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Abstract

This thesis considers two modelling frameworks for interaction networks in biology. The
first models the interacting species qualitatively as discrete variables, with the regulatory
graphs expressing their mutual influence. Circuits in the regulatory structure are known
to be indicative of some asymptotic behaviours. We investigate the relationship between
local negative circuits and sustained oscillations, presenting new examples of Boolean
networks without local negative circuits and admitting a cyclic attractor. We then
show how regulatory properties of Boolean networks can be investigated via satisfiability
problems, and use the technique to examine the role of local negative circuits in networks
of small dimension.

To enable the application of Boolean techniques to the study of multivalued networks,
a mapping of discrete networks to Boolean can be considered. The Boolean version,
however, is defined only on a subset of the Boolean states. We propose a method for
extending the Boolean version that preserves both the attractors and the regulatory
structure of the network.
Chemical reaction network theory models the dynamics of species concentrations via

systems of ordinary differential equations, establishing connections between the network
structure and the dynamics. Some results assume mass action kinetics, whereas bio-
chemical models often adopt other rate forms. We propose algorithms for elimination of
intermediate species, that can be used to find whether a mass action network simplifies
to a given chemical system.
We then consider the problem of identification of generalised mass action networks

that give rise to a given mass action dynamics, while displaying useful structural prop-
erties, such as weak reversibility. In particular, we investigate systems obtained by pre-
serving the reaction vectors of the mass action network, and outline a new algorithmic
approach.
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1
INTRODUCTION

The understanding of biological interaction networks poses a notoriously difficult chal-
lenge. Biological systems display an extensive variety of sophisticated regulatory mech-
anisms arising from the interplay of a vast number of molecular species. The study and
prediction of their dynamical behaviour is aided by the continuous advancements in ex-
perimental methods and the resulting considerable availability of data. Nevertheless, for
many systems a comprehensive quantitative understanding is still out of reach. Math-
ematical models that integrate the available qualitative information provide therefore
valuable languages and frameworks for the investigation of these systems. Complex net-
works in systems biology are studied via a variety of mathematical and computational
approaches [KS08, MCR+11]. Perhaps at two extremes are the modelling frameworks
considered in this thesis.

Boolean networks, first introduced by Glass and Kauffman [GK73] and Thomas [Tho73,
Td90, Tho91], and their generalisation to discrete multilevel maps offer a genuinely qual-
itative approach to the investigation of the structure and dynamical behaviour of regula-
tory networks. At the core of the formalism is the definition of regulatory graph, which
records the effects that the changes in some species concentrations have on the state of
the system. The species or genes activate or inhibit other species or themselves, i.e. act
as positive or negative regulators. The different regulatory configurations result in an
explosion of possible dynamical behaviours.

The conjectures of Thomas and Kauffmann [Tho81, Td90, KST07] theorised connec-
tions between feedbacks or circuits in the regulatory structure and the dynamical fate
of the system. The role of regulatory circuits has since been extensively investigated in
different modelling frameworks (see for instance [Sno98, Sou04, KST07, RRT08, Ric08,
Ric10, Rue16]). For Boolean networks, positive circuits (i.e., regulatory circuits con-
taining an even number of negative regulations) have been found as necessary for the
existence of multiple steady states, whereas negative circuits play a similar role for the
permanence of oscillatory behaviour. Part of this thesis is dedicated to investigating
whether local negative circuits are necessary for oscillatory behaviour. We identify coun-
terexamples for n ≥ 6, and we study the problem for n ≤ 5 using Boolean satisfiability
problems, showing that the smallest counterexample is indeed found for n = 6.
Multilevel discrete networks have the capacity to capture system behaviours in a more

accurate fashion, but are less studied. Both the dynamics and the regulatory structure
of multilevel maps can be faithfully represented using Boolean variables [DRC11], with
the drawback that the Boolean dynamics is not defined on a number of Boolean states,
called “non-admissible”, that do not have a multilevel counterpart. Another problem
examined in this work is that of extending Boolean versions of multilevel maps to the
non-admissible states in a way that preserves both the asymptotic dynamical behaviour
and the regulatory circuits.

Chemical reaction network theory, the second modelling approach considered in this
thesis, models the evolution of the concentrations of chemical species using systems
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introduction

of ordinary differential equations. The theory explores for instance the questions of
existence and number of equilibria, stability or robustness of steady state concentrations,
identifying results that rely on characteristics of the network structure and not on the
precise knowledge of the parameters (e.g. [Fei79, Fei87, Fei88, Hor72]). In classical
chemical reaction network theory, reaction rates are assumed to follow the law of mass
action, i.e. are proportional to the product of the reactant concentrations; the theory has
since expanded to consider milder assumptions on the kinetics. Recently, some results on
complex balancing steady states have been extended to kinetics that allow for rates that
are “generalised monomials” that do not necessarily reflect the stoichiometric coefficients
of the reactants [MR12, MR14]. Some results require the network to be weakly reversible,
i.e., covered by cycles, and can not always be directly applied. Networks with different
structures can however give rise to the same dynamics, and one can try to extend the
applicability of these results by finding networks with the same associated system of
differential equations and the right structural properties. Here we investigate methods
for the identification of weakly reversible generalised mass action networks admitting
a given dynamics. In particular, we consider an approach that consists in replacing a
reaction with another with the same reaction vector, i.e., a “translation” [Joh14, Joh15],
and design an algorithm that can identify weakly reversible or deficiency zero translations
of reaction networks.
Many biochemical models adopt non-mass action kinetic rates, often derived by apply-

ing some simplifications to a mass action system of differential equations. To verify the
applicability of results that assume mass action kinetics, one can try to check whether
some mass action networks reduce to one with a given dynamics. To make this process
more systematic, we introduce some algorithms that allow to identify chemical systems
with a required associated dynamics, starting from a mass action network.

Outline of the thesis

The two overview chapters introduce gene regulatory networks and chemical reaction
networks informally, and give a survey of the problems and approaches considered in this
thesis. After the introduction of the main definitions relating to regulatory networks,
Chapter 3 presents a characterisation of Boolean networks with regulatory graphs given
by a union of disjoint circuits, restating for a large part known results. The calculation
of the number of equivalence classes under symmetry is a new contribution. Proposi-
tions 3.2.1 and 3.2.11 are included in [TFC18]. Chapter 4 discusses the conversion of
multilevel networks to Boolean maps, and is an extended version of [Ton17]; I thank
Claudine Chaouiya, Adrien Fauré and Shizuo Kaji for useful comments on this work.
Chapter 5 investigates the relationships between local negative circuits and cyclic at-
tractors. Some results of the chapter are included in [Ton17] and [TFC18].
Chapter 7 establishes the notations and terminology of chemical reaction network

theory, including the concept of robustness. Theorems 7.5.6 and 7.5.7 are included
in [TJ17]. Chapter 8 describes some approaches to the elimination of species and deriva-
tion of kinetic rates. The idea of iterative elimination described as method one and the
examples on the elimination order are contributions to [MLNT16, MTLN16, MTLN17].
In Chapter 9, we discuss the definition of translation of a chemical reaction network and
some connections to robustness, concluding with the main result of [TJ17]. In the last
chapter we survey some methods for the identification of dynamically equivalent weakly
reversible generalised mass action networks, detailing in particular the computational
method included in [TJ17].
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Software tools

To aid the exploration of examples and investigation of properties of networks of interest
I have relied significantly on software tools. Some of the scripts used for the analysis of
circuits in Boolean networks with SAT are available at github.com/etonello/regulatory-
network-sat). In addition, some simple python programs for the investigation of regu-
latory networks can be found at my github page. The programs allow to create small
networks and switch between different formats (synchronous and asynchronous, polyno-
mial form, truth table), as well as explore different regulatory structures, and calculate
fixed points and attractors.
To investigate chemical reaction networks I created a python library which is avail-

able at https://github.com/etonello/crnpy. The tool provides an easy way of defining
examples, by writing reactions for instance as A+B ->(k1) C or 2A <-> 2B. Models
can also be read from SBML files. In addition, network models from the BioModels
database [LDR+10] are provided in human-readable format. The library provides sim-
ple commands for checking basic properties of reaction networks, such as the deficiency,
linkage classes, associated matrices and equations, etc. It facilitates the definition of
algorithms for manipulation of networks (e.g. elimination of species) or generation of
other associated graphs (e.g influence graphs, translated reactions), for instance.
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2
OVERVIEW OF PART I

In this part of the thesis, we consider the qualitative approach based on Boolean net-
works, originating from the work of Glass and Kauffman [GK73] and Thomas [Tho73,
Td90, Tho91]. To define a Boolean regulatory network, the regulatory components are
assumed to be either present (level 1) or absent (level 0) — in the language of genetics,
a gene is either expressed or not. If we have n regulatory components, to describe a
possible state of the system we use therefore an element of {0, 1}n. Then, we need a
description of the dynamics that will determine which states can be reached from a
given state. Usually, the asynchronous update scheme is assumed, meaning that only
one component can change at each step of the dynamics. If we visualise the dynamics
on the hypercube, this means that from one node we can only move to an adjacent
node. The graph with nodes the set {0, 1}n and edges the possible transitions between
states is called the asynchronous state transition graph of the regulatory network. The
regulatory graph instead is defined to capture the idea that a regulatory component or
a combination of regulatory components can activate or inhibit the expression of one or
multiple components.

We can illustrate these concepts with an example. Consider a system with 3 regula-
tory components, and denote x1, x2 and x3 their expression levels. Assume that the
system moves from a state (x1,x2,x3) towards the state (1− x3,x1,x2) (the function
f : (x1,x2,x3) 7→ (1− x3,x1,x2) is called the synchronous dynamics). This means, for
instance, that the system can transition from the state 000 to the state 100 (we drop
the parentheses and commas to simplify the notation), and from the state 101 towards
010 — meaning, to any of the states 001, 110, and 100. The state transition graph for
this network can be visualised as follows:

011 111

001 101

010 110

000 100

(1)

To describe the regulatory graph associated to this Boolean system, we need to ask, for
each pair of regulatory components i and j, does component i change when j changes?
For instance, say we start from the state p = 000, and we want to ascertain the effect
that a variation in the first component has on the second component. We identify the
neighbour of p in the direction of the first component, i.e. the state p1 = 100, and
compare the target states for p and p1: since p is sent to 100 and p1 is sent to 110,
the second component shows an increase when the first increases, meaning that the first
component activates the second. We denote this with an arrow 1→ 2. Using the same
states, we see that the first component has no effect on the third. We can repeat the
same procedure for the other directions: p2 = 010, neighbour of p in the second direction,
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overview of part i

is mapped to 101, meaning that we can draw an edge 2 → 3. When we consider the
third neighbour p3 = 001 of p we find that the target value for the first component,
which is 0 for p, is 1 for p3. In this case, a positive change in x3 gives a negative change
in x1. We deem this an inhibitory effect, which we denote 3 a 1. The regulatory graph
that we just described is a circuit:

1 2

3

(2)

This circuit has negative sign, since it combines two positive effects and one negative
effect. Perhaps not surprisingly, we could have derived these effects just by taking the
derivatives of each component of f with respect to the three variables. In fact, the
regulatory graph can be seen as the adjacency matrix of the discrete Jacobian of the
Boolean network.
Notice that we could have found the same graph by choosing any of the states as

our starting point, but this is not the case in general. Consider the following smaller
example with 2 variables, defined by the map (x1,x2) 7→ (x1x2,x1 + x2 − 2x1x2). The
asynchronous state transition graph is the following:

01 11

00 10
(3)

We can apply the procedure described above using the state p = 00, and detect the
regulations 1 → 2 and 2 → 2. If we calculate the regulations from the state p1 = 10
instead, by changing the first component, we detect the regulation 1 → 1, and by
changing the second component, two regulations 2 → 1 and 2 a 1. It is necessary
therefore to speak of local regulatory graphs, indexed on the elements of {0, 1}n, which
are the regulatory graphs with nodes {1, . . . ,n} and with edges the regulations that can
be detected at a given state with the procedure above. The global regulatory graph is
the regulatory graph that contains all the regulations that can be detected somewhere
in the state space; unlike the local regulatory graph, the global regulatory graph is not
necessarily simple, i.e., it can contain parallel edges. For instance, the global regulatory
graph corresponding to the state transition graph in (3) is

1 2 (4)

One of the objectives of the theory of Boolean networks is that of establishing properties
of the dynamical behaviour starting from the regulatory graph. In particular, one is
interested in characterising the attractors of the state transition graphs, i.e. the minimal
regions of the state space that the dynamics can eventually enter, and never leave. For
the dynamics represented in (3), there are two attractors, consisting of the two fixed
points 00 and 01. For the state transition graph in (1), we can detect a cyclic attractor :
000→ 100→ 110→ 111→ 011→ 001→ 000. This is a special type of cyclic attractor,
consisting of a single cycle.
To have an idea of the size of the problem at hand, we can calculate the number

of possible regulatory networks on n regulatory components. The number grows very
quickly with n — there are (2n)2n maps from {0, 1}n to itself. That is, for instance, for
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overview of part i

n = 3 we can count more than 16.7 million maps. However, many of them represent the
same type of behaviour. For instance, compare the state transition graph

01 11

00 10

to the one in (3): clearly, we can find one graph from the other just by transposing
the two components x1 and x2. Similarly, we could swap the roles of the values 0
and 1, and obtain a transition graph with exactly the same structure. In Chapter 3,
after introducing the terminology of Boolean networks, we investigate the problem of
determining how many different state transition graphs exist once the symmetries just
described have been taken into account. The number still grows very quickly, but it
is smaller by some orders of magnitude. For instance, for n = 3 we count just over
352 thousand maps. We also investigate the effect of the symmetries on the regulatory
graphs. We find that maps that are equivalent under symmetry have regulatory graphs
with the same structure, but the sign of the interactions can change. Interestingly,
however, the signs of the circuits are unchanged.

The circuits of the regulatory graph and their relationship with the dynamics of the
asynchronous state transition graph have long been under investigation. The dynamics
of Boolean networks with regulatory graph consisting exactly of a single, isolated circuit,
such as the one in (2), can be completely characterised [RMCT03]: if the circuit is
negative, the dynamics admits a unique cyclic attractor, as we noticed for the graph
in (1); if the circuit is positive, there are exactly two fixed points. R. Thomas suggested
the following two conjectures, which have inspired research in both the discrete and
differential frameworks:

• A positive circuit in the regulatory graph is a necessary condition for multistability.

• A negative circuit in the regulatory graph is a necessary condition for the existence
of a cyclic attractor.

For the Boolean setting, both conjectures have been proved, in different incarnations
[RRT08, Ric08, Ric10, Rue16]. For proofs in the differential case, see for example [PMO95,
Gou98, Sno98, Sou04, KST07, AHS09]. The end of Chapter 3 presents an overview of
the results on Boolean networks related to these two conjectures. A main asymmetry
between the two results is the following: the circuit identified by the proofs of the first
conjecture is local, meaning, it is contained in a local regulatory graph; in presence of
an attractive cycle, however, the proof of the second conjectures can only establish the
existence of a negative circuit in the global regulatory graph. A question that motivated
some of the work in this thesis is the following [RRT08, Ric10, Ric11, RR13]:

Question 1. Does the presence of a cyclic attractor imply the existence of a local
negative circuit in the regulatory graph?

Before considering Question 1, we devote some attention to discrete multilevel reg-
ulatory networks, a generalisation of Boolean networks that allow for more than two
expression levels. Multilevel networks provide a step towards a more faithful account
of the dynamical intricacies of biological interaction systems. The synchronous dynam-
ics in the discrete multilevel case is a map from a product of n intervals of integers
{0, . . . ,m1} × · · · × {0, . . . ,mn} to itself. We are still interested, however, in asyn-
chronous state transition graphs that only allow a unitary change for each component,
meaning that the system can not transition for instance from the state (0, 0) directly to
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overview of part i

the state (2, 0), but can only move towards the target state. If the synchronous dynam-
ics maps (0, 0) to (2, 0), the asynchronous state transition graph contains therefore the
transition (0, 0)→ (1, 0).

The local and global regulatory graphs are defined as for the Boolean case, but this
time we might have two directions to check for a given component. For example, let
us consider a network consisting of two regulatory components, the first one admitting
three possible expression levels, and the second only two. We have therefore a map on
{0, 1, 2} × {0, 1}, which we define as f1(x1,x2) = 2− x2, f2(x1,x2) = 0 if x1 = 0, and
1 otherwise. The associated asynchronous state transition graph and global regulatory
graph are as follows:

01 11 21

00 10 20

1 2 (5)

To find the regulations, consider for example the state (1, 1). The first component can
change either to 0 or to 1. If we change it to 1, we can detect the regulation 1 → 2,
whereas no change in the target values takes place if we change it to 2.

Given the larger availability of tools for the Boolean case, it is natural to consider a
mapping of multivalued networks into Boolean ones. Indeed, any multivalued network
can be converted to a Boolean network on a larger number of variables, without losing
any dynamical or regulatory property [DRC11]. The number of Boolean variables re-
quired is equal to m =

∑n
i=1mi. For example, consider the map defined above, which

is defined on 6 states. To embed these states into a Boolean space, we need to consider
3 dimensions. For instance, we can send the states (0, a) to (0, 0, a), (1, a) to (1, 0, a),
and (2, a) to (1, 1, a), for a ∈ {0, 1}, obtaining the synchronous map and asynchronous
graph

000 7→ 110
001 7→ 100
100 7→ 111
101 7→ 101
110 7→ 111
111 7→ 101

011 111

001 101

010 110

000 100
This is, in substance, the method described in [DRC11] to define a Boolean version of a
multilevel network. This does not fully determine a Boolean network, however, as it is
only defined on a subset of the Boolean states, called the admissible states. In addition,
the asynchronous transitions can leave the admissible states, hence the definition of
the dynamics outside the admissible region can affect the asymptotic behaviour. In
Chapter 4, we consider the problem of defining a Boolean version on the entire space
{0, 1}m, while still faithfully reproducing the dynamics of the multilevel map. We will
propose a procedure to obtain a Boolean version with asynchronous dynamics admitting
the same attractors as the multilevel map, and the same local regulatory circuits (except
for loops, that might be added or removed). For example, for the map in (5), we will
identify the following Boolean version and global regulatory graph:

011 111

001 101

010 110

000 100

1,1 2,1

1,2
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overview of part i

where we used (1, 1) and (1, 2) to denote the two Boolean variables corresponding to
the first multilevel component, and (2, 1) to denote the Boolean variable for the second
component. Other conversion methods have been proposed recently, in particular, a
related approach appeared in [FK18]; we will give a brief account and comparison.
Chapter 5 is devoted to answering Question 1. For the multilevel case, Richard [Ric10]

established that, although a global negative circuit is necessary for the presence of
a cyclic attractor, the existence of a local negative circuit is not required. The first
counterexamples for the Boolean case were recently identified by Ruet [Rue17]. Using
the mapping from multilevel to Boolean dynamics described in Chapter 4, we identify a
counterexample for the Boolean case for n = 6, i.e., a map with a cyclic attractor and
no local negative circuits (an alternative conversion of the same example was introduced
by Fauré and Kaji [FK18]). We also present a map with an attractive cycle and no local
negative circuits, derived with a variation on Ruet’s construction in [Rue17].
We then ask, is 6 the minimum dimension such that a map with a cyclic attractor

and no local regulatory circuit exists? For n = 2, it is easy to see by hand that any map
with a cyclic attractor must have a local negative circuit. The case n = 3 is already
difficult to cover by hand. Since the argument for n = 2 seems difficult to generalise,
we investigate a different approach. Given that the functions under consideration take
Boolean values, we consider whether it is possible to express some properties as Boolean
formulas, using True to indicate 1 and False to indicate 0. If this is the case, we can use
a satisfiability solver (SAT solver) to check if a map with some given properties exists.
Since a Boolean map in dimension n is identified by the values of the n coordinates on
the 2n states, we can create Boolean formulas with 2nn variables. For example, suppose
we want to check with a satisfiability solver if there are any 2-dimensional Boolean maps
with no fixed point. We want to identify a Boolean map on {0, 1}2, hence we consider
the 8 variables

f1(00), f2(00), f1(01), f2(01), f1(10), f2(10), f1(11), f2(11). (6)

To ask that the state 00 is not a fixed point, we need either f1(00) to be 1, or f2(00) to
be 1, hence, we write the Boolean formula f1(00) ∨ f2(00). For the state 01 we need to
require f1(01) ∨ ¬f2(01), and so forth. The formula that encodes the absence of fixed
points is therefore

(f1(00)∨ f2(00))∧ (f1(01)∨¬f2(01))∧ (¬f1(10)∨ f2(10))∧ (¬f1(11)∨¬f2(11)). (7)

Then, a satisfiability solver can provide us with an assignment for the variables in (6) that
is such that the formula in (7) evaluates to True (for instance, f1(00) = 1, f2(00) =
fi(x) = 0 for i = 1, 2, and x 6= 00). The idea of studying properties of Boolean
networks using Boolean satisfiability problems is another contribution of this thesis. We
show how we can translate dynamical or regulatory properties of Boolean networks into
Boolean expressions. In particular, we describe how to encode the absence of local
negative circuits, using, for small values of n, a manageable amount of constraints. As
seen above, imposing the absence of fixed points is quite easy; therefore we can ask a
satisfiability solver to answer the following question: does the absence of fixed points
imply the existence of a local circuit in the regulatory graph? The solvers quickly find
counterexamples for n = 6, and determine the unsatisfiability for n ≤ 5. We then
proceed to answer Question 1 in full, by implementing a necessary condition for the
existence of a cyclic attractor. This condition is more complex and requires some work
to reduce the search space. For the case n = 5, we write a formula in conjunctive normal
form (a conjunction of disjunction clauses) with 2.6M or clauses, and a SAT solver finds
it unsatisfiable. The matter of finding a human-readable proof remains open. The
necessary condition implemented in the cnf formula might provide some useful clues in
this direction.
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3
BOOLEAN NETWORKS

In this chapter we introduce some definitions used in the logical modelling of gene reg-
ulatory networks. These can be found with slightly different terminologies for instance
in [RMCT03, RRT08, RR08, Rue16]. We then study how the asynchronous dynamics
and regulatory graphs of Boolean networks change under permutations of the coordinates
or of the variable levels, i.e., under symmetries of the hypercube graph (Section 3.2).
We find that the asynchronous dynamics, the regulatory structure, and the signs of
the regulatory circuits are preserved. In addition, using a characterisation of the dy-
namics of Boolean networks with regulatory graph given by a circuit [RMCT03], we
discuss the problem of determining how many classes of equivalent Boolean networks
exist when the symmetries are taken into account. We conclude the chapter with a
summary of known results connecting circuits and asymptotic behaviour of regulatory
networks (Section 3.3).

Notations introduced in this chapter

The set {0, 1} will be denoted B. We write 0 and 1 for the points of Bn with all
components equal to 0 or 1, respectively. Given an element x of Bn and a set of indices
J ⊆ {1, . . . ,n}, we denote by x̄J the element of Bn that satisfies x̄Ji = 1− xi for i ∈ J ,
and x̄Ji = xi for i /∈ J . We will write x̄ for x̄J with J = {1, . . . ,n}, and for i ∈ {1, . . . ,n},
we will write x̄i for x̄{i}. χJ will denote the indicator function of the set J , and P(J)
the power set of J .

Given two points x, y ∈ Bn, d(x, y) will denote the Hamming distance. In addition,
define I(x, y) = {i ∈ {1, . . . ,n} | yi 6= xi}. If x 6= y, the set [x, y] = {z ∈ Bn | zi =
xi for i /∈ I(x, y)} is called a subcube of Bn. Given a subcube κ = [x, y] we write
πκ : Bn → κ for the projection on the subcube, i.e. the map defined by (πκ(z))i = zi
for i ∈ I(x, y) and (πκ(z))i = xi for i /∈ I(x, y), for z ∈ Bn and i ∈ {1, . . . ,n}.
We call n-dimensional hypercube graph the directed graph on Bn with an edge from

x ∈ Bn to y ∈ Bn whenever d(x, y) = 1. An edge with source x and target y in the
hypercube graph will be denoted (x, y). Given I ⊆ {1, . . . ,n}, we write ψI for the map
defined by ψI(x) = x̄I for all x ∈ Bn. Sn denotes the permutations of a set of n elements.
Given σ ∈ Sn and I ⊆ {1, . . . ,n}, we write σ(I) for {σ(i)|i ∈ I}; σ will also denote the
corresponding transformation on Bn (i.e., σ(x)i = xσ−1(i), for x ∈ Bn). |I| denotes the
cardinality of the set I.

We write Fn for the set of all maps from Bn to itself. For each f ∈ Fn and x ∈ Bn, we
define If (x) = I(x, f(x)). The subscript f will be dropped when there is no ambiguity
about the map f in question.
For f ∈ Fn and κ ⊆ Bn a subcube of Bn, we define f |κ = πκ ◦ f ◦ ικ : κ → κ, where

ικ : κ→ Bn is the inclusion, and πκ is the projection on κ.
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We will give examples of Boolean maps either by defining a truth table, or in poly-
nomial form (see Section 3.1.2). To simplify the notation, in the examples an element
x = (x1, . . . ,xn) ∈ Bn will be denoted x1 · · ·xn.

3.1 definitions

In the Boolean modelling approach, the concentrations of the species of interest are sim-
plified to two possible levels. When Boolean networks are used to model gene regulatory
networks, the n species under study are called genes, and the two levels represent either
expression or absence of each gene. A state of the system is defined by an element of
Bn, and a Boolean network is simply defined by a map f : Bn → Bn.

The definition of Boolean network is sometimes given in the following alternative
and equivalent form, which puts emphasis on the regulatory roles (see for instance
in [RMCT03, CRRT04]). A Boolean (regulatory) network is defined by the following
three elements:

• the set of n regulatory components or genes;

• for each component i, the set I(i) ⊆ {1, . . . ,n} of components that regulate i;

• for each component i, a map Ki : P(I(i))→ B.

The set I(i) and map Ki uniquely define the ith component of a Boolean network
f : Bn → Bn: each state x ∈ Bn defines a subsetX of I(i) (the indices j ∈ I(i) such that
xj = 1), and fi(x) can be set to Ki(X). Conversely, given a Boolean network f , we can
define I(i) = {j ∈ {1, . . . ,n} | fi(x̄j) 6= fi(x) for some x ∈ Bn}, and Ki(X) = fi(x),
with x any state such that xj = 1 for j ∈ X, and xj = 0 for j ∈ I(i) \X.

A Boolean network f determines two possible interpretations of the dynamics. We
call the dynamics synchronous when the values of all variables are updated at the same
time. In other words, if the system is in state x at time t, it will be in state f(x) at time
t+ 1. Another approach that is often considered is the asynchronous, non-deterministic
update scheme: if the system is in state x at time t, then at time t+ 1 the system can be
in any of the neighbour states that take x one step closer to its target state f(x). The
asynchronous update is considered more realistic for biological systems [Td90], since the
concentrations of multiple species are unlikely to change level in exactly the same time
interval. Mixed synchronous and asynchronous updating schemes are sometimes also
investigated [FNCT06].

Definition 3.1.1. The asynchronous state transition graph ADf of a Boolean network
f : Bn → Bn is a directed graph with nodes the set Bn, and, for each x ∈ Bn and
i ∈ {1, . . . ,n}, an edge with source x and target x̄i if fi(x) 6= xi.

The asynchronous state transition graph is therefore a subgraph of the n-hypercube
graph. Each subgraph G of the hypercube graph, on the other hand, defines a unique
map from Bn to itself: for each x ∈ Bn, let I ⊆ {1, . . . ,n} be the set of indices i
such that (x, x̄i) is an edge in G, and define f(x) = x̄I . Then, G is the asynchronous
state transition graph associated to f . In other words, asynchronous and synchronous
dynamics are in one-to-one correspondence.
Many works on regulatory network are concerned with the study of asymptotic prop-

erties of the dynamics. A non-empty subset D ⊆ Bn is trap domain for ADf if, for
every edge (x, y), x ∈ D implies y ∈ D. The minimal trap domains with respect to the
inclusion are called attractors for the asynchronous dynamics of the network. Attractors
that consist of a single point are called fixed points; the other attractors are referred to
as cyclic attractors.

11



3.1 definitions

01 11

00 10

01 11

00 10
(a)

01 11

00 10

01 11

00 10
(b)

Figure 1: (a): Synchronous and asynchronous state transition graphs for the map f(x1,x2) =
((1− x1)x2,x1(1− x2)). (b) Synchronous and asynchronous state transition graphs
for the map f(x1,x2) = (x1 + x2 − 2x1x2,x1 + x2 − 2x1x2).

The steady states of the synchronous and asynchronous dynamics necessarily coin-
cide; the same does not hold for cyclic attractors, as seen in the following example (an
analysis of the relationship between synchronous and asynchronous attractors is given
in [GDCX+08]).

Example 3.1.2. The synchronous state transition graph associated to the map

f(x1,x2) = ((1− x1)x2,x1(1− x2))

admits two attractors, the fixed point 00 and the type 2 attractive cycle {01, 10}. The
fixed point is the only attractor for the associated asynchronous dynamics instead (see
Figure 1a).
The state 00 is the only attractor for the synchronous dynamics defined by

f(x1,x2) = (x1 + x2 − 2x1x2,x1 + x2 − 2x1x2),

wheres the associated asynchronous state transition graph admits the additional cyclic
attractor {01, 11, 10} (see Figure 1b).

The design of algorithms for the identification of fixed points or attractors of Boolean
networks and their reachability properties is still an area of active research. An overview
of the approaches and of the software tools available for the modelling of regulatory
network can be found in the recent survey [AJTM+16].
A significant part of the Boolean network literature motivated by the study of gene

regulatory networks is concerned with the identification of properties of the network dy-
namics from the analysis of a smaller graph associated to the network, that encapsulates
its regulatory structure.

3.1.1 Regulatory graphs and Jacobian matrices

Boolean networks are used to model the interactions between regulatory components,
which are derived from a Boolean map f as follows.

Definition 3.1.3. For each state x ∈ Bn, the local regulatory graph Gf (x) of f at
x ∈ Bn is a labelled directed graph with nodes the set {1, . . . ,n}. The graph Gf (x)
admits an edge from node j to node i when fi(x̄j) 6= fi(x); the edge is represented as
j → i and is labelled with

s =
fi(x̄j)− fi(x)

x̄jj − xj
. (8)

The label s is also called the sign of the edge.

The edges of a regulatory graph are therefore labelled with −1 or +1; these represent
inhibition or activation, respectively. It is easy to see that the sign of an edge j → i is
positive if and only if xj = fi(x).

12



3.1 definitions

Definition 3.1.4. The global regulatory graph Gf of f is the multi-directed labelled
graph on {1, . . . ,n} that admits an edge j → i of sign s if there exists a local regulatory
graph Gf (x) for f that admits an edge j → i of sign s.

The sign of a path i1 → i2 → · · · → ik in a regulatory graph is defined as the product
of the signs of its edges. A circuit in a regulatory graph is a path i1 → i2 → · · · → ik
with i1 = ik and such that the elements i1, . . . , ik−1 are all distinct. Hence a circuit is
an elementary cycle — a cycle where no nodes are repeated. If k = 1, the circuit is
called a loop. A circuit in a regulatory graph Gf is said to be local if it is contained in
a local graph Gf (x) for some state x ∈ X .

From regulatory graphs to Boolean networks

The global regulatory graph of a network can be seen as comprising all the possible
regulations between the components; some regulations, however, might be active only
when the system is in some specific states. Whereas the regulatory graphs are uniquely
defined given a network, we might be interested in studying a biological system start-
ing from a given set of regulations, and ask, for example: given a signed graph G on
{1, . . . ,n}, does a regulatory network admitting G as global regulatory graph always
exist? And how many such networks exist? Can each regulation be active at every
state?

Proposition 3.1.5. A simple directed graph G on {1, . . . ,n} with edges labelled with
signs {−1, 1} coincides with all the local regulatory graphs of at least one network f
if and only if each node has indegree at most one. Moreover, G identifies 2r possible
dynamics, where r is the number of nodes with indegree zero.

Proof. Suppose that a node i has indegree 2, i.e., it is regulated by two components
j1 and j2, with signs of the regulations s1 and s2 respectively. It is then sufficient to
take a state x such that xj1 = 0, and xj2 = 1 if s1 = s2 , and 0 otherwise, to show a
contradiction.
For the second statement, it is sufficient to observe that if a component i is not

regulated, then fi is constant, and if i is regulated by j, then fi(x) is uniquely determined
by xj , for all x ∈ Bn.

Given a graph that satisfies the hypotheses of Proposition 3.1.5, we can create all the
Boolean dynamics that admit G as their regulatory graph as follows: if i is a node with
exactly one incoming edge with source j, then we define fi(x) = xj if the label of the
edge is positive, and fi(x) = x̄j = 1− xj if the label is negative. All other components
of f , corresponding to unregulated nodes, will be constantly equal to either 0 or 1. If a
node i in G as indegree greater than 1, we can only ask that, for each edge j → i there
exists at least one state x ∈ Bn such that j → i belongs to the local regulatory graph
Gf (x).

More in general, suppose that we are given an assignment of a local regulatory graph
G(x) for each state x ∈ Bn. If, in each graph G(x), every component is regulated by
at least one regulatory component, then there exists at most one regulatory network f
that satisfies Gf (x) = G(x) for all x ∈ Bn (each regulation j → i in G(x) determines
the value taken by fi at x). If components that are not regulated are allowed, then more
than one map can exist admitting G(x) as local regulatory graph at x, for every x ∈ Bn.
Maps with identical local regulatory graphs can have different asymptotic behaviours,
see for example the maps in Figure 2.
A question we can ask is: given a signed graph G on {1, . . . ,n}, how many Boolean

networks on n variables admit G as their global regulatory graph? Suppose that the

13



3.1 definitions

01 11

00 10

01 11

00 10

Gf (00) : 1 2 Gf (01) : 1 2

Gf (10) : 1 2 Gf (11) : 1 2

Figure 2: Asynchronous dynamics of two Boolean networks (defined by (x1,x2) 7→ (0, 2x1x2 −
x1 − x2 + 1) and (x1,x2) 7→ (1, 2x1x2 − x1 − x2 + 1) respectively) admitting the same
local regulatory graphs (shown on the right). The first map has a single cyclic attractor,
the second has two fixed points.

graph G is simple, i.e., it does not admit parallel edges. Then the number of choices
for component i is given by the number of non-degenerate monotone Boolean functions
of k variables, where k is the number of regulators of i. This number is known up to
k = 8 [Slo17, A006126].

In Section 3.2 we will give a characterisation of the maps with regulatory graph given
by a circuit, whereas in Section 5.2 we will show how one can write requirements on the
regulatory structure as Boolean expressions.

Jacobian matrices

For each x ∈ Bn, define the n× n matrix Jf (x) as follows: (Jf (x))ij = 1 if there exists
an edge from j to i, and (Jf (x))ij = 0 otherwise. The matrix Jf (x) is called the discrete
Jacobian matrix or simply Jacobian of f at x [RRT08, Rue16]. The Jacobian at x is
therefore the transpose of the adjacency matrix [GY04] of the regulatory graph Gf (x).
To reason about the graphs associated to regulatory networks it is sometimes useful

to consider a signed version of this matrix, which we call signed Jacobian, and denote
Jf (x). This is a sign pattern matrix [Hog06], i.e., a matrix with entries in {−1, 0,+1}.
Jf (x) has the same support as the Jacobian Jf (x), and the entry (Jf (x))ij is the sign
of the edge from j to i (8). Hence the Jacobian Jf (x) is the zero pattern of Jf (x), and
the local graph Gf (x) is the signed directed graph defined by the transpose of Jf (x).
A signed Jacobian matrix can also be associated to the global regulatory graph, by

introducing an additional label ], that represents the presence of edges with the same
source and target and different signs. Operations of addition and multiplication can be
defined on the set S = {−1, 0, 1, ]} as follows [Hog06, AI04]:

0 + s = s = s+ 0, 0 · s = s = s · 0, for s ∈ S,
]+ s = ] = s+ ], ] · s = ] = s · ], for s ∈ S, s 6= 0,
1 + 1 = 1, −1 + (−1) = −1, 1 · 1 = 1 = −1 · (−1),
1 + (−1) = ] = −1 + (+1), 1 · (−1) = −1 = −1 · (+1).

With the two operations defined above, the set S can be viewed as a commutative
semiring with identity, and the matricesMn(S) over S, called generalised sign pattern
matrices, form a monoid with the usual matrix multiplication.

The global signed Jacobian Jf can be defined as the sum of all the local signed
Jacobians. The signed directed graph Gf associated to Jf is a version of the global
regulatory graph that admits at most one edge from each pair of source and target
nodes. The sign of a path in Gf can be defined again as the product of the signs of the
edges; the existence of a path of sign ] in Gf from i to j corresponds to the existence of
paths of positive and negative signs from i to j in the global regulatory graph.
It is known that, if S is a generalised sign pattern matrix, the entry Skij gives the sum

of the signs of all paths of length k from i to j in the signed directed graph G associated
to S ([AI04], Proposition 3).
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If a map f is such that the (signed) Jacobian Jf (x) (Jf (x)) is independent of x, we say
that f has constant (signed) Jacobian. If f has constant signed Jacobian, then clearly
it has constant Jacobian, whereas the converse does not hold: consider for instance the

map f = (x1,x1 + x2 − 2x1x2) with signed Jacobian at x Jf (x) =

∣∣∣∣∣ 1 0
1− 2x2 1− 2x1

∣∣∣∣∣.
Example 3.1.6. For I ⊆ {1, . . . ,n}, the signed Jacobian of ψI is constant and diagonal,
with (JψI )ii = −1 if i ∈ I and (JψI )ii = +1 otherwise.

Example 3.1.7. The signed Jacobian of the map σ defined by a permutation of the
coordinates σ ∈ Sn is constant and coincides with the Jacobian. It satisfies (Jσ)ij = 1
if σ(j) = i, and (Jσ)ij = 0 otherwise. The (signed) Jacobian of the inverse of σ is the
transpose of the (signed) Jacobian of σ.

Given two maps f , g : Bn → Bn, it is not in general true that Jf◦g(x) = Jf (g(x))Jg(x)
or Jf◦g(x) = Jf (g(x))Jg(x), not even if g has constant (signed) Jacobian, as seen in the
following example.

Example 3.1.8. Consider the maps f(x1,x2) = (x1x2,x1x2), g(x1,x2) = (x2,x2). The

Jacobian and signed Jacobian of g are constant and both equal to
∣∣∣∣∣ 0 1

0 1

∣∣∣∣∣. In addition,

f ◦ g = g, and therefore the Jacobians of f ◦ g are also independent of x and given by

the same matrix. However, the (signed) Jacobian of f at (0, 0) = g(0, 0) is
∣∣∣∣∣ 0 0

0 0

∣∣∣∣∣, and
therefore we cannot have Jf◦g(x) = Jf (g(x))Jg(x).

A counterexample is also given in [Rue16], where part (ii) of the following result is
also observed.

Proposition 3.1.9. Consider f , g : Bn → Bn.

(i) If the signed Jacobian of f is constant, then Jf◦g(x) = Jf (g(x))Jg(x).

(ii) If the Jacobian of f is constant, then Jf◦g(x) = Jf (g(x))Jg(x) mod 2.

(iii) if g is of the form ψI ◦ σ for some I ⊆ {1, . . . ,n} and σ ∈ Sn, then Jf◦g(x) =
Jf (g(x))Jg(x) and Jf◦g(x) = Jf (g(x))Jg(x) mod 2.

Proof. (i) If the signed Jacobian of f is constant, then from Proposition 3.1.5 we have
that each component is regulated by at most one variable. In other words, for each
i ∈ {1, . . . ,n} there exists a unique i′ ∈ {1, . . . ,n} such that (Jf (x))ii′ 6= 0, and fi
writes as fi = (Jf (x))ii′xi′ + ci, with ci ∈ {−1, 0, 1}. As a consequence

(Jf◦g(x))ij =
fi(g(x̄j))− fi(g(x))

x̄jj − xj
= (Jf (x))ii′

gi′(x̄
j)− gi′(x)
x̄jj − xj

=
n∑
k=1

(Jf )ik(Jg(x))kj = (JfJg(x))ij .

(ii) If the Jacobian of f is constant, then each component fi of f writes, modulo 2,
as fi =

∑n
k=1 Jikxk + ci, for some ci ∈ {0, 1}. We find the following equality modulo 2:

(Jf◦g(x))ij =
fi(g(x̄j))− fi(g(x))

x̄jj − xj
=

n∑
k=1

Jik
gk(x̄

j)− gk(x)
x̄jj − xj

=
n∑
k=1

(Jf )ik(Jg(x))kj = (JfJg(x))ij .
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(iii) We can give the proof in two steps, considering the cases g = ψI and g = σ
separately. Using the observation in example 3.1.6, in the first case, we have

(Jf◦ψI (x))ij =
fi(ψI(x̄j))− fi(ψI(x))

x̄jj − xj

=
fi(ψI(x)

j
)− fi(ψI(x))

ψI(x)
j

j −ψI(x)j

ψI(x)
j

j −ψI(x)j
x̄jj − xj

= (Jf (ψI(x))JψI (x))ij .

Using example 3.1.7, we find

(Jf◦σ(x))ij =
fi(σ(x̄j))− fi(σ(x))

x̄jj − xj

=
fi(σ(x)

σ−1(j)
)− fi(σ(x))

σ(x)
σ−1(j)

σ−1(j) − σ(x)σ−1(j)

σ(x̄j)σ−1(j) − σ(x)σ−1(j)

x̄jj − xj
= (Jf (σ(x))Jσ(x))ij .

The proof for the Jacobian equality proceeds similarly.

3.1.2 Boolean networks as polynomials

It is well known that Boolean functions, seen as maps from Fn
2 to F2, can be written as

polynomials. Here we adopt a polynomial representation of Boolean functions which has
the additional property of allowing for the distinction between positive and negative regu-
lations. Each component f of a map from {0, 1}n to itself can be written as a polynomial
in Z[x1, . . . ,xn] by associating to each state a ∈ Bn a term

∏
i,ai=1 xi

∏
i,ai=0(1− xi),

summing over all states a such that f(a) = 1:

f(x) =
∑

a∈{0,1}n
f(a)

n∏
i=1

xaii (1− xi)
1−ai . (9)

This polynomial has the property that the sign of an edge from j to i in the regulatory
graph at x as defined in the previous section (8) can be found simply by calculating the
derivative of the polynomial with respect to xj . To see this, observe that

f(x̄j)− f(x) =
∑

a∈{0,1}n
f(a)

∏
i 6=j

xaii (1− xi)
1−ai(x

1−aj
j (1− xj)aj − x

aj
j (1− xj)1−aj ).

