclooxygenase-2 and transglutaminase-2. This suggested that cardamonin can aid 

in controlling pain that arises from inflammatory diseases (Park et al. 2014).   

Transient receptor potential ankyrin 1 (TRPA1) is a receptor that is involved in 

abnormal high sensitivity to pain (hyperalgesia), and it was found that cardamonin 

was a selective inhibitor of this receptor (Wang et al. 2016). 

Neuropathic pain is a type of pain that arises from injury of the nervous system and 

has proven challenging to treat. A very recent study used chronic constriction injury 

(CCI)-induced neuropathic pain mice in order to study the effect of cardamonin on 

hyperalgesia and allodynia (experience of pain from a usually non-painful 

stimulation of the skin) (Sambasevam et al. 2017). The results showed that 

cardamonin exhibited antihyperalgesic and antiallodynic effects via the activation 

of the opioid system.  

2.3.7 Anticancer Activity 

Studies performed on cardamonin’s bioactivity have, to a large extent, heavily 

investigated cardamonin’s potential as an anticancer agent. Table 2.2 summarises 

the cell-viability assays performed on cardamonin against some cancer cell lines 

and the results obtained for its cytotoxicity which was assessed based on its IC50 

values. 
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 Table 2.2 Cytotoxicity of cardamonin towards different cancer cell-lines  

Cancer cell-line IC50 (Concentration at which 50% 

inhibition of cancer cells occurs) 

Reference 

MCF-7 (breast)              ~50 µM (48 h MTT assay) (Shrivastava et al. 2017) 

BT-549 (breast)                ~8 µM (48 h MTT assay) 

MDA-MB-231 (breast)   >100  µM (48 h Resazurin reduction 

assay) 

 

~10 μM (48 h MTT assay) 

(Kuete at al. 2014) 

 

 

(Shrivastava et al. 2017) 

SW-480 (colon) 35 µM (72 h MTT assay) 

 

~6.5 µM (48 h CellTiter-Glo assay) 

(Simirgiotis et al. 2008) 

 

(Park et al.2013) 

HCT116 (colon) ~9 µM (48 h CellTiter-Glo assay)                       

 

~13 µM (48 h CCK8 assay) 

(Park et al.2013) 

 

 (Kim et al. 2015) 

LS174T (colon) ~13 µM (48 h CellTiter-Glo assay) (Park et al.2013) 

DLD-1 (colon) ~24 µM (48 h CellTiter-Glo assay) 

HCT116 (p53+/+) (colon) 62.74 µM (48 h Resazurin reduction 

assay) 

(Kuete at al. 2014) 

 

SGC7901 (gastric)                61 µM (48 h MTT assay)  (Mi et al. 2016) 

U87MG (glioblastoma) >100 µM (48 h Resazurin reduction 

assay) 

(Kuete at al. 2014) 

 

CD133+ GSCs (glioblastoma) ~30 µM (72 h MTT assay) (Wu et al. 2015) 

CCRF-CEM (leukaemia)    8.59 µM (48 h Resazurin reduction 

assay) 

(Kuete at al. 2014) 

 

KB (mouth epidermal) ~20 µg/ml (48 h trypan blue 

exclusion assay) 

(Lin et al. 2012) 

HepG2 (liver) 22.63 µM (48 h MTT assay) 

 

53 µM (48 h MTT assay) 

(Li et al. 2008) 

 

(Mi et al. 2016) 

AML12 (liver)  >100 µM (48 h Resazurin reduction 

assay) 

(Kuete at al. 2014) 

 

SMMC7721 (liver)   62 µM (48 h MTT assay) (Mi et al. 2016) 

A549 (lung) ~18 µM (48 h MTT assay) 

  

>100 µM (48 h MTT assay) 

(Tang et al. 2014) 

 

(Mi et al. 2016) 

LLC (lung) >10 µM (48 h MTT assay) (Niu et al. 2015) 

RPMI8226 (myeloma) ~10 µM (48 h CCK8 assay)  

(Qin et al. 2012) U266 (myeloma) ~14 µM (48 h CCK8 assay) 

ARH-77 (myeloma)             ~10 µM (48 h CCK8 assay) 

PC-3 (prostate) 11.35 µg/ml (48 h sulforhodamine B 

assay) 

(Pascoal et al. 2014) 

DU145 (prostate)              ~10 µM (72 h MTT assay) (Zhang et al. 2017) 

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0CB0QFjAA&url=http%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Fsigma%2F87060401&ei=vx-YVYbkH82puQSp44DgAw&usg=AFQjCNEDm9_dfyouo9HjN3MmB9mSR-PmMQ&sig2=nToI9DInNsfwhxX3Y9hcpA&bvm=bv.96952980,d.c2E
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There were several studies performed on the mechanism of action of cardamonin, 

for instance, it has been found that cardamonin suppresses the proliferation of 

SW480 colon cancer cells via enhancing the degradation of β-Catenin and inhibiting 

the Wnt/β-catenin pathway (Park et al. 2013). The down-regulation of Wnt/β-

catenin signalling cascade was also found to be the pathway responsible for 

cardamonin’s inhibitory effect on the invasiveness of BT-549 human triple breast 

cancer cells (Shrivastava et al. 2017). However, another study (Kim et al. 2015) 

claimed that cardamonin exerted its antitumour activity on HCT116 cells colon 

cancer cells via the induction of autophagy which is executed by the activation of 

c-Jun N-terminal kinase (JNK) by tumour protein p53. JNK is a kinase responsible 

for the regulation of cell differentiation, proliferation, and death, while it is also 

considered a major mediator of autophagy that leads to cell death in some types of 

cancer cells (Kim et al. 2015).    

Moreover, it has been shown that cardamonin exerted potent activity against 

multiple myeloma cells (RPMI 8226, U266 and ARH-77 cells) via the activation of 

caspase-3, which belongs to a larger group of caspases and possesses the ability to 

cause apoptosis; while it also managed to block the pathway of NF-κB which is a 

transcription factor whose signalling pathway regulates cell survival and 

proliferation (Qin et al. 2012). The fact that NF-κB pathway has been found to be 

inhibited by cardamonin was further supplemented by another study  (Pascoal et al. 

2014) which showed that cardamonin caused apoptosis and down-regulated the NF-

κB1 (a member of the NF-κB family) gene in PC-3 prostate cancer cells. STAT3 is 

also a transcriptional factor belonging to a larger group of STAT proteins and was 
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found to be activated in a variety of cancers where it plays a major role in tumour 

initiation, promotion and progression. A study (Wu et al. 2015) found that 

cardamonin induced apoptosis in CD133+ glioblastoma stem cells (GSCs) via 

inhibiting STAT3 signalling pathway and was thus suggested as a potential 

anticancer agent for the treatment of the adult brain tumour disease known as 

glioblastoma multiforme (GBM). A similar result was reported by a more recent 

study in DU145 prostate cancer cells (Zhang et al. 2017) which showed that STAT3 

was found to be negatively regulated by cardamonin, causing a repression in 

proliferation and invasion, and resulting in apoptosis.  

It has been recently shown that cardamonin inhibited cell viability via blocking the 

testes-specific protease 50 (TSP50)-mediated nuclear factor-kappaB signalling 

pathway activation in MDA-MB-231 breast cancer cells . TSP50 is a gene that was 

thought to be specifically expressed in the testes, but it was also found to be 

overexpressed in several types of tumours and could promote cell proliferation, 

invasion, tumorigenesis, and tumour metastasis (Mi et al. 2016).    

The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that is the 

responsible for the regulation of cell metabolism, proliferation and apoptosis. 

Dysregulation of its activity has been linked to cancer. Rapamycin is an mTOR 

inhibitor which leads to apoptosis and anti-proliferative effects on cancer cells, so 

cardamonin was studied to investigate if it can also act as an mTOR inhibitor and 

results have shown that it actually did inhibit mTOR signalling when tested against 

A549 lung cancer cells (Tang et al. 2014). This inhibition of mTOR resulted in the 

inhibition of proliferation and induction of apoptosis in lung cancer cells, moreover, 
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the study further revealed the possibility of direct interaction of cardamonin with 

mTOR. The action of cardamonin on mTOR was further supplemented by another 

study which showed that cardamonin exhibited an anti-metastatic effect when tested 

against the highly metastatic Lewis lung carcinoma (LLC) cells. This study showed 

that proliferation, invasion and migration of LLC cells was inhibited upon treatment 

with cardamonin and this occurred partially via inhibition of the mTOR signalling 

pathway (Niu et al. 2015). There were other studies conducted that further 

demonstrated the effect of cardamonin on mTOR and emphasising its therapeutic 

potential as an mTOR inhibitor (Liao et al. 2010; Zheng et al. 2010; Niu et al. 2013). 

In vivo and animal model studies with regards to cardamonin anticancer effects are 

much more limited than in vitro studies. It was found that cardamonin inhibited 

tumour growth and lung metastasis in C57BL/6 mice (Niu et al. 2015) while 

angiogenesis induced by SKOV3 cells was reduced by cardamonin in a chicken 

embryo allantois membrane model (Xue et al. 2015). Toll-like receptors (TLR) are 

a family of microbial sensors that make part of a host’s immunity, and it is also 

involved in tissue repair and inflammatory signalling. However, they have been 

found to be highly expressed in cancer cells, and a study (Jia et al. 2015) showed 

that cardamonin could control TLR3 stimulation-induced tumour growth in human 

breast cancer xenografts. Cardamonin was also found to possess an inhibitory effect 

on TSP50 high-expressing tumour growth in vivo in 4T1 tumour-bearing mice (Mi 

et al. 2016). In another study (Shrivastava et al. 2017), murine breast cancer model 

in Balb/c mice was designed to assess the biological activity of cardamonin, and it 
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was found that cardamonin reduced tumour growth volumes at a dose of 5 mg/kg-

treated mice.  

2.4 Pharmacokinetic and ADME Studies on Cardamonin 

The interesting bioactivity demonstrated by cardamonin caused some researchers to 

investigate its pharmacokinetics. A study using human liver microsomes found that 

CYP 1A2 and 2E1 were the P450 isozymes that were involved in the metabolism 

of cardamonin. (He et al. 2009). Another study investigated the pharmacokinetics 

of cardamonin in Sprague Dawley (Jaiswal et al. 2015). The study showed that 

cardamonin reached peak serum concentration after about 2 h of an oral dose, but 

the bioavailability was low for both male (0.6%) and female (4.8%) rats. Moreover, 

the same study showed that cardamonin’s bioavailability and pharmacokinetics 

were affected by gender. A more detailed study was recently performed on the 

pharmacokinetics of cardamonin (Jaiswal et al. 2016), and this study was able to 

provide much further information with regards to the pharamokinetic and ADME 

properties of cardamonin. The study revealed that cardamonin possessed low 

solubility (<10 µM), high permeability (>0.2x10-4 cm/sec) and was found to 

moderately bind to plasma proteins (<50%). When tested in mice, the study showed 

that cardamonin possessed a low oral bioavailability of 18% and it also exhibited 

high clearance, high volume of distribution and short mean residence time. As for 

its excretion, the study found that cardamonin was mostly excreted in faeces and 

negligibly in urine (Jaiswal et al. 2016).    
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2.5 Cardamonin Analogues 

To the best of my knowledge there have been no previous attempts involving the 

production of cardamonin analogues via synthetic means. However, there are very 

few studies that reported the isolation of naturally-occurring cardamonin analogues 

(Figure 2.3) and assessed their bioactivities (Simirgiotis et al. 2008; Kim et al. 

2010; Ko et al. 2011; He et al. 2014; Memon et al. 2014; Yu et al. 2015; Nesello et 

al. 2016; de Oliveira Cabral et al. 2017). The studies on these analogues are very 

limited and this makes them inferior to cardamonin as a well-established bioactive 

compound. In this section, only compounds that were regarded as cardamonin 

analogues by the authors would be discussed, as chalcones in general are analogues 

of each other, but over here, structures that highly resemble cardamonin except for 

minor changes would be considered. 

 

Figure 2.3 Examples of cardamonin analogues 

 

https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57193766449&zone=
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Dimethyl cardamonin (DMC) is a naturally occurring cardamonin analogue that has 

been isolated from Syzygium samarangense (Simirgiotis et al. 2008; Kim et al. 

2010; Ko et al. 2011), Syzygium campanulatum Korth (Memon et al. 2014) and C. 

operculatus (Yu et al. 2015), and has been shown to possess a variety of biological 

activities. It has been shown that DMC possesses cytotoxic activity against SW-480 

colon cancer cells with an IC50 of 10 µM in a 72 h MTT assay (Simirgiotis et al. 

2008), moreover, it also showed potent anti-inflammatory activity in vitro and in 

vivo which was exerted via the blockage of NF-κB activity (Kim et al. 2010). This 

anti-inflammatory effect of DMC was further confirmed by another study (Yu et al. 

2015), whereby DMC exerted its anti-inflammatory effects by reducing early and 

late cytokines expressions via interfering with the PI3K-PDK1-PKCα signalling 

pathway. In another study (Ko et al. 2011), DMC was tested against HCT116 and 

LOVO human colorectal carcinoma cells, and the results showed that it was able to 

inhibit the proliferation of cancer cells via a G2/M phase cell-cycle delay with an 

IC50 of approximately 18 µM and 28 µM for HCT116 and LOVO cells, respectively; 

these results were obtained from a 72 h CCK8 cell viability assay. The cytotoxic 

activity of DMC was further confirmed by a study (Memon et al. 2014) that showed 

its potent anti-proliferative effect on HT-29 colon cancer cells with an IC50 of 12.6 

µg/ml obtained via a 48 h MTT assay, and it also managed to inhibit the migration 

of HT-29 cells. It was also shown that DMC possessed anti-nociceptive effects 

when tested against two mice models (Nesello et al. 2016). Finally, it has been 

recently reported for the first time that DMC possessed gastroprotective potential 

(de Oliveira Cabral et al. 2017).    

https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57193766449&zone=
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4,4′-dihydroxylchalcone (DHC) and 4,4′-dihydroxy-2′-methoxychalcone (DHMC) 

have been identified as cardamonin analogues isolated from Cichorium intybus and 

Dracaena cochinchinensis, respectively (He et al. 2014). The analogues were 

investigated using a 48 h MTT assay and were found to exert potent cytotoxic 

activity against A549, NCI-H1299, NCI-H460, NCI-H1688 and NCI-H446 lung 

cancer cells with IC50 values in the range of 0.126–0.883 μM for DHC and 0.202–

0.911 μM for DHMC. The mechanism of action involved the inhibition of NF-κB 

signalling pathway.    
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3 Results and Discussion 

3.1 Chemistry 

3.1.1 Synthesis 

The analogues of cardamonin were synthesised according to Scheme 3.1. It can be 

clearly seen that one-step reactions were employed for synthesising the analogues, 

which proved to be economical as less reagents were used, and it also resulted in 

more product yields. Initially, the phenolic groups of cardamonin were targeted for 

modification by alkylation and acylation reactions. Alkylation proceeded by 

refluxing cardamonin with an alkyl halide and K2CO3 in acetone, while acylation 

generally involved refluxing cardamonin with an acyl halide/acetic anhydride in 

DCM. DMAP was added as a catalyst in some of the acylation reactions.  In some 

cases, these alkylation/acylation reactions resulted in a mixture of mono- and di-

substituted products, but only the products that showed adequate yields were 

considered. It is crucial to note that in cases where mono-substitution primarily 

occurred such as in 2 and 6, 4’-OH was always the one substituted, and it seems that 

the intramolecular hydrogen bonding between 2’-OH and the carbonyl oxygen 

made it more difficult to substitute as opposed to 4’-OH.   

Importance of the alkene group for bioactivity was investigated by reducing it, and 

this was performed by the synthesis of dihydrochalcone 7 and flavanone 17. The 

reduction of cardamonin via NaBH4 in order to produce 7 resulted in a mixture of 

products that proved difficult to separate, and according to the product’s 1H-NMR 

spectrum, it seemed that the product mixture consisted of a dihydrochalcone, 
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tetrahydrochalcone and allylic alcohol. Therefore, selective reduction of 

cardamonin’s alkene group via the NiCl2/NaBH4 system at 0 oC was considered and 

that produced 7 but in low yield. As for 17, it was produced by refluxing cardamonin 

with concentrated HCl in methanol for 72 h.    

