
Machine Learning for

Neural Coding of Sound Envelopes:

Slithering from Sinusoids to Speech

Alban Levy

Christian J. Sumner Institute of Hearing Research, MRC

University of Nottingham, UK

Aristodemos Pnevmatikakis Athens Information Technology

Paiania, Marousi, Greece

Stephen Coombes School of Mathematical Sciences

University of Nottingham, UK

Thesis submitted to the University of Nottingham

for the degree of Doctor of Philosophy

January 2018

Abstract

Specific locations within the brain contain neurons which respond, by firing action potentials

(spikes), when a sound is played in the ear of a person or animal. The number and timing

of these spikes encodes information about the sound; this code is the basis for us perceiving

and understanding the acoustic world around us. To understand how the brain processes

sound, we must understand this code. The difficulty then lies in evaluating the unknown

neural code. This thesis applies Machine Learning to evaluate auditory coding of dynamic

sounds by spike trains, with datasets of varying complexity.

In the first part, a battery of Machine Learning (ML) algorithms are used to evaluate

modulation frequency coding from the neural response to amplitude-modulated sinusoids

in cat Cochlear Nucleus spike train data. It is found on this recognition task that, whilst

absolute performance levels depend on the types of algorithms, their performance relative

to each other is the same on different types of neurons. Thus a single powerful classification

algorithm is sufficient for evaluating neural codes. Similarly, different performance measures

are useful in understanding differences between ML algorithms, but they shed little light on

different neural coding strategies. In contrast, the features used for classification are crucial;

e.g. Vector Strength does not provide an accurate measure of the information contained

in spike timing. Overall, different types of neurons do not encode the same amount of

amplitude-modulation information. This emphasises the value of using powerful Machine

Learning methods applied to raw spike timing information.

In the second part, a more ecological and heterogeneous set of sounds — speech —

is used. The application of Hidden Markov Model based Automatic Speech Recognition

(ASR) is tested within the constraints of an electrophysiological experiment. The findings

suggest that a continuous digit recognition task is amenable to a physiology experiment:

using only 10 minutes of simulated recording to train statistical models of phonemes, an

accuracy of 70% could be achieved. This result jumps to about 85% when using 200 minutes

worth of simulated data. Using a digit recognition framework is sufficient to examine the

influence on the performance of different aspects of the size and nature of a neural population

and the role of spike timing. Previous results suggest, however, that this accuracy would be

reduced if experimental Inferior Colliculus data were used instead of a guinea-pig cochlear

model. On the other hand, a fully-fledged continuous ASR task on a large vocabulary with

many speakers may result in insufficient phoneme accuracy (∼40%) to base an auditory

coding-related investigation on. Overall this suggests that complex ML algorithms such as

ASR can nevertheless be practically used to assess neural coding of speech, with careful

selection of features.

2

Lay Summary

Researchers replace animal experiment by models as much as possible. However, current

models of auditory processing are not good enough to reproduce the brain response to sounds.

This work studies the feasibility of assessing, using current technologies, how the brain

processes complex sounds.

For technical reasons — namely their spatial and temporal resolutions — multi-electrode

arrays are the best technology to record data associated with this processing. Electrode

arrays can be used to record the electrical activity of a small group of neurons deep in the

brain of animals. This method has substantial drawbacks and it is in practice not possible

to use it on humans for scientific investigations. Since it damages the brain area under

study, these animal experiments cannot last too long, a few hours at best. As a first step

towards studying speech processing in the central auditory pathway, the neural coding of

simple envelopes is studied. To give a flavour of what a ‘sound envelope’ is, read out loud the

right column of the following table, where capital letters are said loudly, lower case letters

quietly, and dots represent short silences:

Fluctuation speed Sample

None AAAAAAAAAAAAAAAAAAAAAAAAAAAA

Slow aaaaaaaAAAAAAAaaaaaaa.......

Normal aaaAAAaaa...aaaAAAaaa...aaaA

Fast aAa.aAa.aAa.aAa.aAa.aAa.aAa.

The modulation does not depend on the frequencies of the sound being spoken, as the sound

‘a’ could be replaced by a sound containing a single frequency, for example 500 Herz. The

first part of this thesis aims at recovering the modulation frequency (Slow, Normal or Fast

in the given example) from cat spike train neural data, using a battery of algorithms.
The second part studies the neural response to complex and dynamic envelopes: human

speech. Three datasets of increasing complexity are used as testbeds, the final one attempting
to recognise complete sentences from simulated neural data. For example, here is the sentence
recognised by the algorithm

Recognised: CAUSEWAY AND ABRUPTLY TWO SURE

when the actual sentence that was given to the cochlear model was

Real: THE CAUSEWAY ENDED ABRUPTLY AT THE SHORE

Or, to give a longer example:

Real: PLEASE TAKE THIS DIRTY TABLE CLOTH TO THE CLEANERS FOR ME

Reco: EACH PLACE CHANGES BURNED CAB EXOTIC LONGER SURVEYING

Results suggest that such a complex dataset is not adapted for an experimental investigation

of neural coding of speech, but that a continuous digit recognition task should be.

3

Acknowledgements

‘A PhD is a funky exercise.’

Chris Sumner

The difficulties faced during this PhD were not those I expected, at all. Four years ago,

I believed I could move to the UK, get crazy work done, and obtain a PhD by working all

on my own without requiring an acknowledgement section. Oh, boy! have I ever been so

wrong... It’s not a section nor a chapter but a book! it would actually deserve. And I do

not want to leave anyone out, be it from my fleeting memories or by extension from these

pages: family, people around my research project, housemates, the Nottingham dancing

scene, and.... from France.

Family comes first. Merci Florian, pour ton support constant, même dans tous ces mo-

ments en dehors de ton champ d’expertise ; les meilleures relations se basent sur un support

mutuel, et qu’il est rare d’en autant trouver au sein d’une fratrie. Merci Aurélie, qui de cou-

sine est devenue sœur, dans cette jeune fratrie à trois en quête d’aventures. Merci Catherine

(M’man, pour les intimes), qui continue à donner même dans tous ces moments où le temps

de recevoir se perd parmi les petites choses de la vie. Merci Philippe (aka Dad), pour un

apport de stabilité et de sagesse qui ont permis à certains moments de virer de dynamique

et de profondeur. Merci Jean-François, pour ce rappel constant que les privilèges des uns

sont fait pour s’harmoniser avec les difficultés des autres, au milieu d’un univers où certains

ignorent cette simple réalité. Merci Sophie, pour tes efforts continus des dernières années.

Merci Léana, pour la surprenante proximité apparue après tant de temps. Of course, to the

Hattori family: thank you for your support. Recent years have not been easy on your side

and created a distance I deplore, but you all keep a warm place in my heart and in my prayers.

Europe, as a whole, is a beautiful concept, and watching the UK as it took a step away

from it was a dramatic historical event I was able to witness firsthand... This research was

funded as part of the NETT (Neural-Engineering Transformative Technologies) consortium

by the European Commission, to which I am indebted. This PhD started by a ‘No’ that

slowly became a consensual ‘Yes’ in a matter of months. For this and more, I am extremely

thankful to Chris Sumner, who gave me this opportunity and often patiently sat and chat-

ted with me, scientific and language barriers preventing efficient communication for a couple

of years, and who observed time slowing down, full of anguish, as I was going in full gear

4

towards the seven heavens and back. Stephen Coombes’ supervision during my Master’s

internship and the Gaussian processes investigations were accompanied by a solid teaching

of the British way, that ought to guide and sharpen my words for the rest of my life. Aris-

todemos Pnevmatikakis, unfortunately suffering the consequences of the Greek economical

struggle, was a pleasure to learn from and cycle with in the first months of the PhD, in

Greece. As for the academic secondment, working at the Imperial College with Anil Barath,

Kai Arulkumaran and Rob Holland was a fantastic experience, where I learnt more in 3

weeks than ever before. Finally, the both serious and facetious Sandra Winfield and Davidz

Hawkerz, with whom a much closer relationship could have been made possible had my

understanding of his multifarious jokes been less limited by accent barriers and language

subtleties.

Among the NETT Fellows, three relationships became strong enough to turn into friend-

ship. My relationship with MP Sid Visser (the Meeting Point) is a rare occasion to use

regular expressions in a human context: foo∗d; it was a delight to have lunch so often with

him and stand next to such a tall mind. I mean a great mind. Nibiscus Bojah, my Serbian

brother, pushed away to enjoy the Balkan smoking; hopefully we can finally get to work

together soon. Nitzan Herzog, who did not exactly enjoy all of his PhD, but nonetheless

reached the end of it as a man, as a father, as a scientist, as a friend; I wish you a great

(Academic?) career that incorporates all the ideas you want to put together, and that’s a

lot. Overall, I am thankful to everyone in the project, and the Fellows for giving me the op-

portunity and honour to be their representative, whatever this may mean. More specifically,

I am extremely grateful to all organisers of the ICSLANE 2015 conference in Barcelona: it

took time, it was not an easy thing to do, and I shall never forget the experience of chairing

the Neural Coding session and the final group discussion, as imperfect a chairman as I may

have been. The stress prevented me to sleep or eat, and two Red Bulls may not be the

healthiest diet, but in retrospect it was absolutely amazing and definitely worth the effort;

the shoeless-conference trend ought to survive my absence. Hail to Nitz’ spreading the word

regarding money limitations. Spoiler alert: they were slightly incorrect, hence the adventure.

From the University of Nottingham, my thanks go to many more people. From the Insti-

tute of Hearing Research, besides Chris, the companionship of Mark Steadman, Toby Wells

and Colin Horne in the beginning of my PhD was much enjoyed. With time I grew closer

to Christian Füllgrabe, with whom I enjoyed one a many lunch and discussions over the

innermost nature of the IHR. Eithne and Venessa: one of the most profound discussion I

ever participated in, and you girls gotta dance. I am strongly indebted to Ning Ma, from

the University of Sheffield, who showed me the HTK Lord of Light when the night was dark

and full of terror. The same goes to Guy Brown, University of Sheffield, for a clear view that

removed some of the remaining shadows from this thesis, and Reuben O’Dea, for a final push.

5

On the Maths’ side, a good bunch of people circled over the years. Wilhelm Braun

with whom I played Go long ago; can’t remember who won. Kyle Wedgwood, who almost

convinced me straight away to run away from Nottingham by crushing my brain with his

English accent, now appreciated. Georgina Fenton, sweet touch of constant good mood in

the School. Agne Tilunaite, our first discussion being about the vanity of small talk; as a

gesture, our second discussion started with it, and silences turned awkward are now a fine

delicacy when shared with her. Aytul Gökçe, who slowly understood that the amount of

seriousness I would put in my sentences had a high variance, a negative mean, and more in-

terestingly an almost infinite skewness, which could be scary. Mayte Bonilla Quintana, who

will punch you if you do the wrong move on her; been there, done that, slowed down the

dance. Elisa Tonello, both clever and ballsy as can be, admirable mixture. Luis y Patricia

y Lemon, big souls in a big house. Kai Groh, a surprisingly nice philosopher for a German.

Tupac Ibarra, too packed. Lia De Simon, a constant source of happiness and positivity;

so much that she’s close to the uncanny valley, where good characteristics become creepy.

Andreas Z. Finke, who was pleasantly found in more social circles than anticipated, and in

less still than wished. Dave Parkin, who turned up to be quite a cool IT guy, always reactive

and efficient. Ian Dryden, always encouraging. By extension, Mister John, Beeston’s Thai

restaurant Sanchan’s wiseman and music lover; keep the good sound going John, and see you

soon for a Pad Thai Moo! And Beeston’s Nero staff, who eventually knew what I wanted

before I tell them, thus convincing me that witchcraft is real.

Regarding housing, lots of adventures were had, from the Chinese parents moving in to

the retired lonely srilankese priest, from the cold silence of an old house to the nightly noises

of a drug dealer and his dog. To Pimmie, a warm kitchenworm. To Costanza Bergo, welcome

support in an awkward situation. To Josh Melton and Alexandru Dimitru: this shared house

has been a bumpy road, but we all learned from those hard times. To Laura Vilkaite, who

brought a touch of stability in this otherwise messy and awesome house. To Master Xiaofei

Sun, whose grandiose evolution I was proud to observe as a bystander, witness or supporter

over the course of two years, and in return was mine: you found yourself, and found yourself

solid friendship roots, may they continue to strengthen, deepen and spread.

To Jason and Barbara, who showed m. e that a. night full of terror. could be an interesting

frenz. y. À Gustave, pour la fâble cachée de no. s chats hau. t perchés.

To Kathryn, for whom I hopefully no longer am a... what was it again?! Ah, right...

A conundrum... But anyways; these few meetings we had were each unique and amazing

in incredibly different ways. They may not have been much in number or time, but their

greatness made them dear to me.

6

Now, place for a good dancing crowd. Wow, there are so many people... So many great

dances, laughs, game faces. Bachata used to be this foreign beauty I could merely dream

about, and has now become a lifestyle, a life journey and a life goal. Recent events suggest

that the latter is only true for my English self, but an acknowledgement section is no place

for deep psychological analyses... Most centrally, it is good to start with the LTP family, Sol

y Laura, Jackie Caspersz, Tamba Hissirou, Billy Homan, Felton Da Costa. You guys have

managed to make of Nottingham a dancing nest in which I could evolve into the proud and

happy social dancer I love being. Thank you so much for organising Bachakiz, can’t wait to

come back for the 2018 edition!

Among these dancing people, Giannis Kogias played many roles: a school comrade first,

then a buddy, a housemate, a friend and finally a role model. An amazing friend and an

even amazinger dancer, whose lessons in social calibration I have craftily not mastered...

These late post-dancing-Thursday-night-chilling sessions in Tesco were an important and

cherished ritual; since stress is your Achille’s heel, I wish you a stress-free life journey! A

few months back, Srishti Gupta and I said ‘Let’s be friends’; unfortunately it worked. Maria

Fischesser, may we finish to watch ‘Kubo and the Two Strings’. To Cato Rolea, a Romanian

with more complexity and contrast than he dares to admit and enough to fear to show;

may you find the perfect balance. In the meantime, give us some damn good remixes, you

have that in you! To Maria Patsia and Cory Siddall, for being amazing in their openness,

kindness and simplicity. To Paulina Ogrodzki, for many very different dances and for being

my partner in the uni competition; that defeat was a valuable dancing lesson: Social and

competition aren’t the same thing. Uncanny... but still a great day! To Stella Georgiadou,

Danai Galaziou and Gosia Weirdak, for allowing me to lead you, one step at a time, to a

realm of clouds on which we could freely dance to satiety, or at least until the song finishes.

To Hollie Mit, Bex Hawkins and Veronika Simonova, for enough dances to walk together

towards a better dance understanding as the never-ending promise to even greater dances.

To Björk Tyril, Rachel Melanie Parkes, Laura Rutty, Milena Iacovidou, Sanduni Senaratne,

Wally’s M. Kab, Jyoti Parmar, Jade Creber, Jodie Mallett for more smiles, patience and

dances than I deserve. To Richard, very not Gendo Ikari like. To Natalie Williams, who

has to continue working on her basics and straight up! To Lucy, towards whom an initial

shyness prevented me from dancing enough with; I hope we dance and hike again, and code

sometime. To the good-crazy Lisa London: we need to have a talk about religion before we

go our way. To Ylenio Lg, for hosting me and being cool. To Cedric Henry, just for being

cool; the ‘Giannis of Kizomba’, as was heard. For teaching me that Life is irony, to Thomas

Michael Dichmont, whose advice to go explore the world while I was still free made me re-

alise it was not what I wanted, which paradoxically shifted my life around since I now knew

what I wanted, and which meta-paradoxically I may end up following. And of course lots

of love to Korke y Judith: even though we have barely met, I proudly remain a Korke fanboy!

7

Distance truly is a terrible thing, more painful and necessary than it is reasonable to

address here. Now then, the most delicate bit... France, and all the tied knots temporarily

left behind. After hiding for so long, it’s time to acknowledge and write some things in stone.

À Mélo et Raph, sans qui le non initial serait resté un non, prouvant qu’un encourage-

ment peut changer le monde ; et mec, tu me dois du fric. À Louis Veyrat, car une invitation

tardive vaut mieux que jamais ; tant pis pour toi, je suis quand même venu, nah. À Camille

Manano, qui fait coucou de l’autre bout du globe. À Harry et Marie Cauderlier-Guy, vive les

jeunes mariés ! À Moubi, jeune père dont la belle normalité me dépasse de bien des façons.

À Jérémie Saives, qui näıvement souhaitait rester à la fac ; as-tu déjà changé d’avis ? À

Lou Scotto Di Covella, petite bête qui monte, qui monte, qui monte. À Elisa Rebolini,

mystérieusement hors radar. À Lucile Alexandre, envers qui les mots se perdent, en attente

d’un contact qui les guidera. À Camille Niaufre, pour d’autres mots en attentes. À Lëıla,

par habitude plus que par raison ; sais-tu que le cœur est bien étrange, car renoncer à le

saisir est le seul moyen de le comprendre, mélange d’humiliation et d’humilité pour l’intellect

qui dépasse les perceptions. À Matti, car il n’y a que les relations auxquelles on tient le plus

qu’on peut autant endommager, la peur ayant ce pouvoir hypnotique qui attire le papillon

de nuit vers sa flamme fatale. Aux Rux, avec qui si peu de pizzas ont été échangées, pour

tant de messages et d’émotions. À Charles-Pierre Astolfi, pour un potentiel encore latent.

À David Montoya et Sara Lacroix, prepare to dance - le 22 juillet 2017, et tu sais que j’ai les

jetons. À Emeline, pour une hospitalité paradoxalement constante et non-triviale. À Émile

Contal, à qui je dois ni plus ni moins qu’une part de mon identité et de son sens ; qui a lu si

loin dans mes contradictions et peines que je ne peux l’évoquer ici sans pleurer ; qui savait

quand je ne savais plus rien. “Si ta vie à Nottingham nécessite un nouveau masque, porte-le

au moins au début, enlève-le le soir, et organise un lever de rideau en douceur”, juin 2013.

The story of these years in the UK is intertwined with another story, complex and bitter.

To my ex. To Iuliz, towards whom writing current feelings would be one more nameless

injustice. I dreamt a timeless life, where absence would be a dimensionless point between

two instants full of presence. It is almost what this life between two lands has been, a two-

geared life, without the poesy but with the pain caused by this spacetime distortion. Our

constantly evolving relationship suffered from it, from this isolating and alienating distance,

insufficient support to compensate for the accumulating instability, as a spring pulling our

selves against the diverging flow of our respective lives. I pray that turning this PhD page

will allow me to turn yours, as too much red ink has sunk the margins and my hands beg

to let go of this page, rushed as they are to write on the next page yet another name: Liberty.

Merci. Et à bientôt.

8

Contents

Abstract . 2

Acknowledgements . 4

Table of Contents . 9

Table of Figures . 10

Table of Tables . 12

Glossary . 14

Introduction & Thesis Outline . 15

A Data Mining in the Cochlear Nucleus . 18

I Auditory Pathway . 19

II Supervised Learning & Data Mining . 41

III Demodulation in the Cochlear Nucleus 60

IV Comparison of Performance Measures 82

V Conclusion of part A . 96

B Speech Recognition on Neural Data . 98

VI Speech Recognition on Neural Data . 99

VII Neural ASR on a Small-Sized Vocabulary 126

VIII Neural ASR on a Medium-Sized Vocabulary 138

IX Neural ASR on a Large-Sized Vocabulary 156

X Conclusion of part B . 168

Final Conclusion & Discussion . 170

Appendices . 176

11 Complements to Part A . 177

12 Complements to Part B . 186

Index . 199

Bibliography . 202

9

Figures

I.1 Anatomy of the human ear . 20

I.2 Ascending auditory pathway . 21

I.3 Schematic cochlea cross-section . 22

I.4 Tip link model for mechanotransduction . 23

I.5 Membrane voltage of an IHC . 24

I.6 PSTH diversity of cats CN units . 26

I.7 Waveforms and their envelopes . 31

I.8 FFT of ANF responses to AM tones . 32

I.9 FFT of AM sinusoids after applying nonlinearities 33

I.10 Vector Strength calculation on spike trains 35

I.11 Model and neural MTFs of a Sustained Chopper 37

I.12 Vocal folds during speech and inhalation 38

I.13 Throat and mouth configurations to articulate /b, d, g/ consonants 39

II.1 Geometrical interpretation of conditional probabilities by renormalisation . 46

II.2 Separating hyperplane in a separable and binary linear SVM 49

II.3 Implicit spike train convolutions in application of the Kernel Trick 52

II.4 Fully connected feedforward ANN with two hidden layers. 53

III.1 Plot of a 100% amplitude modulated tone waveform 63

III.2 Raster plots of two spike train datasets . 64

III.3 Diagram of data processing in chapter III 64

III.4 Histogram of number of datasets used in chapter III per unit type 65

III.5 Time-binning of a spike train under different time steps 66

III.6 Victor and Purpura distance calculation . 67

III.7 Spike metric results under different kernel functions 68

III.8 Typical confusion matrix on spike train AM responses 69

III.9 Mean performance of classifiers & processing methods using 4 measures . . 72

III.10 Mean accuracy per classifier, preprocessing and CN unit type 73

III.11 Mean accuracy per parameter value using SMO 75

III.12 Optimal accuracy using SMO.TB plotted against associated time bins . . . 76

III.13 Mean temporal modulation transfer functions for selected set of results . . 78

III.14 Mean temporal modulation transfer functions at 30, 50 and 70 dB 79

10

IV.1 ROC curve calculation . 88

IV.2 Scatter plot of accuracy against mutual information 90

IV.3 Histograms and scatter plots of 3 measures of performance 92

IV.4 Probabilities output by three Weka classifiers 94

VI.1 Schematic of the DRNL filter architecture 103

VI.3 Processing chain of ASR systems . 106

VI.4 Comparison of major functional blocks of classical ASR features 108

VI.5 Optimal mapping using DTW . 110

VI.7 Graphical model of a left-to-right jump-free Markov chain. 116

VI.8 Graphical models of short and long silence HMMs 117

VII.1 Graph of data processing of chapter VII . 126

VII.2 Example of neurogram generation . 131

VII.3 Accuracy in VCV recognition using a varying number of neurons 133

VII.4 Accuracy training with 2 or 3 speakers, varying Hann window duration . . 135

VII.5 Difference of mean confusion matrices . 136

VIII.1 Graph of data processing of chapter VIII 138

VIII.4 Typical result outputs of HTK on sCUAVE 143

VIII.6 Intensity/Rate curves for AN fibres having different Best Frequencies . . . 144

VIII.7 Cochleograms, varying sound level & max calcium conductance 145

VIII.8 Cochleograms, varying calcium thresholds & max conductance 146

VIII.9 Speech waveform and high-energy parts extraction 147

VIII.10 Mean accuracies on sCUAVE, varying level & max conductance 149

VIII.11 Accuracy on sCUAVE, varying Hann windows & calcium thresholds 152

VIII.12 Accuracy, varying the number of fibres simulated 153

IX.1 Graph of data processing of chapter IX . 156

IX.4 Milestones of TIMIT phone recognition performance 160

IX.7 Accuracy on sTIMIT, varying the back-end processing chain 165

IX.8 Accuracy on sTIMIT, varying the Hann window 166

11.1 Modulation frequencies present in all spike train datasets of chapter III . . 177

11.3 Histograms and scatter plots with NaiveBayes, LogitBoost, SimpleLogistic . 185

12.1 Spike train generation using the thinning algorithm 189

12.2 Histograms of simulated spike trains . 193

12.3 Aligning rates & theoretical expectations; effect of refractoriness 194

12.4 Simulation time of Poisson processes with two algorithms 195

12.5 Poisson rate with and without refractoriness 196

11

Tables

III.15 Cut-off frequencies and mean accuracy per unit type 77

III.16 Rank order of CN units for AM transmission 80

VI.2 Auditory front-end table . 105

VI.6 Small word-level and phone-level dictionaries 115

VI.9 ASR back-end table . 125

VII.6 Table of most frequent errors . 137

VIII.2 Digit dictionary . 141

VIII.3 sCUAVE Statistics . 142

VIII.5 Typical digit transcript . 142

IX.2 Difficulty and duration in TIMIT dataset, per dialect 159

IX.3 Summary of sTIMIT dataset . 160

IX.5 Example of recognised TIMIT transcript, word-level and phone-level 162

IX.6 Modelling at the word/phone/triphone-level (cross-word or word-internal) . 163

11.2 Number of datasets satisfying various conditions in chapter III 178

12.6 Labels output by three classifiers when applied to the test set 198

12

“Nervous: A condition of fear that causes one to be
tense, awkward, jittery, and apprehensive, possibly with
trembling or excitability, often caused by being uncertain
of what dangers may be looming or how to handle them.
For example, teenagers regularly feel nervous when they
don’t know what an attractive person of the opposite sex
thinks of them.”

Urban Dictionary

“One problem with being a large organism is the difficulty
of passing messages between different parts of the body.
The solution for all large animals is a nervous system.”

Chris Plack, The Sense of Hearing

13

Glossary

N Integers

N∗ Non-zero integers

Rp
Real Euclidian space of dimension p

[., .]]., .] Real intervals

{...} Set

||.||p Lp norms

(xi)i... Sequence indexed by i

CV Coefficient of Variation

FFT Fast Fourier Transform

Tr Trace

fc Carrier frequency

fm Modulation frequency

P Probability

E Expectation

N (µ, σ2) Gaussian, mean µ, variance σ2

IID Independent, Identically Distributed

FOM Figure of Merit

MAP Maximum A Posteriori

pdf Probability Density Function

VS Vector Strength

ANN Artificial Neural Network

ASR Automatic Speech Recognition

DCT Discrete Cosine Transform

DL Deep Learning

DTW Dynamic Time Warping

HMM Hidden Markov Model

ML Machine Learning

NCC Nearest Cluster Centre

PCA Principal Component Analysis

RBF Radial Basis Function

SNN Spiking Neural Network

SVM Support Vector Machine

WER Word Error Rate

AM Amplitude Modulation

ANF Auditory Nerve Fibre

AVCN Anteroventral Cochlear Nucleus

BF Best Frequency

BM Basilar Membrane

CF Characteristic Frequency

ChS Sustained Chopper

ChT Transient Chopper

CN Cochlear Nucleus

DCN Dorsal Cochlear Nucleus

ECoG Electrocorticogram

EEG Electroencephalogram

fMRI functional Magnetic Resonance Imaging

HSR High Spontaneous Rate

IC Inferior Colicullus

IHC Inner Hair Cell

ISI Interspike Interval

LowF Low Frequency

LSR Low Spontaneous Rate

MEG Magnetoencephalogram

OHC Outer Hair Cell

On Onset

PBU Pause/Build-Up

PL Primary-Like

PLN Primary-Like Notch

PSTH Post-Stimulus Time Histogram

PVCN Posteroventral Cochlear Nucleus

RI Rate by Inversion; Rate/Intensity

SBC Spherical Bushy Cells

SO Superior Olivary

TFS Temporal Fine Structure

tMTF temporal Modulation Transfer Function

VCV Vowel-Consonant-Vowel

14

Introduction & Thesis Outline

Perception — or at least the mechanisms behind it — is a mysterious concept, entangled with

consciousness. Its Latin origin percipere means ‘seize, understand’, which already includes

the two concepts it is built upon: seizing bits of the external world through our senses, and

making sense of it all.

This ‘sense’ to be made is obtained by association with internal representations, be they

concepts or memories. For example, associating a sound to a word is a complex phenomenon

that involves transforming the sound waveform into a neural signal, processing it and recog-

nising some abstract features of the sound over a wide range of timescales and frequencies.

At the same time, the auditory system is able to extract other useful information such as the

voice intonation and associate it with a feeling experienced previously or even integrating

visual stimuli (a facial expression) to form a more complete sensorial picture. Neuroscience

aims at explaining such phenomena, empowering humans by developing their understanding

of our condition and ultimately improving it.

Auditory Neuroscience, specifically, aims at understanding sound related percepts [Plack,

2005; Schnupp et al., 2011]. Contemporary auditory neuroscience focuses on quite a few

topics such as tinnitus, source localisation, hearing loss and hearing impairments, or the

way the mammalian auditory system is able to segregate sounds. The latter, the so-called

Cocktail Party Problem [Simon, 2017], attempts to explain the neurobiological mechanisms

leading to the separation of a sum of sounds (what we hear) into different streams of

information (what we experience), allowing us to focus on one specific source (what we

perceive) such as a speaker in a noisy environment.

To study how the brain might segregate sounds, we need to be able to study its response

to complex sounds [Neilans and Dent, 2015]. Hence, researchers need to be able to process

neural data encoding complex sounds to tackle these open problems. While we will not

work on the Cocktail Party Problem, this requirement of having to deal with data encoding

complex and dynamical stimuli motivates the study of the processing of complex sounds

such as speech.

Studying the processing of speech is made harder by the lack of appropriate data: ob-

taining fast brainstem activity with current technologies requires invasive procedures [Herff

and Schultz, 2016]. Ethical and technological considerations limit the experiments that can

be done in this direction to small mammals, with all the difficulties this entails: time con-

straints to collect the data, risks of damaging or missing important brain areas, a limited

amount of neurons to record from and anaesthetics that change the neural processing. Any

15

prior information regarding the chances of success in an experiment is thus crucial to be able

to design experiments tailored to the questions at hand.

Furthermore, our understanding of neural mechanisms for speech processing is hampered

by the inability to create complex models that accurately describe and reflect the behaviours

of real neural tissue such as Inferior Colliculus [Steadman, 2015]. Such models, to be use-

ful and integrate a growing body of research and data, need flexibility and interpretability.

With this in mind, it should be clear that classical linear models are a limitation that the

growing trend of data-driven discoveries cannot keep using. The complexity behind ma-

nipulated neural representations is thus best suited to Machine Learning [Kotsiantis et al.,

2007] methodologies to assess the suitability of the coding for recognition, which is the topic

investigated in this work.

This thesis studies the application of Machine Learning and Automatic Speech Recogni-

tion technologies [Young et al., 2006] to spike train data, in an attempt to infer the complexity

(such as the number of speakers, accents, phonemes) of the speech dataset on which it is

reasonable to expect a good recognition accuracy under the constraints of an experimental

procedure. This tool could be used to track down speech processing along the auditory path-

way by comparing the data obtained at different functionally important places between the

ear and the cortex. Popular animal models in use are the cat and the guinea-pig, both known

to hear the range of frequencies used by humans to communicate [Fay and Wilber, 1989]. It is

accepted that higher processing capabilities are used by humans in speech recognition tasks,

and it is a legitimate question to ask whether animal models or data can provide insight

about speech processing. In practice, however, little is known about the actual limitations

such animal models entail regarding the peripheral and, even more so, the central auditory

system, while many structural similarities motivate their use [Neilans and Dent, 2015].

To study the feasibility of such a tool, we (A) assess the relationship between Machine

Learning algorithms and neural coding, and (B) proceed to testing a speech recognition

framework on datasets of increasing complexity, as detailed below. These two aspects of the

work are split into two parts, always studying spike train representations of sounds. First,

the tools are presented and applied to the responses to sinusoidal modulation of pure tones,

before moving to a complex dynamical modulation, namely speech. Experimental data is

used wherever possible (cat data [Rhode and Greenberg, 1994] in chapter III, guinea-pig

data [Steadman, 2015] in chapter VII), simulated data replacing it otherwise [Sumner et al.,

2003]. In the process, insight is obtained regarding neural coding of sounds at various places

along the Auditory Pathway.

Part A starts with a review chapter on the auditory pathway (I), followed by chapter II

that introduces the important Machine Learning algorithms and Data Mining concepts used

in this thesis. It then focuses on comparing neural data and Supervised Learning algorithms

in a simple sound discrimination task, using cat Cochlear Nucleus data: Chapter III uses and

16

compares a battery of classification algorithms to infer the modulation frequency from the

neural response of amplitude-modulated tones. Chapter IV examines whether the measure

of performance used affects the conclusion obtained in the previous chapter.

Part B starts with a review chapter (VI) on Speech Recognition technologies and their

application to neural data, paving the way to the next three chapters. Chapters VII, VIII and

IX evaluate a speech recognition framework on three speech datasets of increasing complexity

(number of speakers, number of phonemes, speakers’ accents, dictionary size). In each, a

set of parameters is tested, either in the cochlear model used to simulate neural data, or in

the processing applied to it, in order to improve the capabilities of the speech recognition

framework.

17

A
Data Mining in the Cochlear Nucleus

I.
Auditory Pathway

This chapter presents the Auditory Pathway and introduces the basic neural mech-

anisms for demodulation, speech generation and speech perception. These neural

mechanisms will be explored in parts A and B, focusing on extracting information

from spike train data encoding Amplitude-Modulation and speech, respectively.

I.1 Overview of the Ascending Auditory System 20

I.1.1 Peripheral Auditory System 20

I.1.1.1 Outer Ear: Sound Direction 21

I.1.1.2 Middle Ear: Transmission 21

I.1.1.3 Inner Ear: Transduction 22

I.1.1.4 Filtering action of the Basilar Membrane 22

I.1.1.5 Biophysics of Inner Hair Cells 23

I.1.1.6 Rectification and Low-Pass Filtering by Inner Hair Cells . 23

I.1.2 Cochlear Nucleus Cytoarchitecture 25

I.1.2.1 Cochlear Nucleus Taxonomy 25

I.1.2.2 Cell Types in the Cochlear Nucleus 28

I.1.3 The Other Auditory Brainstem Nuclei 30

I.2 Envelope Extraction & Speech Perception 31

I.2.1 Amplitude-Modulation Decoding 32

I.2.1.1 Role of a Nonlinearity . 32

I.2.1.2 Vector Strength . 34

I.2.1.3 Amplitude-Modulation in the Cochlear Nucleus 36

I.2.2 Speech Generation . 37

I.2.3 Speech Processing in the Auditory Pathway 39

19

I.1 Overview of the Ascending Auditory System

I.1.1 Peripheral Auditory System

Sound is a pressure wave, alternating compressions and rarefactions propagating through

an elastic medium, the air. To permit its percept, a biophysical system must transduce it

into a neural spiking code amenable to cortical interpretation [Plack, 2005; Schnupp et al.,

2011; Pickles, 1988]. The ear, the complex system that performs this transduction shown in

figure I.1, is classically divided into three functional parts:

• Outer ear: The sound arrives at the pinna and propagates into the ear canal;

• Middle ear: The eardrum vibrates with the incoming sound, inducing small movements

that are transmitted by three tiny bones (Malleus, Incus, Stapes), the last one having

a small surface of contact with the cochlea: the oval window;

• Inner ear: The vibrations on the oval window induce a wave on the basilar membrane

within the cochlea, which allows mechanosensing organelles to transduce the sound

into an electrical signal.

This electrical signal is transmitted to the Cochlear Nucleus (CN) through the Auditory

Nerve (AN), body of neurons having long axons to transmit information across distances.

Fig. I.1 Anatomy of the human ear; adapted from [Chittka and Brockmann, 2005].

20

Fig. I.2 Main connections in the ascending auditory pathway, from the cochleae to the
auditory cortices, adapted from [Plack, 2005]. The viewpoint is caudorostral, from the back
looking towards the front

There, it is processed and sent to other nuclei such as the Superior Olivary Complex or the

Inferior Colliculus (IC), as shown in figure I.2. The rest of this section presents in more

details the elements of the ear, and the other components forming the Auditory Pathway.

I.1.1.1 Outer Ear: Sound Direction

The pinna is a reflector that efficiently leads sound to the ear canal. Due to its shape, it

applies spatially dependent filtering to the sounds. Many animals, such as cats, are able to

move theirs to focus more efficiently on listening to sounds coming from different directions

without turning their heads, while humans only have weak muscles able to act on the pinna.

The ear canal has resonance properties that amplifies sounds at middle frequencies and

terminates at the eardrum — or tympanum — a thin membrane about 9 mm in diameter in

adult humans [Kandel, 2013].

I.1.1.2 Middle Ear: Transmission

Behind the eardrum, the middle ear is an air-filled space extending from the pharynx through

the Eustacian tube, which permits equalisation of the pressure on both sides of the eardrum.

The middle ear’s primary function is to allow an efficient transfer of acoustic energy from air

to fluid by a high pressure-gain (at least 18 fold), mechanistically induced by the reduction

of vibratory area, the oval window being about 14 fold smaller than the eardrum.

21

Fig. I.3 Schematic cochlea cross-section, with a close-up on the organ of Corti [Plack, 2005].

I.1.1.3 Inner Ear: Transduction

The cochlea is a complex spiral structure that contains a membrane called the basilar mem-

brane (BM), as shown on figure I.3, and a structure called the organ of Corti attached to it.

The motion of the stapes against the oval window induces a movement of the fluid in the

cochlea that in turn induces a motion of the sensory-motor hair cells contained in the organ

of Corti, attached to the BM. Those hair cells are split in two categories: the inner hair cells

(IHC) and outer hair cells (OHC). IHCs are sensory units that sit closer to the centre of

the cochlea and form a single row, transducing the sound into neural activity. On the other

hand, OHCs are motor units able to amplify the movement of the basilar membrane.

I.1.1.4 Filtering action of the Basilar Membrane

The BM, thanks to the heterogeneity in width and stiffness along its length, vibrates max-

imally at different places depending on the spectrum of the incoming sound: near the base

of the cochlea, where the membrane is narrow and stiff, high frequencies resonate, up to

about 20 kHz in young humans [Plack, 2005]. Conversely, the apical end of the membrane

is wide and floppy. Low frequencies resonate there, down to about 20 Hz. The frequency

provoking a vibration with maximal amplitude at a given point of the membrane is called

its Characteristic Frequency CF, or its Best Frequency BF.

Any given point on the BM has to move with its neighbours on a spatial scale charac-

terised by the local stiffness of the membrane, preventing the cochlea from behaving like a

perfect Fourier transform to the sound. The physical constraints of the BM lead us to view

this forced motion of neighbouring points as being the bandwidth of a band-pass filter. The

cochlea thus behaves like a filter-bank of band-pass filters having a fairly constant bandwidth

in a logarithmic scale for decreasing BFs, following the decreasing stiffness of the membrane

from base to apex. This is developed further in section VI.1 on Biophysical Auditory models.

22

Fig. I.4 [Pickles, 1988] The tip link model for mechanotransduction. Deflection of the
bundle in the direction of the tallest stereocilia, which is always the excitatory direction,
applies tension to the links and pulls open the mechanotransducer channels. Deflection in
the reverse direction takes tension off the links and allows the channels to close. For the
purposes of illustration, the deflection of the stereocilia has been massively magnified from
that expected in vivo.

I.1.1.5 Biophysics of Inner Hair Cells

The vibration of a specific part of the BM - associated with a specific frequency - induces a

shearing movement between the tectorial and basilar membranes (figure I.3). The stereocilia,

little organelles sticking out of the tops of IHCs attached to the BM presented in figure I.4,

follow this movement. As the stereocilia bend towards the tallest cilia, fine protein fiber

strands known as the tip links that connect the stereocilia are stretched and ion channels are

opened on top of the IHC. Positively charged potassium ions (K+) enter the cell, causing a

depolarisation of the cell that locks to the sound waveform’s phase. This in turn releases a

neurotransmitter into the synaptic cleft between the hair cell and a neuron from the auditory

nerve (spiral ganglion cells, also called cochlear nerve fiber), causing electrical activity in the

form of a spike, also locked to a wave’s phase. When the stereocilia are bent to the other

direction, the tip links slacken and the channels close. This whole process makes the cochlea

behave as a bank of overlapping band-pass filters that encodes precise temporal information

into the spike-timing of nerve fibre, which will be vital in the analysis presented in chapter III.

I.1.1.6 Rectification and Low-Pass Filtering by Inner Hair Cells

IHCs have nonlinear responses with respect to the angle formed by their stereocilia when

deflected, and a natural time-scale to return to their resting state. The consequences of these

properties are naturally expressed in terms of signal processing elements:

23

A) B)

Fig. I.5 A) Membrane voltage of an inner hair cell, plotted as a function of the displacement
of the cilia in the excitatory direction (positive displacement) or the inhibitory displacement
(negative displacement) [Hudspeth and Corey, 1977]. B) Membrane potential of a single
inner hair cell, recorded over 70 ms after a 80 dB SPL pure tone is played to the guinea-pig,
at the indicated frequencies (in Hz) to the right of each trace. As the frequency increases,
the sinusoidal component is converted into a steady depolarising component [Palmer and
Russell, 1986].

• Saturation: The response is close to linear for small deflections of the cilia in the

excitatory direction, and it saturates when the displacement is large (around 1.5 µm).

This way, a broad range of deflection magnitudes can be mapped into a sensibly smaller

range of membrane potential, as seen in the right part of figure I.5A.

• Rectification: In the inhibitory direction, a much smaller displacement (around 0.5

µm) reduces the current in the cell to its minimum. This asymmetry resembles the

function x 7→ max(x, 0), which is usually referred to as the half-wave rectifier, tak-

ing its name from the homonym electrical engine converting alternating currents (AC)

into direct current (DC) by stopping the flow in one direction with a diode (left plot

of figure I.5A).

24

• Low-pass filtering: When a pure tone is played to an animal, one would expect

the membrane voltage in an IHC having this frequency as its best frequency to reflect

the sinusoidal movement of the stereocilia; this is indeed the case at low frequencies.

However, as the sound frequency increases into the kilohertz range, individual cycles

of the vibration become less visible and are replaced by a continuous depolarisation

that lasts as long as the stimulus. See figure I.5B.

The importance of this nonlinearity in the amplitude-modulation decoding ability of the

cochlea is stressed in subsection I.2.1. Before focusing on the decoding properties of the

Auditory Pathway, let us finish the presentation of its main components, now entering the

CN and giving a fair account of the difference between the cell types that make it up.

I.1.2 Cochlear Nucleus Cytoarchitecture

I.1.2.1 Cochlear Nucleus Taxonomy

The study of the physiology of the Cochlear Nucleus started at least in the late fifties,

where the morphology of CN neurons was related to their physiological response properties

to specific features of sound [Rhode and Greenberg, 1992]. The CN is the first nucleus

to process auditory information. Until then, the spatial arrangement of the IHC reflects

the frequencies they encode, which can be rephrased by saying that sound is tonotopically

transduced onto the Auditory Nerve Fiber (ANF). Each ANF branches as it enters the

CN, towards the different components of the nucleus: The anteroventral, posteroventral and

dorsal Cochlear Nucleus (respectively AVCN, PVCN, DCN) are three branches found in

various species, each having specific subpopulations of cell types. The CN forms a network

of neurons that project to other nuclei to perform different computations such as source

localisation, as is shown in the next subsection.

Each CN cell type has a unique pattern of response to sound, consistent with the idea

that they are involved in different aspects of the sound analysis. There are at least 4 ways

to characterise a cell, each having its own name:

• Their pure tone response class, or Post-Stimulus Time Histogram (PSTH). See fig-

ure I.6 for example units (such as Primary-Like or Choppers, defined in this section);

• Their morphology: innervation and projection, cell shape, number and type of synapse

(such as stellate or bushy cells);

• The shape of their receptive field (pure-tone tuning, classes I to VI);

• Their intrinsic currents: biophysical behaviour under current or voltage clamp and

corresponding ion channels (type I or II with their subclasses).

25

Fig. I.6 [Rhode and Greenberg, 1992] Response diversity of cochlear nucleus units in cats.
Representative temporal response patterns (PSTH, or poststimulus-time histograms) for the
major physiological unit classes in the ventral and dorsal cochlear nuclei of the cat. The
PSTHs were computed from responses to brief tone bursts at the unit CF. For most cells
the stimulus duration was 25 ms, with each stimulus repeated 250 times, once every 105 ms.
For some DCN units the stimulus duration was lengthened to 100 ms due to the buildup
(buildup and pauser/buildup units) or complexity (OIN/T4, IN-inhibitory) of response. In
these instances the stimuli were repeated once every 400 ms. Stimulus sound pressure level
was generally 60 dB, approximately 30-40 dB above unit rate threshold. Histogram bin-width
was micro-second. See list of abbreviations for key to unit type classification in I.1.2.2.

26

The elegant phrasing of [Joris and Smith, 2008] stresses how well neurons fall into cate-

gories: ‘Biological taxonomy is always fraught with splitting vs. lumping difficulties. Kirsten

Osen’s morphological parcellation of the cochlear nucleus [Osen, 1969] was a landmark

achievement because it hit exactly the right level along the splitter-lumper dimension.’

Thanks to the exceptional taxonomy obtained by studying the CN and relating mor-

phology with other properties, the pure tone response is strongly predictive of the intrinsic

currents that will be found in a cell, the intracellular responses to injected electrical currents,

the morphology of the cell and the patterns of innervation of the cell by ANFs. Understand-

ing how each mechanism contributes to the electrical activity of the cells is a major goal

of contemporary auditory neuroscience. A complete discussion would be beyond the scope

of this work, but providing a flavour of the differences mentioned and their consequences is

informative:

• Innervation: The number of afferent Auditory Nerve Fibres and their spatial sum-

mation (the number of synapses and their proximity to the soma of the postsynaptic

neurone) play a role in how much of the regularity of the afferent firing is kept to the

output. On one side, a single massive synapse attached to the soma may produce a

post-synaptic action potential for each spike train of the afferent ANF. Calyces of Held,

for example, behave this way; these large synapses cover about half of the post-synaptic

neuron’s soma [Nakamura and Cramer, 2011]. Primary-like units have a small number

of AN inputs. At the other extreme, if many smaller synapses coming from different

ANFs are placed far from the soma, a more regular firing pattern is expected. Octopus

cells, often thought of as being synchrony detectors, average in cats around 60 inputs

[Oertel et al., 2000]. Using the law of large numbers to understand this phenomenon by

modelling these units as linear functions of their inputs, this conclusion seems natural:

let us model the ANFs as independent random variables identically distributed, say

according to some standard Gaussian distribution N (0, 1) for simplicity, and model a

unit i as applying a linear sum fi : (x1, x2, . . .) 7→
∑

k αk,ixi over part of the ANFs

(implicitly assuming only a few coefficients are positive, different for each unit). The

previous descriptions then reflect how averaging independent random variables reduces

the variance without affecting the mean. For example with the two extremes previ-

ously given, f1 copying its first input and f2 averaging its first n inputs, the reduction

in variance is clear:

f1(X1, . . .) = X1 ∼ N (0, 1)

f2(X1, . . .) =
1

n

n∑
k=1

Xk ∼ N (0, 1/n).

A computational model [Rothman et al., 1993] shows that, by varying the number of

AN and their strength, the full range of response types seen in VCN bushy cells are

reproduced, showing the importance of these two parameters in this nucleus’ units.

27

• Intrinsic currents: Some of the main characteristics of ionic currents are their speed

(the time-scale at which channels open or close, ranging from milliseconds (fast) to

hundreds of milliseconds (slow)), their threshold (high if they require a strong dif-

ference between the cells’ outside and inside ionic concentrations to open), and their

inactivation capacity (whether or not a unit gets inactivated, and how fast it gets in-

activated). In [Rothman and Manis, 2003b], the kinetic behaviour of ventral CN units

is detailed, revealing the dynamics of three distinct macroscopic potassium currents:

a fast transient current (IA), a slow-inactivating low-threshold current (ILT) and a

non-inactivating high-threshold current (IHT). A computational model [Rothman and

Manis, 2003a] then shows that the different potassium currents found in CN units

shape an important part of the cell’s electrical activity, by setting time constants and

the resulting firing thresholds. This simulation results indicate that those different

potassium currents are responsible for different electrical properties of the cell: IHT
functions to repolarise the membrane during an action potential, IA modulate the

rate of repetitive firing, and ILT is found to be responsible for the phasic discharge

pattern observed in bushy cells. The temporal integration of stimuli — or temporal

summation — reflects how a cell behaves as a capacitor, and is a function of the time-

scale at which ion channels change state, with a dynamical impact well-explained by

Bifurcation theory [Izhikevich, 2007].

We now present the unit types that are encountered in chapter III.

I.1.2.2 Cell Types in the Cochlear Nucleus

In the literature, different names sometimes refer to the same cell types, because of nam-

ing conventions that turned out to be equivalent thanks to the exquisite taxonomy of the

CN mentioned earlier. Descriptions in this subsection are mainly based on [Shepherd, 2004],

which is very rich in details and on [Pickles, 1988], but uses the classification from [Blackburn

and Sachs, 1989] in order to facilitate the reading of chapter III. This classification is based

on the different Post-Stimulus Time Histograms PSTH shapes obtained in response to pure

tones and on the physiological response properties of the units, while other names refer to

their anatomy. We add, when appropriate, a short description of the membrane properties

and of the flow of ions when a cell is subject to in vitro injection of hyperpolarising and

depolarising currents, since these properties form the fundamental differences between cell

types that will make them react differently to stimuli.

PL (Primary-Like): Primary-like units take their name from their physiological resemblance

with the responses of ANFs. The powerful end-bulb synapses that innervate bushy cells,

mainly located on the soma, make it possible for a small number (sometimes only one) ANF

to generate an action potential in the afferent neuron. Another name coming from their

28

morphology is bushy cells, due to their bush-like dendritic structure; they are thus often re-

ferred to as Spherical Bushy Cells (SBC), due to their soma’s spherical shape. The electrical

behaviour of primary-like units is produced by a low-threshold potassium conductance that

is strongly activated by depolarisation, producing a membrane rectification, thus preventing

temporal summation of inputs.

PBU (Pause/Build-Up): The DCN has a laminar structure, of which fusiform (or pyrami-

dal) cells form the second layer. Most commonly, those cells show two types of response: a

pauser response, where the initial burst of activity is followed by an inhibitory pause, or a

build-up response where the response gradually increases during presentation of the stimu-

lus. Both response types reflect a transient potassium conductance that makes the cell less

likely to fire for about 10 ms. The pause is produced by activation of a transient potassium

conductance that is normally inactivated at rest. If the cell is hyperpolarised, inactivation

is removed, so that the transient conductance can be activated by a subsequent depolarisa-

tion. Unlike most CN units, these units are substantially influenced by inputs other than

the cochlear, particularly local inhibition.

PLN (Primary-Like with Notch): PLN units show a fairly similar PSTH as PL units, except

for a small notch after the initial burst that reflects the refractory period following a very

sharp onset peak in the PSTH. Their anatomical name is Globular Bushy Cells (GBC). SBCs

and GBCs differ in their location, their projections and the number of afferent ANFs (higher

in PLNs, making them better at coincidence detection), and have anatomical differences that

give bushy cells their names.

ChS (Sustained Chopper): Chopper units such as T-stellate cells tend to fire at regular

intervals during a sustained tone burst at a rate unrelated to the period of the stimulus

waveform, a pattern called chopping. They are also called T-Multipolar cells and project to

the Trapezoidal Body. Their regularity arises from the integration of many inputs and from

having longer time constants, since they have no low threshold potassium currents [Rothman

and Manis, 2003a].

ChT (Transient Chopper): Sustained choppers have a fairly sustained local coefficient of

variation CV, while ChT show an increase over time of this measure. Two hypotheses un-

derlie this behaviour: a delayed inhibitory input will come from another neuron, or ChS

have more inputs. Thus, a common technique to distinguish chopper subgroups is that

of regularity analysis. If their coefficient of variation during the latter half of the response

to a short (25-50 ms) tone burst is above a fixed threshold (0.3), they are said to be transient.

On (Onset): An onset response signals when an important change in the stimulus is ob-

served. Octopus cells are large cells with a complex shape that receive a very large number

of afferent ANFs and are driven only when a large number of the relatively small excita-

29

tory postsynaptic potentials arrive together, making them good coincidence detectors. They

respond to tones over a very wide range of frequencies. D-multipolar (or D-stellate) are a

different morphological cell type which also receive many ANFs and respond mainly at the

onset of sounds and project to the Dorsal Acoustic Striae. Octopus cells also have a cocktail

of intrinsic currents — ILT and mixed cation current Ih, which lowers their effective input

impedance. This further helps them fire very precisely and with a short latency at the onset

of a stimulus.

LowF (Low Frequency): This category is used when the neuron’s response is dominated

by phase-locking properties, making it hard to evaluate in which category it falls. Some

techniques based on randomised inputs allow further classification.

Unu & UNC (Unusual & Unclassified): Categories used for units that don’t fit to any of

the above. Comments are sometimes given regarding the results obtained for those units,

although for readability they were removed from all figures in this thesis.