Since, if aj = 0, we have x1−aj
j (1− xj)aj − x

aj
j (1− xj)1−aj = xj − (1− xj) = xj − x̄j ,

and if aj = 1, x1−aj
j (1− xj)aj − x

aj
j (1− xj)1−aj = (1− xj)− xj = x̄j − xj , we can write

f(x̄j)− f(x)
x̄j − xj

=
∑

a∈{0,1}n
f(a)

∏
i 6=j

xaii (1− xi)
1−ai(−1)aj+1,

which is the same expression we find by taking the derivative of (9) with respect to xj .
Notice also that, if we replace each product in (9) with and and each sum with or, the
polynomial gives the disjunctive normal form of f .

For example, we write a xor between x1 and x2 as x1 + x2 − 2x1x2, so that we can
calculate the derivatives as 1− 2x2 and 1− 2x1.

Example 3.1.10. In [CRRT04], a core model for the cell cycle in Drosophila is studied.
The network involves four regulatory components, MPF (Mitosis Promoting Factor) and
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the proteins Fizzy, Wee1 and String. The regulatory graph and asynchronous dynamics
considered in [CRRT04] are as follows:

3

1 4

2

1011 00 00 1111

1001 00 1101 00

0011 00 0111 00

0001 0101 00 00

0010 00 0110 00

0000 0100 00 00

1010 00 00 1110

1000 00 1100 00

The corresponding synchronous dynamics can be written in polynomial form as

f(x1,x2,x3,x4) = (1− x2,x1, 1− x1,x1). (10)

With the system written in form (10), it is easy to see that the network does not have
any fixed point: any such point must satisfy 1− x2 = x1 = x2. The asynchronous state
transition graph must therefore admit at least one cyclic attractor. It is more difficult
to see that there is only one attractor, which covers the entire state space.

3.2 symmetries of the hypercube graph

Recall that an isomorphism of graphs G = (V ,E) and G′ = (V ′,E′) is a bijective
map ϕ : E → E′ such that (i, j) ∈ E if and only if (ϕ(i),ϕ(j)) ∈ E′. If the graphs
are directed, ϕ must preserve the direction of the edges. If an isomorphism exists
between G and G′, the two graphs are said to be isomorphic. If G = G′, the map ϕ
is called an automorphism. For some background terminology of graph theory, see for
instance [GY04].

The group of automorphisms of the n-hypercube graph is given by the semidirect
product On := (

∏n
i=1 S2) o Sn, where Sn is the symmetric group on a finite set of

cardinality n (see for instance [Sle53]). The symmetric group Sn acts on Bn by permuting
the coordinates: for each σ ∈ Sn and x ∈ Bn, σ(x) = (xσ−1(1), . . . ,xσ−1(n)). The product∏n
i=1 S2 acts on Bn by transposing 0 and 1 on the n coordinates. Given I ⊆ {1, . . . ,n},

we write ψI for the map that swaps the levels 0 and 1 for the coordinates in I. The
symmetries of the hypercube graph correspond therefore to the maps that can be written
as the composition of a map ψI and a permutation of the coordinates σ. It can be easily
verified that ψI ◦ σ = σ ◦ ψσ−1(I). Given maps U = ψI ◦ σ and f : Bn → Bn, we write
fU = U ◦ f ◦U−1.

Proposition 3.2.1. For each U = ψI ◦ σ and f : Bn → Bn, the state transition graphs
ADf and ADfU are isomorphic.

Proof. We have that (x, x̄i) is in ADf if and only if (U (x),U (x̄i) = U(x)
σ(i)

) is in
ADfU , so that the graph isomorphism is given by U . This follows from the observation
that

fUσ(i)(U(x)) = σ(f(x))
I

σ(i) = f(x)
σ−1(I)

i , (11)

and U (x)σ(i) = σ(x)
I

σ(i) = x
σ−1(I)
i , and therefore fUσ(i)(U(x)) 6= U(x)σ(i) if and only if

fi(x) 6= xi.

This property can be interpreted as follows: the order we assign to the regulatory
components, as well as the stipulation of labels (0 for not expressed, 1 for expressed, or
vice versa) are arbitrary. Boolean networks that can be mapped to one another via a
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permutations of the coordinates, or by swapping the levels 0 and 1 can be considered as
the same Boolean network. For example, the maps f(x1,x2) = ((1− x1)x2,x1 + x2 −
x1x2) and g(x1,x2) = (x1x2 − x2 + 1, 1 − x1x2), with asynchronous state transition
graphs

01 11 01 11

00 10 00 10

are to all effects the same Boolean network, as g is obtained from f by swapping the first
component with the second, and negating the second. To have an idea of the number
of objects we are studying, we want to have an estimate of how many different Boolean
networks exist after factoring for symmetry. The number of Boolean networks with no
auto-regulations is discussed in [EG00], whereas the types of Boolean functions under
symmetry is enumerated in [Sle53].

The number of equivalence classes of Boolean networks under symmetry

The group On acts on the set Fn by conjugation: for each U ∈ On, U · f = U ◦ f ◦U−1.
To find the number of different Boolean maps under symmetry, we need to count the
number of orbits o(n) under the action of On on Fn. A lower bound for the number of
Boolean networks modulo symmetries is found by observing that the size of each orbit
is bounded above by the number of symmetries. Since the cardinality of On is n!2n, we
have that the number of different Boolean networks o(n) satisfies

o(n) ≥ (2n)2n

n!2n . (12)

To count the number of orbits o(n) we can use a result known as Burnside’s Lemma
(see for example [Har64]): the number of orbits is the average of the number of elements
that are fixed by each symmetry. Denote by I(U) the maps fixed under U : I(U) =
{f ∈ Fn| U ◦ f ◦U−1 = f}. Then

o(n) =
1
|On|

∑
U∈On

|I(U)|. (13)

Recall that every permutation on m elements admits a unique decomposition into
disjoint cycles. Given a permutation τ of a set of m elements, denote by cτ (k) the
number of cycles of length k in the decomposition of τ , for k = 1, . . . ,m. To count the
number of fixed maps for each automorphism, we can use the following result ([Dav53,
Theorem 6], [Har64, Theorem 5.1]): given a permutation τ of a set X of m elements,
the number of maps f : X → X fixed by τ is given by

I(τ ) =
m∏
i=1

∑
k|i
kcτ (k)

cτ (i) . (14)

To find the number of orbits using (13) and (14), we need therefore to identify the cyclic
structure of the permutation of Bn defined by the symmetry. For instance, for n = 1,
we have two symmetries, the identity and the symmetry s that swaps 0 and 1, and four
maps:

0 1 0 1 0 1 0 1
()
(a)

()
(b)

()
(c)

()
(d)

18



3.2 symmetries of the hypercube graph

n sym.s Lower bound n. equiv. classes n. Boolean maps
1 2 2 3 4
2 8 32 43 256
3 48 349 525 352 744 16 777 216

4 384 48 038 396 025 285 290 48 038 431 091 088 416 446 744 073 709 551 616
18

5 3840 186 532 036 368 732 433
721 589 301 615 542 925

380 599 384

488 697 416 122 580 992
721 589 407 253 467 900

380 599 384

283 019 655 932 542 976
902 918 203 684 832 716

1 461 501 637 330

6 46080 356 676 232 782 725 484
727 660 837 983 208 656
294 561 724 082 503 721
292 952 918 086 950 259
805 557 728 811 063 478
078 259 470 366 302 349

855

284 411 737 392 807 936
637 049 449 915 971 376
681 049 145 413 905 791
678 427 681 966 288 752
805 557 728 811 063 553
078 259 470 366 302 349

855

640 806 627 990 306 816
611 414 266 254 884 915
404 245 721 771 497 210
270 465 446 667 948 293
100 143 613 805 079 739
196 394 479 212 279 040

39 402 006

Table 1: Number of symmetries, lower bound on the number of different Boolean networks (2n)2n

n!2n ,
number of equivalence classes under On and number of Boolean networks, for n ≤ 6.

The identity has 4 fixed points. The symmetry s consists of one cycle of length 2, hence
the number of maps fixed by s is I(s) =

∏2
i=1

(∑
k|i kcs(k)

)cs(i)
= 2 (the maps (a) and

(b) above). Using (13), we find that there are 3 types of maps in dimension 1: these are
given by the maps (a), (b) and (c) above.
In the next paragraph we study the cycle decomposition (cτ (i))i∈{1,...,m} defined by

a symmetry ψI ◦ σ on Bn, that we can use to find the number of equivalence classes
under symmetry for small n. The counts o(n) up to n ≤ 6, as well as the lower bounds
provided in (12), and the total number of Boolean networks are given in Table 1. The
lower bounds give a fair approximation of the number of types of Boolean networks –
or, in other words, many maps can be identified under symmetry.

Remark 3.2.2. Some networks can have asynchronous state transition graphs that are
isomorphic, but not equivalent under symmetry. This is the case for example for the
asynchronous state transition graphs associated to (x1,x2) 7→ (x1, 0) and (x1,x2) 7→
(x1, 1− x1), which are respectively

01 11

00 10

and
01 11

00 10.

This example was suggested by A. Fauré. Another related question, which we do not an-
swer here, is therefore: how many non-isomorphic asynchronous state transition graphs
exist, for each n?

3.2.1 Synchronous dynamics

In this section we look at a map of the form f = ψI ◦ σ for some I ⊆ {1, . . . ,n} and
σ ∈ Sn as a Boolean network, and give a description of its synchronous dynamics. Using
the remarks in examples 3.1.6 and 3.1.7, we can observe that the regulatory graphs
of such maps consists of a union of disjoint circuits. Special cases of these maps are
therefore given by Boolean networks with regulatory structure consisting of an isolated
circuit. These maps are studied in detail in [RMCT03]. For these maps, the permutation
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3.2 symmetries of the hypercube graph

σ consists of a single circuit, and |I| determines the sign of the circuit, which equals
(−1)|I|. We will write s for |I|.

First, we can observe that, for each x ∈ Bn, we have

f(x̄j) = f(x)
σ(j). (15)

Remark 3.2.3. It can be easily verified that, for each I ⊆ {1, . . . ,n}, IψI (ψI(x)) =
IψI (x), and for each σ ∈ Sn, Iσ(σ(x)) = σ(Iσ(x)). As a consequence, if f = ψI ◦ σ,

If (f(x)) = σ(If (x)). (16)

Proposition 3.2.4. Consider a map f = ψI ◦ σ : Bn → Bn, with s = |I|. Then
|I(x)| = s mod 2 for all x ∈ Bn.

Proof. We can write
n∑
i=1

fi(x) =
n∑
i=1

ψI(xσ−1(i)) =
n∑
i=1

σ−1(i)/∈I

xσ−1(i) +
n∑
i=1

σ−1(i)∈I

(1− xσ−1(i)) =
n∑
i=1

xi + s mod 2.

On the other hand, we have
n∑
i=1

fi(x) =
∑
i∈I(x)

fi(x) +
∑
i/∈I(x)

fi(x) =
∑
i∈I(x)

(1− xi) +
∑
i/∈I(x)

xi =
n∑
i=1

xi + |I(x)| mod 2,

which gives |I(x)| = s mod 2.

For any integer k ≥ 0, define the set

Ak = {x ∈ Bn | |I(x)| = k}.

For odd s, from Proposition 3.2.4 we find that Ak = ∅ for each even k, whereas the
same is true for even s and odd k. In particular, if s is odd, f does not have any fixed
point. From (16), we have that each state in Ak is mapped by f to another state in Ak.
To give a characterisation of the synchronous dynamics, we first look at the special

cases with σ consisting of a single cycle.

Remark 3.2.5. If σ is a cycle, then, for each k ≥ 0, k = s mod 2, and for each
J ⊆ {1, . . . ,n} with cardinality k, there are exactly two elements x, y ∈ Bn such that
I(x) = I(y) = J . Moreover, y = x̄. This is a consequence of the fact that, for each
j ∈ {1, . . . ,n}, xσ−1(j) = xj if j ∈ J ∩ I or j /∈ J ∪ I, and xσ−1(j) = x̄j otherwise. Each
set Ak has therefore cardinality 2(nk), and, if s is even, f has exactly two fixed points.

Equation (16) gives that, at each iteration of f , the set I(x) changes according to
σ. Write Ik for the subsets of {1, . . . ,n} of cardinality k, and, for J ∈ Ik, define
Ak(J) = {x ∈ Ak | I(x) = σi(J) for some i ∈ {1, . . . ,n}}. To study the synchronous
dynamics in Ak we look at the orbits of the elements of Ik under σ.

Recall that the Möbius function µ : N>0 → {−1, 0, 1} is defined as µ(n) = (−1)k if
n is square-free with k prime factors, and zero otherwise. We extend the definition of
the binomial coefficient by setting (nk) = 0 when k is not integer.

Proposition 3.2.6. Consider the action of G = Z/nZ on Ik. The number of orbits
of cardinality m is

θk(m) =
1
m

∑
l|m

(
l
kl
n

)
µ

(
m

l

)
. (17)
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3.2 symmetries of the hypercube graph

Proof. Fix a subgroup H of G of cardinality d. First observe that H is contained in the
stabiliser of a set S ∈ Ik if and only if S is the union of right cosets of H, i.e., S = H ·T
for some T ⊆ G. As a consequence, the number Θ̃(d) of elements of Ik with stabiliser
that contains H is given by (n/d

k/d) (the cosets of H are n
d , and we need k

d cosets to obtain
k elements).
On the other hand, if we write θ̃(h) for the number of elements with stabilizer of

cardinality h, we have Θ̃(d) =
∑
d|h,h|n θ̃(h). Writing θ(m) for the number of elements

with orbit of cardinality m, and replacing h
d with l, we get

∑
l|m θ(l) = ( mkm

n
). Using the

inclusion-exclusion principle [Aig07], we find θ(m) =
∑
l|m ( lkl

n
)µ(ml ), that divided by m

gives the number of orbits of cardinality m.

Proposition 3.2.7. Consider a k ≥ 1, k = s mod 2, and a set J ∈ Ik with orbit of
cardinality m = n

d . Then the set Ak(J) consists of two cycles of size m if k
d is even,

and a cycle of size 2m if k
d is odd.

Proof. Fix an index j ∈ J . Since J = I(x) = I(fm(x)) for some x, from Remark 3.2.5
fm(x) is either equal to x or to x̄. It is therefore sufficient to observe that the jth
component of {x, f(x), f2(x), . . . , fm(x)} changes exactly k

d times. This is because
the number of times the jth component changes is the number of times that j falls in
L = J ∪ σ(J) ∪ · · · ∪ σm−1(J). Since all indices in {1, . . . ,n} appears the same number
of times t in L, and L has k ·m elements, we have t · n = k ·m, and t = k

d .

To each orbit in Ik with cardinality m correspond therefore either one cycle or two
cycles in Ak. We have derived the characterisation of the synchronous dynamics pre-
sented in [RMCT03], and provided in addition equation (17), which allows us to count
the number of cycles of each order. For each m that divides 2n, the number of cycles of
cardinality m is given by ∑

k=1,...,n, k=s mod 2,
n
m
|k, km

n
=0 mod 2

2θk(m)

if m divides n, plus ∑
k=1,...,n, k=s mod 2,

2n
m
|k, km

2n =1 mod 2

θk

(
m

2

)

if m is even.
The synchronous dynamics of some Boolean networks with regulatory graph consisting

of a single circuit involving all variables are represented, for n ≤ 4, in Table 2.
We now move on to describe the topology of the synchronous dynamics for networks

with regulatory graph given by the union of disjoint circuits.

Proposition 3.2.8. Suppose that σ admits a decomposition in circuits σ1 · · ·σN , on the
indices L1, . . . ,LN respectively. Define Ii = I ∩ Li, i = 1, . . . ,N , and suppose that the
map ψIi ◦ σi admits γi(m) cycles of size m, i = 1, . . . ,N , m = 1, . . . ,n. Then ψI ◦ σ
admits

1
l

∑
m1,...,mN

lcm({mi}i=1,...,N )=l

(
N∏
i=1

γi(mi)

)(
N∏
i=1

mi

)

cycles of size l.

Proof. Suppose that the map ψIi ◦ σi admits γi(mi) cycles of size mi, i = 1, . . . ,N . To
each choice of cycle with support Xi for ψIi ◦ σi of size mi, i = 1, . . . ,N corresponds a
(trap) set in Bn which is given by the product X =

∏N
i=1Xi. The cardinality of each

21



3.2 symmetries of the hypercube graph

n Positive circuit Negative circuit
1 1 0 1 k = 0 1 0 1 k = 1

2 1 2

00 11 k = 0

01 10 k = 2
1 2

01 11 k = 1

00 10

3 1 2

3

000 111 k = 0

010 101 011 k = 2

001 100 110

1 2

3

001 011 111 k = 1

000 100 110

010 101 k = 3

4
1 2

4 3

0000 1111 k = 0

0010 0100 k = 2

0001 1000

1101 1011

1110 0111

1001 0011

1100 0110

1010 0101 k = 4

m=4

m=2

1 2

4 3

0011 0111 1111 k = 1

0001 1110

0000 1000 1100

1011 0110 1101 k = 3

0101 1010

0010 1001 0100

Table 2: Synchronous dynamics of Boolean networks with a single regulatory circuit for n ≤ 4.

cycle in X under ψI ◦ σ is l = lcm({mi}i=1,...,N ), hence X contains 1
l

∏N
i=1mi cycles.

The conclusion follows.

From the Proposition we gather, for instance, that ψI ◦ σ admits fixed points if and
only if all the cycles in the decomposition of σ satisfy |Ii| = 0 mod 2.

Example 3.2.9. Consider for instance the symmetry f = ψI ◦σ for n = 5 with I = {3}
and σ = (123)(45). The regulatory graph is therefore given by a negative circuit of
length 3 and a positive circuit of length 2. The synchronous dynamics associated to
ψ{3} ◦ σ1 = (123) and σ2 = (45) are described in Table 2: for the first map we have one
cycle of length 6 and one of length 2, i.e. γ1(6) = γ1(2) = 1, whereas for the second
map we have two fixed points and one cycle of length 2, so that γ2(1) = 2 and γ2(2) = 1.
γ1(m) and γ2(m) are zero for any other value of m. Following Proposition 3.2.8, we
have that the synchronous dynamics of f admits cycles of length 2 and length 6. The
cycles of length 2 are 1

2 (γ1(2)γ2(1)2 + γ1(2)γ2(2)4) = 4, whereas the cycles of length 6
are 1

6 (γ1(6)γ2(1)6 + γ1(6)γ2(2)12) = 4:

00100 01100 11100 00101 01110 11101 01001 10110

00000 10000 11000 00010 10001 11010 01000 10100

00111 01111 11111 00001 00110 01101 01010 10101

00011 10011 11011 10010 11001 11110 01011 10111

3.2.2 Asynchronous dynamics

Having analysed the synchronous behaviours of maps of the form ψI ◦ σ, in this sec-
tion we want to give a characterisation of their asynchronous dynamics. The following
proposition shows that the cardinality of I(x) can only change by 0 or 2 at each step.
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3.2 symmetries of the hypercube graph

A1 A3 · · · An n odd

A1 A3 · · · An−1 n even

Figure 3: Asynchronous transitions between the sets Ak for negative circuits.

A0 A2 · · · An n even

A0 A2 · · · An−1 n odd

Figure 4: Asynchronous transitions between the sets Ak for positive circuits.

Proposition 3.2.10. Consider a map ψI ◦ σ, a state x ∈ Bn and an index j ∈ I(x)
such that σ(j) 6= j. Then

(i) if σ(j) ∈ I(x), then I(x̄j) = I(x) \ {j,σ(j)};

(ii) if σ(j) /∈ I(x), then I(x̄j) = (I(x) \ {j}) ∪ {σ(j)}.

Proof. From (15) we find {
fi(x̄j) = fi(x) if i = σ(j),
fi(x̄j) = fi(x) if i 6= σ(j).

In particular, we have that j /∈ I(x̄j). In addition, since fσ(j)(x̄j) 6= fσ(j)(x), and
x̄j
σ(j) = xσ(j), we find

σ(j) ∈ I(x)⇔ σ(j) /∈ I(x̄j).

Finally, since fi(x̄j) = fi(x) and x̄ji = xi for i 6= j, i 6= σ(j), we get

i ∈ I(x)⇔ i ∈ I(x̄j).

From Proposition 3.2.10 we can deduce the following: the states x ∈ Ak with I(x) ∩
σ(I(x)) 6= ∅ have at least a successor in Ak−2. If x ∈ Ak and σ(I(x)) = I(x), with
k > 1, then all of the k successors of x are in Ak−2; otherwise, x admits at least a
successor in Ak.
Consider now maps ψI ◦ σ with σ consisting of a single circuit. In this case, all the

sets Ak with 0 < k < n are strongly connected: given a state x ∈ Ak, and a subset of
indices J ∈ Ik, there is a path from x to a state y with I(y) = J ; in addition, x can
reach the other state y with I(y) = I(x). In particular, the attractors of the dynamics
are either the two fixed points in A0 for positive circuits, or the unique cyclic attractor
in A1, for negative circuits. A summary of the asynchronous transitions between the
sets Ak is represented in Figures 3 and 4.

Suppose that the permutation σ decomposes into cycles σ1 · · ·σN on the indices
L1, . . . ,LN respectively, with Ii = I ∩ Li, i = 1, . . . ,N . For each state x, each asyn-
chronous transition connects x to a neighbour state x̄j ; if j is in Li, this means that
(ψIi ◦ σi(x))j 6= xj , whereas (ψIh ◦ σh(x))k = xk for any k = 1, . . . ,n, k 6= j and
h = 1, . . . ,N , h 6= i. In other words, the asynchronous state transition graph of ψI ◦ σ
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3.3 regulatory circuits and asymptotic behaviour

is the Cartesian product of the asynchronous state transition graphs of the ψIi ◦ σi,
i = 1, . . . ,N . In particular, the attractors of the asynchronous dynamics are fixed
points if and only if all the circuits are positive. In this case, there are 2N fixed points.
On the other hand, if all the circuits are negative, then the asynchronous dynamics
admits exactly one cyclic attractor. If N+ of the circuits are positive, then there are
2N+ attractors, which are all cyclic attractors if at least one circuit is negative.

3.2.3 Regulatory graphs

The next point we want to clarify is how regulatory graphs of Boolean networks change
under conjugation with a symmetry. Here we show that the structure of the graphs is
preserved, and, albeit the signs of corresponding edges can differ, the signs of the circuits
are preserved.

Proposition 3.2.11. Consider maps U = ψI ◦ σ and f : Bn → Bn. Then,

(i) for each x ∈ Bn, the graphs Gf (x) and GfU (U (x)), seen as unlabelled directed
graphs, are isomorphic. In addition, corresponding cycles have the same sign.

(ii) the graphs Gf and GfU , seen as unlabelled directed graphs, are isomorphic. In
addition, corresponding cycles have the same sign.

Proof. The graph GfU (U(x)) contains the interaction σ(j) → σ(i) if and only if
fUσ(i)(U(x)

σ(j)
) 6= fUσ(i)(U(x)). Since U(x)

σ(j)
= U(x̄j), we have from (11) that

fUσ(i)(U(x)
σ(j)

) = f(x̄j)
σ−1(I)

i , hence the graph GfU (U(x)) contains the interaction
σ(j) → σ(i) if and only if fi(x̄j) 6= fi(x), i.e. if and only if j → i is an interaction
in Gf (x).

To describe how the signs of the edges change under U , let us call D and P the
signed Jacobians of ψI and σ, respectively, as described in examples 3.1.6 and 3.1.7. By
Proposition 3.1.9, points (i) and (iii), the signed Jacobian of fU at U(x) is given by
JfU (U(x)) = DPJf (x)P

TD, i.e., (JfU (U(x)))ij = (−1)χI (i)+χI (j)(Jf (x))σ−1(i)σ−1(j)

for all i, j ∈ {1, . . . ,n}. In other words, a permutation of the coordinates does not
change the sign of any edge, whereas under conjugation by the map ψI , the sign of an
edge j → i changes if and only if one and only one of the indices i, j is in I. Hence, if

i1
s1−→ i2

s2−→ i3 → · · · → ik−1
sk−1−−−→ ik

sk−→ ik+1 = i1

is a cycle in Gf (possibly local), then the sign of the corresponding cycle in GfU is

k∏
j=1

sj(−1)χI (ij)+χI (ij+1) =
k∏
j=1

sj ,

which concludes.

3.3 regulatory circuits and asymptotic behaviour

To motivate the work of the next two chapters, we summarise some results concerning
the identification of asymptotic properties of the dynamics of Boolean networks from
their regulatory structure. The treatment here is not exhaustive; for other references
see for instance the survey [PR12].
As seen in [RMCT03] and recapitulated in Sections 3.2.1 and 3.2.2, if the regulatory

graph of a Boolean network consists of a single positive circuit, then the associated
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3.3 regulatory circuits and asymptotic behaviour

asynchronous dynamics admits two fixed states, and no additional attractors. If the
regulatory graph is composed of a single negative circuit instead, the asynchronous
state transition graph admits a unique cyclic attractor. Other characterisations of the
dynamics associated to particular types of regulatory graphs are provided in [DR12],
where graphs consisting of multiple circuits that share a common component are consid-
ered, and in [RMT16], where the authors provide a characterisation of the synchronous
and asynchronous dynamics of Boolean networks with regulatory graphs consisting of a
circuit with the addition of a chord.
René Thomas conjectured that positive circuits in the regulatory graph are necessary

for the presence of multiple steady states (first conjecture), and that negative circuits are
necessary for sustained oscillations (second conjecture) [Tho81]. Since then, a series of
results have been proved that connect the asymptotic behaviour of regulatory networks
to properties of the circuits of the regulatory graph.
Shih and Dong [SD05] established that, if no local regulatory circuit exists, then the

map admits a unique fixed point. The result was extended to the multilevel setting by
Richard [Ric08].
Remy et al. [RRT08] proved that, in the Boolean case, the presence of at least two

fixed points requires the existence of a local positive circuit in the regulatory graph. The
proof of the first conjecture was then generalised by Richard and Comet [RC07]: if a
multilevel or Boolean map admits multiple attractors, then its regulatory graph admits
a local positive circuit.
A version of the second conjecture showing the existence of a negative circuit in the

global regulatory graph was also proved by Remy et al. [RRT08], for the case of an at-
tractive cycle in the Boolean setting. The result was later generalised by Richard [Ric10],
who showed that a negative circuit in the regulatory graph is required for the existence
of a cyclic attractor, in the Boolean and multilevel case.
Sufficient conditions for multistationarity and oscillations in terms of the regulatory

circuits have also been investigated: in [RR08], Remy and Ruet show that if a local
circuit is globally minimal, i.e. minimal in the global regulatory graph with respect to
the inclusion, then the restriction of the Boolean network to the coordinates involved
in the circuit admits two fixed points if the circuit is positive, and an attractive cycle if
the circuit is negative.

These and other results have inspired some attempts at classifying circuits according
to their established connections with the asymptotic properties of the network dynamics.
In [CNR+13] several definitions of circuit functionality are given, that organise circuits
according to the subgraphs of the regulatory graph they appear in; for instance, a type
1 circuit is a local circuit, and type 2 is a stronger form of functionality, requiring the
circuit to be contained in all the local graphs of a subcube. The analysis emphasises
the difficulty in establishing when a circuit can be regarded as “generating” a certain
behaviour, and serves to highlight some asymmetries between the results about positive
and negative circuits.
Recently, the necessary conditions for multistationarity and oscillations in [RRT08]

and [Ric10], as well as the result of [SD05] have found a common explanation in a result
due to Ruet [Rue16]. A Boolean network f is said to admit a mirror pair if there
exists a state x ∈ Bn such that f |x[I ](x̄I) = f |x[I ](x)

I . A mirror pair for f exists for
instance if f has a cyclic attractor (in particular, if it has no fixed points) or if f admits
multiple attractors. Ruet [Rue16] shows that if f admits a mirror pair, then there are
two states y 6= z ∈ Bn such that Gf (y) and Gf (z) admit a circuit. If the map admits
two attractors, then the circuits are positive. If the map admits a cyclic attractor, on
the other hand, then it also admits a circuit at two different local regulatory graphs, but
no conclusion can be established on the sign of the circuit.
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3.3 regulatory circuits and asymptotic behaviour

A first result to target the question of whether a local negative circuit is necessary
for the presence of a cyclic attractor in the Boolean case is Richard’s Theorem on non-
expansive networks [Ric11]. A Boolean network f is non-expansive if the Hamming
distance of any pair of states cannot increase under f . The result of [Ric11] shows
that if a non-expansive network does not have any fixed point, then it admits two local
regulatory graphs with a common negative circuit. In general, however, cyclic attractors
are compatible with the absence of local negative circuits. This was first shown in [Ric10]
in the multilevel case. In [Rue17] Ruet gave counterexamples in the Boolean case, in the
form of maps with an antipodal attractive cycle (see Definition 5.1.1 in Section 5.1.2)
for n ≥ 7, and in the form of an and-net with no fixed point, for n = 12 (in an and-net,
each component is a conjunction of the xi or their negations). In Section 5.1, we present
other counterexamples. One counterexample for n = 6 is found by converting Richard’s
multilevel counterexample to Boolean, using the conversion map described in Chapter 4.
An alternative counterexample was created by Fauré and Kaji [FK18] with a similar
approach (a description of their method is given in Section 4.4). In Section 5.1.2 we give
a variation of Ruet’s construction [Rue17], that works for n ≥ 6. We then study the
cases with n ≤ 5 by writing the question as a Boolean satisfiability problem, and, using
a satisfiability solver, we find that, in Boolean networks with 5 regulatory components
or fewer, a local negative circuit is necessary for the existence of a cyclic attractor.
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4
MULTILEVEL TO BOOLEAN REGULATORY NETWORKS

Behaviours of gene regulatory networks are sometimes more appropriately described
by considering more than two expression levels for some of the regulatory compo-
nents [DRC11]. Every multivalued network can, however, be seen as a Boolean network
by increasing the number of variables [VH79, DRC11]. In this chapter we consider multi-
level discrete systems and the generalisation of some of the definitions given in Chapter 3.
The conversion from multivalued to Boolean dynamics studied in [VH79, DRC11] defines
a Boolean map on a subset of the Boolean states, called the “admissible states”. We
show that versions of the conjectures of Thomas can be stated for these partial Boolean
maps (Section 4.2). We then present a new approach to the conversion of asynchronous
dynamics of multivalued networks to Boolean, that defines a Boolean map on the entire
state space, while preserving the attractors and the regulatory circuits. We show that
the conversion can be used to give multivalued versions of results on Boolean networks
(Section 4.3), whereas in Chapter 5 we use the conversion to create a Boolean map
with a cyclic attractor and no local negative circuit, starting from a known multivalued
example. A comparison to an alternative conversion approach recently introduced by
Fauré and Kaji [FK18] is given in Section 4.4.

Notations introduced in this chapter

X will denote a set of the form {0, . . . ,m1} × · · · × {0, . . . ,mn}, for some n ∈ N,
m1, . . . ,mn ∈N. Given x, y ∈ X , we will write I(x, y) for the set of indices i ∈ {1, . . . ,n}
such that xi 6= yi. We denote by ej the element of X with ejj = 1 and eji = 0 for all
i 6= j, with j ∈ {1, . . . ,n}.

Given some directed labelled graphs (Gi)i∈A indexed on some set A and each with
set of nodes N , we will denote by

⋃
i∈AGi the graph with nodes the set N , and an edge

from a node a to a node b with label l if there exists an i such that the graph Gi admits
an edge from a to b with label l.

4.1 multilevel gene regulatory networks

In the more general discrete multivalued scenario, a state of the system is an element of
the product X = X1× · · · ×Xn, with Xi = {0, . . . ,mi}, where n is the number of genes,
and mi ∈ N is the maximum level of expression for the gene i, and the synchronous
dynamics of the regulatory network is given by a map f : X → X .

To give the definition of asynchronous dynamics in the multivalued case, we first define
the map f̃ : X → X by setting

f̃i(x) = xi + sign(fi(x)− xi).
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4.1 multilevel gene regulatory networks

The map f̃ is the stepwise version of the map f , that only admits changes by one for
each gene expression at each step. We will say that a map f is stepwise if it coincides
with its stepwise version f̃ . In addition, define for each i ∈ {1, . . . ,n} the map

F i : X → X
F i : x 7→ F i(x) = (x1, . . . ,xi−1, f̃i(x),xi+1, . . . ,xn).

Then the asynchronous state transition graph ADf is a graph with nodes the set X and
edges (x,F i(x)) for all x ∈ X , i ∈ {1, . . . ,n} such that xi 6= fi(x). In other words, the
expression of one gene only can change at each iteration, and the change is stepwise, i.e.
the expression level of a gene xi can only change to xi + 1 if fi(x) > xi, or to xi − 1 if
fi(x) < xi.
Unlike in the Boolean case, in the multivalued case multiple synchronous dynamics

admit the same asynchronous state transition graph.

4.1.1 Regulatory graphs

The following definition of regulatory graph can be found and in [Ric10] (Definition 8).

Definition 4.1.1. The (local) regulatory graph at x ∈ X for the network defined by f is
the finite labeled directed graph Gf (x) with nodes the set {1, . . . ,n}, and an edge from
j to i, labeled with s = s1(sign(fi(x+ s1ej)− fi(x)), for s1 ∈ {−1, 1} and x+ s1ej ∈ X ,
whenever s 6= 0. We will say that the edge is positive if s = 1, and negative if s = −1,
and we will call s1 and j the variation and direction of the edge, respectively.

The global regulatory graph Gf of a Boolean map f is defined as Gf =
⋃
x∈X Gf (x).

We consider some graphs that are subgraphs of the standard regulatory graph.

Definition 4.1.2. If I ⊆ {1, . . . ,n} is a set of indices, the graph GIf (x) is the subgraph
of the graph Gf (x) obtained by considering only directions j in I.
If A is a subset of the state space X , and x ∈ A, we write GIA(x)f (x) for the subgraph

of the graph Gf (x) obtained by considering only variations s1 and directions j such that
x+ s1ej is in A.

Richard and Comet [RC07] introduced the following definition of local regulatory
graph, referring to it as the graph associated to the “non-usual” Jacobian matrix (Def-
inition 2). It is used to prove a discrete version of Thomas’ first conjecture (see Sec-
tion 3.3).

Definition 4.1.3. The non-usual local regulatory graph G̃f (x, y) of the map f : X → X
at a state x ∈ X with variations in direction of y is a graph on {1, . . . ,n}, with an edge
from a node j to a node i of sign s, with i, j ∈ I(x, y), whenever x+ εjej ∈ X and
s = εjsign(fi(x+ εjej)− fi(x)) 6= 0, with εk = sign(yk − xk) for all k ∈ I(x, y), and, in
addition,

min {fi(x), fi(x+ εjej)} < xi +
εi
2 < max {fi(x), fi(x+ εjej)}.

Any non-usual local regulatory graph at a state x ∈ X is clearly a subgraph of Gf (x).
Moreover, non-usual local regulatory graphs are identified by the asynchronous dynamics
([RC07], Remark 1).

The following definition of regulatory graph was introduced in [Ric10], where it is
used to prove a multivalued version of Thomas’ second conjecture (see Section 3.3).
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4.1 multilevel gene regulatory networks

Definition 4.1.4. ([Ric10], Definition 5) Gf (x) is a graph on {1, . . . ,n} that contains
an edge from j to i of sign s ∈ {−1, 1} if

(i) sign(fi(x)− xi) 6= sign(fi(F j(x))− F ji (x)) and

(ii) s = sign(fj(x)− xj)sign(fi(F j(x))− F ji (x)).

Notice that, in contrast to [Ric10], we consider this definition only for maps F i that
are stepwise. The following lemma shows that the graph Gf (x) of the last definition is
a subgraph of the graph Gf (x) (it is a variation on Lemma 6 in [Ric10]).

Lemma 4.1.5. For a map f : X → X and for all x ∈ X , Gf (x) is a subgraph of Gf (x).

Proof. Let j → i be an edge of Gf (x) of sign s. Then from point (ii) of Definition 4.1.4 we
have that fj(x) 6= xj and fi(F j(x)) 6= F ji (x). Therefore we can write fj(x)−xj = s1k1,
F j(x) = x+ s1ej and fi(F j(x))−F ji (x) = s2k2, with k1, k2 > 0, s1, s2 ∈ {−1,+1} and
s = s1s2.
Moreover, from (i), we find that fi(x)−xi = −s2h2 for some h2 ≥ 0. To conclude that

Gf (x) admits an edge from j to i of sign s, we show that sign(fi(x+ s1ej)− fi(x)) = s2.
If i 6= j, we have F ji (x) = xi and we can write

fi(x+ s1ej)− fi(x) = fi(x+ s1ej)− F ji (x) + xi − fi(x) = s2(k2 + h2).

If instead i = j, then necessarily s2 = −s1 and h2 > 0, and

fi(x+ s1ej)− fi(x) = fi(x+ s1ej)− F ji (x) + xi + s1 − fi(x)
= s2(k2 + h2) + s1 = s2(k2 + h2 − 1) 6= 0,

which concludes the proof.

Remark 4.1.6. The graph Gf (x) contains edges of Gf (x) that are calculated for direc-
tions j such that fj(x) 6= xj . In other words, Gf (x) is calculated by considering only
the states x± ej such that (x,x± ej) is in the asynchronous state transition graph ADf

of f .

We conclude this section by asking how the regulatory graph Gf of a discrete multival-
ued map f and the regulatory graph Gf̃ of its stepwise version f̃ compare. The example
in Figure 5 shows that the regulatory graph Gf̃ can contain some autoregulations that
are not observed in the regulatory structure of f , while edges in the regulatory graph
Gf of f are not necessarily contained in Gf̃ . We can establish, however, the following
relationship between the two regulatory graphs.

Proposition 4.1.7. Let f̃ be the stepwise version of a map f : X → X . If the regulatory
graph Gf̃ (x) at some state x contains an edge from j to i, with j 6= i, then Gf (x) contains
an edge from j to i with the same sign.

Proof. If j → i is an edge in Gf̃ (x) with j 6= i and sign s, then from sign(f̃i(x+ s1ej)−
f̃i(x)) = s · s1 we get

sign(sign(fi(x+ s1ej)− xi)− sign(fi(x)− xi)) = s · s1 6= 0,

i.e., fi(x+ s1ej) and fi(x) are on opposite sides of xi. Writing fi(x+ s1ej)− xi = s2k,
fi(x)− xi = −s2h, with k,h ≥ 0, h+ k > 0, we find that s2 = s · s1 and

fi(x+ s1ej)− fi(x) = fi(x+ s1ej)− xi − (fi(x)− xi) = s · s1(h+ k),

which implies
sign(fi(x+ s1ej)− fi(x)) = s · s1,

i.e., Gf (x) contains an edge from j to i of sign s.
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4.2 admissible states

x ∈ X f(x)
0 0 1 2
0 1 2 2
0 2 2 2
1 0 1 2
1 1 1 2
1 2 1 2
2 0 1 2
2 1 1 2
2 2 1 2

1 2−
+

(a)

x ∈ X f̃(x)
0 0 1 1
0 1 1 2
0 2 1 2
1 0 1 1
1 1 1 2
1 2 1 2
2 0 1 1
2 1 1 2
2 2 1 2

1 2 +

(b)

Figure 5: (a): A map f : {0, 1, 2}2 → {0, 1, 2}2 and the corresponding regulatory graph. (b)
Synchronous discrete stepwise version f̃ of f , with the associated regulatory graph.

x ∈ X f(x)
0 0 0 2 0 1
0 0 1 0 0 1
0 1 0 2 0 1
0 1 1 0 0 1
1 0 0 2 0 0
1 0 1 0 0 0
1 1 0 2 0 1
1 1 1 0 0 1
2 0 0 2 1 0
2 0 1 0 1 0
2 1 0 2 1 1
2 1 1 0 1 1

1

2

3

+

−

+

−

(a)

x ∈ X f̃(x)
0 0 0 1 0 1
0 0 1 0 0 1
0 1 0 1 0 1
0 1 1 0 0 1
1 0 0 2 0 0
1 0 1 0 0 0
1 1 0 2 0 1
1 1 1 0 0 1
2 0 0 2 1 0
2 0 1 1 1 0
2 1 0 2 1 1
2 1 1 1 1 1

1

2

3

+
+

−

+

−

(b)

Figure 6: (a): Synchronous discrete dynamics f : {0, 1, 2}× {0, 1}× {0, 1} → {0, 1, 2}× {0, 1}×
{0, 1} and regulatory graph for the p53/Mdm2 network considered in Section 3.2
of [DRC11]. (b) Synchronous discrete stepwise version f̃ of f , with the correspond-
ing regulatory graph.

Example 4.1.8. Didier et al. [DRC11] analyse a multivalued representation of a p53/Mdm2
network. The synchronous dynamics for this network is in Figure 6a, together with its
regulatory graph Gf . In Figure 6b, we show the stepwise version f̃ of this map, with
the resulting regulatory graph. The regulatory graph of the stepwise version contains a
positive autoregulation for the first component that is not part of the regulatory graph
of the original map.

4.2 admissible states

Research efforts on discrete maps often focus on the Boolean case only, and many tools
for the analysis of gene regulatory networks are often designed to deal exclusively with
the Boolean case. Conversions of multivalued maps to Boolean are therefore of interest.
Here we consider the conversion map introduced by Van Ham [VH79], and shown by
Didier et al. [DRC11] to be the only map that can preserve both the regulatory structure
and the dynamical properties of the system, when asynchronous updating is considered.
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4.2 admissible states

Consider n genes with maximum expression levels mi, i ∈ {1, . . . ,n}, with X defined
as in Section 4.1. Write m =

∑n
i=1mi and consider the set Y = {0, 1}m. We define

m functions ϕi,j : X → {0, 1} as ϕi,j(x) = χ[j,mi](xi), for i = 1, . . . ,n, j = 1, . . . ,mi,
where χA is the indicator function of the set A.

