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Abstract 
This thesis investigates the field of irregular two-dimensional stock cutting from the perspective 

of an industrial practitioner. The new approaches and developments in the thesis have been 

motivated by industrial considerations and have been used directly in industrial software 

applications. 

Irregular two-dimensional stock cutting problems occur in a wide range of industries and in 

almost all cases, for reasons of effective use of staff time, solution speed and efficiency, the 

application of the automated nesting algorithms are advantageous over manual methods. 

Reduction in the use of raw materials is a direct cost saving for any business and therefore has 

a significant impact on operating profitability. 

The approaches developed in this thesis have, at the time of publication, produced the best

known solutions for all of the 26 known irregular problem instances from the scientific 

literature. In order to explore some of the unique features of the approaches, motivated by 

industrial concerns, the thesis also introduces additional benchmark problems. 

In order to achieve these high quality solutions and attain the level of reliability required in 

industrial applications this work introduces a complete and robust technique for the 

production of no-fit polygons for irregular shapes including arcs, interlocking concavities and 

holes. The robustness of the technique and its ability to handle arcs and holes make this the 

first algorithm in the literature not to suffer from degenerate cases and makes it highly 

valuable to industrial practitioners, as well as a valuable tool for research scientists. 

The placement algorithms presented in this work take advantage of the geometry of the shapes 

being placed in order to produce solutions very rapidly and to a high degree of accuracy. These 

placement techniques, in combination with numerous local search techniques, achieve high 

quality solutions for a wide range of problems. Indeed these techniques are being used in 

industrial settings worldwide today on a vast range of problems and in numerous industrial 

sectors. 
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CHAPTER ONE 

1. Introduction 

Cutting and packing problems have been found in various industries for many decades. There 

are numerous variants of the problem to be found and useful typologies have been presented 

to help the researcher to delineate between the problem subtypes, notably (Dyckhoff, 1990) 

and (Wascher et aL, 2007). All the problems types are concerned with minimising the waste of 

material or maximising usage of material or space. The many of the variants of the cutting and 

packing problem set have been shown to be NP complete (Fowler et aL, 1981) including the 

Open Dimensional Problem (ODP) , which this thesis tackles, the OPD is defined in the 

(Wascher et aL, 2007) typology. The ODP with two-dimensional irregular shapes is described as 

the packing of an arbitrary set of small items into a larger container with one variable 

dimension with the aim of minimising the space used within the larger container. 

The Open Dimensional Problem with irregular two dimensional shapes variant of the cutting 

and packing problem impacts upon several important manufacturing industries such as textiles, 

plastics, metal cutting and others. These problems usually consist of a number of irregular 

pieces that are to be placed onto one or more sheets of material in the most efficient layout 

possible, such that all pieces are aSSigned and do not overlap. Additionally, there are usually 

rotational constraints enforced on the pieces due to the physical properties of the problem 

such as grain on the material, patterns on textiles and the cutting technology being employed. 

Sometimes rotational constraints may be used for non-physical reasons such as to restrict 

pieces to a finite set of rotations thus simplifying layout construction procedures and allowing 

for faster solutions to be obtained. Cutting and packing algorithms can also be applied to other 

spatial problems such as floor plan layouts. The main objectives are to maximise space 

utilisation and minimise the computation time required. In addition to these fundamental 

objectives there are often industry specific requirements which are normally dictated by the 

material to be cut, the cutting method and the required cut quality. For example, within the 

textile industry, consideration must be given to the weave of the cloth and printed designs 

which is in contrast to the sheet metal industry where heat distribution and material warping 

are of concern because plasma or oxy-fuel cutting processes are being employed. Research into 

automatic packing approaches has steadily increased over the years due partly to industrial 
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competitiveness but also to greater academic interest from the scientific community (Sweeny 

& Paternoster, 1992). 

1.1. Background and Motivation 

The work presented in this thesis was generated as part of two intertwined projects a 

Collaborate Awards in Science and Engineering (CASE) grant and a Teaching Company Scheme 

(TCS), now known as a Knowledge Transfer Partnership (KTP). At the heart of both of these 

projects was an industrial partner, Esprit Automation Ltd., they wished to improve the 

automatic layout algorithms in their Computer Aided Design (CAD) /Computer Aided 

Manufacturing (CAM) product Procut. 

My role in the two projects was as a TCS associate for 3 years. During this period I began to 

study for this thesis part time and the majority of the work presented in this thesis was 

developed over the course of that program. My co-researcher, on the CASE award, was Glenn 

Whitwell with whom I worked very closely on all aspects of the research, more often than not 

we sat at the same computer and whiteboard working our way through problems, generating 

ideas and coding the solutions, as was the intension of linking the projects at the outset. 

At the end of the TCS project I was offered a full time software development position at Esprit. I 

took up this offer and over the course of the next seven years I was gradually promoted to the 

Head of Software Development with responsibility for a team of developers and all of their 

software products. I held the position of Head of Software from 2006 until 2010. 

As the software lead I was responsible for both the Procut CAD/CAM tool and specialised 

Enterprise Resource Planning (ERP) software, called ProManager, which was specifically 

designed to work for metal cutting companies. ProManager was built from scratch during my 

tenure at Esprit. The software is able to aid its users with the fulilifecycle of metal cutting order 

fulfilment from drawing creation (via Procut) raw material and services ordering, quotation and 

order generation, part placement (via the Nesting module of Procut), job cutting and post

processing, dispatch and invoice. 

Such a long tenure overseeing the development of Procut and such wide-ranging product like 

ProManager has given me a great deal of experience in the practical concerns of companies 

who use plasma, laser and oxy-fuelled metal cutting machines. Many of these concerns often 
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influence the composition and priority of layouts to be produced to fulfil orders, i.e. additional 

or pre-processes, deadlines and transport options. 

In September 2010, just one month before the 10th anniversary of first working on the TCS 

project, I left Esprit Automation to work for Aptia Solutions Limited as their Chief Technology 

Officer. Aptia is a University of Nottingham spin-out company specifically set up to exploit the 

intellectual property outlined in this thesis. They have thus far speCialised in knife cutting 

applications and my extensive experience in a related field and commercial software 

development has helped the company move on rapidly since I took up the role. 

1.2. Aims and Scope 

At the heart of the brief for the TCS project, and to some degree the CASE award, was the 

imperative that that research developed on the projects would be applicable to the Esprit 

Automation Ltd. range of CAD/CAM products. 

The implication of this was that the work developed on the projects had to: 

• Deliver results quickly, i.e. in real time in front of a waiting end user 

• Be able to cope with any shape the user wished to nest 

• Deliver improved results on the existing layout solution methodology already in the Esprit 

products 

• Produce reliable and accurate layouts without overlap or excessive waste 

• To be compatible with the Procut suite of software (a MFC C++ application) 

To achieve improved results is obviously the most important of the elements of the brief 

outlined above. Therefore it was determined that the programmes should attempt to use the 

fundamental geometry of the shapes being placed. The Esprit algorithms, at the start of the 

CASE / TCS project, were based on a bitmap representation and, as a result, were inefficient 

from the point of view of nesting as a result of the inaccuracy in this type of representation 

when used in nesting applications. Additionally the Esprit nesting process was a single pass 
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algorithm, with length or area based orderings available as user interface options. To improve 

on this it was determined that the projects should introduce meta-heuristic search mechanisms 

into the automatic nesting process. 

All of the work presented in the thesis is motivated by these initial decisions; the use of 

fundamental geometry during the layout process and the introduction of meta-heuristic search 

routines. Other factors, such as solution speed and generality with respect to input shapes have 

remained the overall aims throughout the TCS I CASE projects and also underpin this thesis. 
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1.3. Overview of Thesis 

The thesis is structured in the following manner: 

Chapter two presents a literature review of the irregular two-dimensional packing field. 

Chapter three describes the various methodologies that are used in the later chapters to 

develop irregular packing approaches, including search methods, geometric techniques and the 

no-fit polygon. 

Chapter four introduces a new bottom-left-fill algorithm that was developed to improve on the 

bitmap based implementation that Esprit Automation Ltd. were using when the TCS and CASE 

research programmes were conceived. This approach improved on many literature benchmarks 

and was one of the first to be tested against a full range of problems from literature. 

Chapter five describes the work performed to produce a fast and highly robust no-fit polygon 

generation algorithm. This was the first no-fit polygon generation algorithm ever published to 

overcome all ofthe known degenerate cases. 

Chapter six develops the work presented in chapter five. The work presented involves the 

extension the no-fit polygon algorithms to include arcs, in addition to lines, whilst remaining 

able to cope with all ofthe known degenerate cases found in other methodologies. 

Experimental results are presented and show that, in combination with the new bottom-left fill 

heuristic presented in chapter four, the no-fit polygon drastically increases the performance of 

the layout algorithm. This increased performance increases the ability of the heuristic to 

improve on the literature benchmarks. 

Chapter seven presents a simple non-greedy placement mechanism that utilises the line and 

arc no-fit polygon generation technique of chapter five to explore the effectiveness of non

greedy placements during layout generation. The placement approach utilised in this chapter 

avoids inaccuracies inherent in the placement approach of chapters four and six. 

Chapter eight presents a case study of Aptia Solutions, a spin out company formed to exploit 

the research presented in this thesis, including work on specific industry problems from the 

composites industry. 
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Chapter nine presents the conclusions drawn from the thesis and outlines possible future 

avenues of research, including practical manufacturing considerations across industry sectors. 
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1.4. Contributions 

The work presented in this thesis has made several contributions to the field of irregular 

cutting and packing. The following list briefly outlines each contribution and refers to later 

sections in which it is described and later summarised: 

• The development of a new placement technique for irregular packing (For description 

see section 4. For discussion see section 9.1) 

• Presentation of the first complete and robust no-fit polygon generation algorithm for 

non-convex polygons (For description see section 5. For discussion see section 9.2) 

• Extension of complete and robust no-fit polygon algorithm to allow the generation 

from shapes including arc segments (For description see section 6. For discussion see 

section 9.3) 

• Repeated generation of new benchmark solutions for 25 of the 26 existing literature 

problems (For description see section 4.13, 6.6, 7.7. For discussion see section 9.5) 

• Introduction of new benchmark problems to the field literature including new features 

such as holes and arc segments (For description see section 4.9. For discussion see 

section 9.4) 

• Introduction of a new simple non-greedy placement mechanism that produces 

improved benchmark results for this thesis. (For description see section 7.6. For 

discussion see section 9.6) 
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1.5. Publications 

The research presented in this thesis has produced the following publications. 

The work presented in chapter 4 was published in: 

• E. K. Burke, R. S. R. Hellier, G. Kendall, and G Whitwell, "A New Bottom-Left-Fill 

Heuristic Algorithm for the Two-Dimensional Irregular Packing Problem," Operations 

Research, vol. 54, no. 3, pp. 587-601, 2006. 

The technique shown in chapter 5 was published in: 

• E. K. Burke, R.S.R. Hellier, G Kendall, and G. Whitwell, "Complete and Robust No-Fit 

Polygon Generation for the Irregular Stock Cutting Problem," European Journal 0/ 
Operations Research, vol. 179, no. 1, pp. 27-49, 2007. 

The approach outlined in chapter 6 was published in: 
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Line and Arc No-Fit Polygon," Operations Research, vol. 58, no. 4-Part-1, pp. 948-970, 

2010. 
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CHAPTER Two 

2. Stock Cutting Problems 

2.1. Introduction 

Numerous industrial processes require the sub-division of raw stock materials into sub-pieces. 

Given the varying material types and cutting processes, researchers have developed numerous 

automated techniques for the division of one and two dimensional stock materials. 

Traditionally these problems have been addressed by human solvers but the advent of 

powerful computing platforms in the 1960s and their subsequent quick adoption in industrial 

settings as described in (Hatvany, 1984), (Goldhar & Jelinek, 1985) and (Pennings, 1987) has 

allowed the solution generation for problems of this kind to be carried out by automated 

methodologies. 

This chapter provides an overview of the field of irregular two-dimensional cutting and packing 

by following the field's progression from orthogonal focused early work through various 

approaches that have used some form of geometric approximation to avoid the complexities of 

dealing with full two-dimensional geometry and on to those techniques that are able to cope 

with the full two-dimensional geometric representations. 

Techniques that use a true shape sequence based layout generation approach are given 

attention in section 2.5 as these are strongly related to the work presented in chapters 4, 6 and 

7 of this thesis. Approaches using full geometric representations are discussed including those 

methods which allow for placement based or layout improvement based layout generation 

rather than sequence based solution generation techniques similar to the technique developed 

in chapter four of this thesis. Of additional focus in this chapter techniques for generating 

layouts of single parts and finally those techniques that have allowed for circular arc 

representations to be included in their problem sets, rather than linear approximations, which 

is a major feature of the work presented in chapters four and five of this thesis. The benchmark 

problems used throughout this thesis are presented in section 2.8. 

Following this, chapter three focuses upon approaches from the scientific literature relating to 

the geometric techniques used in the development of new work in this thesis. A section on the 
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literature related to geometry and no-fit polygon is presented in section 3.1 and 3.2 

respectively and the literature relating to the search heuristics used to navigate the solution 

space is discussed in section 3.5. 

2.2. Typological Categorisation 

Due to wide range of applicability of cutting and packing techniques, i.e. fields where the 

problem is relevant include computer science, engineering, manufacturing and operational 

research, many of the same problem types have developed different names in the various 

fields, for example bin-packing, trim loss problem and one-dimensional packing all refer to the 

same problem type. 

In (Dyckhoff, 1990) the author presented a typology for the wide range of cutting and packing 

problems that existed in the literature. The author noted that packing problems are divided by 

dimensionality, specifically those problems that involve some spatial dimensions and those that 

involved non-spatial dimensions. 

The problems involving spatial dimensions (up to three dimensions in Euclidean space) are 

regarded as packing and loading problems and those without spatial dimensions include 

temporal and other dimensions such as computer memory blocks. Problems with Euclidean 

dimensions are then sub-divided into cutting and packing problems, cutting which involved a 

large object which is to be cut into smaller objects and packing problems which involve filling 

bins with a number of shapes. 

In (Wascher et aI., 2004) the authors pointed out several drawbacks of the proposed Dyckhoff 

typology. 

Importantly not all cutting and packing problems are uniquely defined by the typology's 

criterion, for example the vehicle loading problem can be categorised using the Dyckhoff 

typology as both: 

• 1-dimensional I resources accommodate all items I many identical resources I many different items 

• 1-dimensional I resources accommodate all items I many identical resources Ifew different items 
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Additionally, as noted in (Gradisar et aI., 2002), different problems can be classified in the same 

category - for instance the strip packing problem and the bin packing problem fall in the same 

categorisation. 

In (Wascher et aI., 2007) the authors presented an improved typology for the range of cutting 

and packing problems. Although partially based on the Dyckhoff typology the authors 

introduced new categorisation criteria that differ from the original. Additionally the newer 

typology introduced a more consistent naming scheme and the authors demonstrated its 

usefulness by categorising the published cutting and packing literature for the years 1995 to 

2004. This new topology is widely accepted as a useful addition to the cutting and packing 

literature and has already been cited 256 times (Google Scholar 16/12/10). 

According to the Wascher, HauBner and Schumann typology the problems that are used to 

benchmark the new methods introduced in this thesis fall into the category of the Open 

Dimensional Problem (ODP) as the problems display the follow attributes: 

• One large object of variable dimensions for smaller items to be placed in 

• Smaller items to be placed are irregular and strongly heterogeneous 

2.3. Initial Approaches 

Early approaches to cutting and packing problems were constrained by the limited 

computational power of the computer equipment of the time. However by extended 

techniques developed for orthogonal packing several authors were able to produce useful 

techniques that could produce layouts within acceptable run times. 

Amongst the earliest pioneers in the cutting and packing field were Gilmore and Gomory who 

in 1961 conducted some of the first research in the area and solved one dimensional problems 

to optimality using linear programming (Gilmore & Gomory, 1961). The size of the problems 

that were able to be tackled was limited by the long computation times required. In 1963 the 

authors used a column generation technique to restrict the number of possible solutions 

(Gilmore & Gomory, 1963). This technique was applied to real problems from a paper roll 

cutting factory. This was the first time that stock cutting techniques had been applied to real 

world problems. 
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In 1965 Gilmore and Gomory extended their linear programming approach to work on the 

orthogonal variation of the problem (Gilmore & Gomory, 1965). Their technique was able to 

generate layouts applicable to guillotine cuts; this restriction allowed a reduction in complexity 

of the problem and was a good fit given the nature of the paper problems they attempted to 

solve. In 1966 the authors used a dynamic programming technique to tackle the knapsack 

problem (Gilmore & Gomory, 1966). The four papers by Gilmore and Gomory noted above are 

widely regarded as the seminal cutting and packing works, indeed they are the most widely 

cited papers in the relevant literature. 

An exact approach, simpler than Gilmore and Gomory's was introduced by (Barnett & Kynch, 

1967). Their technique allowed non-guillotine layouts to be generated; indeed this was a 

requirement of the relaxation used to produce this simpler approach. The placement algorithm 

used to place rectangles was based on removing the two opposite corners of a chess board and 

then attempting to place dominos over the remaining uncovered board area. 

Industrial considerations were taken into account by Haessler in (Haessler, 1971) and (Haessler, 

1975) when the author tackled the problem of rectangle placement whilst taking into account 

the potential cost of setting up machines to produce a layout. An optimal layout may require a 

machine to setup several times which has an associated cost, which could outweigh the 

benefits of a more efficient layout. The author formulated the problem as a mathematical 

programming model utilising a heuristic technique, first presented in (Haessler, 1968), to 

generate solutions. 

The very first presentation of a bottom-left heuristic, a technique very widely used in two 

dimensional irregular packing, for the placement of orthogonal parts is found in (Baker et aI., 

1980), the Bottom-left Fill extension to this heuristic is used throughout this thesis for the 

placement of irregular parts. Baker et al explored various input sequences to this iterative 

placement algorithm and determined that the worst case scenario for layout height, when 

using a decreasing width ordering was not greater than three times the known optimal height. 

These early techniques for the placement of orthogonal shapes were the foundations upon 

which later authors would build techniques for irregular shape placement. 
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2.4. Rectangular Enclosures & Simplification Techniques 

Like the earliest work in the field the initial approaches to the irregular packing problem largely 

concentrated on pre-clustering of irregular shapes into rectangular enclosures to take 

advantage of the subsequent reduction in computational complexity during the placement 

phase. 

An early example of this approach is found in the work of Haims who approached the problem 

in the Ph.D. thesis (Haims, 1966) and later extended this work in (Haims & Freeman, 1970). The 

approach in both publications was to determine the minimum bounding rectangle for a cluster 

of shapes and then use a dynamic programming technique for the packing of the rectangular 

enclosures. 

The technique of minimum bounding rectangle shape clusters is also used in (Adamowicz & 

Albano, 197Ga). The authors used the no-fit polygon, which defines a polygon along which the 

two polygons it is generated from will touch but not intersect with one another. This geometric 

construct was first proposed in (Art, 1966) and is the subject section 3.2 and of chapters 5 and 

6 of this thesis. Following the generation of the clusters using the no-fit polygon Adamowicz 

and Albano packed the clusters on to sheets using dynamic programming. 

In (Adamowicz & Albano, 197Gb) the approach was extended so that techniques for efficiently 

packing pairs of polygons into sub-clusters could be used before the rectangular clustering in 

order to achieve higher packing density. However the work still produced loss of stock sheet 

between rectangles and (Albano, 1977) further extended the approach by displaying solutions 

to users and allowing them to manually manipulate the solutions to improve the yield. 

Irregular shape clustering into orthogonal enclosures was also used in (Marques et aI., 1991). 

The paper describes a dynamic programming and simulated annealing approach to the layout 

problem. The technique produces layouts by clustering irregular shapes into rectangular 

containers by manipulations of translation, rotation and inversion. The shapes are laid out 

using a grid structure of feasible positions in order to reduce the computational complexity. 

Only feasible solutions are allowed, if an infeasible layout is generated that branch is thereafter 

discounted from further consideration. This paper introduced one of the literature benchmark 

problems that are used to assess the effectiveness of the work described later in this thesis. A 
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novel feature of this work is the use of bounding circles, rather than rectangles, for the 

elimination of the expensive operation of examining all potential overlaps between polygons 

on element by element basis. 

(Jakobs, 1996) work is aimed at the sheet steel stamping/punching industry and develops work 

on rectangle packing from (Baker et aI., 1980) . By using a genetic algorithm the author is able 

to improve upon the results of the orthogonal approach of the earlier work. The author then 

extends this approach to tackle problems involving irregular polygons using the polygons in 

their minimum bounding rectangle orientation, rather than clusters of shapes in orthogonal 

enclosures. The algorithm places the polygons using the improved genetic algorithm 

orthogonal method which is followed by a compaction phase during which a step wise bottom 

left algorithm runs until no shape can be moved any further towards the bottom or left of the 

sheet respectively. The paper includes discussion of clustering several shapes, finding the 

minimum bounding rectangle of these clusters and packing them orthogonally and then 

utilising the same compaction phase to improve the layout however no results from the 

implementation of this approach are included. 

Other approaches to reducing the complexity of dealing with full irregular geometry have also 

been used by several authors; these often involve approximating the irregular geometry to 

overlays of simpler shapes or bitmap approximations of the shapes. These approximations 

allow the authors to avoid the overhead of computing full overlap and intersection detection 

routines; however they do come at the cost of accuracy of representation which can often lead 

to wasted space in the generated layouts. 

(Qu & Sanders, 1987) tackled the problem of nesting irregular shapes. The authors presented 

two strategies for shape representation, a full representation of the shape geometry and 

additionally an overlay of the shape built from rectangles to reduce computational overhead. 

The full geometric representation was discarded as it used too much computer memory and 

required too much computation time. The rectangular overlay introduced a degree of 

inaccuracy into the nesting but this inaccuracy was reduced by using smaller rectangles in 

greater quantities to allow a greater degree of fidelity in representing small shape features. The 

shapes were placed in a bottom-left manner with overlap detection being carried out by 

performing many simple rectangular overlap tests. 

25 



A shape covering technique is also presented in (Han & Na, 1996). The authors introduce an 

unusual approach to the irregular packing problem, using fundamental shapes (circles, 

rectangles) to cover parts to reduce complexity of calculation of overlap. These fundamental 

shapes are placed interactively using a GUI tool and these covering shapes introduce a degree 

of inaccuracy as it is required that the covering shapes completely cover each shape and an 

overlap beyond the shape edge is quite probable. Another novel aspect of the work is that it is 

uses a Neural Network for initial layout in combination with simulated annealing for solution 

improvement. In the proposed approach the artificial neural network model is used for 

generating rectangular pattern configurations with an acceptable scrap. Rectangular patterns 

of different sizes are used as the input of the neural network to generate location and rotation 

of each pattern when they are combined. The pattern configurations generated through the 

neural network are represented as decision variables of a mathematical programming model 

for determining an efficient nesting of different sizes of rectangular patterns. The authors note 

that the results produced would be relevant for the thermal cutting industry, presumably as 

the solutions produced do not place shapes in touching positions. This is relevant to the 

thermal cutting problem as the destructive process of plasma, flame or laser cutting requires 

that the shapes are places a minimum distance apart from one another. However, the authors 

do not note that their technique was used in any industrial setting. 

Bitmap and grid based approximations are also a useful way to reduce the computational 

overhead of dealing with irregular two dimensional geometry. (Ratanapan & Dagli, 1997) use a 

grid approximation, like Qu and Sanders previously, in order to reduce the computation time 

required for the generation of layouts. The approximation approach is similar to the computer 

graphics technique of anti-aliasing (Foley et aI., 2003). Having described the approximation 

technique the authors outline an evolutionary algorithm approach which utilises simple 

operators to generate layouts. The authors report improved packing utilisations when they 

increase the resolution of the approximation and note the possible applicability of the work to 

parallel computation. 

A gird approximation approach was also presented in (Bennell & Dowsland, 1999). The paper 

describes a tabu-thresholding approach which is used in order to overcome the author's 

observations that simulated annealing approaches have often been shown to get stuck in local 

optima and converge upon these optima too soon in the search. A tabu-thresholding approach 
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is preferred in this work as it allows specific control of the diversification of solutions through 

specially designed moves incorporated into the solutions generation process. The authors use 

the (Ghosh, 1991) method to generate no-fit polygons to reduce computation time based 

during layout construction. As the layouts generated can contain overlap the authors 

incorporate a simple overlap penalty derived from the horizontal translation distance required 

to resolve the overlap between any two pieces that are intersecting, after initial 

experimentation the authors later revise this penalty to use a weighted rectangular measure. 

The problems tackled do not allow for rotation of shapes and the placement positions of 

shapes are limited by the grid of possible placement locations. The authors discuss the tuning 

of the parameters in the tabu search and note that the approach appears to be competitive 

with other generic approaches. 

In (Ramesh Babu & Ramesh Babu, 2001) the authors tackle a variation on the nesting problem, 

producing layouts on irregular shaped sheets. The approach they adopted also used a bitmap 

type representation with a novel feature, rather than simply use binary pixel values to 

represent the shape they stored a horizontal distance from the shape boundary in each pixel. 

This allows the efficient resolution of overlaps during the layout process. The layout process in 

this work was driven by a hybrid genetic algorithm and heuristic approaches. Comparisons are 

made with their own work, from (Ramesh Babu & Ramesh Babu, 1999), and that of (Jakobs, 

1996). The authors report that they have made improvements on both previous methods. 

Bitmap representations of the shapes, to reduce computational overhead, are also used in 

(Wong et aI., 2009). The paper introduces a two-stage packing approach to the irregular 

packing problem. The approach consists of a genetic algorithm manipulating the ordering of 

shapes for placement and a bottom-left fill placement heuristic. The authors compare results 

on eight new problems between bottom-left random search algorithm and the outlined 

approach and show clear improvements using the two phase algorithm. Unfortunately the 

authors do not compare with any literature benchmarks. 

In (Clay & Crispin, 2001) the authors introduce the no-fit mask which is a construct akin to the 

no-fit polygon but generated using and represented in bitmaps. To generate the no-fit mask 

two datum points are tracked as the shapes orbit each other creating a region analogous to the 

no-fit polygon of the two shapes. These no-fit masks can be produced rapidly for any set of 

angles required and can cope with shapes including concavities. The layout procedure used for 
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placing shoe parts onto hides is similar to that in (Crispin et aI., 2003) which is discussed in the 

next section. 

A placement technique for shoe parts is also presented in (Yang & Lin, 2009). The paper 

presents a genetic algorithm solution to problems from Taiwan's shoe manufacturing industry. 

The authors develop a combined in-house heuristic and genetic algorithm approach for two 

particular shoe lines. The authors compare the results of their work to real production figures 

and find that their approach reduces the average material requirements by 2.64% and reduces 

the time taken to produce a nest by over 69%. However, the authors note that further work 

would be required to produce a more comprehensive approach as the presented solution is the 

result of only a few of the many in-house heuristics available and represents a highly tuned 

genetic algorithm which may need to be retuned for each new problem instance and in-house 

heuristic. 

2.5. Full Irregular Geometry Approaches without Overlap 

The two-dimensional stock cutting problem has been shown to be NP hard and is therefore 

intrinsically difficult to solve (Garey & Johnson, 1979). There have been many different 

strategies for producing solutions to the irregular stock cutting problem. These include linear 

programming approaches, heuristic placement methods, meta heuristic guided search 

techniques and other novel approaches such as the iterative jostling of pieces (Dowsland et aL, 

1998). 

Survey papers can be found in ( (Dowsland & Dowsland, 1992); (Sweeny & Paternoster, 1992); 

(Dyckhoff, 1990); (Wascher et aI., 2007)). However, the feature that connects all of the 

approaches is that they are all required to cope with the geometry of the problem. This can be 

especially complicated when highly irregular shapes are used which may include holes or 

concavities. 

The papers described in this section all use the actual geometry of the shapes that constitute a 

problem, rather than an approximation or simplified enclosure. The techniques noted in the 

first part of this section do not allow layouts with overlap to be regarded as admissible; this is 

in common feature of the layout generation techniques that this thesis presents in chapters 4, 

6 and 7. Section 2.5.1 discusses techniques that allow interim overlap between shapes as a 

28 



valid state and section 2.5.2 explores works that are designed to improve upon already 

generated layouts. 

(Gurel, 1969) presents an early irregular shape placement technique for generating layouts 

based in a graph minimisation approach where joined nodes in a graph represent geometrically 

touching shapes. larger shapes are first placed around the edge of the container then smaller 

shapes are then placed into the large shape layout. 

(Albano & Sapuppo, 1980) presented another of the early papers on the irregular nesting 

problem where rectangular containers were not used for pre-packing of the shapes to be 

placed. The approach utilised the no-fit polygon in a bottom-left placement heuristic, i.e. no 

hole filling in the layout was possible. In order to make a shape placement the right edge of the 

current layout is tracked and the no-fit polygon of that edge is generated with the shape about 

to be placed. The lowest left most position on that no-fit polygon is then used as the placement 

position for the shape. The right edge is then updated and the process repeats until the layout 

is complete. The heuristic is driven by an A* search algorithm. (Moreau & DeSaint Hardavin, 

1969) and (Tanaka & Wachi, 1973) also approached the layout problem without pre-packing 

into rectangular enclosures however neither set of authors used a search algorithm to explore 

the solution space. 

(Fujita et aI., 1993) approach the problem by separating the process of producing layouts into 

two phases. The authors use a genetic algorithm to tackle the combinatorial optimisation 

problem involved in determining a good ordering for placement of shapes. To produce a layout 

they use a compaction technique which is sensitive to the ordering produced by the genetic 

algorithm. The authors restrict the problems tackled to only instances containing convex 

polygons in order to reduce the computation time required. Solutions generated by the 

compaction technique do allow for some "overhang" with the edge of the sheet during the 

process but all shapes must be placed in a feasible position by the end of the process. The 

authors note that the geometric operations required significantly affect the time required to 

produce quality results. It is noted that a reduction in the computation time required for 

calculating overlap and distance between pieces would result in significantly improved time 

performance. 
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A genetic algorithm is also used in (Dighe & Jakiela, 1996) however rather than being used to 

manipulate a sequence of shapes for placement the genetic algorithm approach produces full 

layouts, unlike the earlier work of (Fujita et aI., 1993). The technique involves a detailed 

chromosome which generates fully placed solutions. The first stage generates tight clusters of 

shapes through vertical compaction; these clusters are then packed on to layouts. Partial sub

trees are cached to increase computation speed of the more expensive geometric arrangement 

phase of the two part genetic algorithm. This work shows a significant performance 

improvement upon the work of (Smith, 1985) who used a similar approach on orthogonal 

problems. 

(Bounsaythip & Maouche, 1997) presented a technique that improves upon the results from 

Fujita et. al (1993) in both efficiency and speed of solution generation. The paper describes a 

two stage approach based on an evolutionary algorithm approach which can only produce valid 

arrangements. The authors present a 'comb' representation which is used to track the 

difference between a shape and its bounding rectangle. The comb information is used to 

generate minimum bounding rectangle clusters of shape pairs whilst the evolutionary 

algorithm searches for possible shape combinations. This work is applied to problems from the 

textile industry which introduces some additional constraints, for example wishing to generate 

layouts based on strips of a width that would result in the roll of material being used up by 

some multiple of the width. 

A two phase placement approach is also described in (Cheng & Rao, 1997). The implementation 

is an improvement to the work of Adamowicz and Albano (1976b) and latterly Grinde and 

Cavalier (1995). The authors extend the clustering technique that uses a shape sliding approach 

(akin to the Mahadevan (1984) approach that this thesis extends) to produce dense clusters of 

irregular shaped polygons for subsequent layout. The authors develop a less computationally 

expensive clustering approach to the forerunning techniques. This is achieved by a quasi

newtonian approach the authors dub the "stringy effect" which is used both to arrange shapes 

into clusters and place clusters into layouts. This is achieved by simulating a gravitational 

attraction of shapes to one another and utilising it to prompt their sliding around one-another 

searching for efficient arrangements. The approach is shown to be more efficient than the 

other techniques in terms of both speed and solution quality. 
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The use of the no-fit polygon has become an increasing feature of work in the irregular two

dimensional field since the mid-1990s, indeed few subsequent papers on the subject have not 

used the no-fit polygon to help reduce the computational overhead of dealing with the 

complex geometry. The remaining papers discussed in this section all use the no-fit polygon as 

part of their technique, sections 3.2, 3.3 and 3.4 describe the numerous techniques used to 

generate no-fit polygons and chapters five and six describe the extension of the algorithm first 

presented in (Mahadevan, 1984) in order to remove known degenerate cases and include 

circular arcs. 

(Grinde & Cavalier, 1995) present a method that generates layouts based on the no-fit polygon 

generation approach described in (Mahadevan, 1984). The shape sliding approach used to 

generate no-fit polygons is utilised whilst searching for the minimal enclosure of a set of 

shapes. The authors note the various degenerate cases in the Mahadevan technique which 

later chapters in this thesis tackle in order to produce a complete and robust no-fit polygon 

generation technique, these degenerate cases include exact fits and tight channels leading to 

larger areas which should be part ofthe no-fit polygon but cannot be reached by Mahadevan's 

approach without extensions. The authors use convex hulls to add additional breakpoints to 

the sliding procedure in order to find the minimal enclosure. However, the approach is 

computationally expensive and was later improved on in (Cheng & Rao, 1997). 

In (Dowsland et aI., 1998) the authors generate no-fit polygons using the method devised by 

(Ghosh, 1991), a Minkowski sum based approach. The paper presents an extension to the 

(Dowsland & Dowsland, 1993) "Jostle" technique for improving layout utilisations, a technique 

discussed in section 2.5.2. In this development to the original work the authors extend the 

jostle approach to use no-fit polygons, in order to improve performance by avoiding repeated 

computation. The work includes a more comprehensive review of the strengths of the jostle 

approach based on experiments on more comprehensive data sets allowing the authors to 

identify key problem features such as shape concavity and shape length which the jostle 

approach works well upon. Clear performance gains when using the no-fit polygon are shown 

on all problem types, even when the shapes are all convex. The authors note that the 

computation ofthe no-fit polygons is a non-trivial endeavour in its own right. 

A Minkowski sum technique for no-fit polygon generation is also used in (Milenkovic, 1997). 

The author presents a nesting algorithm based upon a computational geometry approach. The 
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paper describes the utilisation of this work in the fabrics industry and notes that large cost 

savings have been made by taking advantage of the quality of the solutions generated. Further 

work was carried out on the problem in (Milenkovic, 1998). 

In (Degraeve et aI., 2002) the authors also explore a problem related to nesting in the fabrics 

industry. The paper focuses on reducing over production of fabric markers cut from high value 

material. In this formulation the problem consists of low production demands where over 

production is a major issue. The paper does not directly tackle the generation of layouts but 

rather uses a integer programming approach to optimise the combinations and number of 

layers of cloth for each size of garment to be cut in order to fulfil the orders, without significant 

over production. 

A further solution to a problem also related to the fabrics industry, but not focused on layout 

generation directly, is presented in (Niemi, 2003). The author attempts to find a method for 

determining the correct quantities of parts that should be contained in a given set of layouts 

where the parts in question are repeatedly produced but are under variable demand. The 

technique aims to avoid over stocking and shortages by using a mathematical optimization 

model that can be used iteratively in connection with nesting. This approach is useful where 

effort spent producing a set of very high quality layouts for regularly produced parts give a 

trim-loss benefit when compared to constantly producing lower quality but more focused 

layouts. 

In (Oliveira et aI., 2000) the authors present a solution to the generation of nests of irregular 

shapes using a no-fit polygon layout technique that improved numerous benchmark instances. 

The authors use the technique of generating no-fit polygons "on the fly" whilst solutions are 

built. The technique involves generating and retaining a shape outline for all currently place 

shapes. The next shape in the placement sequence is then applied to the shape outline to 

produce a no-fit polygon, this no-fit polygon defines all the positions that the shape can placed 

and touch but not overlap the already placed shapes. The placement is then decided upon with 

respect to producing the smallest bounding rectangle or the minimum length layout. After 

placement the shape is added to the overall shape outline and the process is repeated. The 

results presented in this paper are compared an implementation the work of (Albano & 

Sapuppo, 1980) and benchmarked against the results of (Blazewicz et aI., 1993) and (Dowsland 

& Dowsland, 1993). The authors show clear improvements on three of the five literature 
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problems attempted. Later in (Gomes & Oliveira, 2001) the authors use a greedy heuristic to 

search for good orderings of shapes which are then laid out using a technique similar to the 

prior paper. The results obtained do not quite match the quality of the prior paper. 

(Gomes & Oliveira, 2002) extends the work from the authors' previous papers in 2001 and 

2000. It introduces a 2-exchange shape ordering heuristic for manipulating the order of shapes 

to be nested using an improved bottom-left fill layout mechanism called TOPOS. The layout 

process is improved by the inclusion of an inner-fit rectangle, the no-fit polygon of the inside of 

the sheet and a shape to be placed. The intersection points and vertexes of the no-fit polygons 

of the placed shapes the inner-fit rectangle with respect to the shape about to be placed define 

all feasible non intersection positions for placement. The paper explores the effectiveness of 

the 2-exchange heuristic by numerous tests on various initial shape orderings i.e. random, 

greatest length, greatest area. The 2-exchange heuristic is then used to improve the layout over 

fixed numbers of iterations. The paper presents a statistical analysis of the performance of the 

heuristic and several new benchmarks are set for some of the problems used in this thesis 

namely SHAPESl, SHAPES2, TROUSERS and SHIRTS, these benchmark problems and the others 

used to test the techniques presented in this work are summarised in section 2.B. The TOPOS 

placement technique is used to generate layouts whilst investigating a non-greedy placement 

approach in chapter seven of this thesis. 

The usefulness of the no-fit polygon is also demonstrated in (Dowsland et aI., 2002). The 

authors describe the implementation of a bottom-left fill placement algorithm. The authors use 

the no-fit polygon to optimise overlap detection. The authors note that they use "some 

appropriate method" to calculate no-fit polygons but do not state the exact method utilised. 

The paper introduces a concept of front and back edges on the no-fit polygon as a useful 

optimisation for reducing computation placement. By reducing the placement possibilities to 

the front edges of the no-fit polygon the authors report an execution time saving of 

approximately BO% in this context. The restriction to front edges is admissible as the presented 

placement algorithm precludes the usefulness of back edges as they would be "dominated" by 

already place shapes so any back edge placement would result in an overlapping placement. 

Additionally the authors use caching of no-fit polygons and retain information about previous 

placements positions to improve performance as it will not be possible to place shapes left of 

their most recently place position in a layout. The algorithm is not tested with an iterative 
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search technique instead the authors use a set of static orderings to produce benchmarks. 

Various methods are used to generate orderings including shape area, length and perimeter of 

enclosing polygon. Although no rotations were included in the tested benchmarks the 

approach could be used with such problems. 

(Gomes & Oliveira, 2006) use a linear programming compaction approach in combination with 

a meta-heuristic approach for layout generation. The no-fit polygon is used for overlap 

detection and part compaction however the no-fit polygons are generated from slightly 

simplified shapes, in that holes are removed and small concavities are removed from shapes for 

the generation process. A bottom left fill layout technique is used to generate solutions 

followed by a two phase linear compaction and separation technique. To improve solution 

quality these phases are all driven by a hybrid simulated annealing algorithm. Layouts 

generated by the bottom left fill heuristic, which is initialised to a random weighted shape 

length ordering, are then improved on by the linear compaction and separation approach 

solution acceptance is determined by the state of the simulated annealing algorithm. Pieces are 

swapped in the layout, causing overlap, so separation algorithm is used to generate feaSible 

solution again before compaction improves it to local optima. Whilst the larger parts in the 

problems are tackled by the above approach the smaller parts are placed after the larger parts 

using a 2-exchange greedy method. The authors note that this approach is common within the 

garment production industry where parts naturally fall into large and small categories, similar 

to the approach of (Grinde & Daniels, 1999). Once the large and small parts have been placed 

the whole layout is compacted and assessed with respect to the state of the simulated 

annealing process. This technique produces excellent results and indeed improves on all the 

known best results for the literature problems tackled. 

In (Martins & Tsuzuki, 2010) the authors explore a rotational approach to shape placement in 

fixed size containers. This variant of the cutting and packing problem is, as the authors note, 

not well represented in the literature indeed the authors refer to the typological work of 

(Wascher et aI., 2007) which found only 14 papers on this variant in the 413 papers they 

considered. The presented technique requires the utilisation of no-fit polygons; these are 

generated using a Minkowski sum approach employing decomposition for non-convex shapes. 

The authors use a simulated annealing algorithm to determine the angles of placement and the 

order in which shapes will be placed. Computational results are presented for new benchmark 

34 



problems that have known optimal results, including one problem where the container has a 

hole, around which shapes must be packed. In all cases the presented algorithm is able to 

produce the optimal result for the benchmark. 

(Bennell & Song, 2010) introduces the use of a beam search to aid the efficient construction of 

ordered lists of shapes for placement using a modified TOPOS layout heuristic as documented 

in (Gomes & Oliveira, 2002). The authors improve on some of the deficiencies of the original 

TOPOS approach by using the improved Minkowski sum no-fit polygon generation technique 

described in (Bennell & Song, 2008), discussed in section 3.4.5, which allows for the generation 

of no-fit polygons including interlocking shape pair positions which the original work by Oliveria 

et al. could not achieve as it was utilising a unmodified edge sliding introduced by (Mahadevan, 

1984). Additionally, whilst the original TOPOS approach lost information regarding small holes 

in the packing by joining the polygon outlines together ignoring holes the author's presented 

approach does not lose this information, allowing for additional hole filling. The beam search 

approach is used to generate a good layout ordering by searching both on a local and global 

level in the search space. The authors present computational results highlighting the speed 

with which the solutions are generated and the usefulness of constructive placement heuristics 

that do not exclude local or global optimal solutions. 

The concept of the collision free region was introduced in 2012 in the work of Sato et al.. The 

collision free region represents all feasible placement positions for a shape in a given layout, 

including some degenerated positions such as exact fits between shapes, single feasible pOints 

between shapes and exact fits inside the sheet. The technique used to generate layouts uses 

the parallel calculation of the collision free regions in combination with a simulated annealing 

search technique which control shape placement position and shape sequence input to the 

placement algorithm (Sato et aI., 2012). The technique finds some new best results for the 

benchmark problems attempted; however the run times for the algorithm are very long for the 

more geometrically complex problems. 

In the scientific literature the majority of problems tacked are to be packed into rectangular 

enclosures with one open dimension. However a small number of authors have attempted to 

nest onto irregular sheets using the full geometry of the nesting shapes or their no-fit polygons. 

It should be noted from in section 2.4 the use of approximations has often allowed irregular 

enclosures to be used as the additional complexity introduced by using an irregular sheet can 
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be mitigated especially when using a bitmap placement approach. Bitmap placement 

approaches are discussed in section 3.4.2. 

One such approach to placement on an irregular sheet is presented in (Tay et aI., 2002). The 

authors introduce a layout approach driven by a genetic algorithm. Shapes are nested along the 

sheet boundary with at least one vertex touching the boundary and the shape is "removed" 

from the outline of the sheet resulting in a smaller sheet. The placement algorithm is then 

repeated exhaustively on the shapes in the sequence that the genetic algorithm generates, the 

genetic algorithm is also responsible for the shape placement angles and distance along the 

shape boundary that the shape is placed from an origin point. The authors' approach of edge 

and corner placement is designed to mirror their observations of human nesting behaviour. 

The algorithm is tested on both rectangular and irregular sheets. 

Irregular enclosures are also explored in (Crispin et aI., 2003). The paper offers a detailed 

description of the nesting problem as it pertains to the production of leather goods, specifically 

shoes. The additional constraints discussed include directional strength, quality areas and sheet 

defects. The presented approach uses the no-fit polygon for convex shapes and calculating 

feasible positions along the complex sheet geometry. Various shape quality requirements have 

to be taken into account, i.e. heal and toe pieces for shoes require different strength properties 

and qualities. In order that the quality constraints can be satisfied the problem definition is 

extended so that shapes are placed into their minimum quality zone and maximum deviations 

from the directional strength lines are also taken into consideration. The generation of the no

fit polygons and sheet inner-fit polygon is achieved by a technique derived from the field of 

image processing. A genetic algorithm is used to control angular placement and the allowed 

deviation from the required strength direction. 

2.5.1. Full Irregular Geometry Approaches that Allow Overlap 

The techniques presented in this thesis regard the overlap of shapes with one another and with 

the edges of the container to be an illegal state. The methods used to layout generation are 

therefore designed to avoid these states. However not all approaches to the two-dimensional 

irregular problem regards these states as illegal both during the packing process and even in 

the final layout, although solutions with overlap cannot be regarded as correct and are often 

highly penalised in the evaluation process. Some of the techniques that allow overlap have 
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generated some of the best known solutions to the benchmark problems, described in section 

2.8. 

(Oliveira & Ferreira, 1993) presents one such method that allows overlap during the layout 

process. The authors tackle the problem using both a vector and a faster raster based approach 

for shape overlap detection. Both simulated annealing and local search are used to control the 

probability of accepting solutions generated. In order the generate solution the shapes are 

placed randomly inside a container. The shapes are then moved using a randomly selected 

move in one of the four cardinal directions .. The raster overlap detection approach produces 

interim layouts with overlap. However the vector approach does not as the use of D-Functions 

(Konopasek, 1981) allow full overlap resolution in the cardinal direction. The simulated 

annealing approach uses a cooling schedule to determine if a solution that is worse than the 

current best is acceptable. The authors present detailed analysis of the relative benefits of the 

various approaches and discuss the necessity for avoiding local optima to achieve improved 

overall results. An approach that also uses D-Functions to resolve overlap in the positive y-axis 

for pairs of shapes during a layout generation process is presented in chapter four. 

Shapes are allowed to move off the container in the approach described in (Anand et aI., 1999) 

which introduces an example of a solution designed for industrial leather goods production. 

The paper outlines a process of digitisation and polygonisation of hides and markers, to allow 

for the complex and unique shapes of hides and the possibility for the hide to contain defects. 

The complex shapes are simplified for the layout process by a process of convex decomposition 

to reduce overlap computation complexity. The paper describes a system which contains a 

database of parts, sheets and production requirements, common requirements for industrial 

production. A genetiC algorithm approach is used to generate pseudo layouts which are used as 

the genetiC chromosome representation including initial position and rotation angle. The 

pseudo layout is then converted to a real layout via a more computationally expensive process. 

As overlaps are resolved shapes can move off the sheet and in this case the shape is removed 

from the layout. Non overlapping parts are translated to a touching position based on the 

centre of gravity of the parts already placed. The authors also explore further uses of their 

technique by highlighting its use for generating good parings of shapes which further improve 

generated results. As is common in an industrial environment production requirements may 
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not be satisfied by the production of a single layout and the work also tackles these mUltiple 

sheet problems. 

Overlap during the process of layout generation is allowed in the technique described in 

(Egeblad et aI., 2007). The authors use a guided local search to drive a translational nesting 

implementation. The paper finds many new best solutions for the benchmark instances 

attempted. The presented technique is a relaxed placement method that can handle irregular 

polygons including those with holes. This geometric approach is used in combination with 

guided local search to avoid the search stopping at local minima. Initially the algorithm places 

the all the shapes onto the sheet using a simple bounding rectangle approach and then 

iteratively reduces the sheet length translating outlying shapes into the newly resized 

container. The translations of the outliers may cause overlaps in the layout which the local 

search technique then attempts to resolve by reducing the overlap in the layout at each step. 

The authors also extend this approach to three dimensional problems and present 

experimental results for the three dimensional problems. 

Sheet compaction and interim overlap are also features of the work presented in (Imamichi et 

aI., 2009). The proposed algorithm utilises shape swapping procedures, using sheet compaction 

to induce compression of the layout and separation technique to resolve overlaps. In 

combination with a local search the algorithm produces good results on a number of literature 

benchmarks; indeed the paper presents some new best results. The technique requires the use 

of no-fit polygons in order to determine penetration depth between shapes. The nonlinear 

programming separation algorithm is able to reduce overlap in generated layouts and resolve 

overlaps during the improvement phases. The no-fit polygons are pre-computed for each 

problem prior to the running of the algorithm using a Minkowski sum approach. The authors 

compare their results with the work of (Gomes & Oliveira, 2006), (Egeblad et aI., 2007) and 

(Burke et aI., 2006) (the subject of chapter four of this thesis). The authors show improvements 

to existing published benchmarks eight of the fifteen attempted problem instances although 

runtimes for the presented algorithm are consistently longer than those of the compared 

papers. 

The Imamichi et al. technique is used and extended in the approach presented in (Leung et aI., 

2012) wherein the authors add a tabu search, to avoid local optima, and add a compaction 

phase to the original technique. The tabu list is used to avoid part repeated part type moves for 
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some set of iterations of the algorithm. The compaction operation is applied at the end of each 

run time to further improve the generated result. Utilising these additional steps the authors 

are able to produce some new improvements to the published benchmark problems discussed 

at the end of this chapter. 

2.5.2. Techniques that Improve Existing Layouts 

Improving completed layouts of irregular two dimensional shapes is a technique that has not 

been widely explored in the scientific literature. However one of the earliest papers describing 

an approach to perform an improvement to an existing layout produced a significant 

improvement on a benchmark problem used in this thesis. The approach was presented, along 

with other techniques for improving existing layouts, by (Dowsland & Dowsland, 1993). The 

work discusses techniques for identifying overlap in layouts and presents several 

complementary algorithms for producing and improving layouts. One approach that produced 

very good results when improving an existing layout is the "jostle". The technique uses the 

simple idea of shaking a box of small items in order to make the contents settle into a smaller 

volume. The jostle process shifts the placed parts, in turn, towards the left and then the right 

sheet boundaries. On each move holes available are filled with the moving shapes and over the 

iterations the packing is improved. The jostle algorithm is also reported to be one of the 

quickest methods of improving solutions explored returning improvements within a few 

minutes. Furthermore the jostle technique, in combination with the original placement 

algorithm, produced a long standing best result for one of the widely used benchmarks 

(SHAPESO) which was over 20% better than the Oliveira and Ferreira paper of the same year 

(Oliveira & Ferreira, 1993). 

A further approach based on already nested sheets uses part complete layouts of larger shapes 

then attempts to tackle the placement of significantly smaller trim pieces into the containers 

formed between the larger parts. The approach outlined by (Grinde & Daniels, 1999) is 

designed to work as part of an interactive nesting process for the apparel industry, specifically 

trouser production. The trim pieces are grouped and linear programming techniques including 

a Lagrangian Heuristic, used to ensure reasonable completion times, are utilised to find good 

placements. The larger of the small trims are given greater weight as if they are not successfully 
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placed they could result in a worse solution as they can affect the overall length of the 

generated solution. 

In (Chernov et aI., 2010) the authors use a fast but approximate nesting algorithm to generate 

layouts which are then improved using phi-function techniques. The authors discuss the 

principles of phi-functions and their relation to the no-fit polygon specifically that the no-fit 

polygon is a special case of the phi-function - the zero level set phi-function. The paper 

described how various primary object phi-functions e.g. rectangles, circles and triangles can be 

used to describe two-dimensional polygons by phi-function primary object union and 

disjunction. The authors generate initial layouts using a probabilistic search combined with an 

approximate bitmap packing algorithm this gives many results quickly as the authors wish to 

find a high quality initial layout. The initial layout quality is paramount to the quality of the 

layouts that the phi-function based improvement phase is able to generate. The improvement 

phase allows the phi-functions to be used to continuously translate and rotate shapes in order 

to reach some local optimal packing. Due to the mathematical building blocks of the phi

functions this phase completes very quickly. The authors report all problems attempted were 

optimised by the improvement phase in less than 125 seconds. This speed is also displayed for 

complex problems, involving the combination of many phi-functions, akin those introduced in 

this thesis i.e. from the metal cutting industry e.g. gaskets, flanges and rings and another based 

on the alphabet. 

2.6. Approaches to Generating Single Shape Layouts 

An industrially relevant variant to the two-dimensional irregular packing problems, which are 

studied in the later chapters of this thesis, is the packing of as many as possible of a single 

irregular part onto a rectangular enclosure. This is a reasonably common requirement in 

various industries where large numbers of parts may be required and waste minimisation is of 

interest. This is often the case where stamping or punching techniques are used to cut the 

shapes from the sheet material, rather than a more flexible moving cutting head approach. 