The classification of CN cells is mostly based on subjective criteria, but their diversity in

response pattern and projection onto specific brainstems known to perform different tasks is

a strong evidence for their functional diversity.

I.1.3 The Other Auditory Brainstem Nuclei

The brainstem nuclei are groups of neurons, mirrored in each hemisphere, that perform

transmission and information processing along the auditory pathway. Connections between

two nuclei are generally classified as belonging to either the ascending pathway or the de-

scending pathway, depending on whether the information is going ‘up’ towards the cortex,

or ‘down’ towards the CN. The ascending auditory pathway, whose main connections are

schematically presented in figure I.2, contains nuclei that have been associated with different

tasks such as calculating an interaural time difference (ITD), which requires binaural infor-

mation. Evidence suggests that the descending pathway plays an important role in setting

cochlear gain, thus impacting on the representation of sounds at the level of the cochlea

[Jennings et al., 2011] and having implications in speech recognition in noise [Clark et al.,

2012]. Secondary direct connections are missing from figure I.2, including a connection be-

tween cochlear nuclei, evidenced in [Davis, 2005] in cats and in [Arnott et al., 2004; Shore

et al., 2003] in guinea-pigs.

The first processing station, as discussed, is the Cochlear Nucleus. The signal is then

passed to the Superior Olivary (SO) complex, the first brainstem to receive binaural in-

formation and thought to be involved in sound localisation. This projects to the Lateral

Lemniscus, and both project to the Inferior Colliculus (IC), known to receive inputs from

multiple brainstem nuclei. Beside cat CN data discussed in chapter III, the other experi-

mental data used in this thesis is guinea-pig IC data in chapter VII. The auditory system is

30

Fig. I.7 Representation of a pure tone (left), an amplitude-modulated tone (middle) and a
speech sample (right) separated by short silences. Their respective higher and lower envelopes
are represented in red and dashed yellow.

interconnected, with parallel cues transmitting different types of information. The informa-

tion is passed to the auditory cortex via the medial geniculate body of the thalamus. The

primary auditory cortex is located at the top of the temporal lobe, mostly hidden within the

Sylvian fissure in humans.

I.2 Envelope Extraction & Speech Perception

Speech is a vocalised form of communication expressed through the articulation of sounds,

allowing humans to express their thoughts and feelings using a large vocabulary, typically

containing more than a thousand words. Speech sounds are characterised by the locations of

spectral peaks and dips, fluctuating rapidly. We are able to detect fluctuations in the level

of a sound up to rates of 1000 times a second1 [Bacon and Viemeister, 1985]. This contrasts

with the ∼100 Hz temporal resolution of the flicker-detection ability of the visual system

[Plack, 2005].

The same way a pure tone is perceived as constant, most of the speech information is con-

tained in the slow modulations of spectral envelopes of a speech waveform. See the example

waveform’s envelope in figure I.7, where the constant envelope of a pure tone contrasts with

the temporal envelope of a sinusoid modulated in amplitude and a speech sample. Hence,

Amplitude-Modulation (AM) is an important feature of most natural acoustic signals. The

available evidence suggests that specialised neural mechanisms exist to extract AM infor-

mation [Joris et al., 2004]. In this section we present the neural emergence of demodulation

in the auditory nerve fibre, going towards the processing of more complex envelope. The

basics of speech generation are then introduced, finally ending with the neural basis of speech

perception.

1Between approximately 18 Hz and 1000 Hz, a percept called ‘roughness’ is experienced, where fluctu-
ations are too fast to be counted, but slow enough to be perceived [Joris et al., 2004]. The fastest drum
players are able to strike at 20 Hz, thus faster than most people could keep track of the number of strikes.

31

Fig. I.8 From [Joris et al., 2004]. (A) superimposed waveforms of an unmodulated 1,000 Hz
tone (thin line, fc = 1000 Hz) and the same tone sinusoidally amplitude modulated (AM)
(thick line, fm = 100 Hz) at 100% with a modulation frequency of 100 Hz. Dashed lines
indicate the envelope. The amplitude is referenced to the peak amplitude of the unmodulated
tone. (B) idealised spectrum of the AM tone in A. At 100% modulation, the amplitude of
the sidebands is half that of the carrier, i.e., a difference of 6 dB. (C) average response in
the form of a post-stimulus time histogram (PSTH) of a nerve fiber to the signal shown in
A (stimulus duration, 50 ms). (D) spectrum of the PSTH in C. The components at carrier
frequency (fc) and modulation frequency (fm) indicate that there is phase-locking to the
fine-structure of the stimulus waveform. The component at fm is prominently present in
the response but is absent in the stimulus (B), as a consequence of the nonlinearity of the
response. The small circle on the ordinate indicates the average firing rate.

I.2.1 Amplitude-Modulation Decoding

I.2.1.1 Role of a Nonlinearity

The difficulty of understanding sound percepts already appears in the following paradoxically

simple formula: for all t ∈ R and for two frequencies fm > 0 and fc > 0 with fc > fm,

[1+2m sin(2πfmt)] sin(2πfct) = sin(2πfct)−m cos(2π(fc+fm)t)+m cos(2π(fc−fm)t). (I.1)

It is simple because it can easily be proven using classical trigonometric identities. It

is paradoxical because, assuming fc � fm, the modulation is perceptually evident to our

32

A

B

C

D

E

F

Fig. I.9 Absolute values of the FFT after applying different nonlinear functions f to the
AM tone defined in equation I.1, with carrier frequency fc and modulation frequency fm,
and comparison with figure I.8D. (A) f(x) = x, (B) f(x) = |x|, (C) f(x) = x2, (D) f(x) =
max(x, 0), (E) the nonlinear function figure I.5, extracted from the figure with Matlab.
(F) the actual spectrum of PSTH of figure I.8C, extracted from the figure with Matlab. For
readability, only fm and fc labels are provided on the x-axis. On the right side, the functions
applied to the sinusoid varying between -2 and 2 are plotted, fox x values between -2 and 5.

33

ears when this function represents a sound waveform, and visually evident when represented

on a graph (thick line on figures I.7 and I.8A), leading to a perceptually clear periodicity

with frequency fm. However, and this is evident from the right-hand side of formula I.1,

there is no spectral energy at fm; this percept arises from the two terms centred around fc
(figure I.8B). With this crucial observation in mind, it should be clear that our perception

of sounds cannot be understood by directly reading the Fourier spectrum of the incoming

waveform. The key to the AM extraction is in the nonlinearity of the transduction process.

Applying a nonlinearity brings up the modulation frequency fm into the energy spectrum,

in different ways for different non-linearities. See figure I.9A-E to visualise the effect of

selected nonlinearities on the spectrum and compare it with I.9F, which was extracted from

I.8D. The half-wave rectifier (figure I.9D) is a good analyser (in this case), because fc and

fm both appear clearly, and because the spectrum it brings is remarkably similar to the

spectrum obtained from some real ANF data (figures I.8D and I.9F). This is consistent with

the fact that inner hair cells’ non-linearity (I.9E, extracted from figure I.5) resemble half-

wave rectification (I.9D); surprisingly, the spectrum obtained using a half-wave rectifier is

even visually better than the result obtained using the function seen in figure I.5. This low-

pass filtering from temporal integration has as a consequence, that as a signal ascends the

auditory system, the ability to encode high frequencies decreases, which tends to increase,

by redundancy, the available information on the demodulated modulation frequency but not

the carriers.

Available evidence suggests there are neural mechanisms to extract AM information

[Joris et al., 2004]: ascending the auditory pathway, the neural code containing AM tuning

changes from a temporal coding (i.e. synchronisation of spiking activity, the precise timing

of neurons’ activation being crucial) to a rate coding (i.e. only the average firing rate of a

neuron contains information). After the auditory nerve fibres, the AM response is encoded

differently by different unit types from the Cochlear Nucleus. This is presented there using

the Vector Strength as measure, and is studied in chapter III in a more assumption-free

approach.

I.2.1.2 Vector Strength

The Vector Strength (also referred to as synchronization coefficient [Rhode and Greenberg,

1994] or order parameter [Kuramoto, 1975]) is a common measure in Auditory Neuroscience,

due to the well-known temporal precision of the discharge patterns in the auditory nerve fiber

and higher nuclei. Let the spike train {t1, . . . , tn} be the response to an amplitude-modulated

tone, with respective phase {φ1, . . . , φn} with respect to the modulation. Its vector strength

is defined as

ρ :=
1

n

∣∣∣∣∣
n∑
k=1

eiφk

∣∣∣∣∣ , (I.2)

34

which is independent of the initial phase θ0 of the waveform. See figure I.10 for a representa-

tion of the vector strength computation on three short spike trains recorded from the same

CN neuron under three different AM tones (with a modulation frequency of 150, 350 and

550 Hz, respectively). Vector Strength is fully described in [Rhode and Greenberg, 1994;

Hemmen, 2013]2.

The Vector Strength makes an implicit assumption: it requires to know the actual mod-

ulation frequency being used, which is not directly available to the neurons. Hence, rather

Time (in ms)
20 30 40

-100

0

100

f
mod

 = 150

;=0.49445

Time (in ms)
20 30 40

-100

0

100

f
mod

 = 350

;=0.66627

Time (in ms)
20 30 40

-100

0

100

f
mod

 = 550

;=0.88898

Fig. I.10 Representation of the vector strength calculation on 3 spike trains from an Onset
unit, given the periodical input (grey AM tone, with modulation frequencies of 150, 350,
550 Hz): each spike is associated a phase φk (second row, phase-coloured), and the vector
strength ρ is the length of the black arrow on the third row, using formula I.2.

2It seems that the first use in neurobiology of the Vector Strength is due to Goldberg and Brown
[Goldberg and Brown, 1969], but the first mathematical description of the notion of Vector Strength dates
back at least to von Mises’ 1918 article ‘On the integer-valuedness of atomic weights and related issues’
[von Mises, 1928; Siegmund-Schultze, 2006]. See [Hemmen, 2013] for a recent mathematical depiction of the
properties of the vector strength and [Siegmund-Schultze, 2006] for a discussion on the historical Pólya and
von Mises controversy on the emergence of various important notions around the central limit theorem on
the circle (law of (positive) atomic weights modulo 1) before modern Probability theory. In particular, on
page 477 of [von Mises, 1928], the reader finds a visual representation of the Vector Strength.

35

than relying on a measure that assumes the knowledge of the actual modulation frequency

used, a Data Mining approach frees itself from such information. This is done in chapter III.

I.2.1.3 Amplitude-Modulation in the Cochlear Nucleus

As the first locus of integrative processing in the auditory pathway, the Cochlear Nucleus

is the birthplace of a rich diversification of response patterns beyond the auditory nerve.

It seems natural that this diversity would be related to the functional roles played by each

unit type. It is at least clear that, through an increased synchrony with the envelope many

of them encode AM information, which is an important feature for sound percepts. This

is usually evidenced by calculating a function3 of the Vector Strength called the temporal

Modulation Transfer Function (tMTF) of the neural response.

Based on vector strength calculations, neural Modulation Transfer Functions of sustained

chopper units are low-pass for stimulus levels below 20 dB (above their threshold) and nar-

rowly tuned band-pass functions for levels above this (see figure I.11). This holds true to

different extents for most CN unit types, the sharpest peaks being found in chopper units

responses [Frisina et al., 1990; Hewitt et al., 1992; Rhode and Greenberg, 1994]. In [Frisina

et al., 1990], the order obtained from the gain of CN units responses to AM sounds in gerbils is

On > Ch > PLN > PL > ANF

showing that regularly spiking units enhance modulation gain.

On top of this, it was shown that CN units had wider dynamic ranges than ANFs for

AM encoding [Hewitt et al., 1992]. This phenomenon was also observed on other types

of CN units, both in quiet (at moderate to high sound levels) and in white noise with low

signal-to-noise ratios [Rhode and Greenberg, 1994]. The rank they found using a synchronic-

ity analysis for the units’ ability to phase-lock to high modulation frequencies is the following:

ANF > PLN > PL = On > Ch > PBU

Thus, under many conditions, CN neurons preferentially synchronise and enhance a best

modulation frequency from the sound signal, this peak changing with with sound level, but

this enhancement is not given by a unit’s phase-locking capability.

The way in which chopper cells temporally encode envelopes has been the subject of

several modelling studies. A simple integrate-and-fire approach [Hewitt et al., 1992] models

the postsynaptic response as the linear summation of the many nerve fibres inputs, to which

a low-pass first order Butterworth filter is applied, a time-varying threshold then generating

action potentials. More biophysically complete Hudgkin-Huxley type models [Banks and

Sachs, 1991; Wang and Sachs, 1995] also reproduce the linear subthreshold current-voltage

curve of stellate cells, successfully replicating their responses to pure tone at Characteristic

3The modulation gain (in dB) at a given frequency is defined as 20log10(rh/rs) where rh and rs are
the vector strengths of the response period histogram and the input stimulus, respectively. A Modulation
Transfer Function is defined as the modulation gain for each frequency band defining the histograms in use.

36

Modulation Frequency (Hz)

Fig. I.11 Model (open circles) and neural (closed circle) modulation transfer functions of a
Sustained Chopper unit for three stimulus input (35% AM-signals) levels (10, 30 and 50 dB
above unit threshold). Adapted from [Hewitt et al., 1992].

Frequency, the Vector Strength in response to amplitude-modulated tones and the responses

to other periodic stimuli. The theory of nonlinear dynamical systems also explains temporal

patterns in the response of stellate cells as being stable regions in parameter space called

Arnold tongues [Laudanski et al., 2010].

I.2.2 Speech Generation

The possible shapes of the mouth, tongue and vocal tract give rise to a wide range of

sounds an individual can make. Human speech is mostly produced with pulmonary pressure

provided by the lungs which creates phonation in the glottis in the larynx that is then

modified by the vocal tract into different vowels and consonants; see figure I.12 for two

pictures showing different vocal folds configurations for speaking or breathing, respectively.

When air is expelled from the lungs through the glottis, a pressure drop across the larynx

occurs. When this drop becomes large enough, and if they are close enough, the vocal folds

start to oscillate. It is common to think of speech generation as being the product of two

phenomena: a ‘source’ and a ‘filter’, the production of quasi-periodic vibrations by the vocal

folds making an original sound source, and the articulators (tongue, lips, teeth, velum, etc...)

then modifying its spectrum as shown in figure I.13.

Much of the speech information is carried by the waveform’s slow fluctuations, such

as the waveform’s envelope, the smooth curves shown in figure I.7 outlining the extremes

of the rapidly fluctuating waveform. A simple signal processing experiment confirms this:

removing the fine structure of a speech signal does not change much how understandable the

message is4 in a quiet environment. More accurately, the temporal envelopes extracted by

the auditory system correspond to the slow fluctuations within each cochlear filter’s narrow

frequency band. On the other hand, the temporal fine structure, the rapid oscillations within

4Listen to https://auditoryneuroscience.com/topics/speech-modulated-signal to be convinced
that speech is mostly conveyed by the envelopes.

37

https://auditoryneuroscience.com/topics/speech-modulated-signal

the envelopes of each band, appear to contain useful information for recognition of speech

in noise, where patterns of phase locking appear to be more robust than firing rates [Moon

and Hong, 2014].

The same process gives birth to our perception of hearing a constant sound when a

continuous pure tone is played, rather than perceiving the variations of the waveform. But

the auditory system does not seem to proceed to a direct envelope extraction, as shown in

I.2.3. Instead, it collects other information and processes them to accomplish different goals

such as speech recognition in noise, source localisation or source segregation.

Many acoustic features are important for speech decoding and are understood as requiring

separate parallel processing in the auditory system. Vowels and consonants, for example,

are quite different: The prominent bands of frequency that determine the phonetic quality

of a vowel, its formants, dominate both the acoustic properties of the sound and the neural

responses, whereas consonants vary significantly more quickly, being characterised by either

formant transitions, or silences bordered by transients in sound energy [Young, 2008]. To

analyse the coding of speech, it is convenient to be able to parameterise the stimuli and study

the responses under simple changes. Some important features of speech [Abrams, 2008] are:

• Periodicity: regular temporal fluctuations in the speech signal between 50 and 500 Hz;

• Formant structure: series of discrete peaks in the frequency spectrum of speech that

are the result of an interaction between the frequency of vibration of the vocal folds

and the resonances within a speaker’s vocal tract;

• Frequency transitions: modulation of the fundamental frequency providing infor-

mation about the intent and emotional state of the speaker;

• Acoustic onset/offset: spectral and temporal features present at the beginning and

end (the initial or final ∼40 ms) of speech sounds;

• Speech envelope: temporal fluctuations in the speech signal between 2 and 50 Hz.

Fig. I.12 Vocal folds in action: oscillating during speech (left), opening during inhalation
(right). From https://www.youtube.com/watch?v=v9Wdf-RwLcs

38

https://www.youtube.com/watch?v=v9Wdf-RwLcs

Fig. I.13 Schematic view of the articulation of three consonants (/ba/, /da/, /ga/) with
respective spectrogram. Vocal folds are located at the top of the trachea, where the larynx
stops in the drawings. Adapted from [Bouchard et al., 2013].

This simplified presentation of the mechanisms of speech generation does not include the

many physical elements that add up to produce speech. See for example http://newt.phys.

unsw.edu.au/jw/voice.html for more details on speech generation, with illustrations.

I.2.3 Speech Processing in the Auditory Pathway

To understand the auditory responses to sounds, researchers tend to use either ‘simple’

acoustic stimuli, such as tones or clicks, or ‘complex’ acoustic stimuli such as natural noises

or speech-like stimuli. Given the nonlinearity of the auditory system, an understanding of

the neural mechanism of tone-processing is indeed bound to meet limitations when it is

applied to more complex acoustic stimuli such as speech.

The limited dynamic range of ANFs means their rate can no longer increase after some

threshold level is reached (between 40 and 80 dB SPL). At high sound levels, the peaks in

the discharge rate profile of auditory nerves tend to disappear due to rate saturation. The

instability of rate profiles with stimulus level in the ANF thus led to the idea that the way

speech is encoded varies with sound level, from a rate-based representation at low sound

levels to a representation based on temporal response patterns at high levels: a temporal

code partly replaces the rate code when nerve fibres fire at a discharge rate near their

maximal rate [Young and Sachs, 1979]. Modern approaches confirm that using temporal

information improves the accuracy at high sound levels in speech recognition tasks, in quiet

and even more so in noise [Holmberg et al., 2007], suggesting that temporal coding improves

robustness of speech recognition in challenging conditions but plays little role in encoding

clear speech at low to medium volume.

Available experimental results at the cellular level of responses to speech are mostly from

the CN and the ANF. Single unit recording is classically performed in the CN where both the

matter of neural typing and the inputs received (from the nerve fibres) are best understood.

Experimental results show that the encoding of characteristics of vowels is already partly

39

http://newt.phys.unsw.edu.au/jw/voice.html
http://newt.phys.unsw.edu.au/jw/voice.html

coded into the formant-to-trough rate differences observed in the VCN, where chopper units

react more robustly at different sound levels or in noise than primary-like units or even

the auditory nerve [May et al., 1998]. Besides neuron typing, tuning curves are normally

computed to evaluate how firing rates vary over time in response to different simple sounds

such as tones, either reflecting changes in the envelopes or a more complex encoding.

Another way to measure speech responses is to use the electric or magnetic changes

recorded at the brainstem or cortex level using external electroencephalogram (EEG) or

magnetoencephalogram (MEG) devices to track the auditory response. The brainstem re-

sponse, in particular, is reliable enough to be used clinically for auditory related disorders.

Cortical responses, on the other hand, have higher inter- and intra-subject variability. The

other technologies reviewed in [Abrams, 2008] are functional imaging techniques, measuring

the changes in blood flows in the brain, which are known to be highly correlated with neural

activity [Smith et al., 2002]. Their advantage, relative to evoked potential or evoked fields

responses, is their high-spatial resolution. They have, however, a much slower time-scale,

averaging activity over the course of seconds, which is extremely slow given that speech

tokens are of the order of 30 ms.

Within the peripheral auditory system, the distribution of the relative phases of syn-

chronised activity between cues carries important response features reflecting the stimulus

spectral parameters [Shamma, 1985]. This phase-locking property is used in the upstream

auditory pathway, as timing features related to modulations are re-encoded into rate activity

[Joris et al., 2004]. Indeed, in a rare setting of invasive human recording of cortical activity,

it was observed that reconstruction quality was highest for sound features most critical to

speech intelligibility, and even allowed decoding of individual spoken words, hinting at neural

encoding mechanisms of speech acoustic parameters in higher-order human auditory cortex

[Pasley et al., 2012].

All discussions specific to speech encoding are now suspended until the end of chapter VI.

We now study the Cochlear Nucleus response to Amplitude-Modulated tones, using many

classification algorithms and measures of performances. In order to use such tools, a chap-

ter on Machine Learning is first needed. More precisely, since labelled data is used, only

Supervised Learning methods are introduced.

40

II.
Supervised Learning & Data Mining

This chapter sets the foundations of Machine Learning and Data Mining used later

in this thesis. The field of Machine Learning is first introduced in section II.1 and

different model validation protocols are presented in section II.2. Classifiers are

split into 4 groups: the ones based on Bayesian techniques (II.3), linear classifiers

(II.4), nonlinear classifiers (II.5) and ensemble methods aggregating classifiers

(II.6). As part of the Data Mining Swiss army knife, a section on dimensionality

reduction is incorporated (II.7). Last comes the Weka data mining toolbox (II.8)

and the implementation of a selection of its classifiers.

41

II.1 Introduction to Machine Learning 43

II.2 Model Validation . 44

II.2.1 Training/Testing Paradigm 44

II.2.2 Confusion Matrix & Accuracy 45

II.3 Bayesian Techniques . 46

II.3.1 Maximum Likelihood . 47

II.3.2 Maximum A Posteriori . 47

II.3.3 Gaussian Processes . 48

II.4 Linear Classifiers . 48

II.4.1 Linear Separability . 48

II.4.2 Support Vector Machine . 49

II.4.3 Single-Layer Perceptron Algorithm 50

II.5 Nonlinear Classifiers . 51

II.5.1 k-Nearest Neighbours . 51

II.5.2 Kernel Methods . 51

II.5.3 Artificial Neural Networks 52

II.5.4 Backpropagation Algorithm 54

II.5.5 Multilayer Perceptron . 54

II.5.6 Radial Basis Function Network 55

II.6 Ensemble Learning . 55

II.6.1 END . 55

II.6.2 Bagging . 56

II.6.3 Boosting . 56

II.6.4 Random Forest . 56

II.7 Dimensionality Reduction 56

II.7.1 Principal Component Analysis 56

II.8 The Weka Data Mining Toolbox 58

II.8.1 Weka . 58

II.8.2 Implementation of Weka’s Selected Classifiers 58

42

There are many ways to examine the unknown neural code. A way to assess the code

is to see how well it supports a task - identifying a sound or discriminating two sounds. A

relatively assumption-free approach is to employ a Machine Learning (ML) algorithm to see

how well it performs a task given a set of spike trains. Since there are a world of different

ML methods, how does one know what is an appropriate method? Here we review the basics

of Machine Learning methods relevant to the work that follows in this thesis and give the

definitions of classifiers and measures of performance output by the data mining toolbox

Weka [Hall et al., 2009].

II.1 Introduction to Machine Learning

Machine Learning, Pattern Recognition, Data Mining (DM) and Artificial Intelligence (AI)

are related fields, often mistakenly referred to interchangeably due to their enormous overlap.

The grand idea is to use algorithms that are able to learn from data by building statistical

models and use these models to infer information from new datasets, hence to use information

(raw data) to create knowledge, for example by inferring the neural code of neurons from

their spike trains. The following informal definitions are used:

• Machine Learning: Set of algorithms and corresponding theory that aim at learning

from data by building models with predictive power;

• Pattern Recognition: Branch of ML that focuses on the recognition of patterns and

regularities in data;

• Data Mining: Practical use of ML tools and associated techniques to extract informa-

tion from data;

• Artificial Intelligence: Branch of Computer Science attempting to create intelligent ma-

chines, traditionally split into weak AI and strong AI. The former defines a non-sentient

type of intelligence focused on specific tasks, and the later a human-like intelligence

with cognitive capability.

Machine Learning algorithms are usually split into two categories:

• Supervised learning algorithms: the algorithm is given the training dataset and the in-

formation (labels in the case of classification, numerical values in the case of regression)

it is supposed to learn from it;

• Unsupervised learning algorithms: the algorithm has to find features in the data such

that it can naturally cluster the data according to those features.

43

This chapter mostly deals with classification algorithms, or classifiers, to give a flavour of

the tools used later on spike train data. Here we give the definitions of a selected subset of

the classifiers implemented in Weka, a data mining toolbox used for the classification results

in chapter III. A synopsis of all the classifiers used is given in appendix 11.

The classical way to assess a classification work is to split a dataset with its labels into

two groups: a training set, used to train an algorithm, and a test set only used to test how

accurate the model is. From the labels predicted on instances of the test set, is computed

a number - a measure of performance - that sums up an aspect of all classifications. This

necessity of testing the model on data that wasn’t used during the training phase of the

process is due to the classical problem of overfitting, which is equivalent to building a model

that performs well on the training set but has very small predictive power. To circumvent

this pitfall, there are various model validation methods generally accepted, with different

advantages and drawbacks, presented below.

II.2 Model Validation

II.2.1 Training/Testing Paradigm

Resubstitution Method:

The same data is used to train an algorithm and to evaluate it. This unfair method provides

optimistic evaluations of a model due to the clear dependance between the dataset used to

train a classifier, and the dataset on which it is tested. It is avoided in practice because it

leads to overfitting. One can use it during a data exploration phase to have an upper bound

on the accuracy attainable later without overfitting.

Holdout Method:

The initial dataset is split into a training set and a test set. The training set is used to train

the algorithm, which will be tested on the test set. This method evaluates the generalisation

capacity of the model in a fair way, but opens the question of the size of both datasets,

which is a non-trivial question. People use their own experience to judge what percentage

of the data should go to each set, depending on the amount of data, the number of classes,

the speed of training the algorithm, and the importance of having a well-trained classifier.

Leave-One-Out Method:

This strategy alleviates the problem of choosing a training and test set by picking one in-

stance of the data, using all others to train the classifier, and testing it on this instance.

This is performed as many times as there are data points, each time choosing a different test

instance. This method has the advantage of testing all instances in a fair way and training

the algorithm with as much data as is possible, but at a huge computational cost.

44

Stratified Cross -Validation Method:

Cross-validation is a widely used validation method. It is a fair method with a lower com-

plexity than Leave-One-Out, while still using all points once at test instances. A number of

folds is decided, for example 10, and the dataset is cut in 10 folds of approximately the same

size. When splitting the data, one can make sure that the number of instances of each class

is well-balanced among all folds, in which case, one talks about stratified cross-validation.

Each fold will then be used once as test set, while the rest is used as training set. By default,

Weka uses 10-fold stratified cross-validation.

II.2.2 Confusion Matrix & Accuracy

After training and testing in a classification task, each tested instance of class i is attributed

a label j; for simplicity, let’s assume the classes are 1, 2, . . . N . This classification is of course

correct if and only if i = j and incorrect otherwise, and a very simple measure of the overall

performance of the classifier on the test dataset is to count the percentage of correct guesses

over the test set. A more informative way to understand what the algorithm did is to look

at the confusion matrix, which is an integer-valued square matrix whose size is the number

of classes, such that the value at the ith row and jth column counts the number of test

instances of class i that were labelled as j. The percentage of correct guesses is then related

to the confusion matrix M through its trace (sum of diagonal elements) and L1 norm (sum

of absolute value of all components) by the relationship

%correct = tr(M)/||M ||1, (II.1)

and is discussed in more detail (among other measures of performance) in chapter IV. This

measure is often referred to as accuracy. These two terms are interchangeable when only

one label is recognised per instance (a class), but have different meaning when there is an

unknown number of labels to recognise per instance (a sequence of classes), as will be the

case in the most of part B.

Now that we have defined the model validation methods applicable to all classifiers and

the simplest model evaluation procedure, let us introduce the classifiers that are actually

used. First we present Bayesian techniques used in Machine Learning, as this permits us to

give the definitions of concepts used later while providing a rigorous mathematical framework

to work in. We then define common linear and nonlinear classifiers, and lastly the class of

ensemble learning algorithms.

45

II.3 Bayesian Techniques

Real data is noisy, both due to imperfect measurements and the intrinsic statistical variability

in the phenomena under study. Imagine for example that everyday you take one of your M

(for example, M = 3) different routes to go back home from work; you measure the time it

took you (calling this value x1(i) for day i), and tell it your life partner. In general, it will not

be possible to guess correctly each time which path you chose using only this information,

because your average speed depends on many external parameters that one can’t guess, such

as the weather, your hunger or other needs. One would probably need a few more statistics

in order to guess the path you took, say, the number of steps you walked this day x2(i), the

mean temperature x3(i), or a measure of how hard it rained x4(i) guessed by a look at your

clothes, how much you reek of perfume x5(i).

To rigorously tackle this uncertainty-related problem, scientists tend to use a probabilistic

framework to infer the underlying information of interest: Let Xi be the feature vector

computed on the ith day, a list of chosen statistics collected each time you walk back home.

In the above example, Xi = (x1(i), x2(i), x3(i), x4(i), x5(i)). The modeller’s goal is to use the

data you have collected during your first n walks back home X1, X2, . . . , Xn (each of them

containing 5 statistics in the current example), in order to correctly guess the path used on

the next n+ 1th walk. Let’s call λi the path used on day i (path 1, 2 or 3); the goal is then

to guess λn+1 (1, 2 or 3), knowing X1, . . . , Xn, Xn+1 and λ1, . . . , λn. Definitions related to

Probability theory are given in appendix 12.1.

Given a probability measure P, the knowledge of a particular event Y that has positive

probability modifies the chances of all the other events. This new knowledge transforms

the probability P into a conditional probability P(·|Y) defined for each event X that has a

positive probability by

P(X|Y) = P(X&Y)/P(Y). (II.2)

X

Y

X&Y
Conditionally to Y

Y | Y

X | Y

Fig. II.1 Geometrical interpretation of conditional probabilities (equation II.2).

46

Using geometry to develop an intuition of what this means (figure II.1), this division is a

way to renormalise the areas where X also takes place (to sum to 1), only where the event

Y also takes place. The separation between what is known and what is to be inferred is at

the very heart of Bayes theorem, where they play dual roles:

P(λ|X)P(X) = P(X|λ)P(λ). (II.3)

This formula is used to infer optimal decisions regarding the unknown λ. In this thesis, two

natural estimations from Bayesian frameworks are used, respectively called the Maximum

Likelihood where the probability measure is supposed to be known, and the Maximum a

Posteriori (MAP) that learns from observations.

II.3.1 Maximum Likelihood

The maximum likelihood estimator is the value allowing maximal probability,

λ̂ML = argmaxλ∈paths P(λ). (II.4)

The Maximum Likelihood estimation has some very desirable properties under generally valid

conditions [Papoulis, 1991], making it a natural statistic to use to infer a real (unknown)

sampling parameter, such as being asymptotically unbiased1, and converging in the mean

square2 sense. Uninformative variables would, ideally, not contribute to changes in the

likelihood functions. In practice, however, noise will not be identical for all observations

under different λ, thus making the ‘optimal’ decision (using the available data) not the real

optimal (knowing the underlying distributions). Other classifiers may be better suited to

deal with noise.

II.3.2 Maximum A Posteriori

After accumulating observations X = {X1, . . . , Xn} and their associated values λ1, . . . , λn,

Bayes Theorem allows us to define the posterior probability P(λ|X) as

P(λ|X) =
P(X|λ)P(λ)

P(X)
, (II.5)

considering that the known paths λ1, . . . , λn are implicitly used to define the probability

measure, and that P(X) is not null. The Maximum a Posteriori (MAP) is the value achieving

1limn→∞ E[λ̂ML] = λ0, where λ0 is the real value we try to assess.
2limn→∞ E[||λ̂ML − λ0||2] = 0

47

maximal posterior probability3, which means taking as a guess for the unknown value λ0

λ̂MAP = argmaxλ∈paths P(λ|X1, . . . , Xn, Xn+1, λ1, . . . , λn). (II.6)

The probability function P has not been defined here; this choice is problem-dependent and

different modellers ought to use different modelling approaches. Gaussian Processes are a

common modelling tool thanks to their flexibility and their strong theoretical grounding.

They are also used in Machine Learning and make an implicit use of MAP.

II.3.3 Gaussian Processes

Gaussian Processes are a family of stochastic processes4 commonly used nowadays in Machine

Learning [Rasmussen, 2006], thanks to their well-established theory and learning capability.

The flexible probabilistic framework this family provides makes it a good candidate to build

models from. Compared to Artificial Neural Networks where adaptive hidden units can learn

important representations or features from the data, a central difficulty in using Gaussian

Processes for Machine Learning is the choice or optimisation of the covariance function

k(s, t) that gives the correlation between the random variables Xs and Xt
5. The other

main drawback they share with many technologies is scaling-up, having by default an n2

requirement in space, and n3 in time, for a data sample of size n. Thus, developing scalable

algorithms or approximations is an important aspect of Gaussian Processes when dealing

with large datasets.

II.4 Linear Classifiers

This section focuses on the design of linear classifiers. This approach leads to fairly simple

models to train and to interpret, and also to computationally cheap algorithms. It is first

assumed that all feature vectors from the available classes are linearly separable.

II.4.1 Linear Separability

Linear separability in a 2-class dataset occurs when thresholding the output of a linear form is

enough to correctly classify all data points. In geometrical terms, this property is equivalent

to the existence of a hyperplane able to split the two classes, or to requiring that the respective

convex hulls of the two sets are disjoints. Such a dataset is presented in figure II.2, where

3In other words, the MAP is the maximal likelihood on the updated probability.
4The exact definition of a stochastic process is not required in this work; a simple description is that of

a group of Random Variables indexed by continuous or discrete labels (real- or integer-valued).
5Meaning that E[XsXt] = k(s, t), often assumed equal to k(|s − t|) to simplify the choices. The next

step is to parameterise this function to further reduce the choices. However, since this becomes an expert
choice, some modelling difficulties remain.

48

w ∈ R2 and b ∈ R could be any vector and scalar such that {x ∈ R2 |w · x = b} represents

the lines H2 or H3, for example. This way, the linear form x 7→ w · x provides a simple way

to split the dataset: all black points verify w · x > b, and all white points w · x < b (or the

opposite, depending on the chosen w).

II.4.2 Support Vector Machine

Support Vector Machines (SVMs) find an optimal hyperplane by solving a constrained op-

timisation problem: Let (xi)i=1,...,n be the dataset, each point xi ∈ Rp being associated a

label yi ∈ {1,−1} (represented in black and white in figure II.2 with p = 2), and assume

linear separability. An SVM will look for the optimal vector w and scalar b to define two

hyperplanes, thus splitting the space in 3 domains. For all x ∈ Rp,

• (w · x− b) ≤ −1 where there is no point labeled 1,

• (w · x− b) ∈]− 1, 1[where there is no point labeled -1 or 1,

• (w · x− b) ≥ 1 where there is no point labeled -1.

Fig. II.2 (Left) Plot showing how a support vector machine would choose a separating
hyperplane for two classes of points in 2D. H1 does not separate the classes. H2 does,
but only with a small margin. H3 separates them with the maximum margin. (Right)
Geometrical representation of the solution of an SVM applied to a linearly separable 2D
dataset. A separating hyperplane is found, and the margin separating both classes 2/||w|| is
maximal. Samples on the margins are called support vectors. Images are within the Public
domain, via Wikimedia Commons.

49

The distance between the hyperplanes6 (w ·x− b) = −1 and (w ·x− b) = 1 is 2/||w||. Trying

to make this margin as wide as possible is equivalent to minimising ||w||. The optimal w

and b are thus chosen by solving this constrained optimisation problem:

(w, b) = argminw∈Rp,b∈R||w||2,

subject to ∀i, yi(w · xi − b) ≥ 1.
(II.7)

as is suggested by the right plot of figure II.2.

II.4.3 Single-Layer Perceptron Algorithm

The perceptron algorithm, also termed single-layer perceptron, is the simplest feedforward

neural network. It is a 2-class linear classifier that learns from the data by updating weights

until all data points are correctly split. Consequently, it requires linear separability. If this

assumption is verified, the algorithm is guaranteed to converge, and there are upper bounds

on the number of iterations necessary to find a separating hyperplane. If the data is not

linearly separable, the algorithm doesn’t terminate.

Formally, a Heaviside function is applied to the output of a linear form: f(x) = 1 if

w · x + b > 0 and 0 otherwise. After choosing a learning rate 0 < α ≤ 1 and an initial

weight vector w = w(0) and scalar b = b(0) (that could alternatively be included in the

vector w), the learning rule is given by repeating the following steps, noting that each index

i corresponds to both the i-th point xi and its scalar weight wi that will change whenever

xi is tested and incorrectly classified:

Algorithm 1 Perceptron Algorithm

1: procedure Perceptron Learning Rule
2: initialRandomWeights
3: w← rand(n, 1)
4: b← rand(1, 1)
5: loop:
6: i← rand {1, . . . , n}
7: ŷi ← f(w · xi + b)
8: wi ← wi + α(yi − ŷi) · xi
9: b← b+ α(yi − ŷi)

10: if some training instances are incorrectly classified then
11: goto loop
12: fi

6A point x such that (w ·x−b) = −1 projects onto the second hyperplane to a point y with (w ·y−b) = 1,
by a translation along the vector w, orthogonal to those planes, so there exists µ ∈ R such that y = x+ µw.
This leads to µ = 2/||w||2 and thus to the distance between x and y being ||x− y||= ||µw||= 2/||w||.

50

II.5 Nonlinear Classifiers

In the previous section were presented linear classifiers. However, most methods are non-

linear. We now present a selection of them that will be encountered later on in this thesis.

II.5.1 k-Nearest Neighbours

The k-Nearest Neighbours (kNN) is a type of instance-based learning, or lazy learning. Given

a fixed integer k, a class is chosen for a test sample by a majority vote on the classes of the

k nearest neighbours in the training set. In the simplest case k = 1, the class attributed to a

sample is the same class as the training point that is nearest under the distance metric being

used. This algorithm is simple, commonly used and has interesting theoretical bounds on its

error probability [Devroye et al., 1997], but requires a brute-force search over the training

set and does not provide much insight, as opposed to constructing generative models where

one tries to summarise the important bits of information within a model.

II.5.2 Kernel Methods

When each dataset’s sample is too big for a computer (large time series) or complex (graphs,

texts, spike trains), one approach in Machine Learning involves extracting meaningful fea-

tures from each sample and giving them to the classifier. This approach was the one used

in the route-guessing example. Kernel methods, on the other hand, only require a similarity

function over pairs of data points, applicable on their original representation. In a Machine

Learning context, a kernel is the similarity function provided by a domain expert.

A common technique to reduce the computational cost that those approaches often in-

volve is the kernel trick: instead of explicitly mapping the raw data into a high-dimensional

representation to use a similarity function, one may manually construct a feature map such

that the similarity function can be rewritten as the inner product in a convenient space -

a real or complex inner product space that is also a complete metric space with respect

to the distance function induced by the inner product: a Hilbert space. In this space, the

inner product can often be computed efficiently, thanks to the inner product’s linearity. For

clarity, let’s give an example on spike trains.

From two spike trains T = {t1, . . . , tn} and T̃ = {t̃1, . . . , t̃m} that are represented as

distributions D(t) =
∑

i δ(t − ti) and D̃(t) =
∑

j δ(t − t̃j) and convolved with a Gaussian

function g : x 7→ exp(−x2/σ2), one obtains two functions f, f̃ ∈ L2(R), given by

f(t) =
∑
i

e−
(t−ti)

2

σ2 and f̃(t) =
∑
j

e−
(t−t̃j)2

σ2 ,

51

t1 t2 t3 t4

f = g ∗ T

t̃1 t̃2 t̃3 t̃4

f̃ = g ∗ T̃

Fig. II.3 Convolution of two spike trains T = {t1, . . . , t4} and T̃ = {t̃1, . . . , t̃4} with a
Gaussian function g, to obtain two functions f, f̃ ∈ L2(R), implicitly used for the Kernel
Trick. For simplicity, spike trains are assimilated to their corresponding Dirac combs.

as exemplified in figure II.3, leading to the L2-distance between f and f̃

d(f, f̃) =

√√√√∫
t∈R

(∑
i

e−
(t−ti)2

σ2 −
∑
j

e−
(t−t̃j)2

σ2

)2

dt.

However, this distance being induced by the L2-inner product can be rewritten using the L2

scalar product 〈f1, f2〉 =
∫
x∈R f1(x)f2(x) dx as

d(f, f̃)2 = ||f − f̃ ||2L2= 〈f − f̃ , f − f̃〉 = 〈f, f〉 − 2〈f, f̃〉+ 〈f̃ , f̃〉

which can then be very efficiently computed using the known value of the integral of Gaussian

functions. This approach alleviates the storage of f and f̃ into memory and the numerical

evaluation of integrals.

II.5.3 Artificial Neural Networks

Artificial Neural Networks (ANNs), or neural nets for brevity, are a family of statistical

learning models inspired by biological neural networks. Any neural net having at least two

hidden layers is called ‘deep’; this adjective informally stresses that the network is tough to

handle. Each nonlinear function is called a neuron or unit, and will perform computations

from the linear combination (numeric weights) of the input it receives from a set of other

neurons, and then applying a nonlinearity - a function called the activation function. Using

enough neurons and layers, very complex functions can be learned by the network; theoret-

ically, the Universal Approximation Theorem states that any bounded continuous function

in Rn can be approximated [Cybenko, 1989].

One usually splits the neurons into 3 categories of layers, as shown in figure II.4: one

input layer, an arbitrary number of hidden layers, and one output layer. The raw data is sent

to the input layer, processed in the hidden layers, and the result is read out in the output

layer. ANNs are usually separated into feedforward and recurrent neural nets: feedforward

52

Input #1

Input #2

Input #3

Input #4

Output #1

Output #2

Hidden
layer #1

Hidden
layer #2

Input
layer

Output
layer

Fig. II.4 Fully connected feedforward ANN with two hidden layers.

nets’ connections only go forward, from one layer to the next, whereas recurrent nets can

have connections forming a directed cycle, or loop.

Recurrent neural networks have a particularly high potential for tasks using sequential

data since their state is a function of all previous states. Their rich dynamics, when used

with appropriate neural net architectures, led to great improvements in speech recognition

tasks [Fernandez et al., 2007; Graves et al., 2013; Sak et al., 2015]. A description of the

gradient based method allowing these improvements, the long short-term memory (LSTM),

is beyond the scope of this thesis [Hochreiter and Schmidhuber, 1997].

Neural networks have a long history [Bishop, 1995]. Their popularity decreased for a

few decades, starting in the 70s, and support vector machines overtook neural nets in the

machine learning community for some time, due to their simplicity. However, they received

a renewed interest around 2012 [Le et al., 2011] with Deep Learning: hardware technologies

had evolved in the meantime, enough to handle large amounts of data and process it in a

reasonable amount of time. Using big clusters of computers and GPU computing, neural

nets came back and have since proven themselves in all fields of Machine Learning. New

hardware continues to be developed to support the development and applications of Deep

Learning, the latest being the Tensor Processing Unit (TPU) [Jouppi et al., 2017] that was

used to beat the world’s Go champion in May 2017 [Silver et al., 2016]. This victory from

the algorithm, AlphaGo, had a big societal impact as it showed that progress in AI research

was moving fast7. This effort continues, and a stronger algorithm was trained, this time

without prior human knowledge, and defeated AlphaGo in October 2017 [Silver et al., 2017].

7The impact in Europe and the United-States was clear nytimes.com/2017/05/23/business/google-
deepmind-alphago-go-champion-defeat, but probably still small compared to that of South Korea that first
feared AI newscientist.com/how-victory-for-googles-go-ai-is-stoking-fear-in-south-korea and as a result de-
cided to invest in it much more nature.com/south-korea-trumpets-860-million-ai-fund-after-alphago-shock.

53

https://www.nytimes.com/2017/05/23/business/google-deepmind-alphago-go-champion-defeat.html
https://www.nytimes.com/2017/05/23/business/google-deepmind-alphago-go-champion-defeat.html
https://www.newscientist.com/article/2080927-how-victory-for-googles-go-ai-is-stoking-fear-in-south-korea/
https://www.nature.com/news/south-korea-trumpets-860-million-ai-fund-after-alphago-shock-1.19595

The most common algorithm used to train a feedforward neural net in a supervised

framework is the backpropagation algorithm, presented now, along with two types of deep

networks: The Multilayer Perceptron and the Radial Basis Function network.

II.5.4 Backpropagation Algorithm

ANNs have to learn their parameters from the training data. Typically there are many

parameters. As often in Machine Learning, it is formalised as an optimisation problem: one

must compute the weights minimising a chosen cost function that measures the error made

using the current parameters, the most common being the quadratic error:

E =
1

2

∑
j

(tj − yj)2 , (II.8)

where tj are the output targets, and yj the ANN outputs for a given set of parameters wij
and list of inputs xj, for i crossing all layers and j the nodes within each layer.

The gradient descent method called backpropagation is the most popular one for this

optimisation problem [Theodoridis and Koutroumbas, 2006]. Backpropagation updates each

neuron’s weights by propagating the gradient of a cost function, from the output layer back

to the input layer, using the chain rule to derive the changes at every node. The gradient

computed for each neuron’s weight is multiplied by a learning constant and subtracted from

the current value, as in all gradient descent methods. Calling g(x) the activation function of

a node, α the learning rate and hj the output of this jth neuron, the target change to apply

to the weight wi,j is

∆wji = α(tj − yj)g′(hj)xi (II.9)

where xi is the ith input. This step is iteratively repeated after recomputing the neuron’s

output on the training set and the cost, until the cost function or its gradient are smaller

than a chosen threshold.

This scheme has many variants, including adapting the learning constant, using noise to

avoid convergence towards local minima, or updating weights using only batches of training

data to speed-up the convergence or avoid overfitting.

II.5.5 Multilayer Perceptron

A multilayer perceptron is a mutliclass classifier based on a feedforward ANN such that each

layer is fully connected to the next one. Except for the initial layer (input), each node is a

neuron with a nonlinear activation function, using the backpropagation technique to train

the network.

As in the single-layer case, there are theoretical guarantees of convergence if the training

data is linearly separable. A 3-layer perceptron is also able to separate any union of polyhe-

54

dral regions in space, using enough neurons: Neurons in the first layer form the hyperplanes,

those in the second layer form the regions, and neurons from the output layer form the

classes [Theodoridis and Koutroumbas, 2006].

II.5.6 Radial Basis Function Network

A Radial Basis Function (RBF) is a real-valued function whose value depends only on the

distance from the origin [Theodoridis and Koutroumbas, 2006]. Consequently, an RBF

network is an Artificial Neural Network that uses RBFs as activation functions, typically

with three layers. The output of a neuron from such a network, using the widely used

Gaussian forms on the input vector x, is written as

g(x) = w0 +
k∑
i=1

wi exp

(
−||x− ci||

2

2σ2
i

)
,

where the parameters wi, ci, σi are learnt by training. The network training is usually split

into two steps: choosing the ci’s and σi’s using random sampling or (unsupervised) k-means

clustering8, and fit the wi’s using an objective function (supervised). A backpropagation

step can be used as a third step to fine-tune all parameters.

Compared to multilayer perceptrons, RBF networks are of local nature, centred around

a set of points. This difference has repercussions on the convergence speed and the gener-

alisation performance: Multilayer perceptrons learn slower than their RBF counterpart but

have improved generalisation properties.

II.6 Ensemble Learning

Ensemble methods are a class of multiple learning algorithms to improve the predictive

performance of any single classifier it uses. Similarly, some classifiers are naturally defined

for 2-class problems or designed for simple computations; these limitations can be bypassed

by making different algorithms work together. In this section we describe some selected

classical ensemble methods.

II.6.1 END

Weka’s END classifier handles multi-class datasets with 2-class classifiers by building an

Ensemble of Nested Dichotomies. Its default base classifier is the decision-tree generating

algorithm J48.

8k-means clustering aims to partition n observations into k clusters in which each observation belongs
to the cluster with the nearest mean, serving as a prototype of the cluster.

55

II.6.2 Bagging

Bootstrap aggregating - shortened into bagging - algorithms create an ensemble of subsets

from the training data. Each subset consists of a chosen number of training points from the

original dataset, sampled uniformly and with replacement. By sampling with replacement,

an observation may be repeated in each subset. For classification, a model is trained on each

subset, and a vote between their outputs gives the class. According to the original article

[Breiman, 1996], the important element to allow bagging to outperform the base classifier is

the instability of the prediction method. If perturbing the learning set can cause significant

changes in the predictor constructed, then bagging can improve accuracy.

II.6.3 Boosting

Boosting algorithms improve a weak learner by adapting the weights attributed to the train-

ing data. Examples that are misclassified gain weight. Thus, the algorithm will focus on the

examples previously misclassified. It was shown [Long and Servedio, 2010] that this method

was not noise-tolerant, leading to a poor performance on real (noisy) data even for AdaBoost

and LogitBoost, two common algorithms from this family.

II.6.4 Random Forest

The Random Forest algorithm combines the bagging idea presented above, and a random

subset of the features (random subspace method, also referred to as attribute bagging), in

order to construct a multitude of decision trees: each of these decision tree uses a specific

(random) set of attributes, and the final decision is made by majority vote. This randomi-

sation in data space and feature space is useful to correct for the decision trees’ habit of

overfitting, while providing a feature selection framework.

II.7 Dimensionality Reduction

Now that a representative amount of classifiers has been presented, this section covers the

dimensionality reduction methods encountered in this thesis.

II.7.1 Principal Component Analysis

Principal Component Analysis (PCA), is a statistical procedure able to transform correlated

observables into a set of uncorrelated variables called principal components. In practice, it

is often used as a dimensionality reduction method, by projecting the observations onto a

set of orthogonal vectors and only keeping the principal components associated with a high

variance.

56

Let X ∈ Mn,m(R) be a matrix made of n observations of m different variables, such

that for each variable, the mean observation is zero (column-wise zero empirical mean). The

linear principal components of a PCA are obtained from the eigenvectors of the covariance

matrix cov(X), and give directions in which the data have maximal variance. A Matlab code

to obtain the first k principal components of X is [V, D] = eigs(cov(X), k); and a new

set of observations with 0-mean Y ∈ Mñ,m(R) can then be right-multiplied by V ∈ Mm,k,

which performs the projection onto the principal components.

The habit of keeping the components with large variance is rather old, as it was already

criticised in the 80s, for example in [Jolliffe, 1982]:

The original idea was to treat the principal components in the same way as

ordinary regressor variables, and assess whether they should be included by

computing their association with the dependent variable. However, in several

recent publications the suggested rule for inclusion is simply based on the

variance of the component, i.e. retain those components with large variances

and reject those with small variances.

It is however fairly simple to construct an example where the information of interest

is entirely contained in the component of smaller variance9, and some real-world datasets

present the same behaviour. Thus, selecting the components solely according to the size of

their variance is known to be a flawed approach but is, in practice, still used by default.

Alternative processing choices exist, such as renormalising the variables before running the

PCA - which is equivalent to replacing the covariance function by a correlation function.

In a Machine Learning setting where applying a PCA is part of model-building, it is

required to train the principal components on the training set only to avoid overfitting, and

keep in mind that PCA maintains what is common in the data, not what differentiates

them. There is no guarantee that the principal components are consistent with the classes

in a classification problem. It is accepted that PCA is most useful when the variables

behave like Gaussians [Theodoridis and Koutroumbas, 2006], since in this case, obtaining

uncorrelated variables is equivalent to obtaining independent variables, which is generally

not the case. Beside this separation between uncorrelated and independent, another problem

arises regarding the scaling of the data, because PCA is sensitive to scaling. Yet another

pitfall is linearity: if the relationship between the observed variables is nonlinear, a nonlinear

dimensionality reduction method might be better suited.

To summarise, one needs to try this method to find out how useful it is. As such, PCA

can be considered a data exploration tool rather than a reliable perfect features extraction

method for classification10.

9stats.stackexchange.com/what-can-cause-pca-to-worsen-results-of-a-classifier
10David MacKay said as a response to a commentary on the absence of PCA in his book [MacKay, 2003]:

“Principal Component Analysis” is a dimensionally invalid method that gives people a delusion that they
are doing something useful with their data.

