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ABSTRACT 

The flourishing of oil palm industry has always been regarded 

as a double-edged sword. While it has significantly contributed 

to the economic growth, it is, nonetheless, disputably 

unsustainable as it is a land-intensive industry and causing 

disposal problems by leaving behind massive waste. To 

strengthening the industry’s competitive advantage and 

offsetting its drawbacks, this thesis presents a forward-looking 

framework – Biomass Supply Value Chain (BSVC)– to put 

emphasis on the value creation for the biomass industry. It aims 

to enhance the current biomass supply chain by harnessing the 

emerging technological advancement of artificial intelligence 

(AI), as well as by incorporating game theory to examine the 

strategic arrangement of the industry players. The proposed 

framework is capable of optimising the procurement process in 

the supply chain management: first, by identifying biomass 

properties for optimum biomass utilisation through the 

developed Biomass Characteristic Index (BCI); second, by 

applying AI into supply chain-related tasks for aiding better 

decision-making and problem-solving; and third, by adopting 

game theory in analysing strategic options, and providing 

appropriate strategies to minimise uncertainty and risk in 

procurement process. The “value” as suggested in the BSVC 
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does not merely refer to a narrow economic sense, but is an all-

encompassing value concerning non-monetary utility values, 

including sustainability, environmental preservation and the 

appreciation of the biomass industry. 
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1 CHAPTER 1 INTRODUCTION 

The past decades have witnessed significant technological 

inventions and advancements in agriculture sector; alongside 

agricultural development, the waste from agriculture have even 

been turned into renewable energy and ultimately contributing 

to sustainable development. Biomass has now become a 

reliable and sustainable alternative energy source. In Malaysia, 

the oil palm industry is the main agricultural sector that 

generates abundant biomass as renewable sources. Being the 

world’s second largest producer of palm oil after Indonesia, the 

oil palm plantations in Malaysia spanning a total of 5.74 million 

hectares of land, producing approximately 15.91 tonnes of fresh 

fruit bunches (FFB) per hectare per year (MPOB, 2017). Thus, 

the availability and continuity of the raw biomass material is 

unquestionable. There are several types of biomass, comprising 

empty fruit bunches (EFB), palm kernel shell (PKS), leaf frond, 

replanting palm trunk and so forth, that could be used to 

generate renewable energy. The most common and highly 

utilised biomass is EFB.  

However, there are several factors that affect the efficiency of 

EFB utilisation. One of them being the technical barrier that 

hinges on its quality and quantity control. Both quality and 

quantity of this biomass are heavily contingent upon weather 
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and season – these natural phenomena are predictable yet 

inevitable. For example, the biomass properties such as 

moisture content is influenced by season; during wet season, 

the moisture content of the bunches would increase, and hence 

longer time would be needed, and additional costs would incur 

for post-processing. Meanwhile, the availability of the palm 

biomass is also depended on the palm fruits harvest yield 

(Figure 1-1) – low harvest yield might fail to fulfil market 

demand, otherwise might lead to over-supply.  

 

Figure 1-1: FFB yield in year 2017 
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Therefore, two of the key issues that intended to be highlighted 

and tackled in the present thesis are: 

i. Technical problem: to propose pre-process identification 

techniques for biomass to overcome problems due to 

natural environmental factors 

ii. Management problem: to suggest appropriate and 

profitable strategy to aid the decision making in biomass 

supply chain management. 

1.1 Problem statement 

a) The lack of incentive to encourage mill owners to commit 

to the biomass quality. In order to maximise the profit, 

they tend to minimise the operation cost by leaving the 

biomass out. Even when the biomass is processed, the 

product is no guarantee of quality and hence might be 

unmatched with the current market demand. 

b) There is an absence or non-development of a 

comprehensive system that integrate the real-time and 

community data comprising location of biomass resources, 

process plant and actual market demand. This leads to 

disparity between supply and demand, failing to make full 

use of the waste and generate greater value for the 

biomass industry as a whole. 
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c) The lack of safety net system to counter measure critical 

risk factors to minimise biomass owner’s losses and 

process deficiency. Risks including natural disaster and 

volatile market price need to be addressed. The most 

significant risks involved including the inevitable natural 

disaster and the extremely volatile market price. 

1.2 Objectives of research 

Malaysian palm biomass industry is currently tackling several 

issues; it is overwhelmed with big data, facing intense 

competitive rivalry within the industry, and constantly grappling 

with environment issues. Hence, a smart management system 

for biomass supply chain is needed to cope with these 

challenges and to improve the process efficiency. Therefore, the 

objectives of this research are: 

a) To manage the factors affecting the efficiency of biomass 

utilisation. 

b) To develop an intelligent decision-making system to aid 

biomass industry entrepreneur in maximising return 

through increasing the utilisation of biomass. 

1.3 Scopes of research 

a) Database construction 

Real-world data consisting of all stages in biomass 

industry workflow ranging from weather, yield, supply, 
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logistic, price to market demand will be collected to build 

a premise for the first trial run of the BSVC system. The 

system will then able to perform intelligent self-learning 

through AI algorithms. Moreover, the selected outputs 

related to industry players’ experience and common 

practice will also be fed into the database for future 

reference. 

b) Integrated framework construction 

This thesis ambitiously proposes an integrated supply 

value chain system through combining different 

frameworks and models that is specifically designed to 

meet unique needs of each part of the system. Chapter 3 

proposes BCI for palm bio-energy estimation, adding 

convenience to sourcing and procurement for suitable 

biomass in generating bio-energy. Chapter 4 presents an 

AI algorithm to perform data-driven price prediction, 

enabling commodity prices to be forecasted. Chapter 5 

introduces game theory approach to analyse decision-

making process within competitive situation involving 

multiple industry players with conflicting objectives. Each 

chapter dedicates a considerable amount of space to the 

discussion of the respective model and framework and of 

how they complement each other in developing the 

integrated BSVC.   
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c) Real-world grounded analysis 

This thesis adopts a grounded approach to closely 

associate with the actualities in the real-world. The data 

collected, used and generated are constantly compared 

to the real-world’s in order to verify the feasibility of the 

models presented. This is especially crucial for the 

realization and implementation of the proposed system to 

contribute to the development of biomass sector as a 

whole. 

1.4 Research methodology and planning 

a) Database construction  

Various databases need to be constructed to provide 

different parameter inputs for the system for decision-

making and process optimisation. These can be done 

through collecting statistical data and inputs from actual 

situation, government departments and mills, plantations 

or plants owners. 

b) Levels of analysis 

i. Biomass physical classification 

Multiple biomass materials are classified based on 

its physical appearance and condition. 

ii. Supply price prediction 

Artificial neural network is used to predict biomass 

price in a specific period of time. 
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iii. Competitive scenario simulation  

Game theory technique is applied into the supply 

chain to manage competition among industry 

players, supplies constraint, and emerging risks 

(man-made or natural) for generating Win-Win 

situation. 

For the details of the methodology, it will be elaborated 

separately in Chapters 3, 4 and 5. 

1.5 Thesis outline 

Being one of the world’s biggest palm oil producer and exporter, 

Malaysian’s biomass industry is gaining its momentum. The 

significant biomass volume growth, which driven by the 

plantation expansion and FFB yield improvement, is projected 

to increase to 85 – 110 million dry tonnes by 2020 (Agensi 

Inovasi Malaysia, 2011).  However, the potential of oil palm 

biomass is yet to be fully unleashed. Issues ranging from 

biomass quality management to lack of integration and 

standardisation in the entire flow of supply chain have hindered 

Malaysian biomass industry to propel to new heights.    

This thesis presents an integrated one-stop system to providing 

the stakeholders in biomass industry an efficient model in 

making the right decision. Chapter 3 explores the biomass 

characteristic for palm bio-energy estimation through a 
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numerical framework. BCI is developed to specifically study the 

physical appearance and properties of various biomass, wherein 

their bulk density and moisture content are calculated and 

classified to provide a more accurate forecast for optimum 

biomass utilisation. By doing so, the relationship between BCI, 

bulk density and moisture content can be unpacked to generate 

a new regression equation. To further improve the overall 

biomass operational management effectiveness, the estimated 

biomass value is then added into computer aided programming, 

which is the AI system.  

Chapter 4 proceeds to propose the incorporation of AI 

methodologies into Malaysian biomass supply chain 

management. AI, or previously known as machine learning, is 

literally intelligence exhibited by machines. It uses computers 

to simulate human intelligence, capable of learning, acquiring 

and classifying information, as well as reasoning to gain insights 

into data.  To date, AI’s application in supply chain management, 

particularly in biomass industry, is still limited. This thesis 

suggests that by applying AI in the biomass industry workflow 

– ranging from the stage of supply and procurement 

management, logistic network and demand forecasting, the 

efficiency and excellence of biomass industry can be 

significantly improved.  
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Chapter 5 focuses primarily on the sustainable oil palm biomass 

procurement through the lens of game theory. The suggested 

approach allows biomass plant owners to gain advantage in the 

purchasing inputs by providing an optimal non-cooperative 

strategy and simultaneously minimising uncertainty in the 

decision-making process.  Game theory is adopted to shed light 

on the industry players’ objective and interest, and more 

crucially their psyche within a competitive business 

environment (Bhattacharya, 2013). In this way, appropriate 

and feasible strategy can be identified effectively without 

consuming much time and resources. Unlike conventional 

optimisation method that optimising the entire process, game 

theory approach is a targeted optimisation process that 

primarily emphasizes on key area and without incurring 

additional cost.   
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2 CHAPTER 2 LITERATURE REVIEW 

2.1 Introduction  

Artificial intelligence (AI) has been widely recognized as a useful 

tool for decades. In 2016, it has even cemented its place in the 

technology mainstream, wherein technology companies such as 

IBM, Google and Amazon are jumping on the bandwagon in a 

race for AI by launching new AI-enabled products. In the field 

of supply chain management, AI is considered as important yet 

disruptive technologies with respect to supply chain strategy 

(SCM World, 2017). 

A few literatures have been explored AI application in supply 

chain management. Min (2010) reviewed records of the success 

of AI implementation in different areas of supply-chain 

management to identify the areas that can gain the most 

advantages from AI. He pointed out that AI systems are 

particularly useful in addressing strategic issues and tackling 

various facets of supply chain problems. He drew a conclusion 

that supply chain management in today’s world has increasingly 

evolved into knowledge management that requires the 

understanding of complicated and interrelated decision-making 

process, hence the importance of the creation of an intelligent 

decision-aid tool. Liu (2015)’s research highlighted on the 

emerging AI known as neural network, which emerged from the 
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modern biology research achievements of human brain tissue, 

targeting at stimulate human brain structure and behaviour. He 

particularly emphasized the capability of neural network in 

terms of self-learning, and hence contributing to the 

optimisation of the supply chain management that consisted of 

multi-level system.   

2.2 Artificial Intelligence Algorithm 

In the early 90s, the advantage of neural network in self-

learning has been applied in the logistic field for autonomous 

vehicle navigation. Pomerleau (2012) utilised such capacity to 

manoeuvre a land vehicle along a single lane on a highway and 

the result was promising. Despite the application of neural 

network in auto-piloting was limited to a certain road condition 

and traffic environment during that time, it nonetheless 

underlined its potential in mimicking human’s cognition.    

Another area that has proven the applicability of neural network 

in supply chain is the lot-sizing and setup process to develop 

hierarchical supply chain planning. For example, it is capable 

determining the capacity needed for setups, estimating optimal 

lot-size for supply chain processes, linking inventory and even 

making scheduling decisions and production planning decisions 

at both lower and higher level (Gaafar and Choueiki, 2000; 

Rohde, 2004). Their studies have shown that neural network is 
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able to integrate interconnected and interdependent supply 

chain processes more effective that the traditional operation 

research techniques.  

In recent years, AI has been specifically applied to the biomass 

industry by researchers. Nonetheless, given that biomass is a 

relatively low-cost commodity compared to other agriculture 

products, related studies merely focused on the issues of 

biomass yield, time constraint and demand fulfilment. Moreover, 

most of the biomass supply chain quantitative model 

construction are targeted on the facet of transportation, 

distribution network, harvesting technique, facility location, 

process optimisation, resource planning and inventory control 

(Behzadi et al., 2017). AI application in the aspect of decision-

making in biomass supply chain management is scarce. 

In fact, to further integrate AI algorithms into biomass supply 

chain management, there are three competitive priorities – 

namely cost, efficiency and supply reliability – needed to be 

highlighted in the analysis. Effective supply chain management 

requires these priorities to be linked with business strategy to 

lead the direction of functional strategies in terms of meeting 

customers’ expectation and remained competitive within the 

biomass market (Torjai et al., 2015). From this perspective, a 

predictive model that is capable of planning, monitoring and 
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controlling (Pinho et al., 2017) is essential to provide tactical 

decision for the biomass business strategic design to ensure its 

competitiveness in both service and products.  