We denote by ϕ the one-to-one map defined by Van Ham [VH79] and studied by
Didier et al. [DRC11] that converts a multivalued discrete state of X to a Boolean state
in Y, and is defined by

ϕ(x1, . . . ,xn) = (ϕ1,1(x), . . . ,ϕ1,m1(x),ϕ2,1(x), . . . ,ϕ2,m2(x), . . . ,ϕn,mn(x)).

For convenience, we will index the components of elements of Y with two indices, as for
the components of ϕ; the first index corresponds to a gene, the second to the level of
expression of the gene. I.e. we will denote a state y ∈ Y as

(y1,1, . . . , y1,m1 , y2,1, . . . , yn,mn).

Moreover, we will use the notation ȳi,j to denote the state obtained from y by changing
the value of the component at the position identified by i and j, and we will denote by
Ii the set of pairs of indices {(i, j)}1≤j≤mi , for i = 1, . . . ,n.
The set A = ϕ(X ) ⊆ Y is called the set of admissible states. These are the states such

that, if yi,j = 1 for some i = 1, . . . ,n, j = 1, . . . ,mi, then yi,h = 1 for all h = 1, . . . , j.
We will refer to the states in Y \A as the non-admissible states.

Given a multivalued discrete dynamics f on X , a conversion of f to a Boolean dy-
namics is a map F b : Y → Y defined so that the following diagram is commutative:

X X

Y Y,

f

ϕ ϕ

F b

i.e. F b satisfies F b
∣∣∣
A
◦ϕ = ϕ ◦ f . We will write f b : A → A for the map f b = ϕ ◦ f ◦ϕ−1.

In addition, if x is an admissible state, we will write Gfb(x) for the graph G
IA(x)
F b

(x),
and Gfb for the graph

⋃
x∈AGfb(x).

Lemma 4.2.1. Consider a Boolean conversion F b of a map f : X → X , and let x be a
state in X . If a local graph Gfb(ϕ(x)) contains an edge from a node in Ij to a node in
Ii with sign s, with i, j ∈ {1, . . . ,n}, then the graph Gf (x) contains an edge from j to i
with sign s.

Proof. Suppose that y = ϕ(x) for some x ∈ X , and that Gfb(y) contains an edge from
j, k to i, k′. Recall that the graph Gfb(y) = G

IA(y)
F b

(y) contains an edge of GF b(y) with
source node (j, k) and variation s1 only if the state y+ s1ej,k is in A, i.e. is admissible.
In this case, we have y+ s1ej,k = ϕ(x+ s1ej). We can write

f bi,k′(y+ s1ej,k)− f bi,k′(y) = ϕi,k′(f(x+ s1ej))−ϕi,k′(f(x)),

and

s = s1sign(f bi,k′(y+ s1ej,k)− f bi,k′(y)) = s1sign(ϕi,k′(f(x+ s1ej))−ϕi,k′(f(x))).

This implies s = s1sign(fi(x+ s1ej)− fi(x)) as required.

Lemma 4.2.2. Consider a Boolean conversion F b of a map f : X → X , and let x be a
state in X . If the graph Gf (x) contains an edge from j to i with sign s and variation s1 in
direction j, then the local graph Gfb(ϕ(x)) contains edges from the node (j,xj + s1+1

2 ) ∈
Ij to nodes (i, k′) ∈ Ii, for all k′ ∈

]
min {fi(x), fi(x+ s1ej)}, max {fi(x), fi(x+ s1ej)}

]
,

with sign s.
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4.2 admissible states

x ∈ X f b(x)
0 0 0 0 1 1 0 1
0 0 0 1 0 0 0 1
0 0 1 0 1 1 0 1
0 0 1 1 0 0 0 1
1 0 0 0 1 1 0 0
1 0 0 1 0 0 0 0
1 0 1 0 1 1 0 1
1 0 1 1 0 0 0 1
1 1 0 0 1 1 1 0
1 1 0 1 0 0 1 0
1 1 1 0 1 1 1 1
1 1 1 1 0 0 1 1

1,2 1,1

2,1

3,1

+

−

+

−
−

(a)

x ∈ X f̃ b(x)
0 0 0 0 1 0 0 1
0 0 0 1 0 0 0 1
0 0 1 0 1 0 0 1
0 0 1 1 0 0 0 1
1 0 0 0 1 1 0 0
1 0 0 1 0 0 0 0
1 0 1 0 1 1 0 1
1 0 1 1 0 0 0 1
1 1 0 0 1 1 1 0
1 1 0 1 1 0 1 0
1 1 1 0 1 1 1 1
1 1 1 1 1 0 1 1

1,2 1,1

2,1

3,1

+

+

−

+

+

−
−

(b)

Figure 7: (a): Conversion to Boolean on the admissible states for the synchronous discrete dy-
namics f of the example in Figure 6, and the resulting regulatory graph. (b) Conversion
to Boolean of the synchronous discrete stepwise version f̃ of f , with the corresponding
regulatory graph.

Proof. Suppose that s = s1sign(fi(x+ s1ej) − fi(x)) for some s, s1 ∈ {−1, 1}, i, j ∈
{1, . . . ,n}. First observe that, if x and x+ s1ej are in X , and y = ϕ(x), then y+ s1ej,k =
ϕ(x+ s1ej), with k = xj +

s1+1
2 .

Take k = xj +
s1+1

2 , and k′ ∈
]
min {fi(x), fi(x+ s1ej)}, max {fi(x), fi(x+ s1ej)}

]
.

We have

s1s = sign(fi(x+ s1ej)− fi(x))
= sign(ϕi,k′(f(x+ s1ej))−ϕi,k′(f(x))) = sign(f bi,k′(y+ s1ej,k)− f bi,k′(y)),

as required.

Example 4.2.3. The conversion to Boolean on the admissible states for the map in
Example 4.1.8 is in Figure 7a, together with the corresponding regulatory graph. In 7b
is the conversion of the stepwise version of the map, restricted to the admissible states,
with the corresponding regulatory graph.

With the following example we observe that local circuits in the regulatory graph of
f are not necessarily preserved by the conversion to Boolean.

Example 4.2.4. Consider the maps f and F defined on {0, 1, 2} × {0, 1} and {0, 1}3
respectively, as in Figure 8. The map f is stepwise, and F extends f b. The regulatory
graph of f admits positive local circuits, whereas the regulatory graph GF of the Boolean
version admits no circuits.

A positive result on the preservation of circuits in the regulatory structure holds when
the non-usual regulatory graphs of Definition 4.1.3 are considered. It is a consequence
of the following lemma.

Lemma 4.2.5. Consider a Boolean conversion F b of a map f : X → X , and let x be
a state in X . If the non-usual local regulatory graph G̃f (x, y) at x with variations in
the direction of y contains an edge from j to i of sign s, and εk = sign(yk − xk) for
k ∈ I(x, y), then the local graph GI(ϕ(x),ϕ(y))

fb
(ϕ(x)) contains an edge from (j,xj + εj+1

2 )

to (i,xi + εi+1
2 ), with sign s.
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4.2 admissible states

x ∈ X f(x)
0 0 1 0
0 1 1 0
1 0 1 1
1 1 2 1
2 0 1 1
2 1 2 1

1 2+

+

+

(a)

y ∈ Y F (y)
0 0 0 1 0 0
0 0 1 1 0 0
0 1 0 1 0 0
0 1 1 1 0 0
1 0 0 1 0 1
1 0 1 1 1 1
1 1 0 1 0 1
1 1 1 1 1 1

1,1 2,1

1,2

+

+

+

(b)

Figure 8: (a): Multivalued map f : {0, 1, 2} × {0, 1} → {0, 1, 2} × {0, 1} with regulatory graph
admitting a local positive circuit (Example 4.2.4). (b): The regulatory graph of a
conversion F of f to a Boolean dynamics does not admit any positive circuit.

Proof. If the non-usual local regulatory graph G̃f (x, y) at x contains an edge from j to
i, we have, by definition of non-usual local regulatory graph,

min {fi(x), fi(x+ εjej)} < xi +
εi
2 < max {fi(x), fi(x+ εjej)},

which gives

min {fi(x), fi(x+ εjej)} < xi +
εi + 1

2 ≤ max {fi(x), fi(x+ εjej)}.

The conclusion follows from Lemma 4.2.2.

Proposition 4.2.6. If the non-usual local regulatory graph G̃f (x, y) of the map f : X →
X at a state x ∈ X with variations in direction of y admits a circuit of sign s, then the
local graph GI(ϕ(x),ϕ(y))

fb
(ϕ(x)) admits a circuit of sign s.

Proof. Let (i1, . . . , ik−1, ik = i1) be a circuit in G̃f (x, y), with edge signs s1, . . . , sk−1,
and take εk = sign(yk−xk), k ∈ I(x, y). By Lemma 4.2.5, the graph GI(ϕ(x),ϕ(y))

fb
(ϕ(x))

contains an edge from (ih,xh + εh+1
2 ) to (ih+1,xh+1 +

εh+1+1
2 ) with sign sh, for all h =

1, . . . , k− 1, which concludes the proof.

The existence of a circuit in the local regulatory graph of f b does not imply the
existence of a regulatory circuit in the non-usual local regulatory graph of f . If the local
circuit in Gfb involves only one Boolean variable per regulatory component, then the
non-usual regulatory graph of f contains a corresponding circuit.

Example 4.2.7. Consider the following multilevel stepwise map on {0, 1, 2}2 and the
corresponding Boolean version on the admissible states:

x ∈ X f(x)
0 0 1 0
0 1 1 0
0 2 0 1
1 0 2 1
1 1 1 1
1 2 0 1
2 0 2 1
2 1 1 2
2 2 1 2

y ∈ A f b(y)
0 0 0 0 1 0 0 0
0 0 1 0 1 0 0 0
0 0 1 1 0 0 1 0
1 0 0 0 1 1 1 0
1 0 1 0 1 0 1 0
1 0 1 1 0 0 1 0
1 1 0 0 1 1 1 0
1 1 1 0 1 0 1 1
1 1 1 1 1 0 1 1
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4.2 admissible states

It can be seen that the non-usual regulatory graph does not admit any circuit. In
particular, it does not admit any local circuit at 11. In contrast, the local regulatory
graph of f b admits the circuit 1, 1→ 2, 1→ 1, 2→ 2, 2→ 1, 1.

Proposition 4.2.8. Consider x ∈ X and a map f : X → X . If the local graph Gfb(ϕ(x))
admits a circuit of sign s of the form (i1, j1) → · · · → (ik, jk) → (ik+1, jk+1) = (i1, j1),
with ih 6= il for all h 6= l, h, l = 1, . . . , k, then there exists a y ∈ X such that the non-
usual local regulatory graph G̃f (x, y) of f at a state x ∈ X with variations in direction
of y admits a circuit of sign s.

Proof. Suppose that the variations determined by (i1, j1), . . . , (ik, jk) are s1
1, . . . , sk1 re-

spectively, and the signs of the edges are s1, . . . , sk. Define y = x+
∑k
h=1 s

h
1eih . Then

ϕ(y) = ϕ(x) +
∑k
h=1 s

h
1eih,jh . Since the ih are all different, yih 6= xih for all h = 1, . . . , k.

Since sh = sh1(f
b
ih+1,jh+1

(ϕ(x) + sh1e
ih,jh) − f bih+1,jh+1

(ϕ(x))), we have that, for h =

1, . . . , k, sh = sh1(ϕih+1,jh+1(f(x+ sh1eih))− ϕih+1,jh+1(f(x)), so that i1
s1−→ · · · → ik

sk−→
ik+1 = i1 is a circuit in Gf (x). To conclude that the circuit is in G̃f (x, y), we have to
show that, for h = 1 . . . , k,

min {fih+1(x), fih+1(x+ sh1eih)} < xih+1 +
sh+1

1
2 < max {fih+1(x), fih+1(x+ sh1eih)}.

(18)
Since the variation on component ih+1 is in the direction (ih+1, jh+1), we have that
xih+1 = jh+1 − 1 or xih+1 = jh+1. In both cases jh+1 − 1 < xih+1 +

sh+1
1
2 < jh+1. By

hypothesis, ϕih+1,jh+1(f(x)) 6= ϕih+1,jh+1(f(x+ sh1eih)), hence either fih+1(x) or fih+1(x+
sh1eih) must greater or equal to jh+1, and the other must be smaller or equal to jh+1− 1,
which gives (18).

A conversion of a multivalued regulatory network to a Boolean network could be
considered with the purpose of exploiting the numerous results and tools available for
Boolean systems. The description above only identifies, however, the behaviour of a
Boolean conversion on a subset A of Y = {0, 1}m. Software applications for the analysis
of Boolean regulatory networks are developed to work with functions that are defined on
all states in {0, 1}m. GINsim [CNT12], for example, when provided with a partial truth
table, extends the map on the remaining states by sending them to the state (0, . . . , 0).

It is natural therefore to investigate the properties that different conversion maps F b
can have. Any such extension of the map f b to the non-admissible states should, ideally,
preserve the dynamical properties of the multivalued counterpart f . In particular, it is
desirable for the set of admissible states to be a trap domain for the dynamics. We can see
from Example 4.2.3 that simply extending the map f b to non-admissible states will cause
the dynamics to leave the admissible states: for example, the transition (0000, 0100)
would be contained in the asynchronous state transition graph. However, this problem
is avoided when considering the extension of the conversion of the stepwise version of f
instead, as shown in the following proposition.

Proposition 4.2.9. Let f : X → X define a multivalued regulatory network, with
stepwise map f̃ . Let F b : Y → Y be a conversion of f̃ to Boolean. Then the set of
admissible states A is a trap domain for ADF b.

Proof. Let a be an admissible state of Y. Then a = ϕ(x) for some x ∈ X . Suppose that,
for some indices i, j, with i ∈ {1, . . . ,n} and j ∈ {1, . . . ,mi}, we have F bi,j(a) 6= ai,j , or,
in other words, that (a, āi,j) is in ADF b . We want to prove that āi,j is admissible. We
will show that āi,j = ϕ(x+ εei), with ε = f̃i(x)− xi.

First observe that, since F bi,j(a) 6= ai,j , we have āi,ji,j = F bi,j(a) = f̃ bi,j(a) = ϕi,j(f̃(x)) =

ϕi,j(x+ sign(fi(x)− xi)ei) = ϕi,j(x+ εei).
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4.2 admissible states

On the other hand, it follows from the definition of ϕ that

ϕ(x+ ei) = ϕ(x) + ei,xi+1 and ϕ(x− ei) = ϕ(x)− ei,xi .

As a consequence, we have that xi = j − 1 if ε = +1, and xi = j if ε = −1. In both
cases we find āi,jk,h = ϕk,h(x+ εei) for all (k,h) 6= (i, j).

Since A is a trap domain for F b, to obtain a one-to-one correspondence between
the attractors of ADf and the attractors of ADF b , it is sufficient to ensure that, for
each state in Y \ A, there exists a path to the set of admissible states. The following
Proposition gives a sufficient condition: it requires that the non-admissible states are
mapped to the admissible, and that the map is stepwise also outside of the admissible
states.

Proposition 4.2.10. Let f : X → X define a multivalued regulatory network. Consider
a conversion to Boolean F b : Y → Y that satisfies F b(x) ∈ A and |

∑mi
j=1 F

b
i,j(x) −∑mi

j=1 xi,j | ≤ 1 for all x ∈ Y and i = 1, . . . ,n. Then for each x ∈ Y there exists a path
from x to A in ADF b.

Proof. We proceed by induction on the distance d(x,A). If d(x,A) = 0, then x is in
A and there is nothing to prove. If d(x,A) > 0, we show that x admits a successor
y ∈ Y in the asynchronous dynamics that satisfies d(y,A) = d(x,A) − 1, and the
conclusion follows by the induction hypothesis. Since x is not admissible, there exists
a pair of indices i, j such that xi,j < xi,j+1. Define j1 = min{1 ≤ j ≤ mi|xi,j = 0},
j2 = max{1 ≤ j ≤ mi|xi,j = 1}. Observe that, if I is a set of indices such that x̄I ∈ A,
then (i, j1) ∈ I or (i, j2) ∈ I. In addition, since the distance between

∑mi
j=1 F

b
i,j(x)

and
∑mi
j=1 xi,j is at most 1 and F (x) is admissible, we have F bi,j(x) = 1 for all j < j1,

F bi,j(x) = 0 for all j > j2, and ∣∣∣∣∣∣
j2∑

k=j1

(F bi,k(x)− xi,k)

∣∣∣∣∣∣ ≤ 1. (19)

Consider first the case with F bi,j2(x) = 1, which implies F bi,k(x) = 1 for all k ≤ j2.
Using 19, we find that xi,k = 1 for all j1 < k ≤ j2. Hence, if I is a set of indices such
that x̄I ∈ A and |I| = d(x,A), the cardinality of I ∩ {(i, 1), . . . , (i,mi)} is exactly one,
and y = x̄i,j1 is a successor for x in ADF b that satisfies d(y,A) = d(x,A)− 1.
Suppose now that F bi,j2(x) = 0. If (i, j2) belongs to a set of indices I such that
|I| = d(x,A) and x̄I ∈ A, then x̄i,j2 is a successor for x with d(y,A) = d(x,A)− 1.
Otherwise, for any set of indices I with |I| = d(x,A) and x̄I ∈ A, we must have
(i, j1) ∈ I, and, in addition, there must be an index h with j1 < h < j2 such that xh = 1.
Using 19, we find that F bi,j1(x) = 1, and x̄i,j1 is the required successor.

For brevity, in the remainder of the work we will say that a map F b is a compatible
conversion of a map f : X → X to a Boolean dynamics if it is a conversion of the
stepwise version of f , and, for each x ∈ Y \ A, there is a path in ADF b from x to the
set of admissible states A.

Exclusion of multiple steady states

Here we ask whether a version of the first conjecture holds for the map f b defined on A.
Recall that the proof of the first conjecture was generalised by Richard and Comet to
the multivalued discrete case [RC07]:
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4.2 admissible states

Theorem 4.2.11. ([RC07, Corollary 1]) If ADf admits two distinct fixed points x and
y, then there exists a state z ∈ X such that G̃f (z, y) has a positive circuit.

We have seen in Example 4.2.4 that local circuits in the regulatory graph Gf of f
are not necessarily preserved by the conversion to Boolean. Moreover, in general, the
regulatory graph of an extension F b of f b can contain a local circuit, even if the graph
of f b does not admit any.
We have, however, that circuits in the non-usual regulatory graph are preserved by

the conversion (Proposition 4.2.6). We can therefore state the following result on the
existence of local positive circuits in presence of multistationarity for F b.

Theorem 4.2.12. Consider a stepwise map f : X → X , and F b a compatible conversion
of f to a Boolean dynamics, with f b = F b

∣∣∣
A
. Suppose that x, y ∈ A are two distinct

fixed points for f b. Then there exists a state z ∈ A such that GI(z,y)
fb

(z) has a positive
circuit.

Proof. It is sufficient to combine Theorem 4.2.11 and Proposition 4.2.6.

Example 4.2.13. To exclude the presence of multiple fixed points for the map in
Example 4.2.4, it is sufficient, by Theorem 4.2.12, to consider the regulatory graph of the
map f b : A → A, without specifying a particular extension for f b to the non-admissible
states 010 and 011.

Alternative proof

In this section, we prove a version of Theorem 4.2.11 in the Boolean case that gives
an alternative proof for Theorem 4.2.12. We first introduce some new notation. If
I ⊆ {1, . . . ,m} is a set indices, we say that a state x is I-fixed if fi(x) = xi for all i ∈ I.
Given two states x, y ∈ Bm, we will write I(x, y) for the set {i ∈ {1, . . . ,m} | xi 6= yi}.
We call a subset A of Bm an admissible set if it can be obtained as the set of admissible
states corresponding to some multilevel space X .

The following result clearly implies Theorem 4.2.12:

Theorem 4.2.14. Consider an admissible set A ⊆ Bn and a map f : A → A. Suppose
that x, y ∈ A are two distinct I(x, y)-fixed states. Then, there exists a state z ∈ A such
that GI(z,y)∩IA(z)

f has a positive circuit.

The theorem gives some information on the location of positive circuits associated to
multistationarity, when the regulatory network admits a trap set A in the form of an
“admissible” set. Using Propositions 3.2.1 and 3.2.11 the conclusion can be extended to
settings where A is a set obtained from an admissible set by application of a symmetry
of the hypercube. To prove the result, we will need the following lemma on the signs of
local circuits. Theorem 4.2.14 will be a consequence of Lemma 4.2.17.

Lemma 4.2.15. [Ric11, Remark 1], [Rue16, Lemma 5.2] Let C be a circuit of Gf (x)
with set of vertices I. If the cardinality of {i ∈ I| fi(x) 6= xi} is even (resp., odd), then
C is a positive (resp. negative) circuit. In particular, if x is a fixed point, Gf (x) cannot
admit any negative circuit.

Proof. Write the cycle C as i1 → i2 → · · · → ik → i1. Then the sign s of the cycle is

s =
fi2(x̄

i1)− fi2(x)
x̄i1i1 − xi1

· fi3(x̄
i2)− fi3(x)
x̄i2i2 − xi2

· · · fi1(x̄
ik)− fi1(x)
x̄ikik − xik

=
fi2(x̄

i1)− fi2(x)
x̄i2i2 − xi2

· fi3(x̄
i2)− fi3(x)
x̄i3i3 − xi3

· · · fi1(x̄
ik)− fi1(x)
x̄i1i1 − xi1

.
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4.2 admissible states

IA(x)︷︸︸︷
xi,· = 1 1 1 0 0 0 0 fi,·(x) = - - - 0 0 0 0
yi,· = 1 1 1 1 1 1 0 fi,·(y) = 1 1 1 1 1 1 -︸ ︷︷ ︸

I(x,y)
zi,· = 1 1 1 1 0 0 0 fi,·(z) = - - - 0 0 0 0︸︷︷︸

I(z,y)

IA(x)︷︸︸︷
xi,· = 1 1 1 1 0 0 0 fi,·(x) = 1 1 1 1 - - -
yi,· = 1 0 0 0 0 0 0 fi,·(y) = - 0 0 0 0 0 0︸ ︷︷ ︸

I(x,y)
zi,· = 1 1 1 0 0 0 0 fi,·(z) = 1 1 1 1 - - -︸︷︷︸

I(z,y)

Figure 9: If xi,k 6= yi,k for some k ∈ {1, . . . ,mi}, the sets IA(x) and I(x, y)i have one index in
common. If (i, ki) ∈ IA(x) ∩ I(x, y)i and z = x̄i,ki , then I(z, y)i = I(x, y)i \ {(i, ki)}.
If x is I(x, y)-fixed, z is I(z, y)-fixed.

The conclusion follows from the fact that each term
fij (x̄

ij−1 )−fij (x)

x̄
ij
ij
−xij

of the product is

negative if and only if fij (x) 6= xij .

Lemma 4.2.16. Consider an admissible set A ⊆ Bm and a map f : A → A. Suppose
that x, y ∈ A are two distinct states such that x is I(x, y)-fixed. If GI(x,y)∩IA(x)

f (x) has
no positive circuit, then there exists a I(z, y)-fixed state z ∈ A such that (z,x) is in
ADf .

Proof. We denote the elements of {1, . . . ,m} with pairs of indices Ii = {(i, j)}1≤j≤mi ,
i = 1, . . . ,n, as identified by the definition of the set A. First, observe that I(x, y) is
a union of intervals: if i is in {1, . . . ,n}, I(x, y)i is given by the pairs of indices (i, k),
with 1 ≤ k ≤ mi, such that xi,k + yi,k = 1 mod 2. Moreover, for each i = 1, . . . ,n, the
set (IA(x) ∩ I(x, y))i is either empty, or contains only one index (i, ki) (see Figure 9).
If GI(x,y)∩IA(x)

f (x) does not contain a positive circuit, then by Lemma 4.2.15, it cannot
contain any circuit. Therefore it admits a node (j, kj) that is the source of no edges.
Define z = x̄j,kj . Since (j, kj) is in IA(x), z is admissible. In addition, I(z, y) =
I(x, y) \ {(j, kj)} (see Figure 9). Since j, kj is not autoregulated, we have that fj,kj (z) =
fj,kj (x̄

j,kj ) = fj,kj (x) = xj,kj 6= zj,kj , and therefore (z,x) is in ADfb .
For all indices i, ki 6= j, kj in I(x, y) ∩ IA(x), since j, kj does not regulate i, ki, we

find fi,ki(z) = fi,ki(x) = xi,ki = zi,ki . This implies fi,k′i(z) = fi,k′i(x) = xi,k′i = zi,k′i
for any other index k′i in I(z, y)i = I(x, y)i. In addition, if xj,kj = 0, we have that
I(x, y)j = [kj , k′j ] for some k′j , and zj,h = fj,h(z) = fj,h(x) = 0 for all h ∈ [kj + 1, k′j ],
whereas if xj,kj = 1, we have that I(x, y)j = [k′j , kj ] for some k′j < kj , and zj,h =
fj,h(z) = fj,h(x) = 1 for all h ∈ [k′j , kj − 1]. We conclude that z is I(z, y)-fixed.

Lemma 4.2.17. Consider an admissible set A ⊆ Bm and a map f : A → A. Suppose
that x, y ∈ A are two states such that x is I(x, y)-fixed, and that, for all states z ∈ A,
the graph GI(z,y)∩IA(z)

f (z) does not admit a positive circuit. Then there exists a path in
ADf from x to y.

Proof. We proceed by induction on the cardinality of I(x, y). If I(x, y) is empty, there is
nothing to prove. Suppose that the cardinality of I(x, y) is k+ 1, and that the statement
of the Lemma is valid for cardinality equal to k. Since GI(x,y)∩IA(x)

f contains no positive
circuits, by Lemma 4.2.16 we can find an admissible state z such that (z,x) is in ADf

and the cardinality of I(z, y) is k. Using the induction hypothesis, we conclude that
there exists a path from x in y in the asynchronous dynamics.
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4.3 an extension to non-admissible states

Exclusion of cyclic attractors

A version of the second conjecture in the multilevel case was proved by Richard [Ric10]:

Theorem 4.2.18. ([Ric10, Theorem 2]) If ADf has a cyclic attractor A, then the graph⋃
x∈A Gf (x) ⊆ Gf admits a negative circuit.

The theorem gives some information on the location of the negative circuits: if a
region of the state space A is known to be a trap domain, the range of search for negative
circuits that could be associated to cyclic attractors contained in A is restricted to the
graph

⋃
x∈A Gf (x). Moreover, following Remark 4.1.6 and Lemma 4.1.5, the search can

be limited to the graph
⋃
x∈AG

IA(x)
f (x): the relevant edges can be found by considering

only directions and variations that are compatible with the set A.
We can now observe that, if f is a discrete map and F b is a conversion to a Boolean

dynamics of its stepwise version, then to exclude the presence of a cyclic attractor in
the asynchronous dynamics it is sufficient to check for absence of negative circuits in
Gfb , where A is the set of admissible states. The extension of the map f b to the non-
admissible states might add edges and circuits to the regulatory graph, but the values
taken outside the admissible states are not relevant for the exclusion of cyclic attractors
for f .

Theorem 4.2.19. Consider a stepwise map f : X → X , and F b a compatible conversion
of f to a Boolean dynamics, with f b = F b

∣∣∣
A
. Suppose that ADf admits a cyclic attractor.

Then the graph
⋃
x∈AG

IA(x)
F b

(x) admits a negative circuit.

Proof. Consequence of Theorem 4.2.18 and Proposition 4.2.10.

4.3 an extension to non-admissible states

Different extensions for the Boolean map f b admit different regulatory graphs. We study
here some properties of a particular extension of the map f b. Consider the function
ψ : Y → A ⊂ Y defined as follows. For each i = 1, . . . ,n and j = 1, . . . ,mi, we set

ψi,j(y1,1, . . . , y1,m1 , y2,1, . . . , yn,mn) = χ[j,mi](
mi∑
k=1

yi,k). (20)

The map ψ therefore sends a state y to the admissible state z such that, for each
i = 1, . . . ,n,

∑mi
j=1 yi,j =

∑mi
j=1 zi,j . For example, take n = 3, m1 = 3, m2 = m3 = 2,

and y = 0111001 ∈ {0, 1}7. Then ψ(y) = 1101010, i.e. ψ(y) is the image under ϕ of the
state 211.

Clearly ψ leaves the admissible states fixed. The next lemma states that the map ψ
is neighbour-preserving in the sense of the definition introduced in [DRC11]: two direct
neighbour states in Y are mapped by ψ to two direct neighbour states in A.

Lemma 4.3.1. For each x ∈ Y, i ∈ {1, . . . ,n} and j ∈ {1, . . . ,mi}, there exists a
unique j′ ∈ {1, . . . ,mi} such that ψ(x̄i,j) = ψ(x)

i,j′. Moreover, xi,j = 0 if and only if
ψi,j′(x) = 0.

Proof. Consider the case xi,j = 0. We have
∑mi
k=1 x̄

i,j
i,k =

∑mi
k=1 xi,k + 1, and

ψi,h(x̄
i,j) =


1 if

∑mi
k=1 xi,k ≥ h,

1 if
∑mi
k=1 xi,k + 1 = h,

0 otherwise,
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4.3 an extension to non-admissible states

whereas ψi′,h(x) = ψi′,h(x̄
i,j′) for all i′ 6= i. Therefore j′ =

∑mi
k=1 xi,k + 1 is the only

index such that ψ(x̄i,j) = ψ(x)
i,j′ . In addition, ψi,j′(x̄i,j) = 1. The case xi,j = 1 is

analogous, with j′ =
∑mi
k=1 xi,k.

Remark 4.3.2. Given x ∈ A, i ∈ {1, . . . ,n} and k, t ∈ {1, . . . ,mi}, any state y ∈ Y
with ψ(y) = x and such that yi,t = xi,k verifies ψ(yi,t) = x̄i,k.

Given a map f : X → X , consider the map on Y defined by

F b = f b ◦ψ.

If f is stepwise, then F b verifies the hypotheses of Proposition 4.2.10 and is a compatible
conversion of f .

Example 4.3.3. Consider the regulatory network f̃ of Examples 4.1.8 and 4.2.3. In
Figure 10a is the conversion of f̃ given by F b = f̃ b ◦ ψ. The non-admissible state 0100
is mapped by ψ to the admissible state 1000, and by F b to the image of 1000 under f̃ b.
The regulatory graph of F b contains some edges that do not appear in Gf̃b . Consider,
for example, the state x = 0000, which is mapped to 1001. The neighbours of x are
x̄1,1 = 1000, x̄1,2 = 0100, x̄2,1 = 0010 and x̄3,1 = 0001. The states x̄1,1, x̄2,1 and x̄3,1

are admissible. To find the regulatory graph Gf̃b(x), we compare the image of x under
f̃ b to the image of the neighbouring admissible states:

x = 0000, f̃ b(x) = 1001,
x̄1,1 = 1000, f̃ b(x̄1,1) = 1100,
x̄2,1 = 0010, f̃ b(x̄2,1) = 1001,
x̄3,1 = 0001, f̃ b(x̄3,1) = 0001.

We identify the edges (1, 1) +−→ (1, 2), (1, 1) −−→ (3, 1) and (3, 1) −−→ (1, 1). The graph
GF b(x) contains all these edges, plus the edges found by comparing f̃ b(x) to the image
under F b of the non-admissible state x̄1,2 = 0100:

x = 0000, f̃ b(x) = 1001,
x̄1,2 = 0100, F b(x̄1,2) = f̃ b(x̄1,1) = 1100.

We find therefore two edges with source the index (1, 2), and with targets the targets
of the edges in Gf̃b with source (1, 1), i.e. the edges (1, 2) +−→ (1, 2) and (1, 2) −−→ (3, 1)
(see Figure 10b).

To find, for instance, the graph GF b(y) at the non-admissible state y = 0100, we
need to compare f̃ b(y) = f̃ b(1000) to the images of the (admissible and non-admissible)
neighbours of y:

y = 0100, F b(y) = f̃ b(1000) = 1100,
ȳ1,1 = 1100, F b(ȳ1,1) = f̃ b(ȳ1,1) = 1110,
ȳ1,2 = 0000, F b(ȳ1,2) = f̃ b(ȳ1,2) = 1001,
ȳ2,1 = 0110, F b(ȳ2,1) = f̃ b(1010) = 1101,
ȳ3,1 = 0101, F b(ȳ3,1) = f̃ b(1001) = 0000.

The graph GF b(y) therefore contains, for example, a positive edge from (1, 1) to (2, 1),
that derives from the existence of an edge at ψ(y) = 1000 with source (1, 2) and target
(2, 1).
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4.3 an extension to non-admissible states

x ∈ X F b(x)
0 0 0 0 1 0 0 1
0 0 0 1 0 0 0 1
0 0 1 0 1 0 0 1
0 0 1 1 0 0 0 1
0 1 0 0 1 1 0 0
0 1 0 1 0 0 0 0
0 1 1 0 1 1 0 1
0 1 1 1 0 0 0 1
1 0 0 0 1 1 0 0
1 0 0 1 0 0 0 0
1 0 1 0 1 1 0 1
1 0 1 1 0 0 0 1
1 1 0 0 1 1 1 0
1 1 0 1 1 0 1 0
1 1 1 0 1 1 1 1
1 1 1 1 1 0 1 1

1,2 1,1

2,1

3,1

+

+

+

−
−

+

+

+

+

−
−

(a)

Gfb(0000):

1,2 1,1

2,1

3,1

−

+

−

GF b(0000):

1,2 1,1

2,1

3,1

+

− −

+

−

(b)

Figure 10: (a): The conversion to Boolean F b = f b ◦ ψ for the map of the example in Fig-
ure 6, and the resulting regulatory graph GF b . (b) Regulatory graphs Gfb(0000) and
GF b(0000).

The next lemma provides information about the relationship between the regulatory
graph of GF b and the regulatory graph of f b.

Lemma 4.3.4. For each x ∈ Y, if the local regulatory graph GF b(x) of F b at x contains
an edge from a node in Ij to a node (i,h) in Ii with sign s, with i, j ∈ {1, . . . ,n}, then
the graph Gfb(ψ(x)) contains an edge from some node in Ij to the node (i,h), with sign
s.

Proof. Consider a state x ∈ Y, and indices (i,h) ∈ Ii and (j, k) ∈ Ij . Then we have

F b(x̄j,k)− F b(x) = f b(ψ(x̄j,k))− f b(ψ(x)).

Using Lemma 4.3.1, we find that

F bi,h(x̄
j,k)− F bi,h(x)

x̄j,kj,k − xj,k
=
f bi,h(ψ(x)

j,k′
)− f bi,h(ψ(x))

ψ(x)
j,k′
j,k′ −ψ(x)j,k′

·
ψ(x)

j,k′
j,k′ −ψ(x)j,k′
x̄j,kj,k − xj,k

=
f bi,h(ψ(x)

j,k′
)− f bi,h(ψ(x))

ψ(x)
j,k′
j,k′ −ψ(x)j,k′

,

for some indices (j, k′) ∈ Ij , which concludes the proof.

Lemma 4.3.5. Suppose that the regulatory graph Gfb(x) at x ∈ Y admits an edge
(j, k) → (i,h) of sign s. Take y ∈ Y such that ψ(y) = x, and yj,t = xj,k for some
t ∈ {1, . . . ,mj}. Then the graph GF b(y) admits an edge from (j, t) to (i,h) of sign s.

Proof. Using Remark 4.3.2, we have that

F bi,h(ȳ
j,t)− F bi,h(y)
ȳj,tj,t − yj,t

=
f bi,h(ψ(ȳ

j,t))− f bi,h(ψ(y))
ȳj,tj,t − yj,t

=
f bi,h(x̄

j,k)− f bi,h(x)
x̄j,kj,k − xj,k

.
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4.3 an extension to non-admissible states

We are now ready to show that, if the regulatory graph of the original multivalued
map f has a circuit, then a corresponding circuit appears in the regulatory graph of the
conversion f b ◦ψ.

Theorem 4.3.6. Consider a map f : X → X , and define F b = f b ◦ψ : Y → Y.

(i) If, for some x ∈ X , the graph Gf (x) admits a circuit of sign s, then there exists a
y ∈ Y with ψ(y) = ϕ(x) such that GF b(y) admits a circuit of sign s.

(ii) If the regulatory graph of f admits a circuit of sign s, then the regulatory graph of
F b admits a circuit of sign s.

Proof. Consider the case of a local circuit i1
s1−→ i2 → · · · → ik

sk−→ i1 at Gf (x), x ∈ X .
By Lemma 4.2.2, the graph Gfb(ϕ(x)) admits edges

(i1,h1)
s1−→ (i2, j2), (i2,h2)

s2−→ (i3, j3), . . . , (ik−1,hk−1)
sk−1−−−→ (ik, jk), (ik,hk)

sk−→ (i1, j1).

Take y ∈ Y such that ψ(y) = x and yi1,j1 = xi1,h1 ,. . . ,yik,jk = xik,hk . By Lemma 4.3.5
the graph GF b(y) contains the circuit

(i1, j1)
s1−→ (i2, j2)

s2−→ (i3, j3)→ · · · → (ik−1, jk−1)
sk−1−−−→ (ik, jk)

sk−→ (i1, j1).

The proof for the case of a circuit in the global regulatory graph proceeds similarly.

Notice that if the circuit in the multivalued version is local, the corresponding circuit
does not necessarily appear in the regulatory graph at the corresponding admissible
state, but appears in one of the states mapped to the admissible state by ψ. This
means that circuits in the multivalued map might not have a corresponding circuit in
the graph of f b, but do have a corresponding circuit in the regulatory graph of F b (see
Example 4.3.8).
Finally, we show that the converse also holds: any circuit in GF b corresponds to some

cycle in Gf .

Theorem 4.3.7. Consider a map f : X → X , and define F b = f b ◦ψ.

(i) If, for some y ∈ Y, the graph GF b(y) contains a circuit, then the regulatory graph
Gf (x) contains a circuit, where x ∈ X is such that ϕ(x) = ψ(y). If the circuit in
GF b(y) is negative, then Gf (x) contains a negative circuit.

(ii) If the regulatory graph of F b contains a circuit, then the regulatory graph Gf of f
contains a circuit. If the circuit in GF b is negative, then Gf contains a negative
circuit.

Proof. If (i1,h1)
s1−→ · · · sk−1−−−→ (ik,hk)

sk−→ (i1,h1) is a circuit in GF b(x) for some state
x ∈ Y, then by Lemma 4.3.4 the graph Gfb(ψ(x)) contains edges

(i1,h′1)
s1−→ (i2,h2), (i2,h′2)

s2−→ (i3,h3), . . . , (ik,h′k)
sk−→ (i1,h1).

The conclusion follows from Lemma 4.2.1. The proof for the second part is similar.

If the regulatory graph of the network F b = f b ◦ψ contains a (local) circuit of negative
sign, then the regulatory graph of f contains a (local) circuit of negative sign. On the
other hand, a (local) positive circuit in GF b could correspond to a (local) non-elementary
positive cycle in Gf (see Example 4.3.8).
If a discrete map f has no (local) circuits of sign s, the map ψ allows therefore to

define an extension of the Boolean version of f that also admits no (local) circuits of
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4.3 an extension to non-admissible states

Multilevel f : X → X Multilevel stepwise f̃ : X → X

j
s−→ i ∈ Gf (x), i 6= j 6=⇒

⇐= j
s−→ i ∈ Gf̃ (x) Figure 5, Proposition 4.1.7

i
s−→ i ∈ Gf (x), i 6= j 6=⇒

6⇐= i
s−→ i ∈ Gf̃ (x) Figure 5

Multilevel f : X → X Boolean on admissible f b : A → A

j
s−→ i ∈ Gf (x), var. s1 ⇐= (j, k) s−→ (i, k′) ∈ Gfb(ϕ(x)), var. s1 Lemma 4.2.1

j
s−→ i ∈ Gf (x), var. s1 =⇒

(j,xj + s1+1
2 )

s−→ (i, k′) ∈ Gfb(ϕ(x)), Lemma 4.2.2k′ ∈
]
min {fi(x), fi(x+ s1ej)}, max {fi(x), fi(x+ s1ej)}

]
j
s−→ i ∈ G̃f (x, y) =⇒

(j,xj + εj+1
2 )

s−→ (i,xi + εi+1
2 ) ∈ GI(ϕ(x),ϕ(y))

fb
(ϕ(x)),

Lemma 4.2.5εk = sign(yk − xk)

circuit with sign s in G̃f (x, y) =⇒
⇐= circuit with sign s in GI(ϕ(x),ϕ(y))

fb
(ϕ(x)) Propositions 4.2.6, 4.2.8

circuit with sign s in G̃f (x, y) 6⇐= circuit with sign s in Gfb(ϕ(x)) Example 4.2.7

Boolean f b : A → A Boolean F b = f b ◦ψ : Y → Y

(j, k′) s−→ (i,h) ∈ Gfb(ψ(x)), ψ(x̄j,k) = ψ(x)
j,k′ ⇐= (j, k) s−→ (i,h) ∈ GF b(x) Lemma 4.3.4

(j, k) s−→ (i,h) ∈ Gfb(x) =⇒ (j, t) s−→ (i,h) ∈ GF b(y), ψ(y) = x, yj,t = xj,k Lemma 4.3.5

Multilevel f : X → X Boolean F b = f b ◦ψ : Y → Y

(local) circuit of sign s =⇒ (local) circuit of sign s Theorem 4.3.6

(local) (negative) circuit ⇐= (local) (negative) circuit Theorem 4.3.7

(local) positive circuit 6⇐= (local) positive circuit Example 4.3.8

Table 3: Summary of some results relating the regulatory graphs of multilevel maps and their
Boolean versions.

sign s. We will use this result in the next chapter to identify a Boolean map with no
local negative circuits.
A summary of the results concerning edges and circuits in the regulatory graphs of

multilevel maps and their Boolean versions is given in Table 3.