Cardamonin’s ketone group was modified by Schiff base formation and cyclisation 

reactions. Schiff bases were formed by reacting cardamonin with primary amine 

hydrochlorides, therefore pyridine was initially added to the reactants to scavenge 

HCl and produce free primary amines. However, some amines, such as 

methylamine and ethylamine, did not react with cardamonin. S-benzyl 

dithiocarbazate (SBDTC) was also reacted with cardamonin. SBDTC (Figure 3.1) 

is a bioactive amine that is often used to form highly active Schiff bases (Break et 

al. 2013). It was synthesised as previously reported (Break et al. 2013) and was 

considered due to its well-known bioactivity, so it was thought that it would enhance 

cardamonin’s activity. Cyclic rings were produced by reacting cardamonin with 

NH2NH2·H2O and NH2OH to yield pyrazoline 11 and isoxazoline 12, respectively. 

Furthermore, pyrimidine rings were also produced by reacting cardamonin with 

urea and thiourea in the presence of NaOH to synthesise 13 and 14, respectively.  

 

Figure 3.1 Structure of SBDTC 
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Synthesis of flavanone 17 encouraged us to synthesise the flavone analogue of 

cardamonin by reacting the chalcone with I2-DMSO, in order to compare and further 

investigate the importance of the alkene group. Surprisingly, no flavone was 

obtained, rather nuclear halogenation occurred at ring A resulting in 15. The case 

was similar when bromine was initially reacted with cardamonin in chloroform with 

the intention of halogenating the alkene group, but nuclear bromination at ring A 

occurred instead, resulting in 16. Flavone synthesis was attempted again using FeCl3 

(Hemanth and Perumal 2007) but was still unsuccessful. It has been deduced from 

these incidents that a method excluding the use of halogens might finally result in 

successfully synthesising the flavone, as alkene halogenation seems to fail with 

cardamonin and this step is vital in flavone synthesis. Therefore, a previously 

reported method that used oxalic acid for flavone synthesis (Zambare et al. 2009) 

was considered but the attempt failed, and interestingly another study also reported 

the failure of this method (Ndoile and Heerden 2013) which might raise some 

concerns about the method’s efficiency. It seems that substituents at ring A affected 

the side-chain halogenation of cardamonin. This assumption is strengthened by the 

fact that the intended dibromo and flavone derivatives have been obtained in 

previous studies with no reported complications when there were no 6’-OCH3 or 4’-

OH (Dinesha et al. 2015; Song et al. 1999). However, the unexpected bromination 

and iodination of ring A encouraged us to perform chlorination and that was 

attempted using N-chlorosuccininimide but the reaction resulted in a mixture of 

products that proved challenging to separate, as deduced from the NMR spectrum. 

Moreover, further attempts at purification would have resulted in very low yields of 
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the pure compounds, and such amounts would not allow further characterisation and 

bioassays to be performed. Synthesis of flavonol 18 proceeded smoothly and 

involved reacting caradmonin with 30% H2O2 and NaOH.  

Cu (II) complex of cardamonin (19) required the addition of a base as no reaction 

occurred without it, this suggested that deprotonation of 2’-OH was crucial for 

complexation in this case. Imidazole was initially used as a mild base and this 

produced 19 in low yields, so NaOH was used instead resulting in a much higher 

yield. Imidazole was initially used as a base instead of NaOH in order to prevent 

the potential conversion of some of the copper acetate to CuO which would 

contaminate the desired metal complex (19). It is crucial to note that coordinating 

cardamonin to other metal ions, such as Fe2+, Co2+ and Ni2+ via reacting cardamonin 

with FeCl2, CoCl2 and NiCl2 in ethanol, was not successful.   

 

 

 

 

 



46 | P a g e  
 

 

Scheme 3.1 Semi-synthesis of cardamonin analogues. Reagents and conditions: (a) 

K2CO3, alkyl halide, acetone, reflux; (b) pyridine, DMAP, acyl halide/acetic 

anhydride, DCM, reflux; (c) NiCl2, NaBH4, methanol, ice-bath; (d) HCl, primary 

amine, methanol, reflux; (e) NH2NH2·H2O/ NH2OH, methanol, reflux; (f) 

urea/thiourea, NaOH, 80% ethanol, reflux; (g) I2, DMSO, reflux for (15)/Br2, 

CHCl3, reflux for (16); (h) HCl, methanol, reflux; (i) 30% H2O2, NaOH, methanol, 

rt; (j) Cu(OAc)2, 0.18% NaOH, methanol, reflux 
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3.1.2 Structure and Characterisation 

 IR Spectral Analysis 

The IR spectra of the compounds have provided valuable structural information 

which aided in confirming the identity of the synthetic compounds. The IR spectra 

have been placed in the Appendix section and the most crucial peaks were labelled 

for each compound. 

Firstly, it is crucial to note that generally the peak at around 3400 cm-1 can be 

attributed to 4’-OH of the structure or it could be due to residual water from 

surrounding moisture, but NMR studies further confirmed whether 4’-OH was 

present or not. 

The IR spectrum for cardamonin (Figure 8.19) is the most crucial one as the spectra 

for the analogues are similar to it with slight differences. Cardamonin’s spectrum 

showed two broad peaks at 3448 cm-1 and 3170 cm-1, and these have been attributed 

to 4’-OH and 2’-OH groups of the structure, respectively. The lower absorption 

frequency observed for 2’-OH was suggested to be due to lengthening of the (O-H) 

bond as a result of the intramolecular hydrogen-bonding interaction between the 2’-

OH and adjacent carbonyl group (Figure 3.2). 

 

Figure 3.2 Intramolecular hydrogen bonding in cardamonin    
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The peak at 1630 cm-1 was assigned to (C=O) group of the structure and this 

relatively low absorption frequency value for a carbonyl group is due to the presence 

of an α,β-unsaturated carbonyl system possessing conjugated double bonds. The 

conjugated system present in the structure results in lengthening of the (C=O) due 

to resonance causing it to possess a more single-bond character which results in 

lower absorption frequencies. The peaks at 1609 cm-1 and 1475 cm-1 were attributed 

to (C=C) of the aromatic rings, while the peak at 2926 cm-1 was assigned to the (C-

H) groups of the molecule. The peaks at 1114 cm-1 and 1225 cm-1 indicated the 

presence of (C-O) groups with the former being assigned to the methoxy group and 

the latter attributed to the phenolic (C-O) of the structure. 

IR analysis of cardamonin’s acylated/alkylated analogues (1-6) (Figure 8.20 - 

Figure 8.25) aided in confirming their formation. The disappearance of the peak at 

around 3170 cm-1, assigned to 2’-OH, indicated that substitution has occurred at 2’-

OH, however, confirming substitution at 4’-OH using IR spectra was not possible 

due to interference from the residual moisture peak. However, further NMR analysis 

showed that substitution only occurred at 4’-OH for compounds 2 and 6, but the IR 

spectrum of 2 (Figure 8.21) and 6 (Figure 8.25) still showed no peak for 2’-OH. 

This might have been due to the wide residual moisture peak at around 3400 cm-1 

which obscured the 2’-OH peak.   The IR spectra of the acylated compounds 

(Figure 8.23 - Figure 8.25)  showed a further characteristic peak at around 1690-

1776 cm-1 corresponding to an ester (C=O) which proves that the desired compound 

has been successfully obtained. It is crucial to mention that the IR spectrum of 3 

(Figure 8.22) showed a set of overlapping peaks between 2700 cm-1 – 3200 cm-1 
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that were not found in the spectra of the other compounds. These extra overlapping 

peaks have been attributed to the aromatic and alkyl (C-H) stretches of the benzyl 

groups, and this actually further proves the successful O-benzylation of cardamonin.  

The IR spectra of Schiff bases 8, 9 and 10 (Figure 8.27 - Figure 8.29) showed a 

peak at around 1632 cm-1 and this has been assigned to the imine (C=N) group of 

the structures. Moreover, it was still possible to observe the 2’-OH peak at around 

3200 cm-1 as a result of the intramolecular hydrogen bonding between 2’-OH and 

the nitrogen of the imine group leading to (OH) bond lengthening. It is interesting 

to note that 2’-OH peaks of the Schiff bases were found to be at higher absorption 

frequencies than that of cardamonin, and that might have been due to the weaker 

(N---H) hydrogen bond present in the Schiff bases relative to the stronger (O---H) 

hydrogen bond of cardamonin. This weaker hydrogen bond in Schiff bases is 

suggested to be due to the lower electronegativity of nitrogen compared to that of 

oxygen, resulting in lesser bond lengthening. This observation further proves the 

successful replacement of the carbonyl group with an imine group indicating that 

the desired Schiff bases have been successfully obtained. However, it is crucial to 

note that in some cases the 2’-OH peak was clearly visible such as in the spectrum 

of 8 (Figure 8.27), while in the spectrum of 9 (Figure 8.28) the peak was barely 

visible. This happens due to the peak at 3400 cm-1 which is affected by residual 

moisture from the atmosphere, so if moisture content was high in the compound, 

then that would result in an intense wide peak that would overlap with the 2’-OH 

peak. Moreover, the slight differences in the absorption frequencies of the 2’-OH 

peak for compounds 8 and 9, might mean that in some cases the 2’-OH peak is 
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nearer to the peak at 3400 cm-1 resulting in higher chances of overlap. The spectrum 

of 10 (Figure 8.29) was very different from the spectra of the other Schiff bases due 

to the SBDTC moiety present in the structure. The spectrum showed the typical 

imine peak at 1627 cm-1 in addition to a peak at 1487 cm-1 that has been assigned to 

aromatic (C=C)  of the structure. The spectrum also showed peaks that were specific 

to the SBDTC moiety of the structure, such as the thione (C=S) peak at 950 cm-1 , 

the (N-N) peak at 1042 cm-1 and the (NH) peak at 3173 cm-1. There was also the 

peak for 2’-OH from the structure’s cardamonin moiety at 3213 cm-1, however this 

peak overlapped with the adjacent (NH) peak and was challenging to detect.    

The IR spectra for pyrazoline 11 (Figure 8.30) and isoxazoline 12 (Figure 8.31) 

showed characteristic peaks for (C=N) at 1618 cm-1 and 1610 cm-1, respectively. 

This drop in the absorption frequency of (C=N), relative to that of imines in general, 

has been attributed to the lone pair of electrons present on the secondary amine 

nitrogen of 11 and oxygen of 12 (Ioffe 1968). This causes lengthening of the (C=N) 

bond through resonance, thus giving it a more single-bond character. Moreover, the 

spectra for 13 (Figure 8.32) and 14 (Figure 8.33) show peaks at 1661 cm-1 which 

was attributed to (C=N) of the pyrimidine ring, while the peaks at around 3222 cm-

1 and 1601 cm-1 have been assigned to (N-H) stretch and bend, respectively. 

Compounds 13 and 14 exist as tautomers, and their IR spectral data along with their 

NMR data enable the identification of the tautomeric state each of these molecules 

exist in, but that would be discussed later after discussing their NMR spectral data. 

The IR spectrum of flavanone 17 (Figure 8.36) shows a peak at 1657 cm-1, and this 

has been attributed to the carbonyl group of the structure, while this higher 
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absorption value relative to that of cardamonin shows that the carbonyl group is no 

longer conjugated which indicates the disappearance of the adjacent double bond. 

Moreover, there is an absence of a peak for 2’-OH which is thought to be a result of 

its conversion into an ether. These characteristic peaks found in the IR spectrum of 

the flavanone prove the formation of the intended compound. The case was similar 

for 18 whereby the IR spectrum (Figure 8.37) is very similar to that of cardamonin 

except that there is no peak for 2’-OH which indicates that cyclisation might have 

occurred. 

The IR spectrum of 19 (Figure 3.3 and Figure 8.38) showed a peak at around 1598 

cm-1 assigned to (C=O) and this negative shift in the absorption frequency relative 

to that of cardamonin suggested coordination of the carbonyl oxygen with the metal 

ion. This negative shift is thought to be due to enhancement of the mesomeric effect 

upon complexation which results in lengthening of (C=O). Moreover, the peak 

assigned for 2’-OH at 3173 cm-1 has disappeared from the spectrum of 19 which 

indicates that the phenolic group has coordinated with the metal ion in its 

deprotonated form. This was further confirmed by the appearance of a peak at 1230 

cm-1 which was assigned to the phenolic (C-O) of 19, and this positive shift in the 

absorption frequency relative to that of cardamonin further indicated the 

coordination of the phenolic oxygen of deprotonated 2’-OH to the metal ion.  
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Figure 3.3 Overlaid IR spectra of cardamonin and 19  
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Finally, it is crucial to mention that it was not possible to fully deduce the structures 

of 7, 15 and 16 via IR spectroscopy. This was due to the fact that these analogues 

possessed IR spectra that were too similar to that of cardamonin and characteristic 

peaks proved difficult to identify. Therefore, it was decided that further analysis via 

NMR spectroscopy would be needed to confirm the analogues’ structures. 

However, it was possible to observe the appearance of an extra peak in the IR 

spectrum of 15 (Figure 8.34) and 16 (Figure 8.35) at the fingerprint region. The 

peak at 847 cm-1 in the spectrum of 15 was attributed to the newly formed (C-I), 

while the peak at 498 cm-1 in the spectrum of 16 was attributed to the newly formed 

(C-Br). This could indicate the successful halogenation of the compounds, but 

further analysis via NMR spectroscopy is required to confirm these structural 

findings.  
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 NMR Spectral Analysis 

Cardamonin 

Discussion of cardamonin’s NMR spectrum is highly crucial as the spectra of the 

other derivatives are very similar to it with the exception of some extra peaks 

corresponding to the groups that were added. Therefore, a thorough discussion 

would be provided for cardamonin’s NMR spectrum while only new peaks 

corresponding to newly added groups would be discussed for the analogues. 

 

Figure 3.4 NMR spectrum of cardamonin 

The singlet peak at 3.96 ppm corresponded to the methyl protons of the methoxy 

group (7’) and this relatively high absorption is a result of deshielding effect on the 

methyl protons by the adjacent electronegative oxygen atom. H-3’ and H-5’ of ring 

RING B 

7’ 

7’ 

H-7, H-8 

2’-OH 4’-OH 

H-3’, H-5’ 
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A showed a doublet for each due to long range coupling interactions with each other 

and they showed lower absorption values than those of aromatic protons in general 

at 6.03 ppm and 5.98 ppm, respectively; this upfield absorbance might be due to the 

shielding effect provided by the adjacent methoxy and hydroxyl groups which 

directed electrons to the ortho and para positons of the ring. Methine protons H-7 

and H-8 have been assigned the peaks 7.89 ppm and 7.82 ppm, respectively, and 

the higher absorption peak of the former is due to deshielding by resonance effect 

which also results in further shielding of H-8. Figure 3.5 illustrates the resonance 

effect phenomenon. 

 

Figure 3.5 Resonance effect of cardamonin     

It is important to note that the coupling constant (J) for the doublets of H-7 and H-

8 is almost 16 Hz which is large and has been suggested to indicate the existence of 

the chalcone as a trans isomer (Tran et al. 2012). This is usually characteristic to 

chalcones and can be used as a proof for their formation. 

Finally, the singlet peak at 14.16 ppm has been attributed to 2’-OH as this relatively 

high absorption for a hydroxyl proton is a result of further deshielding of the proton 

due to intramolecular hydrogen bonding between it and the adjacent carbonyl 

oxygen. This hydrogen bond meant that the electronegative carbonyl oxygen would 

further deshield the hydroxyl proton resulting in a further downfield shift. 
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Compound  1 

 

Figure 3.6 NMR spectrum of 1 

The characteristic singlet at 6.31 ppm in the spectrum of 1 belonging to aromatic 

protons H-3’ and H-5’ prove that the substitution reaction was successful and the 

intended di-alkylated compound has been obtained. This is due to the fact that these 

protons can only be equivalent if the hydroxyl groups of the parent compound 

cardamonin were successfully methylated as that would result in a 2’,4’,6’-
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trimethoxy ring and that makes H-3’ and H-5’ chemically equivalent. Furthermore, 

it is crucial to note that these protons are shielded by the resonance effect of the 

electron-donating methoxy groups causing them to absorb further upfield. Finally 

the 3 singlet peaks at around 3.85 ppm were assigned to methyl protons 7’, 8’ and 

9’ which further proves the formation of the analogue. 