There are few researches of decision-making on pricing-related 

issue have shed light on this matter. For instance, Huang and 

Hu (2018) studied on the pricing strategy and decision-making 

by biofuel producers and farmers, which were assumed to be 

profit-driven. This study, however, has yet to take into 

consideration of the competition amongst farmers or biofuel 

producers, and hence no strategy was involved. This thesis 

argues that competition is inevitable in real-world business; 

competitors’ response is critical to the business itself in terms 

of strategic deployment. This is where the players may 

transform disadvantages into advantages to ensure their 

service and product competitiveness in biomass business.  

Table 2-1 is a categorised list of AI’s implementations in the 

industry and shows that the most commonly utilised algorithm 

within the sector is artificial neural network and the application 

is mainly targeted on biomass material properties prediction. 

Amongst all, there is a sole research (paper 9 in Table 2-1) 

focusing on biomass price prediction through comparing the 

most cost-effective raw material for electricity generation.  
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Table 2-1: List of recent biomass artificial intelligence research 

No Year  Algorithm Prediction Model Reference 

1 2017 Artificial Neural Network biomass material components  (Castro et al., 2017) 

2 2017 Fuzzy Logic, Artificial Neural Network biomass moisture content  (Rico-Contreras et al., 2017) 

3 2017 Artificial Neural Network biomass heating value  (Ozveren, 2017) 

4 2016 Artificial Neural Network biomass heating value  (Uzun et al., 2017) 

5 2016 Fuzzy Logic, Artificial Neural Network soil moisture content for irrigation schedule  (Tsang and Jim, 2016) 

6 2016 Artificial Neural Network, Fuzzy Logic biomass heating value  (Akkaya, 2016) 

7 2016 Artificial Neural Network biomass quantity  (Vahedi, 2016) 

8 2015 Artificial Neural Network, Genetic Algorithm optimisation process  (Das et al., 2015) 

9 2014 M5P electricity price from biomass  (Azofra et al., 2014) 

10 2014 Artificial Neural Network gasification performance  (Mikulandrić et al., 2014) 

11 2008 Artificial Neural Network biomass yield  (Günay et al., 2008) 
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In general, the implementation of the prediction model has 

shown high accuracy and precision. 

It has contributed to a generalised model to be widely apply in 

the biomass industry. However, the application is still limited to 

specific task-oriented project and has yet to be integrated into 

a comprehensive biomass framework specifically of supply 

chain management for further development.  

2.3 Biomass Supply Value Chain 

Value chain framework is a business analysis tool to consider 

and identify the manner in which value is added in the different 

phases of transforming inputs to outputs from conception to its 

end use and beyond (Porter, 2008). Through analysing each 

involved activity along the chain, value adding action is 

achieved either through cost reduction or increase 

differentiation. In the end of chain process, business firm is 

expected to gain additional final profits and benefits.  Drawing 

from this inspiration, a value chain framework (Rudi et al., 2017) 

that targets on biomass supply chain is proposed. The proposed 

framework is BSVC (Figure 2-1) which aims to create additional 

value on each process involved in the biomass supply chain. 

The ultimate goal of the anticipated framework is to further 

promote and improve the overall performance of the industry. 

In fact, given that biomass is a value-added commodity, 
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biomass inputs are not merely a part of ‘supply chain’ but more 

to ‘value chain’ that involves value-creation process. 

By dividing the whole biomass supply chain into discrete module, 

value chain analysis can be targeted on each process more 

efficiently.  Some of the modules may cover a few sub-modules 

and different modules may interact with each another despite 

such interaction might not necessary in a sequential order. 

On the initial phase of sourcing for raw biomass, the 

classification of the biomass characteristics (Tang et al., 2014) 

enables the right material to be fed in can contribute to cost 

saving and simultaneously increase the process efficiency. Once 

the desired biomass is being identified, the material can be 

transported to a suitable storage facility without delay. The 

logistics network or supply stream can be optimised to reduce 

transportation cost and storage handling charges (Hong et al., 

2016). 

These processes take place in parallel with the procurement 

action. Biomass procurement activity focuses on the best 

purchasing strategy to outsmart the other competitors in the 

same region. By analysing and choosing the appropriate 

strategy, the logistics arrangements for biomass to be 

transported from collection point to storage facility can be more 

efficient and time-saving (Tang et al., 2017).  
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Figure 2-1: Biomass Supply Value Chain (BSVC) 

Before biomass enters the plant for further operation process, 

the material will need to go through quality check and filtering 

(Lim and Lam, 2016). Then, the filtered biomass will be 

processed as a desired feedstock as required by the plant 

specification. Other process such as drying, sizing and 

packaging will be taken place at this stage as well. The 

complexity of the process depends on the types of technology 

being adopted. 

After standard feedstock being fed into the plant process, it will 

go through the conversion process to produce the desired 

outputs. Therefore, the variety of the outputs determines the 

choices of which technology is being used in the plant. At this 

stage, diversification of products (Abdulrazik et al., 2017) is 

pivotal for multiplying profits for the biomass industry. The final 
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success, nonetheless, is relied on a well-planned marketing 

strategy to address the market demand. 

In terms of the plant process technology, the optimised 

technology needs to be identified to minimise waste and 

increase output (Ng and Lam, 2014). Some of the existing 

technologies such as combustion, pyrolysis, CHP and so forth 

can be revisited or even a combined process can be proposed 

to obtain higher efficiency model. For instance, a hybrid process 

model can be implemented to combine the advantages of 

different technologies to achieve the highest productivity.  

Process optimisation is closely associated with the 

establishment of innovative technology or process modification, 

and this requires additional funding and investment. Here, both 

business planning model and financial service come into play. 

The prospect of the project, risk management (Yatim et al., 

2017) and estimated production, market acceptance, 

investment payback period and other considerations need to be 

analysed in advance. This is crucial to ensure that minimal 

investment cost can yield high return in a short period of time.  

Last but not least, the proposed BSVC is incomplete without 

taking into consideration of the sustainability issue of the 

greater context (How and Lam, 2017). The value chain is not 

merely adding up additional economic value in the end but is 
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essentially about generating value in the sustainability aspect. 

Environmental protection and sustainability has become a 

priority interest in many industries nowadays, and it is even of 

great significance for the biomass industry. Biomass industry 

itself is inherently derivative of a value-added waste-to-energy 

process. Besides making profit from the products, the whole 

chain expects to be low emission and low waste to achieve 

sustainability goal. 

The present thesis intends to develop an intelligent framework 

for palm biomass to align with BSVC approach. The main 

objective is to improve the biomass procurement module 

(Figure 2-2).  

 

Figure 2-2: Analysis target module 

In Chapter 3, BCI is introduced to identify the physical structure 

and potential quality of the biomass. Based on this information, 

procurement team can fine-tune their strategy payoff in 

response to competitor’s action. The application game theory in 

Analysis target 

module 
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Chapter 5, can potentially offer the best possible strategy for 

the upstream supply chain. Next, the biomass cost price can be 

predicted via artificial neural network model by taking into 

account the external environment factors. If the predicted price 

is unacceptable at that particular time-frame, BCI is able to 

refer another suitable biomass. New biomass characteristics will 

again be fed into the game theory strategy formulation, and 

new analysis will be done. Adjusted strategy profile is re-

defined again to meet with the new requirement. The detailed 

literature review of BCI and game theory will be elaborated in 

respective chapters. Therefore, the whole framework (Figure 2-

3) is a dynamic analysis system wherein one’s output is another 

one’s input. This thesis suggests that a dynamic, adaptive and 

resilient system can be the solution to tackle and manage the 

challenges from the ever-changing biomass industry. 

In summary, the ultimate goal of BSVC is to create both 

measurable and unmeasurable, tangible and intangible “values” 

for the biomass industry in specific, and the society as a whole.  

Apart from the monetary profit that matters, the proposed 

framework also put considerable emphasis on the long-term 

benefit to the environment and society well-being. Sustainable 

framework is the future of biomass industry; it is moreover the 

life-supporting system for the society. 
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Figure 2-3: Process flow of smart system 
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3 CHAPTER 3 BIOMASS CHARACTERISTICS 

INDEX: A NUMERICAL APPROACH IN PALM 

BIO-ENERGY ESTIMATION 

3.1 Introduction 

Biomass is widely used as an alternate fuel source for power 

generation. Biomass is transformed to reusable matter from 

waste especially agricultural residues. Thermal processes such 

as gasification, pyrolysis, combustion may be used to convert 

biomass into specific form (e.g. pellet, bulk, and granule) for 

energy generation purpose via combine heat and power, co-

firing and so forth.  After the development of two decades, 

biofuel has evolved from the first to the third generation. First 

generation biofuel is obtained directly from traditional food 

feedstock such as sugarcane and corn or direct burning of solid 

biomass. As less processing technology is involved, the quantity 

of first generation biofuel is limited and is not a cost-effective 

solution for the environment. Thus, second generation biofuel 

is proposed, with a wide range of feedstocks available through 

forestry and agricultural residues, energy crops, food waste, 

industrial and municipal wastes. Due to different conditions of 

the raw materials in terms of moisture content and size, post 

processing (shredding, densifying, pulverizing and handling) 
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and conversion technologies (gasification, pyrolysis, 

combustion) are needed before these raw materials can be used 

as fuel sources. The advancement of the processing technology 

has increased the amount of fuel for power generation plant as 

compared to the first generation biofuel. For example, 

gasification of biomass converts the maximum available energy 

content to increase the efficiency of power generation (Fodor 

and Klemeš, 2012). In addition, the utilisation of the above-

mentioned residues has positive effect on the environment, 

considering the amount of waste that directly enters the soil can 

be significantly reduced. The third generation biofuel is known 

as advanced biofuel (IEA, 2012), which is originated from algae 

biomass and non-food feedstock. It is important to note that 

the third generation biofuel is facing challenges from technical, 

economical and geographical issues. Notwithstanding, the 

development of biofuel shows little progress in tropical 

developing countries such as Southeast Asia countries, and is 

predominantly limited to first generation biofuel production. 

Despite the abundance of forest and agriculture residues, there 

is a lack of mature technologies to further develop new biofuel. 

Compared to European countries wherein their natural 

resources are relatively scarce and facing severe weather 

threats – who have been sprinting to boost biofuel 

development; biofuel development in Southeast Asian countries 
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on the other hand, remains stagnant at an early stage. The 

varied and rich profusion of bio residues that are readily 

available have yet to be fully utilised for biofuel projects but are 

directly burnt as fuel without prior process (Goh and Lee, 2010).  

3.2 Literature Review 

In Malaysia, huge amount of biomass wastes is available from 

the palm oil mill. Among those residues, the most reusable 

matters are EFB and PKS (Ng et al., 2012). The factor that 

determines the usefulness of these biomass is their calorific 

value. Higher calorific value indicates that it is more efficient as 

an energy source (Everard et al., 2012). Another aspect of the 

biomass that should be taken into account is their physical 

characteristics, which consisted of the moisture content and 

bulk density (Figure 3-1). 

 

Figure 3-1: Biomass characteristics relationships mapping 
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Both of these properties are interrelated and are linked to the 

structure and physical appearance of biomass. While moisture 

content is the quantity of water that contains in the biomass 

material, bulk density is defined as the ratio of biomass mass 

over its volume. These characteristics affect the operational 

aspects of a biomass supply chain (Annevelink et al., 2017) 

such as its collection, handling, storage and logistics. There are 

several points needed to be noted. First, raw biomass is 

associated with high moisture content, low bulk density and 

lower calorific value. Low bulk density leads to the difficulties in 

material handling, storage, transportation (Wu et al., 2011). 

For instance, biomass of large particle size biomass such oil 

palm trunk requires pre-treatment of sizing or drying, special 

handling during collection, suitable storage facility and 

optimised transportation route to the process facility. This thus 

increase the total cost incurred of the biomass supply chain. 

Second, higher moisture content decreases the calorific value 

of biomass (Chiew et al., 2011), hence different conversion 

technologies will be selected for cost saving purpose in the 

supply chain (Elbersen et al., 2017). Moreover, when the bulk 

density of oil palm EFB is low, the moisture content will then be 

high. This makes EFB more difficult to be compacted and 

increases its total volume; thus causing difficulties in storage 
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and transportation (Miccio et al., 2011). Besides, bulk density 

changes with types, size and shape of the biomass itself. As 

shown from Figure 3-2 and 3-3, the appearance and shape of 

raw EFB is completely different from the shredded bunches. 

Therefore, bulk density of the  dry raw EFB is lower than that of 

the shredded EFB as its smaller particle size of occupies lesser 

space with same weight of mass (Basu and Basu, 2013). 