Example 4.3.8. Consider the following multivalued map f with n = 3, m1 = m3 = 1,
m2 = 2, and its conversion to Boolean F b:

x ∈ X f(x)
0 0 0 1 0 0
0 0 1 1 0 0
0 1 0 1 0 0
0 1 1 1 0 0
0 2 0 0 1 0
0 2 1 1 1 0
1 0 0 1 1 1
1 0 1 1 1 1
1 1 0 1 1 0
1 1 1 1 2 0
1 2 0 0 1 0
1 2 1 1 2 0

y ∈ Y F b(y)
0 0 0 0 1 0 0 0
0 0 0 1 1 0 0 0
0 0 1 0 1 0 0 0
0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 0
0 1 0 1 1 0 0 0
0 1 1 0 0 1 0 0
0 1 1 1 1 1 0 0
1 0 0 0 1 1 0 1
1 0 0 1 1 1 0 1
1 0 1 0 1 1 0 0
1 0 1 1 1 1 1 0
1 1 0 0 1 1 0 0
1 1 0 1 1 1 1 0
1 1 1 0 0 1 0 0
1 1 1 1 1 1 1 0
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4.3 an extension to non-admissible states

It can be verified that the local regulatory graphs of f do not admit positive elementary
circuits that involve more than one variable. The local regulatory graph at 110 consists
of two negative circuits, with node 2 in common:

1 2 3
+ −

− +

(21)

In the conversion, two variables y2,1 and y2,2 are introduced to represent the second
regulatory component. The regulatory graph at 1100 consists of a single elementary
positive circuit that involves all four variables:

2,1

1,1 3,1

2,2

−+

+−

This elementary circuit corresponds therefore to a non-elementary cycle found atGf (110)
as the composition of the two negative circuits (21). Two negative circuits corresponding
to the two circuits in Gf (110) (21) appear in the local regulatory graph of F b at 1010:

2,1

1,1 3,1

2,2

−

+

+

−

Example 4.3.9. The results on the preservation of circuits do not require the map to
be stepwise. Consider the non-stepwise map f defined on {0, 1, 2}2 by mapping 11 to
12, 12 to 20, 22 to 02 and all other states to 00. The asynchronous graphs for f and the
Boolean version defined by F b = f b ◦ψ are as follows:

02 12 22

01 11 21

00 10 20

1011 00 00 1111

1001 00 1101 00

0011 00 0111 00

0001 0101 00 00

0010 00 0110 00

0000 0100 00 00

1010 00 00 1110

1000 00 1100 00

Notice that the multilevel asynchronous dynamics has two attractors, given by the
sets {00} and {11, 12, 22}. In the Boolean version, only the fixed point remains, since
the asynchronous dynamics contains a path from 1111 to 0000 through non-admissible
states.
As a consequence of Theorem 4.2.11, the regulatory graph of f contains a local cir-

cuit of positive sign, and by Theorem 4.3.6 a local positive circuit also appears in the
regulatory graph of F b. Although the asynchronous graph of F b only has one attractor,
the positive circuit can be seen as necessary for the multistationarity of the dynamics
obtained by considering only the admissible states.
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4.3 an extension to non-admissible states

We can now consider some results about Boolean networks and use the Boolean version
of a multilevel map to state analogous results for the multilevel case. The following result
is due to Shih and Dong [SD05].

Theorem 4.3.10. ([SD05]) If the regulatory graph of f : X → X contains no circuits,
then f has exactly one fixed point.

We can state a multilevel version of this result.

Theorem 4.3.11. If the regulatory graph of a multilevel map f contains no local circuits,
then f has exactly one fixed point.

Proof. If the regulatory graph of f contains no local circuits, then by Theorem 4.3.7 the
regulatory graph of the map F b = f b ◦ ψ contains no local circuits. As a consequence
of Theorem 4.3.10, F b has a unique fixed point, and therefore so have f b and f .

Notice however that Richard [Ric08] proved the following stronger version of 4.3.11.

Theorem 4.3.12. ([Ric08, Theorem 1]) If the non-usual regulatory graphs of f : X → X
contain no circuits, then f has exactly one fixed point.

To state a recent result of Ruet [Rue16, Theorem 5.1] we need the following definition.

Definition 4.3.13. A pair of distinct states x, y ∈ Bn is called a mirror pair for a map
f : Bn → Bn if f |[x,y](x) = f |[x,y](y)

I , where I = I(x, y) = {i ∈ {1, . . . ,n} | xi 6= yi}.

We prove a multilevel version of the following result:

Theorem 4.3.14. ([Rue16, Theorem 5.1]) If f : Bn → Bn admits a mirror pair, then
there exist two different states x, y ∈ Bn such that Gf (x) and Gf (y) contain a circuit,
and x, y is a mirror pair for f .

For multivalued maps, we generalise the definition of mirror pair as follows.

Definition 4.3.15. A pair of distinct states x, y ∈ X is called a mirror pair for a map
f : X → X if

fi(x) ≤ xi, yi ≤ fi(y) or fi(y) ≤ xi, yi ≤ fi(x) for all i ∈ I,

where I = I(x, y) = {i ∈ {1, . . . ,n} | xi 6= yi}.

Lemma 4.3.16. x, y ∈ X is a mirror pair for f : X → X if and only if ϕ(x), ϕ(y) is a
mirror pair for F b = f b ◦ψ : Y → Y.

Proof. For each i ∈ I(x, y), we can assume xi < yi. Then, for all j ∈ {1, . . . ,mi},
ϕi,j(x) 6= ϕi,j(y) if and only if xi < j ≤ yi.
Suppose that x, y is a mirror pair for f . Take (i, j) ∈ I(ϕ(x),ϕ(y)), then either

fi(x) ≤ xi < j ≤ yi ≤ fi(y) or fi(y) ≤ xi < j ≤ yi ≤ fi(x), and in both cases
f bi,j(ϕ(x)) 6= f bi,j(ϕ(y)).

Conversely, if ϕ(x), ϕ(y) is a mirror pair for f b, then for any j such that xi < j ≤ yi
we have f bi,j(ϕ(x)) 6= f bi,j(ϕ(y)), which means that either fi(x) < j and fi(y) ≥ j or
fi(y) < j and fi(x) ≥ j. Taking j = xi + 1 and j = yi we find fi(x) ≤ xi < yi and
fi(y) ≥ yi > xi or fi(y) ≤ xi < yi and fi(x) ≥ yi > xi.

Theorem 4.3.17. If f : X → X admits a mirror pair, then there exist two different
states x, y ∈ X such that Gf (x) and Gf (y) contain a circuit.
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4.4 comparison to an alternative boolean version

Proof. If f admits a mirror pair, then by Lemma 4.3.16 the map F b : Bm → Bm admits
a mirror pair. Theorem 4.3.14 then gives two states x 6= y ∈ Bm such that GF b(x) and
GF b(y) contain a circuit. Taking x′ = ϕ−1(ψ(x)) and y′ = ϕ−1(ψ(y)), by Theorem 4.3.7,
we have that the graphs Gf (x′) and Gf (y′) contain a circuit. In addition, since x, y is
a mirror pair, we have that ψ(x) 6= ψ(y), since otherwise F b(x) = F b(y). Therefore x′
and y′ are distinct.

4.4 comparison to an alternative boolean version

In this chapter, we studied the mapping of multilevel to Boolean networks that relies
on the embedding ϕ of multilevel states to Boolean states, and we suggested a method
for defining a Boolean version on the full state space which preserves the regulatory
structure. An alternative approach to the mapping of multilevel networks to Boolean
networks was recently presented in [FK18]. To describe the approach, we need to in-
troduce another definition. Given a multilevel map f : X → X , the asympotic version
f̂ : X → X of f is defined as follows:

f̂i(x) =


0 if fi(x) < xi,
xi if fi(x) = xi,
mi if fi(x) > xi.

A map f is called asymptotic if it coincides with its asymptotic version. The regulatory
graphs of the asymptotic and stepwise version of a map f can differ in terms of the
autoregulations, but they otherwise coincide.

Example 4.4.1. Consider X = {0, 1, 2}. The map f on X that is constantly zero
coincides with its asymptotic version f̂ ; its stepwise version is given by f̃(0) = f̃(1) = 0,
f̃(2) = 1. The regulatory graph of f̂ does not have any edge, whereas the regulatory
graph of f̃ contains an edge 1 +−→ 1.
The map f on X that is constantly 1 coincides with its stepwise version f̃ ; its asymp-

totic version is given by f̂(0) = 2, f̂(1) = 1, f̂(2) = 0. The regulatory graph of f̃ is
empty, whereas the regulatory graph of f̂ contains an edge 1 −−→ 1.

Proposition 4.4.2. For every x ∈ X , the graph Gf̃ (x) contains an edge from j to i,
i 6= j, with sign s, if and only if the graph Gf̂ (x) contains an edge from j to i, with the
same sign.

Proof. If is sufficient to observe that sign(f̂i(x)−xi) = sign(f̃i(x)−xi) and, since i 6= j
and s 6= 0,

sign(f̂i(x+ s1e
j)− f̂i(x)) = sign((f̂i(x+ s1e

j)− xi)− (f̂i(x)− xi))
= sign(sign(f̂i(x+ s1e

j)− xi)− sign(f̂i(x)− xi))
= sign(sign(f̃i(x+ s1e

j)− xi)− sign(f̃i(x)− xi)).

Rather than considering a Boolean version of f that is defined only on the admissible
states, Fauré and Kaji [FK18] define a Boolean network on the full state space Y. They
call this Boolean network the binarisation of f . Consider the map

ψ∗ : Y → X

ψ∗ : (y11, . . . , y1,m1 , y2,1, . . . , yn,mn) 7→ (
m1∑
k=1

y1,k, . . . ,
mn∑
k=1

yn,k),
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4.4 comparison to an alternative boolean version

which is called ψ in [FK18]. The binarisation B(f) : Y → Y of f is defined by

B(f)i,j(x) =


0 if fi(ψ∗(x)) < ψ∗i (x),
xi,j if fi(ψ∗(x)) = ψ∗i (x),
1 if fi(ψ∗(x)) > ψ∗i (x).

A useful property of this method is that the binarisation defines a bijection between
the set of asymptotic networks on X and the functions on Y that are invariant under the
action of Sm1 ×· · ·×Smn on Y. This symmetry property does not hold for the conversion
introduced in 4.3. To see this, it is sufficient to consider the stepwise multilevel map on
{0, 1, 2} that is constantly equal to 1, and the permutation that swaps the two Boolean
variables of the conversion, since F b(0, 0) = (1, 0) 6= (0, 1).

The binarisation B(f) admits a fixed point if and only if f admits a fixed point, and the
asynchronous dynamics of B(f) admits a cyclic attractor if and only if the asynchronous
dynamics of f admits a cyclic attractor. In addition, the attractors of the asynchronous
dynamics of B(f) map surjectively onto the attractors of the asynchronous dynamics of
f , and to an attractor in ADf could correspond multiple attractors in ADB(f ).

Example 4.4.3. Reconsider the map of example 4.3.8. Its asymptotic version and
binarisation are given by

x ∈ X f(x)
0 0 0 1 0 0
0 0 1 1 0 0
0 1 0 1 0 0
0 1 1 1 0 0
0 2 0 0 0 0
0 2 1 1 0 0
1 0 0 1 2 1
1 0 1 1 2 1
1 1 0 1 1 0
1 1 1 1 2 0
1 2 0 0 0 0
1 2 1 1 2 0

y ∈ Y B(f)(y)
0 0 0 0 1 0 0 0
0 0 0 1 1 0 0 0
0 0 1 0 1 0 0 0
0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 0
0 1 0 1 1 0 0 0
0 1 1 0 0 0 0 0
0 1 1 1 1 0 0 0
1 0 0 0 1 1 1 1
1 0 0 1 1 1 1 1
1 0 1 0 1 0 1 0
1 0 1 1 1 1 1 0
1 1 0 0 1 1 0 0
1 1 0 1 1 1 1 0
1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0

The unique fixed point 110 of f give rise to two fixed points 1010 and 1100 for B(f). In
addition, all the local circuits in the regulatory graph of B(f) are positive.

For the conversion F b = f b ◦ψ described in Section 4.3, we proved that the existence of
a circuit in the regulatory graph of f implies the existence of a circuit in the regulatory
graph of F b, and vice versa (Theorem 4.3.7 and Theorem 4.3.6). A local circuit in
GB(f ) requires the existence of a local circuit in Gf . However, to a local circuit in the
regulatory graph of the multivalued map does not necessarily correspond a local circuit
in the regulatory graph of the binarisation. In this case, one can conclude that the
circuit does not play a role in determining the asymptotic behaviour.
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4.4 comparison to an alternative boolean version

Example 4.4.4. Consider the following asymptotic map f and its binarisation:

x ∈ X f(x)
0 0 0 0
0 1 0 0
1 0 0 0
1 1 1 0
2 0 0 1
2 1 0 0

y ∈ Y B(f)(y)
0 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 1 1 0 1 0
1 0 0 0 0 0
1 0 1 1 0 0
1 1 0 0 0 1
1 1 1 0 0 0

The regulatory graphs Gf (10), and the regulatory graphs of B(f) at the two states
mapped to 01 by ψ∗, 010 and 100 are as follows:

1 2

1,1

2,1

1,2

1,1

2,1

1,2

Hence the regulatory circuit in Gf (10) is not converted to a circuit in the regulatory
graphs GB(f )(010) and GB(f )(100). The regulatory graph of the conversion to Boolean
f b for the stepwise version of f on the admissible state 100 does not admit any circuit.
The regulatory graph of F b at 100 also does not admit any circuit; however, the regula-
tory graph GF b(010) contains a circuit involving the two regulatory components (nodes
1, 1 and 2, 1).

In the next chapter, we will consider the relationship between local negative circuits
and cyclic attractors. In particular, we will present another application of the conversion
of multivalued maps to Boolean dynamics, with the construction of a Boolean map with
a cyclic attractor and no local negative circuits for n = 6, and we will investigate local
negative circuits in networks of small dimension.
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5
LOCAL NEGATIVE C IRCUITS AND CYCL IC ATTRACTORS

In this chapter, we consider the following question:

Question 1. For a Boolean network, does the presence of a cyclic attractor imply the
existence of a local negative circuit in the regulatory graph?

See Section 3.3 for some background on the question and an overview of results on
circuits and dynamical behaviour of regulatory networks. The first counterexamples to
this conjecture can be found in [Rue17], where two constructions are presented: one
consists of a 12-dimensional and-net with a cyclic attractor, no local negative circuits
and no fixed states; the second is a family of maps, one for each n ≥ 7, with an
attractive cycle and no local negative circuit. A counterexample in the multilevel case
was presented by Richard [Ric10]. In this chapter, we identify other counterexamples
for the Boolean case. The first we identify is a Boolean version of Richard’s multilevel
counterexample (Section 5.1.1), created using the mapping described in the previous
chapter. We then present a variation on Ruet’s construction in [Rue17] for maps with
attractive cycles and no local negative circuits, for n ≥ 6 (Section 5.1.2).

For n ≥ 6 we find therefore that cyclic attractors, attractive cycles and absence of
fixed points are all compatible with the absence of local negative circuits. We do not
know, however, if there are counterexamples for smaller n. To find an answer for the
remaining cases, we show that the question can be encoded as a Boolean formula, that
can be given in input to a satisfiability solver (Section 5.2). We approach the problem
as follows: for a fixed number n of regulatory components, we consider n · 2n Boolean
variables, representing the values taken by the n components of the Boolean map on the
2n states in the state space. Features of the dynamics or the regulatory structures of
Boolean networks can be translated into Boolean formulas on these n · 2n variables. For
instance, we can look for maps with a given regulatory graph, or with a desired number
of fixed states. In particular, the features investigated by Question 1 — existence of a
local negative circuit, and of a cyclic attractor — can be encoded as Boolean expressions
on the n · 2n variables. In more detail, we implement a Boolean formula the encodes the
absence of local negative circuits and a necessary condition for the presence of a cyclic
attractor. Using the fact that asynchronous dynamics and the signs of the circuits are
preserved by symmetries of hypercube (see Section 3.2), we reduce the search space so
that, for small n, the problem can be analysed by a satisfiability solver in a few hours.
The solver finds the formula unsatisfiable for n ≤ 5, and identifies other examples for
n = 6.

5.1 counterexamples

5.1.1 Conversion of the multilevel counterexample

In [Ric10], Example 6, Richard presented an example of discrete multivalued map with
a unique cyclic attractor and no local negative circuits in the regulatory graph. In
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5.1 counterexamples

03 13 23 33

02 12 22 32

01 11 21 31

00 10 20 30

(a)

Gf (11),Gf (22) : 1 2

Gf (12),Gf (21) : 1 2

Gf (10),Gf (23) : 1 2

Gf (02),Gf (31) : 1 2

Gf (00),Gf (01),Gf (32),Gf (33) : 1 2

Gf (03),Gf (13),Gf (20),Gf (30) : 1 2

(b)

Figure 11: (a): Asynchronous state transition graph for a map f : {0, 1, 2, 3}2 → {0, 1, 2, 3}2
with one cyclic attractor (Example 6 in [Ric10]). (b): Local regulatory graphs of f
(negative edges are dashed).

this section we present a Boolean version of this map, and show that the absence of
local negative circuits does not imply the existence of a unique fixed point, for Boolean
networks with n ≥ 6.

In Figure 11 is the stepwise version f of the map introduced by Richard, together with
its local regulatory graphs, which do not contain any negative circuit. The asynchronous
state transition graph for the conversion f b of this map to a Boolean dynamics on the
admissible states is as in Figure 13a. Since the asynchronous dynamics of f admits a
unique cyclic attractor, ADfb also admits a unique cyclic attractor.
We define a Boolean map F b that extends f b to the non-admissible states as F b =

f b ◦ψ, with ψ the map defined in (20). By Proposition 4.2.10, the map F b = f b ◦ψ is a
compatible conversion of f , and hence F b has a unique cyclic attractor. By application
of Theorem 4.3.7, we find that the regulatory graph of F b has no local negative circuits.

The synchronous dynamics for the map F b is given in Figure 12. The global regulatory
graph for F b takes the form given in Figure 13b. We inspect two local regulatory graphs
in detail, to illustrate the consequences of the construction. Consider the admissible
state x = 000000. This state has only two admissible neighbours, x̄1,1 = 100000 and
x̄2,1 = 000100. To describe the graph Gfb(x), we compare the images under f b:

x = 000000, f b(x) = 000100,
x̄1,1 = 100000, f b(x̄1,1) = 000000,
x̄2,1 = 000100, f b(x̄2,1) = 000110.

We identify two edges in Gfb(x), (1, 1) −−→ (2, 1) and (2, 1) +−→ (2, 2). Now we consider
the extension F b of f b, and compare the image of x to the images of its non-admissible
neighbours:

x = 000000, f b(x) = 000100,
x̄1,2 = 010000, F b(x̄1,2) = f b(x̄1,1) = 000000,
x̄1,3 = 001000, F b(x̄1,3) = f b(x̄1,1) = 000000,
x̄2,2 = 000010, F b(x̄2,2) = f b(x̄2,1) = 000110,
x̄2,3 = 000001, F b(x̄2,3) = f b(x̄2,1) = 000110.

GF b(x) admits therefore additional edges with signs and targets given by the signs and
targets of the edges in Gfb(x). The additional edges are (1, 2) −−→ (2, 1), (1, 3) −−→ (2, 1),
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5.1 counterexamples

x F b(x)
000000 000100
000001 000110
000010 000110
000011 000111
000100 000110
000101 000111
000110 000111
000111 100111
001000 000000
001001 000000
001010 000000
001011 000111
001100 000000
001101 000111
001110 000111
001111 110111

x F b(x)
010000 000000
010001 000000
010010 000000
010011 000111
010100 000000
010101 000111
010110 000111
010111 110111
011000 100000
011001 111000
011010 111000
011011 111111
011100 111000
011101 111111
011110 111111
011111 111111

x F b(x)
100000 000000
100001 000000
100010 000000
100011 000111
100100 000000
100101 000111
100110 000111
100111 110111
101000 100000
101001 111000
101010 111000
101011 111111
101100 111000
101101 111111
101110 111111
101111 111111

x F b(x)
110000 100000
110001 111000
110010 111000
110011 111111
110100 111000
110101 111111
110110 111111
110111 111111
111000 110000
111001 111000
111010 111000
111011 111100
111100 111000
111101 111100
111110 111100
111111 111110

Figure 12: A map F b : {0, 1}6 → {0, 1}6 with no fixed points and with regulatory graph admit-
ting no local negative circuits. The rows corresponding to the admissible states are
highlighted in gray.

000111 100111 110111 111111

000110 100110 110110 111110

000100 100100 110100 111100

000000 100000 110000 111000

(a)

1,1 2,1

1,2 2,2

1,3 2,3

(b)

Figure 13: (a): Asynchronous state transition graph on the admissible states for the map F b in
Figure 12. (b): Global regulatory graph of F b (negative edges are dashed).
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5.1 counterexamples

(2, 2) +−→ (2, 2) and (2, 3) +−→ (2, 2). In particular, this local regulatory graph contains a
positive loop at (2, 2) (the graph Gf (00) also contains a positive loop at node 2).
Now consider, for illustration purposes, the non-admissible state y = 010000. To

derive the graph GF b(y), we compare the images under F b of y and its neighbouring
states:

y = 010000, F b(y) = f b(100000) = 000000,
ȳ1,1 = 110000, F b(ȳ1,1) = f b(110000) = 100000,
ȳ1,2 = 000000, F b(ȳ1,2) = f b(000000) = 000100,
ȳ1,3 = 011000, F b(ȳ1,1) = f b(110000) = 100000,
ȳ2,1 = 010100, F b(ȳ2,1) = f b(100100) = 000000,
ȳ2,2 = 010010, F b(ȳ2,2) = f b(100100) = 000000,
ȳ2,3 = 010001, F b(ȳ2,3) = f b(100100) = 000000.

We find that we need to compare the images under f b of the admissible state 100000
to the images under f b of the three admissible states 110000, 000000 and 100100. We
identify three regulatory edges: (1, 1) +−→ (1, 1), (1, 2) −−→ (2, 1) and (1, 3) +−→ (1, 1).
The map can be used to show that the absence of local negative circuits in the regu-

latory graph does not imply the existence of a fixed point for n ≥ 6 as follows: for each
n ≥ 6, define a map Fn by setting Fni = F bi for i = 1, . . . , 6, and Fni = xi for i > 6.
Then, for each x ∈ {0, 1}n, the regulatory graph GFn(x) is given by the regulatory
graph of F b at (x1, . . . ,x6), with the addition of a positive loop for each node i with
i > 6, and does not admit any negative circuit.

5.1.2 Maps with antipodal attractive cycles

Recall that ei denotes the element of Bn with eii = 1 and eij = 0 for j 6= i. The following
definition is given in [Rue16, Rue17].

Definition 5.1.1. A cycle is called antipodal attractive cycle if it is obtained from the
cycle

(0, e1, e1 + e2, . . . , e1 + · · ·+ en, e2 + · · ·+ en, . . . , en, 0)

by application of a map ψI ◦σ, where ψI(x) = x̄I for some I ⊆ {1, . . . ,n} and all x ∈ Bn,
and σ is a permutation of the coordinates.

In [Rue17], Ruet presents a method for constructing a Boolean map with an antipodal
attractive cycle and no local negative circuits in the regulatory graph, for n ≥ 7. Here
we describe a variation on Ruet’s construction, to identify maps with similar properties,
for n ≥ 6.

Definition 5.1.2. Given maps f ,U : Bn → Bn, f is U -equivariant if it satisfies

f ◦U = U ◦ f .

The following Lemma, due to Ruet [Rue17], can be seen as a consequence of 3.2.11,
part (i).

Lemma 5.1.3. [Rue17, Lemma 6] Consider a map U = ψI ◦ σ, with I ⊆ {1, . . . ,n}
and σ ∈ Sn. If f : Bn → Bn is U -equivariant, then for any x ∈ Bn the graphs Gf (x)
and Gf (U (x)) are isomorphic. Moreover, corresponding cycles have the same sign.
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The idea of the construction is the following. The regulatory graph of the map consist-
ing of the antipodal attractive cycle C, and all other states fixed, admits many local neg-
ative circuits. These circuits belong to graphs Gf (x) with x ∈ C, since by Lemma 4.2.15
the regulatory graph at fixed points cannot admit any negative circuit. By carefully mod-
ifying the map around the antipodal cycle, one can eliminate the local negative circuits,
while maintaining the other states fixed. The proof that the regulatory graph admits no
local negative circuits is simplified by the fact that the resulting map is T -equivariant,
where T is the map defined by

T (x1, . . . ,xn) = (x̄n,x1, . . . ,xn−1). (22)

We start by setting the notation for the states in the antipodal cycle. We set

ai =
i−1∑
k=1

ei,

an+i = ai,

for i = 1, . . . ,n. Observe that ai+1 = ai + ei, and that the antipodal cycle is defined
by (a1 = 0, a2, . . . , an, an+1, . . . , a2n, a1). We extend the notation for the ei by setting
ei+kn = ei for i ∈ {1, . . . ,n}, k ∈ Z. Then, we define

bi = ai + ei+1,
ci = ai + ei+1 + ei+2 = bi + ei+2,
di = ai + ei+1 + ei+3 = bi + ei+3,

for i = 1, . . . , 2n. Write A, B, C and D for the sets
⋃2n
i=1{ai},

⋃2n
i=1{bi},

⋃2n
i=1{ci} and⋃2n

i=1{di} respectively, and set ai+2kn = ai for i = {1, . . . , 2n} and k ∈ Z, and similarly
for the states bi, ci and di.
We define the map f as follows:

f(ai) = ai+1,
f(bi) = ai+2,
f(ci) = ai+4,
f(di) = ai+4,

for i = 1, . . . , 2n, while all other states are fixed.
First, we need to prove that f is well defined.

Remark 5.1.4. Using n ≥ 6, we find

1. ai = aj + ek for some i ≤ j, k if and only if j = i+ 1 modulo 2n, k = i modulo n,
and ai = ai+1 + ei.

2. ai = aj + ek1 + ek2 for some i < j, k1 < k2 if and only if j = i+ 2 modulo 2n,
k1, k2 = i, i+ 1 modulo n.

3. ai = aj + ek1 + ek2 + ek3 for some i < j, k1 < k2 < k3 if and only if j = i+ 3
modulo 2n, k1, k2, k3 = i, i+ 1, i+ 2 modulo n.

4. ai = aj + ek1 + ek2 + ek3 + ek4 for some i < j, k1 < k2 < k3 < k4 if and only if
j = i+ 4 modulo 2n, k1, k2, k3, k4 = i, i+ 1, i+ 2, i+ 3 modulo n.

Lemma 5.1.5. For n ≥ 6, the points ai, bi, ci, di, i = 1, . . . , 2n are all distinct.
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Proof. The points on the antipodal cycle are clearly all distinct. Using Remark 5.1.4,
point (2), one can show that the states in B are all distinct, and similarly for C and D
using point (4).

Suppose that ai = bj for some i, j. Then ai = aj + ej+1, and using Remark 5.1.4,
point (1), we conclude that the sets A and B do not intersect. Suppose now that ai = cj

or ai = dj for some i, j. Then ai = aj + ej+1 + ej+2 or ai = aj + ej+1 + ej+3, and we
can use Remark 5.1.4, point (2) to see that the set A does not intersect the sets C and
D. Similarly, using Remark 5.1.4, points (3) and (4), we find that B and C, B and D
and C and D do not intersect.

For n ≤ 5, the 4 · 2 · n points cannot be all distinct, since there are 2n states (for
n = 5, the set D contains only two states).
As in [Rue17], the map we constructed is T -equivariant.

Lemma 5.1.6. f is T -equivariant.

Proof. We have to verify that f(T (x)) = T (f(x)) for all x ∈ X . We start by observing
that, as in Lemma 5 of [Rue17], for any i ∈ 1, . . . , 2n

T (ai) = ai+1, T (bi) = bi+1, T (ci) = ci+1, T (di) = di+1.

As a consequence,

T (f(ai)) = T (ai+1) = ai+2 = f(ai+1) = f(T (ai)),

and similarly for bi, ci and di. If follows that, if x is a fixed point for f , T (x) is also a
fixed point for f , and T (f(x)) = T (x) = f(T (x)).

Since f is T -equivariant, by Lemma 5.1.3 we can limit the analysis of the regulatory
graph to four states.

Remark 5.1.7. From Remark 5.1.4, point (1), we find that each ai has two neighbours
in A:

ai + ei = ai+1,
ai + ei−1 = ai−1,

and using point (2), ai has two neighbours in B:

ai + ei+1 = bi,
ai + ei−2 = bi−2,

and using point (3), ai has one neighbour in C:

ai + ei−3 = ci−3.

Similarly, we can identify the neighbours of bi

bi + ei = ai+2, bi + ei+1 = ai,
bi + ei+2 = ci, bi + ei+3 = di, bi + ei−2 = di−2,

and the neighbours of ci and di:

ci + ei = ai+3, ci + ei+2 = bi,
di + ei = bi+2, di + ei+3 = bi.
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Lemma 5.1.8. For n ≥ 6, the graph Gf (x) has no negative local circuit for any x ∈
{a1, b1, c1, d1}.

Proof. If x /∈ A ∪B ∪C ∪D, then x is a fixed point, and Gf (x) has no local negative
circuits by Lemma 4.2.15. Consider the state x = a1. Recall that a1 is mapped to
a2 = a1 + e1 by f . We enumerate the edges in the graph Gf (a1). By Remark 5.1.7, we
need to consider six possible cases for the direction ej :

• j = 1: a1 + e1 = a2 is mapped to a3 = a1 + e1 + e2, hence the regulatory graph
contains the edge

1 +−→ 2.

• j = 2: a1 + e2 = bi is mapped to a3, and we find the edge

2 +−→ 2.

• j = n: a1 + en = an is mapped to a1, giving the edge

n
−−→ 1.

• j = n− 1: a1 + en−1 = bn−1 is mapped to a1, giving the edge

n− 1 −−→ 1.

• j = n− 2: a1 + en−2 = cn−2, mapped to a2 = a1 + e1 = f(a1), and there is no
edge with source n− 2.

• j /∈ {1, 2,n,n− 1,n− 2}: a1 + ej is mapped to itself, and we find the following
edges:

j
−−→ 1 and j +−→ j.

We conclude that the graph Gf (a1) has no negative circuits.
Let us consider a state x = b1. Recall that b1 is mapped to a3 = a1 + e1 + e2 by f .

Again, by Remark 5.1.7, we need to consider six possible cases:

• j = 1: b1 + e1 = a3 is mapped to a4 = a1 + e1 + e2 + e3, hence the edge

1 +−→ 3.

• j = 2: b1 + e2 = a1 is mapped to a2 = a1 + e1, and we find the edge

2 +−→ 2.

• j = 3: b1 + e3 = c1 is mapped to a5, giving the edges

3 +−→ 3, 3 +−→ 4.

• j = 4: b1 + e4 = d1 is mapped to a5, giving the edges

4 +−→ 3, 4 +−→ 4.

• j = n− 1: b1 + en−1 = dn−1, mapped to a3, and there is no edge with source
n− 1.
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• j /∈ {1, 2, 3, 4,n− 1}: b1 + ej = a1 + e2 + ej is mapped to itself, and we find the
following edges:

j
−−→ 1 and j +−→ j.

We conclude that the graph Gf (b1) has no negative circuits.
The states c1 and d1 are mapped to a5. For the graph Gf (c1), we consider three cases:

• j = 1: c1 + e1 = a4, mapped to a5, and we have no edges with source 1.

• j = 3: c1 + e3 = b1 mapped to a3, hence the edges

3 +−→ 3, 3 +−→ 4.

• j /∈ {1, 3}: c1 + ej = a1 + e2 + e3 + ej is fixed. For j = 2 we find the edges

2 +−→ 1, 2 +−→ 2, 2 +−→ 4.

If j = 4 we have the single edge
4 −−→ 1.

Otherwise, we find
j
−−→ 1, j −−→ 4, j +−→ j.

For d1, we again have three cases:

• j = 1: d1 + e1 = b3, mapped to a5, and we have no edges with source 1.

• j = 4: d1 + e4 = b1 mapped to a3, hence the edges

4 +−→ 3, 4 +−→ 4.

• j /∈ {1, 4}: c1 + ej = a1 + e2 + e4 + ej is fixed. If j = 2 we find the edges

2 +−→ 1, 2 +−→ 2, 2 +−→ 3.

If j = 3 we have the single edge
3 −−→ 1.

Otherwise, we find
j
−−→ 1, j −−→ 3, j +−→ j.

The graphs Gf (c1) and Gf (d1) have no negative circuits, and we concluded the proof.

We can summarise the section with the following proposition.

Proposition 5.1.9. For n ≥ 6, there exists a map with an antipodal attractive cycle
and admitting no local negative circuits in the regulatory graph.

The map for n = 6 is pictured in Figure 14.

55



5.2 questions on regulatory networks as boolean satisfiability problems
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Figure 14: Dynamics for a regulatory network with an antipodal attractive cycle and admitting
no local negative circuits, for n = 6. The fixed states are omitted. The synchronous
dynamics coincides for the states in the same box, and is represented with bold arrows.
The additional transitions are asynchronous.

5.2 questions on regulatory networks as boolean satisfiability
problems

In this section we show how some questions about regulatory networks translate nat-
urally into Boolean formulas. SAT solvers then provide powerful tools to determine
whether Boolean regulatory networks with some given properties exist. In Section 5.2.1,
we will use this approach to answer a question about the existence of negative circuits
in presence of cyclic attractors for small networks.
The questions we want to translate into Boolean satisfiability problems are for instance

of the form: do regulatory network exist with a given graph as regulatory graph, and
admitting a given orbit in the asynchronous state transition graph? What is the smallest
dimension n for which such networks exist?
To translate these types of problems into Boolean formulas, for a fixed n, we consider

n · 2n Boolean variables representing the values taken by the hypothetical Boolean map
f on the 2n states in Bn. We denote these variables as

f1(x), . . . , fn(x), x ∈ Bn. (23)

We stipulate that a value of true for fi(x) corresponds to 1, and false to 0. The conditions
on the graphs associated to the regulatory network then translate into Boolean formulas
on these variables. For instance, if we want the state x ∈ Bn to be mapped to the state
y ∈ Bn by f , we write the following Boolean formula:∧

1≤i≤n
yi=0

¬fi(x) ∧
∧

1≤i≤n
yi=1

fi(x). (24)

In the following paragraphs, we look at how conditions on the regulatory graphs or on
the dynamics of f can be translated into Boolean formulas.
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Regulatory graph

For each possible edge (j, i) in the regulatory graph of f , define, for each state x ∈ Bn,

l0x(j, i) = fi(x1, . . . ,xj−1, 0,xj+1, . . . ,xn),
l1x(j, i) = fi(x1, . . . ,xj−1, 1,xj+1, . . . ,xn).

With these definitions, the sign (8) of the edge e is given by the difference between l1x(j, i)
and l0x(j, i). Then, we can require that the sign of edge e is positive, by considering the
expression

Px(j, i) = ¬l0x(j, i) ∧ l1x(j, i), (25)
and to impose a negative edge, the expression

N x(j, i) = l0x(j, i) ∧¬l1x(j, i). (26)

If we want no regulation from j to i at x, we impose

Ox(j, i) = (l0x(j, i)⇔ l1x(j, i)) = (¬l0x(j, i) ∨ l1x(j, i)) ∧ (l0x(j, i) ∨¬l1x(j, i)). (27)

Given some positive edges E+ and some negative edges E−, we can impose that the
regulatory graph of f admits these edges in the global regulatory graph, using the
formula  ∧

(j,i)∈E+

∨
x∈Bn

Px(j, i)

∧
 ∧

(j,i)∈E−

∨
x∈Bn

N x(j, i)

 .

If we want the regulatory graph of f to contain exclusively the edges in E+ and E−, then
we add the following clause:

∧
x∈Bn

 ∧
i,j=1,...,n
(j,i)/∈E+

¬Px(j, i)

∧
 ∧
i,j=1,...,n
(j,i)/∈E−

¬N x(j, i)

 .

If we require the edges in E+ and E− to be contained in all of the local graphs at a
subset A of Bn, we can use the formula

∧
x∈A

 ∧
(j,i)∈E+

Px(j, i) ∧
∧

(j,i)∈E−
N x(j, i)

 . (28)

Using the formula in (28), we can impose for instance that the regulatory graph contains
a given circuit.

Imposing conditions on the asynchronous state transition graph

We describe a formula that imposes the existence of a given path in the asynchronous
state transition graph. Given a pair of states (x, y) such that d(x, y) = 1, if xj 6= yj we
can require that the transition (x, y) is in ADf by imposing

fj(x) if yj = 1, else ¬fj(x). (29)

Given a sequence of states π = (x0,x1, . . . ,xk) such that d(xi,xi+1) = 1, i = 0, . . . , k−1,
we can require that the sequence defines a path in ADf by imposing k constraints of
the form in (29):

Θπ =
∧

0≤i≤k−1
j s.t. xij 6=x

i+1
j

xi+1
j =0

¬fj(xi) ∧
∧

0≤i≤k−1
j s.t. xij 6=x

i+1
j

xi+1
j =1

fj(x
i). (30)
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n number of cycles number of cycles of length
1 2 3 4 5 6 7

2 3 2 1
3 8 3 3 2
4 24 4 6 8 6
5 89 5 10 20 30 24
6 415 6 15 40 90 144 120
7 2373 7 21 70 210 504 840 720

Figure 15: Number of elementary cycles in a complete directed graph with n nodes.

Given two states x and y with Hamming distance equal to one, we can require that
y is the unique state such that (x, y) is in the asynchronous state transition graph by
imposing f(x) = y, i.e. ∧

1≤i≤n
yi=1

fi(x) ∧
∧

1≤i≤n
yi=0

¬fi(x). (31)

Using this formula on a cycle (x1, . . . ,xk−1,xk = x1), we can impose that the cycle is
attractive for the asynchronous state transition graph of f :∧

1≤i≤k−1
1≤j≤n
xi+1
j =0

¬fj(xi) ∧
∧

1≤i≤k−1
1≤j≤n
xi+1
j =1

fj(x
i). (32)

5.2.1 Attractors and local negative circuits

In this section, we describe how Question 1 an be translated into a Boolean formula on
the n · 2n Boolean variables in (23). We proceed first to describe how the absence of neg-
ative circuits in the local regulatory graph can be translated into a Boolean expression.

Imposing the absence of local negative circuits

To express the sign condition on the circuits, we consider every possible circuit on a
graph with n nodes, and impose that the circuit has a non-negative sign. For small
values of n, this requirement leads to a satisfiability problem that is computationally
manageable. The number of elementary circuits of length k in a complete graph on n
nodes is given by (nk)(k − 1)!, hence we have to consider, for instance, 89 circuits for
n = 5, and 415 circuits for n = 6 (see Table 15).
We write Cn for the set of all possible circuits in the complete directed graph on
{1, . . . ,n}. For each cicuit c ∈ Cn, and for each edge (j, i) in the circuit, and for each
state x ∈ Bn, we write N x(j, i) and Px(j, i) for the expressions that impose that the
edge e is negative or positive, respectively, as in (26) and (25).
To impose that the label of a circuit c is negative, we require that an odd number of

edges are negative, and that the remaining edges are positive:

Φx
c =

∨
1≤k≤m, k odd,
c=c−∪c+, |c−|=k

 ∧
(j,i)∈c−

N x(j, i) ∧
∧

(j,i)∈c+
Px(j, i)

 . (33)
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The absence of local negative circuits in the regulatory graph is therefore described by
the expression

∧
x∈Bn

c∈Cn

¬Φx
c =

∧
x∈Bn

c∈Cn

¬

 ∨
1≤k≤m, k odd,
c=c−∪c+, |c−|=k

 ∧
(j,i)∈c−

N x(j, i) ∧
∧

(j,i)∈c+
Px(j, i)


 , (34)

which we can write in CNF form as

∧
x∈Bn

c∈Cn

¬Φx
c =

∧
x∈Bn

c∈Cn

∧
1≤k≤m, k odd,
c=c−∪c+, |c−|=k

 ∨
(j,i)∈c−

l1x(j, i) ∨¬l0x(j, i) ∨
∨

(j,i)∈c+
¬l1x(j, i) ∨ l0x(j, i)

 .

Absence of fixed points

Before considering Question 1, we describe how a different question can be easily trans-
lated into a Boolean satisfiability problem. The question is the following:

Question 2. Is the absence of a local negative circuit in the regulatory graph a sufficient
condition for the map f to admit at least one fixed point?

Having imposed the absence of local negative circuits as in Section 5.2.1, to ask
Question 2, it remains to write formulas that impose the absence of fixed points. To
impose that a state x ∈ Bn is not a fixed point for f we can write:

Fx =
∨

1≤i≤n
xi=0

fi(x) ∨
∨

1≤i≤n
xi=1

¬fi(x), (35)

and to impose no fixed points for f :∧
x∈Bn

Fx =
∧
x∈Bn

(
∨

1≤i≤n
xi=0

fi(x) ∨
∨

1≤i≤n
xi=1

¬fi(x)), (36)

Since the state 0 is not fixed, there exists an index i such that fi(0) = 1. Consider a
permutation σ ∈ Sn that sends i to 1. The map g = σ ◦ f ◦ σ−1 satisfies g1(0) = 1; in
addition, by Proposition 3.2.11, g and f have local circuits with the same signs. We
can therefore reduce the search space by assuming that the first coordinate of f(0) is 1.
The formula for Question 2 is therefore:

Q2 =

 ∧
x∈Bn

Fx
∧

 ∧
x∈Bn,c∈Cn

¬Φx
c

∧ f1(0). (37)

The unsatisfiability of this problem is thus determined, for n = 5, in minutes, by the
satisfiability solvers. By giving the formula in (37) with n = 6 in input to a satisfiability
solver, we can also identify other examples of maps with no fixed points and no local
negative circuits. The existence of a cyclic attractor is less straightforward to impose;
we describe our approach in the next section.

Example 5.2.1. Using the formula in (32), we can require a Boolean network to admit
an antipodal attractive cycle (see Definition 5.1.1). We can use the expression in (32)
in conjunction with the formula in (37), to look for a map with an antipodal attractive
cycle, no local negative circuits and no fixed points. Using a SAT solver, we find that
the formula is satisfiable.
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Figure 16: Synchronous dynamics for a regulatory network in dimension 6 with an antipodal
attractive cycle, no fixed points and no local negative circuits.

We can add for instance the requirement that the map is T -equivariant (see Defi-
nition 5.1.2), with T the map in (22). This can achieved with the Boolean formula

(f1(T (x)) ⇐⇒ ¬fn(x)) ∧
∧
x∈Bn

2≤i≤n

(fi(T (x)) ⇐⇒ fi−1(x)). (38)

In this case we find that the Boolean problem is not satisfiable.
Instead of the formula in (38), we can consider a less strict requirement, asking that

the map is T 3-equivariant, using the formula∧
x∈Bn

1≤i≤3

(fi(T
3(x)) ⇐⇒ ¬fn−3+i(x)) ∧

∧
x∈Bn

4≤i≤n

(fi(T
3(x)) ⇐⇒ fi−1(x)).