Compound 2 

 

Figure 3.7 NMR spectrum of 2 

The spectrum of 2 showed the formation of the desired product via the multiplet at 

around 5.98 ppm which was attributed to the methine proton of the allyl group (9’), 

as this proton experiences couplings with all the surrounding protons resulting in a 
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complex multiplet which is characteristic to the allyl group. There was also a pair 

of doublet of doublets, belonging to protons of the methylene group (10’, 11’) in 

the allyl fragment at around 5.26 ppm and 5.35 ppm due to geminal and vicinal 

couplings with the neighbouring protons. Finally, the presence of a doublet for 

protons of the methylene bridge of the allyl group (8’) at 4.50 ppm indicated the 

successful allylation of cardamonin. However, the presence of a peak at 14.19 ppm 

assigned to 2’-OH indicated that allylation occurred only at 4’-OH. 
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Compound 3 

 

Figure 3.8 NMR spectrum of 3 

The spectrum for compound 3 showed a relatively large number of overlapping 

peaks in the range between 7 and 8 ppm, and this indicates the presence of a large 

number of aromatic protons which proves that cardamonin has been successfully 

benzylated. Moreover, the peaks around 5 ppm attributed to the methylene protons 
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of the benzyl group (8’ and 9’) further confirm the formation of the intended 

product, and this relatively higher chemical shift is due to the high electronegativity 

of the adjacent oxygen which enhanced the deshielding effect. It was difficult to 

assign each peak to its corresponding aromatic proton due to the extensive 

overlapping of peaks resulting from the 4 benzene rings present in the structure. 

Compound 4 

 

Figure 3.9 NMR spectrum of 4 

The spectrum for 4 has characteristic singlet peaks corresponding to methyl protons 

of the acetyl groups (9’ and 8’) at 2.11 ppm and 2.28 ppm which confirms the 

successful di-acetylation of cardamonin.  
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Compound 5 

 

Figure 3.10 NMR spectrum of 5 

The spectrum has proven the formation of the 4-fluorobenzoylated analogue of 

cardamonin by peaks characteristic to the 4-fluorobenzoyl moiety along with peaks 

belonging to the cardamonin moiety. The triplet and doublet of doublet peaks at 

around 7.10 ppm and 8.10 ppm have been assigned to meta (9’, 11’) and ortho (8’, 

10’) protons of the 4-fluorobenzene ring, respectively, and these splitting patterns 

have been a result of coupling of the protons with each other in addition to the 

neighbouring fluorine atom, as fluorine has a nuclear spin similar to hydrogen, thus 

it can couple with the adjacent protons. Moreover, the presence of these splitting 
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patterns as duplicates in addition to the disappearance of a peak at 14 ppm for 2’-

OH, indicate that disubstitution of cardamonin has taken place resulting in two 4-

fluorobenzoyl moieties that are magnetically non-equivalent.    

Compound 6 

 

Figure 3.11 NMR spectrum of 6 

The spectrum of the benzoylated compound shows a higher number of peaks around 

7-8 ppm relative to that of cardamonin due to contribution from the benzoyl group 

protons. Furthermore, the peak at 13.56 ppm corresponding to 2’-OH shows that 

benzoylation occurred at the para position of ring A only.  
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Compound 7 

 

Figure 3.12 NMR spectrum of 7 

The NMR spectrum of compound 7 shows that reduction of cardamonin via the 

NaBH4/ Ni2+ system resulted in a dihydrochalcone whereby the alkene group of the 

chalcone was selectively reduced. This is evident from the appearance of a pair of 

triplets at 2.99 ppm and 3.32 ppm corresponding to the methylene protons 7 and 8 

respectively, which shows that the alkene group has been converted. Moreover, the 

disappearance of a pair of doublets with large coupling constants at around 7.70 

ppm corresponding to methine protons H-7 and H-8 further confirms the reduction 

of the alkene group. This structure assignment was further strengthened and 

complemented by data obtained from the IR spectrum which showed a peak 

corresponding to the ketone group, thus confirming that the ketone group was 

unaffected by the reduction reaction and the product is a dihydrochalcone.   
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Compound 8 

 

Figure 3.13 NMR spectrum of 8 
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Compound 9 

 

Figure 3.14 NMR spectrum of 9 
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Compound 10 

Figure 3.15 NMR spectrum of 10 

The spectra for Schiff bases 8, 9 and 10 show little variation from that of cardamonin 

and the extra peaks shown are due to the alkyl groups that have been attached to 

them. The spectrum for 8 shows a triplet peak at 3.00 ppm assigned for the 

methylene bridge protons adjacent to the nitrogen atom (9) while the peaks at 2.82 

ppm and 1.70 ppm  have been assigned to the adjacent methylene bridge protons 

(10) and methyl protons (11) , respectively, which further proves that the 
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condensation reaction was successful and resulted in the formation of the desired 

structure. The spectrum for 9 is very similar to that of cardamonin except for one 

characteristic peak at around 3.93 ppm assigned to C=NOCH3 (9) which proves the 

formation of the intended Schiff base. Finally, the spectrum for 10 has shown a 

characteristic singlet at 4.52 ppm assigned to the methylene bridge (10) of the 

SBDTC moiety and these protons have been deshielded by the adjacent sulphur 

atom, moreover, there were several overlapping peaks at around 7.5 ppm with an 

integral of about 10 protons assigned to ring B of the cardamonin moiety and the 

benzene ring of the SBDTC moiety, which further prove the formation of the 

SBDTC-derived Schiff base. It is also crucial to note that the presence of a peak for 

NH at 4.92 ppm in the spectrum of 10 proves that the structure exists as the thione 

tautomer, as such a structure can actually undergo thione-thiol tautomerism (Figure 

3.16) 

 

Figure 3.16 thione-thiol tautomerism in 10 
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Compound 11 

 

Figure 3.17 NMR spectrum of 11 
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Compound 12 

 

Figure 3.18 NMR spectrum of 12 

The spectra have clearly proven that the cyclisation reactions were successful and 

resulted in the formation of the desired pyrazoline and isoxazoline compounds.  The 

disappearance of doublets corresponding to the α and β methine protons of 

chalcones indicated that the alkene double bond is no longer present. Formation of 

the pyrazoline/isoxazoline ring was proven by the presence of three doublet of 

doublets at 3.83 ppm, 3.94 ppm and 6.52 ppm for 11 and 3.58 ppm, 3.93 ppm and 
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5.46 ppm for 12 corresponding to the methylene (8, 9) and methine (7) protons of 

the pyrazoline/isoxazoline rings. These three doublet of doublets found in each of 

the compounds arise due to restricted rotation of the C-C sigma bond of the 

pyrazoline/isoxazoline rings resulting in two magnetically inequivalent protons 

which can couple with each other peak as well as the adjacent methine (7) proton 

resulting in doublet of doublets for each of the three protons. The relatively high 

absorption frequency of the methine proton (7) is suggested to be as a result of 

deshielding by the adjacent electronegative nitogen/oxygen atom in addition to the 

flow of electrons towards the adjacent benzene ring. Finally, the singlet at 7.13 ppm 

found only in the spectrum of 11 was assigned to (NH) of the pyrazoline ring 

moiety.  

Coupling constants have also managed to provide valuable structural data. The 

relatively large coupling constants for pyrazoline/isoxazoline ring protons is 

generally due to trans coupling. Based on that, the peak at 3.94 ppm for 11 and 3.93 

for 12 was attributed to the trans proton of the pyrazoline/isoxazoline ring’s 

methylene group (8, 9), and this was due to their large coupling constants of 20.2 

Hz and 24 Hz, respectively. These large coupling constants are characteristic for 

pyrazoline/isoxazoline protons and further prove the formation of the desired 

product.  
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Compound 13 

 

Figure 3.19 NMR spectrum of 13  
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Compound 14 

 

Figure 3.20 NMR spectrum of 14  

The spectra of 13 and 14 appear very similar to each other with the majority of peaks 

typical of those found in cardamonin, so both spectra would be analysed 

simultaneously. The absence of doublets possessing large coupling constants 

corresponding to H-7 and H-8, at around 7 ppm, indicates that one of these protons 

no longer exists and cyclisation was thus successful. Moreover, the pair of doublets 

at around 5.5 ppm have been attributed to the methine protons (8, 9) of the 

pyrimidine group which further proves the formation of the intended 

pyrimidone/pyrimidthione derivative. Pyrimidone and pyrimidthiones are known to 
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exhibit tautomerism similar to that shown in Figure 3.21 and presence of a pair of 

doublets at about 5.5 ppm suggests that the methine proton (9) of the pyrimidine 

ring is coupled with an adjacent proton (-CH-CH-NH); combining this spectral data 

with that obtained from IR analysis enabled the correct determination of the 

structure along with the tautomeric state of the synthetic compounds.  

 

Figure 3.21 Tautomerism in pyrimidones/pyrimidthiones 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



74 | P a g e  
 

Compound 15 

 

Figure 3.22 NMR spectrum of 15 
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Compound 16 

 

Figure 3.23 NMR spectrum of 16 

The spectra for 15 and 16 are very similar to that of the parent compound 

cardamonin. However, the presence of a singlet in both spectra at 6.26 ppm for H-

3’ rather than a doublet, and the absence of a peak for H-5’ at around 5.9 ppm shows 

that aromatic halogenation took place at the meta position of ring A.  
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Compound 17   

 

Figure 3.24 NMR spectrum of 17 

The absence of a peak at around 13-14 ppm corresponding to 2’-OH shows that 

cyclisation into the intended flavanone has occurred. Moreover, the absence of a 

pair of doublets with large coupling constants for methine protons H-7 and H-8 

shows that the double bond is no longer present, this is further supported by the 

appearance of 3 sets of doublet of doublets peaks attributed to the methylene protons 

adjacent to the carbonyl group (8, 9), and H-7. These sets of doublet of doublets are 

a result of geminal and vicinal couplings between the adjacent protons. All these 

peaks prove the formation of the intended product.    
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Compound 18 

 

Figure 3.25 NMR spectrum of 18  

The spectrum of flavonol showed the absence of peaks corresponding to the methine 

protons of cardamonin which proves the formation of the flavonol. However, there 

was also an absence of a pair of doublets corresponding to H-3’ and H-5’ which 

meant that hydroxylation at these positions of ring A has also taken place. This is 

further supported by the singlet peak at 7.65 ppm which integrated to 2 protons 

corresponding to 3’ and 5’-OH, and this singlet peak is due to these hydroxyl groups 

being in a similar chemical environment, each having an ether and a hydroxyl group 
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adjacent to them. Finally, the disappearance of a peak at around 13-14 ppm 

corresponding to 2’-OH shows that cyclisation has taken place as predicted.  

Compound 19 

 

Figure 3.26 NMR spectrum of 19 

NMR analysis for 19 resulted in a spectrum with low-intensity broad peaks and this 

was due to the paramagnetic nature of copper (II) ion (Figure 3.26). These broad 

peaks of 19 are actually an indication for formation of the desired copper complex 
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(19). The spectrum showed no peak for 2’-OH suggesting the involvement of the 

group’s deprotonated form in complexation. Moreover, the peaks assigned to the 

aromatic protons of ring A (H-3’ and H-5’) were found to be shifted downfield after 

complexation, to 7.45 ppm and 7.42 ppm, respectively. This downfield shift 

observed was attributed to the electron withdrawing mesomeric effect exerted by 

Cu2+ after bonding with cardamonin’s deprotonated 2’-OH. These characteristic 

peaks further prove the formation of 19 and provide further information about its 

structure.  

 Further supporting characterisation of 19 

It was intended to elucidate the structure of 19 via X-ray crystallography, however, 

that was not possible. This was due to the inability to grow crystals of the metal 

complex despite attempts to grow them using a variety of solvents, such as 

methanol, isopropanol and DMSO. Moreover, more than one method was 

investigated for growing the crystals, such as the slow evaporation method and 

crystallisation by the cooling down of a heated saturated solution of 19. It is also 

crucial to note that small vials and NMR tubes were used in order to initiate 

crystallisation. Interestingly, a survey of the available literature showed that 

chalcone metal complexes mostly lacked structure elucidation via X-ray 

crystallography, unless the chalcone was initially derivatised. Therefore, the metal 

complex was analysed via HRMS, elemental analysis, TGA and UV-Vis spectral 

analysis, in addition to the previously discussed IR and NMR analyses.  
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HRMS spectrum showed a very clear and high-intensity peak at 624.0783 (Figure 

3.27) which was attributed to the sodium adduct of compound 19 at a ligand to metal 

stoichiometric ratio of 2:1. This experimental m/z value (624.0783) closely matches 

the theoretical/calculated value for a sodium adduct of 19 at a ligand to metal 

stoichiometric ratio of 2:1 (624.0829). The deduced structure of 19 from HRMS 

data was further confirmed via elemental analysis whereby the obtained percentage 

of carbon and hydrogen [%C (57.02), %H (4.47)] closely matches the 

theoretical/calculated value of 19 with a ligand to metal stoichiometric ratio of 2:1 

[%C (57.01), %H (5.08)]. However, the experimental value obtained from 

elemental analysis matches the theoretical value only when it is assumed that there 

would be 4 water molecules in the structure of 19, otherwise both values actually 

do not match. To summarise, HRMS and elemental analysis confirmed that 19 

exists at a ligand to metal stoichiometric ratio of 2:1, however, it was deduced from 

elemental analysis data that there should be water molecules. The reason that the 

presence of these water molecules was not detected by HRMS might have been due 

to the extreme conditions, such as very high temperatures, used in the process which 

resulted in the loss of those water molecules. Therefore, to further confirm the 

presence of these water molecules and investigate their nature a thermogravimetric 

analysis (TGA) was conducted on compound 19. The TGA curve (Figure 3.28) 

showed a 4.1% loss in weight between 30 - 200 oC corresponding to a loss of 2 

moles of lattice water, while a 5.6% weight loss was observed between 206-262 oC 

attributed to the loss of 2 moles of coordinated water. Therefore, it was concluded 

that the general formula for 19 would be [Cu(C16H13O4)2(H2O)2]·2H2O.  
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Figure 3.27 HRMS spectrum of 19 
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Figure 3.28 TGA curve of 19 

Cardamonin and compound 19 were analysed via UV-Vis spectroscopy in order to 

compare and prove the formation of the metal complex. The UV-Vis spectrum for 

19 (Figure 3.29) showed bands at 291 nm, 352 nm and 432 nm which were 

attributed to n → π* and π → π* transitions involving the molecular orbitals of 

(C=O) and benzene rings. The slight shift observed in the absorption band of 19 at 

432 nm relative to that of cardamonin is most likely resulting from the coordination 

of cardamonin to the metal ion causing an increase in the delocalisation of the 

compound’s electron system which consequently led to a change in the transitions’ 

energies (Kalanithi et al. 2012). The formation of 19 was mostly proven by the 

bands at 506 nm and 600 nm. The band observed at 506 nm has been assigned to 

ligand-to-metal charge transfer (LMCT), while the broad band at 600 nm was 

attributed to d-d transitions and indicates an octahedral arrangement (Raman et al. 

2004). 
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Figure 3.29 UV-Vis spectrum of cardamonin and 19 

 

 



84 | P a g e  
 

3.2 Biological Studies  

3.2.1 Cell Viability and Structure-activity Relationship Studies 

Table 3.1 IC50 values of cardamonin and its analogues against HK1 and A549 

cells. Active analogues have been shaded. 

 IC50 (µM)a 

Compound A549 HK1 

Cardamonin 67.0 ± 7.0 22.6 ± 5.4 

(1) >100 >100 

(2) 35.1 ± 9.9 4.95 ± 0.9 

(3) >100 >100 

(4) 27.3 ± 4.3 21.7 ± 5.9 

(5) >100 89.5 ± 7.1 

(6) 37.6 ± 3.1 29.4 ± 1.1 

(7) >100 >100 

(8) >100 >100 

(9) >100 >100 

(10) 23.9 ± 5.7 36.6 ± 14.2 

(11) 63.8 ± 6.5 46.8 ± 10.3 

(12) >100 >100 

(13) 29.9 ± 1.3 66.5 ± 3.3 

(14) >100 >100 

(15) 36.1 ± 1.3 49.7 ± 3.6 

(16) >100 >100 

(17) >100 >100 

(18) 83.9 ± 16.2 60.4 ± 3.7 

(19) 13.2 ± 4.8 0.7 ± 0.3 

a IC50 values are reported as the mean (IC50 ± SEM) of duplicates of three independent experiments. 
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Results of the bioassay were summarised in Table 3.1, and analogues demonstrating 

activities higher than cardamonin were regarded as active. The active analogues 

were shaded in grey colour in Table 3.1. The results showed that cardamonin and 

its analogues exerted higher activity against HK1 than A549 cells with the exception 

of 10, 13 and 15. It is possible that compounds 10, 13 and 15 are actually acting in 

a different manner than the other analogues in each cell-line. So it is possible that 

they are acting on different receptors or possessing completely different modes of 

action from the other analogues, which might explain the reason behind these three 

compounds not following the general trend observed with the other analogues.   It 

has been also observed that the active analogues showed greater enhancement, 

relative to cardamonin, when tested against A549 than HK1 cells. Finally, it can be 

deduced from the results that compound 19 possessed the highest cytotoxic activity 

followed by 2.  

