
 

 

Economic Evaluation of installation of standalone wind 
farm and Wind+CAES system for the new regulating 

tariffs for renewables in Egypt 

Omar Ramadan*, Siddig Omer, Yate Ding, Hasila Jarimi, Xiangjie Chen, Saffa Riffat 

Department of Architecture and Built Environment , Faculty of Engineering, University of 

Nottingham, University Park, Nottingham, NG7 2RD 

E-mail address: omar.ramadan@nottingham.ac.uk 

 

Abstract  

Compressed Air Energy Storage (CAES) is widely recognized as a viable solution for large-scale grid 

integrated renewable energy systems in terms of load levelling to solve/minimize the intermittency 

effect of renewable energy systems especially with increased penetration of renewables to the grid. This 

study assesses the economic value of adding compressed air energy storage (CAES) plant to a renewable 

energy system and how this impacts the overall financial appeal of the system at hand, taking Egyptian 

grid as a case in point. Numerical modelling using MATLAB was performed to analyse the benefits of 

adding a CAES system to planned wind farms in Egypt by 2020 for both load-levelling as well as 

optimizing economic benefit. The results show that the addition of a CAES system would increase the 

profitability for the new Tariff for wind systems set by the Egyptian government with a NPV of $306m 

compared to a NPV of $207m of a stand-alone wind system at the end of 25 years of operation. Also, 

the economic benefits increase if the government provides subsidies for new installations of renewable 

energy systems, or by lowering the interest rates. 
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Nomenclature 

ACw Annual costs of the wind farm [$]𝐴𝑇𝐶𝐴𝐸𝑆2 annual O&M costs of CAES [$] 

𝑐𝑐  specific compressor cost ($/MW) 

ct specific turbine cost ($/MW)  

Cw capital cost for wind farm [$] 

ηc  polytropic efficiency of the compressors 

ICCAES Initial capital cost of CAES [$] 

mt mass flow rate during expansion [kg/s] 

mc  mass flow rate during compression [kg/s] 

Pmax maximum allowable pressure in cavern [bar] 

Pmin minimum allowable pressure in cavern [bar] 
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Pcav pressure of air in the cavern [bar] 

P1 pressure at compressor inlet [bar] 

P2 pressure of air at the compressor outlet [bar] 

P3 pressure at turbine inlet [bar] 

P4 pressure of air at the turbine outlet [bar] 

Pw energy supplied from the wind [KWh] 

Pm market price for wind energy [cent$/KWh]  

𝑃𝑡  turbine rated power[MW] 

𝑃𝑐  compressor rated power[MW] 

𝜌  compressed air density [kg/m3] 

R universal gas constant 

ROI return on investment  

𝑅𝐶𝐴𝐸𝑆  annual CAES revenues [$] 

T1 temperature at compressor inlet [K] 

T2 temperature of air at the compressor outlet [K] 

Tcav temperature of air in the cavern [K] 

T3 temperature at turbine inlet [K] 

T4 temperature of air at the turbine outlet [K] 

Vcav  volume of underground cavern [m3] 

1. Introduction 

Although not widely applied, Compressed Air Energy Storage (CAES) is a mature energy storage 

technology well suited for large-scale grid integrated renewable energy systems. CAES systems have 

large energy storage capacity and relatively short starting time compared to other large scale energy 

storage systems [1, 2]. Conversely, CAES systems do have some drawbacks including the utilization of 

natural gas for heating up the air before use in gas turbine, with lower efficiency compared to Pumped 

Hydro energy storage. CAES systems can be used for load levelling, and therefore stabilizing the power 

supply from the intermittent renewable energy sources (e.g. wind and solar). When there is an excess 

supply from a renewable energy source, the surplus energy could be stored and later released to the grid 

at times when power supply from the renewable energy source is deficient. CAES can also be used to 

improve the profitability of renewable energy systems by targeting peak energy tariff. In this case, 

energy is stored in the CAES when selling prices are low, and supplied to the grid when the spot prices 

are high. In the Egyptian grid case, it is particularly useful to use the CAES system for load levelling— 

given the fragility of the grid and the frequent power outages.  A number of different processes can be 

employed in a CAES system. The first is the conventional or “diabatic” CAES system as shown in 

Figure 1a. This type involves burning natural gas in using combustors before expansion stage, in a 

similar way to that of a combustion plant. In the diabatic CAES, however, the energy generated is higher 

than the energy stored, because natural gas is used during the power generation process [3]. Another 

main type of CAES technology is the adiabatic CAES shown in Figure 1b. In the adiabatic system, the 

compressed air is cooled down and the heat generated from compressing the air is stored and used to 



 

 

re-heat the air during the generation (expansion) cycle. In an adiabatic compressed air energy storage 

system, the heat generated from the compression stage is stored using thermal energy storage, rather 

than being vented. The stored thermal energy is then used later to heat the air which is passing from the 

underground cavern into the expander turbine, to reduce/eliminate the use of fuel in expansion stage, 

with the result being lower cost, higher efficiency and less harmful emissions and less environmental 

impact.  

 

Figure 1 CAES system (a) diabetic and (b) adiabatic 

1.1 Recent Research carried out on CAES system economic value 

The increased wind penetration to the grid boosted the research on energy storage system to reduce the 

effect of wind energy intermittency.  Several studies were conducted on the competitiveness of the 

CAES system economically. Kim et al [4] compared economic feasibility of a conventional CAES (C-

CAES), and a steam-injected CAES (SI-CAES) by adding a heat recovery steam generator. The 

estimated payback period was less than 6.5 years for C-CAES, while the payback period of the SI-

CAES increased to within 10 years for an interest rate of 8%, which goes down by 2 years with a reduced 

interest rate of 4%. Huang et al [5] conducted a study on the technical efficiency and the economic 

benefit for a conventional and an adiabatic CAES systems. The study concluded that the capital 

investment are high for both system, 738€/kWe for the conventional CAES and 907€/kWe for the 

adiabatic CAES, with an assumption of the figures becoming more competitive in the future due to 

technology developments. Chen et al [6] conducted a feasibility study on CAES system coupled with 

wind and solar energy in China. The findings of this study indicated that the proposed hybrid CAES 

system can save RMB 143,645,600 yuan (≈$22.5m) each year for emission costs, reduce annual CO2 

emissions by 773,808.38 tons, while reducing NOx emissions by 3576.3 tons per year. Meng et al [7] 

assessed the technical and economic performance of the integration of a CAES system with organic 

Rankine Cycle. The economic evaluation was carried out using Aspen Process Economic Analyser 

(APEA). The economic study found that the integration of CAES with the ORC decreases the LCOE 

compared to conventional CAES. In addition, the integration of wind farm or solar power plants with 



 