For additional symmetry, we also impose that the map is S-equivariant, with S the map
defined as S(x) = x̄ for all x ∈ Bn, with the formula∧

x∈Bn

1≤i≤n

(fi(S(x)) ⇐⇒ ¬fi(x)).

With these additional requirements, the SAT solver finds for instance the Boolean net-
work represented in Figure 16.

Example 5.2.2. Using the formula in (28) we can impose the existence of a local circuit,
or, for instance, of a type 2 functional circuit, i.e., a circuit that is shared by all the
local graphs in a subcube of Bn (see Section 3.3). For n = 2, it is easy to see that, if a
map admits two fixed points or no fixed point, then its regulatory graph admits a type
2 circuit. Consider the following questions: what is the minimum n such that a map on
Bn admits two fixed points and no type 2 circuit? What is the minimum n such that a
map on Bn has no fixed point and no type 2 circuit? (These questions were suggested
by A. Fauré).

We can translate the conditions of the questions to Boolean formulas as follows. Given
x ∈ Bn, to require that the local regulatory graph Gf (x) does not contain a given circuit
c ∈ Cn we have to impose that at least one of the regulations of the circuit is missing.
As a Boolean formula this can be expressed as∨

(j,i)∈c
Ox(j, i).
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Figure 17: (a): Asynchronous state transition graph for a map with two fixed points and no type
2 functional circuit. (b) Asynchronous state transition graph for a map with no fixed
points and no type 2 functional circuit.

See equation (27) for the definition of Ox. Write K for the set of all subcubes of Bn.
The circuit c is not a type 2 circuit if, for each subcube κ ∈ Bn, there is a state x ∈ κ
such that c is not a circuit in Gf (x):∧

κ∈K

∨
x∈κ

∨
(j,i)∈c

Ox(j, i).

Consider the first question. By propositions 3.2.1 and 3.2.11, we can assume that the
fixed points are 0 and 1. We use (24) to impose f(0) = 0 and f(1) = 1. Hence the
Boolean formula for the first question is ∧

c∈Cn

∧
κ∈K

∨
x∈κ

∨
(j,i)∈c

Ox(j, i)

∧ ∧
1≤i≤n

¬fi(0) ∧
∧

1≤i≤n
fi(1),

and for the second question (see (36)): ∧
c∈Cn

∧
κ∈K

∨
x∈κ

∨
(j,i)∈c

Ox(j, i)

∧ ∧
x∈Bn

Fx.

We find that, for n = 3, the presence of multiple fixed points and the absence of fixed
points imply the existence of a type 2 functional circuit. For n = 4, the formulas are
satisfiable. We find the maps with no type 2 circuits shown in Figure 17.

A necessary condition for the existence of a cyclic attractor

We now go back to Question 1, and consider therefore the existence of a cyclic attractor
in the asynchronous state transition graph of f . The approach is based on the following
observation.

Proposition 5.2.3. The asynchronous state transition graph ADf of a map f : Bn →
Bn admits a cyclic attractor if and only if there exists a state x ∈ Bn such that, for any
y ∈ Bn, if there is a path in ADf from x to y, then y is not a fixed point.

Proof. If ADf admits a cyclic attractor, then the conclusion is true for any state x in
the cyclic attractor.
Viceversa, suppose that x is a state with the described property, and call R the set of

points reachable from x in the asynchronous state transition graph. Then the minimal
trap domain contained in R does not contain any fixed point, hence it must contain a
cyclic attractor for ADf .
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Proposition 5.2.3 translates the existence of a cyclic attractor into a condition on
the paths in the asynchronous state transition graph. It is, however, computationally
problematic to impose that, if ADf contains a path of any length from x to y, then y is
not a fixed point. We therefore consider the following condition instead.

Condition Γ(k). There exists a state x ∈ Bn such that, for each y ∈ Bn, if there is an
acyclic path in ADf from x to y of length at most k, then y is not a fixed point.

It is clear from Proposition 5.2.3 that, for each k ≥ 0, Condition Γ(k) is a necessary
condition for the existence of a cyclic attractor. Our strategy is therefore to impose the
absence of local negative circuits, as well as Condition Γ(k) for increasing values of k,
until we find that the problem is unsatisfiable.
Given a sequence of states π = (x0,x1, . . . ,xk) such that d(xi,xi+1) = 1, i =

0, . . . , k − 1, recall that we write Θπ for the expression that imposes π as a path in
the asynchronous dynamics (30). Given a state x ∈ Bn, denote by P k(x) the set of
acyclic paths in the n-dimensional hypercube graph that start from x and have length
less or equal to k. If π is a path in ADf , we denote by t(π) the last node of the path.
We impose Condition Γ(k) for a state x ∈ Bn, using (35), as follows:∧

π∈Pk(x)

(
Θπ ⇒ F t(π)p

)
=

∧
π∈Pk(x)

¬Θπ ∨F t(π)p . (39)

Condition Γ(k) requires the existence of a state x ∈ Bn that verifies (39). Suppose
that a map f satisfies condition (39) for some x ∈ Bn, and that its local regulatory
graphs do not admit any negative circuit. Consider j such that fj(x) 6= xj , and call σ
the permutation that swaps 1 and j. Define I = {i ∈ {1, . . . ,n}|σ(x)i 6= 0}. Then, by
Proposition 3.2.11, the map fU with U = ψI ◦ σ admits a cyclic attractor containing 0,
and its local regulatory graphs do not admit any negative circuit. In addition, f1(0) = 1.
We have therefore that, to exclude the existence of maps with cyclic attractors and no
local negative circuits, it is sufficient to consider expression (39) for x = 0, and assume
f1(0) = 1. By combining (39) with (34), we find, for fixed k, the Boolean formula

Q1 =

 ∧
π∈Pk(0)

(
Θπ ⇒ F t(π)p

)∧
 ∧
x∈Bn,c∈Cn

¬Φx
c

∧ f1(0). (40)

Notice that Q1 is a generalization of (37), where fewer points are required to be non-
fixed. Using (39) and (30), (40) is easily written in CNF form. The expressions defined
in this section are summarized in Table 4

Results

We created CNF files in DIMACS CNF format, a standard input format accepted by
most SAT solvers. The files start with a line that begins with p cnf followed by the
number of variables and the number of clauses. One line for each clause then follows.
Each clause is expressed by listing the indices of the variables involved in the clause
separated by spaces, using negative numbers for negated variables. A zero is added at
the end of each clause line.
The files were created with a Python script (available at github.com/etonello/regulatory-

network-sat). Using the satisfiability solver Lingeling [Bie16], we found that, if k is set
to 2, 4, 6, 11 respectively, for n = 2, 3, 4, 5, the problem described by (40) is unsatisfiable.
This means that, for n ≤ 5, all maps that admit a cyclic attractor must have a local
negative circuit. The results are summarised in Table 5.
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5.2 questions on regulatory networks as boolean satisfiability problems

Expression Description

Φx
c =

∨
1≤k≤m, k odd,
c=c−∪c+, |c−|=k

( ∧
(j,i)∈c−

N x(j, i) ∧
∧

(j,i)∈c+
Px(j, i)

)
c is a local negative circuit
at state x ∈ Bn (33)

∧
x∈Bn,c∈Cn

¬Φx
c absence of local negative

circuits (34)

Fx =
∨

1≤i≤n
xi=0

fi(x) ∨
∨

1≤i≤n
xi=1

¬fi(x) x ∈ Bn is not fixed (35)

∧
x∈Bn

Fx absence of fixed points (36)

Θπ =
∧

0≤i≤k−1
j s.t. xij 6=x

i+1
j

xi+1
j =0

¬fj(xi) ∧
∧

0≤i≤k−1
j s.t. xij 6=x

i+1
j

xi+1
j =1

fj(xi) π = (x0,x1, . . . ,xk) is a
path in the asynchronous
state transition graph (30)

∧
π∈Pk(x)

¬Θπ ∨F t(π) Condition (Γ(k))

Table 4: Expressions considered to answer Question 1.

n 2 3 4 5
k 2 4 6 11

Table 5: Minimum path length k such that, in a Boolean model with n variables, (40) is unsatis-
fiable, i.e. if all paths from state 0 of length at most k do not reach a fixed point, there
must exist a local negative circuit.

The lengths k = 2, 4, 6, 11 are the minimum lengths that lead to the unsatisfiability
of the formula in (40). In other words, there exists at least one map in dimension 2
(respectively 3, 4 and 5) such that the paths of length at most 1 (respectively 3, 5 and
10) do not reach a fixed point, and the associated regulatory graph does not admit a
local negative circuit. Examples of such maps are given in Figure 18, for n = 2 and
n = 3. Figure 19 illustrates instead the idea of the result obtained for n = 2 and
n = 3, for two special cases of asynchronous state transition graphs admitting a unique
path leaving the origin: since this path reaches 3 (respectively 5) different states, the
regulatory graph must admit a local negative circuit, somewhere in the state space.
The CNF file for n = 5 and k = 11 on the 160 variables consists of 2.6 million clauses.

The satisfiability solver Lingeling [Bie16] was used to determine the unsatisfiability and
to generate a proof, expressed in the standard DRAT notation [WHH14]. For n = 5
and k = 11, the file for the proof is about 1GB in size. The proof was verified using the
SAT checking tool chain GRAT [Lam17].

5.2.2 Multilevel regulatory networks

In Chapter 4 we introduced regulatory networks with variables admitting more than
two expression levels. Given maximum expression levels m1, . . . ,mn ∈ N, a multilevel
regulatory network is a map f : X → X , where X is the product of intervals of integers
X = {0, . . . ,m1}× · · · × {0, . . . ,mn}. Taking Y = Bm with m =

∑n
i=1mi, we defined a

map ϕ : X → Y as ϕ(x) = (χ[1,m1](x1), . . . ,χ[m1,m1](x1),χ[1,m2](x2), . . . ,χ[mn,mn](xn))
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01 11

00 10

1 2

(a)

011 111

001 101

010 110

000 100

1 2

3

(b)

Figure 18: Example showing that Condition Γ(k) is compatible with the absence of local negative
circuits for n = 2 with k = 1, and for n = 3 with k = 3. (a): The asynchronous state
transition graph and the regulatory graph for the map f(x1,x2) = (1,x1). The path
of length 2 leaving the origin reaches a fixed point, and the regulatory graph does not
admit any local circuit. (b) The asynchronous state transition graph and the (global)
regulatory graph for the map f(x1,x2,x3) = (1− x2x3,x3,x1x2x3 − x1x2 − x1x3 −
x2x3 + x1 + x2 + x3). The path of length 4 leaving the origin reaches a fixed point;
none of the negative circuits admitted by regulatory graph are local.

01 11

00 10

1 2

(a)

011 111

001 101

010 110

000 100

1 2

3

(b)

Figure 19: (a): The asynchronous state transition graph and the regulatory graph for the map
f(x1,x2) = (1− x2,x1 + x2 − x1x2). The paths leaving the origin do not reach a
fixed point in 2 steps, hence a local negative circuit must exist in the regulatory graph.
The unique attractor for the asynchronous state transition graph is a fixed point. (b)
The asynchronous state transition graph and the (global) regulatory graph for the map
f(x1,x2,x3) = (1−x3,x1,x1x2x3−x1x3−x2x3 +x2 +x3). No local negative circuit
of dimension 1 or 2 exists; however, since the only path leaving the origin has length
5, the regulatory graph must admit a local negative circuit involving all three variables.
The unique attractor for the asynchronous state transition graph is a fixed point.

The map ϕ is injective, and its image A is called the set of admissible states. The
conjugation with ϕ provides a one-to-one mapping from multilevel networks on X to
maps from A to itself. We can use the mapping to write constraints on multilevel
networks using Boolean variables. Recall that we use pairs of indices (i, j), i = 1, . . . ,n,
j = 1, . . . ,mi, to identify the components of elements of Y. We need to define 2m ·m
Boolean variables, and impose that, for each x ∈ Y, f(x) is in A. Since a state y ∈ Bm

is in A if and only if

yi,j ≥ yi,j+1, for i = 1, . . . ,n, j = 1, . . . ,mi − 1,

we write the expression ∧
i=1,...,n

∧
j=1,...,mi−1

fi,j+1(x)⇒ fi,j(x). (41)
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We can in addition impose that the multilevel map is stepwise by considering the ex-
pression

∧
i=1,...,n

 ∧
j=1,...,mi−1

∧
x∈A
xi,j=0

¬fi,j+1(x) ∧
∧

j=2,...,mi

∧
x∈A
xi,j=1

fi,j−1(x)

 . (42)

Finally, we can require that f satisfies f ◦ ψ = f , with ψ the map defined in (20).
Theorems 4.3.6 and 4.3.7 then guarantee that the regulatory graph of f admits a local
negative circuit if and only if the regulatory graph of the multilevel version admits a
local negative circuit. The requirement f ◦ψ = f is expressed by the Boolean formula∧

i=1,...,n

∧
j=1,...,mi

fi,j(ψ(x))⇔ fi,j(x). (43)

Using the formulas in (41), (42), (43) and (37), and imposing in addition f1(1, 0) = 0,
we find that the map in Figure 11 is the unique regulatory network on {0, 1, 2, 3}2 that
satisfies f1(1, 0) = 0, is stepwise, does not have any fixed point and does not admit any
local negative circuit.

5.3 open questions

The following are some open questions related to the topics discussed in this part of the
thesis.

(i) Count the number of Boolean networks with non-isomorphic asynchronous state
transition graphs (see Remark 3.2.2). Count the number of different asymptotic
behaviours of asynchronous dynamics.

(ii) Is the pair of states of Theorem 4.3.17 always a mirror pair?

(iii) Identify a short proof that, for n ≤ 5, a local negative circuit in the regulatory
graph is necessary for the existence of a cyclic attractor or the absence of fixed
points.

(iv) Identify classes of cyclic attractors or of maps with cyclic attractors which require
the existence of local negative circuits for all n.
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6
OVERVIEW OF PART I I

Reaction networks are used in areas such as biology, chemistry and engineering to model
processes involving species that interact to form other species. A chemical reaction is
indicated with an arrow, for example

A+B C (44)

represents the combination of a unit of the chemical species A and B to form a unit
of the species C. The entities appearing on the left and right sides of the arrows are
called complexes, more precisely, reactant complex and product complex of the reaction,
respectively. For example, a network consisting of three reactions

A+B C, C B +D, B +D A+B, (45)

has four species, A, B, C and D, and three complexes, A+B, C and D+B. We usually
represent the network as a graph with the complexes as nodes:

A+B C

B +D

(46)

This allows to highlight useful properties of the network, such as the number of connected
components or the reversibility.

In classical Chemical Reaction Network Theory (see for instance [Fei79, Fei87, Fei88,
Hor72]), the reactions are usually assumed to take place in a well-stirred container which
is spatially homogeneous. The species concentrations (that we denote for the example
above as xA,xB,xC ,xD) are modelled as continuous functions that satisfy a system
of ordinary differential equations (ODEs). Other modelling approaches exist, which
consider for instance discrete variables for the species concentrations, and stochastic
processes to model the evolution in time.

To associate a system of ODEs to (46), a choice needs to be made about the rate
at which the reactions take place. Under the assumption of mass action kinetics the
rates are supposed proportional to the concentrations of the reactant species. The
proportionality constants are called rate constants or kinetic parameters. The reaction
in (44) for instance will have a rate of the form κ1xAxB. The other two reactions in (45)
will have rates κ2xC and κ3xBxD. To determine a differential equation for species A,
one sums the effects of all the reactions that involve A: the species is consumed in the
first reaction and produced by the last, so that we can write

dxA
dt

= −κ1xAxB + κ3xBxD,

and similarly for the other species.

67



overview of part ii

This process leads generally, in practical situations, to large systems that can not be
solved analytically. In addition, the equations involve a considerable number of param-
eters that are often not easy to infer. These factors make the prediction of the system
behaviour — for instance, establishing whether the system can display oscillations, or
admit more than one stable state — particularly challenging. Results in chemical reac-
tion network theory, however, derive conclusions on the dynamical behaviour of chemical
systems from characteristics of the network structure, meaning, from the information
encoded in graphs like the one in (46). To demonstrate the idea, we can for instance ob-
serve that the graph in (46) contains the following insight on how the system can evolve:
if at some point the system contains 5 units in total between species A, C and D (i.e.,
xA + xC + xD = 5), then the system will always verify xA + xC + xD = 5. Equations
of this form are called conservation laws, and their effect is that of restricting the dy-
namics to the stoichiometric compatibility classes, i.e. translations of the stoichiometric
subspace, which is generated by the vectors expressing the change in the units of species
fulfilled by each reaction.
Another structural property that is frequently discussed in chemical reaction network

theory is the deficiency of the network, which can be calculated by taking the number
of complexes and subtracting the number of connected components of the graph and
the rank of the stoichiometric subspace. It measures the difference between the rank
of the stoichiometric subspace and the rank of the incidence matrix of the graph of
complexes, which can be seen as the rank of the stoichiometric subspace that is obtained
by replacing each complex with a species. For instance, the network in (46) has 3
complexes and one connected component, and its stoichiometric subspace is generated
by the vectors (−1,−1, 1, 0) and (0, 1,−1, 1), and we find that the deficiency is equal to
zero. The network is also weakly reversible, meaning that if a path exists from a complex
c1 to another complex c2, then there is also a path back from the complex c2 to the
complex c1. The network in (46) falls under the hypotheses of one of the first results
of chemical reaction network theory, the Deficiency Zero Theorem [Fei79, Fei87]. The
theorem establishes that mass action systems associated to weakly reversible networks
with deficiency zero admit a unique steady state in each stoichiometric compatibility
class, which is asymptotically stable. Moreover, the steady states of the system are
all complex balancing, meaning that at equilibrium the rates of reactions entering a
complex balance the rates of reactions exiting the complex. A consequence of this is
that for instance the ratio between the product xAxB and the concentration xC does
not depend on the initial conditions, but only on the kinetic parameters (we call this a
form of robustness of the system).

Since the classical deficiency theory results, the literature on chemical reaction net-
work theory has expanded in several directions, exploring for instance convergence and
multistationarity, for mass action systems and under more general kinetics (e.g. [CDSS09,
DLAS07, AS08, BC09, MDSC12, BM13, MD16]). A recent direction explores a gener-
alisation of mass action systems which allows in particular for reaction rates that are
products of concentrations, not necessarily determined by the stoichiometric coefficients
of the reactants, and identifies conditions for existence or uniqueness of complex balanc-
ing steady states [MR12, MR14]. With generalised mass action kinetics, a reaction rate
of the form κ1x

2
A, for instance, is admissible for the reaction in (44). Generalised mass ac-

tion is a more realistic choice for the kinetics in some biological contexts [MR12, MR14];
in this work we will use it, however, as a tool for the analysis of mass action networks.
Although mass action kinetics is very commonly used, biochemical reaction models

often adopt kinetic rates of other forms. Reaction schemes for instance in the study of
enzyme kinetics are frequently condensed into a smaller number of reactions, resulting
in models involving a smaller number of species or of parameters, and therefore more
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manageable. For instance, the first two reactions in (45) might be summarised with a
single reaction A→ D, with a rate of the form κ′B0xA

κ′′+xA
, that can be derived by eliminating

the intermediate species C, using some simplifications referred to in the literature as
quasi steady state approximation or rapid equilibrium approximation [Seg75, CB14]. It
might be however useful to clarify the underlying mass action structure of a given system,
to ascertain whether results connecting features of the structure to properties of the mass
action dynamics apply. The detection of the mass action network from a simplified model
seeming in the majority of cases a hopeless task, we focus instead on describing methods
for the identification of chemical systems that give rise to some desired simplified system
of ODEs, starting from a given mass action system. In Chapter 8 we delineate in
particular two methods for elimination of intermediate species, that one can use to
recover for instance some kinetic laws used in enzyme kinetics. These methods do
not provide rationales for the simplifications, but rather, provide some clues about the
connections between the structure of the mass action and the simplified systems.
Another fact to take into account is that, if we are interested in studying complex

balancing steady states of a system, then the network needs to be in weakly reversible
form. A useful observation is that networks with different structures can give rise to the
same dynamics (in this case they are called realisations of the same dynamics); one can
study properties of a given dynamical system by identifying a realisation with desired
properties (see for instance [SHT12, JSS13, LSH14, Joh16]). Determining realisations
with good structural properties in a parameter-independent way is a possible approach
to the study of chemical systems. As a step in this direction, one can observe that, even
if a network is not weakly reversible, if the associated mass action system admits some
positive steady states, then every reaction must take part in some hidden cycle, that
potentially is not directly visible in the graph structure. Take for instance the following
reaction network, which is similar to the one in (46):

A+B C B +D, C +D A+C. (47)

This network has 5 complexes, and is not weakly reversible. The steady states are
certainly not complex balancing, since there are complexes with incoming reactions but
no outgoing reactions. The cycle in the original network (46) ensures that, if the system
contains nA units of A and nB units of B, after the three reactions take place, the system
still contains the same number nA and nB of units. However, the same is still true for the
network in (47), even if we cannot see this cycle directly. The idea introduced in [Joh14]
allows to change the structure of the graph so that the cycle becomes visible, keeping the
same dynamics for the reaction network. This is achieved by translating the reaction,
i.e. adding the same complex to the reactant and product. In the example above, we
take the last reaction and translate it by the “generalised” complex B −C:

C +D → A+C
+B−C
=⇒ B +D → A+B.

The stoichiometric subspace of the network is unchanged. To ensure that the reaction
network obtained gives rise to the right dynamics, the translated reaction can be assigned
with the reaction rate of the original reaction (in this case, the rate is of the form
κ3xCxD). This is permitted in the generalised mass action framework. We find the
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graph in (46), with a different assignment of kinetic rates. We write the complexes
determining the rates in parenthesis as follows:�

�
�


A+B
(A+B)

�
�

�


C
(C)

�
�

�


B +D
(C +D)

(48)

This network satisfies the hypothesis of a generalised mass action version of the Defi-
ciency Zero Theorem. In particular, at steady state the ratio of the monomials deter-
mined by the complexes in parenthesis, for instance the ratio between xDxC and xC ,
is independent of the initial conditions, meaning in this case that positive steady state
values of the concentration of species D will not depend on the particular initial state of
the system. When this condition is verified for the concentration of a species, the system
is said to have absolute concentration robustness in the species [SF10]. In Chapter 9 we
first discuss the definition of network translations, and introduce an intermediate graphi-
cal structure that we call kinetic graph, where both the nodes and the edges are assigned
a complex. We explore cases where a deficiency zero translation can be determined, and
establish some connections to robustness properties.
As we see in Chapter 10, there are other approaches to the identification of weakly

reversible dynamically equivalent generalised mass action systems. Since strong conclu-
sions on the steady states can be drawn for networks with deficiency zero or one, we
outline a MILP program that allows to search for such realisations in Section 10.2.
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7
DEF IN IT IONS

In this chapter we introduce some background of Chemical Reaction Network Theory
(CRNT) (see e.g. [FH77, Fei79, Fei87, Hor72]), which studies properties of systems
of differential equations associated to reaction networks and their connections to the
network structure. After introducing the graph structure of chemical reaction networks,
we define mass action systems and generalised mass action systems, and summarise
some classical results around complex balancing steady states, as well as some recent
extensions to generalised mass action [MR12, MR14]. We then recall the definition
of robustness and the structural conditions for robustness given in [SF10], and state
generalised mass action versions of these conditions.

Notations introduced in this chapter

We write ei ∈ Rn for the vector with eii = 1, eij = 0 for j 6= i. The support of a vector
v ∈ Rn is the set supp(v) = {i ∈ {1, . . . ,n} | vi 6= 0}.
Given a vector x ∈ Rn and a matrix M ∈ Rn×m, we write xM ∈ Rm for the vector

with component j given by
∏n
i=1 x

Mij

i .

7.1 chemical reaction networks

Given a finite set S = {X1, . . . ,Xn}, called the set of species, we call a complex in the
set of species S an element of Nn, which we denote as an integer linear combination of
species. For instance, if S = {A,B}, A+B and 2B are complexes in S, that stand for
the vectors (1, 1)t and (0, 2)t, respectively. Given y ∈ Nn, we will call the component
yi the stoichiometric coefficient of species Xi in y. The complexes are the entities
appearing on the right and left side of arrows representing reactions in the chemical
literature. For instance, A+B → 2B is the reaction that converts the reactant complex
A+B, consisting of a unit of species A and a unit of species B, to the product complex
2B consisting of two units of species B.

Definition 7.1.1. A chemical reaction network N = (C,R, y) on the set of species S
is a directed graph with set of nodes C = {1, . . . , c} and set of edges R that verifies
R ⊆ C × C \ {(i, i) | i ∈ C}, together with an injective map y : C →Nn.

We gave the definition in a slightly non-conventional form, which will be easier to
see as a special case of the definition of generalised chemical reaction network (see
Section 7.3). A chemical reaction network is therefore a directed graph with nodes
labelled by complexes, that does not admit loops and parallel edges.
To simplify the notation, we will write yi for y(i); a reaction (i, j) will be denoted yi →

yj ; the source complex yi is called the reactant of the reaction, and the target complex the
product of the reaction. The vector yj − yi ∈ Zn is called the (stoichiometric) reaction

71



7.1 chemical reaction networks

vector of the reaction. The stoichiometric subspace of a chemical reaction network is
the subspace of Rn generated by the reaction vectors of the network:

S = span{yj − yi | (i, j) ∈ R}.

The dimension s = dim(S) is called the rank of the reaction network.
We write m for the number of reactions in the network, and fix an order for the

reactions. We denote by IR the incidence matrix of the graph (C,R), i.e. the c×m
matrix with entry (IR)ij = −1 if i is the source of the jth reaction, (IR)ij = 1 if i
is the target of the jth reaction, and (IR)ij = 0 otherwise. The stoichiometric matrix
Γ ∈ Zn×m of the reaction network is the matrix with columns the reaction vectors of
the reactions in R. The n× c matrix Y with columns the vectors y1, . . . , yc is called the
complex matrix of the reaction network. One can show that the stoichiometric matrix
decomposes as the product of the complex matrix and incidence matrix:

Γ = YIR. (49)

CRNT uses some special terminology to indicate the connected components of the
graph (C,R). The strongly connected components are called the strong linkage classes
of the reaction network. The linkage classes Lθ, θ = 1, . . . , l, of the reaction network
are the connected components of the undirected graph obtained from the graph (C,R)
by ignoring the direction of the reactions. A strong linkage class is said to be terminal if
it admits no outgoing edges. A chemical reaction network is said to be weakly reversible
if its linkage classes coincide with its strong linkage classes.
The deficiency of a chemical reaction network is the integer

δ = c− l− s. (50)

The difference c− l is coincides with the rank of the incidence matrix IR (see for in-
stance [Fou12]). The deficiency can equivalently be defined as (compare to (49), or see
for instance [Joh14, Appendix A])

δ = dim(ker(Y) ∩ Im(IR)). (51)

In particular, δ is non-negative integer.

Invariants of chemical reaction networks

Borrowing some terminology from metabolic pathway analysis, we define the set P of
steady state fluxes or simply fluxes as

P = ker(Γ) ∩Rm
≥0. (52)

Contrary to the general metabolic analysis setting, we work only with reactions that
have a specific direction, i.e. all reactions are irreversible. The set P is a pointed convex
polyhedral cone, and therefore admits a minimal set of generators w1, . . . ,wd, which are
unique up to positive scalar multiplication. This means that the fluxes at steady state
can be equivalently described as the set {

∑d
i=1 αiw

i | αi ∈ R≥0}. The vectors w1, . . . ,wd
are called extreme rays of the cone. An elementary (flux) mode w of the network is
defined as a non-zero flux with minimal support [SH94, KRG+17], meaning that there
are no fluxes v 6= 0 such that supp(v) ⊂ supp(w). When all reactions are taken as
irreversible, the set generators of the flux cone determines the set of elementary modes
([SH94, Theorem 4.1]). For this reason, we call the generators w1, . . . ,wd elementary
(flux) modes. For the study of flux cones and the related tools in metabolic pathway
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analysis, and clarification on the terminology, we refer the reader to the review [KRG+17]
and references therein. The relevant background on convex geometry can be found
in [Roc70]. We will call cyclic the fluxes w that verify w ∈ ker(IR), and stoichiometric
the remaining vectors in P .
The left orthogonal complement Γ⊥ of Γ is called the conservation subspace of the

network.

7.2 mass action systems

We now move on to consider the definition of kinetics for a reaction network. We denote
by x1, . . . ,xn the concentrations of the species in S, that we regard as functions of time.
In the examples, we will sometime write xS for the concentration of species S ∈ S.
Under the common mass action kinetic assumption, the rate of a reaction is propor-

tional to the product of the concentrations of the species appearing in the reactant.
The graph defining the chemical reaction network is labelled with an assignment of rate
constants or kinetic parameters κ : R → R>0. For a reaction r = (i, j), we will write κij
for κ(i, j) = κ(r). We will denote the reaction also as i → j or yi r−→ yj or yi κij−−→ yj .
In addition, we will sometimes write κi for the kinetic parameter of the ith reaction in
R, as convenient. For each complex yi, we call mass action monomial the monomial
xyi =

∏
j=1 x

yij
j . Then, under the mass action kinetic assumption the reaction i→ j has

rate κijxy
i . For example, a reaction of the form A+B

κ1−→ 2B has rate κ1xAxB.

Definition 7.2.1. A mass action system is a chemical reaction network N endowed
with a labelling κ : R → R>0 of the edges.

Given a mass action system (C,R, y,κ), the associated system of differential equations
governing the dynamics of the species concentrations is

dx
dt

=
∑

i→j∈R
κij(y

j − yi) xyi . (53)

Since the left side of (53) is a positive linear combination of reaction vectors, each solu-
tion x(t) of (53) which starts at x0 ∈ Rn

≥0 is confined to the stoichiometric compatibility
class (x0 + S) ∩Rn

≥0 associated to x0.
We will use some reformulations of the system of ODEs in (53). We call kinetic matrix

the c× c matrix Aκ with entries (Aκ)ij = κji for i 6= j, and columns that sum to zero.
We write x = (x1, . . . ,xn) for the vector of species concentrations. Then, the system of
differential equations in (53) can be equivalently written as

dx
dt

= YAκxY. (54)

Example 7.2.2. Consider the following network, taken from [SF10]:

A+B 2B,

B A.
(55)

The set of species for this network is S = {A,B}, and the complexes are y1 = A+B,
y2 = 2B, y3 = B and y4 = A. The linkage classes are {A+B, 2B} and {B,A}, while
the strong linkage classes are {A+B}, {2B}, {B}, and {A}. The network is not weakly
reversible and only the strong linkage classes {2B} and {A} are terminal. The reaction
vectors are y2− y1 = −e1 + e2 and y4− y3 = −(y2− y1) so that the rank of the network
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is s = 1. The deficiency is δ = c− l− s = 4− 2− 1 = 1. The vector e1 + e2 generates
the cone ker(Γ) ∩Rm

≥0 whereas ker(IR) = {0}.
Let us consider now an assignment of kinetic parameters κ(1, 2) = κ1 and κ(3, 4) = κ2.

Under mass action kinetics, we associate to 1 → 2 the rate κ1xAxB, and to 3 → 4 the
rate κ2xB. The corresponding mass action system (53) is given by

dxA
dt

= −κ1xAxB + κ2xB,

dxB
dt

= κ1xAxB − κ2xB.
(56)

Example 7.2.3. Consider the following model of the two-component regulatory system
EnvZ-OmpR responsible for osmoregulation in Escherichia coli, presented in [SF10]:

X
r1−⇀↽−
r2
XT

r3−→ Xp,

Xp + Y
r4−⇀↽−
r5
XpY

r6−→ X + Yp,

XT + Yp
r7−⇀↽−
r8
XTYp

r9−→ XT + Y .

(57)

X represents the histidine kinase EnvZ, Y stands for the response regulator protein
OmpR, T denotes ATP, and the subscript p identifies the phosphorylated versions. The
species set is S = {X,XT ,Xp,Y ,XpY ,Yp,XTYp,XDYp}, and the complexes are C =
{X,XT ,Xp,Xp+Y ,XpY ,X+Yp,XT +Yp,XTYp,XT +Y }. The graph of the network
has 3 linkage classes and 3 terminal strong linkage classes, and is not weakly reversible.
The dimension of the stoichiometric subspace is 5, so that the deficiency of the network
is δ = 9− 3− 5 = 1.

The network has 3 cyclic elementary modes with support e1 + e2, e4 + e5 and e7 + e8,
respectively, and one stoichiometric elementary mode e1 + e3 + e4 + e6 + e7 + e9.

Example 7.2.4. The following network is an alternative model for EnvZ/OmpR system
(see S.60 in [SF10]), where ADP is also a cofactor in the dephosphorylation of Yp:

XD
r1−⇀↽−
r2
X

r3−⇀↽−
r4
XT

r5−→ Xp,

Xp + Y
r6−⇀↽−
r7
XpY

r8−→ X + Yp,

XT + Yp
r9−−⇀↽−−
r10

XTYp
r11−−→ XT + Y ,

XD+ Yp
r12−−⇀↽−−
r13

XDYp
r14−−→ XD+ Y ,

(58)

The symbols are defined as in Example 7.2.3, with the addition of D representing
ADP. The species are S = {XD,X,XT ,Xp,Y ,XpY ,Yp,XTYp,XDYp}, and the set
of complexes is C = {X,XT ,Xp,Xp+ Y ,XpY ,X + Yp,XT + Yp,XTYp,XT + Y ,XD+
Yp,XDYp,XD+ Y }. This network has 4 linkage classes, 8 strong linkage classes, and 4
terminal strong linkage classes, and is not weakly reversible. The rank is s = 7 so that
the deficiency is δ = c− l− s = 13− 4− 7 = 2.
In addition to the 5 cyclic elementary modes e1 + e2, e3 + e4, e6 + e7, e9 + e10 and

e12 + e13, the network has 2 stoichiometric elementary modes e3 + e5 + e6 + e8 + e9 + e11

and e3 + e5 + e6 + e8 + e12 + e14.

7.3 generalised chemical reaction networks and systems

Generalised chemical reaction networks [MR12, MR14] extend the definition of chemical
reaction systems by decoupling the stoichiometric structure and the assignment of the
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kinetics. The introduction of separate complexes governing the structure and the kinetics
of reaction networks was motivated by the observed limited validity of the mass action
kinetic assumption [MR12]; in this work, however, we mostly regard generalised chemical
reaction networks as a tool for the analysis of standard chemical reaction systems.

Definition 7.3.1. A generalised chemical reaction network N = (C,R, y, yκ) on the
set of species S is a directed graph with set of nodes C = {1, . . . , c}, set of edges R
that verifies R ⊆ C × C \ {(i, i) | i ∈ C}, together with two maps y : C → Rn

≥0 and
yκ : Ck → Rn

≥0, where Ck ⊆ {1, . . . , c} are the nodes with strictly positive outdegree.

The maps y and yκ define the assignment of the stoichiometric and the kinetic com-
plexes respectively. The map yκ is only defined on the nodes that act as reactant for
at least one reaction; we will see that these remain, as in the standard case, the only
complexes that play a role in the definition of the dynamics. The definition is clearly an
extension of 7.1.1; notice the significant additional flexibility in the assignment of the
complexes, which can have real coefficients and can be repeated among nodes.
The linkage classes, strong linkage classes, reversibility and weak reversibility are

defined as for standard chemical reaction networks. If i is a terminal (nonterminal)
node, we will call yi a terminal (nonterminal) complex and yiκ a terminal (nonterminal)
kinetic complex.
We will denote the reaction i → j as yi(yiκ) → yj , with the kinetic complex between

parentheses. The stoichiometric reaction vector of a reaction i→ j is defined as yj − yi
in the standard case, as is the stoichiometric subspace S = span{yj − yi | (i, j) ∈ R}.
The kinetic reaction vector yjκ − yiκ for i → j is defined only when Cκ coincides with C.
In this case the subspace

Sκ = span{yjκ − yiκ | (i, j) ∈ R}

is called the kinetic-order subspace of the generalised chemical reaction network. We
denote sκ the dimension of this subspace.

The definitions given in Section 7.1 of stoichiometric matrix, complex matrix and
incidence matrix, as well as linkage classes and weak reversibility apply, without change,
to generalised chemical reaction networks. We define, in addition, the kinetic complex
matrix Yκ as the n× c matrix with columns the vectors y1

κ, . . . , ycκ. In addition to the
(stoichiometric) deficiency defined as in (50), one can define the kinetic deficiency as

δκ = c− l− sκ.

We now consider the definition of kinetic for a generalised mass action network. The
reaction rate for a reaction in the generalised setting is still given by a kinetic parameter
multiplied by monomial, with the monomial being identified by the map yκ.

Definition 7.3.2. A generalised mass action system is a generalised chemical reaction
network N endowed with a labelling κ : R → R>0 of the edges.

A reaction i→ j with kinetic parameter κij will be denoted yi(yiκ)
κij−−→ yj . The system

of differential equations associated to a generalised mass action system (C,R, y, yκ,κ) is

dx
dt

=
∑

i→j∈R
κij(y

j − yi) xyiκ . (59)

The map y determines therefore the stoichiometric compatibility classes which are de-
fined as in the mass action case. The map yκ governs the reaction rates. The kinetic

75



7.4 steady states

matrix Aκ can be defined exactly as in the mass action case, and the system of ODEs
in 59 reformulated as

dx
dt

= YAκxYκ . (60)

Two (generalised) mass action systemsM andM′ will be called dynamically equiva-
lent if they admit the same associated system of ODEs. Using the terminology of [Sze10,
SHP11], we will also say thatM andM′ are realisations of the system of ODEs, or that
M is a realisation ofM′.

Example 7.3.3. Consider the following generalised chemical reaction system:�
�

�


A+B
(A+B)

k12−−⇀↽−−
k21

�
�

�


2B
(B)

. (61)

The set of species is S = {A,B}, and the graph has two nodes, with y(1) = yκ(1) =
A+ B, y(2) = 2B, yκ(2) = B. The stoichiometric and kinetic subspaces are given
respectively by S = span{(1,−1)}, Sκ = span{(1, 0)}, and the stoichiometric and
kinetic deficiencies are both zero. In addition the network is weakly reversible.
The corresponding generalised mass action system is governed by the following dy-

namical equations:
dxA
dt

= −k12xAxB + k21xB,

dxB
dt

= k12xAxB − k21xB.
(62)

Notably, we have that (56) coincides with (62). That is, the systems are dynamically
equivalent.

7.4 steady states

A vector of concentrations x ∈ Rn
≥0 is a steady state or equilibrium for a generalised

mass action system (C,R, y, yκ,κ) if it verifies

YAκxYκ = 0.

A positive steady state or positive equilibrium is an equilibrium in Rn
>0. A positive

equilibrium is said to be complex balancing if it satisfies

AκxYκ = 0.

An equilibrium is therefore a state of the system such that, for each species, the sum
of the rates of the reactions producing the species equals the sum of the rates of the
reactions consuming the species. If the equilibrium is complex balancing, then a similar
property holds for the complexes: for each complex y, the sum of the rates of the
reactions having y as a product equals the sum of the rates of the reactions having y as
a reactant.
A fundamental result in chemical reaction network theory is the following characteri-

sation of the kernel of Aκ.

Theorem 7.4.1. ([FH77, Fei79]) Let T1, . . . ,Tt denote the terminal strong linkage
classes of (C,R). Then ker(Aκ) has a basis b1, . . . , bt ∈ Rc

≥0 such that supp(bθ) = Tθ,
for θ = 1, . . . , t.
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The elements of the vectors of the basis b1, . . . , bt can be calculated from the structure
of the graph (C,R) as follows. For each node i of the graph, a spanning i-tree T is a
subgraph of the graph of complexes that contains all complexes in the terminal strong
linkage class of i, admits no cycles, and has the complex i as its unique sink. We denote
by Ti the set of all spanning i-trees, and call tree constant associated to the complex i
the following polynomial in the kinetic parameters:

Ki =
∑
t∈Ti

∏
r∈t

κr. (63)

Then bθi = Ki, where T θ is the strongly connected component containing i. Equivalently,
Ki can be found, modulo a sign, by considering the restriction of the kinetic matrix Aκ

to the linkage class containing the complex i, and calculating the minor obtained by
deleting the column corresponding to i and any of the rows [CDSS09, Joh14].
From (51) one can observe that, if the deficiency of the network is zero, then all

steady states are complex balancing. The asymptotic behaviour of mass action systems
on networks of deficiency zero can be characterised further independently of the values
of the kinetic parameters.

Theorem 7.4.2. (Deficiency Zero Theorem [Fei79, Fei87]) Consider a mass action
system on a deficiency zero chemical reaction network.

(i) If the network is not weakly reversible, then the mass action system does not admit
any positive steady state.

(ii) If the network is weakly reversible, then the system admits exactly one steady state
in each stoichiometric compatibility class. Each steady state admits a strict Lya-
punov function in the stoichiometric compatibility class, and is asymptotically sta-
ble.

A consequence of Theorem 7.4.1 is that, if the system admits a complex balancing
equilibrium, then its underlying graph (C,R) is weakly reversible (each node belongs to a
terminal strongly connected linkage class). Dynamical systems of the form in (60) that
admit a complex balancing equilibrium are called toric dynamical systems [CDSS09].
In [CDSS09], these systems are studied with techniques of toric geometry and compu-
tational algebra. A weakly reversible mass action system admits a complex balancing
equilibrium if and only if the kinetic parameters lie in the variety associated to a certain
toric ideal in Q[K1, . . . ,Kc] [CDSS09]. Recall that an ideal is called binomial if it is
generated by binomials, and toric if it is binomial and prime [Stu96]. The following
theorem, found in [MR14], gives a characterisation in terms of tree constants and an
algorithm to construct a parametrisation of the complex balancing equilibria for gener-
alised mass action systems. We will use the following notation: for a subset E of the
edges of (C,R) we denote by IE the corresponding incidence matrix. Recall that given
a matrix M ∈ Rn1×n2 , a matrix H ∈ Rn2×n1 is a generalised inverse of M if it verifies
MHM = M.