One such approach is presented in (Dori & Ben-Bassat, 1984), the authors present a solution to 

the problem of tiling a single shape onto a rectangular sheet. The approach is based on tiling 

congruent shapes into one of a number of hexagonal containers which are then used for 

40 



repeated placement. To determine the best of the hexagonal containers in which to contain 

the shape the authors generate the convex hull of the shape and compare it to a set of 

containers known to tile efficiently. 

In (Prasad & Somasundaram, 1991) the authors also approached single irregular part 

placement problems with respect to the metal punching or "blanking" problem. The cutting 

process involves the production of a set of dies for repeated use to punch through metal sheet, 

cutting out the required shapes. For this purpose the authors approach the problem as a single 

congruent shape nesting problem although they note that their techniques can be applied to 

up to three distinct shapes. Clusters of shapes are produced in a pairwise manner by finding a 

good orientation for two shapes and then joining their outer contours to make a 'supershape' 

which is then fed into the next pairwise phase with another independent shape. The authors 

compare their results using this technique to a hill climbing approach and find significant 

improvement in yield. In (Prasad et aI., 1995) the authors also worked on the metal punching 

problem but with additional technical constraints such as bridge width and metal grain 

orientation taken into account. 

(Jain et aI., 1990) compared the results of a simulated annealing approach and a multi-start hill 

climbing search technique for the nesting blanks problem. The authors found that a significant 

reduction in trim loss could be achieved when using the simulated annealing approach. The 

approach allowed irregular shapes to be placed in groups of up to three and the pattern 

generated is then repeated across the sheet. 

A genetic algorithm was used by (Cheng & Rao, 2000) to tackle the problem of nesting multiple 

congruent parts. The genetic algorithm approach was used to finding useful angles for the 

shapes to be oriented in. They use an approach similar to the sliding no-fit polygon generation 

technique, discussed in chapters five and six of this thesis, to determine good orientations of 

shapes which can then be efficiently repeated. The authors report improved results from their 

previous work (Cheng & Rao, 1997). 

(Joshi & Sudit, 1994) presented an exact polynomial time algorithm for a single row blank 

punching production problem. The single shape placement algorithm is tested on stripes which 

are large enough to contain the shapes in any orientation and strips that, due to their width, 

restrict the possible shape orientations. The authors also explore the problem of determining 
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the optimal strip width given a stock size and present the results of their unconstrained 

approach. 

(Stoyan & Pankratov, 1999) also worked on the packing of congruent polygons on rectangular 

sheets using a dense double lattice approach. The authors highlight the applicability of this 

problem type to the footwear industry. (Teresa Costa et al., 2009) also presents a new solution 

approach to the single congruent shape packing problem on fixed containers. The authors 

present three heuristics to solve the problem based on a period placement on a lattice 

technique. The approach utilises the no-fit polygon which is generated by the authors using a 

Minkowski sum technique. Computational results are compared with other literature 

approaches to the same problem. The authors report that whilst the heuristics developed 

produce the best results on the problems tackled its average results are usually worse than 

those other the literature techniques. 

2.7. Techniques that allow for Circular Arcs in Shape Boundaries 

The inclusion of circular arcs in problems found in the scientific literature is rare. The following 

papers present techniques that allow circular arcs or circles to be used in the shape boundaries 

of the irregular two dimensional packing problems of the type used in this thesis. Chapters four 

and six present new techniques for nesting and no-fit polygon generation respectively and both 

allow for the inclusion of circular arcs as part of the boundary of the irregular shapes being 

nested. No-fit polygons including circular arcs are also used in the work presented in chapter 

seven. 

Circular arcs are included in the polygon boundaries of the problems tackled in (Blazewicz et 

al., 1993). The authors present a tabu search approach incorporating a bottom-left-fill layout 

heuristic which attempts to fill holes in the layout before placing a shape on the right hand 

edge of layout. A tabu search is used to drive simple shape moves between layouts. The 

authors report good results for their chosen benchmarks. The authors use a novel method of 

waste calculation to evaluate their results wherein they subtract the area of the rectangular 

container of each shape from the sheet area to determine the utilisation figure. This work is an 

extension of the technique introduced by (Albano & Sapuppo, 1980). 
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In (Blazewicz & Walkowiak, 1994) the authors extended the approach presented in (Blazewicz 

et aI., 1993) to include a degree of interactivity by allowing users to rearrange automatically 

generated layouts. They note that that the interactivity has improved the quality of the 

solutions produced in the paper and highlight that this would not be possible without retaining 

the "segment-arc boundary" throughout the work. The avoidance of arc approximation and the 

associated benefits are discussed later in this thesis. 

An approach related to layout generation that uses circles for layout evaluation is presented in 

(Dickinson & Knopf, 2000). The authors propose a novel evaluation matrix for two dimensional 

and three dimensional layouts. The paper argues that the widely used metrics, utilisation and 

overall length, cannot determine between two layouts of equal "quality". The "point moment 

measure" proposed judges the quality by evaluating clusters of shapes in circles and spheres 

based around the point moments of the shapes involved. The approach is applicable beyond 

the three dimensional case into N-dimensional problems. The authors assert that this point 

moment based approach is applicable as they show that there exists an optimal clustering of 

shapes when placed within a circle. 

2.B. Summary of Benchmark Problems 

(Hopper, 2000) made a useful contribution to the field by bringing together many other 

authors' datasets. The author then generated and compared results from both industrial 

software applications and techniques implemented for the work against this wider pool of 

problem types. Often it was reported that the commercial software outperformed the 

presented techniques. Hopper's approaches consisted of layout sequences generated by 

genetic algorithm placed by bottom-left and bottom-left-fill placement heuristics. These 

techniques are not only applied to the wide range of irregular problems the work gathers but 

also to orthogonal guillotine and non-guillotine instances. The work also introduced nine new 

randomly generated problem instances containing convex and non-convex polygons in 

quantities ranging from fifteen to seventy five. The full range of irregular problems collected by 

Hopper has been used to test the effectiveness of the techniques presented in this thesis. The 

following tables outline these problems; additionally Table 3 outlines the best results published 

during the period of the development of this thesis (2002 to 2012). 

43 



Ten additional problems were introduced in order to test unique features of the work 

presented in chapters 4,5,6 and 7. These problems are described in section 4.9 and fully 

outlined in the appendices. 

Table 1. length Evaluated Benchmark Problems 

Original Author Name 
Shape 

Rotational Constraints 
Sheet 

Count Width 

(Blazewicz et aI., 1993) Blasz1 28 0, 180 Absolute 15 

(Ratanapan & Dagli, 1997) Dagli 30 90 Incremental 60 

(Fujita et aI., 1993) Fu 12 90 Incremental 38 

(Jakobs, 1996) Jackobs1 25 90 Incremental 40 

(Jakobs, 1996) Jackobs2 25 90 Incremental 70 

(Marques et aI., 1991) Marques 24 90 Incremental 104 

(Hopper, 2000) Poly1A 15 90 Incremental 40 

(Hopper, 2000) Poly2A 30 90 Incremental 40 

(Hopper, 2000) Poly3A 45 90 Incremental 40 

(Hopper, 2000) Poly4A 60 90 Incremental 40 

(Hopper, 2000) Poly5A 75 90 Incremental 40 

(Hopper, 2000) Poly2B 30 90 Incremental 40 

(Hopper, 2000) Poly3B 45 90 Incremental 40 

(Hopper, 2000) Poly4B 60 90 Incremental 40 

(Hopper, 2000) PolySB 75 90 Incremental 40 

(Hopper, 2000) SHAPES 43 90 Incremental 40 

(Oliveira & Ferreira, 1993) SHAPESO 43 o Absolute 40 

(Oliveira & Ferreira, 1993) SHAPES1 43 0, 180 Absolute 40 

(Oliveira & Ferreira, 1993) SHIRTS 99 0, 180 Absolute 40 

(Oliveira et aI., 2000) SWIM 48 0, 180 Absolute 48 

(Oliveira et aI., 2000) TROUSERS 64 0, 180 Absolute 64 
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Table 2. Density Evaluated Benchmark Problems 

Original Author Name 
Shape 

Rotational Constraints 
Sheet 

Count Width 
(Albano & Sapuppo, 1980) Albano 24 90 Incremental 4900 

(Blazewicz et aI., 1993) Blasz2 20 90 Incremental 15 

(Dighe & Jakiela, 1996) Dighel 16 90 Incremental 100 

(Dighe & Jakiela, 1996) Dighe2 10 90 Incremental 100 

(Bounsaythip & Maouche, Mao 20 90 Incremental 2550 
1997) 
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Table 3. Summary of benchmark results 

Year 
Publication and Benchmark 

Problem 2000 2002 2005 2008 2012 

Blaszl 
(Gomes & Oliveira, 27.3 (Burke et aI., 2006) 27.2 (Burke et aI., 2010) 26.8 (Bennell & Song, 2008) 26.57 (Bennell & Song, 2008) 26.57 
2002) 

Dagli (Hopper, 2000) 65.6 (Burke et aI., 2006) 60.57 (Burke et aI., 2010) 59.94 (Bennell & Song, 2008) 57.64 (Sato et aI., 2012) 57.4 

Fu (Fujita et aI., 1993) 34 (Burke et aI., 2006) 32.8 (Burke et aI., 2010) 31.57 (Egeblad et aI., 2007) 30.8 (Egeblad et aI., 2007) 30.8 

Jackobsl (Hopper, 2000) 13.2 (Burke et aI., 2006) 11.86 (Burke et aI., 2010) 11.5 (Egeblad et aI., 2007) 11.35 (Sato et aI., 2012) 11 

Jackobs2 (Hopper, 2000) 28.2 (Burke et aI., 2006) 25.8 (Burke et aI., 2010) 24.7 (Burke et aI., 2010) 24.7 (Sato et aI., 2012) 22.75 

Marques (Hopper, 2000) 83.6 (Burke et aI., 2006) 80 (Burke et aI., 2010) 78 (Egeblad et aI., 2007) 76.67 (Egeblad et aI., 2007) 76.67 

PolylA (Hopper, 2000) 14.7 (Burke et aI., 2006) 14 (Burke et aI., 2010) 13.3 (Burke et aI., 2010) 13.3 (Burke et aI., 2010) 13.3 

Poly2A (Hopper, 2000) 30.1 (Burke et aI., 2006) 28.17 (Burke et aI., 2010) 27.9 (Burke et aI., 2010) 27.9 (Burke et aI., 2010) 27.9 

Poly3A (Hopper, 2000) 40.4 (Burke et aI., 2006) 40.33 (Burke et aI., 2006) 40.33 (Burke et aI., 2006) 40.33 (Burke et aI., 2006) 40.33 

Poly4A (Hopper, 2000) 56.9 (Burke et aI., 2006) 54.93 (Burke et aI., 2010) 54.6 (Burke et aI., 2010) 54.6 (Burke et aI., 2010) 54.6 

PolySA (Hopper, 2000) 71.6 (Burke et al., 2006) 69.37 (Burke et aI., 2010) 68.84 (Burke et aI., 2010) 68.84 (Burke et al., 2010) 68.84 

Poly2B (Hopper, 2000) 33.1 (Burke et aI., 2006) 30 (Burke et aI., 2010) 29.63 (Burke et aI., 2010) 29.63 (Burke et al., 2010) 29.63 

Poly3B (Hopper, 2000) 41.8 (Burke et aI., 2006) 40.74 (Burke et aI., 2010) 40.5 (Burke et aI., 2010) 40.5 (Burke et aI., 2010) 40.5 

Poly4B (Hopper, 2000) 52.9 (Burke et aI., 2006) 51.73 (Burke et aI., 2010) 51.18 (Burke et aI., 2010) 51.18 (Burke et aI., 2010) 51.18 

PolySB (Hopper, 2000) 63.4 (Burke et aI., 2006) 60.54 (Burke et aI., 2006) 60.54 (Bennell & Song, 2008) 57.53 (Bennell & Song, 2008) 57.53 

SHAPES (Hopper, 2000) 63 (Burke et aI., 2006) 59 (Burke et aI., 2010) 56 (Burke et aI., 2010) 56 (Burke et aI., 2010) 56 

SHAPESO 
(Dowsland & 63 (Dowsland & Dowsland, 63 (Burke et aI., 2010) 60 (Gomes & Oliveira, 60 (Imamichi et al., 2009) 58.3 
Dowsland, 1993) 1993) 2006) 

SHAPESl 
(Gomes & Oliveira, 59 (Burke et al., 2006) 58.4 (Burke et aI., 2010) 55 (Burke et aI., 2010) 55 (Leung et aI., 2012) 53 
2002) 

SHIRTS 
(Gomes & Oliveira, 63.13 (Burke et aI., 2006) 63 (Burke et aI., 2006) 63 (Bennell & Song, 2008) 61.33 (lmamichi et aI., 2009) 60.83 

2002) 

SWIM (Hopper, 2000) 6568 (Burke et aI., 2006) 6462.4 (Burke et aI., 2006) 6462.4 (Bennell & Song, 2008) 5895.2 (Imamichi et aI., 2009) 5875.17 

TROUSERS 
(Gomes & Oliveira, 245.75 (Burke et aI., 2006) 243.4 (Burke et aI., 2006) 243.4 (Bennell & Song, 2008) 241 (Bennell & Song, 2008) 241 

2002) 

Albano (Hopper, 2000) 86% (Burke et aI., 2006) 86.5% (Burke et aI., 2010) 87.23% (Bennell & Song, 2008) 87.88% (Sato et aI., 2012) 89.21% 

Blasz2 
(Blazewicz et aI., 1993) 68.6% (Burke et aI., 2006) 79.9% (Burke et aI., 2010) 80.41% (Gomes & Oliveira, 83.61% (Gomes & Oliveira, 83.61% 

2006) 2006) 

Dighel 
(Hopper, 2000) 72.4% (Burke et aI., 2006) 78.9% (Burke et aI., 2010) 83.84% (Gomes & Oliveira, 100% (Gomes & Oliveira, 100% 

2006) 2006) 

Dighe2 
(Hopper, 2000) 74.6% (Burke et aI., 2006) 84.3% (Burke et aI., 2010) 86.5% (Gomes & Oliveira, 100% (Gomes & Oliveira, 100% 

2006) 2006) 

Mao (Hopper, 2000) 71.6% (Burke et aI., 2006) 79.5% (Burke et aI., 2010) 80.9% (Egeblad et al., 2007) 85.15% (Egeblad et aI., 2007) 85.15% 
--
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CHAPTER THREE 

3. Methodology 

3.1. Geometric Techniques 

Before it is possible to tackle any two dimensional packing problem it is important that the 

practitioner has access to a robust and efficient geometry library. Without such a library it 

would not be possible to go on to create new layout techniques or utilise search mechanisms 

to discover good results. If the library operates inefficiently or inaccurately the quality of the 

results produced by a new approach or technique will be seriously compromised, no matter 

how innovative or potentially effective it may be. 

The implementation of robust and efficient geometry routines can be laborious and can take 

longer than the development of packing strategies and search techniques themselves. In 

particular, the geometry must handle all of the interactions between shapes such as detecting 

whether two shapes are overlapping or calculating the translation distance required in a given 

direction so that the overlap is resolved. The following section discusses various aspects that 

were considered in the generation of the geometry library used throughout the thesis. This 

section does not include a full description of the geometry library used in the following 

chapters of this thesis however the majority of the algorithms utilised can be found in 

(Preparata & Shamos, 1985) and (O'Rourke, 1998). 

3.1.1. Shape structure 

In order to facilitate point in shape tests it is required that the polygons which constitute a 

shape are ordered in a particular direction i.e. clockwise or anti-clockwise. This way the 

polygon forms a single loop starting and ending at the same point. By building shapes up using 

this consistent directional rule, anti-clockwise in the case of this library (in keeping with the 

industrial partners methodology), and marking internal holes as internal via a Boolean flag it 

has been possible to have a single implementation of the point in polygon test which works on 

all polygons in a shape. 
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Using the single point in polygon test it is possible to determine the relationship of any two 

shapes with respect to containment. To do this the winding number approach is used (also 

called Ray Crossing (O'Rourke, 1998)), the technique is outlined below. 

-1 
WN = 1, Inside 

-;1---- .. WN = 0, Outside 

Figure 1. Winding number point inside test 

Figure 1 shows an example of the winding number approach. Here Pi is inside the polygon and 

P2 is outside the polygon. To find the winding number (WN) we cast a horizontal ray from the 

point we are testing, on each crossing of the ray and the anti-clockwise polygon found we 

determine if it is a upward or a downward edge (by checking the V coordinates of the start and 

end points i.e. start V> end V = downward and vice versa). If it is an upward crossing we add 

one to the point's winding number (WN) and if it is a downward edge we subtract one from 

winding number. Only points with a winding number equal to zero are outside the polygon. 

The technique used for the point inside test is shown below in Algorithm 1 and Algorithm 2. 

The implementation in the library has also been adapted to cope with line arc polygons. 
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Algorithm 1. Winding Number Algorithm 

Input: Point p = point to be tested 

Begin 

PolygonEdgeList[l .. q) = edges of the polygon to be tested in 
anti-clockwise order and orientation 

int wn = 0; II the winding number counter 

II loop through all edges of the polygon 
for (int i=O; i<q; i++) 
{ 

if (PolygonEdgeList[i].y <= p.y) 
{ 

else 
{ 

if (PolygonEdgeList[i).y > p.y) 
{ 

if (isLeft(PolygonEdgeList[i), p) > 0 
wn++; 

if (PolygonEdgeList [i+l).y <= P.y) 
{ 

if (isLeft(PolygonEdgeList[i], p) < 0) 
wn--; 

return wn; 

End 

Algorithm 2. isLeft Test 

Input: Point p = point to be tested 

II 
II 
II 

Begin 

double 

result 

Edge e = edge of the polygon to be tested 

>0 for p left of the edge e 
=0 for p on the edge e 
<0 for p right of the edge e 

result = 0; 

(e.p2.x - e.pl.x) * (p.y - e.pl.y) 
- (p.x - e.pl.x) * (e.p2.y - e.pl.y) ); 

return result; 

End 
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3.1.2. Arc Geometry 

Almost uniquely in the cutting and packing literature the work presented in this thesis tackles 

problems containing arc segments. In order to generate layouts and no-fit polygons containing 

arcs it is important that the geometry library is able to detect intersection of line segments with 

arc segments and arc segments with arc segments. The following section outlines some of the 

techniques used to achieve these intersection tests. These are presented as most geometry 

texts usually concentrate on line segments only for intersection tests. 

3.1.3. Line Arc Intersection 

A 

Figure 2. Arc Segment - line Segment Intersection 

Whilst several potential approaches to line arc intersection calculation are possible the method 

used in the geometry library is shown in Figure 2. 

Given arc segment A and line segment B in the arrangement above we first test that the line, 

when rotated to horizontal about the arc A's centre point (cp), is within the y coordinate range 

of the arc, if not it cannot be intersecting. If it is then the intersection points are calculated for 

the horizontal line's infinite form and the arc. These pOints are then rotated back about cp by 

the reverse angle the line was rotated in order to make it horizontal. The rotated pOints are 

then tested against both the line and arc to ensure that they are on both elements as it is 

possible that the points generated against the infinite horizontal may not by on the line or may 

have rotated off the arc segment. Algorithm 3 summarises the process used below. 
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Algorithm 3. Arc Segment Line Segment Intersection 

Inputs: Line Is = line segment for intersection test 
Arc as = arc segment for intersection test 

Begin 
if (Is is vertical) 
( 

double relativeXValue = ls.GetStart().x - as.GetCentre() .x; 
double y; 
double d = relativeXValue / as.GetRadius(); 

if (d >= -1.0 && d <= 1.0) // is in the y range of the arc 
( 

double a = asin(d); 
y = as.GetRadius() * cos (a); 
ptl. x Is. GetStart () . x; 
pt1.y as.GetCentre().y + y; 
pt2.x ls.GetStart() .x; 
pt2.y as.GetCentre().y - y; 

else if (Is is horizontal) 
( 

double relativeYValue = ls.GetStart().y - as.GetCentre() .y; 
double x; 
double d = re1ativeYValue / as.GetRadius(); 

if (d >= -1.0 && d <= 1.0) // is in the x range of the arc 
{ 

double a = acos(d); 
x = as.GetRadius() * sin(a); 
pt1.x as.GetCentre().x + x; 
pt1.y ls.GetStart() .y; 
pt2.x as.GetCentre().x - x; 
pt2. Y Is .GetStart () . y; 

else /1 get the horizontal y Value by rotating the line 
( 

Point lineStart(ls.GetStart()); 
double originalAngle = ls.GetAngle(); 

lineStart.Rotate(as.GetCentre(),-originalAngle); 

yValue = lineStart.y; 
double relativeYValue = yValue - as.GetCentre() .y; 
double x; 
double d = relativeYValue I as.GetRadius(); 
if (d >= -1.0 && d <= 1.0) 1/ is in the x range of the arc arc 
( 

double a = acos(d); 
x = as.GetRadius() * sin (a); 
pt1.x as.GetCentre().x + x; 
pt1.y yValue; 
pt2.x as.GetCentre().x - X; 
pt2.y yValue; 
pt1.Rotate(as.GetCentre(),originalAngle); 
pt2.Rotate(as.GetCentre(),originalAngle); 

if (pt1 is on Is and on as) return ptl 
if (pt2 is on Is and on as) return pt2 
End 
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A 

This method was chosen over several other possible approaches as it yielded the best 

intersection detection accuracy. This accuracy is required in order to avoid overlap and is 

particularly important during the generation of no-fit polygons, covered in chapters 5 and 6. 

3.1.4. Arc Arc Intersection 

cpA 

-

cpB 

-

A 
cpA -, , , , , , , 

, , , , 
.. cpB • 

Figure 3. Arc Arc Intersection 
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Given arc segment A and arc segment B in the arrangement shown in Figure 3 we first check 

that the distance between the centre pOints (d) is less than the sum of their radii, otherwise 

they cannot be intersecting. We then use Pythagorean calculations to determine the potential 

intersection points it and i2. 

Finally we check that the intersection points are on both arcs A and B as the calculation of the 

intersection points works on the circles of the arcs rather the arc segments and therefore could 

produce an invalid point. Algorithm 4 outlines the process in more detail. 
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Algorithm 4. Arc Arc Intersection 

Inputs: Arc arcl 
Arc arc2 

Begin 

double rl= arcl.GetRadius(); 
double r2= arc2.GetRadius(); 
double d= arcl.GetCentre() .DistanceToPoint(arc2.GetCentre()); 

double rBig, rSmall; 

if(rl > r2) 
{ 

rBig rl; 
rSmal1 = r2; 

else 
{ 

rBig = r2; 
rSmall = rl; 

double rBig Minus rSmall = rBig - rSmall; 
double rl_Plus_r2-= rl + r2; 

if(d 

else 

else 
{ 

>= rl Plus r2) 
return; 71 no intersect 

if(d <= rBig Minus rSmall) 
return; II-smaIl-contained 

Point ptl, pt2; 
Arc big, small; 
if (rl > r2) 
{ 

else 

big = arcl; 
small = arc2; 

big = arc2; 
small = arcl; 

in big 

double value=((rSmall*rSmall)+(d*d)-(rBig*rBig))/(2.0*rSmall*d); 
double angle= acos(value); 
double centresAngle=small.GetCentre() .AngleToPoint(big.GetCentre()) 

double addedAngles = centresAngle + angle; 
double subtractedAngles = centresAngle - angle; 

ptl small.GetCentre() .GetPointAtAngleAndDistance(addedAngles,rSmall); 
pt2 small.GetCentre() .GetPointAtAngleAndDistance (subtractedAngles, rSmall) 

if (ptl is on arcl and ptl is on arc2) 
return ptl; 

if (pt2 is on arcl and pt2 is on arc2) 
return pt2; 

End 
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3.1.5. Accuracy 

Using floating point numbers to represent polygons increases the accuracy of the 

representation of the shape that is ultimately desired for cutting. However it complicates many 

other tasks during the preparation of layouts and no-fit polygons, due to the inherent rounding 

errors whilst performing floating point calculations on processors. Many techniques exist to 

cope with such problems, see (Milenkovic, 1988), (Juster, 1992) and (Jackson, 1995) for 

potential approaches. 

In the development of the geometry library for this thesis the technique known as finite 

precision geometry was utilised. In implementing this technique in the library each line, arc or 

point represented is regarded as a region of space of some acceptable error tolerance in size, 

as shown in Figure 4. This allows errors produced when manipulating the floating point data to 

be disregarded, providing that the implementation of intersection and touch detection always 

takes the region around the entities into account. The acceptable error tolerance utilised in the 

generation of the geometry library was 10-7 as the library which this was developed from, the 

industrial partner's Procut geometry library, used a unit base of 1mm. This means the 10-7 is 

equivalent to nanometre scale errors in representations, which are far smaller than the 

accuracy of industrial cutting processes and can therefore be disregarded. 

Many other researchers continue to develop approaches for computationally exact geometry 

systems, information on current exact geometry systems can be found in (Yap, 1997) and 

rounding considerations in (Guibas & Marimont, 1995), (Goodrich et aI., 1997), (Milenkovic, 

2000) and (Halperin & Packer, 2002). However, the additional accuracy obtained through 

computationally exact approaches is usually at the detriment of computation times. 
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Figure 4. Geometry representation showing finite precision, intersection and touch pOints 

Figure 4 is an annotated screen shot from a CAD tool developed alongside the library in order 

to input shape data and test the geometry library's accuracy and speed. The lighter grey paths 

outside each of the entities drawn show the region the library regards as representing the 

entity - the region of error (epsilon). The figure shows and arc segment (A), three lines (B, D 

and E) and a point (C) drawn close to the epsilon value in order to highlight the regions which 

the library regards as the entities. 

Additionally this screenshot shows that the library has been used to calculate intersection and 

touch points between all of the entities (il , i2, i3 and tl and t2) . 

3.1.6. Alternative Approaches 

The development of such a geometry system is a complex and time-consuming undertaking 

and it is likely that other practitioners may like to consider general geometry libraries such as 

LEDA and CGAL. 
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lEDA (library of Efficient Datatypes and Algorithms) was developed from work carried out by 

Mehlhorn and Naher in 1998 (Mehlhorn & Naher, 2000). The authors developed a set of 

algorithms for combinatorial optimisation and computational geometry which they released 

under license. This library has subsequently been commercialised through 

(http://www.algorithmic-solutions.com/leda/) but still offers free of charge licenses for 

academic research. 

CGAl (Computational Geometry Algorithms) is the result of an on-going collaboration between 

several universities and commercial companies to produce a library of geometry representation 

and tools (Overmars, 1996). It can be downloaded under open source and commercial licenses 

from (http://www.cgal.orgf). 

For the purposes of this thesis these options were discounted as the industrial partner could 

not use any software developed with the use of these libraries without additional licensing 

costs being incurred, as a commercial software house. Additionally the Procut software product 

already contained a good basis to begin the development of a library displaying the correct 

attributes to support the development of the work in this thesis and the CASE/TCS projects. 

3.2. The No-Fit Polygon - An Overview 

The following section describes the functionality ofthe no-fit polygon and compares it to the 

more traditional trigonometric based overlap and intersection tests covered in previous 

section. A brief overview of the many techniques that have been used to generate no-fit 

polygons within the previous literature is also provided. 

The first application of no-fit polygon techniques within the field of cutting and packing was 

presented by (Art, 1966), although the term "shape envelop" was used. It was ten years later 

that the term "no-fit polygon" was introduced by (Adamowicz & Albano, 1976b) who 

approached the irregular stock cutting problem by using no-fit polygons to pack shapes 

together using their minimum enclosing rectangles. The term "configuration space obstacle" is 

often used to denote the NFP within the field of engineering and robot motion planning but the 

term has also been used with respect to cutting and packing in (Cunninghame-Green, 1989). 
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The "hodograph" is often used to describe the no-fit polygon within the mathematics 

community ( (Stoyan & Ponomarenko, 1977); (Scheithauer & Terno, 1993); (Bennell et aI., 

200l)}. 

In (Bennell & Oliveira, 2008) the authors present a discussion of the importance of geometry in 

tackling irregular nesting problems. Specifically focusing on the generation of no-fit polygons as 

a key element required for any practitioners of irregular nesting problems. The work covers the 

extended Mahadevan approach presented later in this thesis; the Minkowski sum approach 

and discusses the Phi function approach (Bennell et aI., 2008a). The authors hope that the 

paper will encourage potential practitioners to attempt the subject by giving a clear guide to 

the geometry which the authors note can be a major barrier to undertaking research in the 

field. 

The main function of the no-fit polygon is to describe the region in which two polygons 

intersect. The following example gives an overview of the NFP construct. 

Given two polygons, A and B, the no-fit polygon can be found by tracing one shape around the 

boundary of another. One of the polygons remains fixed in location and the other traverses 

around the fixed polygon's edges whilst ensuring that the two polygons always touch but never 

intersect. Throughout this thesis the convention of the first polygon being fixed and the second 

being the traversing/orbiting polygon is used. Therefore when polygon B traces around the 

fixed polygon A, the resulting no-fit polygon is denoted by NFPAB• In order to create the NFPAB 

object we must choose a reference point from B which will be traced as B moves around A. In 

the implementation the first vertex within the shape vertex list is used as the reference point 

(see Figure 5). 
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Figure 5. The no-fit polygon of two shapes A and B 

NFPAB 

The reference point can be any arbitrary point providing it mimics the movements of the 

orbiting polygon. It is also important to maintain the relative position of the reference point 

with respect to polygon B as this is required when using the NFP to test for overlap. 

In order to test whether polygon B overlaps polygon A we use NFPAB and B's reference point. If 

polygon B is positioned such that its reference point is inside the polygon NFPAB then it overlaps 

with polygon A. If the reference point is on the boundary of NFP AB then polygon B touches 

polygon A. Finally, if the reference point is outside of NFP AB then polygons A and B do not 

overlap or touch . The three possibilities that we have described above are illustrated below in 

Figure 6. 

a) Intersection b) Touching c) No Intersection 

NFPAB NFPAB NFPAB 

Figure 6. Using the no-f it polygon to test for intersection between polygons A and B 
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The no-fit polygon is used within the following selection of papers from the literature: 

(Grinde & Cavalier, 1995), (Ram kumar, 1996), (Cheng & Rao, 1997), (Milenkovic, 1999), (Gomes 

& Oliveira, 2002), (Dowsland et aL, 2002), (Gomes & Oliveira, 2006), (Egeblad et aL, 2007), 

(Imamichi et aL, 2009), (Burke et aL, 2010) 

Many of these papers have produced best known results for literature benchmark problems. 
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3.3. No-Fit Polygon vs. Standard Trigonometry Overlap Detection 

Although the no-fit polygon is an excellent tool for conducting intersection tests between pairs 

of polygons, it has not been widely applied for two-dimensional packing problems in both the 

literature and in real world manufacturing industries. Undoubtedly this is due to the no-fit 

polygon's complex implementation and lack of complete and robust algorithms. Instead, many 

intersection implementations use standard trigonometry approaches which especially occur in 

the case of packing software for real-world applications wherein it is important that distributed 

software is able to handle all possible polygons without errors. However, whilst both 

approaches have the same overall effect, use of the no-fit polygon can be several times quicker 

than even the most efficient trigonometrical routines. For example, where it may be required 

to attempt numerous iterations of the same layout problem the pre-generation of no-fit 

polygons can significantly reduce the total computation time as over numerous iterations, 

trigonometric approaches are likely to repeatedly detect and resolve the same overlapping 

shapes in repeated orientations and positions. 

Where a nesting overlap resolution approach requires the calculation of all intersection points 

between two intersecting shapes the benefits of a no-fit polygon approach are multiplied 

further as numerous intersection calculations are required for the full detection of collision 

when the no-fit polygon method is not used. By utilising no-fit polygons it is possible to reduce 

the overlap detection problem (which is a major factor in the computational overhead of 

nesting process) to a significantly less expensive point inside polygon test (Dowsland et aI., 

2002). In addition to this when utilising the overlap resolution technique used in the chapter 4 

and published in (Burke et aI., 2006) the intersecting shapes are resolved through the repeated 

resolution of intersecting edges in the y-axis direction, by utilising the no-fit polygon the 

resolution technique is more efficient, resolving the y-axis overlap in one complete movement. 

Further to this, the no-fit polygon would also allow for the overlap to be resolved in any 

direction by casting out a ray from the relevant reference point and finding the nearest 

intersection with the no-fit polygon boundary. 

The following section compares the computation necessary to detect and resolve the overlap 

between two polygons where we have pre-calculated the NFP and where we have not. Given a 

nesting method where we wish to detect all points of intersection for polygons A and B {see 
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Figure 7), every edge is tested against every other edge leading to 42 tests to determine 

intersection status (given that polygon A has 7 edges and polygon B has 6 edges). Furthermore, 

if we find no intersection, in order to eliminate the possibility of the polygons intersecting 

through their vertices, or one polygon completely containing the other, we must perform a 

point inside test for all points on both shapes, requiring S6 tests in total, in the worst case. 

These can be regarded as a large, but in the main unavoidable, overhead for the detection of 

intersection between any two polygons in a layout, which can only increase as we add an 

increasing number of polygons to our problem. Whilst many optimisations can be attempted 

and fast intersection libraries can be developed, intersection detection remains a considerable 

portion of the computational overhead inherent in the generation of packing solutions. 

Additionally where the nesting process requires the generation numerous solutions using a 

combinatorial optimisation approach these, often repeated, calculations will have considerable 

impact on the overall computation time. 

y 

REFA 

x 

Figure 7. Intersection testing with the no-fit polygon 

In Figure 7 the no fit polygon of the two polygons, NFPAB, is also shown at some arbitrary 

position in the problem space, in this case the NFPAB has been generated using the Mahadevan 

edge sliding technique where polygon B traversed the edges on the polygon A and the NFP was 

formed by tracking the reference point, REF A, on the traversing polygon. In the context of the 

overlap detection process the position of the NFP is rendered inconsequential by generating 

the test point (tp) using a simple translation, (REF NFPAB + REF B - REF A - Offset), where Offset 

is the positional offset from the reference point of polygon A and the reference point of the no

fit polygon during generation (REF NFPAB - REF A). 
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The status of tp with respect to NFPAB can be calculated using a winding number technique 

described in section 3.1.1 or the ray-crossing algorithm (O'Rourke, 1998). If the point tp is 

found to be within NFPAB then the polygons A and B are colliding with one another, colliding 

includes both intersection and containment of one polygon by another. If tp falls on the NFPAB 

then the polygons are known to be touching and if tp falls outside of NFPAB then the shapes are 

neither touching nor colliding. Both touching and not colliding are viable states for polygon 

placement in numerous nesting approaches. By undertaking the calculation of all no-fit 

polygons for all possible pairs of polygon rotations, we can save considerable computation time 

when undertaking multiple iteration nesting. 

3.4. Approaches for No-Fit Polygon Construction 

The following subsections review the main techniques that have previously been used for 

construction of no-fit polygons within the literature. For each method there is a brief overview 

of the approach and discussion any benefits and drawbacks that may occur from its usage. 

3.4.1. Convex Shapes 

The basic form of no-fit polygon generation occurs when both polygons are convex. Given two 

convex shapes, A and B, the no-fit polygon is created by the following steps: 

• Orientate shape A anticlockwise and shape B clockwise (see Figure 8a) 

• Translate all edges from A and B to a single point (see Figure 8b) 

• Concatenating these edges in anticlockwise order yields the no-fit polygon (see Figure 8c) 

a) 

e >;;\9 
~ 

b) c) 

e 

Figure 8. No-fit polygon generation with convex shapes 
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(Cunninghame-Green, 1989) used this approach to produce "configuration space obstacles" 

between pairs of convex polygons which are then used for intersection tests during the packing 

of shapes. For instances involving non-convex pieces, Cuninghame-Green firstly calculates the 

convex hull of each non-convex shape (the minimal containing convex polygon) and then 

calculates no-fit polygons using the respective convex hulls. The benefit of convex no-fit 

polygon generation is that it is simple and is extremely quick using a standard sorting algorithm 

in combination with edge reordering through translation. The obvious disadvantage is that no

fit polygons cannot be generated for non-convex shapes and the reduction to convex hulls 

results in concavity sections being unavailable in packing and non-traversable in robot motion 

planning. As this can adversely affect solution quality so other approaches are required. There 

have been many different approaches to producing no-fit polygons from non-convex shapes. 

These can be placed into four general categories: digitisation, decomposition, Minkowski sums 

and orbital approaches and are discussed in the following sections. 

3.4.2. Digitisation 

One of the simplest approaches to producing no-fit polygons from non-convex shapes is to 

discretise the shapes through digitisation. Firstly, the shapes are represented as 0-1 bitmap 

objects whereby "ones" represent the solid body of a shape and "zeros" indicate empty spaces 

(see Figure gal. As intersection detection can be implemented easily with bitmaps through 

boolean operations, the no-fit polygon can be created through multiple scans of shape B across 

shape A or through orbital approaches. The problem with such an approach is that there is 

speed accuracy trade-off. For example, with a low resolution grid the process can be very fast. 

However, increases in resolution will require more and longer scan lines and thus speed will be 

compromised. 
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Figure 9. Bitmap representations of non-convex pieces with a 0-1 representation or index 

optimisations 

The discrete representation of the bitmaps may also allow for certain optimisations. Ramesh 

Babu and Ramesh Babu utilise indexing within their bitmap representations whereby "zeros" 

and "ones" are replaced with index entries that indicate how many 'pixels' must be traversed 

horizontally until an empty space is reached (Ramesh Babu & Ramesh Babu, 2001). Although 

they do not calculate no-fit polygons within their layout generation implementation, it is 

apparent that the fundamentals of their indexed scanning technique are also applicable to 

digitised no-fit polygon generation (see Figure 9b) . Another imaging technique has been used 

by (Crispin et aI., 2003) for the generation of leather lay plan layouts within the footwear 

industry. The no-fit polygon is found using image processing techniques by filtering an image of 

the cow hide boundary with an image of the shape to be placed. The convolution between the 

two shape images yields the no-fit polygon. This is another form ofthe Minkowski sum that is 

discussed later in this section. Ultimately, all digitisation or imaging approaches will result in 

inaccurate no-fit polygons because of the loss of information resulting from the discretisation 

of a continuous space. While it is true that the resolution could be set to an arbitrarily high 

value, this may severely affect computation times. One benefit of the digitisation approach is 

that it is able to handle most of the traditional problem cases, such as holes and interlocking 

concavities however it may be possible that j igsaw shapes, after digitisation, may not fit 

together whereas they would in their pure vector form . 
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3.4.3. Decomposition 

An alternative to the digitisation techniques described above is to decompose any non-convex 

shapes into sub pieces that can be 'managed' more easily. However, using decomposition 

usually results in several sub pieces and therefore several no-fit polygons must be created. In 

order to conduct intersection testing, the no-fit polygons can remain decomposed or they can 

be recombined through union operations. Where possible, a single no-fit polygon offers the 

fastest intersection computation times but will require additional calculations to recombine 

constituent parts. This can be a computationally expensive and a difficult undertaking if several 

subparts are present and this may be further complicated if holes are present. For example, 

(Agarwal et aI., 2002) conducted experiments on different decomposition and recombination 

operations with respect to constructing Minkowski sums of non-convex polygons without 

holes. They conclude that it is counterproductive to use optimal decompositions because the 

computation times to calculate them outweigh the benefits achieved during recombination. 

The authors report that the recombination operations are the most costly and give example 

execution times that range from a few seconds to produce the no-fit polygon for shapes 

involving a small amount of concavities and up to twenty minutes for highly irregular shapes. 

3.4.3.1. Convex Pieces 

As previously noted the no-fit polygon generation is trivial when convex shapes are involved. If 

shapes with concavities can be divided into convex pieces, fast convex no-fit polygon 

generation techniques can be employed. The simplification of geometrical intersection 

through the decomposition of non-convex shapes to convex pieces was suggested and 

discussed in (Avnaim & Boissonnat, 1987) and (Cunninghame-Green, 1989). The main 

difficulties with such an approach are the decomposition and recombination algorithms. 

There are many well-known approaches that can be used for this decomposition including 

triangulation and convex partitioning. (Seidel, 1991) suggests a fast polygon triangulation 

algorithm which has complexity of an O(n log n} complexity. Further implementation details 

for triangulation can be found in (Amenta, 1997). However, for our purposes, the triangulation 

approaches produce more sub pieces than is necessary and will ultimately impact upon 

computation time within the generation process. Unlike triangulation, which can be seen as a 
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special case of convex partitioning, generalised convex partitioning algorithms aim to represent 

polygons with as few convex pieces and as quickly as possible. The two key approaches are 

suboptimal partitioning, one of which has an O(n) complexity (Hertel & Mehlhorn, 1983), and 

optimal partitioning which has an O(n3
) (Chezelle & Dobkin, 1985). (Agarwal et aI., 2002) state 

that it is generally more efficient to use suboptimal partition algorithms because of the 

computational overhead inherent with optimal partitioning but they also suggest that an 

alternative and possibly more efficient approach is to perform convex covering instead. Some 

possible decompositions of an irregular polygon into convex pieces are shown in Figure 10. 

c) 

Figure 10. Convex Decompositions 

a) irregular polygon, b) triangulation, c) convex division (vertex to vertex), 

d) convex division (vertex to edge) 

Once any irregular polygons have been decomposed into convex pieces, the no-fit polygon may 

be generated by recombining the no-fit polygons produced by passing each convex piece of 

shape B around each convex piece of shape A. Providing these no-fit regions have been 

generated in relation to a reference point, they may then be recombined. The disadvantage 

with this approach is that recombination can be difficult because the no-fit polygons of the 

convex partitions may cross and, therefore, care must be taken when constructing the Singular 

no-fit polygon entity. Particular difficulty occurs if the original shapes contain holes as it is 

unclear whether intersecting no-fit polygon subsections define holes or whether they define 

discardable regions. 

3.4.3.2. Star-Shaped Polygons 

(Li & Milenkovic, 1995) decompose shapes into convex and star-shaped polygons. A star

shaped polygon has the property that there exists at least one internal point, or 'kernel point', 

that can 'see' the entire boundary of the polygon, (Preparata & Shamos, 1985) and (O'Rourke, 
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1998}. Figure 11 shows one non-star-shaped polygon and one star-shaped polygon. By 

extending the concavity edges and elimination of invisible regions it is evident that the star

shaped polygon has a region, Rkernel, that can be defined within which a kernel point can be 

placed to see the entire polygon boundary. Conversely, this is not the case with the non-star

shaped polygon because no region can be defined in which to place a kernel. Thus, star-shaped 

polygons are situated somewhere between convex and non-convex shapes in terms of 

generality. 

Figure 11. a} Non-star-shaped polygon, b} Star-shaped polygon 

Li and Milenkovic state that star-shaped polygons are 'closed' under Minkowski sum operations 

and provide a proof that the Minkowski sum of two star-shaped polygons also yields a star

shaped polygon. The no-fit polygon is then created through use of an angular sweep line 

algorithm. The authors do not state whether they recombine the no-fit polygon regions into 

one no-fit polygon entity or whether they perform multiple no-fit polygon intersection tests 

during the layout generation stage. 

3.4.4. Phi-Functions 

An alternative approach is presented by (Stoyan et aI., 1996) and is based on the use of "phi 

functions" . Phi(<D}-functions define mathematical intersection relationships between pairs of 

standard or "primary" objects such as rectangles, circles and convex polygons (Stoyan et aI., 

2001). The authors further develop their work to enable the definition of mathematical 

intersection relationships for non-convex polygons through the union, intersection and 

complement of primary objects in (Stoyan et aI., 2002). The resultant intersection test 

between two shapes during layout generation is performed through comparisons of phi-
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functions between all pairs of the primary objects that define shape A and shape B. (Bennell et 

aI., 2008a) investigate $-functions and their relationship with Minkowski sums and the NFP. 

They outline the advantages of $-functions over other approaches, providing a clear definition 

for the set of objects for which $-functions may be derived. A procedure for deriving $

functions, together with examples, is also presented. Whilst the generation no-fit polygons is 

possible using the phi-function approach this represents only a small fraction of their potential 

usefulness to the field of irregular packing. Phi-functions describe the relationship between set 

of shapes, the zero level phi-function describing the no-fit polygon, which allows for shapes to 

be accurately separated and compacted along any vector. This makes the phi-function 

approach of much greater potential usefulness than the generation of the no-fit polygon. 

3.4.5. Minkowski Sums 

The no-fit polygon construct can be unified through the use of Minkowski sums (a form of 

vector addition) and was first suggested by (Stoyan & Ponomarenko, 1977). The concept is as 

follows: given two arbitrary point sets, A and B, the Minkowski sum of A and B is defined by the 

following: A EB B = {a + b: a E A, bE B} 

In order to produce no-fit polygons, the Minkowski difference A EEl -B must be used. This is 

equivalent to two input polygons in opposing orientations and is easily shown through simple 

vector algebra (Bennell et aI., 2001). This can be verified using the simple convex only case 

(section 3.4.1) whereby a shape A is placed in its anticlockwise orientation and shape B in its 

clockwise orientation. This example shows that the method of Cuninghame-Green, involving 

convex shapes only, is a/50 using the Minkowski difference in its most basic form. 

Whilst non-mathematical implementation details of such approaches are scarce (Ghosh, 1991) 

and subsequently (Bennell et aI., 2001), provide excellent explanations and implementation 

details for no-fit region calculation. Ghosh presents details about the production of no-fit 

polygons through the notion of Minkowski difference and demonstrates a simple extension to 

the convex only case that allows for the generation of no-fit polygons for non-convex shapes. 

The drawback is that this approach will only work providing that the concavities of the two 

shapes do not interfere or interlock (see (Ghosh, 1993)). Where this is not the case, a 

modification is proposed but is only briefly outlined. 
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In (Bennell et aI., 2001) the authors present a powerful extension to the earlier work of (Ghosh, 

1991). The authors state that Ghosh's modification would cause a "cumbersome tangle of 

intersecting edges" which would be difficult to recombine to form the no-fit polygon. They 

introduce a further implementation that reduces the amount of 'tangled edges' and give 

thorough implementation details and pseudocode of the entire process. They also report fast 

generation times of around 0.3 seconds for each of five separate datasets from the literature. 

However, they state that their approach cannot deal with internal holes as it is difficult to 

detect which of the internal no-fit polygon edges can be discarded and which form the internal 

no-fit regions. The technique derived allows for the efficient generation of no-fit polygons for 

concave shapes with few degenerate cases. The approach uses convex hulls to overcome the 

problems in the original technique where interacting concavities resulted in unsolvable 

situations. Where interacting concavities are detected they are initially avoided by replacing 

one of the concavities with the relevant part of the convex hull of the shape. The convex hull 

substitution is then returned to later in the algorithm. One major advantage of this technique is 

that it does not require any form of decomposition, itself a potentially complex problem, such 

as the work described in (Li & Milenkovic, 1995). 

(Dean et aI., 2006) offers an extension to the work of (Ghosh, 1991) and the subsequent paper 

by (Bennell et aI., 2001). The extensions improve on the speed of generation of no-fit polygons 

using the Minkowski sum approach for large complex instances like those often found in the 

garment industry. Whilst the authors did not test their approach on any of the literature 

benchmarks as they were too simple to exploit their extension they do report a speed up of 

64% for no-fit polygon generation time using a divide and conquer technique. 

(Huyao et aI., 2007) present a new approach for generating the NFP that is simple, intuitive and 

computationally efficient. It is based on the novel concept of trace line segments that are 

derived from the interaction of two-component polygons. The complete set of the trace line 

segments contains all the boundary edges of the NFP and internal pOints that need to be 

discarded. Algorithms for deriving the trace line segments, efficiently determining those 

segments that form the boundary of the NFP and the identification of holes and degenerate 

cases are described. 

In (Bennell & Song, 2008) the authors extend the work described in (Bennell et aI., 2001) on the 

generation of no-fit polygons using a Minkowski sum technique. The authors develop the 
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approach to remove degenerate cases from the no-fit polygon generation procedure. This is 

achieved by the addition of two post Minkowski edge list generation steps designed to remove 

edges that are not part of the no-fit polygon. Firstly the updated procedure removes the 

negative Minkowski sum edges as these cannot represent a sliding boundary between the 

shapes. Secondly the authors use a concept of a polygonal trip which allows the identification 

of the no-fit polygon boundary, without using this trip technique can be very complex to 

detect. This is due to the fact that the remaining Minkowski edges can represent a complicated 

self-crossing polygon. Additionally the authors present a method for solving a previously 

degenerate can caused by "jigsaw" pieces. The approach involves looking for cycles of paths in 

the Minkowski edges which can be identified and allow the authors to detect the single point of 

touch to be added to the no-fit polygon. The authors present computational benchmarks for a 

range of literature problems and for a set of specifically designed problems involving 

degenerate cases. For all of these problems the improved algorithm is able to generate correct 

no-fit polygons in less than one second. This is the first other example of a complete and robust 

no-fit polygon generation technique for irregular concave and convex polygons in the 

literature, following the algorithm presented in chapter 5 ofthis thesis. 

3.4.6. Orbital Sliding Approach 

(Mahadevan, 1984) introduced a method for generating no-fit polygons through the technique 

of edge sliding. By utilising D-Functions (Konopasek, 1981) the author produced a simple 

algorithm that is able to produce no-fit polygons for pairs of non-convex shapes. Later chapters 

in this thesis discuss the work performed to eliminate the degenerate case from Mahadevan's 

algorithm and extend it to allow the inclusion of shapes containing arcs as part of their 

boundary definition. 

The orbital sliding approach involves using standard trigonometry to physically slide one 

polygon around another. The no-fit polygon is defined by tracing the motion of a locus point of 

the sliding polygon when orbiting. The first discussion and implementation of an orbiting 

approach for the generation of 'envelopes' is detailed in (Mahadevan, 1984). 

The key elements of Mahadevan's approach are: calculation of touching vertices and edges, 

determination of the translation vector and calculation of the translation length. The 

calculation of intersecting edges is performed using the notion of D-functions introduced in 
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(Konopasek, 1981), see the next section for further description of D-functions. Mahadevan 

modifies the D-function test to also calculate touching points which is a necessity for both 

Mahadevan's algorithm and the new approach outlined in chapter 5. This information is then 

used to select a translation vector based on the touching edge. The translation vector is then 

projected through each vertex of the orbiting shape and then the intersecting edge testing is 

used to calculate the translation distance. It is also important to project the translation vector 

in the reverse direction of the stationary polygon. The orbiting shape is then translated along 

the translation vector by the smallest distance (from projection and intersection tests). This 

ensures the two polygons never intersect but always touch. The process continues until the 

orbiting polygon returns to its original starting position. The major disadvantage of 

Mahadevan's original algorithm is that it cannot generate the full no-fit polygon for shapes 

involving holes or some concavities. The problem occurs when the orbiting polygon can be 

placed inside a concavity of the stationary polygon but the concavity has a narrow entrance. In 

this case the orbiting polygon is too wide and will simply slide over the concavity. (Oliveira et 

aI., 2000) also use Mahadevan's implementation within their work on irregular packing and 

include steps to detect such problems. Chapters 5 and 6 present extensions and improvement 

to this sliding technique that allow this approach to robustly generate no-fit polygons. 

3.4.7. D-Functions 

Given that we have been able to generate a geometry library using the techniques outlined in 

section 3.1 capable of accurately detecting intersection and touching between polygons, and 

the shapes they form; it is useful to begin to build some low-level logical operations from which 

we can build more powerful operations, such as the generation of the no-fit polygon. 

(Konopasek, 1981) introduced the concept of D-Functions which allow the determination of the 

relationship between pair of line segments which can be useful when determining feasible 

moves whilst generating the no-fit polygon using a sliding approach, as described in chapter S. 

At each pOint of the generation decisions must be made about which edge to traverse, 0-

Functions are a key tool in making that decision. The following section outlines the functionality 

of D-Functions as utilised by Mahadevan in no-fit polygon creation. 

The fundamental building block of the D-Function is the distance from a point to a line, shown 

in Figure 12. 
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A 
d = (XA - XH)(Y4 - yp) - (Y4 - YH)(X,,- XI') 

a 

Where 

B a = ~ (X4 - XH) 2 + (Y4 - YH) 2 

Figure 12. Distance of a Point from a Line 

Therefore given vector AB and the point P the D-Function: 

DABP = sign[(XA - XB) (YA - YP) - (YA - VB) (XA - XP)] 

allows us to determine which side of the vector the point P is. The use of the sign function 

means that the value returned from the D-Function can only be -1, 0 or +1 dependent upon the 

result being respectively negative, zero or positive. 