  

Figure 3-2: Raw EFB 

 

Figure 3-3: Shredded fiber from EFB 
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Apart from moisture content, air volume also influences the bulk 

density. Free air space (FAS) is measured for solid organic 

waste during composting process. The distribution of air in the 

waste will affects its performance of composting (Druilhe et al., 

2013). FAS represents the ratio of air volume over global 

volume (air, water, solid). A pycnometer will be used for FAS 

measurement. At higher bulk density, the air voids will be 

displaced as the solid becomes more compacts. This shows a 

linear relationship between FAS and bulk density for manure 

compost (Agnew et al., 2003). There are numerous studies 

relate air porosity to bulk density (Ruggieri et al., 2009) and 

the relationships are established for different biomass types. 

Therefore, it is possible that biomass have air voids trap inside 

the material itself especially for fibrous biomass like EFB. The 

space in between the particle of biomass material is a perfect 

spot for air voids. 

The analysis of moisture content and bulk density have been 

reported in different studies, depending on the application areas 

(refer to Table 3-1), either for the pre-treatment process or final 

product (pellet for most cases). Note however that the focus of 

those research works in Table 3-1 were mainly targeted on the 

performance of final product rather than the raw biomass itself. 

There is no analysis on both properties regarding raw biomass 

appearance before the pre-treatment stage. The appearance of 
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raw biomass has essential information that determines the 

handling, transportation and storage issues (Lam et al., 2013). 

This information can be feed into biomass supply chain for the 

purpose of resource planning and optimisation (Lam et al., 

2011). A well-designed supply chain plays an important role to 

achieve the efficiency in cost and energy utilisation (Klemeš et 

al., 2013). 

Secondly, acquisition of bulk density and moisture content are 

obtained through empirical methods such as the British 

Standard (“Solid Biofuels — Determination of Bulk Density”, 

2009). Results from those methods may vary from sample to 

sample and the consistency is affected by handling procedures. 

There is no standard or reference value of bulk density and 

moisture content for biomass such as EFB. Most of the relevant 

researches merely focus on either one of the characteristics 

such as bulk density, moisture content or component 

breakdown of biomass. There is a lack of comprehensive and 

all-rounded analysis that integrating the physical properties of 

the biomass to generate. 

For example, Chevanan et al. (2010)’s research, focuses on the 

characterization of bulk density of  switchgrass, wheat straw 

and corn stover, and then proposes separate relationships 

model for each respective biomass.  
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Table 3-1: Bulk density and moisture content research overview on biomass 

Application area Measured characteristics References Scope of research 

Bio-Fuel Bulk density (Antonio Bizzo et al. 

2014) 

The generation of residual biomass during the production of bio-ethanol from 

sugarcane, its characterization and its use in energy production 

Bulk Density Determination Wet bulk density, dry bulk density (P. S. W. Lam et al. 

2008) 

Bulk density of wet and dry wheat straw and switchgrass particles 

CHP Plant Moisture content, calorific value (Chiew, Iwata, and 

Shimada 2011) 

System analysis for effective use of palm oil waste as energy resources 

Briquette Moisture content, bulk density, calorific value (Y. Liu et al. 2014) Study of briquetted biomass co-firing mode in power plants 

Classification Moisture content, bulk density, ash content, 

particle dimension and size distribution 

(Shankar Tumuluru et 

al. 2011) 

A review on biomass classification and composition, co-firing issues and pre-

treatment methods 

Combustion Bulk density, moisture content (Elmay et al. 2013) Energy recovery of date palm residues in a domestic pellet boiler 

Compaction Moisture content, bulk density, particle density (Mani, Tabil, and 

Sokhansanj 2004b) 

Evaluation of compaction equations applied to wheat straw, barley straw, corn 

stover and switchgrass 

Compaction Bulk density, particle size (Chevanan et al. 2010) Bulk density and compaction behavior of knife mill chopped switchgrass, wheat 

straw, and corn stover 

Densification Moisture content, bulk density, durability, percent 

fines, calorific value 

(Tumuluru et al. 2011) A review of biomass densification systems to develop uniform feedstock 

commodities for bioenergy application 

Densification Moisture content, particle size, bulk density (Kaliyan and Morey 

2010) 

Densification characteristics of corn cobs 
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Continue from Table 3-1 

Application area Measured characteristics References Scope of research 

Fly Ash Properties Bulk density (Jaworek et al. 2013) Properties of biomass vs. coal fly ashes deposited in electrostatic precipitator 

Grinding Performance Moisture content, bulk density, particle density (Mani, Tabil, and 

Sokhansanj 2004a) 

Grinding performance and physical properties of wheat and barley straws, corn 

stover and switchgrass 

Pelletizing Particle density, bulk density, moisture, crushing 

resistance, compression resistance 

Zamorano et al., 2011 A comparative study of quality properties of pelletized agricultural and forestry 

lopping residues 

Pelletizing Bulk density Liu et al., 2013 The properties of pellets from mixing bamboo and rice straw 

Pelletizing Moisture content, bulk density, true density, 

durability 

(Theerarattananoon et 

al. 2011) 

Physical properties of pellets made from sorghum stalk, corn stover, wheat straw, 

and big bluestem 

Pelletizing Moisture, bulk density (Samuelsson et al. 

2009) 

Effect of biomaterial characteristics on pelletizing properties and biofuel pellet 

quality 

Pelletizing Bulk density, particle density, durability, moisture 

sorption rate and moisture sorption isotherm 

(Fasina 2008) Physical properties of peanut hull pellets 

Physical Characterization Bulk density, particle density (M. R. Wu, Schott, and 

Lodewijks 2011) 

Physical properties of wood pellets, wood chips and torrefied pellets 

Pyrolysis Moisture content (Abdullah, Sulaiman, 

and Gerhauser 2011) 

Characterization of oil palm empty fruit bunches for fuel application 

Physical Characterization Bulk density, apparent density, true density and 

moisture 

(Cardoso et al. 2013) Physical characterization (density, particle size and shape distributions) of sweet 

sorghum bagasse, tobacco residue, soy hull and fiber sorghum bagasse particles 
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Continue from Table 3-1 

Application area Measured characteristics References Scope of research 

Pelletizing Compressive force, particle size and moisture 

content 

(Mani, Tabil, and 

Sokhansanj 2006) 

Effects of compressive force, particle size and moisture content on mechanical 

properties of biomass pellets from grasses 

Torrefaction Moisture content, gross calorific value, weight, 

volatile matter, fixed carbon, bulk density 

(Patel, Gami, and 

Bhimani 2011) 

Improved fuel characteristics of cotton stalk, prosopis and sugarcane bagasse 

through torrefaction 

Torrefaction Moisture content (Sadaka and Negi 2009) Improvements of biomass physical and thermochemical characteristics via 

torrefaction process 

Torrefaction Moisture content, ash (Sabil et al. 2013) Effects of torrefaction on the physiochemical properties of oil palm EFB, mesocarp 

fiber and kernel shell 
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However, there is no consolidated model of characterization for 

various biomass proposed. 

In this thesis, BCI is proposed to correlate the physical 

appearance of biomass to its properties - bulk density and 

moisture content. Numerical method is used to perform BCI 

calculation. The methodology is discussed in detail in the 

following section. 

3.3 Methodology 

Numerical method is chosen to analyse the biomass physical 

properties. It is an efficient method that saves time in 

understanding the relationships between moisture content and 

bulk density of different biomass, as compared to analytical 

method. Regression analysis is performed on the BCI curve. 

Prediction can be obtained easily once the BCI curve has been 

established. The work flow diagram of BCI is represented in 

Figure 3-4 while the detailed calculation and the BCI curve 

establishment is presented in the next section.  

3.3.1 Relationships between bulk density and moisture 

content 

Raw biomass materials are exposed to the open-air 

environment, its moisture content is inherently higher. Wet 

biomass has a larger volume especially of fibrous biomass like 

EFB. The more pore space in the biomass will lower the value 

of biomass bulk density. Sims (2002) provided an intuitive 



   

33 
 

formula that related bulk density and moisture content of a 

biomass (Equation 3-1). 

Bulk Density (
kg

m3
) =

13600

(100−%m.c.w.b)
                                         (3-1)    

Constant value of 13,600 is only applicable for wood chips in 

Sims (2002)’s research. A more generalized equation with a 

constant parameter of k applies for different types of biomass. 

Bulk Density (
kg

m3) =
k

(100−%m.c.w.b)
                                         (3-2) 

Note that the constant k  is a reference index for various 

appearance of biomass and is proposed as BCI. 

3.3.2 BCI calculation 

A systematic numerical approach proposes: 

a) Database construction 

To obtain a series of BCI, a complete biomass database is a 

prerequisite. Various forms of biomass with different bulk 

densities and moisture contents are needed to be obtained 

prior to establishment of the biomass database that covers 

on every biomass available in the market of different 

appearance and shape. 

b) BCI calculation 

From the above database, BCI can be calculated from bulk 

density and moisture content using Equation 3-3. 

BCI = Bulk Density × (100 − %m. c. w. b. )                          (3-3)                                                              

c) Relationships among BCI, bulk density and moisture content 
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After a full set of BCI is obtained, a graph is plotted to show 

the relationships between BCI and bulk density. From the 

graph, linear regression is best fitted on the plots. A new 

regression equation is obtained through the fit.  

 

 

Figure 3-4: Flow chart of BCI calculation 

3.4 Case study 

A case study is demonstrated on a set of biomass with different 

appearance and shapes. The database comprises most of the 

commonly found biomass in the market. 

Table 3-2 shows the bulk density and moisture content for all 

the commonly found biomass. Average value of bulk density 

and moisture content are calculated for BCI in Equation 3-3.  

A linear relationship is shown by plotting the BCI values and the 

average bulk densities in a graph. Figure 3-5 shows the linear 

regression fit on the plotted data. The best fit linear regression 
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equation is derived as shown in Equation 3-3 with R-squared 

value of 0.8675. 

𝑦 = 90977𝑥 − 6115.10                                                       (3-3) 

 

   

Figure 3-5: BCI vs bulk density 
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Table 3-2: Biomass characteristics 

Biomass Types 
Moisture 

(Min) 
Moisture 

(Max) 
Average 
Moisture 

Bulk Density 
(t/m3, Min) 

Bulk Density (t/m3, 
Max) 

Average Bulk 
Density (t/m3) 

BCI 

Air dry wood chips 20.00 % 25.00 % 22.50 % 0.190 0.290 0.240 18,600 

Green wood chips 40.00 % 50.00 % 45.00 % 0.280 0.410 0.345 18,975 

Kiln dry wood chips 10.00 % 15.00 % 12.50 % 0.190 0.250 0.220 19,250 

Empty Fruit Bunch  15.00 % 65.00 % 40.00 % 0.160 0.550 0.355 21,300 

Kiln dry wood chunks 10.00 % 15.00 % 12.50 % 0.200 0.310 0.255 22,313 

Air dry wood chunks 20.00 % 25.00 % 22.50 % 0.240 0.370 0.305 23,638 

Green wood chunks 40.00 % 50.00 % 45.00 % 0.350 0.530 0.440 24,200 

Mesocarp Oily Fiber  30.00 % N/A 30.00 % N/A N/A 0.305 21,350 

Kiln dry sawdust 10.00 % 15.00 % 12.50 % 0.240 0.370 0.350 30,625 

Fresh Fruit Bunch  40.00 % N/A 40.00 % N/A N/A 0.480 28,800 

Green sawdust 40.00 % 50.00 % 45.00 % 0.420 0.640 0.530 29,150 

Straw bales 7.00 % 14.00 % 10.50 % 0.200 0.500 0.350 31,325 

Green roundwood 40.00 % 50.00 % 45.00 % 0.510 0.720 0.615 33,825 

Air dry roundwood 20.00 % 25.00 % 22.50 % 0.350 0.530 0.440 34,100 

Ash  0.00 % N/A 0.00 % N/A N/A 0.437 43,700 

Sterilized Fruit  30.00 % N/A 30.00 % N/A N/A 0.660 46,200 

Fruitlets  30.00 % N/A 30.00 % N/A N/A 0.680 47,600 

Wood pellets 7.00 % 14.00 % 10.50 % 0.500 0.700 0.600 53,700 
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Continued from Table 3-2 

Biomass Types 
Moisture 

(Min) 
Moisture 

(Max) 
Average 
Moisture 

Bulk Density 
(Tonne/m3, Min) 

Bulk Density 
(Tonne/m3, Max) 

Average Bulk 
Density 

(Tonne/m3) 
BCI 

Press expelled cake  12.00 % N/A 12.00 % N/A N/A 0.650 57,200 

Palm Nuts  12.00 % N/A 12.00 % N/A N/A 0.653 57,464 

Cracked mixture  12.00 % N/A 12.00 % N/A N/A 0.653 57,464 

Dry EFB Cut Fiber  10.00 % N/A 10.00 % N/A N/A 0.710 63,900 

Shell  12.00 % N/A 12.00 % N/A N/A 0.750 66,000 

Coal 6.00 % 10.00 % 8.00 % 0.700 0.800 0.750 69,000 

Wood briquettes 7.00 % 14.00 % 10.50 % 0.900 1.100 1.000 89,500 
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3.5 Analysis 

The validity of calculated BCI values can be verified through 

comparison with the actual field data. As shown from Table 3-

3, the error differences are relatively small for selected 

biomass. The highest differences are observed for EFB and FFB, 

which are 52.07 % and 33.79 % respectively. This is mainly 

due to the nature of these biomass that have a broad range of 

moisture content (Omar et al., 2011). 