Theorem 7.4.3. ([MR14], Theorem 1) Let N = (C,R, y, yk) be a weakly reversible
generalised reaction network. Let E ⊂ R be a set of c− l edges such that the incidence
matrix IE has rank c− l, so that Im(YκIE) = Sκ. Given an assignment κ of kinetic
parameters for N , define the vector v ∈ Rc−l

>0 with vk = Kj
Ki

, if i→ j is the kth reaction
in E, for k = 1, . . . , c− l. Then x ∈ Rn

>0 is a complex balancing equilibrium if and only
if it satisfies

xYκIE = v.

In addition:
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(i) The set of complex balancing equilibria is non-empty for all assignments of kinetic
parameters κ if and only if δκ = 0.

(ii) If δκ 6= 0, then, given an assignment of kinetic parameters κ, the set of complex
balancing equilibria is non-empty if an only if vC = 1, where C is a (c− l)× δk
real matrix that satisfies Im(C) = ker(YκIE) and ker(C) = {0}.

(iii) If, for a given an assignment of kinetic parameters κ, the set of complex balancing
equilibria is non-empty, then a complex balancing equilibrium x∗ can be calculated
as x∗ = vHT , where H ∈ Rn×(c−l) is a generalised inverse of (YκIE)T .

(iv) For a given an assignment of kinetic parameters κ, if x∗ is a complex balanc-
ing equilibrium, then the set of complex balancing equilibria is given by {x ∈
Rn
>0 | ln(x)− ln(x∗) ∈ S⊥κ }.

If B ∈ Rn×(n−sκ) is such that Im(B) = S⊥κ and ker(B) = {0}, then the complex
balancing equilibria coincide with the set {(x∗1(ξBT

)1, . . . , x∗n(ξBT
)n) | ξ ∈ Rn−sκ

>0 }.

The theorem defines an algorithm for the identification of the conditions that the
kinetic parameters need to satisfy for the existence of complex balancing equilibria, and
for the identification of a binomial parametrisation of the complex balancing equilibria.
Feinberg [Fei87] also proved the following generalisation of Theorem 7.4.2 which ap-

plies to a class of networks with positive deficiency.

Theorem 7.4.4. (Deficiency One Theorem [Fei87]) Consider a chemical reaction net-
work N with deficiency δ and with l linkage classes with deficiencies δ1, . . . , δl. Suppose
that each linkage class contains only one terminal strong linkage class, and that

(i) δθ ≤ 1, θ = 1, . . . , l and

(ii)
∑l
θ=1 δθ = δ.

Then, any mass action system on N admits at most one steady state in each stoichio-
metric compatibility class. In addition, if the network is weakly reversible, then any mass
action system on N admits exactly one steady state in each stoichiometric compatibility
class.

Definition 7.4.5. A direct decomposition of a network N or a decomposition of N
in independent subnetworks [Fei87, SF10] is a partition of the set of reactions R into
subsets R1, . . . ,Rk such that, if Ni is the network consisting of the reactions in Ri, and
si is the rank of Ni, then

k∑
i=1

si = s.

If a network N admits a direct decomposition in subnetworks N1, . . . ,Nk, then an
equilibrium of a mass action systemM associated to N is an equilibrium for each sub-
mass action system identified by the Ni. As a consequence, properties of the equilibria
ofM can sometimes be derived from the analysis of the subnetworks.
A more general version of the Deficiency One Theorem is stated in [Fei87, Remark

6.2.D]: if the network admits a direct decomposition in subnetworks all with deficiency
smaller or equal to one, and if each subnetwork contains only one linkage class and one
terminal strong linkage class, then the conclusions of Theorem 7.4.4 still hold.
Reaction networks that fall outside the scope of classical CRNT theorems are common

in biology, and several approaches exist, in the literature, to the study of equilibria
for such chemical systems. Binomial parametrisations of steady states of mass action
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systems are considered for instance in [CDSS09, MDSC12, Joh14, MD16]. Existence
of equilibria, multistationarity and convergence have also been extensively investigated
under mild assumptions on the network kinetics (e.g. [DLAS07, AS08, BC09, BM13]).
In this work we focus our attention on mass action systems, and the approach we

consider consists in interpreting the polynomial system of ODEs of the network as the
system of ODEs associated to a generalised mass action system (a simple example of
this setting is given in examples 7.2.2 and 7.3.3), as done in [Joh14, Joh15]. Computa-
tional techniques for the identification of weakly reversible mass action realisations, that
rely for the most part on the knowledge of the kinetic parameters, have been previously
described in [JSS12, SHT12, LSH14]. Here we are interested in parameter-independent
approaches. We will consider in particular the identification of weakly reversible defi-
ciency zero realisations, which allow the application of Theorem 7.4.3, or of deficiency
one realisations, which enable the application of a structural criterion for the iden-
tification of robustness (see Section 7.5). We will see in Chapter 10 that there are
many kinetic-independent ways of writing a mass action system as a weakly reversible
generalised mass action system. We will first consider, in Chapter 9, translations of
networks [Joh14], i.e. generalised mass action networks admitting the same system of
ODEs and the same reaction vectors.

Other binomial parametrisations of positive steady states

In some cases, a mass action system can admit steady states that are parametrised by bi-
nomials, but is not toric in the sense of the previous paragraph. Another approach to the
identification of binomial parametrisations of steady states is introduced in [MDSC12].
To state this definition, we first need some notation. Consider a generalised chemical
reaction network N = (C,R, y, yκ). Having fixed an assignment of kinetic parameters
κ, we write f(x) = YAκxYκ and call the ideal

Jκ = 〈f1, . . . , fn〉 ⊂ R[x1, . . . ,xn]

the steady state ideal of the generalised mass action system (C,R, y, yκ,κ). Recall that
an ideal is called binomial if it is generated by binomials (an introduction to the relevant
algebraic tools can be found in [CLO92]).

Definition 7.4.6. ([MDSC12], Definition 2.2) We say that the dynamical system in (60)
has toric steady states if Jκ is a binomial ideal and it admits real zeros.

We introduce the following definition.

Definition 7.4.7. We say that the dynamical system in (60) has positive binomial
steady states if the positive steady states are positive real zeros of a binomial ideal.

We compare the definition of toric dynamical system and the two definitions above in
the following examples.

Example 7.4.8. A chemical reaction network in one species with positive binomial
steady states is given by the following reactions:

2A A ∅,κ1 κ3

κ2 κ4

The associated dynamical system

dxA
dt

= −κ1x
2
A + (κ2 − κ3)xA + κ4
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has toric steady states if and only if κ2 = κ3. Using the procedure described in Theo-
rem 7.4.3, we can define IE =

∣∣∣∣−1 0
1 −1
0 1

∣∣∣∣, C =
∣∣ 1
−1
∣∣, v = (K2

K1
, K3
K2

), K1 = κ2κ4, K2 = κ1κ4,
K3 = κ1κ3, and find that the system is toric if and only if κ1κ4 = κ2κ3.

Example 7.4.9. (Triangle network) Consider the following network, studied in [CDSS09]
(Example 1) and [MDSC12] (Example 2.3):

2A

2B A+B.

κ12κ13

κ31
κ32

κ23

κ21
(64)

It is established in [CDSS09] that the dynamical system associated to this network
dxA
dt

= −(κ12 + 2κ13)x
2
A + (κ21 − κ23)xAxB + (2κ31 + κ32)x

2
B = −dxB

dt
, (65)

is toric if and only if the kinetic parameters satisfy (κ21κ31 + κ21κ32 + κ23κ31)(κ12κ23 +
κ13κ21 + κ13κ23) = (κ12κ31 + κ12κ32 + κ13κ32)2. In addition, it is shown in [MDSC12]
that the system has toric steady states if and only if κ21 = κ23 (in this case, the steady
state ideal is generated by the binomial −(κ12 + 2κ13)x2

A + (2κ31 + κ32)x2
B).

On the other hand, the dynamical system in (65) has positive binomial steady states
for any assignment of the rate constants. In fact, the polynomial in (65) can be factorised
as √2κ31 + κ32xB −

κ23 − κ21 −
√
(κ21 − κ23)2 + 4(2κ31 + κ32)(κ12 + 2κ13)

2
√

2κ31 + κ32
xA

 ·
√2κ31 + κ32xB −

κ23 − κ21 +
√
(κ21 − κ23)2 + 4(2κ31 + κ32)(κ12 + 2κ13)

2
√

2κ31 + κ32
xA

 ,

and all positive steady states satisfy

√
2κ31 + κ32xB −

κ23 − κ21 +
√
(κ21 − κ23)2 + 4(2κ31 + κ32)(κ12 + 2κ13)

2
√

2κ31 + κ32
xA = 0.

Uniqueness of complex balancing equilibria

For a fixed initial condition x0 ∈ Rn
≥0, the dynamics of a generalised mass action sys-

tem never leaves the stoichiometric compatibility class x0 + S. As a consequence, the
existence and uniqueness of equilibria are investigated within each stoichiometric com-
patibility class.
For toric mass action systems, a result known as Birch Theorem establishes the exis-

tence and uniqueness of a complex balancing equilibrium in each stoichiometric compati-
bility class [CDSS09]. Müller and Regensburger [MR12] proved a version for generalised
mass action systems. To state the result, we introduce some additional notation. Let
σ : Rn → {−, 0,+}n denote the function defined by σi(x) = sign(xi) for i = 1, . . . ,n.
and, for any A ⊆ Rn, write σ(A) = {σ(x) | x ∈ A}. Given a matrix A ∈ Rn×d and sets
I ⊆ {1, . . . ,n} and J ⊆ {1, . . . , d}, AI,J denotes the submatrix of A consisting of the
rows indexed by I and the columns indexed by J .
A generalised mass action network (C,R, y, yκ) is said to have the capacity for multiple

complex balancing equilibria if there exists an assignment of rate constants κ such that
the dynamical system associated to (C,R, y, yκ,κ) has more than one complex balancing
equilibrium in some stoichiometric compatibility class.

80



7.5 structural conditions for robustness

Proposition 7.4.10. ([MR12, Proposition 3.1]) Consider a generalised mass action
network (C,R, y, yκ). If σ(S) ∩ σ(S⊥κ ) = {0}, then, for each generalised mass action
system (C,R, y, yκ,κ), each stoichiometric compatibility class contains at most one com-
plex balancing equilibrium.

Proposition 7.4.11. ([MR12, Proposition 3.2]) If a weakly reversible generalised mass
action network (C,R, y, yκ) is such that σ(S) ∩ σ(S⊥κ ) 6= {0}, then it has the capacity
for multiple complex balancing equilibria.

To check whether the condition for uniqueness of complex balancing equilibria of
Proposition 7.4.10 is verified, one can use the following result:

Proposition 7.4.12. ([MFR+16, Corollary 2.15]) Let A ∈ Rn×d and B ∈ Rd×n be
matrices of rank d, and write I = {1, . . . , d}. Then, σ(Im(A)) ∩ σ(ker(B)) = {0} if
and only if for all subsets J ⊆ {1, . . . ,n} of cardinality d the product det(AJ ,I) det(BI,J )
either is zero or has the same sign as all other nonzero products, and at least one such
product is not zero.

Existence of a complex balancing equilibrium in each stoichiometric compatibility
class can be guaranteed under stronger conditions on the sign vectors.

Theorem 7.4.13. ([MR12, Theorem 3.10]) Let (C,R, y, yκ) be a generalised mass ac-
tion network such that σ(S) = σ(Sκ) and (+, . . . ,+) ∈ σ(S⊥). Then, for each assign-
ment of rate constants κ such that the system (C,R, y, yκ,κ) admits complex balancing
equilibria, there exists a unique complex balancing equilibrium in each stoichiometric
compatibility class.

7.5 structural conditions for robustness

The definition of absolute concentration robustness (ACR), introduced in [SF10], de-
scribes the ability of a system to maintain some species concentrations within strict
bounds in response to fluctuations in the input species, a property that has been ob-
served experimentally [ASBL99, SMMA07, SRA09]. Our interest in robustness will be
additionally motivated in Section 9.2, where we will use the knowledge on robustness of
certain ratios to derive conclusions on steady state properties of some networks.
In this paragraph, we recall some structural conditions for detection of ACR, and we

state a version of the ACR result of Shinar and Feinberg [SF10] for generalised mass
action networks. In Chapter 9, we describe how robustness properties can be derived
and robustness values calculated from the structure of some generalised mass action
networks that are identified by translating reactions.
The following definitions are meaningful only for systems that admit some positive

steady states. When discussing robustness properties, we will assume that the system
we are working with admits some positive steady states, without explicitly adding this
requirement in each statement or example.

Definition 7.5.1. A generalised mass action system M = (C,R, y, yκ,κ) is said to
have absolute concentration robustness in species A if xA takes the same value at every
positive steady state x ∈ Rn

>0 of (53).

We will be interested in the following generalisation of the definition of absolute
concentration robustness.

Definition 7.5.2. A generalised mass action systemM = (C,R, y, yκ,κ) is said to have
a robust ratio between complexes u, u′ ∈ Nn if the ratio xu′/xu takes the same value
at every positive steady state x ∈ Rn

>0 of (53).
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7.5 structural conditions for robustness

If two complexes u and u′ have a robust ratio and differ only in a single species,
then clearly the system has ACR in this species. The techniques for determining ACR
established in [SF10] give conditions for the identification of complexes with robust
ratios, which can then be used to check for ACR. We will call robustness space R ⊆ Rn

of a mass action systemM a subspace defined by

R = span{u′ − u | u and u′ have a robust ratio}. (66)

We now restate an observation made in [SF10, Proposition S4.1] and [NGN13, Lemma
11] in slightly different forms.

Lemma 7.5.3. Consider a chemical reaction network N with corresponding mass action
system M and robustness space R. If u,u′ ∈Nn and u′ − u ∈ R, then u and u′ have a
robust ratio. In particular, if ei ∈ R thenM has ACR in Xi.

Proof. Suppose that R is generated by v1, . . . , vk, and that, at each positive steady
state x ∈ Rn

>0, xvi = αi ∈ R>0. Then u′ − u writes as u′ − u =
∑k
i=1 βiv

i, and, given
a positive steady state x ∈ Rn

>0, we have xu′/xu =
∏k
i=1 α

βi
i . The second point follows

immediately taking u′ = ei and u = 0.

The following are techniques for identification of complexes with robust ratios given
in [SF10].

Theorem 7.5.4. If N is a weakly reversible deficiency zero chemical reaction network,
then any mass action system M on N has a robust ratio in each pair of complexes u
and u′ belonging to a common linkage class in N .

Theorem 7.5.5. Consider a mass action systemM on a chemical reaction network N .
If N has a deficiency of one, then M has a robust ratio in every pair of nonterminal
complexes u and u′ in N .

We can state generalised mass action versions of the two theorems.

Theorem 7.5.6. If N is a weakly reversible deficiency zero generalised chemical reaction
network, then any generalised mass action system M on N has a robust ratio in each
pair of kinetic complexes u and u′ belonging to a common linkage class in N .

Proof. Consider the system of ODEs (60) corresponding to the generalised mass action
system M. Since the network has a stoichiometric deficiency of zero, it follows that
ker(Aκ) = ker(YAκ). Recall that, by Theorem 7.4.1, the kernel of Ak admits a basis
b1, . . . , bt ∈ Rc

≥0, with bθ having support on the linkage class T θ. For any positive
equilibrium x ∈ Rn

>0, we can therefore write xYκ =
∑t
θ=1 λθb

θ for some λ0, . . . ,λt ∈ R>0.
Given i, j in the same linkage class T θ, we find xyiκ

xy
j
κ
=

bθi
bθj
.

Theorem 7.5.7. Consider a generalised mass action systemM on a generalised chem-
ical reaction network N . If N has a stoichiometric deficiency of one, then M has a
robust ratio in every pair of nonterminal kinetic complexes u and u′ in N .

Proof. Consider the system of ODEs (60) corresponding to the generalised mass action
system M and suppose that the network has a stoichiometric deficiency of one. From
Theorem 7.4.1, ker(Aκ) admits a basis {b1, . . . , bt} ⊂ Rc

≥0 with support on the t terminal
strong linkage classes of (S, C,R). Lemma S3.20 in [SF10] gives dim(ker(YAκ)) ≤ 1+ t.

Now consider an arbitrary positive equilibrium x ∈ Rn
>0. It follows that xYκ ∈

ker(YAκ) ∩Rc
>0. Since no vectors in {b1, . . . bt} have support on the nonterminal com-

plexes, we have that dim(ker(YAκ)) = 1 + t so that there is a basis of ker(YAκ) given
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7.5 structural conditions for robustness

by {b0, b1, . . . , bt} where only b0 ∈ Rc
≥0 has support on the nonterminal complexes. It

follows that xYκ = λ0b
0 +

∑t
θ=1 λθb

θ for some λ0, . . . ,λt ∈ R>0. For any nonterminal
nodes i, j ∈ C, we have xyiκ = λ0b

0
i and xy

j
κ = λ0b

0
j so that, after solving for λ0 and

rewriting, we have xyiκ
xy
j
κ
=

b0
i

b0
j
. Since the positive equilibrium x and nonterminal nodes i

and j were chosen arbitrarily, we are done.

Theorems 7.5.4, 7.5.5, 7.5.6 and 7.5.7 apply to networks with deficiency zero or one. In
addition, if a reaction network admits a direct decomposition in subnetworks N1, . . . ,Nk,
then robust ratios can be identified by applying the theorems to any of the subnetworks.
More general invariants, specifically, polynomials with monomials the mass action

monomials xy1 , . . . , xyc and coefficients given by rational expressions in the kinetic pa-
rameters, are considered in [KMD+12], where a linear method for identification of in-
variants is presented, and Theorem 7.5.5 is derived as a special case.

In [NGN13], the authors observe how invariant flux ratios can be used to identify
robust complexes. Two reactions ri and rj are called fully coupled if there exists α > 0
such that, for all flux vectors v ∈ Rm

≥0, vj = αvi. If two reactions are fully coupled
then, if the network has mass action network kinetics, the reactant complexes of the
two reactions have a robust ratio. The observation extends directly to generalised mass
action systems: if the ratio between the rates of two reactions ri and rj is the same at
each positive steady state, then the kinetic reactant complexes of reactions ri and rj
have a robust ratio. Fully coupled reactions can be identified by calculating the kernel
of Γ or a generating set of elementary modes [NGN13]. Suppose that w1, . . . ,wd are
a basis for the kernel of Γ or a generating set of elementary modes for a generalised
chemical reaction network N , and assume that for two indices i, j ∈ {1, . . . ,m} there is
an α ∈ R>0 such that wki = αwkj for all k = 1, . . . , d. Then the ratio between the rates
of two reactions ri and rj is the same at each positive steady state.

One can state a similar result by considering the kernel of YAκ:

Proposition 7.5.8. Consider a generalised mass action network N , and let b1, . . . , bd ∈
Rc be a basis of ker(YAκ). Suppose that there are two indices i, j ∈ {1, . . . ,m} and an
α ∈ R>0 such that bki = αbkj for all k = 1, . . . , d. Then, for any generalised mass action
system on N , the complexes yiκ and yjκ have a robust ratio.

Proof. For any positive steady state x ∈ Rn
>0, the vector xYκ is in ker(YAκ), and

therefore writes as xYκ =
∑d
k=1 βkb

k. Hence xyiκ =
∑d
k=1 βkb

k
i = α

∑d
k=1 βkb

k
j =

αxy
j
κ .

Example 7.5.9. Reconsider the network from Example 7.2.2. The network has de-
ficiency one and the nonterminal complexes are A + B and B. Consequently, these
complexes have a robust ratio by Theorem 7.5.5. Similarly, the kernel of the stoichio-
metric matrix is generated by the vector (1, 1), and therefore the reactant complexes
A+B and B have a robust ratio. Since A+B and B differ in the species A, ACR in
species A follows.

Proposition 7.5.8 could be used to identify sufficient conditions for robustness in terms
of the network structure, or of the network kinetics. For a simple example of the latter
case, consider the mass action network

B

∅ A A+B

2A+B.

κ1

κ2

κ3

κ4

83



7.5 structural conditions for robustness

Defining y1 = ∅, y2 = A, y3 = A+B, y4 = B and y5 = 2A+B, we have that the kernel
of YAκ is generated by κ2

κ1
e1 + e2, κ3−κ4

κ1
e1 + e3, e4, e5. The condition of the Proposition

is verified for i = 1, j = 2, with α = κ2
κ1
, if κ3 = κ4. In this case, the system has ACR

in species A.

Example 7.5.10. Reconsider the deficiency 2 network considered in Example 7.2.4,
with an assignment of rate constants κ.

The network admits a subnetwork of deficiency zero given by the two reactionsXD r1−⇀↽−
r2

X. By Theorem 7.5.4 applied to this subnetwork, we conclude that the complexes XD
and X have a robust ratio.

Reactions r5 and r8 take part in the same elementary modes with the same multiplicity,
therefore the species XT and XpY also have a robust ratio.

The kernel of YAκ is generated by the following vectors (this is observed in [MDSC12]):

e4, e7, e10, e13,
κ11(κ4 + κ5)

κ3κ5

(
κ2
κ1

e1 + e2
)
+
κ11
κ5

e3 +
κ11(κ7 + κ8)

κ6κ8
e5 +

κ11
κ8

e6 +
κ10 + κ11

κ9
e8 + e9,

κ14(κ4 + κ5)

κ3κ5

(
κ2
κ1

e1 + e2
)
+
κ14
κ5

e3 +
κ14(κ7 + κ8)

κ6κ8
e5 +

κ14
κ8

e6 +
κ13 + κ14

κ12
e11 + e12.

The hypothesis of Proposition 7.5.8 is verified for all pair of indices in {1, 2, 3, 5, 6} and for
8, 9 and 11, 12. Overall, we find that the complexes in {XD,X,XT ,Xp+ Y ,XpY } have
a robust ratio, as well as the pairs of complexes XTYp,XT + Yp and XD+ Yp,XDYp.
It was observed in [SF10] that the system has ACR in species Yp. This was established

by calculating the concentration of Yp at steady states directly from the steady state
equations:

xYp =
κ1κ3κ5(κ10 + κ11)(κ13 + κ14)

κ1κ3κ9κ11(κ13 + κ14) + κ2(κ4 + κ5)(κ10 + κ11)κ12κ14
. (67)

An alternative derivation for (67) based on the calculation of linear complex invariants
is presented in [KMD+12]. In Chapter 9, we will develop another method which allows
to establish ACR in species Yp and compute the ACR value (53) directly from the graph
of a generalised chemical reaction network.

Finally, the following proposition gives a necessary condition for robustness of ra-
tios for (generalised) mass action systems that admit complex balancing states. The
condition is also sufficient if all the steady states of the system are complex balanced.

Proposition 7.5.11. Suppose that the system in (60) admits some complex balancing
steady states, and take y ∈ Rn. Then value of xy is the same at each complex balancing
steady state if and only if the vector y is in the column space of the matrix YκIE defined
in Theorem 7.4.3.

Proof. Suppose that there exists a u ∈ Rc−l such that YκIEu = y. Then each positive
steady state x satisfies

xy = xYκIEu = vu,
where v is defined in Theorem 7.4.3. Conversely, suppose that each complex balancing
steady state x satisfies xy = α > 0. We need to show that y is in the column space of
YκIE , or, equivalently, that y is in (ker((YκIE)>))⊥. In other words, we have to prove
that, if w is in ker((YκIE)>), then ytw = 0. Take x complex balancing steady state
for the system and w ∈ ker((YκIE)>). Then, we have that (YκIE)>(w + ln(x∗)) =
(YκIE)> ln(x) = ln(v). Consider the vector w′ ∈ Rn defined by x′j = xjewj , j =

1, . . . ,n. Then we can write (YκIE)T ln(w′) = ln(v), i.e., x′ is also a complex balancing
steady state of the system. In particular, α = xy = (x′)y = αeytw, and ytw = 0.
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7.5 structural conditions for robustness

If a system admits complex balancing steady states, the proposition gives therefore a
necessary condition for ACR (ei ∈ Rn is in the column space of YκIE). If ei is not in
the columns space of YκIE , then we can exclude that ACR holds for some assignments
of kinetic parameters. ACR could still hold for other values of kinetic parameters, as in
the following example.

Example 7.5.12. Consider the following generalised mass action system:�
�

�


A+B +C
(2A+B)

�
�

�


2A+B
(A+B)

�
�

�


A+ 2B
(A+B)

�
�

�


2A+B +C
(A+B +C)

�
�

�


A+B +C
(A+B +C)

�
�

�


2A+ 2B +C
(A+ 2B)

κ5

κ1

κ2

κ3

κ4

κ6
κ7

(68)

The kinetic deficiency is 2, and the system admits complex balancing steady states if
κ1 = κ2 and κ6 = κ3 − κ4. The kinetic subspace Sκ is generated by (1, 0,−1) and
(0, 1,−1), and ACR is excluded in any species by Proposition 7.5.11. However, for
κ6 = κ3, the equation for xA associated to (68) is dxA

dt = xAxB(κ5xA − κ1 + κ2), and
the system has ACR in species A.

In this chapter, we introduced the terminology of chemical reaction networks, and
recapitulated some results on complex balancing steady states. We have also seen that
“robust ratios” can be identified in deficiency zero weakly reversible and deficiency one
networks with generalised mass action kinetics. In chapters 9 and 10 we will discuss
methods for the identification of generalised mass action realisations with low deficiency,
which enable the application of these results.
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8
NETWORKS WITH OTHER KINET ICS AND EL IMINATION OF
SPEC IES

Biochemical reaction models often adopt rate laws that are not mass action. The study
of enzyme kinetics in particular is simplified by aggregating elementary steps, result-
ing in a reduction of the number of variables and the number of parameters (see for
instance [Seg75, CB14, HS12]). Since some results in chemical reaction network theory
apply to systems with mass action kinetics, it might be useful to write a model in its
full extended mass action form, even when the knowledge of the kinetic parameters is
limited. Given a network with non-mass action kinetics, it might be difficult to de-
termine the underlying mass action system. Therefore we focus on the opposite task,
and seek to provide algorithms that, given a mass action system, can be used to derive
simplified networks and kinetics. We will focus on the elimination of intermediate linear
species, and our intent is to provide a method for deriving the structure of the reduced
network as well as the rate laws such as the enzyme kinetic rate laws, with a general
procedure that does not require some ad-hoc calculations. For instance, for the following
two-substrate compulsory order scheme

A+E EA,

B +EA EAB P +E,

κ1

κ2
κ3

κ4

κ5
(69)

we want to derive the simplified network A+B → P and the rate law

κcat+ E0xAxB
κiAκ

M
B + κMB xA + κMA xB + xAxB

,

with κcat+ = κ5, κiA = κ2
κ1
, κMA = κ5

κ1
and κMB = κ4+κ5

κ3
. This rate can be derived using

the King-Altman method [CB14] (a detailed application of the method to this network
can be found in the documentation for SBMLSqueezer [DHS+08]). Our approach will
be instead to consider the stoichiometric structure of a network found by elimination of
a single species, and then to define kinetic rates on the given structure that give rise to
the required simplified dynamics.
The problem we consider is a special case of the question of the identification, given a

system of differential equations, of a reaction network that admits the given system as
its associates system of ODEs. In the case we consider, the system of ODEs is obtained
by simplification of another system. We emphasise that several approaches exist to this
problem. Other systematic reduction methods have been proposed, for example, for
general kinetics in Radulescu et al. [RGZN12], and for intermediate linear species in
Saez et al. [SWF17]. In [TG09], the authors show how the King-Altman method can be
seen as a consequence of the Matrix-Tree theorem. A general method for identification
of reaction networks from a system of rational ODEs is given in [GHBS15].
In many practical situations, dealing with a reduced, non-mass action system is the

only feasible approach. Since the simplification procedures impact significantly the tran-
sient and steady state behaviour of the systems, their application is justified only under
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Chemical reaction
system (C,R,y,K)

Dynamics
D

Chemical reaction
system (C̃,R̃,ỹ,K̃)

Dynamics
D̃

Figure 20: We describe methods to derive the structure and kinetics of reduced networks (dashed
arrow), in a way that makes the diagram commutative.

some specific conditions, which must be carefully evaluated. An extensive literature is
dedicated to the identification of these conditions and the investigation of the effects of
simplifications on the network dynamics. For an overview of these techniques, see, for
instance, [HS12, GW13]. The work of this chapter stems from the interest in develop-
ing a procedure to verify whether a given mass action system can be reduced to some
given network, to motivate the study of the mass action system. We do not provide
an analysis and comparison of the dynamics and steady states of the mass action and
reduced system. For the elimination of isolated intermediate species, we refer the reader
to [FW13] for a detailed characterisation of the relationship between steady states of
the full and simplified models. It is also to be noted that we do not investigate the
efficiency of the algorithms. The kinetic rates that can be generated with the proce-
dures we present quickly become difficult to handle. In the examples we will consider
the elimination of only a small number of intermediate species, as is usually done for
instance for enzymatic reaction schemes.

8.1 definitions

We need first to extend the definition of kinetics for a chemical reaction network.

Definition 8.1.1. A kinetics for a reaction network (C,R, y) is a function that assigns
to each reaction r ∈ R a rate function

K : r 7→ (Kr : Ω→ R≥0),

with Rn
>0 ⊆ Ω ⊆ Rn

≥0.

We will write Kij for Kr with r : i→ j. as convenient. We call a tuple (C,R, y,K) a
chemical reaction system. The system of differential equations associated to (C,R, y,K)
is defined as

dx
dt

=
∑

i→j∈R
Kij(x)(yj − yi). (70)

If α ∈ Γ⊥, we have from (70) that
∑n
i=1 αi

dxi
dt = 0, and therefore there is a constant

T ∈ R such that
∑n
i=1 αixi = T . This expression is called a conservation law for the

system, and
∑n
i=1 αixi is said to be conserved.

The goal of this chapter is to identify a chemical reaction system that admits a
given system of differential equations D̃ as its associated dynamics. The system of
differential equations D̃ is obtained by eliminating a variable from an another system
of differential equations D, that is the dynamics associated to some chemical reaction
systemM = (C,R, y,K). We are looking therefore to define a chemical reaction system
M̃ = (C̃, R̃, ỹ, K̃) whose underlying graph and kinetics are derived from the graph and
kinetics ofM. This process is illustrated in Figure 20.
To describe the reduction methods, we are guided by the reduction approaches used in

enzyme kinetics, and described for instance in [Seg75, CB14, HS12]. We do not discuss
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8.1 definitions

the assumptions under which the simplifications are justified – for these analyses we
refer the reader to the references above. We want the methods we describe to be able to
derive the kinetic rates used for the classical reaction schemes, such as Michaelis-Menten
kinetics, multiple substrate enzyme kinetics, inhibition schemes, etc. For example, the
reaction network

S +E ES P +E,κ1

κ2

κ3 (71)

is often reduced to a single reaction S → P . We want to recover for this reaction the
Henri-Michaelis-Menten rate form

κ3E0xS
κS + xS

, (72)

for some constants E0 and κS .
We are going to describe methods for the identification of chemical reaction system

that admit a given system of differential equations as their dynamics. The system of
differential equations are obtained from the dynamics of some chemical reaction system
by eliminating the concentration of some intermediate species. For convenience, assume
that the species whose concentration is being eliminated is the last species Xn. Xn is
called an intermediate species if it is consumed in at least one reaction, and produced in
at least one reaction: there exists a reaction i→ j such that yjn− yin < 0, and a reaction
i′ → j′ such that yj′n − yi

′
n > 0.

In the case of elimination of a single intermediate, isolated species (i.e., a species that
does not interact with other species) from a mass action system, we want the reduced
network to coincide in structure with the network identified by the method described
in [FW13]. Let us study the special case of a single intermediate isolated species first.
Fix a set of species S = {X1, . . . ,Xn}. Consider a chemical reaction network N on S
and a mass action systemM on N . If Xn is an intermediate isolated species, define the
sets of reactions

R′ = {i→ j ∈ R | yin = 1, yjn = 0},
R′′ = {i→ j ∈ R | yin = 0, yjn = 1}.

A reduced (core) model Ñ in [FW13] is obtained from N as follows:

(1) the reactions R \ (R′ ∪R′′), that do not involve Xn in the reactant or product,
remain unchanged;

(2) the pairs of reactions yi r′′−→ Xn ∈ R′′, Xn
r′−→ yj ∈ R′ involving Xn as an

intermediate are collapsed to a single reaction yi → yj .

The equation dxn
dt = 0 is used to write the steady state concentration of the intermediate

as a sum
xn =

∑
i

µ(κ)(x′)yi , (73)

where µ a rational function of the rate constants and the (x′)yi are monomials in the
concentrations of the remaining species x′ = (x1, . . . ,xn−1). By substituting the expres-
sion for xn in the system of ODEs associated toM, a system of ODEs associated to a
mass action system M̃ on the core model Ñ is obtained.
For this special case of single, isolated intermediate species eliminated from a mass

action network, we can find kinetic parameters for the core model with a simplified
approach. Given the assumptions on Xn, we can write the matrices Y and Ak in block
form as follows:

Y =

[
Ỹ 0
0t 1

]
, Aκ =

[
A′κ −v
−ut a

]
,
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8.1 definitions

where u, v ∈ Rc−1
≥0 and a =

∑c−1
i=1 vi is the sum of all the kinetic parameters of reactions

in R′′. Then xY = ((x′)Ỹ,xn) and the system of ODEs (54) for x′ can be written as

dx′

dt
= Ỹ(A′κxỸ − xnv). (74)

The equation for xn instead writes as

dxn
dt

= −ut(x′)Ỹ + axn.

From the equation dxn
dt = 0 we derive the expression xn = ut(x′)Ỹ∑c−1

i=1 vi
. Replacing xn with

this expression in (74), we find

dx′

dt
= Ỹ

(
A′κ −

utv∑c−1
i=1 vi

)
xỸ = ỸÃκxỸ, (75)

with Ãκ = A′κ− utv∑c−1
i=1 vi

. It is now easy to see that (75) is the system of ODEs associated

to a mass action system on Ñ . The kinetic parameter of a reaction yi → yj in Ñ is
given by the kinetic parameter of the reaction yi → yj in N , if such reaction exists,
plus the sum of all the products of kinetic parameters of pairs of reactions in R′ ×R′′,
divided by the sum a of all the kinetic parameters of reactions in R′′.

For example, consider the reaction network in (71). The associated system of ODEs
is the following:

dxS
dt

= −κ1xExS + κ2xES ,

dxE
dt

= −κ1xExS + (κ2 + κ3)xES ,

dxP
dt

= +κ3xES ,

dxES
dt

= +κ1xExS − (κ2 + κ3)xES .

(76)

The intermediate species ES does not interact with any other species. From dxES
dt = 0

we find xES = κ1
κ2+κ3

xExS . The reduced system

dxS
dt

= − κ1κ3
κ2 + κ3

xExS ,

dxE
dt

= 0,

dxP
dt

= +
κ1κ3
κ2 + κ3

xExS ,

is the system of ODEs associated to the reaction network

S +E P +E.
κ1κ3
κ2+κ3 (77)

The following is another example of elimination of an intermediate isolated species.
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Example 8.1.2. Consider the two-substrate compulsory order scheme in equation 69.
The system of ODEs associated to the network is as follows:

dxA
dt

= −κ1xAxE + κ2xEA,

dxB
dt

= −κ3xBxEA + κ4xEAB,

dxE
dt

= −κ1xAxE + κ2xEA + κ5xEAB,

dxEA
dt

= +κ1xAxE − κ2xEA − κ3xBxEA + κ4xEAB,

dxP
dt

= κ5xEAB

dxEAB
dt

= κ3xBxEA − (κ4 + κ5)xEAB.

(78)

The species EAB is an intermediate isolated species. By collapsing the reaction paths
B +EA → EAB → B +EA and B +EA → EAB → P +E, we obtain the chemical
reaction network

A+E EA, B +EA P +E. (79)

From dxEAB
dt = κ3xBxEA − (κ4 + κ5)xEAB = 0 we can write xEAB = κ3

κ4+κ5
xBxEA.

Substituting xEAB for κ3
κ4+κ5

xBxEA in (78) one obtains the system of ODEs

dxA
dt

= −κ1xAxE + κ2xEA,

dxB
dt

= − κ3κ5
κ4 + κ5

xBxEA,

dxE
dt

= −κ1xAxE + κ2xEA +
κ3κ5
κ4 + κ5

xBxEA,

dxEA
dt

= +κ1xAxE − κ2xEA −
κ3κ5
κ4 + κ5

xBxEA,

dxP
dt

=
κ3κ5
κ4 + κ5

xBxEA.

(80)

This is the system of ODEs associated to the mass action system on (79) with the
following assigement of kinetic parameters:

A+E EA, B +EA P +E.κ1

κ2

κ3κ5
κ4+κ5 (81)

In this section we want to deal with intermediate species that can interact with other
species, still under the assumption that an expression of the form (73) can be derived
for xn from the steady state equation dxn

dt = 0. For instance, we want to consider the
elimination of the intermediate species EA in (81).

The species Xn will be called linear if the following two conditions are satisfied:

(i) for all i ∈ C, yin ≤ 1;

(ii) for each reaction i→ j, there exists a function K′ij : Ω′ → R≥0, with Rn−1
>0 ⊆ Ω′ ⊆

Rn−1
≥0 , such that if yin = 1, Kij(x) = xnK′ij(x′) and, if yin = 0, Kij(x) = K′ij(x′).

If Xn is an intermediate linear species, then from the steady state equation

dxn
dt

=
∑

i→j∈R
Kij(x)(yjn − yin) = −

∑
i→j∈R′

xnK′ij(x′) +
∑

i→j∈R′′
K′ij(x′) = 0
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we can write the expression for xn

xn =

∑
i→j∈R′′ K′ij(x′)∑
i→j∈R′ K′ij(x′)

. (82)

We write ϕ(x′) for the expression on the right in (82). Denote by πn−h : Rn → Rn−h

the projection on the first n− h coordinates, and write π for πn−1. Then the system of
ordinary differential equations obtained by replacing xn with ϕ(x′) in (70) is

dx′

dt
=

∑
i→j∈R

Kij(x′,ϕ(x′))(π(yj)− π(yi)). (83)

8.2 first method

For the method summarised in the previous section, the stoichiometric matrix of the
reduced network contains all the reaction vectors of the reactions that do not involve
the species Xn, plus all the sums of reaction vectors of pairs of reactions (r′, r′′) in
R′ ×R′′, which correspond to the reaction paths yi κr′′−−→ Xn

κr′−−→ yj collapsed to a
reaction yi → yj , and assigned with the kinetic parameter κr′κr′′∑

r∈R′ κr
. A straightforward

generalisation, which we describe as Algorithm 1, consists in considering all pairs of
reactions that produce and consume Xn, and combining each pair into a single reaction.
From the point of view of the network structure, the elimination of the intermediate

species is realised as a special case of a well-known elimination algorithm. The algo-
rithm appears in the literature in different variations and under different names, for
instance, as the Fourier-Motzkin elimination algorithm [DLHK12] or double description
method [FP96]. The procedure allows to eliminate a variable from a system of inequali-
ties of the form Ax ≥ 0, obtaining a new set of inequalities that describe the projection
of the cone {x : Ax ≥ 0} onto xn = 0. In the double description form, the algorithm
allows to simultaneously construct a set of generators for the polyhedral cone. In [SS93],
the procedure is adapted for the calculation of a generating set of elementary modes of
the network, with additional constraints on the fluxes.

Proposition 8.2.1. The system of ODEs in (83) is the dynamics associated to the
chemical reaction system identified by Algorithm 1.

Proof. We can rewrite the system in (83) as follows:

dx′

dt
=

∑
i→j∈R\(R′∪R′′)

Kij(x′,ϕ(x′))(π(yj)− π(yi))+

ϕ(x′)
∑

i→j∈R′
K′ij(x′)(π(yj)− π(yi)) +

∑
i→j∈R′′

K′ij(x′)(π(yj)− π(yi)),

=
∑

i→j∈R\(R′∪R′′)
Kij(x′)(π(yj)− π(yi))+

∑
i→j∈R′′ K′ij(x′)∑
i→j∈R′ K′ij(x′)

∑
i→j∈R′

K′ij(x′)(π(yj)− π(yi)) +
∑

i→j∈R′′
K′ij(x′)(π(yj)− π(yi)),

=
∑

i→j∈R\(R′∪R′′)
Kij(x′)(π(yj)− π(yi))+

∑
i→j∈R′′

∑
i′→j′∈R′

K′ij(x′)K′i′j′(x′)∑
h→k∈R′ K′hk(x′)

(π(yj
′
) + c− π(yi′)− (c+ π(yi)− π(yj)).
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8.2 first method

Algorithm 1: Elimination of the intermediate linear species Xn.
Data: A chemical reaction system N = (C,R, y,K),
Xn intermediate linear species.
R̃ = ∅
R′ = {i→ j ∈ R | yin = 1, yjn = 0}
R′′ = {i→ j ∈ R | yin = 0, yjn = 1}

ϕ(x′) =
∑

i→j∈R′′ K
′
ij(x

′)∑
i→j∈R′ K

′
ij(x′)

foreach i→ j ∈ R \ (R′ ∪R′′) do
add reaction with reactant π(yi) and product π(yj) to R̃, with rate function
x′ 7→ Kij(x′,ϕ(x′))

end
foreach i→ j ∈ R′′ do

foreach i′ → j′ ∈ R′ do
if yi + yi

′ 6= yj + yj
′ then

c = sup(π(yj),π(yi′))
add reaction with reactant π(yi) + c− π(yj) and product
π(yj

′
) + c− π(yi′) to R̃, with rate function

K′ijK
′
i′j′∑

h→k∈R′ K
′
hk

end
end

end

Remark 8.2.2. As is apparent from the proof of Proposition 8.2.1, we are free to
choose other complexes in place of the complex c. The choice for c in Algorithm 1 can
be motivated as follows. Given reactions i → j ∈ R′′ and i′ → j′ ∈ R′, for any z ≥
yj , yi′ , the original network generates a “reaction path” from yi + z− yj → yj

′
+ z− yi′

(i.e., there is a sequence of reactions converting yi + z − yj to yj′ + z − yi′). Choosing
c = sup(π(yj),π(yi′)) guarantees that these reaction paths are contained in the reduced
network.

Example 8.2.3. Reconsider the scheme in equation 69, which, after elimination of the
intermediate species EAB, reduced to (81). We can consider the elimination of the
species EA. Following Algorithm 1, we define R′ = {EA→ A+E,B +EA→ P +E},
R′′ = {A+E → EA} and ϕ(x′) = κ1(κ4+κ5)xAxE

κ2(κ4+κ5)+κ3κ5xB
. For the reactions EA → A+E

and A+E → EA we have yi + yi
′
= yj + yj

′ , so that R̃ consists of only one reaction,
obtained by combining A+E → EA and B +EA→ P +E:

A+B +E P +E, (84)

with rate κ1κ3κ5xAxBxE
κ2(κ4+κ5)+κ3κ5xB

.