If the result of DABP is zero the point P is co-linear with the line segment AB, although it may 

not be on the segment AB, when the result is negative P is right of AB and when the result is 

positive P is left of AB. 
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And a2 is right of b1 And a2 is left of b4 And a3 is left of b1 And a3 is right of b4 

Figure 13. Touching Shapes and D-Functions 

Figure 13 shows two shapes touching at some point, which is a very common situation as when 

no-fit polygons are generated using the sliding technique. In order to determine the state of 

the lines with respect to one another D-Functions are vital tool. The use of D-Functions here 

gives the information that the lines are touching and their orientation with respect to one 

another. This information informs the sliding process logic. A full description of a complete and 

robust sliding no-fit polygon generation technique can be found in chapter 5 of this thesis. 
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3.5. Optimisation and Search Methods 

This section presents a review of search methods used in numerous literature approaches to 

the automatic nesting problem, including the Hill Climbing and Tabu Search approaches used in 

this thesis. 

3.5.1. A* 

The A* heuristic search algorithm (Hart et aI., 1968) uses domain knowledge to search for 

solutions to the applicable search space. As a greedy algorithm the uses its domain knowledge 

to make the best possible move at each search step, however this can lead to poor quality 

solutions as poor moves that were previously discounted must be made towards the end of the 

search. As the search proceeds the exact cost of the solution generated thus far is recorded and 

added to the estimated cost, via a relevant heuristic, to derive a total estimate for the final cost 

of the solution being generated. 

Providing that the estimation heuristic never underestimates the cost (estimation heuristics 

displaying this characteristic are called admissible) the A* algorithm is provably able to produce 

optimal solutions. However for most problems the number of possible solutions that must be 

generated in order to find the optimal solution rises exponentially. 

Although not widely used in the nesting literature, likely due to the potential for poor solutions 

and the vast number of solutions required in order to find an optimal solution, a notable use of 

the A* algorithm is in the work of (Albano & Sapuppo, 1980). 

3.5.2. Local Search Methods 

local search methods are the most widely represented group of search strategies in the 

irregular cutting and packing literature. These approaches often maintain a single best solution 

and move from that state to a neighbouring state, defined by some operator or set of 

operators, in order to try and find a superior solution. 
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3.5.2.1. Hill Climbing 

The hill climbing algorithm is a simple search method that starts with a random point in the 

search space and generates one or more neighbourhood solutions. If one of the generated 

states improves on the current solution (and out performs other generated solutions) then that 

neighbour is adopted as the current solution and the search continues. If no improved 

neighbour solution is found the generated solutions are discarded and the search continues 

without changing the current solution. This leads to one of the major pitfalls of the hill climbing 

approach, it is possible for the technique to get stuck in local optimum without any means of 

escaping from this area. This is due the lack of provision for accepting worse solutions or 

backtracking. One method of avoiding this problem is to allow a random restart of the search if 

no improved solution has been generated for a specific number of iterations. In this situation 

the search will move to another completely random start pOint in the search space and 

continue with the search process. Examples of the hill climbing algorithm can be found in (Rich 

& Knight, 1990) and (Russell & Norvig, 2009). 

The hill climbing algorithm is used to generate solutions in chapters 4 and 6 of this thesis. Other 

practitioners have also used this technique. A selection of literature approaches utilising this 

technique can be found in (Hopper & Turton, 2001), (Prasad et aI., 1995), (Jain et aI., 1990) and 

(WenQi et aI., 2001). 

3.5.2.2. Tabu Search 

The tabu search algorithm is an extension ofthe hill climbing technique outlined above. The 

major addition to the hill climbing approach is to keep a list of states already visited in the 

solution space. 

This memory of previously visited solutions allows the search to avoid returning to a previous 

solution for a predetermined number of search iterations. This ensures that the search will 

explore new states in order to potentially find improved solutions. An additional difference 

from the hill climbing technique is the constant adoption of the best solution found from the 

neighbourhood of generated solutions, whether it represents an improvement on the current 
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solution or not, providing it is not in the tabu list. This allows the search to escape local optima 

and continue exploring the search space throughout the process. 

The algorithm was originally proposed (Glover, 1977) but was not widely adopted for solving 

combinatorial problems until considerably later. Indeed the major references for the technique 

are regarded as (Glover, 1989), (Glover, 1990) and (Glover & Laguna, 1998). 

The tabu search approach is used in the cutting and packing literature, examples of its use can 

be found in (Blazewicz et aI., 1993), (Blazewicz & Walkowiak, 1994) and (Kido et aI., 1994) . 

Additionally a tabu search variant called tabu thresholding was used in (Bennell & Dowsland, 

1999), the tabu threasholding variant technique was introduced in (Glover, 1992). Later in 

(Bennell & Dowsland, 2001) the authors presented a hybridised tabu search approach based on 

their previous thresholding approach but, as shape overlap is an acceptable but penalised 

state, adapts it further to avoid convergence upon infeasible solutions via an additional 

optimisation stage. 

The tabu search technique is used in chapters 3 and 5 of this thesis to generate shape input 

sequences for the bottom left fill layout process. 

3.5.2.3. Simulated Annealing 

Annealing is a physical process, often used in the metal cutting industry, to change material 

properties such as hardness or remove internal stresses. These stresses can often be caused by 

the heat of the cutting process, especially on thicker materials. The technique involves heating 

and cooling the material on a predefined schedule to reorganise the internal crystalline 

structures until they will display the required properties. The simulated annealing search 

process takes inspiration from this physical process using the concept of energy (heat in metal 

annealing) and a cooling schedule to control the acceptability of neighbourhood solutions 

during the search process. The publication of the ideas that later gave rise to the technique can 

be found in (Metropolis et aI., 1953) however it was not until 1983 that Kirkpatrick, Gelatt and 

Veechs introduced the concept of using the technique to control a combinatorial search 

process (Kirkpatrick et aI., 1983). 
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Like hill climbing the process generates one solution at a time and automatically adopts it if it is 

better than the current solution. However in order to allow escape from local optima a worse 

solution may be adopted according to some probability. This probability is controlled by two 

factors, the difference between the solution quality of the current best solutions and the 

generated candidate solution (change in energy, called L1E) and the length of the search time 

remaining (equivalent to the temperature T at a given point of the cooling process in the 

physical process). This probability is usually expressed in the formula e(-t.E/Tl. 

The cooling schedule is often linear or geometric in shape and the temperature reduction is 

made after a certain number of iterations at a given temperature. This means that the 

probability of selecting a worse solution early in the schedule is higher as the temperature 

element allows the system to accept higher energy difference solutions. As the schedule 

progresses and the systems temperature reduces the probability of selecting a worst solution is 

lowered and when the temperature reaches zero, if it is allowed to, the search will act as a hill 

climb search only accepting better solutions. 

The use of simulated annealing as a search mechanism in the cutting and packing literature is 

quite extensive, examples of its use can be found in (Jain et aI., 1990), (Marques et aI., 1991), 

(Oliveira & Ferreira, 1993), (Dowsland & Dowsland, 1993), (Han & Na, 1996), (Wu et aI., 2003), 

(Gomes & Oliveira, 2006) and (Martins & Tsuzuki, 2010). 

3.5.2.4. Beam Search 

Beam search is a restricted best first search wherein a limited number of nodes will explored at 

each level of the graph using a breadth first search to build the candidate nodes. The node with 

the best partial evaluation will then be explored. The beam width controls the number of states 

stored at each level. Whilst this helps to restrict the memory overhead and reduce search time 

to generate solutions it does so at the expense of potentially not finding the optimal solution. 

The beam width can be fixed or variable, in the variable configuration the beam width is 

controlled by a threshold based on the current best solution. 

This approach was used by (Bennell & Song, 2010) to generate good quality solutions in fast 

execution times. Beam search was originally used for speech recognition systems in (lowerre, 

1976) and has subsequently been applied to numerous optimisation problems. 
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3.5.3. Ant Algorithms 

Ant algorithms are based on the study of ant behaviour, although ants are almost entirely blind 

they are able to navigate between their nest and food sources in the surrounding area using 

the shortest route, this is achieved using pheromone trails which are strengthened by repeated 

use of a path and degrade over time. 

The use of ant algorithms to generate solutions to the travelling salesman problem (TSP) was 

first attempted in (Dorigo et aI., 1996). The authors outlined how this is achieve by use of the 

following example. Imaging an initial case in which the ants need only travel in a straight line 

from their nest to a food source. We then imagine that an obstacle is placed in the way of this 

direct path. When the first ant arrives at the obstacle the ant must decide to turn left or right 

and without a pheromone trail to follow the there is an equal probability that it will turn left or 

right. If we assume that the left path is shorter than the right path then any ant taking the left 

will path will get to the food source faster and therefore return along that route sooner, 

strengthening the pheromone levels on that path. The stronger pheromone path is more 

attractive to other food gathering ants and therefore via a positive feedback loop the shortest 

path is considerably more attractive to ants gathering in the future. 

The Dorigo et al. report that the ant algorithm outperformed general purpose heuristics like 

tabu search and simulated annealing on the literature TSP benchmarks. Furthermore the ant 

algorithm approach produced solutions of quality competitive to those of specialised TSP 

approaches although the ant algorithm took longer to find the solution. 

Ant algorithms have been applied to cutting and packing problems in (Burke & Kendall, 1999), 

(Kendall, 2000), (Burke & Kendall, 2002) and (Levine & Ducatelle, 2004). 
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3.5.4. Genetic algorithms 

First introduced by Fraser in (Fraser, 1957) and Bremermann in (Bremermann, 1958) then later 

seminally covered in (Holland, 1975) genetic algorithms are population based search methods 

inspired by evolutionary processes found in nature. 

A genetic algorithm holds a population of solutions known as chromosomes; each chromosome 

is composed of several sub-parts called genes. The value assigned to a gene is known as its 

alleles the combination of these genes and their values makes a chromosome a potential 

solution to the problem being tackled. In order to facilitate the genetic algorithm process it is 

important that each solution in the population is evaluated, this evaluation is the population 

member's fitness. 

The process of search using the genetic algorithm involves developing new generations of 

solutions from the existing population. The new population generation process is performed 

two types of operator which are designed to mimic evolutionary processes. The crossover 

operator is akin to the process of breeding in natural systems, two individuals in the population 

are selected using some defined strategy and exchange elements of their genes in order to 

produce child members of the new population. Most selection strategies tend to focus on the 

selection of the fitter members of the population as candidates for breeding selection, the 

hope being that they will combine their strengths in order to produce an improved child for the 

next generation. Additionally the genetic algorithm uses a mutation operator which can 

randomly change members of the population in order to maintain population diversity and 

increase the possibility of reaching different areas of the solution space. Generally the specific 

strategies and operators used in implementations of the genetic algorithm search technique 

are specially designed for the problem being tackled. 

Detailed analysis is of genetic algorithms is available in (Goldberg, 1989) and the original papers 

by Bremermann and Fraser are revisited in (Fogel & Anderson, 2000) (Fogel & Fraser, 2000). 

During the early stages of the CASE / TCS project the use of genetic algorithms generating 

sequences for packing with a bottom left fill placement strategy was explored. However due to 

the memory overhead and speed of result generation the implementation was unacceptable to 

the industrial partner and was therefore discounted. 
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The use of genetic algorithms in the cutting and packing literature is extensive examples can be 

found in the following publications: 

(Fujita et aI., 1993), (Dighe & Jakiela, 1996), (Jakobs, 1996), (Bounsaythip & Maouche, 1997) , 

(Cheng & Rao, 1997), (Anand et aI., 1999), (lui & Teng, 1999), (Ramesh Babu & Ramesh Babu, 

1999), (Hopper, 2000), (Ramesh Babu & Ramesh Babu, 2001), (Tay et aI., 2002), (Crispin et aI., 

2003), (Yeung & Tang, 2003), (Hifi & M'Hallah, 2004), (Wong et aI., 2009), (Yang & lin, 2009) 

The majority of the approaches noted above use the genetic algorithm to solve the 

combinatorial optimisation element of their nesting approaches. In order to do this a 

chromosome generally represents a full sequence of shapes for placement, i.e. each gene is a 

shape to be placed. The sequence in the chromosome is often used to drive a sequence based 

placement algorithm where the quality of the generated solution is used to determine the 

fitness of an individual. In these examples the chromosomes are manipulated by numerous 

different sequence manipulating operators in order to generate varied members of the 

population, following the normal genetic algorithm approaches. 

A smaller number of the noted authors have encoded more placement related information into 

their chromosomes such as placement angles and other factors such as edge distance for 

placement (Tay et aI., 2002) or degree of allowed deviation from an area of required quality in 

the case of (Crispin et aI., 2003). Only in (Dighe & Jakiela, 1996) do the authors use a hybrid 

genetic algorithm approach that is capable of producing full layouts. Many of the approaches 

outlined above are discussed in more detail in chapter two. 

3.5.5. Artificial Neural Networks 

Artificial neural networks have not been widely used in the field of irregular cutting and packing 

problems although they are marginally better represented in the orthogonal Variants of the 

problem. Where they are represented in the cutting and packing literature they are usually 

used in combination with other techniques. 

A neural network is formed from a set of simple neurons. When operating the neurons receive 

a weighted input signal and depending upon an activation level threshold the neuron may 

output a value, if the output occurs this is known as the neuron firing. Inputs can be in two 
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forms, excitatory or inhibitory, the excitatory inputs contribute to the activation level threshold 

whilst inhibitory inputs will reduce the threshold. By building networks out of neurons it is 

possible to create complex networks of behaviour which is presented to the outside world 

through output nodes. Input nodes receive information from the outside world and these 

signals propagate through the system firing various neurons which will in turn fire further 

neurons. 

The seminal study of neural networks can be found in (McCulloch & Pitts, 1943) a useful guide 

to the field can be found in (Hassoun, 1995). 

The following papers in the cutting and packing literature utilise an artificial neural network: 

(Dagli, 1990) uses a neocognitron neural network paradigm to generate data for assessing the 

degree of match between two irregular patterns. The information generated through the 

feature recognition network is passed to an energy function, and the optimal configuration of 

patterns is computed using a simulated annealing algorithm. Similar approaches are explored in 

(poshyanonda & Dagli, 1992) and (Poshyanonda & Bahrami, 1992). 

In (Han & Na, 1996) an artificial neural network model is used to generate rectangular pattern 

configurations. The patterns generated by the neural network are represented as decision 

variables of a mathematical programming model. 
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CHAPTER FOUR 

4. A New Bottom-Left-Fill Heuristic Algorithm for the Two-Dimensional 

Irregular Packing Problem 

4.1. Introduction 

This chapter presents a new heuristic algorithm for the two-dimensional irregular stock cutting 

problem, which generates significantly better results than the previous state of the art on a 

wide range of established benchmark problems. The developed algorithm is able to pack 

shapes with a traditional line representation, and it can also pack shapes that incorporate 

circular arcs and holes. This in itself represents a significant improvement upon the state of the 

art. By utilising hill climbing and tabu local search methods the proposed technique produces 

25 new best solutions for 26 previously reported benchmark problems drawn from over 20 

years of cutting and packing research. These solutions are obtained using reasonable time 

frames, the majority of problems being solved to new benchmarks within 5 minutes. 

In addition to this, the work also introduces 10 new benchmark problems which involve both 

circular arcs and holes. These are provided because of a shortage of realistic industrial style 

benchmark problems within the literature and to encourage further research and greater 

comparison between this and future methods. 

The speed ofthe solution generation ofthis technique and its applicability to industrially 

complex shapes of any possible cut valid configuration made this approach a valuable 

technique in the context of the CASEtTeS projects. As the technique it was able to keep pace 

with Esprit's existing techniques whilst increasing the layout accuracy using the geometry of 

the shapes in the problem this work proved to be a valuable first step in the research 

programme, furthermore it required the generation of a robust geometry library which Esprit 

had not previously had access to. This work was published in (Burke et aJ., 2006). 

4.2. The Proposed Approach 

The new method for implementing a bottom-left fill packing strategy utilises new shape 

primitive overlap resolution techniques. These techniques allow the fast generation of high 
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quality solutions by eliminating grid based inaccuracy in the vertical axis of the packing sheet. 

Furthermore, the proposed approach allows problems containing circular arcs and shapes with 

holes to be nested. By combining the new techniques with both hill climbing and tabu local 

search methods the algorithm is assessed against the 26 existing problems from the literature 

discussed in section 4.8 then introduces and set benchmarks for 10 new problems,S of which 

contain circular arcs and three that include shapes with holes. 

There have been many different approaches for producing solutions for the irregular two

dimensional stock cutting problem. In general, the approaches that have achieved the best 

known results have used a no-fit polygon based technique to generate potential placement 

positions and/or test for overlaps e.g. (Gomes & Oliveira, 2002), (Gomes & Oliveira, 2006), 

(Egeblad et aI., 2007)and (Imamichi et aI., 2009). While the no-fit polygon is a powerful 

geometric technique, there are several issues that make it limited in scalability for industrial 

applications. No-fit polygon techniques are notorious for the large quantity of degenerate 

cases that must be handled in order to be completely robust. There are several well-known 

cases for which no-fit polygon algorithms can fail which include the following: hole filling, 

shapes with concavities and also jigsaw type shapes where one shape fits exactly into a 

concavity from another shape. Later chapters of this thesis cover the formulation of complete 

and robust no-fit polygon generation techniques for line arc polygons however, at the point 

this work was generated, there was not yet any implementations of the no-fit polygon that 

could successfully handle true arc geometry. 

Without the ability to generate no-fit polygons including arcs most methods and benchmark 

problems have approximated arcs using a sequence of lines. The problem with approximations 

is that there is an accuracy ta time trade-off. That is to say, that if we model the arc with fewer 

lines then we reduce the accuracy of the approximation but the shape is less complex and if we 

increase the quantity of lines we then improve accuracy but make the resultant shape more 

complex. When performing translation or rotation operations, obviously shapes with a larger 

number of lines will take longer to manipulate than a shape with fewer lines. Ultimately, there 

will always be inaccuracy when modelling arcs as a series of lines and in adding more lines to 

our approximation we increase the time required to operate on that approximation. 

The geometry implementation used throughout this work is able to model shapes composed of 

both lines and non-approximated arcs and is able to conduct fast shape intersection operations 
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to an accuracy of 10-7 metres, some of the considerations and practicalities of developing such 

a library are discussed in more detail in section 3.1. 

In real world industrial settings, and especially for profiling (sheet metal cutting) within the 

steel cutting industry, it is imperative that we are able to handle arcs, concavities and holes. 

Traditionally, industry has used a bottom-left-fill approach based on an iterative grid 

approximation in which arcs are represented by approximated lines. The grid approach aims to 

reduce the infinite number of potential positions (due to the continuous nature of space) to a 

fixed set of potential locations. The algorithm works as follows: when placing a shape on the 

sheet we try the first grid location (bottom-left point) and then check for intersection with 

shapes already assigned to the sheet. If there are no intersecting shapes then the shape is 

assigned to the sheet in its current position and we start from the first grid location with a new 

shape. However, if the current shape does intersect with another shape on the sheet then it is 

moved to the next grid position and tested for intersection again, continuing the process until a 

valid position is found. It is obvious that this also means that using a lower resolution grid will, 

in the general case, adversely affect the quality ofthe solution because shapes are placed in 

later positions than they could otherwise be placed if a higher resolution grid was used, this 

causes an accuracy to time trade-off. 

The approach that is described in the following sections is not restricted to moving shapes by a 

fixed translation when intersecting with another shape, unlike the iterative grid approach. This 

is achieved by using the underlying geometric primitives, i.e. line segments and circular arc 

segments, of intersecting shapes to resolve the overlap. This has two main advantages in that 

we can resolve intersecting shapes so that they touch exactly and, secondly, that this accuracy 

is achieved in a smaller number of steps than the iterative grid mechanism. Although the grid 

method and our proposed approach follow a similar conceptual procedure when placing 

shapes, our proposed approach has both a faster and more accurate method of producing 

solutions. 
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Figure 14 a) low resolution grid approach b) high resolution grid approach c) variable 

shift approach 

Figure 14 shows the potential locations for two iterative grid approaches with differing 

resolutions and also our proposed overlap resolution method . In the two iterative grid 

approaches there are a finite number of locations for which shapes may be placed . The 

iterative grid approach of Figure 14b has a higher resolution than that in Figure 14a and 

therefore has more potential placement locations and should result in more compact packings. 

The variable shift approach of Figure 14c has an infinite number of potential locations due to its 

continuous y axis property and therefore has more chance of producing compact packings. 

4.3. Geometrical Definitions 

In order to illustrate the new packing method it is necessary to firstly define what constitutes a 

"primitive", "loop" and "shape". For the purposes of this discussion, a "primitive" is defined as 

either an arc or a line. A line is represented by its start and end points whereas an arc is 

circular and is represented through a centre point, radius, start angle and offset angle. A 

"loop" is defined as an anti-clockwise closed list of primitives where each primitive's end point 

is the start point of the next primitive. The technique does not allow for non-simple polygons, 

as defined in (O'Rourke, 1998), given the industrial nature of the problems being tackled only 

shapes that can be physically cut from a sheet of material are of relevance. A shape is defined 

as one outer loop and O .... n internal loops which can be thought of as holes in the shape. Most 

of the problems from the current literature do not include shapes with either arcs or holes and 

numerous examples only contain convex shapes, where it is easier to detect overlaps. 

Furthermore, it is necessary for these algorithms to cope with floating-point data in order to 

establish high accuracy and realism on real world problems. The geometry library used can 

cope with these extra complications. Figure 15 demonstrates an instance of overlap between 
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two shapes, A and B. It is clear that the arc primitive a2 intersects with line primitive b4 and 

that the line primitives a3 and b3 also intersect. 

a4 

Figure 15. Overlapping Shapes 

4.4. Resolving Overlapping Primitives 

There are four possible cases that must be handled to resolve intersecting primitives. One of 

these primitives is part of the shape that we are trying to place, termed the "free shape", and 

the other is part of a shape that has already been placed on the sheet, named the "locked 

shape". The techniques described in the following sections involve calculating the positive 

vertical distance required to translate the free shape such that the two primitives no longer 

intersect. Whilst this resolves the overlap between the two intersecting primitives, the two 

shapes may still not be fully resolved in that other primitives belonging to the shapes may also 

intersect or the free shape may be entirely contained in the locked shape (discussed in section 

4.5). However, repeated application of these techniques will always resolve overlapping 

shapes with the smallest positive vertical distance required . There are four intersection cases 

which must be handled: i) two lines, ii) line and arc, iii) arc and line, iv) two arcs. It should be 

noted that throughout all of the cases, the locked shape's intersecting primitive, called the 

"locked primitive" throughout this chapter, has already been assigned to the sheet and its 

position may not change whereas the intersecting primitive belonging to the shape that is 

being placed is termed the "free primitive". The x span of a primitive can be thought of as the 

horizontal span of its bounding rectangle. Another concept used is an "infinite vertical line". 

This is a vertical line that spans from negative infinity to positive infinity along the yaxis. The 
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notations used within the diagrams and descriptions of the following subsections are presented 

in Table 4. 

Table 4. Notation for diagrams and descriptions 

Symbol 
Description 

A17A2 Primitive A (the free primitive). 
Start point (A I) and end point (A2) of primitive A 

Al, A2 

Primitive B (the locked primitive). 
81 -7 82 Start point (81) and end point (82) of primitive 8 

81.82 
CP Centre point of an arc primitive 

cl...cn Intersection points 

tl, t2 Tangent points of a line on an arc 

, Infinite vertical line , , (short-dashed vertical line) , 
------ Perpendicular to a line primitive 

(long-dashed line) 

t Translation used to resolve overlap 
(bolded vertical arrow) 

4.4.1. Line & Line (Free Line moving through Locked Line) 

In order to resolve any two intersecting lines it is necessary to the find the end points of each 

line, A and B, that are within the x span of each other, these points are known as the points in 

range (pir) . By passing an infinite vertical line through each of the pir originating from line A and 

find the intersection points of these lines with line B. The distance between each pir from line 

A and its corresponding intersection point on line B is calculated using formula [1]. 

distancePirA ; intersectionPointB.y - pirAy [1] 
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B1 

In order to pass infinite vertical lines through each of the pir originating from line B to find their 

intersection points with line A a different formula is required. Formula [2], is used to calculate 

the distances when the pir originates from the locked primitive (line B). 

distancePirB = pirB.y - intersectionPointAy [2] 

For the resolution method, the overlap must always be resolved by translating line A in the 

positive vertical direction. The distance formulae, given in formulas [1] & [2], may yield 

negative results, therefore, these results are not valid positive vertical movements and are 

eliminated. These distance formulae also form part of the strategy for resolving other cases. 

For intersecting lines, there always exists one valid positive result which can be used to 

vertically translate line A, thus resolving the overlap. An example of this approach is shown in 

Figure 16. 

(a) (b) A2 

B1 
B1 

B2 

Figure 16. Resolution of intersecting line primitives 

Here, point Al is within the x span of Bl ~ B2 and B2 is within the x span of Al ~ A2. These 

points are labelled pirA and pirB respectively (see Figure 16a). If an infinite vertical line is 

passed through pirA to create intersection point c1 and through pirB to create intersection 

point c2 (shown in Figure 1Gb). The distance between pirA and c1 is calculated using formula 

[1] and the distance between pirB and c2 is calculated using formula [2]. In this example, the 

first distance yields a positive result whilst the second is negative. Formula [3] shows how the 

technique combines the distance formulae 1 & 2 into a "max" function call: 

yTrans/ation = max(cl.y - pirA.y , pirB.y - c2.y) [3] 
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The result of formula [3] is shown pictorially as the bolded arrow in Figure 1Gb. Figure lGc 

shows how the overlap has been resolved by vertically translating line A by this positive 

translation. In practice, all of the primitives of shape A are translated, not just the line involved 

in the overlap. 

4.4.2. Line & Arc (Free Line moving through Locked Arc) 

AI 

In this case, where a line is intersecting with an arc, it is necessary to find the positive vertical 

translation with which the line should be translated in order to completely resolve its 

intersection with the arc. As with the Line & Line case (section 4.4.1), it is possible to utilise the 

points in range of each primitive. However, because an arc is involved, it may be required that 

tangent points are used between the arc and line primitives. Figure 17 shows an example 

where applying the points in range method alone is not sufficient to resolve the overlap. 

(a) (b) 

AI 

I ,B2 (pirB2) , 
I 

I I 
I I 
I I 
I , 
I I 

(c) 

Figure 17. A line arc example where points in range are insufficient to resolve overlap 

Figure 17a shows that the only points within range are B1 (pirB1) and B2 (pirB2) from the arc 

(both end points of the line, A1 and A2, are outside the x span of the arc and, therefore, are not 

in range). Once again, an infinite vertical line is passed through each pir and is intersected with 

the line A17A2. This creates intersection points c1 from pirB1 and c2 from pirB2 (see Figure 

17b). The distance between each pir and its respective intersection point on the other 

primitive is calculated using the distance formulae [1] & [2]. In this example, both pir originate 

from the locked primitive (arc B) and therefore both distances are calculated using formula [2]. 

This yields one positive result that is shown by the bolded arrow in Figure 17b. Figure 17c 
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shows that this vertical translation is not sufficient to resolve the overlap. Figure 18 shows how 

to resort to the tangent points to fully resolve the overlap. 

(a) 2 

A2 

Figure 18. Using tangent points to resolve overlap with the line / arc case 

The tangent points can be found by translating the perpendicular (or "normal") of the line such 

that it passes through the centre point of the arc, CP, as shown in figure Sa. The intersection of 

the perpendicular with the arc gives the tangent point(s), t1 and t2 (see Figure 18b). These 

tangent points are then used in a similar manner to the point in range technique in that infinite 

vertical lines are passed through each tangent point and intersected with line A17A2 to give 

points cl and c2. The translation distances can then be calculated by substituting each tangent 

point, t1 and t2, for pirS into formula [2]. This gives formula [4]. 

distanceTangentB = tangentB.y - intersectionPointA.y [4] 

In the example, it can be seen that t1 would yield a positive translation whereas t2 would give a 

negative translation distance. Therefore, translating the line A17 A2 by the distance given by 

t1 will resolve the overlap (see Figure 18c). It should be noted that if the intersection of the 

perpendicular line with the arc yields no tangent pOints or the tangent points result in negative 

translation distances using formula [4] then the point in range technique must be able to 

resolve the overlapping primitives. 

4.4.3. Arc & Line (Free Arc moving through Locked Line) 
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This case, an arc moving through a locked line, involves a similar approach to the free line & 

locked arc case. Once again, the same technique for points in range applies and, therefore, will 

not be repeated here. However, because the arc is now the free primitive (arc A17A2) and the 

line is now the locked primitive (line 61762), we must substitute calculated tangent points and 

their intersections into formula [1) instead of formula [2) (as was the previous case in section 

4.4.2). An example of this is shown in Figure 19. 

(a) (b) (c) 

A2 

.. .. , " A2 , , 
B2 

, 
B2 , , 

''\p 
, 

t.CP , , , 
B2 

Figure 19. Resolving overlap using the tangent point method with the arc !Iine case 

Figure 19a shows that points A2 and B1 are the points in range, pirA and pirB. However, both 

of the pir produce negative translations (using formulae [1) and [2]) thus they cannot be used 

to resolve the intersection therefore the tangent points method is utilised once again. In the 

example, only one tangent point is found because the perpendicular line only intersects the arc 

in only one place. Figure 19b shows that an infinite vertical line is passed through the tangent 

point, tl, and is intersected with line B17B2 to produce point c1. The translation distances 

can then be calculated by substituting tangent points for pirA in formula [1). This gives formula 

(5). 

distanceTangentA = intersectionPointB.y - tangentAy [5] 

Using formula [5] in our example yields a positive translation distance as shown by the bolded 

arrow in Figure 19b. The intersection is resolved by translating the arc, A17A2, by this vertical 

distance as shown in Figure 19c. Once again, if the tangents method does not find tangent 

points or does not yield a valid positive result then the points in range method will be able to 

resolve fully. 
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4.4.4. Ar c & Arc (Free Arc moving through Locked Arc) 

The arc through arc case initially uses the identical point in range technique . For the situation 

where the point in range method is unable to resolve the intersection between the two arc 

primitives, the use of two circle tangent methods that utilise the radii ofthe arcs and the 

Pythagorean theorem allow resolution . An example of intersecting arcs in opposite 

orientations is shown in Figure 20. 

(a) (b) 

B2 

, , 
I ' ----+cp 

dx 

B1 B1 

Figure 20. Using the Pythagorean Theorem to resolve arc / arc intersections 

(method 1) 

Given that rA is the radius of the free arc A1 ~A2 and rB is the radius of the locked arc B1 ~B2 

it is possible to make the following observations: 

From Figure 20a, when the arcs are intersecting: (rB - rAj < h < (rA + rB) 

From Figure 20b, when the intersection has been resolved: h' = (rA + rB) 

Therefore: 

yTrans/ation = (dy' - dy) : where dy' = sqrt((h' * h') - (dx * dx)) [6] 

This intersection can then be resolved by translating arc A by the result of formula [6]. 
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A further arc through arc case that may require solution involves two arcs of similar orientation 

as shown in Figure 21. 

(a) (b) 

CPb 
+, 
1 , h' 

dy': " 
1 " 1 ____ -+ 

dx CPa 

Figure 21. Using the Pythagorean Theorem to resolve arc / arc intersections (method 2) 

Given that rA is the radius of the free arc A17A2 and rB is the radius of the locked arc B17B2 

the following observations can be made: 

From Figure 21a, when the arcs are intersecting: (rB - rAJ < h < (rA + rB) 

From Figure 21b, when the intersection has been resolved: h' = (rB - rAJ 

Therefore: 

yTrans/ation = (dy - dy') : where dy' = sqrt((h' • h') - (dx • dx)) [7] 

If the result of formula [7] is positive, applying this vertical translation to arc A will resolve the 

overlap. It can be seen that, whereas the first circle tangent resolution method translates the 

free arc to the exterior of the locked arc circle, the second method translates the free arc to be 

inside of the arc circle. This is imperative for the correct manipulation of both convex and 

concave arcs. 

4.4.5. Intersection Resolution Summary 

The four possible intersection cases outlined above have shown that each case can be resolved 

by using the points in range method by using formulae [1] and [2]. This will always resolve the 

intersection where two lines are involved (see formula [3]). If arcs are involved, the point in 

range method may not be sufficient to resolve intersections fully and supplementary tangent 

based techniques may be employed. When an arc and line are intersecting by using 
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perpendicular of the line primitive and displacing it through the arc's centre pOint it can be 

used at its intersection with the arc to find tangent points. Where the arc is the "locked 

primitive" and the line is the "free primitive" the use formula [4] will allow for the calculation 

the vertical translation required. Formula [5] is utilised when the arc is the "free primitive" and 

the line is locked. The final case, where two arcs are intersecting, introduced two circle tangent 

methods that can resolve intersections. The first method is calculated by formula [6] and 

results in the respective arc's parent circles being separate. The second method results in the 

respective free arc's parent circle being contained by the locked arc's parent circle (formula 

[7]). The least expensive of the cases is where two lines are involved, as no extra tangent 

calculations are required. This presents optimisation possibilities (which are included in the 

implementation) whereby, if there are many intersecting pairs of primitives between two 

shapes, the line only cases are resolved first. Although repeated applications of these 

techniques may be necessary to fully resolve the overlap between two shapes, this is more 

efficient and accurate than the iterative grid method outlined in section 4.2. 

4.5. Contained Shapes 

There now remains one special invalid case in which one shape is completely contained within 

another. This requires another resolution strategy as there are no intersecting primitives. 

During the nesting process it is possible that a shape may become entirely contained within 

other already assigned shapes. In this circumstance there are no intersecting primitives to 

resolve so another approach is required. As the free shape A is contained by locked shape B an 

infinite vertical line is cast up from the lowest point on shape A, IpA, through shape B. The 

resulting intersection of the infinite vertical line and shape B gives us points c1 ... cn. The 

translation we perform is defined by formula [8]: 

yTrans/ation = min{c1.y -/pA.y, ...... cn.y -lpA.y) where: (cLy -/pA.y) > 0, i = 1... n 

[8] 

Figure 22 shows an instance where employing this technique does not fully resolve overlap 

between the shapes. However, shape A is no longer contained by shape B and there are 

intersecting primitives once more allowing the techniques for resolving primitive intersection 

94 



to be employed once more. This process continues until the shape intersection is completely 

resolved. 

I 

I c4 

I c1 
I 

Figure 22. Contained shape where overlap is not fully resolved 

In resolving shape intersections, the vertical translations employed may cause the free shape to 

intersect with other already assigned shapes. These intersections must also be resolved until 

the shape does not intersect and can be assigned to the sheet or unti l the shape has moved off 

the top of the sheet. In the latter case, the shape must be translated back to the bottom of the 

sheet in the next x coordinate and the process continues until all of the shapes have been 

placed. 
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4.6. Summary - The Bottom-Left-Fill Algorithm 

This bottom-left-fill placement algorithm takes a sheet size and an input sequence of shapes 

and their allowable rotations. The algorithm progresses packing by placing the first shape in 

the lower left corner of the sheet in its most efficient orientation (the orientation that yields 

the smallest bounding rectangle width within the set of rotation criteria). 

With subsequent shapes, if a copy of this shape has not been placed on the sheet, the shape 

starts at the lower left corner of the sheet. If a copy of the shape has previously been assigned 

to the sheet, then the new copy starts from where the previous copy of the shape was placed. 

A valid location for placement is found by testing for all possible intersections and 

containment. If the shape is not intersecting or contained by (or containing) other already 

placed shapes, then the location of the shape is valid and therefore can be assigned to the 

sheet. 

When a shape is in a position that intersects with already assigned shapes, the resolution 

techniques described earlier in this section are used to resolve the overlap in a positive vertical 

direction (up the y axis of the sheet). As all possible intersections are computed the primitves 

that will produce the largest vertical resolution are selected. If resolving overlap results in the 

shape moving off the top of the sheet, then it is returned to the bottom of the sheet and is 

incremented along the positive x axis by a certain value (known as the resolution). The process 

continues as before with overlap/intersection tests and resolution until the shape does not 

intersect and can be placed. Packing is completed when all shapes have been assigned to the 

sheet and the solution can be returned to the user. Shapes are always packed in the order they 

appear in the input sequence. 
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The following pseudo code describes the bottom-left-fill process: 

Algorithm S. The bottom-left fill process 

Input Sequence: shape[l •. m) [l •• n) where m - number of different shapes, 
n = number of rotations for given shape[m] 

sheetshape[l .. q] where array holds placed shapes on the sheet 
q = total number of shapes assigned to the sheet 
x - current x position 
resolution = x increment step value 

Begin 

q - 1; 
Place shape[l) [1] at bottom left of sheet (0,0); II place first shape 

sheetshape[q) = shape[l] [1); 
q++; II increment shapes added counter 

for (i - 2; i <- ro; i++) II start remaining shape placement 

for (j - 1; j <= n; j++) II pack each allowable rotation, j 

place shape[i) [j) at bottom left of sheet; 

while (Overlap (shapes [i) [j), sheetshape [1. • q) ) ) II find feasible position 

Get Intersecting Primitives of shape[i] [j] and sheetshape[l .• q]; 

Resolve Overlapping primitives; 

if (shape[i] [j) off top of sheet) 
( 

x = x + resolution; 
place shape til [j] at (x, 0); 

if (shape i in orientation j is least costly orientation seen so far) 

sheetshape[q) 
q++; 

bestorientation = j; II record best orientation seen so far 

shape[i) [bestorientation); II assign shape i in best orientation to sheet 

Return Evaluation (total length of packing); 

End 

4.7. Local Search 

It is usual to apply some sorting criteria to the shapes of a given problem before packing, often 

by decreasing length or area. Although these often yield solutions of reasonable quality, further 

improvements can be found if a local search mechanism is applied to generate new input 
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orderings. This approach has been used during the experiments of section 4.12 by applying hill 

climbing and tabu search for both area and length pre-sorted arrangements. For additional 

information on the hill climbing and tabu search techniques see section 3.5. 

A standard hill climbing algorithm is used during the experiments which simply applies 

operators to the current solution in order to find a neighbour of increased quality. For each 

cycle of the algorithm a single neighbour solution is generated for examination and comparison 

against the current best solution. If an improved neighbour is found it is adopted as the current 

solution and the search continues. If the neighbour is not an improvement on the current 

solution it is discarded and the search continues with other neighbours. The best solution is 

returned at the end of the search. 

The tabu search mechanism implemented for the experiments is similar in nature to that 

described in (Blazewicz et aI., 1993). The process generates a given number of neighbours, 

using the selected operator, and moves to the best solution in this subset of the 

neighbourhood. This best solution is then used to generate the next set of neighbours and the 

cycle continues. The previously generated shape sequences are held in the tabu list, this means 

that the algorithm will not revisit recently seen sequences within a given list length. 

For the experiments in this chapter the tabu search uses a neighbourhood size of 5 solutions 

and a tabu list length of 200 solutions. These values were chosen from a set of possible values 

during initial experiments. 

The operators used throughout both search techniques are 1 Opt, 2 Opt, 3 Opt, 4 Opt and N 

Opt. 1 Opt removes a randomly chosen shape and inserts it at a random location in the 

sequence. 2 Opt swaps two randomly chosen shapes in the order, although not two of the 

same type as this would produce the same result, this is extended up to 4 Opt where four 

randomly selected shapes are swapped. N Opt selects a random number of shapes to swap and 

is likely to produce a radically different solution, and thus diversify the search. 

The solution operator is chosen by means of an independently generated random number 

selected, within bounds, that is then compared to a weighted scale, which gives the particular 

operator to be used. Each operator has the following chance of selection: 

1 Opt = 40%, 2 Opt = 30%, 3 Opt = 15%,4 Opt = 10%, N Opt = 5% 
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This is because the less radical operators allow for the concentration of the search and the 

highly radical operators, e.g. N Opt, allow the search to escape local optima. 

No statistical sensitivity analysis was performed on these input parameters and operators as 

introduction of the meta-heuristic search was a major step forward for the industrial partner's 

nesting technology, it had previously only been able to attempt the shape area descending and 

shape length descending heuristics used as starting points in the following experiments. 

Consequently when some reasonably well performing settings were arrived at the focus of the 

CASE and TCS projects was directed towards generating additional useful geometric 

techniques, these additional techniques are the focus of the later chapters of this thesis. 

The following pseudocode shows how both of the local searches interface with bottom-left-fill: 

Algorithm 6. The Local Search Process using Hill Climbing and Tabu Search 

INPUT: Problem Shapes, Quantities and Allowable Rotations, Sheet Size 
Furrent.ordering - Sort Ordering(decreasing area, decreasing length) 

"egin 

rurrent.evaluation - Bottom-Left-Fill(current.ordering); 

~est - current; 

~hile (!Stopping Criteria) 
{ 

II either max number of iterations or time based 

opt = Select Operator (1,2,3,4,n Opt); 

if (TABU) 
{ 

for (i = 0; i < neighbourhood size; i++) 

neighbour[i] .ordering - Generate Not Tabu Neighbour(current ordering, opt); 
neighbour[i] .evaluation - Bottom-Left-Fill(neighbour[i] .ordering); 

current = GetBestNeighbour(neighbour[]); 
) 

else if (HILL CLIMBING) 
( 
neighbour. ordering = Generate Neighbour(current.ordering, opt); 
neighbour. evaluation - Bottom-Left-Fill(neighbour.ordering); 
if (neighbour. evaluation <- current. evaluation) ( current - neighbour; 

) 

if (current. evaluation < best.evaluation) ( best - current; ) 

return best; 

nd 
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4.8. Benchmark Problems from the Literature 

To test the effectiveness ofthe new Bottom-Left-Fill algorithm the experiments are run on the 

relevant test problems from the literature. Some of these problems were first collected by 

Hopper in (Hopper, 2000) and now feature on the EURO Special Interest Group on Cutting and 

Packing (ESICUP) website (http://paginas.fe.up.pt/~esicup/tiki

list_file_gallery.php?galleryld=2). 

Additionally (Hopper, 2000) introduced 10 new problems, 9 of which were randomly generated 

and consist of varying quantities of similar polygonal shapes (note: for these 9 "Poly" problems, 

it is necessary to rotate the shapes into their minimum bounding rectangle orientation before 

applying the problems' rotation criteria). In (Oliveira et aI., 2000) the authors introduce 5 new 

problems, 3 of which are drawn directly from the textile industry. (Blazewicz et aI., 1993), 

(Jakobs, 1996) and (Oighe & Jakiela, 1996) introduce two problems each to the collection. The 

remaining problems have each been contributed by different practitioners. Table 5 shows 21 

problems and provides the best known results using a length based evaluation at the time that 

this algorithm was published. Table 6 contains 5 problems and the results for the best known 

solutions for the problems evaluated by density measures at the point this work was published. 

A full list of all subsequent benchmark improvements can be found in Table 3 of section 2.8. 
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Table 5. length evaluated benchmark problems from the literature 

Original Author Problem No. of Rotational Sheet Best Best Available Result 

Name Shapes Constraints Width Length Reference 

Blazewicz, Hawryluk & Blasz1 28 0,180 15 27.3 Gomes & Oliveira (2002) 

Walkowiak (1993) Absolute [called SHAPES2] 

Ratanapan & Dagli (1997) Dagli 30 90 60 65.6 Hopper (2000) [using 
Incremental Nestlib) 

Fujita, Akagi & Kirokawa (1993) Fu 12 90 38 34 Fujita & Akagi (1993) 

Incremental 

Jakobs (1996) Jakobs1 25 90 40 13.2 Hopper (2000) [using 
Incremental SigmaNest] 

Jakobs (1996) Jakobs2 25 90 70 28.2 Hopper (2000) [So 
Incremental Annealing] 

Marques, Bispo & Sentieiro Marques 24 90 104 83.6 Hopper (2000) [Na'ive 

(1991) Incremental Evolution] 

Hopper (2000) Poly1A 15 90 40 14.7 Hopper (2000) [using 
Incremental NestLib] 

Hopper (2000) Poly2A 30 90 40 30.1 Hopper (2000) [using 
Incremental Nestlib) 

Hopper (2000) Poly3A 45 90 40 40.4 Hopper (2000) [using 
Incremental Nestlib) 

Hopper (2000) Poly4A 60 90 40 56.9 Hopper (2000) [using 
Incremental NestLib) 

Hopper (2000) Poly5A 75 90 40 71.6 Hopper (2000) [using 
Incremental Nestlib) 

Hopper (2000) Poly2B 30 90 40 33.1 Hopper (2000) [using 
Incremental SigmaNest] 

Hopper (2000) Poly3B 45 90 40 41.8 Hopper (2000) [using 
Incremental NestLib) 

Hopper (2000) Poly4B 60 90 40 52.9 Hopper (2000) [using 
Incremental Nestlib) 

Hopper (2000) Poly5B 75 90 40 63.4 Hopper (2000) [using 

Incremental Nestlib) 

Hopper (2000) SHAPES 43 90 40 63 Hopper (2000) [Simple 
Incremental Heuristic) 

Oliveira & Ferreira (1993) 5HAPESO 43 o Absolute 40 63 Dowsland & Dowsland 
(1993) 

Oliveira & Ferreira (1993) SHAPES1 43 0, 180 40 59 Gomes & Oliveira (2002) 
Absolute 

Oliveira & Ferreira (1993) SHIRTS 99 0,180 40 63.13 Gomes & Oliveira (2002) 
Absolute 

Oliveira, Gomes & Ferreira SWIM 48 0,180 5752 6568 Hopper (2000) [using 

(2000) Absolute Nestlib) 

Oliveira, Gomes & Ferreira TROUSERS 64 0,180 79 245.75 Gomes & Oliveira (2002) 

(2000) Absolute 

Table 6. Density evaluated benchmark problems from the literature 

Original Author Problem No. of Rotational Sheet Best Best Available Result 

Name Shapes Constraints Width Density Reference 

Albano & Sappupo (1980) Albano 24 90 Incremental 4900 86% Hopper (2000) [5. 
Annealing) 

Blazewicz, Hawryluk & Blasz2 20 90 Incremental 15 68.6% Blaszewicz, Hawryluk & 

Walkowiak (1993) Walkowiak(1993) 

Dighe & Jakiela (1996) Dighe1 16 90 Incremental 100 72.4% Hopper (2000) [using 
Nestlib) 

Dighe & Jakiela (1996) Dighe2 10 90 Incremental 100 74.6% Hopper (2000) [Gen. 
Algorithm) 

Bounsaythip & Maouche (1997) Mao 20 90 Incremental 2550 71.6% Hopper (2000) [Gen. 
Algorithm) 
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4.9. New Benchmark Problems 

In addition to the literature problems the algorithm is tested on ten new benchmark problems 

for the irregular stock cutting problem. Table 7 gives the details of these new problems. The 

new benchmark data can be found in the appendices of this thesis 

Table 7. New Benchmark Problems 

Problem No. of Rotational Sheet Width Optimal 
Name Shapes Constraints Known 

Profiles1 32 90 Incremental 2000 No 

Profiles2 50 90 Incremental 2500 No 

Profiles3 46 45 Incremental 2500 No 

Profiles4 54 90 Incremental 500 No 

Profiles5 50 15 Incremental 4000 No 

Profiles6 69 90 Incremental 5000 No 

Profiles7 9 90 Incremental 500 Yes 

Profiles8 18 90 Incremental 1000 Yes 

Profiles9 57 90 Incremental 1500 No 

Profiles10 91 o Absolute 3000 No 

4.10. Line & Arc - Profiles1 to Profiles5 

These new problems introduce arcs and holes to the set of benchmark problems. Some of 

these shapes, in particular Profilesl and Profiles2, have been chosen from a library of standard 

shapes within the sheet metal profiling industry. All of these problems contain at least one 

shape consisting of one or more arcs and their optimal solutions are not known. 

4.11. Line Only - Profiles6 to Profiles1 0 

A further five problems have been created, some involving shapes with holes, which can be 

tackled by non-arc implementations. The optimal solutions are not known with the exception 

of Profiles7 and Profiles8 which are 'jigsaw' problems where the optimal length is 1000 units 

for both problems. Profiles9 is a novelty dataset involving a subset of letters from the English 

alphabet. ProfileslO combines polygons from numerous literature benchmark problems. 
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4.12 . Experiments 

For the experiments the proposed Bottom-Left-Fill placement algorithm (section 4.6) and local 

search techniques (section 4.7) to generate input shape orderings. During the search process, 

the generated solutions are evaluated by the total length of the packing. Additionally the 

evaluation function records two different density measures, the first is a simple straight line 

density (Densityl) whilst the second density measure, used by Hopper (2000), is based on the 

union of all individual shape bounding rectangles; this allows us to use a non-rectangular final 

density measurement (Density2). Both methods are pictured in figure 10, where the thicker 

line represents the containing area. 

Straight Line Density Measure (Densityl) Hopper (2000) Density Measure (Density2) 

Figure 23. Density Measures 

Density can then calculated by: Density = Total Shape Area / Containing Area 

All of the experiments conducted were performed on a PC with a 2GHz Intel Pentium 4 

processor and 256MB RAM. 