57

http://stats.stackexchange.com/questions/52773/what-can-cause-pca-to-worsen-results-of-a-classifier

II.8 The Weka Data Mining Toolbox

II.8.1 Weka

Weka [Hall et al., 2009] is a collection of Machine Learning algorithms for Data Mining

tasks. It contains tools for data pre-processing, classification, regression, clustering, asso-

ciation rules, and visualisation. As a Java open-source package, its methods can be called

directly from Matlab. It contains an impressive list of tools, has a very active mailing-list,

and tutorial videos freely available online. It is used extensively in chapter III. This sec-

tion provides precise information regarding a few classifiers, selected for being widely used

(k-nearest neighbours, logistic, SMO) or because a specific behaviour was experimentally

observed (MultiClassClassifier, discussed in chapter IV). See appendix 11 for a synopsis of

all algorithms.

II.8.2 Implementation of Weka’s Selected Classifiers

Here we define a few selected classifiers from the Weka data mining toolbox: Nearest Neigh-

bour and Logistic (because they are simple and have been studied extensively), SMO (which

is an SVM) and MultiClassClassifier (because of the behaviour of a specific measure of

performance, as presented in detail in chapter IV). The references for each algorithms’ im-

plementation are on the Weka website. However, the software documentation being difficult

at times, users may need to dig in the code.

IBk: This class implements the k-Nearest Neighbours algorithm (kNN), and was used with

the default option of k = 1, reducing the classifier to a nearest neighbour algorithm: Given

n training instances, a test instance will be classified as belonging to the same class as the

closest training point, like a vote among nearest neighbours from each class. To output

class membership probabilities, a function of the minimal distance between a test point and

every training instance of a class is computed: any real decreasing function would do; by

default Weka compares instances using an Euclidian norm and computes class membership

probabilities using an inverse function x 7→ (x+ 0.001)−1 (the small value is added to avoid

division by zero)11.

Logistic: This classifier builds a multinomial logistic regression model using k classes for n

instances with m attributes. For a given parameter matrix B ∈ Mm,k−1(R) whose columns

are written as Bj, the probability for class j ∈ {1, . . . , k − 1} with the exception of the last

11However, a simple test left some doubts about this: as a training set, the values 0 and 1 are used,
belonging to class 0 and 1 respectively, and the value 0.1 is tested. Using f = @(x)(1/(x+0.001)), we should
obtain that this point belongs to class 0 with probability f(a)/(f(a) + f(b)) = 0.8992 but Weka predicts
0.954. This implies the implementation in Weka is more complex than documented.

58

class is

P(Xi belongs to class j) = Pj(Xi) =
exp(XiBj)

1 +
k−1∑
j=1

exp(XiBj)

,

and the last class has probability

Pk(Xi) = 1−
k−1∑
j=1

Pj(Xi).

The (negative) multinomial log-likelihood is:

L(B) = −
n∑
i=1

k∑
j=1

ln(Pj(Xi)) + λr||B||22,

where λr is called the ridge parameter, used to increase the computational stability of the

scheme and address the problem of multicollinearity (when predictor variables are highly

correlated) [Dorugade, 2014]. In order to find the matrix B for which L is minimised (i.e.

the likeliest parameters given the training instances), a Quasi-Newton Method is used to

search for the optimised values of the m ∗ (k − 1) variables. A test instance will then be

classified according to the highest probability it belongs to a class.

MultiClassClassifier: This metaclassifier handles multi-class datasets with 2-class clas-

sifiers. By default - the options used here - the Logistic classifier is used for each binary

classification and the evaluation is one-against-all, meaning that each class will be evaluated

against all others together. We note that this algorithm is able to apply error-correcting out-

put code (ECOC) [Dietterich and Bakiri, 1995] to increase the accuracy. Weka implements

a randomised coding matrix, as suggested by [James and Hastie, 1997] where the ECOC

approach is used.

Each base classifier will output a probability that a test instance belongs to its positive

class (the negative class being all training instance of the other labels, in the multi-class

case). The likeliest label is then chosen as the predicted class.

SMO: (Sequential Minimal Optimization) This metaclassifier solves multiclass problems

using Hastie and Tibshirani’s pairwise coupling method [Hastie and Tibshirani, 1998], where

each base classifier is a support vector classifier. The default option, used in chapter IV,

provides probabilities of 1 for guessed classes, and 0 for all others. Another option uses

logistic regression fitting to output probabilities between 0 and 1, thus outputting a different

K&B information score even though the confusion matrix would be the same.

Now that all the Machine Learning and Data Mining tools about to be used have been

defined, it is time to apply them to a first task: decoding the modulation frequency in the

neural response of an Amplitude-Modulated tone from Cochlear Nucleus data.

59

III.
Demodulation in the Cochlear Nucleus

Armed with a collection of classifiers and knowledge about the auditory system,

it is now possible to investigate the encoding of Amplitude-Modulated tones by

neurons in the Cochlear Nucleus. A general introduction to this problem is given

in section III.1. The methodology is then provided in section III.2 followed by the

results in (III.3). The chapter ends with a discussion on these results (III.4). The

main contribution in this chapter is twofold: revisiting a classical Cochlear Nucleus

dataset with a more modern Data Mining approach, and performing a massive

comparison of Machine Learning classifiers on this dataset.

III.1 Introduction . 61

III.2 Methodology . 62

III.2.1 Dataset . 62

III.2.2 Data Selection . 63

III.2.3 Preprocessing . 65

III.2.4 Classification . 67

III.2.5 Measures of performance . 69

III.3 Results . 70

III.3.1 Ordering Classifiers . 70

III.3.2 Optimal Classifier per Neuron Type 71

III.3.3 Parameters with SMO . 72

III.3.4 Classification Performance per Modulation Frequency 76

III.4 Conclusions . 78

60

III.1 Introduction

Right after the Auditory Nerve, the Cochlear Nucleus (CN) processes the auditory informa-

tion received from the inner hair cells in the cochlea, as described in chapter I. While this

nucleus has been studied for decades in various animals, the functional roles of the units

within it and their codes — the way they process information and the functional reasons

behind this — is still subject to intensive research. Some neurons actually do not seem to

transmit information through the average number of spikes they emit, but rather through

the patterns of their spikes [Butts et al., 2007]. The strategies of communication between

neurons are the different neural codes they use [Quiroga and Panzeri, 2013]. In this chapter,

our interest is focused on the neural code of CN neurons.

Given the exquisite temporal precision of spikes, a classical measure - namely the Vector

Strength - has historically been used to evaluate the information contained in spike trains.

Recent findings [Scholes et al., 2015] suggest that while for some unit types this measure

is appropriate, it is not universally good even within the Cochlear Nucleus and does not

reflect the information contained in spike trains [Laudanski et al., 2010]. It was shown in

[Scholes et al., 2015] that some complex spike trains are not suitably described by Vector

Strength, since some neurons statistically behave like Poisson processes (formally defined in

appendix 12) while others are more regular.

For auditory information, evidence suggests that the code changes from temporal coding

to rate coding when the information is transmitted up to the auditory cortex, at least for

amplitude-modulation encoding [Joris et al., 2004]. Another type of analysis thus seems

necessary to extract as much information as possible from spike trains and with less assump-

tions than those implicitly made when using Vector Strength, which is the motivation for

the work we present. A computational architecture was developed to use modern tools of

Data Mining, presented in chapter II, as a means to extract the modulation frequency of an

Amplitude-Modulated tone from the patterns of spikes produced by cat CN neurons. We will

use Blackburn and Sachs’ [Blackburn and Sachs, 1989] classification of CN neurons into 13

different types of units, according to their physiology; see subsection I.1.2 for a presentation

of the different types of cells.

Following the work of [Wohlgemuth and Ronacher, 2007; Scholes et al., 2015; Geisler et

al., 1991] and having access to CN data [Rhode and Greenberg, 1994] described in III.2.1

from anaesthetised cats subject to amplitude-modulated (AM) tones, we will study the

neural code of CN neurons under a single task. This task is to recover a specific feature

of the sound — the modulation frequency of an AM tone — from neuronal responses, in

a supervised learning framework. Even though this parameter is numerical in nature, the

limitation of having a predefined discrete set of values this parameter can take motivated

us to turn to a classification framework rather than a regression framework: the numerical

aspect of the modulation frequencies to be inferred from the spike trains is thus lost because

61

those values are considered as labels. This should prove beneficial if the encoding of the

modulation were to change a lot between the lower and the higher modulation frequencies.

This decoding task provides neural coding insight in the following sense: the one able to

perform the classification has decoded part of the message contained in a neuron’s spike

train. As such, being able to recover the label hidden behind a spike train is a generalisation

of finding a tuning curve for primary neurons.

Artificial Intelligence aims at automatically extracting and processing meaningful infor-

mation in a sentient way using some specific algorithms to learn from the data (Machine

Learning), but this objective is not reached yet and advances are still made on a case by

case basis [Bowling et al., 2015]. Thus it makes sense to compare different Machine Learning

techniques to understand which one is able to appropriately classify neuronal spike trains.

This problem of classification algorithm selection has been computationally investigated on

various datasets [Demar, 2006; Ali and Smith, 2006; Ng and Jordan, 2002; Boulesteix et al.,

2008; Sampson, 2012; Lehmann et al., 2007]. In this classification framework, we will test

an extensive list of classifiers from the Weka toolbox [Hall et al., 2009], data preprocess-

ing methods (representation of the spike trains), using the accuracy (II.2.2) as measure of

performance.

The contribution of this chapter is two-fold: on one hand, it revisits a known dataset

using more modern data mining tools to test if previous conclusions about encoding in the

Cochlear Nucleus still stand. On the other hand, the results presented in this chapter are a

practical contribution to the problem of classification algorithm selection. The methodology

is now described in section III.2 followed by the result section III.3. This chapter ends with

a discussion III.4.

III.2 Methodology

III.2.1 Dataset

The full dataset is a list of 1,534,375 spike trains, recorded by Rhode & Greenberg [Rhode

and Greenberg, 1994] from 688 CN neurons in cats. The authors described their experiment

this way:

We investigated the neural temporal mechanisms in [. . .] the cochlear nuclei

of the pentobarbital sodium-anesthesized cat associated with the neural coding

of 100% amplitude modulated (AM) tones, both in quiet and in the presence of

wideband, quasi-flat-spectrum noise. The AM carrier frequency was set to the

neuron’s characteristic frequency (CF) and the sound pressure level (SPL) of

acoustic stimuli was varied over a wide dynamic range of intensities (≤ 40 dB).

62

0 1
−2M

−M

0

M

2M

f−1
mf−1

c

Time t (in seconds)

W
av

ef
or

m
s(
t)

Fig. III.1 Plot of the 100% AM tone s(t) defined by formula III.1, with fc � fm.

In this chapter, the following notations are used: fm denotes the modulation frequency

(50-2550 Hz) of a 100% AM tone, fc its carrier frequency, and M sets the sound level to

various sound levels, ranging from 10 to 110 dB SPL and mostly at 30, 50 or 70 dB SPL.

This means that the recorded neural data are the time responses to waveforms of the form

s(t) = M (1 + sin(2πfmt)) sin(2πfct)), (III.1)

assuming a null initial phase. See figure III.1 for a plot of such a function. From these

responses, the authors computed the Vector Strength (defined in section I.2.1.2) of the

neural responses to the signal’s modulation as a measure of the AM-encoding capability of

the neurons, and from then computed the temporal Modulation Transfer Function (tMTF) of

each unit, which reads, in essence and as seen in section I.2.1.3, the average Vector Strength

per modulation frequency.

See figure III.2 for a visual presentation of the discharge patterns from two different

neurons to the same stimuli (25 presentations for each modulation frequency in {50, 150,

. . . , 1150}), and figure I.10 for a representation of the Vector Strength computation on three

short spike trains recorded from the same CN neuron under three different AM tones (with

a modulation frequency of 150, 350 and 550 Hz, respectively).

In this work, spike trains will be processed in different ways and results obtained with

different classifiers will be compared. The different processing stages are summarised in

figure III.3; the way the 463 small datasets were designed requires some explanation.

III.2.2 Data Selection

We first group spike trains corresponding to a single animal, neuron, modulation level (M)

and carrier frequency (fc), which allows us to split the spike trains dataset into 2118 smaller

datasets, each containing responses from AM tones with various modulation frequencies

63

Time (ms)
20 40 60 80 100

S
w

ee
p

#

0

50

100

150

200

250

300

Time (ms)
20 40 60 80 100

S
w

ee
p

#
0

50

100

150

200

250

300

Fig. III.2 Raster plots of two spike trains datasets from two neurons for which were obtained
the highest (left) and lowest (right) percentage of correct classification. Each horizontal line
of dots corresponds to the spiking times of the recorded neuron; each raster plot contains 300
spike trains. Every 25 spike trains, the modulation frequency of the AM tone is incremented
by 100 Hz steps (50 Hz for the bottom trains, 1150 Hz for the top ones). The right raster
plot corresponds to a neuron that was apparently not even responding to sound.

Big Dataset

Dataset 1 · · · Dataset 463 · · · Dataset 2118

D. 1/2/. . . /463

Cleaned Data

Features of ISIs Time-binned Distance matrix

Direct classif. Direct classif. Kernel method

Fig. III.3 Representation of every step of data processing: Create 2118 smaller datasets and
homogenise them by keeping, from the 463 ones satisfying additional conditions described
in the text, only 300 spike trains (25 spike trains for each modulation frequency in 50, 150,
. . . , 1150 Hz), then preprocessing and classifying each of them.

64

ChS ChT LowF On PBU PL PLN UNC Unu
0

50

100

150

200

Fig. III.4 Histogram showing the number of small datasets corresponding to each unit type;
463 in total. The abbreviations stand for: Sustained Chopper, Transient Chopper, Low Fre-
quency, Onset, Pause-Build-Up, Primary-Like, Primary-Like Notch, Unclassified, Unusual.
Unit types were taken from [Blackburn and Sachs, 1989], explained in section I.1.2.1.

(fm). Further analysis presented in appendix 11.1 leads to three more conditions:

• Each of the spike trains considered should contain at least 2 spikes between 20 ms and

100 ms, as only this part of the spike train is kept for analysis;

• For each modulation frequency, a dataset should contain at least 25 such spike trains

corresponding to this modulation frequency;

• A dataset should contain 25 such responses corresponding to the following modulation

frequencies: 50 Hz, 150 Hz, 250 Hz, . . . , 1050 Hz, 1150 Hz.

In this setting, only 25 spike trains were kept for each modulation frequency given above.

This provided a set of 463 datasets, each containing exactly 300 spike trains: 25 for each of the

above list of modulation frequencies, all from a single animal, a single neuron, using a single

modulation level and carrier frequency. Two of these datasets are presented in figure III.2

as raster plots. Finally, because there were only a few of each - not enough to consider each

class individually, the three types of ‘Onset’ units were relabelled into one: Types ‘OnL’,

‘OnI’ and ‘OnC’ were relabelled ‘On’. This provided a fairly homogeneous framework, in

which to compare the results of running the same analysis on each dataset. Despite the

number of datasets for each unit type not being homogenous, as seen in figure III.4, all this

data were kept to provide the highest statistical power.

III.2.3 Preprocessing

Spike trains can be processed in many ways. All that is needed is a representation that the

classification algorithms (see chapter II) can take as input. Since the Data Mining toolbox

Weka (II.8) was used, there are two possibilities, regarding the form of the representation: a

list of features (each having same length), or a kernel matrix. Three representations are used:

65

Interspike Interval Features This preprocessing is parameter-free. A fixed list of fea-

tures is extracted from the list of interspike intervals (the list of times between two con-

secutive spikes), such as mean ISI, variance and coefficient of variation. Features chosen

were ‘standard’ spike train or statistical measures; see the full list in appendix 11.2.2. Thus

selecting useful features was left largely to the classifiers. Since the Vector Strength equals

the magnitude at a particular frequency normalised by the mean firing rate [Joris et al.,

2004], statistics from the Fourier spectrum of the ISI encompass the Vector Strength. The

complete list of features is given in appendix 11.

Time-binning Time-binning is the discretisation of the spike patterns into a sequence of

integers, with a sample taking a value of one where a spike appears: a bin size is first chosen,

which will be a parameter, and the number of spikes falling in the same bin are counted.

For example, if the bin size is 1 ms, this binning makes 80 bins because all spikes over 80 ms

were kept, most of them containing a 0, a certain number having a 1, and maybe some 2s if

the bin size is bigger than the neuron’s refractory period. If the bin size is small, there will

be a lot of 0s and a 1 per spike, and this representation is somehow sensitive to the spike

timing, whereas a much bigger bin size is no longer sensitive, as shown in figure III.5. Note

that one can construct methods for finding an optimal bin-size [Shimazaki and Shinomoto,

2007] thus making the binning approach parameter-free.

Spike Metric Kernel methods represent a large part of Machine Learning since they

allow computations to be performed without explicitly representing the data used in a high-

dimensional setting, as shown in subsection II.5.2. These implicit computations are made

possible thanks to the Kernel Trick: by computing distances between objects, one can already

do many things, such as classifying data, thus allowing researchers to compare structures

without projecting them first in a high-dimensional space. Support Vector Machines (SVMs)

adopt this approach, which is the reason why a lot of theory has been be developed for SVMs.

This approach applied to spike trains is now presented.

From a list of 300 spike trains x1, . . . , x300 and a distance to compare two spike trains

1 3

1 0 1 0 2

0 1 0 0 0 1 0 0 1 1

Fig. III.5 Time-binning of a spike train (in red) using three different time bins.

66

x1

x2

Deletion: 1

Shift 0.2: 0.2α

Shift 0.3: 0.3α

Addition: 1

d(x1, x2) = 2 + 0.5α

Fig. III.6 To compute the Victor and Purpura metric [Victor and Purpura, 1997] between
two spike trains x1 and x2, one needs to find the transformation from one to the other having
minimal cost. This cost is the sum of all atomic operations required for this transformation,
with the following rules: Deleting or adding a spike costs 1, shifting a spike by δ costs δα
(where α is a parameter). Here, d(x1, x2) = 2 + 0.5α if α ≤ 8, after which it’s less costly to
delete and add the two middle spikes than to shift them, in which case d(x1, x2) = 6.

d, one computes the distance matrix D = (d(xi, xj))i,j. As a spike metric, the Victor and

Purpura metric [Victor and Purpura, 1997] is used, using the mex files downloaded from

the SPIKY software [Kreuz et al., 2014], and a range of costs are tested, which is this

metric’s parameter. This metric is illustrated and discussed in figure III.6. Each cost gives

us a distance matrix D, from which we obtain a kernel matrix K = (k(d(xi, xj)))i,j for a

kernel function k. The matrix K is then the input to a classification algorithm. Among the

algorithms used, only SMO was able to receive kernel matrices as input.

In order to limit this study to at most one parameter for each processing, the kernel

function k used for the spike metric needs to be fixed, to vary the other parameter of

interest: the metric’s cost, which plays the role of the inverse of a time-scale by giving a

bigger or smaller penalty when jittering the spikes. The functions we tested as kernel, given

as functions of the variable x, are exp(−x2), exp(−x/γ) for γ ∈ {1, 2, 5, 10, 20, 50, 100}, and

the identity function. The result shown in figure III.7 was obtained on a single spike train

dataset that previously allowed high accuracy of classification in [Scholes et al., 2015]. The

function k(x) = exp(−x/20) was selected for achieving maximal performance. Just like the

SMO algorithm, it is implicitly used for all results involving the spike metric approach in

the rest of this thesis.

III.2.4 Classification

As seen in chapter II, a natural output for a classifier is a confusion matrix, also called

contingency table or error matrix. If a classifier is given 12 classes, the confusion matrix it

outputs is an integer-valued 12 × 12 matrix, with each column corresponding to instances

of predicted classes, while each row corresponds to the instances of an actual class. The

67

integer at line i and column j then represents the number of instances of the ith class that

have been predicted as belonging to the jth class. This means that the number of correctly

classified instances can be instantly read on the confusion matrix diagonal. All classification

results in this chapter were obtained by stratified 10-fold cross-validation.

The raster plot of figure III.8, showing 25 instances for each of the 12 classes 50 Hz, 150

Hz, . . . , 1150 Hz, is a typical confusion matrix for the datasets used: the spike trains at the

top are quite easy to recognise, meaning that a good classifier should be able to get almost

only 25s or so on the diagonal corresponding to low modulation frequencies. Indeed, up to

350 Hz, an almost perfect score is obtained (first four elements of the diagonal are 24, 24, 25

and 25). For higher frequencies, the data is more noisy, and one can read from the confusion

matrix that the classifier is mostly trying to guess the right class among the high frequencies,

which makes sense because their responses are very similar.

After preprocessing, 32 classification algorithms available in Weka were used, often with

their default configuration. For a short description of each, see appendix 11.2.3. Only one

was able to classify using the spike metric preprocessing. This algorithm — called SMO

for Sequential Minimal Optimization — will be further discussed in the ‘Results’ section.

Metric's Cost
10 -1 100 101 102

P
er

ce
nt

ag
e

of
 c

or
re

ct
 c

la
ss

ifi
ca

tio
ns

0

10

20

30

40

50

60

70

exp(-x2)
exp(-x)
exp(-x/2)
exp(-x/5)
exp(-x/10)
exp(-x/20)
exp(-x/50)
exp(-x/100)
x

Metric cost

Fig. III.7 Results using SMO and the spike metric approach with different kernel functions,
varying the Victor & Purpura metric’s cost. For each colour, a kernel function: k(t) =
exp(−t/γ) for γ ∈ {1, 2, 5, 10, 20, 50, 100}, k(t) = exp(−t2), k = Id is applied, element-wise,
to the distance matrix. Results obtained by cross-validation on a dataset of 400 spike trains.

68

Fig. III.8 A typical confusion matrix for a classification on the spike train datasets, as
output by Weka (left) and the raster plot of the data being classified (right), coloured by
modulation frequency (labels for the classifiers). Each line of the matrix sums to the 25
instances for each of the 12 classes {50, 150,. . . , 1150}, corresponding to the 300 spike trains
seen on the right.

Since there are too many classifiers to discuss, it is more natural, in this chapter, to simply

consider each algorithm as a black box.

From each classification we kept a few measures directly output by Weka; these are given

in the next subsection and (partly) compared in the ‘Results’ section. Different measures

may reflect different aspects of the classifications, leading to different behaviours. In this

case, it would not make sense to talk about an overall best classifier. Chapter IV elaborates

on the very matter of those different measures.

III.2.5 Measures of performance

A measure of performance for a supervised learning algorithm is any statistic that evalu-

ates how well the algorithm performed on a dataset. We consider for each classification a

small list of measures of performance output by Weka and tested some measures computed

on the confusion matrices. We mainly focus on accuracy (proportion of correctly classified

69

instances) in this chapter, since it agrees with many of the other measures; see chapter IV

for their definition, and their comparison:

• The percentage of correct classifications (accuracy, pctCorrect or PCG);

• The kappa statistic (kappa, κ);

• The area under the ROC curve (weightedAreaUnderROC, AUC);

• The Kononenko & Bratko Mean information score (K&BI, KBI, KBMeanInformation);

• The Mutual Information (MI).

III.3 Results

Here we present the results of numerous classifications (397,717 in total, with 859 classifi-

cation for each of the 463 datasets; see figure III.4) by answering a list of questions that

were made as independent as possible. Those questions aim at reflecting the coding differ-

ences between neuron types at the population level, and to separate what is learnt about

the neural code from what is learnt about the classification algorithms. First we present a

comparison of the classifiers’ average scores, a comparison of the effect of the parameters on

SMO average score, a correlation between the mean accuracy for each classifiers and neuron

types, and an overview of the repartition of the scores across unit types. Lastly, we present

an evaluation of the average cut-off frequency for each type of neuron and a correlate of

different classifiers and preprocessing, the latter being the main result.

III.3.1 Ordering Classifiers

It is normally hard to define a ‘best classifier’ as it depends on the measure of performance and

will not be universally best on all datasets. To answer this question in the current context,

the average of each classifier’s result is compared on all datasets and all processing. The only

exception is SMO, since it is the only one containing results using the spike metric approach.

As such, results from SMO are split into three groups, one for each processing (SMO.SpkM,

SMO.ISI, SMO.TB) while only two groups (ending with .ISI or .TB, for example IBk.ISI and

IBk.TB) give the averages for those two processing on the other classifiers. As a measure

of performance, this chapter focuses on the accuracy. The only figure containing results

obtained with other measures is the first one, figure III.9, kept to show how much the

accuracy, the Mutual Information, the K&B Information and the area under the ROC curve

are correlated, thus motivating further analysis. All other results related to the different

measures of performance are given in chapter IV. These averages, presented in figure III.9,

are summarised here. To improve readability, for each measure of performance, values were

renormalised on the figure so that the minimal mean value would be 0, and the maximal 1.

A naive view of figure III.9 leads to the conclusion that the best classifier is SMO with

the spike metric approach, second best is NaiveBayes, and in third comes SMO with the

70

time-binning. In fact, since the spike metric and the time-binning approaches used different

parameters, an average of the values depend on the mean effect of a change in the parameters,

preventing a direct comparison between SMO.SpkM and the other classifiers. There is a bias

towards the spike metric as more parameters among the ones tested are close to the optimal

one, as is investigated in more detail in figure III.11, where the focus is on results using

SMO. The wide standard deviation observed in figure III.9 is due to both the vast range of

parameters and the varying amount of AM information found in different spike train datasets.

The only cases with low standard deviations are using ZeroR, which is the constant baseline,

and MulticlassClassifier and SMO under the KBI score, which is investigated in chapter IV.

In practice, computational cost is often balanced with sensitivity to measure. Since

NaiveBayes is very good for all tested measures, is faster than SMO and doesn’t require

computing a matrix of spike distances (which is quite resource demanding), it’s a good place

to start for a classification work similar to this one, whenever the strong conditions for

applicability hold (independence of features).

III.3.2 Optimal Classifier per Neuron Type

This question of whether the appropriate choice of classifier would depend on the response

characteristics of the neuron was one of the main motivations for this study. If the answer

was yes, it would possibly enable one to build a dictionary to determine which algorithm

to use for each unit type. This may give an interesting glimpse into different neural codes,

affiliated to different classification strategies.

Each dot on the plot III.10 corresponds to a single unit type and a single classifier

and processing (horizontal axis) over which is computed the mean percentage of correct

classification across all classifications, represented on both the z-axis and the colormap. As

previously, there are three SMO-related set of results, and two for all other classifiers. Both

the unit types and the classifiers were ordered in increasing order of overall mean accuracy,

for visualisation purposes. ZeroR is Weka’s classifier for the baseline, classifying according to

the prior probabilities only. Since the datasets are homogenous, each of the 12 modulation

frequencies having 25 instances (spike trains) in each dataset, all confusion matrices and

accuracies obtained by ZeroR on those datasets are the same.

Overall, there is no observed preference for classifiers to specific unit types. The only

exception is that SMO when using the spike metric approach performs fairly badly on the

PBU units, relative to the other unit types.

The result suggests that, on the whole, one can pick a classifier and, while the headline

performance might vary, any conclusions or comparisons across different responses charac-

teristics are likely to be valid. In figure III.10, the pattern is visually clear: some classifiers

(horizontal x-axis) are better than others (warmer colours and position on the vertical axis),

but the changes between two unit types (y-axis) are very similar between classifiers. Since

71

ZeroR.TB

ZeroR.ISI

AdaBoostM
1.TB

DecisionStum
p.TB

OneR.TB

ClassificationViaClustering.TB

FilteredClassifier.TB

ClassificationViaClustering.ISI

AdaBoostM
1.ISI

DecisionStum
p.ISI

RBFClassifier.TB

BayesNet.TB

JRip.TB

REPTree.TB

Random
Tree.TB

Ridor.TB

OneR.ISI

BFTree.TB

Sim
pleCart.TB

RBFClassifier.ISI

ClassificationViaRegression.TB

JRip.ISI

LADTree.TB

J48.TB

PART.TB

FilteredClassifier.ISI

Random
Tree.ISI

BayesNet.ISI

LW
L.TB

Ridor.ISI

NaiveBayes.ISI

BFTree.ISI

LW
L.ISI

REPTree.ISI

J48.ISI

PART.ISI

Sim
pleCart.ISI

IB1.ISI

IBk.ISI

KStar.ISI

Random
SubSpace.TB

Bagging.TB

Random
Forest.TB

IB1.TB

LADTree.ISI

Random
Forest.ISI

Random
SubSpace.ISI

IBk.TB

LogitBoost.TB

Bagging.ISI

KStar.TB

ClassificationViaRegression.ISI

LogitBoost.ISI

M
ultiClassClassifier.ISI

END.ISI

END.TB

M
ultiClassClassifier.TB

SM
O.ISI

Sim
pleLogistic.ISI

Sim
pleLogistic.TB

SM
O.TB

NaiveBayes.TB

SM
O.SpkM

R
en

or
m

al
is

ed
 m

ea
n

va
lu

e
of

 m
ea

su
re

s
pe

r
cl

as
si

fie
r

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
K&B Mean Information
Mutual Information
kappa / pctCorrect
Area Under ROC Curve

Fig. III.9 Overall mean performance of classifiers and processing methods ±1STD, sorted
by increasing order of mean accuracy. Curves are renormalised between 0 and 1 to be able
to compare them on a common scale. Accuracy means equivalently kappa or percentage of
correct answers, since up to renormalisation they are equal. Four measures of performance
associated to a colour each, are given for each classifier and preprocessing: the K&B Informa-
tion, the Mutual Information, the accuracy and the area under the ROC curve. Classifiers,
in abscissa, carry the preprocessing (ISI, TB or SpkM) after a dot. For TB (time-binning)
or SpkM (spike metric), the result is the average over all parameters tested and all neural
datasets. The ISI approach being parameter-free, the corresponding results are obtained by
averaging over all datasets.

and we can use a kernel method with SMO and since it is able to extract more information

from the spike trains than other algorithms, the focus is on this next.

III.3.3 Parameters with SMO

In figure III.9, SMO was split into SMO.SpkM, SMO.TB and SMO.ISI. The average differ-

ence between the spike metric approach and the two others (ISI and TB) is clear: the mean

72

0
O

n10

C
hS

20

C
hT

30

Lo
w

F

40

P
LN

50

S
M

O
.S

pk
M

N
ai

ve
B

ay
es

.T
B

S
M

O
.T

B
S

im
pl

eL
og

is
tic

.T
B

S
im

pl
eL

og
is

tic
.IS

I

S
M

O
.IS

I

M
ul

tiC
la

ss
C

la
ss

ifi
er

.T
B

E
N

D
.T

B
E

N
D

.IS
I

Lo
gi

tB
oo

st
.IS

I

C
la

ss
ifi

ca
tio

nV
ia

R
eg

re
ss

io
n.

IS
I

M
ul

tiC
la

ss
C

la
ss

ifi
er

.IS
I

B
ag

gi
ng

.IS
I

Lo
gi

tB
oo

st
.T

B

R
an

do
m

S
ub

S
pa

ce
.IS

I

K
S

ta
r.T

B

R
an

do
m

Fo
re

st
.IS

I

LA
D

Tr
ee

.IS
I

IB
k.

TB
R

an
do

m
Fo

re
st

.T
B

IB
1.

TB
B

ag
gi

ng
.T

B

K
S

ta
r.I

S
I

S
im

pl
eC

ar
t.I

S
I

P
B

U

60

R
an

do
m

S
ub

S
pa

ce
.T

B

J4
8.

IS
I

P
A

R
T.

IS
I

R
E

P
Tr

ee
.IS

I

IB
1.

IS
I

IB
k.

IS
I

B
FT

re
e.

IS
I

B
ay

es
N

et
.IS

I

R
id

or
.IS

I

LW
L.

IS
I

N
ai

ve
B

ay
es

.IS
I

Fi
lte

re
dC

la
ss

ifi
er

.IS
I

R
an

do
m

Tr
ee

.IS
I

LW
L.

TB
JR

ip
.IS

I
P

A
R

T.
TB

J4
8.

TB
LA

D
Tr

ee
.T

B

R
B

FC
la

ss
ifi

er
.IS

I

S
im

pl
eC

ar
t.T

B

O
ne

R
.IS

I

B
FT

re
e.

TB

R
id

or
.T

B
C

la
ss

ifi
ca

tio
nV

ia
R

eg
re

ss
io

n.
TB

R
an

do
m

Tr
ee

.T
B

R
E

P
Tr

ee
.T

B

JR
ip

.T
B

B
ay

es
N

et
.T

B

R
B

FC
la

ss
ifi

er
.T

B

D
ec

is
io

nS
tu

m
p.

IS
I

A
da

B
oo

st
M

1.
IS

I

C
la

ss
ifi

ca
tio

nV
ia

C
lu

st
er

in
g.

IS
I

Fi
lte

re
dC

la
ss

ifi
er

.T
B

C
la

ss
ifi

ca
tio

nV
ia

C
lu

st
er

in
g.

TB

P
L

O
ne

R
.T

B

D
ec

is
io

nS
tu

m
p.

TB

A
da

B
oo

st
M

1.
TB

Ze
ro

R
.T

B

Ze
ro

R
.IS

I

Fig. III.10 Mean accuracy (z-axis) of all classification algorithms and preprocessing (x-axis,
names coloured by processing) and unit types (y-axis).

73

accuracy obtained with SMO.SpkM is notably above that of SMO.TB or SMO.ISI. However,

this massive averaging across datasets and parameters blurs out the potential of the classi-

fier, and reveals nothing on how sensitive it is when varying the parameters’ values. As such,

the effect of the different parameters on SMO are shown in figure III.11, each value giving

the averaged accuracy over all datasets of a same unit type, for each preprocessing. The

spike metric’s score and the time-binning’s time-step vary at different scales: metric cost is

in ms−1 and binning time-step is in ms, thus by varying each on a linear scale, the two results

end up looking different. In all cases, the distribution over the parameters is unimodal.

The highest score is almost consistently obtained by maximising the spike-metric’s cost,

even when it overtakes the best time-binning by only a small margin (LowF). Since these

scores are compared against the ISI approach, it gives insight about the importance of the

timing precision in the spike trains: for any unit type for which the ISI approach would obtain

the highest score, units of this type would not not convey more time-precise information than

through the statistics of their spike train1. On the other hand, for most unit types, a much

higher accuracy can be obtained by the Victor and Purpora metric, stressing the role of their

temporal coding.

The peak values in the time-binned approach should provide the optimal scale to analyse

the spike trains, the scale at which the information is best decoded, hence possibly the scale

at which information is encoded. In every unit type, the optimal time-step is, on average,

under 1 ms. This supports the notion that all types are representing envelope information

with sub-millisecond precision. For each unit type, a histogram of the best parameter on the

different datasets was computed, plotted in grey in figure III.11, its height being renormalised

on each box of the plot. The variability is fairly large, which may naively be linked with the

necessity of the auditory system to code information across different time scales; this should

only be the case if the neuron conveys enough information.

In order to make a stronger case that CN neurons process information at a sub-milli-

second accuracy and verify how much information the units reaching a high optimal time-step

convey, the optimal accuracy for each dataset is plotted next against its associated time-step.

Figure III.12 shows that all units — with the exception of a chopper neuron — achieving

more than 60% of accuracy are optimised for a time-step below 1 ms, which is not represented

by the histograms of figure III.12.

In this dataset, a star neuron was found, allowing a recognition accuracy of 100% for a

wide range of SMO parameters. A small number of such neurons may be enough for the

brain to robustly decode AM information over a wide range of frequencies.

1The ‘Unusual’ units, for which results are not presented, did fall in this category.

74

Fig. III.11 Mean accuracy using SMO as a classifier, with the three methods tested, ar-
ranged by parameter value (the ISI approach is parameter-free, and for the two others a
range of parameters is tested) and neuron type. The standard deviation is shown around
the highest mean value, for each unit type. Renormalised histograms of the best parameter
across datasets are shown in grey within each box. Metric’s cost unit is given in milli-
seconds−1, and time-step in milliseconds. Each box shares a similar vertical axis and the
same colour-code, from 5 to 70, with upper and lower margins for readability.

75

III.3.4 Classification Performance per Modulation Frequency

Until now, only one summary statistic was considered for each classification. However, any

of these numbers is a summary of performance combined across multiple classes that are

discrete samples of a continuous parameter. Thus for any unit type, the mean performance

is expected to be a smooth function of the modulation frequency. This curve, called the

Modulation Transfer Function2 (MTF) is now evaluated. The present approach differs from

[Rhode and Greenberg, 1994] in that confusion matrices are used instead of Vector Strength

measures to derive temporal MTFs (tMTFs). These matrices act as a proxy for the evaluation

of a robust AM encoding, by extraction of their diagonal values plotted on the y-axis, while

the x-axis carries the modulation frequencies of the AM tone.

As exemplified by figure III.8, low modulation frequencies are usually well classified, and

higher frequencies are almost randomly guessed in the cluster of high frequencies, behaving

as low-pass filter MTFs. This hypothesis is tested using the best set of processing: SMO

0 1 2 3 4 5 6 7 8

Optimal Time-Step (ms)

0

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y
of

 S
M

O
 a

t t
he

 O
pt

im
al

 T
im

e-
S

te
p

(%
)

On
ChS
ChT
LowF
PLN
PBU
PL

Fig. III.12 For each of the 463 datasets, the optimal accuracy for SMO.TB classifications is
plotted against its associated time-step obtained for this classification, coloured by unit type.
The lines represent the renormalised histograms for each unit type. Small horizontal jitter
is added to help the markers’ visual separation. A vertical line marks the 1 ms threshold.

2A CN neuron transmitting an AM tone can be viewed as a filter for the modulation frequency of the
modulation. This analogy with classical signal processing motivates the use of MTF in Neuroscience.

76

Unit type ChS ChT LowF On PBU PL PLN
Cut-off frequency (all costs) 460 480 433 485 360 449 661
Cut-off frequency (time-step in]0.1,1[) 464 498 431 529 364 500 657
Cut-off frequency (cost in]2,6[) 496 533 486 552 398 530 749
Accuracy (all costs; in %) 50 48.8 44.0 54.4 29.2 37.2 49.6

Tab. III.15 Cut-off frequencies, in Hz, obtained by averaging SMO results over a set of
parameters specified in parenthesis. The last row gives the unit types’ mean accuracies,
multiplied by 4 to give a percentage.

with spike metric approach, and cost between 2 and 6 ms−1. From these confusion matrices,

the mean diagonal results are plotted in figure III.13, showing a trend of low-pass filtering.

This is confirmed in figure III.14, where similar transfer functions are obtained for AM tones

played at 30, 50 and 70 dB SPL, respectively. This result is not consistent with the findings

in [Rhode and Greenberg, 1994] described in subsection I.2.1.3, where tMTFs have band-

pass shapes at medium or high sound levels, mainly for chopper units. The right plot of

figure III.13 shows that, except for PBU units, almost perfect scores can be achieved for any

given modulation frequency, showing that almost all neuron types can provide the basis for

discriminating modulation frequencies.

Shapes are not entirely equivalent between neural types: PBU units are the worst AM

transmitters for the best classifiers, while Onset and LowF units have a relatively big increase

for worse classifiers. Unit types differ in their peak performance, and in the slope of the decay

with frequency. This difference is such that some unit types are best at low modulation

frequencies (ChS) and others are relatively better at high modulation frequencies (PLN,

On). There is great variation within unit type - most unit types have some neurons that can

correctly classify any of the tested frequencies; the only exceptions being PBU and ‘Unusual’

units, not included in this work.

The small improvement observed in figure III.13 for each unit type at high modulation

frequencies is probably a statistical bias due to the fact that spike trains corresponding

to a modulation frequency of 1150 Hz are the most representative of the cluster of ‘high-

frequencies’ responses. Thus, with its tendency to bet on 1150 Hz rather than on 1050 Hz or

950 Hz, the classifier increases its overall recognition accuracy, which it is built to do. This

behaviour is also observed on many curves of figure III.14, in particular at 30 dB SPL for

the Onset unit and the PBU units. A similar bias would explain why many mean accuracies

are lower at 50 Hz than at 150 Hz.

As low-pass filters, the cut-off frequency ω of the mean MTF H of a given unit type is

defined as

H(ω) := ||H||∞/
√

2, (III.2)

where the infinite norm ||·||∞ is calculated here as the maximum over the 12 different fre-

quency values. Since all MTFs are monotonic in this region, cut-off frequencies were ob-

77

tained by piecewise-linear interpolation of the H functions. This results in the third row of

table III.15, corresponding to the stars’ abscissa on the top left of figure III.13.

Table III.15 shows that cut-off frequencies decrease when the set of confusion matrices

considered to calculate it include classifications that had a lower accuracy. This decrease

shows that, on average, the accuracy starts to decrease on the high-frequencies, confirming

that classifications with an medium score tend to ‘guess’ classes from the high modulation

frequencies rather than learning features to segregate them. The relative cut-off frequencies

between unit types is, however, fairly robust.

III.4 Conclusions

In this chapter, a large set of classification algorithms was used and compared to assess how

well modulation frequency is encoded in the responses of Cochlear Nucleus neurons to Am-

plitude Modulated tones, using three different preprocessing methods: summary statistics

feature vector on the Interspike Intervals (ISIs), time-binned spike trains, and spike distance

metric with a single classifier named SMO. The conclusions of this work can be split in two

categories: methodological conclusions on the different preprocessing methods, classifiers

and parameters, and scientific conclusions on the CN.

0 200 400 600 800 1000 1200

Modulation Frequency (Hz)

0

10

20

30

40

50

60

70

80

90

100

M
ea

n
ac

cu
ra

cy
 (

%
)

On (20 units)
ChS (63 units)
ChT (52 units)
LowF (19 units)
PLN (182 units)
PBU (12 units)
PL (91 units)

0 200 400 600 800 1000 1200

Modulation Frequency (Hz)

0

10

20

30

40

50

60

70

80

90

100

M
ea

n
ac

cu
ra

cy
 (

%
)

Fig. III.13 Mean (left) percentage of correct classification per modulation frequency for
each unit type. Stars show the cut-off frequencies (equation III.2) All confusion matrices
used here are only obtained using SMO with the spike-metric preprocessing - the algorithm
giving the highest mean accuracy, and good parameters (cost between 2 and 6). Right plot
shows the highest accuracy obtained for each modulation frequency and unit type.

78

30 dB SPL

0 200 400 600 800 1000 1200

Modulation Frequency (Hz)

0

10

20

30

40

50

60

70

80

90

100

M
ea

n
ac

cu
ra

cy
 (

%
)

On (1 units)
ChS (17 units)
ChT (8 units)
LowF (3 units)
PLN (38 units)
PBU (4 units)
PL (14 units)

50 dB SPL

0 200 400 600 800 1000 1200

Modulation Frequency (Hz)

0

10

20

30

40

50

60

70

80

90

100

M
ea

n
ac

cu
ra

cy
 (

%
)

On (5 units)
ChS (21 units)
ChT (14 units)
LowF (5 units)
PLN (55 units)
PBU (3 units)
PL (28 units)

70 dB SPL

0 200 400 600 800 1000 1200

Modulation Frequency (Hz)

0

10

20

30

40

50

60

70

80

90

100

M
ea

n
ac

cu
ra

cy
 (

%
)

On (8 units)
ChS (18 units)
ChT (17 units)
LowF (4 units)
PLN (55 units)
PBU (2 units)
PL (36 units)

Fig. III.14 Mean percentage of correct classification per modulation frequency for each unit
type. Stars show the cut-off frequencies (equation III.2) All confusion matrices used here
are only obtained using SMO with the spike-metric preprocessing and good parameters (cost
between 2 and 6), at the specified sound levels.

79

Scientific conclusions regarding the Cochlear Nucleus:

CN neurons differ reliably and systematically in their ability to signal AM frequency. Upon

ranking the CN unit types, we obtain an order related to that of the rank order of [Rhode

and Greenberg, 1994] for phase-locking capability to high modulation frequency, presented

in table III.16, and more importantly this rank-ordering is fully compatible with the ranking

of [Frisina et al., 1990] since row (A) of the table implies row (D), thus stressing that the

gain is an important feature in information transmission towards higher nuclei.

The Onset units, while only medium in their ability to phase-lock to high modulation

frequencies, are the best AM transmitters in our setting, showing that they transmit infor-

mation beyond phase-locking, using a neural code that the auditory system may be able

to extract. Regular firing neurons are overall better at signalling AM frequencies. PL and

PBUs are the worst unit types for AM transmission. The order was, to a reasonable ex-

tent, independent of the choice of the classifier and the performance metric used, avoiding

the pathological cases where a disastrous combination of classification algorithm and perfor-

mance metric would remove essential information (SMO and KBI).

This finding is robust across most measures and classification algorithms. The infor-

mation that neurons encode regarding different AM frequencies is not a band-pass transfer

function, as it was under synchrony analysis across virtually all CN response classes but

the primary-like, this enhancement being most pronounced at moderate to high SPLs in

Chopper units [Rhode and Greenberg, 1994; Frisina et al., 1990]. Instead, as information

processors, all CN units seem to behave as low-pass filters at all sound levels tested, and all

CN neurons process information at sub-millisecond accuracy. This contrasts with the idea

that chopper neurons perform some kind of temporal filtering, coding certain modulation

frequencies preferentially; their increased synchrony at a preferred frequency at medium to

high sound levels seems to be only part of the information these units transmit, leaving to

other units — and possibly other brainstem nuclei — the role of extracting this piece of

information [Joris et al., 2004].

Different unit types differ in their maximal performance and their transfer function slope.

Regular firing units (choppers) show good performance at low AM frequencies, but this falls

off fairly rapidly with frequency. PLs are bad overall, but have a gentle low-pass slope. PLN

(A) : On > ChS > ChT > LowF > PLN > PBU > PL
(B) : On > PLN > ChS > ChT > LowF > PL > PBU
(C) : ANF > PLN > PL = On > Ch > PBU
(D) : On > Ch > PLN > PL > ANF

Tab. III.16 Rank order of CN units for AM transmission (A) on average using all classifiers,
(B) based on SMO with the spike metric approach only, (C) rank order of [Rhode and
Greenberg, 1994] for phase-locking to high modulation frequency, including ANF, and (D)
rank order of [Frisina et al., 1990] for gain modulation.

80

and Onset units are actually better at identifying high AM frequencies than choppers.

There is great variation within unit types. Most unit types have some examples that can

perfectly identify any modulation frequency, especially PLNs. Overall, the previous findings

that regular firing cells are good at encoding envelopes is confirmed [Rhode and Greenberg,

1994], but these transfer functions are low-pass when considered as information transmitters,

and some irregular firing neurons do encode high frequency envelopes.

Methodological conclusions:

As a measure of synchrony, Vector Strength does not extract all the AM information output

by CN neurons. Assumption-free approaches give a different picture, suggesting that more

general approaches for AM decoding have the potential to be important; the rest depends

on how the brain processes this information, which requires investigating.

Classifiers vary a lot in their overall performance, but in a robust way across unit types:

regardless of the classifiers, the relative performance across different types of responding neu-

ron is similar. By focusing on the results using the best classifier (SMO in the work presented,

Naive Bayes coming second) it was possible to draw conclusions on the Neuroscience related

questions and separate Neuroscience and Machine Learning issues. So when comparing neu-

rons, the classifier choice is unlikely to influence conclusions — although it does strongly

influence the estimate of the lower bound on how well a given neuron can do. This could be

important when trying to quantitatively relate neural coding to perceptual performance.

Due to the importance of spike timing in the spike train dataset, the feature vector

based on ISI derived summary statistics performed poorly, even though it contains the Vec-

tor Strength. The resolution of time-binning for algorithms is fairly crucial to maximise

performance. The comparison between time-binning vs. spike distance based preprocessing

showed that the kernel approach was marginally superior using a SVM.

Finally, all measures of performance are not equivalent on all classifiers, which may

imply that different classifiers employ different functional strategies. This is examined in

chapter IV.

81

IV.
Comparison of Performance Measures

This chapter studies the possible links that performance measures have with clas-

sification algorithms or with neuron types. Section IV.1 lays down the rigorous

definitions of the performance metrics used and discusses some of them. These

measures are then compared in section IV.2, revisiting the results of chapter III

and further discussed. The main contribution presented there, is the comparison of

different measures of classification obtained by applying different classifiers.

IV.1 Performance Measures for Classification Algorithms . . 83

IV.1.1 Definition of Classical Measures 83

IV.1.2 Strategies of Measures of Performance 89

IV.2 Results . 91

IV.3 Discussion . 94

82

IV.1 Performance Measures for Classification Algorithms

This technical section lays down the definitions of traditional classification measurements

output by Weka, discusses those definitions, and theoretically compares the measures to

some extent.

IV.1.1 Definition of Classical Measures

Let C be a trained classification algorithm, given an abstract algorithm A and some training

data {x̃1, . . . , x̃ñ} each having an associated label (or class) {l̃1, . . . , l̃ñ}. The data to be

classified is a new set of test points {x1, . . . , xn} labelled {l1, . . . , ln}. For each test instance,

it is assumed that the classifier outputs a probability distribution that this point belongs to

the known classes; when a classifier should simply output the guessed label, it is rewriten

as a probability of 1 of belonging to this class and 0 over other classes. From these n test

points, working with nl different labels, the list of output probability distributions is put in

a so-called probability matrix P ∈ Mn×nl(R
+) such that each row sums to 1, from which

a confusion matrix C ∈ Mnl×nl(N) is extracted. All classification performance measures

defined below are based on C and P . The following notations are used:

• Lp is the natural entrywise norm on matrices, not the operator norm; only p = 1 and

p = 2 are used. For M ∈Mn,m(R) and p ∈ N∗,

||M ||p :=

(∑
i,j

|Mi,j|p
) 1

p

;

• C denotes a classifier, already trained,

• log2 is the logarithm in base 2, such that log2(2) = 1;

• L = {1, . . . , nl} is the set of all labels used (nl labels);

• x̃ = {x̃1, . . . , x̃ñ} is the training set of data;

• x = {x1, . . . , xn} is the test set of data;

• L̃ = {l̃1, . . . , l̃ñ} is the set of labels of training set;

• L = {l1, . . . , ln} is the set of labels of test set, the order being fixed for consistency of

the discussion;

• C denotes a confusion matrix: C(i, j) is the number of test instances of the ith label

that are classified as belonging to the jth class; ||C||1= n is the number of test data

points;

83

• PC denotes the confusion matrix C after renormalisation: PC = C/||C||1;

• P ∈ Mn×nl(N) is a probability matrix. Its entry pi,j = P (i, j) is the probability that

the ith data point xi has the jth label;

• πr(j) = πr(xi ∈ class j) is the prior probability distribution (of class j) that any test

point belongs to class j. It is the observed proportion of instances of class j in the

training set:

πr(j) :=
#{i ∈ {1, . . . , ñ} / l̃i = j}

ñ
;

• S1 is the unit sphere for the L1 norm on matrices: S1 = {M ∈Mnl(R), ||M ||1= 1};

• S+
1 is the subset of S1 restricted to matrices with positive elements:

S+
1 = {M ∈Mnl(R

+), ||M ||1= 1}.

The classification is evaluated using various classical measures, presented below:

Percentage of correct guesses (PCG): Percentage of correctly classified instances among

n test points:

PCG =

 Mnl(N) → {0, n−1 . . . , 1}
C 7→ trace(PC) =

nl∑
k=1

PC(k, k) = trace(C)
||C||1 = 1

n

nl∑
k=1

C(k, k)
(IV.1)

For notational convenience, values are not multiplied by 100, so that the elements of PCG are

between 0 and 1, and P 100
CG = 100 ∗PCG refers to the matrix whose elements are percentages.

This measure simply looks at the percentage of correct guesses of the classes, regardless of

how the classifier made mistakes. This very naive measure is the most commonly used in

the literature, but does not make use of all the information present in the confusion matrix.

This measure is also called accuracy.

kappa (κ): This measure is equivalent to the accuracy, up to a renormalisation and shift. It

reflects the agreement of the prediction with prior classes, reducing the necessity to compare

the results with a baseline:

κ =

{
Mnl(N) → [−1, 1]

C 7→ PCG(C)−Pr(PC)
1−Pr(PC)

(IV.2)

where, using the column vector 1 = (1, . . . , 1)t ∈ Rn,

84

Pr =


S+

1 → [0, 1]

PC 7→ 1t ∗ PC ∗ PC ∗ 1 =
n∑
k=1

[(
n∑
i=1

PC(i, k)

)
∗
(

n∑
j=1

PC(k, j)

)]
.