Example 8.2.4. In this example, we compare the reduced network obtained with Algo-
rithm 1 to the network obtained using Algorithm 1 in [GHBS15], which offers a general
method for identification of chemical systems that give rise to a given rational system
of ODEs. Consider the network with three species defined by the reactions

2X1 2X1 +X3, X1 +X3 X2, X3 ∅,κ1 κ2 κ3

and with associated system of ODEs

dx1
dt

= −κ2x1x3, dx2
dt

= κ2x1x3, dx3
dt

= κ1x
2
1 − κ2x1x3 − κ3x3.
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8.2 first method

The species X3 is an intermediate linear species. We have ϕ(x1,x2) =
κ1

κ3+κ2x1
x2

1, and
the reduced system of ODEs is

dx1
dt

= − κ1κ2
κ3 + κ2x1

x3
1, dx2

dt
=

κ1κ2
κ3 + κ2x1

x3
1. (85)

Applying Algorithm 1, we have R′ = {X3 → ∅,X1 + X3 → X2}, R′′ = {2X1 →
2X1 +X3}, hence the reduced network contains only one reaction

2X1 X1 +X2

with rate κ1κ2
κ3+κ2x1

x3
1. The algorithm described in [GHBS15] is a generalisation of the

construction of the “canonic mechanism” associated to a system of differential equations
presented in [HT81]. It proceeds by considering each differential equation separately.
Each differential equation is written as a sum of terms of the form ±κ xc

p(x) , where c is a
complex and p(x) is a polynomial such that p(0) = 1, and κ is a kinetic parameter. For
each term in the equation for species Xi, the monomial at the numerator determines the
reactant complex c. Then, the product complex is defined as c−Xi or c+Xi depending
on the sign of the term. The reaction is then assigned the reaction rate κ xc

p(x) .
The equations in (85) can be written in the required form by dividing the numerator

and denominator by κ3. The algorithm gives the reactions

3X1 2X1, 3X1 3X1 +X2,

both with rate function κ1κ2
κ3+κ2x1

x3
1.

Elimination of an intermediate set of species

In this section, we consider the elimination of a set of species. We need to introduce some
new notations and definitions first. Given a chemical reaction network N = (C,R, y),
and a set of species I = {Xn−k+1, . . . ,Xn}, write πI for the projection on the last k
coordinates. Denote by ΓI the submatrix of the stoichiometric matrix Γ with rows
corresponding to the species in I, and write x′ = (x1, . . . ,xn−k).

Definition 8.2.5. Consider a set of species I = {Xn−k+1, . . . ,Xn}. I is called a linear
set of non-interacting species if

(i) for all i ∈ C,
∑n
j=n−k+1 y

i
j ≤ 1, and

(ii) for each reaction i → j, there exists a function K′ij : Ω′ → R≥0, with Rn−k
>0 ⊆

Ω′ ⊆ Rn−k
≥0 , such that if

∑n
j=n−k+1 y

i
j = 0, Kij(x) = K′ij(x′) and, if yih = 1,

Kij(x) = xhK′ij(x′).

The definition is similar to the one considered in [SWF17]. To ensure that the elim-
ination can be applied iteratively, we need an additional condition. Define RI as the
multidirected graph with nodes the set I ∪ {∅}, and edges {πI(yi) → πI(yj) | i → j ∈
R,πI(yi) 6= πI(yj)}. We will say that I is an intermediate set of species if all the
components of the graph RI are strongly connected.
Notice that, if Xn−k+1, . . . ,Xn are intermediate species, then {Xn−k+1, . . . ,Xn} is

not necessarily an intermediate set of species. Consider for instance the intermediate
species X3 and X4 in X4 
 X3 → X1 
 X2. If the species X4 is removed, then X3 is
not an intermediate species and the elimination algorithm cannot be applied.
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8.2 first method

Lemma 8.2.6. Consider a chemical reaction network (C,R, y) and an intermediate lin-
ear set of non-interacting species I = {Xn−k+1, . . . ,Xn}. Then the set J = {Xn−k+1, . . . ,Xn−1}
is an intermediate linear set of non-interacting species for the network obtained by elim-
inating Xn with Algorithm 1.

In addition, if the vector v =
∑n
i=n−k ei ∈ Rn is in Γ⊥, then π(v) ∈ (Γ′)⊥, where Γ′

is the stoichiometric matrix of the reduced network.

Proof. If a reaction in R̃ is of the form π(yi) → π(yj) for some reaction i → j ∈ R,
then condition (i) of Definition 8.2.5 is verified for both the reactant and product. If
yin = 1, then the rate is of the form ϕ(x′)K(x′); otherwise, the rate coincides with the
rate of i→ j, and satisfies condition (ii) of Definition 8.2.5
Consider now a reaction i′′ → j′′ ∈ R̃ obtained as a combination of a reaction i→ j ∈
R′′ and a reaction i′ → j′ ∈ R′. By hypothesis,

∑n
l=n−k+1 z ≤ 1 for z ∈ yi, yj , yi′ , yj′ ,

and yin = yj
′
n = 0, yjn = yi

′
n = cn = 1, c = sup(yj , yi′). Hence for the reactant of i′′ → j′′

we have
∑n−1
l=n−k+1(y

i + c− yj)l =
∑n
l=n−k+1 y

i
l ≤ 1, and similarly for the product. In

addition, if yi′′l = 1 for some l = n− k+ 1, . . . ,n− 1, then yil = 1 and the rate of i′′ → j′′

is of the form xlK′(x′). Otherwise, it is of the form K′(x′).
Finally, to see that the connected components of the graph R̃J are strongly connected,

it is sufficient to observe that for any pair of nodes a, b ∈ J ∪ {∅} there is a path from
a to b in R̃J if and only if there is a path from a to b in RI .

For the last statement, observe that the reaction vectors are either of the form π(yj −
yi) with yjn = yin, or of the form π(yj

′ − yi′ + yj − yi), with yj′n − yi
′
n = yin − yjn.

The next example shows that, when multiple species are eliminated using the Algo-
rithm in 1, the result depends on the order of elimination.

Example 8.2.7. Consider the mass action system

X1
κ1−→ X2 +X5

κ2−→ X4
κ3−→ X5

κ4−→ X3, (86)

and the elimination of species X4 and X5 with the method in Algorithm 1. To eliminate
X4, we simply combine r2 and r3, obtaining

X1
κ1−→ X2 +X5

κ2−→ X5
κ4−→ X3.

Then, to eliminate X5, we need to combine X1 → X2 +X5 and X5 → X3. We find the
network

X1
r̃1−→ X2 +X3, X2

r̃2−→ ∅, (87)

with rates Kr̃1 = κ1x1 and Kr̃2 = κ1κ2
κ4

x1x2.
Now, consider the application of Algorithm 1 to the network in (86) with intermediate

X5 first, and then X4. For the first step we have R′ = {X2 +X5 → X4,X5 → X3} and
R′′ = {X1 → X2 +X5,X4 → X5}. Combining these reactions two by two we find the
four reactions

X1 X4 X3

X2 +X3 X2 +X4

r′1

r′3

r′2

r′4

with rates Kr′1 = κ1κ2x1x2
κ4+κ2x2

, Kr′2 = κ3κ4x4
κ4+κ2x2

, Kr′3 = κ1κ4x1
κ4+κ2x2

and Kr′4 = κ2κ3x2x4
κ4+κ2x2

respec-
tively. To eliminate X4, we have R′ = {X4 → X3} and R′′ = {X1 → X4}, and we find
the network

X1 X3, X2 ∅

X2 +X3

r′′1

r′′3

r′′2
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8.2 first method

with reaction rates Kr′′1 = κ1κ2x1x2
κ4+κ2x2

, Kr′′2 =
κ1κ2

2x1x2
2

κ4(κ4+κ2x2)
and Kr′′3 = κ1κ4x1

κ4+κ2x2
. Therefore

the reduced network depends on the order of elimination of the species.

Eliminating redundant reactions

As seen in Example (8.2.7), the iterative elimination of intermediate linear species based
on Algorithm 1 can yield different reduced networks, when different orders for the species
are considered. In this section, we introduce a version of Algorithm 1 for elimination
of a set of species, that allows for the identification of a reduced network with minimal
number of reactions.
As mentioned in the previous section, when a set of species I is eliminated using

Algorithm 1, the structure of the reduced network is found using a special case of a
well-studied elimination algorithm [SS93, FP96], that allows for the identification of the
generators of the cone {ΓIx = 0, x ∈ Rm

≥0} = {Ax ≥ 0 | x ∈ Rm}. Except under
some elimination orders, many of the generators identified by the algorithm given in the
previous section are redundant. To avoid the explosion in the number of generators, and
ensure that the minimum number of generators for the cone is obtained (i.e., a set of
extreme rays), algorithms such as those in [SS93, FP96] go through an additional step
that ensures that redundant rays are not created.
To introduce a similar elimination step that would take into account the network ki-

netics, we compare the algorithm given in the previous section to the algorithm in [SS93]
for the calculation of the extreme rays (in the case where no flux is fixed). The input of
the algorithm in [SS93] is the matrix T(0) = |ΓI Im|t, where Im is the m×m identity
matrix. At step j + 1, for j = 1, . . . , k − 1, the matrix T(j) is replaced by a matrix
containing:

(i) The columns of T(j) with index h such that T(j)
(j+1)h = 0.

(ii) All the possible combinations of pairs of columns |T(j)
(j+1)h′ |T

(j)
·h + |T(j)

(j+1)h|T
(j)
·h′ for

indices (h,h′) of T(j) such that T(j)
jh ·T

(j)
jh′ < 0, if the following condition is verified:

Z(vj,h) ∩Z(vj,h′) 6⊆ Z(vj,l), for l 6= h,h′, where Z(v) = {i | vi = 0}, and vj,h is
the projection of hth column of T(j) on the last m coordinates.

At the end of the process, the matrix R given by the last m rows of the matrix T(k)

contains the generating vectors. The Algorithm in 1, goes through the same steps, in
the special case of |T(j)

(j+1)h| = |T
(j)
(j+1)h′ | = 1, but does not discard any combination of

columns that satisfy T(j)
jh ·T

(j)
jh′ < 0. Observe, in addition, that the reaction vectors of

the reduced network are obtained by multiplying the original stoichiometric matrix Γ
by R.

Consider a ray v that has been discarded at step (ii), and write r for the corresponding
reaction, and Kr for the rate obtained as in Algorithm 1. If the reaction corresponding
to v is simply discarded, as in point (ii), then the resulting reaction system does not
have the required associated system of ODEs, since the contribution Kr(Γv) of the
reaction to (70) is lost. To obtain a dynamically equivalent system when the redundant
reactions are removed, we need to adjust the kinetic rates of the remaining reactions.
Writing {v(j+1)l}l for the generators identified at step j + 1, we have that v verifies
v =

∑
l λlv(j+1)l for some λl ≥ 0. Since Kr(Γv) =

∑
l λlKr(Γv(j+1)l), if we add λlK

to the rate associated to v(j+1)l, the reduced network has the required system of ODEs.
Therefore we add the following definitions of the reaction rates for the reactions identified
by the steps (i) and (ii) above:
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(iii) For a column with indices h at step (i), set the reaction rate to K(j)
h (x′,ϕ(x′)).

(iv) For each pair of columns with T(j)
(j+1)h + T(j)

(j+1)h′ = 0, define a reaction rate as
in 1.

(v) If v is a ray corresponding to a reaction with rate Kr, and v =
∑
l λlv(j+1)l, λl ≥ 0,

add λlKr to the rate corresponding to v(j+1)l.

This method ensures that the structure of the reduced network is independent of the
order of elimination. There is no guarantee of uniqueness however for the kinetics of the
reduced network (see Example 8.2.10).

We summarise the algorithm given above in 2. We denote by vij the ray associated
to a reaction i→ j. Notice that a reduced chemical reaction network is properly defined
only at the end of the elimination process: in the intermediate steps, reactions with the
same complex as reactant and product are considered, so that the minimal structure can
be identified (see also Example 8.2.10). In addition, not all species in the elimination
process are intermediate species. In this case, we use a constant instead of the expression
ϕh to replace the species concentration.

Algorithm 2: Elimination of an intermediate linear set of non-interacting species.
Data: A chemical reaction system N = (C,R, y,K),
an intermediate linear set of non-interacting species {Xn−k+1, . . . ,Xn},
α ∈ R.
R(0) = R
e1, . . . , em rays of the reactions in R(0)
foreach h = 0, . . . , k− 1 do
R(h+1) = ∅
R′(h) = {i→ j ∈ R(h) | yin−h = 1, yjn−h = 0}
R′′(h) = {i→ j ∈ R(h) | yin−h = 0, yjn−h = 1}

if |R′(h)| > 0 then ϕh(x′) =

∑
i→j∈R′′

(h)
Kij(x′)∑

i→j∈R′
(h)
K′ij(x′)

else ϕh(x′) = α
foreach i→ j ∈ R(h) \ (R′(h) ∪R

′′
(h)) do

add a reaction to R(h+1) with reactant yi and product yj , with rate function
x′ 7→ Kij(x′,ϕh(x′)) and ray vij

end
foreach i→ j ∈ R′′(h) do

foreach i′ → j′ ∈ R′(h) do
c = sup(yj , yi′)
add a reaction to R(h+1) with reactant yi + c− yj and product

yj
′
+ c− yi′ , with rate function

KijK′i′j′∑
h→k∈R′

(h)
K′
hk

and ray vij + vi′j′

end
end
foreach i→ j ∈ R(h+1) do

if vij =
∑
i′j′ λi′j′vi

′j′ , λi′j′ ≥ 0, (i, j) 6= (i′, j′), remove reaction i→ j and
add λi′j′Kij to the rate of i′ → j′

end
end
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From the discussion above we have the following.

Proposition 8.2.8. Consider a chemical reaction network (C,R, y) and an intermedi-
ate linear set of non-interacting species {Xn−k+1, . . . ,Xn}. Then the networks obtained
by eliminating {Xn−k+2, . . . ,Xn} with Algorithm 1 or Algorithm 2 are dynamically equiv-
alent.

Example 8.2.9. Reconsider the network of Example 8.2.7, and the elimination of X5
and X4. The elimination of X5 yields the generating rays

v1 = e1 + e2, v2 = e3 + e4, v3 = e1 + e4, v4 = e2 + e3,

corresponding to the reactions r′1, r′2, r′3, r′4. The elimination of X4 gives the vectors
v = v1 + v2, v3 and v4 corresponding to reactions r′′1 , r′′2 and r′′3 . The vector v writes as
the sum of the remaining rays v3 + v4. Therefore, we remove reaction r′′1 and redefine
the rates of reactions r′′2 and r′′3 as κ1κ2

2x1x2
2

κ4(κ4+κ2x2)
+ κ1κ2x1x2

κ4+κ2x2
= κ1κ2

κ4
x1x2 and κ1κ4x1

κ4+κ2x2
+

κ1κ2x1x2
κ4+κ2x2

= κ1x1. This network coincides with the one in (87) identified by eliminating
X4 and then X5.

Example 8.2.10. Consider the mass action system

X1 X2 +X4 X5 X6 X4

X3.

κ1 κ2 κ3 κ4

κ6

κ5

We first eliminate species X6, obtaining the graph

X1 X2 +X4 X5 X4

X3,

r1 r2 r3

r4
r5

r6

(88)

with mass action kinetics, kinetic parameters (κ1,κ2, κ3κ4
κ4+κ6

, κ5κ6
κ4+κ6

, κ3κ6
κ4+κ6

, κ4κ5
κ4+κ6

) and
and corresponding generating rays v1 = e1, v2 = e2, v3 = e3 + e4, v4 = e3 + e6,
v5 = e5 + e6, v6 = e4 + e5.

Now consider the elimination of X5 and X4 from (88) in two different orders. If we
eliminate X5 first, we obtain the graph with kinetic parameters

X1 X2 +X4 X4

X3,

κ1
κ2κ4
κ4+κ6

κ2κ6
κ4+κ6

κ5κ6
κ4+κ6

κ4κ5
κ4+κ6

and eliminating X4, the final reduced network

X1 X3, X1 X2 +X3, X2 ∅.
r′1 r′2 r′3 (89)

with rates Kr′1(x1,x2) =
κ1κ2x1x2
κ5+κ2x2

, Kr′2(x1,x2) =
κ1κ5x1
κ5+κ2x2

and Kr′′3 (x1,x2) =
κ1κ2κ4x1x2
κ6(κ5+κ2x2)

,
and corresponding generating vectors e1 + e2 + e3 + e6, e1 + e5 + e6 and e2 + e3 + e4.
Now reconsider the network in (88). The elimination of X4 gives

X1 X5 X3 ∅

X2 +X3 X2 +X5,

r′′1

r′′4

r′′2

r′′3

r′′6

r′′5
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with reaction rates Kr′′1 (x1,x2,x5) = κ1κ2(κ4+κ6)
κ5κ6+κ2(κ4+κ6)x2

x1x2, Kr′′2 (x1,x2,x5) = κ3κ6
κ4+κ6

x5,
Kr′′3 (x1,x2,x5) =

κ3κ4κ5κ6
(κ4+κ6)(κ5κ6+κ2(κ4+κ6)x2)

x5, Kr′′4 (x1,x2,x5) =
κ1κ5κ6

κ5κ6+κ2(κ4+κ6)x2
x1 and

Kr′′5 (x1,x2,x5) = κ2κ3κ4
κ5κ6+κ2(κ4+κ6)x2

x2x5 (we do not need to calculate Kr′′6 as it will not
factor in the next steps). The corresponding generators are e1 + e2, e3 + e6, e3 + e4 +
e5 + e6, e1 + e5 + e6, e2 + e3 + e4 and e4 + e5. The third ray does not have minimal
support, therefore r′′3 can be eliminated, and its kinetic rate added to Kr′′2 and Kr′′6 ,
giving Kr′′2 (x1,x2,x5) =

κ3κ6(κ5+κ2x2)
κ5κ6+κ2(κ4+κ6)x2

x5.
After eliminating X5, we find the final reduced network

X1 X3, X1 X2 +X3, X2 ∅.r̃1 r̃2 r̃3

The rates we obtain are Kr̃1(x1,x2) =
κ1κ2(κ4+κ6)x1x2
κ5κ6+κ2(κ4+κ6)x2

, Kr̃2(x1,x2) =
κ1κ5κ6x1

κ5κ6+κ2(κ4+κ6)x2

and Kr̃3(x1,x2) =
κ1κ2

2κ4(κ4+κ6)x1x2
2

κ6(κ5+κ2x2)(κ5κ6+κ2(κ4+κ6)x2)
. Hence the network coincides in struc-

ture with the network in (89), but has different kinetic rates.

8.3 second method

The second method is inspired by another form of approximation adopted in enzyme
kinetics, the rapid equilibrium approximation. For the reaction network in (71), for
instance, one assumes that the enzyme, substrate and enzyme-substrate complex are at
equilibrium, so that an expression of the form xES = κ1

κ2
xExS can be written for the con-

centration of xES . The equation is then used in combination with the conservation law
xE + xES = E0 and the concentration of ES is eliminated. For a complete description
of the assumptions we refer the reader to [Seg75, CB14, HS12].
For this method, we assume that we are given a complex z ∈ Nn−1, and for the

concentration of the species Xn an expression of the form

xn = ψ(x′), ψ : Ω′ → R≥0, Rn−1
>0 ⊆ Ω′ ⊆ Rn−1

≥0 . (90)

We consider the reduced system of ODEs on x′ obtained from (70) by substituting xn
with ψ(x′), and adjusting the stoichiometric coefficients with z as follows:

dx′

dt
=

∑
i→j∈R

Kij(x′,ψ(x′))(π(yj) + yjnz − π(yi)− yinz). (91)

Algorithm 3: Elimination of the intermediate species Xn that replaces Xn with the
complex z.
Data: A chemical reaction system N = (C,R, y,K),
Xn intermediate species,
a complex z ∈Nn, and a function ψ : Ω′ → R≥0.
R̃ = ∅
foreach i→ j ∈ R do

c = π(yi) + yinz
c′ = π(yj) + yjnz
if c 6= c′ then

add reaction with reactant c and product c′ to R̃, with rate function
Kij(x′,ψ(x′))

end
end

The following proposition is straightforward from equation (91) and Algorithm 3.
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8.3 second method

Proposition 8.3.1. The system of ODEs in (91) is the dynamics associated to the
chemical reaction system identified by Algorithm 3.

Consider the network in (71), and the application of Algorithm 3 on the intermediate
species ES, with z = S + E and ψ(x′) = κ1

κ2
xExS . We obtain the reaction S + E →

P +E with rate κ2κ3
κ1

xSxE , and the associated system of ODEs

dxS
dt

= −κ1κ3
κ2

xExS ,

dxE
dt

= 0,

dxP
dt

= +
κ1κ3
κ2

xExS .

(92)

To find a rate of the form in (72) we need to consider the use of conservation laws
(see the next section).

Lemma 8.3.2. Consider a chemical reaction network (C,R, y) and an intermediate
linear set of non-interacting species I = {Xn−k+1, . . . ,Xn}. Suppose that the interme-
diate species Xn is eliminated using Algorithm 3, with z that satisfies

∑n−1
i=n−k+1 zj = 1,

and ψ of the form ψ(x′) = ϕ(x1, . . . ,xn−k)xz for some ϕ : Ω′ → R≥0, with Rn−k−1
>0 ⊆

Ω′ ⊆ Rn−k−1
≥0 . Then the set J = {Xn−k+1, . . . ,Xn−1} is an intermediate linear set of

non-interacting species for the reduced network.
In addition, if the vector v =

∑n
i=n−k ei ∈ Rn is in Γ⊥, then πn−h(v) ∈ (Γ′)⊥, where

Γ′ is the stoichiometric matrix of the reduced network.

Proof. Each complex in the reduced network is of the form w = π(yi) + yinz for some
complex i ∈ C. Therefore if yin = 0,

∑n−1
j=n−k+1wj =

∑n−1
j=n−k+1 y

i
j ≤ 1, and if yin = 1,

we have
∑n−1
j=n−k+1wj =

∑n−1
i=n−k+1 zj ≤ 1.

Call h the index such that zh = 1. Consider a reaction r in the reduced network,
obtained from the reaction i → j ∈ R. If yin = 0, then the reaction rate of r coincides
with the rate of i→ j. Otherwise, the rate of r is of the form xhψ(x′)Kij(x′). In both
cases, the rate satisfies the conditions of Definition 8.2.5
The graph R̃J is obtained from the graph RI by identifying the nodes Xn and Xh;

therefore all connected components of R̃J are strongly connected.
For the last statement, observe that the reaction vectors of the reduced network are

of the form w = π(yj − yi) + (yjn − yin)z, hence π(v)tw = π(v)tπ(yj − yi) + (yjn −
yin)π(v)

tz = −(yjn − yin) + (yjn − yin) = 0.

Example 8.3.3. Consider the following network, called a non-competitive inhibition
scheme in [Seg75]:

S +E ES P +E, I +E Ei,

S +Ei ESi ES + I.

κ1

κ2

κ3 κ4

κ5
κ6

κ7

κ8

κ9

Consider the expression ψ(x′) = κ4
κ5
xExI for the species Ei obtained by assuming equi-

librium for the association-dissociation reactions for E and I, and take z = E+ I. Using
Algorithm 3 we find the reduced network

S +E ES P +E, S +E + I ESi ES + I.κ1

κ2

κ3

κ4κ6
κ5

κ7

κ8

κ9
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Similarly, consider the same procedure for species ESi, replaced by I +ES with ψ(x′) =
κ9
κ8
xESxI , we find the network

S +E ES P +E, S +E + I ES + I.κ1

κ2

κ3

κ4κ6
κ5
κ7κ9
κ8

Finally, removing ES using z = E + S and ψ(x′) = κ1
κ2
xExS (found by assuming the

equilibrium of the first two reactions) we obtain one reaction:

S +E P +E.
κ1κ3
κ2 (93)

8.4 conservation laws

The elimination of the enzyme using the conservation law can be seen as a special case
of Algorithm 3. To see how conservation laws can be used to derive enzyme kinetic
rates, consider the scheme in equation (71) again. The equation

xE + xES = E0 (94)

is a conservation law for the network. The two elimination methods of the previous
sections use expressions for xES (xES = κ1

κ2+κ3
xExS or xES = κ1

κ2
xSxE). Inserting

these expression in (94), we find xE + κ1
κ2+κ3

xExS = E0 or xE + κ1
κ2
xSxE = E0. Both

equations can be used to find an expression for xE in terms of the remaining species. We
can then apply Algorithm 3 with ψ(x′) = (κ2+κ3)E0

κ2+κ3+κ1xS
or ψ(x′) = κ2E0

κ2+κ1xS
, and z = ∅.

The reduced network we find consists of the single reaction S → P , with rate function
κ3E0xS
κ2+κ3
κ1

+xS
or κ3E0xS

κ2
κ1

+xS
. Both rates are of the form in (72).

Let us describe a setting that allows for the application of the procedure just illus-
trated. Suppose that Xn−k, . . . ,Xn are an intermediate linear set of non-interacting
species, and that

∑n
i=n−k xi = T is a conservation law for the network, i.e. the vector

v =
∑n
i=n−k ei ∈ Rn is in Γ⊥. Suppose that the species Xn−k+1, . . . ,Xn are eliminated

using Algorithm 1 under the hypotheses of Lemma 8.2.6, or Algorithm 3 under the hy-
potheses of Lemma 8.3.2. Using the expressions obtained for xn−k+1, . . . ,xn to replace
these concentrations in the conservation law

∑n
i=n−k xi = T , we can derive an expression

for xn−k in terms of the remaining variables. Then, we can apply Algorithm 3 using
this expression and z = ∅. We conclude the chapter with some examples that illustrate
the procedure just described.
Example 8.4.1. Reconsider the network in examples 8.1.2 and 8.2.3. The equation
xE + xEA + xEAB = E0 is a conservation law for the original network. Replacing
xEAB and xEA using xEAB = κ3

κ4+κ5
xBxEA and xEA = κ1(κ4+κ5)xAxE

κ2(κ4+κ5)+κ3κ5xB
, we can write

xE = (κ2(κ4+κ5)+κ3κ5xB)E0
κ2(κ4+κ5)+κ3κ5xB+κ1(κ4+κ5)xA+κ1κ3xAxB

. Proceeding as in Algorithm 3 with z = ∅
on the reaction network in (84), we find the reaction A+B → P with rate

κ5E0xAxB
κ2

κ4+κ5
κ1κ3

+ κ5
κ1
xB + κ4+κ5

κ3
xA + xAxB

.

Example 8.4.2. The non-competitive inhibition scheme in Example 8.3.3 admits the
conservation law xE + xES + xESi + xEi = E0. Replacing xEi , xESi and xES with the
expressions considered in Example 8.3.3 we obtain xE + (1+ κ9

κ8
xI)

κ1
κ2
xExS +

κ4
κ5
xExI =

E0, which we can use to write an expression for xE in terms of xI , xS and the kinetic
parameters. Eliminating E in (93), we find the reaction S → P with rate

κ1κ3
κ2

E0xS

1 + κ4
κ5
xI +

κ1
κ2
xS +

κ1κ9
κ2κ8

xIxS
.
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Example 8.4.3. Consider a classical reversible two-substrate, two-product compulsory
order mechanism [CB14] (a similar mechanism is discussed in [SWF17], Example 12):

A+E EA, B +EA EAB P +EQ, EQ Q+E.κ1

κ2

κ3

κ4

κ5

κ6

κ7

κ8

Eliminating EAB using Algorithm 1 one obtains the mass action network

A+E EA, B +EA P +EQ, EQ Q+E.κ1

κ2

κ3κ5
κ4+κ5
κ4κ5
κ4+κ5

κ7

κ8

After eliminating the intermediate species EA and EQ, the remaining reactions are

A+B +E 
 P +Q+E, (95)

with rates κ1κ3κ5κ7xAxBxE
κ2(κ4+κ5)κ7+(xBκ3κ7+xP κ2κ4)κ5

and κ2κ4κ5κ8xExP xQ
κ2(κ4+κ5)κ7+(xBκ3κ7+xP κ2κ4)κ5

.
Using the conservation law xE + xEA + xEQ + xEAB = E0 the network is reduced to

A+B 
 P +Q, with rates κ1κ3κ5κ7E0xAxB/d and κ2κ4κ5κ8E0xPxQ/d, with

d =κ1κ3κ5xAxBxP + κ1κ3(κ5 + κ7)xAxB + κ1κ4(κ5 + κ7)xAxP+

κ1κ5κ7xA + κ3κ5κ7xB + κ2κ4κ5xP + κ2(κ4 + κ5)κ8xQ+

κ3κ5κ8xBxPxQ + κ3κ5κ8xBxQ + (κ2 + κ4)κ5κ8xPxQ + κ2(κ4 + κ5)κ7.

Example 8.4.4. Consider the following reversible two-substrate, two-product random
order mechanism [CB14]

A+E EA, B +EA Q+EP , EP P +E,

EAB

B +E EB, A+EB P +EQ, EQ Q+E.

κ1

κ2 κ3

κ6

κ7

κ8

κ4

κ5

κ12

κ13

κ9

κ10

κ11

κ14 κ15

κ16

Assumption of equilibrium for the association-dissociation reactions A+E 
 EA, B +
E 
 EB, P + E 
 EP and Q + E 
 EQ gives the expressions xEA = κ1

κ2
xAxE ,

xEB = κ9
κ10
xBxE , xEP = κ8

κ7
xPxE , xEQ = κ16

κ15
xQxE . After replacing EA, EB, EP and

EQ with E +A, E +B, E + P , E +Q respectively, the network reduces to

A+B +E EAB E + P +Q.
k1k3k10+k2k9k11

k2k10

κ4+κ12

κ5+κ13

k7k14k16+k5k8k15
k7k15

Using Algorithm 1 on the species EAB and the conservation law xE + xEA + xEP +
xEP + xEQ + xEAB = E0 we find the network A+B 
 P +Q with rates Vf

κiAκ
m
B d

and
Vr

κmP κ
i
Qd

, where Vf = (κ5 + κ13)E0, Vr = (κ4 + κ12)E0, d = 1 + xA
κiA

+ xB
κiB

+ xP
κiP

+
xQ
κiQ

+

xAxB
κiAκ

m
B

+
xP xQ
κmP κ

i
Q

, κiA = κ2
κ1
, κiB = κ10

κ9
, κiP = κ7

κ8
, κiQ = κ15

κ16
, κmB =, κmB = κ1κ10(κ4+κ5+κ12+κ13)

k1k3k10+k2k9k11
.

κmP = κ7κ16(κ4+κ5+κ12+κ13)
k7k14k16+k5k8k15

.
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9
NETWORK TRANSLATION AND STEADY STATE PROPERTIES

In this chapter we discuss weakly reversible generalised mass action realisations of chem-
ical reaction networks, identified using translations of reactions. Given a mass action
system on a chemical reaction network, we might want to determine whether the sys-
tem admits complex balancing steady states or if the steady states admit a binomial
parametrisation. Whether a mass action system admits complex balancing steady states
depends on the decomposition YAκxY of the steady state equations determined by the
network structure, and complex balancing steady states cannot exist if the network is
not in weakly reversible form. Recall that a graph of complexes is weakly reversible if
every reaction belongs to at least one cycle. A cycle in the graph of complexes identifies
a vector in the kernel of the incidence matrix IR. If the system admits positive steady
states, then the kernel of the stoichiometric matrix Γ contains at least a positive vector
v; if the network is not weakly reversible, then v is not in the kernel of IR.

Consider for instance a network with three reactions

A+B 2C D+B,

D+E A+E.

r1 r2

r3
(96)

The kernel of the stoichiometric matrix for this network contains the vector v = (1, 1, 1);
this vector identifies a sequence of reactions r1, r2 and r3, which, when all executed, take
the system back to its original state. The reactions cannot be directly composed in the
graph of complexes (96), since the product of reaction r2 differs from the reactant of
reaction r3. To allow for the composition of r2 and r3, we can consider an additional
operation, which consists in adding some species to the reactant and product of reactions.
If we add the species E to reactions r1 and r2 and the species B to reaction r3, then we
obtain the following graph:

A+B +E 2C +E D+B +E.r1+E r2+E

r3+B

(97)

The vector (1, 1, 1) now identifies a cycle in the graph of complexes. We call the operation
of adding (or removing) species from the reactant and product of a reaction a translation
of the reaction.
Observe that if the graph structure of the network is changed using translation of

reactions, the stoichiometric structure of the network is unvaried. In addition, if we
assign each translated reaction with the reaction rate of the original reaction — using the
generalised mass action framework — we automatically obtain a dynamically equivalent
system.
Converting “hidden” cycles to cycles that are visible in the graph of complexes can not

only result in the identification of a weakly reversible realisation, but also of a realisation
with a lower deficiency. For example, the network in (96) has deficiency one, whereas
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network translation and steady state properties

the network in (97) has deficiency zero. The following is a biological example to which
the procedure just described applies.

Example 9.0.1. Consider the classical futile cycle reaction scheme with set of species
S = {S,P ,E,F ,SE,PF}, defined by the reactions

S +E SE P +E,

P + F PF S + F .

r1

r2

r3

r4

r5

r6

(98)

This scheme and its multisite versions (see example 9.1.17) are of significant interest in
biology, and have been extensively studied under mass action and more general kinetics
assumptions (see for instance [AS08, WS08, MDSC12, Joh14] and references therein).
The network is not weakly reversible; however, the reactions r1, r3, r4 and r6 define a
cycle that is “visible” if r1 and r3 are translated by F , and r4 and r6 are translated by
E. Considering a mass action system on (98) with kinetic parameters κ1, . . . ,κ6, we can
define the generalised mass action network�

�
�


S +E + F
(S +E)

�
�

�


SE + F
(SE)

�
�

�


PF +E
(PF )

�
�

�


P +E + F
(P + F )

.

κ1

κ2

κ3κ6

κ5

κ4

This is the generalised mass action version presented in [Joh14]. Since the deficiency
and kinetic deficiency for this network are both equal to zero, by Theorem 7.4.3 the
steady states are parametrised by binomials, for any assignment of kinetic parameters.

The procedure sketched above suggests considering vectors in the cone ker(Γ) ∩Rm
≥0

and changing the decomposition of Γ = YIR so that the vectors belongs to ker(IR). For
a fixed order of the reactions, imposing that the translation converts a flux to a cycle
amounts to writing a linear system for the stoichiometric coefficients of the translation
complexes (see Lemma 9.1.10). As previously mentioned, the definition of complex
balancing steady states will depend on the decomposition identified. For instance, we
could use a single flux involving all reactions (see Chapter 10), and study complex
balancing steady states for which all the reactant complexes of the original network
have robust ratios.
The identification of a structure with deficiency zero is particularly useful, since under

this condition all the steady states are complex balancing. In Chapter 10, we write a
mixed-integer linear program, with the objective of maximising the number of generators
that are converted to cycles. In several biological examples, this approach allows to
identify a realisation with lower deficiency.
Other realisations can be identified by considering multiple translations per reaction,

or by rescaling reaction vectors. Consider for instance the network

2A 2B, B A.r1 r2

We can find a weakly reversible structure using r2 twice, once translated by B and once
by A:

2A 2B A+B,r1 r2+B

r2+A
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9.1 translated chemical reaction networks

or by dividing the stoichiometric coefficients of the reactant and product of reaction r1
by 2:

A B.r1

r2

In both cases, the kinetic parameters need to be defined appropriately to obtain a
dynamically equivalent system.
In this chapter, we will limit the translations we consider to a single translation

per reaction. Since the reaction rates of translated reactions are determined by the
original reactant rather then the new stoichiometric reactant, it will be useful to define
an intermediate structure, which we call kinetic graph, that allows for the assignment
of kinetic complexes to reactions. We identify a recurring scheme that allows for a
deficiency zero kinetic graph to be defined, and we will see how deficiency zero kinetic
graphs can sometimes be used to determine robust ratios.
The definition of translation considered in the following will be slightly different from

the formalisation used in [Joh14, Joh15] and [TJ17], due to the different definition of
generalised mass action network adopted here, which allows for more flexibility in the
assignment of stoichiometric and kinetic complexes (see Remark 9.1.7 for a comparison
between the two definitions).

9.1 translated chemical reaction networks

Given a chemical reaction network (C,R, y), we call a translation scheme a map T : R →
Zn that satisfies y(i) + T (i, j) ≥ 0 and y(j) + T (i, j) ≥ 0 for all (i, j) ∈ R. We say
that T assigns translation complexes to reactions. Here we use the term complex in
a generalised sense, since we allow for translations by negative vectors, as long as the
resulting reactant and product vectors are positive. A translation scheme associates
reactions to reactions in a generalised reaction network in the following way:

yi
r−→ yj (+T (r)) =⇒

�
�

�


yi + T (r)
(yi)

r+T (r)−→

�
�

�


yj + T (r)
(−) , (99)

that is, if we translate a reaction by T (r), the source complex y becomes the kinetic
complex associated to the stoichiometric complex yi+ T (r), which reacts to the product
complex yj + T (r).

Since we want to define the rate of the reaction r+ T (r) using the reactant of r, it is
convenient to introduce another structure, that allows for the kinetic complexes to be
assigned to reactions, rather than nodes.

Definition 9.1.1. A kinetic graph G = (C,R, y, z) on the set of species S is a (multi)-
directed graph with set of nodes C = {1, . . . , c} and set of edges R, without loops,
together with an injective map y : C →Nn and a map z : R →Nn.

The definition of kinetic graph is a generalisation of the definition of chemical reaction
network, where parallel edges are allowed, and reactions are labelled with complexes.
Given an assignment of kinetic parameters κ on a kinetic graph G, we associate a system
of differential equations to (G,κ) as follows:

dx
dt

=
∑

i→j∈R
κij(y

j − yi) xz(i,j).

Definition 9.1.2. Given a reaction network N = (C,R, y) and a translation scheme
T : R → Zn, we call kinetic translation graph obtained from N under the translation T

104



9.1 translated chemical reaction networks

the kinetic graph obtained by replacing each reaction r ∈ R with its translation r+T (r),
setting, for r = (i, j) ∈ R, z(r + T (r)) = y(i), and identifying nodes with the same
stoichiometric complex.

An assignment of kinetic parameters κ on N directly defines an assignment of kinetic
parameters on a kinetic translation graph T (N ). We will draw a kinetic graph as a
chemical reaction network with edges labelled by monomials (which include the kinetic
parameters if an assignment of kinetic parameters is given).

Example 9.1.3. Consider the chemical reaction network

A B A+B 2B,r1

r2

r3 (100)

and the translation scheme

T (r1) = T (r2) = ∅, T (r3) = −B.

The scheme identifies the kinetic graph

A B.
xA

xAxB

xB
(101)

Definition 9.1.4. We say that a kinetic graph G = (C,R, y, z) has a conflict at a node
i ∈ C or at a complex y(i) if there are two reactions i → j and i → j′ in R such that
z(i, j) 6= z(i, j′).

We can say therefore that the kinetic graph in (101) has a conflict at A.

From kinetic graphs to generalised chemical reaction networks

The ultimate goal of the translation process is to identify a generalised chemical reaction
network that is dynamically equivalent to the original network. To this end, we consider
the following structures associated to a kinetic graph G = (C,R, y, z).

• The network N ′(G) is the chemical reaction network obtained by ignoring the as-
signment of kinetic complexes to reactions z and by merging the parallel edges. We
define the stoichiometric matrix and stoichiometric subspace, incidence matrix and
deficiency of the kinetic graph using the respective definitions for the underlying
chemical reaction network N ′(G).

• We define generalised reaction networks Ñ (G) = (C̃, R̃, ỹ, ỹκ) as follows: for each
node i, create one node i′ for each complex c ∈ {z(i, j) | i → j ∈ R}, setting
ỹ(i′) = y(i), ỹk(i′) = c. Then, for each reaction r = (i, j) ∈ R, consider an edge
r′ = (i′, j′) with ỹ(i′) = y(i), ỹk(i′) = z(i) and ỹ(j′) = y(j). In general, there
might be more than one possible choice for j′. In addition, if the kinetic graph is
weakly reversible, we can define a weakly reversible generalised reaction network by
adding reactions between each pair of nodes with the same stoichiometric complex.

• Given an assignment of kinetic parameters κ to G, it will not be possible, in general,
to define a dynamically equivalent mass action system on N (G). However, we
can define a dynamically equivalent generalised mass action system on Ñ (G) by
setting κ(r′) = κ(r). If additional reactions have been added between nodes with
the same stoichiometric coefficients, then we can assign them with an arbitrary
kinetic parameter.
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9.1 translated chemical reaction networks

Example 9.1.5. Reconsider the network in example 9.1.3. A weakly reversible gener-
alised reaction network associated to the kinetic graph (101) is�

�
�


A
(A)

�
�

�


B
(B)

�
�

�


A
(A+B)

.

r′4

r′1

r′2

r′5 r′3
(102)

If κ = (κ1,κ2,κ3) is an assignment of kinetic parameters for the network in (100), we can
define a dynamically equivalent generalised mass action system on (102) by assigning
the parameter κi to r′i, i = 1, 2, 3, and arbitrary kinetic parameters to r′4 and r′5.

The following proposition is a direct consequence of the definition of kinetic translation
graph and Theorem 7.4.3.

Proposition 9.1.6. Consider a mass action systemM on a chemical reaction network
N . Suppose that N admits a weakly reversible translation kinetic graph with no conflicts,
and deficiency and kinetic deficiency equal to zero. Then all the steady states associated
toM are complex balancing.

If a deficiency zero kinetic graph has conflicts, then the associated generalised mass
action networks will have positive deficiency. If a deficiency zero kinetic graph G has only
one conflict at i given by exactly two reactions i→ j and i→ j′, then we can associate to
G a generalised mass action network with deficiency one: the number of linkage classes
of the generalised network and the rank are unvaried, whereas the number of complexes
increases by one. In this case we can apply Theorem 7.5.7 to identify robust ratios.

Remark 9.1.7. The approach to the definition of translated reaction network we de-
scribe here differs slightly from the approach in [Joh14, Joh15, TJ17]. Both definitions
only consider one translation for each reaction in the chemical reaction network. The
following are differences between the approaches:

• Kinetic graphs are not considered in [Joh14, Joh15, TJ17], where translations are
defined directly as generalised reaction networks.