Table 3-4 shows that the calculated BCI value for EFB varies 

from 5,600 to 46,750, due to different moisture contents. 

However, for the whole spectrum of biomass material, the 

average value of moisture content and bulk density are used. 

The BCI curve fit linearly and without any serious distortion as 

the R2 value is determined as 0.8675 (see Figure 3-4). 
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Table 3-3: Comparison of collected and BCI forecast bulk 

density 

Oil Palm Biomass 
Collected 

data 
(t/m3) 

Forecast 
from BCI 
(t/m3) 

Difference 

(t/m3) 
Difference 

Empty Fruit Bunch  0.628 0.301 0.327 52.07 % 

Mesocarp Oily Fiber  0.257 0.302 0.045 17.51 % 

Fresh Fruit Bunch  0.580 0.384 0.196 33.79 % 

Ash  0.550 0.548 0.002 0.36 % 

Sterilized Fruit  0.640 0.575 0.065 10.16 % 

Fruitlets  0.640 0.590 0.050 7.81 % 

Press expelled cake  0.550 0.696 0.146 26.55 % 

Palm Nuts  0.653 0.699 0.046 7.04 % 

Cracked mixture  0.535 0.699 0.164 30.65 % 

Shell  0.650 0.793 0.143 22.00 % 

 

Table 3-4: Calculated BCI for empty fruit bunch (EFB) 

Moisture Content Bulk Density (t/m3) BCI 

65.00 % 0.160 5,600 

15.00 % 0.550 46,750 

 

  

Figure 3-6: Clustering on similar biomass shapes 
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BCI is capable of performing a cluster forecast on multiple 

biomass materials. Classification of biomass type can 

potentially be used on industrial application (Lam et al., 2013). 

Figure 3-5 demonstrates that BCI and bulk density values are 

lined up on a bar chart to reflect its dependency. It can be 

observed from the clustering in red circle on the different 

biomass, as well as the bulk density values. Referring to Figure 

3-3-5, all chips materials have a similar range of BCI, from 

18,600 to 19,250. Different type of chunks also has closer range 

of BCI value. This proposes that biomass with similar shape 

have a relatively similar bulk density values as reflected on BCI 

value, and thus the group of biomass can be identified by simply 

referring to the clustered BCI value.  In other words, BCI can 

forecast the types and physical appearance of biomass based 

on a narrow BCI range. From there, bulk density and moisture 

content are predictable. 
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Figure 3-7: Calorific Values (kJ/kg) versus Moisture Content (% 

wt./wt.) for palm empty fruit bunches (Aziz et al. 2011) 

As demonstrated above, specific BCI value is able to provide 

the information of bulk density (Figure 3-5) and moisture 

content of the biomass. In addition, calorific value can also be 

determined through the relationships with moisture content. 

Aziz et al. (2011) reported that the relationships between heat 

value and moisture content are not necessary in linear form 

especially for empty fruit bunches.  The results in Table 3-5 is 

cross checked with experimental and online biomass database. 

Table 3-5: Calorific value comparison for EFB 

Moisture Content 
Aziz et al. (2011)  

research 
BOM calorimeter 

ECN Phyllis 2 

(“Phyllis2, 
Database for 
Biomass and 

Waste,” 2017) 

5.00 % 17.17 MJ/kg 18.20 MJ/kg 15.86 MJ/kg 

60.00 % 9.13 MJ/kg 6.86 MJ/kg 6.68 MJ/kg 
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Tables 3-5 verifies that Figure 3-6 is reliable on predicting 

calorific value of EFB by referring to its moisture content. 

Therefore, BCI can be enhanced to cover the information of 

calorific value. Incorporation of calorific value, moisture content 

and bulk density into BCI value creates a robust tool in biomass 

supply chain for physical properties estimation. 

3.6 Demonstration of application case study 

3.6.1 BCI alternative sourcing  

In conventional biomass process design, the value of bulk 

density and moisture content for a given biomass material are 

needed in the system efficiency calculation. In this case study, 

it can be predetermined by referring to the specific BCI. Similar 

appearance and shape of the material will yield a specific range 

of BCI value. For instance, a co-firing plant (Figure 3-7) is 

planning to source green wood chunks as an alternate fuel as it 

is widely available for this particular period. Before purchasing 

this feedstock, the energy density can be estimated in the 

process. By referring to green wood chunks BCI (24,200), bulk 

density is estimated to be 350 kg/m3 (using the linear 

regression equation from Figure 3-4) with average moisture 

content of 45 %.  Typical heat value for 45 % moisture content 

green wood chunks is 10 MJ/kg (refer to Figure 3-8). Therefore, 

the estimated energy density is 3,500 MJ/m3. From the 
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estimated energy value, the management can then decide 

whether the purchase of this material is economical or not, in 

terms of storage cost and efficiency for the plant. Without going 

through the hassle of experimentation on the samples for bulk 

density and moisture content, the design objective can be 

achieved. 

 

Figure 3-8:  Flow diagram of alternative sourcing using BCI 
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Figure 3-9: Typical biomass higher heating value and lower 

heating value versus moisture content (Ciolkosz, 2010) 

3.6.2 Biomass materials filtering using BCI 

In terms of biomass management planning, bulk density or 

moisture content of the biomass need to be identified in 

advance for the ease of transportation and to maximise the 

output in the power plant. This is because different level of bulk 

density or moisture content of biomass requires different types 

of treatment and cost. For instance, wet and large volume 

biomass occupy more space and thus causing higher 

transportation cost. Also, high moisture content biomass has a 

lower calorific value (Figure 3-9) and thus decreasing the output 

efficiency of the plant.  

By referring to the BCI, the desired value of bulk density or 

moisture content can be obtained conveniently. For example, 
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when a biomass power generation plant (Figure 3-9) 

experiences low feedstock problem with their existing fuel - 

straw bales and the management wishes to source an 

alternative feedstock as fuel source for replacement, the BCI 

will come useful. The BCI of straw bales is given as 31,325 in 

Table 3-2. The latter also shows that the green sawdust, kiln 

dry sawdust, air dry roundwood and green roundwood are 

possible substitute which fall under BCI value of 30,000. 

Obviously, kiln dry sawdust is the most suitable replacement as 

its bulk density (350 kg/m3) and moisture content (12.50 %) 

are closer to those of straw bales (350 kg/m3, 10.50 %). 

Alternatively, air dry roundwood will be the next suitable 

substitute (440 kg/m3, 22.50 %) if straw bales are not 

available. In terms of management, the procurement of the 

suitable material can be done in an accurate manner without 

further delays. 
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Figure 3-10: Biomass material filtering illustration 
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3.7 Conclusion 

This chapter has proposed a preliminary framework for BCI in 

forecasting the physical properties of various biomass. A 

numerical framework of BCI is developed to represent the 

appearance and shapes of different biomass materials. By 

referring to the correct BCI of biomass material, the forecast of 

bulk density and moisture contents can be obtained effectively 

without running any time-consuming experiments. These 

values are critical to the amount of biomass fuel being 

transferred and the generated output power from the plant. 

Thus, it improves the overall biomass management process 

design and development. An efficient design means more 

output, less waste. 
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4 CHAPTER 4 PREDICTION MODEL FOR PALM 

KERNEL SHELL PRICE 

4.1 Introduction 

In BSVC, the simplest assessment of the goal is the profit 

generated at the end of the chain. In this context, the profit is 

basically defined by the selling price of the output or product. 

Therefore, the development of a reliable price prediction 

mechanism will be a crucial module for the intelligent 

procurement system. PKS is chosen as the analysis target given 

that it has the highest heating value among palm biomass 

(Wahid et al., 2017). Besides, the shell is also used as an 

alternative fuel source for both local and export market. 

Therefore, it is a valuable commodity to the palm biomass 

industry (Wu et al., 2017). 

4.2 Background 

This chapter conducts a case study focusing on Johor state of 

peninsular Malaysia. Johor has the largest planted oil palm area 

in peninsular Malaysia with a land bank totalling 745,630 

hectares (MPOB, 2017) (13 % of total planted area in whole 

Malaysia) . The topography of Johor state is a flat terrain (Figure 

4-1) compared to others state in peninsular Malaysia. Such 

terrain is suitable for case study analysis as palm biomass 
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materials are more accessible. Transportation difficulties are 

greatly reduced due to flatter terrain and direct route to the mill. 

Therefore, handling cost is reduced. For analysis purpose, route 

condition is not taken into cost calculation considering that its 

landscape is in fact transportation friendly. 

 

Figure 4-1: Johor state topography 

4.3 Input database construction 

Many of the AI prediction models are using direct related 

component of the subject to create formula. However, the price 

of PKS price is not fixed but fluctuating from time to time. Hence, 

more parameters should be considered in creating formula. 

Although most of the parameters might not be directly related, 

it is nonetheless critical enough to influence the outcomes. 

Given that the adopted parameters are cross-disciplinary data; 

preliminary data filtration (Figure 4-2) is necessary to ensure 

the most accurate data is being fed into prediction model. 
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Market price has been chosen as the output subject because 

pricing plays a substantial role in biomass procurement activity. 

There are few factors to be taken into consideration for the 

predictive model simulation. 

a) Weather 

The climate in Malaysia is typically hot and humid 

throughout the year which is affected by two monsoon 

seasons.  The relatively higher rainfall during monsoon 

season would influence the quality of palm biomass 

especially the EFB due to its fibrous nature (as reported 

in Chapter 3) which can absorb a huge amount of 

moisture. Biomass with high moisture contents is less 

useful as the calorific value is low, yet at the meantime it 

is charged with higher handling and transportation cost. 

Moreover, high moisture content biomass requires 

additional pre-processing procedure such as drying before 

turning into usable input for biomass plant. Therefore, 

another cost incurred. 

b) Outdoor temperature 

The yearly average temperature in Malaysia is above 

30 °C. This temperature is suitable for drying the biomass 

naturally (Röser et al., 2011). In this way, the biomass 
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moisture contents can be reduced prior to pre-processing 

stage. 

c) Rainfall 

The moisture contents of biomass material would increase 

during rainy season as the biomass is stored in open air 

environment. As mentioned above, the moisture content 

is an indicator of the biomass quality; high moisture 

content would deal a blow to the selling price and market 

acceptance of the biomass. In contrast, low moisture 

biomass has high calorific value and requires less pre-

processing, and therefore expected to fetch higher price. 

It is worth mentioning that higher profit margin is the goal 

of procurement process. 

d) Yield 

Available palm biomass quantity can be estimated 

through the amount of FFB; the available biomass 

quantity is proportional to the quantity of FFB. EFB and 

PKS are the by-products of palm oil milling process. 

e) Fuel price 

The fluctuation of diesel fuel price plays a key role in 

determining the transportation cost of biomass. What is 

more, the longer the distance, the higher the cost. This 

analysis assumes that the biomass collection points are 

all within 100 km radius (most of the collection points are 
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palm oil mills as the palm biomass is a direct waste output 

from it). This is to standardise the transportation cost, 

ignoring the route condition and collection point location 

as these two factors are not the major focus in this 

analysis. 

f) Currency 

Malaysia exchange rate to US dollars would affect the 

selling price of palm biomass. Currently, PKS is exported 

to Japan as an alternative fuel. The rate does not merely 

influence the selling price range, but also affects the 

market demand of biomass materials. 

g) Handling and transportation 

Palm biomass is the waste output of milling process. 

There are three common palm biomass: mesocarp fibre, 

EFB and PKS. The collection point of these materials is the 

mill itself, which is more accessible compared to other 

estate location. Due to its nature of waste, the biomass is 

not properly stored.  The waste is usually left on the open-

air ground, which is susceptible to rainfall. This will 

greatly affect the quality of the biomass and increase the 

difficulties of handling (Sansaniwal et al., 2017) and cost 

of transportation (Gracia et al., 2014). 

h) PKS’s price 
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The subject of the analysis is the selling price of the PKS. 