(IV.3)

This can be thought of as

κ =
observed agreement− chance agreement

1− chance agreement
,

because PCG(C) is the proportion of correctly classified instances (‘observed probability that

the classification was correct’),
∑n

i=1 PC(i, k) is the proportion of instances of the kth class

(‘observed probability that the class was k’), and
∑n

j=1 PC(k, j) is the proportion of instances

classified as k (‘observed probability probability that we classify an instance as k’), which

means that the ‘chance agreement’ for a class k will be the observed probability that an

instance1 is of class k and is classified as being of class k is
∑n

i=1 PC(i, k) ∗∑n
j=1 PC(k, j).

By additivity of probability on disjoint events - here the probability of belonging to a class

- the total chance agreement is given by the sum over k of these terms, hence the definition

of Pr.

Mutual Information (MI): As defined in [Cover and Thomas, 2006], given two random

variables X and Y with a joint probability mass p(x, y) and marginal probabilities mass

functions p(x) and p(y), the mutual information I(X;Y) is the relative entropy (or Kullback-

Leibler divergence) between the joint distribution and the product p(x)p(y):

I(X;Y) =
∑
x∈X

∑
y∈Y

p(x, y) log2

p(x, y)

p(x)p(y)
= Ep(x,y) log2

p(X, Y)

p(X)p(Y)
.

This definition can be extended to continuous densities, although this is not needed for this

thesis. This definition of the mutual entropy when applied to a confusion matrix, following

[Chase and Young, 2006] becomes:

MI =

 Mnl(R
+) → R+

PC 7→
nl∑
i=1

nl∑
j=1

PC(i, j) [log2(PC(i, j))− log2(PC(i))− log2(PC(j))]

(IV.4)

where, for simplicity, PC(i) :=
∑nl

k=1 PC(i, k) and similarly PC(j) :=
∑nl

k=1 PC(k, j). The

efficient Matlab implementation of the Mutual Information that was used also deals with

infinities:

1This instance being randomly chosen and randomly classified, using independent draws. This implicit
assumption always made when talking about the chance agreement.

85

P = C / sum(sum(C));

mP = bsxfun(@minus, bsxfun(@minus, log2(P), log2(sum(P,1))), log2(sum(P,2)));

mP(isinf(mP) | isnan(mP)) = 0;

MI = sum(sum(P .* mP));

K&B Information (KBI): The Kononenko & Bratko information score [Kononenko and

Bratko, 1991] is a measure that aims at excluding the influence of prior probabilities (which

may enable a classifier to easily obtain high accuracy) and deal with various types of imperfect

or probabilistic answers2. The main idea behind this measure is that: ‘[T]he misclassification

of a more probable class should count as a more serious mistake than misclassification of a

less probable class since the former is not expected while the latter would not be surprising’.

This logic led the authors to attribute a credit for correct classification and a penalty for

misclassification. Both functions (for credit or penalty, respectively) are based on the same

function from information theory that takes into account the prior probabilities of classes.

The way they do this is by saying that the entropy of an event j with prior probability

πr(j) is − log2 πr(j) bits, which also gives the amount of information necessary to correctly

classify an instance into class j. Analogously the amount of information necessary to correctly

decide that an instance does not belong to class j is − log2(1 − πr(j)) bits. Let’s consider

a data point xi labelled j: li = j and look at P (i, j), the (posterior) probability returned

by the classifier C that this data point belongs to class j. Let’s define the K&B information

score of this answer (in bits) by considering the two cases:

• if P (i, j) ≥ πr(j), it is a useful answer, leading to a positive score:

score(xi) = − log2 πr(j) + log2 P (i, j),

• if P (i, j) < πr(j), it is a misleading answer, leading to a negative score:

score(xi) = −[− log2(1− πr(j)) + log2(1− P (i, j))].

Thus, the mean K&B information score is defined on the test set x as

(IV.5)

KBI =
1

n

(
n∑
i=1

δP (i,li)≥πr(li)[log2 P (i, li)− log2 πr(li)]

+
n∑
i=1

δP (i,li)<πr(li)[log2(1− πr(li))− log2(1− P (i, li))]

)
where δ denotes the Kronecker delta function on 0: δy = 1 if y = 0, δy = 0 otherwise.

2We understand their use of ‘imperfect’ as referring to simple classifiers that only use prior information.

86

Area Under the ROC Curve (AUC): The Receiver Operating Curve (ROC) was origi-

nally used in signal detection, and its first use in Machine Learning seems to be in 1989 by

Spackman [Spackman, 1989].

By assumption, the classifier C outputs probabilities for each test instance xi to each

class. In the binary case, these two classes are often referred to as ‘positive’ and ‘negative’.

To work with a common vocabulary, those terms are used as well to describe the AUC. For

each threshold t ∈ [0, 1], each instance belongs to one of the 4 following classes depending on

whether the data point is actually negative or positive, and whether the output probability

that it belongs to the positive class is above or below the threshold: true positives (TP),

true negatives (TN), false positives (FP), false negatives (FN) (see figure IV.1 top). The

proportions (or rates) of true positives and false positives are then, respectively, functions

of this threshold t, as shown in figure IV.1 middle. By taking the cumulative distribution of

these two parameterised functions, a parameterised curve is defined in the square [0, 1]2, as

shown in figure IV.1 bottom; each is an increasing function since, by definition, cumulative

distributions are increasing. This function is called the ROC. A ROC curve is considered

better the closer it gets to the top left corner of the square; this can be evaluated by looking

at its integral, called the Area Under the ROC Curve (AUC), which is a value between 1

(highest value) and 1/2, which is interpreted as chance3.

Assuming for notational simplicity that there are no ties in the estimated probabilities,

let’s describe how the ROC curve in figure IV.1 is plotted: Let np denote the number

of positive test points and nn the number of negative points. The ROC curve is a step

function, starting at (0, 0), moving 1/np units up when the threshold t becomes equal to the

probability that a point with positive class actually belongs to this class, and moving 1/nn
to the right when this probability becomes equal to the probability of a point with negative

class. After np such steps up and nn steps to the right, the curve reaches the point (1, 1).

An equivalent way to compute the AUC is presented by Hand and Till [Hand and Till,

2001], replacing the use of thresholds by ranking of the probabilities. This approach seems

more computationally efficient, is not burdened by potential biases following the integral

calculation of the AUC, is simple to implement, and has an immediate geometrical origin.

In a nutshell, Hand and Till compute the integral of the step function (the AUC) as the sum

of the area of each of the np rectangles of width 1/np units. After ranking the probabilities

vector p = (pn1 , . . . , p
n
nn , p

p
1, . . . , p

p
np) in increasing order (where pci is the probability that the

ith instance of the class c be positive), one obtains the vector r = (r1, . . . , rnn , . . . , rnn+np)
4,

from which they compute the area of the ith rectangle as Ai = (ri − i)/(npnn). Summing

over the indices of the positive points, Hand and Till obtain

3The chance level is the lowest practical value, as an AUC smaller than 1/2 urges you to switch instances
labels to obtain superior performance.

4The vector r is a permutation of the vector (1, 2, . . . , nn + np) such that ∀i < j, pri ≤ prj , uniquely
defined if there are no ties.

87

AUC =
1

npnn

np∑
i=1

ri − i. (IV.6)

This value is equal to the empirical probability that a randomly chosen negative point has

a lower estimated probability of being positive than a randomly chosen positive point, this

number being known as the Mann-Whitney-Wilcoxon statistic. They also give the standard

error of this statistic.

However, this definition of the AUC does not naturally generalises to multi-class clas-

sifiers. Such a generalisation is proposed in [Hand and Till, 2001] by averaging pairwise

comparisons of classes, which is a common approach in Machine Learning5. They generalise

this formula to a c-classes problem by taking the average AUC measures for each sub-binary

problem:

P(x negative)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
(x

 p
os

iti
ve

)

0

0.2

0.4

0.6

0.8

1

Positive
Negative

t: threshold
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

ecdTPR(t)
ecdFPR(t)

x(t)=ecdf
FPR

(t)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y(
t)

=
ec

df
T

P
R
(t

)

0

0.2

0.4

0.6

0.8

1

ROC

Fig. IV.1 Calculation of the ROC curve in a simple example, given the estimated probabil-
ities on 7 data points output by a classifier. Top: Scatter plot of the probabilities for each
test point, coloured by its real class. Middle: Empirical cumulative distributions of the true
(green) and false (red) positive rates, as a function of the threshold t above which a test
point would be classified as negative. Bottom: Graphical plot of the ROC as a parameterised
function, which coordinates are given by the two cumulative distributions plotted above, axis
coloured as the parameterised distributions.

5For example used in Weka’s MultiClassClassifier.

88

AUCc =
1

c(c− 1)

∑
1≤i 6=j≤c

AUC(i|j),

where the summation is over every coupling of distinct classes and AUC(i|j) is the AUC

measured on the binary classification task consisting only of points from class i (positive

class) and j (negative class). From this formula, it is easy to generalise further to obtain

a weighted Area Under the Curve by weighting the binary AUCs with positive weights

summing to one:

wAUCc =
1

c(c− 1)

∑
1≤i 6=j≤c

wi,jAUC(i|j), (IV.7)

which is in the spirit of Signal Detection Theory, where negative and positive options are

not equivalent.

IV.1.2 Strategies of Measures of Performance

The present goal is to understand how measures of performance correlate when they are ap-

plied to the results of different classifiers, which requires us to understand how they evaluate

a result. To give a flavour of the kind of difference, we provide a simple example, using for

simplicity the 3 measures that take as input a confusion matrix (K&BI using the probabil-

ities instead so cannot be computed from the confusion matrix alone), evaluating the three

following confusion matrices:

C1 =

10 0 0

0 10 0

0 0 10

 C2 =

 0 0 10

10 0 0

0 10 0

 C3 =

3 3 3

3 3 3

3 3 3


In this case, the following results are obtained:

PCG(C1) = 1

κ(C1) = 1

MI(C1) = 1.585

PCG(C2) = 0

κ(C2) = −0.5

MI(C2) = 1.585

PCG(C3) = 0.333

κ(C3) = 0

MI(C3) = 0

Those measures can be thought of as markers who have different strategies when marking a

multiple-choice questionnaire:

• Marker 1 would only give points when the student gives the right answer (PCG);

• Marker 2 counts the number of correct answers, but wants the students who chose

randomly to have a mark 0 in the end (κ), still considering systematic errors to be

worse than the random ones;

89

• Marker 3 gives points if the student shows in any way that he has understood the

problem, even if he gives only wrong answers - for example a stubborn student who

decided to always give the solution to the right of the correct one (MI).

As shown in this elementary example, the mutual information of a confusion matrix does

not have much to do with correctly or incorrectly classified instances, as its very definition is

invariant under a switch of lines and columns in the confusion matrix. But since classifiers

are engineered to have an optimised accuracy, it means that the ‘cleverness’ estimated by

the mutual information should be strongly correlated with the ‘correctness’ of the classifier’s

prediction. This is indeed what is observed for classification of real neural data, as can be seen

in raster plot IV.2 that shows the mutual information against the accuracy of almost 400,000

confusion matrices. These confusion matrices were obtained, through the work presented in

chapter III, by preprocessing different spike train datasets in many ways and using various

classifiers. An alternative view for the basis of comparing measures of performance, more

philosophical than scientific, is given in appendix 12.3.

Fig. IV.2 Scatter plot of percentage of correct classification against mutual information,
obtained over 397,717 confusion matrices (results detailed in chapter III).

90

IV.2 Results

Different measures of performance can be strongly correlated, as observed in figure IV.2

where accuracy and mutual information are used as coordinates for a raster plot of about

400,000 classification results. This was also discussed in chapter III, where figure III.9 shows

the average performance for each classifier, under different measures. Mutual information

and accuracy were already very close to each other, and both AUC and K&BI also followed

the same trend, but were not as close, and K&BI gave very poor performances when either

SMO or MultiClassClassifier were used as classifiers. The results presented here shed some

light on these correlations.

Figure IV.3 shows two representations of the same information; only the colouring changes

between the top 9 plots and the bottom 9 plots. Each collection of 6 raster plots and 3

histograms shows the result of each of the classifications run with one of 6 selected classifiers:

SMO, END, LogitBoost, MultiClassClassifier, NaiveBayes and SimpleLogistic. Each non-

diagonal subplot is the raster plot of two measures (one on the x-axis and the other on the

y-axis) among the three selected: kappa, the K&BI, and the AUC. These classifiers and

measures were selected to reduce the clutter: many other measures were tested in a similar

manner, and would lead to much redundancy in the discussion. For example, a measure

(namely the EMA6) turned out to be the square of another measure (MI), despite their

apparent differences.

The top plots in figure IV.3 are coloured by classifier: each classifier is associated with

a colour, and each point in the raster plots corresponds to a classification as described

in the previous chapter, using any available dataset and preprocessing. Since each point

plotted on the raster plots has an area, many plots mainly reveal the top colour, which is the

SimpleLogistic classifier simply due to the order in which dots were plotted. The histograms,

on the diagonal, compensate this by showing the distribution of values for each measure.

The histograms of kappa and K&BI have approximately the same shape. The main

differences are that the first bin for K&BI is much higher, and the tail of kappa is heavier.

The AUC histogram is more uniform, spreading more evenly this large number of measures,

making it a better candidate measure to compare the results from many classifiers, while

kappa and K&BI are more skewed.

On each raster plot, distinctive shapes emerge. On the bottom left plot, where kappa

is plotted against AUC, all shapes seem to be on top of each other, with at least a slight

shift of SimpleLogistic towards the top since other colours are only seen near the diagonal

for values of kappa above 0.2. This is confirmed by how colours are spread on the kappa-

histogram, where there is a high number of high values for SMO, due to the fact that there

is a relatively higher number of points resulting from the spike metric approach, which had

6http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0084217

91

Fig. IV.3 Histograms and scatter plots of the 3 measures compared (κ, K&BI, AUC).
On the diagonal, the histogram of the measures. Otherwise, axis are indicated on left and
bottom. For visibility, these correspond to all classification using only the 6 classifiers in the
legend (SMO to END). Top 9 : Coloured by classifiers. Bottom 9 : Coloured by unit type.

92

more parameters near the optimal parameter, as discussed for figure III.11.

The shapes appearing on the bottom-middle raster plot clearly discriminate the results

coming from two classifiers: SMO and MultiClassClassifier. Those two are very close to a

straight line, with MultiClassClassifier’s slope being very steep. The K&BI results when

using SMO are very close to zero, even for extremely good classifications (kappa near 1).

This appears in the K&BI histogram since its first bin contains all values obtained using

MultiClassClassifier, and relatively few of the other classifiers. Similarly, the following three

bins contain most values obtained from SMO.

The bottom collection of plots in figure IV.3 presents the same data points, but coloured

by type of neuron. No natural cluster emerges this time, the same classifier-based distri-

butions are found across the different clusters defined previously as coming from specific

algorithms. This fact is clearest on the plot showing κ versus K&BI: similar colouring is

seen on data points coming from MultiClassClassifier, SMO, END, and also on the three

other classifiers, as is verified in figure 11.3 of the appendix. As such, the clusters are unre-

lated to the neural origin of the data points but only to the classifiers, which was the initial

motivation for comparing measures of performance on classification algorithms.

Are classifiers equivalent under different measures?

Different measures may evaluate classifications differently. This is of course not very

important when the results are very similar, for example if a classifier is deemed equivalently

good or equivalently bad under different measures, but whenever this is not the case the

measures evaluate different aspects of the classification, which relates to the idea that they

are based on different strategies.

Overall, a clear correlation between the averaged results for each classifier across measures

can already be seen in figure III.9. After ordering the classifiers by increasing kappa score,

the same trend appeared for the other two measures. A good classifier under one measure

may be bad for another one, on a given dataset or possibly on all. The two most obvious

examples are SMO and MultiClassClassifiers, as they both perform very well for both the

kappa and the AUC measures, but are quite bad under the K&BI information score. This

means that different classifiers perform differently for different measures, thus the ‘best’

classifier depends on the measure one cares most about. This behaviour was again observed

in figure IV.3, where dots with the same colours correspond to evaluations from the same

classifier, and the fact that SMO and MultiClassClassifier on this figure have their dots on

lines with a steep slope is equivalent to these classifiers being good under one measure, and

bad under the other one. This type of behaviour has been described in the literature, where

trade-offs between classifiers are often described [Demar, 2006; Ali and Smith, 2006; Ng and

Jordan, 2002; Boulesteix et al., 2008; Sampson, 2012; Lehmann et al., 2007], but no clear

explanation seems to be given anywhere, and the clear alignment of points from a common

classifier seems not to have been described.

93

Classifiers are built to optimise a specific function, uniquely defined by their algorithm

in a way that is often hard to interpret; comparing measures of performance allows one to

shed some light on this function.

IV.3 Discussion

The conclusions obtained in chapter III using the percentage of correct guesses would be

mostly unchanged, had we used κ or AUC instead. Using K&BI, however, SMO and Multi-

ClassClassifier would have provided poor results. In all cases, the relative results (between

neuron types) would be unaltered.

To get a better understanding of the probabilities actually output by Weka, here is a very

simple test: The training set corresponds to two instances, with value 0 and 1, respectively

belonging to class 0 and 1. Then, we test feature vectors (numbers, here) between 0 and

1. Results are shown on figure IV.4. The conclusion of this hand-made test is that the

MultiClassClassifier classifier outputs probabilities before thresholding, which is not the

case for the other classifiers. Even IBk (k-nearest neighbours) would output only 1s, and

IB1 (nearest neighbour) only 0.75s, even though they should be equivalent.

The understanding of this type of ‘soft’ probability could be made with the notion of risk:

similarly to betting large or small amounts compared to the expected result, a measure would

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

x

P(
x
∈

cl
as

s
1)

MultiClassClassifier
NaiveBayes
SMO

Fig. IV.4 Probabilities output by three classifiers that a value x belongs to class 1, tested
on a subset of [0, 1], when the training set was composed of two instances: the value 0 with
class 0, and the value 1 with class 1.

94

gain more or less when correct, or lose more or less when incorrect. As seen in figure IV.4,

MultiClassClassifier doesn’t take much risk when it gives a probabilistic prediction, which is

not the case for the others (NaiveBayes and SMO). As a measure for this risk assessment,

K&BI information will add the scores, which are centred with respect to the prior distri-

bution. Hence adding many small negative and positive values when the algorithm doesn’t

take too much risk (such as MultiClassClassifier) will lead to small overall gain (explaining

the poor results with MultiClassClassifier under the K&BI measure), but summing bigger

gains forces the K&BI information score to sum bigger values.

Because MultiClassClassifier uses an Error-Correcting Output Code method to aggregate

the output of binary classifiers, it may be that for each base classifier, the prior probability

of belonging to a class and the probability of not belonging to it are bigger than for the other

classifiers (uniform priors in the previous case), and this imbalance between the two values

would have a large negative impact on the K&BI information score, as observed. Since SMO

is also an ensemble classifier, it may be subject to the same kind of imbalance on the prior,

hence shifting the K&BI information score, compared to other non-ensemble classifiers.

The K&BI information is fairly different in nature because it is computed on the prob-

abilities of belonging to the real class, whereas other measures (such as the accuracy) are

computed only on the confusion matrix. As seen in figure IV.4, some algorithms output

proper probabilities (continuous values between 0 and 1), but others output only 0 and 1.

This leads to the interesting behaviour on the plot showing kappa versus K&BI for example.

Having proper probabilities is not enough to explain the peculiar behaviour of the green

dots (MultiClassClassifier), since SMO7 is not in this class but stands out too. This seems

to relate to a more abstract property of these classifiers, which is that they use ensemble

learning - see chapter II. The rigorous investigation of this issue is beyond the scope of this

thesis, as it represents a problem in theoretical Machine Learning, studying the varieties

that seem to implicitly define the results of trained algorithms, the different measures of

performance then being different projections on R+. Just like the shadows of a complex 3D

object are similar when light sources are near, the projections on R+ (the measures) give

close and correlated results when they are calculated in a similar fashion; this phenomenon

is not related to Neuroscience.

7Interestingly, SMO is categorised as ‘functions’ in Weka, which may be considered a mistake, and END
is a meta-classifier, but has a much higher correlation between AUC and K&BI.

95

V.
Conclusion of part A

96

Envelope decoding starts early in the auditory pathway: the auditory nerve tonotopically

encodes the input waveform, using a nonlinearity from the biophysics of inner hair cells that

reveals slow fluctuations in each spectral band of the waveform. This information is sent to

the Cochlear Nucleus, where many different types of neurons already output different pieces

of information. Chopper units for example encode much more AM information than the

primary-like units.

This conclusion was previously obtained using the Vector Strength, a metric that tests

how much the spikes are in phase with the sound envelope. This measure was used to

measure the outstanding capability of the auditory nerve fiber to lock to a specific phase

of the envelope [Rhode and Greenberg, 1994], when responding to an amplitude-modulated

tone. Using the same dataset, the authors’ conclusions were verified using a data mining

approach, free of any assumptions regarding the neuron’s coding. This led to conclusions

both in the realm of Neuroscience and in the field of the Machine Learning:

• Most conclusions from [Rhode and Greenberg, 1994] are supported by our results,

regarding the difference in population-level coding of the modulation frequency. The

one conclusion that is lost is the band-pass filtering ability of most neurones types at

medium to high sound levels: we find using our data mining approach that transfer

functions of all types of units and at all tested sound levels are low-pass, meaning

that low modulation frequency is effectively contained in the spike trains, while the

phase-locking capability is reduced at low frequencies and medium and high sound

levels (most robustly in Chopper units);

• Classifiers, on average, can be well-ordered according to their results on various neu-

ron types. This has useful consequences on engineering practices for neuroscientists,

confirming that they should focus their efforts on tools that are either easy to use

(time and skill constraints), or that bring some insight to the data (including mean-

ingful biophysical quantities as features), or that simply beat other methods in terms

of accuracy (as does Deep Learning given enough data and computational power);

• The common measures of performance of classification algorithms are strongly cor-

related, in a way that is classifier-dependant. Except for K&BI, the other measures

(percentage correct, κ, AUC, MI) give very close relative results, with some variability

that seem stochastic.

These results motivate us to use a single Machine Learning algorithm with a single

measure of performance, now moving on to a much more dynamic and complex envelope:

let’s talk about speech!

97

B
Speech Recognition on Neural Data

VI.
Speech Recognition on Neural Data

In this review chapter, we present the field of speech recognition and the state-of-

the-art of its application to neural data. The field of Biophysical Auditory Mod-

elling VI.1 is first introduced, followed by an introduction to the field of Automatic

Speech Recognition VI.2 with a presentation of Hidden Markov Models VI.3, used

hereafter. The application of Automatic Speech Recognition (ASR) to neural data

stems from two main motivations: to improve ASR systems by mimicking a system

that already does it well - the mammalian brain - and as a tool to understanding

the neural coding of complex sounds, since the nonlinearity of the auditory pro-

cessing does not permit the extension of results from simple stimuli such as tones

and clicks. In this latter regard, the chapter ends with a review in section VI.4 of

the applications of speech recognition technologies to experimental and simulated

electrophysiological neural data.

99

VI.1 Biophysical Auditory Models 101

VI.1.1 Introduction . 101

VI.1.2 Sumner’s Model . 102

VI.1.2.1 Middle Ear . 102

VI.1.2.2 Dual-Resonance Nonlinear Filter 103

VI.1.2.3 Model of the IHC . 103

VI.1.3 Front-Ends . 104

VI.2 Automatic Speech Recognition 106

VI.2.1 Windows . 107

VI.2.2 Classical Features for ASR 107

VI.2.3 Models for Automatic Speech Recognition 110

VI.3 Hidden Markov Models . 110

VI.3.1 Introduction to HMMs . 111

VI.3.2 Isolated Word Recognition with HMMs 111

VI.3.3 States & Mixtures . 113

VI.3.4 Extension to Continuous Speech Recognition 114

VI.3.5 Networks, Word & Sub-Word Systems 114

VI.3.6 Accuracy For Continuous Speech Recognition 115

VI.3.7 Training Protocol . 116

VI.3.8 Dealing with Silences . 117

VI.4 Speech Recognition on Neural Data 118

VI.4.1 Data Type . 119

VI.4.2 Spike Trains . 120

VI.4.3 Simulated Best Frequencies 121

VI.4.4 Dataset Duration . 121

VI.4.5 Recognition Task: Continuity, Complexity, Noise 123

100

VI.1 Biophysical Auditory Models

VI.1.1 Introduction

The most common approach in Automatic Speech Recognition (ASR) is to compute fea-

tures from sound waveforms, like in any other classification task [Rabiner and Juang, 1993].

Another approach is to model the physical responses to sound pressure using a biophysical

model, mimicking the way the auditory system performs it. This approach initially had two

main motivations: to develop better ASR systems, and to allow auditory neuroscientists to

investigate the neural processing of sounds, relating their results to speech perception in a

quiet or noisy background.

For a long time, it was considered plausible that the best speech analysis algorithms would

be based on biophysical models of human audition [Lyon, 1982]. While this view pushed

forward our drive to understand the auditory pathway, data driven discoveries enabled by the

recent Deep Learning revolution have revealed that the strongest models may be built upon a

sea of data, whenever enough data is available. Images and sounds galore are such examples,

allowing incredible achievements in computer vision and speech application in just a few years

that ought to soon match the human brain’s capabilities1 [Scharenborg, 2007; Barker et al.,

2013]. Unfortunately, a profusion of neural data is still not available due to technological and

ethical limitations, forcing us to rely on auditory models and simulated data in our attempt

to answer scientific questions about higher-order processing in the auditory system of the

mammalian brain.

The models providing this data share many aspects, such as filtering or compression,

as they all aim to reproduce the same biological system — up to the species-dependent

specificities. They vary in their level of detail, in the tools used to implement auditory

principles, the species to which the parameters are fitted, or whether and how they extract

temporal information from the data in order to evaluate the model on a given task. For

example, here is a description of the ways information is processed in three classical models:

• Seneff’s auditory model [Seneff, 1988] consists of three stages: a bank of bandpass

filters that model the frequency analysis of the cochlea, nonlinear rectification, short-

term adaptation, lowpass filtering, and a rapid automatic gain control that models the

transduction of the inner hair cells, and finally outputs two streams of information, one

producing a rate coding in a fashion similar to the cochlea, and the other being a syn-

chrony detector designed as a frequency-dependent periodicity detector that compares

for each channel the mean rate of firing with a delayed version of it.

1Realistically, this goal could have been reached already. Industries’ priorities often being on the appli-
cations that offer a financial return, speech applications are constantly improved and have now started to
reach human parity [Xiong et al., 2016] leaving only researchers with less data and computational power to
study this matter, in order to understand why humans are, or were, better.

101

• Ghitza’s EIH model (Ensemble Interval Histogram) [Ghitza, 1986] makes use of timing

information to develop a spectral representation of the incoming sound. The ensemble

histogram of the inverse of the interspike intervals from spike trains is calculated, this

nerve fiber mechanism being modelled by a multi-level-crossing detector at the output

of cochlear filters. This representation of speech is then used as front-end to a Dynamic

Time Warping (DTW) recogniser.

• As in the two previous models, Lyon’s model [Lyon, 1982] includes bandpass filtering,

nonlinear rectification and compression, short-time adaptation, but adds a mechanism

for lateral suppression: the presence of a second tone over a range of frequencies

surrounding the Characteristic Frequency of an IHC may reduce its activity, compared

to a single tone at its CF played alone.

To increase their interpretability, the models tend to include some processing that could

be ascribed to the central auditory system, which is expected to extract useful features from

the sounds. A review of the classical biophysically-inspired auditory representations used for

ASR up to 2011 is [Stern, 2011]. Among these models, the most important for this thesis is

the one used to simulate neural responses from the peripheral auditory system.

VI.1.2 Sumner’s Model

Sumner’s model [Sumner et al., 2003] is a functional model of the auditory nerve response

of the guinea-pig. While it shares common features with other models, it was fitted to

experimental data, allowing one to test the capabilities of different types of nerve fibres in

speech encoding, which is done in chapter VIII.

The middle-ear filtering is modelled by a cascade of Butterworth filters (VI.1.2.1). A dual-

resonance nonlinear filter architecture is then used to reproduce the mechanical tuning of the

basilar membrane (VI.1.2.2). Finally, transduction to the activity on the AN is accomplished

with a model of the inner-hair-cell (VI.1.2.3). Details regarding the implementation of the

model and the spike generation algorithm are given in appendix 12.

VI.1.2.1 Middle Ear

The response of the middle ear is modelled by a cascade of two linear band-pass Butterworth

filters, in order to reproduce the thresholds found by [Evans, 1972]. One filter is second order

with an upper cutoff of 25 kHz and a lower cutoff of 4 kHz. The other filter is second order

with upper and lower cutoffs of 30 kHz and 700 Hz. In the original model, these filters

were chosen to match data collected by Evans [Evans, 1992], and the second filter was third

order. This was changed following [Steadman, 2015] to increase the response in the lower

frequencies, known to be important for human speech [Plack, 2005].

102

Fig. VI.1 Schematic of the DRNL filter architecture [Sumner et al., 2003]. The filter output
is a sum of a linear and a nonlinear pathway. The linear upper pathway is a gain followed
by a gammatone filter and a low-pass filter. The nonlinear lower pathway consists of the
following cascade; a gammatone filter, a compression function, a second gammatone filter,
and a low-pass filter.

VI.1.2.2 Dual-Resonance Nonlinear Filter

The filtering of the BM is modelled with a dual-resonance-nonlinear (DRNL) filter architec-

ture, shown in figure VI.1. This outputs the sum of two filters, one being linear and the

second nonlinear. The broken-stick nonlinearity is described by

y[t] = sign(x[t])×min(a|x[t]|, b|x[t]|v) (VI.1)

where a, b and v = 0.1 are parameters determining the exact behaviour. Due to the com-

pression, the nonlinear pathway dominates the BF response only at low sound levels. At

high levels, the linear pathway dominates the BF response, and at intermediate levels the

output is a mix of the two.

It was shown in [Meddis et al., 2001] that this model could be fit to BM laser-interferometry

data for three different BFs (800 Hz, 9 kHz and 18 kHz) by varying the DRNL filter param-

eters.

VI.1.2.3 Model of the IHC

The first stage of IHC transduction is a simple biophysical model of the cilia transduction

and receptor potential response. The second stage of transduction simulates the presynaptic

calcium processes that lead to the release of neurotransmitter. Two calcium parameters at

this stage determine the fiber type: Gmax
Ca , the maximum calcium conductance in the vicinity

of the synapse, and [Ca]thr, the threshold concentration of calcium required for release.

103

The effects of these parameters on an ASR task are tested in chapter VIII. The third IHC

stage models the manufacture, release, loss, and reuptake of neurotransmitter vesicles at

the synapse. Finally, the refractory stage, explained in algorithm 2 of the appendix, then

imposes an absolute and relative refractory period, reducing the probability that a vesicle

will trigger an action potential.

VI.1.3 Front-Ends

As computational capabilities were increasing in the 90s, more features could be included

in the models and two trends appeared in this scientific field: developing more complex

biophysical models, or having simpler models that share the important features of the more

complete ones. What is important to the modeller is that the model includes the relevant

auditory phenomena. Such phenomena include the peripheral frequency selectivity, the sat-

urating S-shaped rate-level response, the synchrony to low-frequency fine structure (replaced

by the synchronisation to the envelopes at higher frequencies), an enhancement of sounds

temporal contrast in the auditory-nerve fibres’ transiency, or an enhancement of its spectral

contrast by lateral suppression. To a certain extent, the presence of these principles can be

assessed almost independently to each other.

Table VI.2 summarises the different processing blocks used in different front-end models,

and important specificities of the model such as the species it was fitted with. In essence,

all peripheral models share the use of a bank of narrow bandpass filters, a non-linearity

and lowpass filtering; the low-pass filtering can be replaced by a threshold-passing paradigm

[Gutig et al., 2009]. Finer processing can include short-term and long-term adaptation by

taking into consideration the release of neurotransmitters [Sumner et al., 2003]. Subtle

differences can be hard to categorise: for example, the amplification role of Outer Hair Cells

is sometimes modelled explicitly [Zilany et al., 2009], and sometimes implicitly contained

within the nonlinearity of the basilar membrane filtering [Sumner et al., 2003].

In order to fix the range of frequencies used in this thesis, table VI.2 contains the range

of BFs used in all publications where they were defined, which is required when applying a

model to an ASR task. The range of interest we kept was 100 Hz to 8 kHz. The number of

different BFs varies greatly, from 34 in [Gutig et al., 2009] to 512 in [Li et al., 2000], while the

number of nerve fibres per BF is typically varied within a publication. Results in [Holmberg

et al., 2007] where the total number of nerve fibres is varied from 15 to 10000 suggests that

as few as 4% of the total number of ANFs would be sufficient to code speech information in

a rate-place fashion.

Auditory nerve fibres have a wide range of spontaneous activity in all mammals. This

spontaneous activity characterises the S-shaped rate-level function of the fibre, which in

turn characterises the range of sound levels for which the fibre encodes information. A

fibre’s dynamical range is the sound intensity interval between which a variation in sound

104

O
M

E
B

M
O

H
IH

C
A

d
a

A
N

B
F

s

R
ef

er
en

ce
T

A
B

B
l

R
G

L
S
A

L
A

L
C

L
S

S
G

S
R

S
p

m
in

m
ax

#
C

h

[L
yo

n
,

19
82

]
y

H
W

y
y

y
y

y
u

[G
h
it

za
,

19
86

]
y

y
y

y
?

20
0

32
00

85

[S
en

eff
,

19
88

]
y

H
W

y
y

y
y

?
13

0
64

00
40

[Y
an

g
et

al
.,

19
92

]
y

H
W

y
y

?
20

0
59

00
64

[L
i

et
al

.,
20

00
]

y
y

y
u

20
0

35
00

51
2

[Z
h
an

g
et

al
.,

20
01

]
y

y
y

y
y

y
H

C
at

u

[S
u
m

n
er

et
al

.,
20

03
]

y
y

y
y

y
y

L
oM

H
G

P
u

[H
ol

m
b

er
g

et
al

.,
20

07
]

y
y

y
y

y
y

L
oH

H
u

20
80

00
91

[G
u
ti

g
et

al
.,

20
09

]
y

L
og

y
?

y
13

0
54

00
34

[Z
il
an

y
et

al
.,

20
09

]
y

y
y

y
y

y
y

y
y

?
C

at
u

[B
ro

w
n

et
al

.,
20

10
]

y
y

y
y

y
y

L
o

C
at

10
0

45
00

30

T
a
b
.

V
I.

2
S
u
m

m
ar

y
of

au
d
it

or
y

fr
on

t-
en

d
s.

C
om

m
on

fu
n
ct

io
n
al

ro
le

s
m

ay
b

e
im

p
le

m
en

te
d

d
iff

er
en

tl
y

in
d
iff

er
en

t
m

o
d
el

s.
A

b
b
re

v
ia

ti
on

s:
O

M
E

O
u
te

r/
M

id
d
le

E
ar

,
B

M
B

as
il
ar

M
em

b
ra

n
e,

O
H

O
u
te

r
H

ai
r

C
el

l,
IH

C
In

n
er

H
ai

r
C

el
l,

A
d
a

A
d
ap

ta
ti

on
,

A
N

A
u
d
it

or
y

N
er

ve
,

B
F

s
B

es
t

fr
eq

u
en

ci
es

,
R

ef
R

ef
er

en
ce

,
T

T
ra

n
sf

er
F

u
n
ct

io
n
,

A
A

tt
en

u
at

io
n
,

B
B

an
d
p
as

s
F

il
te

rb
an

k
,

B
l

B
lo

ck
,

R
R

ec
ti

fi
ca

ti
on

,
G

G
ai

n
,

L
L

ow
p
as

s
F

il
te

ri
n
g,

S
A

/L
A

S
h
or

t-
T

er
m

/L
on

g-
T

er
m

A
d
ap

ta
ti

on
,

C
A

u
to

m
at

ic
G

ai
n

C
on

tr
ol

,
L

S
L

at
er

al
S
u
p
p
re

ss
io

n
,

S
G

S
p
ik

e
G

en
er

at
io

n
,

S
R

S
p

on
ta

n
eo

u
s

R
at

e,
S
p

S
p

ec
ie

s,
m

in
/m

ax
M

in
im

al
/M

ax
im

al
B

F
u
se

d
,

#
C

h
N

u
m

b
er

of
S
im

u
la

te
d

C
h
an

n
el

s
(u

n
if

or
m

ly
d
is

tr
ib

u
te

d
in

lo
g

sc
al

e)
,

y
Y

es
,

H
W

H
al

f-
W

av
e,

u
U

n
d
efi

n
ed

,
H

H
ig

h
,

M
M

ed
iu

m
,

L
o

L
ow

,
G

P
G

u
in

ea
-P

ig
,

H
u

H
u
m

an
.

A
n

em
p
ty

b
ox

m
ea

n
s

th
e

p
ro

p
er

ty
is

n
ot

p
ar

t
of

a
m

o
d
el

;
a

q
u
es

ti
on

m
ar

k
w

h
en

th
e

ch
ar

ac
te

ri
st

ic
s

co
u
ld

n
ot

b
e

cl
ea

rl
y

fo
u
n
d

105

Source Front-End Back-End Train/Test

Fig. VI.3 Processing chain of ASR systems: a source is recorded and sequentially processed
by two functional blocks, respectively called the front-end and modelled in the back-end,
before being trained and tested. The front-end block directly processes the source data,
typically a speech waveform. The back-end block may include additional processing. Train-
ing is achieved by propagating the errors to change the processing parameters (front-end or
back-end) and the models being built (back-end).

level induces a variation in average spiking activity. Fibres are classified as Low Spontaneous

Rate (LSR) when in the absence of stimulus their firing frequency is lower than 18 spikes

per second and display a Rate-Intensity function with a shallow slope at Best Frequency.

Medium Spontaneous Rate units (MSR) display a ‘sloping saturation’ type rate of growth at

BF, with a low spontaneous activity (lower than 18 spikes per second). High Spontaneous

Rate (HSR) units fire at a frequency higher than 18 spikes per second in the absence of any

stimulus and have a narrow dynamic range [Sumner et al., 2003; Winter and Palmer, 1991].

This ends the review of the auditory front-end blocks. The next section focuses on ASR

systems and their back-end block, before reviewing their application to neural data, the

front-ends being either the models presented in table VI.2 or experimental data.

VI.2 Automatic Speech Recognition

ASR is the automatised process of transcribing speech into text. Speech recognition is rarely

accomplished by attempting to classify words from the raw waveform. The waveform is

converted into an alternative representation which better represents the features of interest.

Thus the first stage of processing, the Front-end block from figure VI.3, can be thought of

as feature extraction.

ASR is a subfield of computational linguistics that is diverging into a subfield of Machine

Learning, as the expertise used in the field is being replaced by parameters learned from the

data itself. As in many scientific fields, Deep Learning has had a big impact on ASR systems.

Typically, the front-end of a modern ASR system would be a neural network, rather than

any fixed features (such as MFCCs, defined below in subsection VI.2.2), while the back-end

106

would still be a Hidden Markov Model (defined in subsection VI.2.3). By training with lots

of data, big technology companies (Apple, Google, Microsoft, ...) now offer real-time speech

recognition-based services such as Siri.

This data-driven learning is extremely powerful as major technology industries were re-

alising back in 2012 [Hinton et al., 2012]. However, when the amount of data is much more

limited in quantity, as in the case of a physiological experiment, using hand-crafted features

that extract useful information is still a valuable approach in order to understand the na-

ture of the information being processed. This tradeoff motivates the choice to test different

features and processing chains in the following chapters.

To give, later on, a fair comparison between speech-derived features and features cal-

culated from neural data, classical auditory features will be used, developed by researchers

over decades [Rabiner and Juang, 1993; Scharenborg, 2007]. The most important of these is

introduced below, as well as the motivation behind their construction. First, a subsection

defines the Hann and Hamming windows.

VI.2.1 Windows

In signal processing, a window function, abbreviated as window, are real-valued functions

that are zero-valued outside of some interval. Pointwise multiplication of another function f

by a window w provides a local view of f on the interval where w is non-zero. The Hann and

Hamming windows are commonly used to smooth down time series, by convolution. Their

definitions are very close: for a sample of length N , the coefficients for n in {0, . . . , N − 1}
are defined as

wHann(n) = 0.5− 0.5 cos

(
2πn

N − 1

)
and wHamming(n) = 0.54− 0.46 cos

(
2πn

N − 1

)
.

VI.2.2 Classical Features for ASR

For many years, auditory features were engineered by researchers, using their expertise in

ASR and their knowledge in phonetics or psychoacoustics. The most common feature for

speech recognition, the Mel Frequency Cepstral Coefficients (MFCCs) was introduced in

1980s [Davis and Mermelstein, 1980]. MFCCs have then been, for years, the industry stan-

dard speech feature used in the ASR community, and contain important processing steps

also present in other classical feature extraction methods. The different steps leading to ex-

tracting MFCC features are presented on the left column of figure VI.4 and briefly explained

here:

1. Pre-Emphasis : A first order high-pass filter is applied to the speech signal to improve

the signal to noise ratio;

107

Fig. VI.4 Comparison of major functional blocks of the three classical features used in
speech-related tasks: MFCC, RASTA-PLP and PNCC. Figure from [Stern, 2011].

108

2. Short-Time (ST–): Speech timescales vary enormously depending on the task at hand,

and the ASR community found that windows of 20 to 30 milliseconds contain the local

speech information, and this varies at a rate of around 100 Hz. Thus, the signal is

segmented into frames of about 25 ms, sliding the window by 10 ms steps (hence a

15 ms overlap between two consecutive frames). Each frame is then multiplied by

a Hamming window to reduce the impact on the spectrum of abrupt changes in the

signal, called spectral splatter;

3. Fourier Transform (–FT): The spectral information of each frame is obtained by a

Fourier transform;

4. Magnitude Squared : The magnitude is squared since the energy at different frequencies

is related to the squared values of the Fourier coefficients;

5. Triangular Frequency Integration: Frequency-domain filtering is performed by applying

a bandpass filter bank, their positions being equally spaced along the Mel-frequency, a

logarithmic scale copying the best frequency placements of IHC in humans, reflecting

similar effects in the human’s aural perception and downsampling in frequency;

6. Logarithmic Nonlinearity : To differentiate between weak energy values, a nonlinearity

is applied, mimicking Fechner’s psychophysical transfer function for intensity [Stern,

2011];

7. Discrete Cosine Transform (DCT): DCT is a Fourier-related transform that takes the

features back into the time domain, thus providing a lowpass Fourier series represen-

tation of the frequency-warped log spectrum. This transform is widely used in image

and audio processing as it tends to keep the most relevant features of speech;

8. Cepstral Mean Normalisation: Each channel is renormalised over time, to remove

channel effects such as constant room noise2.

Various arrangements of MFCCs have been subsequently made, mainly differing from the

initial one in the approximation of the nonlinear pitch perception in humans, the filter bank

design and the compression of the filter bank output. As examples, the processing chains

of RASTA-Perceptual Linear Predictive and the Power-Normalized Cepstral Coefficients

[Stern, 2011] are presented on figure VI.4. Other processing steps can be added to improve

2Assuming the recorded signal is a linear convolution of an input signal x[n] with a channel impulse
response h[n], the process of applying a logarithm to our Fourier representation, separates them into a sum:

y[n] = x[n] ∗ h[n] and log(Y [n]) = log(X[n]) + log(H[n]).

Assuming a stationary impulse response, H is constant and by subtracting the average signal one removes H:

log(Y [q])−mean(log(Y)) = log(X[q])−mean(log(X[q])).

109

Fig. VI.5 Optimal mapping between two distorted sinusoids having different sampling fre-
quencies, using Dynamic Time Warping, to show how DTW compensates for rate variations
by mapping many points from the faster (blue) curve to the same point slower (red) curve.

the recognition using different features. For example, on the right column of figure VI.4, the

‘Medium-Time Processing’ steps were added to reduce the effects of reverberation.

VI.2.3 Models for Automatic Speech Recognition

After calculating features, a statistical model is still needed for the phonemes: the Back-end

block of figure VI.3. At a short time-scale (around 10 ms), speech can be approximated as a

stationary stochastic process: the sound generated in this time frame is a stochastic instanti-

ation of a given structure, such as the vowel /a/. As such, speech can be approximated and

modelled as a piecewise stationary process, making Hidden Markov Models (HMM, defined id-01-07

in section VI.3) a strong candidate as a back-end modelling tool for speech.

Before HMMs become a standard, Dynamic Time Warping (DTW) was the best mod-

elling tool for ASR systems. Statistical features were compared to each other and dynam-

ically mapped so that differences in phoneme duration would be neglected. Based on the

comparison of speech sequences (time series), one would be ‘warped’ onto the other in an

optimal way, thus compensating for variations in speech rate between the two signals. DTW

optimally maps one signal to another signal, efficiently removing temporal differences such

as how long a vowel is spoken. Such a mapping is illustrated in figure VI.5, where the

two signals being mapped are distorted sinusoids having different sampling frequencies; the

optimal mapping is shown sample by sample using black lines.

VI.3 Hidden Markov Models

This section introduces the HMM technology, used in the next chapters, covering the math-

ematics of the Gaussian mixtures, the topology of the HMMs, the sub-word systems, a

definition of the accuracy for a continuous recognition task, the training protocol used in

the following chapters, and the way silences are dealt with using two models with different

topologies.

110

VI.3.1 Introduction to HMMs

In probabilistic terms, a HMM is a dynamic Bayesian network: being given a series of

observations and the symbols they encode, the goal is to train the network in order to

recognise new (unobserved during training) instances of similar observations. The model

built is a Markov process with unobserved (hidden) states that should be inferred.

First introduced and studied in the 60s and early 70s, the golden age of HMMs was in

the 80s, where HMMs were successfully applied in many domains such as speech, handwrit-

ing, gesture recognition and bioinformatics [Rabiner and Juang, 1993]. Their flexibility in

temporal pattern recognition made them the perfect candidate in all areas where researchers

could extract useful features.

The first main difficulty in speech recognition is that the mapping from symbols (words)

to sounds is not one-to-one: not only is there a huge variability in the various ways a

word or phoneme can be pronounced, but also because similar sounds can encode different

symbols. The second difficulty is that of the unknown word-boundaries, which differentiates

this problem from a classification task.

HTK is a widespread C++ software implementing HMMs. It specialises in speech recog-

nition, for which many additional tools were developed3. Following the HTK book [Young

et al., 2006], the mathematics behind a HMM in the case of isolated words (VI.3.2) are now

described. The complementary algorithm that allows for decoding of series of symbols will

be described next (VI.3.4). The rest of this chapter will be the application of HMMs to

neural data as an ASR back-end modelling tool. Although the use of HMMs is more general,

the focus here is on spoken words, to make the description less abstract4.

VI.3.2 Isolated Word Recognition with HMMs

Let’s assume that the sound waveform was encoded into a sequence of speech vectors or

observations O, typically into a sequence of vectors containing smoothed-spectral information

by windows of 10 milli-seconds, defined as O = {o1,o2, . . . ,oT} where ot is the speech vector

observed at time t. The isolated word recognition problem can then be expressed as finding

iopt = argmax
i
{P(wi|O)}, (VI.2)

where wi is the i-th vocabulary word and P a probability defined below. Using Bayes theorem,

P(wi|O) =
P(O|wi)P(wi)

P(O)
, (VI.3)

3HTK is not as easy to use as other softwares offering similar modelling capabilities [Gaida et al., 2014].
4Despite its relatively simple mathematical framework, HTK relies on various refinements to perform well,

including feature projection, improved covariance modelling, discriminative parameter estimation, adapta-
tion, normalisation, noise compensation and multi-pass system combination [Gales and Young, 2007].

111

and given the prior probabilities P(wi), the most probable word only depends on the likeli-

hood P(O|wi). Given the possibly huge dimensionality of the observation sequence O, the

direct estimation of the joint conditional probability P(o1, . . . |wi) is practically intractable.

We are thus lead to make the simplifying assumption that the underlying model (that pro-

duces the sounds) is a Markov model.

The problem is now much simpler as it reduces to estimating the Markov model pa-

rameters. In a speech recognition task, the Markov model is a finite state machine which

changes state at every time unit, and for each time t that a state j is entered, an observa-

tion ot is sampled from the probability distribution bj(ot). The transition from state i to

j is probabilistic and governed by the discrete probability aij > 0, with the property that∑
j aij = 1.

Since each time t is associated to an unknown state xt, the joint probability that the

sequence of observations O be generated by the model M (which is an HMM, thus defined

by the a’s and b’s parameters) moving through the state sequence X can be expressed as

the product of the transition and output probabilities

P(O, X|M) = ax1x2bx2(o1)ax2x3bx3(o2) . . . axtxt+1bxt+1(ot) (VI.4)

In practice, only the observation sequence O is known, the underlying state sequence X is

hidden, hence the name ‘Hidden Markov Model’. We can compute the joint likelihood by

summing over all possible state sequences X = x1, . . . , xT

P(O|M) =
∑
X

ax0x1

T∏
t=1

bxt(ot)axtxt+1 , (VI.5)

where x0 is constrained to be the model entry state, and xT+1 the model exit state. Both

are non-emitting in HTK (they are not associated with actual observations or models, see

below), but allow the construction of composite models that concatenate predefined HMMs.

Although direct calculation of equation VI.5 is not tractable, a simple recursive procedure

to evaluate it efficiently is implemented in HTK.

A final assumption is needed to relate the models and their associated symbols: given a

set of models Mi corresponding to words wi, let’s assume

P(O|wi) = P(O|Mi), (VI.6)

assuming that the parameters aij’s and bi’s are known. The training phase is now a matter

of parameter estimation (the aij and bj corresponding to each word model), and the recog-

nition phase reduces to computing P(O|Mi) for all i’s and selecting the model with maximal

probability.

As most continuous density HMM systems, HTK uses Gaussian Mixture Densities to

112

parameterise the densities bj. For the rest of this thesis, only one data stream is considered,

in order to simplify the models. The formula for expressing bj(ot) is then

bj(ot) =
Mx∑
m=1

cjmN (ot;µjm,Σjm), (VI.7)

where cjm is the weight of the m-th mixture component and N (·;µ,Σ) is a multivariate

Gaussian density with mean vector µ and covariance matrix Σ, that is

N (o;µ,Σ) =
1√

(2π)n|Σ|
e−

1
2

(o−µ)′Σ−1(o−µ), (VI.8)

with n being the dimensionality of o. The above explanations of the algorithms are only

rough; the interested reader is referred to the HTK book [Young et al., 2006] for all details.

HTK will initialise µj and Σj for all states j (using HTK’s internal function HInit),

then finds the maximum likelihood state sequence (by the Viterbi algorithm) and reas-

signs weighted means and variances to all states (Baum-Welch re-estimation) using weights

calculated efficiently by a Forward-Backward algorithm. This process is repeated until con-

vergence of the means, variances and transition parameters. At this point, the model can be

tested on an unseen dataset.

VI.3.3 States & Mixtures

Non-emitting states are states defined in a HMM that are not trained or used for recognition.

For engineering purposes, HTK’s models include non-emitting entry and exit states, used

to glue models together in continuous speech tasks, so that a HMM with 5 states actually

only contains 3 sets of parameters (called emitting states) that describe the data it relates

to, while the non-emitting first and the last states are only used by HTK to pass information

when finding the optimal sequence of HMMs.

A HMM is defined by a given topology, that is, a fixed number of states, each having a

fixed number of Gaussian mixtures that are iteratively trained on a dataset, and a transition

matrix with a chosen set of non-zeros entries. Mixtures are alternative representations of the

same state, so that the number of mixtures defines the number of ways a given state can be

modelled. The different states reflect the stages that describe what the HMM is encoding;

for example, if a 5 state-HMM was trained to recognise the sound /ABA/, the states 2 and 4

would probably (if correctly trained) encode the sound /A/ and state 3 would mostly contain

a parametric description of the sound /B/. If a HMM were built to recognise the longest

French word ‘anticonstitutionnellement’ (/Ã.ti.kÕs.ti.ty.sjO.nEl.mÃ/), it would certainly need

around 20 states, each describing a different part of the word that the HMM has to read,

from left to right. Except in special cases, for example to recognise laughter ‘ahahaha’, it is

113

natural to consider that speech models should be read entirely, from left to right, which we

describe as left-to-right without jump. To recognise a laughter, however, the amount of times

the sound ‘ah’ is repeated varies, and this can be defined by returning to a previous states:

the HMM recognising ‘aha’ can be changed to recognise ‘aha’, ‘ahaha’, ‘ahahaha’ and the

like by changing the topology of the HMM and authorising the states to be read back; see the

right graph of figure VI.8 for a visual explanation. All HMMs used are left-to-right without

jump (topology shown in figure VI.7), exception made for silence models (figure VI.8).