It is also crucial to note that the IC50 values obtained for cardamonin against A549 

cells are actually different from the results obtained in previous studies in the 

literature (Table 2.2) and this is due to many factors. One of the main factors is that 

this study used MTS assay for assessing cell viability, while these previous studies 

used MTT as shown in Table 2.2. Moreover, the duration of treatment for A549 

cells was different whereby the cells were treated for 72 h in this study, while a 48 

h treatment duration was used in the previous studies.  

SAR analysis revealed that substituting cardamonin’s hydroxyl groups with non-

polar groups resulted in loss of cytotoxic activity, while substitution with more polar 

groups enhanced activity. This was deduced primarily by comparing the 
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bioactivities of 1, 2, 3 and 4, whereby there was a loss in activity when the hydroxyl 

groups were methylated and benzylated, but acetylation of the same groups and 

allylation of 4’-OH resulted in activity enhancement. However, it seems that loss of 

activity upon O-benzylation might not only be due to polarity alone, as activity was 

also lost when the hydroxyl groups were substituted by the more polar 4-

fluorobenzoyl group. Therefore, it has been suggested that steric hindrance could 

be the main reason behind the loss of activity for 3 and 5, whereby the bulky benzene 

ring at the ortho position of ring A might be preventing any potential interactions 

between the ketone group and the receptor. This steric hindrance effect does not 

seem to exist when only benzoylation of 4’-OH occurred as in analogue 6, which 

further shows that bulky substituents might negatively affect bioactivity if 

substitution occurred at 2’-OH specifically. Thus, it can be concluded that avoiding 

bulky substituents at cardamonin’s 2’-OH and substituting the hydroxyl groups with 

more polar fragments is expected to enhance bioactivity.  

There was a loss in the cytotoxic activity of 7 and 17 which lacked the alkene double 

bond; these results show that the alkene double bond is crucial for bioactivity. 

Importance of the ketone group to bioactivity was investigated by Schiff base 

formation and cyclisation reactions at the group. Results have shown that Schiff 

bases of cardamonin, 8 and 9, had no bioactivity while only the SBDTC-derived 

analogue, 10, had high activity but it was not considered due to its low purity. 

Furthermore, 11, 12 and 14 were generally found to have no activity indicating that 

cyclisation at the ketone group also results in loss of activity. However, 13 was an 

exception, whereby high activity was demonstrated against A549 cells despite 
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chemical modification at cardamonin’s ketone group, and this activity was 

attributed to the formation of a pyrimidinone moiety as a result of the 

tautomerisation (Figure 3.21) of 13 at its target receptor; thus the analogue would 

still possess a ketone group in this case resulting in enhanced activity. On the other 

hand, the clearly observed loss in activity of 13 against HK1 cells might be due to 

the presence of the compound in its enol form in this case.  Therefore, it can be 

generally concluded that cardamonin’s alkene double bond and its ketone group are 

crucial, as their absence led to a loss in activity.         

Halogenation of cardamonin resulted in compounds 15 and 16. The good bioactivity 

of 15 showed that iodination of cardamonin enhanced bioactivity, however, 

bromination resulted in loss of activity as can be seen in 16. 18 demonstrated very 

weak bioactivity, but it has been suggested that the compound could act as an 

antioxidant for cancer prevention due to its high phenolic content. 

Copper complex of cardamonin (19) showed highly potent activity and was the most 

active analogue with an interesting IC50 of 13.2 µM and 0.7 µM against A549 and 

HK1 cells respectively, demonstrating an enhancement in activity of 5 and 32 fold 

relative to cardamonin, respectively. These results indicate that complexation of 

cardamonin to metal ions enhances activity.  

Results of the SAR study have been summarised in Figure 3.30.  
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Figure 3.30 A summary of the anticancer SAR study results of cardamonin 
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3.2.2 Active Analogues Showed More Selectivity Towards the Cancer Cells 

In order to determine the selectivity of the active analogues to cancer cells, the 

bioactive analogues were further screened against human normal lung fibroblast 

cells (MRC-5) (Table 3.2). The results showed that almost all active analogues 

showed greater selectivity towards the cancer cell lines and demonstrated lower 

cytotoxicity towards normal MRC-5 cells, such as the highly active compound 19, 

which was almost 29 times more selective towards HK1 cells. Such data further 

reflected the potential of 19 as an anticancer agent. Therefore, since 19 was the most 

active compound with high selectivity to cancer cells, it was decided to further 

investigate its bioactivity and mode of action; the following experiments will be 

addressing that.  

Table 3.2 Cytotoxic activity of the bioactive analogues against MRC-5 cells  

   Selectivity index (SI)b 

Compound IC50 (µM)a 

(MRC-5) 

 A549 HK1 

(2) 17.1 ± 4.2 

 

 0.5 3.5 

(4) 39.9 ± 7.8 

 

 1.5 1.8 

(6) >100 

 

 NA NA 

(13) >100  NA NA 

    

(15) >100  NA NA 

    

(19) 

 

20.6 ± 3.3  1.6 28.6 

a IC50 values are reported as the mean (IC50 ± SEM) of duplicates of three independent experiments. 

b SI = (IC50 of MRC-5)/(IC50 of A549 “or” HK1). 
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3.2.3 Compound 19 Inhibited the Migration of A549 and HK1 Cells 

A wound healing scratch assay has been implemented in order to investigate the 

effect of 19 on the migration of A549 and HK1 cells and compare it to that of 

cardamonin (Figure 3.31 and Figure 3.32). The cells were treated either with 

solvent alone to act as the control, or with compound 19. 

In the present study, migration assay was performed to investigate the migration 

inhibitory effect of compound 19 relative to cardamonin after a treatment duration 

of 24 h and 48 h. It has been decided to determine the treatment concentration for 

the assay by using IC50. Therefore, the IC50 of 19 at 24 h was used as a reference to 

determine the concentration to be used for this migration assay, and this IC50
 was 

calculated from the cell viability data of 19 at 24 h. The cell viability data of 19 and 

cardamonin at 24 h have been placed in the Appendix section (Figure 8.39 and 

Figure 8.40). In the case of A549, the IC50
 of 19 at 24 h was 54.6 µM (Figure 8.40), 

but at this relatively high concentration there was risk of cytotoxicity and cell death 

which would lead to an incorrect interpretation of the assay results. Therefore, 25 

µM (~0.5 x IC50 of 19) was used for the assay. Cardamonin was also investigated 

in order to compare the inhibitory effect of 19 relative to cardamonin, and this 

necessitated that cardamonin also gets investigated at the same concentration of 19. 

This would enable a more accurate and fair comparison between the inhibitory 

effects of 19 and cardamonin. As for HK1, the IC50 of 19 at 24 h was 12 µM (Figure 

8.40) which means that cardamonin would also have to be investigated at 12 µM. 

However, cardamonin’s IC50 at 24 h is (>100 µM) (Figure 8.39) which means that 

a concentration of 12 µM would be very low to show any activity. To solve this 
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issue, 19 and cardamonin were investigated against HK1 cells at 25 µM (~2 x IC50 

of 19). Therefore, a concentration of 25 µM was decided to be used for compound 

19 and cardamonin against A549 and HK1 cells. 

Compared with the control treatment, 19 has significantly reduced the migration of 

A549 and HK1 cells by around 2-fold and >3-fold, respectively. Furthermore, the 

inhibitory effect of 19 on the migration of both cell lines was generally 2-3 times 

stronger than that of cardamonin, which further highlights the enhanced bioactivity 

possessed by 19. Cell death did not occur in this experiment as the investigated cells 

were still attached to the 6-well plate, otherwise the cells would have detached. 

Moreover, no visible change in cell morphology was observed which further 

indicates that the cells did not die throughout the experiment. The potential of cancer 

cells to metastasise depends on several properties such as their migration ability, so 

these positive results demonstrate the potential ability of 19 in preventing cancer 

metastasis in patients, such as those suffering from lung and breast cancer (Doan et 

al. 2016; Nandakumar et al. 2017).   
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Figure 3.31 Compound 19 inhibited the migration of A549 and HK1 cells. 

Migration assay was conducted in a 6-well plate by forming a “wound” across a 

layer of cells followed by treatment with either solvent control, 25 µM cardamonin 

or 25 µM compound 19. The figure shows representative wound closure images 

from three experiments.  
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Figure 3.32 Quantification of cell migration assay results for A549 and HK1 cells 

was performed using the software ImageJ. Cell migration was calculated and 

expressed as the percentage of “wound” area covered by the cells to the initial cell-

free “wound” area. The assay was repeated three times, and bars and error bars refer 

to mean ± SEM. *p<0.05, analysed using a two-tailed unpaired t-test.     
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3.2.4 Induction of G2/M-phase Arrest by Compound 19 in A549 and HK1 Cells 

Cell-cycle is the series of events that occur in order to enable cell division and 

replication, and consists of four distinct phases: G1-phase which involves the 

preparation of material and energy for replication, S-phase (synthesis) where DNA 

replication occurs, G2-phase (interphase) where the new replicated DNA is checked 

and errors are repaired, and M-phase (mitosis) which involves the nuclear and 

cytoplasmic division of the cell. Many cytotoxic agents work by stopping this cell-

cycle at a certain phase which eventually affects the cell’s division (Fares et al. 

2014).  

Therefore, a cell-cycle analysis was conducted in order to investigate if compound 

19 results in cell death via disrupting or arresting the cell-cycle in A549 and HK1 

cells. A549 and HK1 cells were treated either with solvent alone to act as the 

control, or with compound 19 at IC50 concentrations. Cells treated with 19 for 24 h 

showed a profound increase in the fraction of cells in the G2/M-phase (37.38% 

compared to 10.52% in the untreated cells for A549 cells; 39.15% compared to 

15.48% in the untreated cells for HK1 cells). This was accompanied by a decrease 

in the number of cells in the G1-phase for both cell lines and S-phase for A549 only 

(Figure 3.33). Therefore, this indicated that 19 induced G2/M-phase cell-cycle 

arrest in both A549 and HK1 cells.  
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Figure 3.33 Flow cytometric analysis 

of cell-cycle parameters following 24 h 

of treatment with either solvent control 

or 19 at IC50 concentrations in A549 and 

HK1 cells. Data were gated to exclude 

apoptotic cells from calculations of the 

fraction of cells in G1, S and G2/M 

phases. Results are representative of 

two independent experiments for each 

cell-line.  
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3.2.5 Compound 19 causes DNA damage in A549 and HK1 cells 

Cell-cycle arrest at G2/M phase is a common cellular response for agents that cause 

DNA damage (Qiu et al. 2013), and since 19 induced a G2/M-phase cell cycle 

arrest, we reasoned that it might be able to cause DNA damage. DNA damage that 

results in the formation of double-strand breaks (DSB) is always followed by 

phosphorylation of the histone H2AX to γ-H2AX (Kuo and Yang 2008). Therefore, 

γ-H2AX is considered a DNA double-strand breaks (DSB) marker which can be 

quantified in order to assess DNA damage.   

The induction of DNA damage by 19 was assessed by detecting the number of cells 

expressing γ-H2AX after treatment. A549 and HK1 cells were treated either with 

solvent alone to act as the control, or with compound 19 at IC50 concentrations. It 

was decided to treat the cells with 19 at IC50 concentrations because this assay is 

based on the cell-cycle data, whereby the G2/M cycle arrest caused by 19 was the 

reason behind suspecting that DNA damage also took place in the cells. Therefore, 

it was decided to use the same treatment concentration of 19 for cell-cycle analysis 

and DNA damage assay. Flow cytometry was used to detect γ-H2AX formation. As 

demonstrated in Figure 3.34, 19 significantly increased the formation of γ-H2AX 

in A549 and HK1 cells by 7- and 5-fold relative to the control, respectively. This 

indicated that the activity of 19 involved the induction of DNA damage in both cell 

lines as has been predicted. 
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Figure 3.34 Flow cytometric detection of γ-H2AX formation following 24 h of treatment with either solvent control or 19 at IC50 concentrations 

in A549 and HK1 cells. (A) Representative dot-plots illustrating γ-H2AX abundance versus total cellular DNA content of each cell. (B) Bar chart 

summarising results of the flow cytometry analysis. Results represent the mean ± SEM of 2 independent experiments. ***p<0.001, analysed using 

a two-tailed unpaired t-test.    
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3.2.6 Induction of Apoptosis by Compound 19 via Activation of Caspase-3/7 

The activation of caspases is considered to be the hallmark of apoptosis, especially 

caspase-3 which is considered to be the most important of the executioner caspases. 

It is activated by any of the initiator caspases which results in direct activation of 

enzymes responsible for DNA fragmentation (Nomura et al. 2008). Therefore, the 

induction of apoptosis by the most active compound, 19, in A549 and HK1 cells 

was investigated via a Caspase-Glo 3/7 Assay. The assay uses a reagent which emits 

luminescence or glows after being cleaved by caspase-3/7. This luminescence can 

be then read by a luminometer. 

This assay is very sensitive and is affected by the treatment concentration of the 

compound, duration of incubation of the cells after treatment and even duration of 

incubation of the cells after adding the Caspase-Glo reagent (Piazza et al. 2009; 

Ravanan et al. 2011; Lee et al. 2015). These factors affect the assay because of a 

main issue, which is the fact that the time of caspase activation is unknown, so it is 

possible that the caspase was actually activated but because the reading was taken 

later, the luminescent signal would have diminished by that time resulting in a low 

reading. However, as can be seen from the studies cited earlier, if a certain 

compound activates a certain caspase, a signal would usually always be detected 

even if it is small, and optimising the treatment concentration would just strengthen 

the signal.    

In the present experiment, several attempts were made in order to determine the 

concentration of compound 19 and duration of treatment that would result in 

detection of the strongest luminescent signal. The amount of Caspase-Glo reagent 
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was very limited so that also limited the number of attempts that could be 

performed. Results of these attempts have been summarised in Table 8.1 and Table 

8.2 in the Appendix section. Based on these attempts, it has been deduced that a 

concentration of 10 µM for compound 19 produces the strongest luminescence 

signal. The optimum duration of treatment and incubation were also determined and 

outlined in Section 6.8.  

The experiment was finally performed whereby A549 and HK1 cells were treated 

either with solvent alone to act as the control, or with compound 19 (10 µM). This 

was followed by the addition of Caspase-Glo reagent to the control and treatment 

groups. Results of the assay showed that A549 and HK1 cells treated with 19 

resulted in the activation of caspase-3 and -7 within 12 h of treatment by about 1.4- 

and 2-fold, respectively (Figure 3.35). This suggested that 19 induced cell death 

through caspase-dependent apoptosis in both cell lines. It is also interesting to note 

that caspase-3/7 was more activated in HK1 cells than A549 cells, which might 

explain the results of the MTS assay which showed that 19 exerted higher cytotoxic 

activity against HK1 cells than it did against A549 cells. 
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Figure 3.35 Caspase-3/7 activity of A549 cells and HK1 cells, treated with solvent 

control or 19 at about 10 µM for 12 h. The experiment was performed in duplicate 

for each cell line and bars and error bars refer to mean ± SEM. *p<0.05, analysed 

using a two-tailed unpaired t-test. 
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3.2.7 Compound 19 Activated Caspase-9 Leading to Apoptosis via the Mitochondrial 

Pathway 

Apoptosis in cells can be activated via extrinsic (death receptor) and intrinsic 

(mitochondrial) apoptotic pathways, and initiator caspases-8 and 9 play a significant 

role in these pathways (Figure 3.36). The extrinsic pathway involves the binding of 

ligands to death receptors, such as the binding of tumor necrosis factor-related 

apoptosis-inducing ligand (TRAIL) to its death receptors DR4 and DR5, resulting 

in the activation of caspase-8 which in turn activates caspase-3/7. On the other hand, 

the intrinsic pathway is initially activated via a range of stimuli such as DNA 

damage, oxidative stress and ischemia. Furthermore, intrinsic pathway induction is 

also affected by members of a group of proteins bound to the outer membrane of 

the mitochondria called the bcl family group. The bcl group consists of pro-

apoptotic proteins (bax and bad) in addition to anti-apoptotic proteins (bcl-2 and 

bcl-XL), and coordination between these protein types affects the induction of 

apoptosis. Therefore, intrinsic apoptosis occurs when pro-apoptotic signalling 

prevails and this results in mitochondrial membrane perturbation followed by 

release of cytochrome C. Cytochrome C then forms a complex with apoptotic 

protease activating factor (APAF-1) to form a complex that later activates caspase-

9. Caspase-9 later activates caspase-3/7 resulting in apoptosis (Loreto et al. 2014; 

Ichim and Tait 2016). 
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Figure 3.36 Intrinsic apoptosis and Extrinsic apoptosis signalling pathways 

(adapted from: Loreto et al. 2014) 

Therefore, Caspase-Glo 8 and 9 assays were conducted in order to investigate the 

apoptotic pathway that is induced by the most active compound, 19. The assays 

work in a similar manner to the Caspase-Glo 3/7. 

