

The ‘Private-Collective’

Innovation Model under

Permissive Licensing:

A Case Study of

OpenNebula Open Source

Software

A thesis submitted for the degree

of Doctor of Philosophy

By

Hazar Y. Hmoud

March 2018

2

Abstract

This thesis aims for understanding how the ‘private-collective’ model of

innovation works in permissive open source software.

This model encourages the private investments in the collective software

as well as the sharing of those investments with the collective community. By

following this model in permissive open source software, this thesis suggested

that private actors would experience a collective action problem referred to as

a ‘business dilemma’. This dilemma is the difficult situation experienced by

private actors who would be reaping rewards by sharing their private

investments but also losing their competitive advantage because of free riders.

 Theoretically, private actors would be discouraged from sharing their

private investments with the collective due to the business dilemma. However,

in some real cases, we do not observe this constraint; private actors are not

trapped by the business dilemma. Instead, they end up innovating and

contributing to permissive open source software.

As a result, this thesis would investigate and answer the research

questions: ‘How can the private actors invest and share in permissive open

source software without experiencing a business dilemma?’ and ‘Why private

actors choose to invest and share rather than to free ride in permissive open

source software?’

Ostrom’s theory of collective action is used as a lens for investigating the

patterns of the private contributions and answering the research questions

consequently. This theory suggests that people, even with the absence of

formal regulations, can talk and share their local knowledge and experiences in

order to collectively arrange the pattern of their actions and to extract

themselves from collective action problems accordingly.

OpenNebula open source software was the case study analysed. Findings

are based upon an in-depth qualitative analysis of a substantial dataset

involving 7,017 emails, 3,482 development requests, 4 technical OpenNebula

official documentations and thousands of source code commits.

 Findings revealed that private actors are voluntary entering in an ‘active

communications’ with other participants. Findings proposed that an ‘active

communications’ act as a prerequisite for the active private contributions done

by private actors.

3

Those private contributions are locked within the collective software in

the form of ‘collective complementarities’ through a ‘transformation process’.

Several evidences proposed that this process worked to align the private

interests of private actors with the collective interests of the software.

Moreover, findings revealed that a set of ‘rules’ are emerged by the

private actors and other participants in order to structure the ‘active

communications’ and the ‘transformation process’. Several evidences proposed

that these ‘rules’ worked to support the alignment between the private and the

collective interests.

 Accordingly, it is proposed that the alignment between the private and

the collective interests (which is done through the ‘active communications’,

‘transformation process’ and is supported through a set of ‘rules) encourages

private actors to share and to link their private software with the collective.

Without sharing, their private software would not be part of the ‘collective’

complementarities’ that are used in the different industries.

This thesis makes novel contributions to the literature of open source. In

particular, it extends the ‘private-collective’ model of innovation by introducing

the ‘collective complementarities’ as a theoretical concept for locking the

private benefit alongside with the collective one. It extends the open source

literature by providing a better understanding of the collective software as a

type of ‘commons’ that is exposed to private appropriation. In this way, it

provides a set of arrangements that can bring the best of open source software

that are sponsored by private actors.

This thesis also encourages firms to: (1) share an ongoing control over

the development of the software with the vibrant community members in

order to develop software that can be used across industries and (2) harness

information technology practices in their organizations to better serve the

private and the collective interests.

4

Dedication

To mum and dad …

Without you, this thesis would never have commenced. Without

you, I could never imagine having reached this far. Your ongoing support

and unconditional love lifted me up through hard times. You never lose

your faith in me.

If a day passes by without me saying “Thank you”, a moment shall

never pass by without you knowing that I am grateful.

I love you.

To my little angels, Salma and Sura…

We went along together through this journey. And this piece of

work is definitely not only mine, it is ours. Having you next to me

through this journey keeps me sane indeed.

Girls, it is the time for our favourite song, “We are the little

graduate dressed in black, wearing a gown and a funny looking hat”.

Hurray! We did it.

I love you.

5

Acknowledgement

I am thankful for my PhD supervisors, Prof. George Kuk and Dr.

Corentin Curchod, for their efforts and time given in order to critically

advance my research and to develop my research skills. I have learned so

much from you. This research would never have been accomplished

without you.

Thank you Dr. Rodion Skovoroda for co-supervising my first year.

My sincere thanks to professors and doctors at the Business School for

their academic advice and feedback through taught modules and

seminars. Thanks for all of my colleagues who read my work and

provided me with their feedback and comments. I would also like to

thank Ms Andrea Tomlinson for her excellent help and support and Ms

Teresa Bee for her advice and helpful counselling.

My gratitude goes to the University of Jordan for the Management

Information Systems Department scholarship through which my

research was funded. My special recognition and thanks for Prof. Rifat

Shannak without whom I would never have had this opportunity. Thank

you Dr. Raed Mas’adeh for your ongoing support. I am grateful for to Dr.

Hani Jaber for his technical support and encouragement.

Unconditional love and thanks to my brothers: Ammar, Anmar,

Mohammed, and Saif, and the rest of my inner circle of family and

friends.

I am thankful for my office mates and doctoral society members at

the University of Nottingham Business School without whom lonely

times and boring weekends would have been too much.

6

Publication

HMOUD, H., KUK, G. & CURCHOD, C. From Restrictive to Permissive

Licensing: The Governance of Appropriation in Open Source Software

Project. British Academy of Management, 2016 Newcastle, United

Kingdom.

7

Table of Contents

Abstract ... 2

Dedication ... 4

Acknowledgement .. 5

Publication ... 6

Table of Contents .. 7

List of Tables .. 11

List of Figures .. 13

Chapter 1 Introduction .. 15

1.1 Overview .. 15

1.2 Research Rationale 15

1.3 Research Motivation and Novelty 17

1.4 Research Question and Objectives 19

1.5 Thesis Structure .. 22

Chapter 2 A Business Dilemma in Open Source

Software .. 25

2.1 Overview .. 25

2.2 Free Software ... 26

2.3 Open Source Software 29

2.3.1 Participants: Individuals and Private

Actors ... 31

2.3.2 Licensing in Open Source Software 35

2.4 The ‘Private-Collective’ Model of

Innovation .. 40

2.4.1 Private Contributions are Crucial 40

8

2.4.2 Revealing Private Contributions is

Crucial .. 41

2.5 The Business Dilemma 43

Chapter 3 Governance of the Commons 48

3.1 Overview .. 48

3.2 Collective Action Problem 48

3.3 Theory of Collective Action 50

3.4 The suitability of a Theory 52

Chapter 4 Research Methodology 55

4.1 Overview .. 55

4.3 Thesis positioning ... 58

4.4 Case Study Design .. 58

4.4.1 The selection of OpenNebula case

study ... 60

Chapter 5 Data Collection and Analysis 65

5.1 Overview .. 65

5.2 Data Collection ... 65

5.2.1 The First Type of Data: The Mailing List .. 70

5.2.2 The Second Type of Data: The Requests .. 76

5.2.3 The Third Type of Data: The Commits 77

5.2.4 The Fourth Type of Data: The

Documentation .. 78

5.3 Reflexivity ... 80

5.4 Quality of the research 85

5.5 Research Ethics ... 88

Chapter 6 The Private Contributions in OpenNebula 90

6.1 Overview .. 90

9

6.2 OpenNebula as open source software 91

6.2.1 Start-up Stage .. 92

6.2.2 Growth Stage ... 95

6.3 The Private Actors in OpenNebula 97

6.3.1 The registration process 98

6.3.2 Participants mapping 100

6.4 Contributions in OpenNebula 107

6.4.1 Communications on the mailing list 107

6.4.2 Requests additions in the development

portal ... 114

6.4.3 Contributions towards Collective

Complementarities .. 118

6.5 Conclusion .. 129

Chapter 7 The Collective Software 131

7.1 Overview .. 131

7.2 The Nature of requests.............................. 131

7.3 The Transformation Process 134

7.3.1 Validation of Contributions 136

7.3.2 Selection of Contributions 141

7.3.3 Development and Testing of

Contributions .. 145

7.4 Impact of Transformation Process on

Contributions .. 149

Chapter 8 Rules in OpenNebula .. 153

8.1 Overview .. 153

8.2 The Rules ... 153

8.2.1 “Fast tracking” rule 156

10

8.2.2 “Follow up” rule 157

8.2.3 “Networking” rule 161

8.2.4 “Core-private reciprocity” rule 162

8.3 Execution Practices................................... 163

8.3.1 Execution of the “Fast Tracking” Rule . 167

8.3.2 Execution of the “Follow Up” Rule 169

8.3.3 Execution of the “Networking” Rule 171

8.3.4 Execution of the “Core-Private

Reciprocity” Rule .. 172

8.4 Impact of Rules on Contributions 173

Chapter 9 Discussion .. 180

9.1 Research Review .. 180

9.2 Empirical Findings 182

9.3 Research Contribution 184

9.3.1 Theoretical Contributions 184

9.3.2 Practical Contribution 191

9.3 Limitations of the Research 195

9.4 Direction for Future Research 197

References ... 199

Appendix A: The Analysis of Contributions in

OpenNebula .. 213

Appendix B: The Analysis of Software

Complementarities .. 239

B.1 Categories identified in the development

page ... 239

B.2 The technical components in OpenNebula . 244

11

List of Tables

Table 2.1 Cost vs Benefits for individuals and private

actors in open source software ... 33

Table 4.1 Examples of firms in different industries

using OpenNebula in their business 63

Table 5.1 Triangulation Types 68

Table 5.2 A sample of participants analysed from the

mailing list... 74

Table 5.3 Description of the third set of data collected

in this research .. 79

Table 5.4 Quality measures in this research 85

Table 6.1 Classifying participants of OpenNebula into

individuals and private actors ... 104

Table 6.2 Contributions made by participants in

OpenNebula ... 114

Table 6.3 Contributions in the development portal of

OpenNebula ... 117

Table 6.4 Core and Complements modules in

OpenNebula ... 120

Table 6.5 The different technology options for

virtualization driver (complements module) in OpenNebula 122

Table 7.1 Summary of percentage of core and

complements requests added into OpenNebula releases 144

Table 7.2 Impact of the transformation process 151

Table 8.1 Rules in OpenNebula 155

Table 8.2 Firms who participated in the 'Fund a

feature' programme .. 156

Table 8.3 Examples of "networking" rule in

OpenNebula ... 161

Table 8.4 Examples of the "core-private reciprocity"

rule in OpenNebula ... 163

12

Table 8.5 Execution practices of OpenNebula rules 165

Table 8.6 Summarizing results for rules and their

execution practices in OpenNebula 166

Table 8.7 Examples of formal execution of the “fast

tracking" rule ... 169

Table 9.1 Differences between open source software

and other appropriated 'commons' 187

Table 9.2 Examples of the advantages and

disadvantages of autonomous and sponsored open source

software .. 190

Table 9.3 The active role of participants with

arrangements (formal and informal rules) 194

Table A. 1 The analysis of the different categories

about contributions performed by participants 213

Table B. 1 Technical description of the categories as

identified from the analysis of the development page 240

Table B. 2 Types of Drivers in OpenNebula 248

13

List of Figures

Figure 1.1 Thesis structure aligned with thesis

objectives .. 24

Figure 2.1 Graphical illustration of open source

software under restrictive license 36

Figure 2.2 Graphical illustration of open source

software under permissive license 38

Figure 2.3 Open source software as an innovation 39

Figure 2.4 The business dilemma in open source

software .. 45

Figure 2.5 Adoption of open source software in

different companies .. 47

Figure 5.1 Number of requests added over time 77

Figure 5.2 Reflexivity in this research 81

Figure 5.3 Reflexivity in this research 83

Figure 6.1 The different stages of OpenNebula 94

Figure 6.2 The development of OpenNebula Software

in the growth stage .. 96

Figure 6.3 Screen for registering new participant to

the mailing list in OpenNebula .. 99

Figure 6.4 Screen for registering new participant to

the development portal in OpenNebula 99

Figure 6.5 The different participants in OpenNebula ... 101

Figure 6.6 Rivals in the technology industry 105

Figure 6.7 Rivals in the education industry 106

Figure 6.8 An example of a newly added request to

the development page of OpenNebula 115

Figure 6.9 Number of requests added into the

development portal of OpenNebula 116

Figure 6.10 Technical design for software

complements in OpenNebula .. 119

14

Figure 6.11 The difference between OpenNebula and

the traditional context ... 125

Figure 6.12 Number of software releases in

OpenNebula ... 128

Figure 7.1 Number of 'software bugs' and 'software

features' requests added to different OpenNebula releases 133

Figure 7.2 Transformation process in OpenNebula 135

Figure 7.3 Percentage of valid, duplicated and invalid

requests in OpenNebula .. 139

Figure 7.4 Number of valid 'software bugs' and

'software features' requests added to OpenNebula releases 142

Figure 7.5 An example of the scope rule used in

OpenNebula ... 145

Figure 7.6 Commits added to OpenNebula core and

complements software .. 147

Figure 7.7 The addition of different complements

through time in OpenNebula .. 148

Figure 8.1 A set of rules that structure the patterns in

contributions of private actors in OpenNebula 154

Figure 8.2 Impact of rules in OpenNebula 176

Figure 8.3 The technical components of the jointly

developed OpenNebula software 178

Figure A. 1 'Modify Available Documentation' Code..... 235

Figure A. 2 Report Software Bugs/ Features 236

Figure A. 3 Solve Software Bugs 237

Figure A. 4 Develop Software Features 238

Figure B. 1 Classification of the software components

according to core and complements categories................. 251

15

Chapter 1 Introduction

1.1 Overview

In section 1.2, this introduction will present the rationale

behind this thesis. Section 1.3 describes motivation and

reasoning behind this thesis. The research question and

research objectives are presented in section 1.4. Finally, the

structure of this thesis is detailed in section 1.5.

1.2 Research Rationale

This thesis aims for understanding how von Hippel and

von Krogh (2003) ‘private-collective’ model of innovation is

working in open source software that is declared under

permissive licensing.

To start with, it is important to highlight that open source

software was a prominent example for the ‘private-collective’

model of innovation. In this model, it is explained that private

investments are crucial to the development of the collective

software.

In addition, it is explained that the best course of action

that can be done by the private investors is to share rather

than conceal their private investments with the collective. This

is justified because of the multiple rewards that the private

investors would be reaping from such sharing.

This innovation model seems to work well for open

source software declared under restrictive licenses (General

Public License (GPL), for example). As will be explained in sub-

section 2.3.2, restrictive licenses require the sharing of all

16

further modifications done to the original software. Thus, the

software would be non-rivalry developed through time.

However, in this thesis, it is suggested that this

innovation model is creating a business dilemma in open

source software declared under permissive license (such as

BSD or Apache) as follows.

In permissive licensing, sharing of the source code and

further modifications of that code is not compulsory. Rivals

are allowed to copy and imitate the shared private

investments without contributing back to the collective

software. As a result, the competitive advantage for the

private investors would be decreased as imitation is easy.

Therefore, private actors would be experiencing a

business dilemma; they want to share their private

investments in order to reap rewards but they also do not

want to share their private investments in order to protect

their competitive advantage from rivals.

Theoretically, this business dilemma would discourage

private actors from sharing their investments. Practically,

there are some cases where private actors found to

increasingly contribute to open source software through the

time despite the dilemma. Contradiction between theory

prediction and practice is deemed worth tacking.

Therefore, it is proposed that Ostrom’s evolutionary

theory of collective action would be a suitable theory for this

thesis. This is because this theory suggests that participants

can extract themselves from dilemmas even with the absence

17

of a formal authority. Thus, this theory would help in

describing and explaining what happens with private actors

and how they are encouraged to invest without creating the

business dilemma in open source software that is declared

under permissive licensing (where obligations against

imitation are not introduced).

Based on the previous discussions, informed by Ostrom

(1990) evolutionary theory of collective action, this thesis aims

for understanding how von Hippel and von Krogh (2003)

‘private-collective’ model of innovation is working in open

source software declared under permissive licensing by

answering the research questions explained in section 1.4.

1.3 Research Motivation and Novelty

Open source software (OSS) is a computer program for

which the source code is publicly available to be shared, used,

modified, and distributed under an open source software

license: either restrictive or permissive license (Raymond,

1998; O’Mahony, 2003; deLaat, 2007).

This thesis aims for understanding how von Hippel and

von Krogh (2003) ‘private-collective’ model of innovation is

working in open source software declared under permissive

licensing.

This thesis is motivated by the different requests in the

literature of open source where researchers emphasize that

the role of firms and their private investments in open source

software is not salient in the literature (Stol and Babar, 2009),

18

and a high concentration of research is needed (Markus,

2007a; Crowston et al., 2012).

The novelty of this thesis is identified from different

dimensions.

First, this thesis is different in its settings.

While researchers focused on studying open source

software under restrictive licensing, this thesis chooses to

analyse open source software under permissive licensing.

Second, this thesis is different in its aspiration.

While other researches focused on analysing dilemmas

that are experienced by hobbyists and individual actors (for

example, O'Mahony, 2003, Baldwin and Clark, 2006), this

thesis focuses on analysing a business dilemma that is

experienced by private actors.

Private actors are crucial participants because they found

to move open source software strategically and technically in

the market (Casadesus-Masanell and Llanes, 2011). Their

contributions are encouraged through von Hippel and von

Krogh (2003) ‘private-collective model of innovation’.

Therefore, unpacking a collective action problem that they

experience in open source software is deemed crucial. While

high intensity of research was neglecting open source software

in the context of organisations and private actors (Stol and

Babar, 2009, Hauge et al., 2010), the novelty of this thesis is

more salient.

19

Third, new domains of unravelled knowledge would be

revealed when understanding the contradiction between

theory and practice.

 Theoretically, the suggested business dilemma would

discourage private actors from investing and sharing their

proprietary software to the collective. However, in practice,

there are some cases where private actors are investing and

sharing their private investments rather than concealing

because of free riders. For example, statistics show that 78

per cent of companies invest in open source software in order

to run their business, and 47 per cent of these companies

disclose their private source code as open source software

under permissive license especially Apache v2.0

(BlackDuckSoftware, 2015). Another example, OpenNebula,

the case study analysed in this thesis, is an open source

software with a large amount of commercial investment in

different industrial sectors i.e. more than 180 firms from 13

industries are commercially investing in OpenNebula and

.CITE

<EndNote><Cite><Author>Finlay</Author><Year>2002</Ye Therefore, analysing the ‘private-collective’ model of

innovation in this case is novel as it will provide a logical

explanation for the misalignment between theoretical

suggestions and practice. And new domains unravel

knowledge of would be revealed.

1.4 Research Question and Objectives

Permissive open source is an open source license that

simultaneously reinforces the business dilemma experiences

20

by private actors. Theoretically, the business dilemma would

discourage private actors to invest and share their

investments in open source software. However, in some real

cases, we do not observe this constrain. Instead, private

actors end to innovate and contribute within their open

source community.

Thus, it is required to investigate and answer the

following research questions:

 ‘How can the private actors invest and share in permissive

open source software without experiencing a business

dilemma?’

 ‘Why private actors choose to invest and share rather

than to free ride in permissive open source software?’

Ostrom (1990) evolutionary theory of collective action

is suggested as a theoretical lens for answering the research

questions. This theory suggests that people are rationale. They

can talk and use their local knowledge and experiences in

order to arrange their collective actions even without formal

regulations. They would arrange their actions in order to

extract themselves from collective action problems.

The research purposes to achieve the following

objectives:

Objective 1: To review the literature of open source

software and to contextualise this thesis within the proper

literature of open source software.

21

Objective 2: To construct a research methodology, from

an epistemological perspective, in order to answer the

proposed research questions.

 Objective 3: To supply a detailed description of the case

study; recognise participants who are involved with

developing open source software, identify their contributions

and the outcome resulted from their contributions.

This step is crucial in order to identify the private

investments from private actors and their propensity to be

contributed and shared rather than ‘hijacked’ by others.

Objective 4: To analyse how the private investments

contributed to the development of the collective software.

This objective is necessary in order to understand

patterns of the private contributions towards the collective

software. Accordingly, this would achieve a better

understanding of how private actors are encouraged to invest

and share their investments.

Objective 5: To analyse how patterns of the private

contributions are followed by the private actors in open

source software.

This objective is necessary in order to understand the

structure that organizes patterns of the private contributions

in open source software. Accordingly, this would achieve a

better understanding of why private actors are encouraged to

invest and share their investments.

22

Objective 6: To discuss the findings in terms of

theoretical and practical contributions. In addition, provide

insights for future research directions.

1.5 Thesis Structure

This thesis is structured around nine different chapters,

as follows:

Chapter one (this chapter) provides an overview of the

thesis.

It presents the reasoning behind the research and

alludes to governance literature in order to contextualize the

thesis in relation to existing literature. This chapter also

describes the research question, objectives, and structure.

Chapter two focuses on explaining the business

dilemma experienced by private actors in open source

software under permissive licensing.

Theoretically, the business dilemma would discourage

private actors to invest and share their investments in open

source software. However, in reality, we do not observe this

constraint. Instead, private actors end to innovate and

contribute within their open source community.

Chapter three shows that the business dilemma in open

source software is solved through choosing appropriate

governance. This chapter also explains the suitability of the

theoretical lens of (Ostrom, 1990) theory of collective action. I

propose that governance of open source software should

follow the conventional theory of collective action (Ostrom,

1990).

23

According to this theory, participants cannot be trapped

in collective action problems. They are able to extract

themselves from these problems.

Chapter four explains the philosophical standpoint of

this thesis as interpretive, qualitative research. This chapter

presents OpenNebula as the case study to be analysed in this

thesis.

Chapter five discussed the types of data collected and

how this was analysed. In addition, it elaborates on the issues

of reflexivity and quality measures such as credibility,

plausibility, and transferability in this research. A short

reflection on research ethics will also be presented.

Chapter six is the first empirical chapter. It explains that

private contributions by private actors are supporting the

development of OpenNebula software in the form of

collective complementarities. In addition, this chapter

proposes that the active communications constitute a

prerequisite to the active contributions of private actors to

the software.

Chapter seven is the second empirical chapter of this

thesis. It explains how private contributions contribute to the

development of the collective software. It theorizes how a

transformation process is used to transfer contributions into

collective software. In addition, this chapter proposes that the

transformation process, through focusing the attention of

OpenNebula participants, encourages private actors to reveal

their private contributions to the collective.

24

Chapter eight, the third empirical chapter, explains

rules that govern the private contributions and the

development of OpenNebula software. It theorizes the

different ways for executing the different rules that exist

between participants in OpenNebula. In addition, this chapter

proposes that rules are encouraging private actors to

contribute their private contribution because rules are

supporting private actors in inducing, verifying, legitimizing

and adjusting their private contributions in open source

software. Accordingly, Private actors, through these rules,

seem to work as a collective rather than worrying about

rivalry.

Chapter nine discusses the findings.

Its purpose is to analyse the theoretical background and

discuss key discoveries, as well as put forward practical

contributions and any implications of the findings. This

chapter also identifies the limitations of the research and

suggests directions for future research.

 The structure of the thesis can be coherently juxtaposed

to the four research objectives presented above, as shown in

figure 1.1.

Figure 1.1 Thesis structure aligned with thesis objectives

25

Chapter 2 A Business Dilemma in Open

Source Software

2.1 Overview

This chapter represents the literature review for this

thesis. Literature was reviewed using suitable search keywords

in ‘Web of Knowledge’ and ‘Google Scholar’ databases.

Understanding the open source literature and its developments

through time are used in this chapter to explain the business

dilemma experienced by private actors in permissive open

source software.

Free software and open source software have been used

as interchangeable terminologies. However, Sections 2.2 and

2.3 explain the differences between free software and open

source software and emphasise that open source software

would be the focus of this thesis.

Section 2.4 explains open source software as a prominent

example of the ‘private-collective’ model of innovation.

According to this model, section 2.5 emphasises that private

actors are crucial participants in open source software and

solving their business dilemma is deemed essential.

26

2.2 Free Software

Free software is an initiative suggested by Stallman

(1985a), this initiative respects the freedom of software

developers by allowing them to share, modify, copy, and re-

distribute the source code1.

Throughout history, source code programming was largely

conducted in both corporate laboratories and within academia.

Source code was shared between software developers so that

it could be put into practice and further developed.

In the 1950s, the US academy institution Massachusetts

Institute of Technology (MIT) was the first incubator for the

tradition of sharing source code between software developers.

Richard Stallman experienced this when he joined the artificial

intelligence (AI) lab in this institution. The environment was

fruitful in the sense that software developers were willing to

share the source code of software with any other software

developer (in the same or different university as well as

corporate laboratory) that requested it and, in turn, were not

hesitant to ask for any piece of source code that they wished to

understand, change, and reuse.

Software developers agreed to share without any

regulations or rules in place with regards to exchanging source

code. Software developers at that stage were called hackers;

they were the ‘heroes of the computer revolution’ and their

interactions were called Hacker Ethics (Zhu, 2011).

1 The ‘source code’ part of the software is a collection of

instructions written by software developers or programmers.

27

In 1976, Bill Gates (in the capacity of General Partner of

Microsoft) issued an open letter accusing the minimal

incentives given to software developers for their programming

efforts due to this sharing spirit.

Gates angrily proposed further payment for developing

Microsoft’s interpretation of the Altair microcomputer after he

discovered that time spent developing Altair was worth less

than $2 an hour. He explained that this minimal incentive was

caused by sharing spirit, as software developers shared source

code with others who would steal the work.

Accordingly, Gates (1976) differentiated between the two

types of code for any software:

(a) Source code is the set of instructions written by

software developers. These instructions are solely

understood and written by software developers but

cannot be interpreted by computers. The source

code is considered the intellectual property of the

software developer who develops it.

(b) Binary code is the workable version of the source

code. The source code is passed through a special

program called a ‘compiler’, a program that can

convert the source code into a collection of 1s and

0s (binary code) so computers can understand and

execute the code. Binary code is useful in order to

assist end users using the software, without them

being required to understand it.

28

This differentiation between source and binary code

caused a market shift; it encouraged the distribution of binary

code (but not source code) because it benefitted both the end

user and commercial firms. On the one hand, end users would

save a lot of storage space when not compiling source code for

software. On the other hand, commercial firms would maintain

the right to protect a valuable intellectual asset, in terms of

source code, from being imitated by competitors (Zhu, 2011).

As a result, software now falls under the Copyright Act in

both the US and the UK; this was introduced in 1980 and 1985,

respectively.

Richard Stallman (a software developer in the Artificial

Intelligence lab in MIT) was extremely hostile towards

proprietary rights given to software. He considered proprietary

software as a social problem because it was against the liberty

of programming and he suggested to ‘stop using it and move to

free software’ (Stallman, 1985b).

Accordingly, Stallman started working on creating the

GNU software, designed GNU General Public License (GPL), and

founded the Free Software Foundation (FSF) in 1985. GNU

software is a collection of software for managing different

hardware and software components in a computer. It was

developed by Richard Stallman and is comprised of free

software that is declared under the GPL license.

The GNU GPL license is the first license designed in order

to ensure the freedom of software (a detailed discussion about

this license will explained in sub-section 2.3.2).

29

Under a GNU GPL license, it is compulsory that source

code and further modifications of that code are shared. This

license was designed in order to support the main social belief

of the Free Software Foundation: sharing is acceptable and not

sharing is unacceptable. Sharing is acceptable because it

supports the liberty of software developers in sharing and

developing the software. The GPL license is common and is

currently being used by other types of software such as open

source software.

Of course, free software was not welcomed by

commercial firms who protected the source code of their

software packages with private licenses. They considered

source code as part of firms’ intellectual assets that needed to

be protected by the terms of software copyright.

Since source code can be reverse engineered by a

company’s competitors, revealing it online can be hazardous.

Competitors can rewrite the source code and mimic a

company’s products.

2.3 Open Source Software

In 1998, Eric Raymond, one of the followers of the free

software initiative, decided to break away from free software

toward an increasingly open type of software: open source

software.

Basically, Raymond valued the idea of sharing the

software between developers but also argued that sharing

software is not ultimately attractive for commercial firms. Firms

are not willing to share their software because the software is

30

part of their intellectual property and competitive advantage.

Therefore, Raymond initially emphasised that free software,

while supporting the liberty of software developers, is not

supporting businesses and commercial firms.

Therefore, Raymond declared open source software as

an initiative that (a) supports the ‘business use’ of (b) a freely

distributed source code. He said that software that is

developed internally inside firms will be having a lower quality

when compared to a software developed through sharing

(Raymond, 1999a).

In addition, he emphasised that sharing source code can

support failed proprietary software packages. He articulates

that what are thought to be failed systems such as ‘Linux’

software can be brought back to life through sharing source

code.

Accordingly, Open source software has been identified as

a type of innovation in which the development and the usage

of the software is delivered for, and developed by, users (von

Hippel, 2001). Users are sharing the software on the internet so

that everyone who has an interest in its development can

participate.

31

2.3.1 Participants: Individuals and Private Actors

Participants in open source software are volunteers

around the world who use software technologies to collaborate

and develop source code. they can be individual participants

and/or private actors such as firms (Lerner and Tirole, 2001).

The economic model suggested comparisons between

costs and benefits in order to understand participant’s

motivations to participate in open source software. When the

benefits of participation are greater than the cost, participants

will contribute to open source software they are interested in

(Lerner and Tirole, 2002). Some of the benefits and costs

identified in the literature for both types of participants are

summarised in table 2.2.

Individuals participate in order to fulfil their intrinsic and

extrinsic motivations (von Krogh et al., 2012). For example,

Hars and Ou (2001) found that individual participants

participated in OSS projects in order to encourage altruism and

to be identified by the projects’ communities.

However, private actors participate in open source

software in order to gain a business benefit (von Hippel and

von Krogh, 2003) and fulfil their economic motivation

(Bonaccorsi and Rossi Lamastra, 2003). Economic motivation

for private actors is to either increase revenue or reduce costs

(von Hippel and von Krogh, 2003).

According to Dahlander and Magnusson (2008), private

actors (including firms) escalate their profits by selling

complementary services and products and packaging their

32

open source software. Thus, firms appropriate open source

software in order to increase their return (Dahlander, 2005).

Appropriation in this sense means ‘capturing return from an

innovation’ (ibid).

RedHat, a powerful open source firm, for example,

increase their profits by selling services such as training and

consulting. These services are not efficiently provided by the

open source communities and are called ‘Living Symbiotically’

(Lerner et al., 2006). On the other hand, Microsoft is a firm

that delivers a wide range of applications and services under

the proprietary software license; it was one of the opponents

of the open source social movement (von Krogh and Spaeth,

2007).

33

Table 2.1 Cost vs Benefits for individuals and private actors in open source software

Cost for Individuals Literature Example

Opportunity cost Lerner and Tirole (2002) define this cost as the lost time incurred by participants when they choose to develop

source code for software.

Learning cost Researchers such as Lerner and Tirole (2002) and Waring and Maddocks (2005) define learning cost as the time and

energy expended when studying and comprehending source code.

Cost for Private Actors Literature Example

Cost of Diffusion von Hippel (2001) suggests that commercial actors such as firms may lose the cost of diffusing the source code with

the public.

Loss of Proprietary Right Different researchers such as von Hippel (2001) and von Hippel and von Krogh (2003) explain that commercial actors

such as firms have a cost of publicly revealing and sharing the source code with competitors.

Benefits for Individuals Literature Example

Gift culture Different researchers such as Raymond (1999a), Zeitlyn (2003), and Ghosh (2005) define the gift culture as appraising

the solidarity for giving and sharing behaviour between software developers.

Learning According to Lattemann and Stieglitz (2005) and Shah (2006), hobbyists can benefit from open source software by

understanding and developing source code.

Reciprocity Lakhani and Wolf (2005) suggest that open source software encourages cooperation between participants of

different technical skills. This is enables the development of fruitful open source software.