 

the proposed system leads to reduced LCOEs. Hamman et al [8] presented a study on the economic 

feasibility comparison between diabatic CAES and adiabatic CAES systems using 3 different scenarios 

of operation (different rating of CAES plans and different charging/discharging times), and concluded 

that diabatic CAEs for load-levelling purposes is more economical. Safaei et al [9] compared a 

conventional CAES plant with a decentralized CAES (DCAES) plant where compressors were coupled 

with the wind farms and distributed near the heat loads to use the heat of compression for district 

heating. The study took into consideration the extra cost of the pipelines connecting the compressors, 

and the storage reservoir supplementing the DCAES system. The study concluded that, a necessary 

requirement for economic appeal of D-CAES over CAES is the availability of suitable geology in the 

location of a concentrated heat load and that CAES technology is very unlikely to be economically 

feasible unless the electricity market is carbon constrained. De Bosio et al [10] assessed the feasibility 

of the integration of a CAES system with a Hybrid Power Plant (HPP) and a wind farm (HPP-CAES) 

in South of Italy. Two different operating scenarios were simulated to operate on the Italian Power 

Exchange market, the first operating in day-ahead market and ancillary service market with no 

possibility to buy electricity from the grid, while the second strategy allows for electricity purchase 

from the power grid to integrate the energy provided by the wind farm. The study concluded that the 

second strategy is more suitable and that the HPP-CAES system becomes cost effective only when the 

operation strategy is with the aim of solving local imbalances of the grid. Arabkoohsaret al [11] 

conducted a study on the thermo-economic performance of an integration of a PV plant with CAES in 

Brazil. NPV method was used to assess the economic viability of the proposed system. The study found 

that the payback period of the system, taking into account all conservative considerations to be less than 

9 years. Harmen et al [12] studied the effect of assimilating a power-to-gas system, a pumped hydro 

storage and compressed air energy storage in an electricity system, at different wind power penetration 

levels in the Netherlands. They concluded that the pumped hydro system accrues the highest economic 

benefit, followed by the CAES system, and then the power-to-gas system. Abbaspour et al [13] carried 

out an economic analysis of CAES integrated with wind to evaluate its aptitude in serving 2 distinct 

purposes in turn. The first purpose entailed maximizing total profit, which they assessed with and 

without CAES, and concluded that CAES can increase annual profits. The second entailed providing 

power to the grid at minimal cost, with the conclusion being that CAES reduces the total cost of power. 

Pimm et al [14] carried out an economic analysis on a hybrid system combining liquid air energy storage 

(LAES) plant with CAES capacity, taking advantage of the low storage cost for LAES and relatively 

high efficiency for CAES. The study found that a  for a charge time of more than 36 hours, and a charge 

to discharge ratio of 2.5:1 for hybrid CAES/LAES plant, the return on investment is higher than both a 

pure CAES plant and a pure LAES plant. While for a shorter charge time, a CAES plant is more 

economical, however, a hybrid plant still provides higher simplified return on investment than a pure 

LAES plant.  



 

 

 1.2 Egyptian electricity market case   

Up until early 1990s, Egyptian ministry of electricity was in full control of all power generation, 

transmission and distribution activities. In 1996, the government issued a law allowing local and foreign 

investors to build, own, operate and later transfer (BOOT) generation stations to the state; this has led 

to the establishment of 4 private companies, selling mostly to the government as governed by long-term 

contracts dictating dollar-denominated pre-set prices, and based on subsidized natural gas supplied to 

those companies by the government. In 2001, the private sector was further allowed to supply power to 

particular consumers, like factories, at which time a handful of private electricity generation companies 

started up, and a number of factories established their own power plants as an emergency backup. 

However, they could only sell electricity at modest prices set by the state, which was again feasible at 

that time with subsidized gas prices. This, however saw the government’s Electricity Holding Company 

(mother company responsible for some 16 other state-owned enterprises) accumulate losses of 

EGP163m as of July, cost the government fifth of its public spending in subsidies, and shut out all 

private investors. Hence, to attract investments, it was necessary to liberate generation and distribution 

from the state’s grip, and to hand these activities over to private companies with sustainable and 

profitable business models, creating a free market that is more viable for all parties. Therefore, in 2015, 

the government issued the New Electricity Law that dictates the grid feed-in-tariff for renewable energy 

independent power producers (IPPs), with the tariff for electricity generated from conventional fuels set 

to follow shortly. It also completed the unbundling of generation, transmission, and distribution to 

unwind the single-buyer mechanism and pave the way for competition and free market operation, 

supported by direct bilateral agreements and third-party access to transmission and distribution 

networks. This was especially inevitable following the government’s enforcement of a plan to phase out 

energy subsidies over the next 5 years, in another move to free the markets, lure investments and push 

for much-needed fiscal consolidation. As power suppliers compete for customers, service should 

improve, prices should stay low, pressure on the national grid be relieved, and more room be allowed 

for the Holding company to overhaul some 20-year old generation and distribution networks making up 

40% of capacity. While the regulator would still intervene to prevent unreasonable price hikes and 

monopolies, the long-term target is to create a real open market for electricity, much like any other 

freely traded product [15, 16]. 

Electric supply in Egypt, is a key issue as the power supply does not meet the load demand frequently 

and hence regular power outages have become a regular in Egypt. The electrical load demand in Egypt 

has increased annually as shown in Figure 2 between 2007 and 2011 [16]. A 6.5% annual increase has 

been recorded in Egypt for the period between 2007 and 2011 with a 26% peak demand increase during 

that period.  



 

 

 

Figure 2 Annual peak load demand in Egypt (MW) 

Figure 3 [16] shows the variation of the load demand pattern for a summer day in Egypt. The variation 

of load demand in winter has a similar pattern with a lower peak load.  

 

Figure 3 Variation of the load demand in Egypt in the month of June in 2009 

There are large unexploited resources for renewable energy in Egypt, yet the application of renewable 

energy technologies in Egypt has been rather limited. However, there are future plans to increase the 

renewable energy supply greatly in the next decade to supply 20% of the total energy capacity, 12% of 

which is projected to be provided by wind energy. This assumes an increase of the installed wind energy 

capacity to 7.2 GW from 780 MW by 2020 [17]. Wind energy resource is to a certain extent widely 

available in Egypt and is particularly high in the Suez area. Figure 4 presents the wind map for Egypt, 

showing the areas with highest wind speeds.   
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Figure 4 Wind Map of Egypt 

2. Methodology and Results 

The operation of a CAES plant uses compressor to compress air when the supply is higher than demand, 

the compressed air is stored in large underground cavern (reservoir), when the load demand is higher 

than the power supply, the compressed air powers turbines to generate power is shown in Figure 1. 

Thermal energy storage could be used in adiabatic system to reduce the use of natural gas and improve 

the performance of the system. MATLAB programing is used to simulate a model for both sizing a 

CAES system to accommodate the difference between the supply and the demand and also the economic 

performance of the modelled CAES system. Firstly, the compressors and the turbines are sized based 

on the maximum surplus power available during the compression and maximum deficiency in power 

during expansion modes respectively. The cavern is then sized depending on the mass flow rates of air 

as well as number of hours of operation for each mode. 

2.1 Sizing and performance of a CAES system for load-levelling 

This section discusses the modelling of the Suez CAES system including the simulation assumptions, 

followed by the design sizing of the different components of the system, and finally the operational 

results of the system. 