The way to determine the concentration of 19 that should be used in the assay is the 

same as the one for Caspase-Glo 3/7. However, the amount of Caspase-Glo 8 and 

Caspase-Glo 9 was limited and it was not possible to run several attempts in order 

to optimise the conditions that would result in the emittance of the strongest 

luminescence signal. Therefore, it was decided to use the same conditions that were 
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used with Caspase-Glo 3/7. However, the treatment time was reduced to 6 h, 

because caspase-8 and 9 are initiator caspases, so it was reasoned that they would 

be activated at an earlier time-point 

A549 and HK1 cells were treated either with solvent alone to act as the control, or 

with compound 19 (10 µM). This was followed by the addition of Caspase-Glo 8 

reagent to the control and treatment groups in the case of Caspase-8 assay while 

Caspase-Glo 9 reagent was added to the control and treatment groups in the case of 

Caspase-9 assay. Results of the assay showed that 19 activated only caspase-9 in 

A549 and HK1 cell lines within 6 h of treatment (Figure 3.37). This indicated that 

19 caused apoptosis via the intrinsic (mitochondrial) pathway. However, the results 

also indicated that 19 inhibited caspase-8 which could mean that 19 is actually an 

inhibitor of caspase-8, but then cell-death occurred via a different pathway resulting 

in the observed increase of caspase-9 activity. This alternative cell-death pathway 

via caspase-9 would have most probably involved a very complex signalling 

pathway that would need further studies to elucidate (Vandenabeele, Berghe and 

Festjens 2006; Jeong et al. 2011; Li et al. 2017).  

It can be seen from the data that the detected luminescence signals were not very 

strong and this is because the experiment was not fully optimised due to the limited 

amount of Caspase-Glo 8 and 9 reagents. It seems that a different treatment 

concentration for 19 or a different time-point for signal detection should have been 

used. However, the fact that there was an increased luminescence signal detected, 

even if it was not very strong, surely indicates that caspase-9 was activated. 
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Figure 3.37 Caspase-8 and caspase-9 activity of A549 cells and HK1 cells, treated 

with either solvent control or 19 at about 10 µM for 6 h. The experiment was 

performed in duplicate for each cell line and bars and error bars refer to mean ± 

SEM. **p<0.01, analysed using a two-tailed unpaired t-test. 
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3.2.8 Compound 19 Inhibited mTOR Expression in A549 and HK1 Cells 

The mTOR pathway is usually activated in several types of cancers and regulates 

cell proliferation, metabolism, apoptosis and metastasis. mTOR pathway is initially 

activated by ligand stimulation of certain membrane-bound receptors which results 

in the phosphorylation of phosphatidylinositol 3-kinase (PI3-K) which in turn 

activates a downstream effector known as Akt. Akt mainly acts as a regulator of 

cell-survival and is responsible for the eventual phosphorylation of mTOR. mTOR 

later phosphorylates downstream effectors, S6K1 and 4E-BP1, resulting in eIF4E-

mediated protein synthesis and increased cell growth, metabolism and proliferation 

(Ekman, Wynes and Hirsch 2012; Porta, Paglino and Mosca 2014). This pathway 

is known as the PI3-K/Akt/mTOR signalling pathway (Figure 3.38).  

 

Figure 3.38 PI3-K/Akt/mTOR signalling pathway (adapted from: Holmes 2011) 
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In the case of lung cancer, there is an abnormal activation of the PI3-K/Akt/mTOR 

pathway and this higher activation contributes to cancer cell growth and 

maintenance. The role of mTOR in advancing lung cancer has been linked to its 

effect on a downstream effector known as eIF-4E. Moreover, several negative 

regulators of the mTOR pathway, such as PTEN, have been found to be mutated in 

lung cancer, while the upstream regulator of mTOR, Akt, is often highly activated 

in lung cancer cells (Ekman, Wynes and Hirsch 2012). As for NPC, the abnormal 

activation of the PI3-K/Akt/mTOR signalling pathway has also been found to be 

one of the reasons for cancer progression. Moreover, Akt, S6K1 and 4E-BP1, were 

all found to be further activated in NPC cells (Wang et al. 2014; Li et al. 2017). A 

study performed on NPC patients also found that mTOR and its downstream 

effector, S6K1, were highly activated in NPC cells of the patients (Yang et al. 2013). 

Therefore, all these studies suggest a very crucial role for the mTOR signalling 

pathway in NPC and lung cancer progression, and inhibition of this pathway could 

be a key step for treating these cancer types (Yang et al. 2013).        

Several previous studies stated that cardamonin exerted its cytotoxic effect via 

mTOR pathway inhibition (Tang et al. 2014; Nui et al. 2015; Xue et al. 2015). 

Therefore, it was decided to investigate whether the most active analogue, 19, also 

exerted its anticancer effect via a similar pathway. The effect of 19 on the expression 

levels of mTOR was assessed via a qPCR analysis. 

The cells were treated either with solvent alone to act as the control, or with 

compound 19 prior to running the assay. Similar to the migration assay, there is no 

specific protocol with regards to treatment concentrations for qPCR assay and 
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different studies across literature have used different treatment concentrations 

without providing justifications (Martí-Centelles et al. 2015; Szychowski et al. 

2017; Baud et al. 2018). This experiment was performed in order to investigate if 

19 affects mTOR activity resulting in the death of A549 and HK1 cells. Therefore, 

it has been decided to use 50 µM of compound 19 which is twice the concentration 

that has been used for the migration assay. This is because the 25 µM concentration 

of 19 used for the migration assay did not result in significant cell death which could 

mean a lower inhibition of mTOR signalling by 19 which might prove challenging 

to detect. So it was thought that if 19 was actually involved in mTOR pathway 

inhibition, then a 50 µM concentration would result in significant inhibition of 

mTOR signalling, enabling a more accurate and clearer assessment of mTOR 

inhibition by 19. It is interesting to note that several qPCR studies have also reported 

treatment concentrations that are significantly higher than the compounds’ IC50 

values, and this further supports the choice of treatment concentration that have 

been used in this present experiment (Duan et al. 2017; Baud et al. 2018).  

Results of the assay showed that 19 downregulated the expression of mTOR by 

almost 3 and 4-fold in A549 and HK1 cells, respectively (Figure 3.39). Therefore, 

this indicated that 19 might have exerted its cytotoxic effect via inhibition of mTOR 

activity. It can also be noticed that mTOR expression was more inhibited by 19 in 

HK1 cells than A549 cells which could further explain the observed higher 

cytotoxic activity exerted by 19 against HK1 cells. Therefore, these results indicate 

that 19 could potentially act as an anticancer agent for NPC and lung cancer due to 

its role in mTOR pathway inhibition. However, several additional tests are required 
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such as Western blotting and kinase assays, to further investigate the effect of 19 on 

mTOR. 

 

Figure 3.39 mRNA expression of mTOR in A549 and HK1 cells after treatment 

with either solvent control or 50 µM of compound 19 for 24 h, as determined by 

qPCR. mRNA expression levels were normalised to GAPDH and compared with 

the untreated solvent control. The qPCR experiment was repeated three times, and 

bars and error bars refer to mean ± SEM. **p<0.01, analysed using a two-tailed 

unpaired 

 t-test. 
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3.3 In Silico Studies 

3.3.1 Drug-likeness and ADMET Studies 

A certain active compound cannot be developed into a medicinal drug unless it goes 

through the body successfully from the moment of administration until it is removed 

from the body. This journey is usually assessed via four dimensions; Absorption, 

Distribution, Metabolism and Elimination. These four parameters are usually 

referred to as ADME. So a successful oral drug will be fully or largely absorbed 

from the gut and then distributed across the body. The drug will be distributed 

across various sites of the body, but it should largely be distributed towards its 

intended site of action and in the process it should ideally not interact non-

specifically with other targets such as related receptors or serum protein. A large 

portion of the drug then goes through the liver and gets metabolised by enzymes 

such as the P450 oxygenases, however, a successful drug should avoid inducing or 

inhibiting these enzymes as that could lead to drug-drug interactions. Moreover, the 

metabolism of an ideal drug candidate should not result in toxic metabolites. Finally, 

the drug or its metabolites pass through the kidneys and get eliminated or removed 

from the body. In addition to these parameters, toxicology studies are usually 

conducted in order to ensure that the drug would not be toxic to the body. These 

properties that define a certain drug are collectively known as ADMET properties 

(Hodgson 2001).  

ADMET properties can usually be only fully confirmed after clinical studies have 

been taken, but there have been studies conducted to enable the prediction of a 

compound’s properties from its structure, and software have been developed for that 
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purpose. This was performed by studying the properties of established drugs in the 

market and observing general chemical properties that make a compound more 

“Drug-like” with desirable ADMET properties. This was later followed by feeding 

the information to a computer or software. The software then uses the parameters 

and information that have been stored in it to predict the “Drug-likeness” of new 

molecules. 

In this present experiment, the “Drug-likeness” of analogues possessing biological 

activities equivalent to that of cardamonin and higher were assessed in silico using 

calculations made by the software Molsoft. The software predicts oral 

bioavailability of compounds based on parameters from the ‘Lipinski’s rule of 5’ in 

addition to other parameters and reports the final assessment in the form of a ‘Drug-

likeness score’. A desirable ‘Drug-likeness score’ range has been defined by the 

software after calculating the scores of established marketed drugs and a summary 

of this range has been shown in Figure 3.40. 

 

Figure 3.40 Drug-likeness graph used by Molsoft. Drug-likeness score for 6 has 

been shown in this image as a red vertical line. 
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Table 3.3 shows the predicted physicochemical properties of the compounds 

investigated by Molsoft. Results of the analysis revealed that the analogues are 

generally predicted to possess good drug-like properties with 6 having the most 

optimum properties. 

Table 3.3 ‘Lipinski’s rule of 5’ with additional parameters for selected analogues 

a Molecular weight 

b Calculated lipophilicity 

c Number of hydrogen bond acceptors 

d Number of hydrogen bond donors 

e Polar surface area (Å2) 

f Solubility parameter [in log(moles/L)] 

 

Compound MWT a LogP b HBA c HBD d PSA e LogS f Drug-

likeness 

score 

Cardamonin 

 

270 3.21 4 2 55.01 -3.56 -0.25 

2 

 

296 3.90 4 1 44.79 -4.22 -0.37 

4 

 

354 3.21 6 0 62.43 -4.32 -0.21 

6 

 

374 4.88 5 1 57.77 -5.75 0.56 

13 

 

312 2.50 5 4 81.01 -3.00 0.16 

15 

 

396 3.77 4 2 54.03 -3.90 -0.19 

19 

 

655 6.41 10 7 74.65 -6.95 -0.01 



112 | P a g e  
 

In silico prediction of further ADMET properties was partially performed via “Pre-

ADMET” and results of the online tool’s predictions for the most active compounds 

were summarised in Table 3.4. The online tool managed to predict the ADMET 

properties of all active compounds except that of 19, because the software was not 

able to process organometallic compounds. “Pre-ADMET” can aid in assessing 

bioavailability by predicting a compound’s permeability to Caco-2 cells and its 

percentage human intestinal absorption (%HIA). Caco-2 cells are derived from 

human colon adenocarcinoma and these cells are usually used to assess a 

compound’s in vitro permeability. A value of (<4) indicates low Caco-2 

permeability, while (4-70) indicates moderate permeability and (>70) indicates high 

permeability (Valasani et al. 2013).  %HIA is the sum of bioavailability and 

absorption of a compound; a value of (0%-20%) indicates low absorption while 

(20%-70%) moderate absorption and (70%-100%) indicates high absorption 

(Valasani et al. 2013). Cardamonin and its analogues have been predicted to 

generally have moderate Caco-2 cell permeability and high %HIA. 

Percentage Plasma Protein Binding (PPB) refers to the percentage of drug that is 

bound to plasma proteins, and a value of (>90%) indicates strong binding while 

(<90%) indicates weak binding (Valasani et al. 2013). The online tool predicted that 

%PPB would be generally high for cardamonin and its active analogues which 

indicates that the compounds’ drug action, efficacy and disposition might be 

negatively affected, as usually the unbound concentration of a drug is the one 

available for drug diffusion/transport across membranes and interaction with the 

target. However, 13 was the only active analogue predicted to have low %PPB. 
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Therefore, in general it is predicted that the bioactive cardamonin analogues would 

have improved bioavailability over their parent compound, however it seems that 

appropriate doses would have to be administered to account for the predicted high 

plasma protein binding.   

Toxicity of the compounds was predicted by assessing their risk towards inhibition 

of the cardiac Human ether-a-go-go-related gene (hERG) ion channel, by their 

ability to penetrate the Blood-Brain Barrier (BBB) and if they inhibit Cytochrome 

P450 3A4 (CYP3A4). It was predicted that there was no high risk of hERG 

inhibition by cardamonin and its analogues, therefore, it seems that the analogues 

would not induce cardiotoxicity. As for the compounds’ ability to penetrate the 

BBB, analogues were predicted to have moderate to low penetration ability with a 

much lower penetration ability than that of cardamonin, except for 15. This was 

deduced by treating BBB penetration values of (>2.0) as an indication of high 

penetration ability, while (0.1-2.0) indicated moderate ability and (<0.1) indicated 

low penetration ability (Gonçalves et al. 2012). Thus, it can be deduced that the 

analogues would probably possess no Central nervous system (CNS) side-effects. 

Finally, the software predicted that cardamonin and its active analogues would all 

act as inhibitors of CYP3A4 which is an enzyme responsible for the metabolism of 

many drugs, and this might result in drug-drug interactions leading to side-effects. 

This would mean that further studies might be required to identify which drugs 

should not be co-administered with cardamonin or its analogues to avoid potential 

drug-drug interactions. Therefore in general, these results further reflect the 
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potential improvement in ADMET properties of cardamonin analogues relative to 

cardamonin itself.  

Table 3.4 In silico prediction of further ADMET properties of cardamonin and its 

most active analogues 

Compound Plasma 

Protein 

Binding 

(%) 

Caco-2 Cell 

Permeability 

(nm/sec) 

Human 

Intestinal 

Absorption 

(%) 

hERG 

Inhibition 

Blood-

Brain 

Barrier 

Penetration 

Cardamonin 92.70 15.98 92.83 Medium 

risk 

0.56 

      

2 
 

94.10 41.82 95.75 Low risk 0.41 

    

4 93.02 35.16 99.04 Medium 

risk 

0.02 

      

6 94.60 28.19 96.28 Low risk 0.06 

      

13 84.79 20.93 84.62 Medium 

risk 

0.70 

      

15 90.88 20.86 96.15 Medium 

risk 

1.20 
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3.3.2 Molecular Docking Studies 

Molecular docking studies were considered in order to study the binding poses and 

possible interactions of the most active compound, 19, with the mTOR protein target 

and examine the compound’s potential as an mTOR inhibitor. mTOR was chosen 

as the protein target based primarily on my results that showed the inhibition of 

mTOR expression by 19. This protein target has been also chosen due to previous 

studies which showed that cardamonin exerted its cytotoxic activity via the 

inhibition of mTOR signalling, so it was expected that its analogues would also have 

a similar mechanism (Tang et al. 2014; Niu et al. 2015). Cardamonin was also 

docked to mTOR in order to compare its binding affinity and interactions to that of 

19 which might aid in providing a possible explanation for the difference found in 

their bioactivities. Moreover, studying cardamonin’s interactions with mTOR might 

provide possible explanations to the observed activities of the other synthetic 

analogues and SAR that was deduced from them. 