Enjoyment Researchers including (Hemetsberger, 2002) and (Hertel et al., 2003) believe that hobbyists are satisfied because

they are entertained by the process.

34

Reputation By participating, hobbyists are able to build a positive reputation and earn recognition amongst their peers (e.g., Hars

and Ou, 2001).

Career signalling Ghosh (2005) and Roberts et al. (2006) found that participating in open source leads to better employment

opportunities for participants.

Benefits for Private Actors Literature Example

Cost reduction Firms can develop a source code that is cheaper compared to the same source code that is developed under

proprietary licenses (e.g., Hecker, 1999).

Dual licensing Comino and Manenti (2011) identified dual licensing as providing two copies of the same source code: one copy

under open source license to be used by individuals, the other under proprietary license to be used commercially by

firms. ‘Dual licensing’ is crucial for gaining valuable improvements from the open source community; the firm is

unable to produce this internally using the intellectual capacity of their internal employees.

Sale of complementary services or

products

Gruber and Henkel (2006) provide cases in which firms benefit from open source software by providing technical or

hardware related training to implement open source software.

35

2.3.2 Licensing in Open Source Software

Participants in open source software share their

contributions with everyone. However, they are not willing to

‘forfeit’ these contributions (O'Mahony, 2003). Thus, open

source software was declared under open source licenses.

Every participant in open source software needs to comply with

the requirements of the license associated with the software.

There are different types of open source licenses, each of which

has its own terms and conditions.

These licenses and how they are represented within

open source literature will now be discussed.

In the early stages of open source, the GNU General

Public License (GPL) was used for open source software. This

license requires the sharing of the original software source

code, and any further modifications and amendments, on the

internet. Moreover, in this license, changing the terms and

conditions is not acceptable.

The GNU GPL license is an open source license that is

concerned with the freedom of the software; it ensures that

everything related to the source code is given back and shared.

Over time, additional open source licenses were declared

based on the feedback and requirements of the community,

commercial firms, and academic parties.

With the introduction of additional licenses for open

source software, researchers began comparing these licenses.

Researchers agreed that the majority of open source licenses

36

are one of two types: ‘restrictive’ or ‘permissive’ (For example

Colazo et al., 2005, Lerner and Tirole, 2005b, Sen et al., 2011).

Certain licenses are defined as ‘restrictive’ as they

protect the software’s freedom; the source code and any

modifications are revealed in full. GPL is an example of a

restrictive open source license.

‘Permissive’ licenses, however, privatise the source code

and its modifications, unless other participants have been

involved in its development. An example of a permissive open

source license is the BSD and Apache open source license.

Restrictive Licenses

In restrictive licenses, participants can copy the original

source code, modify it, amend it, and combine it with another

source code with the same open source license. By law, the

work must be redistributed on the internet; the new source

code cannot be used privately (see figure 2.1).

Figure 2.1 Graphical illustration of open source software under

restrictive license

37

A Restrictive open source license is a type of open source

license that requires sharing of the original source code and

any modifications and amendments. Moreover, this license

prohibits the re-licensing of the software to any license other

than the original license declared.

Statistics show that restrictive open source licenses were

initially used with open source software. According to the Black

Duck Open Source Resource Centre, 70 per cent of open source

projects were declared under a GPL license in June 2008

(Aslett, 2011).

Permissive Licenses

A GPL license focuses on the reciprocity of source code

between software developers. However, its main problem is

that it is hard in some cases to do further development for the

open source software (Amo, 2007). This is true because,

according to the requirements of restrictive licensing, any

modifications to be done to the original source code must be

declared under the GPL license. Therefore, in some cases, a

source code under a different license cannot be combined with

the original source code. For example, source code developed

by commercial firms that is declared under a proprietary

license cannot be combined with source code declared under a

GPL license.

Any further development regarding the open source

software will then cease.

38

Additional licenses that overcome these issues have

fortunately been developed, such as BSD and Apache. These

licenses are referred to as permissive licenses.

Permissive open source licenses allow the combination

of different source codes, of different licenses, within open

source software. As explained in figure 2.2, permissive licenses

neither require modifications of the source code to be shared,

nor the protection of the software from re-licensing to any

other open source or proprietary license.

The only requirement is that participants and

contributors who have assisted in developing the source code

are acknowledged. The new source code can be used for

private purposes.

Figure 2.2 Graphical illustration of open source software under

permissive license

39

A Permissive open source license is a type of open source

license that does not require the sharing of the original source

code and any modifications and amendments. Moreover, this

license accepts the re-licensing of the software to any other

open source or proprietary license other than the original

license declared.

Permissive licenses may prompt businesses in different

industries to utilise the software. Commercial firms in different

industries are commercially investing and exploiting open

source software.

As summarised in figure 2.3, open source software as an

innovation consists of freely revealed software that is declared

under an open source license and is developed by interested

individuals and private actors.

Figure 2.3 Open source software as an innovation

40

2.4 The ‘Private-Collective’ Model of

Innovation

As discussed earlier, open source software is a type of

innovation (von Hippel, 2001). And Open source software is

the prominent example for the ‘private-collective’ model of

innovation suggested by von Hippel and von Krogh (2003). von

Hippel and von Krogh (2003) show that open source software

is an innovation where private actors are considered crucial

participants because they can invest their private resources to

develop collective software. In addition, they can still reap

private rewards when they freely reveal (share) their private

investments with the collective.

2.4.1 Private Contributions are Crucial

It is worth mentioning that open source software is

software in a source code format, and this source code is an

unfinished product. This means that downloading the software

is not enough to immediately start working on it. One needs to

rewrite part of the source code in order to configure it properly

to work within a computer network. After that, one needs to

make sure that the source code is free of source code errors

and compile the source code. Such a long process requires

sophisticated users such as software developers and

programmers. Not all users have the proper skills to

understand and deal with different programming languages,

software errors, and compilation procedures.

Accordingly, private actors such as firms who have

professional developers and IT personnel that would copy the

41

source code, modify it, and combine it with other source codes

in order to aid in preparing the software for end users and for

business benefits (Sen et al., 2008). Of course, they participate

in order to increases the competitive advantage for commercial

actors by lowering costs, enhancing revenue through the

creation of complementary assets (Alexy, 2008), entering and

sustaining the market, or/and increasing internal cognitive

human capital through interactions with open source software

community members (Von Hippel, 1994).

Moreover, private actors rely on external sources, such

as open source software, in order to improve private

investment in the market (Von Hippel, 2007). Therefore, they

are commercially investing in open source software as part of

their open innovation. Daniel et al. (2018) provided different

strategies that are crucial for firms in order to integrate

external developer communities and internal knowledge

resources.

In addition, private actors are aware of the economic and

technical benefits of participating in open source software

(Bonaccorsi and Rossi, 2003; von Hippel and von Krogh, 2003).

Therefore, they are crucial participants who can develop open

source software strategically and technically in the market

(Casadesus-Masanell and Llanes, 2011).

2.4.2 Revealing Private Contributions is Crucial

von Hippel and von Krogh (2003) articulate that revealing

the private investments of the software is better than just

hijacking the software. Dahlander and Magnusson (2008) show

42

that firms can benefit from participating in open source

software (as part of their open innovation) only when they

follow three critical steps: access, align, and assimilate. Firms

need to access open source communities, align the software

with their private business through commercially investing in

the software, and contribute to the community in order to

spread their work throughout the open source community.

IBM, for example, are renowned for investing in open

source software and revealing their source code so that their

commercial products are sustained (Lerner and Tirole, 2005a).

Moreover, freely revealing the private investments is

crucial for private actors. Private actors are innovators of the

software and revealing the innovation would increase the

positive externality for the software; the software will be a

dominant design for customers (Von Hippel and Von Krogh,

2006). In addition, revealing the software allows for customer

feedback which guarantees that the software is continually

developed and enhanced.

Nagle (2018) found that firms would increase their

productive value through sharing with and learning from the

collective community rather than free riding them.

Furthermore, freely revealing the private investments is

crucial for the development of open source software. The

software becomes more attractive and can be supported over

time. Commercial investment and contribution will sustain this

innovation in the market (Dahlander and Magnusson, 2005).

Without revealing contributions, the future stream of software

43

will be unavailable for the community and the software will be

useless. West and O'Mahony (2005a) suggest that affecting the

availability of the future stream of software represents ‘tragedy

of the commons’ (Hardin, 1977) in open source software. Thus,

commercial actors who invest in open source software need to

reveal part or all of their commercial investments to the public

for their own private benefit (von Hippel and von Krogh, 2003)

and for the continual development of the software (West and

O'Mahony, 2005a).

2.5 The Business Dilemma

According to von Hippel and von Krogh (2003) ‘private-

collective’ model of innovation, private actors are investing

their private resources in order to develop software. Hauge et

al. (2010) elaborated that private investments by private actors

can by through:

(1) Developing existing open source software. For

example, many firms have paid for their employees to

participate in the development of open source software in

order to develop their programming skills (Hertel et al., 2003;

Lakhani and Wolf, 2005).

(2) Integrating proprietary software with open source

software; many firms sell their proprietary complements that

are integrated with open source software (Gruber and Henkel,

2006). For example, OpenStack is an open source software

under a permissive licensing agreement; Apache v2.0. Different

commercial actors have been commercially investing the

software. Although the software of OpenStack is shared in the

44

internet (non-excludable), but it can be used according to the

product provided by these commercial actors only. Llorente

(2014) discussed that OpenStack is a vendor-lock software and

one cannot gain its value unless implementing the products

provided by the vendor.

(3) Disclosing proprietary software as open source

software. Some firms internally developed a software and then

freely reveal the software to the collective as open source

software. OpenNebula is an example of software that is

developed internally by two developers and after a while, they

decided to disclose the whole software to the collective as

open source software under Apache v2.0 permissive license.

According to von Hippel and von Krogh (2003) ‘private-

collective’ model of innovation, sharing of the private

investment with the collective is the best course of action that

can be done by private actors.

However, their shared investments may involve sharing of

private knowledge that can be appropriated by anyone because

open source software is non-excludable. This would mean that

the ‘appropriability regime’ (knowledge in terms of know-how)

would be available and, accordingly, imitating innovation would

be uncomplicated (Teece, 1986). As a result, benefits would be

shared by both the innovator of the software and imitator

(would become rivals).

Accordingly, this thesis suggests that private actors

would be facing a ‘business dilemma’ (as described in figure

2.4) when sharing their private contributions with the

45

collective. Private actors would be trapped in a situation where

contributing or not is a hard decision. If they decide to

contribute their private knowledge to the collective, they

would be reaping benefits but also lowering their competitive

advantage. And if they decide not to contribute their private

knowledge with the collective, they would be protecting their

competitive advantage but also losing rewardable benefits

from open source software.

Figure 2.4 The business dilemma in open source software

Theoretically, the business dilemma would discourage

private actors from contributing their private knowledge with

the collective as rivalry would lower their competitive

advantage. However, in reality, there are some cases where we

do not observe this constraint. Instead, private actors end to

innovate and contribute within their open source community.

For example, Santos et al. (2013) show that private

actors are actually commercially investing and contributing to

the software. Statistics provided by Skok (2013) viewed that

over 2,000 open source software projects related to the

46

healthcare industry were adopted by different firms in 2013.

These projects include medical, hospital and clinical, dental,

nursing, patients and laboratory software. In addition, the

adoption of open source software by firms is extending across

different industries such as government, financial, media,

automotive and retail (Skok, 2013) .

In addition, BlackDuckSoftware (2015) shows that open

source software is growing within companies (see figure 2.5).

78% of companies are running their business on open source

software. In addition, the analysis shows that 39% of these

companies are planning to start their own external open source

project, 47% are planning to release some of their internal tools

as open source projects, and 53% are expecting to decrease

barriers for their employees to participate in open source

projects.

47

Figure 2.5 Adoption of open source software in different companies

Therefore, this thesis aims for understanding the

‘private-collective’ model of innovation in open source

software that is declared under permissive licensing.

This suggested to be done through the research

question: How can the private actors invest in open source

software that is declared under permissive licensing without

experiencing a business dilemma?

48

Chapter 3 Governance of the

Commons

3.1 Overview

This chapter starts with describing open source

software as a commons that suffer from collective action

dilemma. After that, in sections 3.2 and 3.3, it is proposed that

Ostrom’s evolutionary theory of collective action can be used

as a lens for investigating the patterns of the private

contributions. Finally, the suitability of the theory is explained

in section 3.4.

3.2 Collective Action Problem

Open source software is a ‘commons’ where ‘Commons’ is

a term usually utilised to refer to non-excludable goods that are

prohibitively expensive to exclude certain people (Ostrom,

1990). Non-exclusion means that the goods are able to be

utilised without payment. Users may pay for non-exclusive

goods, but excluding non-paying users is costly and difficult.

For example, fireworks are non-exclusive goods because

anyone can watch them even if they did not pay. Thus, open

source software is non-excludable because the software is

publicly available and can be copied without payment.

Examples of ‘commons’ are natural resources such as

water fisheries and forests, and knowledge such as open source

software.

‘Commons’ suffer from collective action problems; a

collective action problem is a problem that is caused by

49

individual actions in a ‘commons’ (Ostrom, 2010). Several

collective action problems have been identified such as the

‘tragedy of the commons’ problem (Hardin, 1977)and the ‘free

riding’ problem (For example, Isaac and Walker, 1988,

Raymond, 1999b, Franck and Jungwirth, 2003, Lee and Cole,

2003, von Hippel and von Krogh, 2003, Baldwin and Clark,

2006).

For example, the “tragedy of the commons” problem

(Hardin, 1977) is the problem related to the depletion of the

natural resource because of the overconsumption behaviours

done by people over time.

The chapter focuses on the problem of free riding because

of its relation to the business dilemma explained in chapter two;

the free riding of the shared private investments would cause

the business dilemma experienced by private actors in

permissive open source software.

Generally speaking, the problem of ‘free riding’ refers to

the decreased incentives of participants to contribute to a

‘commons’ resource because such contributions will be shared

with everyone, even non-contributors (Olson, 1967). This

problem is related to a non-exclusivity characteristic of a

‘commons’ resource.

This thesis suggests another collective action problem that

is related to a non-exclusivity characteristic in open source

software which is a business dilemma experienced by private

actors in open source software. As explained in section 2.5,

sharing of private knowledge would affect the competitive

50

advantage for private actors because imitation of their

contributions would be easy. Accordingly, they would be

experiencing a business dilemma.

As will be discussed in the following section, it is

proposed that Ostrom (1990) evolutionary theory of collective

action is a suitable theory that can describe and explain what

is happening with the private actors when they keep their

contributions to open source software despite the business

dilemma.

3.3 Theory of Collective Action

There are two schools of theories of collective action that

are discussed in the literature in order to solve collection action

problems: the conventional and evolutionary theories.

Hardin (1977) conventional theory of collective actions is

a theory used to suggest governance solutions for collective

action dilemma. This theory explains that participants (while

using the ‘commons’) will perform actions that increase their

short-term interests only and accordingly the tragedy of the

commons would emerge. This theory argued that the only

remedy for this problem is through a centralised private or

governmental authority that will regulate access and use of the

commons by different people. This centralised authority could

be a private or governmental party (For example, Demsetz,

1967, Lovejoy, 2006).

However, Nobel Prize winner Elinor Ostrom suggests that

Hardin’s solution is straightforward but impractical, especially

in complex settings and environments. She suggested an

51

evolutionary theory of collective action (Ostrom, 1990). This

theory suggests that:

First, the central authority cannot be always the

acceptable solution to govern the commons (Ostrom, 2009).

For example, private ownership for the commons would

force the appropriate policies, strategies and rules to protect

the long-term benefits through sustainability assurance. This

kind of ownership, however, is not the solution in every

circumstance, as certain commons cannot have boundaries

enforced, such as ocean fisheries or fields that vary in

productivity levels throughout the seasons.

Another example, governmental ownership may be

another solution to protect the resources where the whole

area of the resources is shared by a community group that will

exclude others from using the resource arbitrarily. Whereas the

government enforces policies, strategies and rules of

cooperation to guarantee sustainability, government will not

always act ideally for the sake of the public, since they may not

be fully aware of the ecological system surrounding the

resources. Hence, they may not approve changes in the public

interest, or they may not have the sufficient motivation to

create optimal changes.

Second, users of the ‘commons’ are rationale. They

understand that focusing solely on their private benefits and

interests is harmful because it would lead to a long term

damage for the ‘commons’ and their private benefits

accordingly.

52

Third, users of the ‘commons’ are capable and able to act

without a forced authority or guidance. They can use their

knowledge and experience in extracting themselves from

collective action problems that they experience (Ostrom, 2007).

This can be done through finding their own ways for aligning

their private benefits and interests with the collective benefits

and interests.

3.4 The suitability of a Theory

This chapter argued that Ostrom (1990) evolutionary

theory of collective action would be of benefit for

understanding and explaining why and how private actors are

investing and sharing their investments in permissive open

source software without experiencing the business dilemma.

It is believed that this theory is suitable for this thesis for

many reasons. First, the theoretical perspective of this theory

privileges the human agency and the human interactions over

other materiality metrics in solving dilemmas. Thus, this theory

would be better for answering the research questions (as will

be discussed shortly).

There are different theoretical frameworks that are

employed in the IS literature. Some theoretical frameworks

have a theoretical perspective that privilege materiality of

technology over the human agency (Markus and Silver, 2008).

Such theoretical perspective emphasized that technology

plays a crucial role in shaping outcomes and causing

phenomena in open source software.

53

For example, Yamauchi et al. (2000) employed this

theoretical perspective to show the important role of

technology in supporting the work of participants in open

source software. In addition, Scacchi (2002) employed this

theoretical perspective and explained that technology

supports elicitation, analysis, specification, validation and

management of requirements in open source software.

Accordingly, technology supports the proper development of

open source software.

However, Orlikowski and Baroudi (1991) argued that

various theoretical frameworks that are employed in the IS

literature found to privilege the human agency over materiality

metrics while exploring a certain phenomenon. Such

theoretical perspective emphasized that human interactions

and their shared norms play a crucial role in shaping outcomes

and in explaining phenomena.

For example, Nakakoji et al. (2002) employed such

theoretical perspective in order to study the evolution of four

open source software and their communities. As a result, they

could understand collaboration between participants and how

collaboration contributed to the success of the software.

Moreover, Shah (2006) employed the same theoretical

perspective and explored participation in open source

software. Findings show that motivations were important for

participants to initiate their participations in open source

software but their shared norms were also important to

sustain such motivations.

54

In this thesis, it is believed that a theoretical framework

of a perspective that privileges human agency over materiality

shall be employed in order to answer the research questions.

This is justified because it is important for this thesis to

identify the private actors and their patterns of contributions

(rather than the technology they use) in order to understand

how they extract themselves from the business dilemma.

Accordingly, Ostrom (1990) evolutionary theory of collective

action is suitable to be employed.

Second, this thesis will analyse permissive open source

software where formal regulations against free riding are

absent. Therefore, this theory is suitable because it focuses on

a context where formal authority lacks or fails.

55

Chapter 4 Research Methodology

4.1 Overview

This chapter discusses the conceptualization of this

research. In section 4.2, various philosophical standpoints will

be examined: critical standpoints, pragmatism, positivism, and

interpretivism. In section 4.3, this research is positioned

alongside these philosophical standpoints based on the

research question identified previously. In section 4.4, it is

divulged that a single case study will be used. The logic

surrounding the use of a specific case study is defined.

4.2 Philosophical Standpoints in Research

Guba and Lincoln (1994) suggested that understanding

the research paradigm is key when attempting to answer a

research question. ‘Paradigm’ here refers to the researcher’s

philosophical views which may steer the research process.

 Denzin and Lincoln (2011) explained that these beliefs

and assumptions are a collection of ‘epistemological,

ontological, and methodological’ principles held by the

researcher.

1. Ontology: methods of constructing reality. ‘How things

really are? and ‘how things really work?’ (Denzin and Lincoln,

2008 p.201)

2. Epistemology: methods of determining scientific

knowledge. ‘Epistemology is the study of the criteria by which

56

we can know what does, and does not, constitute warranted,

or scientific, knowledge.’ (Johnson and Cassell, 2001 p.2).

3. Methodology: methods of conducting research

scientifically. ‘A way to systematically solve the research

problem’ (Kothari, 2004 p.8).

Generally speaking, four main philosophical standpoints

have been identified (see table 5.1): positivism, interpretivism,

critical, and pragmatic (Chua, 1986, Orlikowski and Baroudi,

1991, Goldkuhl, 2012, Blackstone, 2012). Initially, researchers

identified positivism and interpretivism as the two main

philosophical standpoints in social research (Crotty, 1998).

Researchers gain knowledge based on their interactions and

ongoing exchanges with society; this exchange is either

objective or subjective. Following the identification of

positivism and interpretivism, pragmatic and critical

standpoints were then discerned.

1. Positivism: This philosophical standpoint employs

quantitative methods to deductively test hypotheses, whereas

interpretivism employs qualitative methods to inductively

generate theories. Some researchers (for example Crossan,

2003, Johnson and Onwuegbuzie, 2004) argue that the

positivist standpoint begins with hypotheses created from

common literature; the data collection process is

uncomplicated and speedy. Moreover, data collected covers a

vast number of observations from a larger sample. Owing to

this, results are dependable and able to be generalised.

57

2. Interpretivism: Researchers that employ this

philosophical standpoint argue that humans are not objects in

laboratories; they have emotions and attitudes that affect,

and are affected by, society. Thus, results from the positivist

standpoint cannot be explained or implemented in a specific

social context (Benton and Craib, 2010). An interpretivist

standpoint is needed because it delves deeply into rich data

and is flexible in its understanding, discovering novel findings

related to beliefs, attitudes, opinions, and feelings. A major

criticism of the interpretivist standpoint is the possibility of

bias from the researcher. Therefore, the reflexivity concept is

essential in overcoming this bias and will be discussed in this

chapter (Hibbert et al., 2010).

3. Critical: This philosophical standpoint is utilised to

eliminate causes of unwarranted domination (Klein, 2004).

The researcher investigates the history of a phenomenon by

describing knowledge in order to understand how beliefs and

values shape, and are shaped by, investigation (Avison and

Pries-Heje, 2005).

4. Pragmatism: This philosophical standpoint is

employed by researchers who seek to promote change.

Different types of pragmatism have been identified. For

example, Goldkuhl (2008) suggested three types: functional,

referential, and methodological. Regardless of the type of

pragmatism, researchers make use of data generated from

assessment and interventions of a certain phenomenon; they

58

check this data and its functionality in relation to action and

change (Goldkuhl, 2012).

4.3 Thesis positioning

This research is guided by an interpretive, qualitative,

philosophical standpoint. Interpretivism in qualitative

research is crucial for analysing and identifying the subjective

meaning of a phenomena being studied (Silverman, 2013).

Such subjectivity is crucial for understanding the context of

the phenomenon and the way it affects, and is affected by,

processes (Walsham, 1993). This research uses a qualitative

method with different data sources in order to identify how

business dilemmas that private actors tend to experience in

open source software can be solved?

The interpretive, qualitative standpoint acknowledges

that a deeper understanding regarding the research area of

enquiry is more important than the generalization of findings

(Siggelkow, 2007). Therefore, a case study became the

qualitative method used in this research. The OpenNebula

project is the case study presented in this research. Section

4.4 describes the process of selecting OpenNebula as the core

case study and the variation between OpenNebula and case

studies frequently analysed within the literature.

4.4 Case Study Design

Per the interpretivism philosophical standpoint,

qualitative method and research design are required in this

thesis in order to gain access for rich data. Rich data will be

analysed in order to identify the different participants, to

59

determine their motivations and behaviours, to precisely

recognize their private contributions, to investigate and

identify how and why private actors are sharing their private

investments rather than concealing them.

A case study is one of the qualitative methods employed

to aid researchers in understanding their research in-depth

and gain knowledge of the phenomena they are interested in.

The knowledge construction nature of case studies assists

researchers in viewing the complex picture that comprises

people’s lives and behaviours. Eisenhardt (1989) suggested

that researchers could utilise case studies to systemically

predict and develop theories across various disciplines.

A single case study of open source software is presented

in this research. The rationale behind utilising a single case

study is that a noteworthy case study is required in order to

fulfil the aim of this thesis. This case must: (1) be declared

under a permissive open source license, (2) be active for a

significant duration and possess rich data archives that can be

employed during analysis, (3) consist of software that is

utilised within the market by various industries, and (4)

possess different types of commercial actors from various

industries, who participate in the software. Thus, a single

critical case, also called also an ‘Information-Oriented’ case

study (Flyvbjerg, 2006) is more suitable.

60

4.4.1 The selection of OpenNebula case study

Guided by Lerner and Tirole (2005b) list of open source

licenses, data was collected from various online resources to

identify available permissive open source software. These

resources included: technical presentations, survey results,

and project data recorded online. A list of permissive open

source software was identified.

Following this, the complexity of the software on the list

was examined based on the availability of: (a) software e-

newsletters, (b) code repositories, (c) mailing lists, and (d)

technical documentation. Consequently, certain software was

excluded due to short-term activity, as well as instability

regarding source code releases.

The resulting software options were analysed based on

their e-newsletters. The method of utilising e-newsletters in

order to analyse a gathered selection draws on Scott (1990)

method of depending on documentation that is ‘authentic,

credible, representative, and meaningful’.

This improved my understanding the wider issues

regarding the enquiry under investigation. Newsletters are

typically employed to provide general views on any

organization/event/project/community, etc.

The analysis of e-newsletters was crucial because the

method included examining: (1) the existence of individual

participants and business appropriators as community

members for the software, and (2) the technical feasibility of

61

the software in terms of its implementation in the market by

different firms.

Based on the analysis of e-newsletters, OpenNebula

was selected as the software to be examined within this

research. The e-newsletters for OpenNebula consist of

monthly e-newsletters which commenced in June 2011. These

newsletters were recorded until September 2014, amounting

to a total of 44 newsletters. These e-newsletters were judged

to be authentic and credible because they satisfied the

authenticity conditions suggested by Platt (1981). For

example: the documents were published on OpenNebula’s

official website, the newsletters were original copies produced

for the project and published by an official employee, they

were approved by the project leader, and they suited a

standard format which was approved by the OpenNebula

team.

OpenNebula is the ‘exploratory case’ (Yin, 2014) that

can be used in this thesis in order to explore how the ‘private-

collective’ model of innovation is working under the

permissive context for open source software.

OpenNebula can be described as follows. First,

OpenNebula is cloud computing software: software that

develops technologies in order to virtualize the infrastructure

of a computer network such as computers, servers, routers,

etc. Cloud computing software is a relatively recent

technology that has advanced rapidly (Marston et al., 2011).

This is crucial because the cloud computing industry is highly

62

attractive to supercomputing firms who want to virtualize

their data centres (Milojicic et al., 2011).

In the early stages of OpenNebula, the two founders of

OpenNebula software participated in “the European Union’s

Seventh Framework Programme”. This programme helped the

founders in understanding the business needs in the European

market for cloud computing software like OpenNebula. As a

result, private actors are important participants in

OpenNebula. OpenNebula is now utilised by various firms

across the market, in a wide range of industries, as table 4.1

shows.

63

Table 4.1 Examples of firms in different industries using OpenNebula in their business

Industry sector Firm examples

Telecommunications and Internet Akami, BlackBerry, China Mobile

Government
National Central Library of Florence, bDigital, Deutsch E-Post, RedIRIS, GRNET, Instituto geoGrafico Nacional,
CSIC, Gobex

Financial, Banking, and Risk
Analysis

Monte Dei Paschi Di Siena, produban, LexisNexis, AXCESS Financial

Media and Gaming BBC, Unity3d, R.U.R., Crytek, iSpot

Hosting Providers
OnVPS, NBSP, Orion VM, CITEC, LibreIT, Quobis, Virtion, OnGrid, Altus, DMEx, LMD, HostColor, Handy Networks,
BIT, GoodHosting, Avalon, noosvps, bpsNode, PTisp, Ungleich.ch, TAS France, TeleData, CipherSpace

SaaS (Software as a Service) and
ecommerce

Scytl, LEADMESH, optimalPath, RJMetrics, Carismatel, Sigma, niar.me, GLOBALRAP, Runtastic, Moz, Rentalia,
vibes, Yuterra

Aerospace ESAC ESA, ESRIN ESA, NASA, ScanEx

Supercomputing NCHC, CESGA, CRS4, PDC, CSUC, Tokyo Institute of Technology, CSC, HPCI, Cerit-SC, LRZ, PIC

Research
FermiLab, NIKHEF, LAL CNRS, DESY, INFN, IPB Halle, CSIRO, fccn, National Institute of Advanced Industrial
Science and Technology, KISTI, KIT, ASTI, Fatec Lins, MIMOS, SZTAKI, Ciemat, SurfSARA

Academic
Telecom SudParis, Harvard School of Engineering and Applied Science, Universidade Federal Do Ceara, Instituto
Superiore Mario Boella, Academia Sinica, UNACHI

Information Technology
IBM, DELL, CentOS, KPMG, Engineering, Logica, CloudSky, Netways, ippon, Terradue, Unisys, MAV Tecnologia,
Liberologico, Etnetera, EDS Systems, inovex, bosstek

Cloud Products ClassCat, Hexagrid, CloudWeavers, Impetus, ZeroNines

64

Second, OpenNebula started as a research software

project, initiated in 2003 by an associate and assistant

professors at Complutense University of Madrid. After years

of developing the software, they declared the research

software project as open source under an Apache v2.0 open

source licence. Apache v 2.0 is a permissive license for open

source software (Lerner and Tirole, 2005b). Having a

permissive license reinforces the business dilemma

experienced by private actors in OpenNebula.

Third, OpenNebula is permissive open source software

that was declared open source is still active at the present

time. Thus, the project has vast archives that can be employed

for analysis. Yin (2014) argued that a case study with rich data

is crucial for effectively conducting necessary in-depth

analysis.

65

Chapter 5 Data Collection and

Analysis

5.1 Overview

This chapter explains data collected and analysed.

Several methods of data collection are employed. Section 5.2

describes the data and the rationale behind selection.

Emphasizing the importance of carrying out robust research,

sections 5.3 and 5.4 are written to discuss reflexivity and other

quality measures implemented in this research. Moreover,

section 5.5 presents the ethical procedure used in this

research.

5.2 Data Collection

The data collected for this analysis consists of four types

of online data: emails from OpenNebula’s mailing list,

requests added into the development portal of OpenNebula,

source code commits2 from the GitHub portal, and technical

documents provided on OpenNebula’s official website. It is

important that the logic and reasoning behind these

categories of online data is explained.

Utilising more than two types of data within the same

research process is known as ‘Triangulation’ (Mitcbell, 1986,

Thurmond, 2001). According to Thurmond (2001), there are

different types of triangulation: methodological triangulation,

2 A source code commit is a technical term used to describe the

latest changes applied to the source code repository for the software.

66

investigator triangulation, theoretical triangulation, and data

sources triangulation.

Table 5.1 outlines the difference between the types of

triangulation employed in research (Jick, 1979, Boyd, 1993,

Nau, 1995, Mingers, 2001, Denzin and Lincoln, 2011, Myers,

2013).

Denzin and Lincoln (2008) suggested that depending on

one method or data type is not always enough to answer

research questions, as each method or source of data

possesses pros and cons. Utilising varied sources of data and

different methods solves any problems that arise when using

just one source.

Moreover, Nolan and Behi (1995) discussed that the

convergence between the different measures employed

through triangulation can increase research confidence

regarding the phenomenon that is under analysis.

In addition, Lincoln and Guba (1985) emphasized that

studies in qualitative research apply triangulation in order to

seriously consider research and results.