 

 

The technical sizing and performance of the CAES system is modelled using dynamic computer 

modelling to show the technical benefits of implementing a CAES system to solve the intermittency 

issues of renewable energy systems taking the Suez area in Egypt as a case study. 

2.1.1 Simulation Assumptions  

The system is based on the planned projects in Suez, which currently has an installed wind capacity of 

580 MW [17]. This is modelled as a sole wind farm using 193 (V90-3MW) Vestas wind turbines, 3MW 

each. Vestas wind turbines are selected due to the compatibility of these wind turbine characteristics 

with the weather data at the case study location. Table 1 shows the operating parameters of the selected 

wind turbines. The power curve for the VESTAS wind turbines in this simulation is presented in Figure 

5 [18]. The collected data for the wind speeds in the Suez area is for three consecutive summer days is 

shown in Figure 6. The sizing of the CAES system components are implemented using the wind speed 

data.  

Table 1 Suez project assumed parameters 

Parameters for the wind turbine 

Number of turbines 193 

Swept area (𝒎𝟐) for each turbine 6362 

Cut in wind speed (m/s) 3 

Cut out wind speed (m/s) 25 

 

Figure 5  VESTAS V90-3MW wind turbine power Curve [18] 



 

 

 

Figure 6 Frequency of wind speeds for 3 summer days at Suez area 

 Based on the wind speed data obtained, it is concluded that the wind energy potential at the case study 

location varies between 6 m/s to 17 m/s based on weather data monitoring during summer days [19], 

and these matches well with the Vestas wind turbine operating conditions.  

2.1.2 Design Sizing  

First, the CAES system is sized to meet the load demand conditions of Suez project. Following the 

sizing of the system components, dynamic modelling is used to forecast the operational behaviour of 

the CAES system. Figure 7 shows the excess and the deficiency in power which are the result of the 

difference between the forecasted power supply and the load demand in the location of the case study 

by 2020, which is displayed by the green curve. Hence, according to Figure 7, the compression stage 

starts when the excess/deficiency in power is positive. This should last for 17 hours during the first 

compression process. When the excess/deficiency in power is negative, the expansion starts, for around 

13 hours for the first expansion stage. The charging and discharging periods are essentially diversifying 

due to the variation of the power supply and load demand.  

 

Figure 7 Hourly variation of the load, wind power and excess/deficiency power 

a)  Compressors Sizing 

The compressors are divided into a number of series and parallel chains. The parallel chains number is 

determined by the desired lowest output following the parallel chains method [19]. In this case, 4 parallel 
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chains of compressors were selected to cater for lower powers by operating compressors close to their 

rated power, or 1/15 of the maximum power available for the compressors. For the CAES system sizing 

with MATLAB, it was concluded that the maximum compressor power (peak difference between wind 

power output and load demand) required for the highest surplus power is 277.5 MW.  Since parallel 

chains are used for the CAES system, hence the minimum power that the implemented CAES design 

can supply, is given by the following: 

𝐿𝑜𝑤𝑒𝑠𝑡 𝑟𝑎𝑡𝑒𝑑 𝑐ℎ𝑎𝑖𝑛 =
𝑃𝑠𝑢𝑟𝑝𝑙𝑢𝑠𝑚𝑎𝑥

(8+4+2+1)
= 18.5𝑀𝑊       (1) 

Second chain comprise of 2/15 of the maximum power followed by the 3rd chain comprising 4/15 of the 

maximum power and then 4th chain of rated power of 8/15 of maximum power available. Figure 8 shows 

the compressors design with the number of chains and the maximum power for each. There are 4 parallel 

chains with the lowest rated at 18.5MW and the highest rated at 148MW, there is a heat exchanger 

between each compressor and the following compressor for intercooling followed by an air cooler for 

each stage. The heat transfer fluid on the other hand flows in a series fashion. 

For this configuration, the four parallel chains almost always don’t operate together at the same time, 

which is dependent on the surplus power. For example, if the surplus power is 218MW, only chain 1 

and chain 2 are in operation, while if the surplus power is 100MW, chains 2 and 3 are in operation. The 

4 chains can only operate simultaneously if the Surplus power is above 267MW for this configuration. 

The full system design with parallel chains of compressors and turbines implemented in the modelling 

is shown in Figure 8. 



 

 

 

Figure 8 Sketch illustrating the CAES system configuration 

b)  Cavern Sizing 

The volume of the CAES cavern sizing is performed using a method which ensures that the cavern is 

big enough to allow the system to be in operation during the compression or expansion periods. This 

means that for the sizing method used, the cavern should never be empty. The volume of the cavern is 

designed, based on the mass flow rate of air incoming or leaving the cavern. It also uses the number of 

consecutive hours in which the system is in compression mode or expansion mode, which is calculated 

using the historical data of the excess/ deficiency results from wind supply and load demand data. For 

the volume of cavern to satisfy these conditions, it is calculated to be 1,110,000 𝑚3 using  

𝑉𝑐𝑎𝑣 =  max ((𝑚𝑡 × 𝑇𝑖𝑚𝑒𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛) , (𝑚𝑐 × 𝑇𝑖𝑚𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)) × 
𝑅×𝑇𝑚𝑎𝑥

𝑃𝑚𝑎𝑥−𝑃𝑚𝑖𝑛
      (2) 



 

 

Where, 

 𝑉𝑐𝑎𝑣  is the volume of the cavern (𝑚3); 

𝑚𝑡 𝑎𝑛𝑑 𝑚𝑐  are the mass flow rate from the compressors to the cavern and the mass flow rate from the 

cavern to the turbines respectively (𝑘𝑔/𝑠); 

𝑇𝑖𝑚𝑒𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛and 𝑇𝑖𝑚𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛are the number of consecutive hours of expansion and compression time 

respectively 

𝑅 is the universal gas constant (𝐽/𝑚𝑜𝑙. 𝐾); 

𝑇𝑚𝑎𝑥 is the maximum operating temperature of air in the cavern (K); 

𝑃𝑚𝑎𝑥and 𝑃𝑚𝑖𝑛 are the maximum and minimum limits of the pressure of air in the cavern, determined by 

the geology of the location and specifications of the turbines (pascals). 

The maximum and minimum allowable pressure in the cavern depends on the geology of the location 

(Suez Area) and are estimated at 75 bar and 45 bar respectively, with a maximum operating temperature 

of air in the cavern assumed at 373K. The heat exchangers will be operating at different capacity rates, 

and their effectiveness are likely to vary accordingly, but for simplicity the heat exchangers 

effectiveness is assumed at 85%; while the temperature of the wall of the cavern is assumed to be 303K.  

Table 2. Cavern operation parameters 

Cavern Parameters Assumptions 

Maximum pressure (bar) 75 

Minimum operating pressure (bar) 45 

Maximum Temperature (K) 373 

c)  Turbine Sizing 

Using the same procedure in the sizing of the compressor, the sizing of the turbines is performed, 

resulting in a maximum power output needed from the turbines of around 300MW, leading to 4 parallel 

chains. The whole set of turbines are configured as shown in Figure 8 with combustion chambers 

between each series of turbines. 