Docking studies were performed via AutoDock Vina and visualisation of results 

was performed using Accelrys Discovery Studio 4.0. The X-ray crystal structure of 

mTOR complexed with a ligand has been downloaded from the RCSB protein data 

bank (http://www.rcsb.org) with PDB code 4JT5. Initially the docking protocol was 

validated by redocking the co-crystallised ligand onto the target (mTOR) and the 

best generated binding pose was compared to that of the co-crystallised ligand. The 

binding pose generated by Autodock Vina was similar to that of the co-crystallised 

ligand with an RMSD value of 1.66 Å, which indicated that the software was 

suitable for conducting docking experiments with mTOR (Figure 3.41) 

http://www.rcsb.org/
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Figure 3.41 Binding pose of the co-crystallised ligand compared to the highest 

binding energy pose of the ligand generated by Autodock Vina (Yellow). The 

binding poses were found to be similar 

Cardamonin was then docked onto mTOR (Figure 3.42) and the docking results 

showed a binding affinity of -8.1 kcal/mol whereby cardamonin interacted with 

mTOR via hydrophobic interactions and hydrogen bonds. Hydrophobic interactions 

included Pi-alkyl and Pi-sigma interactions between cardamonin’s rings and 

mTOR. The 2’-OH and 4’-OH of cardamonin formed hydrogen bonds with 

ASP2195 (2.06 Å) and GLU2190 (2.57 Å) residues of mTOR, moreover, the ketone 

group formed a hydrogen bond with ASP2357 (3.27 Å). In light of such information 

it seems that to maintain good binding, substituents at cardamonin’s phenolic 

groups should be polar groups capable of forming hydrogen bonds or polar 

interactions with mTOR. Therefore, that might explain the reason behind the 

general enhancement of bioactivity when O-acylation of cardamonin’s phenols was 
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performed, while at the same time explaining the loss of activity when non-polar 

groups were added via O-alkylation reactions. The hydrogen bond formed by the 

carbonyl oxygen of cardamonin might explain the loss of activity when the oxygen 

was substituted by alkyl amines, whereby the non-polar alkyl groups prevented the 

formation of any hydrogen bonds. Moreover, this hydrogen bond interaction might 

also explain the enhancement in activity when urea moiety was introduced in place 

of the ketone group, whereby 13 is thought to have tautomerised to form a 

pyrimidinone moiety whose ketone group is capable of forming hydrogen bonds 

with the receptor.  

Compound 19 was then docked onto mTOR (Figure 3.42) since the compound has 

been the most biologically active analogue, so it was expected that it would bind 

with high affinity. The water molecules have been omitted for a better assessment 

of the complex’s interactions. Docking analysis results revealed that 19 interacted 

more efficiently than cardamonin with mTOR, and had a binding free energy of -

9.8 kcal/mol. Rings B of the ligands formed Pi-alkyl, Pi-sigma and Pi-Pi interactions 

with ILE 2356, ILE 2237 and HIS 2247, respectively. Moreover, the binding of 19 

to mTOR was enhanced by hydrogen bonds with LYS 2187 and ASP 2357; the 

carbonyl oxygen atom of 19 formed hydrogen bonds with LYS 2187 (6.8 Å), while 

the same amino acid formed hydrogen bonds with the ortho phenolic oxygen atoms 

of 19 (6.2 Å and 6.5 Å), as for ASP 2357, it formed a hydrogen bond with 4’-OH 

(4.8 Å). A detailed summary of the interactions has been shown in Figure 3.42. 

Docking results indicate that the metal ion might have enhanced activity indirectly 

by its ability to coordinate two cardamonin ligands which enabled further 
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interactions with mTOR, unlike in the case of cardamonin alone. Moreover, it is 

possible that 19 possessed better permeability into cells due to its enhanced 

lipophilicity as can be explained by the Overtone’s concept and chelation theory 

(Break et al. 2013). According to the Overtone’s concept of cell permeability, the 

membrane surrounding cells favours the passage of lipophilic compounds, and 

chelation enhances lipophilicity by allowing the delocalisation of π-electrons over 

the whole chelate ring, while positive charge on the metal ion is partially shared 

with the donor groups resulting in better penetration. Therefore, these might be the 

reasons behind the increased bioactivity of 19 despite the probability of no 

interactions between the copper (II) ion and its receptor as per the docking results. 
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Figure 3.42 (A and C): 2D diagram showing the interactions between mTOR and: (A) Cardamonin; (C) Compound 19, the orange lines represent 

hydrophobic interactions, while the blue arrows represent hydrogen bonds. (B and D): 3D interaction map of mTOR, which has been mapped according 

to hydrophobicity, and: (B) Cardamonin; (D) Compound 19 
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4 Conclusion 

In the present study, 19 analogues of cardamonin were synthesised and tested 

against A549 and HK1 cell lines. One of the contributions of this study is in 

exploring the chemistry and reactivity of cardamonin. Several reactions were 

attempted to produce the cardamonin analogues and every effort was made in order 

to maximise product yields by reducing the reaction steps for each analogue to only 

one step. Such short reaction routes have also proven to be economical as less 

reagents were required. It was found that cardamonin reacted differently from other 

conventional chalcones in some cases, such as in the synthesis of halogenated 

derivatives 15 and 16, in addition to the synthesis of flavonol 18. Moreover, 

attempts to coordinate cardamonin with metal ions were all unsuccessful; except in 

the case of Cu2+ which resulted in the formation of a metal complex with a 

Cardamonin:metal ion ratio of 2:1 (Compound 19).    

However, the main contribution of this study is in conducting an SAR study on 

cardamonin and its analogues for the first time, in addition to the discovery of the 

highly active copper (II) complex of cardamonin (19). The SAR study identified the 

importance of the ketone, alkene and polar groups for bioactivity. As for 19, it 

demonstrated potent activity against A549 and HK1 cell lines with an IC50 of 13.2 

µM and 0.7 µM, respectively, while also showing lower toxicity towards healthy 

MRC5 cells with an IC50 of 20.6 µM. Moreover, 19 possessed a migration inhibitory 

effect on cancer cells that is higher than cardamonin. Studies on its mode of action 

revealed that 19 managed to activate caspase-9 and caspase-3/7 leading to apoptosis 
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and induced G2/M-phase cell-cycle arrest. Furthermore, it induced its anticancer 

effect via inhibiting the expression of mTOR. Figure 4.1 shows an overall summary 

of the proposed mode of action of 19 in both A549 and HK1 cells based on the 

experimental data that were generated from the assays performed. Finally, In silico 

studies managed to provide a plausible explanation for the observed bioactivity of 

the analogues; especially compound 19, whereby molecular docking of the 

compound to mTOR showed that 19 formed further interactions with the receptor 

which might have resulted in enhanced activity. Therefore, it can be clearly seen 

that the objectives set for the study have been fully fulfilled. 

Such results have never been reported earlier and this study is the first one to attempt 

to optimise the bioactivity of cardamonin and explore its SAR, chemistry and 

reactivity further. This would aid in guiding future optimisation studies on 

cardamonin, in addition to performing further studies on the active analogues that 

were discovered in this study. 
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Figure 4.1 Schematic representation of the proposed signalling pathways induced 

by 19 in the cancer cells to cause apoptosis 
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5 Future Studies 

Future work would include investigating the anticancer activity of 19 on further cell 

lines such as Jurkat, MCF-7 and HepG2 cells. These further studies would also 

include studying the mode of action of 19 on these cell lines. Later studies could 

include in vitro ADMET studies on 19, as this would enable a better prediction of 

the compound’s pharmacokinetics and increase its success rate as a medicinal 

product. Such studies would involve investigating the solubility, permeability, 

bioavailability and percentage plasma protein binding of 19. Finally, it is planned 

to study the anticancer activity of 19 in vivo using mice, and the compound’s 

pharmacokinetics would also be investigated at this stage. 

There are also other plans, and these include the synthesis of molecular hybrids 

involving cardamonin and other bioactive natural product molecules. Molecular 

hybridisation is a known technique used to enhance the bioactivity of a certain 

compound by chemically linking it to another bioactive compound. There were 

several successful studies that used molecular hybridisation to enhance bioactivity. 

It is predicted that this technique would produce highly active analogues of 

cardamonin and it seems to be a promising future work that can be conducted in 

parallel with the further studies that are planned to be conducted on 19.  
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6 Materials and Methods 

6.1 General 

Reagents of analytical grade were used as received from their commercial sources, 

while cardamonin (98% purity) was obtained from Shanghai Yuanye Bio-

Technology Co. Ltd (Shanghai, China). Elemental analysis was performed on a 

Vario MACRO CUBE CHNS analyser, while thermogravimetric analysis (TGA) 

was performed via a Mettler Toledo TGA analyser up to 800 oC with a heating rate 

of 10 oC/min in an atmosphere of N2. IR spectra were recorded by a Perkin Elmer 

FTIR spectrophotometer within the range (4000–400 cm−1) using KBr discs while 

melting points have been measured using an Electrothermal IA9100 digital m.p. 

apparatus measuring within a range of (0 oC–400 oC). HRMS spectrum was recorded 

using a Bruker micrOTOF-Q LCMS (ESI positive) at UKM CRIM lab. HPLC 

purity analysis was performed using an Agilent 1260 Infinity system equipped with 

a Zorbax 300SB-C18 column (5 µm, 250 mm x 4.6 mm). Mobile solvent A was 

water, while B was acetonitrile and the flow rate used was 1.25 ml/min The time 

program used for the HPLC analysis was 55% B (0-5 min), 55% - 85% B (5-25 

min) and 99% B (25-30 min).   

1H NMR spectra were obtained via a Bruker FT-NMR 300 MHz, 400 MHz and 600 

MHz. TLC was performed using 60F aluminium silica gel aluminium plates with 

254 nm fluorescent indicator from Merck. UV-Vis spectra were obtained via an 

UltroSpec 8000 spectrophotometer. 
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6.2 Synthesis  

Cardamonin 

IR (KBr, cm-1): 3448, 3173 (2’-OH), 2926 (C-H), 1630 (C=O), 1609 and 

1475(aromatic C=C), 1384, 1225 and 1212 (phenolic C-O), 1112 (O-CH3), 972, 

790, 744; 1H NMR (300 MHz, DMSO, δ(ppm)): 13.69 (s, 1H, 2’-OH), 7.83 (d, 1H, 

H-7, J = 15.6 Hz), 7.65 (d, 1H, H-8, J = 15.9 Hz), 7.73-7.44 (m, 5H, aromatic 

protons of ring B), 6.02 (d, 1H, H-3’, J = 2.1 Hz), 5.92 (d, 1H, H-5’, J = 2.4 Hz), 

3.88 (s, 3H, 6’-OCH3); UV-Vis (λmax, nm) in DMSO: 290, 351, 419 

General method for synthesis of (1), (2) and (3)  

Cardamonin (30 mg, 0.11 mmol) was dissolved in acetone followed by the addition 

of K2CO3 (0.14 g, 1 mmol). The alkyl halide was later added and the reaction 

mixture was left to stir under reflux for 24 h. K2CO3 was removed by filtration while 

the solvent was evaporated in vacuo. The remaining solid was finally purified via 

preparative TLC using a mobile phase of cyclohexane:choroform in a ratio of 6:4. 

The alkyl halides used were methyl iodide (2 ml, 0.032 mol), allyl bromide (0.2 ml, 

2.31 mmol) and BnCl (2 ml, 0.017 mol) for the synthesis of (1), (2) and (3), 

respectively. 

(E)-3-Phenyl-1-(2,4,6-trimethoxyphenyl)prop-2-en-1-one (1) 

Yield: 7.4 mg (22.5%); Mp: 55-61 oC; IR (KBr, cm-1): 3449, 2938 (C-H), 1633 

(C=O), 1606 and 1458 (aromatic C=C), 1336, 1228 (phenolic C-O), 1128 (O-CH3), 

974, 815, 742; 1H NMR (400 MHz, methanol-d4, δ(ppm)): 7.59-7.42 (m, 5H, 

aromatic protons of ring B), 7.35 (d, 1H, H-7, J = 16.4 Hz), 6.97 (d, 1H, H-8, J = 
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16 Hz), 6.31 (s, 2H, H-3’/5’), 3.89 (s, 3H, 2’-OCH3), 3.79 (s, 3H, 4’-OCH3), 3.76 

(s, 3H, 6’-OCH3); Purity: 95% (HPLC, Rt = 4.243 min)  

(E)-1-(4-(Allyloxy)-2-hydroxy-6-methoxyphenyl)-3-phenylprop-2-en-1-one (2) 

Yield: 21.2 mg (62%); Mp: 106-108 oC; IR (KBr, cm-1): 3448, 3190 (2’-OH), 2927 

(C-H), 1628 (C=O), 1573 (allylic C=C), 1422 (aromatic C=C), 1340, 1220 

(phenolic C-O), 1114 (O-CH3), 980, 790, 743; 1H NMR (400 MHz, CDCl3, 

δ(ppm)): 14.19 (s, 1H, 2’-OH), 7.54-7.34 (m, 5H, aromatic protons of ring B), 7.83 

(d, 1H, H-7, J = 15.6 Hz), 7.72 (d, 1H, H-8, J = 15.6 Hz),  6.04 (d, 1H, H-3’, J = 2.4 

Hz), 5.98 (m, 1H, CH2-CH=CH2), 5.94 (d, 1H, H-5’, J = 2.3 Hz), 5.35 (dd, 1H, 

CH2-CH=CH-H, J = 1.4 Hz), 5.26 (dd, 1H, CH2-CH=CH-H, J = 1.3 Hz), 4.50 (d, 

2H, CH2-CH=CH2, J = 5.4 Hz), 3.85 (s, 3H, 6’-OCH3); Purity: 95% (HPLC, Rt = 

8.750 min). 

(E)-1-(2,4-Bis(benzyloxy)-6-methoxyphenyl)-3-phenylprop-2-en-1-one (3) 

Yield: 10.6 mg (21%); Mp: 57-60 oC; IR (KBr, cm-1): 3449, 2930 (C-H), 1634 

(C=O), 1618 and 1444 (aromatic C=C), 1385, 1227 (phenolic C-O), 1122 (O-CH3), 

974, 812, 770; 1H NMR (400 MHz, methanol-d4, δ(ppm)): 7.56-7.20 (m, 15H, 

aromatic protons), 6.98 (d, 1H, H-7, J = 16 Hz), 6.45 (d, 1H, H-3’, J = 2 Hz), 6.39 

(d, 1H, H-5’, J = 2 Hz), 5.15 (s, 2H, 2’-OCH2-Ar), 5.08 (s, 2H, 4’-OCH2-Ar), 5.04 

(d, 1H, H-8. J = 18.8 Hz), 3.77 (s, 3H, 6’-OCH3); Purity: 97% (HPLC, Rt = 11.806 

min) 
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4-Cinnamoyl-5-methoxy-1,3-phenylene diacetate (4) 

Cardamonin (40 mg, 0.15 mmol) was dissolved in dichloromethane by constant 

heating and stirring followed by the addition of acetic anhydride (0.2 ml, 2.12 

mmol), pyridine (0.2 ml, 2.47 mmol) and DMAP (7.2 mg, 0.059 mmol). The 

reaction mixture was left to stir for 24 h under reflux. The mixture was later washed 

with 4.5% HCl and saturated aqueous sodium bicarbonate, followed by drying with 

MgSO4. The solvent was then evaporated and the resulting solid was purified using 

preparative TLC with a solvent system of chloroform:cyclohexane at 4:6. 

Yield: 10.7 mg (20%); Mp: 183-186 oC; IR (KBr, cm-1): 3449, 2919 (C-H), 1772 

(C=O), 1642 (C=O of cardamonin moiety), 1419 (aromatic C=C), 1385, 1213 

(phenolic C-O), 1119 (O-CH3), 830, 689, 614; 1H NMR (400 MHz, acetone-d6, 

δ(ppm)): 7.68-7.42 (m, 5H, aromatic protons of ring B), 7.38 (d, 1H, H-7, J = 16.4 

Hz), 7.03 (d, 1H, H-8, J = 16.4 Hz), 6.86 (d, 1H, H-3’, J = 2 Hz), 6.66 (d, 1H, H-5’, 

J = 2 Hz), 3.83 (s, 3H, 6’-OCH3), 2.28 (s, 3H, 4’-OCOCH3), 2.11 (s, 3H, 2’-

OCOCH3); Purity: 98% (HPLC, Rt = 4.414 min)  

4-Cinnamoyl-5-methoxy-1,3-phenylene bis(4-fluorobenzoate) (5) 

Cardamonin (30 mg, 0.11 mmol) was dissolved in dichloromethane by constant 

heating and stirring followed by the addition of 4-fluorobenzoyl chloride (1 ml, 8.46 

mmol), pyridine (0.2 ml, 2.47 mmol) and DMAP (0.05 g, 0.41 mmol). The reaction 

mixture was left to stir for 24 h under reflux. The mixture was later washed with 

4.5% HCl and saturated aqueous sodium bicarbonate followed by drying with 
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MgSO4. Finally, the solvent was evaporated and the product purified using 

preparative TLC with a solvent system of chloroform:cyclohexane at 4:6.  