This research proposes that triangulation be employed

to respond to the research question. This is because this

research follows the ‘interpretivism’ philosophical standpoint

which depends on the researcher understanding and

interpreting data collected and analysed. However, it is also

essential within this research to gain justified reliability

regarding qualitative findings, an inclusive view of the

phenomenon being studied, and a low level of potential bias.

67

One possible way to achieve this is by applying triangulation

to the research (Denzin and Lincoln, 2011).

In addition, data source triangulation is employed in this

research; different sources of data need to be collected and

analysed in order to answer the research question. Four

different types of online data are collected and analysed:

mailing list emails, requests added into the development

portal, source code commits added to GitHub, and available

documentation of OpenNebula.

The first source of data collected was mailing list emails.

These emails contained qualitative data that was analysed

using thematic coding and theoretical memos (as will be

discussed in chapters 6 and 7).

After that, the second and third types of data were

collected: requests added into the development portal of

OpenNebula and source code commits from the GitHub portal

of OpenNebula. These data sources served to improve the

understanding of individual cases within qualitative results.

For example, one of the qualitative findings revealed that

private actors are contributing their private investments of

the source code into OpenNebula. Utilising quantitative data

in the development portal reveals that contributions can be

measured by ‘requests’ added into the development portal.

68

Table 5.1 Triangulation Types
 Methodologic Investigator Theoretical Data

Sources

Definition

Two or more methods

employed.

Two types of methodologic

triangulation: Across-

method and within-

method

Two or more investigators

or data analysts conducting

the research.

Multiple theories and

hypotheses employed

within the research.

Different sources

of data utilised.

These sources

differ in time,

people, or space.

Benefits

Increase validity.

Identify relationship.

Acquire a varied skillset and

viewpoint. This leads to

enhanced research and

decreased bias.

Move beyond specific

theoretical perspectives

and explanations.

Achieve an

improved and

comprehensive

understanding of

the varied

perspectives within

the research.

Decreases bias.

69

Moreover, both types of data are employed in order to

gain new information that was difficult to capture using the

emails in the mailing list alone. For example, a comprehensive

understanding of the technical layout of OpenNebula software

was captured using quantitative records. Quantitative records

provide a numeric categorization of the different modules of

OpenNebula software and their development over time.

However, emails in the mailing list and requests added

into the development portal contain technical terms related

to the functionality of OpenNebula as a case study in this

research. These technical terms are somewhat difficult to

comprehend, thus a fourth source of data was gathered:

documentation available on OpenNebula’s website.

Employing this data reduced my bias as a computer engineer.

For example, as an engineer I initially classified the

different components of OpenNebula, based on their

technical function, into ‘Infrastructure as a Service (IaaS)’ and

‘Platform as a Service (PaaS)’. However, using the

documentation, I was able to expand my comprehension; I

understood the technical implementations of these

components and, accordingly, I was able to classify these

components into ‘core’ and ‘complements’. In addition, I

understood the level of implementation required for both

types of component. Thus, I was able to label particular levels

of implementation as ‘software complementarities’ and reveal

that ‘software complementarities’ is the outcome resulting

70

from different actions performed by participants in

OpenNebula.

5.2.1 The First Type of Data: The Mailing List

A mailing list is communication between participants in

the open source software, in which they share and exchange

information. A mailing list is a type of text communication

employed in online research (Mann and Stewart, 2000). More

specifically, it is a common technique used in the literature of

open source software to understand the historical behaviours

of participants (for example, Kuk, 2006).

In addition, emails in mailing lists contain texts that are

rich in their implications. Texts are valuable sources of

information regarding actors and their communications,

contributions, and interactions, including their organizations.

Mailing lists can provide not only text but an understanding of

the socially constructed organizations that they formulate

(Atkinson, 2004).

Texts inside documents covers the lifespan of an

organization, and these texts contain massive chunks of data

relating to objects and actors (Berger et al., 2007). Texts are

suitable methods, especially if the data required about actors

and their contributions/interactions is needed based on the

history of their communications over a significant time period

(Barley and Tolbert, 1997, Suddaby and Greenwood, 2009).

During the focused reading I conducted at the early

stages of this research for the e-newsletters of OpenNebula

(in order to be able to identify a suitable case study for this

71

research; refer to section 4.4.1), I was able to identify two

different online sources in which online texts are shared

between participants in OpenNebula. These online sources

were IRC (Internet Relay Chat) sessions and mailing lists.

IRC sessions are live chats between participants and key

members of OpenNebula which are not archived. Thus, these

sessions cannot be employed to analyse data exchanged

between participants over time, as no data can be collected

and analysed.

Mailing lists are a source of communication for

participants, enabling them to exchange information. There

are three mailing lists within OpenNebula:

1. ‘Community support and users’ discussions’ mailing list:

This mailing list was utilised by participants in order to discuss

different technical problems encountered, suggest future

development activities for the software, and share ideas and

consultancy. This mailing list was the most active list in the

project; it started on March 2008, running to the present. This

mailing list was employed in this research.

2. ‘Development discussions’ mailing list: This mailing list

was employed by participants in order to discuss development

activities for different OpenNebula releases. This list was not

heavily used because participants relied on available

documentation published on OpenNebula’s official website.

Consequently, this list was not used within this research.

3. ‘Community discuss and collaboration’ mailing list: This

mailing list was employed by participants in order to announce

72

news, outreach events, conferences, and technology days that

the core members of OpenNebula participated in.

Consequently, this list was not used in this research study as it

represented an announcement space.

Accordingly, the ‘community support and users’

discussions’ mailing list is the mailing list used initially in this

research. Anyone can view this mailing list. However, one

needs to sign-up in order to participate in the list by sending

and receiving emails. Signing up the mailing list requires

registering a unique username, password, and email address.

The emails, usernames, and email addresses of participants

who utilised the mailing list from May 2008 until September

2014 were extracted. The resulting data was vast; the data

contained 18,890 emails between 1,337 participants.

Due to the impracticality of dissecting these emails

qualitatively, participants were categories into five groups

based on email affiliation.

1. Participants with ‘OpenNebula’ email affiliation: 8

participants with email addresses ending in

opennebula.org.

2. Participants with ‘education’ email affiliation: 68

participants with email addresses ending in .edu.

3. Participants with ‘government’ email affiliation: 16

participants with email addresses ending in .gov.

4. Participants with ‘corporation’ email affiliation: 699

participants with email addresses ending in .org.

73

5. Participants with ‘individual’ email affiliation: 546

participants with email addresses ending in .hotmail,

.gmail, or.yahoo.

These groups are essential because they cover all types of

participants in OpenNebula. The number of emails sent by

each of the 1,337 participants was counted. Then, five

participants from each group were analysed. These five

participants per group were selected based on the number of

emails sent in the mailing list and the duration of their

participation. Participants who sent a high volume of emails,

and participated for long periods of time, were selected, as

they were the most active.

The first sample for analysis consisted of 25 participants (5

participants from each group) and 7,017 emails (see table

5.2). 25 is an acceptable sample size that can be employed

when using qualitative research methods (Charmaz, 2006).

Emails are extracted and added to NVivo 10 software in order

to be used for the analysis.

It is worth mentioning that the anonymity of participants’

names and related information was required in this research.

Thus, a special naming convention was used. For example, the

most active participant from individual email affiliation was

labelled as ‘AnonyAI1’. Where ‘Anony’ means ‘anonymous’,

‘AI’ means ‘affiliation is individual’. ‘1’ refers to the first

participants within a category to send emails via the mailing

list.

74

Table 5.2 A sample of participants analysed from the mailing list

 Participant’s Name Participation Duration
Number of Emails

Collected

Individual Affiliation

AnonyAI1 May 2009 – April 2012 177

AnonyAI2 March 2012 – Sept 2014 130

AnonyAI3 Jan 2011 – June 2014 130

AnonyAI4 Sept 2011 – Sept 2014 123

AnonyAI5 Oct 2012 – May 2014 63

Government Affiliation

AnonyAG1 Oct 2010 – Sept 2014 138

AnonyAG2 July 2012 – May 2014 53

AnonyAG3 June 2010 – Aug 2011 25

AnonyAG4 Oct 2011 – Jan 2012 13

AnonyAG5 June 2012 – June 2013 12

Education Affiliation

AnonyAE1 Jan 2013 – June 2013 69

AnonyAE2 April 2013 – Sept 2014 37

AnonyAE3 March 2011 – Aug 2012 42

75

AnonyAE4 Nov 2011 – Feb 2012 36

AnonyAE5 Nov 2009 – Sept 2010 25

Corporation Affiliation

AnonyAC1 Sept 2010 – Sept 2014 230

AnonyAC2 Sept 2013 – Sept 2014 165

AnonyAC3 July 2013 – Oct 2013 150

AnonyAC4 Oct 2010 – Sept 2013 143

AnonyAC5 Nov 2011 – Sept 2014 124

OpenNebula Affiliation

AnonyAI1 March 2008 – Sept 2014 1,315

AnonyAI2 March 2008 – Sept 2014 1,128

AnonyAI3 March 2008 – Sept 2014 1,011

AnonyAI4 March 2008 – Sept 2014 930

AnonyAI5 March 2008 – Sept 2014 748

Total 25 participants 7,017 emails

76

5.2.2 The Second Type of Data: The Requests

The analysis of emails from the mailing list (data

collected in section 5.2.1) revealed the different participants

who were involved in OpenNebula as well the different

contributions that they had made to OpenNebula software (as

will be discussed in chapter 6). This analysis implied that the

result of participant contribution is closely linked to

developing the source code of Open Nebula.

Participants discuss the development of the source

code in the mailing list and officially request the development

of the source code by adding official requests to the

development portal. The development portal of OpenNebula

is an official web page that contains all requests added by

participants to develop OpenNebula software. Participants

can add a request to report a software bug or create a new

software feature.

To ascertain which discussions within mailing lists were

reflected in the source code, it was essential to analyse

requests within the development portal. Analysis of the

source code supports understanding and identification

regarding the technical layout of the software.

The number of requests added to the development

portal is continually increasing over time (see figure 5.1). In

addition, within the sample collected from March 2009 until

November 2015, 85% of requests added to the development

portal were closed, meaning that requests from participants

were fulfilled and the source code was developed.

77

Figure 5.1 Number of requests added over time

The second set of data collected comprised of requests

from OpenNebula’s development portal; the theoretical

sample method was employed to achieve this. On the

development page, each request possessed a unique tracking

number, tracker, author, assignee, status, start date, category,

priority, target version, and update date. A total of 3,482

requests were extracted from the development page for the

period of March 2009 to November 2015.

5.2.3 The Third Type of Data: The Commits

Gathered data from OpenNebula’s development portal

reveals that requests and suggestions ensure that

OpenNebula is further developed. Technical details regarding

OpenNebula software can be tracked and understood by using

the data collected from the development portal. However,

quantitative records relating to the number of changes

implemented over time are stored in the GitHub portal (as

0 100 200 300 400 500 600 700 800 900

2008

2009

2010

2011

2012

2013

2014

* 2015

* November 2015

78

indicated in the development portal). The number of changes

implemented is technically referred to as he number of source

code commits.

The GitHub portal was used to gather data regarding

source code commits; this data was then employed within this

research. The GitHub portal is an official webpage on which

the source code of OpenNebula is stored over time. The

number of source code commits was extracted into an Excel

sheet. These commits were counted on a monthly basis from

March 2009 until the end of November 2015.

As will be discussed in chapter 7, this data was needed

in order to understand and measure the development of

OpenNebula software over time. In addition, this data was

used to measure the development of the different

components of OpenNebula software including core and

complements components. The data was also essential for

ascertaining how participants contribute to the development

portal via requests, and how they expand the development of

source code commits via GitHub.

5.2.4 The Fourth Type of Data: The Documentation

Data collected from the development portal was

qualitatively analysed. However, the data contained certain

technical terms that were difficult to understand. Therefore, a

third set of data was collected including four technical

documents that were available on the official web page for

the project (see table 5.3).

79

Table 5.3 Description of the third set of data collected in this research

Documentation Title Documentation Date Description

Release 1.0

July 2008 Technical documentation for upgrade release number 1. This

documentation gives technical details about the first official release of the

project. These details include: technology utilised, supported platforms,

development languages, etc.

Moreover, this documentation contains the basic function for the project

as a virtual infrastructure engine.

Release 2.0

October 2010 Technical documentation for upgrade release number 2. This provides

information on the second official release, including community engagement,

maturity and functionality.

Release 3.0

October 2011 Technical documentation for upgrade release number 3. This technical

documentation provides details regarding the third official release. These

details include new components added to manage the internet cloud for the

project. This documentation makes it clear that the project possesses core

components, and other peripheral components are added.

Release 4.0

May 2013 Technical documentation for upgrade release number 4. This technical

documentation provides details regarding the fourth official release for the

project. These details include core components within the project, end-user

components, administration interfaces, etc.

80

Reports offer technical information, so documentation

is essential for improving software understanding. This

documentation contained a glossary of terminology and

definitions related to the components of the software.

Furthermore, this documentation contained screenshots and

simplified diagrams that aided in developing an improved

understanding of the computer network employed in

OpenNebula.

Analysing these three data sets generated an improved

level of understanding regarding OpenNebula as a case study

and the governance used in OpenNebula.

5.3 Reflexivity

Interpretive, qualitative research is characterised by a

high degree of subjectivity and engagement by the researcher.

A researcher is required to possess a level of theoretical

sensitivity in order to grasp the significance of data sets

(Strauss and Corbin, 1990). However, this may lead to bias in

qualitative research. Therefore, qualitative research requires a

high degree of reflexivity in order to overcome bias.

Reflexivity is defined as the sequential process of questioning

methods of conducting research, also called ‘reflection’, as

well as being willing to alter actions, also called ‘recursion’

(Hibbert et al., 2010). Reflexivity is deemed crucial in this

research, given the ontological position I have taken as an

interpretive researcher, whereby the significance of data is

analysed and translated (Walsham, 1995).

81

In this research, I have not tried to remove myself, as a

computer engineer, from the technical understanding

required for the project. Neither have I tried to remove myself

as a researcher from understanding and conducting the

writing of a thesis. However, I have tried to be reflexive

throughout the three stages of research suggested by Finlay

(2002): the pre-research assumptions stage, the data

collection stage, and the data analysis stage (see Figure 5.2).

Figure 5.2 Reflexivity in this research

It was important to critique this research, including

aspects that had been neglected or emphasised (Cunliffe and

Jun, 2005). In addition, engagement in discussions with my

supervisor and colleagues was essential. This led to the

stabilization of assumptions and concepts within the research,

as well as altering aspects of the research in order to achieve

reflection and recursion.

In the pre-research assumption stage, I was aware of

my personal motivations for conducting this research. I

82

decided to conduct this research as part of my career

advancement process as a lecturer at the University of Jordan.

In order to advance an academic career, it is necessary to hold

a PhD, therefore, I studied open source literature and

developed pre-understanding regarding my research subject

and interests. These motivations allowed me to focus on

research.

During the formation of this research, a rich

understanding of the research topic and an improved

formulation of the research question was attained. For

example, the initial research focus was aimed towards

understanding governance in open source software. However,

over time, it became clear that for the research question to be

positioned correctly within open source literature, and to

achieve originality, the question needed to focus on

governance that solve collective action dilemma in permissive

open source software. This would ensure describing and

explaining what happens with private actors in permissive

open source software.

During the data generation phase, data was collected

from the OpenNebula mailing list. The vast amount of emails

within the mailing list was staggering. My initial plan was to

analyse all data within the mailing list, but it was difficult to

analyse all emails within the proposed time frame. Therefore,

after consultation with my supervisors, only a sample of these

emails was applied (details in section 5.2).

83

However, within analysis it was crucial to generate

additional data from multiple resources in order to achieve

the level of understanding required for this research.

In the data analysis stage, reflexivity was achieved by

following Srivastava and Hopwood (2009) reflexive framework

for analysing qualitative data (see figure 5.3). Their framework

encourages researchers to begin analysis by answering the

question ‘what is the data telling me?’ This question is critical

for developing theoretical understanding regarding data that

may not have been present previously. Letting the data

‘speak’ is crucial as it improves reflexivity in research.

Figure 5.3 Reflexivity in this research

Theoretical memos were written at the beginning of the

analysis phase; these memos described emails sent by

participants. These theoretical memos were general memos

84

regarding the general communications of each participant.

This aided in obtaining a clear picture of OpenNebula as

software and the core focus of the participants. It also assisted

with the inclusion of ideas that were not taken into

consideration before beginning analysis.

Following this, the analysis of data was conducted in

several iterations; each iterative phase had its own theoretical

focus. Logs were kept regarding the analysed data for each

participant, within each iterative phase. These logs were

continually compared to avoid salient bias in the analysis.

Furthermore, additional technical documentation

available on the official website of OpenNebula was studied in

order to ensure technical understanding of OpenNebula.

Moreover, in the data analysis stage, reflexivity was also

achieved through the salient shifts in my writing skills.

As a computer engineer, I could describe my own

writing as a technically-intensive writing that focused on

listing definite technical facts and concluding relationships

between these facts.

However, I have learnt from my supervisors that the

audience for this thesis differs somehow from purely technical

audience that I used to write for. I was regularly encouraged

to understand my new audience and I have gradually gained

the needed writing skills through receiving feedback from my

supervisors and colleagues as well as attending academic

writing courses and one-to-one writing sessions.

85

Therefore, clarity and consistency are important aspects

of this thesis; I introduce and clearly define the different

technical and non-technical terms used in this thesis. In

addition, I consistently used these terms through the thesis.

Moreover, I have learnt that thesis should be rigorous

and simple. Thus, I have written plenty of drafts in which I

have learnt how to write my ideas, develop arguments as well

as logically present and justify the different contents of this

thesis.

5.4 Quality of the research

The quality of this research was measured against its

credibility, plausibility, and transferability (see table 5.4).

Table 5.4 Quality measures in this research

Quality

Measure

Steps taken in this research

Credibility

Employing a representative sample of

the data generated

Utilising different sources for data

generation

Sharing ideas with supervisors and

colleagues

Plausibility
Ensuring a detailed description of data

Replicability

Transferability
Describing the context of the research

thoroughly

Credibility is a concept coined by (Lincoln and Guba, 1985)

in order to replace validity used to measure quality in

quantitative research. Credibility is employed to ensure the

believability of results and that the interpretation of

86

generated data remains as close as possible to the significance

of the data (Silverman, 2006). Within this research, I followed

several steps to ensure credibility:

First, I employ a representative sample of generated data.

As there was such a vast amount of data extracted from the

mailing list, it would be unreasonable and time-consuming to

qualitatively analyse all of the data. Therefore, a

representative sample from this mailing list was analysed.

Accordingly, emails sent by the 25 most active participants in

the mailing list were studied. The sample (that was rejected

later) comprised of 25 participants, all of them originating

from the official sponsor of the project.

Analysing all participants from one group and neglecting

other participants was not credible. Therefore, participants in

the mailing list were categorised according to their email

affiliation. The most active participants from different email

affiliations were selected (this sample was employed in

analysis). This method allowed a greater number of

participants to be analysed, and provided a broader research

scope.

Second, I utilise different sources for data generation. The

analysis of the mailing list enabled other sources of data to be

used to enrich understanding of the project and answer the

research question. This additional data was also gathered and

studied. Collecting data from different resources ensured rich

data generated for analysis.

87

Third, I Share ideas with supervisors and colleagues. This is

crucial to achieve credibility as research is constructed by

participants, the researcher, and readers of the research

(Finlay, 2002).

As mentioned earlier in this section, the quality of this

research was measured based on its plausibility. Plausibility

represents the ability of the research thesis to convince the

reader of the research interpretations (Thorpe and Holt,

2007). Plausibility in this research was achieved using the

following steps:

First, I ensure a detailed description of data. This step was

crucial as most of generated data in the mailing list contained

rigid technical terms that were used in the project. These

terms were not defined because they were well known by IT

professionals within the project.

Second, I apply ‘Replicability’ (Easterby-Smith et al., 2008)

of theoretical ideas via different iterations of analysis.

Analysis went through several iterations. In every phase of

iterative analysis, the analysis was repeated for all 25

participants. Therefore, to ensure the consistency and focus

of the analysis for different participants within the same

iteration, a template for each phase of iterative analysis was

created, detailing the central argument. This did not

eliminate the transparency required for data analysis.

The final measure employed to ensure the quality of the

research was transferability. Transferability can be defined as

the generalizability of the research; this is impossible in

88

qualitative research that uses a single case study as a method

of interpretation. Within this research, a complex description

was employed to provide context and describe cases that

demonstrate similar ideas. For example, in this chapter, it is

described that: (1) a permissive open source project was used;

(2) the project was utilised by several private appropriators

and firms; (3) the industry relies heavily on the virtualization

of computer devices and this, in turn, ensures the

development of software complementarities. Thus, this

research can be applied to other open source projects that

contain these basic assumptions.

5.5 Research Ethics

The ethical format for conducting this research was first

submitted and approved by the Nottingham University

Business School Ethics Committee. The issue of anonymity

within the research project is examined in this section.

The two core sources of data utilised in this research

were: project data published on the project website and the

emails archived from the project mailing list. The public are

able to post on the project website; however, just because

they have posted information on a public forum does not

mean they have consented to it being used for research

purposes. In this case, obtaining consent from the vast

number of participants becomes impractical and time-

consuming.

Although conducting research without the informed

consent of all participants is justified in this case, two main

89

conditions are crucial. First, anonymity should be guaranteed

for all participants and direct quotation prohibited. The logic

behind this is that if direct quotation is used, that quote could

be searched for and discovered on the internet. Once the post

is discovered, the username would be revealed, which may be

used by the same person elsewhere on the web. Other clues

regarding their identity may have been distributed in other

areas of the site. Project manager was consulted regarding the

issue of consent within the project, and the terms of this were

agreed.

90

Chapter 6 The Private Contributions

in OpenNebula

6.1 Overview

This chapter explains that private contributions by

private actors are supporting the development of OpenNebula

software in the form of collective complementarities. In

addition, this chapter proposes that the active

communications constitute a prerequisite to the active

contributions of private actors to the software.

This chapter starts by introducing OpenNebula and

focusing on its growth stage for data collection and analysis.

The growth stage is remarkable because the community of

participants is growing and the software is rapidly growing. A

map for participants in OpenNebula is identified in section 6.3.

The majority of participants in OpenNebula are private actors

who belong to different companies in different industrial

sectors. According to the literature, this shall reinforce the

business dilemma in OpenNebula and private actors would

withdraw their collective action.

However, section 6.4 shows that communications are

playing a crucial role in encouraging contributions by

participants in OpenNebula and that contributions support the

development of the software in the form of collective

complementarities.

91

6.2 OpenNebula as open source software

OpenNebula is the permissive open source software

chosen for this research. As summarised in figure 6.1,

OpenNebula started as a research software project, initiated in

2003 by an associate and an assistant professors at

Complutense University of Madrid. After years of developing

the software, they declared the research software project as

open source under an Apache v2.0 open source licence.

Apache v2.0 is a permissive license for open source

software (Lerner and Tirole, 2005b). As explained by Sen et al.

(2011), permissive open source software does not require the

sharing of the original source code and any modifications and

amendments. Moreover, this license accepts the re-licensing

of the software to any other open source or proprietary

license other than the original license declared.

OpenNebula has gone through two stages in its

development: the start-up stage (2005-2010) and the growth

stage (2010 until now).

In the start-up stage, the founders of OpenNebula

software participated in “the European Union’s Seventh

Framework Programme”. This programme helped the

founders in understanding the business needs in the European

market for cloud computing software like OpenNebula. Their

major achievement was the declaration of its first official

stable release.

92

In the growth stage, ‘OpenNebula Systems’ was

declared as the official company that sponsors OpenNebula in

order to provide commercial services from OpenNebula

software. The growth stage for OpenNebula can be considered

as an interactive stage because channels for networking

between participants were opened. These channels were the

mailing list and the development portal. As a result, the

community of participants was increased and the software

was rapidly evolving into multiple stable official releases. It is

believed that this stage influenced the analysis in this thesis

because most data collected were extracted from the mailing

list and the development portal of OpenNebula.

6.2.1 Start-up Stage

In 2008, OpenNebula as a software project received

funding from “the European Union’s Seventh Framework

Programme (FP7/2007-2013)” under the following grant

agreement: “RESERVOIR– Resources and Services

Virtualization without Barriers, 2008-2011, EU grant

agreement 215605”.

Based on the agreement of the programme, the two

founders of OpenNebula, with the other two software

developers who worked with those founders, were introduced

to different business cases in the European market. They took

centralised decisions to develop OpenNebula software

according to the market needs.

93

At this stage, the development portal of OpenNebula

was declared as the official web page to store and develop

OpenNebula software. In addition, the first official upgrade3

open source release (Release 1.0) was published in July 2008

on the development portal of OpenNebula.

3 An upgrade release is software that implements changes and

features to OpenNebula’s source code.

94

Figure 6.1 The different stages of OpenNebula

95

25 participants registered on OpenNebula’s

development portal and contributed to this official release by

adding requests to resolve software bugs they found. As a

result, two update4 releases (release 1.2 and release 1.4) were

publicly published on the development portal of OpenNebula

in February and December 2009, respectively.

6.2.2 Growth Stage

Several important declarations were announced at this

stage. Alongside with the development portal of OpenNebula,

mailing list was declared as the official channel in which

participants can communicate and share their ideas, concerns

and questions. In 2010, ‘OpenNebula Systems’ (formerly called

‘C12G labs’) was officially declared as the official firm

responsible for the commercial development of the

OpenNebula software package. Thus, OpenNebula is being

spinout open source software.

A total of eight employees are working in ‘OpenNebula

systems’ and they are referred to as ‘Core members’ in this

thesis. There are other participants who are registered on the

mailing list and the development portal of OpenNebula. Some

of those participants are private actors, employees in

companies in different industrial sectors: finance, banking,

telecommunications, government, the media, academia and

4 An update release resolves bugs and implements software

features, service packs, and patches within the source code.

96

research, aerospace, e-infrastructure, Software as a Service

(SaaS), and more.

OpenNebula, as open source software, witnessed a

rapid growth in its software development (as seen in figure

6.2). OpenNebula had four additional stable releases: 2.0, 3.0,

4.0, and 5.0. Each release has boasted subsequent updates

and maintenance releases that have improved the

functionality required for that release. OpenNebula’s four

stable releases served to improve OpenNebula’s functionality

and created additional customized complement components.

Figure 6.2 The development of OpenNebula Software in the growth stage

Feller et al. (2008) suggested that the majority of

software analysed in literature bolsters commercial products

relating to vendors or commercial firms. However, as stated in

the official web page for OpenNebula, OpenNebula is vendor

agnostic software; the software has integrated various

complement components related to competitive firms. KVM,

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

M
ar

-0
9

Ju
l-0

9

N
ov

-0
9

M
ar

-1
0

Ju
l-1

0

N
ov

-1
0

M
ar

-1
1

Ju
l-1

1

N
ov

-1
1

M
ar

-1
2

Ju
l-1

2

N
ov

-1
2

M
ar

-1
3

Ju
l-1

3

N
ov

-1
3

M
ar

-1
4

Ju
l-1

4

N
ov

-1
4

M
ar

-1
5

Ju
l-1

5

N
ov

-1
5

N
um

be
r o

f s
ou

rc
e

co
de

 c
om

itt
s

Growth Stage

97

XEN, VMware, OpenVZ, and ESXi are examples of different

competitive virtual machines that are integrated within core

OpenNebula. In addition, Ubuntu, Debian, OpenSUSE, and

CentOS are examples of different competitive operating

systems that are integrated with core OpenNebula.

Currently, OpenNebula is expanding within the business

market. For example, 5,000 downloads per month were

recorded in 2012; in addition, a mass scale production

deployment was recorded in 2014. For example, more than

200,000 virtual machines were deployed across different

businesses. OpenNebula is one of the most successful open

source software in the cloud computing market.

Data gathered in this stage from the mailing list and the

development portal are analysed. As a result, it is understood

that all participants are communicating together and private

actors are contributing to the development of the software

over time. OpenNebula is a unique case study that would

definitely serve in conducting and answering the research

question.

6.3 The Private Actors in OpenNebula

In this section, a map for participants in OpenNebula is

identified. In addition, it is found that the majority of

participants in OpenNebula are private actors. Moreover, it is

found that the community of private actors in OpenNebula is

heterogeneous; they belong to different companies in

different industrial sectors. Following the literature, such a

98

community of participants would face the business dilemma

and accordingly we can anticipate that they would withdraw

their participations. However, as will be discussed in section

6.4, those private actors are actually participating in

OpenNebula.

6.3.1 The registration process

The source code for OpenNebula is available online on

the official OpenNebula web page. Anyone interested in

downloading, modifying and combining the software is

allowed to do so without being required to contribute back to

the public.

However, it is stated on the OpenNebula web page that

participants cannot participate in OpenNebula unless they

register on OpenNebula’s web page and development portal

(details about participation in OpenNebula will be discussed in

the following section). Participants in OpenNebula are officially

registered on both the OpenNebula web page and the

OpenNebula development portal. The registration process

involves submitting credentials for those participants.

The credentials required by OpenNebula's mailing list

include an email address, a username, and password as

mandatory (refer to figure 6.3).

99

Figure 6.3 Screen for registering new participant to the mailing list in OpenNebula

Credentials that are required to register for the

development portal of OpenNebula are: login, password,

confirmation of password, first name, last name, email

address, and language (see figure 6.4).

Figure 6.4 Screen for registering new participant to the development portal in

OpenNebula

Until the end of February 2017, the number of registered

participants on the mailing list and the development portal

were 1,344, 916, and 49 respectively.

100

Email addresses were employed in this research, as

explained in the methodology chapter, as a first step to classify

the most active participants on the mailing list by referring to

their email affiliations.

For example, a participant with an email address that

ends with an ‘.edu’ email extension is classified into the

‘education email affiliation’ group. As another example, a

participant with an email address that ends with an

‘.opennebula.org’ email extension is classified into the ‘core

members’ group. Up tol November 2014 for example, there

were 8, 546, 68, 16 and 706 registered participants belonging

to OpenNebula, individual, educational, government and

corporate email affiliations, respectively.

6.3.2 Participants mapping

Initially, 7,017 emails sent on the mailing list were

gathered. These emails were sent by the top 25 participants on

the mailing list. This consisted of five participants from ‘core

members’, five participants from the ‘corporation’ affiliation,

five participants from the ‘individual’ affiliation, five

participants from the ‘education’ affiliation, and five

participants from the ‘government’ affiliation (for more details,

please refer to methodology chapter). These emails were

analysed for the purpose of identifying these participants

sending emails on the mailing list. This is beneficial because it

allows for the identification of the different participants in

OpenNebula as described in figure 6.5.

101

Figure 6.5 The different participants in OpenNebula

First, Core members are employees at ‘OpenNebula

Systems’ company; this company is the official sponsor for

OpenNebula. These participants respond to emails and resolve

customer enquiries in order to fulfil the needs of the customer.

For example, AnonyAG3, an employee in company X, sent

an enquiry to the mailing list. AnonyAO3 responded to this

email by opening a live chat with AnonyAG3 and solved the

problem.

5 out of 25 participants in the sample were identified as

Core members and they were AnonyAO1, AnonyAO2,

AnonyAO3, AnonyAO4, and AnonyAO5.

Second, there are participants who are employees at

companies and they are implementing OpenNebula software

into their IT business. However, these participants encountered

technical problems when attempting to implement

OpenNebula. Thus, they shared information with other

102

participants by sending emails through the mailing list.

Information was contained in their computer network, log files,

screenshots, and error messages.

For example, AnonyAG2 sent an email that contained

information regarding the computer settings he was using to

access OpenNebula from the internet, such as OpenNebula

release 3.2, the ‘X509’ method for secure authentication, and

the ‘EC2’ tool. He also requested technical assistance to resolve

an error message that appeared while using OpenNebula in his

work.