4.13. Experiments on Literature Benchmark Problems 

The results of the literature problem experiments are divided into two groups, those for which 

the best known result is measured using overall packing length and those which have been 

evaluated using density measures. Each problem was run 10 times using 100 iteration runs, 

for both length and area initial orderings (resulting in a total of 40 runs for each problem). The 

results of the experiments are shown in the following tables 
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Table 8. Experiments on length evaluated literature benchmark problems (100 iteration runs, best results shown in bold) 

Hill Climbing Tabu Search 
Length Ordered Area Ordered Length Ordered Area Ordered 

Problem 
Best Average I Best Result Average I Best Result Average I Best Result Average I Best Result 

Literature Length I Length Density1 Density2 Length I Length Density1 Density2 Length I Length Density1 Density2 Length I Length Density1 Density2 
Blasz1 27.30 28.72 28.60 75.5% 78.0% 28.57 28.40 76.1% 8U)% 28.42 28.00 77.1% 78.5% 28.64 27.80 77.7% 79.9% 
Dagli 65.60 62.57 61.82 82.0% 84.1% 62.28 61.67 82.2% 89.0% 62.15 61.10 83.0% 84.2% 61.98 60.57 83.7% 84.3% 
Fu 34.00 33.57 33.00 86.4% 90.1% 33.90 33.00 86.4% 90.3% 33.58 32.80 86.9% 90.0% 33.67 33.00 86.4% 90.8% 
lakobs1 13.20 12.40 12.00 81.7% 89.1% 12.02 12.00 81.7% 87.8% 12.08 12.00 81.7% 92.6% 11.95 11.86 82.6% 89.5% 
lakobs2 28.20 26.40 26.00 74.2% 83.3% 26.62 26.00 74.2% 77.8% 26.53 26.00 74.2% 80.8% 26.37 25.80 74.8% 83.1% 
Marques 83.60 82.76 81.00 85.4% 88.6% 81.97 80.84 85.6% 88.2% 84.20 83.00 83.3% 86.0% 81.10 80.00 86.5% 89.3% 
Poly1A 14.70 14.73 14.27 71.8% 76.0% 14.40 14.03 73.1% 77.5% 14.80 14.56 70.4% 76.0% 14.46 14.00 73.2% 78.2% 
Poly2A 30.10 28.82 28.41 72.1% 77.5% 28.68 28.43 72.1% 75.3% 28.76 28.26 72.5% 76.3% 28.42 28.17 72.8% 75.9% I 

Poly3A 40.40 43.14 42.65 72.1% 74.3% 42.49 41.77 73.6% 75.5% 43.24 42.48 72.4% 74.0% 42.61 41.65 73.8% 74.8% 
Poly4A 56.90 56.89 56.30 72.8% 74.6% 56.93 55.32 74.1% 75.8% 56.14 54.93 74.6% 75.9% 56.07 55.51 73.9% 75.4% 
Poly5A 71.60 70.64 69.37 73.9% 75.7% 71.25 70.72 72.5% 74.0% 70.96 70.69 72.5% 73.4% 70.98 70.55 72.6% 73.8% 
Poly2B 33.10 31.14 30.98 73.0% 77.1% 31.15 30.70 73.7% 77.0% 31.26 31.09 72.7% 76.2% 31.05 30.00 75.4% 77.5% 

Poly3B 41.80 41.33 40.91 74.5% n,1% 41.13 40.77 74.8% 76.4% 41.16 40.74 74.9% 76.5% 41.31 40.88 74.6% 76.4% 
Poly4B 52.90 52.21 51.91 74.5% 76.5% 52.56 52.12 74.2% 75.5% 52.11 51.73 74.8% 77.4% 52.05 51.78 74.7% 76.5% 
Poly5B 63.40 61.97 60.83 75.5% n,2% 61.19 60.54 75.8% 76.9% 61.87 61.04 75.2% 76.6% 61.43 61.43 74.7% 75.3% 
SHAPES 63.00 60.00 59.20 67.4% 68.4% 60.22 60.00 66.5% 69.1% 59.72 59.00 67.6% 69.0% 60.00 60.00 66.5% 69.1% 

SHAPESO 63.00 66.50 66.00 60.5% 62.6% 67.26 66.70 59.8% 62.0% 66.60 66.00 60.5% 62.3% 67.22 67.00 59.6% 61.6% 

SHAPESl 59.00 63.38 62.10 64.3% 65.5% 61.32 60.00 66.5% 68.9% 62.36 61.00 65.4% 68.1% 62.18 62.00 64.4% 66.9% 

SHIRTS 63.13 64.18 64.00 84.4% 85.7% 65.06 64.30 84.0% 86.4% 64.24 63.80 84.6% 86.0% 64.99 64.04 84.3% 87.3% 

SWIM 6568.00 6610.98 6462.40 68.4% 71.6% 6713.08 6601.80 67.0% 69.2% 6551.88 6489.80 68.2% 69.6% 6804.80 6723.70 65.8% 70.2% 
-

89.7% I TROUSERS 245.75 251.39 248.67 87.7% 89.0% 248.88 246.98 88.3% 90.1% 251.54 248.38 87.8% 88.6% 249.56 246.57 88.5% 
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Table 9. Experiments on density evaluated literature benchmark problems (100 iteration runs, best results shown in bold) 

Hill Climbing Tabu Search 
Length Ordered Area Ordered Length Ordered Area Ordered 

Problem 
Best Average I Best Result Average l Best Result Average I Best Result Average I Best Result 

Literature Length 1 Length Density1 Density2 Length I Length Density1 Density2 Length I Length Density1 Density2 Length I Length Density1 Density2 
Albano 86.0%(D2) 10465.16 10354.80 84.1% 85.9% 10505.64 10292.90 84.6% 86.2% 10426.76 10315.10 84.4% 86.5% 10406.74 10298.60 84.5% 85.8% 
Blasz2 68.6%(D1) 25.85 25.60 73.6% 79.3% 25.87 25.28 74.5% 78.4% 25.86 25.38 74.2% 79.9% 25.70 25.38 74.2% 78.2% 
Dighe1 72.4%(D2) 1351.10 1320.00 75.8% 76.9% 1342.74 1324.60 75.5% 77.8% 1327.72 1307.20 76.5% 78.2% 1332.98 1292.30 77.4% 78.9% 
Dighe2 74.6%(D2) 1302.20 1260.00 79.4% 83.3% 1303.36 1270.70 78.7% 81.5% 1279.38 1270.70 78.7% 81.5% 1295.14 1260.00 79.4% 84.3% 
Mao 71.6%(02) 1875.52 1854.30 79.5% 82.0% 1889.32 1863.40 79.1% 82.5% 1875.46 1854.30 79.5% 82.0% 1890.28 1867.00 78.9% 82.9% 
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A summary of the best results from these 40 runs is presented in Table 10 detailing the average 

times per nest, time taken to find the best solution and the percentage improvement on the 

best known result from the literature. For problems where the best solution found was an 

improvement upon the best known solution at the point the research was carried out, 2002, 

the percentage improvement is marked in a bold typeface. 

Table 10. Summary of best results using 100 iteration runs 

Best Best Result Time/Nest Time to best Percentage 
Problem Literature Length I Densityl I Density2 (s) (s) Improvement 

Blaszl 27.3 27.80 77.7% 81.0% 0.32 21 -1.83% 
Dagli 65.6 60.57 83.7% 89.0% 2.04 188.8 7.66% 
Fu 34 32.80 86.9% 90.8% 0.24 20.78 3.53% 
lakobsl 13.2 11.86 82.6% 92.6% 0.74 43.49 10.17% 
lakobs2 28.2 25.80 74.8% 83.3% 2.13 81.41 8.51% 
Marques 83.6 80.00 86.5% 89.3% 0.25 4.87 4.31% 
PolylA 14.7 14.00 73.2% 78.2% 0.36 12.48 4.76% 
Poly2A 30.1 28.17 72.8% 77.5% 1.24 120.56 6.42% 
Poly3A 40.4 41.65 73.8% 75.5% 2.01 210.07 -3.10% 
Poly4A 56.9 54.93 74.6% 75.9% 2.43 203.17 3.47% 
Poly5A 71.6 69.37 73.9% 75.7% 5.04 475.63 3.12% 
Poly2B 33.1 30.00 75.4% 77.5% 2.50 179.86 9.36% 
Poly3B 41.8 40.74 74.9% 77.1% 4.26 417.67 2.54% 
Poly4B 52.9 51.73 74.8% 77.4% 8.24 95.66 2.20% 
Poly5B 63.4 60.54 75.8% 77.2% 14.70 676.61 4.51% 
SHAPES 63 59.00 67.6% 69.1% 0.60 31.36 6.35% 
SHAPESO 63 66.00 60.5% 62.6% 0.93 21.33 -4.76% 
SHAPES 1 59 60.00 66.5% 68.9% 0.82 2.19 -1.69% 
SHIRTS 63.13 63.80 84.6% 87.3% 4.99 58.36 -1.06% 
SWIM 6568 6462.40 68.4% 71.6% 12.39 607.37 1.61% 
TROUSERS 245.75 246.57 88.5% 90.1% 7.89 756.15 -0.33% 
Albano 86.0% 10292.90 84.6% 86.5% 1.18 93.39 0.5% 
Blasz2 68.6% 25.28 74.5% 79.9% 0.16 10.94 11.3% 
Dighel 72.4% 1292.30 77.4% 78.9% 0.22 8.87 6.5% 
Dighe2 74.6% 1260.00 79.4% 84.3% 0.10 7.12 9.7% 
Mao 71.6% 1854.30 79.5% 82.9% 0.38 29.74 11.3% 
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Figure 24. "SWIM" 100 iteration solution (6462.4 units, 607 seconds) 

The initial round of experiments shows that the proposed approach has improved upon 20 of 

the 26 available literature problems. The best solution for dataset SWIM was obtained in 607 

seconds and is shown in Figure 24. The average overall improvement over the 26 problems is 

slightly over 4% and is nearer 6% for the 20 problems where the new best solution has been 

found. On average the best solutions have been obtained within a few minutes execution time, 

although for many of the problems only a few seconds are necessary due to the high 

performance of the presented algorithm. The average time per nest compares favourably with 

other literature approaches utilising the no-fit polygon. For example Gomes and Oliveira 

(2002) state that a solution for the problem SHAPESl can be generated within 6.18 seconds, on 

a 450MHz CPU, in comparison with 0.82 seconds for a solution generated by this new nesting 

method. 

The experiments where then extended on the problems for which new benchmarks had not 

been set, Blaszl, SHAPES1, SHIRTS and TROUSERS. For these extended runs the durations were 

extended to 551.73s, 2019.77s, 6367.57s and 13613.67s respective ly. These upper run limits 

are line with those used by the authors who presented the then relevant benchmarks for these 

problems (Gomes & Oliveira, 2002). For the problems SHAPES and Poly3A the experiment was 

simply extended to 1000 iterations per run, as guidance on search times is not available in the 

literature. These extension experiments for performed for an additional 10 runs. Table 11 
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shows the best results of these runs including the time to best solution, the method that 

generated that solution and percentage improvement on the best known solution. 

Table 11. Summary of the results from the extended experiments 

Best Literature Average Best Result 
Method 

Time to 
Problem (2002) Length Length I Density] I Density2 best (s) 

Blasz l 27.3 27.47 27.20 79.4% 80.7% Hill ClimblLength 50 1.9 1 

Poly3A 40.4 41.45 40.33 76.2% 77.3% Tabu/Area 1515.49 

SHAPESO 63 65.68 65.00 6 1.4% 63.6% Hill Climb/Area 332.39 

SHAPES I 59 60.53 58.40 68.3% 71.5% Tabu/Area 1810.14 

SHIRTS 63 .1 3 63.66 63.00 85.7% 88. 1% Tabu/Length 806.5 

TROUSERS 245.75 246.40 243.40 89.6% 9 1.1 % Tabu/Area 36 11.99 

Percentage 
Improvement 

0.37% 
0.18% 
-3. 17% 
1.02% 
0.21 % 
0.96% 

Of the 6 extended experiments the new bottom-left fill algorithm sets 5 new benchmarks for 

Blasz1, Poly3A, SHAPES1, SHIRTS and TROUSERS. For the remaining problem, SHAPESO, the 

solution matches the work of (Gomes & Oliveira, 2002) (length of 65 units) but has not reached 

the best known solution of 63 units of (Dowsland & Dowsland, 1993). Using the new nesting 

algorithm on the 26 problems from the literature has produced 25 new best solutions. This was 

the first time any research paper in this area had attempted such a broad range of problems 

with such success. The solution obtained for TROUSERS is shown in Figure 25. All best 

solutions obtained for the literature problems are shown in the appendices. 

Figure 25. "TROUSERS" extended run solution (243.4 units, 3612 seconds) 
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4.14. Experiments on New Benchmark Problems 

The next set of experiments conducted involved setting benchmarks for the new problems, 

Profiles1-10. Each problem was run 10 times for 30 minute durations with both hill climbing 

and tabu search (length and area initial orderings) resulting in a total of 40 runs. Table 13 is 

summary of the best results from these 40 runs. Figure 26 shows the best solutions for 

datasets Profiles1 and Profiles9. All best solutions obtained for these new problems are 

available in the appendices of the thesis. 
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Table 12. Experiments on new benchmark problems (30 minutes per run, best results shown in bold) 

Hill Climbing Tabu Search I 

Problem 
length Ordered Area Ordered length Ordered Area Ordered I 

Average Best Result Average Best Result Average Best Result Average Best Result 
length length Density1 Density2 Length length Density1 Density2 length length Density1 Density2 length length Density1 Density2 

Profiles1 1417.50 1377.74 82.0% 85.2% 1443.21 1436.20 78.4% 80.4% 1431.45 1405.64 80.3% 84.1% 1453.12 1427.64 79.1% 82.3% 
Profiles2 3285.67 3261.00 49.3% 50.5% 3291.01 3225.54 49.8% 51.3% 3291.86 3216.10 SO.O% 50.8% 3344.81 3280.00 49.0% 50.0% 
Profiles3 8311.23 8228.55 50.7% 51.1% 8252.02 8193.89 SO.9% 52.6% 8323.90 8231.14 50.7% 51.5% 8392.79 8290.49 50.3% 51.7% 
Profiles4 2489.54 2480.96 74.3% 75.1% 2492.88 2479.30 74.3% 74.8% 2488.86 2460.60 74.9% 75.7% 2486.56 2453.12 75.1% 75.7% 
Profiles5 3427.47 3360.57 69.6% 73.1% 3381.38 3332.70 70.2% 71.1% 3405.22 3352.90 69.7% 73.6% 3383.31 3360.94 69.6% 71.3% 
Profiles6 3180.16 3170.25 73.9% 76.7% 3177.91 3146.82 74.4% 77.5% 3147.11 3097.86 75.6% 77.8% 3162.74 3145.76 74.5% 71.0% 
Profiles7 1326.71 1296.30 77.1% 78.3% 1326.57 1309.10 76.4% 80.2% 1324.38 1309.10 76.4% 79.6% 1339.99 1325.40 75.4% 78.3% 
Profiles8 1330.88 1318.70 75.8% 77.2% 1361.02 1341.92 74.5% 77.7% 1337.57 1322.55 75.6% 78.0% 1355.04 1338.47 74.7% 76.4% 

Profiles9 1341.70 1332.98 51.4% 53.9% 1323.44 1314.97 52.1% 54.3% 1350.47 1318.68 51.9% 54.2% 1305.70 1290.67 53.1% 54.9% 

Profiles10 11496.12 11410.60 64.7% 65.5% 11758.50 11555.60 63.9% 64.6% 11401.28 11160.10 66.2% 66.8% 11657.30 11552.30 63.9% 64.7% 
-
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Table 13. Summary of best results for new benchmark problems 

Problem 
Best Result 

Length Densityl Density2 

Profiles 1 1377.74 82.0% 85.2% 

Profiles2 3216.10 50.0% 5 1.3% 

Profiles3 8193 .89 50.9% 52.6% 

Profiles4 2453. 12 75. 1% 75 .7% 

Profiles5 3332.70 70.2% 73.6% 

Profiles6 3097.86 75 .6% 77.8% 

Profiles7 1296.30 77. 1% 80.2% 

Profiles8 1318.70 75.8% 77 .2% 

Profiles9 1290.67 53. 1% 54.9% 

Profiles 1 0 111 60.10 66.2% 66.8% 

Figure 26. Best solutions for "Profiles1" (1377.74 units) & "Profiles9" (1290.67 units) 

4.15. Summary 

This chapter introduced a new technique of primitive overlap resolution. It then outlined the 

steps required for implementing an efficient bottom left fill nesting algorithm that is able to 

handle profi les with both circular arcs and holes. This algorithm produces nests for realistic 

problems both quickly and to a level of accuracy that makes it a strong candidate for industrial 

application. In the course of applying the new algorithm to 26 literature problems the 

proposed algorithm, using only simple local search mechanisms, was able to produce the best

known results for 25 of the 26 problems. The majority of these best solutions were generated 
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within 100 search iterations and yielded an average improvement of 5% over the existing best 

solutions from the literature. 

Upon publication this work was the first in the field of two dimensional irregular cutting and 

packing that had attempted such a broad range of problems from the literature. Furthermore 

the work introduces and sets initial benchmarks for 10 new problems, some of which involve 

profiles with both arcs and holes that have not previously been represented within the 

literature. 
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CHAPTER FIVE 

5. No-Fit Polygon 

5.1. Introduction 

The no-fit polygon is a construct that can be used between pairs of shapes to allow for fast and 

efficient handling of geometry within irregular two-dimensional stock cutting problems. 

Previously, the no-fit polygon (NFP) has not been widely applied because of the perception that 

it is difficult to implement and the lack of generic approaches that can cope with all problem 

cases without specific case-by-case handling. Indeed in (Bennell & Oliveira, 2008), which cites 

the algorithm described in this chapter via (Burke et aI., 2007), the authors note that the 

perceived difficulty in developing a robust no-fit polygon generation technique is regarded as a 

barrier to the study of irregular packing problems. 

The focus of this chapter is to introduce an improved orbital method for the generation of no

fit polygons that is both complete and robust and therefore does not suffer from the typical 

problem cases found in other approaches from the literature. Furthermore, the algorithm only 

involves two simple geometric stages that work for all shape instances without special handling 

and therefore it is easily understood and implemented. We show several examples to 

demonstrate how the proposed approach can handle the known degenerate cases such as 

holes, interlocking concavities and jigsaw type pieces. At the point of publication this was the 

first no-fit polygon implementation that could successfully cope with such features. Chapter 

five of this thesis extended the work presented here to include arcs and shows via 

experimental results that the no-fit polygon represents a considerably more efficient solution 

for overlap detections than standard trigonometric techniques. 

Whilst the generation of the no-fit polygon is challenging, it is a 'tool' and not a 'solution' and 

this is perhaps one of the reasons that there are many publications in the literature which state 

that the no-fit polygon is used but which provide relatively little or no details on its 

implementation. The section 3.4 concentrates specifically on the no-fit polygon and provides 

an overview of the previous techniques that have been used for its creation. 
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This chapter outlines the full implementation details for a new robust orbital approach that can 

cope with the traditional problem cases that many other approaches cannot handle. 

5.2. The New No-Fit Polygon Construction Algorithm 

The new approach can be divided into two logical stages. Section 5.3 describes the procedure 

for the first of these where one polygon slides around another to create the outer path of the 

no-fit polygon of the two shapes. This part follows an approach that is logically similar to that 

of Mahadevan's algorithm although a modified implementation is proposed. The second 

section introduces the notion and identification of starting positions that allow the algorithm to 

find the remaining paths of the no-fit polygon (see section 5.4). These paths will be internal 

holes of the no-fit polygon (i.e. contained by the outer path) and are not found using 

Mahadevan's algorithm alone. For this section the assumption is made that the algorithm Is 

operating upon two anticlockwise oriented polygons, A and B, that exist somewhere within 

two-dimensional space in order to produce the no-fit polygon NFPAB (orbiting polygon B around 

polygon A). The first operation that must be performed is to translate polygon B so that it is 

touching, but not intersecting, polygon A. The new approach maintains the same approach as 

used by Mahadevan whereby polygon B is translated so that its largest y-coordinate is placed at 

the lowest y-coordinate of the polygon, A (see Figure 27). 

PtA(vmin) 

Figure 27. Initial translation of the orbiting polygon to touch the stationary 

polygon 
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Using these two vertices for alignment guarantees that A and B will be non-intersecting and 

touching. The translation that results in polygon B touching polygon A is shown in the formula 

[1]: 

Trans B~A = PtA(ymin) - PtB(ymax) [1] 

In reality, any starting position may be used providing that it results in polygons A and B 

touching and not intersecting. The orbital approach can now commence to generate the outer 

path of the no-fit polygon by orbiting polygon B in an anticlockwise direction. 

5.3. Orbiting / Sliding 

• 
• 
• 
• 
• 

5.3.1. 

The main aim of the orbiting (or sliding) section of the algorithm is to detect the correct 

movements that B must make to traverse around A in order to return to its original position. 

This is an iterative procedure with each translation step creating an edge of the no-fit polygon. 

This can be further broken down into the following subparts which are discussed in the 

following sections: 

Section 5.3.1- Detection of Touching Edges 

Section 5.3.2- Creation of Potential Translation Vectors 

Section 5.3.3- Finding a Feasible Translation 

Section 5.3.4- Trimming the Feasible Translation 

Section 5.3.5- Applying the Feasible Translation 

Detection of Touching Edges 

The ability to correctly detect touching and intersecting edges is of upmost importance in the 

course of the algorithm. This is achieved by testing each edge of polygon A against each edge 

of polygon B. Each pair of edges that touch (one from polygon A and one from polygon B) is 

stored along with the position of the touching vertex. Figure 28 shows the resulting set of 

touching edge pairs. This is in contrast to the approach of Mahadevan who performs 

calculations using all edges at a touching vertex. For example on Figure 28, Mahadevan would 
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present edges a2, a3, bl and b4 on the same diagram. Experience gathered whilst developing 

this algorithm has shown that this makes the required calculations longwinded and more 

difficult to explain. These edge-pair diagrams will be used in the next stages to create the 

potential translation vectors for polygon B and to eliminate the non-viable translation vectors. 

? \ b1 b4 

a1 

r b1 b4 , 
Figure 28. Identification of touching edge pairs 

5.3.2. Creation of Potential Translation Vectors 

The vector with which polygon B must be translated to orbit polygon A must either be derived 

from an edge of polygon A or from polygon B depending on the situation. Figure 29 shows an 

example of each case. 

a) b) 

b3 

Figure 29. Translation vector: a) derived from edge a3, b) derived from edge b1 
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Note that in the second case (Figure 2gb), because polygon B slides along one of its own edges, 

the translation vector is found by reversing the edge. This is further examined through the 

relative movement of polygon A with respect to B. Polygon A is relatively moved along the 

edge bi • In reality, polygon A must remain fixed and B must be translated and therefore, the 

translation vector is reversed in this situation. 

It is possible to obtain the set of potential translation vectors by using the touching edge pairs. 

There are three possibilities: i) both edges touch at a vertex, ii) a vertex of orbiting edge 

touches the middle of the stationary edge, or iii) a vertex of the stationary edge touches the 

middle of the orbiting edge. These cases are depicted in Figure 30. 

ii) iii) 

-t: 
Figure 30. Touching edge-pair types 

Each pair of touching edges yields one potential translation vector. In case (ii), the translation 

vector is simply defined using the point at which the two edges touch and the stationary edge's 

end vertex. In case (iii), a similar process is required except that the end vertex of the orbiting 

edge is used and the vector direction is also reversed. Case (i) requires the correct 

identification of whether the potential translation vector is derived from the stationary or 

orbiting edge. This can be identified by the following set of rules based on the touching 

vertices and a test for whether the orbiting edge, b, is left or right of the stationary edge, a. 

Table 14 shows the different possibilities and the edge from which a potential translation 

vector is derived under each circumstance. 
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Table 14. Deriving the potential translation when both edges touch at vertices 

Touching Edge Vertex Relatiye PosItion of 

Case the Orbiting Edge to Translation Deriyed From 
Stationary Orbiting thp Stationarv F.clop 

1 Start Start Left Orbiting Edge 

2 Start Start Right Stationary Edge 

3 Start End Left -
4 Start End Right Stationary Edge 

5 End Start Left -
6 End Start Right Orbiting Edge 

7 End End -
8 Parallel Either Edge 

Some potential translations can be eliminated in certain cases of the table (an '-' entry in the 

table indicates that no translation is derived). This is possible as when a translation is derived 

from an edge, the resultant vector is defined by touching point ~ end vertex (and then the 

vector is reversed for an orbiting edge). This allows the elimination of case 7 of the table 

because both the stationary and orbiting edges touch on the end vertices and this would yield a 

null translation vector. In cases 3 and 4, the orbiting edge touches at its end vertex thus a 

translation cannot be derived from the orbiting edge. In cases 5 and 6, the stationary edge 

cannot be used as it would produce a null vector. Figure 31 shows each of the cases using two 

polygons that touch at two separate places. 

Case Edges Derived From 
1 (a3,b3) b3 
2 (a1,b4 ) a1 
3 (a3,b2) -
4 (a1,b3) a1 
5 (as,b4 ) -
6 (a2,b3) b3 

7 (a2,b2) , (as,b3) -

Figure 31. Two polygons touching at two separate positions and vertex-vertex 

touch cases 

In cases 3 and 5, no translation can be derived because the edge of the orbiting polygon is to 

the left of the edge from the stationary polygon. For example, edges a3 and b2 touch on their 
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start and end vertices respectively. As a null translation is produced using edge b2 (due to 

touching with the end vertex), the only possibility is to derive a translation vector from the 

stationary edge, a3. However, edge b2 is left of edge a3 and, if this translation vector were used, 

edge b2 would slide along the inside of edge a3. The positional " I eft test" eliminates the 

translations where polygons would sl ide along the inside of an edge rather than the outside of 

the edge. When edges are parallel, either the stationary or the orbiting edge may be used. 

5.3.3. Finding a Feasible Translation Vector 

Once the potential translation vectors have been produced, the next stage is to select a 

translation vector that does not result in an immediate intersection. For example, if we return 

to Figure 31 we have generated two potential translation vectors, at and -b3. It can easily be 

seen that the orbiting polygon B must be translated using vector -b3 in order to move 

anticlockwise around polygon A. If we were to translate polygon B along vector at instead, this 

would result in an immediate intersection between edges a2 and b3 (and also a3 and b3). Once 

again the set of touching edge-pairs, generated from section 5.3.1, contains all of the 

information needed to determine a feasible translation vector. 

The process here is simplified due to our proposed representation of touching edges and 

involves taking each of the potential translation vectors in turn, identified in section 5.3.2, and 

placing them on the touching position at each touching edge-pair. We can define positional 

relationships between the stationary and orbiting edge based on the union of left/right regions 

that indicate whether a particular potential translation will be suitable for those edges. For a 

potential translation vector to be identified as feasible, it must be suitable for every pair of 

touch ing edges. Figure 32 shows some examples of touching edge-pairs and the angular range 

of feasible translations. 

a right aright 

u u u 

b right 
b right 

Figure 32. Identifying the feasible angular range of translations (indicated by an arc) 
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Whilst more possibilities can obviously occur the examples shown in Figure 32 should provide 

enough information to derive the omitted relationships. Figure 31 shows the calculation of two 

potential translation vectors, -b3 and all for two touching polygons. Figure 33 uses the same 

example to demonstrate how the approach eliminates translation vector ai' In reality, once a 

potential translation fails on one of these tests, it is infeasible and can be eliminated without 

further testing. 

Feasible Edge 

Translations 

Infeasible Edge 

Translations 

Figure 33. Elimination of potential translation vector, al 
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At this stage one or more feas ible translation vectors and been found. Usually there will only 

be one translation vector but several may be present under the special circumstances that are 

illustrated in Figure 34 wh ich is an actual screenshot taken from the implementation. The 

centre ofthe orbiting square has been set as the reference point for clarity. 

Figure 34. Two polygons involving exact fitting 

'passageways' 

This introduces another important aspect of the algorithm; it is vital that the edge that was 

used to generate the previous translation vector is maintained. When several feasible 

translation vectors are present the one nearest the previous move (in edge order) is used . 

Therefore, returning to Figure 34, the square enters the passageway using edge a3 instead of 

sliding straight over the opening using edge a14• Then, after sliding along into the centre of the 

stationary polygon, the square has four feasible translation vectors derived from edges a4, a7, 

alO and aB. However the translation vector derived from edge a4 will be used because the edge 

that was used previously was a3. This is another improvement that was made to Mahadevan's 

approach, significantly improving the generality of the approach. 

5.3 .4 . Trimming the Feasible Translation Vector 

The last step before the translation of the polygon B is to trim the translation vector. This is 

important because there may be other edges that can interfere with the translation of the 

orbiting polygon. Figure 35a provides an example where the application of the entire 

translation vector results in the two shapes intersecting. In order to prevent the orbiting 

polygon entering the body of the stationary polygon, the feasible translation, a7, must be 

trimmed to edge al (see Figure 35b). 
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a) 

a) 

b) 

Figure 35. A translation vector than requires 'trimming' to avoid intersection 

In order to find the correct non-intersecting translation we project the translation vector at 

each of the vertices of polygon B and test them for intersection with all edges of polygon A. 

This ensures that we correctly identify the vertices of polygon B that will cross into polygon A 

and reduce the translation distance accordingly using formula [2]. 

New Translation = IntersectionPt - Translationstartpt [2] 

To avoid any possible intersection it is necessary to project the translation vector back from all 

vertices of polygon A (by translating the end vertex of the translation vector onto each vertex) 

and perform intersection testing with all edges of polygon B to test if any will cross into 

polygon B. This is depicted in Figure 36 using the same example but a different orbiting 

polygon. 

b) 

2 

Figure 36. Trimming with projections from polygon A 

Once again, if there is an intersection, the translation distance is reduced to reflect this using 

formula [3]. 

New Translation TranslationEndPt - IntersectionPt [3] 
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This approach is fundamentally the same as used by Mahadevan except that here the trim of 

the translation vector at the time of intersection differs as Mahadevan keeps the translation 

vector the same but stores the minimal intersection distance and trims once all projections 

have been completed. As the algorithm trims at every intersection the translation vector 

becomes shorter throughout the testing process. This can reduce the number of intersections 

that occur due to fast elimination tests through the use of bounding boxes, which are much 

faster than standard line intersections. The approach of Mahadevan may need to calculate 

several more full intersection tests because the entire translation vector is used at each 

projection and could potentially require more computation. 

5.3.5. Applying the Feasible Translation Vector 

The final step is to append the trimmed translation vector to the end of the partial no-fit 

polygon created so far and polygon B is translated by the trimmed translation vector and the 

traversed or partially traversed edge is flagged to avoid later start point processing, see next 

section. This process has moved the polygon to the next 'decision' point and the process can 

restart from the detection of touching edges (section 5.3.1). The only additional check to this 

process that is required is a test to detect if the reference point of polygon B has returned to its 

initial starting position. 

5.4. Start Points 

Section 5.3 outlined an approach for the orbiting of one polygon around another using edge 

comparisons and edge sliding. The overall effect of the approach is similar to the proposed 

algorithm of Mahadevan except for some detailed improvements that make the algorithm 

more intelligent and easier to explain. Therefore the approach thus far has some of the same 

limitations that were present in (Mahadevan, 1984) such as the inability to generate complete 

no-fit polygons for shapes involving interlocking concavities, jigsaw pieces or holes (see section 

5.6). Figure 37a shows two polygons for which the sliding algorithm alone does not produce 

the complete no-fit polygon. The polygons have concavities that can interlock with each other 

to create a further no-fit polygon region but this is never found because of the narrow entrance 

to the stationary polygon's concavity (see Figure 37b). Another approach is needed to identify 

such possibilities. 
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a) b) c) 

Figure 37. Interlocking concavities: a) polygons, b) no-fit polygon using sliding alone, c) the 

complete no-fit polygon 

In the following section an approach based on the identification of feasible touching but non

intersecting start positions is described. Using the previously described sliding technique it is 

possible to generate the remaining inner loops of the no-fit polygon construct. For example, if 

polygon B can be placed in the location shown in Figure 37c, then the sliding algorithm can be 

employed (without change) to generate the internal no-fit polygon region (note that this loop 

will be a clockwise loop indicating that it is an inner-fit polygon region). Feasible starting 

positions are found through a modification to the approach described in section 5.3 and once 

again the process involves sliding. 

In order to explain the process it is useful to examine an example of finding the start positions 

along one edge of polygon A. This process can then easily be reproduced for each edge of 

polygon A and polygon B to create all feasible starting positions to allow polygon B to orbit 

around polygon A in order to create the entire no-fit polygon. 

Given an edge, e, of polygon A, we can detect the potential starting positions of an orbiting 

polygon B along e. The process involves translating polygon B such that each of its vertices, in 

turn, are aligned to the start vertex of e. For each position the following steps are performed. 

If the polygons do not intersect in this position, then this is noted as a feasible start position for 

the two polygons. If polygon B intersects with polygon A then a further test is required and the 

edge sliding techniques is employed to traverse along edge e until a non-intersecting position is 

found or the end of the edge is reached. In such an instance, the first test involves examining 

whether the two connected edges of polygon B (joined at the touching vertex) are both right of 

or parallel to, but not both parallel to, the edge e. This test is performed by checking the edges 

of polygon B against the edge e, the left, right parallel decision being made with respect to 

direction of edge e. If either of polygon B's connected edges are left of e then they will 
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a} 

translate on the inside of polygon A and can be eliminated immediately because sliding along 

the vector derived from edge e will never yield a feasible starting position. 

Figure 38a shows an example of where the connected edge pair, b3 and b4, are eliminated from 

sliding along as because b4 is left of as (note that this will not be eliminated when using edge b4 

of the polygon B and connected edges a4 and as of polygon A). Figure 38b shows an example of 

where both connected edges, bi and b2, are right of edge as· 

A 

b'~: 
. , , 

b} 

Figure 38. Vertex alignment of polygon B to polygon A using edge as: a} invalid alignment, b} 

valid alignment 

Assuming both connected edges are right of edge e and polygons A and B intersect it is possible 

to attempt to resolve the overlap by translating the orbiting polygon along the translation 

vector defined bye. As with the previous section vector trimming can now be employed (the 

procedure is identical). The resultant translation vector can then be applied to slide polygon B 

along edge e and then another intersection test is performed. If the two polygons still 

intersect then the process repeats with the translation vector derived from the touching point 

to the end vertex of edge e. If the intersection has been resolved then the reference point of 

polygon B is a potential start position. If the entirety of edge e is traversed and there is still an 

intersection then no feasible starting position can be found along edge e and the aligned vertex 

/ connected edges of polygon B. The next vertex of polygon B is then considered and so on 

until all edge vertex possibilities have been examined. Note it is also important to examine the 

edges of polygon B with the vertices from polygon A but as this is an identical procedure, this 

will not be discussed. Figure 39 shows this process on the example presented in Figure 38b. 

When aligned using as and the vertex connecting edges bi and b2, the two polygons are in an 
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a) 
.-

.-

A 

a 

initially intersecting position so we need to resolve the intersection along the vector derived 

from edge as· 

.- .- b} .- .-
c} d} 

~ 
a1 

.- a , 
a4 , .-

~ 

a3 a3 

Figure 39. Start point generation process 

Figure 39a shows the trimming process and identification of the closest intersection point, Pt. 

polygon B is then translated by the trimmed translation vector, resulting in smallest feasible 

translation. The resulting position is shown in Figure 39b. The polygons are still intersecting so 

the procedure must repeat. The translation vector is calculated from the touching point to the 

end vertex of edge as and is then trimmed as shown in Figure 39c (only the important trim 

intersection is shown). After applying this translation to polygon B, the polygons are no longer 

intersecting and therefore a feasible start point has been found and the standard orbital 

approach can be employed once more to generate the no-fit polygon loop. 

In this new technique the outer no-fit polygon loop is first generated using the approach in 

section 5.3 and then the starting position procedure applied to the untraversed / unflagged 

edges from both polygon A and polygon B in turn. During the process, as soon as a feasible 

start position is found, the inner loop of the no-fit polygon is calculated and its edges are 

flagged edges as they are traversed as before. This ensures that the algorithm is fast because 

more edges become flagged as new no-fit polygon loops are produced, thus reducing the 

computational requirements for generating new feasible start positions. The procedure repeats 

until all edges have been seen or no more feasible start positions are available and the 

complete no-fit polygon is returned. 
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5.5. Summary - The No-Fit Polygon Algorithm 
Given the functionality outlined in the previous sections we can describe no-fit polygon 

generation using the following pseudo code: 

Algorithm 7. The no-fit polygon generation sliding process 

Input : polygons A and B 

PtAlyminl = point of minimum x value of polygon A 
PtBlymaxl = point of maximum x value of polygon B 
IFP = initial feasible position 
Bool bStartPointAvailable = true; 
Point NFPLoopStartRefPoint; 
point polygonB_RefPoint; 
Array[Line[)) nfpEdges; II an array of arrays of lines to store NFP edges 
Int 100pCount = 0; II counter for number of loops in NFP 

Beqin 

Place polygons in IFP using translation PtAlym,nl - PtBlymaxl 
NFPLoopStartRefPoint = PtBlymaxl; 
Pol ygonB_RefPoint = PtBlymaxl; 

While (bStartPointAvailable) 
( 

End 

bStartPointAvailable = false; 
II find touching points & segments touching those points, generate touching structures 

Touchers[) toucherStructures = FindTouchers(A, B); 

II Eliminate non feasible touchers, ones that cause immediate intersection 
Touchers[) feasibleTouchers = CanMove(A, B, toucherStructures); 

II Trim feasible translations against polygon A and B 
Touchers[) trimmedTouchers = Trim(feasibleTouchers, A, B); 

II Sort trimmed translations by length 
Touchers[) lengthSortedTouchers = Sort(trimmedTouchers); 

IITranslate polygon B along longest feasible translation vector 
B.Translate(lengthSortedTouchers[O].Translation); 

II Add translation to nfpEdges & mark traversed edge on static 
nfpEdges[loopCount) .Add(lengthSortedTranslations[O) .Translation); 
A.MarkEdge(lengthSortedTranslations[O) .StaticEdgeID); 

If (NFPLoopStartRef Point == polygonB_RefPoint) II completed an NFP loop 
( 

else 
( 

Point nextStartPoint; 
II find next feasible start point - reset PolygonB_RefPoint to relevant point 
bStartPointAvailable= FindNextStartPoint(A, B, &nextStartPoint, &PolygonB_RefPoint); 

if (bStartPointAvailable) 
( 

IITranslate polygon B to next Start Point 
B.Translate(PolygonB_RefPoint - nextStartPoint); 

NFPLoopStartRefPoint = nextStartPoint; 
10opCount++; 

bStartPointAvailable true; II allow edge traversal to continue 

= complete(nfpEdges); IIReconstitute NFP from nfpEdges 
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Pseudo code for FinciNextStartPoint : 

Algorithm 8. Technique to find next start point in no-fit polygon generation 

Input : polygonA, polygonB, reference to Point nextStartPoint, reference to Point 
polygonB_RefPoint 

Int A EdqeCount - PolyqonA.EdqeCount; 
Int B-EdqeCount = PolyqonB.EdqeCount; 
Edqe StaticEdqe; 
Edqe movinqEdqe; 

Beqin 

for(int i = 0: i < A_EdgeCount: i++) 
{ 

if(polygonA.IsEdgeMarked(i» 
{ 

continue: 

else 
( 

staticEdge PolygonA.GetEdge(i): 

for(int j = 0; j < B_EdgeCount: j++) 
( 

movingEdge = PolygonB.GetEdge(j): 

II translate the polygonB so that movingEdge start in on start of the static edge 
polygonB.Translate(movingEdge.Start - staticEdge.Start): 

Bool bFinishedEdge = false: 
Bool bIntersects = polygonB.IntersectsWith(PolygonA); 

while(blntersects AND !FinishedEdge) 
{ 

) 

IIEdge slide until not intersecting or end of staticEdge reached 
Toucher currentToucher = MakeToucher(staticEdge.Start): 
Toucher trimmedToucher = Trim(currentToucher, PolygonA, PolygonB): 
polygonB.Translate(trimmedToucher.Translation); 

blntersects = polygonB.lntersectsWith(PolygonA): 

if (blntersects) 
{ 

If(movingEdge.Start == staticEdge.End) 
bFinishedEdge = true; 

II mark the traversed edge as seen (whether edge start point found or not) 
staticEdge.Mark(true); 

if (!bIntersects) 
( 

II set the references to the points passed in to be the nextStartPoint 
II and return true: 
nextStartPoint = movingEdge.Start; 
polygonB_RefPoint = movingEdge.Start; 

return true: 

) 
II all edges on moving tried on all unmarked edges on static, nothing found - no more starts 
return false: 

End 
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5.6. Problem Cases 
This section includes discussion of each of the problem cases that cause difficulties with other 

methods and show why the presented approach is able to handle them without specific case

by-case implementations. In each figure in this section the stationary and orbiting polygons are 

shown in dark and light grey shading respectively and the reference point of the orbiting 

polygon is denoted by a black dot. This is used to trace the loops of the no-fit polygon (which 

are numbered). 

5.6.1. Interlocking Concavities 

The interlocking of concavities is a typical problem case for the previous orbital sliding 

approaches in the literature such as (Mahadevan, 1984). Figure 40 shows a screenshot of our 

implementation where we generate the complete no-fit polygon of identical shapes with one 

rotated through 1800
• The shapes in these orientations involve many different interactions of 

the concavities and, therefore, multiple feasible start points. The no-fit polygon of these two 

shapes results in six loops within the no-fit polygon (one outer loop, 1, and five internal loops, 

2-6). 

1 

Figure 40. Multiple interlocking positions 
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5.6.2. Exact Fit: Sliding 

The next case involves sliding through exactly fitting "passageways" which could not be 

handled by any contemporaneous approach at the time this approach was published, notably 

the Minkowski sum approach of (Bennell et aI., 2001) or the orbital approach given by 

Mahadevan. This shortcoming was later overcome by an updated Minkowski sum approach 

presented in (Bennell & Song, 2008) 

The extension to Mahadevan's algorithm that allows this sliding technique to dea l with such 

exact fit problems requires the maintenance of the previously traversed edge and, thus, 

enabling consecutive edges of the stationary polygon to be used in the next translation 

iteration. We previously discussed another example of this case in Figure 34. 

Figure 41. Exact fit sliding through a "passageway" 

5.6.3. Exact Fit: Jigsaw Pieces 

The problem case involving jigsaw pieces (also called "lock-and-key" ) that link exactly together 

is another form of the interlocking concavity case outlined above. However, the distinguishing 

feature of jigsaw pieces is that they fit together with no movement, thus creating a Singular 

feasible point within the no-fit polygon (rather than an internal loop in the interlocking 

concavity case). In our approach, this position is found by the generation of feasible starting 

positions. Of course, the algorithm will still try to slide the orbiting polygon along edges but, in 
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this case, there is no feasible translation vector therefore distinguishing that the position is just 

a singular feasible point location (see Figure 42). Most of the previous approaches have 

suffered from such degeneracy including: the Minkowski sum approach where no boundary 

exists to identify Idck-and-key positions within the no-fit polygon, digitisation which suffers 

from loss of accuracy, convex decomposition whereby it is not possible to find such positions 

through recombination alone and the sliding algorithm of Mahadevan (identical difficulties as 

with interlocking concavities) . 

Figure 42. Jigsaw pieces: a) outer no-fit polygon loop, b) singular feasible internal position 

5.6.4. Holes 

There have been few approaches within the literature that can operate effectively on polygonal 

shapes containing holes. This could be due to the difficulty of the generation process for no-fit 

polygons involving holes. However, through the detection of feasible starting positions, the no

fit polygon can be generated easily and, more importantly, completely. Figure 43 shows an 

example involving a shape with two holes and a shape that can be placed within several distinct 

regions of the holes. The figure shows a mixture cases involving holes and interlocking 

concavities: loop 1 is the outer no-fit polygon loop, loops 2,3,5,6,7 are all hole cases, and loops 

4 and 8 are cases whereby the concavity of the smaller orbiting shape interacts with the narrow 

gaps within the larger hole of the stationary shape. 
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1 

Figure 43. No-fit polygon of two polygons, one of which involves multiple holes 

5.7. Generation Times on the Benchmark Problems 

In order to demonstrate the speed and capabilities ofthe new no-fit polygon procedure, the 

following section reports the generation times for 32 benchmark problems from the literature. 

These datasets can be found on the EURO Special Interest Group on Cutting and Packing 

(ESICUP) website. For each problem the total generation time and number of no-fit polygons 

generated per second is reported (see Table is). The "Logical Total Number of Shapes" 

(column E) is found by E = B * D and the "Total Number of NFPs" (column F) is calculated by F 

= E2 (Le. the NFP for every logical shape against every other logical shape is calculated). All 

experiments were conducted on a Pentium 4 2GHz processor with 256MB RAM . 
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Table 15. No-fit polygon generation times for 32 datasets of the literature 

A B C 0 E F G H 

Number of Rotational 
Number of Logical Total Total 

Dataset Different Rotations Number of Total Number Generation NFPs Per 

Shapes 
Constraints per Shape Shapes 

of NFPs 
Time (s) Second 

Alban0180 8 180 2 16 256 0.32 800 

Alban090 8 90 4 32 1024 0.71 1442 

Blasz1 7 180 2 14 196 0.21 933 

Blasz2 4 90 4 16 256 0.19 1347 

Dagll 10 90 4 40 1600 0.93 1720 

Dlghe1 16 90 4 64 4096 1.28 3200 

Dlghe2 10 90 4 40 1600 0.62 2581 

Fu 12 90 4 48 2304 0.52 4431 

Jakobs1 25 90 4 100 10000 5.57 1795 

Jakobs2 25 90 4 100 10000 5.07 1972 

Mao 9 90 4 36 1296 1.41 919 

Marques 8 90 4 32 1024 0.79 1296 

Poly1a 15 90 4 60 3600 1.37 2628 

Poly2a 15 90 4 60 3600 1.37 2628 

Poly3a 15 90 4 60 3600 1.37 2628 

Poly4a 15 90 4 60 3600 1.37 2628 

Poly5a 15 90 4 60 3600 1.37 2628 

Poly2b 30 90 4 120 14400 7.54 1910 

Poly3b 45 90 4 180 32400 27.14 1194 

Poly4b 60 90 4 240 57600 68.45 841 

Poly5b 75 90 4 300 90000 141.90 634 

Shapes 4 90 4 16 256 0.38 674 

ShapesO 4 0 1 4 16 0.11 145 

Shapes1 4 180 2 8 64 0.19 337 

Shirts 8 180 2 16 256 0.33 776 

Swim 10 180 2 20 400 6.08 66 

Trousers 17 180 2 34 1156 0.73 1584 

Profiles6 9 90 4 36 1296 0.86 1507 

Profiles 7 9 90 4 36 1296 0.58 2234 

ProfllesS 9 90 4 36 1296 0.56 2314 

Profiles9 16 90 4 64 4096 44.30 92 

Profiles10 13 0 13 169 0.55 307 

Table 15 shows that the no-fit polygon constructs can be generated within reasonable time 

frames on most of the benchmark data. Typically the algorithm can generate about 1000 no-fit 

polygons per second although this can vary drastically depending on the number of line 

segments in each problem. For example, the two problems with the lowest no-fit polygons 

generated per second, "Swim" and "Profiles9", involve pieces with many line segments (up to 

67) due to approximation of arcs and, further to this, "Profiles9" contains several shapes with 

holes (see Figure 44). 
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Figure 44. A selection of pieces and no-fit polygons from the "Profiles 9" (letters) and "Swim" 

datasets 

The slowest overall generation times occur within the Poly4b and PolySb problems and are due 

to the large number of no-fit polygons to generate. Other reported generation times for 

available benchmark problems of the literature can be found in (Bennell et aI., 2001) 

Whilst very large problems may require a few minutes to generate all of no-fit polygons, such 

as the Poly4b and PolySb test problems (requiring 68 and 142 seconds respectively), for 

repeated automatic nesting it is likely that the layout algorithm will more than recover this 

overhead by being able to use the faster no-fit polygon based intersection testing. 

5.S. Summary 

This chapter has shown that the no-fit polygon is an important construct that can be used for 

the development of faster automated packing algorithms as opposed to the traditiona l 

trigonometric based approaches. A complete and robust implementation of the orbital 

method of the no-fit polygon has been presented. This approach can deal with degenerate 

cases that the previous methods cannot resolve easily. At the point of publication this was also 

the first time that an implementation ofthe no-fit polygon that has been rigorously 

investigated for robustness with the known degenerate cases and on such a wide range of 

benchmark data . 
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CHAPTER SIX 

6. Irregular Packing Using the Line and Arc No-Fit Polygon 

6.1. Introduction 

In the previous chapter and (Burke et aI., 2007) a robust orbital method is presented. This 

approach for generating no-fit polygons is based on the orbital method proposed by 

(Mahadevan, 1984). The approach was able to produce no-fit polygons robustly for line based 

shapes and it was demonstrated the algorithm was robust by tackling well-known degenerate 

cases that had been identified as causing difficulties for previously published approaches. 

Figure 45 shows some of the degenerate cases that were handled using this procedure. 

Figure 45. No-Fit Polygons generated using the approach presented by Burke et al. (2007) 

This chapter describes the further extension of the approach presented in chapter five which 

allows for the generation of the line arc no-fit polygon for polygons containing both lines and 

arcs like those introduced in the new benchmark problems, profiles1-10, introduced in chapter 
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four to test the effectiveness of the new bottom-left fill placement algorithm. This work was 

published in (Burke et aI., 2010). 

The introduction of circular arcs into the no-fit polygon generation problem was a requirement 

for the CASE and TCS as projects as the industrial partner's customers often cut parts 

incorporating arcs. Without adding support for line arc no-fit polygons it was determined that 

only a small percentage of problems could be tackled using the no-fit polygon approach. 

Furthermore the ability to generate spaced shapes, using circles in a no-fit polygon generation 

(see section 8.2), was a useful addition to the existing spacing techniques used by the industrial 

partner. 

6.2 . A Simplified Case involving Circles 

a) 

In order to describe the arc modifications needed for no-fit polygon generation, it is beneficial 

to examine a case involving two circles. These concepts are then generalised to arcs in the 

remainder of this section. The no-fit polygon of two circles, A and B (the convention of shape B 

moving around shape A is maintained), is defined as the path followed by the reference point 

of B (the circle's centre point) when circle B orbits circle A. The no-fit polygon, NFBAB, of two 

circles is a circle of radius equal to the sum of A and B's radii sharing the same centre point as 

circle A (see Figure 46a). The NFP of two circles is referred to as the circular no-fit polygon. 
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Figure 46. a) No-Fit Polygon of Two Circles, b) Movement of the Touch Position 
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The edges within line-only no-fit polygons are derived from the same edges as the two input 

shapes A and B. However, this is no longer the case with arcs as the no-fit polygon does not 

take the form of the shape edges from which it was derived but rather assuming properties 

from both interacting edges (namely the radii). This is because the touching position moves on 

both arcs as B moves around A (see Figure 46). 

6.3. Generalisation to Arcs 

The circular no-fit polygon example presented in Figure 46 can be generalised to circular 

convex arcs by eliminating the segment of the no-fit polygon for which the arcs will not touch 

on their radial extents. This can be created by examining the start and end angles of the two 

arcs (see Figure 47a). 
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Figure 47. Finding circle tangents (A and B are convex) 

From Figure 47b, the angular position of tangent point tpA on arc B's parent circle is identified 

as the angle represented by the opposite angle, n + 9AStart• If this angle exists on arc B then it is 

a valid tangent. Likewise, tangent point tps's angular position on parent circle A is given by n + 

aSEnd. The partial no-fit polygon is then defined as the arc of radius rA + rs through the angular 

range of tpA through to tps. Figure 48 shows the start position whereby arc B touches arc A at 

tpA and, after completing the partial no-fit polygon, the arcs touch at tpB' 
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Partial 

Figure 48. Creating the partial no-fit polygon circle from the arc tangents 

If there are no tangent points, then the two arcs cannot interact to create any of the circular 

no-fit polygon (see Figure 49). 

';: .. 0 
n ~ASTART 

'. 
" 

CPB·'·. 

\ 

ArcB 
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Figure 49. No arc tangent points available 

A further example must be examined whereby one of the circles exists in its concave form (Le. 

a hole) as this will allow for generalisations to be made for concave arcs. Figure SO shows an 

example of the no-fit polygon produced when a circle travels around the inside edge of another 

circle. In Figure SO a, the no-fit polygon is a circle once again, but this time it has a radius equal 

to rA - ra. Its centre point is the same as A's centre point. In order to create the partial circular 

no-fit polygon in this instance, the same tangent point procedure can be repeated except that 

the start/end angles are not modified by n. The partial circular no-fit polygon is defined by the 

arc of radius rA - ra and start and end angles defined by the tangent point angles, tpa and tpA 

respectively (see Figure SOb). 
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Figure 50. a) No-fit polygon of two circles in the concave case, b) Creating the partial 

no-fit polygon where arc A is concave and arc B is convex 

In the case where arc A is convex and B is concave, the partial circular no-fit polygon can be 

obtained by the same procedure as above. For this, arc A and B must be switched such that arc 

B is now the convex arc and A is concave. Now by rotating the resultant partial circular no-fit 

polygon by 180°, the correct arc section for the no-fit polygon is produced. This is possible 

because, as B moves in one direction, A can also be thought of as moving relatively in the 

opposite direction. If one concave and one convex arc are involved then a partial circular no-fit 

polygon is only possible ifthe concave arc has a larger radius than the convex arc. 

It is not physically possible for two concave arcs to orbit each other via the circular no-fit 

polygon as the shapes with which they belong would have to be intersecting. 

6.4. Modifying the Orbital No-Fit Polygon Approach 

With the circular no-fit polygon described and its generalisation to arcs, the modifications that 

are required to extend the orbital no-fit polygon generation algorithm are presented in the 

following sections. The arc modifications are described using the algorithmic steps defined in 

the previous chapter and in (Burke et aI., 2007). The steps are as follows: 

Step 1- Detection of Touching Edges (see section 6.4.1) 

Step 2 - Creation of Potential Translation Vectors (see section 6.4.2) 

Step 3 - Finding a Feasible Translation (see section 6.4.3) 
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Step 4 - Trimming the Feasible Translation (see section 6.4.6) 

Step 5 - Applying the Feasible Translation (see section 6.4.7) 

6.4.1. Detection of Touching Edges 

Standard trigonometry intersection routines are used to identify each pair of touching edges 

from shape A and B and their touch point. The detection of touching edges does not require 

modification of the line-based no-fit polygon algorithm except that the geometry library must 

be able to detect that lines are touching arcs or that arcs are touching other arcs. When 

concave arcs are involved, there is a possibility of two edges touching at two separate points. 

However, this complication can be eliminated by storing two separate touching edge pair 

structures for each of the touching pOints as shown in Figure 51. 

a) Touching Shapes b) Touching Edge Pairs, a2 and b3 

~ 
L--~ttouch 

( \ 
~ 

Pttouch2~ 

( \ 
Figure 51. Touching edges with two distinct touch positions (edge a2 and b3) 

In Figure 51a, both the start and end points of line, b3, touch the concave arc edge, a2. 

Therefore, two touching entries are stored in the touching edge pair list to reflect this and are 

shown by Figure Sib. No further modifications are required for this stage of the algorithm. 

4 2 Creation of Potential Translation Vectors 6 ... 

Step 2 involves the creation of potential translation vectors using the touching edge pairs that 

were identified in step 1. In this stage the inclusion of arc edges requires a number of 
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modifications based on the notion of the partial circular no-fit polygon (described in section 

6.3). These modifications are outlined in the next three subsections in a case by case manner. 