The shell is primarily exported as an alternative fuel. In 

comparison to the EFB, which is not sold as a commodity, 

the price of PKS is rather fixed. 

 

Figure 4-2: Input database selection flow 

4.4 Methodology 

4.4.1 Quasi-Newton 

Quasi-Newton method is an optimisation method to find zeroes 

or local minima or maxima of a given function. In neural 

network, this method is used as a training algorithm to update 
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weight of each neuron to minimise the loss function of the 

network. Quasi-Newton is an alternate version of Newton’s 

method, but it has faster computation and cheaper 

computational cost. 

The steps are: 

a) Calculate 

𝑥(𝑘) = 𝑥(𝑘−1) + 𝑡∆𝑥                                                   (4-1) 

where 

∆𝑥 = −𝐻𝑘−1
−1 𝛻𝑓(𝑥(𝑘−1))                                               (4-2) 

b) Update 𝐻𝑘  

Using Broyden-Fletcher-Goldfarb-Shanno (BFGS) update 

(Broyden, 1970) 

𝐻𝑘 = 𝐻𝑘−1 +
𝑦𝑦𝑇

𝑦𝑇𝑠
−

𝐻𝑘−1𝑠𝑠𝑇𝐻𝑘−1

𝑠𝑇𝐻𝑘−1𝑠
                                      (4-3) 

where 

𝑠 = 𝑥(𝑘) − 𝑥(𝑘−1)                                                      (4-4) 

𝑦 = 𝛻𝑓(𝑥(𝑘)) − 𝛻𝑓(𝑥(𝑘−1))                                          (4-5) 

Inverse update  

𝐻𝑘
−1 = (𝐼 −

𝑠𝑦𝑇

𝑦𝑇𝑠
) 𝐻𝑘−1

−1 (𝐼 −
𝑦𝑠𝑇

𝑦𝑇𝑠
) +

𝑠𝑠𝑇

𝑦𝑇𝑠
                               (4-6) 

The calculation above will be running through multiple iteration 

until loss function target is satisfied. 
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4.5 Artificial Neural Network 

Artificial neural network is an AI computational method that 

attempts to mimic the way of human brain in processing 

information. An artificial neural network is made of input, 

output and neuron with multiple layers. The basic unit of a 

network is a single neuron (Figure 4-3). 

 

 

 

 

The output 𝑦 takes the inputs 𝑥1 and 𝑥2 with associated weight 

𝑤1 and 𝑤2 which fire through an activation function 𝑓. 

𝑦 = 𝑓(𝑥1𝑤1 + 𝑥2𝑤2)                                                           (4-7) 

Activation function is to generate non-linear signal to the output 

which is used for training purpose. There are few common 

activation functions that are used by artificial neural network. 

a) Sigmoid 

𝑓(𝑥) =
1

1+e−x                                                           (4-8) 

b) Hyperbolic tangent 

tanh(x) =
2

1+e−2x − 1                                                 (4-9) 

c) Linear 

𝑓 

𝑥1 

𝑥2 

𝑤1 

𝑤2 

𝑦 Input Output 

Figure 4-3: Example of single neuron in neural network 
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f(x) = ax + b                                                        (4-10) 

 

Figure 4-4: Example of neural network with layers 

The computational of artificial neural network run through many 

iterations until the stopping condition is met and desired loss 

function is achieved. Then an independent testing dataset is 

used to verify the performance of the network. 

4.6 Neural Network Modelling 

4.6.1 Input database 

In biomass procurement process, pricing is the key 

consideration. This project utilises artificial network analysis to 

generate an approximation model for price prediction, different 

data collection needs to be gathered according to specific 

factors based on previous section discussion. 
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Table 4-1: Input database description 

Item Factor Unit Remarks Source 

1 Outdoor 

temperature 

°C N/A (World Weather 

Online, 2017) 

2 Rainfall mm N/A (World Weather 

Online, 2017) 

3 Processed fresh 

fruit bunch  

MT Metric tonnes (MPOB, 2017) 

4 Exchange rate  With respect to 

USD 

Bank Negara Malaysia 

5 Transportation 

cost 

RM  Based on diesel 

fuel 

Malaysia Ministry of 

Domestic Trade, Co-

operatives and 

Consumerism 

6 Palm kernel 

shell market 

price  

RM Refer to 

successful 

transaction 

BIO CONCEPT 

SOLUTION 

 

Table 4-2: Importance of data points 

Data points (months) Input-Output correlation 

24 0.605 

30 0.667 

42 0.789 

54 0.901 

 

Parameter 1, 2 and 3 in Table 4-1 are monthly data of Johor 

state. They are collected from year 2013 to the first half year 

of 2017 (54 months). The more data points (Table 4-2), the 

higher accuracy of the price prediction. This is proven by the 

correlation between amount of data points and input-output 

relationships. 

The analysis is focused on a localised area. The purpose of this 

is to emphasize the factor’s subtle influence at local level 

compared to national level. 
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4.6.2 Data pre-processing 

Before the inputs are fed into the artificial neural network 

analysis, useful information can be derived from the raw data. 

a) Parameter 3 (Table 4-1) is the quantity of FFB being 

processed at the mill. The figure is shown in ‘000 metric 

tonnes. The quantity of PKS is proportional (Palm Oil 

Biomass, 2016) to EFB (estimate around 5.5 %) since 

both derive from the same material. This is more 

manageable for the calculation. 

b) Parameter 4 (Table 4-1) is the raw data of USD to RM 

daily exchange rate from Bank Negara Malaysia. To get 

the monthly average rate: 

Rate month =
∑ ri

n
i

n
                                                    (4-11) 

r is the daily exchange rate. 

n  is the number of days in a month that has actual 

transactions. 

c) Parameter 5 (Table 4-1) is the adjusted transportation 

cost based on 100 km radius. According to the 

information deom local transporters, one litre of diesel 

fuel (Table 4-3) may travel up to 2 km for a truck with 30 

t full of load. 

CostT =
100

2
× PriceDiesel                                           (4-12) 
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Table 4-3: Monthly average diesel price 

No Year Month Price (RM/litre) 

1 

2013 

January 1.80 

2 February 1.80 

3 March 1.80 

4 April 1.80 

5 May 1.80 

6 June 2.00 

7 July 2.00 

8 August 2.00 

9 September 2.00 

10 October 2.00 

11 November 2.00 

12 December 2.00 

13 

2014 

January 2.00 

14 February 2.00 

15 March 2.00 

16 April 2.00 

17 May 2.00 

18 June 2.00 

19 July 2.00 

20 August 2.00 

21 September 2.00 

22 October 2.20 

23 November 2.20 

24 December 2.23 

25 

2015 

January 1.93 

26 February 1.70 

27 March 1.95 

28 April 1.95 

29 May 1.95 

30 June 2.05 

31 July 2.05 

32 August 1.95 

33 September 1.80 

34 October 1.90 

35 November 1.90 

36 December 1.90 
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Continue from Table 4-3 

No Year Month Price (RM/litre) 

37 

2016 

January 1.60 

38 February 1.35 

39 March 1.35 

40 April 1.55 

41 May 1.55 

42 June 1.55 

43 July 1.60 

44 August 1.70 

45 September 1.70 

46 October 1.75 

47 November 1.90 

48 December 1.85 

49 

2017 

January 2.05 

50 February 2.15 

51 March 2.20 

52 April 2.14 

53 May 2.04 

54 June 1.93 
 

4.6.3 System initialisation 

Artificial neural network is simulated on Neural Designer by 

importing the required training database, inputs and target will 

then able to be identified (Appendix A). There are four inputs 

for the neural network, comprising rainfall, FFB quantity, 

adjusted transport cost and exchange rate with USD while the 

output or the target is PKS price. 
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Table 4-4: Inputs database 

Month Temp 
(°C) 

Rainfall 
(mm) 

Qty (‘000 
mt) 

Transport 
(RM) 

FX Shell 
(RM) 

1 29 155.78 1,176.93  90.00 3.04 190 

2 29 204.16 926.11  90.00 3.10 190 

3 30 162.19 974.59  90.00 3.11 195 

4 31 140.62 1,084.12  90.00 3.05 195 

5 31 80.19 1,138.93  90.00 3.02 195 

6 31 33.49 1,267.79  100.00 3.15 198 

7 30 47.82 1,431.79  100.00 3.20 195 

8 31 74.96 1,401.66  100.00 3.29 193 

9 32 78.36 1,576.56  100.00 3.26 191 

10 32 114.49 1,564.50  100.00 3.18 183 

11 32 217.74 1,425.53  100.00 3.21 175 

12 30 222.95 1,278.65  100.00 3.25 175 

13 29 104.10 1,151.09  100.00 3.31 168 

14 31 23.59 920.93  100.00 3.31 175 

15 32 92.83 1,109.40  100.00 3.29 175 

16 33 161.09 1,126.43  100.00 3.26 175 

17 33 113.09 1,242.47  100.00 3.23 175 

18 32 55.03 1,280.75  100.00 3.22 175 

19 32 44.08 1,401.80  100.00 3.19 175 

20 32 84.56 1,674.59  100.00 3.18 170 

21 32 63.91 1,477.43  100.00 3.22 170 

22 33 72.04 1,433.38  110.00 3.27 172 

23 32 183.06 1,295.64  110.00 3.35 175 

24 31 264.98 991.18  111.50 3.49 180 

25 30 172.82 862.66  96.50 3.59 197 

26 31 83.78 924.72  85.00 3.60 215 

27 32 245.93 1,235.29  97.50 3.69 220 

28 33 230.10 1,443.07  97.50 3.64 218 

29 34 107.61 1,478.95  97.50 3.61 208 

30 33 67.83 1,445.79  102.50 3.74 195 

31 33 63.61 1,422.53  102.50 3.81 195 

32 33 49.43 1,568.32  97.50 4.07 195 

33 33 40.86 1,443.86  90.00 4.32 190 

34 34 117.39 1,425.13  95.00 4.27 195 

35 33 267.36 1,205.33  95.00 4.31 215 

36 32 230.07 982.49  95.00 4.29 230 

37 32 234.56 815.11  80.00 4.35 238 

38 31 154.15 842.45  67.50 4.19 245 

39 32 213.62 937.55  67.50 4.08 245 

40 34 170.30 1,006.30  77.50 3.91 240 
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Continued from Table 4-4 

Month Temp  
(°C) 

Rainfall  
(mm) 

Qty  
(‘000 mt) 

Transport  
(RM) 

FX Shell  
(RM) 

39 32 213.62 937.55  67.50 4.08 245 

40 34 170.30 1,006.30  77.50 3.91 240 

41 34 121.62 1,069.12  77.50 4.05 238 

42 33 37.71 1,183.76  77.50 4.09 243 

43 33 72.56 1,177.16  80.00 4.02 243 

44 34 40.87 1,319.54  85.00 4.03 243 

45 34 39.77 1,404.32  85.00 4.11 243 

46 34 94.37 1,398.26  87.50 4.18 240 

47 32 243.20 1,395.81  95.00 4.34 238 

48 31 163.40 1,296.36  92.50 4.47 240 

49 31 216.80 1,080.86  102.50 4.46 242 

50 31 180.30 1,108.63  107.50 4.45 242 

51 32 202.60 1,084.64  110.00 4.44 237 

52 33 224.60 1,110.22  107.00 4.41 237 

53 34 91.60 1,164.96  102.00 4.32 237 

54 34 54.60 1,070.77  96.50 4.28 240 

 

The database (Table 4-4) is divided to three segments to 

separate the large data into training set (60 %), model selection 

set (20 %) and testing set (20 %). 

4.6.4 Learning process 

There are few constraints that need to be assigned to the 

system before running the simulation. All of the data inputs are 

normalised by using minimum-maximum method. The 

activation function of the neuron is hyperbolic tangent function. 

Quasi-Newton method is used as the training algorithm to map 

the inputs to output. 

Four different models are evaluated to determine the most 

suitable prediction model for the case study. The model is 
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differentiated by number of hidden layer. The number of neuron 

in each hidden layer determines the system selection method. 

It is an incremental trial and error method which stops at 

maximum 10 orders. This limit is to prevent overfitting of the 

model. However, the order limit can be adjusted to more than 

10 if there were more input parameters for future work. 

 

Figure 4-5: Four hidden layers neural network 

 

Figure 4-6: Three hidden layers neural network 
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Figure 4-7: Two hidden layers neural network 

 

Figure 4-8: One hidden layer neural network 

Table 4-5: Learning model performance 

Configuration 4 hidden 
layers 

3 hidden 
layers 

2 hidden 
layers 

1 hidden 
layer 

Neurons 3:3:3:10 3:3:9 3:5 5 

Loss 0.106 0.0787 0.102 0.108 

Parameters norm 79.9 77.8 100 104 

Selection loss 12.5 0.529 0.249 0.132 

 

The number of neurons for each configuration is determined by 

the system model selection function. The selection target loss 

for each configuration is the minimum value that the neural 
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network system can generate. Value less than 0 means there is 

no over fitting of the model. However, four hidden layers 

configuration has a selection loss of 12.5, indicating that the 

neurons number of 3:3:3:10 is an over fitting model for the 

case study. In neural network, more layers do not necessarily 

result in a better prediction model. There are a few parameters 

can be considered. 