16 out 25 participants in the sample were identified as

employees at companies: AnonyAI1, AnonyAI3, AnonyAI5,

AnonyAG1, AnonyAG2, AnonyAG3, AnonyAG4, AnonyAG5,

AnonyAE1, AnonyAE2, AnonyAE3, AnonyAC1, AnonyAC2,

AnonyAC3, AnonyAC4, and AnonyAC5.

Third, hobbyists are participants keen to respond to

enquiries rather than sending their own technical enquiries.

However, these participants are not core members of

OpenNebula. They want to share their knowledge with other

participants and learn from them. 74 per cent of emails came

from the category AnonyAI2; these emails revealed responsive

behaviour when solving technical enquiries from different

participants.

It was discovered that participants utilise their technical

experience, both within and outside of OpenNebula, to

distribute knowledge. Participants responded to technical

103

enquiries regarding the ideal implementation of OpenNebula.

These participants understand that there is no specific solution

for implementing OpenNebula; various options exist. Therefore,

they depend on the exchange of information between

participants and then provide their opinion and technical advice.

For example, a participant sent an email through the

OpenNebula mailing list explaining the different virtual

machines utilised in his firm. In addition, he explained the

implementation problem he encountered when using virtual

machines alongside OpenNebula software. AnonyAI2, a possible

knowledge sharer, commenced discussions with the participant

in order to understand the network settings that had been

implemented. AnonyAI2 suggested solutions that might solve

the implementation problem, but insisted that some solutions

might cause flaws within the firm’s computer network (based on

his own experience with the same implementation problem).

4 out 25 participants in the sample were identified as

Hobbyists: AnonyAI2, AnonyAI4, AnonyAE4, and AnonyAE5.

Understanding participants in OpenNebula as core

members, employees at companies and hobbyists helps in

classifying those participants, as suggested in the literature, into

individuals and private actors (see table 6.1). Lerner and Tirole

(2001) suggested that participants in open source software can

be classified as individuals or private actors. Individuals are

programmers who are participating in open source software for

learning and pleasure while private actors are employees who

104

are participating in open source software in order to gain

private benefit from the software.

Table 6.1 Classifying participants of OpenNebula into individuals and private actors

 Individuals Private Actors
Core member
Employee at a
company

Hobbyist

Classifying participants as individuals and private actors is

beneficial in this chapter as it implies that there is a private

interest in OpenNebula. This is crucial because , in general,

private actors are key contributors to open source software;

their contributions are deemed crucial (Casadesus-Masanell and

Llanes, 2011) to guide the open source software both in

monetary terms and strategically. According to the von Hippel

and von Krogh (2003) ‘private-collective model of innovation’,

private interest are key actors who are investing their private

resources for the collective benefit.

In addition, such classification is beneficial in this chapter

as it implies that the majority of participants in the chosen

sample are private actors; 16 out of 25 participants are private

actors. This finding guides the analysis to see how similar or

different those private actors are.

Therefore, email addresses of all participants who are

registered on the mailing list are collected. Referring to those

email addresses, it is found that up to the end of 2015, the

majority of registered participants have corporate email

affiliation – 699 registered participants. In addition, those

105

participants are employees at competing companies across

different industrial sectors. For example, as seen in figure 6.6,

different registered participants are employees at 70

companies. Those companies operate in the technology industry

but belong to 6 different sectors such as supercomputing, cloud

products, information technology, etc.; companies that belong

to the same sector can be competitors. For example, IBM and

DELL are competing companies that provide the market with

different technology devices.

Figure 6.6 Rivals in the technology industry

106

In another example, as seen in figure 6.7, different

registered participants are employees at 21 companies. Those

companies operate in the education industry but belong to two

different sectors: academic and research. Companies that

belong to the same sector can be competitors.

Figure 6.7 Rivals in the education industry

The von Hippel and von Krogh (2003) ‘private-collective

model of innovation’ suggested that contributions of private

actors are crucial to open source software but heterogeneity in

OpenNebula includes rival companies who are competing with

each other. Thus, it is interesting to understand whether such

heterogeneity affects their contribution, especially in that

heterogeneity includes rival companies so contributions may

affect their competitive advantage if rivals decide to free ride

107

instead of collaborate and contribute. Answers to this question

are explained in the following section.

6.4 Contributions in OpenNebula

Private actors and individuals, the heterogeneous

community in OpenNebula, are registered in OpenNebula in

order to be able to participate. It is found that they can

participate in OpenNebula by (1) sending and replying to

emails on the mailing list and/or (2) adding ‘requests for

developing software in the development portal.

6.4.1 Communications on the mailing list

The same sample of emails collected earlier was used

again. However, the analysis this time involved coding all data

on a line-by-line basis in order to understand:

(1) Among the heterogeneous community, who is

sending and who is replying to emails?

(2) What is the benefit from participants’

communicating through these emails?

In an attempt to answer the first question for this stage

of the analysis, it was revealed that private actors (specifically

employees at companies) mainly started by sending emails

and the reply emails were not exclusive to any type other than

others.

 Those private actors started their emails by introducing

themselves and their businesses. They usually explained that

they implemented or wished to implement OpenNebula

software within their IT business. They shared fine information

108

about the technical network for their IT businesses and the

technical configuration for OpenNebula within their business.

They also shared log file and error messages in their emails.

Accordingly, they sent emails in order to ask questions related

to the software and its implementations, to report software

bugs, to ask for advice, to suggest and develop software

features …etc.

Core members were found to reply to almost all emails

sent by different participants in OpenNebula. They clarified

ideas, explained source code, provided suitable

documentation, debugged software bugs and provided

technical advice. West and O'Mahony (2005a) explained that

core members usually spent their time and efforts with other

participants in order to attract those participants to participate

in the software.

However, it was also found that not only core members

replied to the different emails on the mailing list, but also

hobbyists and other private actors were found to reply to

emails and provided technical help for requesters. For

example, AnonyAC1 is one of the most active participants in

OpenNebula who sent many emails on the mailing list.

Analyzing his communications through the mailing list reveals

that he sent 230 emails for the duration September 2010

through September 2014. Through these emails, he raised 35

different technical topics related to technical problems that he

faced while implementing OpenNebula software. 21 registered

109

participants and 4 core members replied and communicated

with him through different emails. As a result of their

communications, software bugs were solved and faulty

documentation was amended.

All types of participants in OpenNebula communicated

by sending and replying to emails on the mailing list (refer to

the first question in this section). Ostrom and Walker (1991)

suggested that if users of a public resource voluntarily decided

to communicate with each other, then the level of cooperation

between them would increase. As a result, communication

was found to benefit those users in different ways, such as

allowing them to contribute to each other and solve the

dilemmas that they might be facing (Cardenas et al., 2004).

Based on communications of the mailing list, the analysis

revealed the different types of contributions by the different

participants that were identified in OpenNebula as follows.

First, emails and memos were examined. Then, texts

that were thought to represent contributions were highlighted

and positioned within different ‘categories’. For example, in

one of his emails, AnonyAO2 explained the technical

implementation of the ‘Libvirt’ system in OpenNebula,

including the installation steps and the network connectivity

required for integrating the system with OpenNebula. Thus,

his email was highlighted and placed in the category ‘explain

possibilities for system implementations within OpenNebula’.

110

Some of the categories proposed, however, were

deemed redundant and overlapped with one another. As a

result, categories were re-examined and merged in order to

create more accurate groups.

A list of categories was created and presented in an

organised manner, as suggested by Thomas (2006). As seen in

table 1 in appendix Empirical 1, each category possesses its

own label, detailed description, and text gathered from emails

and memos. A list of 75 categories was created based on the

analysis of 7,017 emails sent from 25 different participants (as

explained in the methodology chapter).

Second, similar ideas were grouped together in

categories and labelled under a specific ‘code’ that represents

a contribution.

As a result, 4 main contributions were identified (see

details in Appendix A):

1. Modify available documentation: participants

contribute by amending incorrect information that

exists in the available documentation for

OpenNebula.

2. Report software bugs / features: participants report

software bug reports that exist in OpenNebula

software / participants suggest software features to

be added into the original OpenNebula software.

111

3. Solve software bugs: participants share source code

that solves software bugs that already exist in

OpenNebula software.

4. Develop software features: participants share source

code that adds and integrates new software features

into OpenNebula software.

These contributions are supported by the

communications between different participants in

OpenNebula.

For example, participant ‘AnonyAI1’ was a private actor

(employee at a company) of OpenNebula. He sent over 180

emails from 2009 to 2012. He started his early emails by

introducing himself, his business, and the way he implemented

OpenNebula within his business. For example, he described

the types of systems used in his business, the computer

network in his business and the releases of OpenNebula he

was implementing.

Through several emails, he raised questions that would

help him and other participants to understand the logic of

OpenNebula software and the commands used for

OpenNebula screens and interfaces. For example, he sent

several emails describing technical problems that he faced

while implementing a special type of virtual machine offered

by OpenNebula software called ESXi. Core members, on the

other hand, asked him to report the different software bugs

that he faced while implementing OpenNebula by adding

112

requests into the development portal (this represents the

‘report software bug’ contribution).

With the help of core members, employees at

companies and hobbyists, he could overcome these problems.

And AnonyAI1 was found to share complete versions of these

solutions on the mailing list and share updates for related

documentation accordingly (this represents both ‘solve

software bug’ and ‘modify available documentation’

contributions). For example, there was a problem with the

parameters used in ESXi virtual machine and that was behind

the software bugs that he reported. So AnonyAI1 shared the

correct parameters with others through his emails and

highlighted that these new parameters shall be corrected in

the documentation.

Based on these communications, AnonyAI1 was able to

successfully integrate OpenNebula within his business. After a

while, AnonyAI1 started to suggest the addition of new

features into OpenNebula software in order to help him in

advancing his business (this represents the ‘report software

feature’ contribution). For example, he suggested the addition

of authentication methods in OpenNebula. He explained that

these methods were important to ensure the security of data

while implementing OpenNebula in his business.

Many participants supported his suggestion and

accordingly he added his suggestion as a request in the

development portal. He started his cooperation with core

113

members to develop and add the new source code into

OpenNebula software (this represents the ‘develop software

feature’ contribution).

As seen from the previous example, AnonyAI1

contributed to OpenNebula software based on his

communications on the mailing list in different ways. Of

course, not all private actors contribute in the same pattern.

For example, AnonyAI3 contributed by suggesting a software

feature but not developing the feature. AnonyAI3 suggested,

through his email on the mailing list, that the development of

a new driver called ‘OpenVZ’ should be added to the source

code of OpenNebula (this represents the ‘suggest software

feature’ contribution). After discussions with other

participants on the mailing list, AnonyAI3’s added a new

request to the development page. As a result of this, the

‘OpenVZ’ source code was developed and implemented within

OpenNebula’s own source code by core members.

AnonyAI1 and AnonyAI3 are only examples of

participants who were encouraged to contribute because of

their communications with other participants. As shown in

table 6.2, each type of participant in OpenNebula was found to

perform a bundle of contributions through communications on

OpenNebula mailing list.

114

Table 6.2 Contributions made by participants in OpenNebula

Individual Private actor

Hobbyist
Employee at a

company
Core member

Modify available

documentation

Report software bugs/features

Solve a software bug Partially

Develop a software feature

Studying the 7,017 emails from the mailing

list, as described earlier, revealed that participants

communicated and contributed in different ways

on the mailing list. After that, they passed their

contributions to OpenNebula’s development

portal, where the source code is stored and

developed, by adding requests. Participants can

add requests into the development portal only

after they log onto OpenNebula’s development

portal.

6.4.2 Requests additions in the development portal

The addition of new requests in the development

portal is achieved when participants log on to the

development portal and add new ‘requests’ to the

development page in order to modify and enhance the

source code. The addition of a new request to the

development page requires (1) writing the name of the

request and (2) adding a description regarding this request

(see example in figure 6.8).

115

Figure 6.8 An example of a newly added request to the development page of
OpenNebula

A total of 3,842 requests were added to the

development page of OpenNebula between March 2009 and

the end of November 2015 (these requests are part of the

7,017 emails sent on the mailing list, as described earlier).

These requests were exported from the development page

into an Excel sheet that was then added to NVivo 10 software

and analysed.

It was found that nearly 75% of requests added into

the development portal were added by private actors (the 21

participants in our chosen sample). And requests were added

into the development portal over time (see figure 6.9). This

indicates that there is a private interest in OpenNebula and

that private actors are contributing to OpenNebula by adding

requests into the development portal.

116

Figure 6.9 Number of requests added into the development portal of OpenNebula

From 2008 to the end of 2015, 3,842 requests were

submitted to OpenNebula’s development portal. Of these,

143 requests were duplicates and 381 were found to have no

possible solutions (invalid requests). Thus, valid requests

added to the development portal amounted to 3,318

requests. Table 6.3 shows that these requests are actually

reflecting the different contributions they had on the mailing

list as identified earlier in section 6.4.1.

0

500

1000

1500

2000

2500

M
ar

-0
9

Ju
l-0

9

N
ov

-0
9

M
ar

-1
0

Ju
l-1

0

N
ov

-1
0

M
ar

-1
1

Ju
l-1

1

N
ov

-1
1

M
ar

-1
2

Ju
l-1

2

N
ov

-1
2

M
ar

-1
3

Ju
l-1

3

N
ov

-1
3

M
ar

-1
4

Ju
l-1

4

N
ov

-1
4

M
ar

-1
5

Ju
l-1

5

N
ov

-1
5

N
um

be
r o

f R
eq

ue
st

s

Core members Participants of Corporate email affiliation

Participants of Individual email affiliation Participants of Education email affiliation

Participants of Government email affiliation

117

Table 6.3 Contributions in the development portal of OpenNebula

Modify available documentation

6% of requests added to the development portal are
related to issues of modifying the documentation of
OpenNebula

Majority are added by private actors (65% added by core
members and 25% added by participants with corporate
email affiliation)

Report software bugs / features

54% of requests added to the development portal are
related to issues of reporting software bugs

Majority are added by private actors (58% added by core
members and 28% added by participants with corporate
email affiliation)

46% of requests added to the development portal are
related to issues of reporting software features

Majority are added by private actors (75% added by core
members and 19% added by participants with corporate
email affiliation)

Solve software bugs

93% of added reported software bugs are solved by
software patches5

Core members are mainly responsible for solving the
requests. However, other 93 private actors (participants
with corporate email affiliation) share source code to
solve the software bugs

Develop software feature

73% of reported software features are developed by
software patches

Core members are mainly responsible for solving the
requests. However, other 77 private actors (participants
with corporate email affiliation) share source code to
solve the software bugs

5 The term ‘Software Patch’ refers to source code that is able to resolve software bugs or develop additional features.

118

6.4.3 Contributions towards Collective

Complementarities

As explained earlier, private actors are communicating

through the mailing list and their communications lead to

contributions. These contributions are: modifying available

documentation, report software bugs/ features, solve

software bugs and develop software features. And these

contributions can be measured in terms of requests added by

those private actors into the development portal.

These requests are causing the development of

OpenNebula software (as will be discussed in detail in section

7.2). Examining the technical design of OpenNebula software,

it was revealed that the software consists of core OpenNebula

and other complements software; Core OpenNebula and

complements software are integrated through a set of APIs as

follows.

OpenNebula software is classified into 21 different

components (the technical descriptions of these components

are detailed in Table 1 in ‘Appendix Empirical 2’). Schilling

(2000) explained that a software that consists of components

that can be combined together is technically described as a

‘modular software’; each component is a module. Baldwin and

Clark (2000) explained that modules can be combined through

pre-specified interfaces. For example, these components in

119

OpenNebula are connected with each other using Application

Programming Interfaces (APIs6).

Examining these 21 modules reveals that these modules

can be classified into ‘core’ and ‘complements’ modules as

described in table 6.4.

Each complement component is integrated with core

OpenNebula via APIs and each complement component has

different technology options provided (as described in figure

6.10).

Figure 6.10 Technical design for software complements in OpenNebula

6 APIs are pieces of source code that is responsible for ease of

communication and transfer of information between computer
components and applications.

120

Table 6.4 Core and Complements modules in OpenNebula

 Core Complements

Function7 Modules that deal with the standard

function for OpenNebula software

which is managing virtualisation for

data centres.

Modules that deal with customised features that can be

implemented to serve customised needs for virtualised data

centres. These modules represent the complements products

that can be integrated with core OpenNebula software in order

to enhance the applicability of OpenNebula software.

Characteristic Mandatory (one needs to install these

4 components in order to implement

the software)

Optional (it is up to the user to decide which component to

install and implement according to the customised needs)

Number of modules 4 17

7 Refer to table B.1 in Appendix B for technical details

121

These technology options have different licensing

agreements; some are licensed under open source licenses

and others under proprietary licenses. Despite these

differences in their licenses, private actors choose to

contribute to these complements components and share the

necessary API in order to integrate the complements with core

OpenNebula. For example, one of the complements

components provided by OpenNebula is called a virtualization

driver. There are many technology options provided by

OpenNebula in order to use the virtualization driver such as

XEN driver, KVM driver, OpenVZ driver, VMware driver and

ESXi driver (see table 6.5). Table 2 in ‘Appendix Empirical 2’

provides other examples of technology options for

complements components.

122

Table 6.5 The different technology options for virtualization driver (complements module) in OpenNebula

Complements
Component

Description Examples

Virtualization Driver

These drivers are
software that virtually
imitates a particular
computing system (Stair
and Reynolds, 2013)

XEN driver (Complement with open source license). For example, AnonyAI3 was

concerned about participating in and understanding of networking and storage issues

related to XEN virtual machines, understating commands, implementation, and

documentation.

KVM driver (Complement with open source license). For example, AnonyAG3 was

reporting problems related to the implementation of “OpenNebula express” with KVM

environment under an in-house developed operating system.

OpenVZ driver (Complement with open source license). For example, AnonyAI3

developed and added OpenVZ source code and documentation to OpenNebula

repository.

VMware Driver (Complement with proprietary license). For example, AnonyAC3 solved

different technical problem related to the implementation of OpenNebula 4.0 with

VMware virtual machines only.

123

ESXi Driver (Complement with proprietary license). For example, AnonyAI1 provided

fixes to several bugs related to networking problem with ESXi virtual machine and

adding revisions to the code repository of ESXi virtual machine.

124

 So far, it is understood that private actors contribute to

the development of OpenNebula software in the form of

complementarities: (a) development of core OpenNebula and

(b) integration of core OpenNebula with other complements

software via different APIs.

Surprisingly, as shown in figure 6.11, core OpenNebula,

complements software and APIs are all freely revealed to the

collective and this makes OpenNebula as a case study deemed

interesting as follows.

Private actors in OpenNebula are core members and

employees at a company (refer to section 6.3 for details).

Rivalry is high in OpenNebula, for example, core members

have rivals within the cloud computing industry such as core

members of OpenStack software, Apache CloudStack software,

Eucalyptus software…etc; another examples are explained in

section 6.3.2.

Core members basically provided ‘core OpenNebula’

software and employees at company basically integrated

‘complements software with core OpenNebula’. In addition,

both of them also contributed to whole OpenNebula software

(both core and complements) by: modifying documentation,

reporting software bugs/features, solving software bugs and

developing software features.

125

Figure 6.11 The difference between OpenNebula and the traditional context

126

Core OpenNebula and other integrated complements are

private knowledge. They are lines of source code that are

considered as an intellectual property for private actors.

Therefore, private actors would be facing a business dilemma

in this case. Private actors are encouraged to contribute and

share their private contributions in open source software

because they would reap rewards (as suggested by Von Hippel

and Von Krogh (2006)) such as increasing the development

skills of employees and gain faster feedback from customers

and users.

However, their competitive advantage would be

decreased because imitation by rivals would be easy. Rivals

can imitate the software by copying the software and modifing

it according to their organizational settings. In addition, private

actors would be losing their profit from innovation because

profits would be shared between private actors and rivals

(imitators). Both private actors and rivals would be providing

similar software to the market. Customers and profits would

be shared accordingly.

In the traditional context of open source, private actors

are encouraged to contribute and share their private

contributions only if they avoid the business dilemma: mitigate

imitation.

First, core members avoid imitation of their core software

by rivals through revealing the software under restrictive

licenses such as GPL. Core members are encouraged to share

their private contributions because restrictive licensing is

127

protecting them from imitation; any modifications done to the

software must be (by law) revealed back to the collective.

Second, core members avoid imitation of their core

software by rivals through revealing the software under dual

licensing (West and O'Mahony, 2005a). Core members are

encouraged to share their private contributions because the

software is segmented into two versions: community version

and the commercial version (Comino and Manenti, 2011).

For the community version, any modifications done to the

software should be revealed back to the collective. For the

commercial version, any modifications done to the software

should be done through monetary contracts between core

members and the other participants.

Third, employees at companies avoid imitation of their

complements software by rivals through selling (rather than

revealing) the complements and related APIs. In this case,

private actors are encouraged to share their contributions to

the collective core software rather than reveal their private

knowledge about complements software and related APIs

(Gruber and Henkel, 2006).

In OpenNebula, it is found that core members and other

private actors choose to contribute and share their private

contributions to the collective while experiencing the business

dilemma for the following reasons.

First, Core members disclose core OpenNebula under a

permissive Apache v2.0 license without restrictions on

commercial use. For the data collected for this thesis, from

128

March 2008 up to the end of November 2015, there were

found to be 70 different software releases for OpenNebula

software. As shown in figure 6.12, these software releases are

revealed to the collective through time.

Figure 6.12 Number of software releases in OpenNebula

As discussed in section 6.4, the private contribution from

private actors caused the development of these software

releases. In addition, all of these releases contained

developments and enhancements for core OpenNebula,

complements and related APIs.

And all of these releases are released in the official

development portal of OpenNebula under an Apache v2.0

license. This license is not restrictive and has no restrictions on

commercial use of OpenNebula.

Second, other private actors disclose their complements

software and related APIS to the collective under an Apache

v2.0 permissive license without selling their integration

contributions. Core OpenNebula, complements software and

related APIs are all considered as private knowledge that are

0

2

4

6

8

10

12

14

2008 2009 2010 2011 2012 2013 2014 2015

129

freely contributed by the different private actors in

OpenNebula.

Private actors in OpenNebula are encouraged to

contribute and share their private knowledge with the

collective despite the business dilemma they experienced,

especially with the existence of rivals. This makes OpenNebula

interesting as a case study.

6.5 Conclusion

The analysis in this chapter revealed that participants of

OpenNebula are core members and private actors (refer to section

6.3 for details). Private actors are entering in an active

communications (with their knowledge, ideas and experiences)

with others (refer to sub-section 6.4.1 for details). They introduced

themselves and their preferences. They talk, discuss, argue and

contribute to OpenNebula software in different ways (refer to sub-

section 6.4.2 for details).

As a result of communications, private actors seemed to

contribute to OpenNebula (modify documentation, report

software bugs/ features, solve software bugs and develop

software features). They share their private contributions by

adding requests in the development portal of OpenNebula and

lead for the development of OpenNebula software in the form of

collective complementarities (refer to sub-section 6.4.3 for

details).

The development of OpenNebula software in the form of

collective complementarities suggested that private actors in

OpenNebula did not only focus on their private interest. They also

130

cared about the collective interest; they were able to lock their

private software with OpenNebula software (this implied that they

were able to lock their private interest with the collective interest).

Therefore, and informed by Ostrom (1990) evolutionary

theory of collective action, it is proposed that the active

communication by private actors is a prerequisite through which

private actors can bridge their private with the collective interest.

Hence, aligning the collective interest with the private interest

through ‘active communications’ can be the first explanation

provided in this thesis for how participants in open source

software would privately invest in the software without creating

the business dilemma.

131

Chapter 7 The Collective Software

7.1 Overview

This chapter explains how private contributions

contribute to the development of the collective software. It

theorizes how a transformation process is used to transfer

contributions into collective software. In addition, this chapter

proposes that the transformation process, through focusing

the attention of OpenNebula participants, encourages private

actors to reveal their private contributions to the collective.

The presentation of results in this chapter is provided in

two sections. Section 7.2 explains the nature of the

contributions provided by the private actors. Section 7.3

describes the transformation process. Section 7.4 theorises

the impact of the transformation process in encouraging the

private contributions in OpenNebula.

7.2 The Nature of requests

A huge amount of requests were added into the

development portal of OpenNebula through time. A total of

3,483 requests were extracted from the development page for

the period of March 2009 to November 2015.

Those requests were added by different participants of

different email affiliations (see figure 9 in previous chapter);

nearly 75% of those requests added into the development

portal were added by private actors identified earlier from the

21 participants in our chosen sample.

132

Participants who add a request need to complete a

template provided in the development portal of OpenNebula.

“You can report a bug by opening a new issue in GitHub

OpenNebula project. You have to complete the template

section for bug reports… You can make a feature request by

opening a new issue in the GitHub OpenNebula project. You

have to complete the template section for feature

requests.“(OpenNebula Official Webpage)

In the template, the participant is requested to

determine the type of the request, the affected OpenNebula

release and a description about the request. A request type is

either a software bug or a software feature. A software bug is

an error or a flaw found in the source code. A software feature

is a new piece of source code that enhances performance,

functionality, security and/or scope of existing source code.

Figure 7.1 shows that different requests to report

software bugs and to add software features have been added

into OpenNebula releases. Therefore, participants who added

requests are contributing by ‘reporting software bugs/

features’ (refer to section 1.4 for details about types of

contributions in OpenNebula).

133

Figure 7.1 Number of 'software bugs' and 'software features' requests added to
different OpenNebula releases

However, those different requests were found to be

internally analysed by core members as those requests were

found to vary in their needs and some could not be accepted

in OpenNebula.

“After an internal analysis, a Bug issue can be:
 Pending, needs to be verified

 Accepted, the bug has been verified and a priority
assigned based on its severity (Low, Normal, High)

 Closed, the issue is fixed, could not be reproduced
(worksforme) or duplicates another one

After an internal analysis your Request issue is categorized and
will be Pending in the Backlog till:

 It is decided that is not in the scope of the project
and Closed

 It is interesting for the OpenNebula community and will
be added as Accepted in the Backlog” (OpenNebula Official
Webpage)

Therefore, the analysis in this thesis is directed towards

understanding the process under which those requests are

0

200

400

600

800

1000

1200

First releases Second releases Third releases Fourth releases

Software Bugs

Software Features

134

internally analysed and transformed into OpenNebula

software under different releases.

7.3 The Transformation Process

As described in the previous chapter, contributions

provided by private actors in OpenNebula can be measured by

the requests added into the development portal. These

requests were found to follow a certain process of

transformation into freely revealed software. The process

consists of different transformation periods that lead to

considerable changes in the requests added into the

development portal. These transformation periods transform

requests: from raw requests into valid requests; from valid

requests into selected requests; from selected requests into

developed software (beta version); and from developed

software into a freely revealed software in the OpenNebula

development portal (as shown in figure 7.2). The result of

these changes is the development of the collective software.

135

Figure 7.2 Transformation process in OpenNebula

136

7.3.1 Validation of Contributions

In the first transformation period, validation of requests,

reported by participants, is conducted. Validating requests

means filtering requests into valid, invalid and duplicated.

To start with, different private actors started their

communications on the mailing list by reporting software bugs

that they encountered while implementing OpenNebula within

their business (refer to section 6.4 for details about the ‘report

software bugs’ contribution). For example, at the early stages

of implementing OpenNebula:

AnonyAI1 reported software bugs such as: node

installation, networking issues, CPU related problems,

commands execution failure, database malfunctioning, and

trigger initiation failure.

 AnonyAG2 reported software bugs such as: Difference

between the documentation explanation and the actual output

of “onevm cancel” command, Persistent image state error

when deploying “onevm delete” command, and deploying

econe-register command.

AnonyAG3 reported software bugs related to Non-

interactive bash sessions.

AnonyAC5 reported software bugs such as: Bash

processes in opennebula 3.2, Support for oneacct command

does not exist, Cannot see images and virtual machines from

ozones, Problems when connecting oneadmin in sunstone,

137

Deleting virtual machines keeps files on the front end, and

Migrating onedb to opennebula 3.8.3.

After a while, those private actors became familiar with

the technical implementations of OpenNebula. Thus, some of

them started sending emails and adding requests in which

they suggested ideas for integrating complements software

with core OpenNebula (refer to section 6.4 for details about

‘report software features’ contribution). For example:

AnonyAI1 reported software features such as the

integration of Contextualization with Windows VM, Monitoring

driver, Hyper- V Driver, Redhat Cgroup, Redhat Enterprise

Virtualization (RHEV).

AnonyAI3 reported software features such as the

integration of OpenVZ virtual machine.

AnonyAC2 reported software features such as the

integration of OpenNebula client packages only and Extending

tm driver for ssh.

AnonyAC5 reported software features such as the

integration of LVM2 transfer manager driver in opennebula

3.4.x.

As a result, a huge amount of requests (report software

bugs requests and report software features requests) were

found on the mailing list and also on the development portal.

For the period from 2008 up to the end of November 2015, a

total of 3,842 requests were added into the development

138

portal; 57% reporting software bugs and 43% reporting

software features.

After that, core members remove8 invalid and

duplicated requests. Removing invalid requests by core

members is based on their knowledge about needs and

preferences of OpenNebula participants and users. For

example,

Among the requests (reporting software features) added

by AnonyAI1, core members responded on the mailing list that

‘Contextualization with Windows VM’ is the only valid request

because it complies with the needs of users and the vision of

the software.

Core members validate AnonyAI3 request (report

software feature) to integrate OpenVZ virtual machine within

OpenNebula.

Core members invalidate requests added by AnonyAC4

(reporting software features) because requests did not comply

with users’ needs. And some of these requests would develop

extra bottlenecks for users.

In addition, removing duplicated requests includes re-

directing these requests into the valid requests added into the

development portal.

8 Removing invalid / duplicated requests includes blocking any

further discussions and development activities through the
OpenNebula development portal.

139

“Our current approach to solve this is to "humanize" the

value of memory using M,G suffixes... Closing this as it

duplicates #182.” (OpenNebula Development Portal)

Almost all duplicated requests were re-directed into

other valid requests; among the 143 duplicated requests only

3 of them were closed without re-directing.

Among the 3,842 requests added into the development

portal for the period from 2008 up to the end of November

2015, 3,318 requests were identified as valid requests (as

shown in figure 7.3). 54% were valid requests to report

software bugs related to core and complements components

and 64% were valid requests to add software features into

core and complements components in OpenNebula.

Figure 7.3 Percentage of valid, duplicated and invalid requests in OpenNebula

Having wealth in provided information will lead to

“poverty” in human attention (Simon, 1994). This

transformation period is beneficial because grouping the huge

Valid
Requests

86%

Invalid
Requests

10%

Duplicated
Requests

4%

140

amount of requests into valid, invalid and duplicated would

direct the attention of private actors towards valid

contributions only.

It is proposed that this period encourages private actors

to report their suggested contributions because it allows

private actors to quickly and precisely understand users’

needs. It also allows private actors to concentrate their efforts

on necessary contributions, instead of scattering the effort and

time private actors would be contributing and sharing their

private contributions towards users’ needs.

For example, AnonyAI1 provides a consultation service

to customers in the field of cloud computing. Because of his

career, AnonyAI1 was able to report different software

features to OpenNebula. However, AnonyAI1, through the

validation of his requests, understood that OpenNebula users

required integration of core OpenNebula with virtual machines

rather than any other complements software. Therefore,

AnonyAI1 was able to choose a highly demanded feature

(which is ‘contextualization of Windows virtual machine’) and

focus in its development.

OpenNebula participants would be better understanding

their expectations from OpenNebula software and accordingly

would be encouraged to share their private contributions.