6.4.3. Potential Translation Vectors for Touching Pairs Involving Two Arcs 

As shown previously the circular no-fit polygon can easily be created when convex arcs are 

touching at their tangent points (see section 6.3). This is when the distance between the two 

arc centres is equal to the sum of the two radii (the maximal distance where the arcs can 

touch). In the case of touching concave and convex arcs, the concave radius must be greater 

than the convex radius and the distance between the two arc centres must be equal to the 

convex radius subtracted from the concave radius. In these situations, the potential translation 

is simply the partial circular no-fit polygon. However, arcs may also touch such that the 

distance between the centre points does not allow the partial circular no-fit polygon to be 

used. Examples of this situation are shown in Figure 52a with touching convex arcs and Figure 

52b with touching concave and convex arcs. 

a) Touching Convex Arcs b) Touching Concave / Convex Arcs 

Arcs 
\ 
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rA \ CPs 
. _---'l! 
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\ d __ - \ 
\ -",--,- r . 

CPA fk- B\ 
~ 

Figure 52. Non-tangential touching arcs 

Arcs 

In such situations two potential translations can be derived from firstly the stationary arc, A, 

and then the orbiting arc, B. 

There are three possible cases: 

i) The two arcs both touch on start/end points 

142 



ii) Arc B's start/end point touches the between the ends of arc A 

iii) Arc A's start/end point touches the between the ends of arc B. 

Cases (ii) and (iii) will be examined first as these are the most simple within the line case. In 

section 5.3.2, given two touching lines, A and B, the potential translation vector for case (ii) was 

the line defined by the touching point to the end point of line A (stationary line). The same 

principle is used for the arc case (ii), the potential translation vector is the arc defined by the 

touch point to the end point of arc A (stationary arc) which also has the same centre pOint and 

radius of arc A. Figure 53 shows an example of a potential translation vector for case (ii). 

a) b) 

Arca 

Arca 

CPa 
• 

Potential 

Translation 

Figure 53. Potential translation vector derived in case (ii): arc B's start/end pOint touches the 

middle of arc A. 

However, as shown in Figure 53b, this potential translation could result in arc B intersecting 

with arc A. On further examination, this can be explained because a tangent point exists before 

the end point of arc A (see Figure 54a). Therefore, the potential translation should be trimmed 

to any tangent point that exists along the potential translation (Figure 54b). Assuming that the 

translation of Figure 54 is performed in full, the next potential translation can now be derived 

from the circular no-fit polygon of the two arcs (i.e. the distance between the arc centre points 

is equal to rA + ra in the convex case and equal to rA - ra in the concave case). 
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Figure 54. Potential translation vector derived in case (ii) when a tangent point is 

present: arc B's start/end point touches between the ends of arc A 

The same principles found in case (ii) also apply for case (iii) whereby the start/end point of arc 

A touches between the ends of arc B (see Figure 55a). It is nece'ssary to firstly examine 

whether a tangent point exists from the touching point towards the end of arc A. If this is the 

case then the partial circular no-fit polygon can be derived. If not then an arc is created from 

the touch point to the end point of arc B (with the same centre pOint and radius of B). 

However, this defines the potential translation vector with which arc A moves (relatively) so 

the translation vector must be rotated by 180
0 

to obtain the correct translation vector for arc B 

(see Figure 55b). 

a) 

CPs 
• 

b) 

Arca 

Figure 55. Potential translation vector derived in case (iii): arc A's start/end point touches the 

middle of arc B 

From Figure 55b, it can be seen that when arc B is translated by the potential vector, the two 

arcs remain in contact, without intersecting, throughout arc B's translation. Once again, this 

only holds true if there are no tangential positions along the translation. If one exists, the 

translation should be trimmed (as with the previous case) . Although only convex cases have 
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been presented within the figures, the concave cases follow the same procedure except for the 

calculation of the circular no-fit polygon. The final case is case (i) whereby both arcs touch on 

their start or end points. We must examine whether the two arcs are tangential using the 

centre point distance calculation. If they are tangential then the partial circular no-fit polygon 

can be used as before. If not, then potential translation vectors are derived from both of the 

arcs based on cases (ii) and (iii) described previously. If the arc's touching point is the end 

point, then no potential translation can be created (i.e. a zero length arc translation would be 

created as the end point is also the touch point). Also, if both arcs touch on their start points, 

then two potential translation vectors will be produced (one from arCA and one from arcs). 

6.4.4. Potential Translation Vectors for Touching Pairs Involving a Line and an Arc 

Touching lines and arcs are less complicated than the touching arcs case but tangential points 

must still be identified (see Figure 56) . 

........................................ 

Linea 

Figure 56. Tangents with lines and arcs 

There are three possible cases: 

i) The line B touches the arc A on start/end points 

ii) Line B's start/end point touches the between the ends of arc A 

iii) Arc A's start/end point touches the between the ends of line B. 

A potential translation arc is created from the touch point to the end pOint of arc A in case (ii) 

where no tangent point exists, and from the touch point to the tangent point where one does 

exist. It is important to detect whether there is a tangent point to avoid translations that result 

in intersections. In case (iii) the potential translation vector is defined by the end point of line B 
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to the touch point (tangent points are not required here). Finally, case (i) is handled by the 

techniques from cases (ii) and (iii). Once again, two potential translation vectors are produced 

(one derived from the arc and one from the line). Once again, no potential translation can be 

derived from a primitive whereby its end point is also the touching point. 

6.4.5. Finding a Feasible Translation 

The next stage is to find a feasible translation from the set of potential translations. A potential 

translation is only feasible if it is feasible for each of the touching edge pairs. In chapter four a 

set of rules was developed to indicate translation feasibility through the use of left/right line 

tests. Examples ofthese are reproduced in Figure 57 as they will also be used when handling 

arcs. The touching point can either be at the start, end or in the middle of an edge (the 

touching point for each edge is identified above each diagram in Figure 57). 

Figure 57. Identifying the feasible angular range of translations (indicated by the arc) for 

different touch categories 

Now that arcs are involved, it initially seems that the problem is more complicated. However, 

the line tests shown in Figure 57 can be used providing that any arcs within the touching edge 

pairs and potential translations are reduced to a tangential line at the touch point. Figure 58 

shows how the tangential line is created depending on the position of the touching point on 

the arc: i) at a touching start point, the tangential line must start at the touch point, ii) a mid

arc touch results in a tangential line with its midpoint on the touch point and iii) a touching end 

point requires that the tangential line also ends at the arc's end point. 
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Figure 58. Conversion to tangential lines at the touch point of an arc 

It is important that the directionality of the arc is maintained when creating the tangential line 

for the method of section 5.3.3 to be applicable (the length of the tangentia l line does not 

matter as it is only used for left/right tests). Figure 59, Figure 60 and Figure 61 demonstrate 

the procedure. 
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Figure 59. Two touching arcs and a potential arc translation 
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Figure 61. Revisiting the line method using tangential lines 

147 



Figure 59 shows an example of two touching arcs and a potential arc translation (arcA is 

concave, arCB is convex and the touch point is tp). In Figure 60, tangential lines are created for 

the two touching arcs and the potential translation arc. In Figure 6la, the feasibility test from 

chapter five for touching line edges is used to define the feasible region and Figure 6lb shows 

that the potential translation arc is feasible for this pair of touching edges. In that providing 

that both the edges from polygon B (Arc B) and the potential translation (t Trans) are right of the 

static primitive (Arc A) we can accept the translation as feasible. 

In order to see why tangential lines can be used to determine the feasibility of the movements, 

we must examine what is being calculated. To show that a potential translation is feasible for a 

particular edge pair, we need only show that the translation will not immediately result in an 

intersection. As the tangential lines of arc primitives define the vector path of the arc at a 

particular position, the same test routines can be used from the line-only case. The feasibility 

of any potential translation and combination oftouching edge pairs can be identified provided 

that the tangential lines of the arcs are used. 

6.4.6. Trimming the Feasible Translation 

The last step before polygon B can be translated is to trim the translation vector. This is 

important as there may be other edges that could interfere with the translation of the orbiting 

polygon. In the line only algorithm of chapter four this was achieved by projecting the 

translation vector through each vertex of shape B and testing for its intersection with lines of 

shape A. The translation vector was also projected back from the vertices of shape A in order 

to test for intersection with shape S's primitives. In order to correctly handle arcs, the 

trimming procedure only requires a simple modification in order to deal with: i) arc to arc trims, 

ii) line to arc trims and iii) arc to line trims. For each of these, the same approach is taken as 

with the line case (projecting the translation through each start/end vertex etc.). However, an 

extra projection must also be conducted from the tangent point of any arcs. Given an arc and a 

line, the tangent point of the line and arc must be detected. This tangent point is then treated 

as if it were another vertex of the arc (i.e. the translation is also projected from the point). The 

line/arc trim procedure is demonstrated in Figure 62. 
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Figure 62. Tangential trimming of the feasible translation from an arc and a line, a4
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partial circular no-fit polygon of the two arcs. If there is an intersection, then the translation is 

trimmed as normal. The process for an arc/arc trim is demonstrated in Figure 63. 
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Figure 63. Tangential trimming of the feasible translation from two arcs 
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In the arc/arc case, if no partial circular no-fit polygon exists for two arcs then the start/end 

point projections will result in the correct trim. 

6.4.7. Applying the Feasible Translation 

In the final step of the algorithm, the trimmed translation is added to the NFP edge list and 

shape B is translated to its new position. Now that the no-fit polygon can include arc edges, 

shape B may need to be translated along the path of an arc. However, there is no difference 

between translating shape B along a line or arc edge as we can just translate to the end point of 

the edge. It is from this new position that we repeat the procedure of finding the touching 

edges (step 1) until the shape returns to its original location (indicating that a no-fit polygon 

loop has been created). 

The previous sections identified the modifications required to allow the orbital approach of 

chapter four to be able to generate no-fit polygons for shapes that also contain arc edges. 

Figure 64 shows examples of no-fit polygons that have been generated using the proposed line 

and arc no-fit polygon algorithm. Included in Figure 64 are annotations that explain what 

procedures were used to create a particular edge on the no-fit polygon. 

In the remainder of this chapter, the line and arc no-fit polygon algorithm will be applied to the 

two dimensional irregular packing problem. 
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Figure 64. Examples of no-fit polygons generated by the proposed approach 
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6.5. An Irregular Packing Approach using the Line and Arc No-Fit Polygon 

Chapter four proposed a new bottom-left-fill algorithm that had produced several best known 

solutions on 26 well-established literature benchmark problems. Further to this, 10 new 

benchmark problems consisting of shapes with arcs and holes were added as they had not 

been represented within the literature. The main principle of the approach was that feasible 

placement positions could be obtained by resolving intersecting shapes vertically using 

standard trigonometry based intersection. Figure 65 shows how two intersecting shapes were 

resolved by progressively resolving the intersections between their respective edges. Figure 

65a shows the initial positions of the two shapes. 

a) b) c) 

A 

d) e) 

A 

Figure 65. Resolving intersecting shapes vertically (Burke et aI., 2006) 

In Figure 65a, there are two pairs of intersecting edges: two arc edges and two line edges. In 

the previous work it was identified that, where there is a choice, line intersections should be 

resolved as the computation is less demanding. Figure 65b shows the resulting position of 

shape B after resolving the intersection of the two lines. The two shapes are still overlapping 

but there are no edge intersections so a vertical line is cast from the bottom-most point of 
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shape B and tested for intersection with shape A. Shape B is translated vertically by the 

distance between the nearest intersection pOint and the bottom-most point. Figure 65c shows 

that this results in a new pair of edges intersecting (a line from shape A and an arc from shape 

B). Figure 65d shows the final arc-arc intersection and Figure 65egives the final non

intersecting configuration for these two shapes. For specific implementation details and 

pseudo code see chapter four. 

In contrast to the standard trigonometry based intersection detection, no-fit polygons can be 

used to quickly identify the intersection state of two shapes by a simple point-in-polygon test. 

If the reference point of shape B is inside the no-fit polygon NFPAB, then the two shapes are 

known to be intersecting. In chapter four standard trigonometry intersection detection was 

used as, at that time, there were no approaches that could generate no-fit polygons robustly 

for all cases and be capable of handling shapes consisting of circular arcs without decomposing 

to their line approximations. Robustness and accuracy were both critical features for the 

algorithm to be applicable for use in industry. With the modified no-fit polygon generation 

approach proposed in this paper, we no longer have concerns with the use of the no-fit 

polygon. It is now possible to modify the intersection detection and vertical resolution 

approach to utilise no-fit polygons. Figure 66 shows that intersections can be resolved by 

casting a vertical line from the reference point of shape B (Le. the locus of the no-fit polygon) 

and intersecting with the NFPAB. The intersection between the two shapes is guaranteed to be 

resolved in one step by translating shape B using the following: 

Vertical translation = Nearest vertical intersection point - Ref Point B 
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Figure 66. Resolving intersecting shapes with the arc and line no-fit polygon 

The following concrete example demonstrates the relative efficiency of overlap resolution for 

an instance of two overlapping shapes using the entity by entity resolution approach used in 

the technique presented in chapter four and the same overlap resolution when using the no-fit 

polygon. For the shapes shown in Figure 65, using the stepwise overlap resolution, the 

detection of an invalid position and the vertical resolution requires: 

Detection : Full entity by entity intersection test and if no intersection is found all points in 

moving shape to be tested for containment against static shape. In the worst case for our 

example shapes this would result in 18 intersection tests and 3 point inside tests. 

Resolution : For each vertical resolution required to fully resolve the overlap the technique 

requires the intersection of an infinite vertical line with all entities in the static shape. 

Additionally at each step in the resolution the detection step must be performed to ascertain if 

the resolution is complete. For the example case this would result in 4 full resolution cycles, i.e. 

24 intersection tests against an infinite vertical line and at most 4 times the full detection cycle. 

Total: 76 intersection tests and 12 point inside tests. 

For the same shapes shown in Figure 66, using the no-fit polygon: 

Detection : Point inside test of moving shape's ref point against the in place no-fit polygon. 

154 



Resolution: A single complete vertical slide to resolve overlap, resulting in the intersection of an 

infinite vertical line with every entity of no-fit polygon. 

Total: 13 intersection tests and 1 point inside test. 

6.6. Experiments on Literature Benchmark Problems 

This section evaluates the proposed approach by generating new solutions for the previously 

published literature benchmark problems (see Table 16 and Table 17) using the new no-fit 

polygon bottom-left-fill implementation and hill-climbing (He) and tabu (TABU) local search 

procedures where a solution is represented by a specific sequence/ordering of the shapes. The 

hill-climbing and tabu local search mechanisms are identically configured to those used in 

chapter four, as are the sequence operators (lOpt - NOpt). 

To provide a numerical evaluation of the shape sequence, we place each shape in the order 

given by the shape sequence using the bottom-left-fill placement heuristic discussed in chapter 

four and then we calculate the overall length of the layout and its density. The initial shape 

sequences are provided by the decreasing length or decreasing area sorted ordering of the 

input shapes. 
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Table 16. length evaluated irregular benchmark problems from the literature 

Problem 
Shapes 

Rotational Sheet Time To Best Available Result 
Original Author 

Name Constraints Width 
Best length 

Best (5) Reference 

Blazewicz, Hawryluk & 
Blasz1 28 0, 180 Absolute 15 26.57 5603 

Bennell & Song (2007) (called 

Walkowiak (1993) 5HAPES2j 

Ratanapan & Dagli (1997) Dagli 30 90 Incremental 60 57.64 17331 Bennell & Song (2007) 

Fujita, Akagi & Kirokawa 
Fu 12 90 Incremental 38 31.57 1192 Bennell & Song (2007) 

(1993) 

Jakobs (1996) Jakobs1 25 90 Incremental 40 11.4 2193 Bennell & Song (2007) 

Jakobs (1996) Jakobs2 25 90 Incremental 70 24.97 4540 Gomes & Oliveira (2006) 

Marques, Bispo & Sentieiro 
Marques 24 90 Incremental 104 77.79 10692 Bennell & Song (2007) 

(1991) 

Hopper (2000) Poly1A 15 90 Incremental 40 14.00 12 
Burke, Hellier, Kendall & 

Whitwell (2006) 

Hopper (2000) Poly2A 30 90 Incremental 40 28.17 121 
Burke, Hellier, Kendall & 

Whitwell (2006) 

Hopper (2000) Poly3A 45 90 Incremental 40 40.33 1515 
Burke, Hellier, Kendall & 

Whitwell (2006) 

Hopper (2000) Poly4A 60 90 Incremental 40 54.93 203 
Burke, Hellier, Kendall & 

Whitwell (2006) 

Hopper (2000) Poly5A 75 90 Incremental 40 69.37 476 
Burke, Hellier, Kendall & 

Whitwell (2006) 

Hopper (2000) Poly2B 30 90 Incremental 40 30.00 180 
Burke, Hellier, Kendall & 

Whitwell (2006) 

Hopper (2000) Poly3B 45 90 Incremental 40 40.74 418 
Burke, Hellier, Kendall & 

Whitwell (2006) 

Hopper (2000) Poly4B 60 90 Incremental 40 51.73 96 
Burke, Hellier, Kendall & 

Whitwell (2006) 

Hopper (2000) Poly5B 75 90 Incremental 40 57.53 52514 Bennell & Song (2007) 

Hopper (2000) SHAPES 43 90 Incremental 40 59 31 
Burke, Hellier, Kendall & 

Whitwell (2006) 

Oliveira & Ferreira (1993) SHAPESO 43 o Absolute 40 60 3914 Gomes & Oliveira (2006) 

Oliveira & Ferreira (1993) SHAPES1 43 0, 180 Absolute 40 55 398 Bennell & Song (2007) 
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Oliveira & Ferreira (1993) SHIRTS 99 0, 180 Absolute 40 61.33 7033 Bennell & Song (2007) 

Oliveira, Gomes & Ferreira 
SWIM 48 0, 180 Absolute 5752 5895.17 15721 Bennell & Song (2007) 

(2000) 

Oliveira, Gomes & Ferreira 
TROUSERS 

(2000) 
64 0, 180 Absolute 79 241 5988 Bennell & Song (2007) 

Burke, Hellier, Kendall & 
Whitwell (2006) 

Profiles1 32 90 Incremental 2000 1377.74 189 
Burke, Hellier, Kendall & 

Whitwell (2006) 

Burke, Hellier, Kendall & 
Profiles2 50 90 Incremental 2500 3216.10 1264 

Burke, Hellier, Kendall & 

Whitwell (2006) Whitwell (2006) 

Burke, Hellier, Kendall & 
Profiles3 46 45 Incremental 2500 8193.89 1759 

Burke, Hellier, Kendall & 

Whitwell (2006) Whitwell (2006) 

Burke, Hellier, Kendall & 
Profiles4 54 90 Incremental 500 2453.12 1131 

Burke, Hellier, Kendall & 

Whitwell (2006) Whitwell (2006) 

Burke, Hellier, Kendall & 
Profiles5 50 15 Incremental 4000 3332.70 1317 

Burke, Hellier, Kendall & 

Whitwell (2006) Whitwell (2006) 

Burke, Hellier, Kendall & 
Profiles6 69 90 Incremental 5000 3097.86 813 

Burke, Hellier, Kendall & 

Whitwell (2006) Whitwell (2006) 

Burke, Hellier, Kendall & 
Profiles7 9 90 Incremental 500 1296.30 680 

Burke, Hellier, Kendall & 

Whitwell (2006) Whitwell (2006) 

Burke, Hellier, Kendall & 
Profiles8 18 90 Incremental 1000 1318.70 354 

Burke, Hellier, Kendall & 

Whitwell (2006) Whitwell (2006) 

Burke, Hellier, Kendall & 
Profiles9 57 90 Incremental 1500 1290.67 1215 

Burke, Hellier, Kendall & 

Whitwell (2006) Whitwell (2006) 

Burke, Hellier, Kendall & 
Profiles 10 91 o Absolute 3000 11160 111 

Burke, Hellier, Kendall & 

Whitwell (2006) Whitwell (2006) 
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Table 17 Density evaluated irregular benchmark problems from the literature 

Problem 
Shapes 

Rotational Sheet Best Time To Best Available Result 
Original Author 

Name Constraints Width Density" Best (s) Reference 

Albano & Sappupo (1980) Albano 24 90 Incremental 4900 87.88 5460 Bennell & Song (2007) 

Blazewicz, Hawryluk & Blasz2 20 90 Incremental 1S 83.61 
22S7 

Gomes & Oliveira (2006) 

Walkowiak (1993) 

Dighe & Jakiela (1996) Dighel 16 90 Incremental 100 100 Gomes & Oliveira (2006), 
1.4 

Bennell & Song (2007) 

Dighe & Jakiela (1996) Dighe2 10 90 Incremental 100 100 Gomes & Oliveira (2006), 

0.3 

Bennell & Song (2007) 

Bounsaythip & Maouche Mao 20 90 Incremental 2550 81.01 Gomes & Oliveira (2006) 
667 

(1997) 

All of the experiments have been conducted on a 2GHz Intel Pentium 4 processor with 256MB 

RAM, identical equipment to that used for all previous experiments. 

In the experiments of chapter four 100 iterations were allowed for each run. However, as both 

approaches will generate identical layouts when provided with the same shape input order, 

allowing only 100 iterations for this new approach would not allow us to determine the 

difference in the quality of layouts generated or the average quality of the solutions generated. 

For these experiments each problem is allowed 5 minutes run time which generally matches 

the duration that the trigonometric approach took to perform 100 iterations or most problems. 

This allows for a comparison of the speed benefits (average time taken per nest) and the 

likelihood of finding higher quality layouts, on average, using the no-fit polygon approach when 

compared with the trigonometric approach of chapter four. 

In Table 18 and Table 19 show the best and average layout lengths obtained by the proposed 

approach for the length and density evaluated literature benchmark problems. We also show 

two different density measures: the first is a simple straight line density (Densityl), while the 

second density measure, used by (Hopper, 2000), is based on the union of all individual shape 

bounding rectangles. This allows us to use a nonrectangular final density measurement 

(Density2). 
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For each dataset, we perform 10 runs (of 5 minutes each) using each of the four different 

combinations of initial sorting and local search procedure: i) HC + Area, ii) HC + Length, iii) TABU 

+ Area, and iv) TABU + Length. Additional statistical analysis giving minimum, maximum, 

average layout length and standard deviation for each of the four combinations of sort and 

local search procedure separately are presented in Table 20. From Table 18, Table 19 and, it is 

clear that no sort/search combination dominates across the entire set of benchmarks. This 

may indicate that the combination of sort and search is somewhat dependent on the input 

data. For example, the SWIM dataset performs better when using a length sorted initial 

ordering for both hill-climbing and tabu local searches. 
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Table 18. Experiments on length evaluated literature benchmark problems 

Hill Climbing Tabu Search 
Length Ordered Area Ordered Length Ordered Area Ordered 

Problem 
Average Best Result Average Best Result Average Best Result Average Best Result 

Length Length Density I Density2 Length Length Density I Density2 Length Length Densityl Density2 Length Length Density I Density2 

Blaszl 27.54 26.80 80.6°/. 82.8% 27.73 27.20 79.4% 81.2% 27.33 27.10 79.7% 81.0% 27.51 27.00 80.0% 8\.3% 
Dagli 60.81 59.94 84.6% 85.8% 60.87 60.36 84.0% 85.1% 61.03 60.24 84.2% 84.8% 6\.15 60.38 84.0% 84.8% 

Fu 32.98 32.89 86.7% 89.1% 32.33 31.57 90.20/0 92.1% 32.94 32.70 87.2% 87.7% 32.92 31.57 90.2% 92.1°1. 
Jakobsl 11.90 11.50 85.2°/. 88.5% 12.00 12.00 81.7% 86.0% 11.97 11.86 82.6% 88.9% 11.79 11.50 85.2°/. 90.3% 

Jakobs2 26.00 26.00 74.2% 77.5% 26.00 26.00 74.2% 78.4% 26.00 26.00 74.2% 80.8% 25.41 24.70 78.1°/. 82.5% 

Marques 78.80 78.00 88.7°/. 89.6% 79.59 79.00 87.6% 89.1% 79.71 78.93 87.6% 89.9% 79.60 79.00 87.6% 88.0% 

PolylA 13.67 13.30 77.1 % 82.8°1. 13.81 13.70 74.8% 78.5% 13.78 13.69 74.8% 79.3% 13.97 13.69 74.9% 77.1% 
Poly2A 27.53 27.09 75.7% 77.7% 27.79 27.58 74.3% 75.2% 27.19 27.09 75.7% 78.8% 27.55 27.13 75.6% 77.3% 

Poly3A 41.35 41.07 74.9% 76.5% 41.75 41.53 74.0% 75.7% 41.55 41.25 74.5% 77.7% 41.77 41.67 73.8% 75.4% 

Poly4A 55.78 55.14 74.4% 76.0% 55.73 55.53 73.8% 75.7% 55.75 54.60 75.1% 76.7°1. 55.73 55.10 74.4% 75.7% 

Poly5A 69.98 69.84 73.4% 74.6% 70.20 69.56 73.7% 74.2% 70.06 69.13 74.1% 75.4% 69.79 68.84 74.4°/. 75.5°/. 
Poly2B 30.37 30.11 75.1% 77.4% 30.44 29.63 76.3°/. 77.5% 30.54 30.40 74.4% 76.6% 30.52 30.28 74.7% 76.1% 

Poly3B 41.00 40.66 75.0% 76.5% 40.97 40.63 75.1% 76.0% 41.20 41.06 74.3% 75.8% 41.02 40.50 75.3% 76.4% 

Poly4B 52.66 52.33 73.9% 74.7% 52.32 51.84 74.6% 75.3% 52.10 51.72 74.8% 75.7% 51.67 51.18 75.6% 76.9% 

Poly5B 61.68 6\.14 75.1% 76.1% 61.62 61.31 74.9% 76.4% 61.61 60.86 75.4% 75.9% 61.81 61.71 74.4% 75.8% 

SHAPES 57.40 56.00 71.2% 73.70/. 57.80 57.00 70.0% 71.1% 57.90 57.50 69.4% 70.7% 58.20 56.00 71.2% 72.5% 

SHAPESO 62.00 60.00 66.5% 70.2% 62.40 62.00 64.4% 66.5% 62.30 61.00 65.4% 67.3% 64.22 62.50 63.8% 65.5% 

SHAPESI 56.20 55.00 72.5% 74.3% 57.00 57.00 70.0% 71.6% 58.46 58.00 68.8% 71.1% 58.20 58.00 68.8% 70.4% 

SHIRTS 63.71 63.40 85.2% 86.9% 64.10 63.98 84.4% 86.3% 64.04 63.93 84.5% 86.5% 64.09 63.85 84.6% 86.2% 

SWIM 6464.73 6311.28 70.1% 71.3% 6531.24 6305.94 70.1% 71.5°/. 6416.59 6270.88 70.50/. 71.4% 6566.58 6499.91 68.1% 70.0% 

TROUSERS 248.56 245.95 88.7% 89.5% 247.75 246.80 88.4% 89.4% 246.60 245.28 88.9% 89.8% 247.98 247.17 88.2% 89.1% 

Profiles I 1389.14 1380.10 81.6% 83.0% 1391.40 1386.00 81.3% 82.5% 1412.88 1404.80 80.2% 81.4% 1394.54 1359.90 82.8% 84.5% 

Profiles2 3262.10 3216.06 50.0% 50.8% 3230.98 3194.19 50.3% 51.5% 3264.40 3252.70 49.4% 50.3% 3267.78 3223.30 49.8% 50.8% 

Profiles3 8073.88 7881.13 52.9°/. 54.0% 8230.33 8189.66 50.9% 51.7% 8074.34 7999.74 52.1% 53.0% 8177.60 8045.84 51.8% 53.0% 

Profiles4 2476.46 2452.42 75.2% 75.7% 2475.58 2464.35 74.8% 75.4% 2466.55 2425.26 76.0% 76.5% 2486.49 2482.72 74.2% 74.8% 

Profiles5 3394.32 3367.88 69.4% 70.6% 3401.17 3351.94 69.8°1. 70.8% 3385.32 3364.35 69.5% 70.5% 3399.48 3384.90 69.1% 70.4% 

Profiles6 3134.01 3121.36 75.0% 78.6% 3172.97 3156.02 74.2% 75.6% 3161.51 3146.56 74.4% 76.8% 3176.52 3161.22 74.1% 76.3% 

Profiles7 1305.78 1292.30 77.4% 79.9% 1307.44 1292.30 77.4% 79.9-;. \316.32 1296.30 77.1% 77.7% 1313.44 1309.10 76.4% 79.6% 

Profiles8 1303.17 1268.98 78.8% 79.8% 1283.19 1268.98 78.8% 79.8% 1308.61 1293.88 77.3% 77.5% 1285.44 1263.11 79.1-;. 82.1% 

Profiles9 1314.73 1278.21 52.7% 54.201. 1298.42 1290.00 52.2% 53.2% 1308.93 1298.62 51.9% 52.9% 1303.43 1292.63 52.1% 53.3% 

Protilesl0 11373.40 11219.60 65.8% 66.6% _ 11515.03 11403.99 64.8% 65.4% 11392.36 11302.50 65.3% 66.0% 11653.40 11585.81 63.7% 64.7% 
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Table 19. Experiments on density evaluated literature benchmark problems 

Hill Climbing Tabu Search J 
Length Ordered Area Ordered Length Ordered Area Ordered ! 

Problem 
Average Best Result Average Best Result Average Best Result Average Best Result 
Length Length Density I Density2 Length Length Densityl Density2 Length Lenllth Density I Density2 Length Length Density I Density2 

Albano 10203.84 9980.86 87.2% 88.3% 10196.87 10169.47 85.6% 86.4% 10130.41 10010.73 87.0% 87.4% 10174.15 10037.38 86.7% 87.5% 
Blasz2 24.94 24.80 75.9% 79.9% 24.92 24.90 75.6% 79.9% 24.96 24.80 75.9°1. 80.4% 25.06 24.90 75.6% 79.0% 
Dighel 1257.96 1239.60 80.7% 81.1% 1260.38 1250.00 80.0% 81.9% 1289.62 1270.00 78.7% 80.1% 1257.72 1210.00 82.6°/. 83.8°/. 
Dighe2 1224.66 1215.70 82.3% 83.0% 1205.66 1180.00 84.7°/. 86.5% 1221.12 1190.00 81.1% 84.7% 1229.32 1226.60 81.5% 83.6% 
Mao 1857.70 1847.20 79.8% 83.1% 1841.52 1821.70 80.9% 83.9% 1853.90 1821.20 80.9% 83.1% 1838.78 1811.50 81.4% 83.6% 

-~ 
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Table 20. Min, max, average length and standard deviation statistics for the proposed method on the literature benchmark problems 

Hill Climbing Tabu Search 
Length Ordered Area Ordered Length Ordered Area Ordered 

Problem 
Min Max Average Std Min Max Average Std Min Max Average Std Min Max Average Std 

Length Length Length Dev Length Length Length Dev Length Length Length Dev Length Length Length Dev 

Albano 9980.86 10380.57 10203.84 143.52 10169.47 10276.34 10196.87 44.98 10010.73 10197.14 10130.41 74.87 10037.38 10258.82 10174.15 92.46 
Blaszl 26.80 27.90 27.54 0.44 27.20 27.90 27.73 0.30 27.10 27.50 27.33 0.18 27.00 27.80 27.51 0.30 
IBlasz2 24.80 25.00 24.94 0.09 24.90 25.00 24.92 0.04 24.80 25.10 24.96 0.11 24.90 25.20 25.06 0.13 
Dagli 59.94 61.16 60.81 0.49 60.36 61.27 60.87 0.36 60.24 61.49 61.03 0.55 60.38 61.73 61.15 0.54 
Dighel 1239.60 1280.00 1257.96 16.06 1250.00 1270.00 1260.38 9.11 1270.00 1300.00 1289.62 11.88 1210.00 1280.80 1257.72 29.26 
Dighe2 1215.70 1226.90 1224.66 5.01 1180.00 1226.90 1205.66 19.73 1190.00 1230.00 1221.12 17.45 1226.60 1230.00 1229.32 1.52 
Fu 32.89 33.00 32.98 0.05 31.57 33.00 32.33 0.70 32.70 33.00 32.94 0.13 31.57 33.80 32.92 0.81 
lakobsl 11.50 12.00 11.90 0.22 12.00 12.00 12.00 0.00 11.86 12.00 11.97 0.06 11.50 12.00 11.79 0.23 
lakobs2 26.00 26.00 26.00 0.00 26.00 26.00 26.00 0.00 26.00 26.00 26.00 0.00 24.70 26.00 25.41 0.63 
Mao 1847.20 1865.80 1857.70 8.14 1821.70 1869.00 1841.52 19.23 1821.20 1875.00 1853.90 20.51 1811.50 1860.80 1838.78 18.99 
Marques 78.00 79.00 78.80 0.45 79.00 80.00 79.59 0.54 78.93 80.00 79.71 0.47 79.00 80.00 79.60 0.55 
PolylA 13.30 13.83 13.67 0.21 13.70 13.86 13.81 0.07 13.69 13.83 13.78 0.05 13.69 14.10 13.97 0.17 
Poly2A 27.09 27.77 27.53 0.26 27.58 27.98 27.79 0.15 27.09 27.32 27.19 0.08 27.13 27.82 27.55 0.29 
Poly3A 41.07 41.68 41.35 0.22 41.53 41.96 41.75 0.19 41.25 41.81 41.55 0.26 41.67 41.94 41.77 0.13 
Poly4A 55.14 56.24 55.78 0.50 55.53 55.90 55.73 0.18 54.60 56.86 55.75 0.80 55.10 56.22 55.73 0.42 
Poly5A 69.84 70.11 69.98 0.11 69.56 70.53 70.20 0.40 69.13 70.57 70.06 0.63 68.84 70.36 69.79 0.69 
Poly2B 30.11 30.78 30.37 0.28 29.63 30.87 30.44 0.46 30.40 30.69 30.54 0.11 30.28 30.76 30.52 0.21 
Poly3B 40.66 41.26 41.00 0.24 40.63 41.26 40.97 0.25 41.06 41.30 41.20 0.09 40.50 41.31 41.02 0.32 
Poly4B 52.33 52.88 52.66 0.24 51.84 52.56 52.32 0.29 51.72 52.42 52.10 0.28 51.18 51.98 51.67 0.33 
Poly5B 61.14 62.14 61.68 0.42 61.31 62.01 61.62 0.29 60.86 61.98 61.61 0.45 61.71 61.98 61.81 0.12 
SHAPES 56.00 59.00 57.40 1.14 57.00 58.00 57.80 0.45 57.50 58.00 57.90 0.22 56.00 59.00 58.20 1.30 
SHAPE SO 60.00 63.00 62.00 1.22 62.00 63.00 62.40 0.55 61.00 64.00 62.30 1.14 62.50 65.00 64.22 1.04 
SHAPES I 55.00 57.00 56.20 0.76 57.00 57.00 57.00 0.00 58.00 59.00 58.46 0.51 58.00 59.00 58.20 0.45 
SHIRTS 63.40 64.09 63.71 0.30 63.98 64.20 64.10 0.09 63.93 64.11 64.04 0.08 63.85 64.41 64.09 0.26 
SWIM 6311.28 6590.38 6464.73 116.16 6305.94 6608.86 6531.24 127.43 6270.88 6535.02 6416.59 114.10 6499.91 6614.67 6566.58 45.30 

TROUSERS 245.95 249.48 248.56 1.47 246.80 248.30 247.75 0.59 245.28 247.56 246.60 0.93 247.17 248.82 247.98 0.68 

Profiles1 1380.10 1392.10 1389.14 5.12 1386.00 1397.50 1391.40 4.14 1404.80 1417.40 1412.88 5.61 1359.90 1414.20 1394.54 22.72 ! 

Profiles2 3216.06 3302.21 3262.10 41.59 3194.19 3258.04 3230.98 29.64 3252.70 3280.60 3264.40 14.48 3223.30 3301.74 3267.78 29.87 

Profiles3 7881.13 8155.11 8073.88 111.70 8189.66 8258.72 8230.33 25.61 7999.74 8133.98 8074.34 57.91 8045.84 8227.48 8177.60 78.39 

Profiles4 2452.42 2486.76 2476.46 14.04 2464.35 2482.38 2475.58 7.48 2425.26 2488.26 2466.55 23.54 2482.72 2489.30 2486.49 2.43 

Profiles5 3367.88 3415.66 3394.32 19.81 3351.94 3459.24 3401.17 38.43 3364.35 3398.02 3385.32 14.67 3384.90 3413.20 3399.48 11.45 

Profiles6 3121.36 3149.66 3134.01 12.79 3156.02 3183.51 3172.97 12.41 3146.56 3171.17 3161.51 12.04 3161.22 3184.02 3176.52 9.29 

Profiles7 1292.30 1317.60 1305.78 12.79 1292.30 1317.60 1307.44 9.23 1296.30 1325.40 1316.32 13.23 1309.10 1322.30 1313.44 6.17 

Profiles8 1268.98 1321.78 1303.17 20.09 1268.98 1293.60 1283.19 11.24 1293.88 1322.10 1308.61 10.03 1263.11 1297.11 1285.44 14.09 

Profiles9 1278.21 1341.88 1314.73 23.55 1290.00 1305.60 1298.42 7.18 1298.62 1324.45 1308.93 11.56 1292.63 1316.22 1303.43 8.97 

Profiles 10 11219.60 11484.88 11373.40 96.37 11403.99 11601.51 11515.03 94.89 11302.50 11477.91 11392.36 65.73 11585.81 11699.05 11653.40 54.82 
-
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Table 21 provides a summary of the results and a comparison to both the best-known 

solutions and the solutions obtained in chapter three. The best result is highlighted in bold 

type and results are underlined where the proposed approach achieved less than 1% worse 

solutions but did so in a faster time. 

Table 21. A comparison of the best results of the proposed no-fit polygon packing 

approach to that of Burke et al. (2006) and the best results from the available literature 

Best Burke. Hellier. Kendall and Whitwell (2006) Proposed No-Fit Polygon Packing Best % Improvement over 

Problem 
Best Literature 

Literarurc Time I Time To Time I Time To Hest Burke et Density I Density2 length Density I Density2 Time(s) length Nest(s) Best (.) Ne.t (.) Re.t (,) Literature al. (2(X)6) 

Blas21 16.57 5603 27.80 77.7% 81.0% 0.32 21 :I.2Ji!! 80.6% 82.S/V. 0.09 llI.L :2..l!.lli 3.60% 

[)agli 57.64 17331 60.57 83.7% 89.0% 2.04 189 59.94 84.6% 85.8% 0.42 252 ·3.99% 1.05D
/. 

fu 31.57 1192 32.80 86.9% 90.8% 0.24 21 31.57 90.2% 92.1% 0.17 ill 0.00-/. 3.75-1. 

Jakobsl 11.40 2193 11.86 82.6% 92.6% 0.74 43 .lUll 85.2% 90.3% 0.19 12 ::llJ!l!.'l» 3.02% 

Jakobs2 24.97 4540 25.80 74.8% 83.3% 2.13 81 24.70 78.1% 82.5% 0.64 51 1.OS-/. 4.26% 

Marques 77.97 10692 80.00 86.5% 89.3% 0.25 5 IM!Q 88.7% 89.6% 0.07 11 ~ l.~m·/. 

PolylA 14.00 12 14.00 73.2% 78.2% 0.36 12 13.30 77.1% 82.8% 0.11 254 5.03% 5.03"1. 

Poly2A 28.17 121 28.17 72.8% 77.So/. 1.24 121 17.09 75.7% 78.8% 0.50 239 3.84% 3.84% 

Poly3A 40.33 1515 41.65 73.8% 75.5% 2.01 210 41.07 74.9% 76.51)/. 1.00 159 -1.830/. J.40-/. 

Poly4A 54.93 ill 54.93 74.6% 75.9"10 2.43 203 54.60 75.1% 76.7% 1.71 224 0.60 1t
/. 0.59·/. 

Poly5A 69.37 476 69.37 73.9"/. 75.7% 5.04 476 68.84 74.4% 75.5% 1.76 300 0.76°/. 0.76-/. 

Poly2B 30.00 180 30.00 75.4% 77.5% 2.50 180 29.63 76.3% 77.5% 0.90 189 1.23% 1.24% 

Poly3B 40.74 418 40.74 74.9"10 77.1% 4.26 418 40.50 75.3% 76.4% 2.22 114 0.58% 0.58% 

Poly4B 51.73 96 51.73 74.8% 77.4% 8.24 96 51.18 75.6% 76.9"/. 6.00 176 1.07% 1.07% 

Poly5B 57.53 52514 60.54 15.8% 77.2% 14.70 677 60.86 75.4% 75.9% 12.62 299 ·5.78% -0.52% 

SHAPES 59.00 31 59.00 67.6% 69.1% 0.60 31 56.00 71.2% 73.7% 0.27 216 5.08% 5.09% 

SHAPESO 60.00 3914 66.00 60.5% 62.6°/. 0.93 21 60.00 66.5% 70.2% 0.14 ill 0.00·/. 9.09·/. 

SHAPES I 55.00 398 60.00 66.5% 68.9"/. 0.82 2 5~.00 72.5% 74.30/. 0.22 m 0.00·/. 8.33% 

SHIRTS 61.33 7033 63.80 84.6°;' 87.3% 4.99 58 63.40 85.2% 86.9% 0.77 194 -3JK% 0.62·/. 

SWIM 5895.17 15721 6462.40 68.4% 71.6% 12.39 607 6270.88 70.5% 71.4% 1.24 141 -6.37% 1.96% 

TROUSERS 241.00 5988 246.57 88.5% 90.1% 7.89 756 245.28 SK.9% 89.8% 1.02 253 ·1.17% 0.~1% 

Albano 

Blasz2 

Dighel 

Dighe2 

Mao 

profiles) 

Profile52 

Profiles3 

Profiles4 

Profiles5 

Profiles6 

Profiles7 

Profile58 

profiles9 

ProfileslO 

87.9% 5460 10292.90 84.6% 86.5% 1.18 93 9980.86 aulli 88.25% 0.25 ill :2.illlt 3.03% 

83.6-1. 2257 25.28 74.5% 79.9"/. 0.16 II 24.80 75.94% 80.41% 0.07 14 -10.10% 1.88% 

100.0% 1.2 1292.30 77.4% 78.9"/. 0.22 9 1210.00 82.65% 83.84% 0.15 3 ·21.00% 6.37% 

100.0·/. 0.3 1260.00 79.4% 84.3% 0.10 7 1180.00 84.75% 86.50% 0.70 148 -18.00% 6.3~·/. 

81.0·/. 667 1854.30 79.50/0 82.9"/. 0.38 30 1821.70 IlM.lli 83.86% 0.13 ill ~ 1.76"1. 

1377.74 189 1377.74 82.0% 85.2% 0.83 189 1J~9.90 82.8% 85.4% 0.10 15 1.29·/. 1.19% 

3216.1 1264 3216.10 50.0% 51.3% 31.15 264 3194.19 50.3% 51.5% 2.88 195 0.68·/. 0.68 0
/. 

8193.89 1759 8193.89 50.9"/. 52.6% 7.68 1759 7881.13 52.9% 54.0% 0.80 183 3.81% 3.82"1. 

2453.12 1131 2453.12 75.1% 75.7% 1.04 1131 1425.16 76.0% 76.5% 0.16 256 1.148
/. 1.14°/. 

3331.7 1317 3332.70 70.2% 73.6% 65.92 1317 lli.L2.4 69.8% 70.8% 7.39 JJ!.2 ~ -O.SK% 

3097.86 813 3097.86 75.6% 77.8% 2.44 813 ill.UCi 75.0% 78.6% 0.67 111 ~ -0.76% 

1296.3 680 1296.30 77.1% 80.2% 0.06 680 1291.30 77,4% 79.9"/. 0.02 211 O.Jl·/. 0.31·/. 

1318.7 354 1318.70 75.8% 77.2% 0.55 354 1263.11 79.1% 82.1% 0.08 179 4.21"1. 4.22% 

1290.67 1215 1290.67 53,1 % 54.9"/. 8.8 1215 1178.21 52.7% 54.2°/. 0.39 98 0.97·/. 0.97% 

11160 III 11160.10 66.2% 66.8% 1.89 III 11219.60 n5.K% 666% 0.42 247 -0.53% -0.53% 

Comparing the "Time / Nest" columns in Table 21, it can be seen that the use of the no-fit 

polygon has considerably reduced the amount of time required to produce layouts 

compared to the previous trigonometric approach presented in chapter three. This 

difference is perhaps most evident in the problems "SWIM" and "Profiles9" which both 

involve shapes consisting of numerous small edges. For "SWIM", the no-fit polygon 

implementation is approximately 10 times quicker and, for "Profiles9", layouts can be 

produced about 22 times faster. With some other problems, such as "Fu" and the "Poly" 

problems, there are only small improvements in layout generation time. On closer 
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examination, these data sets contain shapes with relatively few edges (4, 5 or 6) and, 

therefore, the benefit of resolving intersections in one step via the NFP does not provide as 

great an advantage over the edge by edge intersection resolution using trigonometry. 

In comparison to the best solutions from the literature on the 36 benchmark problems, the 

proposed approach obtains 16 new outright best solutions, 3 equal best solutions in a 

significantly faster time, and 7 solutions that are within 1% of the best literature solution 

but found in a significantly faster time. These three groups are reproduced in Table 22. 

Table 22. Summary of problems for which the proposed approach yields better solution 

quality and/or time than the best known solutions from the literature. 

Best Literature Propos.d Approach 

Group Problem Time TakeD Time Taken Evaluation Evaluation 
(s) (s) 

Jakobs2 24.97 4540 24.70 51 

PolylA 14.00 12 13.30 254 

Poly2A 28.17 m 27.09 239 

Poly4A 54.93 203 54.60 224 

Poly5A 69.37 476 68.84 300 

Poly2B 30.00 180 29.63 189 

Poly3B 40.74 418 40.50 114 

(I) Poly4B 51.73 96 51.18 176 
Better Evaluation SHAPES 59.00 31 56.00 226 

Profiles I 1377.74 189 1359.90 15 

Profiles2 3216.1 1264 3194.19 295 

Profiles3 8193.89 1759 7881.13 283 

Profiles4 2453.12 1131 2425.26 256 
Profiles7 1296.3 680 1292.30 211 

Profiles8 1318.7 354 1263.11 279 
Profiles9 1290.67 1215 1278.21 98 

(2) Fu 31.57 1192 31.57 139 

Equal Evaluation SHAPESO 60.00 3914 60.00 274 
& Better Time SHAPESI 55.00 398 55.00 239 

Blaszl 26.S7 5603 26.80 281 

Jakobsl 11.40 2193 11.50 29 
(3) Marques 77.97 10692 78.00 21 

Slightly Wone 
Profiles5 3332.7 1317 3351.94 300 Evaluation « l"!o) 

& Better Time Profiles6 3097.86 813 3121.36 171 
Albano 87.9% 5460 87.23% 299 

Mao 81.0% 667 80.91% 152 

In group 2, the proposed packing approach achieves equal solutions to the best reported 

for "Fu", "ShapesO" and "Shapes1". However, with the presented approach, the solutions 

are found 8, 14 and 1.5 times quicker respectively. The final group reports solutions in 

which the proposed approach found a slightly worse solution (within 1%) than the best 

solution reported in the scientific literature but in a significantly faster time. The most 

extreme example of this is demonstrated by the "Marques" dataset whereby the best 
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literature solution was found after around 3 hours of computation whilst an almost 

equivalent solution was found by the proposed approach well within the 5 minutes allowed 

(over 500 times faster). These results have been included to demonstrate that very good 

solutions of comparative quality can be achieved within timeframes that would be 

acceptable for use in industry. 

6.7. Summary 

Until the generation of this technique no-fit polygon algorithms only operated on straight 

edge representations. If arcs were present the polygons had to be represented by straight 

line segments in order for the no-fit polygon to be used. This led to computational 

inefficiencies, especially if a low resolution was used, so that the arcs could be more 

accurately represented. 

The main contribution of this chapter is the presentation of a no-fit polygon algorithm that 

is able to cope with arcs. Its effectiveness has been shown by using an identical layout 

technique to that outlined in chapter four utilising the generated no-fit polygons. 

Due to the efficiency of the overlap resolution, compared to the entity by entity overlap 

resolution technique utilised in the work presented in chapter four as demonstrated in 

section 6.5, the new bottom-left fill heuristic algorithm has been able to more extensively 

explore the solution space resulting in higher quality solutions being discovered. The 

combination of line arc no-fit polygons and the layout algorithm has been able to produce 

better results on 16 (of 36) benchmark problems at the time of publication. On another 

three instances the combined technique finds results which are equal to the best known 

solution. Perhaps of more interest is the fact that the algorithm is much faster than other 

approaches in the scientific literature. 
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CHAPTER SEVEN 

7. Irregular Packing with a non-greedy bottom-left fill approach 

7.1. Introduction 

In chapter four a new bottom left fill nesting heuristic was introduced. This heuristic was 

able to produce some of the best results seen in the scientific literature at the pOint of its 

publication. However the placement heuristic, whilst entirely accurate in the yaxis, 

required a discrete x value to be used whilst searching for a feasible position to place a 

part. It possible therefore that more efficient placement positions could have been 

overlooked as they could have fallen between the discrete x values tested. 

Chapter five presents an extension of Mahadevan's sliding no-fit polygon generation 

technique that allows for the reliable generation of no-fit polygons. Furthermore this work 

extends no-fit polygon generation to allow for those cases exhibiting all previously known 

degenerate cases and to include generation for shapes incorporating circular arc segments 

within their boundaries. 

In chapter six the placement heuristic devised in chapter four utilised these no-fit polygons 

to significantly improve the performance of the placement heuristic, once again this 

allowed the generation of some new best results on the literature benchmark problems. 

However this implementation still suffered from the inaccuracy inherent in the discrete x 

values being tested during shape placement. 

In 2002 Gomes and Oliveira introduced the TapaS placement heuristic which utilises the 

no-fit polygons of the shapes to generate accurate placements for shapes during the 

nesting process (Gomes & Oliveira, 2002). By correctly positioning and intersecting the no

fit polygons of the shape being placed with those of the already placed shapes, along with 

the inner fit polygon of the shape being placed and the sheet, it is possible to determine all 

feasible placement positions in which a shape may be placed without overlap with placed 

shapes or the containing sheet. The TapaS placement mechanism has also been very 

effectively by Bennell and Song in (Bennell & Song, 2010) who used an improved 

implementation of the TapaS technique which allowed for the filling of holes in a partial 

layout. 

Unlike the new bottom-left fill heuristic used in the earlier chapters the TapaS placement 

technique does not suffer from any inaccuracy in the x or yaxis. Importantly for the work 
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presented in this chapter the Tapas approach also offers a set of feasible placement points 

for a shape at each placement. In order to produce a bottom-left fill nesting approach it 

would only require that, of all the valid placement points, the lowest left most position of 

the set of feasible posit ions is consistently chosen as the placement location. 

The set of feasible placement positions produced by the Tapas approach for each shape 

placement is utilised in the work presented in this chapter as part of an exploration into the 

usefulness of a less greedy approach to the bottom-left fill placement heuristic. 

7.2. Motivation 

The exploration of a non-greedy placement method has been motivated by the significant 

amount of feedback Aptia Solutions Ltd. receives regarding layouts produced by its greedy 

bottom left fill nesting algorithms {see chapter eight for a company case study}. 

Through Aptia's "MyNesting" application, which has over 5,700 registered users, the user 

base is able to submit nests for review by the development team. Following a review of a 

sample ofthe nests that users regarded as unsatisfactory it was clear that excessively 

greedy placement was one cause of user dissatisfaction. 

Figure 67 shows a simple example of greedy placement leading to inefficient nesting. In the 

example four very similar shapes are to be placed onto a sheet, these parts have the 

rotational constraints of 0 and 180 degrees. The bottom left fill technique used in chapters 

four and six of this thesis has been used to place the shapes. This technique has worked 

well for the first two parts placed. However when the third part is placed in the lowest left 

most position found by the algorithm the placement results in a lowest left most placement 

for the fourth part that is not particularly efficient. 

Figure 67. Greedy Placement (12643 units in length) 

Figure 68 shows an example of non-greedy placement of the same parts which allows for a 

significant reduction in the length of the layout. By allowing the third shape to be placed 

slightly furth er to the right, in its other orientation, the fourth shape can now fit beneath it. 
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Figure 68. Non-greedy placement (9615 units in length) 

The following chapter explores, utilising the TapaS placement technique, the effectiveness 

of a simple non-greedy nesting placement technique across a range of literature problems. 