Note that the use of a 3-state HMM in HTK practically requires only 1 emitting state for

training and testing, because the initial and final states are non-emitting. Using 3 states is

then close to using a nearest-neighbour classifier, because the model is no longer defined by

a sequence of states, each mixture being a different template of the sound being modelled.

VI.3.4 Extension to Continuous Speech Recognition

A major difficulty in ASR systems is to handle the dynamical aspect of speech: the algorithm

doesn’t know when a word starts or ends. HTK uses the internal function HERest to perform

embedded training, where all models are updated simultaneously after a composite HMM

is trained on the whole utterance. Another tool (HVite) is used to find the optimal path

(or optionally multiple alternatives), together with making the word boundary decisions and

keeping a record of the words, using the Viterbi algorithm and the Token Passing algorithm

[Young et al., 2006].

With the option -a, HVite can use an utterance’s word-level transcript and a dictionary to

find the optimal phone-level transcript; this procedure is called forced alignment and depends

on the training the HMMs received at that point. For each training pass, a first pass step of

optimally identifying the phoneme transcripts given the current models is executed by forced

alignment with HVite: while this is probably of little use for a small dictionary, it may be

useful for a large-dictionary task by refining the labels and timing at each pass. The HMM

parameters are then updated using the isolated-word algorithm previously presented.

VI.3.5 Networks, Word & Sub-Word Systems

HTK provides the recognition tool called HVite which uses the Token Passing algorithm

to perform Viterbi-based speech recognition. HVite takes as input a network describing

the allowable word sequences, a dictionary defining how each word is pronounced and a set

of HMMs.

In chapters VIII and IX, a so-called word loop is used as grammar to allow any combina-

tion of words to be recognised. This simple network is sometimes called a trivial grammar.

These ‘words’ are either proper words found in the dictionaries used, or the list of phonemes

modelled with HMMs (leaving aside the silence models). These two types of recognition are

114

Word-Level Dictionary Phone-Level Dictionary

Tab. VI.6 Small dictionaries at the word (left) and phone (right) levels.

called word-level and phone-level recognition. For phone-level recognition, the very same

methodology applies, except that the dictionary used is trivial: each phoneme (playing the

rôle of a dictionary entry) is decomposed as itself, where real words are decomposed into the

sequence of phones they are made of, as shown in table VI.6.

After compilation from a word-level network, a dictionary and a set of HMMs, a word-

level recognition network in HTK ultimately consists of HMM states connected by transitions

to form paths having different log probabilities obtained by adding the log probabilities of the

different emitting states generating the corresponding observations and the different transi-

tions. These transitions are either within-HMM state transitions (defined by the transition

matrix) or word transitions using language model likelihoods (defined by the network). By

equiprobability of the words, the latter plays no rôle for trivial grammars.

The paths are efficiently found and compared using a Token Passing algorithm, whose

description is beyond the scope of this thesis. The path with maximal likelihood is then

selected by the algorithm as the recognised sequence of words.

VI.3.6 Accuracy For Continuous Speech Recognition

All results in the following chapters use the Accuracy metric of HTK. It should be noted that

‘Accuracy’ here has a different meaning to that in the chapter on Machine Learning. Con-

tinuous speech recognition is different because of its dynamical aspect: since the algorithm,

when recognising, ignores the number of words it should find, there are 3 types of errors:

• Deletion errors: a word or more is missing in the recognition;

• Substitution errors: a word is mistakenly recognised as another one, as in classification;

• Insertion errors: a word is added where there isn’t one.

HTK evaluates the number of errors - using HTK’s internal tool HResults - by comparing a

set of label files (output from a recognition tool, HVite in our case) with the corresponding

reference transcription files. The evaluation algorithm is a Dynamic Programming-based

string alignment procedure, using the standard US National Institute of Standards and

Technology (NIST) Figure Of Merit (FOM) metric for the analysis of word-spotting output.

115

The optimal string match is calculated by minimising a score between the two strings with

the following rules: identical labels match with score 0, a label insertion or deletion carries

a score of 7, and a substitution carries a score of 105.

The accuracy figure in HTK takes into account the insertion errors (which can be un-

derstood as false positives), while the ‘percentage correct’ does not. Typically, a result with

high percentage correct and very low accuracy would mean the algorithm recognised far

too many words, including the correct ones. Hence, after the first plot, only the accuracy

is considered as measure of performance. Formally, by defining H the number of correctly

recognised labels (Hits), N the total number of labels in the defining transcription files, I

the number of insertion errors, those two measures are defined by

%Correct =
H

N
× 100% and Accuracy =

H − I
N

× 100%. (VI.9)

The number of substitutions S denotes the remaining labels, incorrectly associated to a label.

VI.3.7 Training Protocol

In all chapters using HTK, phoneme-level HMMs are built. A so-called ‘flat start’ is used for

all phonemes using HTK’s internal function HCompV, thus giving all Gaussians a common

mean and variance. The HMM’s topology is 5 states left-to-right without jump, as repre-

sented in the figure VI.7. HMMs initially contain only one Gaussian mixture. Eight passes

of embedded training are performed with HERest, without silences in the transcripts (except

for an initial and a final one with SENT-START and SENT-END).

Our short-pause HMM is defined as a 3 states left-to-right HMM with a non-zero proba-

bility of jumping from state 1 to state 3 as shown in figure VI.86, its middle state being tied

to state 2 of the long silence HMM named sil. At this point of the training, short-pauses are

added to the end of each word to take care of any pauses introduced by the speaker. Then,

5 passes of retraining are performed with HERest. The number of mixtures for each HMM’s

1 2 3 4 51
0.17

0.19
0.32

0.83 0.81 0.68

Fig. VI.7 Graphical model representing a left-to-right jump-free Markov chain with 5 states.
Numbers are the non-zero probabilities of jumping between states.

5The substitution operation has to cost less than an insertion plus a deletion, otherwise the only thing
the score would measure is the difference in length of the two sentences, as no substitution would be scored.

6This type of model is called tee-model. It is adapted for short pauses, as it can be skipped in the
training phase if no feature vector corresponds to the HMM model trained so far — in this case, a short
silence.

116

emitting state is finally sequentially increased to 5, retraining with 6 passes of HERest every

time a mixture is added.

The optimal -p word insertion penalty, discussed next in VI.3.8, is chosen among two sets

of values tested on the development set: from -200 to 0 by increments of 20 for phone-level

recognition, -120 to 0 by increments of 40 for word-level recognition.

VI.3.8 Dealing with Silences

An unexpected source of degradation of accuracy using HTK models can be the amount of

silence between words in speech files. HMMs deal with the dynamical properties of speech

essentially using two sets of parameters:

Transition Matrix: The transition matrix A = (aij) that defines the probability of

being in a state i, to jump into state j in the next frame as ai,j. The topology of the

phonemes’ HMM is normally left-to-right, meaning that states can only increase, generally

without skipping any states. For example for the phoneme u, the transition matrix could

look like this after training:

A(u) =


0 1 0 0 0

0 0.83 0.17 0 0

0 0 0.81 0.19 0

0 0 0 0.68 0.32

0 0 0 0 0


which is given as a graphical model in figure VI.7. Silence models, on the other hand, are

treated differently. Two types of silences are trained: an HMM named sil for long silences

and an HMM called sp for shorter ones, with different topologies (i.e. different kinds of

1 2 30.34

0.66

0.03

0.97

1 2 3 4 51
0.038

0.032

0.05
0.02

0.04

0.93 0.95 0.94

Fig. VI.8 Graphical models representing short (‘sp’, left) and long (‘sil’, right) silence HMM.
Numbers are the non-zero probabilities of jumping between states.

117

transition matrices). For example:

A(sp) =

 0 0.34 0.66

0 0.97 0.03

0 0 0

 and A(sil) =


0 1 0 0 0

0 0.93 0.038 0.032 0

0 0 0.95 0.05 0

0 0.04 0 0.94 0.02

0 0 0 0 0

 ,

where sp can jump from state 1 to state 3, both being non-emitting, and sil can jump

from state 4 to state 2, which reads as the possibility to go through states 2, 3, 4 one more

time. Both are represented as graphical models in figure VI.8. These transition parameters

are trained like the other HMM parameters, including the HMMs sharing tied states. This

implies that recognising a long silence and a short one do not lead to the same likelihood,

which is what the algorithm calculates to recognise labels.

For sentences bearing unusually long silences between words (as might happen in chap-

ter VIII), this effect distorted the recognition in a surprising way: many words are omitted

in the testing phase. HTK will not recognise many words within those files, leading to a

statistically high number of deletion errors in files having long silences. By checking the

likelihood values in those files, it was possible to confirm that the amount of silence was the

only source of problem.

Word Insertion Penalty

A word insertion penalty parameter can be fitted when using the function HVite for recog-

nition with the option -p. This parameter is typically fitted on a development set that is

separate from the training set. This parameter, however, is unique and gives a weight to fit

the number of words to recognise. Fitting this parameter to the files containing long silences

would solve the deletion rate bias for them but would increase dramatically the number of

insertion errors in the files containing less silence between words. For this reason, develop-

ment sets with normal silence durations were used, using the unusual deletion errors rate in

the others as an additional measure of the quality of the HMMs: not only do they need to

be well trained, they would also need to be recognised with very high likelihood to balance

the overwhelming weight of sil in the files containing long silences.

VI.4 Speech Recognition on Neural Data

This section reviews the application of speech recognition technologies to neural data and

explains the choice of some parameters fixed in the next chapters. The type of neural data

found in the literature is first presented, with a focus on spike train data and the number

of simulated units we ought to use. A simple model is then presented, as a first effort to

118

evaluate the number of animals to use for such a task, reflecting the various constraints of

an electrophysiological experiment. This section ends with a discussion on the complexity

of the speech datasets used in our literature review.

VI.4.1 Data Type

Since experimental evidence is at the heart of scientific progress but obviously requires

the appropriate data to test hypotheses on, technology is a limiting factor for advances

in Neuroscience. For example, relevant data for hypotheses-driven Auditory Neuroscience

requires both high spatial and high temporal resolutions to deal with the fast processing of

sounds our brain experiences.

Models are meant to reproduce specific features of the phenomenon under study, which

is normally estimated by the predictive power of models. This predictive power always has

limitations: as long as a phenomenon is not perfectly understood, the model won’t be able

to give good predictions when its input is modified. In the case of auditory modelling, since

central auditory processing is imperfectly understood [Elhilali et al., 2004], there is still a

need for experimental data before auditory models can reproduce it. We thus quickly review

the ASR capabilities of different brain technologies.

With current technology, electrophysiologic activity is best suited for ASR applications

thanks to its speed. On the other hand, modalities based on metabolic processes such as

functional Magnetic Resonance Imaging (fMRI) are too slow to capture the fast changes

associated with speech processing [Herff and Schultz, 2016]. Electrodes can either measure

ensemble of neurons and their synchrony (EEG, MEG, ECoG, defined below) or the localised

activity of one or a few neurons (microarrays) up to our spike sorting capability. Each of

these techniques offers a trade-off to the experimenter:

• Electroencephalograms (EEG) have a low signal-to-noise ratio, and capture many arte-

facts, mainly from head movement, making them highly impractical for ASR;

• Magnetoencephalograms (MEG) also suffer from artefact contamination, and the re-

quirement of a large chamber for the MEG device makes it unsuited for future pros-

thetics devices;

• Microarrays offer unparalleled spatial and temporal resolutions, but are invasive, hence

limited to academic investigation. Furthermore, their very limited spatial covering

probably leads to missing crucial information processing, while possibly damaging parts

of the area under investigation;

• Electrocorticography (ECoG) is a semi-invasive technology that provides high spatial

and high temporal resolution, able to cover a wide brain array related to speech pro-

duction or perception. The ECoG grid being on the brain surface, the recorded data

119

is unfiltered by the skin and skull and unaffected by glossokinetic artefacts (related to

tongue movements).

As a result, ECoG is currently the most adapted technology to provide human data to an

ASR back-end, allowing the application of both classification (ASR, [Leonard et al., 2015])

and regression (sound reconstruction, [Pasley et al., 2012]) techniques to recover neural

information as speech. The results of our review are presented in table VI.9, where the focus

is put on the different ways data is processed.

Microarrays on the other hand are the best technology to extract electrophysiological

activity within deep areas of the brain, making it the technology most suited for learning

about neural processing in the auditory pathway. As such, this thesis aims at developing an

Automatic Speech Recognition back-end framework able to receive neural spike trains as its

front-end. This framework and its results are presented in the following chapters.

VI.4.2 Spike Trains

Most spike train generation mechanisms found in the literature are based on two steps:

first generating a cochleogram, which is to say, a two-dimensional representation of the

information containing frequency-dependent fibres. In the second step, spike trains are

generated from the cochleogram, thus reducing the information output by each simulated

fibre. This approach is the most popular and follows the tradition of biophysically realistic

models where each simulated fibre contains a sparse random and partial representation of

the waveform, in a similar fashion to that presented in appendix 12.2. An example of how

spike trains can be generated differently is given in [Gutig et al., 2009], where spikes are

equivalent to the activation of threshold detectors for frequency band energy (separating

threshold onset or offset into two groups of neurons).

A few of the models tested are based on spike trains that are incomplete representations of

a cochleogram or not simply used to reconstruct cochleograms. For example, [Schafer and Jin,

2014] recognise spike trains using a template based approach that recognises patterns between

fibres: by associating a letter (or other symbol, but the letter case is more intuitive) to each

fibre, a sequence of letters is obtained by chronologically keeping track of the activation of

the fibres. A string metric is then used to find the closest template in the training set, in

a way very close to how HTK matches a real sentence with a recognised sentence, enabling

the calculation of the accuracy as presented in subsection VI.3.6.

The publications based on actual spike trains have a ‘y’ in the SG column of table VI.9.

To avoid the reconstruction of the signal from the spike trains, most publications use

cochleograms as output, rather than spike trains. The cochleogram-like reconstruction from

spike train data — reversing the spike train generation — is called a neurogram. By default,

in the next chapters, neurograms are obtained by convolving a Hann window with spike

trains.

120

VI.4.3 Simulated Best Frequencies

Within a simulation, the BF is the only parameter that is varied between Auditory Nerve

Fibres. Arrays of BFs uniformly spread in logarithmic scale between 100 and 8 kHz are used

in upcoming chapters, following parameters used the literature and shown in table VI.2. The

number of arrays used in the next chapters differ for practical reasons:

• In chapter VII, an array of 114 simulated units is used, to naturally compare results

on simulated data with the results obtained on the available experimental data;

• In chapters VIII and IX, an array of 128 units is used. This number is dictated by the

current maximal number of arrays available for a physiological experiment (2 multi-

electrodes containing 64 channels each).

This ideal division of BFs is unlikely to happen with experimental data but is common when

testing biophysical models. Conversely, electrodes might record and mix the responses of

multiple neurons, thus carrying more information than that of a single ANF.

VI.4.4 Dataset Duration

An acute guinea-pig experiment depends on the state of the anaesthetised animal and the

precise position of the electrodes. This observation leads to crucial considerations regarding

the design of an electrophysiology experiment amenable to a speech recognition framework.

This subsection introduces a model (equation VI.11) that aggregates all the constrains sur-

rounding a physiology experiment. Said model is too incomplete yet to be used to define

or refine an experiment as it stands but represents a first effort in constructing a formal

framework to assess the feasibility of an experiment, lacking parameters that academic pol-

icymakers ought to be able to assess.

The experiment itself lasts for a duration D that can go beyond 20 hours, and depends

on factors that are, to a large extent, beyond control: the animal’s health, its reaction to the

anaesthetics, the brain damages caused by the electrodes, the precision of the experimental

procedure. As such, this duration can be considered random and independent from the other

variables introduced here. For modelling purposes, this random variable is given a uniform

distribution D ∼ U([300, 1200]) minutes. However, it is unreasonable to assume that the

neurons the electrodes record from have not changed during this time. The electrode is likely

to drift and record from different neurons that might appear, disappear or be damaged by

the electrode. In the auditory nerve, a stable recording is often lost after a few minutes

only. In the brain, this stability period tends to be longer, between 20 minutes and 4 hours.7

It is possible to play the sounds dataset a certain number of times N ∈ N∗ to the animal,

but the longer the duration of the dataset d is, the more likely it is that the electrodes will

7Given numbers are estimates from supervisor’s experience.

121

record from different populations of neurons over time. This constrains the duration d to be

reasonably small. Note that d should include two components, mixed together to simplify

the discussion: the duration of the dataset (deterministic), and the time required to get the

electrode in place in between recordings (stochastic).

The sounds dataset’s duration d is fixed for a defined protocol (dataset and brain areas

to record from), constant through the experiments performed on n animals. For each ex-

periment i ∈ {1, . . . , n}, this deterministic number and the number of repeats Ni ∈ N∗ are

related to the stochastic total recording duration Di of experiment i by the formula

d ∗Ni ≤ Di,

which, after summation and expectation, reads

d ∗ nE[N1] ≤ nE[D1].

The stochasticity of neural data allows one to assume that, by accumulating the responses to

the same dataset, the accuracy will increase. This means that, realistically, the recognition

accuracy Acc8 is an increasing function of the expected total number of repeats n ∗ E[N1]

and, since E[N1] is an unknown deterministic number, Acc is an increasing function of n,

assuming Acc entails a robust speech recognition framework.

Using simulated data, one can assess the speech recognition accuracy that follows on from

a given amount of data: for any k ∈ N∗, Acc(k) is computable. Thus by fixing a threshold

of acceptance for the recognition accuracy, arbitrarily let’s say α = 80%, it is possible to

reverse-engineer the amount of data required to build a speech recogniser that could be

amenable to the accuracy α, thus implicitly defining the number of animals required for the

experiment to be deemed ‘successful’:

nE[N1] ≥ Acc−1(α) = min{k ∈ N ∗ / Acc(k) ≥ α}.

The value of an experiment could be modelled as

V (n, d,E[N1]) = αd dE[N1]− αnn, (VI.10)

where the parameters αd and αn are defined by how important each aspect of the experiment

is to the Home Office. Hence, since the Home Office regulation9 requires that the data

should be obtained in such a way as to maximise the expected value of using an animal

(total recording time E[d
∑

iNi] = d nE[N1]) and minimise the number of animals used (n),

8This function is unknown, but could be assessed using former similar experiments, then updated as an
experiment is being performed.

9https://www.gov.uk/guidance/research-and-testing-using-animals

122

https://www.gov.uk/guidance/research-and-testing-using-animals

an expected optimal successful experiment requires n animals with a dataset that lasts d

minutes repeated E[N1] times, where

(n, d,E[N1]) = argmaxn,d,E[N1](αd dE[N1]− αnn)

subject to

n ∗ E[N1] ≥ Acc−1(α)

d ≤ 60 min

d ∗ E[N1] ≤ E[D1]

D1 ∼ U([300, 1200]) min.

(VI.11)

Other important parameters are missing from this simple model, such as the pain or

distress inflicted to the subjects10 or the statistical significance of the results.

VI.4.5 Recognition Task: Continuity, Complexity, Noise

This chapter ends with a section discussing the last important parameters that vary in the

literature and are included in table VI.9: the continuity of speech segments, the complexity

of the speech datasets (ranging from a single phoneme to everyday speech with multiple

speakers) and the use of background noise.

Two types of recognition appear in the literature of biophysical auditory models: recognis-

ing one isolated sound at a time, or a sequence of them. The former is merely a classification

task and confusion matrices give much information regarding the performance of the sys-

tem. The latter, however, is harder to engineer and to assess, since a sequence can contain

an arbitrary number of sounds to recognise, in theory at least. For this reason, the scientific

approaches found in the literature either engineer a classifier adapted to the task at hand or

tend to use HMMs to handle the dynamical aspects. This distinction is given in table VI.9

in column C which contains either C (for continuous speech, so that any number of symbols

a priori can be recognised), I (for isolated words/phonemes), or a digit that gives the fixed

number of symbols each sentence contains. About half of these entries use isolated sounds.

The publications listed in this table use datasets whose complexity matches the scientific

questions studied within. Digit and phoneme recognition tasks are the most frequent, though

a few other types appear such as letter recognition or a limited amount of words. This

information is provided in the ‘Task’ column. Since consonants (C) and vowels (V) have

important differences (their duration being the most noticeable), many phoneme recognition

tasks are actually a grouping of phonemes such as ‘CV’, ‘CVC’ or ‘VCV’ (standing for

Consonant-Vowel, Consonant-Vowel-Consonant and Vowel-Consonant-Vowel, respectively).

The complexity of training is also related to the size of the training set. Relevant infor-

mation was added in the ‘Training’ column of table VI.9, including the number of speakers

10Current technologies permit no objective measure of pain, fear or distress, nor of the research’s impact.

123

and their gender, or the number of times a dataset is played to the model or subject (animal

or human). The name of the dataset is given in the ‘Dataset’ column whenever possible.

To compare the robustness of the models with that of humans, noise is often added to

mask the speech waveforms with a varying signal-to-noise ratio. Different types of noise can

be tested, in which case this information is given in the column ‘Noise’, with either the name

of noise types or their number.

124

R
e
f

F
ro

n
t-

E
n
d

SG
B

a
c
k
-E

n
d

S
o
ft

w
a
re

L
C

M
S

D
D

a
ta

b
a
se

T
a
sk

N
o
is

e
T

ra
in

in
g

T
h
is

th
e
si

s
[S

u
m

n
e
r
e
t
a
l.
,

2
0
0
3
]

y
h
()

D
C

T
d
d

H
M

M
H

T
K

P
C

V
II

,
V

II
I,

IX
[A

la
m

e
t
a
l.
,

2
0
1
7
]

[Z
il
a
n
y

e
t
a
l.
,

2
0
0
9
]

R
a
d
o
n
+

S
V

M
L

ib
S
V

M
P

C
I

T
IM

IT
1
8

p
h
o
n
e
s

S
S
N

,
W

h
it

e
3
0
0

u
tt

e
ra

n
c
e
s

p
e
r

a
c
c
e
n
t

g
ro

u
p

[T
a
v
a
n
a
e
i

a
n
d

M
a
id

a
,

2
0
1
6
]

S
N

N
w

it
h

Iz
h
ik

e
v
it

c
h

n
e
u
ro

n
s,

2
0
0
0

a
d
a
p
ti

v
e

w
e
ig

h
ts

y
S
V

M
W

I
A

u
ro

ra
D

ig
it

s
y

5
0
0

sa
m

p
le

s,
(b

a
la

n
c
e
d

M
/
F

)
[S

c
h
a
e
d
le

r
a
n
d

K
o
ll
m

e
ie

r,
2
0
1
5
]

S
e
p
a
ra

te
d

G
a
b

o
r

fi
lt

e
rs

H
M

M
H

T
K

W
5

1
4

I
J
e
p
se

n
2
0
0
8

5
0

w
o
rd

s
IR

C
A

5

[L
e
o
n
a
rd

e
t
a
l.
,

2
0
1
5
]

E
C

o
G

,
4

su
b

je
c
ts

,
2
5
6
-e

le
c
tr

o
d
e

a
rr

a
y
,

le
ft

h
e
m

is
p
h
e
re

L
in

e
a
r

R
e
g
re

ss
io

n
+

k
-m

e
a
n
s

M
a
tl

a
b

(k
-m

e
a
n
s)

P
I

T
IM

IT
2
6

C
V

C

[S
c
h
a
fe

r
a
n
d

J
in

,
2
0
1
4
]

S
N

N
w

it
h

Iz
h
ik

e
v
ic

h
n
e
u
ro

n
s,

3
5
2
0
0

w
e
ig

h
ts

y
V

P
m

e
tr

ic
+

S
V

M
W

I
D

?
A

u
ro

ra
2

D
ig

it
s

4
ty

p
e
s

[M
u
g
le

r
e
t
a
l.
,

2
0
1
4
]

E
C

o
G

,
4

su
b

je
c
ts

,
fr

o
n
ta

l
a
n
d

te
m

p
o
ra

l
a
re

a
s,

sp
e
e
c
h

p
ro

d
u
c
ti

o
n

L
D

A
P

I
?

H
a
n
d
m

a
d
e

C
V

C
3
0
0

(r
e
a
d
)

[C
o
a
th

e
t
a
l.
,

2
0
1
4
]

N
e
u
ro

m
o
rp

h
ic

S
N

N
y

L
P

C
M

a
tl

a
b

(E
ll
is

2
0
0
5
)

W
C

D
H

a
n
d
m

a
d
e

F
M

,
7

m
o
n
o
sy

ll
a
b

e
s

W
h
it

e
S
e
lf

,
3

sw
e
e
p
s

[B
o
u
c
h
a
rd

a
n
d

C
h
a
n
g
,

2
0
1
4
]

E
C

o
G

,
2

su
b

je
c
ts

,
2
5
6

c
h
a
n
n
e
ls

,
si

n
g
le

-t
ri

a
l,

sp
e
e
c
h

p
ro

d
u
c
ti

o
n
,

le
ft

h
e
m

is
p
h
e
re

G
a
m

m
a

b
a
n
d
s

+
P

C
A

+
L

P
C

V
C

H
a
n
d
m

a
d
e

C
V

(1
9
C

/
3
V

)
1
5

to
1
0
0

[Y
il
d
iz

e
t
a
l.
,

2
0
1
3
]

[L
y
o
n
,

1
9
8
2
]

B
a
y
e
s+

D
y
n
a
m

ic
a
l

m
o
d
e
l

+
D

y
n
a
m

ic
E

M
M

a
tl

a
b

(A
u
d
it

o
ry

)
W

I
D

T
i-

4
6

D
ig

it
s

W
h
it

e
1

(1
0

re
p

e
ti

ti
o
n
s)

[C
h
o
i,

2
0
1
3
]

[C
h
o
i,

2
0
1
3
]

D
C

T
+

H
M

M
W

I
3

1
4

I
A

u
ro

ra
2

D
ig

it
s

1
0

ty
p

e
s

5
5
F

/
5
5
M

(8
4
4
0

tr
a
in

in
g

u
tt

e
ra

n
c
e
s,

4
0
0
4

te
st

in
g
)

[P
a
sl

e
y

e
t
a
l.
,

2
0
1
2
]

E
C

o
G

,
1
5

su
b

je
c
ts

,
le

ft
o
r

ri
g
h
t

fr
o
n
to

-p
a
ri

e
ta

l
re

g
io

n
s,

h
ig

h
-g

a
m

m
a

b
a
n
d

R
e
c
o
n
st

ru
c
ti

o
n

b
y

c
o
m

p
a
ri

n
g

S
R

T
F

w
it

h
sp

e
c
tr

o
g
ra

m
s

M
a
tl

a
b

(S
T

R
F

L
a
b
)

W
I

I
T

IM
IT

L
is

te
n
in

g
,

d
e
te

c
ti

n
g

o
r

re
p

e
a
ti

n
g

[C
la

rk
e
t
a
l.
,

2
0
1
2
]

[B
ro

w
n

e
t
a
l.
,

2
0
1
0
]

h
(2

5
)

D
C

T
d
d

H
M

M
H

T
K

W
3

7
1
6

I
T

ID
IG

IT
S

9
D

ig
it

s
P

in
k
,

b
a
b
b
le

8
4
4
0

u
tt

e
ra

n
c
e
s,

h
a
lf

/
h
a
lf

[B
ru

m
b

e
rg

e
t

a
l.
,

2
0
1
1
]

E
C

o
G

,
1

su
b

je
c
t,

in
te

n
d
e
d

sp
e
e
c
h

p
ro

d
u
c
ti

o
n

L
D

A
,

S
V

M
,

F
D

A
R

(M
A

S
S
,

m
d
a
,

e
1
0
7
1
)

C
I

H
a
n
d
m

a
d
e

C
V

(3
9

C
)

1
0

re
p

e
ti

ti
o
n
s

o
f

e
a
c
h

so
u
n
d

[B
ro

w
n

e
t
a
l.
,

2
0
1
0
]

[B
ro

w
n

e
t
a
l.
,

2
0
1
0
]

h
(2

5
)

D
C

T
d
d

H
M

M
H

T
K

W
C

7
1
6

A
u
ro

ra
2

1
0

D
ig

it
s

P
in

k
8
4
4
0

u
tt

e
ra

n
c
e
s

tr
a
in

in
g

[G
u
ti

g
e
t
a
l.
,

2
0
0
9
]

[G
u
ti

g
e
t
a
l.
,

2
0
0
9
]

y
[G

u
ti

g
e
t
a
l.
,

2
0
0
9
]

+
H

M
M

H
T

K
W

I
8

5
T

ID
IG

IT
S
,

T
I-

4
6

7
D

ig
it

s
W

h
it

e
1
0

re
p

e
ti

ti
o
n
s

tr
a
in

in
g
,

1
6

te
st

in
g

[F
ly

n
n

a
n
d

J
o
n
e
s,

2
0
0
8
]

[L
i
e
t
a
l.
,

2
0
0
0
]

+
sp

e
e
c
h

e
n
h
a
n
c
e
m

e
n
t

D
C

T
d
d

H
M

M
H

T
K

W
C

3
1
6

I
A

u
ro

ra
2

D
ig

it
s

8
ty

p
e
s

8
4
4
0

u
tt

e
ra

n
c
e
s

to
tr

a
in

,
2
0
0

d
v
p
t,

1
0
0
1

te
st

(b
a
la

n
c
e
d

F
/
M

)
[M

e
sg

a
ra

n
i
e
t

a
l.
,

2
0
0
8
]

4
fe

rr
e
ts

,
A

1
c
o
rt

e
x
,

a
w

a
k
e

y
P

C
A

+
S
V

M
P

C
I

T
IM

IT
P

h
o
n
e
m

e
s

9
0
s,

1
5
m

/
1
5
F

,
re

p
e
a
t

5
ti

m
e
s

o
f

sp
e
e
c
h

[J
e
o
n

a
n
d

J
u
a
n
g
,

2
0
0
7
]

[Y
a
n
g

e
t
a
l.
,

1
9
9
2
]+

[W
a
n
g

a
n
d

S
h
a
m

m
a
,

1
9
9
5
]

h
(2

5
)

D
C

T
d
d

g
H

M
M

H
T

K
P

C
4
0

2
?

I
T

IM
IT

(w
it

h
o
u
t

S
A

)
4
8

P
h
o
n
e
m

e
s

W
h
it

e

[H
o
lm

b
e
rg

e
t

a
l.
,

2
0
0
7
]

[H
o
lm

b
e
rg

e
t
a
l.
,

2
0
0
7
]

y
h
(2

5
)

D
C

T
g

d
d

H
M

M
,

IP
IH

D
C

T
g

d
d

H
M

M
H

T
K

W
I

6
4

I
IS

O
L

E
T

L
e
tt

e
rs

8
ty

p
e
s,

R
S
G

-1
0

7
5
F

/
7
5
M

[G
h
it

z
a
,

1
9
8
6
]

[G
h
it

z
a
,

1
9
8
6
]

D
T

W
R

a
b
in

e
r’

s
W

I
D

H
a
n
d
m

a
d
e

A
lp

h
a
b

e
t,

D
ig

it
s,

C
o
n
tr

o
ls

W
h
it

e
2
F

/
2
M

T
a
b
.

V
I.

9
R

ev
ie

w
of

th
e

ap
p
li
ca

ti
on

of
A

S
R

te
ch

n
ol

og
ie

s
to

n
eu

ra
l

d
at

a,
m

o
d
el

le
d

or
ex

p
er

im
en

ta
l.

A
b
b
re

v
ia

ti
on

s:
SG

:
S
p
ik

e
ge

n
er

at
io

n
,
L:

M
o
d
el

li
n
g

le
ve

l
(W

fu
ll

w
or

d
,

P
p
h
on

em
e,

V
vo

w
el

,
C

co
n
so

n
n
an

t)
,
C

:
S
p

ee
ch

co
n
ti

n
u
it

y
(C

on
ti

n
u
ou

s,
Is

ol
at

ed
,

or
h
av

in
g

a
fi
x
ed

n
u
m

b
er

of
u
tt

er
an

ce
s)

,
M

:
N

u
m

b
er

of
G

au
ss

ia
n

m
ix

tu
re

s
(n

on
si

le
n
ce

m
o
d
el

s)
,
S:

N
u
m

b
er

of
em

it
ti

n
g

st
at

es
in

H
M

M
s,

D
:

D
ep

en
d
en

cy
on

th
e

sp
ea

ke
r

(D
ep

en
d
en

t
or

In
d
ep

en
d
en

t)
.

F
ro

n
t-

en
d
s

in
cl

u
d
e

m
o
d
el

s
p
re

se
n
te

d
in

ta
b
le

V
I.

2,
E

C
oG

d
at

a,
sp

ik
e

tr
ai

n
s

ob
ta

in
ed

b
y

S
p
ik

in
g

N
eu

ra
l

N
et

w
or

k
s

or
N

eu
ro

m
or

p
h
ic

en
gi

n
ee

ri
n
g.

B
ac

k
en

d
ch

ai
n
s

u
se

th
e

fo
ll
ow

in
g

co
m

p
on

en
ts

:
h
(2

5)
(H

an
n

w
in

d
ow

w
it

h
a

25
m

s
d
u
ra

ti
on

),
D

C
T

D
is

cr
et

e
C

os
in

e
T

ra
n
sf

or
m

,
IP

IH
is

a
h
is

to
gr

am
fe

at
u
re

si
m

il
ar

to
G

h
it

za
’s

E
IH

,
d
d

fo
r

th
e

d
el

ta
an

d
d
el

ta
-d

el
ta

co
effi

ci
en

ts
,

g
fo

r
a

ga
u
ss

ia
n
is

at
io

n
of

al
l

fe
at

u
re

s
(c

h
an

ge
th

ei
r

m
ea

n
to

0
an

d
va

ri
an

ce
to

1)
,

L
P

C
a

L
in

ea
r

P
re

d
ic

ti
ve

C
o
d
in

g,
V

P
is

th
e

V
ic

to
r

an
d

P
u
rp

u
ra

m
et

ri
c.

In
fo

rm
at

io
n

re
ga

rd
in

g
th

e
ta

sk
s,

tr
ai

n
in

g,
d
at

ab
as

e
an

d
ty

p
es

of
n
oi

se
(W

h
it

e,
P

in
k
,

S
p

ee
ch

-S
h
ap

ed
N

oi
se

or
ot

h
er

s)
ar

e
gi

ve
n

in
th

e
la

st
co

lu
m

n
s.

125

VII.
Neural ASR on a Small-Sized Vocabulary

In this chapter, HMMs are trained on spike trains previously recorded as responses to

a simple class of sounds collected by Mark Steadman [Steadman, 2015] or simulated

with a cochlear model. A first simple set of processing blocks are then tested on

this sparse data, as shown in figure VII.1.

Source Front-End Back-End Train/Test

Waveform

Spike Trains

Cochleogram

Neurogram
Conv

RI

PCA

NCC

Avg

HMM WER

Fig. VII.1 Graph of data processing of this chapter. Spike trains come from simulation
or experiment are processed using different methods, including a dimensionality reduction.
Conv: Smoothing by convolution with a Hann function, RI: rate by inversion of interspike
intervals and smoothing, NCC: Nearest Cluster Center, Avg: Averaging spike trains together.

126

VII.1 Introduction . 128

VII.2 Methodology . 128

VII.2.1 SteadaCa Dataset . 128

VII.2.1.1 Dataset Description . 128

VII.2.1.2 Validation Protocol . 128

VII.2.2 Front-End . 129

VII.2.2.1 Experimental Data . 129

VII.2.2.2 Simulated Data . 129

VII.2.3 Back-End . 129

VII.2.3.1 Single Spike Train Processing 130

VII.2.3.2 Dimensionality Reduction 131

VII.2.4 HTK Parameters . 132

VII.3 Results . 132

VII.3.1 Number of Neurons . 133

VII.3.2 Optimal Temporal Windows 134

VII.4 Conclusion . 137

127

VII.1 Introduction

This chapter tests on a simple task the computational architecture developed to perform

speech recognition on neural data. This task is the classification of the spike train responses

to short isolated sounds, either recorded from guinea-pigs Inferior Colliculus [Steadman,

2015] or simulated by a guinea-pig ear model [Sumner et al., 2003]. Six processing methods

are then evaluated and compared (two spike train smoothing times three dimensionality

reduction methods). The research goal is to evaluate whether simulated AN data gives

results comparable to experimental data, and whether this computational framework can

cope with the task of recognising simple isolated sounds. With this in mind, the research

questions are:

• Compare the simulated and experimental spike train data using simple processing,

varying the number of spike trains used;

• Compare the generalisation ability of the models when testing the HMMs on a speaker

removed from the training set and see whether the optimal time window of integration

changes in this case.

Ideally, experimental IC data would have been compared with simulated IC data (and ex-

perimental ANF data with simulated ANF data). However, the comparison of physiological

IC data and simulated AN data is motivated by the availability of guinea-pig physiological

IC data as response to speech and the absence of satisfying IC models.

VII.2 Methodology

VII.2.1 SteadaCa Dataset

VII.2.1.1 Dataset Description

The spike trains used are responses to spoken sets of Vowel-Consonant-Vowel (VCV) such

as /aba/ or /ada/, recorded over a period of 700 ms each. The 16 medial consonants used

were /b, d, f, g, k, l, m, n, p, s, S, t, D, v, y/ and /z/, commensurate with the stimulus set

used in [Shannon et al., 1995] and these were always in an /a/-consonant-/a/ context, where

/a/ is the open back unrounded vowel as in the word ‘palm’. Each VCV is said by 3 English

native male speakers, constituting a waveforms dataset of 48 spoken VCV. This dataset is

referred to as the SteadaCa.

VII.2.1.2 Validation Protocol

HMMs are trained on neural responses to the SteadaCa dataset, using HTK version 3.4

[Young et al., 2006], to classify the medial consonants produced by the speaker. The evalua-

128

tion is done by separating the data into training and testing sets. The way this split is done

has two variants: either the responses of 8 repetitions of the same sound are used as training

and the other 2 as test, or all instances from 2 speakers are used to train and responses to

the third speaker are used as test.

VII.2.2 Front-End

VII.2.2.1 Experimental Data

The spike trains are recorded from the Inferior Colliculus of guinea-pigs as responses to

the SteadaCa dataset, played 10 times per recording. The full set of responses contains

54720 spike trains, from 3 male speakers, 16 VCVs, 114 different neurons, with 10 sweeps

per stimulus and neuron. See [Steadman, 2015] for additional information regarding the

experimental methodology.

VII.2.2.2 Simulated Data

Simulated spike trains were obtained using the cochlear model [Sumner et al., 2003] de-

scribed in section VI.1.2 and appendix 12.2. The probability of firing is first obtained using

a biophysical model with a sampling rate of 100 kHz. Spike trains are then generated as an

inhomogeneous Poisson processes with an absolute refractory period of 3 ms. All computa-

tional details are given in appendix 12.

To proceed to a comparison of simulated and experimental data, and analyse the be-

haviour of HMMs on the SteadaCa dataset, important parameters of the cochlear model

they are set in this chapter to the following values:

• BFs are uniformly spread in logarithmic scale between 100 Hz and 8 kHz;

• The calcium threshold [Ca2+]thr = 1 ∗ 10−15, unit free;

• The maximal calcium conductance gmax
Ca = 7 ∗ 10−9 S.

They are discussed in chapter VIII.

VII.2.3 Back-End

A comparison of rate or rate+temporal decoding was performed in [Holmberg et al., 2007] on

simulated data, showing that a rate code carries all the speech information at normal sound

levels (around 70 dB SPL) and in the absence of background noise. Hence, a rate coding for

the spike trains is assumed. The front-end block outputs pictorial (2-dimensional, one for

time, the other related to BFs) representations that contain sequences of feature vectors in

time obtained by processing single spike trains and then reducing the dimensionality. Those

two stages correspond to the two layers in the first ‘back-end’ block of figure VII.1. The

following paragraphs detail this processing.

129

VII.2.3.1 Single Spike Train Processing

Following Steadman [Steadman, 2015], we create feature vectors from pictorial representa-

tions of neural activity, called neurograms, where each column corresponds to a time bin

of 10 ms, each row corresponds to a group of processed single neuron spike trains or the

grouping of spike trains, and the real value at each pixel is related to the spiking activity

around that time, as exemplified in figure VII.2. Columns in these neurograms correspond

to the overall activity within a time bin and will be the feature vectors for our HMMs.

There are many ways to regroup information from different spike trains into feature

vectors. Since we work with HTK we aim at obtaining meaningful feature vectors for HMMs,

which is in itself not a well-defined problem but is understood enough to be able to decide of

important aspects of the processing. Previous testing guided the evaluation of the necessary

trade-offs, such as:

• The more spike trains that are used to create a feature vector, the smaller the number

of training elements in our datasets;

• The more features we add to improve the result, the more we tend to overfit; manually

crafting features after testing on the same dataset is a form of overfitting;

• HMMs with too many features tend to behave poorly; feature vectors of size less than

50 are still acceptable, but hundreds are not;

• Since the HMMs have (an assumed) diagonal covariance matrix to simplify the training

and testing, using correlated features may be detrimental;

• Extracting features after aggregating spike trains deteriorates temporal coding and

improve rate coding.

In this chapter, only two single spike train processing are used:

• Conv: Convolution of spike trains by a Hann window of varying length. The most

typical duration is 25 ms as seen in table VI.9, but testing other values provided

valuable insight. This sliding window is applied every 10 ms;

• RI: estimates the spiking rate by inverting the ISI between two consecutive spikes1.

The sequence is then smoothed down and down-sampled (from 100 kHz to 0.1 kHz)

by a sliding Hann window with varying duration.

This time scale of 10 ms is common in ASR systems, as it achieves a balance between

an appropriate time resolution for speech recognition and speed of the computations. With

HMMs, this matter is related to the number of emitting states and the transition matrix.

1For a homogeneous Poisson spike train, this statistic is, on average, the rate. See details in appendix 12.7.

130

VII.2.3.2 Dimensionality Reduction

A final processing step of dimensionality reduction is used to reduce the complexity of the

models, and increase the robustness of the features. For any number of neurons used in this

chapter (3, 10, 15, 30, 60, or 114), the reduction of dimensionality was fixed so that the

dimension would increase with the number of neurons (3, 5, 7, 10, 15 or 20, respectively).

The different ways of regrouping features used are:

(A)

0 200 400 600 800

Time (ms)

3

2

1

C
ha

nn
el

 #

(B)

0 200 400 600 800

Time (ms)

8

6

4

2

N
eu

ro
n

#
(C)

200 400 600 800

Time (ms)

2

4

6

8

(D)

200 400 600 800

Time (ms)

1

2

3

F
ea

tu
re

 #

(E)

200 400 600 800

Time (ms)

1

2

3

F
ea

tu
re

 #

200 400 600 800

Time (ms)

1

2

3

F
ea

tu
re

 #

0

10

20

30

40

50

60

70

Fig. VII.2 Example of neurograms generation: (A) Shapes of spiking activity used to
generate spike trains, renormalised for display (B) Raster plot of 9 simulated spike trains (3
per channel) (C) Neurogram (pictorial representation of size 9x800) as used in [Steadman,
2015] to calculate euclidean distances (D) Neurogram (pictorial representation of size 3x80)
more typical in our calculations: spike trains are convolved with a renormalised Hann window
of 40 ms to give a rate (number of spikes per second per spike train); the features are then
averaged (mixing neurons 1, 2, 3 into feature 1, neurons 4, 5, 6 into feature 2, neurons 7, 8,
9 into feature 3). This processing is equivalent to applying ‘Conv’ followed by ‘Avg’ with a
dimension reduction of 3 (E) Similar neurogram, with processing ‘RI’ followed by ‘Avg’.

131

• Avg: Average some smoothed spike trains together. Spike trains are not ordered

beforehand, so we expect to lose some useful information by mixing responses corre-

sponding to different characteristic frequencies. For this reason, we do not expect this

method to bring satisfying results; it is still tested to provide a baseline for dimension-

ality reduction methods. For simulated data, neurons are sorted by increasing BF;

• PCA: Run a Principal Component Analysis (II.7.1) on the neurograms. The PCA PC
is trained on the full neurograms training set. Reading the matrices’ size gives:

N × PC = Ñ

70× 114 114× 20 70× 20

for N a neurogram and its projection Ñ , when using 114 neurons;

• NCC: To improve on our naive averaging, this approach creates clusters of relatively

similar spike trains, and averages across neurons regrouped within a common cluster.

A clustering algorithm (k-means) decides which neurons are grouped together, giving

the algorithm the number of clusters we want as the number of features we wish to

train HMMs with - which depends on the number of neurons used. Smoothed spike

trains from neurons belonging to the same cluster will then be averaged together to

reduce the number of variables. As for the PCA processing, the clusters are found

using the whole training set.

With each processing, we are interested in the parameters and datasets allowing high recog-

nition accuracy.

VII.2.4 HTK Parameters

In the following, unless stated otherwise, we use for each HMM 5 states (3 emitting) with

2 Gaussian mixtures per state. This number of states is not the one advised by the HTK

book [Young et al., 2006], where the number of recommended states per HMM is one plus 2

per #phonemes, which would give 7 states for VCV HMMs. By keeping 3 emitting states,

we hope to train a more speaker-independent recogniser, as adding states might overtrain

the /A/ sounds to specific spectral properties of a speaker’s voice rather than to the more

general attributes of /A/ sounds.

This choice proved to work well enough, as it was possible to obtain a score of 100%

accuracy with simulated data, and almost perfect score with experimental data.

VII.3 Results

Our goal is to find a good balance between the processing applied to spike trains, the data

aggregation and the amount of data required to obtain high classification performance.

132

VII.3.1 Number of Neurons

Neurons in the auditory pathway encode different pieces of information about the incoming

sound, at any given moment. Thus, aggregating spike trains together improves the represen-

tation of the sound. Since we don’t know initially which neurons encode which information,

we test our decoding scheme using a varying number of neurons, and using the methods

previously discussed for spike train processing and dimensionality reduction.

Figure VII.3 summarises our results, on both experimental and simulated spike trains.

The x-axis gives the number of neurons tested (3, 10, 15, 30, 60, 114 neurons, respectively

reduced to 3, 5, 7, 10, 15 and 20 features) and each curve represents a different spike train

processing (marker type) and dimensionality reduction method (colour).

The full dataset is made of 114 spike trains. The simulated spike trains are randomly

generated as Poisson processes with refractory periods, from firing probabilities generated

by the model. Each training set was made of 192 neurograms (4 repeats * 16 VCVs * 3

speakers), and each test set of the remaining 48 ones. All results presented are obtained

though 5-fold cross-validation.

The experimental data on which the left plot of figure VII.3 are based were not given

any specific order prior to training and testing. From this dataset, all available data is used

(114 neurons). Curves from the right plot are based on simulated cochlear data. High sound

levels tended to saturate some auditory fibres, worsening the results, so only the results of

0 20 40 60 80 100 120

Neurons

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Experimental

0 20 40 60 80 100 120

Neurons

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Experimental

0 20 40 60 80 100 120

Neurons

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Simulated

0 20 40 60 80 100 120

Neurons

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Experimental

RI, R, L, PCA
RI, R, L, DCT
RI, R, L, NCC
R, L, PCA
R, L, DCT

Fig. VII.3 Classification results on IC data (left) and simulated cochlear data at 70 dB
(right). Two spike train processing are used: convolving with a Hann window of 40 ms and
applying a logarithm (‘R, L’, dots) or rate inversion (RI, dashed line) followed by a local
average (R, 40 ms) and logarithm (L). Three dimensionality reductions are used: Averaging
a k-means cluster (NCC, green), train a PCA on the full training set (blue), using a DCT
(red). The number of features for 3, 10, 15, 30, 60 and 114 neurons is respectively reduced to
3, 5, 7, 10, 15 and 20. Missing values resulted from errors in HTK. Two Gaussian mixtures
and 3 emitting states were used by each letter’s HMM.

133

sounds played at 70 dB SPL are presented. This improved the accuracy systematically, and

allowed us to reach 96.25% of accuracy with simulated data.

Using the simulated data, the best results using 60 neurons were almost as good as when

using 114, while they continue to improve for the experimental data. In both cases, the

results go above 80% accuracy. As we work towards building a speech recogniser on a larger

dictionary, more processing or parameters will be tested.

VII.3.2 Optimal Temporal Windows

One would expect that longer temporal integration would be required for an optimal recog-

nition on the response from speakers not included in the training set, since the features

shouldn’t be as precise in time on an unseen pattern. To test this hypothesis, we vary the

length of the Hann window used in each of the six processing (with or without ISI inversion,

and three dimensionality reduction) between 10 ms and 480 ms; since signals last for 700

ms, the longest Hann windows essentially encode the rate. Results are shown in figure VII.3.

We compare the optimal Hann duration when some speaker is excluded from the training set

(blue, red and black curves), or when responses from all speakers are used both for training

and testing (green curves).

As seen in figure VII.4, training and testing on all speakers allows for a much higher

accuracy than testing on unseen speakers. On average, attributing a null value to missing

values, and training on all 3 speakers leads to an accuracy of 77.71%, against 44.60% when

training on two and testing on the third (47.01%, 45.48% and 41.30% when testing on speaker

number 1, 2 and 3 respectively) on the experimental data, and on the simulated data, 74.19%

versus 31.21% (36.09%, 25.09%, 32.46%).

The optimal Hann window is also strongly influenced by this separation of the speakers.

On average in the experimental data, the mean optimal Hann window is 290 ms when

training on the 3 speakers and 85.4 ms when training on 2 speakers (83.7, 87.7 and 84.9 ms

when testing on speaker number 1, 2 and 3 respectively), keeping all values (to calculate the

mean) when more than one Hann duration gives the highest accuracy for a given processing.

These values are specified by the crosses on the x-axis in figure VII.4. For the simulated

data, it is not as meaningful to average the optimal Hann windows when training with the

3 speakers (231 ms), since all processing allow us to reach a plateau at 100%; except for

R-L-NCC that is close. The mean optimal window when separating speakers is 184 ms

(218.7, 123.2 and 209.7 ms). This shift of an optimal time window (from 85.4 ms on the

experimental data to 184 ms for the simulated data) goes with a reduction in accuracy. A

possible explanation is that, as features provide relatively less speech information, a longer

time window of integration is required to achieve maximal robustness.

Comparing accuracies might not be enough, and the systematic comparison of confusion

matrices from simulated or experimental data may reveal patterns in the errors made. This,

134

however, does not seem to be the case: when summing all confusion matrices corresponding to

a single speaker (1, 2 or 3) and a single type of data (experimental or simulated), we obtain

six mean confusion matrices; note that only when both experimental data and simulated

data provided a confusion matrix (rather than an HTK error) were the matrices used in

this averaging. Let us now subtract the 3 mean confusion matrices obtained with simulated

data from the respective 3 mean confusion matrices obtained with experimental data. This

provides us with 3 square matrices with entries between 100 and -100, shown in figure VII.5.

Any systematic difference in classification on experimental and simulated data should be a

common pattern of these three matrices. The strongest claim these matrices suggest is that

‘AFA’ is robustly better recognised on experimental data. To verify there was no important

pattern, table VII.6 shows for each of the 6 mean confusion matrices described above, the

most frequent error for each of the 16 consonants. As expected, no pattern (couple of most

likely error on simulated or experimental data) is the same for all 3 speakers.

The fact that, using simulated ANF data and appropriate processing, HMMs with 2

Gaussian mixtures per HMM can so easily get 100% of accuracy suggests that the task in

this case is too simple for a complex and well-developed technology such as Hidden Markov

10 -2 10 -1

Hann duration (s)

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Experimental

1
2
3
1 2 3

10 -2 10 -1

Hann duration (s)

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Simulated

Fig. VII.4 Accuracy (y-axis) in our ASR task on experimental IC data (left) or simulated
cochlear data (right), as a function of the Hann window duration (x-axis), when training
and testing on all speakers or splitting them (training on two of them, testing on the third).
Each colour defines a training and test set: the blue (1), red (2) and black (3) curves are
obtained by training on 2 speakers and testing on the third one. The 10 repeats of each VCV
are included. The green curves show the result of training on 8 repeats from the 3 speakers
and testing on the 2 other repeats from all speakers. All 16 VCV sounds are used. For each
colour, the 6 curves show the result of the 6 back-end processing presented in VII.3. Each
curve’s maximal values are highlighted by a circle. The mean optimal Hann window length
is shown for each set of curves on the x-axis by a cross. The vertical cyan line shows the
x = 0.04 s value, Hann duration used for the results shown in figure VII.3.