Yield: 18.4 mg (43%); Mp: 168-171 oC; IR (KBr, cm-1): 3083 (C-H), 1683 (C=O), 

1623 (C=O of cardamonin moiety), 1609 and 1428 (aromatic C=C), 1363, 1238 

(phenolic C-O), 1131 (O-CH3), 924, 855, 770; 1H NMR (300 MHz, CDCl3, 

δ(ppm)): 8.14 (dd, 2H, ortho-H of 4-fluorobenzoyl moiety at position 2’, J = 7.6, 

10.8 Hz), 8.05 (dd, 2H, ortho-H of 4-fluorobenzoyl moiety at position 4’, J = 7.2, 

12.4 Hz), 7.49-7.35 (m, 5H, aromatic protons of ring B), 7.44 (d, 1H, H-7, J = 22.4 

Hz), 7.34 (d, 1H, H-3’, J = 2 Hz), 7.15 (t, 2H, meta-H of 4-fluorobenzoyl moiety at 

position 2’, J = 11.2 Hz), 7.06 (t, 2H, meta-H of 4-fluorobenzoyl moiety at position 

4’, J = 11.2 Hz), 6.96 (d, 1H, H-8, J = 21.2 Hz), 6.41 (d, 1H, H-5’, J = 2 Hz), 3.80 

(s, 3H, OCH3); Purity: 98% (HPLC, Rt = 2.176 min). 

4-Cinnamoyl-3-hydroxy-5-methoxyphenyl benzoate (6) 

Cardamonin (36 mg, 0.15 mmol) was dissolved in dichloromethane by constant 

heating and stirring followed by the addition of benzoyl bromide (0.1 ml, 0.78 

mmol) and pyridine (0.1 ml, 1.2 mmol). The reaction mixture was left to stir for 24 

h under reflux. The solvent was evaporated and the crude product was purified using 

preparative TLC with a solvent system of ethylacetate:hexane at 7:3 followed by 

further purification using a solvent system of chloroform:cyclohexane at 1:1. 

Yield: 9.4 mg  (13%); Mp: 105-106 oC; IR (KBr, cm-1): 2930 (C-H), 1733 (C=O), 

1636 (C=O of cardamonin moiety), 1541 (aromatic C=C), 1340, 1243 (phenolic C-

O), 1139 (O-CH3), 998, 871, 705; 1H NMR (300 MHz, CDCl3, δ(ppm)): 13.57 (s, 
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1H, 2’-OH), 8.20-7.25 (m, 10H, aromatic protons ring B and benzoyl group), 7.63 

(d, 1H, H-7, J = 15.9 Hz), 7.57 (d, 1H, H-8, J = 18 Hz), 6.53 (d, 1H, H-3’, J = 2.4 

Hz), 6.38 (d, 1H , H-5’, J = 2.1Hz), 3.97 (s, 3H, 6’-OCH3); Purity: 98% (HPLC, Rt 

= 9.410 min). 

1-(2,4-Dihydroxy-6-methoxyphenyl)-3-phenylpropan-1-one (7) 

Cardamonin (30 mg, 0.11 mmol) was dissolved in methanol and NiCl2 (2 

equivalent) was added to the mixture. The mixture was stirred and placed in an ice-

bath. NaBH4 (6 equivalent) was later added and the mixture was left to stir for 5-10 

min followed by dilution with HCl (37%). Methanol was evaporated followed by 

the addition of water and the organic product was extracted by dichloromethane. 

Dichloromethane was finally evaporated and the crude product was purified via 

preparative TLC using a mobile phase of ethyl acetate:hexane in a ratio of 1:1. 

Yield: ~2 mg (7%); IR (KBr, cm-1): 3437, 2919 (C-H), 1628 (C=O), 1455 (aromatic 

C=C), 1382, 1270, 1217 (phenolic C-O), 1114 (O-CH3), 952, 816, 746; 1H NMR 

(300 MHz, CDCl3, δ(ppm)): 13.91 (s, 1H, 2’-OH), 7.33-7.20 (m, 5H, aromatic 

protons of ring B), 5.99 (d, 1H, H-3’, J = 2.1 Hz), 5.91 (d, 1H, H-5’, J = 2.1 Hz), 

3.84 (s, 3H, 6’-OCH3), 3.32 (t, 2H, -CH2-CH2-Ar, J = 7.5 Hz), 2.99 (t, 2H, -CH2-

CH2-Ar, J = 7.5 Hz); Purity: 97% (HPLC, Rt = 5.167 min) 

General method for synthesis of (8) and (9)  

The amine hydrochloride was initially fully dissolved in methanol followed by the 

addition of pyridine (~0.5 ml, 6.18 mmol) and the mixture was left to stir under 

heating for 15 min. Cardamonin (20-30 mg, 0.11 mmol) was later added followed 
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by 2-3 drops of HCl and the reaction mixture was left to stir under reflux for 24 h. 

Methanol was finally evaporated to obtain the product. In some cases further 

purification via preparative TLC was performed using a solvent system of 

chloroform:cyclohexane at 4:6. 

The amines used were propylamine hydrochloride (0.1 g, 1.05 mmol) and 

methoxyamine hydrochloride (0.1 g, 1.20 mmol) for the synthesis of compounds 

(8) and (9). 

(Z)-5-Methoxy-4-(3-phenyl-1-(propylimino)propyl)benzene-1,3-diol (8) 

Yield: 10 mg (29%); Mp: 145-150 oC; IR (KBr, cm-1): 3448, 3190 (2’-OH), 2967 

(C-H), 1628 (C=N), 1490 (aromatic C=C), 1383, 1225 (phenolic C-O), 1114 (O-

CH3), 990, 788, 744; 1H NMR (400 MHz, CDCl3, δ(ppm)): 14.28 (s, 1H, OH), 7.91 

(d, 1H, H-7, J = 15.2 Hz), 7.79 (d, 1H, H-8, J = 15.6 Hz), 7.64-7.29 (m, 5H, aromatic 

protons of ring B), 6.14 (d, 1H, H-3’, J = 1.5 Hz), 6.02 (d, 1H, H-5’, J = 1.4 Hz), 

3.92 (s, 3H, 6’-OCH3), 3.00 (t, 2H, C=NCH2, J = 1.7 Hz), 2.82 (m, 2H, NCH2CH2), 

1.70 (t, 3H, NCH2CH2CH3, J = 1.6 Hz); Purity: 96% (HPLC, Rt = 3.888 min)   

(Z)-1-(2,4-Dihydroxy-6-methoxyphenyl)-3-phenylpropan-1-one O-methyl oxime 

(9) 

Yield: 5.6 mg (17%); Mp: 233-235 oC; IR (KBr, cm-1): 3451, 3277 (2’-OH), 2919 

(C-H), 1636 (C=N), 1457 (aromatic C=C), 1384, 1224 (phenolic C-O), 1116 (O-

CH3), 967, 791, 741; 1H NMR (300 MHz, CDCl3, δ(ppm)): 14.17 (s, 1H, OH), 7.89 

(d, 1H, H-7, J = 15.5 Hz), 7.77 (d, 1H, H-8, J = 15.5 Hz), 7.62-7.39 (m, 5H, aromatic 

protons of ring B), 6.12 (d, 1H, H-3’, J = 1.7 Hz), 5.97 (d, 1H, H-5’, J = 1.7 Hz), 
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3.93 (s, 3H, C=NOCH3), 3.87 (s, 3H, 6’-OCH3); Purity: 98% (HPLC, Rt = 2.115 

min). 

Benzyl-2-(1-(2,4-dihydroxy-6-methoxyphenyl)-3-phenylpropylidene)hydrazine-1-

carbodithioate (10) 

Cardamonin (8 mg, 0.03 mmol) was dissolved in ethanol by constant heating and 

stirring followed by the addition of SBDTC (0.018 g, 0.09 mmol). 2-4 drops of HCl 

were later added and the mixture was left to stir under reflux for 24 h. The mixture 

was then cooled and the resulting solid precipitate was filtered, washed with ethanol 

and dried over silica gel.   

Yield: 10.7 mg (79%); Mp: 189-192 oC; IR (KBr, cm-1): 3415, 3213 (2’-OH), 3173 

(NH), 2926 (C-H), 1627 (C=N), 1487 (aromatic C=C), 1384, 1042 (N-N), 950 

(C=S), 866, 826, 790, 744, 705; 1H NMR (400 MHz, CDCl3, δ(ppm)): 14.16 (s, 1H, 

OH), 7.90 (d, 1H, H-7, J = 15.6 Hz), 7.80 (d, 1H, H-8, J = 15.6 Hz), 7.64-7.31 (m, 

10H, aromatic protons of ring B and ring of SBDTC moiety), 6.06 (d, 1H, H-3’, J 

= 2.2 Hz), 5.99 (d, 1H, H-5’, J = 2.2 Hz), 4.91 (s, 1H, NH), 4.52 (s, 2H, -CH2-S), 

3.96 (s, 3H, 6’-OCH3); Purity: <90% (HPLC, Rt = 4.398 min).  

5-Methoxy-4-(5-phenyl-4,5-dihydro-1H-pyrazol-3-yl)benzene-1,3-diol (11) 

Cardamonin (20 mg, 0.078 mmol) was dissolved in methanol and was left to stir 

under constant heating for 5 min. To this solution was added excess 100% hydrazine 

hydrate (0.3 ml, 9.64 mmol) and the reaction mixture was left to stir under reflux 

for 24 h. The solvent and hydrazine hydrate were evaporated, and the solid obtained 
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was further purified by preparative TLC using a solvent system of 

chloroform:cyclohexane at 4:6, which resulted in a flaky brown solid product.  

Yield: 22 mg (99%); Mp: 135-140 oC; IR (KBr, cm-1): 3423, 2919 (C-H), 1618 

(C=N), 1463 (aromatic C=C), 1384, 1213 (phenolic C-O), 1158 (O-CH3), 956, 816, 

765; 1H NMR (400 MHz, CDCl3, δ(ppm)): 7.57-7.35 (m, 5H, aromatic protons of 

ring B), 7.13 (s, 1H, NH), 6.52 (dd, 1H, H-C-Ar of pyrazoline ring, J = 2, 8 Hz), 

6.10 (d, 1H, H-3’, J = 2.3 Hz), 6.03 (d, 1H, H-5’, J = 2.4 Hz), 3.94 (dd, 1H, CH-H 

of pyrazoline, J = 3.8, 20.2 Hz), 3.83 (dd, 1H, CH-H of pyrazoline ring, J = 3.8, 10 

Hz), 3.86 (s, 3H, 6’-OCH3); Purity: 95% (HPLC, Rt = 2.771 min) 

5-Methoxy-4-(5-phenyl-4,5-dihydroisoxazol-3-yl)benzene-1,3-diol (12) 

To a mixture of cardamonin (30 mg, 0.11 mmol) and NH2OH·HCl (17 mg, 0.24 

mmol) in ethanol, NaOH (40 mg, 1 mmol) was added. The mixture was left to stir 

for 24 h, and it was then left in a freezer overnight. Crushed ice and 2 ml of HCl 

(37%) were later added to the mixture resulting in the formation of a pale yellow 

precipitate which was collected via vacuum filtration.  

Yield: 16 mg (51%); Mp: 220-221 oC; IR (KBr, cm-1): 3448, 3220 (2’-OH), 2923 

(C-H), 1610 (C=N), 1582 and 1482 (aromatic C=C), 1375, 1221 (phenolic C-O), 

1109 (O-CH3), 987, 838, 770; 1H NMR (400 MHz, acetone-d6, δ(ppm)): 7.55-7.35 

(m, 5H, aromatic protons of ring B), 6.14 (d, 1H, H-3’, J = 2 Hz), 6.09 (d, 1H, H-

5’, J = 2 Hz), 5.46 (dd, 1H, H-C-Ar of isoxazoline ring, J = 3, 12.8 Hz), 3.93 (dd, 

1H, CH-H of isoxazoline ring, J = 2, 24 Hz), 3.79 (s, 3H, 6’-OCH3), 3.58 (dd, 1H, 

CH-H of isoxazoline, J = 4, 14 Hz); Purity: 95% (HPLC, Rt = 26.287 min) 
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General method for synthesis of (13) and (14) 

Cardamonin (30 mg, 0.11 mmol) and, urea (40 mg, 0.67 mmol) for synthesis of (13) 

or thiourea (40 mg, 0.53 mmol) for synthesis of (14), were added together in a round 

bottom flask. To this was added NaOH (0.2 g, 0.005 moles) dissolved in 80% 

ethanol, and the mixture was left to stir under reflux for more than 24 h. 1 ml of HCl 

(37%) was later added to neutralise the mixture and crushed ice was finally added 

resulting in the formation of a precipitate which was collected via vacuum filtration. 

4-(2-Hydroxy-6-phenyl-1,6-dihydropyrimidin-4-yl)-5-methoxybenzene-1,3-diol 

(13) 

Yield: 34 mg (99%); Mp: 220-221 oC; IR (KBr, cm-1): 3437, 3226 (NH), 2965 (C-

H), 1661 (C=N), 1601 (NH bend), 1591 and 1475 (aromatic C=C), 1384, 1221 

(phenolic C-O), 1119 (O-CH3), 969, 847, 766; 1H NMR (400 MHz, acetone-d6, 

δ(ppm)): 7.54-7.34 (m, 5H, aromatic protons of ring B), 6.14 (d, 1H, H-3’, J = 2.4 

Hz), 6.08 (d, 1H, H-5’, J = 2.4 Hz), 5.48 (d, 1H, CH of pyrimidine, J = 2.8 Hz), 

5.45 (d, 1H, CH of pyrimidine, J = 3.2 Hz), 3.98 (s, 1H, NH), 3.79 (s, 3H, 6’-OCH3); 

Purity: 95% (HPLC, Rt = 4.445 min).     

4-(2-Mercapto-6-phenyl-1,6-dihydropyrimidin-4-yl)-5-methoxybenzene-1,3-diol 

(14) 

Yield: 35 mg (97%); Mp: 213-216 oC; IR (KBr, cm-1): 3437, 3222 (NH), 2965 (C-

H), 1662 (C=N), 1601 (NH bend), 1591 and 1475 (aromatic C=C), 1384, 1222 

(phenolic C-O), 1119 (O-CH3), 969, 847, 766; 1H NMR (400 MHz, acetone-d6, 

δ(ppm)): 7.54-7.36 (m, 5H, aromatic protons of ring B), 6.14 (d, 1H, H-3’, J = 2.4 
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Hz), 6.09 (d, 1H, H-5’, J = 2.4 Hz), 5.48 (d, 1H, CH of pyrimidine, J = 3.2 Hz), 

5.45 (d, 1H, CH of pyrimidine, J = 2.8 Hz), 3.97 (s, 1H, NH), 3.79 (s, 3H, 6’-OCH3); 

Purity: 95% (HPLC, Rt = 2.741 min).     

(E)-1-(4,6-Dihydroxy-3-iodo-2-methoxyphenyl)-3-phenylprop-2-en-1-one (15) 

Cardamonin (50 mg, 0.19 mmol) and iodine (42 mg, 0.16 mmol) were added to a 

round bottom flask followed by the addition of 10 ml of DMSO. The reaction 

mixture was left to stir under reflux for 6 h. Water was then added to the mixture 

and the solid formed was filtered and washed with sodium thiosulfate in order to 

remove the excess iodine. The resulting solid was finally purified via preparative 

TLC using a mobile phase of cyclohexane:choroform in a ratio of 6:4.  

Yield: 4.2 mg (6%); Mp: 257-259 oC; IR (KBr, cm-1): 3450, 3165 (2’-OH), 2920 

(C-H), 1639 (C=O), 1625 and 1483 (aromatic C=C), 1384, 1281, 1222 (phenolic C-

O), 1115 (O-CH3), 972, 847 (C-I), 790; 1H NMR (300 MHz, DMSO, δ(ppm)): 15.16 

(s, 1H, OH), 7.92 (d, 1H, H-7, J = 15.6 Hz), 7.76-7.45 (m, 5H, aromatic protons of 

ring B), 7.75 (d, 1H, H-8, J = 15.3 Hz), 6.26 (s, 1H, H-3’), 3.92 (s, 3H, 6’-OCH3); 

Purity: 95% (HPLC, Rt = 7.781 min) 

(E)-1-(3-Bromo-4,6-dihydroxy-2-methoxyphenyl)-3-phenylprop-2-en-1-one (16) 

Cardamonin (30 mg, 0.11 mmol) was dissolved in chloroform. This was followed 

by the addition of 1.2 ml of bromine water and the reaction mixture was left to stir 

at room temperature for 24 h. Chloroform was separated from the aqueous phase 

and later evaporated. The resulting solid was finally purified via preparative TLC 

using a mobile phase of cyclohexane:choroform in a ratio of 1:1.     
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Yield: 1.4 mg (4%); Mp: 176-178 oC; IR (KBr, cm-1): 3464, 3173 (2’-OH), 2921 

(C-H), 1649 (C=O), 1528 (aromatic C=C), 1384, 1281, 1224 (phenolic C-O), 1118 

(O-CH3), 972, 848, 745, 498 (C-Br); 1H NMR (300 MHz, DMSO, δ(ppm)): 14.89 

(s, 1H, 2’-OH), 7.90 (d, 1H, H-7, J = 15.6 Hz), 7.76-7.46 (m, 5H, aromatic protons 

of ring B), 7.74 (d, 1H, H-8, J = 15.6 Hz), 6.26 (s, 1H, H-3’), 3.92 (s, 3H, 6’-OCH3); 

Purity: 99% (HPLC, Rt = 5.570 min) 

7-Hydroxy-5-methoxy-2-phenylchroman-4-one (17) 

Cardamonin (30 mg, 0.11 mmol) was dissolved in methanol followed by the 

addition of 10 ml of HCl (37%). The reaction mixture was heated under reflux and 

left to stir for 72 h. The solvent was later evaporated followed by the addition of 

purified water. The solid precipitate that formed was collected via filtration and 

further purified via preparative TLC using a mobile phase of 

cyclohexane:choroform in a ratio of 1:9. 