141

7.3.2 Selection of Contributions

In the second transformation period, valid requests are

prioritized according to the urgent and preferred needs of

OpenNebula users and participants. Prioritized requests are

determined based on IRC sessions and sponsorship

programmes. Then, prioritized requests are selected in order

to be incorporated in OpenNebula’s next software release.

Core members usually allocate times for IRC session.

“These sessions are held from time to time and

announced beforehand in the mailing list and other social

tools.” (OpenNebula Official Website)

Joining IRC sessions, OpenNebula participants talk and

discuss their preferences about features to be incorporated

into the next release of OpenNebula software.

“At the beginning of each release cycle we organize

a IRC meeting or start a forum thread to discuss the requests

for new features and for extending existing features. This

valuable input to the planning meeting is used to create the

short-term roadmap with the features that will be part of the

release cycle.” (OpenNebula Official Website)

In addition, sponsors of OpenNebula who supported the

software development through sponsorship programmes (e.g.

the ‘fund a feature’ programme and the ‘champions’

programme) can participate in the selection of requests to be

incorporated in the next software release of OpenNebula.

142

High priority requests resulted from the discussions in

IRC sessions and sponsorship programmes are selected in

order to be incorporated with the next OpenNebula software

release. Among the 3,318 valid requests identified for

OpenNebula, a total of 2,437 requests were selected. 1,481

requests related to reporting software bugs and 956 requests

related to adding software features were selected to be

incorporated into the different releases of OpenNebula as

detailed in figure 7.4.

Figure 7.4 Number of valid 'software bugs' and 'software features' requests added
to OpenNebula releases

Therefore, this transformation period is deemed

beneficial because it allows private actors to push their valid

requests (already identified in the validation period) forward.

Private actors would be able to incorporate their valid

requests into OpenNebula releases.

0

200

400

600

800

1000

Release 1 Release 2 Release 3 Release 4

Number of Requests related to Software Bugs

Number of Requests related to Software Features

143

One interesting characteristic for this period is that the

selection of requests is not biased towards a certain

technology. For example, one of the items of complements

software developed in OpenNebula is called ‘virtual machine’.

Through time, different requests had been selected in order to

develop virtual machines in OpenNebula that belong to

different technologies such as KVM virtual machine, XEN

virtual machine, OpenVZ virtual machine…etc.

In the market, these different technologies are

competing in the industry of virtual machines. However, in

OpenNebula, these technologies are linked together through

APIs rather than competing with each other. It is found that

participants and users of OpenNebula implement these

different technologies alongside each other in order to

enhance the performance of their overall information systems.

For example,

AnonyAI2 was implementing XEN virtual machine with

OpenNebula. Through time, AnonyAI2 faced technical

difficulties with the XEN virtual machine. Accordingly, and

using the available APIs, AnonyAI2 decided to implement

another type of virtual machine, called OpenVZ virtual

machine, alongside with XEN in order to overcome the flaws in

XEN virtual machine. Both types of virtual machine, XEN and

OpenVZ, enhanced the performance of AnonyAI2’s computer

network.

144

AnonyAC5 implemented many virtual machines of

different types (KVM and XEN virtual machines) in order to

create a backup environment for databases in his computer

network. Both types of virtual machine, XEN and KVM,

enhanced the backup process of AnonyAC5’s computer

network.

As explained in the previous example, the selection of

requests without biases to a certain technology would

encourage private actors to contribute their complements

software to the collective. This is justified because their private

contributions would be linked with other private contributions

that operate in the same market. Private actors would benefit

from this synergy rather than being scared of competition.

Other interesting characteristics for this period is that, as

shown in table 7.1, the selection of requests always includes

requests that would solve software bugs for already developed

OpenNebula software.

Table 7.1 Summary of percentage of core and complements requests added into
OpenNebula releases

Release

Selected requests related to software bugs

% Core % Complements

1 52% 48%

2 62% 38%

3 65% 35%

4 65% 35%

145

This would encourage private actors to share their

private contributions to the collective as their private

contributions will be part of OpenNebula software which is

continually developed and supported by the OpenNebula

community over the time.

7.3.3 Development and Testing of Contributions

In the third transformation period, the selected requests

are to be developed into lines of source code. This is done

through planning these releases; each request is assigned a

core member to be responsible for the development of the

request into source code. For example, as seen in figure 7.5,

Bug #11 is assigned to release 1.0 and ‘Javi Fontan’ is assigned

to develop the request into the intended release.

Figure 7.5 An example of the scope rule used in OpenNebula

146

The assigned core member is responsible for developing

a source code that fulfils the request. However, other

participants can also contribute by attaching a software patch

into the request page or create a pull request that reveals their

software patch (refer to ‘solve software bugs’ and ‘develop

software feature’ contributions in section 6.4).

For example, bug #2503 was added by one of the core

members (Daniel Molina) into the development portal of

OpenNebula. This request reported a software bug in the

software. This request was then added into the plan for

OpenNebula release 4.6 and another core member (Carlos

Martin) was responsible for fulfilling this request. A participant

(a private actor with corporate email affiliation) participated in

this request by adding a software patch that could solve the

software bug. The software patch was tested by the core

member and after some modifications, the patch was added

into OpenNebula software; the software bug was resolved and

the request was fulfilled.

The result from this transformation period is the actual

development of core OpenNebula as well as the actual

integration of complements with core OpenNebula. However,

the software needs to be tested in order to make sure that the

development of the software complies with the needs and

desires of OpenNebula participants and users.

147

Therefore, a last transformation period starts where any

further modifications need to be done to the software are

conducted and the ready software is freely revealed to the

collective. As shown in figure 7.6, the result was the continual

development of OpenNebula software (core and complements

components) over time9.

Figure 7.6 Commits added to OpenNebula core and complements software

In addition, different types of complements components

were integrated through time (as shown in figure 7.7).

Technical details about these complements are discussed in

Appendix B.

9 Development of core OpenNebula is measured by the number

of commits added into source code of core OpenNebula through time.

0

1000

2000

3000

4000

5000

6000

M
ar

-0
9

Ju
n-

09
Se

p-
09

De
c-

09
M

ar
-1

0
Ju

n-
10

Se
p-

10
De

c-
10

M
ar

-1
1

Ju
n-

11
Se

p-
11

De
c-

11
M

ar
-1

2
Ju

n-
12

Se
p-

12
De

c-
12

M
ar

-1
3

Ju
n-

13
Se

p-
13

De
c-

13
M

ar
-1

4
Ju

n-
14

Se
p-

14
De

c-
14

M
ar

-1
5

Ju
n-

15
Se

p-
15

N
um

be
r o

f s
ou

rc
e

co
de

 c
om

m
its

"Core Source Code" Commits "Complements Source Code" Commits

148

Figure 7.7 The addition of different complements through time in OpenNebula

This transformation period includes developing as well

as testing the software. This period represents the actual

sharing of private contributions by private actors; in this

period, private actors are ‘solving software bugs’ and

‘developing software features’ (refer to section 6.4 for details

about ‘solve software bugs’ and ‘develop software feature’

contributions).

It is proposed that this period is encouraging private

actors to share their private contributions because private

actors would be making their software (with all its technical

design and specifications) within OpenNebula software.

OpenNebula software and the private contributions are not

149

considered as two different pieces of software that are

connected with each other; they are representing a single

software that serves different needs. As a result, private actors

would guarantee free sustainable development, support and

enhancements for their software by the OpenNebula

community.

AnonyAI1 shared his private contributions for integrating

OpenVZ virtual machine within OpenNebula in 2010. Up to the

end of November 2015, software bugs found in this virtual

machine were reported and solved by participants in

OpenNebula. In addition, different enhancements were

suggested and developed for this virtual machine such as

contextualization feature, LDAP authentication feature, DHCP

IP assigning feature…etc.

7.4 Impact of Transformation Process on

Contributions

Chapter six explained that private actors entered in an

active communications in OpenNebula with their own

knowledge, ideas and experiences. After that, they contribute

and share their private contributions that lead to the

development of the collective software.

In this chapter, it has been discussed how these private

contributions are actually transformed into the collective

software through a transformation process. It is found that

this transformation process is a formal process that changes

these requests from one state to another.

150

Table 7.2 explained that this transformation process

functions to align the private interests with the collective

interest as will be explained shortly.

Private actors would be encouraged to contribute

because:

1. The transformation process, through validating

contributions, directed the attention of private actors

towards their contributions that are accepted and necessary

by users of the software. Therefore, private actors would be

encouraged to contribute by focusing on the most needed

contributions, because they know that their suggestions, if

needed (such as reporting software bugs and adding useful

features) are likely to be validated by core members.

2. The transformation process, through selecting

contributions, allows for possible synergies to emerge

between the different contributions. Therefore, private actors

would be encouraged to contribute because they may receive

more than they give, due to potential synergies between the

different contributions. If they do not contribute, they do not

have a say in the development process and leave the rivals

orient the software and benefit from synergies.

151

Table 7.2 Impact of the transformation process

Contribution Transformation process Effect of transformation

Report Software Bugs

Validation of contributions
Direct attention towards necessary

contributions based on users’ needs

Selection of contributions

Allow synergy rather than substitution between

different contributions

Ensure continual development, maintenance

and enhancements for contributions

Solve Software Bugs Development and testing of

contributions

Integrate contributions as part of OpenNebula

software
Develop Software Features

152

3. The transformation process, through selecting

contributions, ensures the continual development, support

and enhancements for contributions provided by private

actors. Therefore, private actors would be encouraged to

contribute (by solving software bugs and developing software

features) in order to integrate their contributions and ensure

the continual development of them.

4. The transformation process, through developing and

testing contributions, properly integrates contributions within

OpenNebula software. Therefore, private actors would be

encouraged to contribute so the software would evolve in a

direction that is coherent with their private needs. If they do

not contribute, the software may not integrate what they

need and become less relevant to their business.

As a conclusion, and informed by Ostrom (1990)

evolutionary theory of collective action, it is proposed that a

transformation process is implemented by core members in

OpenNebula in order to align the collective interest with the

private interest. Hence, aligning the collective interest with

the private interest through ‘transformation process’ can be

the second explanation provided in this thesis for how

participants in open source software would privately invest in

the software without creating the business dilemma.

153

Chapter 8 Rules in OpenNebula

8.1 Overview

This chapter explains rules that structure patterns in

contributions of private actors in OpenNebula. It theorizes the

different ways for executing the different rules that exist

between participants in OpenNebula. In addition, this chapter

proposes that rules are encouraging private actors to

contribute their private contribution because rules are

supporting private actors in inducing, verifying, legitimizing

and adjusting their private contributions in open source

software. Accordingly, private actors, through these rules,

seem to work as a collective rather than worrying about free

riders.

The presentation of results in this chapter is provided in

three sections. Section 8.2 describes rules that exist in

OpenNebula. Section 8.3 explains the different practices used

in order to execute these rules. Section 8.4 theorises the

impact of these rules in encouraging the private contributions

in OpenNebula.

8.2 The Rules

Chapters six and seven explained the pattern in

contributions of private actors in OpenNebula. Private actors

were entering an active communications with other

participants in which they communicate their knowledge,

ideas and experiences. As a result, they decided to share their

154

contributions through a transformation process (validation,

selection and development and testing of requests).

In this section, it will be discussed that there are a set of

rules that seemed to structure the pattern in contributions of

the private actors (as suggested in figure 8.1).

Figure 8.1 A set of rules that structure the patterns in contributions of private

actors in OpenNebula

In order to explain and understand these rules, it is

important to initially define rules in general then define rules

in the context of OpenNebula.

Generally speaking, a rule is an instruction that explains

actions that are considered permitted or forbidden to be done

by individuals (Cole, 2014). Table 8.1 identifies and defines the

set of rules that seemed to exist in OpenNebula.

155

Table 8.1 Rules in OpenNebula

Rules Definition

“Fast tracking” Selection of requests from the development portal into OpenNebula software

releases by any participant (other than core members) is encouraged and

accepted only if they provide money through ‘fund a feature’ programme or

provide time through ‘champions’ programme.

“Follow up” Validation of available documentation (shared knowledge in the mailing list

and the development portal) by all participants is encouraged and accepted.

“Networking” Supporting and opposing (implicit voting) any ideas and suggestions that are

shared on the mailing list are encouraged and accepted by all participants.

“Core-private reciprocity” Exchanging and sharing of developed and tested source code through pull10

requests or production environments are encouraged and accepted by all

participants.

10 Pull request is providing the changes that are done to the software in order to be reviewed by interested parties.

156

8.2.1 “Fast tracking” rule

The first rule is the “fast tracking” rule. This rule

identifies the conditions under which private actors would be

able to select requests, which are added in the development

portal, in order to be incorporated in the next OpenNebula

software release.

The first condition is to financially sponsor the

request(s): If a private actor wants to select requests in order

to be incorporated within the software releases of

OpenNebula, the private actors must financially sponsor that

request.

Seven firms were found to financially sponsor the

development of different requests that they choose to be

incorporated within OpenNebula releases (see table 8.2 for

examples).
Table 8.2 Firms who participated in the 'Fund a feature' programme

Firms Sponsorship feature (from OpenNebula newsletters)

Unity “Virtual Routers functionality was funded by Unity in the

context of the Fund a Feature Program”

BlackBerry “Host offline mode, Marketplace, cluster resource sharing and

Ceph as system datastore functionalities were funded

by BlackBerry in the context of the Fund a Feature Program”

“the VM groups functionality is funded by Blackberry”

BIT.nl “Qcow2 snapshots implementation was funded by BIT.nl”

SURFsara “GPU devices support was funded by SURFsara.”

Université Catholique

de Louvain.

“Flexible network attributes definition in contextualization was

funded by Université Catholique de Louvain.”

157

The second condition is to voluntarily represent

OpenNebula in technical events: If a private actor wants to

select requests in order to be incorporated within the

software releases of OpenNebula, the private actor must

spend some time in representing OpenNebula in identified

conferences and technology days as well as acting as a liaison

between open source projects and the OpenNebula

community.

Twenty-nine private actors were found to volunteer in

representing OpenNebula in formal events. Those private

actors are referred to as ‘champions’ in OpenNebula.

“Champions are passionate technology and community

leaders that represent OpenNebula, help sustain and grow its

user base, and act as a liaison between other open-source

projects and its community.” (OpenNebula Official Website)

This rule is labelled as “fast tracking” rule because when

private actors do certain things (paying or volunteering for the

benefits of OpenNebula), their requests are “fast tracked” and

incorporated into the next release of OpenNebula software.

8.2.2 “Follow up” rule

The second rule is the “follow up” rule. This rule states

that all documentation in OpenNebula shall be updated

through excluding invalid and/or proprietary documentation.

 Documentation in OpenNebula that is studied in this

thesis includes: (a) emails sent on the mailing list and (b)

requests added into the development portal. Both of them

contain a huge amount of information that is disseminated

158

between the different participants. All this documentation

shall be updated by core members on regular basis. Updates

on this documentation are mainly aiming to check the validity

of this documentation and exclude proprietary emails and

requests.

For the first type of documentation in OpenNebula, it is

found that most of the mails sent on the mailing list are

replied to by core members.

“However, to enhance the activity of our Forum we have

an active support team trying to solve your questions at any

time. Feel free to ask and answer any question” (OpenNebula

Newsletter)

Through these replies, core members seemed to filter

these emails into valid and invalid emails.

Valid emails are suitable emails and further discussions

can be attached to them.

A core member replied to an email sent by AnonoyAC1

about a technical problem he experienced while implementing

OpenNebula requesting more details about the problem. The

result from their discussions was solving the problem and

sharing the solution with the community.

A core member replied to an email sent by AnonyAI1

about his suggestion regarding the integration of new virtual

machine into OpenNebula requesting him to help them with

the development. The result from their discussions was the

159

development and integration of ESXi virtual machine with

OpenNebula.

A core member replied to an email sent by AnonyAE3

about the difference between different commands used in the

different releases of OpenNebula. The result was a better

understanding of the different commands and their

implementations in OpenNebula.

However, invalid emails are emails that contain

information that is outside the defined scope for the mailing

list or emails that suggest proprietary solutions to technical

problems of OpenNebula. Core members explained that the

email cannot be processed further.

For example, it is stated in the official website of

OpenNebula that the mailing list has a defined scope; emails

sent on the mailing list shall be related to: questions about

installing and implementing OpenNebula software, discussing

new developments, asking questions about technical

problems that are experienced by participants…etc.

Therefore, any emails that contain information outside this

defined scope are considered invalid.

A core member replied to AnonyAG3’s emails sent about

a technical problem that he experienced while implementing

OpenNebula, saying that solving the problem should be done

through live chat rather than on the mailing list because of the

SLA agreement that they both signed.

160

A core member replied to an email sent by one of the

OpenNebula participants that the email contains marketing

details that are not allowed to be disseminated through the

mailing list

In addition, through these replies, core members

seemed to stop further discussions related to proprietary

software.

A core member replied to an email sent by one of the

OpenNebula participants, saying that the email provided a

proprietary solution that is not allowed to be suggested in a

vendor-agnostic mailing list.

For the second type of documentation in OpenNebula,

among all requests added into the development portal, 75%

have been followed up by core members. For example, core

members define: 9% of the requests as invalid requests as

they are outside the scope of OpenNebula software, 4% of the

requests as duplicated requests as they have already been

added by others, 62% of the requests as valid requests that

need to be developed within OpenNebula and 25% of the

requests are left without any follow up.

This rule is labelled as “follow up” rule because when

private actors contribute by sending an email or adding a

request, core members “followed up” these contributions by

conducting further examinations on these contributions in

order to check validity.

161

8.2.3 “Networking” rule

The third rule is the “networking” rule. This rule defines

voting as the social activity that can occur between the

different participants in OpenNebula.

Through their discussions on the mailing list, private

actors and core members were found to send emails in which

they provide suggestions and ideas for developing

OpenNebula software. Other private actors were found to

reply to those emails by either showing their support for the

suggestions or showing their opposition for the suggestions

(see table 8.3 for examples).

Table 8.3 Examples of "networking" rule in OpenNebula

Participant Illustrative quote

AnonyAI2 “I think this is a great idea for lease pools, countless times I went to the

network section just to get a vm id”

AnonyAI2 “I agree, modifying the network range would be quite useful.”

AnonyAE3 “I am bias, here is my "apt" replacement for a market place that will

work with open nebular and stratuslab, as I don’t believe in lock in.”

AnonyAE5 “I agree with you that tap:aio should be used instead of file:, but

sometimes it is not possible :-(“

AnonyAI1 “This setup has a fundamental limitation in the sense that we cannot

have mixed CPU numbers and assure fair power distribution according

to their CPU value.”

Supporting and opposing requests enhance interactions

and collaboration between participants.

Through supporting and opposing requests, participants

were found to interact by initiating discussions and providing

their own insights and different perspective about requests.

162

For example, while opposing a request suggested by a

participant, AnonyAE5 initiated a discussion and provided his

own insights about possible problems that may occur because

of this suggestion.

While supporting a request suggested by a participant,

AnonyAI2 initiated a discussion and provided his own insights

about enhancing the computer network in terms of

performance and scalability.

As a result, participants are better collaborated

together. For example,

While supporting a request suggested by a participant,

AnonyAI4 initiated a discussion and provided his own

understanding about pros and cons of different performance

metrics for OpenNebula. Accordingly, further collaboration

was conducted between AnonyAI4 and another participant to

develop performance metrics in ‘LXC’ drivers.

This rule is labelled as “networking” rule because it

allows private actors to support or oppose requests, interact a

lot with one another and collaborate accordingly.

8.2.4 “Core-private reciprocity” rule

The fourth rule is the “core-private reciprocity” rule.

This rule identifies the ways of exchanging and sharing of the

source code between private actors and core members of

OpenNebula.

The first way of exchanging and sharing of the source

code is when private actors develop and conduct changes to

163

OpenNebula software and reveal their development efforts

with core members through ‘pull’ requests. For example, 691

pull requests were added to OpenNebula software; 537 pull

requests were rejected, 117 pull requests were approved and

reflected into the source code and 37 pull requests are still

waiting for checking.

The second way of exchanging and sharing of the source

code is when core members provide source code (either to

solve a software bug or to develop a software feature) that

needs to be developed and tested and the private actors

would do the development and testing in their production

environments (see table 8.4).

Table 8.4 Examples of the "core-private reciprocity" rule in OpenNebula

Participant Illustrative quotes

AnonyAC4 “Really sorry for late reply, Sounds excellent to merge cloud init

with ONE. I will try the metadata server as Ricardo pointed out.”

AnonyAI1

“Im testing your example and it simply works. Perhaps you can give
some > more input on the problem? As I say, it shoudln't be CDATA
related if > working with REXML.”

AnonyAC3

“I have just tried to do the following as another method of testing

installing a Windows”

AnonyAE5

“After playing a little bit around with ElasticFox and the authentication I
can see that at least the user pool is queried if I try do some action in
ElasticFox - in the next days I will spent some more time on this issue,
maybe I can upload an (AMI?) image to ONE.”

8.3 Execution Practices

The analysis of OpenNebula revealed that not all of

these rules are enforced by ‘OpenNebula systems’ in order to

be followed and executed by participants of OpenNebula.

164

Actually, the analysis revealed that there are some rules that

are informally emerged and executed between the different

participants. Those rules started as part of the

communications in the mailing list, repeated them through

time and then changed into an acceptable informal rule that

participants agree to follow and execute in the development

portal.

For example, participants communicated in the mailing

list by sharing the software bugs that they had confronted

while implementing OpenNebula software. Other participants

offered a development help in order to solve those software

bugs. They exchange and share source code in order to solve

the software bugs.

As a result, the different participants understand (based

on their experience through the mailing list) the benefits of

exchanging and sharing of the source code in order to solve

software bugs. Accordingly, exchanging and sharing of the

source code are not formally required but socially encouraged

and accepted through time by the different participants.

Exchanging and sharing of the source code is an informal rule

that is referred to as ‘core-private reciprocity’ rule.

Table 8.5 explains the two main execution practices for

rules in OpenNebula.

The first practice is a formal execution of the rule.

Through this practice, participants strictly follow regulated

policy that would generate benefit for them. The second

practice is an informal execution of the rule. Through this

165

practice, participants informally execute rules that would

generate benefits for them.

Table 8.5 Execution practices of OpenNebula rules

Execution Practice of

rule

Description

Formally executed rule Rule is formally executed according to an official

programme in OpenNebula.

Informally executed rule Rule is informally executed; rule is socially emerged

between participants.

In order to understand these practices, Table 8.6

summarizes rules and their execution practices in

OpenNebula.

166

Table 8.6 Summarizing results for rules and their execution practices in OpenNebula

Rule Description Rule Execution practice

“Fast tracking” Selection of requests through ‘Fund a feature’

programme
Formally executed rule.

Selection of requests through ‘Champion’ programme

“Follow up” Excluding invalid documentation Formally executed rule on the

mailing list and informally

executed rule in the development

portal.

Excluding proprietary documentation

“Networking” Voting about provided suggestions
Informally executed rule.

“Core-private

reciprocity”

Sharing the developed source code by private actors

through ‘pull’ requests. Informally executed rule.

Sharing the tested source code by private actors in

their production environment.

167

8.3.1 Execution of the “Fast Tracking” Rule

“Fast tracking” is a formally executed rule. Private

actors can only select requests from the development portal

only if they officially register in either the ‘Fund a feature’

programme or the ‘champions’ programme.

(a) ‘Fund a feature’ programme

“When we define the roadmap for a new OpenNebula

release we listen to all users, trying to prioritize the features

demanded by the organizations supporting the open-source

project with a commercial subscription. However we cannot

guarantee a time frame for their development. The Fund a

Feature Program can be used to implement within a given

time frame new functionality or enhancements in the code,

new or enhanced drivers, or new integrations with existing

management, billing and other OAM&P systems.”

(OpenNebula official website)

(b) ‘Champions’ programme

“Champions are passionate volunteers who work to

connect, teach and spread OpenNebula, throughout the world.

Some of the roles that a Champion can play are: …. Participate

in local meetups, user groups, etc.“ (OpenNebula official

website)

Both programmes are formally declared by OpenNebula

systems in 2013 and 2015, respectively. Both programmes

incite private actors to get involved with the development of

168

the software and to integrate their complements software

with core OpenNebula.

Through the ‘fund a feature’ programme, private actors

would accelerate the development of OpenNebula software

according to their business needs.

“Funding a feature not only gets you the feature you

need faster, but allows you to contribute to the open source

project from which you derive so much value.” (OpenNebula

official website)

Through the ‘champions’ programme, private actors

would integrate their business needs with OpenNebula

software. And through the different events in which they

volunteer, they would raise the awareness about OpenNebula

software and its commercial implementation. Thus, they

would be disseminating knowledge about OpenNebula

software and their business which is integrated within

OpenNebula,

“These events provide a great opportunity to raise

awareness for the project and get more of you involved as

contributors and users. As we scale the project to the next

level, we need your help in spreading the message.”

(OpenNebula official website)

In sum, “fast tracking” rule is formally executed through

either the ‘fund a feature’ programme or the ‘champions’

programme.

169

8.3.2 Execution of the “Follow Up” Rule

The “follow up” rule is a rule that is formally and

informally executed in OpenNebula as follows. On the mailing

list, invalid and proprietary emails are formally excluded from

the mailing list. Invalid and duplicated requests are informally

excluded from the development portal.

For the mailing list, it is stated in the official website of

OpenNebula that:

“The average response time is within 1 business day.”

(OpenNebula Official Website)

It is found that this official rule is executed in

OpenNebula. For example, as shown in table 8.7, emails sent

by participants in OpenNebula are responded to within one

business day as officially required.

Table 8.7 Examples of formal execution of the “fast tracking" rule

Sent date
Response

date
Sent date Response date

AnonyAI1: 14th

June, 2009

Core member:

15th June 2009

AnonyAC1: 24th

April 2014

Core member:

24th April 2014

AnonyAI1:

15th Sept

2009

Core member:

16th Sept 2009

AnonyAC3: 8th

July 2013

Core member:

9th July 2013

AnonyAI2: 29th

April 2012

Core member:

30th April 2012

AnonyAG2:

17th Jan 2013

Core member:

17th Jan 2013

AnonyAI2: 21st

June 2013

Core

members: 22nd

June 2013

AnonyAE1: 3rd

December

2013

Core member:

5th December

2013

170

In addition, excluding emails that contain proprietary

solutions is formally required in the official website of

OpenNebula.

“OpenNebula roadmap is completely driven by users’

needs with features that meet real demands, and not features

that result from an agreement among the different vendors

participating in the management board of the project.”

(OpenNebula Official Website)

However, there is no evidence to show that requests in

the development portal are updated according to a formal

regulation for updating requests. Thus, it is inferred that

requests are updated with no formal regulation that strictly

controls updating requests. For example:

Some requests were updated in the same month of

adding the request such as request number ‘1441’ was added

and updated on September 2012 and request number ‘1561’

was added and updated on October 2012.

Some requests were updated within months of adding

the request such as request number ‘218’ was added on April

2010 while updated on July 2010 and request number ‘183’

was added on December 2009 while updated on April 2010.

Some requests were updated within a year or more of

adding the request such as request number ‘115’ was added

on June 2009 while updated on July 2010 and request number

171

‘1610’ was added on October 2012 while updated on March

2015.

In sum, “follow up” rule is formally executed for emails

sent on the mailing list but informally executed for requests

added into the development portal.

8.3.3 Execution of the “Networking” Rule

For the “networking” rule, voting and collaboration

emerged between core members and private actors without

being formally enforced by ‘OpenNebula systems’.

Private actors are given the opportunity, through the

mailing list, to voluntary discuss and implicitly vote with or

against some suggestions that may be added into OpenNebula

software releases.

“We would love to hear your feedback, so we have time

to include possible changes in the next maintenance release.

You can reach us through the user mailing list, give it a spin!”

(OpenNebula Newsletter)

“Feedback from the community has started trickling”

(OpenNebula Newsletter)

“Also, this kind of feedback from the OpenNebula users

makes us blush and happy, and willing to keep OpenNebula in

the right track!” (OpenNebula Newsletter)

172

“This feedback was crucial in releasing OpenNebula

4.6.1, which fix bugs present in the first Carina version.”

(OpenNebula Newsletter)

“specially this last month thanks to the vulnerability

discovered by folks at Horst Görtz Institute for IT-Security,

Ruhr-University Bochum. This feedback was crucial in releasing

OpenNebula 4.6.2.” (OpenNebula Newsletter)

All previous examples show that “networking rule” is

informally executed between participants of OpenNebula.

8.3.4 Execution of the “Core-Private Reciprocity”

Rule

For “core-private reciprocity” rule, there is no formal

regulation that enforces exchanging and sharing of the source

code between core members and private actors. However,

many incidents have been highlighted in which they seem to

develop and share their private development in the

development portal and the mailing list.

“Microsoft announced in the OSCON 2014 their

willingness to tightly collaborate with OpenNebula in order to

build Microsoft Azure support within your favourite Cloud

Management Platform.” (OpenNebula Newsletter)

“Also last month, guys from OneInsight presented their

visualization plugin for OpenNebula in the CentOS Dojo in

Lyon.” (OpenNebula Newsletter)

173

“We want to give a big thanks from here to Carlo

Daffara and Vincent V.d. Kussen for their intensive testing,

pushing OpenNebula to its limits.” (OpenNebula Newsletter)

“We want to highlight the excellent contribution made

by Terradue, in the form of an OpenNebula add-on.”

(OpenNebula Newsletter)

All previous examples show that “core-private

reciprocity” rule is informally executed between participants

of OpenNebula.

8.4 Impact of Rules on Contributions

The analysis so far revealed that the community of

participants in OpenNebula, both core members and private

actors, collectively found their own ways to emerge their rules

and to agree on their executions (refer to sections 8.2 and 8.3

for details).

Informed by Ostrom (1990) evolutionary theory of

collective action, it is proposed that rules, which structure the

patterns in contributions for private actors, emerged based on

the local experience of OpenNebula participants.

 Through these rules and their executions,

(1) The private interest is achieved because rules

encouraged the private investments through “fast tracking”,

“follow up” and “networking” rules

174

(2) The collective interest is achieved because rules

encouraged the revealing of the private investments through

“core-private reciprocity” rule.

As a result, participants would induce, verify and

legitimate their private investments while ensuring the co-

creation of the collective software (as shown in figure 8.2).

To start with, the “fast tracking” rule stipulates private

actors to invest their money or time in order to select

requests that would be incorporated with the next

OpenNebula software release. Private actors would be

encouraged to contribute because, through “fast tracking”

rule, private actors would be able to induce their business

needs within OpenNebula software. Inducing their business

needs within OpenNebula software would indeed support

private actors in attracting the attention of OpenNebula users

and participants towards their business.

One of the salient examples is BlackBerry Company.

Through the “fast tracking” rule, especially ‘Fund a feature’

programme, BlackBerry was able to induce its contributions

such as ‘VM groups’, ‘VM operation permissions

(ADMIN,MANAGE and USE)’, ‘VM history’, ‘token functionality’

and ‘LDAP group mapping’. In addition, BlackBerry was able to

induce its technologies as a representor from the company

was a keynote speaker in OpenNebula conference in 2017.

The “follow up” rule requires core members to exclude

invalid emails and to request as well as to reject proprietary

175

integration. With the huge amount of documentation

disseminated on the mailing list and the development portal,

the “follow up” rule filters this documentation by excluding

invalid and duplicated ones. Private actors would be

encouraged to contribute because contributions will be

verified. Thus, attention of OpenNebula users and participants

would not be distracted with irrelevant and proprietary

documentation.