2.1.3 Operational modelling of the CAES system 

a)  Compressors operation 

When there is excess wind power supply, the surplus power is used to power the compressors. The 

equations governing each compression stage are given by [20]: 

(
𝑃2

𝑃1
)

(
𝛾−1

𝛾
)

=
𝑇2

𝑇1
                                                                                                                              (3) 

𝛾 is the specific heat ratio 

𝑃1𝑎𝑛𝑑 𝑇1  are the pressure and temperature of air at the compressor inlet, respectively; 



 

 

𝑃2𝑎𝑛𝑑 𝑇2 are the pressure and temperature of air at the compressor outlet, respectively . 

b) Operation of the underground air storage cavern 

In the cavern, the internal energy of the air in the cavern increases when the compressed air enters the 

cavern, and conversly when the air leaves the cavern during the expansion stage. The rate of change of 

the internal energy in the cavern is given by [21]: 

𝑑 (
𝑀𝑡𝑜𝑡𝑎𝑙(𝑡)𝑈

𝑑𝑡
) = 𝑚̇𝑐𝐻𝑐 − 𝑚̇𝑇𝐻𝑇 − ℎ𝐴𝑐𝑎𝑣(𝑇𝑐𝑎𝑣 − 𝑇𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔)                                     (4) 

Terms 1 and 2 on the right hand side are the variation in enthalpy which results from the flow of air in 

and out of the cavern. 𝑀𝑡𝑜𝑡𝑎𝑙(𝑡) represents the instantaneous total mass of air in the cavern at a given 

time, which also changes with the incoming compressed air flow rate from the compressor or outgoing 

air flow to the turbine. 𝐻𝑐is the specific enthalpy of the incoming air from the compressors, where 𝐻𝑇 

is the specific enthalpy of the outgoing air. The last term on the left represents the thermal losses from 

the cavern air to the surroundings, where ℎ is the heat transfer coefficient between the cavern wall and 

the air and 𝐴𝑐𝑎𝑣 is the area of heat transfer between the reservoir wall and the stored air. 

For an ideal gas: 

𝑢 = 𝐻 −
𝑃

𝜌
               (5) 

Substituting Equation (5) in Equation (4) will result in: 

       𝜌𝐶𝑝
𝑑𝑇

𝑑𝑡
+

𝑚̇𝑐𝐶𝑝(𝑇𝑐𝑎𝑣−𝑇𝑖𝑛𝑙𝑒𝑡)

𝑉𝑐𝑎𝑣
−

𝑑𝑃

𝑑𝑡
+ ℎ𝑐(𝑇𝑐𝑎𝑣 − 𝑇𝑤𝑎𝑙𝑙) = 0                               (6) 

ℎ𝑐 is the effective heat transfer coefficient and it is a function of air flow rates in and out of the cavern. 

𝑑𝑃

𝑑𝑡
  represents the variation of pressure with time during system operation. 𝜌 is the compressed air 

density. 𝑇𝑖𝑛𝑙𝑒𝑡 is the temperature of the incoming air from the compression stage. 

𝑀𝑡𝑜𝑡𝑎𝑙 changes according to the rate of air inflow into the cavern. 𝑇𝑐𝑎𝑣 also changes during the course 

of the system operation, and denotes average cavern temperature. Hence, the pressure variation in the 

cavern during the operation of the CAES system is calculated using the instantaneous values of the 

temperature and mass of air in the cavern. Assuming a molar weight of air of 0.029 𝑘𝑔: 

    𝑃𝑐𝑎𝑣 = (
𝑀𝑡𝑜𝑡𝑎𝑙×𝑅×𝑇𝑐𝑎𝑣

0.029×𝑉𝑐𝑎𝑣
)                                                                                          (7) 

𝑀𝑡𝑜𝑡𝑎𝑙  is the mass of the air in the cavern 

𝑅  is the universal gas constant  

𝑇𝑐𝑎𝑣 is the air temperature in the cavern 

𝑉𝑐𝑎𝑣  is the volume of the cavern(constant)  



 

 

c)  Operation of the turbines (power generation stage) 

The turbine output is dependent on the enthalpy flow of the air stream through the turbine and is given 

by: 

𝐻̇ = 𝑚̇𝑇𝐶𝑝_𝑎𝑖𝑟𝑇𝑎𝑖𝑟                                                                                                                       (8) 

where 𝐶𝑝_𝑎𝑖𝑟 is the specific heat of air and is assumed to be constant at 1005 𝐽 𝑘𝑔. 𝐾.⁄   

The outlet temperature of the expansion process is given by: 

(
𝑃4

𝑃3
)

(
(𝑛−1)

𝑛
)

=
𝑇4

𝑇3
                                                                                                               (9) 

𝑛 is the polytropic index for the expansion stage  

𝑃3 𝑎𝑛𝑑 𝑇3 are the pressure and temperature before the expansion in the turbine, respectively 

𝑃4 𝑎𝑛𝑑 𝑇4 are the pressure and temperature after the expansion in the turbine, respectively  

2.2 Operational Results of the CAES system 

A MATLAB program is developed to predict the operational performance of the CAES system. In this 

section, the results for the CAES system parameters are discussed using an adiabatic system with an 

added thermal energy storage. Figure 9 shows the pressure and temperature variation of the air in the 

cavern during the 3 days of operation. The variation of the pressure and temperature are calculated and 

plotted against the operation time. When there is a surplus of power, the pressure inside the cavern 

increases to around 68 bar after 17 hours of operation, and then the expansion mode starts. The pressure 

never reaches the minimum allowable value of 45 bar, which indicates that there is sufficient 

compressed air to meet the demand in the discharging period.  The temperature increases in the 

compression stages and decreases in the expansion processes as expected. The rate of change of 

temperature is changing with time, which is dependent on the mass flow rate in and out of the cavern. 

 

Figure 9 Hourly variation of the cavern air pressure (bar)/temperature (°C) 
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Figure 10 shows the variation of surplus energy stored and used as a result of implementing a CAES 

system. The power supplied to the CAES system (charging mode) when there is excess in power supply, 

is displayed by the blue area in figure 10. On the other hand, when the load demand is higher than the 

supply, the power is provided by the CAES system to the grid (grey area). The CAES system is able to 

provide enough power needed to cover the deficiency in power supplied by wind. This figure shows the 

value a CAES system could add to a grid system to decrease the effect of renewable energy 

intermittency and hence encourage high levels of penetration of renewable energy systems to the grid.  

 

Figure 10 CAES operation mode for load levelling 

3. Economic evaluation of the CAES system 

3.1 Methodology of economic modelling of the wind plant installation  

In this section, the economic added value is discussed in more detail; however the operation mode of 

CAES differs for profit maximization approach which depends on the tariffs dictated by the laws of the 

location of the case study.   The steps of simulation include the calculation of the system’s total annual 

revenues. Capital costs are also calculated, converted into yearly payments, and added to the system’s 

total fixed and variable annual costs. The annual net profit/loss and the return on investment (ROI) are 

calculated accordingly, and used as a measure of economic feasibility.  Two systems are simulated, the 

first being the implementation of a wind farm with no CAES system, and the second simulating the 

integration of a CAES system to the wind farm. The analysis is performed using MATLAB program in 

section 3.3. 