135

Models. Since the firing rate output by this nerve fibres model was fitted to guinea-pig

data and the processing used in this chapter focuses on rate code, we would expect that the

differences observed on experimental and simulated data are mostly due to the different places

it comes from or aim to reproduce: Inferior Colliculus and Auditory Nerve, respectively. Let’s

also note that the fact that all useful BFs are present in the simulated AN data by design but

may not be present in the experimental IC data plays, a priori, in favour of having higher

results on the AN data.

A more complex task is required to test the recognition capability of such a system. We

do so in the next chapter, moving to a digit recognition task.

1

B D F G K L M N P S SH T TH V Y Z

Recognised as

B

D

F

G

K

L

M

N

P

S

SH

T

TH

V

Y

Z

R
ea

l l
ab

el

2

B D F G K L M N P S SH T TH V Y Z

Recognised as

B

D

F

G

K

L

M

N

P

S

SH

T

TH

V

Y

Z

R
ea

l l
ab

el

3

B D F G K L M N P S SH T TH V Y Z

Recognised as

B

D

F

G

K

L

M

N

P

S

SH

T

TH

V

Y

Z

R
ea

l l
ab

el

-60

-40

-20

0

20

40

60

Fig. VII.5 For each speaker (1, 2 and 3), the difference of the mean confusion matrices
obtained with experimental and with simulated data is shown. For clarity, only the medial
consonant is given in the labels. See full description in the text.

136

Speaker 1 Speaker 2 Speaker 3
Class exp sim exp sim exp sim

B TH 19.0 V 23.8 TH 35.4 V 32.2 F 6.0 V 11.6
D T 37.0 T 24.3 V 18.9 T 19.8 B 48.5 B 46.0
F TH 11.6 V 57.9 V 8.8 Z 73.9 TH 22.2 T 27.0
G N 20.1 K 20.7 D 22.2 Y 18.4 B 32.3 B 37.7
K P 38.9 T 17.3 D 22.2 G 24.9 P 84.4 B 13.7
L F 27.7 N 35.8 V 10.8 Y 27.0 M 46.6 Y 39.7
M L 24.7 N 25.7 L 35.0 Y 60.0 B 35.2 N 20.7
N TH 11.4 Y 20.5 G 23.4 Y 71.5 M 17.0 M 29.8
P K 23.3 T 22.8 K 54.9 T 53.0 K 11.8 B 20.8
S SH 2.7 L 3.5 Z 9.7 Z 67.3 Z 17.1 Z 9.6

SH S 0.1 Y 2.4 S 0.4 Y 4.6 Z 5.5
T S 17.2 K 13.3 D 31.8 V 32.4 D 36.8 P 33.6

TH V 14.4 T 19.1 F 48.8 Z 58.9 B 90.0 B 66.4
V D 19.4 T 25.9 F 26.9 Z 56.5 B 86.6 B 31.8
Y L 6.2 N 28.9 K 22.7 M 12.6 N 38.8 N 24.1
Z S 87.0 S 50.1 T 19.9 Y 8.9 S 5.6 S 10.8

Tab. VII.6 Table showing the most common misclassification for each consonant, speaker
and type of data (experimental or simulated). For each consonant (row), speaker (bi-column)
and type of data (column), the red letter shows the most frequent error among the classifi-
cations used in figure VII.4, and the number next to it is the percentage of guesses this error
represents in a row of the mean confusion matrix used. A set named by a speaker designates
the set where this speaker was removed from the training set and used as test set. In case a
class is always correctly classified in the confusions matrices kept for this table, no red letter
and no percentage are given.

VII.4 Conclusion

This chapter tested a speech recognition framework using guinea-pig Inferior Colliculus re-

sponses to isolated VCV waveforms, using simple processing as a testbed. These results were

compared with the results obtained similarly with simulated auditory nerve data.

The differences in accuracy when testing the HMM models on a speaker’s responses left

out from the training set hints at the integration of useful features for speech recognition

in the IC that are not present in the auditory nerve. This motivates the further use of

guinea-pigs as an animal model for speech processing research in humans.

The results obtained with simulated data allowed a perfect score, using a wide range of

time-scale integration for different processing, showing that this dataset is too simple to test

the recognition power of techniques with simulated data. To test further the abilities of the

recognition system built, the next chapter studies the responses to continuous speech using

a classical recognition task: digits.

137

VIII.
Neural ASR on a Medium-Sized Vocabulary

In this chapter, HMMs are used to build models for a digit recognition task in

continuous speech to assess the suitability of this task for a physiology experiment.

This represents an increase in complexity — more speakers, more phonemes, and

continuous speech — since the VCV dataset was too simple to test the limits of a

speech recogniser on neural data. In so doing, aspects of Auditory Nerve coding at

different sound levels is investigated. A set of parameters given in red in the front-

end block of figure VIII.1 is extensively studied, while the back-end’s parameters

are set.

Source Front-End Back-End Train/Test

Waveform

Spike Trains

Cochleogram

#

gmax
Ca

[Ca]thr

Neurogram

Conv

Lu

Rate

Log

δ

δδ

Avg

DCT

HMM WER

Fig. VIII.1 Graph of this chapter’s data processing. In the front-end block, the parameters
in red are the ones studied: sound level, maximal calcium conductance, calcium threshold
for neurotransimitter release, and number of auditory nerve fibres per best frequency. The
back-end block is fixed and explained in the chapter: dimensionality reduction nodes in light
blue, processing in grey, data augmentation (speed and acceleration) in pink.

138

VIII.1 Introduction . 140

VIII.2 Methodology . 140

VIII.2.1 sCUAVE Dataset & Validation Protocol 140

VIII.2.1.1 Word-Level & Phone-Level 141

VIII.2.2 Front-End . 142

VIII.2.2.1 Front-End Processing . 142

VIII.2.2.2 Sound Level & Neuronal Spontaneous Activity 142

VIII.2.3 Back-End . 147

VIII.2.3.1 Data Processing Chain . 147

VIII.3 Results . 148

VIII.3.1 Effect of Conductance on ASR 148

VIII.3.2 Effect of Calcium Thresholding on ASR 151

VIII.3.3 Number of Fibres . 151

VIII.4 Conclusion . 154

139

VIII.1 Introduction

In this chapter, HMMs are used to build models for a digit recognition task in continuous

speech to assess the suitability of this task for a physiology experiment. This represents an

increase in complexity — more speakers, more phonemes, and continuous speech — since

the previous VCV SteadaCa dataset was too simple to test the limits of a speech recogniser

on neural data.

The model’s parameters might be a bottleneck for speech information transmission through

the ANF. As such, the approach taken is to investigate whether the current dataset is suit-

able for an electrophysiological experiment, exploring what the model’s parameters that

allow good recognition accuracies are, and what these results teach us on the neural coding

of speech in the ANF at different sound levels.

To compensate for the increase in complexity, the number of spike trains may need to

be increased to extract more robust features. Contrary to physiological data, the number

of spike trains is easily changed when simulating the data with a computational model. By

pushing this number to the limit, the averaging of an infinity of spike trains would allow

the recovery of the firing distribution probability used to generate the spike trains. Hence,

results from a varying number of spike trains can be compared with results obtained similarly

on cochleograms, being then a proxy for an infinity of (refractory period free) spike trains.

VIII.2 Methodology

This section presents the methodology used, and contrasts it with that of the previous

chapter, regarding the dataset, the front-end and the back-end, before testing this setup on

a continuous digit recognition task on simulated neural data.

VIII.2.1 sCUAVE Dataset & Validation Protocol

The CUAVE database [Patterson et al., 2002] is an audio-visual speaker-independent corpus

of over 7,000 digit utterances. It offers numerous advantages: it is free, contains both audio

and video with labels, has different speed of dictions, includes male and female speakers,

and has both connected and isolated digits — read in a continuous stream or separately,

respectively, as discussed in subsection VI.4.5.

Following the constraints detailed in section VI.4.4, only a subset of the CUAVE dataset

is used on a continuous digit recognition task. See table VIII.3 for statistics of this subset,

named sCUAVE. All initial files were split into smaller ones after locating silences, in order

to provide shorter waveforms for the cochlear model that obviate RAM memory limitations.

The sCUAVE dataset was separated into training, development and testing sets. While

140

a cross-validation protocol gives more statistically significant results, the additional compu-

tation time was crucial for the vast amount of calculations presented below.

Due to the silence issue presented in subsection VI.3.8, most files containing long silences

were removed from the test and development sCUAVE dataset; some were left there, since

this would still allow the comparison of different data processing in the front-end.

VIII.2.1.1 Word-Level & Phone-Level

Digit recognition tasks are normally evaluated on the word-level accuracy, using the principle

presented in section VI.3.5 to infer a sequence of words using a dictionary and phonemes’

statistical models. However, to compare results with other speech recognition results, a

phoneme-level accuracy fits better to this thesis. To satisfy these requirements, both accu-

racies are given in all results. Using word-level HMMs is common when working on isolated

sounds and a small dictionary. However, since this approach does not scale up well with the

dictionary and is not in the spirit of this thesis, phoneme-level HMMs are built rather than

word-level HMMs, for each result. The dictionary used is presented in table VIII.2.

On top of the explanations provided in subsection VI.3.5, here is an example of the

word-level output for a continuous digit task. In figure VIII.4, an example of HTK’s output

is given, where the number of hits H, substitutions S and total samples N is given at the

sentence level1 ‘SENT’ (full transcript of a file, N=25 meaning that the test set contains 25

files) and the word level ‘WORD’ which also contains the number of deletions and insertions.

The confusion matrices include a column for the number of deletions of the real labels, and

a row of insertions of recognised labels. A transcript is also provided in VIII.5 to illustrate

EIGHT ey t
FIVE f ay v
FOUR f aa
FOUR f aa r
NINE n ay n
ONE w ah n
SEVEN s eh v n
SIX s ih k s
THREE th r iy
TWO t uw
ZERO z ia r ow

Tab. VIII.2 Dictionary used: each of the 20 phonemes has a corresponding HMM model,
plus two for silences (explained in VI.3.8).

1The sentence level does not offer any interest in this thesis and as such was not discussed earlier.
However, it can be useful for industrial standards, as a way to assess how close a speech recognition application
is to being ready for delivery.

141

Training Testing Development Total
Males 10 6 2 10
Females 6 3 2 6
Digits 546 260 66 872
Files 50 25 6 81
Duration (s) 513 252 64 829 0 10 20 30

Time (s)

0

10

20

S

am
pl

es

Tab. VIII.3 Statistics on the sCUAVE dataset. Samples from common speakers are spread
in all sets. On the right, a histogram of the files’ durations, with an average of about 10
digits per file.

the different types of errors: the real transcript (line starting with ‘LAB’) is aligned with the

recognised one (starting with ‘REC’) and the three types of error appear: deletion, insertion

and substitution.

VIII.2.2 Front-End

VIII.2.2.1 Front-End Processing

The data used for classification takes two forms: cochleograms or spike trains generated from

a cochleogram. To be able to test both data types the same way, spike trains are processed in

the front-end block to become a neurogram, which should be amenable to the same accuracy

as with cochleograms, using enough fibres.

The simulated ANFs used are 128 units whose BFs are logarithmically spread between

100 Hz and 8 kHz, as discussed in subsection VI.4.3. To compare the results using fibres with

different spontaneous activity, different values for the maximal conductance in the model are

also tested; this is discussed in detail in the next subsection.

VIII.2.2.2 Sound Level & Neuronal Spontaneous Activity

As suggested in chapter VII, sound level has a major impact on recognition accuracy when

using a cochlear model. This effect is well-known [Holmberg et al., 2007; Young and Sachs,

1979] but not entirely understood, as it relates to the precise way speech is encoded at

different sound levels. A simple way to present this is by looking at the rate/intensity (RI)

function of the AN fibres.

LAB: SEVEN ONE TWO EIGHT THREE FIVE SIX ZERO FIVE NINE

REC: SEVEN TWO EIGHT THREE FOUR SIX FOUR NINE

Tab. VIII.5 Transcript for the digit recognition task: the real labels are on top and the
aligned recognised labels below.

142

------------------- Overall Word-Level Results --------------------

SENT: %Correct=28.00 [H=7, S=18, N=25]

WORD: %Corr=80.77, Acc=73.85 [H=210, D=33, S=17, I=18, N=260]

------------------------ Confusion Matrix -------------------------

E F F N O S S T T Z

I I O I N E I H W E

G V U N E V X R O R

H E R E E E O

T N E Del

EIGH 23 0 0 0 0 1 0 0 1 0 1

FIVE 0 18 1 1 0 0 0 0 0 0 4

FOUR 0 0 22 0 0 0 0 0 0 0 4

NINE 0 0 0 18 5 0 0 0 0 0 4

ONE 0 0 0 0 19 1 0 0 0 0 6

SEVE 0 0 0 0 0 23 0 0 0 0 3

SIX 0 0 0 0 0 1 23 0 0 0 2

THRE 0 0 0 0 0 1 0 21 0 0 4

TWO 0 0 0 0 0 0 1 0 23 1 2

ZERO 0 0 1 1 0 0 0 0 1 20 3

Ins 2 0 1 11 2 2 0 0 0 0

------------------ Overall Phone-Level Results --------------------

SENT: %Correct=0.00 [H=0, S=25, N=25]

WORD: %Corr=58.15, Acc=42.75 [H=453, D=217, S=109, I=120, N=779]

------------------------ Confusion Matrix -------------------------

a a a e e f i i i k n o r s t t u v w z

a h y h y a h y w h w

Del

aa 20 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 3

ah 0 6 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 3 0 0 14

ay 0 0 28 0 0 0 0 0 1 0 1 0 0 1 2 0 0 0 3 1 14

eh 0 0 0 20 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 3

ey 0 0 0 0 12 1 0 0 1 0 1 0 0 0 1 0 0 0 0 1 9

f 0 0 0 0 0 42 0 0 0 0 0 1 0 0 0 1 0 0 1 0 5

ia 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 8

ih 0 0 0 1 0 0 0 10 0 0 0 0 0 2 0 0 0 0 0 0 13

iy 0 0 0 0 0 0 0 0 19 1 0 0 0 0 0 0 1 0 0 0 5

k 0 0 0 0 0 1 0 0 0 21 0 0 0 0 0 0 0 0 0 0 4

n 2 3 0 1 1 0 0 0 2 0 49 0 0 0 0 1 1 3 3 1 39

ow 2 0 0 0 0 0 0 0 0 0 7 3 0 1 0 0 1 0 0 1 11

r 0 0 0 0 0 1 0 0 0 1 0 0 23 0 0 0 0 0 0 0 27

s 0 0 0 0 0 0 0 1 0 0 0 0 0 65 0 0 1 1 0 1 9

t 0 0 0 0 0 0 2 0 1 1 1 0 0 0 26 2 0 1 0 6 13

th 0 0 0 0 1 1 0 1 0 0 1 0 0 1 0 14 0 0 0 2 5

uw 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 17 0 0 1 7

v 0 0 0 0 0 0 0 0 0 1 5 0 0 0 0 0 0 34 2 0 8

w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 0 8

z 0 1 0 0 0 0 0 0 0 1 1 0 0 2 0 0 1 0 0 8 12

Ins 1 1 15 0 9 0 3 3 4 0 56 1 3 5 4 1 2 1 4 7

Fig. VIII.4 Typical outputs of HTK on sCUAVE. The only values used in this chapter are
the accuracies — 73.85 and 42.75 here. See full description in the body of text.

143

BF=100Hz

20 40 60 80 100

Sound level (dB)

0

100

200

300

R
at

e
(#

sp
ik

es
/s

) 10e-9
9e-9
8e-9
7e-9
6e-9
5e-9
4e-9
3e-9
2e-9
1e-9

BF=158Hz

20 40 60 80 100

Sound level (dB)

0

100

200

300

R
at

e
(#

sp
ik

es
/s

) 10e-9
9e-9
8e-9
7e-9
6e-9
5e-9
4e-9
3e-9
2e-9
1e-9

BF=248Hz

20 40 60 80 100

Sound level (dB)

0

100

200

300

R
at

e
(#

sp
ik

es
/s

) 10e-9
9e-9
8e-9
7e-9
6e-9
5e-9
4e-9
3e-9
2e-9
1e-9

20 40 60 80 100

Sound level (dB)

0

100

200

300

R
at

e
(#

sp
ik

es
/s

) 10e-9
9e-9
8e-9
7e-9
6e-9
5e-9
4e-9
3e-9
2e-9
1e-9

BF=391Hz

20 40 60 80 100

Sound level (dB)

0

100

200

300

R
at

e
(#

sp
ik

es
/s

) 10e-9
9e-9
8e-9
7e-9
6e-9
5e-9
4e-9
3e-9
2e-9
1e-9

BF=617Hz

20 40 60 80 100

Sound level (dB)

0

100

200

300
R

at
e

(#
sp

ik
es

/s
) 10e-9

9e-9
8e-9
7e-9
6e-9
5e-9
4e-9
3e-9
2e-9
1e-9

BF=972Hz

20 40 60 80 100

Sound level (dB)

0

100

200

300

R
at

e
(#

sp
ik

es
/s

) 10e-9
9e-9
8e-9
7e-9
6e-9
5e-9
4e-9
3e-9
2e-9
1e-9

20 40 60 80 100

Sound level (dB)

0

100

200

300

R
at

e
(#

sp
ik

es
/s

) 10e-9
9e-9
8e-9
7e-9
6e-9
5e-9
4e-9
3e-9
2e-9
1e-9

BF=1533Hz

20 40 60 80 100

Sound level (dB)

0

100

200

300

R
at

e
(#

sp
ik

es
/s

) 10e-9
9e-9
8e-9
7e-9
6e-9
5e-9
4e-9
3e-9
2e-9
1e-9

BF=2415Hz

20 40 60 80 100

Sound level (dB)

0

100

200

300

R
at

e
(#

sp
ik

es
/s

) 10e-9
9e-9
8e-9
7e-9
6e-9
5e-9
4e-9
3e-9
2e-9
1e-9

BF=6000Hz

20 40 60 80 100

Sound level (dB)

0

100

200

300

R
at

e
(#

sp
ik

es
/s

) 10e-9
9e-9
8e-9
7e-9
6e-9
5e-9
4e-9
3e-9
2e-9
1e-920 40 60 80 100

Sound level (dB)

0

100

200

300

R
at

e
(#

sp
ik

es
/s

) 10e-9
9e-9
8e-9
7e-9
6e-9
5e-9
4e-9
3e-9
2e-9
1e-9

Fig. VIII.6 Intensity/Rate curves for AN fibres having different Best Frequencies (BF,
given above each plot) and maximal conductance gmax

Ca (values given in legend, in nS). Each
fiber is stimulated by a pure tone at its BF. The rate was obtained as the average of 20
simulated spike trains in stationary phase, the sound level varying from 20 to 100 dB SPL.

The spontaneous activity and dynamic range characterise an AN fibre. Three types are

found in the guinea-pig: a ‘saturating’ fibre having high SR, low threshold, steep RI function

and a small 20 dB dynamic range; ‘sloping saturation’ fibre which has less spontaneous

activity, higher threshold, and does not saturate completely, but shows a sloping-saturation;

and ‘straight’ fibres which have little or no SR, high thresholds and no steep part in their RI

function, just a long slope [Sumner et al., 2003]. Those behaviours are shown in figure VIII.6

by varying the maximal calcium conduction gmax
Ca in the model.

At high sound levels, the trough between formants disappear from the mean activity,

as shown in figure VIII.7. In fact, as the sound level increases, many fibres attain their

saturating point, then fire as much as they can. This leads to a loss of speech information

in the rate, but precise timing replaces the rate coding: onsets, offsets and phase-locking to

sounds leads to an increased synchrony of firing.

The classical discussion in Neuroscience of rate coding versus temporal coding is beau-

144

tifully represented by nerve fibres in this trade-off. Octopus neurons, for example, used as

event (or synchrony) detector in [Holmberg, 2005], are innervated by enough fibres to give a

precise signature of the onsets, offsets and phases.

Since we cannot expect the rate to provide all speech information at all sound levels,

the cochlear model is tested using different sound levels, ranging from 50 dB to 90 dB.

Furthermore, since the overall average level for a normal vocal effort in a quiet environment

being 62.35 dB SPL one meter away from a speaker [ANSI, 1997], without removing pauses

between words, one would expect speech processing to be optimal around 65 dB SPL.

To deal with silences in a fair way, the sound levels are enforced by renormalising only

the speech part of each waveform to have an RMS of

RMS = 20 ∗ 10dB/20 (VIII.1)

gmax
Ca = 1e-9 S gmax

Ca = 2e-9 S gmax
Ca = 7e-9 S

90 dB

0 100 200 300 400 500 600

Time (ms)

8000

3261

1376

561

236

100

B
F

 (
H

z)

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600

Time (ms)

8000

3261

1376

561

236

100

B
F

 (
H

z)

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600

Time (ms)

8000

3261

1376

561

236

100

B
F

 (
H

z)

0

0.5

1

1.5

2

2.5

70

0 100 200 300 400 500 600

Time (ms)

8000

3261

1376

561

236

100

B
F

 (
H

z)

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600

Time (ms)

8000

3261

1376

561

236

100

B
F

 (
H

z)

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600

Time (ms)

8000

3261

1376

561

236

100

B
F

 (
H

z)

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600

Time (ms)

8000

3261

1376

561

236

100

B
F

 (
H

z)

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600

Time (ms)

8000

3261

1376

561

236

100

B
F

 (
H

z)

0

0.5

1

1.5

2

2.5

50 dB

0 100 200 300 400 500 600

Time (ms)

8000

3261

1376

561

236

100

B
F

 (
H

z)

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600

Time (ms)

8000

3261

1376

561

236

100

B
F

 (
H

z)

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600

Time (ms)

8000

3261

1376

561

236

100

B
F

 (
H

z)

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600

Time (ms)

8000

3261

1376

561

236

100

B
F

 (
H

z)

0

0.5

1

1.5

2

2.5

100 236 561 1376 3261 8000

BF (Hz)

0

1

2 90 dB
70 dB
50 dB

100 236 561 1376 3261 8000

BF (Hz)

0

1

2

100 236 561 1376 3261 8000

BF (Hz)

0

1

2

Fig. VIII.7 Cochleograms of the phone /aba/ said by a British male speaker, played to the
cochlear model without refractoriness at three sound levels (50, 70, 90 dB) and 3 maximal
AN fibres conductance (1, 2, 7 nS). The cochleograms are smoothed with a Hann window
of 20 ms. The bottom plots show the neural activity at 450 ms (vertical slice from each
picture).

145

gmax
Ca = 1e-9 S gmax

Ca = 2e-9 S gmax
Ca = 7e-9 S

10−12

0 100 200 300 400 500 600

Time (ms)

8000

3261

1376

561

236

100

B
F

 (
H

z)

0

0.5

1

1.5

2

2.5

?

0 100 200 300 400 500 600

Time (ms)

8000

3261

1376

561

236

100

B
F

 (
H

z)

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600

Time (ms)

8000

3261

1376

561

236

100

B
F

 (
H

z)

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600

Time (ms)

8000

3261

1376

561

236

100

B
F

 (
H

z)

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600

Time (ms)

8000

3261

1376

561

236

100

B
F

 (
H

z)

0

0.5

1

1.5

2

2.5

10−10.45

0 100 200 300 400 500 600

Time (ms)

8000

3261

1376

561

236

100

B
F

 (
H

z)

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600

Time (ms)

8000

3261

1376

561

236

100

B
F

 (
H

z)

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600

Time (ms)

8000

3261

1376

561

236

100

B
F

 (
H

z)

0

0.5

1

1.5

2

2.5

10−10.40

0 100 200 300 400 500 600

Time (ms)

8000

3261

1376

561

236

100

B
F

 (
H

z)

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600

Time (ms)

8000

3261

1376

561

236

100

B
F

 (
H

z)

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600

Time (ms)

8000

3261

1376

561

236

100
B

F
 (

H
z)

0

0.5

1

1.5

2

2.5

10−10.35

0 100 200 300 400 500 600

Time (ms)

8000

3261

1376

561

236

100

B
F

 (
H

z)

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600

Time (ms)

8000

3261

1376

561

236

100

B
F

 (
H

z)

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600

Time (ms)

8000

3261

1376

561

236

100

B
F

 (
H

z)

0

0.5

1

1.5

2

2.5

10−10.30

0 100 200 300 400 500 600

Time (ms)

8000

3261

1376

561

236

100

B
F

 (
H

z)

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600

Time (ms)

8000

3261

1376

561

236

100

B
F

 (
H

z)

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600

Time (ms)

8000

3261

1376

561

236

100

B
F

 (
H

z)

0

0.5

1

1.5

2

2.5

10−10

0 100 200 300 400 500 600

Time (ms)

8000

3261

1376

561

236

100

B
F

 (
H

z)

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600

Time (ms)

8000

3261

1376

561

236

100

B
F

 (
H

z)

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600

Time (ms)

8000

3261

1376

561

236

100

B
F

 (
H

z)

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600

Time (ms)

8000

3261

1376

561

236

100

B
F

 (
H

z)

0

0.5

1

1.5

2

2.5

Fig. VIII.8 Cochleograms of the phone /aba/ said by a British male speaker, played to the
cochlear model without refractoriness with different calcium thresholds between 10−10 and
10−12 and 3 maximal AN fibres conductance (1, 2, 7 nS). The cochleograms are smoothed
with a Hann window of 20 ms. The sound level is fixed at 80 dB.

146

0 1 2 3 4 5 6 7 8

Time (s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Stimulus
Convoluted absolute value
High Energy Area

Fig. VIII.9 Extraction of the high-energy parts of a speech waveform as described in the
body of text. All curves are renormalised for visualisation purposes.

where dB is the desired sound level in dB SPL. The value 20 refers to the lower threshold

for hearing, set at 20 µPa. The RMS is estimated on the speech part, which is found using

a simple approach: the absolute value of waveforms (resampled to 100 kHz) are convolved

with a Hann window of 160 ms (and automatically re-centred thanks to the option same of

the conv function), and only values beyond one seventh of the maximal value is kept. This

last value (one seventh) was chosen after checking that the speech parts were appropriately

found. We checked on ten different speech waveforms that the resulting sub-array did contain

the speech areas, as is shown in figure VIII.9. Fortunately, this processing returns the entire

numerical array when the input is a pure tone, allowing us to use the same processing when

setting both speech or pure tones to a given sound level.

VIII.2.3 Back-End

VIII.2.3.1 Data Processing Chain

After obtaining either a neurogram or a cochleogram as described in VI.4.2 and VI.4.3, the

pictorial representation is processed into 39 features amenable to speech recognition. This

MFCC-like feature is used for the neural data, following the principles shown in figure VI.4,

as opposed to chapter VII where simpler processing was used.

To obtain these 39 features, the number of channels is first reduced to 31, by averaging

together the fibres four by four. Only the last feature is the average of the last eight fibres.

147

We then apply, as a nonlinearity, a logarithm in base 10. Values are thresholded to -5. We

then add 5 to generate positive values.

Only rate-coding is used, averaging the activity in each of the 31 channels using Hann

windows of varying length (from 10 ms to 1 s). Another nonlinearity (logarithm) is applied.

A DCT is then used to decorrelate the channels, of which the first 13 coefficient are kept.

We then add the delta and delta-delta coefficients, also renormalised, giving us a total of 39

features per ‘time slice’. A cepstral normalisation finalises the processing.

VIII.3 Results

To evaluate whether a continuous digit recognition task is amenable to a physiology exper-

iment, the simulated cochlear response to the sCUAVE dataset is tested in an ASR frame-

work. The important model parameters introduced earlier are tested, to finally evaluate the

accuracy obtainable under chosen circumstances for a varying number of ANFs.

VIII.3.1 Effect of Conductance on ASR

LSR fibres are often thought of as encoding more envelope [Joris and Yin, 1992] and, hence,

speech information thanks to their wider dynamic range [Sumner et al., 2003; Holmberg et

al., 2007]. Indeed, as seen in figure VIII.7, the maximal conductance in the fibre model is

of paramount importance in the resulting spiking activity. However, the results presented in

figure VIII.10, where the effect of varying the conductance for the digit recognition task on

the sCUAVE dataset is tested, do not support this position.

As gmax
Ca increases from 2 nS to 9 nS, the overall recognition score increases, the maximal

accuracy (across all sound levels) increases. Shorter Hann windows also give better results,

as conductance increases. Still, as conductance increases, the optimal score is obtained for

a decreasing sound level (90 dB to 70 dB, see black circles in figure VIII.10). Interestingly,

recognition reaches an overall maximum for high levels of gmax
Ca at 70 dB SPL. Thus, it

is true that LSR fibres encode high sound levels better than low sound levels, and HSR

fibres encode lower (or medium) sound levels better than high sound levels, consistent with

previous observations. However, overall recognition scores here are essentially better in HSR

fibres than in LSR model fibres, at all signal levels.

At low sound levels, and low values of gmax
Ca , performance is very poor for small Hann

windows: longer windows increase performance. Whereas when sound levels are moderate

or higher, and conductance is high, performance is less dependent on Hann window length,

but if anything is slightly optimal for short Hann window lengths. The good recognition

accuracy at long Hann windows suggests that High Spontaneous Rate (HSR) fibres encode

more speech information than Low Spontaneous Rate (LSR) fibres, when forced to use a

pure rate code.

148

0 0.2 0.4 0.6 0.8 1

Hann window (s)

0

20

40

60

80

100

W
or

d
A

cc
. (

%
)

g
Ca
max=7e-9 S

90dB
80dB
70dB
60dB
50dB

50 60 70 80 90

Sound level (dB)

2

3

4

5

6

7

8

9

g
C

a
m

ax
 (

nS
)

0

10

20

30

40

50

60

70

80

10 -2 10 -1 100

Hann window (s)

0

50

100

W
or

d
A

cc
. (

%
) 2e-9

10 -2 10 -1 100

Hann window (s)

0

50

100
3e-9

10 -2 10 -1 100

Hann window (s)

0

50

100
4e-9

10 -2 10 -1 100

Hann window (s)

0

50

100
5e-9

10 -2 10 -1 100

Hann window (s)

0

50

100
6e-9

10 -2 10 -1 100

Hann window (s)

0

50

100
7e-9

10 -2 10 -1 100

Hann window (s)

0

50

100
8e-9

10 -2 10 -1 100

Hann window (s)

0

50

100
9e-9

0 0.2 0.4 0.6 0.8 1

Hann window (s)

0

20

40

60

80

100

P
ho

ne
 A

cc
. (

%
)

g
Ca
max=7e-9 S

90dB
80dB
70dB
60dB
50dB

50 60 70 80 90

Sound level (dB)

2

3

4

5

6

7

8

9

g
C

a
m

ax
 (

nS
)

0

10

20

30

40

50

60

70

80

10 -2 10 -1 100

Hann window (s)

0

50

100

P
ho

ne
 A

cc
. (

%
) 2e-9

10 -2 10 -1 100

Hann window (s)

0

50

100
3e-9

10 -2 10 -1 100

Hann window (s)

0

50

100
4e-9

10 -2 10 -1 100

Hann window (s)

0

50

100
5e-9

10 -2 10 -1 100

Hann window (s)

0

50

100
6e-9

10 -2 10 -1 100

Hann window (s)

0

50

100
7e-9

10 -2 10 -1 100

Hann window (s)

0

50

100
8e-9

10 -2 10 -1 100

Hann window (s)

0

50

100
9e-9

Fig. VIII.10 Word and phone accuracies using the MFCC-like feature on the sCUAVE
dataset, on neurograms obtained with 50 fibres per BF, varying the length of the Hann
window (x-axis). On top left plot, a linear scale is used for the x-axis and half of the Hann
windows are displayed, centred at their duration. On bottom plots, a log-scale is used. At
0.025 s, a red mark shows the usual duration of the Hann window in ASR applications.
Missing values are due to HTK not finishing calculations due to poor data. Top right plot
shows the mean accuracy over the first 10 Hann durations for each sound level and maximum
conductance. A circle shows the optimal sound level for each maximal conductance.

149

However, performance is often slightly better for shorter Hann windows (below 100 ms).

suggesting that this additional information is available in the form of high frequency fluc-

tuations in firing rate, either in the temporal fine structure or in high frequency envelope

information. Since the human cochlea appears to have narrower band pass filters than that

of other mammals [Shera et al., 2002], one would expect — assuming there was not some

other gain compensation for the reduced energy into the filters — higher recognition rates at

high sound intensities if the parameters had been fitted to human physiological data, as the

rate-place coding would increase in precision, while reducing the saturation of ANFs across

a wide range of frequencies.

It also suggests that different types of neurons may encode information at different sound

levels. At high sound levels, LSR neurons would provide an onset and offset response more

distinguishable than the HSR, while at lower sound levels, the lower threshold of HSR fibres

enable them to code more low sound level features of speech information than LSR. Indeed,

as seen in figure VIII.7, features of the formants were missing in the cochleograms of LSR

fibres since the sound intensity did not reach the higher threshold of LSR fibres. The

lower threshold of HSR fibres, seen in rate-intensity functions of figure VIII.6, allows this

potentially important information to appear at low to normal sound levels (70 dB SPL). The

speech envelope would be expected to be better encoded by the LSR fibres as long as the

features are present in the response, assuming their threshold of activation was reached.

Saturation of HSR fibres could be a limitation, as they have a narrower dynamic range,

but this does not seem to be a limiting factor in the speech encoding ability of ANFs at

a normal sound level. Even at high sound levels, both HSR and LSR low-BF fibres can

still phase-lock to the fine structure of the incoming sound, which contains more speech-

related information than high-BF fibres. Synchrony-based features would be necessary to

extract more phase-related information at high sound levels, when the fibres saturate. This

behaviour is indeed observed in [Holmberg et al., 2007]: the recognition accuracy decreases

much more at high sound levels when only using a rate-code, compared to using both a rate-

code and a temporal code. For this result, they used both HSR and LSR fibres. Our result

suggests that removing the LSR fibres from their model would lead to a further decrease in

recognition accuracy at high sound levels.

To summarise, this discussion sheds light on the issue of thresholding versus saturation.

This result suggests that, at normal sound levels, the lower threshold of HSR fibres is pre-

dominant in their higher ability to encode speech information using a rate code. A second

but probably less important factor appears to be that at medium and high sound levels HSR

fibres are able to make use of finer spike timing of features.

150

VIII.3.2 Effect of Calcium Thresholding on ASR

Up until now, the threshold concentration of calcium required for neurotransmitter release

was fixed in the model to the default value [Ca2+]thr = 4.48e-11, unit free. The conductance

[Ca2+]thr primarily affects the low intensity responses, thus the spontaneous rate and thresh-

old of the unit. Since this default value is fairly high compared to the value fitted to real

HSR neurons [Sumner et al., 2003], the effect of this parameter on the speech recognition

accuracy is investigated.

Figure VIII.8 shows that larger thresholds reduce the representation of the sound features

in the cochleogram, particularly for smaller calcium maximal conductances. Having observed

this dynamic, a maximal conductance of 2 nS is set, as well as a sound level of 80 dB. This

choice is bound to limit the accuracy achievable, but is meant to avoid extreme values

of spontaneous activity that would not be physiologically related to the thresholds tested,

according to the link between those two parameters when fitted to experimental data [Sumner

et al., 2003].

As seen in figure VIII.10, the value [Ca2+]thr = 4.48e-11 does not allow high accuracy.

In figure VIII.11, results are shown on the left plot. For a fixed sound level of 80 dB and a

fixed gmax
Ca of 2 nS, [Ca2+]thr is varied between 1e-14 and 1e-10. The dashed blue curve is the

same as the blue curve in the left plot of figure VIII.10.

In this setting, the accuracy tends to increase as [Ca2+]thr decreases. Below 1e-11, the

change is on average fairly negligible. This is shown in the right plot, where the averaged

values for 3 Hann windows duration (the three closest to 40ms) is given for each value of

[Ca2+]thr that gave values (5e-11 or below; above, HTK finished on an error due to ‘bad data’).

This result is consistent with the idea that HSR neurons encode more speech information.

For small calcium thresholds (≤ 3e-11), a trend appears that both small and large Hann

windows perform better than medium ones (around 80 ms). On a larger scale, another trend

is that the slope gets steeper with increasing threshold, as the values for large Hann windows

are relatively constant for all values of [Ca2+]thr, but this uniformity is lost for small Hann

windows. This hints at the usefulness of temporal fine structures being encoded at low

calcium thresholds in the neural responses but slowly lost as this threshold increases, while

a rate code for high temporal windows still represents the formants in a satisfying way.

VIII.3.3 Number of Fibres

Rather than reducing the value of [Ca2+]thr to improve the accuracy, the default value is

used once more. This allows for a better comparison of results by reducing the number of

varying parameters.

As more spike trains drawn according to the same distribution are averaged, the PSTH,

as a stochastic process, ought to converge to a distribution related to the probability of firing

(see appendix 12). In figure VIII.12, it is shown that this property leads, by continuity, to

151

10 -2 10 -1 100

Hann duration (s)

0

10

20

30

40

50

60

70

80

90

100

W
or

d
A

cc
. (

%
)

1e-14
1e-11
2e-11
3e-11
4e-11
4.48e-11
5e-11
6e-11
8e-11
1e-10

10 -14 10 -11 10 -10

[Ca2+]
thr

0

10

20

30

40

50

60

70

80

90

100

W
or

d
A

cc
. (

%
)

...

10 -2 10 -1 100

Hann duration (s)

0

10

20

30

40

50

60

70

80

90

100
W

or
d

A
cc

. (
%

)
1e-14
1e-11
2e-11
3e-11
4e-11
4.48e-11
5e-11
6e-11
8e-11
1e-10

10 -2 10 -1 100

Hann duration (s)

0

10

20

30

40

50

60

70

80

90

100

P
ho

ne
 A

cc
. (

%
)

1e-14
1e-11
2e-11
3e-11
4e-11
4.48e-11
5e-11
6e-11
8e-11
1e-10

10 -14 10 -11 10 -10

[Ca2+]
thr

0

10

20

30

40

50

60

70

80

90

100

P
ho

ne
 A

cc
. (

%
)

...

10 -2 10 -1 100

Hann duration (s)

0

10

20

30

40

50

60

70

80

90

100

P
ho

ne
 A

cc
. (

%
)

1e-14
1e-11
2e-11
3e-11
4e-11
4.48e-11
5e-11
6e-11
8e-11
1e-10

Fig. VIII.11 Word and phone accuracy using the MFCC-like feature on the CUAVE dataset,
varying the length of the Hann window (x-axis), using 50 simulated fibres per BF. Sounds
played at 80 dB to the cochlear model where gmax

Ca is fixed at 2 nS. The value of [Ca2+]thr

is varied (colours given in the legend). On the right plot, the mean accuracies obtained by
averaging the accuracies corresponding to the 3 Hann windows closest to 40 ms (33.6, 42.8,
and 54.6 ms) are given where a value was provided by HTK, to show the trends at this
temporal scale.

152

10 -2 10 -1 100

Hann window (s)

0

10

20

30

40

50

60

70

80

90

100

W
or

d
A

cc
. (

%
)

70dB, g
Ca
max=7e-9

pbRef
probs
spkTr, 1000 fibres
spkTr, 100 fibres
spkTr, 50 fibres
spkTr, 20 fibres
spkTr, 10 fibres
spkTr, 5 fibres
spkTr, 4 fibres
spkTr, 3 fibres
spkTr, 2 fibres
spkTr, 1 fibres

100 101 102 103 1
Fibers per BF

0

10

20

30

40

50

60

70

80

90

100

10 -2 10 -1 100

Hann window (s)

0

10

20

30

40

50

60

70

80

90

100

W
or

d
A

cc
. (

%
)

70dB, g
Ca
max=7e-9

pbRef
probs
spkTr, 1000 fibres
spkTr, 100 fibres
spkTr, 50 fibres
spkTr, 20 fibres
spkTr, 10 fibres
spkTr, 5 fibres
spkTr, 4 fibres
spkTr, 3 fibres
spkTr, 2 fibres
spkTr, 1 fibres

10 -2 10 -1 100

Hann window (s)

0

10

20

30

40

50

60

70

80

90

100

P
ho

ne
 A

cc
. (

%
)

70dB, g
Ca
max=7e-9

pbRef
probs
spkTr, 1000 fibres
spkTr, 100 fibres
spkTr, 50 fibres
spkTr, 20 fibres
spkTr, 10 fibres
spkTr, 5 fibres
spkTr, 4 fibres
spkTr, 3 fibres
spkTr, 2 fibres
spkTr, 1 fibres

100 101 102 103 1
Fibers per BF

0

10

20

30

40

50

60

70

80

90

100

Fig. VIII.12 Accuracy using the MFCC-like feature on the sCUAVE dataset, on
cochleograms - with (pbRef) or without (probs) refractoriness - or on neurograms obtained
with certain number of fibres per BF, varying the length of the Hann window (x-axis). Sound
level is fixed at 70 dB and gmax

Ca at 7 nS. The vertical red mark shows the 0.025 s value x on
the x-axis, typical for ASR. On the right plot, the mean accuracy is given (y-axis) for each
number of fibres per BF used (x-axis) the probability of firing with refractoriness, which is
equivalent to an infinite number of fibres, as detailed in appendix 12.2.2.

153

a convergence of the recognition accuracy when the number of fibre per Best Frequency

increases from 1 (a total of 128 fibres) to 200 (total of 200*128=25600 fibres, close to the

human’s 30000 fibres). In particular, on the right plot, it is clear that the mean value

increases almost monotonically to the mean accuracy using the probability of firing including

the refractoriness.

Due to the stochasticity of the spike generation and the nonlinear data processing in both

front-end and back-end, this increase is not strictly respected for any fixed Hann window

length. A cross-validation validation protocol might be robust enough to provide strictly

increasing results.

Once more, the usual Hann window length (25 ms) is suboptimal, but by a small margin

only.

VIII.4 Conclusion

The ASR framework developed allowed an accuracy of ∼50% at the phone-level and ∼80%

at the word-level, on a number of fibres that fit the requirements for an electrophysiology

experiment. As such, this simulated experiment can be considered a success. All conclusions

obtained in this chapter are qualitatively the same at the phoneme-level and at the word-

level, the latter implying a steady improvement in accuracy of about 30%. This improvement

is simply due to the simplicity of the dictionary, thus helping the recognition by reducing

the amount of correct guesses necessary to recognise a word, and reducing the amount of

instances to recognise in each sequence of words.

In performing the analysis required to reach this conclusion, much was learnt regarding

the impact of various important parameters from the cochlear model, that can henceforth

be set:

• High Spontaneous Rate fibres encode more speech-related information than Low Spon-

taneous Rate ones in quiet and at normal sound levels. This result is counter-intuitive

at first sight due to the narrower dynamic range of HSR fibres. However, their lower

threshold of activation makes them able to encode information when LSR are still dor-

mant. Furthermore, since the energy at any given frequency varies quickly in speech,

formants can still be grossly described by the activation/inactivation patterns of the

HSR fibres, in the absence of background noise;

• At medium and high sound levels, HSR fibres are able to make use of finer spike timing

of features. LSR fibres are firing, but require longer windows of integration to encode

less information than HSR, using a rate-code;

• Assuming a rate-code with small integration window, the optimal sound level decreases

with an increase of the spontaneous activity, going from 90 dB SPL for fibres having

a gmax
Ca of 2 nS, to 70 dB SPL for fibres having a gmax

Ca of 9 nS;

154

• A satisfying accuracy on this digit recognition task may be achievable with 40 minutes

worth of recording. This result on simulated data is a strong indication that similar

analyses on electrophysiological data should lead to meaningful results.

Our result suggests that HSR fibres encode more speech-related information in a quiet

environment. On the other hand, noise-induced cochlear neuropathy was shown to be as-

sociated with a loss of LSR fibres [Furman et al., 2013]. This type of hidden hearing loss,

not revealed by audiograms, is hypothesised to mostly impact speech intelligibility in noisy

environments. Hence, it is possible that the neural coding of speech in the auditory nerve

evolves from being encoded by HSR fibres to a code based on LSR fibres that complement

the HSR fibres more intense firing as background noise increases.

Now that the analysis of the optimisation of the cochlear’s model’s parameter on a contin-

uous speech task is done and yields acceptable results, the complexity of the task is increased

once more in the next chapter to challenge the ASR framework on a large-vocabulary.

155

IX.
Neural ASR on a Large-Sized Vocabulary

In this chapter, we consider a framework for a continuous speech recognition task

on a large dictionary with many speakers. The same type of processing as in the

previous chapter is applied, fixing the front-end parameters to their optimal values

learnt from previous chapters, and testing more back-end processing, as shown in

figure IX.1.

Source Front-End Back-End Train/Test

Waveform

Spike Trains

Cochleogram

Spectrogram

Neurogram

...

Conv

Log

z

GBFB

δ

δδ

PCA

RI

DCT

HMM WER

Fig. IX.1 Graph of data processing presented in this chapter. Front-ends are defined in
previous chapters; their parameters are now entirely set. Back-end consists of many blocks
defined within the methodology section; their number and order is changed.

156

IX.1 Introduction . 158

IX.2 Methodology . 158

IX.2.1 sTIMIT Dataset . 158

IX.2.2 Front-End . 159

IX.2.3 Back-End . 161

IX.2.4 HTK Parameters . 162

IX.3 Results . 164

IX.3.1 Processing chains . 164

IX.3.2 Optimal Time Scale . 166

IX.4 Conclusion . 166

157

IX.1 Introduction

In this chapter, we apply the neural speech recognition computational framework presented

in previous chapters to a well-known speech dataset, TIMIT, to test the robustness of the

HMM models on a fully-fledged continuous speech setting, based on a large dictionary and

containing speech from many speakers. Since the full TIMIT dataset does not satisfy the

time constraints for an electrophysiological experiment presented in section VI.4.4, a subset

of this dataset is used, named sTIMIT, that lasts for an hour.

The front-end parameters are set using the parameters that gave the best results in

chapter VIII. Many back-end processing are evaluated and compared, in order to see whether

an acceptable recognition accuracy (set to 50%) is achievable on such a complex dataset.

IX.2 Methodology

IX.2.1 sTIMIT Dataset

The TIMIT dataset [Garofolo et al., 1993] is widely used as a testbed in ASR tasks with

biophysical models, as shown in table VI.9. It is fully annotated and has been used by the

Speech Recognition communities for over 20 years. However, the setting of a physiology

experiment is not constant in time, as the animal’s physiological state changes, the electrode

array may drift due to microscopic vibrations, or the state of the neurons surrounding the

electrode may simply change due to the contact with the electrodes or brain damage. As

such, due to its length (over five hours), this dataset is not fit for a physiological experiment.

A subset of the TIMIT dataset was thus selected, called sTIMIT. This subsection describes

the sTIMIT dataset; its main features are given in table IX.3. All information presented

here about TIMIT either comes from direct evaluations on the dataset, or is given by the

TIMIT documentation.

To be able to play the full dataset a few times to each animal, sTIMIT lasts for an

hour, which should normally allow at least 3 sets of recording. About three quarters of the

sentences are from the TRAIN dataset, the other quarter from the TEST set.

To reduce the pitch variability without reducing too much the number of speakers, only

male speakers were kept, as they represent 70% of the complete dataset (438 out of 630

speakers). The sentences are regrouped within three categories in the corpus:

• Dialect (SA), meant to expose the dialectal variants of the speakers (only 2 sentences,

read by all speakers);

• Compact (SX), designed to provide a good coverage of pairs of phones, with extra

occurrences of phonetic contexts thought to be either difficult or of particular interest.

158

Dialect Difficulty Duration (males, SX)

New England 6 435 s
Northern 7 1046 s

North Midland 3 1105 s
South Midland 4 1037 s

Southern 4 915 s
NY City 4 438 s
Western 3 1056 s

Army Brat 5 299 s

Tab. IX.2 Difficulty attributed to each of the 8 dialects constituting the TIMIT dataset.
The marks were between 1 (easy to understand) and 10 (very hard to understand), after
listening 5 instances of each dialect by a single listener whose native language is French. The
total duration of each dialect for the male speakers for SX-typed sentences is given on the
right column.

Each of the 450 sentences in this set is read by 7 different speakers, and each speaker

read 5 sentences;

• Diverse (SI), selected from existing text sources so as to add diversity in sentence types

and phonetic contexts. Each of the 1890 sentences is read by only one speaker.

Only sentences of SX type are kept, the SA-type sentences being normally left aside [Lopes

and Perdigao, 2011] because they introduce an unfair bias for certain phones [Lee and Hon,

1989].

To minimise the number of different dialects and select them, a level of difficulty was

manually attributed to each dialect, by randomly listening to 5 sentences in each set and

giving it a grade between 1 (very easy to understand) and 10 (very hard). The results are

given in table IX.2.

All available sentences were then taken, alphabetically ordered in their folder, until the

dataset would last for one hour. The sTIMIT dataset characteristics are summarised in

table IX.3. The number of classes is reduced from 61 to 39, as proposed by [Lee and Hon,

1989; Lopes and Perdigao, 2011]. For simplicity, the number of classes is kept the same for

both training and testing.

IX.2.2 Front-End

As shown in figure VIII.1, three types of data representation are used as front-end for this

ASR task, with their code given in parenthesis:

• Spectrogram (wav): 31 channels encode a logarithmically scaled Mel-spectrogram between

64 and 8000 Hz;

159

Type Options Number of Sentences

Gender:
Males 1252

Females 0

Sentence:
SA 0
SX 1252
SI 0

Dialect:

New England 0
Northern 0

North Midland 395
South Midland 345

Southern 142
NY City 0
Western 370

Army Brat 0

Set:
Train 943
Test 309

Tab. IX.3 Summary the sTIMIT dataset, given by total number of sentences for each
possible category in the TIMIT dataset.

• Cochleogram (probs): 128 channels whose BFs are logarithmically spread between 100

and 8000 Hz, sounds played at 70 dB, gmaxCa fixed at 8e-9 S and [Ca]thr at 0 to simulate High

Spontaneous Fibres [Sumner et al., 2003], Hann duration of 0.11 s, without considering the

effect of refractoriness;

• Neurogram (SpkTr): up to 1280 spike trains are used, with 10 fibres per BF from

cochleograms, to simulate 10 hours of recording using a one-hour long dataset. The de-

scription of the spike trains simulation, including the refractoriness, is given in appendix 12.

A
cc

u
ra

cy
(%

)

Date (22 years)

Fig. IX.4 Milestones of TIMIT phone recognition performance [Lopes and Perdigao, 2011]

160

All pictorial representations, as output by the front-end, have a sampling rate of 10 Hz as is

classical for HMM-based modelling.

IX.2.3 Back-End

As in the previous chapter, the first back-end block processing reduces the dimensionality

of the feature vector. This is achieved by regrouping spike trains (or channels). Various

processing (given below) can then be applied. The different back-end processings used are

each given a short name (in bold below), separated by underscores when used in a sequential

order. This notation helps in easily comparing the effect of changing the sequence used in

the results’ section; For example, the processing chain used in chapter VIII on spike trains

was spkTr f lu r l d dd z.

Spike grouping:

Due to refractoriness and the dynamic range HSR units cover, rate coding per spike train

has limitations that we get around by gathering spike trains together. This channel grouping

is done in two ways:

• f: Prior knowledge of the best frequency of each channel is assumed, and channels are

ordered by increasing BF. Neighbouring channels are then averaged together to obtain

feature vectors of length 31. The 30 first features average the same number of channels;

the last feature averages the remaining channels;

• cA: Channels are correlated with the frequency channels of the speech waveforms spec-

trograms. Spike train channels maximally correlating to the same frequency (among

the 31 frequency channels of the spectrogram) are then averaged together.