The aim of the introduction of this technique and its testing on the literature benchmark 

problems is to determine if a non-greedy placement strategy is likely to be useful across a 

broad range of the potential problems an industrial automatic nesting application may 

encounter. 

The results of experiments to explore the non-greedy control variables are presented and 

conclusions on the effectiveness of the technique are drawn. Several of the results 

generated using this non-greedy TOPOS technique improve upon results generated in the 

earlier chapters of this thesis. 

7.3. TapaS Placement 

The implementation of TapaS used in this chapter is similar to that utilised in the work 

presented in (Bennell & Song, 2008) in that it allows for the filling of holes between the 

placed shapes. However the implementation of Tapas used in this chapter does not join up 

placed shapes and generate new no-fit polygons during the layout process, as in the original 

2002 implementation of Gomes & Oliveira, but uses pre-generated no-fit polygons placed 

correctly, i.e. with respect to the non-sliding shape that was used in its generation, at each 

step of the placement sequence. This implementation therefore relies upon fast and 

accurate intersection and point inside detection in order to determine candidate 

placements. 

In order to explain the technique adopted to investigate the effectiveness of using a less 

greedy placement method it is useful to present a brief example of how the 

implementation the TapaS placement technique is able to generate a set of the feasible 

placement points. The follow figures present a step by step visualisation of the Tapas 

process of placing a single part, with 90 degree rotational constraints, onto a layout already 

containing two placed parts. 
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Figure 69. Placed parts, no-fit polygons and inner-fit polygons 

Figure 69 shows the placed shapes' no-fit polygons, inner fit polygons and possible 

placements. The possible placements are determined by using the intersection points 

between the in position no-fit polygons and some of the free vertices of the no-fit polygons. 

Potential placement points are then eliminated by testing the points using the point inside 

or winding number method, discussed in chapter three. If a point is contained inside a no

fit polygon it is removed from the list of potential placements likewise if the point is 

removed if it is outside of the sheet inner-fit polygon for the candidate shape's orientation. 

Figure 70. Feasible placement points for Tapas placement 
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Figure 70 shows the set of feasible placement points following elimination by no-fit and 

inner-fit polygon tests. To achieve a bottom-left fill nesting algorithm we need only to place 

the candidate part in its correct orientation at the left most lowest ofthe feasible points, as 

shown in Figure 71. 

Figure 71. Placed candidate shape in left most position using TOPOS method 

Chapter 4 introduced new benchmark problems inspired by the metal profiling industry 

which the industrial partner of the CASE / TCS projects, Esprit Automation Ltd., is aligned to. 

These problems include features unique to the literature, namely holes within shapes and 

circular arcs in the boundary definitions of the shapes. The TOPOS based approach used in 

this chapter can cope with these features by using intersection routines capable of 

accurately detecting intersection between circular arc segments and line segments and 

combinations thereof in order to produce candidate placements. Additionally the point 

inside or winding number routines used in this chapter, as with the previous chapters, can 

determine if a point is inside a shape including holes and circular arcs in its boundaries. 

One further amendment to the TOPOS implementation is required in order to cope with 

no-fit polygons including inner paths, where a shape fits within another shape's holes. To 

allow for placement within this regions all pOints of any inner loop of an in place no-fit 

polygon are entered as potentially admissible points for elimination using the point inside 

method. Figure 72 and Figure 73 show an in progress layout of the Profiles2 introduced in 

chapter four with no rotations allowed (in order to simplify the diagram) which includes 

both circular arcs and shapes with holes. 
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Figure 72. TapaS placement generation with circular arcs and holes 

Figure 73 . Placement of part into circular hole using TapaS technique 

Using the previously described implementation ofthe TapaS technique it is possible to 

generate multiple feasible placement positions for layouts containing holes both between 

and within placed shapes, including shapes that have circular arcs in their boundary 

definitions. 
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The fact that multiple feasible placement points can be generated using this technique is of 

particular interest in the exploration of a non-greedy adaptation of the TOPOS method. It is 

proposed that by not continually choosing the lowest left most feasible position we may be 

able to avoid producing nests that have the undesirable greedy qualities highlighted in 

Figure 67, potentially leading to improved layouts being generated. 

The remainder of this chapter describes and evaluates a simple non-greedy placement 

selection technique that uses the range of feasible placements generated using the TOPOS 

approach outlined in this section. 

7.4. Shape Ratio 

In order to choose useful non-greedy positions from the set of feasible pOSitions we require 

some calculation that will select positions that leave useful space for subsequent 

placements, however we do not want to constantly select the least greedy position and 

therefore generate very poor layouts, to this end the Shape Ratio calculation was devised. 

The Shape Ratio controls the how far a candidate non-greedy placement may be from the 

left most feasible placement point before it is excluded as a feasible placement. For each 

feasible point found using the TOPOS method the following calculation is performed to 

determine that the point's Shape Ratio value is less or equal to the Shape Ratio being used 

to guide the nesting placements. 

The following pseudocode describes the method used to determine point admissibility: 

Algorithm 9. Shape Ratio calculation procedure 

Input 
Candidate point - valid potential placement point 
BestPoint - most efficient valid potential placement (produces placement with least 
additional layout length) 
AdmissibleShapeRatio = the current ShapeRatio value being tested 

Begin 

End 

double xDiff - CandidatePoint.RightBoundOfPartAtThisPoition -
Bestpoint.RightBoundOfPartAtThisPoition; 

double yDiff = abs(CandidatePoint.TopBoundOfPartAtThisPosition -
Bestpoint.TopBoundOfPartAtThisPosition); 

double shapeRatio = xDiff/yDiff; 

bool bValid = false; 
if(shapeRatio <- AdmissibleShapeRatio) 

bValid - true; 

return bValid; 

This formulation means that points that would produce placements that are very non

greedy will be assigned a higher Shape Ratio value. The maximum admissible Shape Ratio 
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value explored in the work presented is 1.0 as this describes points that will produce 

placements are at most 45 degrees away from the left most feasible placement point, with 

respect to the right side of the sheet. 

Figure 74 and Figure 75 show an in progress non-greedy placement sequence, being 

produced with an admissible Shape Ratio of 0.7, the Shape Ratio va lues for the various valid 

placement points that the Tapas placement technique has identified are shown as is the 

implied Shape Ratio = 1.0 boundary. 

Figure 74. Shape Ratio values for potential placement points and the 1.0 boundary 

The shape about to be placed in Figure 74 is shown placed in the top right position in Figure 

75. The placement of another copy of the same shape is being considered in Figure 75. In 

this example no shape rotations are being considered. 
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Figure 75. Shape Ratio values and 1.0 boundary for the next shape placement 
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Of the placements pOints deemed admissible, i.e. those with a Shape Ratio less than or 

equal to the required value, the admissible point that has the greatest difference in its y 

value from the left most feasible point is selected as the placement point. This is designed 

to encourage distribution to both sides of the sheet over the course of the nesting leaving 

useful spaces centrally in the nest for later placements to utilise. 

The results of experiments using Shape Ratio alone to select placement positions, on the 

benchmark problems, are presented in the next section. 

7.5. Experiments with Shape Ratio Only 

To evaluate the potential usefulness the simple non-greedy placement technique the range 

of literature benchmark problems and the new benchmarks introduced in chapter four 

have been tested using the approach described in the previous section. 

Each problem has been run 10 times in both decreasing shape length initial order and 

decreasing shape area initial order. Each run consists of the generation of 100 solutions for 

the values of Shape Ratio from value 0 (greedy) to value 1 in 0.1 increments i.e. (0,0.1,0.2 

... 0.9,1). 

All experiments in this chapter were performed on an Intel is CPU at 2.67 Ghz with 4GB of 

RAM. The testing application and Tapas implementation was developed in C# on the .NET 

4.0 framework and utilised only a single core of the multicore CPU. 

For the duration of the 100 iteration runs a hill climbing heuristic is used. The hill climbing 

heuristic is run with the identical operators (10pt - nOpt), and identical probabilities of the 

operators being selected for application to the current best sequence, as those used by the 

hill climbing algorithm used in chapters four and six. Table 23 shows the best results and 

the average result for the benchmark problems, for each of the Shape Ratio values tested. 
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Table 23. Experimental Results for Shape Ratio values 0 to 1 

Avera2es 

Problem Best Result Best Result SR SR=O.O SR=O.1 SR=O.2 SR=O.3 SR=O.4 SR=O.5 SR=O.6 SR=O.7 SR=0.8 SR=O.9 SR=1 
albano (A) 10355.86 0.1 10733.12 10693.93 10745.42 10729.70 10843.16 10886.93 10858.12 10989.06 11024.17 11104.05 11285.98 
albano (l) 10360.59 0.1 10754.26 10662.30 10683.67 10752.58 IOR09.30 10935.18 10880.78 10942.00 \0899.39 10998.38 11147.15 
blaz (A) 28.08 0.3 29.07 29.33 29.31 29.19 29.43 29.65 29.78 30.21 30.35 31.13 30.82 
blaz (ll 28.08 0.1 28.63 28.75 28.91 29.11 29.08 29.57 30.12 30.48 30.50 31.28 3\.16 
dagli (A) 62.62 0.1 64.75 64.31 64.94 65.24 68.08 70.24 71.06 71.78 72.57 75.14 75.67 
dagli (l) 61.97 0.0 63.81 65.50 64.51 65.80 67.56 69.25 70.53 70.90 73.33 74.07 75.23 
dighe1 (A) 129.oJ 0.1 136.93 137.55 137.27 142.88 143.77 146.72 146.72 149.25 146.27 154.18 154.93 
dighe1 (l) 131.42 0.1 143.78 139.70 140.43 142.83 144.80 149.16 148.94 152.94 150.30 155.22 155.94 
dighe2 (Al 126.15 0.0 135.90 137.50 136.68 138.oJ 139.86 138.85 142.86 143.59 142.70 146.48 146.70 
dighc2 (L) 127.60 0.4 137.07 135.30 135.35 \37.44 139.69 141.02 141.80 144.02 145.40 144.07 150.19 
fu (Al 33.09 0.1 36.03 35.94 36.67 37.07 37.26 37.63 37.81 39.08 39.48 38.68 39.98 
fu (l) 34.00 0.1 36.74 36.54 36.61 36.78 37.19 37.90 37.89 38.14 37.95 38.26 38.86 
jakobsl (Al 12.00 0.0 12.81 13.61 14.30 14.91 16.38 17.15 18.33 20.64 22.79 25.20 26.03 
jakobsl (l) 12.57 0.0 13.28 13.89 15.00 14.96 15.87 17.01 17.67 20.38 22.03 25.22 26.75 
jakobs2 (A) 2600.00 0.0 2752.07 2823.51 2977.19 3147.92 3277.71 3452.27 3604.55 3681.44 3744.24 3821.21 3801.76 
jakobs2 (L) 2755.00 0.0 2842.68 2830.79 2940.73 3174.44 3266.67 3440.90 3574.12 3672.36 3696.53 3768.40 3839.07 
mao (A) 1901.41 0.1 2014.49 1963.29 1996.73 2065.23 2137.81 2159.03 2223.58 2242.60 2256.98 2316.86 2362.44 
mao(l) 1927.05 0.0 2032.26 2006.12 2031.69 2068.75 2147.62 2194.83 2172.55 2237.67 2259.95 2296.20 2334.81 
marques (A) 80.85 0.0 84.12 85.11 86.29 87.32 89.39 89.45 91.87 93.66 95.91 97.78 99.31 
marques (L) 82.00 0.0 84.51 84.51 85.90 87.18 88.89 89.34 90.22 93.06 93.86 96.37 96.27 
poly1a (A) 15.35 0.0 16.32 16.64 17.30 17.71 18.40 19.68 20.63 21.44 23.42 25.34 26.94 
polyla (L) 15.71 0.0 16.70 16.81 17.23 18.01 18.28 19.43 20.25 21.24 23.03 24.46 27.15 
poly2a (A) 2978.60 0.0 3085.93 3145.51 3219.63 3272.06 3331.85 3392.18 3483.45 3585.17 3623.39 3821.64 3854.26 
poly2a(L) 2997.01 0.0 3092.54 3136.93 3212.17 3323.18 3333.31 3397.97 3559.16 36\0.18 3695.33 3787.75 3935.84 
poly2b(A) 32.24 0.1 33.45 33.87 34.67 35.55 36.10 36.79 37.37 38.55 39.43 40.33 41.23 
poly2b (L) 32.57 0.0 33.79 33.82 34.85 35.58 35.76 37.02 38.08 39.00 39.78 41.01 41.22 
poly3a (A) 4444.83 0.0 4581.66 4656.15 4697.16 4767.39 4830.78 4895.74 4940.43 5025.27 5185.28 5201.02 5326.31 
poly3a (L) 4493.54 0.0 4600.23 4644.92 4709.59 4776.15 4853.02 4933.59 4980.63 5097.75 5178.69 5263.51 5341.77 
poly3b (A) 42.16 0.1 43.96 44.12 44.94 45.65 46.53 47.63 48.14 49.19 49.60 51.08 51.74 
poly3b (L) 43.21 0.1 44.91 44.31 44.97 45.55 46.66 47.55 48.03 49.22 50.57 50.38 51.52 
poly4a(A) 5902.27 0.0 6056.42 6129.39 6181.84 6308.71 6347.89 6408.34 6476.02 6573.24 6559.93 6682.29 6730.84 
poly4a (L) 5943.66 0.0 6103.83 6111.37 6198.07 6291.99 6371.13 6426.94 6507.04 6593.50 6650.61 6741.94 6784.20 
poly4b (A) 52.71 0.0 54.95 55.72 55.94 57.51 57.98 58.94 60.15 60.61 61.30 61.61 63.60 
poly4b (L) 54.25 0.0 55.27 55.09 56.02 57.19 58.32 58.68 59.67 60.39 61.64 62.35 63.28 
poly5a (A) 6916.11 1.0 7534.36 7616.53 7643.15 7736.69 7828.43 7908.50 8000.73 8053.74 8131.32 8153.69 8124.54 
polySa (L) 7427.43 0.0 7605.56 7651.62 7722.67 7802.81 7891.41 7929.57 8030.67 8069.36 8166.82 813736 8236.33 
poly5b(A) 62.24 0.0 64.94 65.49 66.08 67.48 68.70 68.91 69.62 70.84 71.38 72.18 74.29 
poly5b (l) 63.36 0.1 65.23 65.24 66.25 66.82 67.99 69.24 69.60 70.79 71.99 72.88 73.37 

-
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- continued 

Problem Best Result Best Result SR SR=O.O SR=O.1 SR=0.2 SR=O.3 SR=O.4 SR=O.5 SR=O.6 SR=O.7 SR=O.8 SR=O.9 SR=1 
profiles I (A) 1475.65 0.2 1532.01 1530.55 1535.28 1562.43 1640.02 1737.57 1816.05 1861.09 1876.23 1956.68 1964.57 profiles I (L) 1447.71 0.0 1492.32 1521.15 1505.85 1585.26 1670.53 1697.07 1867.93 1906.75 1939.27 1931.32 1960.45 
profiles2 (A) 3426.74 0.1 3553.13 3577.36 3669.88 3601.22 3743.35 3889.91 3975.37 3995.10 4053.80 4200.64 4224.83 profiles2 (L) 3309.58 0.1 3437.52 3370.91 3423.95 3474.12 3532.05 3583.74 3616.20 3806.38 3890.68 3988.28 3988.93 profiles3 (A) 8201.07 0.4 8752.50 8650.55 8712.12 8721.77 8638.97 8796.82 8850.33 9085.69 9245.12 9225.88 9190.83 profiles3 (L) 8325.45 0.2 8618.30 8487.11 8495.58 8508.36 8558.55 8640.69 8749.29 8909.36 8961.16 9147.70 9096.54 I 
profiles4 (A) 2506.48 0.2 2559.22 2543.46 2537.89 2624.46 2634.79 2617.73 2655.59 2657.91 2669.26 2674.05 2680.29 I profi1es4 (L) 2468.34 0.1 2557.10 2517.77 2531.80 2591.50 2611.79 2621.08 2646.38 2648.26 2672.45 2671.35 2692.12 profilcs5 (A) 3492.64 0.0 3565.29 3563.44 3581.65 3746.73 3832.76 3891.73 4043.34 4095.76 4142.05 4227.21 4354.65 I profiles5 (L) 3510.19 0.1 3641.58 3581.85 3671.53 3723.41 3846.\2 3940.06 4031.19 4096.98 4185.00 4344.12 4454.52 I profilcs6 (A) 2710.33 0.5 3282.39 3299.91 3437.96 3492.36 3744.44 3511.64 3698.18 3810.52 3877.45 4111.19 4061.57 
profiles6 (L) 3073.46 0.6 3210.50 3291.55 3383.18 3472.50 3642.74 3768.34 3696.95 3808.01 39\3.79 4040.71 4054.89 I 
profiles7 (A) 1221.32 0.6 1409.48 1428.97 1411.38 1433.42 1435.21 1410.70 1359.87 1329.61 1330.53 1339.32 1385.12 I profiles7 (L) 1221.32 0.0 1389.64 1422.67 1409.73 1459.72 1441.78 1457.29 1408.84 1442.45 1443.06 1408.48 1516.90 . 
profiles8 (A) 1298.12 0.1 1390.51 1376.31 1362.92 1419.82 1437.35 1528.17 1588.67 1617.35 1540.13 1574.15 1618.03 ! 
profiles8 (L) 1339.89 0.1 1419.81 1416.70 1433.13 1449.54 1466.49 1467.79 1539.37 1541.75 1573.07 1656.38 1638.66 
profi1cs9 (A) 1331.42 0.0 1354.17 1405.02 1436.19 1447.33 1500.18 1516.02 1551.95 1576.02 1635.46 1683.08 1707.84 
profiles9 (L) 1335.52 0.1 1383.40 1358.32 1427.11 1483.82 1504.42 1548.06 1558.62 1599.79 1615.64 1648.55 1703.03 
profiles 1 0 (A) 11696.80 0.6 11822.46 11839.80 11876.11 11861.62 11920.20 11949.93 12050.52 12080.73 12185.29 12198.24 12329.09 
profiles 1 0 (L) 11425.73 0.2 11686.60 11697.25 11674.17 11611.75 11736.70 11842.80 11861.71 11910.98 11955.57 12058.36 12157.09 
shapesO (A) 64.00 0.1 67.25 65.85 67.25 68.22 68.95 69.40 70.44 71.56 71.11 71.80 74.13 
shapesO (L) 64.00 0.1 66.55 65.17 66.35 67.35 67.50 68.50 68.67 70.06 69.67 71.70 73.71 
shapes 1 (A) 64.50 0.1 66.05 65.33 67.20 68.10 68.42 69.29 70.45 70.28 70.60 73.00 72.11 
shapes1 (L) 63.00 0.1 65.60 64.94 65.78 67.40 67.65 68.40 68.90 70.03 71.38 71.00 72.44 
shapes (A) 62.50 0.1 65.00 65.50 65.95 67.33 69.20 70.50 71.88 71.78 72.20 72.00 73.10 
shapes (L) 63.00 0.0 65.00 65.18 64.70 67.00 67.85 69.50 70.65 71.93 72.57 72.50 73.30 
shirts (A) 65.48 0.0 66.73 66.82 66.92 67.60 68.14 68.50 68.80 69.99 69.72 71.64 71.22 
shirts (L) 64.80 0.0 65.45 66.00 66.45 67.57 67.61 67.90 69.20 69.87 70.85 71.40 72.12 
swim (A) 6545.42 0.0 6672.64 6720.17 6942.00 7020.21 7124.14 7176.68 7387.82 7541.09 7571.71 7817.29 7870.92 
swim (L) 6594.84 0.0 6876.75 6932.1 7 7023.01 6952.82 7233.57 7317.71 7460.63 7478.81 7811.33 7762.17 7915.95 
trousers (A) 262.98 0.9 279.10 271.58 274.99 272.05 276.42 279.53 277.15 277.58 278.12 275.55 277.76 
trousers (L) 261.38 0.0 274.11 273.33 273.63 273.07 277.57 277.27 281.28 281.19 281.71 277.44 277.62 
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It is clear that whilst the non-greedy placement approach has been able to outperform the 

greedy placement approach in some cases the majority of the results generated are poor 

when compared to the greedy approach, especially when the Shape Ratio is high. Both the 

best result and the best average results tend to occur in when the approach is using the 

greedy placement strategy or the Shape Ratio = 0.1. This is because of the detrimental 

effect a late in the placement sequence non-greedy placements can have on the efficiency 

of the layout generated. For this reason the Sequence Factor, described in the next section, 

was introduced to control non-greedy placement towards the end of a sequence of 

placements. 

The average layout generation time for the benchmark problems is presented in Table 24. 

No-fit polygon generation is performed in advance of the testing and it therefore not 

included in the table. As the implementation of this technique was developed in a different 

programming language it is difficult to make useful comparisons with the performance of 

techniques used in chapters 4 and 6. However, the time per layout appears to be 

acceptable for industrial application. 

Table 24. Average layout Generation Times 

Average Generation 
Problem Time (s) 

Albano 0.33 
Blaz 0.25 
Dagli 0.5 
dighel 0.07 
dighe2 0.04 
Fu 0.05 
jakobsl 0.25 
jakobs2 0.2 
Mao 0.33 
marques 0.33 
polyla 0.1 
poly2a 0.25 
poly2b 0.6 
poly3a O.S 
po\y3b 1.2 
poly4a 1.1 
poly4b 1.3 
poly5a 1.3 
polySb 2.4 
profiles 1 0.3 
profiles2 0.95 
profiles3 2.3 
profiles4 0.25 
profiles5 7 
profiles6 I.S 
profiles7 0.04 
profilesS 0.2 
profiles9 0.14 
profileslO O.S 
shapesO 0.13 
shapes 1 0.13 
shapes 0.13 
shirts 0.7 
swim 3.1 
trousers 0.6 
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7.6. Sequence Factor 

Whilst non greedy placement selection using the Shape Ratio is a useful method for 

selecting non-greedy placements it is obvious that selecting non-greedy positions toward 

the end of a layout will produce a longer layout and therefore less efficient layouts. 

Furthermore selecting late non-greedy placements has no benefit as there are fewer and 

fewer shapes to be placed later on to utilise the space deliberately left for later placements. 

To react to this observation the Sequence Factor calculation was introduced following the 

experiments shown in section 7.5. The Sequence Factor acts as a progressive reduction on 

the selection of non-greedy placements allowing for non-greedy selection to be reduced or 

eliminated towards the end of a layout sequence. 

The Sequence Factor is used to limit the x distance, a factor of the shape's x span, which a 

candidate placement may be from the most efficient placement point. If the Sequence 

Factor for all candidate placements is greater than the supplied limit then the most efficient 

placement point will be selected, switching the placement strategy back to a greedy 

strategy. 

Shape Factor is calculated for each point in the following manner: 

Algorithm 10. Sequence Factor calculation process 

Input 
Candidate point - valid potential placement point 
BestPoint - most efficient valid potential placement (produces placement with least 
additional layout length) 
SequenceIndexOfCandidateShape a zero based index in sequence of part being placed 
Sequence Length = the length of the placement sequence 
SequenceFactor - the current SequenceFactor value being tested 

Begin 

End 

double xDiff a CandidatePoint.RightBoundOfPartAtThisPoition -
Bestpoint.RightBoundOfPartAtThisPoition; 

double factor - ((SequenceLength - SequenceIndexOfCandidateShape) I SequenceLength) 
• SequenceFactor; 

double SequenceValue - xDiff -((candidatePart.PartWidthAtPlacementAngle) • factor); 

boo I bValid = false; 
if(sequenceValue <= 0.0) 

bValid - true; 

return bValid; 

The effect of the Sequence Factor is demonstrated in the following figures. The second 

value displayed for each point is the calculated SequenceValue from the above algorithm. 

In order for a point to be admissible, given the Sequence Factor and the index of the shape 
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in the sequence of shapes to be placed, the Sequence Factor calculation must result in a 

negative or zero va lue. If the value is greater than zero the point is not considered as a valid 

potential placement. 

In the following example (Figures 76, 77 and 78) a Shape Ratio of 0.7 is used, in common 

with the example shown in previous section. The Sequence Factor being used in the 

following example is 0.5. It should be noted that when a Sequence Factor value is being 

used the final placement of any layout sequence will always be in the greedy bottom-left 

position. 

000. 000 

Figure 76. Potential placements including their Sequence Factor value 

Figure 76 shows the potential placements for another copy of the square shape, the 15th 

shape of a sequence of 24, which the TOPOS algorithm has generated . However although 

three potential placements are admissible, according to the Shape Ratio criteria (0.7), the 

calculated Sequence Factor values mean that the points with 0.38 and 0.48 Shape Ratio 

values are no longer regarded as valid potential placements. 
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033. 21 .13 

000, 0.00 

Figure 77. 15 th Shape placed 

Following the placement of the square shape anther copy is the next in the placement 

sequence again two non-greedy positions are being rejected due to the Sequence Factor 

calculation. However a marginally less greedy position, same x value but a higher y value, is 

still admissible and is selected as shown in Figure 77 and Figure 78. 

Figure 78. 16t h Shape placed 

Later in the placement sequence we can see the Sequence Factor having a greater effect. 

Figure 79 shows the placement of the 19
th 

shape in the sequence, here all non-greedy 

positions are no longer admissible and so the greedy placement is selected as shown in 

Figure 80. 
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0.21 , 12.17 

Figure 79. 19th Shape Potential Placements 

Figure 80. Greedy Placement Selected for 19th Shape 

The introduction ofthe sequence factor allows the non-greedy nesting technique to switch 

from being non-greedy in the early part of the placement sequence towards greedier 

placement choices later in the sequence. This allows the central gaps deliberately left by 

the Shape Ratio calculation to be filled and also avoids placing shapes in non-greedy 

placements towards the end of the sequence and therefore adversely affecting the overall 

layout length. Using these two simple inputs, Shape Ratio and Sequence Factor, we can 

control the greediness of the selection of placements points that the TOPOS technique 

offers. 

Section 7.7 presents the experimental results where both Shape Ratio and Sequence Factor 

are utilised. 
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7.7. Experiments with Shape Ratio and Sequence Factor 

After establishing that the use of the Shape Ratio non-greedy placement selection strategy 

alone will generally not be able to outperform a greedy placement strategy the Sequence 

Factor was introduced to temper the non-greedy placement selection over the course of 

the layout generation. 

Once again a hill climbing driven 100 iteration approach was used, however the Shape Ratio 

and Sequence Factor values were both tested over the 0.1 to 1 range. This results in 100 

runs of 100 iterations for each problem, with both length and area initial orderings. 

Table 25 presents the best results from these experiments: 
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Table 25. Best Results with Shape Ratio and Sequence Factor 

Problem AreaILeneth SR SF Best Result SR Only Best Literature Best Note 

Albano Area 0.1 0.2 10199.58 (85.4%) 10355.86 (Sato et aI., 2012) < Chapter 4 

Albano Len~th 0.1 0.2 10256.02 (84.9%) 10360.59 89.21% 

Blaz Area 0.5 0.9 27.54 28.08 (Bennell & Song, 200N) 

Blaz Lenlrth 0.9 0.4 27.67 28.08 26.57 

Dagli Area 0.2 0.7 60.19 (84%) 62.62 (Sato et aI., 2012) < Chapter 4 

Dagli Len~ 0.1 0.6 61.11 (82.7%) 61.97 57.4 

dighel Area 0.9 0.1 124.20 (80.5%) 129.03 (Gomes & Oliveira, 2006) < Chapter 4 

dighel Length 0.6 0.7 122.20 (81.8%) 131.42 100% 

dighe2 Area 0.8 0.1 111.60 (89.6%) 126.15 (Gomes & Oliveira, 20(6) < Chapter 6 

di~he2 Length 0.9 0.3 113.16 (88.4%) 127.60 \00% 

Fu Area 0.8 0.1 33.00 33.09 (Egeblad et aI., 2007) 

Fu Length 0.8 0.2 33.00 34.00 30.8 

jakobsl Area I 0.3 12.00 12.00 (Sato et aI., 2012) 

jakobsl Len~th I 0.1 12.00 12.57 II 

jakobs2 Area 0.7 0.1 2600.00 2600.00 (Sato et aI., 2012) 

jakobs2 Length 0.1 0.4 2600.00 2755.00 2275 

Mao Area 0.7 0.7 1858.05 (79.3%) 1901.41 (Egeblad et aI., 2007) 

Mao Length 0.3 0.8 1863.83 (79%) 1927.05 85.15% 

Marques Area 0.2 0.7 80.00 80.85 (Egeblad et aI., 2007) = Chapter 4 

Marques Len~th I 0.6 80.00 82.00 76.67 

polyla Area 0.6 0.1 14.50 15.35 (Burke et aI., 20 I 0) 

polyla Length 0.1 0.2 14.69 15.71 13.3 

poly2a Area 0.4 0.9 2820.76 2978.60 (Burke et aI., 2010) 

poly2a Length 0.7 0.7 2885.29 2997.01 2790 

poly2b Area 0.1 0.2 31.28 32.24 (Burke et aI., 20 I 0) 

poly2b Length 0.1 0.7 31.55 32.57 29.63 

poly3a Area 0.1 0.2 4309.94 4444.83 (Burke et aI., 2(06) 

poly3a Len~ 0.4 I 4381.80 4493.54 4033 

poly3b Area 0.5 0.1 41.41 42.16 (Burke et aI., 20 I 0) 

poly3b Lenlrth I 0.2 41.44 43.21 40.5 

poly4a Area 0.4 0.2 5741.21 5902.27 (Burke et aI., 20 I 0) 

poly4a Length O.S 0.7 5811.37 5943.66 5460 

poly4b Area 0.3 0.1 52.29 52.71 (Burke et aI., 2010) 

poly4b Length 0.8 0.6 52.19 54.25 51.18 

poly5a Area 0 0 7249.06 6916.11 (Burke et aI., 2010) 

poly5a Len~th 0.9 I 7299.00 7427.43 6884 

poly5b Area 0.3 0.4 62.11 62.24 (Bennell & Song, 200!;) 

poly5b Length 0.9 0.2 62.26 63.36 57.53 

profiles I Area 0.5 0.9 1423.31 1475.65 (Burke et al., 20 I 0) . 

profiles I Length 0.3 0.9 1402.00 1447.71 1359.9 

profiles2 Area 0.1 0.7 3244.90 3426.74 (Burke et aI., 2010) 

profiles2 Length 0.2 0.4 3204.68 3309.58 3194.19 

profiles3 Area 0.9 0.6 8142.56 8201.07 (Burke et aI., 2010) 

profiles3 Lenlrth 0.4 0.5 8141.98 8325.45 7881.13 

profiles4 Area 0.6 0.9 2450.154 2506.48 (Burke et al., 2010) 

profiles4 Length 0.2 0.3 2441.481 2468.34 2425.26 

profiles5 Area 0.2 I 3367.67 3492.64 (Burke et. a12006) 

profiles5 Length 0.1 0.9 3432.91 3510.19 3332.7 

profiles6 Area 0.5 0.9 3094.72 3282.39 (Burke et. a1 2006) New best 

profiles6 Length 0.8 0.3 3061.58 3073.46 3097.86 result 

profiles7 Area 0.8 0.6 1000 1221.32 (Burke et aI., 2010) New best 

profiles7 Length 0.9 0.8 1000 1221.32 1292.30 result 

profilesS Area 0.7 0.4 1261.44 1298.12 (Burke et aI., 20 I 0) New best 

profiles8 Length 0.6 0.9 1229.18 1339.89 1263.11 result 

profiles9 Area 0.5 0.1 1325.52 1331.42 (Burke et aI., 2010) 

profiles9 Len~th 0.1 0.8 1311.50 1335.52 1278.21 

profiles 10 Area 0.2 I 11446.26 11696.80 (Burke et. a12006) 

profiles I 0 Length 0.3 0.7 11248.85 11425.73 11160 

shapesO Area 0.2 0.5 62.00 64.00 (Imamichi et aI., 2009) < Chapter 4 

shapesO Length 0.9 0.1 62.00 64.00 58.3 

shapes I Area 0.1 0.7 63.00 64.50 (Leung et aI., 2012) 

shapes I Length 0.1 0.3 61.50 63.00 53 

Shapes Area I O.S 62.00 62.50 (Burke et aI., 2010) 

Shapes Length 0.6 0.6 62.00 63.00 56 

Shirts Area 0.3 0.7 64.36 65.48 (lmamichi et aI., 2009) 

Shirts Length 0.9 0.9 64.48 64.80 60.83 

Swim Area 0.6 0.1 6396.32 6545.42 (Imamichi et aI., 2009) < Chapter 6 

Swim Len~th 0.4 0.4 6549.98 6594.84 5N75.17 

Trousers Area 0.4 0.1 257.67 262.98 (Bennell & Song, 200!;) 

Trousers Length I 0.3 255.95 261.38 241 
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As shown in Table 25 the introduction of the Sequence Factor has significantly improved 

the performance of the non-greedy placement technique. Indeed it has been able to 

improve upon several best results from the earlier chapters of this thesis and find an 

optimal result for Profiles7, which is not possible using a greedy placement strategy. Whilst 

it has not been able to achieve any new best results for the literature benchmarks it is, in all 

but a few cases, reasonably competitive especially given that the tests consisted of only 100 

iteration hill climb driven runs. 

With so many values of Shape Ratio and Sequence Factor being explored in the second set 

of experiments displaying average values for each problem is best achieved in the form of a 

graph. Graphs of the minimum and average values, across each Shape Ratio and Sequence 

Factor value pair, for the 10 runs of all problems in both initial orderings are provided in 

Appendix D. These graphs present the result in its layout length form in the y axis and value 

pairs of Shape Ratio / Sequence Factor in the x axis. Along the x Shape Ratio rises steadily 

and Sequence Factor moves from 0.1 to 1.0 for each value increment of Shape Ratio. The 

first point on the graph is always the greedy implementation's min and average, as show in 

Figure 81. 
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Figure 81. Min and Average data for Albano (Area Sorted) 

In order to discern if the non-greedy placement approach is a potentially useful addition to 

a general automatic nesting application, i.e. one designed to work well on a wide range of 

problem types, it is important that we analyse not only the best results but also the average 

results from the non-greedy and greedy approaches. Indeed best results could simply be 

attributed to a fortu itous set of operators acting upon the sequence for only one of the test 
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runs used to explore this new technique and not point towards the general usefulness of 

the new technique. 

To assess the average effectiveness of the technique across the range of problems the 

average result for the greedy approach is compared to the average result for the non

greedy value pairings of Shape Ratio and Sequence Factor. Table 26 presents the results of 

this comparison highlighting the percentage of occasions the Shape Ratio and Sequence 

Factor controlled runs resulted in a better run average than the greedy placement runs. If 

the non-greedy technique is having little or no effect on average we would expect to see 

approximately only 50% of the non-greedy average results better than the greedy approach 

average. However when the problems are taken as a whole we see a figure of 60.8% of 

non-greedy runs presenting an improved average result over the greedy run averages. 

Furthermore given that this approach is aimed at improving on the results generated for 

the industrial problems, that a general automatic nesting engine may expect to encounter, 

the benchmarks have then been separated into two categories, artificial and industrial. 

Problems classified as artificial are those from the benchmark instances that have been 

created without reference to any particular industrial setting. These include "jigsaw" 

problems that have been derived by subdividing some larger shape, problems consisting of 

shapes produced by artificial generation of vertices and those problems which are 

composed of sets of purposely designed interlocking simple shapes. 

The industrial problems have been identified by their obvious industrial inspiration, often 

from the apparel and metal cutting sectors or their combination of a reasonably large 

number of different size and shaped pieces with numerous vertices in each part. 

When the problems are divided in this way the non-greedy approach shows a significant 

bias towards the industrial problems. The non-greedy placement method only achieves 

55.4% of improved averages on the artificial problems but in 68.8% of the tests the on the 

problems in the industrial category the non-greedy approach is able to produce improved 

averages, when compared to the greedy placement strategy. 
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Table 26. Artificial and industrial problems average result comparison 

Problem Areal % of SR+SF averages better 
Tvpe Name Length than greedy averaae 

Blaz Area 21 
Blaz Length 4 
dighel Area 12 
dighel Length 97 
dighe2 Area 43 
dighe2 Length 83 
Fu Area 33 
Fu Length 91 
jakobsl Area II 
jakobsl Length S4 
jakobs2 Area 43 
jakobs2 Length 100 
polyla Area 30 
polyla Length 95 
poly2a Area 16 
poly2a Length 38 
poly2b Area 28 - poly2b Length 90 

~ poly3a Area 16 
• ...-1 

poly3a Length 83 U 
t;:: poly3b Area 46 

• ...-1 poly3b Length 100 

~ 
poly4a Area 9 
poly4a Length 83 
poly4b Area 17 
poly4b Length 94 
poly5a Area 20 
poly5a Length 90 
poly5b Area 36 
poly5b Length 65 
profiles7 Area 64 
profiles7 Length 27 
profiles8 Area 93 
profiles8 Length 75 
profiles9 Area 0 
profiles9 Length 52 
Shapes Area 29 
Shapes Length 88 
shapesO Area 100 
shapesO Length 100 
shapes I Area 59 
shapes I Len2lh 92 

Albano Area 99 
Albano Length 100 
Dagli Area 91 
Dagli Length 7 
Mao Area 99 
Mao Length 100 
Marques Area 67 
Marques Length 75 
profiles I Area 52 
profilesl Length 28 - profiles2 Area 26 

~ profiles2 Length 91 • ...-I 

.b profiles3 Area 98 

rJ':I profiles3 Length 100 

~ 
profiles4 Area 53 
profiles4 Length 55 

~ profiles5 Area 93 
~ profiles5 Length 92 

profiles6 Area 93 
profiles6 Length 29 
profiles I 0 Area 52 
profiles I 0 Length 93 
Shirts Area 93 
Shirts Length 14 
Swim Area 24 
Swim Length 36 
Trousers Area 98 
Trousers Length 69 

Overall 60.8 
Industrial 68.8 
Artificial 55.4 
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It is also of interest to identify the values of shape ratio and sequence factor that are able 

to produce good average results. To determine these values the data from all of t he 

benchmark problems was analysed for the lowest 10 average values, for each of these 

values the shape ratio and sequence factor responsible for the low average was noted and 

occurrences of these value pairs summed. This data is presented in the chart in Figure 82. 

Best Average SR/SF Values 
25 ~-------------------------------------------------
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o 

Figure 82. Lowest 10 Average SR/SF va lue occurrences 

The analysis points toward the set of values show in Table 27 being t he most useful 

combination of settings for shape ratio and sequence factor across a broad range of 

problems. This information will allow for the more focused application of the technique and 

likely allows the exclusion of values of shape ratio above 0.7 from any further application. 

Table 27. The most productive Shape Ratio and Sequence Factor values 

Shape Ratio Sequence Factor 

0.1 0-0.8 

0.2 0-0.8 

0.4 0-0.8 

0.5 0-0.8 

0.6 0-0.8 

0.7 0-0.8 
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The same analysis was then performed on the two categories of benchmark problems, 

artificial and industrial, as shown in Figure 83 and Figure 84. Each ofthese categories also 

appears to respond positively to a similar set of shape ratio and sequence factor values. 

Industrial Best Average SR/SF Values 
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Figure 83. Lowest 10 Average SR/SF values occurrences for industrial problems 
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Figure 84. Lowest 10 Average SR/SF values occurrences for artificial problems 
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7.8. Summary 

The simple non-greedy placement technique introduced in this chapter has generated new 

thesis best results for several of the literature and new benchmark problems. These results 

have been achieved using a set of 10 x 100 iteration runs, for each combination of shape 

ratio and sequence factor, in combination with a simple hill climbing approach. 

Average results show that a non-greedy approach consistently out performs the greedy 

approach across a broad range of problems. The Profiles7 benchmark has been solved to 

optimality (see Figure 85), which is not possible using a greedy placement approach. The 

experiments show that an uncontrolled non-greedy approach will perform significantly 

worse than a progressive approach where the technique is less greedy over the course of 

the layout. Analysis shows that this technique is particularly applicable to industrial 

problems. This implies that the approach is likely to be useful when incorporated into an 

industrial automatic nesting application. Furthermore, analysis of the average results has 

allowed the identification of useful sets of the shape ratio and sequence factor values that 

appear to work well for a broad range of problems. 

This work represents the first documented implementation of a TOPOS layout technique for 

problems including arc segments and shapes with holes and is the only literature reference 

for non-greedy placement selection within a bottom-left fill placement strategy. 

Figure 85 . Optimal solution for Profiles7 
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CHAPTER EIGHT 

8. Case Study 

This chapter discusses the companies, products and projects utilising the research 

generated during the CASE / TCS projects and also the research presented in this thesis. 

Bridging the gap between research and practise has been an important theme in the 

research community and the industrial foundation of the research and its applicability to 

numerous industries ensures that the day to day considerations of practitioners and end

users have been of upmost importance throughout this thesis. The on-going industrial 

application of the research presented in this thesis has provided additional challenging 

constraints and drivers for further research and developments. 

8.1. Introduction 

Aptia Solutions Limited was founded in July 2004 as a spin-out company from the University 

of Nottingham. The intention of the company is to exploit and further the research 

presented in this thesis by developing products applicable to the many industrial sectors 

where nesting is of interest. 

The following team of people sit on the company board: 

Prof. Edmund Burke 

Prof. Burke is the former Dean of the Faculty of Science at the University of Nottingham. As 

a supervisor on the research presented in this thesis, former head of the ASAP (Automated 

Scheduling, Optimisation and Planning) research group, co-author of publications 

presented in this thesis and co-supervisor of the CASE / TCS project Edmund is ideally 

placed to guide Aptia's research and development focus and its on-going collaboration with 

the university. Prof. Burke is now the Deputy Principle for Research at the University of 

Stirling. 

Prof. Peter Ford 

Peter is an Emeritus Professor of the Faculty of Science at the University of Nottingham. 

Peter was the Head of the School of Computer Science during the formulation of Aptia as a 

spin out company. With wide experience as a company director of several UK companies, 

an accredited fellow of the British Computer Society and long experience in the field of 
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computer science Peter is a valued member of the board on both business and technical 

matters. 

Prof. Graham Kendall 

Graham is the Dunford Professor of Computer Science, head of ASAP research group and a 

supervisor of the research presented in this thesis. Graham has over 20 years of industrial 

experience in addition to his subsequent academic career. With a comprehensive 

background in both academia and industry Graham has been instrumental in the formation 

and start-up period of Aptia and continues to guide its growth. In addition to his board 

duties Graham also acts as Aptia's press officer. 

Dr. Glenn Whitwell (Chairman) 

Glenn received his PhD in Computer Science in 2005 from the University of Nottingham, as 

part of the ASAP research group. As co-author of the research of this thesis and in his 
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B.2. Thesis Research Utilised 

Aptia uses the following elements of the research presented in this thesis within the 

company's product range: 

• Heuristic Search Techniques - used in chapters 4 and 6 

• Line Arc no-fit polygon - used in chapter 6 

• Non-greedy placements - used in chapter 7 

The use of these techniques allows Aptia's products to offer the on-going search 

mechanism, which is a unique selling point of Aptia's products. Additionally the fast and 

highly accurate nesting that the line arc no-fit polygon can provide allows the product range 

to handle common industrial problem features such as shapes with arcs, holes and nesting 

onto irregular sheets. The line arc no-fit polygon approach is also used for robust spacing 

and cut offsetting calculations. 

The entire range of Aptia nesting products use the same highly optimised automatic nesting 

library, including the above techniques and further commercially sensitive developments. 

8.3. Aptia Products and Services 

To date Aptia has developed a range of products, utilising nesting techniques, which have 

been adopted in various industries. The most prominent adoption of these products has 

been in the aerospace and carbon fibre manufacturing sectors. 

In the near future it is expected that Aptia will target the boat / ship building and metal 

cutting sectors in addition to expanding its reputation and reach within the expanding 

carbon fibre market worldwide. 

The following subsections cover the range of products that Aptia have developed over the 

period 2006 to 2012. All of the products utilise the research presented in this thesis and 

have been designed to be as user friendly as possible. Indeed the challenge of making 

products that deliver the nesting technologies to end users in simple, easy to use and easy 

to understand packages is a very challenging aspect of bridging the gap between research 

and practise. 
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Without being delivered as part of a consistent, straight forward and high quality 

application the quality of the techniques presented in this thesis could not have made such 

headway in the market place. 

Aptia's products have often been chosen over competitive products, even when the 

competitor product has been shown to outperform Aptia's product on certain problem 

instances, as the application range is deliberately simple to use and understand. The 

simplicity and focus on the common end user tasks of the products reduces staff training 

requirements and the likelihood of software bugs in operation. These two factors make 

selling the software to end users much easier. Furthermore these aspects make the 

adoption of the product range by resellers more likely as this allows the reseller to avoid 

providing long, costly training courses and on-going support requirement. 

8.3.1. AptiaNest 

AptiaNest is Aptia's main product that uses the nesting algorithms developed in the course 

of this thesis. It can robustly import part and sheet geometry defined in DXF and DWG 

formats, automatically layout the parts according to user instructions and restrictions and 

convert the layouts to any required CNC format in order to drive a cutting machine. 

It has been adopted by machine resellers worldwide as a software option to accompany 

various cutting machine sales. As depicted in Figure 86 AptiaNest utilises the on-going 

search methodologies investigated in this thesis, allowing customers to leave the system 

finding improved layouts until required for cutting. 

One of AptiaNest's main strengths is that it is purposefully easy to use the user interface; 

see Figure 86 and Figure 87. Many competitive products have been established for 

considerably longer; in general these were initially focused on the metal cutting or fabrics 

sectors. This long standing and resultant feature creep has often left the competitor 

products with multiple options and tools which are only occasionally used by the end users. 

The AptiaNest product has been designed with extendibility and the ability to be rebranded 

from its first inception. It is therefore highly flexible and uses plugin architecture and 

bespoke licensing to allow it to be configured to particular reseller and customer needs. 

This has allowed it to drive (generate CNC) for various cutting machines and present 

multiple additional customisations without becoming a complex piece of software to 

maintain, sell or use. 
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8.3.2. ZundAutonest 

ZundAutonest is a branded and specialised version of AptiaNest specifically designed for 

use on the Zund range of cutting machines. This software has been developed in 

partnership with Zund UK, the main Zund cutting machine reseller in the UK. 

ZundAutonest software is widely used in the composites cutting field in the UK, notably by 

Formula One teams and large aerospace manufacturers. Worldwide the ZundAutonest 

product is also distributed by Zund territorial resellers. 

Since Aptia first approached Zund UK with the idea of producing a specialised version of the 

AptiaNest solution ZundAutonest has replaced several other competitive solutions in the 

portfolio of products that lund UK once sold. Furthermore Zund UK and Aptia now often 

collaborate on various special projects and products in order to improve the end-user 

experience and the range of functionality the cutting machines can engage in. In the near 

future it is expected that these projects will begin to include products beyond those with 

automatic nesting as their key component. 

8.3.3. MyNesting.com 

This product is a mould breaking attempt to give low cost access to the benefits of 

automatic nesting to users who would not normally be willing to pay for expensive 

automatic layout software. 

Often small cutting outfits have CAD/CAM software to run their cutting tables but do not 

have the budget or throughput that can justify expensive suites of software that include 

advanced features such as automatic nesting. The MyNesting.com approach is to provide 

the software for the generation of layouts to the end user without charging an upfront fee. 

In order to use the MyNesting.com software the user is only required to sign up via the 

website and download the free software. The user can import their parts via the DXF file 

format and generate layouts using various options and rotational constraints, on any shape 

of stock sheet or sheets, until they are happy with the resultant layout. Similarly to the 

AptiaNest product MyNesting uses the on-going search approach to find very high quality 

layouts, as shown in Figure 88. 
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When the user is satisfied with the generated nesting and requires the layout to be 

exported from the software, in order to pass it a CAM system for cutting, they use a Nest 

Credit which can be bought through the MyNesting.com website 

(http://www.mynesting.com). The layout can be exported to the DXF format, illustrated in 

Figure 89, which allows maximum compatibility with most CAM products on the market. 

Uniquely, of the few online nesting solutions available, MyNesting uses a fat client 

application and utilises the users CPU and memory resources to generate the solutions. This 

has proven to be a popular aspect of the software as end users can be wary of letting their 

confidential part designs leave their own computers/premises; all other solutions require 

that the parts are uploaded to a web server farm for nesting. The only time that MyNesting 

requires an internet connection, or contact with the MyNesting web server, is to log the 

user into the application and to use a nest credit. The MyNesting website is used to 

purchase credits independently of the client application. 

To date there have been over 5700 unique user who have signed up to this service and 

numerous related enquiries and opportunities have arisen due to its popularity and reach in 

the sector. Indeed several software development companies have already integrated 

MyNesting into their software products. 
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8.3.4. QuoteFab 

The QuoteFab application is designed to aid sales estimators in businesses where the 

cutting of sheet or roll material is an important component part of the cost of their 

products. Many sheet metal cutting businesses stock numerous grades and thicknesses of 

sheet metal for cutting upon order from their customer base. A single customer order can 

be composed of many order lines of different materials and thicknesses and QuoteFab 

allows the user to represent this order in a single document and use Aptia's automatic 

nesting engine to produce a nest for the material and thickness. 

By generating separate nests for each grade and thickness within the order the system is 

able to calculate the material required to satisfy the request and the estimator can use this 

information to generate a reliable and profitable quotation. 
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8.3.5. NestFab 

NestFab is a simple to use and inexpensive DXF in DXF out buy once application that 

performs similar functionality to the successful MyNesting product. The inclusion of 

additional third party integration options, reporting and other additiona l va luable features 

has made this product an attractive option for machine vendors and software vendors to 

include as an optional add on to their own offerings. 

Figure 91. NestFab application 

8.3.6. VMach 

The VMach application was the first in Aptia's product range not to directly incorporate 

nesting technology. The system is a flexible 3D simulation of cutting machines for machine 

reseller marketing and demonstration purposes. The system interprets the CNC code that 

an Aptia product (or any other product) has generated and shows how the cutting machine 

will perform the cuts, other functions and material feeds (shown in Figure 92). This product 

is useful in ensuring the cutting behaviour of a CNC file will be as desired and has been used 

in numerous instances at trade shows in place of a physical cutting machine. Various 
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machine resellers who have adopted Aptia's product range have requested bespoke models 

of this application as it has proven to be a useful sales tool. 

This application is also of interest to end users and is likely to be offered in the near future 

as a machine monitoring application. The enhanced VMach will maintain synchronisation 

with a physical cutting machine, warning of problems and reporting on progress. This 

product could allow for real time synchronised simulation and supervision of a cutting 

machine from anywhere in the world via internet based web services. 

Figure 92. VMach application simulating a Zund Machine cutting HPGL instructions 

8.3.7. LightSpeed 

Aptia and lund UK are currently working in partnership with the UK arm of a large 

aerospace manufacturer which specialise in the production of nacelles (engine covers for 

jet engines) particularly for the Airbus group. 

As part of the on-going relationship with lund UK, Aptia have been commissioned to work 

on the development of a part projection system for use on the lund cutting machines 

which are a vital part of the aerospace company's manufacturing process. 
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The installation of the ZundAutonest branded Aptia software in 2009 has already saved the 

aerospace manufacturer in the region of 5% of their £11,000,000 carbon fibre material 

budget per annum. 

The projection system, called UghtSpeed, will allow various jobs in the factory to be mixed 

together in the nesting process which experiments have shown will provide further savings. 

Currently only one kit of parts can be nested to a sheet at a time as part identification is too 

difficult due to the similar nature of parts from various nacelle kits. This causes a bottleneck 

in the production process and does not allow the fullest potential of the savings of the 

nesting system to be realised. It has been estimated, by the manufacturer, that further 

material savings achieved using the mixed nacelle kit approach could be in the region of a 

further 3% to 4% per annum. 

By projecting part shapes and identifiers onto the material, using a standard high power 

digital projector, the machine operators will be able to reliably and efficiently pick the parts 

out from the roll and take them to the next process, which involves placing and adhering 

the cut parts onto specially designed moulds, using a specialised resin glue, before being 

baked into a single piece in large pressurised ovens called Autoclaves. 

The identification of kits is achieved by highlighting parts using fill colour and letters 

projected onto the picking area of the cutting machines, as each frame feed of the roll of 

cut carbon fibre moves onto a run off table of the cutting machine. As various different 

grades of carbon fibre used by in the aerospace parts are manufactured with different 

coloured backing material the kit projection colours will be chosen from a per material user 

defined palette of compatible high visibility colours. 
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9. Conclusions 

The following sections outline the contributions to the state-of-the-art in this thesis. 