For each scenario, the system’s annual net present value (NPV) and annual ROI are calculated. 

Additionally, a sensitivity analysis is carried out on some of the model’s input parameters to gauge the 

effect of each on the NPV of the system and to gain a better sense of the impact of these parameters on 

the economic feasibility of the system. 
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a) Wind power without CAES 

The costs of wind farm can be categorized to capital and annual running costs, which includes labour 

cost and maintenance cost.  

1. Capital costs comprise:  

a. The cost of Wind turbines  

b. The foundation cost 

c. Grid connection cost 

d. Planning cost 

A breakdown of the capital cost of the wind turbine is shown in Figure 11 [22]. The capital cost per unit 

power of wind varies significantly across the world. Denmark has the lowest wind turbine plant capital 

cost per unit power of $1634/KW, while Japan has one of the highest capital costs of $3426/KW of 

installed capacity [23]. The figures are adapted from the IEA wind report for 2012 installations, with 

the majority of the available data being developed countries. 

 

Figure 11 Cost breakdown of wind turbines [22] 

The running costs of wind turbine plant operation comprise: 

a. Fixed costs, which can include insurance, administration, fixed grid access fees and service 

contracts for scheduled maintenance.  

b. Variable O&M costs, which usually include replacement parts, maintenance cost which are 

not covered by fixed contracts and other labour costs. 

Fixed and variable operation and maintenance costs (O&M) also vary depending on the size of the 

installed capacity and varied across the world, ranging from $10/MWh in the U.S. to as high as 

$43/MWh in Switzerland, with European countries tending to have higher O&M costs [22]. For this 

study, we assumed Egypt to lie towards the higher end of the cost, at around $43/MWh, based on the 

lack of expertise in wind turbines maintenance, and relying on foreign experience. 
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The annual revenues from wind turbines are calculated using  

𝑅𝑤 = ∑ 𝑃𝑤 × 𝑃𝑚
8760
𝑡=1             (10) 

Where 𝑃𝑤 is hourly energy supplied from wind and 𝑃𝑚 is the market price of electricity  

The NPV of the system is calculated using [8] 

𝑁𝑃𝑉𝑤 = −𝐶𝑤 + ∑
(𝑅𝑤−𝐴𝐶𝑤)×𝑒𝑡−1

(𝑖+1)𝑡
𝑇
𝑡=1                                   (11) 

Where 𝐶𝑤 is the capital cost of building a wind farm, 𝐴𝐶𝑤is the annual cost of the wind farm, 𝑖 is the 

interest rate and 𝑅𝑤is the annual revenues of the system 

The cost is converted to average annual payments, 𝐴𝑤, is given using  

𝐴𝑤 = ( 
(𝑖×(𝑖+1)𝑡)

(𝑖+1)𝑡−1
) × (𝐶𝑤 + ∑

(𝐴𝐶𝑤)×𝑒𝑡−1

(𝑖+1)𝑡
𝑇
𝑡=1 )                          (12) 

Electricity production cost for the wind farm is calculated using  

𝑃𝑟𝑜𝑑𝑤 =
𝐴𝑤 

∑ 𝑃𝑤
8760
𝑡=1

                  (13) 

and the economic return on invested capital as:  

𝑅𝑂𝐼 =
𝐴𝑛𝑛𝑢𝑎𝑙 𝑝𝑟𝑜𝑓𝑖𝑡𝑠

(𝑖+1)𝑡×𝐶𝑤
            (14) 

b) Wind energy assumptions 

Based on a number of contracts signed in Egypt in 2014 and 2015 for renewable projects, the investment 

cost averages $1.73m/MW for wind projects with capacities in the range of 100-220 MW [24,25].  As 

for the economic life of the system, the average is assumed around 25 years, consonant with that of the 

CAES system. According to the Egyptian government’s newly announced feed-in tariffs, the grid will 

buy wind power for EGP0.68-0.82/KWh—equivalent to $89-108/MWh—depending on the number of 

annual operating hours of the wind farm. Running the calculations for the assumed number of hours of 

annual operation in our simulation gives a feed-in tariff of $9.57/KWh in the first 5 years, dropping to 

$8.93/ KWh during the remaining years of operation[16] as shown in Table 3. An annual interest rate 

of 5% is assumed, which will be varied later in a sensitivity analysis.  

Table 3 New wind feed-in tariffs [16] 

Number of wind 
turbine operating 
hours 

Energy purchase price for the 
first 5 years of operation 
(cent$/KWh) 

Energy purchase price for the 
remaining years of operation 
(cent$/KWh) 

2500  

 

11.48 

11.48 

2600 10.56 

2700 9.71 



 

 

2800 8.93 

2900 8.19 

3000 7.51 

3100  

 

 

 

9.57 

8.93 

3200 8.33 

3300 7.76 

3400 7.23 

3500 6.73 

3600 6.26 

3700 5.81 

3800 5.39 

To maximise the revenues, a new mode of operation is selected in place of load levelling, where the 

wind turbine will only produce power when the wind speed is close to the rated power, minimizing 

thereby the number of operating hours per year. This ensues from the arrangement that entails a 

decreasing purchase price as the number of annual operating hours increases, according to the new feed-

in-tariff law. Therefore, whenever the wind speed is lower than the rated speed (the extent of which is 

constantly gauged for profit maximization purposes), the wind turbines are shut down. Conversely, 

whenever the wind speed is close to the rated speed, the wind farm runs normally, selling the generated 

power to the grid. Using the available wind speed data for 3 days for the said model, a wind production 

capacity factor of 0.35 is calculated, and an annual interest rate (i) of 5% is used in this base case 

simulation. The NPV and ROI values are shown next. Firstly, figure 12 shows the mode of operation of 

the wind turbines, which is limited to the scenario of a power output that is 80% of the rated power; as 

otherwise the wind power is either dumped or delivered to CAES for storage, if a CAES system is 

available.   

 

Figure 12 Wind power production for profit maximization 

 Wind turbine with an added CAES plant 

CAES power plant economic feasibility is examined using the same method, applying a discounted 

cash flow approach. First, the annualized capital cost of the CAES is calculated, and then the fixed 
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costs and variable costs are added for each year. The total annual payments are then deducted from 

annual revenues to calculate the net cash flows, which are discounted respectively. 

3.2 Methodology of the economic analysis of a CAES plant 

a) CAES plant sizing 

The sizing of the cavern in the MATLAB simulation is implemented in order to enable use of most of 

the surplus power available to the CAES system. Sizing optimization also entails limiting any oversizing 

of the cavern in order to reduce the cost of the system (Equation 2). 

b) CAES plant capital cost 

The CAES plant capital cost includes: 

a) Construction of the underground storage; 

b) Compressors cost; 

c) Turbines cost; 

d) Other costs, including the cost of heat exchangers, pumps, transportation of components and 

installation costs (including pipe works). 

The majority of studies primarily account for the cost of building a reservoir as well as the compressors 

and turbines cost. Other costs are added as well to account for other components of the system [7].  