Processing:

• lu: A logarithm in base 10 is applied, all values smaller than -5 are then thresholded

to -5, and all values are finally increased by 5 to be positive or null. This non-linearity

neglects the small values;

• r: A sliding Hann window is applied every 10 ms. Unless stated otherwise, in this

chapter the Hann window duration is 0.11 s;

• l: Logarithm (x 7→ log(1 + x));

• d: DCT, of which we keep the first 13 coefficients;

• dd: Speed and acceleration are appended (respectively called δ and δδ coefficients);

• z: Cepstral normalisation per channel;

161

• e: Append squared energy per feature vector;

• g: Spectro-temporal Gabor filter bank features (GBFB), as implemented in [Schaedler

and Kollmeier, 2015]

• s: Separable Gabor filter bank (SGBFB), as implemented in [Schaedler and Kollmeier,

2015];

• lsp: Logarithm applied to a spectrogram with log-space frequency output;

• ISI: Applied to a sparse array, this processing is constant between two consecutive

spikes, its value being the time interval between those two spikes (InterSpike Interval).

• ri: This feature outputs the element-wise inverse of the ‘ISI’ feature. This naive

estimation of the instantaneous rate by ISI inversion was used in chapter VII.

Dimensionality Reduction:

As a dimensionality reduction method, only the DCT and PCA are used. Despite the

smaller accuracy is may bring compared to PCA (see figure VII.3), the significantly smaller

computational cost of the DCT allows one to test and compare more processing.

IX.2.4 HTK Parameters

Transcript & Dictionary Even though the TIMIT dataset is provided with both word-

and phoneme-level transcript, we only make use of the word-level transcript. A phone-

level transcript is made at two stages of the processing: before any HMM training, using

the BEEP1 dictionary which contains the phonemic transcription of over 250,000 English

words, and the function HLEd that selects the first pronunciation of each word present in

the dictionary.

Mixtures & Training At the end of the training of a single mixture (8 passes with

HERest), another phone-level transcript is created, this time using the function HVite to

align the optimal pronunciation of each word with the word-level transcript, using the single

mixtures HMMs trained. Another 6 passes of HERest training is made with this transcript

Word-Label: DECEMBER AND JANUARY ARE NICE MONTHS TO SPEND IN MIAMI

Recognised: DECEMBER INTO NEARER NICE MUST STINGING MIAMI

Phone-Label: d ih s eh m b er ae n d jh ae n y uw eh r iy aa r n ay s m ah [...]

Recognised: uw s uw m er n jh eh n uw w er m ay s m ah [...]

Tab. IX.5 Example word-level and phoneme-level sentences recognised on the optimal value
(phoneme-wise) of figure IX.7.

1http://svr-www.eng.cam.ac.uk/comp.speech/Section1/Lexical/beep.html

162

http://svr-www.eng.cam.ac.uk/comp.speech/Section1/Lexical/beep.html

and single mixtures HMMs. The number of mixtures is then gradually increased, with 6

passes of HERest training after each increment. The timing information in the transcripts

is never used.

Words & Phonemes The TIMIT database is a classical dataset for phone recognition,

as the timeline in figure IX.4 shows, on which accuracies of almost 80% have been obtained

[Lopes and Perdigao, 2011]. This motivates the use of sTIMIT on a phoneme recognition

task. For comparison with the previous chapter, word-level accuracies are also provided, even

though their scientific value is of limited value as the example given in table IX.5 shows:

Too many context-dependent components play a role in the final result.

Phonemes & Triphones Considering the amount of words in a language (500k to a

million in English), training a separate HMM for each word would be highly impractical.

Instead, we keep on using phonemes, as about 40 phonemes are needed to represent all

English words. This allows the system to recognise words never seen during the training

stage, and to increase the number of words that can be recognised simply by extending the

pronunciation dictionary.

Due to coarticulation, phoneme boundaries are often unclear. With HMMs, this issue

is usually tackled using context-dependent models named triphones instead of phonemes,

whereby each phone has a distinct HMM for any pair of left and right contexts. An example is

given in table IX.6. The use of triphones allows significative phone recognition improvements

[Lopes and Perdigao, 2011]. However, this modelling comes at a greater computational cost

and a higher complexity. Since our goal in this work is not to optimise the accuracy at all

costs but to compare the processing methods, we keep using phonemes-level HMMs as in

the previous chapters.

Modelling Level Transcript

Words sil this sp man sp...

Phonemes sil th ih s sp m ae n sp ...

Triphones (Cross-Word) sil th+ih th-ih+s ih-s+m s-m+ae m-ae+n ae-n+...

Triphones (Word-Internal) sil th+ih th-ih+s ih-s sp m+ae m-ae+n ae-n sp ...

Tab. IX.6 Modelling ‘This man...’ with word-, phones- and triphones-level HMM, using
the usual HMMs ‘sil’ for long silences and ‘sp’ for short silences as word boundaries. Word-
internal triphones facilitate decoding but cross-word triphones convey contexts through si-
lences and are thus more expressive.

163

IX.3 Results

IX.3.1 Processing chains

Since word-level accuracies are consistently 10 to 15% below the phone-level accuracy, only

the phone-level accuracies are discussed.

After trying only a few back-end processing choices in chapter VII and fixing it to a

presumably good one in chapter VIII, the backend processing is now more thoroughly altered:

processing is tried in diverse orders, removed or added. The results are shown in figure IX.7

as ranked by their phone-level accuracy. The three types of pictorial representations are

used:

• Spectrograms refer to the short Fourier-transformed waveforms;

• Cochleograms contain the probabilities of firing per BF;

• Neurograms use either one or 10 fibres per BF (ending with sp1 or sp10).

By a margin, the best score is obtained using the spectrograms, where the use of PCA allows

one to improve on the DCT if the dimension is large enough (50 instead of 20). As opposed

to the conclusion in [Schaedler and Kollmeier, 2015], the separable Gabor filterbank (‘s’

processing) gives a lower accuracy than the simple GBFB (‘g’ processing).

Finishing the processing chain by a cepstral normalisation (‘z’) does not seem to have a

positive influence, as it reduced the accuracy when added to the processing chain probs-f-l-

d-dd. On the other hand, the δ and δ − δ coefficients (‘dd’) following the DCT make a big

difference of about 10%.

The Gabor filterbank (‘g’) is not adapted for use with DCT: since this filterbank generates

many channels that are highly correlated, the channels must be decorrelated, either manually

or using a transform, which is what PCA does, but not DCT. An alternative would be to

manually extract the theoretically least correlated channels output by the GBFB filterbank

[Schaedler and Kollmeier, 2015]. This was confirmed by various attempts that contain the

sequence ‘g-d’.

The use of PCA removes the improvement that the separable version of this filterbank

(‘s’ compared to ‘g’) is meant to bring, as shows the ∼ 3% margin when applied on the

spectrograms.

Surprisingly, using 10 fibres per BF was enough to obtain a score higher than using the

probabilities (spkTr-f-lu-r-l-d-dd-z-sp10 / probs-f-l-d-dd-z), which in turn was better than

with one spike train per BF (spkTr-f-lu-r-l-d-dd-z-sp1).

Replacing the knowledge of the BF with a mapping to the channels of the spectrograms

(spkTr-cA-lu-r-l-d-dd-z-sp1) leads to a loss of 10% of accuracy. Other ways to aggregate

spike trains without assuming the knowledge of the BFs could nonetheless reduce this gap.

164

0 10 20 30 40 50 60

Phone Accuracy (%)

wav-lsp-g-pca-v50
wav-lsp-d-dd-z

wav-lsp-g-pca-v20
wav-lsp-s-pca-v20

spkTr-f-lu-r-l-d-dd-z-sp10
spkTr-ri-f-r-l-d-dd-z-sp10

probs-f-l-d-dd
probs-l-d-dd-z

probs-f-l-d-z-dd
probs-f-l-d-dd-z

probs-f-g-pca-v20
probs-f-l-g-pca-v20

spkTr-f-lu-r-l-d-dd-z-sp1
probs-f-l-pca-v20

probs-f-pca-v20
probs-f-l-d

spkTr-cA-lu-r-l-d-dd-z-sp1
spkTr-cA-r-l-d-dd-sp1
probs-f-l-d-z
probs-f-l-e-d-dd

wav-lsp-g-d
probs-l-f-g-d-l-dd
probs-f-g-d-l-dd
probs-f-g-d-dd

probs-f-l-g-d-l-dd

Spectrogram
Cochleogram
Neurogram

Word & Phone Accuracy (%)

Fig. IX.7 Word (+ mark) and phone (∗,×, ◦ marks) accuracies over many processing.
Range of back-end processing tested on the sTIMIT dataset, using waveforms (red circle),
probabilities of firing (blue stars) or spike trains (green crosses) as output of the front-end
block. Appended to the processing are two complementary parameters: for spike trains, the
number of spike trains used per BF (either 1 or 10); for PCA, the vector dimension output
by the PCA. All Hann windows used (in the ‘r’ processing, implicitly contained in ‘probs’)
have a duration of 0.11 s.

Appending the energy (‘e’) before applying the DCT surprisingly drastically reduced the

score (probs-f-l-e-d-dd, 19%).

Even the optimal score (51%) does not reach the accuracy obtained on the TIMIT dataset

in the 1980s (66%, see figure IX.4). This difference could be reduced by many ways: in-

creasing the size of the training set, increasing the number of Gaussian mixtures, or using

triphones. Again, since our goal was not to optimise the overall accuracy but to compare

the processing, a score of about 50% satisfies our needs.

165

10 -2 10 -1 100

Hann duration (s)

0

10

20

30

40
A

cc
ur

ac
y

(%
)

Phone Accuracy
Word Accuracy

Fig. IX.8 Effect of varying the Hann window using the same processing chain as in previous
chapters (spkTr f lu r l d dd z), using 10 spike trains per channel. Both word-level and
phoneme-level accuracies are given. The red markers highlight the result used in table IX.5;
the green cross is the value appearing in figure IX.7

IX.3.2 Optimal Time Scale

As in the previous chapters, the optimal Hann window duration is evaluated, having fixed the

back-end processing. Its optimal value for the phone-level accuracy, about 70ms, surprisingly

corresponds to a local minimum for the word-level accuracy as shown in figure IX.8. While

the word-level accuracy smoothly decays to 0 for very large Hann windows, the phone-level

accuracy remains above 20%. For Hann windows larger than 0.6 s, HTK could not finish its

training as was already observed in previous chapters where the data’s quality would become

too poor.

IX.4 Conclusion

This chapter concludes the research done on datasets of different sizes and complexity. The

results we obtained on sTIMIT using spectrograms are significantly lower than the maximal

accuracies found in the literature. However, one could expect that developing better front-

end and back-end processing would lead to a satisfying improvement using spike train data.

The results obtained using simulated neural data are even lower than those obtained

with spectrograms, and they are under the 50% phoneme-level threshold that had been

arbitrarily decided on simulated neural data. Hence, we would not use this dataset for an

electrophysiological experiment with the current computational framework but rather use

the continuous digit recognition task.

Accuracies at the word-level were consistently smaller than those at the phoneme-level.

166

Beside the difficulty of recognising a word among a large amount of possible choices, this

phenomenon is due to the word insertion penalty. This parameter, optimised by testing

the accuracy on a small development set, has an impact on the ease with which HTK can

insert more words in a recognised sentence. By studying the recognised sentences, short

words such as articles (‘a’, ‘the’ and the like) were consistently omitted from the recognised

sentences, leading to a systemic reduction in recognition accuracy. The solution adopted by

big technology companies is a sentence-level recogniser ensuring the grammatical correctness

of the final recognised sentences. This may be viewed as a top-down feedback mechanism

adding a strong likelihood to grammatically acceptable sentences under a full language model,

once more exhibiting the adaptability of likelihood-based recognition methods. Since we do

not use such techniques, the word-level recognition accuracy is not a useful metric for our

experiments.

167

X.
Conclusion of part B

168

In the previous three chapters, HMMs models were built and tested on spike train data,

increasing the complexity of the speech recognition task from a dataset of isolated phonemes

to one containing continuous speech. This, in turn, reduced the maximal accuracy in the

phoneme recognition task.

While the VCV dataset was too simple for probing the limits of a recognition algorithm

as powerful as HMMs, the sTIMIT dataset may prove itself to be too complex. Of course, the

fact that the best accuracy obtained on the spectrograms was around 50% when researchers

have been able to reach 80% on the full TIMIT dataset allows us to think that the full

capabilities of HMMs have not been used. This means that, in order to draw accurate

conclusions about neural processing, the computational framework should be optimised first.

Until then, a dataset such as the CUAVE dataset is more adapted to investigate the neural

processing of real speech in a physiology experiment. As such, this methodology should

be amenable to studying how the brain processes complex sounds in the central Auditory

Pathway.

The effect of important parameters of the cochlear model was studied during this inves-

tigation, providing insights into the functional role of different types of ANFs:

• High Spontaneous Rate fibres seem to provide more speech information at lower sound

levels using a rate code;

• A low calcium concentration threshold is necessary to convey speech information at

small temporal scales.

On the engineering side, many points of interest arose. All results bring qualitatively

similar conclusions at the word-level and the phone-level, with either an improved (sCUAVE)

or reduced (sTIMIT) accuracy depending on the complexity of the dictionary. The reasons

for this are varied:

• A digit recognition task has more phonemes than words, while a large-dictionary based

recognition task has more words than phonemes;

• The word insertion penalty leads to a positive bias in the digit recognition task where

all recognised words are about the same length, but a harmful effect when recognising

real sentences, since words have a significantly different duration;

• In the digit recognition task, many phonemes are uniquely found within a single word,

leading to a context-dependency enabling recognising a word by accurately recognising

simply one of its phones. This is evidently not true for the sTIMIT dataset.

Researchers tend to use a single time-scale to extract feature vectors. This is bound to

bring limitations related to auditory coding. One would expect this issue to take even more

importance higher up in the Auditory Pathway as the auditory system temporally works

across many scales.

169

Final Conclusion & Discussion

The Automatic Continuous Speech Recognition technologies have reached a performance

level enabling their use by technological companies in many real-life applications, slowly

closing the gap between human and machine speech recognition. The same technology can

be applied to other time-varying signals such as neural data, as long as enough information

is contained within the features extracted from these signals. This thesis studied the ap-

plication of an ASR technology to spike train data, on a large-size dictionary, with a view

to applications to electrophysiology experiments. Indeed, an efficient neural decoder for dy-

namical stimuli as quick as sounds would be a helpful engineering tool to tackle Auditory

Neuroscience open issues.

Among the sea of machine learning algorithms that exist, it is not clear what algorithm

should be used or whether different algorithms would interpret data differently. This seemed

particularly true for neural data, where the neuron assumption states that neurons commu-

nicate and process information using a neural code. Different neurons may use codes that

would be best decoded by different machine learning algorithms. Hence, the coding of an

amplitude-modulated tone from different Cochlear Nucleus neuron types was evaluated and

compared using a big collection of classification algorithms. Part A of this thesis suggests

that the type of neural coding under study does not influence the type of Machine Learning

algorithm that should be used for this task. This result thus encouraged us to opt for the

best machine learning algorithm fitting our needs.

The well-developed Hidden Markov Models algorithm was thus chosen to build statis-

tical models of spoken phonemes in part B of this thesis, using the HTK toolbox to train

statistical models of either experimental or simulated spike train responses to sounds. The

interpretability of such generative modelling tools can indeed be crucial in understanding

results. However, in this quantitative study, we rely on the recognition accuracy as an overall

measure of performance, to evaluate the amount of information present in the spike trains

in a rate-code fashion. The parameters and processing were developed and optimised while

increasing the complexity of the given speech recognition task, starting with a simple si-

nusoid envelope discrimination task and culminating with a large-vocabulary-based dataset

containing multiple speakers and accents.

While still imperfect, such sparse representation of speech was found to be amenable to

170

a speech recogniser for a physiology experiment, using simulated data that amounts to an

electrophysiology experiment in a digit recognition task. On the other hand, this framework

did not yield satisfying results for a more complex speech dataset, namely a subset of the

TIMIT dataset that contains continuous speech at normal speed spoken by many speakers.

The ∼13% margin between the results obtained with simulated spike trains and these

obtained with spectrograms is enough to hope that, by improving the recognition framework,

a proportionally better large-vocabulary-based ASR on spike trains could be obtained and

tested on experimental data in order to probe how the brain processes complex and dynamical

sounds.

In so investigating, many intermediate conclusions were drawn regarding neural cod-

ing and the differences between different types of neurons, that form this work’s scientific

contributions.

First, in the Cochlear Nucleus, population level differences on the amount of Amplitude-

Modulation information that could be extracted reflected the impressive time precision with

which some types of neuron such as Onset cells encode information, and the low-pass filter

role that all units play as information processors at all sound levels (30, 50, 70 dB SPL). The

data-mining approach to compare auditory population coding with classification algorithms

is novel, shifting the classical view of chopper units as enhancing specific AM frequencies

to a low-pass information transmitter. Indeed, the classical band-pass at medium and high

sound levels using a synchronicity analysis [Frisina et al., 1990; Rhode and Greenberg, 1994]

is replaced by a low-pass shape for all sound levels. This low-pass shape is actually universal

among the CN unit types.

The guinea-pig cochlear model from [Sumner et al., 2003] was tested for the first time

on continuous speech datasets, used as it was intended as the front-end of an ASR system.

The Inferior Colliculus data collected by [Steadman, 2015] was tested with HMMs models

for the first time.

In the auditory nerve, the spontaneous rate of a fibre seems to be correlated with different

roles played by the High Spontaneous Rate fibres and the Low Spontaneous Rate fibres at

different sound levels. Contrary to the literature, our result supports the view that HSR

neurons have a higher capability at speech encoding using a rate coding than LSR units,

but require a lower sound level to work optimally. These conclusions ought to change when

considering a temporal code, necessary at high sound levels to circumvent the auditory nerve

saturation mechanism [Holmberg et al., 2007]. It seems that this shifting in roles as sound

level is increased is biophysically permitted by a combination of variation in their threshold of

activity and their dynamic range: HSR fibres have a low threshold and and a small dynamic

range, while LSR have a higher threshold and a larger dynamic range [Sumner et al., 2003].

This result is counter-intuitive since units with larger dynamic range might be thought of as

171

encoding more information — assuming the sound level is high enough to activate them.

The differences in Amplitude-Modulation encoding between Inferior Colliculus neurons

and simulated cochlear data are quite unclear: the latter provided better results when all

speakers were present in the training set, but worse results when one speaker’s responses

was removed from the training and comprised the whole test set. This hints at a neural pro-

cessing extracting useful speech-related features being extracted in the guinea-pig’s auditory

pathway.

These tests, made on the simulated response to speech datasets of increasing complexity,

show that a continuous digit recognition task is in principle amenable to an electrophysiolog-

ical experiment. Conditioned to a significant improvement of the framework, a fully-fledged

continuous speech recogniser on neural data, suited to an electrophysiology experiment, is

plausible.

In the past few years, modelling fields have gradually become more and more compu-

tational. The collection of always-expending amounts of data and the improvement of the

technology to process it have opened a route to let algorithms learn enough parameters to

replace what was once handcrafted by expert knowledge by automated methods. Following

this trend, Deep Learning ought to become common practice in all learning tasks, replac-

ing the drive to improve biophysical models to understand pending scientific questions in

Auditory Neuroscience with an increased use of data-driven discoveries.

However, the in viva recording of neural activity at the cellular level deep inside the brain

is still a huge challenge since it requires invasive methods that damage the area under study,

and also because no technology currently allows to track the neural information processed

by the millions of neurons reacting to any stimulus, hence limiting the questions scientists

may ask.

Methods and protocols to aggregate data and partial knowledge, thus developing a global

understanding of neural mechanisms through a shared data-driven simulated brain builder,

is likely to be the key to answering most Neuroscience open issues in the close future.

Our study blends in this trend, as it challenges a well-spread technology, the Hidden

Markov Models, well-suited to the amount of data we may gather from an electrophysiology

experiment, on one of the most complex auditory stimuli: human speech.

A plethora of classifiers and parameters were tested in this thesis; still, many limitations

pervade the presented work:

• A rate coding was assumed in all speech processing tasks. As concluded in [Holmberg

et al., 2007], a better use of temporal precision and the abundance of fibres are im-

172

portant to achieve high accuracies at sound levels other than 70-ish dB, and possibly

reach the accuracy obtained with spectrograms;

• Following [Steadman, 2015], a modification of the original filters was already ap-

plied in order to make sure that frequencies down to 100 Hz were represented in the

cochleograms. However, guinea-pigs have wider bandpass filters than humans, possibly

limiting the accuracy achievable;

• When simulating data using the cochlear model from [Sumner et al., 2003], a single

type of ANF is ever being tested in any given task, instead of a mixture of different

types of fibres as in real cochleas. They may however carry complementary information

at any set sound level;

• A training and testing validation protocol was used to reduce the important and lim-

iting calculation time. A cross-validation protocol would allow more robust statistics;

• The use of set features in the back-end block is motivated by the time constraints

imposed by electrophysiology experiments. It is possible that it already represents

enough data to allow Deep Learning methods to outperform any fixed set of features;

• Computational limitations were a bottleneck to test more processing and parameters;

• Real data has not been tested for the final tasks on continuous speech. It is unknown

whether an experiment lasting so long could provide data amenable to HMM mod-

elling, with current experimental electrophysiology technologies. Surely the digit task

has high chances for delivering acceptable results, as the dataset lasts for ten minutes

only;

• The number of Gaussian mixtures was kept small to reduce the number of times when,

using what HTK sees as ‘bad data’, HTK could not end its calculations;

• Timing information from the transcripts was not used, letting HTK find the word

boundaries by itself. This might have a deleterious effect on the HMM training;

• To avoid the computational burden that triphones bring, only phoneme-level HMMs

were used. However, using context-dependent statistical models might be necessary to

achieve an acceptable accuracy on complex speech dataset;

• While HMMs are powerful statistical models, the assumptions they rely on (such as

Gaussianity, number of mixtures or states) might restrict their modelling power. For

example, the word-level results on the sTIMIT dataset suffer a bias due to the necessity

to share a common word insertion penalty. The optimisation of this parameter on the

173

development set leads to a significant absence of short words such as articles, thus

decreasing the word-level accuracy. The use of a sentence-level recogniser ensuring

the grammatical correctness of the recognised sentence, as used by big technology

companies, should correct this.

Any change in these directions might lead to improvements in the accuracy. Naturally, sim-

plifying and extending the computational framework would greatly benefit additional tests.

This work can be extended by incorporating models of the central auditory system and

comparing the results with those obtained with experimental data coming from various nuclei

along the auditory pathway. Speech, then used as the default dynamical stimulus, would

allow the comparison of experimental and simulated data on highly complex and varied

neural codes, thus delineating the limits of models on more complex signals than the ones

they were built upon.

Another natural extension of this work is in the field of brain implant technologies, by

replacing spike train data by ECoG data [Mesgarani and Chang, 2012]. This semi-invasive

technology might become more well-spread in years to come, either to bypass speaking

disorders [Brunner et al., 2017] or to artificially enhance human mental abilities using electric

stimulations in a closed-loop circuit [Sitaram et al., 2017]. One could then train the models

to recognise sounds and words in real time, in order to let mute, locked-in or curious people

speak their mind [Pasley and Knight, 2013].

Regarding the ability of High Spontaneous Rate and Low Spontaneous Rate fibres to

encode speech, a deeper investigation on the reasons why HSR fibres gave better results

might shed light on the neural coding of speech in the Auditory Nerve Fibre at various

sound levels and background noise levels, thus leading to a better understanding of the rate

code and temporal code used by ANFs or CN units to deal with noise. Testing our framework

on a human cochlear model and adding features related to temporal coding [Holmberg et

al., 2007] is a natural first step in this direction.

On the machine learning side, this work extracts set features before applying a machine

learning algorithm. In both parts of this thesis, the front-end is based on set features. As

neural nets improve, they ought to replace or complement set features on smaller datasets,

thus guiding us to the most useful features present in the input.

Beyond speech recognition, relating trained models of phonemes to more abstract models

of speech intelligibility and of psychoacoustic would serve all disciplines involve.

Finally, as originally intended, one could conceive an experiment using simultaneous

speakers to probe the stream segregation mechanisms at different nuclei: using a technology

similar to that used in this thesis (HMMs) but able to recognise two sentences spoken at the

174

same time, we would expect that running the same experiment at various places along the

auditory pathway would shed light on where stream segregation takes place in the central

auditory system, assuming more abstract features of the sounds (here, phonemes) would

be extracted along the auditory pathway. This, in turn, should lead to improving our

understanding of how brains solve cocktail party problems. It is unknown whether guinea-

pigs would need to develop neural mechanisms for speech feature extraction, but since this

holds true for dogs, monkeys and parrots, animals able to be trained to respond to calls, it

may be a natural property of their auditory system to recognise phonemes, the same way we

easily recognise so many different types of complex noises (wind blowing, water drop, rain,

animal vocalisations).

175

Appendices

11.
Complements to Part A

11.1 Choice of Modulation Frequencies

This subsection gives in raw form, in figure 11.1 and table 11.2, the reason why the modu-

lation frequencies {50, 150, . . . , 1150} Hz were chosen in chapter III, as a good compromise

between a high number of smaller subsets satisfying the same conditions, and those condi-

tions being rich enough in range and number of modulation frequencies.

Modulation Frequencies (Hz)

Fig. 11.1 Representation of all modulation frequencies (x-axis) present in the 2118 spike
train datasets (y-axis; grouping of spike trains corresponding to a single animal, a single
neuron, a single modulation level). Colouring is for illustration purposes only.

177

modFreqs LowF PL PLN ChT ChS OnL OnI OnC PBU Unu UNC
[] 370 370 370 370 444 444 152 152 339 339 58 58 15 15 74 74 179 179 43 43 74 74
50 354 292 370 273 427 358 152 134 317 280 58 34 15 0 66 47 179 129 43 25 74 47

50,100 263 208 56 25 75 45 19 14 146 122 3 2 2 0 6 4 78 48 0 0 19 12
50:50:150 263 206 56 24 75 43 19 14 146 121 3 2 2 0 6 4 78 42 0 0 19 12
50:50:650 154 60 56 5 75 16 19 10 145 62 3 2 2 0 6 4 78 19 0 0 19 6
50:50:850 108 24 56 4 69 13 19 6 144 45 3 2 2 0 6 1 78 4 0 0 16 0
50:50:1050 30 5 24 1 32 11 9 4 79 16 3 0 2 0 3 1 27 2 0 0 0 0

50,150 348 274 309 207 420 339 150 126 317 273 55 28 15 0 66 46 176 111 43 20 68 41
50:100:250 342 246 309 199 420 329 150 121 317 264 55 25 15 0 66 39 176 103 43 20 68 39
50:100:350 327 219 309 184 420 321 150 119 317 252 55 22 15 0 66 37 176 102 43 19 68 33
50:100:550 272 148 309 167 420 287 150 106 316 229 55 17 15 0 66 31 176 87 43 18 68 32
50:100:750 217 80 309 156 417 268 150 96 316 190 55 16 15 0 66 30 176 61 43 13 65 23
50:100:950 171 52 309 136 414 238 150 85 313 132 55 13 15 0 66 25 173 40 43 7 61 21

50:100:1150 98 23 271 112 375 212 140 61 253 85 55 10 15 0 63 19 113 21 43 4 49 21
50:100:1350 72 1 262 90 360 177 134 37 247 49 52 10 15 0 63 11 108 10 43 2 49 18
50:100:1550 52 1 259 73 360 134 134 18 244 23 50 6 15 0 61 8 105 4 43 2 46 10
50:100:1750 50 1 234 50 353 96 129 9 218 15 46 2 15 0 59 3 87 0 40 0 45 8
50:100:1950 41 1 234 37 353 76 129 4 218 7 46 2 15 0 56 2 84 0 31 0 45 6
50:100:2150 36 0 231 22 350 41 127 0 215 3 46 2 15 0 53 0 81 0 29 0 45 6
50:100:2350 36 0 231 17 350 24 127 0 215 3 46 0 15 0 53 0 81 0 29 0 45 3
50:100:2550 36 0 231 9 350 12 127 0 215 3 46 0 15 0 53 0 81 0 29 0 45 2
50:100:2750 3 1

100 269 219 56 26 75 47 19 14 148 125 3 2 2 1 6 4 78 49 0 0 19 12
100,200 260 198 56 24 75 41 19 14 148 119 3 2 2 0 6 4 78 42 0 0 19 12

100:100:1000 90 20 56 4 69 13 19 4 138 27 3 0 2 0 6 1 75 2 0 0 12 0
100:100:2000 3 0 12 0 15 0 9 0 57 0 0 0 2 0 3 0 12 0 0 0 0 0

Tab. 11.2 This table contains the number of datasets (grouped spike trains coming from a
single animal, a single neuron, and a single modulation frequency), per cell type, containing
certain modulation frequencies (first column, in Matlab notation min:step:max). In black,
the number of datasets of each cell type that contains responses of the modulation frequencies
given in the left column. In grey, the number of datasets where each modulation frequency
tested verifies certain conditions: that for each modulation frequency in the array of the left
column, there be at least 25 spike trains each containing at least 2 spikes. The modulation
frequencies used in the numerical experiment were selected based on the following trade-off:
having enough modulation frequencies in each dataset, and having enough datasets. The
list of modulation frequencies 50, 150, . . . , 1150 Hz was chosen as a result. The vectors of
modulation frequencies were chosen based on figure 11.1.

11.2 Synopsis of all Weka classifiers used

This section gives the implementation of the features used in chapter III, for each processing,

referred to by the three keywords ‘ISI’, ‘timeBined’ and ‘spikeMetric’.

178

11.2.1 Cleaning

The spike trains used are the first non-empty 25 spike trains of each dataset, keeping only

the spikes occurring between 20 ms and 100 ms.

11.2.2 Preprocessing

The spike trains are preprocessed in 3 ways, and saved in ARFF files for later use by Weka.

• ISI: (parameter-free)

– First, @(spkTr)diff([0 spkTr]) is applied to each spike train;

– From each ISI train, a list of features is extracted:

Mean= @(x)mean(x);

secondElem= @(x)x(2);

thirdElem= @(x)x(3);

meanfunc1= @(x)mean(1./x(2:end));

varISI= @(x)log(1+var(x));

getRidFirstElement= @(x)(x(2:end));

accel= @(x)(x-circshift(x,[1,1]));

varAccel= @(x)var(accel(getRidFirstElement(x)));

numSpikes= @(x)length(x);

CV= @(x)(mean(x))ˆ2/var(x);

CX= @(x)log((var(x))ˆ3/skewness(x)ˆ2);

CY= @(x)log((var(x))ˆ3/skewness(x)ˆ2)/mad(x);

FourMRe= @(x)mean(real(fft(x)));

FourVRe= @(x)var(real(fft(x)));

FourMIm= @(x)mean(imag(fft(x)));

FourVIm= @(x)var(imag(fft(x)));

histo_short = @(x)histc(x,0:0.2:4);

– Print out these values in the ARFF file, preceded by the modulation frequency

associated with the spike train.

• timeBined (1 parameter: bin size)

– Get the maximal spike train duration (i.e. the maximal value among all our spike

trains);

– From that and the step size, infer the number of bins required

(ceil(maxTrainDur/timeStep);)

179

– Replace all spike trains by an array of integers every bin; each number being the

number of spikes that were in this time window;

– Print out this rectangular matrix, with their attribute to classify.

• spikeMetric (2 parameters: metric with own parameters (cost for Victor & Purpura

d(·, ·, c)), transformation kernel k)

– The implementation of the Victor & Purpura metric (described in figure III.6)

used comes from SPIKY [Kreuz et al., 2014];

– From the spike trains x1, . . . , xN , is created theN2 matrixD = (d(xi, xj, c))i,j∈{1...,N};

– The kernel k is applied to every element of D: K = (k(d(xi, xj, c)))i,j∈{1...,N};

– The matrix is printed out in a .matrix file, preceded by the size of the matrix;

– A .arff file containing 2 attributes is saved: identifier and class.

‘identifier’ is a nominal attribute with N instances (row1, row2, . . . , rowN),

‘class’ is the nominal attribute to classify,

so that there are N lines of data: {row1, modFreq1},... {rowN, modFreqN}.

11.2.3 Classifiers

A high number of classification algorithms is run on the .arff files and statistics are extracted

after 10-fold cross-validation; more measures based on the confusion matrices were tested

but not included in this work to reduce redundancy. These are all given below.

• Apply weka filters

– Put class as the last attribute.

• Extract

– Percentage of correct classification;

– Confusion matrix;

– Number of instances;

– Kappa statistic;

– K&B information;

– Weighted Area under ROC.

• Run [java notation: “Class (package)” otherwise called by “package.Class”]

Synopsis based on http://wiki.pentaho.com/display/DATAMINING/Data+Mining+

Algorithms+and+Tools+in+Weka.

180

http://wiki.pentaho.com/display/DATAMINING/Data+Mining+Algorithms+and+Tools+in+Weka
http://wiki.pentaho.com/display/DATAMINING/Data+Mining+Algorithms+and+Tools+in+Weka

– AdaBoostM1 (meta) Class for boosting a nominal class classifier using the Ad-

aboost M1 method. Only nominal class problems can be tackled. Often dramat-

ically improves performance, but sometimes overfits.

– BFTree (trees) Class for building a best-first decision tree classifier. This class

uses binary split for both nominal and numeric attributes. For missing values,

the method of ’fractional’ instances is used.

– Bagging (meta) Class for bagging a classifier to reduce variance. Can do clas-

sification and regression depending on the base learner (classifier or regression

algorithm).

– BayesNet (bayes) Bayes Network learning using various search algorithms and

quality measures. Base class for a Bayes Network classifier. Provides datastruc-

tures (network structure, conditional probability distributions, etc.) and facilities

common to Bayes Network learning algorithms like K2 and B.

– ClassificationViaClustering (meta) A simple meta-classifier that uses a clus-

terer for classification. For cluster algorithms that use a fixed number of clusterers,

like SimpleKMeans, the user has to make sure that the number of clusters to gen-

erate are the same as the number of class labels in the dataset in order to obtain

a useful model.

– ClassificationViaRegression (meta) Class for doing classification using regres-

sion methods. Class is binarised and one regression model is built for each class

value.

– DecisionStump (trees) Class for building and using a decision stump. Usually

used in conjunction with a boosting algorithm. Does regression (based on mean-

squared error) or classification (based on entropy). Missing is treated as a separate

value.

– END (meta) A meta classifier for handling multi-class datasets with 2-class clas-

sifiers by building an ensemble of nested dichotomies.

– FilteredClassifier (meta) [Default filter used] Class for running an arbitrary

classifier on data that has been passed through an arbitrary filter. Like the clas-

sifier, the structure of the filter is based exclusively on the training data and test

instances will be processed by the filter without changing their structure.

– IB1 (lazy) Nearest-neighbour classifier. Uses normalised Euclidean distance to

find the training instance closest to the given test instance, and predicts the same

class as this training instance. If multiple instances have the same (smallest)

distance to the test instance, the first one found is used.

– IBk (lazy) K-nearest neighbours classifier. Can select appropriate value of K

based on cross-validation. Can also do distance weighting.

181

– J48 (trees) Class for generating a pruned or unpruned C4.5 decision tree.

– JRip (rules) This class implements a propositional rule learner, Repeated Incre-

mental Pruning to Produce Error Reduction (RIPPER). See references on Weka

website.

– KStar (lazy) K* is an instance-based classifier, that is the class of a test instance

is based upon the class of those training instances similar to it, as determined by

some similarity function. It differs from other instance-based learners in that it

uses an entropy-based distance function.

– LADTree (trees) Class for generating a multi-class alternating decision tree using

the LogitBoost strategy.

– LWL (lazy) Locally weighted learning. Uses an instance-based algorithm to as-

sign instance weights which are then used by a specified WeightedInstancesHan-

dler. Can do classification (e.g. using naive Bayes) or regression (e.g. using linear

regression).

– LogitBoost (meta) Class for performing additive logistic regression. This class

performs classification using a regression scheme as the base learner, and can

handle multi-class problems.

– MultiClassClassifier (meta) A metaclassifier for handling multi-class datasets

with 2-class classifiers. This classifier is also capable of applying error correcting

output codes for increased accuracy.

– Multischeme (meta) Class for selecting a classifier from among several using

cross validation on the training data or the performance on the training data.

Performance is measured based on percent correct (classification) or mean-squared

error (regression).

– NaiveBayes (bayes) Class for a Naive Bayes classifier using estimator classes.

Numeric estimator precision values are chosen based on analysis of the train-

ing data. For this reason, the classifier is not an UpdateableClassifier (which

in typical usage are initialized with zero training instances) – if you need the

UpdateableClassifier functionality, use the NaiveBayesUpdateable classifier. The

NaiveBayesUpdateable classifier will use a default precision of 0.1 for numeric

attributes when buildClassifier is called with zero training instances.

– OneR (rules) Class for building and using a 1R classifier; in other words, uses

the minimum-error attribute for prediction, discretizing numeric attributes.

– PART (rules) Class for generating a PART decision list. Uses separate-and-

conquer. Builds a partial C4.5 decision tree in each iteration and makes the ‘best’

leaf into a rule.

182

– REPTree (trees) Fast decision tree learner. Builds a decision/regression tree

using information gain/variance and prunes it using reduced-error pruning (with

backfitting). Only sorts values for numeric attributes once. Missing values are

dealt with by splitting the corresponding instances into pieces (i.e. as in C4.5).

– RandomForest (trees) Class for constructing a tree that considers K randomly

chosen attributes at each node. Performs no pruning.

– RandomSubSpace (meta) This method constructs a decision tree based classi-

fier that maintains highest accuracy on training data and improves on generali-

sation accuracy as it grows in complexity. The classifier consists of multiple trees

constructed systematically by pseudorandomly selecting subsets of components of

the feature vector, that is, trees constructed in randomly chosen subspaces.

– RandomTree (trees) Class for constructing a forest of random trees.

– RBFClassifier (functions) Class implementing radial basis function networks for

classification, trained in a fully supervised manner using WEKA’s Optimisation

class by minimising squared error with the BFGS method. Note that all attributes

are normalised into the [0,1] scale. The initial centres for the Gaussian radial basis

functions are found using WEKA’s SimpleKMeans. The initial sigma values are

set to the maximum distance between any centre and its nearest neighbour in the

set of centres.

– Ridor (rules) An implementation of a RIpple-DOwn Rule learner. It generates

a default rule first and then the exceptions for the default rule with the least

(weighted) error rate. Then it generates the ‘best’ exceptions for each exception

and iterates until pure. Thus it performs a tree-like expansion of exceptions.The

exceptions are a set of rules that predict classes other than the default. IREP is

used to generate the exceptions.

– SimpleCart (trees) Class implementing minimal cost-complexity pruning. Note

when dealing with missing values, use ‘fractional instances’ method instead of

surrogate split method.

– SimpleLogistic (functions) Classifier for building linear logistic regression mod-

els. LogitBoost with simple regression functions as base learners is used for fitting

the logistic models. The optimal number of LogitBoost iterations to perform is

cross-validated, which leads to automatic attribute selection.

– SMO (functions) Sequential minimal optimisation algorithm for training a sup-

port vector classifier. This implementation globally replaces all missing values and

transforms nominal attributes into binary ones. It also normalises all attributes by

default. Multi-class problems are solved using pairwise classification (1-vs-1 and

if logistic models are built pairwise coupling according to Hastie and Tibshirani,

183

1998). To obtain proper probability estimates, use the option that fits logistic

regression models to the outputs of the support vector machine. In the multi-

class case the predicted probabilities are coupled using Hastie and Tibshirani’s

pairwise coupling method.

– ZeroR (rules) Class for building and using a 0-R classifier. Predicts the mean

(for a numeric class) or the mode (for a nominal class).

– The following classifiers were not used for being too slow on the previous tests:

Dagging (meta), MultilayerPerceptron (functions), NaiveBayesMultino-

mial (bayes), Logistic (functions), LMT (trees).

11.3 Scatter Plots

Figure 11.3 allows us to check that for NaiveBayes, LogitBoost and SimpleLogistic classifiers,

the distribution of measures with respect to the unit type is about the same on all scatter

plots or histogram as it was on MultiClassClassifier, SMO and END. This is given in addition

to figure IV.3, where the points issued from the NaiveBayes, LogitBoost and SimpleLogistic

classifiers were on top of each other.

184

NaiveBayes LogitBoost SimpleLogistic

Fig. 11.3 On the first row are the accuracy histograms using all results obtained with
NaiveBayes (left column), LogitBoost (middle column) and SimpleLogistic (right column)
algorithms on all datasets of chapter III. On the second and third row are the scatter plots
of accuracy VS KBI and AUC, respectively. Points are coloured by unit type; see legend.

185

12.
Complements to Part B

12.1 Probability Theory

12.1.1 Random Variables and Probability Density Functions

Modern Probability is based on notions from the mathematical fields of Topology and mea-

sure theory, such as measurability, down to the definition of its most basic concept, the

random variable. See [Williams, 1991] for an accessible account of measure theory in Prob-

ability, and for all proofs of basic Probability properties asserted in the below.

Let Ω be a set - the field of real numbers R is the main focus here, together with the

Euclidian spaces Rn. Let’s define a topology T on Ω as a family of subsets of Ω such that

• T contains Ω and the empty set,

• any union of elements of T is an element of T ,

• any intersection of finitely many elements of T is an element of T .

The elements of a topological space (Ω, T) are called open sets, and their complementary

sets are called closed. In this thesis, topological spaces are generated by open intervals in R,

or their cartesian product in Rn, on which is assumed the existence of the Lebesgue measure,

such that the measure of any interval]a, a+ ε[is ε > 0.

When an experiment is performed (such as rolling a dice, playing darts, submitting a grant

proposal), there usually is a wide range of outputs Ω on which one can define a measure P
such that P(Ω) = 1. This is a probability measure. A (real) random variable is defined as a

function mapping each output ζ ∈ Ω of the experiment to a number X(ζ) ∈ R∪{±∞} with

the requirements of being infinite with null probability (i.e. P(X ∈ {±∞}) = 0), and that

of being measurable, which is a topological requirement that usually ensures one is using

well-defined sets1. We systematically make this assumption, in order to be able to use sets

of the form {X ≤ a} := {ζ ∈ Ω/X(Ω) ≤ a}2. They form a useful subfamily of the larger

family of measurable sets, usually called events in a probability context.

1The Banach-Tarsky paradox states that the axiom of choice allows for the construction of nonmeasurable
sets used to cut a ball into 2 balls each having the original ball’s volume. In light of such phenomena, working
with measurable sets is a safety net.

2Note this notation does not explicitly use the probability space Ω; a common habit in probability.

186

For X a real random variable, the elements of Ω that are in the set {X ≤ x} change

as x takes different values. This allows us to define the distribution function of the random

variable X as

FX(x) = P(X ≤ x). (12.1)

This function is increasing and right-continuous, converges to 0 when x tends to −∞ and

to 1 when x tends to +∞. It is continuous if and only if X has no atom, no single value

x ∈ R such that P(X = x) > 0. Whenever the function FX can be written as

FX(x) =

∫ x

−∞
fX(t) dt, (12.2)

for a positive function fX of total mass 1, the function fX is called the probability density

function (pdf) of the random variable X, also called its law. This concept of pdf proved

itself to be very useful in Probability and Statistics. The most common examples of pdfs are

for Normal (Gaussian) random variables, exponential, gamma and uniform distributions, all

appearing in this work.

Gaussian Distribution

We say that X is a Normal or Gaussian random variable with mean µ and variance σ2 if its

density function is given by

fX(x) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
. (12.3)

Exponential Distribution

We say that X has an exponential distribution with parameter λ > 0 if its distribution

density is given by

fX(x) =

{
λ exp(−λx) x ≥ 0,

0 otherwise.
(12.4)

Uniform Distribution

Let A be a Borel set with positive and finite Lebesgue measure 0 < L(A) < +∞. The

uniform distribution over A is defined by the distribution

fX(x) =

{
1

L(A)
x ∈ A,

0 otherwise.
(12.5)

12.1.2 Sampling from a Known Probability Density Function

Sampling from a continuous distribution fX means that generating data in such a way

that around every point x ∈ R, the probability that the generated sample belongs to the

187

infinitesimal interval [x, x + dx] is fX(x) dx. For example, for a uniform distribution, any

interval [x, x+ dx] for x ∈ A but not on its border has the same probability to contain the

sampled value, for dx an infinitesimal quantity.

It is often important to be able to generate samples drawn from a chosen distribution,

typically to test an hypothesis. Classical programming languages (Matlab, C, python, . . .)

have efficient random or pseudo-random number generators for the classical laws.

12.1.3 Estimating an Unknown Probability Density Functions

Once we have accumulated data points corresponding to different sampling distributions -

in our example, the information corresponding to the walk - we model each feature vector

X as being drawn from a pdf characterised by the unknown parameter λ that we want

to estimate. Until we make further assumptions, we are facing a non-parametric problem,

because each of these densities is unknown (thus belongs to an infinite dimensional space of

admissible functions) and has to be guessed from a finite-size sample. The problem becomes

simpler when one assumes these densities belong to a finite-dimensional set of parameters:

for example, we can reduce the dimensionality to one, by assuming that the distribution

belongs to the exponential family. This trade-off between richness of the model and easiness

to fit a good model is always a modelling choice.

12.2 Spike Train Simulation

The cochlear model used for this thesis [Sumner et al., 2003] outputs the firing rates at

the required BFs at a sample rate of 100 kHz. The generated spike trains are modelled as

inhomogeneous Poisson processes, on which we enforce a random refractory period. Imposing

refractoriness actually modifies the law of probability of the final point process, so that the

PSTH should converge to another law. This section presents the spike train modelling

(see figure 12.1), the different algorithms used for spike generation, and how refractoriness

impacts the spiking probability.

12.2.1 Generating Poisson Processes

12.2.1.1 Definition of Poisson Processes

An arrival process is a sequence of increasing random variables 0 < T1 < T2 < . . . called

arrival times. A renewal process is an arrival process for which the sequence of inter-arrival

times (Ti+1 − Ti)i∈N is a sequence of independent and identically distributed (IID) random

variables. A Poisson process or homogeneous Poisson process is a renewal process in which

the interarrival intervals have an exponential distribution function; i.e., for some real λ > 0

called rate or intensity, each (Ti+1 − Ti) has the density f(x) = λ exp(−λx)1R+(x), where

188

0 100 200 300 400 500 600 700 800 900 1000

Time (ms)

0

50

100

150
F

iri
ng

 r
at

e
(#

sp
ik

es
/s

)

Fig. 12.1 Spike train generation with two different sinusoidal rates using the thinning al-
gorithm, without refractoriness to emphasise the higher spiking activity where the rate is
high. Spikes are shown as points along the horizontal line with ordinate the maximal rate
(150 and 70 spikes per second, respectively).

1R+ denotes the Heaviside function.

Theorem: For a Poisson process N of rate λ > 0, we have, for 0 < s < t,

P(Nt −Ns = n) =
(λ(t− s))n exp(−λ(t− s))

n!
.

Alternatively, this property could be used to define a Poisson process. We will actually

use it for the following definition: An inhomogeneous Poisson Process N is a counting process

with a non-constant intensity function λ(t) ≥ 0, t ≥ 0 if

• N(0) = 0,

• For each t > 0, N(t) has a Poisson distribution with mean m(t) =
∫ t

0
λ(s) ds,

• The interarrival times are independent random variables.

Theorem: For an inhomogeneous Poisson process N with rate λ(t), we have, for 0 < s < t

P(Nt −Ns = n) =

(∫ t
s
λ(u)du

)n
exp

(
−
∫ t
s
λ(u)du

)
n!

.

We now present two ways to simulate an inhomogeneous Poisson processes, with a short

discussion on their complexity and efficiency. The take-home message being that the thinning

method is recommended when working with a bounded rate, as it is exact, usually faster,

and does not require any integration.

189

12.2.1.2 Simulation of Poisson Processes

Homogeneous Poisson Processes Simulation

A homogenous Poisson process with constant parameter λ̄ > 0 is defined by a sequence of

independent random variables following an exponential distribution of parameter λ̄. We can

simulate each of these exponential variables as

E = − ln(U)/λ̄, (12.6)

where U is a uniform variable U ∼ U([0, 1]). Indeed, its cumulative function is for y ∈ R +,

P(E ≤ y) = P(− ln(U)/λ̄ ≤ y) = P(U ≥ e−λ̄y) = 1− e−λ̄y

and is 0 for y < 0, which is the cumulative function of an exponential distribution of param-

eter λ̄ and cumulative distributions characterise the law of real random variables.

We now present two methods to simulate an inhomogeneous Poisson process with rate

λ(t) ≥ 0. The methods’ names are not standardised.

Inhomogeneous Poisson Processes Simulation by the Binning Method

If we are working in a discrete time setting ti = iδ/n, we might want to simulate our Poisson

process by choosing randomly in which bin a spike took place. This is referred to as the

binning method. We know the probability of having a spike in the first bin:

P(N δ
n

= 1) = e−
∫ δ
n

0 λ(t) dt

∫ δ
n

0

λ(t) dt,

and we will use the two approximations es = 1+s+s2/2+o(s2), λ(s) = λ(0)+λ′(0)s+o(s).

Hence ∫ s

0

λ(t) dt =

∫ s

0

(λ(0) + λ′(0)t+ o(t)) dt = λ(0)s+ λ′(0)s2/2 + o(s2)

and

P(Ns = 1) =

(
1−

∫ s

0

λ(t) dt+
1

2

(∫ s

0

λ(t) dt

)2

+ o(s2)

)∫ s

0

λ(t) dt

=

(
1− (λ(0)s+ λ′(0)s2/2) +

1

2

(
λ(0)s+ λ′(0)s2/2

)2
+ o(s2)

)
(λ(0)s+ λ′(0)s2/2 + o(s2))

= λ(0)s+
(
λ′(0)/2− λ(0)2

)
s2 + o(s2),

190

leading to

P(N(i+1)δ/n −Niδ/n = 1) = λ

(
iδ

n

)
δ

n
+

(
λ′
(
iδ

n

)
/2− λ

(
iδ

n

)2
)(

δ

n

)2

+ o(n−2).

At the second order, we need to account for the probability of having two spikes in a bin:

P(N(i+1)δ/n −Niδ/n = 2) = e
−

∫ (i+1)δ
n

iδ
n

λ(t)dt

(∫ (i+1)δ
n

iδ
n

λ(t)dt

)2

= λ

(
iδ

n

)2
δ2

n2
+ o(n−2)

and no higher term

P(N(i+1)δ/n −Niδ/n ≥ 3) = o(n−2).

Since we need to do this approximation n times for a time period of one second, this gives

us an error of order 1/n, counting the spikes we missed in the bins.

Expectation of the ISI for a Homogeneous Poisson Process

The expectation of an exponential variable E with parameter λ is readily calculated:

E(E) =

∫ +∞

0

λte−λt dt =
1

λ
. (12.7)

Expectation of the ISI distribution by binning

Having an ISI of k bins when simulatng a Poisson process of fixed parameter λ with 0 ≤ λ ≤ 1

is equivalent to having k−1 consecutive 0’s and a 1, drawing k times a Bernouilli distribution

with parameter λ, which is to say that this law follows a geometric distribution of parameter

λ, of which we calculate the expectation:

P(ISIb = k) = (1− λ)k−1λ

E(ISIb) =
1

λ
.

For values of λ higher than 1, our algorithm still compares the ‘probability’ with a uniform

variable smaller than one, so that

∀λ > 0, fb(λ) := E(ISIb(λ)) = max

(
1,

1

λ

)
, (12.8)

which is the actual expectation for the ISI of a real Poisson process as long as 0 ≤ λ ≤ 1

(see formula 12.7) and is numerically verified in figure 12.3.

Inhomogeneous Poisson Processes Simulation by the Thinning method

Let (Nt)t≥0 be a Poisson(λ̄) process, with fixed positive and finite λ̄ ≥ maxt(λ(t)). We

191

simulate it by summing independent exponential variables Exp(λ̄). Once we have this spike

train (Ti)1≤i≤N , we keep each spike Ti with probability λ(Ti)/λ̄. It gives us the counting

process (Ñt)t≥0 with non-constant rate λ(t) ≥ 0. We verify it is an inhomogeneous Poisson

process:

P(Ñt+ dt − Ñt = 1) = P (Nt+ dt −Nt = 1; this spike is kept)

+ P(Nt+ dt −Nt ≥ 2; all spikes but one removed).

By independence of the thinning process with the counting process N and 0 ≤ λ(t)/λ̄ ≤ 1,

P (Nt+ dt −Nt = 1; this spike is kept) = P
(
Nt+ dt −Nt = 1)× P(U([0; 1]) ≤ λ(t)/λ̄

)
= λ̄ dt× λ(t)/λ̄,

and the other term is negligible at this scale

P(Nt+ dt −Nt ≥ 2; all spikes but one removed) ≤ P(Nt+ dt −Nt ≥ 2) = o(dt).