Parameters norm indicates the complexity of the model. The 

model is more stable if the norm figure is lower. The stability of 

the model can provide a more consistent prediction result. Here, 

three hidden layers configuration is outdoing the other three 

models, recording a value of 77.8. Finally, the loss index is the 

performance and quality measurements of the neural networks. 

Loss is the sum of errors of the model. Each configuration will 

minimise the loss, the lower the better. Overall, three hidden 

layers configuration is the best prediction model among all as it 

recorded a loss index of 0.0787.  

4.7 Prediction model verification 

To verify the model prediction performance, four models are 

tested using linear regression method on the predicted output 

and actual output. The test is run on an independent testing 

data set which is set before the system initialisation. 
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Figure 4-9: Four hidden layers verification result 

 

 

Figure 4-10:Three hidden layers verification result 
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Figure 4-11: Two hidden layers verification result 

 

 

Figure 4-12: One hidden layer verification result 

The predicted values are plotted versus the actual ones as 

purple squares. The blue coloured line indicates the best linear 

fit on the purple data points. The grey line indicates a perfect 
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fit of the prediction model output after the neural network was 

trained. 

Table 4-6: Prediction model verification result 

Configuration 4 hidden 
layers 

(Figure 4-9) 

3 hidden 
layers 

(Figure 4-10) 

2 hidden 
layers 

(Figure 4-11) 

1 hidden 
layer  

(Figure 4-12) 

Intercept  89.1 -12.8 -2.6 -167 

Slope 0.559 1.01 0.987 1.74 

Correlation  0.526 0.901 0.87 0.843 

 

This analysis leads to three parameters for each output variable. 

If the analysis had a perfect fit (outputs exactly equal to 

targets), the slope would be 1, and the y-intercept would be 0. 

If the correlation coefficient (R2) was equal to 1, then there 

would be a perfect correlation between the outputs from the 

neural network and the targets in the testing dataset. Therefore, 

the blue line will overlap on the grey line. From Table 4-6 above, 

three hidden layers model yields the best predictive model 

(Appendix B) among all, in which records R2 value of 0.901. 

4.8 Discussion 

The price of PKS can be forecasted by utilising the prediction 

model. From the inputs of rainfall, available quantity, fuel price 

and exchange rate, a realistic future price is predicted. The 

predicted price can be used as a guideline for the biomass 

procurement team on their strategic planning. They can decide 

whether or not to stock in advance or to stock more in quantity 

(if they were doing export business) or to source for alternative 
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biomass (if they were using it for local consumption) which is 

cheaper and has similar performance by referring to the 

predicted price. If they decided to look for another biomass 

source, BCI properties introduced in previous Chapter 3 can be 

referred. In the end, the outcome of the price will be an input 

for the payoff consideration of game theory in Chapter 5. 

The prediction model is a dynamic process where it can 

constantly update its learning process. When there are more 

input data points from historical data, the accuracy of output 

data will be enhanced. Thus, the predicted price is closer to the 

real-world. Biomass industry procurement player will be greatly 

benefitted from this outcome. 

Apart from the predicted price of PKS, other palm biomass also 

can be applied into the model, on the premise that there is 

sufficient training data. The next potential palm biomass 

prediction will be EFB and mesocarp fiber. The model can be 

extended beyond price to predict the biomass yield or biomass 

properties. These can be combined into multiple target outputs. 

However, these require more complete and complex input 

parameters to cover all the required aspects such as carbon 

emissions, storage facility locations, capacity of the biomass 

plant and others. 
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4.9 Conclusion 

This chapter has demonstrated that the three hidden layers 

neural networks – which takes rainfall, FFB quantity, 

transportation cost and foreign exchange rate as inputs – can 

potentially serve as an effective predictive model for PKS price. 

Although neural network modelling is not an entirely new 

method in making data-driven prediction; this approach is, 

nevertheless, a bold attempt to use non-technical features as 

parameters. The proposed prediction model has mapped 

different sets of unrelated elements, ranging from weather, 

yield, cost, price to currency, to develop a model to forecast 

commodity price scientifically. While most of the AI prediction 

models use related data sets to construct algorithm; prediction 

for the price of PKS requires multivariate sets of data, 

considering the fluctuations of its price from time to time. 

Through constructing an overarching database comprised of 

cross-disciplinary data, the designed algorithms have 

successfully contributed to the future price prediction from the 

input data. Crucially, the predicted price can be further taken 

as input criteria for the payoff scoring which will be discussed 

in the next chapter.    
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5 CHAPTER 5 GAME THEORY APPROACH IN 

MALAYSIA PALM BIOMASS INDUSTRY 

ANALYSIS 

5.1 Introduction 

Oil palm industry is a significant economic backbone of Malaysia 

– it is currently the fourth largest contributor to the national 

economy, accounting for approximately 8 % of the country’s 

GNI per capita and 6 % of Malaysia’s GDP (Abdul-Manan et al., 

2014).  As at December 2017, there are 5.74 million hectares 

of oil palm planted area in Malaysia, occupying nearly three 

quarters of the country's agricultural land, which is 14 % of the 

total land area of the country (MPOB, 2017).  The entire area 

has produced 17.32 million tonnes crude palm oil in 2016 and 

accounted for 39 % of world palm oil production (MPOB, 2017). 

Being such a large agricultural sector in Malaysia, oil palm 

industry has simultaneously generated vast amount of surplus 

palm biomass waste, which constituted approximately 85.5 % 

of biomass in the country, with an average of 53 million tonnes 

each year and is even projected to rise to 100 million dry tonnes 

by the year of 2020 (Umar et al., 2014). Generally, the solid 

biomass wastes come directly from oil palm plantations in the 

form of harvested trunks and pruned fronds, and also from the 
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palm oil extraction mills, such as EFB, mesocarp fiber and PKS. 

These biomass wastes are in turn being used either in 

plantations or mills. For instance, the fronds, trunks and EFB 

are often left in the plantations for mulching purposes or to be 

decomposed naturally as nutrient replacement, whilst mesocarp 

fiber and PKS are utilised in palm oil mill as in-house fuel for 

generating steam and energy. Given its abundant availability, 

oil palm biomass is particularly regarded as a valuable 

alternative for energy regeneration in Malaysia. There are a 

plethora of researches on the relevant field, such as the 

optimisation of biomass, in order to convert it into a variety of 

value-added products (Sabri, 2015).  

This thesis, notwithstanding, aims to veer in a new direction for 

the oil palm biomass industry to focus on the sustainable oil 

palm biomass procurement as a premise for further 

optimisation process. It should be first recognized that despite 

of its vast availability nationwide, procurement of palm oil 

biomass at regional level is nonetheless a challenge for those 

external biomass processing plants.  Stiff supply competition is 

inevitable especially for whom do not own plantations. They do 

not merely strive for local biomass supply for their own plants 

and business, but also facing competition from external buyers 

from different states who come to procure the biomass. 

Irregular biomass supply, which is contingent upon oil palm 
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harvest cycle and yield, can further aggravate competition 

amongst the industry players (Umar et al., 2014).  Additionally, 

the quality of biomass that is largely affected by surroundings 

moisture might considerably impact the subsequent process 

and cost before it can be utilised in the plant. BELCA (Lim and 

Lam, 2016) and BCI (Tang et al., 2014) methods can provide 

an insights of biomass material characteristics before it is ready 

for the plant.  All these aspects ought to be taken into 

consideration in measuring and identifying the best strategy to 

ensure sustainable palm biomass procurement. 

5.2 Problem statement 

Strengthening technology, process optimisation, supply chain 

optimisation and product market diversification are typically the 

main emphasis within oil palm biomass industry. From the 

perspective of biomass plant entrepreneurs in particular, these 

facets are deemed to be closely affiliated with the profitability. 

Intensifying technologies and equipment can undoubtedly 

improve the efficiency of new biomass processing technology to 

produce reliable and higher value products, yet it would at the 

same time incur higher cost on the production cycle (Klemeš et 

al., 2013). While process optimisation also aims to increase 

efficiency, its focus is primarily on enhancing existing process 

without adding to the cost and thus maximising profit. Instead 

of merely focusing on increasing efficiency of processing 
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biomass, it is equally crucial to shed light on sourcing strategy 

for effective procurement within such a competitive 

environment. Ultimately, strategic procurement would be a 

complement to the optimisation steps stated above and further 

enhance the overall efficiency. 

5.3 Literature review 

Game theory has recently resurged as a relevant tool in the 

analysis of supply chains, especially with multiple agents, 

wherein the conflicting competition and cooperation might 

possibly occur in a supply chain. In a situation in which the 

decisions of numerous agents affecting each other’s payoff, 

game theory precisely deals with interactive optimisation 

problems (Cachon and Netessine, 2004).  

Game theory was originally developed as a mathematical 

approach by John von Neumann and Oskar Morgenstern in the 

1940s (Poundstone, 1992). It was later adopted and applied in 

social science and empirical research fields of study, particularly 

to deal with human interactions where there are several parties 

involved. Thereafter, game theory also known as the interactive 

decision theory as it examines strategic choices between 

interacting individuals (McCain, 2010). The most established 

example of game theory is the ‘Prisoner’s Dilemma’, which was 

formalized by Merrill Flood and Melvin Dresher in 1950, and was 

named by Albert W. Tucker (Poundstone 1992). It is an 
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exemplary conflict situation showing that the most rational 

decision does not necessarily lead to the best possible outcome. 

Despite its rather simple framework, the ‘Prisoner’s Dilemma’ 

has set a fundamental for analysing the interactions of multiple 

agents and crucially, to further generating strategy alternatives 

for maximising one’s payoff. 

In the light of supply chain management – that is embedded in 

the corporate process and comprised of the transformation from 

raw materials to final products, game theory approach can 

serve as an effective analysis tool to shed light on the 

challenges in regards to time, cost, risk (Papapanagiotou and 

Vlachos, 2016) and opponents’ threat (Leng and Parlar, 2005).  

Conventionally, supply chain optimisation emphasises on the 

performance and improvement the supply chain structure and 

operation by looking into alternate sourcing, supply route 

management, collection hub positioning, and effective handling 

method, wherein cost is the key performance metric (Zhang et 

al., 2014). This chapter intends to expand the discussion by 

specifically focusing on the competition amongst industry 

players in the supply chain. 
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Table 5-1: Comparison of biomass supply chain analysis 

approach 

Feedstock Analysis approach Reference 

Multiple biomass Database setup (Black et al., 2016) 

Multiple biomass Stochastic programming (Black et al., 2016) 

Wood chips and straw pellets Logistics analysis (Wiśnicki et al., 2014) 

Multiple biomass Network design (Yue and You, 2014) 

Empty fruit bunches Optimal allocation (Foo et al., 2013) 

Multiple biomass Network design (Thanarak, 2012) 

 

Table 5-1 shows that the technical approaches adopted in the 

previous studies are solely targeting on enhancing one’s 

competence in their own sphere without highlighting the 

competition within the industry. These attempts, nevertheless, 

might not necessarily contribute to higher profit or to serve the 

plant owner’s best interest. Instead of merely focusing on 

increasing efficiency of processing biomass, this thesis opines 

that it is equally crucial to pay attention on sourcing strategy 

for effective procurement within such a competitive 

environment. Ultimately, strategic procurement would be a 

complement to the aforementioned optimisation steps and 

further enhance the overall efficiency.   

Above all, biomass industry is competitive, particularly in terms 

of security and sustainability of biomass supply.  In order to 

gain a competitive advantage over the other competitors, 

recognition of their interests and moves are important to 
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enhance leverage in getting the most cost-effective biomass 

supply (Eu and Studies, 2014). 

5.4 Methodology 

This thesis adopts game theory approach in analysing Malaysia 

current competitive biomass industry, wherein multiple players 

are involved, often with conflicting objectives. In terms of 

procurement, they compete among each other to acquire the 

most cost-effective biomass supply and to maximise profit. 

Strategic form is the most appropriate method to analyse the 

above scenario. All possible strategies from every competitor 

are listed out while the outcomes for each possible combination 

of choices are also defined. The outcomes represent separate 

payoff for each competitor or also call player in terms of game 

theory. The payoff is a value to measure how likely a player 

prefers that outcome. 