For example, AnonyAI1 suggested contributions related

to ‘the integration of Contextualization with Windows VM’,

‘Monitoring driver’, ‘Hyper- V Driver’, ‘Redhat Cgroup’, ‘Redhat

Enterprise Virtualization (RHEV)’. Three of these suggested

contributions were excluded. Therefore, the attention of

OpenNebula participants was directed towards the two

remaining verified suggestions. Without AnonyAI1

contributions, the two contributions would not be discussed,

verified and accepted.

176

Figure 8.2 Impact of rules in OpenNebula

177

Valid contributions that are suggested and revealed by

private actors represent their needs from OpenNebula

software. Those needs are plenty and different as private

actors are heterogeneous (as explained in chapter 6).

Therefore, the “networking” rule requires private actors to

provide feedback and vote for their preferences in order to

legitimate the most favoured ones.

Referring to the previous example about contributions of

AnonyAI1, core members and OpenNebula participants

provided feedback about the two verified contributions from

AnonyAI1. Based on their discussions, one of these verified

suggestions was accepted as a legitimate contribution that

shall be selected and immediately incorporated in OpenNebula

software through requests numbers 563, 568, 636 and 701.

Finally, the “core-private reciprocity” rule means

exchanging and sharing of source code between core

members and private actors. The “core-private reciprocity”

rule encouraged private actors to share their private

knowledge (the privately developed and tested source code)

in order to integrate their contributions with core

OpenNebula and co-create OpenNebula software.

OpenNebula software is currently single software that is

jointly produced by core members and private actors in which

both developed a software that is mutually beneficial. Core

OpenNebula and complements are integrated as one software

as shown in figure 8.3. Without development and testing

178

contributions, OpenNebula software would be only core

OpenNebula software that is separated from external

complements software.

Figure 8.3 The technical components of the jointly developed OpenNebula software

Informed by Ostrom (1990) evolutionary theory of

collective action, it is proposed that rules and their execution

practices are supporting the private actors to work as a

collective in OpenNebula rather than scaring from rivalry and

the business dilemma that would be experienced. They work

as a collective to induce, verify, legitimate and co-create their

179

private contributions. They collectively work to support their

private interest as well as to ensure the continual

development of the collective software.

Hence, aligning the collective interest with the private

interest through ‘rules and their executions’ can be the third

explanation provided in this thesis for how participants in

open source software would privately invest in the software

without creating the business dilemma.

180

Chapter 9 Discussion

9.1 Research Review

Open source software is an innovation in which the

development and the usage of the software is delivered for,

and developed by, users (von Hippel, 2001). Users are

individual participants and private actors who are

geographically separated but, using internet, which are

collaborating and developing open source software that is

declared under either restrictive or permissive license type.

Open source software is the prominent example for the

‘private-collective’ model of innovation suggested by von

Hippel and von Krogh (2003). This model explains that private

actors are crucial investors for open source software. This

model also emphasizes that revealing the private investments

of the software by private actors can be the best course of

action that will both increase the private benefit for private

actors and will support the development of the collective

software.

However, this thesis suggested that investing in open

source software, under permissive licensing, and revealing

these investments may weaken the ‘appropriability regime’ for

private actors. This is justified because if private actors

revealed the software, then the source code would be

available to anyone because the software is considered a

‘commons’. This would mean that their ‘appropriability

regime’ ; knowledge in terms of know-how would be available

181

and, accordingly, imitating of their innovation would be

uncomplicated (Teece, 1986). Any participant can then copy

the source code and start their own software project and of

course become a competitor.

Therefore, it is suggested in this thesis that private actors

would experience a business dilemma as follows. Private

actors need to share their private investments in the open

source software in order to benefit from it. However, their

contributions can be easily hijacked by rivals. Rivalry would be

deleterious because their innovation would be easily imitated

and profits will be shared between innovators and imitators.

Thus, this dilemma would theoretically discourage private

actors to share their contributions to open source software

without a strong guarantee. However, in some cases of reality,

this restrain is not observed. For example, statistics show that

private actors tend to increasingly contribute and innovate to

permissive open source software in different industrial sectors

over years (Skok, 2013).

In sum, before conducting this research, it was

understood that there is a business dilemma experienced by

private actors that theoretically is suggested to discourage

private actors from contributing to open source software. But

practically, private actors are found to contribute their private

knowledge to open source software despite the dilemma. This

difference between theory and practice encourages the start

of this thesis in order to answer the following questions:

182

 ‘Why private actors choose to invest and share rather

than to free ride in permissive open source software?’

 ‘How can the private actors invest and share in permissive

open source software without experiencing a business

dilemma?’

9.2 Empirical Findings

The data collection and analysis in this thesis were

informed by Ostrom (1990) evolutionary theory of collective

action. This theory explains that people are rationale; they can

talk to each other and to use their local knowledge and

experiences in order to arrange the pattern of their collective

action. This is crucial in order to extract themselves from

collective action problems that they experienced.

Findings revealed the pattern in contributions of private

actors of OpenNebula. Private actors are involved in an active

communication, they add requests accordingly then a

transformation process transformed these requests into

OpenNebula software in the form of ‘collective

complementarities’. In addition, a set of rules emerged by

private actors in order to structure this pattern.

These findings help in answering the research questions

as follows:

 First, private actors are voluntary entering in an ‘active

communications’ with other participants.

Through this ‘active communications’, they present

themselves and their preferences, highlight software bugs and

183

features, suggest ideas and experiences, solve software bugs,

share source code, support and oppose alternatives…etc.

Evidences proposed that an ‘active communications’ act

as a prerequisite for the active private contributions done by

private actors.

Second, the private contributions are locked within the

collective software in the form of ‘collective

complementarities’ through a ‘transformation process’.

Several evidences proposed that this process worked to

align the private interests of private actors with the collective

interests of the software. The process achieved that private

interest because it directed the attention of private actors

towards necessary contributions based on users’ needs,

allowed for synergy between the different contributions,

ensured the continual development of contributions. In

addition, the process aligned the private interests with the

collective interest because it integrated the private

contributions as part of the collective software (collective

complementarities).

Third, findings revealed that a set of ‘rules’ are emerged

according to the exchanged knowledge and experiences of the

private actors and other participants.

Several evidences proposed that these ‘rules’ worked to

support the alignment between the private and the collective

interests, which is done through the ‘active communications’

and the ‘transformation processes. Rules achieved the private

184

interests because it supported the verification, legitimating

and induction of private contributions. In addition, rules

aligned the private interests with the collective interest

because they co-created the collective software through the

private contributions.

Fourth, it is proposed that the alignment between the

private and the collective interests encourages private actors

to share and to link their private software with the collective.

As explained earlier the alignment between the private

and the collective interests is done through the ‘active

communications’ and ‘transformation process’. The alignment

is also supported through a set of ‘rules’ that emerged based

on the experiences and knowledge of private actors.

This alignment worked to lock the private software with

the collective software. Through sharing of the private

contributions, the private software would be part of the

‘collective’ complementarities’ that are used across the

different industries.

9.3 Research Contribution

9.3.1 Theoretical Contributions

Findings of this thesis contribute to the literature of

open source software by thriving von Hippel and von Krogh

(2003) ‘private-collective’ model of innovation (performed

under permissive licensing) in different ways.

The first broad contribution of this thesis is through the

introduction of ‘collective complementarities’ concept.

185

In the ‘private-collective’ innovation model, private

investments are considered crucial investments for open

source software. In addition, revealing the private investments

is better than free riding others investments. Thus, private

actors are innovators who reveal their innovation to the

collective. According to Teece (1986), a competitive advantage

for an innovator could be gained by selling proprietary

complementarities for example.

Findings in this thesis reveal that, through ‘collective

complementarities’, private actors better lock their private

software with the collective software. They are bridging their

private benefits with the collective benefits. Through sharing

their private investments, private actors work alongside with

other community members to collectively do something

beneficial for them all.

In addition, the development of the software (in the

form of ‘collective complementarities’) is positively affecting

the competitive advantage of the private actors. this is

justified because such software is considered ‘generative’;

software that can be implemented according to

heterogeneous needs (Boland Jr et al., 2007). And generativity

is considered as competitive advantage for developers of the

software as it help developers to broaden the

implementations of their software across different markets

(Yoo et al., 2010).

The second broad contribution of this thesis is through a

better understanding of the characteristics of the collective

186

software (open source software declared under permissive

licensing).

Open source software is a ‘commons’ because it is a non-

excludable resource (Hess and Ostrom, 2005); the source

code is publicly available and discrimination against the use of

the source code is not allowed.

Appropriation of the ‘commons’ is usually associated

with a collective action problem that is considered harmful to

the commons (Ostrom, 2003). For example, O'Mahony (2003)

explained that open source software declared under

permissive licensing can be appropriated by participants who

can privatize the software. This leads to Hardin (1977)

‘tragedy of the commons’ problem that reduces the

availability of the software to the collective.

In order to overcome collective action problems that are

caused by appropriation of the commons, Ostrom (1990)

suggested that contributors to the ‘commons’ can gather and

agree on arrangements, without formal intervention, to: (a)

minimize rivalry and (b) control the capacity and frequency of

appropriation to the ‘commons’.

As shown in table 9.1, this thesis enhance our

understanding of how the ‘private-collective’ model of

innovation worked in open source software under permissive

licensing by explaining open source software as a ‘commons’

that is exposed to appropriation. Details of these differences

are explained shortly.

187

Table 9.1 Differences between open source software and other appropriated 'commons'

‘Commons’

Open source software as a

‘Commons’

Definition Excludable resource Excludable resource

Nature of the ‘commons’ Finished ‘commons’ Unfinished ‘commons’

Appropriation effect

Appropriation is harmful. It causes the

depletion of the ‘commons’

Appropriation can be beneficial. It

enhances the development of the

software

Rivalry effect

Rivalry is not encouraged. It accelerates

depletion of the ‘commons’.

Therefore, Contributors are owners who

shall exclude others and control use of the

‘commons’

Rivalry is encouraged. It enhances

the development of the software

according to different needs.

Contributors do not exclude anyone.

Contributors are forfeiting their

ownership rights of the software but

controlling the future direction for the

software

188

 First,contrary to other ‘commons’, appropriation in

open source software is encouraged and rivalry is found

beneficial to open source software.

This can be explained by the differences of nature for

these ‘commons’. Fishery for example is a finished ‘commons’;

it is ready to be used immediately after appropriation. Unlike

fishery, open source software is an unfinished good. Copying

the source code is not enough for anyone to start using it. One

need to modify it, amend it, and configure it in order to fit

their requirements and computing setting. Accordingly,

appropriation of the software is enhancing its value rather

than diminishing it; appropriation caused the continual

development of the software. On the other hand, rivals are

crucial appropriators because their appropriation of the

software would properly reflect market needs and

requirements.

Second, contrary to other ‘commons’, contributors in

open source software are forfeiting their rights by revealing

the software to the public but are still forcing constrains on

the technical direction of the software for their business

benefits.

Usually, contributors to the ‘commons’ are owners of it.

They designed their own arrangements in order to keep their

own right for using the ‘commons’ and exclude others. But in

open source software context, contributors are revealing their

private investments to the collective; their privately developed

software is no more considered part of their intellectual

189

property. Anyone can copy it, modify it and combine it with

other pieces of software. However, contributors are also

forming their agreements, such as active communications,

transformation process, rules and their formal and informal

execution, in order to control the future direction of the

software.

For example, through the formal and informal rules,

private actors are inducing their own technologies in the open

source market, verify their technologies by open source needs,

legitimize their technologies as part of the open source market

and co-create their technologies in order to broaden the

implementations of their technologies.

This thesis also contributes to the literature of open

source software as ‘sponsored’ software.

Researchers categorises open source software into

autonomous and sponsored software (West and O’Mahony,

2005a; O’Mahony, 2007; West and O’Mahony, 2008).

Autonomous open source software refers to software initiated

by individuals and are self-managed (de Laat, 2007; West and

O’Mahony, 2008), while sponsored open source software are

those under the authority and control of a profit or non-profit

organisation (West and O'Mahony, 2008). As shown in table

9.2, each category has its pros and cons.

190

Table 9.2 Examples of the advantages and disadvantages of autonomous and
sponsored open source software

 Autonomous Sponsored

Pros

High norms of reciprocity and

sharing between participants

The development of the

software within commercial

attention

The community is evolving

with the software

Ongoing technical and

strategic support

Cons

Lack of commercial support

and attention

Worry about control over

the software

Limited technical scope for the

software

Uncertainty about the

future legal arrangements

for the software

Advantages revealed for OpenNebula as sponsored

software are: incubating the development of the software

within commercial and market attention, providing ongoing

technical resources to ensure the sustainable development of

the software and controlling the software commercial

direction and participants heterogeneous priorities.

However, arrangements identified in chapters seven and

eight help in bringing the best of the two worlds; the

autonomous and the sponsored.

In sponsored software, software is already developed

and disclosed by a firm. Thus, participants are directly

introduced with complex software and may find it hard to

understand the software. However, these rules allow all

191

participants to grow with the software and the community and

learn the software accordingly.

In addition, in sponsored software, participants are

worried about control over the future of the software as the

technical direction of the software would be serving firms’

need and is not be clear for participants. However, these rules

allow participants and sponsors to share ongoing control over

the development of the software as well as determining the

future direction of the software.

Moreover, norms of sharing and reciprocity are usually

associated with participants in autonomous software as they

all work for the collective. However, rules support the norms

of sharing and reciprocity between sponsors and private actors

in order to generate collective software.

9.3.2 Practical Contribution

First, this thesis suggests that private actors would be

experiencing a collective problem, the business dilemma,

which would discourage them from contributing. Therefore,

the business dilemma represents a problem of motivation that

requires managers and practitioners attention.

This thesis theorises an Information Technology (IT)

practice (transformation process in chapter 7) as a solution for

this problem. And such theorisation should help practitioners

in developing better practices while investing in open source

software.

192

Information Technology practices are examined in the

literature of open source software (Yamauchi et al., 2000;

Scacchi, 2002). Information Technology practices are usually

used as a solution to operational problems such as

coordination problems (Markus, 2007). However, this thesis

benefits from this information technology practice in order to

solve a motivation problem (collective action problem).

Practically, this thesis encourages practitioners to

harness information technology practices in organizations to

better align the private with the collective interests. Through

information technology practices, practitioners can direct

attention of private actors towards necessary contributions

based on users’ needs, allow for synergy between the different

contributions, ensure the continual development and

enhancement of contributions and integrate contributions as

part of the collective software.

Second, this thesis theorises a bundle of rules that

would encourage both innovators and rivals to play an active

role in the development of the software.

This point is crucial because generally in the literature,

researchers focused on the active role for innovators in open

source software (West and O'Mahony, 2005a). For example,

innovators participate to the development of the software,

plan the future direction of the software and are able to re-

license the software at any time. On the other hand, other

participants are playing a passive role in the software (von

Krogh et al., 2012). They can only participate to the

193

development of the software. They don’t have any control

over the software; if participants’ motivations are similar to

the innovator, they would sustain their participations.

Otherwise, they will stop their participations to the software.

As shown in table 9.3, findings in this thesis suggested

the development of informal rules alongside the formal ones

and these rules allow participants to play their active role that

benefit them and the development of the software as well.

They are part of the software now. They are not only

participating to the software, they can plan the development

of the software by inducing their own technologies and co-

create their software with the collective software.

Therefore, practically, findings would encourage

practitioners (who are innovators of the software) to enforce

their formal rules while allowing other participants to

informally agree on their rules in order to enhance the

development of the collective software and develop better

relationships with rivals and partners.

194

Table 9.3 The active role of participants with arrangements (formal and informal rules)

 Without arrangements With arrangements

Innovators Participants Innovators Participants

Download Yes Yes Yes Yes

Participate Yes Yes Yes Yes

Plan Yes No Yes Yes

Commit source code Yes No Yes Partially

195

9.3 Limitations of the Research

Interpretivism is the philosophical stand for this thesis.

This thesis relied on a single case study as a research method.

One of the limitations of this thesis is its dependence on a

qualitative method for conducting the research; the use of a

single case study. A single case study has been criticized for its

dependent on researcher subjectivity and its lack of

generalisability. Such criticisms are tied to the general critique

for qualitative research as being a subjective research contrast

to quantitative research that has been valued for its

objectivity (Johnson et al., 2006).

 Researcher subjectivity is a valid issue in qualitative

research especially when dealing with a single case study in

collecting and analysing data. Using different methods will

enable the researcher to compare and contrast between

different case studies. And this will decrease the level of

subjectivity through the analysis.

However, it is believed that subjectivity in this thesis is

controlled by avoiding pre-judgement of the research through

the use of quantitative data that is used to support the

qualitative findings. In addition, objectivity should not be

treated as an ultimate value by its own for the research

especially when research is focusing on understanding how

and where rather than generalizing of findings (Berg et al.,

2004). And this thesis aims for understanding how the

‘private-collective’ model of innovation worked in open

source software that is declared under permissive licensing

196

and the use of a single case study helps the researcher to gain

in-depth data that are used to build a detailed picture of the

case study and data implications.

Another limitation for this thesis is the use of online

data as the only source of data to be collected and analysed.

The use of other data such as data generated from interviews

would enrich the deep understanding about different findings

generated from the analysis of online data.

For example, the analysis of online data revealed that

participants in OpenNebula have different incentives while

participating in OpenNebula. If interviews to be conducted

with these participants, it would be beneficial in exploring the

mixed incentives of these different participants in

OpenNebula as well as the effect of these mixed incentives on

the actions performed by them.

Another limitation for this thesis is a time constraint.

Time of this thesis was limited to three years of conducting

research. And at the end of each year, an annual review needs

to be attended in order to officially finish the requirement of

the degree. Accordingly, further data collection and analysis

was not possible. However, data collected and analysed so far

were enough to conduct a rigorous research and answer the

research question.

Despite this limitation, it is believed that online data

collected for this thesis were collected and analysed

rigorously:

197

First, the main purpose for analysing data in this thesis

is to analyse investments done by the different participants

through time. And this can be rigorously identified by using

archived data such as online mailing list and development

portal rather than interviews.

Second, according to Scott (1990) guidelines who

suggested to rely only on “authentic, credible, representative,

and meaningful” documents in order to ensure the

transferability of the data used in the research. Online data

collected in this thesis were published on the official website

of the OpenNebula software, were published by an official

employee and approved by the project leader, and were

neatly fitted into a standard format approved by the

OpenNebula team.

Third, different sources of online data were collected;

“data sources triangulation” (Thurmond, 2001). Triangulation

was crucial in order to gain a justified credibility of the

qualitative findings, an inclusive view of the phenomenon

under study, as well as a low level of potential biases within

the research in order to ensure plausibility.

9.4 Direction for Future Research

The findings of this research open new domains of

knowledge that can be explored.

First, in terms of methods, researchers are urged to

gather data from different open source software that are

different in their technical requirement, industry, types of

participants, and types of permissive licenses. And they can

198

then analyse data in order to identify the different rules that

are used.

Such direction of future research is crucial for scaling up

our understanding of the ‘private-collective’ model of

innovation. Researchers will not only identify rules (which

differ based on the context) that can be applied but also

compare and contrast their different findings. Accordingly,

they can provide general principles for the needed rules.

Second, in terms of methods, quantitative methods of

data collection and analysis can be used in order to explore

unrevealed knowledge in open source software under

permissive licensing. For example, panel data analysis using

STATA software in order to test proposition identified in this

thesis.

Third, in terms of conceptualisation, a better

theorization of open source software (as a ‘commons’ that is

exposed to appropriation) can be achieved. For example,

researchers can identify ‘rights’ of sponsors and private actors

as rights are the product of identifying ‘rules’ in the commons

Schlager and Ostrom (1992). Identifying rights based on the

rules that are emerged between participants would suggest a

balancing act between sponsors, private actors and

community members.

Fourth, further research can be conducted to understand

and explain the relationships between IT practices and

motivations of participants in open source software. And how

these practices would change motivations over time?

199

References

ALEXY, O. 2008. Putting a Value on Openness: The Effect
of Product Source Code Releases on The Market
Value of Firms. Entrepreneurship and Innovation -
Organizations, Institutions, Systems and Regions.
Denmark.

AMO, M. 2007. Open Source Software: Critical Review of
Scientific Literature and Other Sources. Master of
Science in Computer Science, Norwegian University
of Science and Technology.

ARNOLD, J. E. M. 1998. Managing forests as common
property, Food & Agriculture Org.

ASLETT, M. 2011. The trend towards permissive licensing
[Online]. Available:
https://blogs.the451group.com/opensource/2011/0
6/06/the-trend-towards-permissive-licensing/
2016].

ATKINSON, P., & COFFEY, A. 2004. Analysing
documentary realities. In: SILVERMAN, D. (ed.)
Qualitative Research: Theory, Method and Practice
2nd Edition ed. London: Sage Publications.

AVISON, D. E. & PRIES-HEJE, J. 2005. Research in
information systems: A handbook for research
supervisors and their students, Gulf Professional
Publishing.

BALDWIN, C. Y. & CLARK, K. B. 2000. Design rules: The
power of modularity, MIT press.

BALDWIN, C. Y. & CLARK, K. B. 2006. The Architecture of
Participation: Does Code Architecture Mitigate Free
Riding in the Open Source Development Model?
Management Science, 52, 1116-1127.

BARLEY, S. R. & TOLBERT, P. S. 1997. Institutionalization
and structuration: Studying the links between action
and institution. Organization studies, 18, 93-117.

BENTON, T. & CRAIB, I. 2010. Philosophy of social
science: The philosophical foundations of social
thought, Palgrave Macmillan.

BERG, B. L., LUNE, H. & LUNE, H. 2004. Qualitative
research methods for the social sciences, Pearson
Boston, MA.

BERGER, P. L., LUCKMANN, T. & ZIFONUN, D. 2007. The
social construction of reality, na.

BLACKDUCKSOFTWARE. 2015. 2015 Future of Open
Source Survey Results [Online]. Available:

200

http://www.slideshare.net/blackducksoftware/2015-
future-of-open-source-survey-results 2016].

BLACKSTONE, A. 2012. Principles of Sociological Inquiry–
Qualitative and Quantitative Methods.

BOLAND JR, R. J., LYYTINEN, K. & YOO, Y. 2007. Wakes of
innovation in project networks: The case of digital 3-
D representations in architecture, engineering, and
construction. Organization Science, 18, 631-647.

BONACCORSI, A. & ROSSI LAMASTRA, C. 2003. Altruistic
individuals, selfish firms? The structure of
motivation in Open Source software. The structure
of motivation in Open Source software.

BOYD, C. O. 1993. Combining qualitative and quantitative
approaches. NLN publications, 454-475.

CARDENAS, J.-C., AHN, T. & OSTROM, E. 2004.
Communication and co-operation in a common-pool
resource dilemma: a field experiment. Advances in
Understanding Strategic Behaviour. Springer.

CASADESUS-MASANELL, R. & LLANES, G. 2011. Mixed
Source. Management Science, 57, 1212-1230.

CHARMAZ, K. 2006. Constructing Grounded Theory: A
Practical Guide through Qualitative Analysis, U.S.A,
SAGE Publications.

CHUA, W. F. 1986. Radical Developments in Accounting
Thought. Accounting Review, 61, 601-632.

COLAZO, J., FANG, Y. & NEUFELD, D. Development
Success in Open Source Software Projects:
Exploring the Impact of Copylefted Licenses.
Americas Conference on Information Systems,
2005.

COLE, D. H. 2014. Formal Institutions and the IAD
Framework: Bringing the Law Back In. Available at
SSRN 2471040.

COMINO, S. & MANENTI, F. M. 2011. Dual Licensing in
Open Source Software Markets. Information
Economics and Policy, 23, 234-242.

CROSSAN, F. 2003. Research philosophy: towards an
understanding. Nurse researcher, 11, 46-55.

CROTTY, M. 1998. The foundations of social research :
meaning and perspective in the research process,
London, Sage Publications.

CROWSTON, K., WEI, K. N., HOWISON, J. & WIGGINS, A.
2012. Free/Libre Open-Source Software
Development: What We Know and What We Do Not
Know. Acm Computing Surveys, 44.

CUNLIFFE, A. L. & JUN, J. S. 2005. The need for reflexivity
in public administration. Administration & Society,
37, 225-242.

201

CURTIS, G. & COBHAM, D. 2008. Business information
systems: Analysis, design and practice, Pearson
Education.

DAHLANDER, L. 2005. Appropriation and appropriability in
open source software. International Journal of
Innovation Management, 9, 259-285.

DAHLANDER, L. & MAGNUSSON, M. 2008. How Do Firms
Make Use of Open Source Communities? Long Range
Planning, 41, 629-649.

DAHLANDER, L. & MAGNUSSON, M. G. 2005. Relationships
Between Open Source Software Companies and
Communities: Observations from Nordic Firms.
Research Policy, 34, 481-493.

DANIEL, S., MIDHA, V., BHATTACHERHJEE, A. & SINGH,
S. 2018. Sourcing knowledge in open source
software projects: The impacts of internal and
external social capital on project success. The
Journal of Strategic Information Systems.

DE LAAT, P. B. 2007. Governance of Open Source
Software: State of the Art. Journal of Management &
Governance, 11, 165-177.

DEMSETZ, H. 1967. Toward A Theory Of Property Rights.
American Economic Review, 57, 347-359.

DENZIN, N. K. & LINCOLN, Y. S. 2008. Collecting and
interpreting qualitative materials, Sage.

DENZIN, N. K. & LINCOLN, Y. S. 2011. Introduction: The
Discipline and Practice of Qualitative Research. In:
DENZIN, N. K. & LINCOLN, Y. S. (eds.) The SAGE
Handbook of Qualitative Research. USA: SAGE
Publication, Inc.

EASTERBY-SMITH, M., GOLDEN-BIDDLE, K. & LOCKE, K.
2008. Working with pluralism determining quality in
qualitative research. Organizational Research
Methods, 11, 419-429.

EISENHARDT, K. M. 1989. BUILDING THEORIES FROM
CASE-STUDY RESEARCH. Academy of Management
Review, 14, 532-550.

FEENY, D., HANNA, S. & MCEVOY, A. F. 1996. Questioning
the assumptions of the ''tragedy of the commons''
model of fisheries. Land Economics, 72, 187-205.

FELLER, J., FINNEGAN, P. & HAYES, J. 2008. Delivering
the'whole product': business model impacts and
agility challenges in a network of open source firms.
Journal of Database Management, 19, 95.

FINLAY, L. 2002. Negotiating the swamp: the opportunity
and challenge of reflexivity in research practice.
Qualitative research, 2, 209-230.

202

FLYVBJERG, B. 2006. Five misunderstandings about case-
study research. Qualitative Inquiry, 12, 219-245.

FRANCK, E. & JUNGWIRTH, C. 2003. Reconciling rent-
seekers and donators – The governance structure of
open source. Journal of Management and
Governance, 7, 401-421.

GATES, B. 1976. An Open Letter to Hobbiyst [Online].
Homebrew Computer Club Newsletter. Available:
http://www.digibarn.com/collections/newsletters/ho
mebrew/V2_01/gatesletter.html 2013].

GHOSH, R. A. 2005. Understanding free software
developers: Findings from the FLOSS study.
Perspectives on free and open source software, 23-
46.

GOLDKUHL, G. What kind of pragmatism in information
systems research. AIS SIG Prag Inaugural Meeting,
2008.

GOLDKUHL, G. 2012. Pragmatism vs interpretivism in
qualitative information systems research. European
Journal of Information Systems, 21, 135-146.

GRUBER, M. & HENKEL, J. 2006. New ventures based on
open innovation – an empirical analysis of start-up
firms in embedded Linux. International Journal of
Technology Management, 33, 356-372.

GUBA, E. G. & LINCOLN, Y. S. 1994. Competing
Paradigms in Qualitative Research. Handbook of
qualitative research, 2, 163-194.

HARDIN, G. 1977. The Tragedy of the Commons. In:
HARDIN, G. & BADEN, J. (eds.) Managing the
Commons. New York: W. H. Freeman and Company.

HARS, A. & OU, S. Working for Free? Motivations for
Participating in Open Source Projects. 34th Hawaii
International Conference on System Sciences, 2001.

HAUGE, Ø., AYALA, C. & CONRADI, R. 2010. Adoption of
open source software in software-intensive
organizations–A systematic literature review.
Information and Software Technology, 52, 1133-
1154.

HECKER, F. 1999. Setting up shop: The business of open-
source software. IEEE software, 16, 45.

HEMETSBERGER, A. 2002. Fostering Cooperation on the
Internet: Social Exchange Processes in Innovative
Virtual Consumer Communities. In: BRONIARCZYK,
S. M. & NAKAMOTO, K. (eds.) Advances in
Consumer Research, Volume Xxix.

HERTEL, G., NIEDNER, S. & HERRMANN, S. 2003.
Motivation of Software Developers in Open Source

203

Projects: An Internet-Based Survey of Contributors
to the Linux Kernel. Research Policy, 32, 1159-1177.

HESS, C. & OSTROM, E. 2005. A Framework for Analyzing
the Knowledge Commons. In: HESS, C. & OSTROM,
E. (eds.) Understanding Knowledge as a Commons:
from Theory to Practice. Cambridge MA: The MIT
Press.

HIBBERT, P., COUPLAND, C. & MACINTOSH, R. 2010.
Reflexivity: recursion and relationality in
organizational research processes. Qualitative
Research in Organizations and Management: An
International Journal, 5, 47-62.

ISAAC, R. M. & WALKER, J. M. 1988. Communication and
free‐riding behavior: The voluntary contribution
mechanism. Economic inquiry, 26, 585-608.

JICK, T. D. 1979. Mixing qualitative and quantitative
methods: Triangulation in action. Administrative
science quarterly, 602-611.

JOHNSON, P., BUEHRING, A., CASSELL, C. & SYMON, G.
2006. Evaluating qualitative management research:
Towards a contingent criteriology. International
Journal of Management Reviews, 8, 131-156.

JOHNSON, P. & CASSELL, C. 2001. Epistemology and work
psychology: New agendas. Journal of Occupational
and Organizational Psychology, 74, 125-143.

JOHNSON, R. B. & ONWUEGBUZIE, A. J. 2004. Mixed
methods research: A research paradigm whose time
has come. Educational researcher, 33, 14-26.

KENNETH, C., LAUDON, L. & LAUDON, J. P. 2001.
Management Information Systems: Organization
and Technology in Networked Enterprise, Higher
Education Press.

KLEIN, H. K. 2004. Seeking the New and the Critical in
Critical Realism: Dé´jà` vu? Information and
Organization, 14, 123-144.

KOTHARI, C. R. 2004. Research methodology: Methods
and techniques, New Age International.

KUK, G. 2006. Strategic Interaction and Knowledge
Sharing in the KDE Developer Mailing List.
Management Science, 52, 1031-1042.

LAKHANI, K. R. & WOLF, R. 2005. Why Hackers Do What
They Do: Understanding Motivation and Effort in
Free/Open Source Software Projects. Perspectives
on free and open source software, 1, 3-22.

LATTEMANN, C. & STIEGLITZ, S. Framework for
Governance in Open Source Communities. 38th

204

Hawaii International Conference on System
Sciences, 2005.

LEE, G. K. & COLE, R. E. 2003. From a Firm-Based to a
Community-Based Model of Knowledge Creation:
The Case of the Linux Kernel Development.
Organization Science, 14, 633-649.

LERNER, J., PATHAK, P. A. & TIROLE, J. 2006. The
Dynamics of Open-Source Contributors. American
Economic Review, 96, 114-118.

LERNER, J. & TIROLE, J. 2001. The Open Source
Movement: Key Research Questions. European
Economic Review, 45, 819-826.

LERNER, J. & TIROLE, J. 2002. Some Simple Economics of
Open Source. Journal of Industrial Economics, 50,
197-234.

LERNER, J. & TIROLE, J. 2005a. The Economics of
Technology Sharing: Open Source and Beyond.
Journal of Economic Perspectives, 19, 99-120.