The initial cost of the CAES system is calculated using the formula: 

𝐼𝐶𝐶𝐴𝐸𝑆 = 𝑐𝑐𝑜𝑛𝑠 + 𝑐𝑡𝑃𝑡 + 𝑐𝑐𝑃𝑐 + 𝑜𝑡ℎ𝑒𝑟 𝑐𝑜𝑠𝑡𝑠 + 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡       (15) 

Where IC is the initial capital cost, 𝑐𝑐𝑜𝑛𝑠 is the construction cost per unit capacity of CAES ($/MW), 𝑐𝑡 

is the specific turbine cost ($/MW), 𝑃𝑡 is the turbine power, 𝑐𝑐 is the specific compressor cost ($/MW), 

and 𝑃𝑐 is the compressor power.  

The initial cost of the CAES system can be converted into annual payments using 

𝐴𝐼𝐶𝐴𝐸𝑆 = 𝐼𝐶𝐶𝐴𝐸𝑆 ( 
(𝑖×(𝑖+1)𝑡)

(𝑖+1)𝑡−1
)           (16) 

c) Running Costs 

CAES plant fixed annual cost  

Fixed costs entail labour, maintenance and other fixed costs linked to the CAES system operation. The 

fixed cost (𝐴𝐹𝑖𝑥𝑒𝑑𝐶𝐴𝐸𝑆) of the CAES plant is assumed to be a factor of the initial capital cost of the 

system. In contemporary studies [2,6,7,8], the figure ranges between 2% and 3% of the total capital 

cost. 



 

 

CAES plant variable annual cost 

The CAES plant variable cost cannot be estimated as a factor of the total capital cost as several factors 

may affect the variable cost of the system. These include the components replacement cost, and more 

importantly, the price of natural gas used in the expansion process. 

d) Replacement Costs of a system’s component during lifetime  

These entail the cost of changing some of the components of the system if their lifetime falls short of 

that of the CAES system. Normally, the system’s key capital cost components (compressors, turbines) 

have a life span of more than 25 years and therefore need not be replaced during the operational life of 

CAES. Component parts whose replacement is worth consideration primarily include the heat 

exchangers and the pipe works. If the system has a component that needs replacement after a given 

number of years, the following equation applies: 

𝑅𝑒𝑝𝑐𝑜𝑠𝑡_𝑁𝑃𝑉 =
𝑃𝑟𝑖𝑐𝑒𝑛𝑒𝑤_𝑐𝑜𝑚𝑝

(𝑖+1)𝑛𝑐           (17) 

Where 𝑅𝑒𝑝𝑐𝑜𝑠𝑡_𝑁𝑃𝑉 is the net present worth of the replacement cost, 𝑛𝑐 is the number of years until 

replacement, and 𝑃𝑟𝑖𝑐𝑒𝑛𝑒𝑤_𝑐𝑜𝑚𝑝 is the price of the new component. 

e) Natural gas price effect on annual variable costs 

In previous years, the natural gas price has varied considerably from $2/MMBTU to $6/MMBTU, 

averaging $3.7/MMBTU (EIA Natural Gas Spot Market Price).   

The heat rate for CAES is an important factor in the calculation of the annual fuel costs. The equation 

pertaining to the annual payments of natural gas is 

𝐴𝑁𝑓 = heat rate (MMBTU/KWh) ×  naturalgas price ($/MMBTU)        (18) 

f) Annual Profit/loss of CAES system 

The method used in calculation of the energy production cost of the system and its present worth is 

performed by calculating the net present value of annual revenues and payments, and discretely 

deducting initial capital cost in today’s dollars. 

Revenues are products of selling electricity to the grid, while the cost of operating the CAES is confined 

to the running costs: fixed and variable. Annual profits are netted out and discounted to calculate annual 

system NPV and ROI. Hence, the capital cost is omitted from annual cash flow calculations [8]. 

𝐴𝑇𝐶𝐴𝐸𝑆2 = 𝐴𝐹𝑖𝑥𝑒𝑑𝐶𝐴𝐸𝑆 + 𝐴𝑁𝑓           (19) 

Where 𝐴𝑁𝑓 is the annualized fuel cost and 𝐴𝐹𝑖𝑥𝑒𝑑𝐶𝐴𝐸𝑆 is the annualized CAES fixed costs. 

Energy production cost becomes:  



 

 

𝐴𝑇𝐶𝐴𝐸𝑆(2)−𝐾𝑊ℎ =
𝐴𝑇𝐶𝐴𝐸𝑆2

∑ 𝐶𝐴𝐸𝑆𝑒𝑛𝑒𝑟𝑔𝑦𝑛
𝑦=1

          (20) 

CAES revenue is calculated as: 

𝑅𝐶𝐴𝐸𝑆 = ∑ 𝐶𝐴𝐸𝑆𝑒𝑛𝑒𝑟𝑔𝑦 ×  𝑠𝑒𝑙𝑙𝑖𝑛𝑔 𝑝𝑟𝑖𝑐𝑒𝑡−𝑡𝑢𝑟𝑏𝑖𝑛
𝑡=1          (21) 

Annual profit/loss is thus: 

𝑃/𝐿 = 𝑅𝐶𝐴𝐸𝑆 − 𝐴𝑇𝐶𝐴𝐸𝑆2            (22) 

Where 𝑅𝐶𝐴𝐸𝑆 and  𝐴𝑇𝐶𝐴𝐸𝑆2 represent annual revenues and annual O&M costs of CAES, respectively. 

Profit/loss is measured in present value terms using the equation: 

𝑃/𝐿𝑁𝑃𝑉 = ∑

𝑃

𝐿
(𝑖 + 1)𝑛

⁄𝑡=𝑛
𝑡=1            (23) 

Finally, system NPV is calculated by deducting the initial capital cost (𝐼𝐶𝐶𝐴𝐸𝑆).  

The economic simulation is performed following the flow chart presented in Figure 13, which is written 

in MATLAB. The main assumptions are summarized in Table 4. 



 

 

 

Figure 13 Flowchart of economic analysis for wind+CAES 

3.3 Wind energy economic results   

Table 4 Wind farm base case  

Base case for Wind without CAES  

Selling price to grid $95.7/MWh (first 5 years of operation) 

$89.3/MWh (remaining years of operation) 

Interest rate (i) 5% 

Annual fixed and variable 

O&M costs 

$43/MWh 

Capital cost $1730/KW 

A graph displaying cumulative discounted net cash flows (DCFs) overtime is shown in Figure 14, where 

the cumulative DCF value increases from -$1003m to $207m by the end of year 25 of operations, 

assuming a selling price of $95.7/MWh for the first 5 years and $89.3/MWh for the remaining years of 

operation, as dictated by Egypt’s recently issued law for wind turbines newly integrated to the grid. 