9.1. A New Arc Compatible Placement Heuristic for Bottom-Left Fill Placement 
Strategy 

The introduction of the new bottom-left fill algorithm, that utilises a vertical overlap 

resolution technique which allowed the generation of results that were a major 

improvement on those presented previously in the literature on 25 of the 26 literature 

benchmark instances. Furthermore the methodology allows for fast overlap resolution 

when both arcs and holes are present in the problem instance. This is the first time that any 

algorithm published in the literature has been able to deal with these specific features. The 

benchmark improvements are on average 5% better than the previous benchmarks at the 

point of publication. 

2 Robust No-Fit Polygon Generation 9 .. 

9.3. 

This thesis (see chapter 5) presented the first complete and robust no-fit polygon 

generation algorithm (based on the sliding technique) which is able to cope with all known 

degenerate cases. The use of no-fit polygons in the arena of irregular two-dimensional 

layout generation has become a major theme of the research community since 2000. The 

introduction of a simple, efficient and robust technique for generating no-fit polygons, 

which does not suffer from the known degenerate cases, is a valuable contribution to the 

state of the art. No-fit polygon generation times for this approach were shown to be 

competitive with other approaches reported in the literature. 

Line-Arc No Fit Polygon Generation 

In addition to overcoming the known degenerate cases in the sliding no-fit polygon 

generation technique, this thesis has extended the technique to allow the generation of no

fit polygons including lines and arcs. This allows practitioners to tackle many more real 

world problems where arcs are common and their accurate representation is a major 

advantage. In combination with the new layout technique introduced in chapter 4 the no-fit 

polygon can be used to dramatically speed up overlap detection and resolution. This speed 
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up allows for the generation of many more solutions per second ensuring that the search 

heuristics are able to explore more of the solution space, increasing the possibility of 

discovering high quality solutions quickly. The results presented in chapter 6 show that the 

approach is able to generate high quality results for existing and new benchmarks in 

durations which are significantly less than other competitive literature techniques. The 

speed of solution generation was a significant priority for the industrial partner in the CASE 

and TCS projects that motivated the research of this thesis. 

9.4. Generation of new benchmark problems 

In order to utilise the unique capabilities of the techniques presented in chapters 4 and 6 it 

was necessary to develop new benchmark problems containing features such as holes and 

arcs, some drawn directly from the libraries of the industrial partner in the CASE and TCS 

projects. These benchmarks will allow future researchers and practitioners to test the 

effectiveness of their techniques. These benchmarks have been published on several 

occasions and are described in full detail in the appendices of the thesis. 

9.5. Generation of new best results for numerous literature henchmad< pl"oblt'IllS 

Over the course of this research the techniques generated have produced the best known 

results, at the time of generation, for the full range of literature benchmark problems. 

Upon publication the techniques described in chapters 4, 5 and 6 introduced new 

benchmark results and new problem instances to the literature. The benchmark problems 

have been drawn from over 25 years of research and new instances introduced from 

industrial partners. Furthermore the majority of the best known solutions generated by this 

thesis have been generated in less than five minutes of computational time, which is a 

significant improvement on the generation times of other approaches reported in the 

scientific literature. The speed of quality solution generation makes the research presented 

here highly relevant to industrial practitioners, where nesting is of relevance. 

9.6. Experimentation with non-greedy placement in a bottolll-left fill algorithm 

Chapter 7 presents a simple non-greedy placement technique that improves on results 

generated in earlier chapters of the thesis; indeed it solves one of the new benchmark 

problems to optimality. This implementation is the only reference in the scientific literature 

to non-greedy placements being selected during a bottom-left fill placement algorithm. 
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Additionally the work in chapter 7 presents the first results generated for problems 

including holes and circular arc segments using a TOPOS placement strategy. Furthermore 

analysis of average results confirms that this method is useful on a broad range of problem 

types and in particular industrial style problems. Additional analysis identifies a range of 

values that control the technique appear to be productive settings for the approach across 

the wide range of problems tested. 
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CHAPTER NINE 

10. Future Work 

As discussed in chapter 8 the research developed in the course of the CASE and rcs 
schemes, which forms the work detailed in this thesis, has been successfully used In various 

commercial settings and products. Indeed the author is now directly involved with a spin

out company which was conceived as a vehicle for commercialisation of the techniques 

presented herein. With this in mind the continuation of this research is Inspired by 

industrial considerations and trends. 

10.1. Production Scheduling and Nesting 

The nesting and cutting of shapes from flat materials in industrial contexts never occurs 

without a production schedule or time sensitive production requirement, for example 

(Chryssolouris et aI., 2000) and (Morabito & Arenales, 2000) have both approached the 

nesting problem with the production requirements and schedules as an aspect of their 

solution methodologies. 

In unpredictable environments, for example in steel profiling centres (which offer to cut 

steel profiles of varying thicknesses and grades to order), pressing deadlines and 

mismatches in ordered part thicknesses can require a complex balancing act been nesting 

efficiency and timely delivery. 

A future direction of research will be to develop a constantly running nesting system which 

will respond to a production schedule, changing priorities as new orders arrive. 

10.2. Multiple Complementary Nesting Approaches in Parallel 

The majority of nesting approaches in the scientific literature use a single approach to 

generate layouts, as is the case with the techniques introduced in this thesis. A minority of 

approaches use a bottom-left fill technique to produce an initial layout which Is then 

compacted using some method such as facilitated by phi-functions or linear compaction, 

for example (Egeblad et aI., 2007) and (Chernov et aI., 2010). With the increasing trend 

towards multiple core processors, in even the most basic computers, it is now possible for 

multiple techniques to run simultaneously on a problem instance. 
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If sets of algorithms, such as differently seeded tabu search or hill-climbing controlled 

bottom-left fill approaches (as presented in this thesis) or mixed approaches like those In 

Egeblad and Chernov were run under the control of a Hyper-heuristic techniques ( (Burke 

et aI., 2003), (Burke et aI., 2005)) there could be potential for sharing information and 

improved solution space coverage. If information such as best result and good shape 

clusters were recorded and shared in a commonly available repository any applied nesting 

approach, and the hyper-heuristic, would be able to take advantage of the Information 

produced by other techniques. Furthermore opportunities for aborting less successful lines 

of exploration early would become possible allowing for additional processing efficiency. 

Additionally as the no-fit polygon is widely regarded, and widely utilised, as one of the most 

efficient methods for overlap detection and resolution all algorithm instances would be 

able to utilise the shared pool of generated no-fit polygons. 

10.3. Cutting Process Considerations Influencing Nesting 

The scientific literature contains few references to considerations of the cutting of packed 

shapes. Various materials have marked differences in the potential cutting technologies 

that may be applied and each technology can require specific approaches in order to 

achieve the required cut quality or speed. Indeed it is sometimes necessary when using 

cutting methods such as plasma, gas, laser and knife cutting to adjust layouts and cutting 

geometry after nesting in order to achieve the required cut compatibility. This could have 

an effect on nesting quality. Future research will focus on introducing the additional 

considerations of material, cutting technology and best practise into the nesting process In 

order to produce high quality layouts that have desirable cutting considerations built Into 

them. 

10.4. Nesting in the Cloud 

The emergence of cloud computing platforms (Armbrust et aI., 2010) and widely distributed 

clusters of internet connected computers, for example the Folding@Home and 

Genome@Home projects (Larson et aI., 2002), is a potentially useful area of exploration for 

complex problems such as cutting and packing. By vastly increasing the processing power 

available to tackle this family of problems it may be possible to co-ordinate and 

communicate with a large number of problem solving nodes in a widely distributed 

network. Once again there is potential for hyper-heuristics to coordinate the search node's 
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activities both, as discussed previously, at the in-node level and at the macro level across 

multiple nodes (Ouelhadj & Petrovic, 2010). 

13.5. Cutting Technologies and Material Types 

The cutting technology and the physical properties of the material a layout is to be cut from 

can have an impact on the manner in which a layout is generated, guillotine cutting for 

instance impacts on the admissibility of a layout. 

Throughout the work of this thesis the applicability to any particular cutting technology or 

material that the generated layouts may be cut from has been largely Ignored, mainly as 

the plasma cutting technology (and the Procut application) of the industrial partner, Esprit 

Automation, could cope with the cutting aspects of almost any generated layout. 

The following section aims to give an overview of cutting technology and material specific 

properties that may be factored into layout techniques as part of future research. These 

aspects of cutting and materials have been encountered during the authors' eleven years of 

industrial experience in the field of cutting and packing across numerous industries. 

13.5.1. Knife Cutting 

Unlike most other cutting techniques once an incision has been made a cutting knife has 

limited range of movement. This limitation requires that in order to cut a corner of a shape 

beyond a certain angle the knife must lift out of the material, rotate and drop back Into the 

material. In combination with the shape of the cutting blade and the thickness of the 

material this can produce an overcut as shown in Figure 93a. 
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The additional overcut geometry can be dealt with in two ways; either the layout should be 

produced with the overcuts as part of the nesting geometry or a calculation of any potential 

overcut can be used to determine a minimum spacing between all parts and the sheet 

edge, each approach presents its own problems. 

The inclusion of overcut geometry can complicate the geometry library required to 

calculate no-fit polygons and/or overlap resolution techniques as many geometric 

techniques require that the polygons that construct a shape are continuous non crossing 

loops. Overcutting geometry is likely to break a geometric routine's pattern but if it can be 

supported then additional efficiency maybe achieved over a higher spacing model. It should 

be noted that in almost every cutting process, even in knife cutting where wasting of 

material around cuts is not a factor, it is desirable to have some spacing between nested 

parts to avoid the possibility of one part being cut, even minutely, into another. 

By ensuring that the minimum possible spacing between shapes is enough to cope with any 

overcuts that may be required it is possible to ignore the overcut geometry entirely. 

However this approach will obviously lead to potentially unnecessary spaces and therefore 

inefficiency in the generated layouts. 

Where spacing is requ ired in industrial settings, see chapter 8 for industrial applications of 

the research of this thesis, the approach used in this work is to derive a no-fit polygon of 

each shape in the layout with a circle of a radius of the required spacing. 
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By tracking the circle's centre point during the no-fit polygon generation (see Figure 94a) a 

new shape is generated which is used in the layout process for overlap detection and 

resolution. This technique requires the use of the line arc no-fit polygon generation routine 

described in chapter 6 of this thesis and can introduce arcs into the shapes used for nesting 

where none were previously defined. Once the spaced shape has been used for layout the 

original shape can be placed in the correctly offset pOSition and its spaced counterpart 

removed. Using this method guarantees that the minimum distance rule will be respected. 

Although knife cutting does not cause any kerf loss of the material it is occasionally the case 

that another process performed prior to the cutting stage may produce a kerf like effect. 

This additional tooling requires the use of the no-fit polygon based spacing approach to 

generate an altered tool path. For instance where some form of pre-sea ling of a material is 

require before cutting (see Figure 94b) an inner no-fit polygon is generated for a sealing 

tool to follow as its sealing path. Once again the width of the seal is a factor in determining 

the radius of the circle used to generate the sealing path. Once the seal is made the outside 

path of the shape will cut the outer edge of the seal. 
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13.5.2. Plasma Cutting 

G 

The process of plasma cutting is powered by an electric arc being passed through an inert 

gas which forms a jet of plasma which is sufficiently hot to melt and vaporise metal of 

various thicknesses. This cutting process produces a kerf of some width which is dependent 
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upon various factors such as voltage, gases used, nozzle wear, cut speed, material type and 

material thickness. 

When cutting using plasma spacing between parts is an absolute requirement in both the 

shape layout process and cutting path generation (see Figure 94a). Additionally due to the 

initiation sequence for piercing sheet metal it is important to start cuts away from the 

actual cut path of the shape, as piercing causes additional damage to the metal plate due to 

the power required to punch through the plate and the initially shallow nature of the cut. 

To ensure that the part being cut does not have the damaged piece of plate as part of its 

cut outline it is usual to use additional cut lines into and out of the cut path of the part (see 

Figure 95) called lead-ins and lead-outs. These additional cut lines are angled and shaped 

on a part by part basis to ensure that the cut quality of the part is optimised. 

Additional cut geometry may also be used at corners of parts (i.e. 90 degree corners) when 

very high precision cuts are required. These cuts are called Mouse Ear or Butterfly cuts due 

to their shape (see Figure 93b). Without these additional cut features corners of plasma cut 

shapes will tend to be rounded, especially on thicker materials, due to mechanical features 

of the cutting machine (i.e. the ability of the cutting machine to make sharp turns at speed) 

and the natural tendency of the plasma stream to lag behind the cutting head. 

~-r-----------------------------~ 

Figure 95. Examples of lead in/out placements and shapes 
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13.5.3. Flame Cutting 

like plasma cutting oxy-fuelled flame cutting is a destructive process which has similar kerf, 

lead-in/out and spacing requirements although generally the kerf and spacing requirements 

are for higher values as the process is less precise than that of plasma cutting. Gas cutting 

technology is generally used for thicker sheet metal cutting than plasma cutting although 

there is a range where their capabilities overlap. 

Due to the slow cutting process and higher thicknesses of the materials being cut using this 

technology heating of the plate being cut and the associated problems of warping and 

expansion are of more significance. Once again lead-in/outs are used to avoid damaging the 

cut path of a part but the spacing requirements (and kerf values) are often higher as the 

piercing and cutting process is even more damaging that in the plasma case. Indeed for 

extremely thick materials it may be necessary to pre-pierce the plate before cutting using a 

manual process called thermal lancing. 

Expansion during cutting and difficultly of piercing means that lead-in and lead-outs may be 

designed specifically to help to compensate for these factors. In order to avoid the long and 

damaging pierces it is not uncommon for one part's lead-out to join up with the next part's 

lead-in (chaining) or one part may be interrupted during its cut path to begin cutting 

another part (bridging). 

If these activities are to be performed it will require that the parts are placed with respect 

to these activities which is not part of any automatic nesting algorithm in the current 

scientific literature, this is often why automatic nesting is not often used by those cutting 

thick sheet metal without significant manual intervention. Further to chaining and bridging 

leads, bridges can designed to lock the plate together to halt expansion around the point of 

cut (the plate has a natural tendency to peel apart like a zip behind the point of intense 

cutting heat). Examples of chaining, bridging and lead lock shaping are shown in Figure 96. 
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13.5.4. Laser Cutting 

Laser cutting is the one ofthe fastest and most versatile cutting technologies available and 

is used across various industries and therefore many different materials. Like plasma and 

gas cutting the laser process burns away a portion of the material which means that kerf 

compensation, lead-in/outs and spacing approaches are also required. 

With the addit ional speed of the laser cutting technology, especially for thinner sheet 

metal, careful travel path planning (the movement of the head between parts) is required 

as the head is often designed to traverse the plate whilst at its cutting height which means 

that if a piece of cut material has tilted out the plane of the sheet the head may hit it and 

be damaged. To avoid this, cut order, lead-in/out positions and travel path amendments 

may be made to avoid passing over any already cut parts. 

13.5.5. Water Jet Cutting 

Water jet cutt ing is another versatile cutting process used in some unique application areas 

as it does not requ ire the heating of the material in order to make cuts, this is useful in 

materials such as stone which have very high vaporisation temperatures. A mixture of 

water and an abrasive material is passed through a nozzle at a very high pressure allowing 

the resultant jet to qu ickly erode the material being cut. Factors particular to this cutting 

technology include t he requ irement for specific kinds of piercing routines, some include 
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moving in a tight spiral motion to bore through the material being cut, and the slow speed 

of the water jet's reaction to the cutting head's movement requiring that corners in 

particular are cut at very much lower speeds than straight edges or large radius arcs. Once 

again the eroding nature of the cuts and the propensity towards rounding of corners 

requires the combined use of kerf compensation, spacing between parts, lead-ins/outs, 

butterfly cuts and chaining / bridging techniques due to the slowness of piercing. 
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13.5.6. Further Industrial Considerations 

In various technologies industrial practitioners often have to consider additional objectives 

beyond optimisation of layout generation. The following subsections describe some of the 

additional objectives encountered whilst working with the industrial partners of this 

research. 

13.5.6.1. Cut Start Positions 

Positioning the start/finish point of cuts can have a significant impact on the cut quality, 

traverse distance and therefore cycle time of cutting a layout. In metal cutting there is a 

relationship between the shape of lead in/outs and the position of their entry point on the 

cutting geometry, additionally several rules of thumb exist for the position of leads with 

respect to cut order and where the majority of the uncut metal is present (i.e. it is better to 

make the last part of a cut through the most stable part of the sheet). Optimising the 

position of lead in/outs and the order of cutting is a complex problem in its own right and 

maybe an interesting area for future study. 

13.5.6.2. Multiple sheet sizes 

When there exist mUltiple different possible sheet sizes and offcuts for a nesting job it is 

useful for a nesting system to be able to determine which size of sheet or sheets are most 

appropriate forthe shapes to be nested onto. Choosing the correct size of sheet or sheets 

can significantly reduce the potential waste produced or allow the manufacturer to buy in 

stock in sizes amenable to the work. 

13.5.6.3. Multiple Head Cutting 

Particularly in gas and plasma cutting technologies it is not unusual for machines to have 

multiple cutting heads fitted. Additionally some machines may be able to adjust the spacing 

between the heads automatically or may require manual adjustment in order to alter head 

spacing. When nesting a sheet for cutting with mUltiple heads the nesting algorithm can be 

required to determine the optimum head spacing, minimise the head spacing changes or 

switch between different numbers of heads being used for cutting. This adds additional 

constraints and problems to the generation of viable and efficient layouts. 
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13.5.6.4. Offcut Management and Utilisation 

The reuse of partially cut sheets is a common requirement in industrial settings when 

material sizes cannot be predetermined in order to ensure full utilisation for a nest. This is 

common in steel profiling shops where material values are high and the orders the cutter 

receives are from numerous customers. In these circumstances the accurate tracking of 

offcuts and the ability to nest onto irregular shaped sheets is vital. 
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Appendix A - New Irregular Benchmark Problems 

The data for the new benchmark problems introduced in chapter 4 are detailed below. For each dataset, the problem name Is 

stated followed by the sheet size (width, height), number of different shapes and finally the rotational constraints. After the 

problem definition, each shape of that dataset is defined including the shape number, number of loops and quantity that 

must be packed onto the sheet. This is followed by a list of the closed loops that define the shape. Each loop of the shape Is 

defined by its number, whether it is external or internal and the number of line/arc primitives that define the loop. Then a list 

of line/arc primitives is given for that closed loop. A line is defined by its start and end coordinates. An arc Is described by Its 

start and end coordinates, a centre point coordinate, radius, start angle and offset angle (-ve offset is convex, +ve offset Is 

concave). 
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profil •• l: (4000,2000), Shape.: 8, Rotation.: '0 incremental 

Shape 1 (Loops: I, Quantity: 4) 
Loop 1 (external): 6 Primitives 

Line: (99.952271, 330.356628), (209.952271, 330.356628) 
Line: (209.952271, 330.356628),(209.952271, 210.356644) 
Line: (209.952211, 210.356644), (369.952271, 210.356644) 
Line: (369.952271, 210.356644), (369.952271, 90.356644) 
Line: (369.952271, 90.356644), (99.952271, 90.356644) 
Line: (99.952271, 90.356644), (99.952271, 330.356628) 

Shape 2 (Loops: 1, Quantity: 4) 
Loop 1 (external): 6 Primitives 

Line: (128.702362, 153.247681), (128.702362, 423.247681) 
Line: (128.702362, 423.247681), (202.820251, 423.247681) 
Arc: (202.820251, 423.247681), (454.584534, 423.247681), 

Cen: (328.702393, 423.247681), Rad: 125.882141, 
StAng: -3.141593, Offset 3.141593 

Line: (454.584534, 423.247681), (528.702393, 423.247681) 
Line: (528.702393, 423.247681), (528.702393, 153.247681) 
Line: (528.702393, 153.247681), (128.702362, 153.247681) 

Shape 3 (Loops: 1, Quantity: 4) 
Loop 1 (external): 8 Primitives 

Line: (158.517273, 238.100677), (158.517273, 338.100677) 
Line: (158.517273, 338.100677), (278.517273, 338.100677) 
Line: (278.517273, 338.100677), (278.517273, 308.100677) 
Line: (278.517273, 308.100677), (248.517273, 308.100677) 
Line: (248.517273, 308.100677), (248.517273, 268.100677) 
Line: (248.517273, 268.100677), (218.517273, 268.100677) 
Line: (218.517273, 268.100677), (218.517273, 238.100677) 
Line: (218.517273, 238.100677), (158.517273, 238.100677) 

Shape 4 (LOOps: 1, Quantity: 4~ 
Loop 1 (external); 1 Primitlves 

Arc: (315.091614, 272.041870), (315.091614, 272.041870), 
Cen: (250.091621, 272.041870), Rad: 64.999992, 
StAng: 0.000000, Offset -6.283185 

Shape 5 (Loops: 1, Quantity: 4) 
Loop 1 (external): 1 Primitives 

Arc: (301.109985, 305.983063), (301.109985, 305.983063), 
Cen: (201.109993, 305.983063), Rad: 99.999992, 
StAng: 0.000000, Offset -6.283185 

Shape 6 (LOOps: 1, Quantity: 4) 
Loop 1 (external): 4 Primitives 

Line: (381.943237, 381.199280), (581.943237, 381.199280) 
Line: (581.943237, 381.199280), (781.943237, 181.199265) 
Line: (781.943237, 181.199265), (181.943268, 181.199265) 
Line: (181.943268, 181.199265), (381.943237, 381.199280) 

Shape 7 (LooPS: 1, Quantity: ~). 
LOOP 1 (external): 10 Prlmltlves 

Line: (117.980972, 190.649583), (246.121307, 226.775071) 
ArC: (246.121307, 226.775071), (237.980957, 285.649583), 

Cen: (237.980934, 255.649556), Rad: 30.000026, 
StAng: -1.296006, Offset: 2.866801 

Line: (237.980957, 285.649583), (237.980957, 370.649567) 
Line: (237.980957, 370.649567), (117.980972, 420.649567) 
Line: (117.980972, 420.649567), (117.980972, 470.649567) 
Line: (117.980972, 470.649567), (942.821777, 390.414704) 
Arc: (942.821777, 390.414704), (947.053282, 291.479534), 

Cen: (937.980947, 340.649583), Rad: 50.000009, 
StAng: 1.473828, Offset -2.862167 

Line: (947.053282, 291.479534), (237.980957, 160.649583) 
Line: (237.980957, 160.649583), (117.980972, 160.649583) 
Line: (117.980972, 160.649583), (117.980972, 190.649583) 

Shape 8 (LOOps: I, Quantity: .4) 
LoOP 1 (external): 6 Prlmltlves 

Line: (110.497086, 255.303055), (110.497086, 355.303040) 
Line: (110.497066, 355.303040), (261.497070, 437.303040) 
Line: (261. 497070, 437.303040), (861.497070, 437.303040) 
Line: (861.497070, 437.303040), (1012.497070, 355.303040) 
Line: (1012.497070, 355.303040), (1012.497070, 255.303055) 
Line: (1012.497070, 255.303055), (110.497086, 255.303055) 

profil •• 2 : (5000,2500), Shape.: 7, Rotation.: '0 incremental 

Shape 1 (Loops: 4, Quantity: .5~ 
LOOP 1 (internal): 1 PrImItIves 

Arc: (202.238806, 283.582090), (202.238806, 283.582090), 
Cen: (152.238806, 283.582090), Rad: 50.000000, 
StAng: 0.000000, Offset -6.283185 

LOOP 2 (internal): 1 Primitives 
Arc: (1002.238806, 283.582090), (1002.238806, 283.582090), 

Cen: (952.238806, 283.582090), Rad: 50.000000, 
StAng: 0.000000, Offset -6.283185 

LOOP 3 (internal): 1 PrImitives 
Arc: (127.238806, 283.582090), (127.238806, 283.582090), 

Cen: (552.238806, 283.582090), Rad: 175.000000, 
StAng: 0.000000, Offset -6.283185 

LoOP 4 (external): 8 Primitives 
Arc: (787.506663, 469.724603), (913.002695, 428.359600), 

Cen: (881.613806, 544.181609), Rad: 120.000000, 
StAng: -2.472244, Offset 1.166101 

Arc: (913.002695, 428.359600), (913.002695, 138.804579), 
Cen: (952.238806, 283.582090), Rad: 150.000000, 
StAng: 1.835449, Offset -3.670898 

Arc: (913.002695, 138.804579), (787.506663, 97.439576), 
Cen: (881.613806, 22.982570), Rad: 120.000000, 

StAng: 1.306144, Offset 1.166101 
Arc: (787.506663, 97.439576), (316.970949, 97.439576), 

Cen: (552.238806, 283.582090), Rod: 300.000000, 
StAng: -0.669348, Offset -1.802896 

Arc: (316.970949, 97.439576), (191.474917, 138.804579), 
Cen: (222.863806, 22.982570), Rad: 120.000000, 
StAng: 0.669348, Offset 1.166101 

Arc: (191.474917, 138.804579), (191.474917, 428.359600), 
Cen: (152.238806, 283.582090), Rad: 150.000000, 
StAng: -1.306144, Offset -3.670898 

Arc: (191.474917, 428.359600), (316.970949, 469.724603), 
Cen: (222.863806, 544.181609), Rod: 120.000000, 
StAng: -1.835449, Offset 1.166101 

Arc: (316.970949, 469.724603), (787.506663, 469.724603), 
Cen: (552.238806, 283.582090), Rod: 300.000000, 
StAng: 2.472244, Offset -1.802896 

Shape 2 (Loops: I, Quantity: 7) 
Loop 1 (external): 12 Primitives 

Line: (3.735266, 36.876257), (3.735266, 356.876257) 
Line: (3.735266, 356.876257), (33.735266, 386.876257) 
Line: (33.735266, 386.876257), (183.735266, 386.876257) 
Line: (183.735266, 386.876257), (183.735266, 371.876257) 

Arc: (183.735266, 371.876257), (228.735266, 326.876257), 
Cen: (228.735266, 371.676257), Rad: 45.000000, 
StAng: 3.141593, Offset 1.570796 

Line: (228.735266, 326.876257), (473.735266, 326.876257) 
Line: (473.735266, 326.876257), (473.735266, 76.876257) 
Line: (473.735266, 76.876257), (228.735266, 76.876257) 
Arc: (228.735266, 76.876257),{183.735266, 31.876257), 

Cen: (228.735266, 31.876257), Rod: 45.000000, 
StAng: 1.570796, Offset ).570796 

Line: (183.735266, 31.876257), (183.735266, 16.876257) 
Line: (183.735266, 16.876257),123.735266, 16.876257) 
Line: (23.735266, 16.876257), (3.735266, 36.876<57) 

Shape 3 (Loops: 2, Quantity: 4) 
Loop 1 (internal): 4 Primitives 

Line: (244.630072, 188.544153), (244.630072, 633.651~51) 

Line: (244.630072, 633.651551), (840.095465, 633.651551) 
Line: (840.095465, 633.651551), (840.095465, 188.544153) 
Line: (840.095465, 188.544153), (244.630072, 188.544153) 

Loop 2 (external): 4 Primitives 
Line: (196.897375, 143.198091), (196.897375, 681.384248) 
Line: 1196.897375, 681.384248), (898.568019, 681.384248) 
Line: (898.568019, 681.384248), (898.568019, 143.198091) 
Line: (898.568019, 143.198091), (196.897375, 143.198091) 

Shape 4 (Loops: 1, Quantity: 6) 
Loop 1 (external): e Primitives 

Line: (193.648896, 229.989415), (193.648896, 129.989415) 
Line: (193.648896, 129.989415), (218.648896, 129.989415) 
Line: (218.648896, 129.989415), (218.648696, 29.989415) 
Llne: (218.648896, 29.989415), (-11.351104, 29.989415) 
Line: (-11.351104, 29.989415), (-11.351104, 129.989415) 
Line: (-11.351104, 129.989415), (13.648896, 129.989415) 
Line: (13.648896, 129.989415), (13.648896, 229.98941~) 

Arc: (13.648896, 229.989415), (193.648896, 229.989415), 
Cen: (103.648896, 229.989415), Rad: 90.000000, 
StAng: 3.141593, Offset -3.141593 

Shape 5 (Loops: I, Quantity: 7) 
Loop 1 (external): 5 Primitives 

Line: (398.524900, 658.183912), (633.639000, 334.577114) 
Line: (633.639000, 334.577114), (398.524900, 10.970317) 
Line: (398.524900, 10.970317), (18.102293, 134.571114) 
Line: (18.102293, 134.577114), (18.102293, 534.577114) 
Line: (18.102293, 534.577114), (398.524900, 658.183912) 

Shape 6 (Loops: I, Quantity: 9) 
Loop 1 (external): 6 Primitives 

Line: (236.459853, 24.359731),1-75.862367, 24.359526) 
Line: (-75.862367, 24.359526), (-75.862598, 377.685979) 
Line: (-75.862598, 377.685979), (-29.782271, 377.686009) 
Line: (-29.782271, 377.686009), (-29.782082, 88.652454) 
Line: (-29.782082, 88.652454), (236.459811, 88.652628) 
Line: (236.459811, 88.652628), (236.459853, 24.359731) 

Shape 7 (Loops: I, Quantity: 12) 
Loop 1 (external): 12 Primitives 

Line: (4.588083, 72.575156), (4.588083, 192.575156) 
Line: (4.588083, 192.575156), (44.588083, 192.575156) 
Line: (44.588083, 192.575156), (44.588083, 232.575156) 
Line: (44.588083, 232.575156), (164.588083, 232.575156) 
Line: (164.588083, 232.575156), (164.588083, 192.575156) 
Line: (164.588083, 192.575156), (204.588083, 192.575156) 
Line: (204.588083, 192.5751561, (204.588083, 72.575156) 
Line: (204.588083, 72.575156), (164.588083, 72.575156) 
Line: (164.588083, 72.575156), (164.588083, 32.575156) 
Line: (164.588083, 32.575156), (44.588083, 32.575156) 
Line: (44.588083, 32.575156), (44.588083, ?2.575156) 
Line: (44.588083, 72.575156), (4.588083, 72.575156) 

Profil •• J: (10000,2500), Shape.: S, Rotation.: 45 incremental 

Shape 1 (Loops: I, Quantity: 4) 
Loop 1 (external): 16 Primitives 

Line: (404.534606, 794.749403), (440.334129, 531.02625.3) 
Line: (440.334129, 531.026253), (686.157518, 616.945107) 
Line: (686.157518, 616.945107), (505.966587, 463.007160) 
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Line: 
Line: 
Line: 
Line: 
Line; 
Line: 
Line: 
Line: 
Line: 
Line: 
Line: 
Line: 
Line: 

(505.966587, 463.007160), (706.443914, 340.095465) 
(706.443914, 340.095465), (479.713604, 353.221957) 
(479.713604, 353.221957), (508.353222, 107.398568) 
(508.353222, 107.398568), (366.348449, 303.102625) 
(366.348449, 303.102625), (219.570406, 95.465394) 
(219.570406, 95.465394), (244.630072, 328.162291) 
(244.630072, 328.162291), (-0.000000, 206.443914) 
(-0.000000, 206.443914), (183.770883, 377 .088305) 
(183.770883, 377.088305), (-57.279236, 531.026253) 
(-57.279236, 531.026253), (187.350835, 485.680191) 
(187.350835, 485.680191), (134.844869, 751.789976) 
(134.844869, 751. 789976), (317 .422434, 565.632458) 
(317.422434, 565.632458), (404.534606, 794.749403) 

Shape 2 (Loops: 1, Quantity: 12) 
Loop 1 (external): 13 Primitives 

Line: (338.902148, 745.823389), (348.448687, 807.875895) 
Line: (348.448687, 807.875895), (474.940334, 809.069212) 
Line: (474.940334, 809.069212), (564.439141, 806.682578) 
Line: (564.439141, 806.682578), (637.231504, 725.536993) 
Line: (637.231504, 725.536993), (579.952267, 643.198091) 
Line: (579.952267, 643.198091), (348.448687, 667.064439) 
Line: (348.448687, 667.064439), (350.835322, 601.431981) 
Line: (350.835322, 601.431981), (558.472554, 610.978520) 
Line: (558.472554, 610.978520), (609.785203, 448.687351) 
Line: (609.785203, 448.687351), (371.121718, 335.322196) 
Line: (371.121718, 335.322196), (164.677804, 515.513126) 
Line: (164.677804, 515.513126), (132.458234, 652.744630) 
Line: (132.458234, 652.744630), (338.902148, 745.823389) 

Shape 3 (LoOPS: 1, Quantity: 7) 
Loop 1 (external): 5 Primitives 

Line: (58.303887, -30.035336), (58.303887, 888.692580) 
Line: (58.303887, 888.692580), (531.802120, 415.194346) 
Line: (531.802120, 415.194346),0005.300353, 888.692580) 
Line: (1005.300353, 888.692580), (1005.300353, -30.035336) 
Line: (1005.300353, -30.035336), (58.303887, -30.035336) 

Shape 4 (Loops: 1, Quantity: 5) 
Loop 1 (external): 8 Primitives 

Line: (84.725537, 180.190931), (84.725537, 807.875895) 
Line: (84.725537, 807.875895), (855.608592, 807.875895) 
Line: (855.608592, 807.875895), (843.675418, 735.083532) 
Line: (843.675418, 735.083532),036.038186, 735.083532) 
Line: 036.038186, 735.083532),036.038186, 236.276850) 
Line: 036.038186, 236.276850), (843.675418, 236.276850) 
Line: (843.675418, 236.276850), (855.608592, 180.190931) 
Line: (855.608592, 180.190931), (84.725537, 180.190931) 

Shape 5 (Loops: I, Quantity: 10) 
LooP 1 (external): 6 Primitives 

Line: (38.394054, 159.795716), (128.394054, 709.795716) 
Arc: (128.394054, 709.795716), (289.369894, 749.051604), 

Cen: (217.212767, 695.261745), Rad: 90.000000, 
StAng: 2.979394, Offset -2.338808 

Line: (289.369894, 749.051604), (699.369894, 199.051604) 
Arc: (699.369894, 199.051604), (627.212767, 55.261745), 

Cen: (627.212767, 145.261745), Rad: 90.000000, 
StAng: 0.640586, Offset -2.211382 

Line: (627.212767, 55.261745), (127.212767, 55.261745) 
Arc: 027.212767, 55.261745), (38.394054, 159.795716), 

Cen: (127.212767, 145.261745), Rad: 90.000000, 
StAng: -1.570796, Offset -1. 732995 

Shape 6 (LOOps: 1, Quantity: 8) 
Loop 1 (external): 6 Primitives 

Line: (-1036.992840, 529.832936), (-920.047733, 789.976134) 
Line: (-920.047733, 789.976134), (-237.470167, 565.632458) 
Line: (-237.470167, 565.632458), (-399.761337, 300.715990) 
Line: (-399.761337,300.715990),(-843.675418,613.365155) 
Line: (-843.675418, 613.365155), (-808.113597, 497.949032) 
Arc: (-808.113597, 497.949032), (-1036.992840, 

529.832936) , 
Cen: (-958.233890, 257.756563), Rad: 283.246403, 
StAng: 1.012197, Offset -5.442814 

,rofil ••• : (5000,SOO), Shapes: 7, Rotations: to incremental 

Shape 1 (LOOPS: 1, Quantity: 4) 
LOOP 1 (external): 4 Primitives 

Line: (38.121547, 49.490946), (38.121547, 249.490946) 
Arc: (38.121547, 249.490946), (238.121547, 249.490946), 

Cen: (138.121547, 244.490946), Rad: 100.124922, 
StAng: 3.091634, Offset -3.041676 

Line: (238.121547, 249.490946), (238.121547, 49.490946) 
Arc: (238.121547, 49.490946), (38.121547, 49.490946), 

Cen: (138.121547, 44.490946), Rad: 100.124922, 
StAng: 0.049958, Offset 3.041676 

Shape 2 (LOOPS: 1, Quantity: 7) 
LOOP 1 (external): 11 Primitives 

Line: (239.856802, 730.310263), (255.369928, 735.083532) 
Line: (255.369928, 735.083532), (303.102625, 741.050119) 
Line: (303.102625, 741.050119), (365.155131, 732.696897) 
Line: (365.155131, 732.696897), (426.014320, 699.284010) 
Line: (426.014320, 699.284010), (434.367542, 619.331742) 
Line: (434.367542, 619.331742), (420.047733, 559.665871) 
Line: (420.047733, 559.665871), (369.928401, 513.126492) 
Line (369.928401, 513.126492), (227.923628, 503.579952) 
Line (227.923628, 503.579952), (145.584726, 559.665871) 
Line (145.584726, 559.665871), (139.618138, 651. 551313) 

229 

Line: (139.618138, 651.551313), (239.856802, 730.310263) 

Shape 3 (Loops; 1, Quantity: 7) 
Loop 1 (external): 5 Primitives 

Line: (5.966587, 5.966587), (5.966587, 214.797136) 
Line: (5.966587, 214.797136), (87.708831, 296.539379) 
Line: (87.708831, 296.539379), (169.451074, 214.797136) 
Line: (169.451074, 214.797136), (169.451074, 5.966587) 
Line: (169.451074, 5.966587), (5.966587, 5.966587) 

Shape 4 (Loops: 1, Quantity: 15) 
Loop 1 (external): 3 Primitives 

Line: (137.231504, 836.515513), (223.150358, 850.835322) 
Line: (223.150358, 850.835322), (212.410501, 677.804296) 
Line: (212.410501, 677.804296), (137.231504, 836.515513) 

Shape 5 (Loops: 1, Quantity: 7) 
Loop 1 (eKternal): 3 Primitives 

Line: (-0.000000, 0.000000), (53.776627, 84.309397) 
Line: (53.776627, 84.309397), (107.466293, -0.055405) 
Line: (107.466293, -0.055405), (-0.000000, 0.000000) 

Shape 6 (Loops: 1, Quantity: 7) 
Loop 1 (external): 1 Primitives 

Arc: (50.000000, 0.000000), (50.000000, 0.000000), 
Cen: (0.000000, 0.000000), Rad: 50.000000, 
StAng: 0.000000, Offset -6.263185 

Shape 7 (Loops: 1, Quantity: 7) 
Loop 1 (external): 4 Primitives 

Line: (0.000000, 0.000000), (0.000000, 50.000000) 
Arc: (0.000000, 50.000000), (50.000000, 50.000000), 

Cen: (25.000000, 46.743828), Rad: 25.211161, 
StAng: 3.012075, Offset -2.882557 

Line: (50.000000, 50.000000), (50.000000, 0.000000) 
Line: (50.000000, 0.000000), (0.000000, 0.000000) 

Profil •• S: (8000,4000), Shape.: 5, Rotationa: 15 inoremental 

Shape 1 (Loops: 1, Quantity: 10) 
Loop 1 (external): 10 Primitive!! 

Line: (117.980972, 190.649583), (246.121307, 226.775071) 
Arc: (246.121307, 226.775071), (237.980957, 285.649S83), 

Cen: (237.980934,255.649556), Rod: 30.000026, 
StAng: -1.296006, Offset 2.B66801 

Line: (237.980957, 285.649583), (237.980957, )70.649567) 
Line: (237.980957, 370.649567), (117.980972, 420.649567) 
Line: (117.980972, 420.649567), (117.980972, 470.649567) 
Line: (117.980972, 470.649567), (942.821777, 390.414704) 
Arc: (942.821777, 390.414704), (947.053262, 291.479534), 

Cen: (937.980947, 340.649583), Rod: 50.000009, 
StAng: 1.473828, Offset -2.862167 

Line: (947.053282, 291.479534), (237.980957, 160.649583) 
Line: (237.980957, 160.649583), (117.980972, 160.649583) 
Line: (117.980972, 160.649563), (117.980972, 190.649~83) 

Shape 2 (Loops: 1, Quantity: 10) 
Loop 1 (external): 4 Primitives 

Line: (381.943237, 381.199280), (581.943237, 381.199280) 
Line: (581.943237, 381.199280), (781.943237, 181.199205) 
Line: (781.943237, 181.199265), (181.943268, 181.199265) 
Line: (18), 943268, 181.199265), (38), 943237, 381.199280) 

Shape 3 (Loops: 1, Quantity: 10) 
Loop 1 (external): 5 Primitives 

Line: (398.524900, 658.183912), (633.639000, 334.577114) 
Line: (633.639000, 334.577114), (398.5249UO, 10.970317) 
Line: (398.524900, 10.970317), (18.102293, 134.577114) 
Line: (18.102293, 134.577114), (18.102293, 534.577114) 
Line: (18.102293, 534.577114), (398.524900, 658.183912) 

Shape 4 (Loops: I, Quantity: 10) 
Loop 1 (external): 5 Primitives 

Line: (280.429594, 193.317422), (280.429594, 613.365155) 
Arc: (280.429594, 613.365155), (522.076372, 613.365155), 

Cen: (401.252963, 609.425990), Rad: 120.867586, 
StAng: 3.109002, Offset -3.076410 

Arc: (522.076372, 613.365155), (763.723150, 613.365155), 
Cen: (642.899761, 637.483107), Rad: 123.207008, 
StAng: -2.944569, Offset 2.747545 

Line: (763.723150, 613.365155), (763.723150, 193.317422) 
Line: (763.723150, 193.317422), (280.429594, 193.317422) 

Shape 5 (LOOps: 1, Quantity: 10) 
Loop 1 (external): 6 Primitives 

Line: (38.394054, 159.795716), (128.394054, 709.795716) 
Arc: (128.394054, 709.795716), (289.369894, 749.0516U4), 

Cen: (217.212767, 695.261745), Rad: 90.000000, 
StAng: 2.979394, Offset -2.338808) 

Line: (289.369894, 749.051604), (699.369894, 199.051604) 
Arc: (699.369894, 199.051604), (627.212767, 55.261745), 

Cen: (627.212767, 145.261745), Rad: 90.000UOU, 
StAng: 0.640586, Offset -2.211382) 

Line: (627.212767, 55.261745), (127.212767, 55.261745) 
Arc: (127.212767, 55.261745), (38.394054, 159.795716), 

Cen: (127.212767, 145.261745), Rad: 90.000000, 
StAng: -1.570796, Offset -1.732995) 

Prof11 •• 6: (10000,SOOO), Shape.: I, Rotation.: gO lncr_nt.al 



Shape 1 (LOOPS: 1, Quantity: 8) 
Loop 1 (external): 8 Primitives 

Line: (-569.212411, 1789.976134), (-569.212411, 

2429.5942~:~e: (-569.212411, 2429.594272), (714.797136, 2429.594272) 
Line: (714.797136, 2429.594272), (705.250597, 2229.116945) 
Line: (705.250597, 2229.116945), (-263.723150, 2238.663484) 
Line: (-263.723150, 2238.663484), (-273.269690, 

1928.4009ii~e: (-273.269690, 1928.400955),1681.384248, 1942.720764) 
Line: (681.384248, 1942.720764), (714.797136, 1789.976134) 
Line: (714.797136, 1789.976134), (-569.212411, 1789.976134) 

Shape 2 (Loops: 1, Quantity: 8) 
LOop 1 (external): 4 Primitives 

Line: (1125.298329, 2214.797136), (1898.568019, 2262.529833) 
Line: (1898.568019, 2262.529833), (1941.527446, 1971.360382) 
Line: (1941.527446, 1971.360382), (1134.844869, 1952.267303) 
Line: (1134.844869, 1952.267303), (1125.298329, 2214.797136) 

Shape 3 (LOOps: 2, Quantit~: .4~ 
Loop 1 (internal): 4 Pr1m1t1ves 

Line: (203.980100, 167.910448),1203.980100, 644.278607) 
Line: (203.980100, 644.278607), (935.323383, 644.278607) 
Line: (935.323383, 644.278607),1935.323383, 167.910448) 
Line: (935.323383, 167.910448),1203.980100, 167.910448) 

Loop 2 (external): 4 Primitives 
Line: (138.059701, 109.452736), (138.059701, 706.467662) 
Line: (138.059701, 706.467662), (1002.487562, 706.467662) 
Line: 11002.487562, 706.467662), (1002.487562, 109.452736) 
Line: (1002.487562, 109.452736), (138.059701, 109.452736) 

Shape 4 (LOOps: 1, Quantity: 8) 
Loop 1 (external): 13 Primitives 

Line: (338.902149, 745.923389),1348.448687, 807.875895) 
Line: (348.448687, 807.875895), (474.940334, 809.069212) 
Line: (474.940334, 809.069212), (564.439141, 806.682578) 
Line: (564.439141, 806.682578),1637.231504, 725.536993) 
Line: (637.231504, 725.536993), (579.952267, 643.198091) 
Line: (579.952267, 643.198091), (348.448687, 667.064439) 
Line: (348.448687, 667.064439), (350.835322, 601. 431981) 
Line: (350.835322, 601.431981), (558.472554, 610.978520) 
Line: (558.472554, 610.978520),1609.785203, 448.687351) 
Line: (609.785203, 448.687351), (371.121718, 335.322196) 
Line: (371.121718, 335.322196), (164.677804, 515.513126) 
Line: 1164.677804, 515.513126), (132.458234, 652.744630) 
Line: (132.458234, 652.744630),1338.902148, 745.823389) 

Shape 5 (LOOPS: 1, Quantity: 8) 
Loop 1 (external): 5 Primitives 

Line: (207.637232, 108.591885), (207.637232, 657.517900) 
Line: (207.637232, 657.517900),1412.887828, 147.971360) 
Line: (412.887828, 147.971360), (669.451074, 657.517900) 
Line: (669.451074, 657.517900),1669.4510 74, 108.591885) 
Line: (669.451074, 108.591885),1207.637232, 108.591885) 

Shape 6 (LOOps: 1, Quantity: 8) 
LooP 1 (external): 3 Prlmitives 

Line: (214.797136, 686.157518),1653.937947, 680.190931) 
Line: (653.93 7 947, 680.190931), (414.081146, 162.577566) 
Line: (414.081146, 182.577566), (214.797136, 666.157518) 

Shape 7 (LOOPS: 2, Quantity: ,5) 
Loop 1 (internal): 4 Pr~m~t1ves 

Line: (1453.056148, 201.492537), (1453.056148, 467.661692) 
Line: (1453.056148, 467.661692), (1951.812367, 467.661692) 
Line: (1951.812367, 467.661692),11951.812367, 201.492537) 
Line: (1951.812367, 201.492537), (1453.056148, 201.492537) 

LooP 2 (external): 4 Primitives 
Line: (1404.548685, 150.497512), (1404.548685, 521.144279) 
Line: (1404.548685, 521.144279), (2010.270078, 521.144279) 
Line: (2010.270078, 521.144279),12010.270078, 150.497512) 
Line: (2010.270078, 150.497512), (1404.546685, 150.497512) 

Shape e (Loops: 1, Quantity~ ~). 
LOOP 1 (external): 10 Prlmltlves 

Line: 1825.775656, 343.675418),1713.603819, 231.503580) 
Line: (713.603819, 231.503580),1607.398568, 394.988067) 
Line: (607.398568, 394.988067), (588.305489, 305.489260) 
Line: 1588.305489, 305.489260),1398.568019, 307.875695) 
Line: (398.568019, 307.875895),1414.081146, 449.880668) 
Line: (414.081146, 449.880668), (559.665871, 449.880668) 
Line: 1559.665871, 449.880668), (488.066826, 501.193317) 
Line: (488.066826, 501.193317), (647.971360, 523.866348) 
Line: (647.971360, 523.866346), (769.689737, 479.713604) 
Line: (769.689 737, 479.713604), (825.775656, 343.675418) 

Shape 9 (LOOps: 1, Quantit~: .1~) 
LOOP 1 (external): 8 Prlmltlves 

Line: (468.435543, 34.696133), (21.435543, 34.696133) 
Line: (21.435543, 34.696133),121.435543, 274.696133) 
Line: 121.435543, 27L696133), (170.435543, 274.696133) 
Line: (170.435543, 274.696133), (170.435543, 64.696133) 
Line: (170.435543, 64.696133),1319.435543, 64.696133) 
Line: (319.435543, 64.696133),1319.435543, 274.696133) 
Line: (319.435543, 274.696133),1468.435543, 274.696133) 
Line: 1468.435543, 274.696133),1468.435543, 34.696133) 

profil •• 7 : (2500,500), Shape.: 9, Rotation.: 90 incr~ntal 

230 

Shape 1 (Loops: 1, Quantity: 1) 
Loop 1 (external): 4 Primitives 

Line: 148.342460, 448.434459), (48.342460, 698.434459) 
Line: 148.342460, 698.434459), (293.727356, 698.193599) 
Line: 1293.727356, 698.193599), 1330.361696, 603.837311) 
Line: 1330.361696, 603.937311),148.342460, 448.434459) 

Shape 2 (Loops: 1, Quantity: 1) 
Loop 1 (external): 6 Primitives 

Line: (48.342623, 198.434459),1281.342081, 455.735420) 
Line: (281.342081, 455.735420), (48.3424bO, 448.434459) 
Line: (48.342460, 448.434459), (330.361696, 603.837311) 
Line: (330.361696, 603.837311), (439.352160, 401.135967) 
Line: (439.352160, 401.135967), (548.342623, 198.434622) 
Line: (548.342623, 198.434622), (48.342623, 198.434459) 

Shape 3 (Loops: 1, Quantity: 1) 
Loop 1 (external): 3 Primitives 

Line: (48.342623, 198.434459), (48.342460, 448.434459) 
Line: 148.342460, 448.434459), (281.342081, 455.735420) 
Line: (281.342081, 455.735420), (48.342623, 198.434459) 

Shape 4 (Loops: 1, Quantity: I) 
Loop 1 (external): 4 Primitives 

Line: (330.361696, 603.837311), (293.727356, 698.193599) 
Line: (293.727356, 698.193599), (1048.342623, 698.434786) 
Line: 11048.342623, 698.434786),1689.3'>2160, 651.136048) 
Line: (689.352160, 651.136048), (330.361696, 603.8373111 

Shape 5 (Loops: 1, Quantity: 1) 
Loop 1 (external): 1 Primitives 

Line: 1552.514464, 378.712089), 1556.686306, 558.9895~5) 
Line: (556.686306, 558.989555),1439.352160, 401.135967) 
Line: 1439.352160, 401.135967),1330.361696, 603.837:111) 
Line: (330.361696, 603.837311), (669.35<160, 651.136048) 
Line: 1689.352160, 651.136048), (788.225768, 348.309401) 
Line: (788.225768, 346.309401), (778.839033, 348.309401) 
Line: (778.839033, 348.309401), (552.514464, 318.712089) 

Shape 6 ILoops: 1, Quantity: I) 

Loop 1 (external): 4 Primitives 
Line: (439.352160, 401.135967),1556.686306, 558.989555) 
Line: (556.686306, 558.989555),1552.514464, 378.71208Q) 
Line: (552.514464, 378.712089),1548.34<623, 198.434b22) 
Line: (548.342623, 198.434622), (439.352160, 401.135967) 

Shape 7 (Loops: 1, Quantity: I) 

Loop 1 (external): 4 Primitives 
Line: 1788.225768, 348.309401), (689.352160, 651.136048) 
Line: (689.352160, 651.136048), (1048.342623, 698.434786) 
Line: (1048.342623, 698.434786), (1048.342623, 446.434786) 
Line: (1048.342623, 448.434786), (788.225768, 348.3094(1) 

Shape 8 ILoops: 1, Quantity: 1) 
Loop 1 (external): 5 Primitives 

Line: 1552.514464, 378.712089), 1778.839033, 348.3094011 
Line: (778.839033, 348.309401), (843.503207, 223.152873) 
Line: (843.503207, 223.152873), (1048.342623, 198.434786) 
Line: (1048.342623, 198.434786), (548.342623, 198.434622) 
Line: (548.342623, 198.434622), (552.514464, 378.712089) 

Shape 9 (Loops: 1, Quantity: 1) 
Loop 1 (external): 5 Primitives 

Line: (786.225768, 348.309401), 11048.342623, 448.434786) 
Line: (1048.342623, 448.434786), (1048.342623, 198.434786) 
Line: (1048.342623, 198.434786), 1843.503207, 223.15~873) 
Line: 1843.503207, 223.152873), (778.839033, 348.J()9401) 
Line: (778.839033, 348.309401), (788.225768, 348.309401) 