A non-cooperative game need to be constructed in strategic 

form by defining: 

i. The involved players. 

ii. Available strategies by each player. 

iii. Payoff of each strategy 

 

The formal representation of strategic game is: 

a) Number of players involve,  

i = 1, ⋯ , n                                                             (5-1)                                                                                                                                              
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b) A set of strategies for player i, 

s = (s1, ⋯ , sn) where si ∈ Si for i = 1 ⋯ , n                      (5-2)     

c) A function, 

πi →: S → R for player i = 1 ⋯ , n                                 (5-3) 

where S is the strategy profiles set.                                                                                                                                                                  

player i′s payoff = πi(s)                                          (5-4)                                                                                                                       

Nash equilibrium is a condition where each player knows the 

best strategy of each other and no player will get any further 

benefit by changing their current strategy. In the context of 

biomass supply competition, each biomass industry player is 

adjusting their best strategy to countermeasure the shortage 

crisis in belief of his opponent is also taking the best response.  

∀i, si ∈ Si,: πi(si
∗, s−i

∗ ) ≥ πi(si
∗, s−i

∗ )                                          (5-5)                                                                                         

After the strategic form of the players’ game has been 

constructed, the best strategy which gives the best response 

(favourable payoff) to other strategies is identified. Nash 

equilibrium is achieved if each of the players is making the best 

decision possible by taking into account the decision of 

opponents. 

5.5 Case study 

Case study is demonstrated in a specific oil palm plantation area 

which has two individual biomass processing plants. To further 
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demonstrate the application of game theory in palm industry, a 

competitive environment criterion has been set up for the 

analysis which is short of biomass supply. It is defined in a 

specific region where its empty fruit bunches are running low 

due to 2 major factors: 

a) Low harvest season of oil palm fruits therefore leads to 

drop in available EFB. 

b) Raining season is affecting the quality of usable EFB. High 

moisture EFB are not desirable as biomass feedstock as 

more preprocessing procedures are needed and efficiency 

drop in the plant process. 

They are competing each other for biomass supply and market 

share (both players are assumed to have same customers 

base). Both players have to compete each other to survive in 

these tough situations. In order to countermeasure these 

challenges, optimal strategies (Nasiri and Zaccour, 2009) need 

to be made by the players. In the worst case, lower 

competitiveness player is likely to be eliminated from the 

market (Sun et al., 2013). 

5.6 Strategy priority ranking 

The Analytic Hierarchy Process (AHPs), introduced by Thomas 

Saaty (1980), is a structured method to organise and analyse 

complex choices which are difficult to quantify in the process of 

decision-making (Saaty, 2001). AHP has been recognized as a 



   

80 
 

useful aid in deciding priorities and making the best decision. 

Through computing the vector of criteria weights and the matrix 

of option scores, and lastly by ranking the options, AHP can 

usefully contribute to the decision-making process.  

This method has been widely adopted in various settings and 

sectors, including public administration, customer service, 

student admissions, conflict analysis, disaster relief, military 

strategy planning and so forth (Saaty, 2008).  

The pairwise relative evaluations, which compare a set of 

evaluation criteria to a set of alternative options, enable the 

most appropriate decision to be made. That being said, the 

most suitable decision is not necessarily the best option which 

optimises each single criterion, but the one which achieves the 

most suitable trade-off among the different criteria, considering 

some of the criteria could be contrasting.  

It has been used in biomass supply chain analysis (How and 

Lam, 2017) to generate sustainability index based on the input 

priority (Saaty, 2000). This specific case of strategy 

prioritisation involves five criteria to rank out seven possible 

strategies.  

There are seven suggested strategies (extracted from biomass 

industry players) for each player to consider in countering the 

shortage crisis. These strategies are: 
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1) Attempting to secure all the existing available biomass 

supply from a specific region without changing 

transportation mode and without additional handling 

method. However, there is possibility of purchasing price 

hike due to sudden demand surge. 

2) Searching for the biomass supply in shortage from 

another region. There will be additional logistics cost and 

handling cost as it is located farther from the plant. The 

quality of raw biomass (such as EFB) may deteriorate due 

to longer expose hour after harvesting. Furthermore, the 

purchase price is not guaranteed to be the same with the 

existing pricing because of switching to new supplier. 

3) Looking for different biomass which has similar 

performance to the current one. For the case of EFB, PKS 

or mesocarp fiber would be a suitable substitute. 

However, additional process modification is needed to 

accommodate the different type of biomass. Logistics, 

handling and storage would also need to be reconfigured. 

Therefore, more cost incurs in the entire process. 

4) For the case of unsuccessful sourcing, increasing the 

current product selling price would temporarily conserve 

the supply. The drawback will be the possible 

dissatisfaction amongst customer and may affect future 

or potential business opportunity in the long run. 
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5) Reducing production output can conserve the supply yet 

leaving behind unmet demand. Customer dissatisfaction 

will be the tradeoff of this strategy. 

6) A total shutdown to stop production is impossible from 

business perspective. A temporary shutdown is only 

possible for service and maintenance work or annual 

stock check. Normally, these activities only take a limited 

time frame. During this time frame, it is a total lost as 

there is no production to fulfill the demand while 

additional cost incurs for the service works. 

7) Switching production process of the current plant is 

unlikely unless there is a reboot or upgrading equipment 

to adapt new technology. The cost is sky-high as this 

involves capital expenditure and is comparable to the 

setting up of a completely new plant. 

 

These strategies are ranked and prioritised in advance to reduce 

difficulty in analysis, so that it can converge to a conclusive 

result. The prioritisation is done by accessing the level of 

feasibility of each strategy. This strategy feasibility study is 

based on the accumulative scoring on the involved operational 

execution procedures. 
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Table 5-2: Strategies scoring standards 

No Considering points Explanation 

1 Procurement cost Extra cost is needed to make special or 
additional purchase due to urgency or last-
minute purchase. 

2 Logistics Irregular transportation route and schedule for 

the new acquire supply  

3 Service and maintenance Production may stop for routine equipment 
service and maintenance. 

4 Storage and handling Additional handling and storage efforts in the 
warehouse for the non-scheduled supply. 

5 Process modification Different biomass supply requires different 
settings on the process. Extra time and cost 
related to equipment tuning will incur. 

6 Customer satisfaction Supply shortage will increase the unsatisfied 
demand of customers. Negative feedback from 
customers place a toll in upcoming business 
opportunity. 

7 Plant start-up Obsolete the current production line and 
upgrade to new line to adapt new technology. 

 

Points from Table 5-2 are categorised into 5 selection criteria: 

i. Implementation complexity 

ii. Financial cost 

iii. Process flexibility 

iv. Output quality 

v. Time frame 

The questionnaire (Appendix D) was distributed to 15 biomass 

companies to acquire sufficient scoring data on strategies 

prioritisation. It was designed based on five criteria to prioritise 

seven proposed strategies. After the survey was done, AHP was 

implemented to create a pairwise comparison data in three 

simple consecutive steps: 

i. Computing the criteria weights vector 

ii. Computing the alternatives scores 
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iii. Ranking the alternatives 

Matrix A was constructed as Equation 5-6. 

𝑚𝑎𝑡𝑟𝑖𝑥 𝐴 = 𝑚 × 𝑚                                                                                                        (5-6) 

𝑚 is the number of criteria in the pairwise comparison. There 

are five criteria in this study. Each 𝑎𝑗𝑘 in the matrix A represents 

the importance of the 𝑗th criterion relative to the 𝑘th criterion. 

The constraint of the entries in matrix A is shown as Equation 

5-7 

𝑎𝑗𝑘 ∙ 𝑎𝑘𝑗 = 1                   (5-7) 

The example of relative importance measurement scale 

between two criteria is shown in Table 

Table 5-3: Example of importance measurement scale 

𝒂𝒋𝒌 scale Definition 

1 𝑗 and are equally important 𝑘 

3 𝑗 is slightly more important than 𝑘 

5 𝑗 is more important than 𝑘 

7 𝑗 is strongly important than 𝑘 

9 𝑗 is absolutely more important than 𝑘 

 

After matrix A is built, normalised pairwise comparison matrix 

Anorm is computed using Equation 5-8. 

𝑎𝑗𝑘̅̅ ̅̅ =
𝑎𝑗𝑘

∑ 𝑎𝑙𝑘
𝑚
𝑙=1

                 (5-8) 

Criteria weight vector is calculated by averaging the entries on 

each row of Anorm as Equation 5-9. 
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𝑤𝑗 =
∑ 𝑎𝑗𝑙̅̅ ̅̅𝑚

𝑙=1

𝑚
                  (5-9) 

Next, matrix B is constructed for the alternatives which are 

strategies in this chapter. 

𝑚𝑎𝑡𝑟𝑖𝑥 𝐵 = 𝑛 × 𝑛                  (5-10) 

𝑛 is the number of alternatives. 

Same steps (Equations 5-8 and 5-9) are applied to the matrix 

B on each entry to obtain the vector 𝑠(𝑗) as Equation 5-11. 

𝑆 = [𝑠(1) ⋯ 𝑠(𝑚)]                   (5-11) 

Finally, the alternatives ranking is calculated using Equation 5-

12. 

𝑣 = 𝑆 ∙ 𝑤                 (5-12) 

Based on the scoring from biomass plant players, the strategies 

rankings (Table 5-4) are calculated using AHP technique. 

 

Table 5-4: Strategy score ranking 

Strategy Profile Ranking 

Purchase all possible source from local market 0.44904 

External sourcing (same biomass from other area) 0.21582 

Alternative sourcing (different biomass) 0.12643 

Increase selling price 0.06398 

Production reduce 0.06170 

Production stop 0.05066 

Process change 0.03236 
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Table 5-5: Palm biomass business strategy for low supply 

Decision 

priority 
Available strategy 

1 Purchase all possible source from local market 

2 External sourcing (same biomass from other area) 

3 Alternative sourcing (different biomass) 

4 Increase selling price 

5 Production reduce 

6 Production stop 

7 Process change 

 

Table 5-5 shows the priority of strategy is made based on the 

possible cost incurred if it was executed by the team. The first 

priority involves the least cost compared to others. However, 

the first priority does not signify the best strategy. Without 

taking into account the opponents’ decision, it is difficult to 

make the best decision. Therefore, the priority ranking of the 

strategy is served for the simplicity of analysis. The analysis has 

yet to include all available strategies to avoid complication in 

decision making.  

Payoff of the strategy is determined by the inter-relationships 

between the consequences of opponent’s strategy. In general, 

payoff is not necessarily to be in monetary value. Social and 

psychological factors might influence payoffs and decisions. 

In this case study, the payoff that are listed in each strategy 

combination are assumed to be the likelihood of players’ 

acceptable profit margin and benefits after including the 

possible cost, market share changes and the difficulties of work 

progress. The higher number means the higher benefit to the 
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player who takes that particular strategy. The payoff figures in 

the analysis were collected from questionnaires data (Appendix 

E) which were completed by those biomass companies 

mentioned above.  

Rather than analysing all of the strategies in one strategic form, 

three steps strategy equilibrium search is proposed to eliminate 

the incompetent strategy and to identify the best response of 

one player can do by considering opponent’s best move. It may 

reduce the complexity of analysis itself. Game theory tool, 

Gambit 16 (McKelvey, McLennan, and Turocy 2016) is used to 

analyse the case study and to determine Nash equilibrium in 

each analysis step. 

5.6.1 First step analysis for priority 1 and 2 

The first two business options to countermeasure the low local 

biomass supply source are: 

i. To procure whatever supply leftover from local market. 

This would increase the supply pricing if both players are 

competing each other. 

ii. To source supply from other area. 

There are external, internal and network risks in supply 

chain (Mitkowski and Zenka-Podlaszewska 2014) which 

are no guarantee of sourcing success, additional logistic 

and handling cost since from different area. In the current 

scenario, the success rate of sourcing is assumed high 
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where the proximity of biomass sources is as close as 

possible (Sun et al. 2011). 

  Player 1 

 Strategy Purchase all External procure 

Player 2 

Purchase 

all 

 30  60 

30  40  

External 

procure 

 40  50 

60  50  

Figure 5-1: step 1 strategic game 

Figure 5-1 shows the strategic game form of step 1 and the 

payoff of each strategy set. If player 1 chooses “purchase all” 

strategy, he is not gaining benefit from this strategy if player 2 

takes “external procure” strategy (40 VS 60). Meanwhile, if 

player 1 decides to choose “external procure” strategy, his 

payoff would not be in anywhere lesser than player 2 regardless 

of how player 2 reacts. The same situation applies to player 2. 

The achieved Nash equilibrium (Figure 5-2) is to go for second 

sourcing from external area, regardless of the opponent’s 

strategy. The possible explanation for the situation is that: 

given the local biomass supply is in shortage, there are no 

guarantee that the market demand could be fulfil even if the 

player attempted to procure all available supply in that area. 