 

 

Table 5 Calculated costs for a wind farm in Egypt’s Suez governorate 

Wind farm (without CAES) costs  

Capital cost ($m) 1003 

Annual O&M costs ($m) 76 

 

Figure 14 Cumulative discounted net cash flow of wind turbines 

At year 0, a cash outflow of -$1,003m occurs, representing the project’s investment cost. In subsequent 

years, annual revenues exceeded annual costs, resulting in a build-up of positive net cash flows against 

the initial investment cost until the system breaks even after around 17.5 years of operation, having 

accumulated enough positive cash flows to cover the initial outlay. Thereafter, the project NPV turns 

positive and increases overtime. By the end of a 25-year base case simulation period, the system is 

estimated to have produced $207m in economic profits. It is worth noting however that the results factor 

in the earlier mentioned assumption that power is dumped whenever the wind speed is lower than the 

rated speed. The revenue could be increased if the wind turbines are allowed to operate for longer time 

but the selling price will be at reduced rate. 

Sensitivity to selling price  

As mentioned previously, Egypt’s newly set wind feed-in tariff varies with the number of operating 

hours of the wind farms. Therefore, in this sensitivity study, the selling price is varied in correspondence 

with the relevant assumed number of hours of wind operation, and the effect on the value creation of 

the wind farm measured accordingly. 
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Figure 15 Cumulative discounted net cash flow scenarios reflecting different selling prices to the grid 

The results show that profitability peaks at the optimal number of operating hours in the vicinity of 3100 

hours per annum, where the system breaks even after 18 years and yields an NPV of $207m. The 

profitability of the 2800-hour and 2900-hour zones ranks next, with a break-even period of around 17 

years and NPVs of $194m and $204m, respectively. The worst performers, amongst the tested 

operations, are the vicinities of the 3000-hour and the 3200-hour annual operations, with a break-even 

period of 20 years and NPVs of $75m and $116m, respectively.  

3.4 Wind +CAES system economic results 

Assumptions for the components costs of CAES systems are adapted from various studies [2, 6, 7, and 

8]. Table 6 displays the different parameters for the CAES systems for the rock caverns available in 

Egypt. The Suez area neighbouring the site of the wind farms is formed of basement rocks [26]. This 

type of geology is economically less feasible compared to molten salt, for instance, since the cost of 

rocks excavation is around $30/kWh, while the cost for salt caverns is around $1/kWh.  

Table 6 Case studies for economic analysis 

 Egypt (rock caverns) 

Number of years 25 

Construction cost ($/KWh) 30 

Specific compressor cost ($/KW) 420 

Specific turbine cost ($/KW) 475 

Fuel market price ($/MMBTU) 4 

3.4.1 Egypt —case study 

In the simulation herein, the CAES is specifically sized and operated such that it maximises the profit 

as implied by the new tariff program provisions. The modelling technique assumes that the CAES 
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absorbs the power instead of dumping the surplus power production from the wind. In the proposed 

profit-maximizing scenario, this shadows instances when the wind speed is lower than the rated speed, 

as explained in the previous section; unlike in the load-levelling scenario, wherein the CAES absorbs 

power when the output from wind is higher than the load, and therefore is set to provide power at the 

same time the wind system is selling power to the grid. In the simulation showcased, CAES is modelled 

to have a capacity of around 300MW with a cavern volume of 850,000 𝑚3, whilst the system would 

produce an average of 250MW for 8.5 hours/day.  

For the Egyptian grid case, the value of CAES lies in its use in load levelling as opposed to economic 

optimization, since the Egyptian grid is weak and daily power cuts are common in Egypt. Therefore, 

the importance of CAES owes primarily to its role in dealing with the intermittency of wind rather than 

improving the economic performance of the wind systems. This study yet sheds light on its marginal 

economic benefit. Carried out in this section is an economic analysis of adding a CAES system to future 

wind farms projects. The CAES system will be treated as a wind farm for the power trades, implying 

that the selling price for the CAES system will equal the selling price for wind. The system governing 

the Egyptian power trade market differs significantly from its European and American counterparts. 

The Egyptian government recently issued a law dictating feed-in tariffs for power produced from wind. 

Under the newly formed system, the government will buy wind power at a fixed price, irrespective of 

the selling time (peak or not) to encourage the growth of the wind energy sector in Egypt. Figure 16 and 

Figure 17 show the different operation modes runnable by CAES systems. The first, , pertains to the 

use of CAES for load levelling, while the second entails the use of CAES to maximize profits, according 

to the new tariff system for wind power in Egypt.  

 

Figure 16 CAES operation mode for economic benefit 

Figure 17 shows the output power that will be sold to the grid to best exploit the makeup of wind power 

prices in Egypt. As explained earlier, wind will only produce power when the output power of wind is 

80% or more of the rated power, and the CAES system will produce power concurrently with the wind, 

so as to realize the best possible price offered in the wind power tariff program. 
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Figure 17 Output power from wind+CAES system for profit maximization 

In this scenario, the revenue from total power production will be considered, whether it is flowing from 

the wind farm/CAES to the grid. The projected annual revenues are thus higher, albeit with a higher 

capital cost. 

Table 7 Base case parameters for wind+CAES for Suez case study 

Base case for Wind with CAES   

Selling price to grid $95.7/MWh (first 5 years of operation) 

$89.3/MWh (remaining years of operation) 

Interest rate (i) 5% 
Fixed annual factor 2% 

3.4.2 Results and discussion of wind+CAES 

Table 8 Costs for a CAES system for the Suez case study 

Costs CAES system 

Construction cost ($m) 180 

Equipment cost ($m) 350 

Other costs ($m) 105 

𝐀𝐧𝐧𝐮𝐚𝐥 𝐟𝐢𝐱𝐞𝐝 𝐜𝐨𝐬𝐭 ($m) 12 

𝐀𝐧𝐧𝐮𝐚𝐥 𝐯𝐚𝐫𝐢𝐚𝐛𝐥𝐞 𝐜𝐨𝐬𝐭 ($m) 8 

The initial investment is around $1600m in this case. By the end of the 25 years of operation, the 

wind+CAES case is estimated to have produced $306m in economic profits. 

 

Figure 18 Cumulative discounted net cash flow of wind+CAES system—base case scenario 
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3.4.3 Discussion of the effect of adding CAES to wind on the NPV of the system 

In the base case scenarios of both wind alone and wind+CAES, the final NPVs of the systems were 

above 0, meaning both systems are making profits, economically, assuming base case values—as 

mentioned earlier. For wind alone, these assumptions are as following: 

a) The wind energy will be sold to the grid only when the wind speed is close to the rated speed 

(within 80%), to maximize profit; 

b) If the wind power is more than 20% lower than the rated wind power, it will be dumped (or wind 

turbines will be shut down). 

For the Wind+CAES system, the assumptions are: 

a) Instead of dumping the wind power, the surplus power is stored in CAES; 

b) The CAES delivers the stored power to the grid concurrently with the wind’s power supply, and 

at the same purchase price. 

Under those assumptions, the wind only system will break even after 18 years with a NPV of $207m, 

while the wind+CAES system will break even after roughly 18 years with a NPV of around $306m. 

This shows that adding CAES improves the system’s economics when operated in a profit-maximizing 

mode. On the other hand, if CAES is operated for the purpose of load levelling, the addition of a CAES 

system will not be economically attractive. Nonetheless, CAES also has the ability to add value by 

providing ancillary services to the grid, but this is not yet applicable to the Egyptian market given its 

current stage of development and dynamics. In the future, however, CAES systems could provide higher 

economic returns if ancillary services are considered by the government.   