Profil •• S: (2500,1000), Shape.: t, Rotation.: '0 lnc<.a.ntal 
Shape 1 ILoops: 1, Quantity: 2) 

Loop 1 (external): 4 Primitives 
Line: (48.342460, 448.434459), (48.342460, 698.434459) 
Line: 148.342460, 698.434459), (293.727356, 698.193599) 
Line: (293.727356, 698.193599), (330.361696, 603.837311) 
Line: (330.361696, 603.837311), (48.342460, 448.434459) 

Shape 2 (LOOps: 1, Quantity: 2) 
Loop 1 (external): 6 Primitives 

Line: (48.342623, 198.434459), (281.342081, 455.735420) 
Line: (281.342081, 455.735420), (48.342460, 448.434459) 
Line: (48.342460, 448.434459), (330.361696, 603.837311) 
Line: (330.361696, 603.837311),109.352160, 401.135967) 
Line: (439.352160, 401.135967), (548.342623, 198.434622) 
Line: (548.342623, 198.434622), (48.342623, 198.434459) 

Shape 3 (Loops: 1, Quantity: 2) 
Loop 1 (external): 3 Primitives 

Line: (48.342623, 198.434459), (48.342460, 448.434459) 
Line: (48.342460, 448.434459), (281.342081, 455.735420) 
Line: (281.342081, 455.735420),148.342623, 198.434459) 

Shape 4 (Loops: 1, Quantity: 2) 
Loop 1 (external): 4 Primitives 

Line: (330.361696, 603.837311), (293.727356, 698.193599) 
Line: (293.727356, 698.193599),11048.342623, 698.434786) 
Line: (1048.342623, 698.434786),1689.352160, 651.136048) 
Line: (689.352160, 651.136048), (330.361696, 603.837311) 

Shape 5 (Loops: 1, Quantity: 2) 
Loop 1 (external): 7 Primitives 

Line: (552.514464, 378.712089),1556.686306, 558.989555) 



Line: (556.686306, 558.989555), (439.352160, 401.135967) 

Line: (439.352160, 401.135967), (330.361696, 603.837311) 

Line: (330.361696, 603.837311), (689.352160, 651.136048) 

Line: (689.352160, 651.136048), (788.225768, 348.309401) 

Line: (788.225768, 348.309401), (778.839033, 348.309401) 

Line: (778.839033, 348.309401), (552.514464, 378.712089) 

Shape 6 (Loops: 1, Quantity: 2) 
Loop 1 (external): 4 Primitives 

Line: (439.352160, 401.135967), (556.686306, 558.989555) 
Line: (556.686306, 558.989555), (552.514464, 378.712089) 
Line: (552.514464, 378.712089), (548.342623, 198.434622) 
Line: (548.342623, 198.434622), (439.352160, 401.135967) 

Shape 7 (Loops: 1, Quantity: 2) 
Loop 1 (external): 4 Primitives 

Line: (788.225768, 348.309401), (689.352160, 651.136048) 
Line: (689.352160, 651.136048), (1048.342623, 698.434786) 
Line: (1048.342623, 698.434786), (1048.342623, 448.434786) 
Line: (1048.342623, 448.434786), (788.225768, 348.309401) 

Shape 8 (Loops: 1, Quantity: 2) 
Loop 1 (external): 5 Primitives 

Line: (552.514464, 378.712089), (778.839033, 348.309401) 
Line: (778.839033, 348.309401), (843.503207, 223.152873) 
Line: (843.503201, 223.152813), (1048.342623, 198.434186) 
Line: (1048.342623, 198.434786), (548.342623, 198.434622) 
Line: (548.342623, 198.434622), (552.514464, 318.112089) 

Shape 9 (Loops: 1, Quantity: 2) 
LooP 1 (external): 5 Primitives 

Line: (788.225168, 348.309401),11048.342623, 448.434186) 
Line: (1048.342623, 448.434186), (1048.342623, 198.434786) 
Line: (1048.342623, 198.434186), (843.503201, 223.152813) 
Line: (843.503201, 223.152873), (718.839033, 348.309401) 
Line: (718.839033, 348.309401), (788.225168, 348.309401) 

Profile.': (3000,1500), Shape.: 16, Rotation.: 90 incremental 

Shape 1 (LOOps: 2, Quantity: 4) 
Loop 1 (internal): 24 Primitives 

Line: (-617 .318261, 221. 415113), (-615.544340, 239.043940) 
Line: (-675.544340, 239.043940),1-670.042576, 263.659067) 
Line: 1-610.042516, 263.659061),1-660.738634, 288.980848) 
Line: (-660.138634, 288.980848},1-641.899507, 310.632831) 
Line: (-641.899507, 310.632831), (-632.399816, 321.938869) 
Line: (-632.399816, 321.938869),1-616.159420, 340.222816) 
Line: (-616.159420, 340.222816),1-598.941519, 341.552493) 
Line: (-598.941519, 341.552493},1-581.177225, 349.995119) 
Line: (-581.177225, 349. 995719), 1-554.312876, 344.661407) 
Line: 1-554.312876, 344 .661407}, (-532.146704, 328.658473) 
Line: (-532.146704, 328. 658473), 1-517.283892, 303.951212} 
Line: (-517.283892, 303.951212},1-512.329621, 271.566001) 
Line: (-512.329621, 271.566001),1-515.925405, 238.345949) 
Line: (-515.925405, 238.345949), (-526.112759, 203.717611) 
Line: (-526.712759, 203.777611), (-544.254302, 172.258543) 
Line: (-544.254302, 172.258543), (-566.101545, 150.412045) 
Line: (-566.101545, 150.412045), (-590.270768, 137.654385) 
Line: (-590.270768, 137.654385), (-614.376922, 133.401832) 
Line: (-614.376922, 133.401832), (-632.023501, 136.189838) 
Line: (-632.023501, 136.189838), (-648.176747, 144.553856) 
Line: (-648.176747, 144.553856), (-661.808235, 158.134199) 
Line: (-661.808235, 158.134199), (-671.810168, 176.511183) 
Line: (-671.810168, 176.511183), (-675.986238, 195.399154) 
Line: (-675.986238, 195.399154), (-677.378261, 221.415713) 

LooP 2 (external): 43 Primitives 
Line: 1-739.095874, 67.026286}, 1-689.247606, 62.368353) 
Line: (-689.247606, 62.368353), (-688.405312, 47.281215) 
Line: 1-688.405312, 47. 281215}, (-685.162972, 36.505273) 
Line: (-685.162972, 36.505273), (-679.124107, 29.350968) 
Line: (-679.124107, 29.350968), (-670.295967, 23.845011) 
Line: (-670.295967, 23.845011), (-654.979333, 19.549745) 
Line: (-654.979333, 19.549745), (-635.764846, 18.117990) 
Line: (-635.764846, 18.117990), (-597.276299, 23.726281) 
Line: (-597.276299, 23.726281), (-571.320852, 40.551154) 
Line: (-571.320852, 40.551154), (-559.023723, 65.491684) 
Line: (-559.023723, 65.491684), (-541.750966, 108.586042) 
Line: (-547.750966, 108.586042), (-542.725429, 131.994950) 
Line: (-542.725429, 131.994950), (-582.414232, 102.919107) 
Line: (-582.414232, 10 •• 919107), (-624.612823, 93.227160) 
Line: (-624.612823, 93.227160), (-664.874692, 101.284406) 
Line: (_664.874692, 101.284406), (-698.031871, 125.456144) 
Line: (-698.037871, 125.456144), (-720.091749, 164.681204) 
Line: (-720.097749, 164.681204), (-727.451042, 216.960493) 
Line: (_727.451042, 216.960493), (-721.681772, 263.833180) 
Line: (-721.681172, 263.833180), (-704.373964, 306.706193) 
Line: (-704.373964, 306. 706193), (-678.764276, 342.865029) 
Line: (-678.764276, 342.865029), (-648.490692, 369.193856) 
Line: (-648.490692, 369.193856), (-616.185737, 384.489576) 
Line: (-616.185137, 384.489576), (-582.792782, 389.588150) 
Line: (-582.792782, 389.588150), (-532.389149, 376.259195) 
Line: (-532.389149, 376.259195), (-495.059123, 336.272330) 
Line: (-495.059123, 336.272330), (-485.047734, 383.183492) 
Line: (-485.047134, 383.183492), (-439.543455, 383.183492) 
Line: (-439.543455, 383.183492), (-497.934558, 103.220662) 
Line: (_491.934558, 103. 220662), (-509.033900, 61.146333) 
Line: (-509.033900, 61.146333), (-523.000159, 30.581500) 
Line: (-523.000159, 30.581500), (-541.593131, 1.913198) 
Line: (-541.593737, 1.913198), (-566.170110, -8.793312) 
Line: (-566.170110, -8.793312),1-596.048235, -19.111521) 

Line: (-596.048235, -19.171521), (-630.145143, -22.638925) 
Line: 1-630.145143, -22.638925), (-662.661950, -20.497999) 
Line: (-662.661950, -20.491999), (-690.415011, -14 .07527.2) 
Line: (-690.415011, -14.015222), (-112.369865, -3.259548) 
Line: 1-712.369865, -3.259548), (-721.917021, 12.060068) 
Line: (-721.911021, 12.060068), (-131.114523, 30.734281) 
Line: (-737.174523, 30.734281), (-140.260357, 51.613745) 
Line: (-740.260351, 51.613745), (-739.969231, 59.016911) 
Line: (-139.969237, 59.016971), (-139.095874, 67.026286) 

Shape 2 (Loops: 1, Quantity: 4) 
Loop 1 (external): 6 Primitives 

Line: (-127.937351, 911.991B82), (-721.937351, 1110.536278) 
Line: (-127.931351, 1110.536218), (-681.411557, 

1110.53621B) 
Line: (-681.471551, 1110.536278), (-681.471557, 945.161891) 
Line: (-687.471557, 945.161891), (-581.325991, 945.161897) 
Line: (-587.325991, 945.161897), (-587.325997, 911.991862) 
Line: (-587.325997, 9l1.991882), (-127.937351, 911.99(882) 

Shape 3 (Loops: 1, Quantity: 4) 
Loop 1 (external): 38 Primitives 

Line: (-320.620115, 911.301184), (-315.903134, 910.19;,269) 
Line: (-315.903134, 910.195269),1-332.884266, 916.210338) 
Line: (-332.884266, 916.210338},1-467.601247, 916.270338) 
Line: (-481.601247, 916.270336), (-481.601241, 921.616250) 
Line: (-481.601241, 921.616250),1-480.204316, 921.6(6250) 
Line: (-480.204316, 921.616250), (-469.311360, 923.618791) 
Line: (-469.371360, 923.618191), (-462.081681, 929.86&413) 
Line: (-462.087687, 929.866413), (-459.160593, 931.114363) 
Line: (-459.160593, 931.714363), (-458.964895, 951.804929) 
Line: (-458.984895, 951.804929),1-458.984895, 1080.73574'1) 
Line: (-458.984895, 1080.135147), (-460.037222, 1096.13499B) 
Line: (-460.031222, 1096.139998), (-463.194<03, 1l04.359294) 
Line: (-463.194203, 1104.359294), (-470.297851, 1109.283143) 
Line: (-410.297851, 1109.283143), (-480.204316, 1110.9<44ib) 
Line: (-480.204316, 1110. 924426), (-461.601247, 1I10.9244Ib) 
Line: (-487.601241, 1110.924426), (-487.601241, 1116.210.138) 
Line: (-487.601247, 1116.270338), (-391.349675, 1116.27033B) 
Line: 1-397.349675, 1116.210338}, (-391.349615, 1110.9244l6) 
Line: (-397.349615, 1110.924426), (-410.819461, 1110.22319l) 
Line: (-410.879461, 1110.223193), (-419.625191, 1107. 92628B) 
Line: (-419.625197, 1107.926288), (-425.046228, 1104.49917;» 
Line: (-425.046228, 1104. 499112), 1-428.385146, 1100. 409109} 
Line: (-428.385146, 1100.409109), (-430.108542, 1092.359168) 
Line: (-430.108542, 1092.359168), (-00.683008, 1077. 905~58) 
Line: (-430.683008, 1011.905558), (-430.683008, 951.686891) 
Line: (-430.683008, 951.686891), 1-430.106932, 941.3478~8) 
Line: (-430.106932, 941.341898), 1-428.318106, 934.884979) 
Line: (-428.318106, 934.884979),1-425.986530, 9Jl.167621) 
Line: (-425.986530, 932.161621), (-422.951121, 930.253332) 
Line: (-422.951121, 930.253332), (-415.293373, 929.200049) 
Line: (-415.293313, 929.200049), (-399.736593, 928.848954) 
Line: (-399.736593, 928.848954), (-385.796945, 9;'8.848954) 
Line: (-385.296945, 928.848954), (-365.715033, 929.613351) 
Line: (-365.715033, 929.613351), (-352.958530, 932.146564) 
Line: (-352.958530, 932.146564), (-344.091549, 936.840602) 
Line: (-344.091549, 936.840602), (-335.985448, 944.110740) 
Line: (-335.985448, 944.110140), (-328.329473, 955.372200) 
Line: (-328.329413, 955.312200), (-320.620115, 971.301184) 

ape 4 (LOOps: 1, Quantity: 4) 
Loop 1 (external): 12 Primitives 

Line: 1-219.013076, 1404.311897}, (-219.013076, 1504.311891) 
Line: (-219.013076, 1504.311891), (-205.161079, 1504.311891) 
Line: 1-205.761079, 1504.317897), (-205.167019, 14b3.269862) 
Line: (-205.167019, 1463.269862), (-153.802013, 1463.269862) 
Line: 1-153.802013, 1463.269862), (-153.802013, 1504.311B97) 
Line: (-153.802013, 1504.311897), (-140.556016, 1504.311891) 
Line: 1-140.556016, 1504.311897), (-140.556016, 1404.311691) 
Line: (-140.556016, 1404.317897),1-153.802013, 1404.317891) 
Line: 1-153.802013, 1404.311891), (-153.802013, 1451.479469) 
Line: (-153.802013, 1451.479469), (-205.161019, 1451.479469) 
Line: 1-205.161079, 1451.479469), (-205.161079, 1404.311891) 
Line: (-205.167019, 1404.311891), (-219.013016, 1404.311891) 

Shape 5 (Loops: 1, Quantity: 4) 
Loop 1 (external): 67 Primitives 

Line: (-45.880464, 1644.169894), (-45.880464, 1495.652611) 
Line: (-45.880464, 1495.652611), (-23.885520, 1511.801102) 
Line: (-23.885520, 1517.801102),1-7.053898, 1530.260460) 
Line: (-7.053898, 1530.260460), (1.280781, 1536.093479) 
Line: (1.280181, 1536.093419), (21.691951, 1538.031818) 
Line: (21.691951, 1538.031818), (31.685989, 1535.62661ll 
Line: (31.685989, 1535.626611), (51.349725, 1528.392988) 
Line: (51.349125, 1528.392988), (62.175649, 1516.200875) 
Line: (62.115649, 1516.200815), (69.975385, 1498.589064) 
Line: (69.915385, 1498.589064), (12.941989, 1478.56604'>) 
Line: (12.941989, 1418.566045), (73.930857, 1446.198815) 
Line: 113.930851, 1446.798875}, (13.930851, 1315.301969) 
Line: (13.930851, 1315.301969),174.684291, 1359.099630) 
Line: (74.684291, 1359.099630), (16.944593, 1348.988309) 
Line: (16.944593, 1348.988309), (79.964140, 1344.3824n) 
Line: (79.964140, 1344.382422), (84.489348, 1340.5653G6) 
Line: (84.489348, 1340.565366), (92.035914, 1338.31593;2) 
Line: (92.035914, 1338.315932),1104.119536, 1337.566120) 
Line: (104.119536, 1331.566120), (104.119536, 1329.541;>52) 
Line: (104.119536, 1329.547252), (4.591234, 1329.541252) 
Line: (4.591234, 1329.547252},14.591234, 1337.566120) 
Line: (4.591234, 1331.566120),19.082857, 1337.566120) 
Line: (9.082851, 1331.566120},121.044744, 1338.124045) 
Line: (21.044144, 1338.124045), (28.134181, 1342.197818) 
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(28.734781, 1342.197818), (33.341498, 1347.265328) 
(33.341498, 1347.265328), (36.378555, 1354.595554) 
(36.378555, 1354.595554), (36.948442, 1361.478649) 
(36.948442, 1361.478649), (37.138404, 1375.301969) 
(37.138404, 1375.301969), (37.138404, 1446.755403) 
(37.138404, 1446.755403), (36.252366, 1474.168837) 
(36.252366, 1474.168837), (33.594253, 1490.226498) 
(33.594253, 1490.226498), (29.177914, 1499.309102) 
(29.177914, 1499.309102), (22.692065, 1505.797366) 
(22.692065, 1505.797366), (14.421046, 1509.812611) 
(14.421046, 1509.812611), (4.649197, 1511.151026) 
(4.649197, 1511.151026), (-6.406124, 1509.681403) 
(-6.406124, 1509.681403), (-17 .912615, 1505.272535) 
(-17.912615, 1505.272535), (-30.770615, 1496.622385) 
(-30.770615, 1496.622385), (-45.880464, 1482.103781) 
(-45.880464, 1482.103781), (-45.880464, 1375.301969) 
(-45.880464, 1375.301969), (-45.339332, 1358.482837) 
(-45.339332, 1358.482837), (-43.715935, 1349.438271) 
(-43.715935, 1349.438271), (-40.320879, 1344.758120) 
(-40.320879, 1344.758120), (-34.789898, 1340.945290) 
(-34.789898, 1340.945290), (-26.424917, 1338.410913) 
(-26.424917, 1338.410913), (-13.333294, 1337.566120) 
(-13.333294, 1337.566120), (-13.333294, 1329.547252) 
(-13.333294, 1329.547252), (-113.804992, 1329.547252) 
(-113.804992, 1329.547252), (-113.804992, 1337.566120) 
(-113.804992, 1337.566120), (-101.759369, 1338.578347) 
(-101. 759369, 1338.578347), (-92.501294, 1341.615026) 
(-92.501294, 1341.615026), (-88.534917, 1344.848686) 
(-88.534917, 1344.848686), (-85.396841, 1350.035554) 
(-85.396841, 1350.035554), (-83.353898, 1359.433894) 
(-83.353898, 1359.433894), (-82.672917, 1375.301969) 
(-82.672917, 1375.301969), (-82.672917, 1559.264234) 
(-82.672917, 1559.264234), (-83.106577, 1586.932649) 
(-83.106577, 1586.932649), (-84.407558, 1601.443403) 
(-84.407558, 1601.443403), (-86.552728, 1608.105328) 
(-86.552728, 1608.105328), (-89.518954, 1612.227252) 
(-89.518954, 1612.227252), (-93.478690, 1614.366196) 
(-93.478690, 1614.366196), (-98.604388, 1615.079177) 
(-98.604388, 1615.079177), (-104.694200, 1614.215064) 
(-104.694200, 1614.215064), (-113.635935, 1611.622724) 
(-113.635935, 1611.622724), (-116.635181, 1619.641592) 
(-116.635181, 1619.641592), (-56.122577, 1644.169894) 
(-56.122577, 1644.169894), (-45.880464, 1644.169894) 

Shape 6 (Loops: 1, Quantity: 4) 
LooP 1 (external): 13 Primitives 

Line: (-303.830940, 523.279099), (-351.129642, 723.279099) 
Line: (-351.129642, 723.279099), (-309.623546, 723.279099) 
Line: (-309.623546, 723.279099), (-279.709647, 586.048939) 
Line: (-279.709647, 586.048939), (-243.325508, 723.279099) 
Line: (-243.325508, 723.279099), (-194.957717, 723.279099) 
Line: (-194.957717, 723.279099), (-160.058992, 583.779594) 
Line: (-160.058992, 583.779594), (-129.524099, 723.279099) 
Line: (-129.524099, 723.279099), (-88.829787, 723.279099) 
Line: (-88.829 787, 723.279099), (-137.051505, 523.279099) 
Line: (-137.051505, 523.279099), (-180.642119, 523.279099) 
Line: (-180.642119, 523.279099), (-220.029880, 672.740339) 
Line: (-220.029880, 672.740339), (-259.622311, 523.279099) 
Line: (-259.622311, 523.279099), (-303.830940, 523.279099) 

Shape 7 (LOOps: 1, ouantity~ ~). 
LOOP 1 (external): 19 Pr~m~t~ves 

Line: (-1.353104, 520.752469), (-45.600487, 665.730635) 
Line: (-45.600487, 665.730635), (-20.023590, 665.730635) 
Line: (-20.023590, 665.730635), (3.260113, 582.033913) 
Line: (3.260113, 582.033913), (11.494966, 550.857156) 
Line: (11.494966, 550.857156), (13.651542, 559.497878) 
Line: (13.651542, 559.497878), (l9.028334, 580.774035) 
Line: (19.028334, 580.774035), (42.011973, 665.730635) 
Line: (42.011973, 665.730635), (67.125871, 665.730635) 
Line: (67.125871, 665.730635), (89.093056, 581.715962) 
Line: (89.093056, 581.715962), (96.175350, 553.830967) 
Line: (96.175350, 553.830967), (104.407222, 581.917651) 
Line: (104.407222, 581. 9l7651), (129.357161, 665.730635) 
Line: (129.357161, 665.730635), (153.235030, 665.730635) 
Line: (153.235030, 665.730635), (107.882785, 520.752469) 
Line: (107.882785, 520.752469), (82.528445, 520.752469) 
Line: (82.528445, 520.752469), (59.461336, 607.774769) 
Line: (59.461336, 607.774769), (53.671711, 632.460417) 
Line: (53.671711, 632.460417), (24.316206, 520.752469) 
Line: (24.316206, 520.752469), (-1.353104, 520.752469) 

Snape 8 (Loops: 1, Quantity: 4). 
LOOP 1 (external): 28 Pr~m~t~ves 

Line: (344.874051, 934.129998), (349.677545, 901.352077) 
Line: (349.677545, 901.352077), (334.898575, 898.945474) 
Line: (334.898575, 898.945474), (321.797021, 898.143274) 
Line: (321.797021, 898.143274), (303.951221, 899.710225) 
Line: (303.951221, 899.710225), (290.561667, 904.411081) 
Line: (290.561667, 904.411081), (281.189405, 911. 885527) 
Line: (281.189405, 911.885527), (275.094488, 921.069806) 
Line: (275.094488, 921. 069806), (271. 752304, 937.158819) 
Line: (271. 752304, 937.158819), (270.638243, 964.644025) 
Line: (270.638243, 964.644025), (270.638243, 1089.846330) 
Line: (270.638243, 1089.846330), (243.564007, 1089.846330) 
Line: (243.564007, 1089.846330), (243.564007, 1118.667291) 
Line: (243.564007, 1118.667291), (270.638243, 1118.667291) 
Line: (270.638243, 1118.667291), (270.638243, 1172.459570) 
Line: (270.638243, 1172.459570), (307.319466, 1194.472496) 
Line: (307.319466, 1194.472496), (307.319466, 1118.667291) 
Line: (307.319466, 1118.667291), (344.874051, 1118.667291) 
Line: (344.874051, 1118.667291), (344.874051, 1089.846330) 
Line: (344.874051, 1089.846330), (307.319466, 1089.846330) 

232 

Line (307.319466, 1089.846330), (307.319466, 962.594767) 
Line (307.319466, 962.594767), (307.793038, 949.670191) 
Line (307.793038, 949.670191), (309.213754, 942.391169) 
Line: (309.213754, 942.391169), (311.894383, 938.447b23) 
Line: (311.894383, 938.447623),1315.685719, 935.529474) 
Line: (315.685719, 935.529474), (321.081457, 933.363186) 
Line: (321.081457, 933.363186), (328.414313, 932.641090) 
Line: (328.414313, 932.641090), (335.621789, 933.013317) 
Line: (335.621789, 933.013317), (344.874051, 934.129998) 

Shape 9 (Loops: 1, Quantity: 4) 
Loop 1 (external): 8 Primitives 

Line: (405.382646, 981.289111), (405.382646, 1069.498718) 
Line: (405.382646, 1069.498718), (372.485994, 1069.498718) 
Line: (372.485994, 1069.498718), (372.485994, 1081.289111) 
Line: (372.485994, 1081.289111), (451.525295, 1081.289111) 
Line: (451.525295, 1081.289111), (451.525295, 1069.498718) 
Line: (451.525295, 1069.498718), (418.628643, 1069.498718) 
Line: (418.628643, 1069.498718), (418.628643, 981.289111) 
Line: (418.628643, 981.289111), (405.382646, 981.289111) 

Shape 10 (Loops: 1, Quantity: 4) 
Loop 1 (external): 4 Primitives 

Line: (541.980923, 1481.914894), (541.980923, 1581.914894) 
Line: (541.980923, 1581.914894), (555.226920, 1581.914894) 
Line: 1555.226920, 1581.914894), (555.226920, 1481.914894) 
Line: (555.226920, 1481.914894), (541.980923, 1481.914894) 

Snape 11 (Loops: 1, Quantity: 4) 
Loop 1 (external): 32 Primitive. 

Line: (687.322990, 1424.745161), (687.322990, 1419.H9249) 
Line: (687.322990, 1419.399249).(601.788399, 1419.399249) 
Line: (601.788399, 1419.399249), (601.788.J99, 1424.745161) 
Line: (601.788399, 1424.745161), (6D8.812902, 1424.745161) 
Line: (608.812902, 1424.745161), (619.480047, 1426.562197) 
Line: (619.480047, 1426.562192), (626.785732, 1432.01J~8·1) 
Line: (626.785732, 1432.013287), (629.499997, 1440.116406) 
Line: (629.499997, 1440.116406), (630.404751, 1454.9:U840) 
Line: (630.404751, 1454.933840), (6.10.404751, 1583.864658) 
Line: (630.404751, 1583.864658), (629.90112Y, 1596.531828) 
Line: (629.901129, 1596.531828), (628.390261, 1604.054847) 
Line: (628.390261, 1604.054847), (626.184701, 1607.644381) 
Line: (626.184701, 1607.644381), (622.367116, 1610.414997) 
Line: (622.367116, 1610.414997), (615.790877, 1613.10752) 
Line: (615.796877, 1613.143752), (608.812902, 1614.053337) 
Line: (608.812902, 1614.053337), (601.788399, 1614. 05:1B7) 
Line: (601. 788399, 1614.053337), (601.788399, 1619.399249) 
Line: (601."188399, 1619.399249), (687.322990, 1619.399~49) 
Line: (687.322990, 1619.399249), (687.322990, 1614.0533:17) 
Line: (687.322990, 1614.053337), (b80.3e0097, 1614.05.3337) 
Line: (680.380097, 1614.053337), (669.626009, 1612.2(9211) 
Line: (669.626009, 1612.209211), (662.304223, 1606.67b834) 
Line: (662.304223, 1606.676834), (659.606034, 1598.600B09) 
Line: (659.606034, 1598.600809), (658.706638, 1583.864658) 
Line: (658.706638, 1583.864658), (658.706638, 1454.933840) 
Line: (658.706638, 1454.933840), (659.210537, 1442.185387) 
Line: (659.210537, 1442.185387), (660.722235, 1434.635214) 
Line: (660.722235, 1434.635274), (662.858563, 1431.116155) 
Line: (662.858563, 1431.176155), (666.706739, 1428.275123) 
Line: (666.706739, 1428.275123), (673.276173, 1425.6276~,2) 
Line: (673.276173, 1425.627652), (680.380097, 1424.74~>161) 
Line: (680.380097, 1424.745161), (687.322990, 1424.745161) 

Shape 12 (Loops: 2, Quantity: 2) 
Loop 1 (internal): 13 Primitive. 

Line: (763.797818, 619.325467), (763.797818, 751.494317) 
Line: (763.797818, 751. 494317), (890.436397, 751.494317) 
Line: (890.436397, 751.494317), (929.032496, 746.897490) 
Line: (929.032496, 746.897496), (955.584857, 733.107033) 
Line: (955.584857, 733.107033), (971.133224, 712.365909) 
Line: (971.133224, 712.365909), (976.316013, 686.515778) 
Line: (976.316013, 686.515778), (973.618930, 667.986381) 
Line: (973.618930, 667.986381), (965.527681, 651.005001) 
Line: (965.527681, 651.005001),1952.477410, 636.496658) 
Line: (952.477410, 636.496658), (934.501934, 626.646247) 
Line: (934.501934, 626.646247), (910.272857, 621.15~,662) 
Line: (910.272857, 621.155662), (877.603233, 619.325461) 
Line: (877.603233, 619.325467), (763.797818, 619.325467) 

Loop 2 (external): 30 Primitives 
Line: (710.813830, 395.744681), (710.813830, 795.744681) 
Line: (710.813830, 795.744681), (888.457148, 795.744681) 
Line: 1888.457148, 795.744681), (935.511914, 793.027476) 
Line: (935.511914, 793.027476), (969.662994, 784.875860) 
Line: 1969.662994, 784.875860), (994.773399, 770.078864) 
Line: (994.773399, 770.078864), (1014.304811, 746.916873) 
Line: (1014.304811, 746.916873), (1026.861247, 718.186090) 
Line: (1026.861247, 718.186090),11031.046726, 686.5754(0) 
Line: (1031. 046726, 686.575400), (1024.117212, 647.406981) 
Line: (1024.117212, 647.406981), (1003.328671, 614.920925) 
Line: (1003.328671, 614.920925), (968.277166, 591.114835) 
Line: (968.277166, 591.114835), (918.157434, 577.986311) 
Line: (918.157434, 577.986311), (936.660001, 567.839330) 
Line: (936.660001, 567.839330), (950.174761, 557.882113) 
Line: (950.174761, 557.882113), (972.599029, 534.121484) 
Line: (972.599029, 534.121484), (993.920391, 504.713298) 
Line: (993.920391, 504.713298), (1063.236956, 395.744681) 
Line: 11063.236956, 395.744681), (996.998540, 395.744681) 
Line: (996.998540, 395.744681), (943.996665, 479.482206) 
Line: (943.996665, 479.482206), (922.88H44, 511.063086) 
Line: (922.884444, 511.063086), (906.043640, 534.084733) 
Line: (906.043640, 534.084733), (891.621981, 550.34(547) 
Line: (891.621981, 550.340547), (878.812432, 560.793321) 
Line: (878.812432, 560.793321), (866.891617, 567.193~08) 



Line: (866.891617, 567.193508), (854.734831, 571.291557) 

Line: (854.734831, 571.291557), (842.781504, 572.819173) 

Line: (842.781504, 572.819173), (825.159751, 573.328378) 

Line: (825.159751, 573.328378), (763.797818, 573.328378) 

Line: (763.797818, 573.328378), (763.797818, 395.744681) 

Line: (763.797818, 395.744681), (710.813830, 395.744681) 

Shape 13 (LOOpS: 2, Quantity: ,2) 
Loop 1 (internal): 17 Prl.ml.tlves 

Line: (1232.136879, 612.351320), (1260.523628, 747.431378) 
Line: (1260.523628, 747.431378), (1390.411208, 747.431378) 
Line: (1390.411208, 747.431378), (1416.705986, 746.289253) 
Line: (1416.705986, 746.289253), (1433.753462, 742.862877) 
Line: (1433.753462, 742.862877), (1445.336437, 736.115442) 
Line: (1445.336437, 736.115442), (1454.514428, 725.010138) 
Line: (1454.514428, 725.010138), (1460.496053, 710.946906) 
Line: (1460.496053, 710.946906), (1462.489927, 694.602406) 
Line: (1462.489927, 694.602406), (1459.792844, 674.465649) 
Line: (1459.792844, 674.465649), (1451. 701596, 655.726365) 
Line: (1451.701596, 655.726365), (1438.931267, 639.546056) 
Line: (1438.931267, 639.546056) ,(1421. 795616, 627.086225) 
Line: (1421.795616, 627.086225), (1399.585753, 618.393823) 
Line: (1399.585753, 618.393823), (1371.994114, 613.515803) 
Line: (1371.994114, 613.515803), (1347.716315, 612.642441) 
Line: (1347.716315, 612.642441), (1305.576833, 612.351320) 
Line: (1305.576833, 612.351320), (1232.136879, 612.351320) 

Loop 2 (external): 28 Primitives 
Line: (1132.358923, 391.099500), (1216.201718, 791.099500) 
Line: (1216.201718, 791.099500), (1383.603173, 791.099500) 
Line: (1383.603173, 791. 099500), (1427.173433, 788.983914) 
Line: (1427.173433, 788.983914), (1458.771965, 782.637154) 
Line: (1458.771965, 782.637154), (1481.624204, 770.798318) 
Line: (1481.624204, 770.798318), (1498.955581, 751.805177) 
Line: (1498.955581, 751.805177), (1510.034288, 725.595361) 
Line: (1510.034288, 725.595361), (1513.727191, 693.581014) 
Line: (1513.727191, 693.581014), (1505.803348, 648.912601) 
Line: (1505.803348, 648.912601), (1482.031820, 612.604711) 
Line: (1482.031820, 612.604711), (1439.959878, 586.142761) 
Line: (1439.959878, 586.142761), (1378.315302, 571.012164) 
Line: (1378.315302, 571.012164), (1397.789607, 554.938429) 
Line: (1397.789607, 554.938429), (1411.389794, 539.143890) 
Line: (1411.389794, 539.143890), (1433.899488, 503.312694) 
Line: (1433.899488, 503.312694), (1451.510807, 466.506778) 
Line: (1451.510807, 466.506778), (1482.345764, 391.099500) 
Line: (1482.345764, 391.099500), (1422.500082, 391. 099500) 
Line: (1422.500082, 391.099500), (1393.785415, 465.336333) 
Line: (1393.785415, 465.336333), (1377 .240251, 503.012117) 
Line: (1377.240251, 503.012117),11357.972617, 535.109934) 
Line: (1357.972617, 535.109934), (1344.617066, 552.129835) 
Line: (1344.617066, 552.129835), (1330.622166, 562.074895) 
Line: (1330.622166, 562.074895), (1312.222679, 567.031122) 
Line: (1312.222679, 567.031122), (1285.144716, 568.683198) 
Line: (1285.144716, 568.683198), (1222.928332, 568.683198) 
Line: (1222.928332, 568.683198), (1185.694679, 391.099500) 
Line: (1185.694679, 391.099500), (1132.358923, 391.099500) 

Shape 14 (LOOPS: 1, Quantit~: .4~ 
LOOP 1 (external): 20 Prl.m1t1ves 

Line: (1608.863518, 441.554308), (1608.863518, 586.532474) 
Line: (1608.863518, 586.532474), (1630.988699, 586.532474) 
Line: (1630.988699, 586.532474), (1630.988699, 564.496725) 
Line: (1630.988699, 564.496725), (1639.224554, 577.278093) 
Line: (1639.224554, 577.278093), (1646.570138, 584.817051) 
Line: (1646.570138, 584.817051), (1654.180012, 588.505365) 
Line: (1654.180012, 588.505365), (1662.578801, 589.734803) 
Line: (1662.578801, 589.734803), (1674.991424, 587.792096) 
Line: (1674.991424, 587.792096), (1687.757258, 581.963973) 
Line: (1687.757258, 581.963973), (1678.884548, 559.208853) 
Line: (1678.884548, 559.208853), (1669.954196, 563.107682) 
Line: (1669.954196, 563.107682), (1661.153008, 564.407292) 
Line: (1661.153008, 564.407292), (1653.379430, 563.186797) 
Line: (1653.379430, 563.186797),11646.522440, 559.525313) 
Line: (1646.522440, 559.525313), (1641.107896, 553.727118) 
Line: (1641.107896, 553.727118),11637.661654, 546.096492) 
Line: (1637.661654, 546.096492), (1634.403663, 532.367118) 
Line: (1634.403663, 532.367118), (1633.317666, 517.379869) 
Line: (1633.317666, 517.379869), (1633.317666, 441.554308) 
Line: (1633.317666, 441.554308), (1608.863518, 441.554308) 

Shape 15 (Loops: 2, Quantity: 1) 
LOOP 1 (internal): 9 Prl.ml.tlves 

Line: (1260.398733, 1357.025795), (1273.602588, 1416.977096) 
Line: (1273.602588, 1416.977096), (1304.770623, 1463.536327) 
Line: (1304.770623, 1463.536327), (1349.941837, 1493.697096) 
Line: (1349.941837, 1493.697096), (1404.452905, 1503.750685) 
Line: (1404.452905, 1503.750685), (1463.990361, 1491.162831) 
Line: (1463.990361, 1491.162831), (1511.888457, 1453.399268) 
Line: (1511.888457, 1453.399268), (1532.785016, 1413.303920) 
Line: (1532.785016, 1413.303920), (1543.659287, 1357.025795) 
Line: (1543.659287, 1357.025795), (1260.398733, 1357.025795) 

LoOP 2 (external): 2B Primitives 
Line: (1543.057715, 1219.471209), (1631.411857, 1208.263058) 
Line: (1631.411857, 1208.263058), (1601.320620, 1138.923728) 
Line: (1601.320620, 1138.923728), (1553.340847, 1087.172962) 
Line: (1553.340847, 1087.172962), (1488.618378, 1054.955600) 
Line: (1488.618378, 1054.955600), (1408.299054, 1044.216479) 
Line: (1408.299054, 1044.216479), (1308.581965, 1061.321259) 
Line: (1308.581965, 1061.321259), (1231.868894, 1112.635600) 
Line: (1231.868894, 1112.635600), (1182.960597, 1194.827134) 
Line: (1182.960597, 1194.827134), (1166.657831, 1304.563495) 
Line: (1166.657831, 1304.563495), (1183.077977, 1418.257271) 
Line: (1183.077977, 1418.257271), (1232.338413, 1503.175198) 
Line: (1232.338413, 1503.175198), (1308.122961, 1556.336071) 

Line: (1308.122961, 1556.336071), (1403.413115, 1574.056362) 
Line: (1403.413115, 1574.056362),11495.859496, 1556.64036,) 
Line: (1495.859496, 1556.640362), (1569.601878, 1504. H2362) 
Line: (1569.601878, 1504.392362), (1618.156035, 1421.008036) 
Line: (1618.158035, 1421.008036), (1634.343421, 1309.480735) 
Line: (1634.343421, 1309.480735),11634.177377, 1300.104362) 
Line: (1634.177377, 1300.104362), (1633.679246, 1286.720118) 
Line: (1633.679246, 1286.720118), (1255.304119, 1286.720118) 
Line: (1255.304119, 1286.720118), (1269.366070, 1213.199046) 
Line: (1269.366070, 1213.199046), (1302.482367, 1158. 69~)803) 
Line: (1302.482367, 1158.695803), (1350.328'101, 1125.56556B) 
Line: 11350.328701, 1125.565568) , 11408.580766, 1114.522156) 
Line: (1408.580766, 1114.522156), (1452.846116, 1120.730901) 
Line: (1452.846116, 1120.730901), (1489.279129, 1139.357137 ) 
Line: (1469.279129, 1139.357137), (1519.486442, 1172.401294) 
Line: (1519.486442, 1172.401294), (1543.057715, 1219.471209) 

hape 16 (Loops: 1, Ouantity: 4) 
Loop 1 (external): 12 Primitives 

Line: (1719.395136, 1384.292866), (1719.395136, 1484.292866) 
Line: (1719.395136, H84.292866),11791.593098, 1484.292866) 
Line: (1791. 593098, 1484.292866), (1791. 593098, 1472.50247:1) 
Line: (1791.593098, 1472.502473), (1732.641133, 1472.502473) 
Line: (1732.641133, 1472.502473), (1732.641133, H41.934787) 
Line: (1732.641133, 1441.934787), (1787.808528, 1441.9l478·n 
Line: (1787.808528, 1441.934787), (1787.808528, 1430.144394) 
Line: (1787.808528, 1430.144394), (1732.641133, 1430.144394) 
Line: (1732.641133, 1430.144394), (1732.641133, 1396.0",75.) 
Line: (1732.641133, 1396.083259), (1793.922065, 1396.08.l~59) 
Line: (1793.922065, 1396.083259), (1793.922065, 1384.29;866) 
Line: (1793.922065, 1384.292866), (1719.395136, 1384.29<'666) 

Profil •• 10: (15000,3000), Shap •• : 13, Rotation.: 0 ab.olut. 

Shape 1 (Loops: 1, Quantity: 7) 
Loop 1 (external): B Primitives 

Line: (200.000000, -0.000000), (100.000000, 200.0000aO) 
Line: (100.000000, 200.000000), (0.000000, 300.0000(0) 
Line: (0.000000, 300.000000), (100.000000, 400.000000) 
Line: (100.000000, 400.000000), (100.000000, 500.000000) 
Line: (100.000000, 500.000000), (200.000000, 700.000000) 
Line: (200.000000, 700.000000), (900.000000, 500.00(000) 
Line: (900.000000, 500.000000), (900.000000, 100.00(000) 
Line: (900.000000, 100.000000), (200.000000, -0.000000) 

Shape 2 (Loops: 1, Quantity: 7) 
Loop 1 (external): 6 Primitives 

Line: (74.000000, -0.000000), (0.000000, 125.000000) 
Line: (0.000000, 125.000000), (870.000000, 305.000000) 
Line: (870.000000, 305.000000), (1740.000000, 125.0(0000) 
Line: (1740.000000, 125.000000), (1666.000000, -0.00(000) 
Line: (1666.000000, -0.000000), (870.000000, 119.000000) 
Line: (870.000000, 119.000000), (74.000000, -0.000000) 

Shape 3 (Loops: I, Ouantity: 7) 
Loop 1 (external): 11 Primitives 

Line: (-0.000000, 200.000000), (-0.000000, 600.000000) 
Line: (-0.000000, 600.000000), (200.000000, 600.000000) 
Line: (200.000000, 600.000000), (200.000000, 300.000000) 
Line: 1200.000000, 300.000000), (800.000000, 300.000000) 
Line: (800.000000, 300.000000), (800.000000, 600.000000) 
Line: (800.000000, 600.000000),11100.000000, 600.000000) 
Line: (1100.000000, 600.000000), (1100.000000, 400.000000) 
Line: (1100.000000, 400.000000), (700.000000, -0.000000) 
Line: (700.000000, -0.000000), (600.000000, -0.000000) 
Line: (600.000000, -0.000000), (600.000000, 200.000000) 
Line: (600.000000, 200.000000), (-0.000000, 200.000000) 

Shape 4 (Loops: I, Quantity: 7) 
Loop 1 (external): 8 Primitives 

Line: (-0.000000, 0.000000), (100.000000, 300.000000) 
Line: (100.000000, 300.000000), (0.000000, 500.000000) 
Line: (0.000000, 500.000000), (200.000000, 400.000000) 
Line: (200.000000, 400.000000), (400.000000, 500.000000) 
Line: (400.000000, 500.000000), (300.000000, 200.000(00) 
Line: (300.000000, 200.000000), (400.000000, 0.000000) 
Line: (400.000000, 0.000000), (200.000000, 100.000000) 
Line: (200.000000, 100.000000), (-0.000000, 0.000000) 

Shape 5 (Loops: I, Quantity: 7) 
Loop 1 (external): e Primitives 

Line: (0.000000, 0.000000), (200.000000, 200.000000) 
Line: (200.000000, 200.000000), (200.000000, 400.000000) 
Line: (200.000000, 400.000000), (0.000000, 600.000000) 
Line: (0.000000, 600.000000), (600.000000, 600.000000) 
Line: (600.000000, 600.000000), (400.000000, 400.000000) 
Line: (400.000000, 400.000000), (400.000000, 200.000000) 
Line: (400.000000, 200.000000), (600.000000, 0.000000) 
Line: (600.000000, 0.000000), (0.000000, 0.000000) 

Shape 6 (Loops: 1, Quantity: 7) 
Loop 1 (external): 4 Primitives 

Line: (0.000000, 0.000000), (0.000000, 660.000000) 
Line: (0.000000, 660.000000), (200.000000, 260.000000) 
Line: (200.000000, 260.000000), (390.000000, 230.000000) 
Line: (390.000000, 230.000000), (0.000000, 0.000000) 

Shape 7 (Loops: 1, Quantity: 7) 
Loop 1 (external): 14 Primitives 

Line: (0.000000, 232.000000), (0.000000, 426.000000) 
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Shape 

Line: 
Line: 
Line: 
Line: 
Line: 
Line: 
Line: 
Line: 
Line: 
Line: 
Line: 
Line: 
Line: 

(0.000000, 426.000000), (539.000000, 414.000000) 
(539.000000, 414.000000), (616.000000, 477.000000) 
(616.000000, 477.000000), (694.000000, 544.000000) 
(694.000000, 544.000000), (732.000000, 547.000000) 
(732.000000, 547.000000), (761.000000, 490.000000) 
(761.000000, 490.000000), (845.000000, 453.000000) 
(845.000000, 453.000000), (884.000000, 463.000000) 
(884.000000, 463.000000), (1003.000000, 500.000000) 
(1003.000000, 500.000000), (1097.000000, 260.000000) 
(1097.000000, 260.000000), (975.000000, 258.000000) 
(975.000000, 258.000000), (894.000000, 20.000000) 
(894.000000, 20.000000), (827.000000, -0.000000) 
(827.000000, -0.000000), (0.000000, 232.000000) 

8 (Loops: 1, Quantity: 7) 
Loop 1 (external): 15 Primitives 

Line: (882.000000, 623.000000), (963.000000, 713.000000) 
Line: (963.000000, 713.000000), (1147.000000, 666.000000) 
Line: (1147.000000, 666.000000), (1098.000000, 518.000000) 
Line: (1098.000000, 518.000000), (1052.000000, 396.000000) 
Line: (1052.000000, 396.000000), (998.000000, 265.000000) 
Line: (998.000000, 265.000000), (954.000000, 169.000000) 
Line: (954.000000, 169.000000), (868.000000, 0.000000) 
Line: (868.000000, 0.000000), (689.000000, 49.000000) 
Line: (689.000000, 49.000000), (592.000000, 148.000000) 
Line: (592.000000, 148.000000), (4.000000, 165.000000) 
Line: (4.000000,165.000000),(0.000000,325.000000) 
Line: (0.000000, 325.000000), (546.000000, 334.000000) 
Line: (546.000000, 334.000000), (688.000000, 402.000000) 
Line: (688.000000, 402.000000), (780.000000, 508.000000) 
Line: (780.000000, 508.000000), (882.000000, 623.000000) 

Shape 9 (Loops: 1, Quantity: 7) 
Loop 1 (external): 6 Primitives 

Line: (0.000000, 0.000000), (10.000000, 50.000000) 
Line: (10.000000, 50.000000), (30.000000, 300.000000) 
Line: (30.000000, 300.000000), (470.000000, 390.000000) 
Line: (470.000000, 390.000000), (400. 000000, 200. 000000) 
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Line: (400.000000, 200.000000), (520.000000, 70.000000) 
Line: (520.000000, 70.000000), (0.000000, 0.000000) 

Shape 10 (Loops: 1, Quantity: 7) 
LOOp 1 (external): 10 Primitives 

Line: (100.000000, 0.000000), (-0.000000, 600.000000) 
Line: (-0.000000, 600. 000000) , (100.000000, 600.0000(0) 
Line: 1100.000000, 600.000000), (100.000000, SOO.OllOOOO) 
Line: 1100.000000, 500.000000), (200.000000, 400.000000) 
Line: (200.000000, 400.000000), (300.000000, 400.01l0(00) 
Line: (300.000000, 400.000000), (400.000000, 500.00ll000) 
Line: (400.000000, 500.000000), (400.000000, GOO .000000) 
Line: (400.000000, 600.000000), (500.000000, 600.000000) 
Line: (500.000000, 600.000000), (400.000000, 0.00(000) 
Line: (400.000000, 0.000000), (100.000000, 0.0000(0) 

Shape 11 (Loops: 1, Quantity: 7) 
Loop 1 (external): 3 Primitives 

Line: (0.000000, 800.000000), (600.000000, eOO.DDOOOO) 
Line: (800.000000, BOO.OOOOOO), (400.000000, D.OOooOO) 
Line: (400.000000, 0.000000), (0.000000, eoo.oooOOO) 

Shape 12 (Loops: 1, Quantity: 7) 
Loop 1 (eM.ternal): 6 Primitives 

Line: (0.000000, 0.000000), (-0.000000, bOO.OOOOOO) 
Line: (-0.000000, 600.000000), (400.000000, bOO.OOOOOO) 
Line: (400.000000, 600.000000), (400.000IJOO, JOO.OOOOOO) 
Line: (400.000000, 300.000000), (bOO.OOOOOO, 300.00(lOOO) 
Line: (600.000000, 300.DOOOOO), (bOO.OOOOOO, -0.110(1000) 
Line: (600.000000, -0.000000), (0.000000, 0.0000(0) 

Shape 13 (Loops: 1, QU$ntity: 7, 
Loop 1 (external): 8 Primit.ivf's 

Line: (100.000000, 0.000000), (O.OOllOOO, 100.00011(0) 
Line: (0.000000, 100.000000), (-0.000000, JllO.OOIJOOO) 
Line: (-0.000000, 300.000000), (2DO.DOOOOO, 500.0000(1[J) 
Line: (200.000000, 500.000000), (400.0()OOIl0, 500.0"00(0) 
Line: (400.000000, 500.000(00), (400.000000, 400.0000(0) 
Line: (400.000000, 400.000000), (JOO.OnClOOO, 20a.OOODOO) 
Line: (300.000000, 200.0000(0), (400.000000, -0.000"(0) 
Line: (400.000000, -o.oaOOOO), (100.000000, o.ooaOOO) 



Appendix B - Best Layouts from Chapter 4 

Albano: 10292.9 units (93.35) 

Blasz2: 25.28 units (10.95) 

Dagli: 60.57 units (188.85) Dighel: 1292.3 units (8.85) Dighe2: 1260.0 units (7.15) 
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Fu: 32.8 units (20.7s) Jakobsl: 11.86 units (43 .4s) Jakobs2: 25.8 units (81.4s) 

Mao: 1854.3 units (29.7s) Marques: 80.0 units (4.85) 
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polylA: 14.0 units (12.55) Poly2A: 28.17 units (120.65) Poly3A: 40.33 units (1515.55) 

Poly4A: 54.93 units (203 .25) PolySA: 69.37 units (475 .65) 

Poly2B: 30.0 units (179.95) Poly3B: 40.74 units (417 .75) 

237 



Poly48: 51.73 units (95.75) PolySB: 60.54 units (676.65) 

SHAPESO: 65.0 units (332.45) SHAPES1: 58.4 units (1810.15) 

SHAPES: 59.0 units (31.45) SHIRTS: 63.0 units (806.55) 
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Profiles1: 1377.74 units - shown in the chapter 4 (see Figure 26) 

Profiles2: 3216.10 units 

Profiles3: 8193.89 units 

Profiles4: 2453.12 units 
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Profiles5: 3332.70 units Profiles6: 3097.86 units 

Profiles7: 1296.30 units Profiles8: 1318.70 units 

Profiles9: 1290.67 units - shown in chapter 3 (see Figure 26) 

ProfileslO: 11160.10 units 
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Appendix C - Best Layouts from Chapter 6 

Albano: 9980.86 units (2995) 

Blaszl: 26.80 units (2815) Blasz2: 24.80 units (145) 

Dagli: 59.94 units (2525) Dighel: 1210.00 units (35) Dighe2: 1180.00 units (1485) 
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Fu: 31.57 units (139s) Jakobsl: 11.50 units (29s) Jakobs2: 24.70 units (515) 

Mao: 1821.70 units (1525) Marques: 78.00 units (215) 
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PolylA: 13.30 units (2545) Poly2A: 27.09 units (2395) Poly3A: 40.45 units (4 295) 

Poly4A: 54.60 units (2245) PolySA: 68.84 units (3005) 

Poly2B: 29.63 units (1895) Poly3B: 40.50 units (1145) 
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Poly4B: 51.18 units (176s) PolySB: 60.86 units (299s) 

SHAPESO: 60.00 units (274s) 

SHAPES1: 55.00 units (166s) SHAPES: 56.00 units (226s) 
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SHIRTS: 63.16 units (806s) SWIM: 6270.88 units (141s) 

TROUSERS: 243.00 units (12484s) 

Profiles1: 1359.90 units Profiles2: 3194.19 units 
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Profiles3: 7881.13 units 

Profiles4: 2425.26 units 

Profiles5: 3351.94 units Profiles6: 3121.36 units Profiles7: 1292.30 units 

Profiles8: 1263.11 units Profiles9: 1278.21 units 
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ProfileslO: 11219.60 units 
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Appendix D - Result Graphs from Chapter 7 
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