  Player 1 

 Strategy Purchase all External procure 

Player 2 

Purchase 

all 

 30  60 

30  40  

External 

procure 

 40  50 

60  50  

Figure 5-2: step 1 dominance strategy 
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5.6.2 Second step analysis for priority 3 and 4 

Following step 1, same type of biomass is unable to be sourced 

from any other area (due to weather condition, harvesting 

period and logistic issue) and local available supply are out of 

stock due to the competition from previous step assumption.  

The two available options to countermeasure this issue are as 

stated below (Figure 5-3): 

i. Alternative supply source of different biomass. 

This might increase the cost of purchase (Dumortier 

2013), logistic, handling and process modification since 

this is a different properties of material.  

ii. To avoid any further cost incureed, maintain the current 

supply but increase the selling price. 

  Player 1 

 Strategy Alternative source Increase pricing 

Player 2 

Alternative 

source 

 30  40 

30  40  

Increase 

pricing 

 40  50 

40  50  

Figure 5-3: step 2 strategic game 

Raising price would be the best solution (Figure 5-4) as there is 

no additional cost incurred and the additional profit margin 

could offset the possible demand decrease due to higher selling 

price. 

 

 



   

90 
 

 

  Player 1 

 Strategy Alternative source Increase pricing 

Player 2 

Alternative 

source 

 30  40 

30  40  

Increase 

pricing 

 40  50 

40  50  

Figure 5-4: step 2 dominance strategy 

5.6.3 Third step analysis 

Based on step 1 and 2, possible strategies are external sourcing 

(same type of biomass) and increasing selling price (Figure 5-

5). The best solution among these two is to increase the 

product’s selling price (Figure 5-6) which yield an acceptable 

payoff for both players. The explanation would be that there are 

no additional cost incurred if this decision is made. Again, the 

only risk that might happen is the possibility of demand 

decrease due to price hikes. However, this would be the best-

case scenario considering that the supply from local area is 

limited, and it is not logical to further boosting demand. This is 

only matter if either player can get external sourcing 

successfully with all the possible risks are being overcame, 

especially of the issues pertinent to biomass harvesting and 

transportation. These two factors contribute 29 % and 18 % 

respectively of the total capital cost (You and Yue, 2014). 
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  Player 1 

 Strategy External procure Increase pricing 

Player 2 

External 

procure 

 40  40 

40  30  

Increase 

pricing 

 30  50 

40  50  

Figure 5-5: step 3 strategic game 

After identifying the best strategy (Figure 5-6), further 

optimisation can be applied to it. For this particular strategy, 

there are two possible sub-options. First, optimizing supply 

chain by utilising a satellite biomass plant (Rogers and 

Brammer, 2009) to reduce the biomass transportation cost. 

Second, transforming the biomass into higher efficiency 

material such as energy pack (Ng et al., 2014). These can be 

used to negate the effect of demand decrease due to selling 

price increase. 

  Player 1 

 Strategy External procure Increase pricing 

Player 2 

External 

procure 

 40  40 

40  30  

Increase 

pricing 

 30  50 

40  50  

Figure 5-6: step 3 dominance strategy 

5.6.4 Further explanation on priority 5, 6, 7 strategies 

Strategy 5, 6 and 7 are not included in the aforementioned 

game analysis. These 3 strategies are unlikely to be deployed 

by the management team. Stopping production cycle can be 

directly translated as no income while at the same time, the 
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process equipment is experiencing depreciation day by day. 

Furthermore, no output from the plant will give chance to 

opponent to monopoly the whole market shares. This is a total 

negative payoff to the player and this option is the least 

favourable. If the player chose to reduce the production rate to 

conserve supply source, the outcome would be equally 

disappointed as it would adversely decrease the commitment to 

the market demand. Again, this enables the opponent to 

monopoly the local market. However, during lower production 

rate, service and maintenance of the plant can be carried out. 

There would be an additional 10% of the operating expenses 

("Presentation of 25 MW Biomass Power Plant in Kozani Area", 

2012) incurred but in the sense of long term strategy, this is 

advisable although it does not generate profit at that moment. 

There is a short-term risk and long-term benefit that needed to 

be weighted and balanced. Last strategy would be changing the 

process mode to cope with new type of biomass processing. 

This is not an encouraging option as setting-up a new plant 

would be costly. For instance, even the cheapest option such as 

co-firing plant (IRENA, 2012) would cost USD 600 /kW for the 

equipment per se. This can be considered as a new investment 

and a detailed business profiling should be run. In case of co-

firing plant where the player can retrofit (Cuéllar, 2012), the 

process for different biomass also cost USD 640 /kW/y 
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compared to direct (USD 150 /kW/y) and indirect (USD 139 

/kW/y) co-firing. This results in a higher fitting cost. Therefore, 

it is the last resort for the player as this can be regarded as 

quitting the market and re-entering it again in a brand new 

start. 

5.7 Conclusion 

Palm biomass business is a value-added sector in the existing 

palm-related industry; the management policy tends to be cost-

orientated. Against this backdrop, game theory offers some of 

the most comprehensive and sophisticated tools in analysing 

and modelling a better strategy within a competitive biomass 

business environment through gaining insights into competitors’ 

objective and interest, as well as their psyche (Bhattacharya, 

2013). The entire procurement process is a dynamic action 

which needs to be constantly adjusted according to opponent’s 

reaction. By structuring an analogous situation to identify 

appropriate and feasible strategy, further engineering 

optimisation can then be targeted on the specific strategy. 

Rather than optimising the entire process cycle, it emphasizes 

specifically on key areas and thus is more effective on decision 

making without wasting time and resources and can even 

achieve rapid payback. 
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6 CHAPTER 6 CONCLUSION 

Malaysia has been proactively taking step in generating wealth 

from the biomass industry. Being one of the world’s dominant 

palm oil producers, Malaysia is indeed having a distinct 

advantage to fully access to and utilise the abundance of 

biomass. The onus is on the industry to flourish, and 

importantly to contribute to the national wealth and sustainable 

development; yet there are challenges that need to be faced 

and solved. Amongst all, the absence of an integrated and 

dynamic system to support and monitor the biomass supply 

chain is highlighted in this thesis as the most significant barrier 

that has impeded the development of biomass industry.  

The present thesis is a laboratory- and simulation-based 

research, which nevertheless has also taken an empirical and 

realistic approach to the current development status of biomass 

industry in Malaysia. In this thesis, a comprehensive 

sustainable framework, namely BSVC, has been proposed to 

address the deficiencies of the prior studies in the field of 

biomass studies to fill in the gap. BSVC comprised of: (a) BCI 

to classify the biomass properties for optimum utilisation; (b) 

artificial neural network to manage 3Vs (volume, velocity and 

variety) big data for aiding effective decision-making; and (c) 

game theory approach to elicit strategic sourcing options 
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specifically on the procurement phase within a competitive 

environment. The suggested framework has ventured into a 

new direction by shedding light on the possibilities of a value-

added supply chain for the biomass industry, enabling biomass 

to be deliver in an effective, proactive and timely manner, and 

simultaneously continue to preserve the continuity of the life-

support system where the prospect of the biomass industry 

premised on.  

6.1 Limitations and recommendations 

The BSVC framework is built on three separate analysis systems 

to enable them to work independently and to serve for the 

purpose to ease the subtle adjustment on each module to 

achieve a functionable framework. Such separation, 

nonetheless, may render the possibilities that the input-output 

of these systems might not be correlated.  The accuracy of the 

outcome at the final stage may therefore be affected. 

Furthermore, the errors occurred may propagate from one 

system to another system. Due to this limitation, the analysis 

system may assume the inputs are without mistake. This 

assumption, however, should not be conveniently made as 

variables and uncertainties are inevitable in the real-world 

situation.  

Next, the BCI requires massive data inputs to generate accurate 

output. However, when historical and literature data are used 
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to replace the actual data of those unavailable biomass, the 

consistency and precision of the output may be compromised. 

It is also important to take into account that the characteristics 

of the same biomass such as palm biomass may even be 

different due to different origins. Therefore, assumption is made 

to uniform the data of the same biomass to provide a general 

model to BCI. In addition, the moisture content – one of the 

biomass properties that determines the BCI– can hardly be 

accurately measured in an open-air environment. In order to 

improve the BCI’s accuracy to be more realistic, oven drying is 

used to simulate the different level of palm biomass moisture. 

Calorific value of palm biomass is an approximation value as 

some of the biomass is difficult to be measured for its calorific 

value in natural raw condition unless it is processed into 

standard feedstock with industry specification. 

Artificial neural network consists of a number of different 

learning algorithms. The decision criteria to select the 

appropriate algorithm is based on experience and the desired 

output. Learning rate stopping criteria, neuron weight 

assignment and loss function definition can be different from 

case to case basis.  The input taken by neural network model 

may not be directly correlated to output like those in proximate 

analysis. Therefore, industry experience needs to be pin-

pointed and picked out as reliable inputs for the prediction 
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model. Anyhow, the selected inputs may not necessarily be the 

most influential parameters. There are possibilities that other 

parameters also play a role to determine the output. Moreover, 

even when the model is proven to be functional, the equation 

is not inevitably unquestionable and cannot be assumed as a 

fixed theory. Another limitation of the artificial neural network 

is that it requires a huge volume of data, including historical 

data, for the training algorithm of the model. There is no limit 

on the data range, given that it can generate the anticipated 

output. Therefore, the database needs to be constantly updated 

and compared with real-world data for verification.  Every 

correction and adjustment can possibly lead to better and more 

accurate prediction in the future. 

Last but not least, the accuracy of game theory analysis is also 

relied on the quality of the constructed database, wherein every 

input might affect the calculated payoff of the player. Besides, 

the result of the game theory approach cannot be generalised 

but is based on specific case scenario. The considerations and 

payoff acceptancy of different players may vary; hence, the 

strategic options generated by the model will also be different 

according to different case scenario.  

6.2 Future works 

The BCI framework can be enhanced by taking account into 

more types of biomass and larger sets of data of each biomass. 
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It is possible for BCI to be extended to specific biomass BCI 

according to the clustering show in the work. Moreover, the 

analysis on BCI can be done by using multivariate regression to 

provide a comprehensive model on the relationships of bulk 

density, moisture contents and calorific value. Computer aided 

programming will potentially enhance the efficiency of analysis. 

This will improve the accuracy of BCI prediction on biomass 

appearance properties. All these estimated biomass values can 

be applied in sustainable and life cycle studies and energy total 

site analysis. 

Next, neural network application in biomass procurement is a 

modest attempt to embark the trend of big data in biomass 

supply chain. There are numerous of learning algorithms can be 

tested in wide range of biomass supply chain scenario.  In the 

near future, the analysis can venture into two directions for 

deep learning and reinforcement learning method. Deep 

learning can achieve higher performance in data representation 

task. Meanwhile, reinforcement learning allows the system to 

adjust the preference of the action according to the level of 

rewards. Both algorithms involve complex mathematical 

calculation and higher computation time which required 

sophisticated hardware infrastructure. Besides, the 

establishment of a comprehensive input database is critical for 

the system to learn from valuable industry experience.  
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Finally, further analysis can be carried out to explore more 

strategic options.  Feedbacks from the experienced industry 

players in multiple area can be extended to enhance the 

strategy profiles. Payoff of the strategy can also be improved 

by incorporating pragmatic real-life scenario.  In addition, more 

factors can be adopted to the strategy analysis such as supply 

uncertainty risk management (Shabani et al., 2014) and natural 

environment factors. Furthermore, in-depth study on the 

chosen strategy such as analysis on single or multiple sourcing 

(Sawik, 2014) can be carried out to improve the efficiency of 

procurement process. Multi-criteria (Aplak and Sogut, 2013) 

can also contribute to complementing the decision-making 

process of biomass industry owners. 

Another suggestion will be the conduct of a more complex two-

level analysis: first, several different case scenario analyses can 

be constructed, and second, performance of the analysed 

strategy from each scenario can be correlated with the analytic 

network process.  Results or outcomes can then be compared 

to evaluate the performance of optimisation, and also feasibility 

and efficiency of the chosen strategy. 

The ultimate goal is to integrate all modules into a single system 

that is capable of performing multiple tasks to function like a 

live procurement strategist. 
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APPENDIX A: ANN system initialisation 
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APPENDIX B: ANN output mathematical 

expression 

The mathematical expression represented by the neural 

network is written below. It takes the inputs Rainfall, Qty, 

Transport and FX to produce the output Shell. 
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APPENDIX C: Python expression 

The mathematical expression represented by the model can be 

exported to Python programming languages, in the so called 

production mode. 
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APPENDIX D: Pairwise Questionnaires 
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APPENDIX E: Payoff Questionnaires 
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APPENDIX F: Payoff survey responses 

 

 

 