Yield: 2.2 mg (7%); Mp: 226-227 oC; IR (KBr, cm-1): 3438, 2919 (C-H), 1657 

(C=O), 1620 and 1441 (aromatic C=C), 1383, 1298, 1229 (phenolic C-O), 1116 (O-

CH3), 773; 1H NMR (300 MHz, DMSO, δ(ppm)): 10.54 (s, 1H, 4’-OH), 7.51-7.36 

(m, 5H, aromatic protons of ring B), 6.07 (d, 1H, H-3’, J = 2.1 Hz), 6.00 (d, 1H, H-

5’, J = 2.1 Hz), 5.48 (dd, 1H, O-CH-Ar, J = 3, 12.3 Hz), 3.74 (s, 3H, 6’-OCH3), 

2.98 (dd, O=C-CH-H-C, J = 12.3, 16.2 Hz), 2.62 (dd, O=C-CH-H-C, J = 3.3, 16.4 

Hz); Purity: 95% (HPLC, Rt = 2.607 min) 
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3,6,7,8-Tetrahydroxy-5-methoxy-2-phenyl-4H-chromen-4-one (18) 

Cardamonin (30 mg, 0.19 mmol) was dissolved in methanol followed by the 

addition of 0.2 ml 4% NaOH. The mixture was stirred at 0 oC for 30 min. 0.3 ml of 

30% H2O2 was later added and the reaction mixture was left to stir for 24 h at room 

temperature.  10-12 ml of HCl (37%) was then added and the reaction mixture was 

left to stand in the freezer for another 24 h. The solid precipitate was finally 

collected and purified via preparative TLC using a mobile phase of ethyl 

acetate:hexane in a ratio of 6:4 followed by further purification using ethyl 

acetate:hexane in a ratio of 4:6   

Yield: 18 mg (30%); Mp: 143-145 oC; IR (KBr, cm-1): 3450, 2925 (C-H), 1638 

(C=O), 1541 (aromatic C=C), 1373, 1238, 1219 (phenolic C-O), 1100 (O-CH3), 

955, 782; 1H NMR (300 MHz, DMSO, δ(ppm)): 7.76-7.44 (m, 5H, aromatic protons 

of ring B), 7.65 (s, 2H, 3’-OH & 5’-OH), 3.73 (s, 3H, 6’-OCH3); Purity: 98% 

(HPLC, Rt = 4.007 min) 

[Cu(C16H13O4)2(H2O)2]·2H2O (19) 

Cardamonin (40 mg, 0.11 mmol) was dissolved in methanol by constant heating and 

stirring while copper (II) acetate (30 mg, 0.15 mmol) was separately dissolved in 

methanol in another beaker under the same conditions. 3 ml of dilute NaOH was 

added to the cardamonin mixture followed by the addition of the copper (II) acetate 

solution. The reaction was left for 6-8 h with stirring under reflux. Finally, a brown 

precipitate formed and was collected via suction filtration.  
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Yield: 33.5 mg (48%); Mp: >300 oC; IR (KBr, cm-1): 3448, 2926 (C-H), 1598 

(C=O), 1460 (aromatic C=C), 1384, 1230 and 1213 (phenolic C-O), 1117 (O-CH3), 

972, 827, 744; 1H NMR (600 MHz, DMSO, δ(ppm)): 7.88 (d, 1H, H-7, J = 10.8 

Hz), 7.69-7.15 (m, 5H, aromatic protons of ring B), 7.57 (d, 1H, H-8, J = 12 Hz), 

7.45 (d, 1H, H-3’, J = 6.6 Hz), 7.42 (d, 1H, H-5’, J = 6.0 Hz), 3.90 (s, 3H, 6’-OCH3); 

HRMS calculated for C32H26CuNaO8 [M+ + Na]: 624.0829, found: 624.0783; 

Analytical calculated for [Cu(C16H13O4)2(H2O)2]·2H2O: %C (57.01), %H (5.08), 

found: %C (57.02), %H (4.47); UV-Vis (λmax, nm) in DMSO: 291, 352, 432, 506, 

600.   
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6.3 Cell Culture 

Cardamonin and its analogues were tested against A549 (lung cancer cells) and HK1 

cells (NPC cells). A549 cells were obtained from the American Type Culture 

Collection (ATCC) while HK1 cells were donated by Prof. GSW Tsao (Faculty of 

Medicine, The University of Hong Kong) (Huang et al. 1980). Cell cultures were 

generally maintained using RPMI 1640 (Gibco) supplemented with 10% fetal 

bovine serum (FBS) (Gibco), penicillin (100 U/ml, Gibco), streptomycin (100 

µg/ml, Gibco) and 2 mML-Glutamine (Gibco) under humidified atmosphere 

containing 5% CO2 in air at 37 °C. 10% FBS was replaced with 1% FBS for 

treatment medium while adherent cells were dissociated using Trypsin-EDTA 

solution (Gibco).   

6.4 Cell Viability Assay 

The spectrophotometric MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay was used to 

assess cell viability. Aliquots of 100 µl of 10,000 cells in an appropriate medium 

were dispensed into 96-well plates. Cells were incubated for 24 h at 37 °C prior to 

treatment to allow cell attachment. 100 µl of treatment medium were later added 

and the cells were incubated for 72 h. 10 µl of MTS reagent (Promega) was finally 

added to each well including the control and blank. The plate was wrapped in 

aluminium foil to protect from light and incubated at 37 °C for 1 h before reading 

the absorbance at 490 nm using a Tecan 200 ELISA plate reader. 
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6.5 Migration Assay 

Cells were seeded in 6-well plates and left to grow until around 80% confluency. 

This was followed by forming a scratch or “wound” in the layer of cells using a 

sterile 200 µl pipette. The cells were washed with PBS and incubated with 

cardamonin (25 µM) and compound 19 (25 µM) in the presence of 10% FBS for 24 

h and 48 h. Magnified cells under the microscope were photographed at 0 h, 24 h 

and 48 h. The images were analysed via the software “ImageJ” in order to measure 

the area of the wound that has been occupied by the migrating cells. Results of the 

different treatment groups were then expressed as a percentage of the original area 

of the wound. 

6.6 Cell-cycle Analysis 

Cell-cycle analysis of A549 and HK1 cells has been performed according to a 

previously reported method using a fluorochrome solution containing 50 mg/mL of 

propidium iodide (PI), 0.1 mg/mL of ribonuclease A, 0.1% v/v Triton X-100 and 

0.1% w/v sodium citrate in d-H2O (Yap et al. 2016). A549 and HK1 cells were each 

seeded in six-well plates at a density of 1x106 cells/well and treated for 24 h with 

19 at its IC50 concentrations. There were also cells treated with DMSO (control). 

Cells were then harvested followed by washing with ice-cold PBS twice. Later, the 

pelleted cells were resuspended in 0.3-0.5 ml of the fluorochrome solution and 

stored overnight in the dark at 4 oC. Finally, the measurements were conducted 

using a Beckman Coulter Cytomics FC500 MCL flow cytometer and data analysis 

was performed via Weasel flow cytometry analysis software. 
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6.7 Flow Cytometric Detection of γ-H2AX 

Cells were seeded at a density of 1-1.5x106 in 10 cm2 dishes and allowed to adhere 

for 24 h at 37 ºC. The cells were treated with 19 for 24 h at its IC50 concentrations 

and then trypsinised, collected and fixed with 1% methanol-free formaldehyde in 

PBS. Following a 5 min incubation at room temperature, cells were permeabilised 

by adding 500 µl of 0.4% Triton-X-100 in PBS and mixed gently. Cells were then 

rinsed with PBS, centrifuged and resuspended in 200 µl of H2AX antibody (1:3333 

dilution) at room temperature for 1.5 h. Secondary antibody (goat anti-mouse Alexa 

Fluor 488; 1:1750 dilution) was later added and cells were incubated for 1 h at room 

temperature in the dark. Cells were washed with PBS and then resuspended in 300 

µl of 50 µg/ml propidium iodide/ 0.1 mg/ml RNAse A in PBS followed by 

incubation for at least 10 min at room temperature. Finally, the measurements were 

conducted using a Beckman Coulter Cytomics FC500 MCL flow cytometer and 

data analysis was performed via Weasel flow cytometry analysis software. 

6.8 Caspase-Glo 3/7 Apoptosis Assay 

A549 and HK1 cells were treated with 10 µM of 19 for 12 h and caspase activation 

was investigated using a Caspase-Glo 3/7 assay (Promega) following the directions 

provided by the kit’s manufacturer. Briefly, after the 12 h treatment, Caspase-Glo 

3/7 reagent was added to the cells in a 1:1 ratio of reagent to cell culture media, and 

mixed with a shaker followed by incubation at room temperature for a duration of 

60 min for A549 cells and 30 min for HK1 cells. The resulting luminescence was 

read using a Varioscan flash multiplate reader.  
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6.9 Caspase-Glo 8 and Caspase-Glo 9 Assays 

The protocol followed was similar to that of the Caspase-Glo 3/7 assay. However, 

Caspase-Glo 8 and Caspase-Glo 9 assays involved treating A549 and HK1 cells 

with 10 µM of 19 for 6 h followed by adding the caspase reagent, shaking and 

incubating for 30 min for both A549 and HK1 cells. Each caspase assay was 

performed separately.  

6.10 qPCR Assay 

Total RNA was isolated from the cancer cells using TRIsure (Bioline), according to 

the manufacturer’s instructions. This was followed by cDNA synthesis using Tetro 

cDNA Synthesis Kit (Bioline) according to the manufacturer’s protocol. 

qPCR was performed on an ECO Illumina qPCR machine using a KAPA SYBR 

FAST qPCR Kit (Kapa Biosystems). Gene expression data were normalised to the 

endogenous control, GAPDH. The primer sequences were as follows: GAPDH: 5’-

GCACCGTCAAGGCTGAGAAC-3’ (Forward), 5’- 

ATGGTGGTGAAGACGCCAGT-3’ (Reverse); mTOR: 5’-

CGCTGTCATCCCTTTATCG-3’ (Forward), 5’- ATGCTCAAACACCTCCACC-

3’ (Reverse). 

The PCR cycling profile was as follows: One cycle at 50 oC for 2 min followed by 

another cycle at 95 oC for 3 min. Then 40 cycles of 95 oC for 3 s, 63 oC (A549 

cDNA)/59 oC (HK1 cDNA) for 30 s and 72 oC for 15 s. Relative gene expression 

levels were calculated using the comparative CT method.  
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6.11 In Silico Studies 

6.11.1 Drug-likeness and ADMET Studies 

Drug-likeness studies for the most active analogues were performed using 

“MolSoft” (http://www.molsoft.com/), while ADMET studies were mostly 

conducted using the software “Pre-ADMET” (https://preadmet.bmdrc.kr/). 

6.11.2 Molecular Docking Studies 

X-ray crystal structure of mTOR complexed with a ligand has been downloaded 

from the RCSB protein data bank (http://www.rcsb.org) with PDB code 4JT5. 

Molecular structures of the ligands, cardamonin and 19, were prepared by Chem3D 

and their energy was minimised followed by the addition of Gasteiger charges using 

AutoDock Tools. Water molecules of 19 were excluded. The receptor was prepared 

for docking using AutoDock Tools whereby water molecules and heteroatoms were 

removed followed by the addition of hydrogen atoms and charges. Search space for 

docking was determined by a grid box placed around the position of the co-

crystallised ligand with a grid size of 32x18x22 and a grid spacing of 0.375 Å. 

Finally, docking was performed using AutoDock Vina. Analysis and visualisation 

of docking results were performed via Accelrys Discovery Studio Visualizer 4.0, 

moreover, 2D interaction diagrams were generated using the same software 

followed by slight additions in order to include all relevant interactions.  

 

http://www.molsoft.com/
http://www.rcsb.org/
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8 Appendix 

8.1 HPLC Chromatograms  

(Early solvent peaks were removed for clarity purposes) 

 

Figure 8.1 HPLC chromatogram of 1 

 

 

Figure 8.2 HPLC chromatogram of 2 
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Figure 8.3 HPLC chromatogram of 3   

                                                                                    

 

Figure 8.4 HPLC chromatogram of 4 
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Figure 8.5 HPLC chromatogram of 5 

 

 

Figure 8.6 HPLC chromatogram of 6 

 



176 | P a g e  
 

 

Figure 8.7 HPLC chromatogram of 7 

 

 

Figure 8.8 HPLC chromatogram of 8 
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Figure 8.9 HPLC chromatogram of 9 

 

 

Figure 8.10 HPLC chromatogram of 10 
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Figure 8.11 HPLC chromatogram of 11 

 

 

Figure 8.12 HPLC chromatogram of 12 
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Figure 8.13 HPLC chromatogram of 13 

 

 

Figure 8.14 HPLC chromatogram of 14 
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Figure 8.15 HPLC chromatogram of 15 

 

 

Figure 8.16 HPLC chromatogram of 16 
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Figure 8.17 HPLC chromatogram of 17 

 

 

Figure 8.18 HPLC chromatogram of 18 
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8.2 IR Spectra 

 
Figure 8.19 IR spectrum of Cardamonin 

 

 
Figure 8.20 IR spectrum of 1 
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Figure 8.21 IR spectrum of 2 

 

 
Figure 8.22 IR spectrum of 3 
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Figure 8.23 IR spectrum of 4 

 

 
Figure 8.24 IR spectrum of 5 
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Figure 8.25 IR spectrum of 6 

 

 
Figure 8.26 IR spectrum of 7 
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Figure 8.27 IR spectrum of 8 

 

 
Figure 8.28 IR spectrum of 9 
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Figure 8.29 IR spectrum of 10 

 

 
Figure 8.30 IR spectrum of 11 
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Figure 8.31 IR spectrum of 12 
 

 

Figure 8.32 IR spectrum of 13 
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Figure 8.33 IR spectrum of 14 
 

 

Figure 8.34 IR spectrum of 15 
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Figure 8.35 IR spectrum of 16 
 

 

Figure 8.36 IR spectrum of 17 
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Figure 8.37 IR spectrum of 18 

 

 
Figure 8.38 IR spectrum of 19 
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8.3 Cell Viability Data for Compound 19 and Cardamonin at 24 h 

 
 

 
 

Figure 8.39 Cell viability (MTS assay) of A549 and HK1 cells pre-treated with 

cardamonin at different concentrations for 24 h. The assay was repeated three times, 

and bars and error bars refer to mean ± SEM. 
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Figure 8.40 Cell viability (MTS assay) of A549 and HK1 cells pre-treated with 

compound 19 at different concentrations for 24 h. The assay was repeated three 

times, and bars and error bars refer to mean ± SEM. 
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8.4 Caspase-Glo 3/7 Assay Attempts in A549 and HK1 Cells  

Table 8.1 Caspase-3/7 activity of A549 cells and HK1 cells, treated with 19 at about 

10 µM. The experiment was performed in duplicate for each cell line and mean 

results are reported 

 A549 HK1 

Duration of 

treatment (h) 
12 24 12 24 

Duration of 

Incubation after 

Caspase-Glo 

addition (min) 

30 60 30 60 30 60 30 60 

% Caspase activity 

relative to control 

130 137 117 119 200 189 103 105 

 

Table 8.2 Caspase-3/7 activity of A549 cells and HK1 cells, treated with 19 at about 

30 µM. The experiment was performed in duplicate for each cell line and mean 

results are reported 

 A549 HK1 

Duration of 

treatment (h) 
12 24 12 24 

Duration of 

Incubation after 

Caspase-Glo 

addition (min) 

30 60 30 60 30 60 30 60 

% Caspase activity 

relative to control 

121 122 71 73 181 169 85 86 

 