LERNER, J. & TIROLE, J. 2005b. The Scope of Open
Source Licensing. Journal of Law Economics &
Organization, 21, 20-56.

LINCOLN, Y. S. & GUBA, E. G. 1985. Naturalistic inquiry,
Sage.

LLORENTE, I. M. 2014. OpenNebula vs. OpenStack: User
Needs vs. Vendor Driven [Online]. Available:
http://opennebula.org/opennebula-vs-openstack-
user-needs-vs-vendor-driven/ 2013].

LOVEJOY, T. E. 2006. Protected Areas: A Prism for a
Changing World. Trends in Ecology & Evolution, 21,
329-333.

MANN, C. & STEWART, F. 2000. Internet communication
and qualitative research: A handbook for
researching online, Sage.

MARKUS, M. 2007. The Governance of Free/Open Source
Software Projects: Monolithic, Multidimensional, or
Configurational? Journal of Management and
Governance, 11, 151-163.

MARKUS, M. & SILVER, M. 2008. A foundation for the
study of IT effects: A new look at DeSanctis and
Poole's concepts of structural features and spirit.
Journal of the Association for Information systems,
9, 609.

MARSTON, S., LI, Z., BANDYOPADHYAY, S., ZHANG, J. &
GHALSASI, A. 2011. Cloud computing—The business
perspective. Decision Support Systems, 51, 176-
189.

205

MICROSOFT. What is a Driver? [Online]. Available:
http://windows.microsoft.com/en-gb/windows/what-
is-driver#1TC=windows-7 2015].

MILOJICIC, D., LLORENTE, I. M. & MONTERO, R. S. 2011.
OpenNebula A Cloud Management Tool. Ieee
Internet Computing, 15, 11-14.

MINGERS, J. 2001. Combining IS Research Methods:
Towards a Pluralist Methodology. Information
Systems Research, 12, 240-259.

MITCBELL, E. S. 1986. Multiple triangulation: a
methodology for nursing science. Advances in
nursing science, 8, 18-26.

MYERS, M. D. 2013. Qualitative Research in Business &
Management, SAGE Publications.

NAGLE, F. 2018. Open Source Software and Firm
Productivity. Management Science.

NAKAKOJI, K., YAMAMOTO, Y., NISHINAKA, Y., KISHIDA,
K. & YE, Y. Evolution patterns of open-source
software systems and communities. Proceedings of
the international workshop on Principles of software
evolution, 2002. ACM, 76-85.

NAU, D. S. 1995. Mixing methodologies: can bimodal
research be a viable post-positivist tool? The
Qualitative Report, 2, 1-6.

NOLAN, M. & BEHI, R. 1995. Triangulation: the best of all
worlds? British Journal of Nursing, 4, 829-832.

O'MAHONY, S. 2003. Guarding the Commons: How
Community Managed Software Projects Protect their
Work. Research Policy, 32, 1179-1198.

O'MAHONY, S. 2007. The Governance of Open Source
Initiatives: What Does it Mean to be Community
Managed? Journal of Management & Governance,
11, 139-150.

OLSON, M. 1967. The Logic of Collective Action,
Cambridge, MA., Harvard University Press.

OPENNEBULASYSTEMS. 2012. Packaging OpenNebula 3.6
(Lagoon) [Online]. Available:
http://archives.opennebula.org/software:rnotes:rn-
rel3.6 2015].

OPENNEBULASYSTEMS. 2013. Command Line Tweaks for
OpenNebula 4.0 [Online]. Available:
http://opennebula.org/command-line-tweaks-for-
opennebula-4-0/ 2015].

OPENNEBULASYSTEMS. 2015a. Advanced
Contextualization [Online]. Available:
http://docs.opennebula.org/4.12/user/virtual_machi
ne_setup/cong.html 2015].

206

OPENNEBULASYSTEMS. 2015b. Amazon EC2 Driver
[Online]. Available:
http://docs.opennebula.org/4.12/advanced_adminis
tration/cloud_bursting/ec2g.html 2015].

OPENNEBULASYSTEMS. 2015c. Authentication Driver
[Online]. Available:
http://docs.opennebula.org/4.12/integration/infrastr
ucture_integration/devel-auth.html 2015].

OPENNEBULASYSTEMS. 2015d. Basic Contextualization
[Online]. Available:
http://docs.opennebula.org/4.12/user/virtual_machi
ne_setup/bcont.html 2015].

OPENNEBULASYSTEMS. 2015e. Java OpenNebula Cloud
API [Online]. Available:
http://docs.opennebula.org/4.12/integration/system
_interfaces/java.html 2015].

OPENNEBULASYSTEMS. 2015f. Monitoring Driver [Online].
Available:
http://docs.opennebula.org/4.12/integration/infrastr
ucture_integration/devel-im.html 2015].

OPENNEBULASYSTEMS. 2015g. Networking Driver
[Online]. Available:
http://docs.opennebula.org/4.12/integration/infrastr
ucture_integration/devel-nm.html 2015].

OPENNEBULASYSTEMS. 2015h. OneFlow [Online].
Available:
http://docs.opennebula.org/4.12/advanced_adminis
tration/application_flow_and_auto-
scaling/oneapps_overview.html 2015].

OPENNEBULASYSTEMS. 2015i. OneFlow Server API
[Online]. Available:
http://docs.opennebula.org/4.12/integration/system
_interfaces/appflow_api.html 2015].

OPENNEBULASYSTEMS. 2015j. OneGate [Online].
Available:
http://docs.opennebula.org/4.12/advanced_adminis
tration/application_insight/onegate_overview.html
2015].

OPENNEBULASYSTEMS. 2015k. OpenNebula 3.4 (Wild
Duck) [Online]. Available:
http://archives.opennebula.org/software:rnotes:rn-
rel3.4 2015].

OPENNEBULASYSTEMS. 2015l. OpenNebula Quality
Assurance [Online]. Available:
http://opennebula.org/software/testing/ 2015].

OPENNEBULASYSTEMS. 2015m. OpenNebula Sunstone:
The Cloud Operations Center 2.2 [Online]. Available:

207

http://archives.opennebula.org/documentation:archi
ves:rel2.2:sunstone 2015].

OPENNEBULASYSTEMS. 2015n. OpenNebula Zones
Overview 3.0 [Online]. Available:
http://archives.opennebula.org/documentation:archi
ves:rel3.0:ozones 2015].

OPENNEBULASYSTEMS. 2015o. Ruby OpenNebula Cloud
API [Online]. Available:
http://docs.opennebula.org/4.12/integration/system
_interfaces/ruby.html 2015].

OPENNEBULASYSTEMS. 2015p. Scheduler [Online].
Available:
http://docs.opennebula.org/4.12/administration/refe
rences/schg.html 2015].

OPENNEBULASYSTEMS. 2015q. Self-service Cloud View
[Online]. Available:
http://docs.opennebula.org/4.12/administration/sun
stone_gui/cloud_view.html 2015].

OPENNEBULASYSTEMS. 2015r. Storage Driver [Online].
Available:
http://docs.opennebula.org/4.12/integration/infrastr
ucture_integration/sd.html 2015].

OPENNEBULASYSTEMS. 2015s. Virtualization Driver
[Online]. Available:
http://docs.opennebula.org/4.12/integration/infrastr
ucture_integration/devel-vmm.html 2015].

OPENNEBULASYSTEMS. 2015t. VMwar vCenter Drivers
[Online]. Available:
http://docs.opennebula.org/4.10/administration/virt
ualization/vcenterg.html 2015].

OPENNEBULASYSTEMS. 2015u. Windows
Contextualization [Online]. Available:
http://docs.opennebula.org/4.12/user/virtual_machi
ne_setup/windows_context.html 2015].

OPENNEBULASYSTEMS. 2015v. XML-RPC API [Online].
Available:
http://docs.opennebula.org/4.12/integration/system
_interfaces/api.html 2015].

OPENNEBULASYSTEMS. 2016a. OpenNebula AppMarket
[Online]. Available:
http://marketplace.c12g.com/appliance [Accessed
2015.

OPENNEBULASYSTEMS. 2016b. OpenNebula
Documentation [Online]. Available:
http://opennebula.org/documentation/ 2015].

ORLIKOWSKI, W. J. & BAROUDI, J. J. 1991. Studying
Information Technology in Organizations: Research

208

Approaches and Assumptions. Information systems
research, 2, 1-28.

OSTROM, E. 1990. Governing the Commons: The
Evolution of Institutions for Collective Action, New
York, Cambridge University Press.

OSTROM, E. 2003. How Types of Goods and Property
Rights Jointly Affect Collective Action. Journal of
Theoretical Politics, 15, 239-270.

OSTROM, E. 2007. Institutional rational choice: An
assessment of the institutional analysis and
development framework.

OSTROM, E. 2009. Design Principles of Robust Property
Rights Institutions: What Have We Learned? In:
INGRAM, G. K. & HONG, Y. H. (eds.) Property Rights
and Land Policies. Cambridge,MA: Lincoln Institute
of Land Policy.

OSTROM, E. 2010. Polycentric systems for coping with
collective action and global environmental change.
Global Environmental Change-Human and Policy
Dimensions, 20, 550-557.

OSTROM, E. & HESS, C. 2007. Understanding knowledge
as a commons. From Theory to Practice,
Massachusetts.

OSTROM, E. & WALKER, J. 1991. Communication in a
commons: cooperation without external
enforcement. Laboratory research in political
economy, 287-322.

PLATT, J. 1981. EVIDENCE AND PROOF IN DOCUMENTARY
RESEARCH.1. SOME SPECIFIC PROBLEMS OF
DOCUMENTARY RESEARCH. Sociological Review, 29,
31-52.

RAYMOND, E. 1999a. The Cathedral and the Bazaar:
Musings on Linux and Open Source by an Accidental
Revolutionary, USA, O'Reilly Media, Inc.

RAYMOND, E. 1999b. The Magic Cauldron [Online].
Available: http://www.catb.org/esr/writings/magic-
cauldron/magic-cauldron.html#toc1 2014].

ROBERTS, J. A., HANN, I. H. & SLAUGHTER, S. A. 2006.
Understanding the Motivations, Participation, and
Performance of Open Source Software Developers:
A Longitudinal Study of the Apache Projects.
Management Science, 52, 984-999.

SANTOS, C., KUK, G., KON, F. & PEARSON, J. 2013. The
attraction of contributors in free and open source
software projects. The Journal of Strategic
Information Systems, 22, 26-45.

209

SCACCHI, W. 2002. Understanding the Requirements for
Developing Open Source Software Systems. IEE
Proceedings - Software, 149, 24-39.

SCHILLING, M. A. 2000. Toward a general modular
systems theory and its application to interfirm
product modularity. Academy of management
review, 25, 312-334.

SCHLAGER, E. & OSTROM, E. 1992. Property-Rights
Regimes and Natural - Resources - A Conceptual
Analysis. Land Economics, 68, 249-262.

SCHWEIK, C. M. 2007. Free/open-source software as a
framework for establishing commons in science.
Understanding Knowledge as a Commons, 277.

SCOTT, D. 1990. Practice Wisdom - The neglected source
of practice research. Social Work, 35, 564-568.

SEN, R., SUBRAMANIAM, C. & NELSON, M. L. 2008.
Determinants of the Choice of Open Source
Software License. Journal of Management
Information Systems, 25, 207-239.

SEN, R., SUBRAMANIAM, C. & NELSON, M. L. 2011. Open
Source Software Licenses: Strong-Copyleft, Non-
Copyleft, or Somewhere in Between? Decision
Support Systems, 52, 199-206.

SHAH, S. K. 2006. Motivation, Governance, and the
Viability of Hybrid Forms in Open Source Software
Development. Management Science, 52, 1000-1014.

SIGGELKOW, N. 2007. Persuasion with case studies.
Academy of Management Journal, 50, 20-24.

SILVERMAN, D. 2006. Interpreting qualitative data:
Methods for analyzing talk, text and interaction,
Sage.

SILVERMAN, D. 2013. Doing Qualitative Research, Great
Britain, SAGE Publications.

SIMON, H. A. 1994. The bottleneck of attention:
connecting thought with motivation.

SKOK, M. 2013. 2013 Future of Open Source - 7th Annual
Survey results [Online]. Available:
http://www.mjskok.com/resource/2013-future-
open-source-7th-annual-survey-results.

SRIVASTAVA, P. & HOPWOOD, N. 2009. A practical
iterative framework for qualitative data analysis.
International journal of qualitative methods, 8, 76-
84.

STAIR, R. & REYNOLDS, G. 2013. Principles of information
systems, Cengage Learning.

STALLMAN, R. 1985a. What is Free Software? [Online].
Available: http://www.gnu.org/philosophy/free-
sw.html [Accessed 03/03/2014 2014].

210

STALLMAN, R. 1985b. Why Open Source Misses the Point
of Free Software. [Online]. Available:
http://www.gnu.org/philosoghy/open-source-
misses-the-point.html [Accessed 03/03/2014 2014].

STOL, K. J. & BABAR, M. A. 2009. Reporting empirical
research in open source software: the state of
practice. In: BOLDYREFF, C., CROWSTON, K.,
LUNDELL, B. & WASSERMAN, A. I. (eds.) Open
Source Ecosystem: Diverse Communities
Interacting.

STRAUSS, A. L. & CORBIN, J. 1990. Basics of Qualitative
Research, Grounded Theory Procedures and
Techniques, New York, SAGE Publications.

SUDDABY, R. & GREENWOOD, R. 2009. Methodological
Issues in Researching Institutional Change. In:
SYMON, G. & CASSELL, C. (eds.) Qualitative
Organizational Research: Core Methods and Current
Challenges. Los Angeles: Sage Publications.

TEECE, D. J. 1986. PROFITING FROM TECHNOLOGICAL
INNOVATION - IMPLICATIONS FOR INTEGRATION,
COLLABORATION, LICENSING AND PUBLIC-POLICY.
Research Policy, 15, 285-305.

THOMAS, D. R. 2006. A general inductive approach for
analyzing qualitative evaluation data. American
journal of evaluation, 27, 237-246.

THORPE, R. & HOLT, R. 2007. The Sage dictionary of
qualitative management research, Sage.

THURMOND, V. A. 2001. The point of triangulation.
Journal of nursing scholarship, 33, 253-258.

TURBAN, E., RAINER, R. K. & POTTER, R. E. 2007.
Introduction to Information Systems: Supporting
and Transforming Business.

VON HIPPEL, E. 1994. Sticky Information and the Locus of
Problem- Solving - Implications for Innovation.
Management Science, 40, 429-439.

VON HIPPEL, E. 2001. Innovation by User Communities:
Learning from Open-Source Software. Mit Sloan
Management Review, 42, 82-86.

VON HIPPEL, E. 2007. The sources of innovation,
Springer.

VON HIPPEL, E. & VON KROGH, G. 2003. Open Source
Software and the "Private-Collective" Innovation
Model: Issues for Organization Science. Organization
Science, 14, 209-223.

VON HIPPEL, E. & VON KROGH, G. 2006. Free revealing
and the private‐collective model for innovation
incentives. R&D Management, 36, 295-306.

211

VON KROGH, G., HAEFLIGER, S., SPAETH, S. & WALLIN,
M. W. 2012. Carrots and Rainbows: Motivation and
Social Practice in Open Source Software
Development. MIS Quarterly, 36, 649-676.

VON KROGH, G. & SPAETH, S. 2007. The Open Source
Software Phenomenon: Characteristics That Promote
Research. Journal of Strategic Information Systems,
16, 236-253.

WALSHAM, G. 1993. Interpreting information systems in
organizations, Wiley Chichester.

WALSHAM, G. 1995. Interpretive case studies in IS
research: nature and method. European Journal of
information systems, 4, 74-81.

WARING, T. & MADDOCKS, P. 2005. Open Source
Software implementation in the UK public sector:
Evidence from the field and implications for the
future. International Journal of Information
Management, 25, 411-428.

WEST, J. & O'MAHONY, S. Contrasting Community
Building in Sponsored and Community Founded
Open Source Projects. HICSS - Hawaii
International Conference on System Sciences,
2005a.

WEST, J. & O'MAHONY, S. Contrasting Community
Building in Sponsored and Community Founded
Open Source Projects. Proceedings of the 38th
Annual Hawaii International Conference on System
Sciences (HICSS'05), 2005b Hawaii. IEEE.

WEST, J. & O'MAHONY, S. 2008. The Role of Participation
Architecture in Growing Sponsored Open Source
Communities. Industry and Innovation, 15, 145-
168.

YAMAUCHI, Y., YOKOZAWA, M., SHINOHARA, T. &
ISHIDA, T. 2000. Collaboration with Lean Media:
How Open Source Software Succeds. ACM 2000
Conf. Comput. Supported Cooperative Work.
Philadelphia: ACM Press.

YIN, R. K. 2014. Case Study Research: Design and
Methods, SAGE Publications.

YOO, Y. J., HENFRIDSSON, O. & LYYTINEN, K. 2010. The
New Organizing Logic of Digital Innovation: An
Agenda for Information Systems Research.
Information Systems Research, 21, 724-735.

ZEITLYN, D. 2003. Gift Economies in the Development of
Open Source Software: Anthropological Reflections.
Research Policy, 32, 1287-1291.

ZHU, C. 2011. Authoring Collaborative Projects: A Study
of Intellectual Property and Free and Open Source

212

Software (FOSS) Licensing Schemes from a
Relational Contract Perspective. Doctor of
Philosophy, The London School of Economics.

213

Appendix A: The Analysis of Contributions in OpenNebula

Table A. 1 The analysis of the different categories about contributions performed by participants

 Category Label Category Description Examples of Texts associated with Category

1
Announce new

features in the project

This category represents actions where participants
declare (in the mailing list) the addition of new features
(in the development page) within the project.

AnonyAI1 said that they are going to change the management system for
OpenNebula from “TRAC” to “Readme” because this will increase the
functionality that will be useful for the development of the project.
Accordingly, and due to this migration, AnonyAO1 announced that the portal
of the project will be down for that day.

AnonyAO4 announces the availability of a new release for the project. He
encourages other participants to use the new releases and provide feedback
if possible.

2
Correcting

documentation

This category represents actions where participants
corrected wrong information in the documentation
available for the project and share these corrections in
the mailing list.

AnonyAO1 corrected documentation related to “cluster” infrastructure in
OpenNebula

AnonyAO4 updated the “XEN” documentation based on the modifications
done to the source code

AnonyAO5 modified the documentation related to the “etables” in “KVM”

214

machines

AnonyAI4 corrected the documentation related to failures of virtual machine.
He mentioned the exact requirements needed and the steps needed to
recover failed virtual machines

3 Fix software bugs
This category represents actions where participants fix
software bugs in the source code of the project and share
these fixes in the mailing list

One participant sent an email about an error message appeared on his
computer network after he implemented OpenNebula virtual machine. After
discussions between AnonyAO2 and that participant, AnonyAO2 found that
the error message appeared was explained by a software bug existed in the
source code of the project. Accordingly, AnonyAO2 resolved this software
bug and reflected the changes in the source code of the project.

4
Develop

enhancements in the
project

This category represents actions where participants
develop a new source code for the project and share it in
the mailing list or the development page for the project.

AnonyAO3 developed a new source code in order to enhance the search in
the XML library of the project

AnonyAI1 helps in developing a new source code to integrate ESXi 4.0 server
with OpenNebula project.

AnonyAI3 helps in developing a new source code related to OpenVZ virtual
machine and integrates this code with the OpenNebula source code

AnonyAI1 offered help in developing and testing source code related to using
“Ceph” as a distributed file system in OpenNebula.

5
Develop new

documentation

This category represents actions where participants write
a new documentation for the project and share this
documentation in the mailing list

AnonyAO2 added a new documentation related to the accounting
information for the project in order to enhance the implementation and
usability of the project

215

6
Share detailed

technical knowledge

This category represents action where participants share
detailed knowledge with each other such as technical
solution, technical patches, steps for
implementations…etc

AnonyAO2 shared a fine and detailed knowledge about using Java in
OpenNebula project as a response to the huge amount of questions from
different participants.

AnonyAE4 replied to an email that requested some details about the use of
“oneadmin” command in OpenNebula. . AnonyAE4 extensively explain the
use of this command, he explained the needed file/folder/directory. He also
explained the group that he included in this command. In addition, he
explained the procedure he followed to add access permissions through this
command. He lastly provides needed documentation that will help in a better
understanding as well

AnonyAE3 shared his technical knowledge about “contextualization” function
in OpenNebula. He explained how to use all variables defined in the template
file for the virtual machines, the definition of the virtual network used, the
scripts (lines of code) he had written to improve the functionality of
contextualization in his own network.

AnonyAC3 shared a data store problem with OpenNebula. in his email, he
shared the network setting for his computer network, the log file of the
system, and the components used in the project

A participant requested a comparison between the use of two file systems,
namely MooseFS and GlusterFS , to be used in OpenNebula. Several technical
concepts, such as redundancy, virtualization, images connection with virtual
machines, the existence of support, distributed replication servers, up to
time reliability, and metadata server, are discussed by AnonyAE4 and more
file systems, such as Lustre, Shipping dog, and ExtremeFS, are added to the

216

comparison process. The discussions and comparisons were fruitful and
reflected in the OpenNebula official blog website to be used as agreed upon
by interested users

AnonyAI5 explained the configuration of the OpenVSwitch he was deploying
within the project. Moreover, he explained the network masking scheme he
was using. AnonyAI5 shared this information in order to provide the big
picture of the technical problem he faced while implementing the project.

AnonyAI2 shared his understanding about creating a network of virtual
machines and his vision of classifying Internet Addresses (IPs) between these
components. He gave three options for the network with pros and cons for
each option. He explained that his suggestions are based on his
understanding about the project from the available documentation as well as
following emails in the mailing list but not from own experience.

7
Explain uses of the

project components

This category represents actions where participants clarify
how parts of the projects can be implemented in the
business

AnonyAO4 explained the use of Libvirt system in OpenNebula. He said that
the implementation of the libvirt API provides an abstraction of a whole
cluster of resources used in the project. In this way, one can use any libvirt
tool (e.g. virsh, virt-manager) and libvirt XML domain descriptions with
OpenNebula at a distributed level

8 Explain technical ideas

This category represents actions where participants share
their technical ideas in the mailing list and clarify these
technical ideas; advantages and justifications for
implementations.

Based on the request of a participant to do modifications for the image base
for virtual machines in OpenNebula, AnonyAO1 explained that currently they
do not support virtual images in other places than files. And the reason
behind this decision is that they cannot think of any other scenario were
virtual images were made available as logical volumes to all the computers
on the physical cluster. So they decide that their approach will be to

217

recommend one base image and then cloning this one whenever required

A participant requested a comparison between the use of two file systems,
namely MooseFS and GlusterFS , to be used in OpenNebula. Several technical
concepts, such as redundancy, virtualization, images connection with virtual
machines, the existence of support, distributed replication servers, up to
time reliability, and metadata server, are discussed by AnonyAE4 and more
file systems, such as Lustre, Shipping dog, and ExtremeFS, are added to the
comparison process. The discussions and comparisons were fruitful and
reflected in the OpenNebula official blog website to be used as agreed upon
by interested users

9
Determine project

roadmap

This category represents actions where participants
decide the upcoming technical plan for the project
different releases.

AnonyAO2 reviewed different suggestions from different participants related
to the use of persistent virtual machines with OpenNebula. AnonyAO2
decided that, the “oneimage clone” shall be added as a feature to the project
roadmap

10
Develop private

maintenance releases

This category represents actions where participants
change the license of the project releases from open
source license (Apache v 2.0) into a private license

Releases 3.2.2, 3.4.2, 3.4.3, 3.4.4, 3.6.1, 3.6.2, 3.6.2, and 3.8.2 are private
releases in which sponsors resolve some bugs and do some enhancements to
the source code in order to fit their private users’ needs

11
Solve problems via

live chat

This category represents actions where participants
choose a private live chat instead of the public mailing list
in order to solve problems faced by other participants.

AnonyAG3 had a live chat with the OpenNebula development team to
provide support and help. This chat is part of the service level agreement
signed with the sponsor

12
Share the computer

network settings
This category represents actions where participants share
the technical characteristics of their computer network

AnonyAC3, through one of his emails, explained the computer network he is
using with OpenNebula. He described that the network consists of 3 data
stores, 2 VMware ESXi hosts, and a collection of SAN desks. And then he

218

with other participants explained the problem he is facing

13
Help others by

explaining network
settings

This category represents actions where participants help
other participants to solve implementations problems by
modifying the network setting of the project (rather than
the source code of the project)

A participant discussed the idea of assigning Internet Addresses (IPs) from
both OpenNebula and “DHCP” server. AnonyAC3 commented on this idea by
providing a technique that can be used in this case. He used this technique as
a temporary solution as OpenNebula has not provided a permanent solution
yet

14
Get engaged with
others discussions

This category represents actions where participants
participated in others’ discussions through sharing
opinions or providing solutions and suggestions

A participant discussed the idea of assigning Internet Addresses (IPs) from
both OpenNebula and “DHCP” server. AnonyAC3 commented on this idea by
providing a technique that can be used in this case. He used this technique as
a temporary solution as OpenNebula has not provided a permanent solution
yet

AnonyAE4 replied to an email that requested some details about the use of
“oneadmin” command in OpenNebula. . AnonyAE4 extensively explain the
use of this command, he explained the needed file/folder/directory. He also
explained the group that he included in this command. In addition, he
explained the procedure he followed to add access permissions through this
command. He lastly provides needed documentation that will help in a better
understanding as well

AnonyAI4 did not get much attention from the OpenNebula team so
AnonyAI4 tries to get engaged by replying to others enquiries (depending on
documentation guidelines) and get engaged in their context; sharing mutual
knowledge and gaining information from the two way comments.

15 Share knowledge This category represents actions where participants Among the emails sent between a participant and AnonyAI1 about the

219

about a system to
support suggested

ideas

suggest technical ideas to be implemented in the project.
and support their suggestions with examples of
information systems that can help in effectively
implementing their ideas.

partnership between both “RedHat” and “Eucalyptus”. AnonyAI1 was
wondering if this partnership can be linked to OpenNebula project as well
and what would be the effects

A participant requested a comparison between the use of two file systems,
namely MooseFS and GlusterFS , to be used in OpenNebula. Several technical
concepts, such as redundancy, virtualization, images connection with virtual
machines, the existence of support, distributed replication servers, up to
time reliability, and metadata server, are discussed by AnonyAE4 and more
file systems, such as Lustre, Shipping dog, and ExtremeFS, are added to the
comparison process. The discussions and comparisons were fruitful and
reflected in the OpenNebula official blog website to be used as agreed upon
by interested users

AnonyAI1 shared information about “cgroups” in order to encourage the
OpenNebula team to take his suggestion into consideration.

16
Reveal own

experience in the
project

This category represents actions where participants share
their experiences in the mailing list with other
participants regarding the uses and implementations of
the project

AnonyAI3 shares solutions related to image management, wrong image
information, suspending state for virtual machines, problems of CPU
storage…etc

AnonyAC3 shares solutions related to Deploying Windows host from vmdk
file, Assigning IP address through DHCP servers, Use of Ceph/RBD for system
datastore, Virtual machines deletion on ESXi hosts…etc

AnonyAE4 replied to an email that requested some details about the use of
“oneadmin” command in OpenNebula. . AnonyAE4 extensively explain the
use of this command, he explained the needed file/folder/directory. He also

220

explained the group that he included in this command. In addition, he
explained the procedure he followed to add access permissions through this
command. He lastly provides needed documentation that will help in a better
understanding as well

AnonyAE3 share solutions related to bug for LDAP implementation, create
CentOS base image on OpenNebula, live migration…etc.

17
Reveal code

contributions

This category represents actions where participants share
the source code that they have developed. They share it
in the mailing list or the development page of the project.

AnonyAI3 shares solutions related to image management, wrong image
information, suspending state for virtual machines, problems of CPU
storage…etc

AnonyAE3 share solutions related to bug for LDAP implementation, create
CentOS base image on OpenNebula, live migration…etc.

AnonyAC3 highlighted that virtual machines cannot boot properly after
adding “pcibridge stanza” appliance to the template of virtual machines. As a
way to overcome this problem, he developed a solution and asked this
solution to be added as a new feature to the project

AnonyAE5 test the implementation of OpenSUSE 11.1 with OpenNebula. He
noticed that the problem with the implementation was due to “gem” file.
AnonyAE5 worked on solving the problem and shared the solution in the
mailing list.

AnonyAC3 shares solutions related to Deploying Windows host from vmdk
file, Assigning IP address through DHCP servers, Use of Ceph/RBD for system

221

datastore, Virtual machines deletion on ESXi hosts…etc

18
Upload patches for

software bugs

This category represented actions where participants
share source code in order to solve software bugs existed
in the project. This source code is called a patch.
Participants share patches in the mailing list or the
development page of the project.

AnonyAI3 shares solutions related to image management, wrong image
information, suspending state for virtual machines, problems of CPU
storage…etc

AnonyAC3 shares solutions related to Deploying Windows host from vmdk
file, Assigning IP address through DHCP servers, Use of Ceph/RBD for system
datastore, Virtual machines deletion on ESXi hosts…etc

AnonyAC3 highlighted that virtual machines cannot boot properly after
adding “pcibridge stanza” appliance to the template of virtual machines. As a
way to overcome this problem, he developed a solution and asked this
solution to be added as a new feature to the project

AnonyAE3 share solutions related to bug for LDAP implementation, create
CentOS base image on OpenNebula, live migration…etc.

19
Reveal technical

solution

This category represents actions where participants share
their suggested solutions to problems faced by other
participants.

AnonyAI3 shares solutions related to image management, wrong image
information, suspending state for virtual machines, problems of CPU
storage…etc

AnonyAE4 replied to an email that requested some details about the use of
“oneadmin” command in OpenNebula. . AnonyAE4 extensively explain the
use of this command, he explained the needed file/folder/directory. He also
explained the group that he included in this command. In addition, he
explained the procedure he followed to add access permissions through this
command. He lastly provides needed documentation that will help in a better

222

understanding as well

AnonyAC3 shares solutions related to Deploying Windows host from vmdk
file, Assigning IP address through DHCP servers, Use of Ceph/RBD for system
datastore, Virtual machines deletion on ESXi hosts…etc

AnonyAC3 highlighted that virtual machines cannot boot properly after
adding “pcibridge stanza” appliance to the template of virtual machines. As a
way to overcome this problem, he developed a solution and asked this
solution to be added as a new feature to the project

AnonyAE3 share solutions related to bug for LDAP implementation, create
CentOS base image on OpenNebula, live migration…etc.

20
Suggest new idea or

feature

This category represents actions where participants
suggested the addition of new feature or idea to the
project

AnonyAC4 suggests the addition of dynamic firewall in OpenNebula project.
Moreover He suggested the addition of OCCI server as a new layer to be
added above OpenNebula.

21
Suggest new system

integration

This category represents actions where participants
suggest the addition of new information systems to be
integrated with Core OpenNebula.

AnonyAI1 suggested the integration of “Eucalyptus” of Amazon’s S3 with
OpenNebula.

AnonyAI3 suggested the addition of OpenVZ. He helped in developing a new
source code related to OpenVZ virtual machine and integrated this code with
OpenNebula source code.

regarding the use of “InfiniBand” technology with OpenNebula in order to
achieve high performance computing, AnonyAI2 suggests several
technologies to be used such as Linux iSER, TGTD, and Mellanox VSA

223

AnonyAE5 suggested the integration of ElasticFox system with the project.

AnonyAI1 suggested the development of ESXi server. He helped in
developing a new source code to integrate ESXi 4.0 server with OpenNebula
project.

22
Test others

contributions

This category represents actions where participants test
the quality of source code developed by others. They test
the source code in order to be free of software bugs and
achieve its intended functions.