3.4.4 Sensitivity analysis of wind+CAES 

A number of parameters were varied for Wind+CAES to test their effect on the NPV of the system.. 

These are: 

a) Natural gas price 

b) Initial capital cost of CAES 

c) Initial capital cost of the whole system 

d) Replacement cost of wind+CAES 

Even though CAES is not used in a load-levelling mode in this scenario, it still adds value to the grid 

by means of smoothing out the output power of wind. Figure 19 shows the results of adding a 5% 

incentive payment on the purchase price from wind+CAES systems if the government decides to 

remunerate the said benefit and encourage the addition of such systems. Under this scenario, the system 

breaks even in 16.5 years with a NPV of $457m, owing to the incremental c$150m of revenues from 

incentive payments. 



 

 

 

Figure 19 Cumulative discounted net cash flows showing the base case and the case of adding a 5% incentive 

payment 

a) Natural gas price 

Annual escalation rates of natural gas prices of -5%, 0%, 5% are simulated to test the sensitivity of the 

net present value of the system to natural gas cost. The results are shown in Figure 20.  

 

Figure 20 Cumulative discounted net cash flows for different annual fuel escalation rates 

Figure 20 shows that an annual 5% drop in the price of fuel results in a system break-even at 17 years, 

compared to 18 years at a constant fuel price (0% escalation rate), while increasing the fuel escalation 

rate to an annual 5% results in the system only breaking even after 23 years of operation. 

b) Initial capital cost of CAES 

Based on a range of values from a number of studies, the total initial capital cost of CAES is varied 

between 80% and 110% of the base-case cost assumed, which includes construction, compressor, 

turbine and other costs. The 80% scenario suits the assumption of the government subsidizing the 

remaining 20% or a portion of it, or a lower capital cost owing to a decrease in the price of some of the 

components. The 110% scenario simulation suits the assumption of an increase in the price of 

components, or an increase in the construction cost of a reservoir for the CAES.  
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Figure 21 Cumulative discounted net cash flows for different initial capital costs of CAES 

Changing the capital cost by 10% intervals has a minor effect on the whole system NPV as the capital 

cost of CAES only represents a fraction of the total capital cost of the system, hence, its lesser effect on 

the overall NPV of the system.  

c) Wind+CAES initial capital cost  

The whole system (Wind+CAES) capital cost is varied between 80% and 110% for this scenario. 

 

Figure 22 Cumulative discounted net cash flows for different total initial capital costs of wind+CAES 

Figure 22 presents the impact of changing the initial capital cost of the entire system. Expectedly, the 

effect is much more significant compared to variations in the capital cost of solely the CAES system. 

In this case, the initial investment changes from $1302m to $1800m for the range applied, whilst the 

initial investment changed from $1503m to $1700m in the former scenario involving the variation of 

only the CAES capital cost. 

d) Replacement cost of wind+CAES 

Because some of the system components may need replacement after a period of time, replacement cost 

is considered. The assumption is that a percentage of the components will need replacement following 

10 years of operation. The figure is varied between 0% and 30% of the wind and CAES components. 
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Figure 23 Cumulative discounted net cash flows for different replacement cost scenarios of wind+CAES 

As more components need replacement, the NPV drops, albeit staying positive across all scenarios, with 

the worst-case scenario of 30% of the components needing replacement yielding an NPV of $104m. 

e) Discussion of sensitivity analysis on wind+CAES 

The tested factors varied in their effect on the system’s economics. Each is discussed in this section in 

more detail in comparison to the other factors. 

a) Natural gas price was varied by annual escalation rates ranging from -5% to 5%, where NPV 

dropped by 85% for an annual 5% escalation from the base case and increased by 26% for an 

annual 5% plunge in the price of fuel. The break-even values varied between 17-23 years 

depending on the natural gas price escalation rates. 

b) Initial capital cost of CAES was varied from 80% of CAES cost to 110% of CAES cost. A 20% 

reduction in CAES cost from the base case resulted in an NPV increase of 56%, while a 10% 

rise in CAES cost from the base case resulted in a drop in the NPV by 26%. The break-even 

points varied between 15.5 years to 20 years for 30% change in initial capital cost of CAES. 

c) Initial capital cost of the entire system was similarly varied from 80% to 110%. A 20% reduction 

in whole system cost from the base case resulted in an NPV increase of 106%, while a 10% rise 

in whole system cost from the base case resulted in a 53% drop in the NPV. The break-even 

points varied between 13 years to 21.5 years for 30% change in initial capital cost of CAES. 

d) Replacement cost was increased from 0 in the base case where none of the components were 

assumed to need replacement to 30% of the components modelled to need replacement after 10 

years of operation. NPV for the said range dropped by 66%. The break-even points varied 

between 18 years to 22 years for 30% change in initial capital cost of CAES. 

Table 9 Average NPV variation for the different parameters 
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Natural gas 10 110 

Initial capital cost of CAES 10 27 

Initial capital cost of the system 10 53 

Replacement cost 10 22 

Out of the tested factors, and given the chosen range for each, the NPV of the system proved to be the 

most sensitive to changes in the natural gas price. The initial capital cost of the system comes next, 

followed by the initial capital cost of CAES alone, and at last the replacement cost of system 

components. 

4. Conclusions 

This study investigated the system economic value of using an integrated Wind +CAES system. The 

simulation of CAES based on technical aspects demonstrated the potential addition of a CAES system 

to an installed wind farm in case of Suez, Egypt.  The results indicates the CAES system ability to store 

and supply energy at the time where wind power supply is lower than the load demand.  Based on these 

findings, it can be concluded that CAES could play an important role in minimizing the impact of the 

wind intermittency predicament that will potentially face the Egyptian grid due to the anticipated 

increase in wind power generation in the future. The load levelling principle was used to develop the 

initial simulation. The results of which, shows that CAES has a great potential as an efficient and 

sustainable large-scale energy storage system in Egypt. The economic modelling carried out for the case 

study of the Egyptian grid indicate that wind installations, with or without CAES, are economically 

profitable. Varying a number of parametric values to the upside shows that wind and wind+CAES setups 

can, in many cases, become increasingly profitable as exemplified by the higher selling price to the grid 

and the lower interest rate scenarios. These are conceivable conditions, as the Egyptian government is 

eager to encourage the installation of new renewable energy systems, which is therefore expected to 

grow steadily in the coming years, inducing along the way adjustments to the market prices set forth by 

the newly issued law, based on which the economic analysis herein is performed. CAES was found to 

improve the economic feasibility of a wind (alone) system, should the assumption that the extra power 

produced by wind is dumped hold. If the government provides subsidies to implement renewable energy 

projects, the viability of the given system would increase substantially, enabling it to break even in 13 

years in the case that 20% of the estimated capital cost is borne by the government compared to an 18 

years break-even period without the subsidies. This brings us to the effect of interest rates, which is 

again related to the government economic policies. If the government incentivizes loans for renewable 

energy projects through lower interest rates, the wind+CAES system could prove highly profitable. 
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