As such, since a differential value is only the first order term,

P(Ñt+ dt − Ñt = 1) = λ(t) dt.

This, along with independence of the increments - a property of (Ñt) directly inherited from

(Nt) - and P(Ñt+s − Ñt ≥ 2) ≤ P(Nt+s − Nt ≥ 2) = o(s) characterises a nonhomogeneous

Poisson process [Pasupathy, 2011]. This semi-rigorous proof (lacking filtrations and such

measure theory) can be made entirely rigorous and sample path-dependant. [Daley and

Vere-Jones, 2003]. It is verified in figure 12.2 that the averaged histogram of the events

converge to the rate.

Expectation of the ISI distribution by thinning

The thinning method for a constant Poisson parameter λ generates exponential variables

with this parameter, and we obtain the binning by keeping its ceiling, or equivalently the

integer part of the obtained real value and adding one (it is equivalent because an exponential

variable has no atom). Assuming that E follows an exponential variable, we can calculate

the probability that the ISI is k ∈ N ∗, and from it derive the expectation of the mean ISI:

P(ISIt = k) = P(E ∈ [k − 1, k[) =

∫ k

k−1

λe−λt dt = e−λ(k−1)(1− e−λ)

192

Fig. 12.2 Renormalised histograms for two chosen rates (λ(t) = 20 + 10 sin(4πt) and λ(t) =
20 + 30 sin(4πt), respectively) to verify over 50000 repetitions that the thinning algorithm
was simulating the correct rate (red curve). The higher the rate, the faster the convergence
of the averaged histogram towards the fluctuating rate.

for which we can calculate the expectation:

∀λ > 0, ft(λ) := E(ISIt(λ)) =
1

1− e−λ
, (12.9)

which is numerically verified in figure 12.3. This value overshoots the real expectation λ−1

(12.7) because of the ceiling effect of this procedure: if multiple spikes were allowed within

a bin, this effect would disappear. In practice however, we do not need to do anything: the

refractoriness removes all issues that this overestimation might have. As seen on figure 12.3,

when simulating the spike trains with a refractory effect (uniform between 0.75 ms and 1.5

ms), the binning method and the thinning method are in agreement.

12.2.1.3 Discussion of the methods

As shown in figure 12.3, the statistics for small rates are very similar, depart when the rate

gets close to one, and of course is constant for the binning method for λ ≥ 1 since a spike

occurs in each bin while it converges nicely for the binning method. We recommend the

thinning method, as it is exact and is faster for small values of the rate (it does not thin out

too many points if the input verifies certain properties [Ross, 2006; Cox and Isham, 1980],

as shown in figure 12.4).

12.2.2 Law of a Poisson Process with Random Refractoriness

Refractoriness refers to the latency between two consecutive action potentials. An absolute

refractory period first occurs, during which a neuron simply won’t emit another action po-

193

100 102 104 106

Poisson Rate (spikes/s)

100

101

102

103

104

105

M
ea

n
ra

te
 (

sp
ik

es
/s

)

Thinning with refractoriness
Binning with refractoriness
Thinning method
Expectation by thinning (f t)

Binwise simulation
Expectation by binning (f b)

Fig. 12.3 Average rates (in number of spikes per second) when simulating a Poisson process
with constant parameter λ (x-axis), and the associated theoretical expectations ft and fb (see
formulae 12.8 and 12.9; they were inverted and multiplied by the sampling rate 1e-5). The
mean rate obtained when applying the refractoriness (U([0.75, 1.5]) ms) with each method
is also given; both converge to 1e5/112.5 = 888.89 spikes per seconds, 112.5e-5 s being the
mean refractory period - which would be the only cause for the ISI if the rate was infinite.

tential. After this, a relative refractory period happens, during which a neuron will require

a stronger input than it normally does to be able to spike. After this time (3 ms at most),

the neuron is back to its normal excitability.

This refractory period is modelled the following way: the refractory period is modelled as

a uniform variable between 0 and 0.75 ms, adding up to an absolute refractory period of 0.75

ms. After generating the inhomogeneous Poisson process (t1, t2, . . .) and reading the spike

train in time, at each spike time ti, we generate a random refractory period ri (ri between

drawn as a uniform variable between 0.75 ms and 1.5 ms), and remove all spikes happening

between time ti and ti + ri. This is summarised in the pseudo-code 2.

Applying a refractoriness to this Poisson process has an effect on the average presence

of spikes: instead of converging to the rate λ(t), a renormalised histogram of the spike

trains with refractoriness should converge to another law related to λ. The formula (3) from

[Meddis and Hewitt, 1991] was corrected, which gives for discrete times nδ, for n = 1, 2, . . . ,

194

10 -5 10 -4 10 -3 10 -2 10 -1 100

Probability of firing / rate

10 -2

10 -1

100

C
al

cu
la

tio
n

T
im

e
(s

)

Thinning method
Binning method

Fig. 12.4 Comparison of calculation time to simulate a Poisson process of fixed parameter
(in abscissa) without refractoriness. In practice, times were averaged over 5 repetitions,
generating a 10 millions-long array, using a mex file.

starting by initialising at the intial time by λref (δ) = λ(δ) and

∀n ≥ 1, λref ((n+ 1)δ) = λ((n+ 1)δ)

(
1−

n∑
i=1

λref ((n− i)δ)(1−W (iδ))

)
, (12.10)

where W is the cumulative distribution of the refractory period, which is in our case, in

continuous time t (in ms)

W(t) =


0 if < 0.75,

(t− 0.75)/0.75 if 0.75 ≤ t < 1.5,

1 if t > 1.5,

(12.11)

and we checked the convergence of a 10000 spike trains during a window of 0.01s; see fig-

ure 12.5.

195

Algorithm 2 Generating an Inhomogeneous Poisson Process with Uniform Refractoriness

1: procedure InhomogeneousPoissonProcess
2: λ̄← max(λ) % Assumed finite
3: T ← −log(rand())/λ̄ % Generating an exponential(λ̄) random variable
4: n← 0
5: while T < Tmax do
6: if rand() < λ(T)/λ̄ then % Thinning out spikes
7: n← n+ 1
8: tn ← T % Sequence of spike timing

9: T ← T − log(rand())/λ̄ % Adding an exponential(λ̄) random variable

10: procedure Recfractoriness
11: T ← 0
12: t̃1 ← t1
13: n← 1
14: while Some spikes haven’t been reached do
15: r ← uniform(0.75, 1.5) % Uniform variable between 0.75 and 1.5 ms
16: t̃n+1 ← inf{ti|ti > t̃n + r} % Sub-sequence of spike timing
17: n← n+ 1

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Time (s)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

R
at

e

6

PSTH without refractoriness
6 ref

PSTH with refractoriness

Fig. 12.5 Comparison of the rate λ and the PSTH of many spike trains generated from
it, and the same with refractoriness, either encoded in the spike train simulation (using
algorithm 2) or inferring the limit law from the initial probability (using formula 12.10).

196

12.2.3 Limitation Using the Thinning Method

In our implementation of the thinning algorithm, a Poisson process with fixed parameter

λ̄ > 0 is first generated, simulating its interevent intervals as a sequence of exponential

variables of parameter λ̄, by using the formula 12.6. These increments are obtained as

E = − ln(rand())/λ̄, (12.12)

where rand() is a sampled uniform variable between 0 and 1. To simulate the uniform

distribution, we use the C function rand(), which outputs an integer uniformly distributed

between 0 and RAND_MAX, this value being 2147483647 on our computer. To avoid the

difficulties of dealing with log(0)3, the uniform distribution was simulated as

U =
rand() + 1.0

RAND MAX + 1.0
,

giving us a uniform variable varying between 1/2147483647 and 1, thus giving exponen-

tial variables varying between 0 and Emax = − ln(1/2147483647)/λ̄. For λ̄ = 0.1s−1, this

approximates as Emax ≈ 214.89 seconds. The probability to have higher ISIs is fairly small

P(Exp(0.1) > 214.89) = e−0.1∗214.89 ≈ 4.65 ∗ 10−10,

thus justifying this approximation.

12.3 An Alternative View of Supervised Learning

This subsection develops a view on evaluating Supervised Learning framework that reduces

relying on given labels as ground truth.

Let’s assume we are given the classes of a test set {x1, . . . , xn} guessed by two classifiers

C1 and C2, where each xi has a real labeled li, knowing that the labels belong to the set

L = {1, . . . , nl}. Let’s add a third, abstract classifier CT that outputs the real labels of the

test instances, meaning that for all k, the classifier CT , when tested on xk, would output lTk ,

with lTk = lk, the real class of xk. This means we have the table 12.6 of output labels from

which we can compute the three following matrices, where i and j belong to {1, . . . , nl}4:

3The column values where a spike train occurs where obtained as

col = (int) expo with expo = (double) -log(U)/L,

the maximal λ being saved in L and U being a uniform sample between 0 and 1 detailed above. Allowing
U = 0 and hence expo = +∞ can be problematic since ‘(int)inf’ is not defined in C and we’d obtain the
negative number col = −2147483648.

4We use a logical writing similar to Matlab’s to define the matrices’ coefficients by convenience. Equiv-
alently: C1(i, j) :=

∑n
k=1 δ(l

T
k − i) ∗ δ(l1k − j).

197

• The confusion matrix for the classifier C1: C1(i, j) :=
∑n

k=1(lTk == i & l1k == j);

• The confusion matrix for the classifier C2: C2(i, j) :=
∑n

k=1(lTk == i & l2k == j);

• The agreement matrix between C1 and C2: C1,2(i, j) :=
∑n

k=1(l2k == i & l1k == j).

The confusion matrices are computed with respect to the real labels of the data, whereas the

agreement matrix is not. If we think of the real labels as the guesses by a classifier that we

may call the true classifier that is always right (or, more weakly, that we completely trust),

then the confusion matrices are simply the agreement matrices of each classifier against the

true classifier. Thus any mathematical theory of the measures on confusion matrices should

be thought of as working on agreement matrices for the following reasons:

• If we know the real classes, the theory applies to confusion matrices and we work in a

supervised learning framework;

• If we do not know the classes, we can still run the evaluations and compare classifiers,

in a semi-supervised learning framework5.

This view simply explains that what we gain by measuring classifiers one against another is

some generality in the framework, which is of utmost interest in general because most real

data does not naturally fall in naturally separated classes.

Data
Estimated
class by C1

Estimated
class by C2

Estimated
class by CT

x1 l11 l21 lT1

x2 l12 l22 lT2

x3 l13 l23 lT3
...

...
...

...

xn l1n l2n lTn

Tab. 12.6 Labels output by our three classifiers C1, C2 and CT when applied to the test set.

5This is not properly speaking a semi-supervised learning framework but can become so: If we train some
classifiers on labeled data, we can accept some predictions as long as all classifiers agree, thus extending the
labeled data as long as it seems legitimate to do so.

198

Index

κ, 70, 84, 89, 91, 97

Accuracy, 45, 70, 84, 89, 91, 115, 116
Activation Function, 52
AdaBoost, 56
Algorithm, 43, 58, 69
AM, 2, 31, 34, 35, 37, 40, 60–63, 74, 76,

78, 80, 81, 97, 171, 172
Amplitude-Modulation, 19, 59, 61
ANF, 20, 23, 25, 27, 29–31, 34, 36, 39, 61,

80, 102, 104, 105, 121, 128, 135,
137, 140, 148, 150, 169, 171, 173,
174

ANN, 48, 52, 54, 55
Apex, 22
Arrival Process, 188
Arrival Times, 188
Artificial Intelligence, 43
ASR, 16, 99, 101, 102, 104, 106, 107, 110,

111, 120, 130, 154, 155, 158, 170,
171

Atom, 187
AUC, 70, 87, 88, 91, 92, 94, 97
Auditory Cortex, 31
Auditory Nerve, 23
Auditory Neuroscience, 34, 172
Auditory Pathway, 16, 19, 21, 25, 169

Backpropagation, 54
Bagging, 56
Baum-Welch, 113
Bayes, 41, 45, 47, 81, 111
Bernouilli, 191
BF, 22, 104–106, 121, 129, 132, 142, 153,

154, 160, 161, 164, 188
Binning Method, 190
BM, 22, 23, 103, 105
Boosting, 56

Bootstrap, 56
Borel, 187
Butterworth, 36, 102

C++, 111
Capacitor, 28
Carrier Frequency, 63
Cat, 30
Central Auditory System, 16
CF, 22, 37, 102
Chain Rule, 54
Classification, 44
Classifier, 44
CN, 20, 25, 27–30, 34–36, 39, 40, 59–63,

74, 78, 80, 81, 97, 170, 171, 174
Coarticulation, 163
Cochlea, 61
Cochlear Nucleus, 16, 30
Cochleogram, 160
Cocktail Party Problem, 15
Compression, 102
Confusion Matrix, 45, 59, 67, 69, 71, 83,

89, 180, 198
Consonant, 38
Continuous, 187
Cost Function, 54
Cross-Validation, 45, 133
CUAVE, 140
Cytoarchitecture, 25

Data Mining, 43, 59, 61
DCN, 29
DCT, 109, 125, 133, 148, 161, 162, 164
Deep Learning, 97, 101, 106, 172, 173
Distribution Function, 187
DTW, 102, 110
Dynamic Programming, 115

ECOC, 59, 95

199

ECoG, 119, 125, 174
EEG, 40, 119
EIH, 102
Electroencephalogram, 40
Electrophysiology, 119
Emitting states, 113
END, 55, 91, 92
Event, 186
Exponential, 187

fMRI, 119
FOM, 115
Forced Alignment, 114
Formant, 38
Forward-Backward, 113
Fusiform, 29

Gabor, 162
Gain, 21
Gaussian, 27, 52, 55, 57, 113, 133, 165,

173, 187
Gaussian Processes, 48
GBFB, 162
Gradient Descent, 54

Hamming, 107, 109
Hann, 107, 126, 130, 131, 133, 150, 154,

161, 166
HCompV, 116
HERest, 114, 116
Hilbert, 51
HInit, 113
HLEd, 162
HMM, 99, 107, 110–118, 126, 130, 132,

133, 135, 138, 140, 141, 158,
161–163, 169–173

HResults, 115
HSR, 106, 148, 151, 154, 161, 169, 171,

174
HTK, 111–118, 120, 128, 130, 132, 133,

141, 143, 166, 167, 170, 173
HVite, 114, 115, 118

IC, 16, 21, 30, 128, 129, 136, 171, 172
IHC, 22, 23, 25, 61, 97, 102, 103, 105, 109
IID, 188

Implementation, 85
Interaural Time Difference, 30
IPIH, 125
ITD, 30

J48, 55
Java, 58

k-Nearest Neighbours, 51
K&BI, 59, 70, 80, 86, 89, 91, 92, 95
KBI, 71
Kernel Trick, 51, 66
Kronecker, 86
Kullback-Leibler Divergence, 85

Lateral Lemniscus, 30
Lateral Suppression, 102
Law, 187
Lazy Learning, 51
Lebesgue, 186
Likelihood, 112
LogitBoost, 56, 91
LPC, 125
LSR, 106, 148, 154, 171, 174

Machine Learning, 2, 16, 40, 41, 43, 45,
48, 51, 53, 54, 58–62, 66, 81, 88,
95, 97, 115, 170

Magnetoencephalogram, 40
MAP, 47
Markov, 111, 112
Matlab, 57, 58, 85, 197
Maximum Likelihood, 47
Measurability, 186
Measure of Performance, 69
Medial Geniculate Body, 31
MEG, 40, 119
Mel Frequency Cepstral Coefficient, 107
MFCC, 107, 108
MI, 70, 85, 90, 91, 97
Microarray, 119
Microarrays, 120
Mixture, 112, 162
Modulation Frequency, 63
MSR, 106
MTF, 76, 77

200

MultiClassClassifier, 91, 95

NaiveBayes, 71, 91
Nearest Neighbour, 58, 94, 114
Neural Code, 16
Neurogram, 120, 130, 142, 160
Neuromorphic, 125
Neuroscience, 15
NIST, 115

OHC, 22, 104, 105
Onset, 65, 171
Open-Source, 58
Optimisation, 54
Oval Window, 20–22
Overfitting, 44

Pattern Recognition, 43
PCA, 56, 57, 132, 133, 162, 164
Perceptron, 54, 55
Perceptual Linear Predictive, 109
Phase Locking, 38
Poisson, 61, 133, 189, 191, 194, 196
Power-Normalized Cepstral Coefficients,

109
Principal Components, 56
Probability, 35, 46, 83, 186, 187
PSTH, 25, 26, 28, 29, 32, 151, 188
Pyramidal, 29

Random Variable, 27, 186–188
RBF, 54, 55
Rectification, 102
Refractoriness, 160
Renewal Process, 188
RI, 142
RMS, 145
ROC, 87

sCUAVE, 140, 143, 169
Separable, 48
SGBFB, 162
Signal Detection, 87, 89
Signal-to-Noise, 124
SimpleLogistic, 91
SMO, 58, 68, 70–72, 74, 75, 78, 80, 81, 91,

92, 94, 95
SO, 30

Soma, 28
Spatial Summation, 27
Spectrogram, 159
Spike Train, 16, 62, 65, 126
Spiking Neural Networks, 125
Stapes, 22
Statistics, 187
SteadaCa, 128
sTIMIT, 158, 160, 166, 169, 173
Stochastic Process, 48
Stratified, 45
Superior Olivary, 21, 30
Supervised Learning, 40, 43, 69
SVM, 49, 58, 59, 66, 81
Sylvian Fissure, 31

T-Multipolar, 29
T-Stellate, 29
Tee-model, 116
Temporal Fine Structure, 37
Temporal Summation, 28
TFS, 37
Theorem, 47, 52, 111
Thinning, 191, 193–197
TIMIT, 158, 162, 165, 169, 171
tMTF, 36, 63, 76, 77
Token Passing, 114, 115
Topology, 117, 186
Trapezoidal Body, 29
Triphones, 163

Unsupervised Learning, 43

VCN, 40
VCV, 128, 129, 132, 133, 137, 138, 140,

169
Vector Strength, 34, 35, 61, 63, 66, 76, 81,

97
Victor-Purpura, 125
Viterbi, 113, 114
Vowels, 38
VS, 37

Weka, 41, 43–45, 55, 58, 65, 69, 71, 83,
94, 178, 179

Window, 107
Word Loop, 114

201

Bibliography

Daniel Arthur Abrams. Temporal features of speech in the auditory system. PhD thesis,
2008.

M. S. Alam, M. S. A. Zilany, W. A. Jassim, and M. Y. Ahmad. Phoneme Classification
Using the Auditory Neurogram. IEEE Access, 5:633–642, 2017.

Shawkat Ali and Kate A. Smith. On learning algorithm selection for classification. Applied
Soft Computing, 6(2):119–138, January 2006.

ANSI. ANSI/ASA S3.5 : American National Standard Methods for Calculation of the Speech
Intelligibility Index, 1997.

Robert H. Arnott, Mark N. Wallace, Trevor M. Shackleton, and Alan R. Palmer. Onset
neurones in the anteroventral cochlear nucleus project to the dorsal cochlear nucleus.
Journal of the Association for Research in Otolaryngology, 5(2):153–170, 2004.

S. P. Bacon and N. F. Viemeister. Temporal modulation transfer functions in normal-hearing
and hearing-impaired listeners. Audiology: Official Organ of the International Society of
Audiology, 24(2):117–134, 1985.

M. I. Banks and M. B. Sachs. Regularity analysis in a compartmental model of chopper
units in the anteroventral cochlear nucleus. Journal of Neurophysiology, 65(3):606–629,
March 1991.

Jon Barker, Emmanuel Vincent, Ning Ma, Heidi Christensen, and Phil Green. The PAS-
CAL CHiME speech separation and recognition challenge. Computer Speech & Language,
27(3):621–633, May 2013.

Christopher M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, Novem-
ber 1995.

C. C. Blackburn and M. B. Sachs. Classification of unit types in the anteroventral cochlear
nucleus: PST histograms and regularity analysis. Journal of Neurophysiology, 62(6):1303–
1329, December 1989.

K. E. Bouchard and E. F. Chang. Neural decoding of spoken vowels from human sensory-
motor cortex with high-density electrocorticography. In 2014 36th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society, pages 6782–6785,
August 2014.

Kristofer E. Bouchard, Nima Mesgarani, Keith Johnson, and Edward F. Chang. Functional
organization of human sensorimotor cortex for speech articulation. Nature, 495(7441):327–
332, March 2013.

202

A.-L. Boulesteix, C. Strobl, T. Augustin, and M. Daumer. Evaluating Microarray-based
Classifiers: An Overview. Cancer Informatics, 6:77–97, February 2008.

Michael Bowling, Neil Burch, Michael Johanson, and Oskari Tammelin. Heads-up limit
holdem poker is solved. Science, 347(6218):145–149, January 2015.

Leo Breiman. Bagging Predictors. Machine Learning, 24(2):123–140, August 1996.

Guy J. Brown, Robert T. Ferry, and Ray Meddis. A computer model of auditory effer-
ent suppression: Implications for the recognition of speech in noise. The Journal of the
Acoustical Society of America, 127(2):943–954, February 2010.

Jonathan S. Brumberg, E. Joe Wright, Dinal S. Andreasen, Frank H. Guenther, and Philip R.
Kennedy. Classification of intended phoneme production from chronic intracortical micro-
electrode recordings in speech-motor cortex. Frontiers in Neuroscience, 5:65, 2011.

Peter Brunner, Karen Dijkstra, William G. Coon, Jrgen Mellinger, Anthony L. Ritaccio, and
Gerwin Schalk. An ECoG-Based BCI Based on Auditory Attention to Natural Speech. In
Brain-Computer Interface Research, SpringerBriefs in Electrical and Computer Engineer-
ing, pages 7–19. Springer, Cham, 2017. DOI: 10.1007/978-3-319-57132-4 2.

Daniel A. Butts, Chong Weng, Jianzhong Jin, Chun-I. Yeh, Nicholas A. Lesica, Jose-Manuel
Alonso, and Garrett B. Stanley. Temporal precision in the neural code and the timescales
of natural vision. Nature, 449(7158):92–95, September 2007.

Steven M. Chase and Eric D. Young. Spike-Timing Codes Enhance the Representation of
Multiple Simultaneous Sound-Localization Cues in the Inferior Colliculus. The Journal of
Neuroscience, 26(15):3889–3898, April 2006.

Lars Chittka and Axel Brockmann. Perception SpaceThe Final Frontier. PLoS Biol,
3(4):e137, April 2005.

Yong-Sun Choi. Nonlinear spectro-temporal features based on a cochlear model for automatic
speech recognition in a noisy situation. ResearchGate, 2013.

Nicholas R. Clark, Guy J. Brown, Tim Jrgens, and Ray Meddis. A frequency-selective
feedback model of auditory efferent suppression and its implications for the recognition
of speech in noise. The Journal of the Acoustical Society of America, 132(3):1535–1541,
September 2012.

Martin Coath, Sadique Sheik, Elisabetta Chicca, Giacomo Indiveri, Susan Denham, and
Thomas Wennekers. A robust sound perception model suitable for neuromorphic imple-
mentation. Neuromorphic Engineering, 7:278, 2014.

Thomas Cover and Joy Thomas. Elements of Information Theory, 2nd Edition, 2006.

D. R. Cox and Valerie Isham. Point Processes. CRC Press, July 1980. Google-Books-ID:
KWF2xY6s3PoC.

203

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of
Control, Signals and Systems, 2(4):303–314, 1989.

Daryl J. Daley and D. (David) Vere-Jones. An introduction to the theory of point processes /
D.J. Daley, D. Vere-Jones. Springer, New York, 2003. Includes bibliographical references
and index.

S. Davis and P. Mermelstein. Comparison of parametric representations for monosyllabic
word recognition in continuously spoken sentences. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 28(4):357–366, August 1980.

Kevin A. Davis. Contralateral Effects and Binaural Interactions in Dorsal Cochlear Nu-
cleus. JARO: Journal of the Association for Research in Otolaryngology, 6(3):280–296,
September 2005.

Janez Demar. Statistical Comparisons of Classifiers over Multiple Data Sets. J. Mach. Learn.
Res., 7:1–30, December 2006.

Luc Devroye, Lszl Gyrfi, and Gabor Lugosi. A Probabilistic Theory of Pattern Recognition.
Springer Science & Business Media, February 1997. Google-Books-ID: uDgXoRkyWqQC.

Thomas G. Dietterich and Ghulum Bakiri. Solving Multiclass Learning Problems via Error-
correcting Output Codes. J. Artif. Int. Res., 2(1):263–286, January 1995.

A. V. Dorugade. New ridge parameters for ridge regression. Journal of the Association of
Arab Universities for Basic and Applied Sciences, 15:94–99, April 2014.

Mounya Elhilali, Jonathan B. Fritz, David J. Klein, Jonathan Z. Simon, and Shihab A.
Shamma. Dynamics of Precise Spike Timing in Primary Auditory Cortex. Journal of
Neuroscience, 24(5):1159–1172, February 2004.

E. F. Evans. The frequency response and other properties of single fibres in the guinea-pig
cochlear nerve. The Journal of Physiology, 226(1):263–287, October 1972.

E. F. Evans. Auditory Processing of Complex Sounds: An Overview. Philosophical Trans-
actions of the Royal Society B: Biological Sciences, 336(1278):295–306, June 1992.

Richard R. Fay and Laura Ann Wilber. Hearing in Vertebrates: A Psychophysics Databook.
The Journal of the Acoustical Society of America, 86(5):2044–2044, November 1989.

Santiago Fernandez, Alex Graves, and Jrgen Schmidhuber. An application of recurrent
neural networks to discriminative keyword spotting. 2007.

Ronan Flynn and Edward Jones. Combined speech enhancement and auditory modelling for
robust distributed speech recognition. Speech Communication, 50(10):797–809, October
2008.

Robert D Frisina, Robert L Smith, and Steven C Chamberlain. Encoding of amplitude mod-
ulation in the gerbil cochlear nucleus: I. A hierarchy of enhancement. Hearing Research,
44(2):99–122, March 1990.

204

Adam C. Furman, Sharon G. Kujawa, and M. Charles Liberman. Noise-induced cochlear
neuropathy is selective for fibers with low spontaneous rates. Journal of Neurophysiology,
110(3):577–586, August 2013.

Christian Gaida, Patrick Lange, Rico Petrick, Patrick Proba, Ahmed Malatawy, and David
Suendermann-Oeft. Comparing Open-Source Speech Recognition Toolkits. 2014.

Mark Gales and Steve Young. The Application of Hidden Markov Models in Speech Recog-
nition. Found. Trends Signal Process., 1(3):195–304, January 2007.

John Garofolo, Lori Lamel, William Fisher, Jonathan Fiscus, David Pallett, Nancy Dahlgren,
and Victor Zue. TIMIT Acoustic-Phonetic Continuous Speech Corpus, 1993.

W. S. Geisler, D. G. Albrecht, R. J. Salvi, and S. S. Saunders. Discrimination performance
of single neurons: rate and temporal-pattern information. Journal of Neurophysiology,
66(1):334–362, July 1991.

Oded Ghitza. Auditory nerve representation as a front-end for speech recognition in a noisy
environment. Computer Speech & Language, 1(2):109–130, December 1986.

J. M. Goldberg and P. B. Brown. Response of binaural neurons of dog superior olivary
complex to dichotic tonal stimuli: some physiological mechanisms of sound localization.
Journal of Neurophysiology, 32(4):613–636, July 1969.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech Recognition with Deep
Recurrent Neural Networks. arXiv:1303.5778 [cs], March 2013. arXiv: 1303.5778.

Robert Gutig and Haim Sompolinsky. Time-Warp-Invariant Neuronal Processing. PLoS
Biology, 7(7), July 2009.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and
Ian H. Witten. The WEKA Data Mining Software: An Update. SIGKDD Explor. Newsl.,
11(1):10–18, November 2009.

David J. Hand and Robert J. Till. A Simple Generalisation of the Area Under the ROC Curve
for Multiple Class Classification Problems. Machine Learning, 45(2):171–186, November
2001.

Trevor Hastie and Robert Tibshirani. Classification by Pairwise Coupling. In Proceedings
of the 1997 Conference on Advances in Neural Information Processing Systems 10, NIPS
’97, pages 507–513, Cambridge, MA, USA, 1998. MIT Press.

J. Leo van Hemmen. Vector strength after Goldberg, Brown, and von Mises: biological and
mathematical perspectives. Biological Cybernetics, 107(4):385–396, August 2013.

Christian Herff and Tanja Schultz. Automatic Speech Recognition from Neural Signals: A
Focused Review. Frontiers in Neuroscience, 10, September 2016.

205

M. J. Hewitt, R. Meddis, and T. M. Shackleton. A computer model of a cochlear-nucleus
stellate cell: responses to amplitude-modulated and pure-tone stimuli. The Journal of the
Acoustical Society of America, 91(4 Pt 1):2096–2109, April 1992.

G. Hinton, Li Deng, Dong Yu, G.E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,
P. Nguyen, T.N. Sainath, and B. Kingsbury. Deep Neural Networks for Acoustic Mod-
eling in Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal
Processing Magazine, 29(6):82–97, November 2012.

Sepp Hochreiter and Jrgen Schmidhuber. Long Short-Term Memory. Neural Comput.,
9(8):1735–1780, November 1997.

Marcus Holmberg, David Gelbart, and Werner Hemmert. Speech encoding in a model of
peripheral auditory processing: Quantitative assessment by means of automatic speech
recognition. Speech Communication, 49(12):917–932, December 2007.

Marcus Holmberg. Automatic speech recognition with neural spike trains (PDF Download
Available). In ResearchGate, 2005.

A. J. Hudspeth and D. P. Corey. Sensitivity, polarity, and conductance change in the re-
sponse of vertebrate hair cells to controlled mechanical stimuli. Proceedings of the National
Academy of Sciences, 74(6):2407–2411, June 1977.

Eugene M Izhikevich. Dynamical systems in neuroscience: the geometry of excitability and
bursting. MIT Press, Cambridge, Mass., 2007. OCLC: 65400606.

Gareth James and Trevor Hastie. Error Coding and PaCT’s. 1997.

Skyler G. Jennings, Michael G. Heinz, and Elizabeth A. Strickland. Evaluating Adaptation
and Olivocochlear Efferent Feedback as Potential Explanations of Psychophysical Over-
shoot. JARO: Journal of the Association for Research in Otolaryngology, 12(3):345–360,
June 2011.

Woojay Jeon and B.-H. Juang. Speech Analysis in a Model of the Central Auditory System.
IEEE Transactions on Audio, Speech, and Language Processing, 15(6):1802–1817, August
2007.

Ian T. Jolliffe. A Note on the Use of Principal Components in Regression. Journal of the
Royal Statistical Society. Series C (Applied Statistics), 31(3):300–303, 1982.

P. X. Joris and P. H. Smith. The volley theory and the spherical cell puzzle. Neuroscience,
154(1):65–76, June 2008.

P. X. Joris and T. C. Yin. Responses to amplitude-modulated tones in the auditory nerve of
the cat. The Journal of the Acoustical Society of America, 91(1):215–232, January 1992.

P. X. Joris, C. E. Schreiner, and A. Rees. Neural processing of amplitude-modulated sounds.
Physiological Reviews, 84(2):541–577, April 2004.

206

Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder
Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc
Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean,
Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert
Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz,
Aaron Jaffey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan, Andy Koch, Naveen
Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu,
Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark
Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek,
Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham, Jed Souter, Dan
Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma, Erick
Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon.
In-Datacenter Performance Analysis of a Tensor Processing Unit. arXiv:1704.04760 [cs],
April 2017. arXiv: 1704.04760.

Eric Kandel. Principles of Neural Science, Fifth Edition. McGraw Hill Professional, 2013.

Igor Kononenko and Ivan Bratko. Information-Based Evaluation Criterion for Classifier’s
Performance. Machine Learning, 6(1):67–80, January 1991.

S. B. Kotsiantis, I. D. Zaharakis, and P. E. Pintelas. Machine learning: a review of classifi-
cation and combining techniques. Artificial Intelligence Review, 26(3):159–190, November
2007.

Thomas Kreuz, Mario Mulansky, and Nebojsa Bozanic. SPIKY: A graphical user interface
for monitoring spike train synchrony. arXiv:1410.6910 [physics, q-bio], October 2014.
arXiv: 1410.6910.

Yoshiki Kuramoto. Self-entrainment of a population of coupled non-linear oscillators. In
Prof Huzihiro Araki, editor, International Symposium on Mathematical Problems in The-
oretical Physics, number 39 in Lecture Notes in Physics, pages 420–422. Springer Berlin
Heidelberg, 1975.

Jonathan Laudanski, Stephen Coombes, Alan R. Palmer, and Christian J. Sumner. Mode-
Locked Spike Trains in Responses of Ventral Cochlear Nucleus Chopper and Onset Neurons
to Periodic Stimuli. Journal of Neurophysiology, 103(3):1226–1237, March 2010.

Quoc V. Le, Marc’Aurelio Ranzato, Rajat Monga, Matthieu Devin, Kai Chen, Greg S.
Corrado, Jeff Dean, and Andrew Y. Ng. Building high-level features using large scale
unsupervised learning. arXiv:1112.6209 [cs], December 2011. arXiv: 1112.6209.

K. F. Lee and H. W. Hon. Speaker-independent phone recognition using hidden Markov
models. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(11):1641–
1648, November 1989.

207

Christoph Lehmann, Thomas Koenig, Vesna Jelic, Leslie Prichep, Roy E. John, Lars-Olof
Wahlund, Yadolah Dodge, and Thomas Dierks. Application and comparison of classifica-
tion algorithms for recognition of Alzheimer’s disease in electrical brain activity (EEG).
Journal of Neuroscience Methods, 161(2):342–350, April 2007.

Matthew K. Leonard, Kristofer E. Bouchard, Claire Tang, and Edward F. Chang. Dynamic
Encoding of Speech Sequence Probability in Human Temporal Cortex. The Journal of
Neuroscience, 35(18):7203–7214, May 2015.

Qi Li, Frank K. Soong, and Olivier Siohan. A High-Performance Auditory Feature For
Robust Speech Recognition. ResearchGate, 2000.

Philip M. Long and Rocco A. Servedio. Random classification noise defeats all convex
potential boosters. Machine Learning, 78(3):287–304, March 2010.

Carla Lopes and Fernando Perdigao. Phoneme Recognition on the TIMIT Database. 2011.

R. Lyon. A computational model of filtering, detection, and compression in the cochlea.
pages 1282 – 1285, 1982.

David MacKay. Information Theory, Inference, and Learning Algorithms: Home, 2003.

B. J. May, G. S. Prell, and M. B. Sachs. Vowel representations in the ventral cochlear
nucleus of the cat: effects of level, background noise, and behavioral state. Journal of
Neurophysiology, 79(4):1755–1767, April 1998.

Ray Meddis and Michael J. Hewitt. Virtual pitch and phase sensitivity of a computer model
of the auditory periphery. I: Pitch identification. The Journal of the Acoustical Society of
America, 89(6):2866–2882, June 1991.

R. Meddis, L. P. O’Mard, and E. A. Lopez-Poveda. A computational algorithm for computing
nonlinear auditory frequency selectivity. The Journal of the Acoustical Society of America,
109(6):2852–2861, June 2001.

Nima Mesgarani and Edward F. Chang. Selective cortical representation of attended speaker
in multi-talker speech perception. Nature, 485(7397):233–236, May 2012.

Nima Mesgarani, Stephen V. David, Jonathan B. Fritz, and Shihab A. Shamma. Phoneme
representation and classification in primary auditory cortex. The Journal of the Acoustical
Society of America, 123(2):899–909, February 2008.

Il Joon Moon and Sung Hwa Hong. What Is Temporal Fine Structure and Why Is It
Important? Korean Journal of Audiology, 18(1):1–7, April 2014.

Emily M. Mugler, James L. Patton, Robert D. Flint, Zachary A. Wright, Stephan U. Schuele,
Joshua Rosenow, Jerry J. Shih, Dean J. Krusienski, and Marc W. Slutzky. Direct clas-
sification of all American English phonemes using signals from functional speech motor
cortex. Journal of Neural Engineering, 11(3), 2014.

208

Paul A. Nakamura and Karina S. Cramer. Formation and maturation of the calyx of Held.
Hearing Research, 276(1-2):70–78, June 2011.

Erikson G. Neilans and Micheal L. Dent. Temporal coherence for complex signals in budgeri-
gars (Melopsittacus undulatus) and humans (Homo sapiens). Journal of Comparative
Psychology (Washington, D.C.: 1983), 129(2):174–180, May 2015.

Andrew Y. Ng and Michael I. Jordan. On Discriminative vs. Generative Classifiers: A
comparison of logistic regression and naive Bayes. In T. G. Dietterich, S. Becker, and
Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14, pages
841–848. MIT Press, 2002.

Donata Oertel, Ramazan Bal, Stephanie M. Gardner, Philip H. Smith, and Philip X. Joris.
Detection of synchrony in the activity of auditory nerve fibers by octopus cells of the mam-
malian cochlear nucleus. Proceedings of the National Academy of Sciences, 97(22):11773–
11779, October 2000.

Kirsten Kjelsberg Osen. Cytoarchitecture of the cochlear nuclei in the cat. The Journal of
Comparative Neurology, 136(4):453–483, August 1969.

A. R. Palmer and I. J. Russell. Phase-locking in the cochlear nerve of the guinea-pig and its
relation to the receptor potential of inner hair-cells. Hearing Research, 24(1):1–15, 1986.

Athanasios Papoulis. Probability, Random Variables, and Stochastic Processes. McGraw-Hill,
1991. Google-Books-ID: 4IwQAQAAIAAJ.

Brian N. Pasley and Robert T. Knight. Decoding Speech for Understanding and Treating
Aphasia. Progress in brain research, 207:435–456, 2013.

Brian N. Pasley, Stephen V. David, Nima Mesgarani, Adeen Flinker, Shihab A. Shamma,
Nathan E. Crone, Robert T. Knight, and Edward F. Chang. Reconstructing Speech from
Human Auditory Cortex. PLoS Biol, 10(1):e1001251, January 2012.

Raghu Pasupathy. Generating Nonhomogeneous Poisson Processes. 2011.

E. K. Patterson, S. Gurbuz, Z. Tufekci, and J. N. Gowdy. CUAVE: A new audio-visual
database for multimodal human-computer interface research. In In Proc. ICASSP, pages
2017–2020, 2002.

James O. Pickles. An Introduction to the Physiology of Hearing. Academic Press, London ;
San Diego, 2 edition edition, October 1988.

Christopher J. Plack. The Sense of Hearing. Lawrence Erlbaum Associates, 2005.

Rodrigo Quian Quiroga and Stefano Panzeri. Principles of Neural Coding. CRC Press, May
2013.

Lawrence R Rabiner and B. H Juang. Fundamentals of speech recognition. PTR Prentice
Hall, Englewood Cliffs, N.J., 1993.

209

Carl Edward Rasmussen. Gaussian processes for machine learning. MIT Press, 2006.

William S. Rhode and Steven Greenberg. Physiology of the Cochlear Nuclei. In Arthur N.
Popper and Richard R. Fay, editors, The Mammalian Auditory Pathway: Neurophysiology,
number 2 in Springer Handbook of Auditory Research, pages 94–152. Springer New York,
1992.

W. S. Rhode and S. Greenberg. Encoding of amplitude modulation in the cochlear nucleus
of the cat. Journal of Neurophysiology, 71(5):1797–1825, May 1994.

Sheldon M. Ross. Simulation. Academic Press, August 2006. Google-Books-ID:
TMUt5OXVvY0C.

J. S. Rothman and P. B. Manis. The roles potassium currents play in regulating the electrical
activity of ventral cochlear nucleus neurons. Journal of Neurophysiology, 89(6):3097–3113,
June 2003.

Jason S. Rothman and Paul B. Manis. Kinetic Analyses of Three Distinct Potassium Conduc-
tances in Ventral Cochlear Nucleus Neurons. Journal of Neurophysiology, 89(6):3083–3096,
June 2003.

J. S. Rothman, E. D. Young, and P. B. Manis. Convergence of auditory nerve fibers onto
bushy cells in the ventral cochlear nucleus: implications of a computational model. Journal
of Neurophysiology, 70(6):2562–2583, December 1993.

Haim Sak, Andrew Senior, Kanishka Rao, and Franoise Beaufays. Fast and Accurate Re-
current Neural Network Acoustic Models for Speech Recognition. arXiv:1507.06947 [cs,
stat], July 2015. arXiv: 1507.06947.

Adu-Poku Sampson. Comparing classification algorithms in data mining :: CCSU Theses &
Dissertations. PhD thesis, 2012.

Marc Ren Schaedler and Birger Kollmeier. Separable spectro-temporal Gabor filter bank
features: Reducing the complexity of robust features for automatic speech recognition.
The Journal of the Acoustical Society of America, 137(4):2047–2059, April 2015.

P Schafer and D Jin. Noise-Robust Speech Recognition Through Auditory Feature Detection
and Spike Sequence Decoding. Neural Computation, 26(3):523–556, March 2014.

Odette Scharenborg. Reaching over the gap: A review of efforts to link human and automatic
speech recognition research. Speech Communication, 49(5):336–347, May 2007.

Jan Schnupp, Israel Nelken, and Andrew King. Auditory Neuroscience: Making Sense of
Sound. MIT Press, 2011.

Chris Scholes, R.W. Mill, Alan R. Palmer, Stephen Coombes, W.S. Rhode, and Christian J.
Sumner. Complex spike trains improve the fidelity of temporal coding of amplitude mod-
ulation in cochlear nucleus. Submitted, 2015.

210

S. Seneff. A Joint Synchrony/Mean-Rate Model of Auditory Speech Processing. Proc.
Journal of Phonetics, 16:55–76, 1988.

Shihab A. Shamma. Speech processing in the auditory system I: The representation of speech
sounds in the responses of the auditory nerve. The Journal of the Acoustical Society of
America, 78(5):1612–1621, November 1985.

R. V. Shannon, F. G. Zeng, V. Kamath, J. Wygonski, and M. Ekelid. Speech recognition
with primarily temporal cues. Science (New York, N.Y.), 270(5234):303–304, October
1995.

Gordon M. Shepherd, editor. The Synaptic Organization of the Brain. OUP USA, fifth
edition edition, January 2004.

Christopher A. Shera, John J. Guinan, and Andrew J. Oxenham. Revised estimates of
human cochlear tuning from otoacoustic and behavioral measurements. Proceedings of the
National Academy of Sciences of the United States of America, 99(5):3318–3323, March
2002.

H Shimazaki and S Shinomoto. A Method for Selecting the Bin Size of a Time Histogram.
Neural Computation, 19(6):1503–1527, June 2007.

S. E. Shore, C. J. Sumner, S. C. Bledsoe, and J. Lu. Effects of contralateral sound stimu-
lation on unit activity of ventral cochlear nucleus neurons. Experimental Brain Research,
153(4):427–435, December 2003.

Reinhard Siegmund-Schultze. Probability in 1919/20: the von Mises-Plya-Controversy.
Archive for History of Exact Sciences, 60(5):431–515, August 2006.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanc-
tot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever,
Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Has-
sabis. Mastering the game of Go with deep neural networks and tree search. Nature,
529(7587):484–489, January 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy
Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis
Hassabis. Mastering the game of Go without human knowledge. Nature, 550(7676):na-
ture24270, October 2017.

Jonathan Z. Simon. Human Auditory Neuroscience and the Cocktail Party Problem. In The
Auditory System at the Cocktail Party, Springer Handbook of Auditory Research, pages
169–197. Springer, Cham, 2017. DOI: 10.1007/978-3-319-51662-2 7.

Ranganatha Sitaram, Tomas Ros, Luke Stoeckel, Sven Haller, Frank Scharnowski, Jarrod
Lewis-Peacock, Nikolaus Weiskopf, Maria Laura Blefari, Mohit Rana, Ethan Oblak, Niels

211

Birbaumer, and James Sulzer. Closed-loop brain training: the science of neurofeedback.
Nature Reviews Neuroscience, 18(2):86–100, February 2017.

A. J. Smith, H. Blumenfeld, K. L. Behar, D. L. Rothman, R. G. Shulman, and F. Hy-
der. Cerebral energetics and spiking frequency: The neurophysiological basis of fMRI.
Proceedings of the National Academy of Sciences, 99(16):10765–10770, August 2002.

Kent A. Spackman. Signal Detection Theory: Valuable Tools for Evaluating Inductive
Learning. In Proceedings of the Sixth International Workshop on Machine Learning, pages
160–163, San Francisco, CA, USA, 1989. Morgan Kaufmann Publishers Inc.

Mark Steadman. Investigating the neural code for dynamic speech and the effects of signal
degradation. January 2015.

Richard M. Stern. Applying physiologically-motivated models of auditory processing to
automatic speech recognition. 2011.

Christian J. Sumner, Lowel P. O’Mard, Enrique A. Lopez-Poveda, and Ray Meddis. A
nonlinear filter-bank model of the guinea-pig cochlear nerve: rate responses. The Journal
of the Acoustical Society of America, 113(6):3264–3274, June 2003.

Amirhossein Tavanaei and Anthony S. Maida. A Spiking Network that Learns to Ex-
tract Spike Signatures from Speech Signals. arXiv:1606.00802 [cs], June 2016. arXiv:
1606.00802.

Sergios Theodoridis and Konstantinos Koutroumbas. Pattern Recognition, Third Edition.
Academic Press, March 2006.

Jonathan D Victor and Keith P Purpura. Metric-space analysis of spike trains: theory,
algorithms and application. Network: Computation in Neural Systems, 8(2):127–164,
January 1997.

Richard von Mises. ber die ’Ganzzahligkeit’ der Atomgewichte und verwandte Fragen.
Physikalische Zeitschrift, 19:476–481, 1928.

X. Wang and M. B. Sachs. Transformation of temporal discharge patterns in a ventral
cochlear nucleus stellate cell model: implications for physiological mechanisms. Journal
of Neurophysiology, 73(4):1600–1616, April 1995.

Kuansan Wang and S. A. Shamma. Spectral shape analysis in the central auditory system.
IEEE Transactions on Speech and Audio Processing, 3(5):382–395, September 1995.

David Williams. Probability with Martingales (Cambridge Mathematical Textbooks). Cam-
bridge University Press, February 1991.

I. M. Winter and A. R. Palmer. Intensity coding in low-frequency auditory-nerve fibers of
the guinea pig. The Journal of the Acoustical Society of America, 90(4 Pt 1):1958–1967,
October 1991.

212

Sandra Wohlgemuth and Bernhard Ronacher. Auditory discrimination of amplitude modu-
lations based on metric distances of spike trains. Journal of Neurophysiology, 97(4):3082–
3092, April 2007.

W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke, D. Yu, and G. Zweig.
Achieving Human Parity in Conversational Speech Recognition. arXiv:1610.05256 [cs],
October 2016. arXiv: 1610.05256.

X. Yang, K. Wang, and S. A. Shamma. Auditory representations of acoustic signals. IEEE
Transactions on Information Theory, 38(2):824–839, March 1992.

Izzet B. Yildiz, Katharina von Kriegstein, and Stefan J. Kiebel. From Birdsong to Human
Speech Recognition: Bayesian Inference on a Hierarchy of Nonlinear Dynamical Systems.
PLoS Computational Biology, 9(9), September 2013.

Eric D. Young and Murray B. Sachs. Representation of steadystate vowels in the temporal
aspects of the discharge patterns of populations of auditorynerve fibers. The Journal of
the Acoustical Society of America, 66(5):1381–1403, November 1979.

SJ Young, G Evermann, MJF Gales, T Hain, D Kershaw, G Moore, J Odell, D Ollason,
D Povey, V Valtchev, and PC Woodland. The HTK Book, version 3.4. Cambridge
University Engineering Department, 2006.

Eric D. Young. Neural representation of spectral and temporal information in speech.
Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences,
363(1493):923–945, March 2008.

X. Zhang, M. G. Heinz, I. C. Bruce, and L. H. Carney. A phenomenological model for the
responses of auditory-nerve fibers: I. Nonlinear tuning with compression and suppression.
The Journal of the Acoustical Society of America, 109(2):648–670, February 2001.

Muhammad S. A. Zilany, Ian C. Bruce, Paul C. Nelson, and Laurel H. Carney. A phenomeno-
logical model of the synapse between the inner hair cell and auditory nerve: long-term
adaptation with power-law dynamics. The Journal of the Acoustical Society of America,
126(5):2390–2412, November 2009.

213

	Abstract
	Acknowledgements
	Table of Contents
	Table of Figures
	Table of Tables
	Glossary
	Introduction & Thesis Outline
	A Data Mining in the Cochlear Nucleus
	Auditory Pathway
	Overview of the Ascending Auditory System
	Peripheral Auditory System
	Cochlear Nucleus Cytoarchitecture
	The Other Auditory Brainstem Nuclei

	Envelope Extraction & Speech Perception
	Amplitude-Modulation Decoding
	Speech Generation
	Speech Processing in the Auditory Pathway

	Supervised Learning & Data Mining
	Introduction to Machine Learning
	Model Validation
	Training/Testing Paradigm
	Confusion Matrix & Accuracy

	Bayesian Techniques
	Maximum Likelihood
	Maximum A Posteriori
	Gaussian Processes

	Linear Classifiers
	Linear Separability
	Support Vector Machine
	Single-Layer Perceptron Algorithm

	Nonlinear Classifiers
	k-Nearest Neighbours
	Kernel Methods
	Artificial Neural Networks
	Backpropagation Algorithm
	Multilayer Perceptron
	Radial Basis Function Network

	Ensemble Learning
	END
	Bagging
	Boosting
	Random Forest

	Dimensionality Reduction
	Principal Component Analysis

	The Weka Data Mining Toolbox
	Weka
	Implementation of Weka's Selected Classifiers

	Demodulation in the Cochlear Nucleus
	Introduction
	Methodology
	Dataset
	Data Selection
	Preprocessing
	Classification
	Measures of performance

	Results
	Ordering Classifiers
	Optimal Classifier per Neuron Type
	Parameters with SMO
	Classification Performance per Modulation Frequency

	Conclusions

	Comparison of Performance Measures
	Performance Measures for Classification Algorithms
	Definition of Classical Measures
	Strategies of Measures of Performance

	Results
	Discussion

	Conclusion of part A

	B Speech Recognition on Neural Data
	Speech Recognition on Neural Data
	Biophysical Auditory Models
	Introduction
	Sumner's Model
	Front-Ends

	Automatic Speech Recognition
	Windows
	Classical Features for ASR
	Models for Automatic Speech Recognition

	Hidden Markov Models
	Introduction to HMMs
	Isolated Word Recognition with HMMs
	States & Mixtures
	Extension to Continuous Speech Recognition
	Networks, Word & Sub-Word Systems
	Accuracy For Continuous Speech Recognition
	Training Protocol
	Dealing with Silences

	Speech Recognition on Neural Data
	Data Type
	Spike Trains
	Simulated Best Frequencies
	Dataset Duration
	Recognition Task: Continuity, Complexity, Noise

	Neural ASR on a Small-Sized Vocabulary
	Introduction
	Methodology
	SteadaCa Dataset
	Front-End
	Back-End
	HTK Parameters

	Results
	Number of Neurons
	Optimal Temporal Windows

	Conclusion

	Neural ASR on a Medium-Sized Vocabulary
	Introduction
	Methodology
	sCUAVE Dataset & Validation Protocol
	Front-End
	Back-End

	Results
	Effect of Conductance on ASR
	Effect of Calcium Thresholding on ASR
	Number of Fibres

	Conclusion

	Neural ASR on a Large-Sized Vocabulary
	Introduction
	Methodology
	sTIMIT Dataset
	Front-End
	Back-End
	HTK Parameters

	Results
	Processing chains
	Optimal Time Scale

	Conclusion

	Conclusion of part B

	Final Conclusion & Discussion
	Appendices
	Complements to Part A
	Choice of Modulation Frequencies
	Synopsis of all Weka classifiers used
	Cleaning
	Preprocessing
	Classifiers

	Scatter Plots

	Complements to Part B
	Probability Theory
	Random Variables and Probability Density Functions
	Sampling from a Known Probability Density Function
	Estimating an Unknown Probability Density Functions

	Spike Train Simulation
	Generating Poisson Processes
	Law of a Poisson Process with Random Refractoriness
	Limitation Using the Thinning Method

	An Alternative View of Supervised Learning

	Index
	Bibliography