AnonyAI1 offered help in developing and testing source code related to using
“Ceph” as a distributed file system in OpenNebula

23 Add new feature

This category represents actions where participants add a
new feature to core OpenNebula. They add the new
feature on the mailing list or directly to the development
page of the project.

AnonyAC3 highlighted that virtual machines cannot boot properly after
adding “pcibridge stanza” appliance to the template of virtual machines. As a
way to overcome this problem, he developed a solution and asked this
solution to be added as a new feature to the project

24
Request details about
a technical problem

This category represents actions where participants ask
each other in the mailing list to explain the error message
they are facing while implementing the project

An email was sent about a connectivity problem for virtual machines
implemented with OpenNebula. AnonyAI4 replied to this email by asking
questions related to the definition of virtual machines in OpenNebula, the
computer ports used for the virtual machines, isolation of virtual machines
into a private network, and the output of the list reports resulted in
OpenNebula

25
Comment and ask for

feedback

This category represents actions where participants
commented on others emails and ask for feedback about
their comments

AnonyAI4 comment on using the “bash” technique in Linux systems and
asked for developers’ feedback about this technique and its usability in
OpenNebula.

26 Use documentation to This category represents actions where participants refer AnonyAI4 refers in more than 30 emails that he is following the available

224

express ideas to documentation of the project or other information
systems to support their discussions in the mailing list

documentation to answer and respond to questions as well as getting
engaged with the different discussions.

AnonyAI2 shared his understanding about creating a network of virtual
machines and his vision of classifying Internet Addresses (IPs) between these
components. He gave three options for the network with pros and cons for
each option. He explained that his suggestions are based on his
understanding about the project from the available documentation as well as
following emails in the mailing list but not from own experience

27
Report fault

documentation

This category represents actions where participants
corrected wrong information in documentation of the
project.

AnonyAI4 corrected the documentation related to failures of virtual machine.
He mentioned the exact requirements needed and the steps needed to
recover failed virtual machines

28 Share opinions
This category represents actions where participants share
their opinions about a problem or an information system
in the mailing list

AnonyAI2 shared his opinion about a suggestion provided by another
participant related to the implementation of the Long Term Support (LTS) for
Ubuntu server and desktop with OpenNebula

One of the emails for AnonyAI2 in which he discussed a technical issue of
OpenNebula release 3.8 and this release functionality with a file system
called “GlusterFS”, AnonyAI2 highlighted that there exist a crucial
documentation in a certain forum and refer to this forum. In this forum they
discuss the implementation of this particular file system. AnonyAI2 said “This
is already being done or already done in newer versions of libvirt, see KVM
forum 2012 for latest on glusterfs and libvirt”

29 Support ideas This category represents actions where participants
AnonyAI2 shared his opinion about a suggestion provided by another
participant related to the implementation of the Long Term Support (LTS) for

225

support other participants on their ideas. Ubuntu server and desktop with OpenNebula.

AnonyAI2 supports the idea suggested by another participant related to the
addition of an extra column in the list related to virtual machines. This
column will add the ID for the virtual machines used in the project. AnonyAI2
supported this idea because he stated that he wasted so much time
searching for the IDs used for his virtual machines.

Different suggestions had been provided to improve contextualization in
OpenNebula project. And AnonyAI4 voted for one of them.

AnonyAI2 supports the extension for the range of Internet Addresses (IPs)
used in the project as this will be useful for the computer network used in
the project

30
Share technical steps

for added features

This category represents actions where participants
explain the steps to implement a certain feature with the
project.

AnonyAE4 replied to an email that requested some details about the use of
“oneadmin” command in OpenNebula. . AnonyAE4 extensively explain the
use of this command, he explained the needed file/folder/directory. He also
explained the group that he included in this command. In addition, he
explained the procedure he followed to add access permissions through this
command. He lastly provides needed documentation that will help in a better
understanding as well.

31
Debug and Predict

Solutions

This category represents actions where participants try to
detect sources of software errors and provide solutions to
these errors

AnonyAE4 replied to an email that requested some details about the use of
“oneadmin” command in OpenNebula. . AnonyAE4 extensively explain the
use of this command, he explained the needed file/folder/directory. He also
explained the group that he included in this command. In addition, he
explained the procedure he followed to add access permissions through this

226

command. He lastly provides needed documentation that will help in a better
understanding as well.

AnonyAI2 helped different participants to use the Proper releases of
OpenNebula according to different context.

AnonyAI2 helped other participant who faced a migration problem for the
OpenNebula project. AnonyAI2 notice that access permission is the reason
behind the migration problem because this permission is different between
the source and destination.

32
Highlight missing

information in the
documentation

This category represents actions where participants show
that important information is missing in the
documentation of the project.

AnonyAE4 replied to an email that requested some details about the use of
“oneadmin” command in OpenNebula. . AnonyAE4 extensively explain the
use of this command, he explained the needed file/folder/directory. He also
explained the group that he included in this command. In addition, he
explained the procedure he followed to add access permissions through this
command. He lastly provides needed documentation that will help in a better
understanding as well.

33

Share technical advice
This category represent actions where participants share
an advice with other participants

AnonyAI2 advised one of the participants to use a certain file system with
OpenNebula because this file system has a huge storage bytes that can serve
the business needs.

one participant asked a question about the best “file system” to be
implemented with OpenNebula. And AnonyAE4 replied that file systems can
be evaluated based on different metrics such as file extensions; hardware
used lines of code, or rich documentation. AnonyAE4 then define these

227

metrics and provide his advice.

34 Go against ideas
This category represents actions where participants
oppose other participants on their ideas.

AnonyAE5 did not support the use of enterprise server edition for SUSE
operating system because it has not included the latest version for bug fixing.

35 Explain disadvantages
This category represents actions where participants
describe the advantages of using an information system
or technical idea.

AnonyAE5 did not support the use of enterprise server edition for SUSE
operating system because it has not included the latest version for bug fixing

36
Share fine information

(best practice and
performance)

This category represents actions where participants share
their point of view regarding performance and best
practice of the project.

One participant asked a question about the best “file system” to be
implemented with OpenNebula. And AnonyAE4 replied that file systems can
be evaluated based on different metrics such as file extensions; hardware
used lines of code, or rich documentation. AnonyAE4 then define these
metrics and provide his advice.

37
Forge some
alternatives

This category represents actions where participants
neglect some of the possible alternatives for information
systems suggested in the mailing list. Participants explain
their justification for forging some alternatives.

AnonyAI2 forge the use of heavy weight virtual machine for hosting
OpenNebula server because it can break the whole computer cloud for
OpenNebula.

38
Show different

possible perspectives

This category represents actions where participants
provide different alternative for systems in order to use
with OpenNebula.

Regarding the use of “InfiniBand” technology with OpenNebula in order to
achieve high performance computing, AnonyAI2 suggests several
technologies to be used such as Linux iSER, TGTD, and Mellanox VSA.

39
Use the mailing list as

a documentation
space

This category represents actions where participants use
the mailing list to share more documentation needed in
order to properly implement the project.

One of the emails for AnonyAI2 in which he discussed a technical issue of
OpenNebula release 3.8 and this release functionality with a file system
called “GlusterFS”, AnonyAI2 highlighted that there exist a crucial
documentation in a certain forum and refer to this forum. In this forum they

228

discuss the implementation of this particular file system. AnonyAI2 said “This
is already being done or already done in newer versions of libvirt, see KVM
forum 2012 for latest on glusterfs and libvirt”.

40
Open new requests in

the development
page

This category represents actions where participants use
discussions in the mailing list in order to add a new
request in the development page.

Discussions between participants and AnonyAI2 about the use of
“InfiniBand” with OpenNebula cause the addition of InfiniBand source code
and integrate it with OpenNebula. This new source code was added by
AnonyAI2 upon the request from sponsors

41
Announce system

down

This category represents actions where participants
announce that the project will be down due to
maintenance purposes.

AnonyAO1 announced that the team will migrate the project management
portal into Redmine. Therefore, the website will be down for maintenance
purposes.

42
Encourage others’

contributions to add
features in the project

This category represents actions where participants
encourage other participants to reflect their needs by
adding new requests in the development page.

AnonyAO4 thanked different participants for their work on new features for
the project. Examples of these features were the development of Debian
package and the development of scripts that support LVM exporting.

43
Link to requests
already created

This category represents actions where participants refer
discussions to requests that are already added previously
in the development page.

AnonyAE4 answered a request initiated by a participant in the mailing list by
referring to requests in the development page.

44
Alert for potential

problems

This category represents actions where participants alert
for potential problems that may resulted from existing
implementations of the project.

AnonyAI2 explained that using having different permissions for the source
and destination files will cause many management problems for the project.

AnonyAI1 explained that having mixed CPU numbers will cause unfair
distribution of power between different machines.

45 Ask for explanation This category represents actions where participants share AnonyAI2 asked a participant about using clustered LVM instead of normal

229

regarding others code
revealing

the source code that they developed in the mailing list.
And other participants asked them to explain the logical
meaning of the source code.

LVM for the project

46
Ask for source code

from other
participants

This category represents actions where participants
request other participants to share the source code that
they had already developed.

AnonyAE4 asked another participant to share his experience with a sunstone
failure and to share the patch to solve this software bug.

47 Show own effort
This category represents actions where participants share
their efforts in developing source code and thinking about
solutions to problems in the mailing list.

AnonyAE4 shared his company efforts to use GlusterFS in their distributed
file system. And explained how the OpenNebula project can benefit from
their work.

AnonyAE5 test the implementation of OpenSUSE 11.1 with OpenNebula. He
noticed that the problem with the implementation was due to “gem” file.
AnonyAE5 worked on solving the problem and shared the solution in the
mailing list

48
Show that the

problem is shared

This category represents actions where participants
highlighted that the problem shown in the mailing list is
the same as the problem they have personally had while
implementing the project.

AnonyAE5 shared the same problem with other participants. He explained his
network setting that might lead to such a problem.

49 View log file
This category represents actions where participants
attach the “log file” with their emails.

Different participants uploaded the log file for their network in order to get
as much help as they can. Examples of these participants were: AnonyAC3
and AnonyAI4.

50 Ask for technical This category represents actions where participants
AnonyAG2 was looking to understand the code for changing default settings
of a virtual machine and the actual implementation behind “onevm cancel”

230

details request more details about a topic sent in the mailing list. command.

51
Comments on
technical ideas

This category represents actions where participants
comment on ideas suggested by other participants in the
mailing list

AnonyAC4 responded to one of the emails, sent about “federation” in
OpenNebula, which he will connect another cluster of nodes with VPN to
save the public internet addresses given to physical nodes in the network.

52

View different
alternatives for

system integration of
same problem

This category represents actions where participants
suggest different systems to be integrated with
OpenNebula.

Regarding the use of “InfiniBand” technology with OpenNebula in order to
achieve high performance computing, AnonyAI2 suggests several
technologies to be used such as Linux iSER, TGTD, and Mellanox VSA.

53 Request Features
This category represents actions where participants
request the addition of new feature to the project.

AnonyAG1 requested new features such as a dynamic firewall and a
procedure to detect failure in virtual machines.

54
Ask for clarifications
about others ideas

This category represents actions where participants
request more details about ideas suggested by other
participants in the mailing list.

One participant suggested the use of marketplace with OpenNebula project.
Accordingly, AnonyAE3 asked the participants to explain the meaning of
marketplace and why shall it be implemented with OpenNebula.

55
Suggest customization

in the project

This category represents actions where participants
require customizations to be done to the project in order
to fir their special needs.

AnonyAO2 suggested the addition of “contextualization” for virtual machine
as a way to customize the access for virtual machines through “ssh”
authentication.

56 Suggest best practice
This category represents actions where participants
suggest the best implementation of the project

AnonyAI2 explained that crashes on the system were due to faulty hardware.
He suggested the use of “memtest86+” in order to test hardware before
using a high input and output loads.

AnonyAI2 helped different participants to use the Proper releases of
OpenNebula according to different context.

231

57
Suggest other system

deployment

This category represents actions where participants
suggest the implementation of a certain information
system with OpenNebula in certain cases.

AnonyAE5 suggested the use of a specific interface in order to fit his business
needs.

AnonyAI4 suggested the deployment of GlusterFS file system with Unix
machines in the project.

58
Suggest

improvements of new
systems integration

This category represents actions where participants
suggest improving the project by integrating the project
with other specialized information systems.

AnonyAE2 suggested Bright computing option for OpenNebula

AnonyAG1 suggested automation of putting a virtual machine operating
system images in the images repository instead of the manual process
already existed.

59
Suggest new features

to overcome
bottlenecks

This category represents actions where participants the
addition of certain features into the project in order to
overcome bottlenecks in the project

AnonyAC4 shared with other participants different bottlenecks that the
project was facing. These bottlenecks were: extending tm driver for ssh,
OpenNebula client packages only, and automation of some processes such as
creations of registered users and related keys for them.

60
Suggest system to

support old suggested
ideas

This category represents actions where participants
suggest certain information systems in order to support
ideas that had been suggested previously.

AnonyAG1 suggested automation of putting a virtual machine operating
system images in the images repository instead of the manual process
already existed.

AnonyAI2 suggested the integration of several systems with the project.
examples of these systems were OpenVSwitch, MooseFS, Cloudera
Manager…etc.

61
Correct malfunctions

in the project
This category represents actions where participants fix
failures in the project.

AnonyAO3 updated the deployment files in the transfer drivers of the project
because these files were not copying the log files properly into the project.

232

62
Debug problems

faced by participants
This category represents actions where participants
identify sources of errors in the project.

The OpenNebula team members (AnonyAO1, AnonyAO2, AnonyAO3,
AnonyAO4, and AnonyAO5) debug problems reported in the mailing list and
helped others to solve these problems.

63 Report software bug

This category represents actions where participants
declare the existence of software bug in the source code
of the project. They declare software bugs in the mailing
list as well as the development page of the project.

AnonyAG3 reported a bug in non-interactive bash sessions.

64 Improve lines of code
This category represents actions where participants work
on devoting the source code of the project in order to
ensure that the source code is properly functioning.

AnonyAE4 corrected quota patch OpenNebula source code.

65
Highlight a problem or

software bug

This category represents actions where participants
identify the existence of a software bug in the project.
They identify software bugs in the mailing list.

AnonyAE5 test the implementation of OpenSUSE 11.1 with OpenNebula. He
noticed that the problem with the implementation was due to “gem” file.
AnonyAE5 worked on solving the problem and shared the solution in the
mailing list.

66
Test others' work to

solve same faced
problem

This category represents actions where participants help
other participants to solve their implementation problems
by testing the source code used in the development.

AnonyAE5 test the implementation of OpenSUSE 11.1 with OpenNebula. He
noticed that the problem with the implementation was due to “gem” file.
AnonyAE5 worked on solving the problem and shared the solution in the
mailing list

67 Exchange benefits
This category represents actions where participants agree
to mutually help and benefit from the efforts that they
share regarding a specific implementation of the project.

One participant shared a problem he faced when deploying virtual machine
with OpenNebula. AnonyAI1 explained that he was planning to use this type
of virtual machine in his project. Thus, he explained that he would like to
help in solving this problem in order to use the whole setting later on his own

233

network.

68
Offer development

help

This category represents actions where participants
propose to develop a source code and add it to the
project.

AnonyAI1 said that he would be happy to contribute to the development of
the ESXi 4.0 server with the OpenNebula project.

69
Ask others to help in

the development

This category represents actions where participants
request development help from other participants in the
mailing list.

AnonyAO1 asked a participant to develop a source code to implement QoS
policies in the project.

70
Ask others to test the

project

This category represents actions where participants
request other participants in the mailing list to test the
source code they are using in the project.

AnonyAO1 asked a participant to test a software patch that AnonyAO1
shared in order to ensure that the patch was working properly.

71
Assign tasks to

participants

This category represents actions where participants ask
other participants to solve or to develop a new source
code for the project.

The OpenNebula team assign task for different participant to solve software
bugs that were reported in the development page.

72
Improve others' work
to solve same faced

problem

This category represents actions where participants
modified the source code used by other participants in
order to be properly used in the project.

AnonyAC1 suggested that the use of “SHA1” authentication with ElasticFox
would provide more security for the project.

73
Review different

perspectives

This category represents actions where participants
review the different alternative suggested in the mailing
list and share their opinion about these alternatives.

AnonyAE3 reviewed different issues related to the implementation of market
place in OpenNebula.

74 Suggest testing new
system integration

This category represents actions where participants
request others to test the source code thay have

The OpenNebula team asked participants to test new systems added into the
project. AnonyAI1 participated by testing the metadata server integrated

234

efforts developed in order to have different opinions about the
same source code implementations.

with OpenNebula.

75
Reflect on the work of
others in the project

This category represents actions where participants share
their technical opinion about others ideas and
development efforts.

AnonyAI2 shared his opinion about a suggestion provided by another
participant related to the implementation of the Long Term Support (LTS) for
Ubuntu server and desktop with OpenNebula.

235

Using the previous table, similar categories are grouped together in

order to identify codes that represents contributions performed by

participants in OpenNebula. Figures A.1 to A.4 exhibit those different

contributions: ‘Modify Available Documentation’ code, ‘Determine a Software

Roadmap’ code, ‘Report Software Bugs/ Features’ code, ‘Solve a Software

Bug’ code, and ‘Develop a Software Feature’ code, respectively.

Figure A. 1 'Modify Available Documentation' Code

236

Figure A. 2 Report Software Bugs/ Features

237

Figure A. 3 Solve Software Bugs

238

Figure A. 4 Develop Software Features

239

Appendix B: The Analysis of Software

Complementarities

From the analysis for categories of the different requests in the

development page and the documentation available for OpenNebula, I

was able to:

First, describe the 21 categories that have been extracted from

the development page.

Second, identify the main technical components that make up

OpenNebula. And link these components with categories.

B.1 Categories identified in the development

page

 There are 21 identified categories in the development page of

OpenNebula. The analysis of the different requests in the development

page as well as the analysis of the available documentation helped me in

technically understand the differences between these categories. A

technical description of these categories as revealed from the analysis is

listed in table B.1.

240

Table B. 1 Technical description of the categories as identified from the analysis of the development page

Categories Description

Core & Systems

 This category represents a source code of the project that manages virtualization in OpenNebula project.
Examples for the management of virtualization are handling failure in accessing virtual machines, deleting virtual
machines, initiating states of virtual machines, building databases for virtual machines and managing these database,
Creating templates for different virtual machines , Multi-user support to improve authentication and authorization,
Migrating between the different drivers , Physical and Internet addresses for the different machines …etc.
 This category has a source code that develops the database for the virtualization management function for the
project (e.g., OpenNebulaSystems, 2015k).
 This category composes of the essential components that must to be installed in order for users to start working
the OpenNebula project.

Scheduler

 This category represents a source code of the project that is used for scheduling function; scheduling function is
needed to schedule the use of different drivers for the project.
 The scheduler is optionally installed by users who are willing to manage the allocation of pending virtual
machines to the proper hosts (For details see OpenNebulaSystems, 2015p). Users may use other scheduling applications
other than the scheduler defined for OpenNebula.

Drivers- Auth
 This category represents a source code of the project that allows a computer to communicate with authentication
services for a computer network (For details see OpenNebulaSystems, 2015c).
 This driver is optionally used based on users’ needs. An example of this driver is the x509 authentication driver.

CLI
 This category represents a source code of the project that allows users to communicate and manage virtual
machines through computer commands. Users can manage virtual machines, define access lists, and cluster virtual
machines through this application (e.g., OpenNebulaSystems, 2013).

241

 CLI is optionally installed by users.

Client API &
Library

 This category represents a source code that allows different applications to make use of the source code of
virtualization management (first category identified in this table) of the project. A collection of APIs and Libraries were
needed to integrate applications with the project. examples are plenty for APIs used in OpenNebula (e.g.,
OpenNebulaSystems, 2015v, OpenNebulaSystems, 2015o, OpenNebulaSystems, 2015e, OpenNebulaSystems, 2015i)
 APIs are optionally installed and used based on users’ needs.

Documentation This category represents the non-technical component in the project. And it is already existed in the project
website (OpenNebulaSystems, 2016b).

Sunstone

 This category represents a source code of the project that is used to manage the whole project through a
Graphical User Interface (GUI) (For details see OpenNebulaSystems, 2015m).
 This is an essential part of the project that must to be installed along with the source code of both the
virtualization management and the database.

Cloud View

 This category represents an option installed with the source code for managing virtualization in the project. this
option provides customers the ability for creating their own environment through the internet instead of installing the
source code of the project on users’ computers (For details see OpenNebulaSystems, 2015q).
 This option is installed by default with the core source code of the project (first row in this table).

Context

 This category represents a source code of the project that provides contextualization function for virtual
machines. Three types for contextualization are available in OpenNebula; basic, advanced, and Windows (See examples
OpenNebulaSystems, 2015d, OpenNebulaSystems, 2015a, OpenNebulaSystems, 2015u).
 This category is optionally installed and used based on users’ needs.

Drivers-
Monitoring

 This category represents a source code of the project that allows the collection of monitoring data for different
virtual machines used in the project (For details see OpenNebulaSystems, 2015f).
 This driver is optionally used based on users’ needs.

Drivers- Network This category represents a source code of the project that allows the configuration of properties of a network for
the different virtual machines used in the project (For details see OpenNebulaSystems, 2015g).

242

 This driver is optionally used based on users’ needs.

Drivers- Storage
 This category represents a source code of the project that allows management and storage of images for the
different virtual machines used in the project (For details see OpenNebulaSystems, 2015r).
 This driver is optionally used based on users’ needs.

Drivers- VM

 This category represents a source code of the project that allows the virtualization of the different computer
components used by users (For details see OpenNebulaSystems, 2015s). Examples of these drivers are XEN, KVM,
Amazon EC2, and VMware.
 This driver is optionally used based on users’ needs.

EC2 Server
 This category represents a source code of the project that allows the access for the source code of the project
even without installing the source code on users’ computers (For details see OpenNebulaSystems, 2015b).
 This category is optionally used and installed based on users’ needs.

MarketPlace
 This category represents a source code of the project that distribute and deploy several applications and
appliances that are ready-to-run with OpenNebula (For details see OpenNebulaSystems, 2016a).
 This category is optionally used and installed with OpenNebula based on users’ needs.

OneFlow
 This category represents a source code of the project that allow the management of multi-tiered applications in
the project (interconnected computer network) (For details see OpenNebulaSystems, 2015h).
 This category is optionally installed and used based on users’ needs.

OneGate
 This category represents a source code of the project that manages the ability of virtual machines of pushing
monitoring data to OpenNebula (For details see OpenNebulaSystems, 2015j).
 This category is optionally installed and used based on users’ needs.

oZones
 This category represents a source code of the project that allows the centralized management for distributed
components of the computer network among different network zones (For details see OpenNebulaSystems, 2015n).
 This category is optionally installed and used based on users’ needs.

Packaging This category represents a source code of the project that integrate the different components with core
OpenNebula (e.g., OpenNebulaSystems, 2012).

243

 These components are optionally installed and used; these components vary based on users’ needs and
OpenNebula different releases.

Testing &
Infrastructure

 This category represents a source code for the quality assurance of the several components making up the whole
project (For details see OpenNebulaSystems, 2015l).
 This category varies based on users’ needs and requirements.

vCenter

 This category represents a source code of the project that allows the use of advanced features in the project such
as vMotion and DRS scheduling (For details see OpenNebulaSystems, 2015t).
 This source code is optionally installed and used based on users’ needs.

244

B.2 The technical components in

OpenNebula

The descriptions identified in table 8 helped in identifying the

components of the project. The analysis so far revealed that: (1) some

categories are essential for the project while other categories are

optional, and (2) these categories can be grouped into six main

components for the project: core project, drivers, servers, platforms,

applications, and Application Program Interfaces (APIs). These categories

will be discussed in details shortly.

 Core OpenNebula. This is the main component of the project that

performs the cloud management function. Cloud management

aims for managing the different virtual resources used by

users/firms. This component must be installed in order to start

working in the project. It consists of four categories: “core &

systems”, “documentation”, “sunstone”, and “cloud view”.

 Drivers are “software that allows a computer to communicate

with a device or service” (Microsoft). These drivers represent

computer resources that are virtualized by users. Drivers are

optionally installed by users. Drivers consist of five categories:

“Drivers-Auth”, “Drivers- monitoring”, “Drivers- Network”,

“Drivers- Storage”, and “Drivers- VM”.

 Servers are “computers that provide access to various services

available on the network” (Turban et al., 2007p. 162). Servers are

optionally installed by users. Servers are represented by “EC2

Server” category.

 Operating systems are “a set of computer programs that controls

the computer hardware and acts as an interface with application

programs” (Stair and Reynolds, 2013 P.625). Operating systems

consist of two categories: “packaging” and “testing and

infrastructure”.

245

 Applications are “a piece of software designed to carry out a

standard business function” (Curtis and Cobham, 2008 P.95).

Applications consist of 11 categories: “scheduler”, “CLI”, “Client

API & Library”, “Context”, “MarketPlace”, “OneFlow”, “OneGate”,

“oZones”, “packaging”, “testing & infrastructure”, and “vCenter”.

 Application Program Interfaces (APIs) are “interface that allows

applications to make use of the operating system” (Stair and

Reynolds, 2013 P.617). The Category that represent “API”

component is: Client API & Library.

To start working with the project, one need install the source code for

the project or access the project through the internet. If a user chooses

to install the source code of the project, he/she needs to install the

source code on the operating system for his/her computer. These

operating systems have suitable computing capabilities to run computer

commands and lines of code. Examples of operating systems that can be

integrated with OpenNebula project are:

 Ubuntu. For example, AnonyAC1 was interested in implementing

OpenNebula with Ubuntu and LDAP authentication method. He added a

request in the development page to solve a software bug about

upgrading Ubuntu. Another example, AnonyAC2 shared technical source

code for a new “Apache passenger package” for users who run sunstone

with Apache passenger on Ubuntu operating systems.

 Debian. For example, AnonyAI5 participated in the correction of

the documentation related to Debian Squeeze operating system in

OpenNebula project.

 OpenSUSE. For example, AnonyAG5 suggested and participated in

developing a source code to integrate OpenSUSE project with

OpenNebula.

 CentOS. For example, AnonyAE1 participated in the development

of a source code to integrate CentOS operating system with OpenNebula

3.9.9 and ESXi virtual machines.

246

On the other hand, if a user chooses to access the source code of the

project through the internet, without installing the source code, he/she

can access the project through the project web servers. Web servers for

OpenNebula are:

 EC2 Server. For example, AnonyAG2 was using X509 security for

authentication via commands of EC2 server in order to connect to

OpenNebula.

 OCCI Server. For example, AnonyAE4 configured his virtual local

machines using OCCI server and related interfaces.

After accessing the project, a user uses the main application for the

project (labelled as Core OpenNebula). The main application of the

project consists of: Sunstone application, virtualization management

application, and a database.

 Sunstone is an application used to manage the different

components used in the project. It is a Graphical User Interface (GUI).

GUI is “the part of the operating system users interact with that uses

graphic icons and the computer mouse to issue commands and make

selections” (Kenneth et al., 2001 P.199). For example, AnonyAG5

participated in solving technical problems related to managing virtual

machines through Sunstone application.

 Virtualization management application is a source code used to

manage virtualization in the project. For example, AnonyAO3 developed

a source code that modifies “time out” when the template of virtual

machines is updated. Another example, AnonyAO4 participated in the

development of a source code that migrate KVM, IM, and EC2 drivers

into the new driver engine in the project.

 A database is a storage used to logically store and retrieve

information such as MySQL. For example, AnonyAI1 participated in

solving several problems for MySQL malfunctions with OpenNebula.

247

Accordingly, users will use Core OpenNebula either through

operating systems or web servers. In both cases,” Core OpenNebula” and

“operating systems or web servers” require Application Program

Interfaces (APIs) in order to be able to communicate. For example,

AnonyAI1 solved several software bugs related to accessing the project

through EC2 server and EC2 API.

Each user can access and use the core application of the project. At

that stage, users will have two possible scenarios to use the project:

Scenario 1: a user wants to use core OpenNebula only to manage virtual

computer network that is already created.

Scenario 2: a user wants to use core OpenNebula to manage his virtual

computer network. Moreover, he wants to create more virtual

computers into his network (virtualization drivers), and/or use additional

management options that are not basically provided by core OpenNebula

(management applications). This scenario shows that OpenNebula

project consists of core OpenNebula as well as two optional services.

These services are virtualization drivers and management applications.

Five virtualization drivers are provided by the project (see table

B.2); virtualization driver, storage driver, monitoring driver, network

driver, and authentication driver. Each driver has its own services.

248

Table B. 2 Types of Drivers in OpenNebula

Driver Type Description Examples

Virtualization Driver

These drivers are
software that virtually
imitates a particular
computing system (Stair
and Reynolds, 2013)

XEN driver. For example, AnonyAI3 was concerned about participating and understanding of networking and

storage issues related to XEN virtual machines, understating commands, implementation, and documentation as

well.

KVM driver. For example, AnonyAG3 was reporting problems related to the implementation of “OpenNebula

express” with KVM environment under an in-house developed operating system.

OpenVZ driver. For example, AnonyAI3 developed and added OpenVZ source code and documentation to

OpenNebula repository.

VMware Driver. For example, AnonyAC3 solve different technical problem related to the implementation of

OpenNebula 4.0 with VMware virtual machines only.

ESXi Driver. For example, AnonyAI1 provided fixed to several bugs related to networking problem with ESXi virtual

machine and adding revisions to code repository of ESXi virtual machine.

Storage drivers

These drivers are
software that create
computer images for the
virtual machines used in

Data store driver. For example, AnonyAO1 announced the addition of a new data store driver for iSCSI. Another

example, AnonyAI5 reported a software bug in Ceph data store driver.

249

the project and manage
these images.

Transfer Manager. For example, AnonyAC5 suggested the addition of LVM2 transfer manager driver in OpenNebula

3.4.x

Monitoring drivers These drivers are

software that is
responsible of preparing
and communicating
monitoring information
about the different
computer devices used
in the project.

An example of monitoring driver used in the project is the IM driver. For example, AnonyAI1 deployed and solved

software bugs related to IM storage driver implemented with his OpenNebula environment; Ubuntu KVM, ESXi 3.5,

ESXi 4.0, scheduler, EC2 API, and Libvirt.

Network drivers

These drivers are
software responsible for
managing the network of
the different devices
that are used in the
project.

An example of this driver is VNM driver. For example, AnonyAI5 was interested in solving technical problems

related to the use of contextualization template in network driver

Authentication
driver

These drivers are
software that
communicates with
authentication services
in a computer network

“X509”. For example, AnonyAG2 used X509 security for authentication via commands of EC2 server in order to

connect to OpenNebula.

“SHA1”. For example, AnonyAI1 contributed to SHA1 hash and plain password implementation in OpenNebula

“LDAP”. For example, AnonyAE3 corrected documentation of OpenNebula LDAP authentication

250

In additions to the drivers provided by the project, the project

also provided several management applications. Examples found for

these applications are the scheduler application, and Libvirt application.

The scheduler is an application that assigns pending virtual machines to

needed computer devices. Libvirt is an application for remotely

managing authentication for virtual machines.

If a user uses any of the additional services provided by the project,

he/she require the use of related APIs in order to integrate these

services with the project.

Based on this, categories found in the development page of

OpenNebula (see table 2) can be classified into core categories and

complements categories (see figure 1).

A Core category is an essential source code in the software that

must to be installed in order for users to start working with the

OpenNebula. This source code is crucial for using the project as a cloud

computing technology.

A complement category is a source code that is optionally

installed by users based on their needs for their computer network.

Figure B. 1 Classification of the software components according to core and complements categories