• In [Joh14, Joh15, TJ17], reactions with the same reactant are translated to reac-
tions with the same reactant. This allows to avoid the assignment of the same
kinetic complex to different stoichiometric complexes, requirement that we drop
in this work.

Identification of kinetic translation graphs

In this section, we give some sufficient conditions for the existence of deficiency zero
kinetic translation graphs, and some examples. We first need some preliminary lemmas.

Lemma 9.1.8. Consider a chemical reaction network with m reactions, deficiency
δ, and a set of generating elementary modes w1, . . . ,wd such that ∪di=1supp(wi) =
{1, . . . ,m}. Suppose that the network has d′ stoichiometric elementary modes. Then
δ ≤ d′.

Proof. Suppose that w1, . . . ,wd′ are stoichiometric elementary modes, and define vi =
IRwi, i = 1, . . . , d′. Consider a vector v ∈ ker(Y)∩ Im(IR) and write v = IRu. We show
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9.1 translated chemical reaction networks

that v is a linear combination of the vi. By hypothesis, there exists a positive vector
w =

∑d
i=1 αiw

i ∈ Rm
>0 such that Γw = 0, αi ≥ 0, i = 1, . . . , d. Then, for any α ∈ R>0

the vector u + αw is in ker(Γ), and, for α > 0 sufficiently large, z = u + αw > 0.
Then z writes as z =

∑d
i=1 βiw

i for some βi ≥ 0, and v = IRu = IR(z − αw) =
IR(

∑d
i=1(βi − ααi)wi) =

∑d′
i=1(βi − ααi)(IRwi), which concludes the proof.

To see that the δ can be strictly smaller than d′, consider for instance the network

2A A+B 2B.r1 r3

r2 r4

The deficiency of the network is equal to one, and the network admits two stoichiometric
elementary modes with support {1, 4} and {2, 3}.

Corollary 9.1.9. Suppose that a chemical reaction network is weakly reversible and
does not admit any stoichiometric elementary mode. Then the network has deficiency
zero.

Lemma 9.1.10. Let N be a chemical reaction network. Suppose that w ∈Nm is a flux
for N with support on I, and that wi = 1 for all i ∈ I. Then there exists a translation
scheme T for the network N such that the resulting kinetic graph admits a cycle with
support on I.

Proof. Write {r1, . . . , rk} for the reactions identified by the support of w. We have that∑
θ=1,...,k
rθ=(i,j)

yi =
∑

θ=1,...,k
rθ=(i,j)

yj . (103)

Consider, for r1, . . . , rk, the translation complexes defined as

T (rh) =
∑

θ=1,...,h−1
rθ=(i,j)

yj +
∑

θ=h+1,...,k
rθ=(i,j)

yi, h = 1, . . . , k.

With this translation scheme, the product of reaction rh + T (rh) is∑
θ=1,...,h
rθ=(i,j)

yj +
∑

θ=h+1,...,k
rθ=(i,j)

yi

which coincides with the reactant of rh+1 + T (rh+1), for h < k, and with the reactant of
r1 +T (r1) for h = k, as a consequence of (103). Hence the reactions r1 +T (r1), . . . , rk+
T (rk) define a cycle.

Remark 9.1.11. The translation for reaction rh consists of all the products of the
reactions preceding rh, plus all the reactants of the reactions following rh. Consider the
complex υ with entries

υl = min
1≤θ≤k

 ∑
η=1,...,θ−1
rη=(i,j)

yjl +
∑

η=θ+1,...,k
rη=(i,j)

yil

 .

If the reactions rh + T (rh), h = 1, . . . , k, are further translated by the complex −υ, the
result is still a cycle with complexes with nonnegative stoichiometric coefficients.

Remark 9.1.12. The translation schemes identified in Lemma 9.1.10 and Remark 9.1.11
depend on the order chosen for the reactions in the support of the elementary mode w.
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9.1 translated chemical reaction networks

Proposition 9.1.13. Consider a chemical reaction network N = (C,R, y) with m
reactions and generating elementary modes w1, . . . ,wd that satisfy ∪dh=1supp(wh) =
{1, . . . ,m} and whi = 1 for all i such that whi 6= 0, h = 1, . . . ,h. Suppose that one ele-
mentary mode is stoichiometric and the others are 2-cycles. Then N admits a deficiency
zero weakly reversible kinetic translation graph.

Proof. Write I for the support of the stoichiometric elementary mode w. By Lemma 9.1.10,
there exists a translation scheme that converts w to a cycle. This defines a translation
complex T (ri) for all i ∈ I. For any 2-cycle with support on reactions ri and rj , define
a translation as follows: if i, j /∈ I, set T (ri) = T (rj) = ∅; if i ∈ I and j /∈ I, define
T (rj) = T (ri) (since the elementary modes are vectors with minimal support, we cannot
have i ∈ I and j ∈ I).
Call Γ the stoichiometric matrix of N , and I the incidence matrix of T (N ). Then

Γ decomposes as YI for some matrix Y, and wi is in the kernel of I, for i = 1, . . . , d.
Since the stoichiometric matrix and incidence matrix of the network N ′(T (N )) are
obtained from Γ and I by eliminating some duplicate columns, the reaction network
N ′(T (N )) admits only cyclic elementary modes. Therefore, by Corollary 9.1.9, the
kinetic translation graph T (N ) has deficiency zero. In addition, since the cycles cover
all reactions, T (N ) is weakly reversible.

Notice that if w1, . . . ,wd are generating elementary modes of a network, then the
condition ∪di=1supp(wi) = {1, . . . ,m} is necessary for the existence of positive steady
states for any associated mass action system.
Proposition 9.1.13 applies for instance to the futile cycle network in Example 9.0.1.
If a network N admits a direct decomposition in subnetworks N1, . . . ,Nk, then each

equilibrium for N is an equilibrium for Ni, i = 1, . . . , k. As a consequence, some
properties that hold for the steady states of a subnetwork, such as robustness, necessarily
hold for the steady states of the full network [SF10]. In particular, one can apply
Proposition 9.1.13 to the subnetworks in a direct decomposition and derive properties
of the steady states of the full network.

Example 9.1.14. In the statement of Proposition 9.1.13, the requirement that the
cycles are all of length 2 is necessary. Consider the network

A+B B +C C D

B +D.

r1 r2 r3

r4

r5

The cycle with support {1, 2, 3, 4} and the stoichiometric elementary mode with sup-
port {1, 3, 5} are generators of the cone 52. The translation scheme of the proposition
identified by the stoichiometric elementary mode with the order {1, 3, 5} is such that
B +C + T (r1) = C + T (r3); but any such translation scheme would convert the cycle
{1, 2, 3, 4} into a stoichiometric mode. The same happens if we consider the alternative
order {1, 5, 3}.

The translation of Proposition 9.1.13 identifies a deficiency zero kinetic graph, but
not necessarily a deficiency zero generalised reaction network. For example, the network
in (100) has one stoichiometric elementary mode with support {2, 3} and one elementary
mode which is a 2-cycle with support {1, 2}. The kinetic graph (101) identified by
the translation in (9.1.3) has deficiency zero, whereas the generalised reaction network
in (102) has deficiency 3− 1− 1 = 1.
The stoichiometric subspace of the generalised reaction network identified by Propo-

sition 9.1.13 coincides with the stoichiometric subspace of the original reaction network
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9.1 translated chemical reaction networks

N , whereas the kinetic-order subspace is generated by the differences between reactant
complexes of N that are translated to the same linkage class. In the following examples
we apply Proposition 9.1.13.

Example 9.1.15. Consider the chemical reaction network

B +C

A+B 2C

A+C.

r1
r2

r3

(104)

This network has only one elementary mode e1 + e2 + e3. We proceed as described
in Remark 9.1.11 for the reactions r1, r2, r3 in this order, and identify the translation
scheme T (r1) = C, T (r2) = C, T (r3) = B. This defines the generalised chemical
reaction network �

�
�


A+B +C
(A+B)

�
�

�


3C
(2C)

�
�

�


B + 2C
(2C) .r1+C r2+C

r3+B

(105)

The kinetic-order subspace is generated by (−1,−1, 2)t and has dimension 1, hence the
kinetic deficiency is 3− 1− 1 = 1.

Consider an assignment of kinetic parameters κ1,κ2,κ3 on (104) and (105). Since the
network in (105) has deficiency zero, all positive steady states are complex balancing.
Theorem 7.4.3 provides us with conditions that the kinetic parameters must satisfy for
the existence of positive steady states. We have

Yκ =

∣∣∣∣∣∣∣
1 0 0
1 0 0
0 2 2

∣∣∣∣∣∣∣ , IE =

∣∣∣∣∣∣∣
−1 0
1 −1
0 1

∣∣∣∣∣∣∣ .
We find C = | 0 1 |t and the condition for the existence of complex balancing equilibria
κ2 = κ3.

Example 9.1.16. We can illustrate the idea of Proposition 9.1.13 using the Envz-Ompr
model in Example 7.2.3. The network has only one stoichiometric elementary mode,
involving the reactions

X
r1−→ XT

r3−→ Xp,
Xp + Y

r4−→ XpY
r6−→ X + Yp,

XT + Yp
r7−→ XTYp

r9−→ XT + Y .

It is easy to see that by translating the reactions r1 and r3 by Y +XT , the reactions r4
and r6 by XT and the reactions r7 and r9 by X we find the cycle

X + Y +XT 2XT + Y Xp + Y +XT

XTYp +X X +XT + Yp XpY +XT

r1+Y +XT r3+Y +XT

r4+XTr9+X

r7+X r6+XT
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9.1 translated chemical reaction networks

We can also keep the existing cycles by translating the remaining reactions r2, r5 and
r8 by Y +XT , XT and X respectively, finding the graph

X + Y +XT 2XT + Y Xp + Y +XT

XTYp +X X +XT + Yp XpY +XT

r1+Y +XT

r2+Y +XT

r3+Y +XT

r4+XTr9+X

r8+X

r7+X r6+XT

r5+XT

The translation defines a weakly reversible kinetic graph without conflicts. Given an
assignment of kinetic parameters κ1, . . . ,κ9 defining a mass action system M, we can
define the generalised mass action system�

�
�


X + Y +XT
(X)

�
�

�


2XT + Y
(XT )

�
�

�


Xp + Y +XT
(Xp + Y )

�
�

�


XTYp +X
(XTYp)

�
�

�


X +XT + Yp
(XT + Yp)

�
�

�


XpY +XT
(XpY )

κ1

κ2

κ3

κ4κ9

κ8

κ7 κ6

κ5

which is dynamically equivalent to M. The deficiency and kinetic deficiency are both
zero, hence Proposition 9.1.6 applies. Theorem 7.5.6 also applies, so that M has a
robust ratio in all the reactant complexes of the original network. In particular,M has
ACR in species Yp, since the latter writes as the difference between the kinetic complexes
XT + Yp and XT . In addition, one can find the value of Yp at steady state by dividing
the tree constants associated to the nodes X +XT + Yp(XT + Yp) and 2XT + Y (XT ),
finding xYp =

κ3(κ8+κ9)
κ7κ9

.

Example 9.1.17. The multiple futile cycle or n-site phosphorylation network

S0 +E ES0 S1 +E, S1 + F FS1 S0 + F ,

...
...

Sn−1 +E ESn−1 Sn +E, Sn + F FSn Sn−1 + F .

κon0

κoff0

κcat0 lon0

loff0

lcat0

κonn−1

κoffn−1

κcatn−1 lonn−1

loffn−1

lcatn−1

(106)

admits, in the mass action case, a binomial parametrisation of the steady states [MDSC12,
Joh14]. Multistationarity is possible for n ≥ 2, and a technique for computing rate con-
stants that give rise to multistationarity is given in [MDSC12]. For results on the number
of steady states, see [WS08].
The reaction sets Ri = {Si +E 
 ESi → Si+1 +E,Si+1 + F 
 FSi+1 → Si + F},

for i = 0, . . . ,n− 1, define a direct decomposition of the network. Proposition 9.1.13 ap-
plies therefore to each subnetwork. The resulting translation graph defines a generalised
mass action network with deficiency and kinetic deficiency of zero:�
�

�


S0 +E + F
(S0 +E)

�
�

�


ES0 + F
(ES0)

�
�

�


FS1 +E
(FS1)

�
�

�


S1 +E + F
(S1 + F )

κon0

κoff0

κcat0lcat0

loff0

lon0

. . .

�
�

�


Sn−1 +E + F
(Sn−1 +E)

�
�

�


ESn−1 + F
(ESn−1)

�
�

�


FSn +E
(FSn)

�
�

�


Sn +E + F
(Sn + F )

κonn−1

κoffn−1

κcatn−1lcatn−1

loffn−1

lonn−1
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9.2 removing conflicts

As a consequence, by Theorem 7.4.3 all the steady states of the system are complex
balancing. To determine whether the system has the capacity for multiple complex
balancing equilibria, we can determine whether σ(S) ∩ σ(S⊥κ ) = {0} using Proposi-
tion 7.4.12. Since the number of species is 3(n+ 1) and the rank of S and Sκ equals 3n,
we need to calculate 2

(
3(n+1)

3n

)
determinants. For n = 1 we find that Proposition 7.4.10

applies and the system does not have the capacity for multiple complex balancing equi-
libria; for n = 2 instead Proposition 7.4.11 applies and there exists a mass action system
on (106) that admits more than one complex balancing equilibrium in a stoichiometric
compatibility class.

In this section, we have shown how it is possible to identify deficiency zero kinetic
translation graphs for some reaction networks. In Section 10.2, we will describe a compu-
tational method for the identification of kinetic translation graphs. In the next section,
we describe some results around the identification of binomial steady states and robust-
ness that rely on the identification of deficiency zero kinetic graphs.

9.2 removing conflicts

If a network admits a weakly reversible kinetic translation graph with deficiency zero
and no conflicts, then we can conclude that all the steady states are complex balancing,
and use Theorem 7.4.3 to write conditions on the kinetic parameters for the existence
of complex balancing steady states. If the kinetic graph has some conflicts, we can still
find a dynamically equivalent generalised mass action network with positive deficiency
and apply Theorem 7.4.3, with no guarantee, however, that all steady states are complex
balancing.
In this section, we discuss some conditions that allow us to “remove some conflicts”;

more specifically, the robustness of the kinetic complexes at the nodes with conflicts
allows us to find a generalised mass action system on a network with deficiency zero,
having the same positive steady states as the original mass action system.
We first need some new terminology. Consider a chemical reaction network N , and

an assignment of kinetic parameters κ defining a mass action system M on N . Let
G = (C,R, y, z) be a kinetic translation graph on N . For each i ∈ C, define Ji = {j ∈
C | i → j ∈ R}, and choose a map γ : C → C such that γ(i) ∈ Ji. Define a generalised
chemical reaction network Gγ as follows: set the complexes, reactions and stoichiometric
complexes to C, R and y respectively, and set yik = z(i, γ(i)) for all i ∈ C. We call Gγ a
resolved version of the kinetic graph G under γ, and we call the set of reactions

RI = {i→ j ∈ R | yiκ 6= z(i, γ(i))}

improperly translated reactions.

Proposition 9.2.1. Suppose that, for all i ∈ C and j ∈ Ji, the complexes z(i, γ(i)) and
z(i, j) have a robust ratio, and write αij for the value of xz(i,j)/xz(i,γ(i)) at positive steady
states. Consider the assignment κ′ of kinetic parameters on Gγ defined as κ′ij = αijκij

for j ∈ Ji defining a generalised mass action system M̃ on Gγ. Then all the positive
steady states associated toM are positive steady states for M̃.

Proof. The system of ODEs associated to (Gγ ,κ′) writes as

dx
dt

=
∑

i→j∈R
αijκij(y

j − yi)xz(i,γ(i)).
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9.2 removing conflicts

On the other hand, every positive steady state x ofM satisfies

0 =
∑

i→j∈R
κij(y

j − yi)xz(i,j) =
∑

i→j∈R
αijκij(y

j − yi)xz(i,γ(i)),

where we used xz(i,j)/xz(i,γ(i)) = αij .

Example 9.2.2. Consider the network N defined by

A+B B +C C +D E A+D 2A

B ∅ A D.

r1 r4 r5 r6

r2

r3

r7

The network has one cyclic elementary mode with support {2, 3} and two stoichiometric
elementary modes with support {1, 4, 5} and {6, 7}, and the sets R1 = {r1, r4, r5},
R2 = {r2, r3} and R3 = {r6, r7} define a direct decomposition for the network. By
applying Theorem 7.5.4 to the deficiency zero network N2 and Theorem 7.5.5 to the
deficiency one network N3 we find that the network has ACR in B and D. Then, if
κ is an assignment of kinetic parameters defining a mass action systemM on N , each
positive steady state x of M verifies xB

xD
= α for some α > 0 (it can be easily verified

that xB = κ3κ6
κ2κ7

xD).
Consider the translation scheme T (r1) = D−B, T (r2) = T (r3) = T (r4) = T (r5) =

T (r6) = ∅, T (r7) = A, giving the kinetic translation graph

B ∅ C +D E A+D 2A,
κ2xB

κ3

κ4xCxD κ5xE κ6xAxD

κ1xAxB
κ7xA

The graph has only one conflict at A+D. In addition, the complexes A+B and A+D
have a robust ratio. Consider resolving the conflict at A +D by setting the kinetic
complex to A + B. Applying Proposition 9.2.1 we find that all the positive steady
states ofM are positive steady states for the generalised mass action network�
�

�


B
(B)

�
�

�


∅
(∅)

�
�

�


C +D
(C +D)

�
�

�


E
(E)

�
�

�


A+D
(A+B)

�
�

�


2A
(A)

.κ2

κ3

κ4 κ4
κ2κ7
κ3

κ1
κ7

(107)
Since this network has deficiency zero, all its positive steady states are complex bal-
ancing. The kinetic deficiency is instead equal to 1. Using the procedure described in
Theorem 7.4.3, we can find a condition on the kinetic parameters for the existence of
complex balancing steady states, that is verified for any values of the kinetic parameters.
It follows thatM has positive binomial steady states. Notice, however, that not all the
positive steady states of the system associated to (Gγ ,κ′) are steady states forM. For
example, (xA,xB,xC ,xD,xE) = (κ2κ4

κ1κ3
, κ3
κ2

, κ6+1
κ7

, κ7
κ6+1 , κ4

κ5
) is a positive steady state for

(Gγ ,κ′), but is not a steady state forM.
Proposition 9.2.3. Under the hypotheses of Proposition 9.2.1, suppose that all the pos-
itive steady states of the system of ODEs associated to (Gγ ,κ′) satisfy xz(i,j)/xz(i,γ(i)) =
αij, for j ∈ Ji. Then the systems of ODEs associated toM and (Gγ ,κ′) have the same
positive steady states.
Proof. We need to show that a positive steady state x for (Gγ ,κ′) is a steady state for
M. By hypothesis, x satisfies

0 =
∑

i→j∈R
αijκij(y

j − yi)xz(i,γ(i)) =
∑

i→j∈R
κij(y

j − yi)xz(i,j),

as required.
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9.2 removing conflicts

Example 9.2.4. Reconsider the network in example 9.2.2, and this time resolve the
conflict at A+D by setting the kinetic complex to A+D. The resulting generalised
chemical reaction system is�
�

�


B
(B)

�
�

�


∅
(∅)

�
�

�


C +D
(C +D)

�
�

�


E
(E)

�
�

�


A+D
(A+D)

�
�

�


2A
(A)

.κ2

κ3

κ4 κ4 κ6

κ1
κ2κ7
κ3κ6

κ7

(108)
This weakly reversible network has deficiency and kinetic deficiency equal to zero. More-
over, it is easily verified that, at each positive steady state, xB = κ3

κ2
and xD = κ6

κ7
. As a

consequence, the equality xB
xD

= κ3κ6
κ2κ7

is verified for all positive steady states associated
to (108). If follows from Proposition 9.2.3 that the positive steady states associated to
M coincide with the positive steady states associated to (108).
We now describe a property that is sufficient to guarantee the hypothesis of Proposi-

tion 9.2.3, and which is a reformulation of the resolvability condition described in [Joh14]
and [TJ17]. The approach gives in particular a method for determining the robustness
of a ratio.
Proposition 9.2.5. Consider a chemical reaction network N , with a weakly reversible
deficiency zero kinetic translation graph G = (C,R, y, z), and resolved version Gγ =
(C,R, y, yκ) of G with set of improperly translated reactions RI . Write Lθ, θ = 1, . . . , l
for the linkage classes of Gγ, and Ki for the tree constants. Suppose that c, c′ ∈Nn verify
c− c′ =

∑l
θ=1

∑
i,j∈Lθ βij(y

i
κ − yjκ), and that the expression α =

∏l
θ=1

∏
i,j∈Lθ

(
Ki
Kj

)βij
does not depend on the kinetic rates of the reactions in RI . Then, for any mass action
system on N , each positive steady state x satisfies xc

xc′ = α.
Proof. Fix an assignment of kinetic parameters κ on N and a positive steady state x̄
for the associated system of ODEs. The system of ODEs associated to N and to G
writes as dx

dt =
∑
i→j∈R κij(y

j − yi)xz(i,j), whereas the system of ODEs associated to Gγ
is dx

dt =
∑
i→j∈R κ

′
ij(y

j − yi)xz(i,γ(i)).
Consider a labelling of the reactions of Gγ defined as follows: κ′ij = κij if i → j ∈
R \ RI , and κ′ij = κij

x̄z(i,j)
x̄z(i,γ(i)) if i → j ∈ RI . Then, the state x̄ is a positive steady

state for (Gγ ,κ′). Since the network is weakly reversible and has a deficiency of zero,

each positive steady state satisfies x̄y
i
k

x̄y
j
κ
= Ki

Kj
, for i and j in the same linkage class. By

hypothesis, we have x̄c
x̄c′ =

∏l
θ=1

∏
i,j∈Lθ

(
x̄y
i
k

x̄y
j
κ

)βij
= α, where α =

∏l
θ=1

∏
i,j∈Lθ

(
Ki
Kj

)βij
does not depend on x̄. This concludes the proof.

Proposition 9.2.6. Under the hypothesis of Proposition 9.2.5, for any generalised mass
action system on Gγ, each positive steady state x satisfies xc

xc′ = α.
Proof. Since the network has deficiency zero, for each positive steady state x the vector
xYk is in the kernel of Aκ. In particular, for i, j in the same linkage class we have
xyiκ
xy
j
κ
= Ki

Kj
. The conclusion follows.

The consequence of propositions 9.2.5 and 9.2.6 in terms of resolvability of conflicts
is the following: if a conflict exists at node i, and we can prove the robustness of the
complexes z(i, j), j ∈ Ji, using the condition described in Proposition 9.2.5, then we can
conclude that the original mass action system and the generalised mass action system
on the resolved network have the same positive steady states, using propositions 9.2.1
and 9.2.3. We summarise the result in the following theorem.
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9.2 removing conflicts

Theorem 9.2.7. Consider a mass action systemM on a chemical reaction network N ,
with a weakly reversible deficiency zero kinetic translation graph G = (C,R, y, z), and re-
solved version Gγ = (C,R, y, yκ) with set of improperly translated reactions RI . Suppose
that, for all i ∈ C and j ∈ Ji, the complexes z(i, j), z(i, γ(i)) verify z(i, j)− z(i, γ(i)) =∑l

θ=1
∑
h,k∈Lθ βhk(y

h
κ − ykκ), and that the expression αij =

∏l
θ=1

∏
h,k∈Lθ

(
Kh
Kk

)βhk does
not depend on the kinetic rates of the reactions in RI . Consider the assignment κ′ of
kinetic parameters on Gγ defined as κ′(i, j) = αijκij for j ∈ Ji defining a generalised
mass action system M̃ on Gγ. ThenM and M̃ have the same positive steady states.

We conclude the section with some examples.

Example 9.2.8. Reconsider the network in Examples 9.2.2 and 9.2.4. Consider first the
generalised reaction network in (108). In this case, the difference B−D can be written as
sum of differences of kinetic complexes in the same linkage class (B−∅)+ ((A+D)−A).
This guarantees the robustness of the ratio xB

xD
in the original mass action system and

the system on the resolved network.
In case of the generalised network in (107) instead, it is not possible to write B −D

as sum of differences of kinetic complexes in the same linkage class, so propositions 9.2.5
and 9.2.6 do not apply.

Example 9.2.9. Reconsider the deficiency 2 network considered in Example 7.2.4, with
an assignment of rate constants κ defining a mass action systemM. Using the transla-
tion scheme proposed in [Joh14]

XD
r1−⇀↽−
r2
X

r3−⇀↽−
r4
XT

r5−→ Xp, (+XD+XT + Y ),

Xp + Y
r6−⇀↽−
r7
XpY

r8−→ X + Yp, (+XD+XT ),

XT + Yp
r9−−⇀↽−−
r10

XTYp
r11−−→ XT + Y , (+XD+X),

XD+ Yp
r12−−⇀↽−−
r13

XDYp
r14−−→ XD+ Y , (+X +XT ),

(109)

one obtains the kinetic graph

2XD+XT + Y XD+X +XT + Y XD+ 2XT + Y

X +XT +XDYp XD+X +XTYp XD+XT +Xp + Y

XD+X +XT + Yp XD+XT +XpY

κ1xXD

κ2xX

κ3xX

κ4xXT
κ5xXTκ14xXDYp

κ13xXDYp

κ11xXTYp

κ10xXTYp κ6xXpxYκ12xXDxYp
κ9xXT xYp

κ8xXpY

κ7xXpY

(110)
The graph has deficiency zero and has a conflict atXD+X+XT +Yp. To find a weakly
reversible generalised chemical reaction network with positive steady states that coincide
with the positive steady states ofM using Theorem 9.2.7, we choose an assignment of
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9.2 removing conflicts

kinetic complex for the node with stoichiometric complex XD + X + XT + Yp, say
XT + Yp, and define the generalised mass action network�

�
�


2XD+XT + Y
(XD)

�
�

�


XD+X +XT + Y
(X)

�
�

�


XD+ 2XT + Y
(XT )

�
�

�


X +XT +XDYp
(XDYp)

�
�

�


XD+X +XTYp
(XTYp)

�
�

�


XD+XT +Xp + Y
(Xp + Y )

�
�

�


XD+X +XT + Yp
(XT + Yp)

�
�

�


XD+XT +XpY
(XpY )

κ1

κ2

κ3

κ4

κ5
κ14

κ13

κ11

κ10 κ6
κ′12

κ9

κ8

κ7

(111)
Reaction r12 is the only improperly translated reaction. To apply Theorem 9.2.7, we
observe that the difference between the kinetic complexes at the node with a conflict
XD + Yp and XT + Yp coincides with the difference between two kinetic complexes
XD and XT belonging to the same linkage class. Hence we just need to calculate the
tree constants associated to 2XD+XT + Y (XD) and XD+ 2XT + Y (XT ) and check
that their ratio does not depend on the kinetic parameter of the improperly translated
reaction κ′12. This is indeed the case: even though the tree constants depend on κ′12,
their ratio is given by

α =
κ2(κ4 + κ5)κ6κ8(κ9κ11(κ13 + κ14) + (κ10 + κ11)κ′12κ14)

κ1κ3κ6κ8(κ9κ11(κ13 + κ14) + (κ10 + κ11)κ′12κ14)
=
κ2(κ4 + κ5)

κ1κ3
. (112)

We can therefore define κ′12 = ακ12 and obtain a generalised mass action system with
the same positive steady states asM.

Since the network in (110) has deficiency and kinetic deficiency equal to zero, we
conclude by Theorem 7.4.3 that all the positive steady states of M̃ are complex balancing.
As a consequence, M has positive binomial steady states. In particular, the kinetic
complexes XT and XT +X have a robust ratio, thus confirming that the mass action
system M has ACR in species X. We can also determine the value of X at positive
steady states by dividing the tree constants associated to XD+X +XT +Yp(XT +Yp)
and XD+ 2XT + Y (XT ), finding

xYp =
κ5(κ10 + κ11)(κ13 + κ14)

κ9κ11(κ13 + κ14) + (κ10 + κ11)κ′12κ14

=
κ1κ3κ5(κ10 + κ11)(κ13 + κ14)

κ1κ3κ9κ11(κ13 + κ14) + κ2(κ4 + κ5)(κ10 + κ11)κ12κ14
.

Example 9.2.10. Consider the following network

A B C,

2C B +C,

A+C D 2A.

r1 r2

r3

r4
r5

r6

(113)
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9.2 removing conflicts

with an assignment of kinetic parameters κ. The network is not weakly reversible and
has deficiency two. One can identify (for instance using the algorithm described in
Section 10.2) the following dynamically equivalent kinetic graph:

2A A+B

D A+C

κ1xA

κ2xBκ6xD

κ5xD

κ3x2
C

κ4xAxC

(114)

The kinetic graph has deficiency zero, but has a conflict at A+C. We can define there-
fore a dynamically equivalent deficiency one generalised mass action network network
as follows: �

�
�


2A
(A)

�
�

�


A+B
(B)

�
�

�


A+C
(2C)

�
�

�


D
(D)

�
�

�


A+C
(A+C)

κ1 κ2

κ3x2
C

κ7
κ6

κ5
κ4

(115)

Consider the network without the dashed arrow. Since the network has deficiency one,
we can apply Theorem 7.5.7 and conclude that every mass action system on (113) has a
robust ratio in each pair of non-terminal kinetic complexes {A+C,D,A}. In particular,
the network has ACR in species C. To calculate the value taken by xC at each positive
steady state, we can consider a resolved version of the kinetic graph in (114), or we can
use the network in (115) directly. In both cases, we find the tree constants associated
to A+C(A+C) and 2A(A) and divide them, finding xC = κ1(κ5+κ6)

κ4κ6
. In addition, the

network in (115) with the dashed arrow is weakly reversible, and has kinetic deficiency
zero. We conclude using Theorem 7.4.3 that every mass action system on (115) admits
some complex balancing steady states.

In this chapter, we discussed an approach to the identification of deficiency zero
realisations for some classes of networks, which relies on an intermediate structure which
we called kinetic graph. We have seen that in some cases where the kinetic graph does
not directly identify a deficiency zero structure, some conclusions can still be drawn
by identification of robust ratios. In Chapter 10 we will present further methods for
constructing generalised mass action realisations.
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10
FROM MASS ACTION TO WEAKLY REVERS IBLE
GENERAL ISED MASS ACTION

A general goal in chemical reaction network theory is the identification of properties of
the dynamics of reaction networks from characteristics of the network structures. Dy-
namically equivalent networks, i.e., networks that admit the same associated system of
ODEs (also called realisations of the system of ODEs) can exhibit different structural
properties, such as different reversibility properties or different deficiency. The problem
of the identification of realisations of a given system of ODEs is also known as the in-
verse problem of chemical kinetics, and has been first considered in [HT81] for systems
of polynomial equations. Given a system of polynomial ODEs, a simple condition on the
signs of the monomials establishes whether the system is “kinetic”, i.e. whether it is the
system of ODEs associated to some chemical reaction system with mass action. Specif-
ically, the dynamics can be realised by a mass action kinetic system if each monomial
with a negative coefficient in the derivative of xi contains a power of xi. In [HT81], the
authors describe a “canonic mechanism” associated to a system of kinetic polynomial
differential equations that can be defined independently of the kinetic parameters. No
particular structural properties are guaranteed for the network.
Methods for the identification of mass action realisations with given structural prop-

erties have been later proposed. In [Sze10, SHP11], realisations with the minimal or
maximal number of reactions or complexes are computed using optimisation problems.
Constraints expressing the reversibility of the realisations are also considered. Con-
straints that ensure weak reversibility, linear conjugacy, minimal deficiency or the condi-
tions for the application of the Deficiency One Theorem are studied in [SHT12, JSS12,
JSS13, LSH14, Joh16]. Most of the optimisation problems considered in these works
rely on a choice for the rate constants. In [GHBS15], the authors consider more general
kinetics, and present a generalisation of the construction in [HT81] for the identification
of a reaction network from a system of rational ODEs.
In Chapter 7, we summarised some chemical reaction network theory results that hold

for weakly reversible generalised mass action systems, and we showed how some notable
mass action networks admit a weakly reversible generalised mass action realisation that
allow for kinetic-independent results to be applied. These results motivate the search
for more systematic methods for the identification of weakly reversible generalised mass
action realisations with low deficiency or kinetic deficiency.
The flexibility of the definition of generalised mass action allows for the existence of

many weakly reversible realisations for a given mass action system. In this chapter, we
start by giving some examples of constructions of weakly reversible generalised mass
action realisations that do not require the knowledge of the kinetic parameters. These
methods, however, do not provide us with the ability to control the deficiency of the
network. We then present an optimisation problem that aims at the identification of
deficiency zero translations of chemical reaction networks. The method is based on the
knowledge of the network elementary modes, and realises the objective first sketched
in [Joh14, Section 5.1]. We conclude the chapter by considering the application of
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10.1 generalised mass action realisations

the algorithm and of the results of Chapter 9 to two network models of the MAPK
signalling cascade. The analysis allows to compare the robustness properties of the
complex balancing steady states of the two models.

10.1 generalised mass action realisations

Reversible generalised mass action realisations

Any mass action system M = (C,R, y,κ) admits a reversible generalised mass action
realization with the original complexes as stoichiometric and kinetic complexes. Write
κ′ for an assignment of kinetic parameters on R. For each reaction (i, j) in R with
(j, i) /∈ R consider the pair of reactions�

�
�


yi

(yi)

κij+κ′ij−−−−−⇀↽−−−−−
κ′ij

�
�

�


yj

(yi)
.

These two reactions give the same contribution to the dynamics (59) as the reaction
yi

κij−−→ yj .

Example 10.1.1. We can write the network in (55) as reversible generalised mass action
network as �

�
�


A+B
(A+B)

κ1+κ′1−−−−⇀↽−−−−
κ′1

�
�

�


2B
(A+B)�

�
�


B
(B)

κ2+κ′2−−−−⇀↽−−−−
κ′2

�
�

�


A
(B)

.

This network has deficiency 1 and kinetic deficiency 2.

Reversible realisations with species and empty complex

Given a system of polynomial equations on x1, . . . ,xn, it is always possible to create
a reversible generalised mass action realization with stoichiometric complexes the set
{∅,X1, . . . ,Xn}. Suppose that the derivative of the concentration xh of species Xh is
given by the polynomial

k∑
i=1

αixy
i −

l∑
j=1

βjxz
j .

Then, for each monomial with positive coefficient we can consider a reaction of the form�
�

�


∅
(yi)

αi+α′i−−−−⇀↽−−−−
α′i

�
�

�


Xh

(yi)
,

for some α′i > 0, and for each monomial with negative coefficient a reaction of the form�
�

�


Xh

(zj)

βj+β′j−−−−⇀↽−−−−
β′j

�
�

�


∅
(zj)

,

for some β′j > 0.
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10.1 generalised mass action realisations

Example 10.1.2. For the network in (55), one can construct the reversible network�
�

�


A
(A+B)

κ1+κ′1−−−−⇀↽−−−−
κ′1

�
�

�


∅
(A+B)

κ2+κ′′1−−−−⇀↽−−−−
κ′′2

�
�

�


B
(A+B)�

�
�


B
(B)

κ2+κ′2−−−−⇀↽−−−−
κ′2

�
�

�


∅
(B)

κ2+κ′′2−−−−⇀↽−−−−
κ′′2

�
�

�


A
(B)

.

This network has deficiency 2 and kinetic deficiency 4.

Weakly reversible translations

In this section we show how a weakly reversible generalised mass action realisation of a
chemical reaction network can be defined using translations of reactions and rescaling
of reaction vectors.
Consider a mass action system M = (C,R, y,κ), and suppose that {w1, . . . ,wd} ⊂

Rm
≥0 is a set of fluxes for the network that satisfies ∪dh=1supp(wh) = {1, . . . ,m}. We

can use for instance a generating set of elementary modes, or a single flux vector with
support on all the reactions. Denote by Y the complex matrix ofM.

For each reaction rk, we will consider one reaction for each steady state flux it appears
in. For convenience, we denote these reactions r1

k, . . . , rdk, for k = 1, . . . ,m. However,
the reactions rhk corresponding to whk = 0 will be discarded.

• First, for each reaction rk : yi → yj , we define reactions r1
k, . . . , rdk by setting the

stoichiometric reactant of rhk to whkyi, the product to whkyj and the kinetic reactant
to yi.

• For each h = 1, . . . , d, since 0 =
∑m
k=1(y

j − yi)whk =
∑m
k=1(w

h
ky

j −whkyi), we can
apply Lemma 9.1.10 to find a translation scheme T h for the reactions rh1 , . . . , rhm,
so that they form a cycle.

• Finally, for each k = 1, . . . ,m we choose an index θk such that wθkk 6= 0. We assign
to each reaction rhk with h 6= i a new kinetic parameter, that we denote κhk , and
to rik the kinetic parameter of (κk −

∑
h6=θk w

h
kκ

h
k)/w

θk
k .

All reactions in the resulting generalised mass action system M̃ belong to a cycle, i.e.
the network is weakly reversible. In addition, since ∑

h=1,...,d
h6=θk

κhkw
h
k +

1
wθkk

(κk −
∑

h=1,...,d
h6=θk

whkκ
h
k)w

θk
k

 (yj − yi)xyi = κk(y
j − yi)xyi ,

the generalised mass action system M̃ is dynamically equivalent to M. Observe that
we can take Y to be the kinetic complex matrix of M̃, and that two kinetic complexes
are connected in the underlying graph if and only if they are reactant complexes for two
reactions that are in the support of a common flux.
Each tree constant is the product of all kinetic parameters of reactions in the cycle,

except one. If d = 1, then the deficiency of the network equals the number of reactions
minus the rank of the network minus one, whereas the kinetic deficiency equals the num-
ber of reactions minus one, minus the rank of the subspace generated by the differences
between all reactant complexes, and the δκ conditions for existence of complex balancing
steady states are binomial in the κ′s.
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10.2 milp framework for network translation

Example 10.1.3. Consider the mass action system

A+B 2B, 2A 2B, B A.κ1 κ2 κ3 (116)

which admits the generating set of elementary modes {(1, 0, 1)t, (0, 1, 2)t}. Following
the construction above, we find the following weakly reversible generalised mass action
system: �

�
�


A+B
(A+B)

κ1−⇀↽−
κ1

3

�
�

�


2B
(B)

κ3−κ
1
3

2−−−−⇀↽−−−−
κ2

�
�

�


2A
(2A) .

Example 10.1.4. Reconsider the Envz-Ompr network in examples 7.2.3 and 9.1.16.
The generalised mass action system identified using the procedure above on the elemen-
tary modes is�

�
�


X + Y +XT
(X)

�
�

�


2XT + Y
(XT )

�
�

�


Xp + Y +XT
(Xp + Y )

�
�

�


XTYp +X
(XTYp)

�
�

�


X +XT + Yp
(XT + Yp)

�
�

�


XpY +XT
(XpY )

κ1
1 κ3

κ1
4κ9

κ1
7 κ6

X XT

Xp + Y XpY

XT + Yp XTYp

κ1−κ1
1

κ2

κ4−κ1
4

κ5

κ7−κ1
7

κ8

We can use Theorem 7.4.3 to find conditions for the existence of complex balancing
steady states for this system. We find that the parameters κ1

1,κ1
4,κ1

7, can always be
chosen so that the system admits complex balancing steady states (κ1

1,κ1
4,κ1

7 should be
set to κ1κ3

κ2+κ3
, κ4κ6
κ5+κ6

, and κ7κ9
κ8+κ9

respectively).

10.2 milp framework for network translation

In this section we describe an algorithm for the identification of translations of reaction
networks. Given a chemical reaction network N with m reactions, the goal of the algo-
rithm is to identify translation complexes υ1, . . . , υm ∈ Zm, which define a translated
kinetic graph which has as low of a stoichiometric deficiency as possible. The observa-
tion behind the method, made in [Joh14, Remark 11], can be restated as follows. If the
deficiency of a network is zero, then every elementary mode is a cycle. If instead the
network has strictly positive deficiency, then it may possess a stoichiometric elementary
mode. To find a network with lower deficiency, we therefore attempt to convert stoichio-
metric elementary modes in the original network into cyclic elementary modes in the
translation.
The method described in this section applies to network that satisfy the following

hypotheses: the network admit a generating set of elementary modes {w1, . . . ,wd} such
that whi = 1 for all h = 1, . . . , d, i = 1, . . . ,m such that whi 6= 0. Under this hy-
pothesis, Lemma 9.1.10 suggests a technique for identifying the translation complexes
υ1, . . . , υm as solutions of a system of linear equations. Specifically, suppose that the
indices {j1, . . . , jk} ⊆ {1, . . . ,m} identify a stoichiometric elementary mode, and that
υ̂j1 , . . . , υ̂jk are translation complexes specific to this stoichiometric elementary mode
such that the reactions rj1 + υ̂j1 , . . . , rjk + υ̂jk form a cycle by Lemma 9.1.10. Then, to
guarantee that rj1 , . . . , rjk are translated to this cycle, we impose that

υj1i − υ̂
j1
i = υj2i − υ̂

j2
i = · · · = υjki − υ̂

jk
i , for i = 1, . . . ,n. (117)

The constraint set (117) only imposes that reactions in the stoichiometric elementary
mode identified by rj1 , . . . , rjk , are translated to a cycle. In general, we will have multiple
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10.2 milp framework for network translation

stoichiometric elementary modes, each with their set of translated complexes υ̂j1 , . . . , υ̂jk ,
and it might not be possible to satisfy the constraint (117) simultaneously for all such
elementary stoichiometric modes.
The optimisation problem described in the following can be summarised as follows:

• Reactions in a cycle in N are translated by the same translation complex (Cycle).

• The number of stoichiometric elementary modes that are translated to cycles is
maximized (Obj).

• Optionally, permutations of the reactions in the support of a stoichiometric mode
can be considered (Perm1), (Perm2), (Perm3), (Perm4).

• We can optionally require that reactions with a common source complex in N
are translated by the same translation complex (React) (this allows to define a
translation in the sense of [Joh14, Joh15, TJ17], see Remark 9.1.7).

• Optionally, we can require that each stoichiometric complex is assigned with only
one kinetic complex; in the terminology introduced in [Joh14], the translation is
proper (Proper1), (Proper2).

In addition to the elements above, we make the following additional considerations:

• For networks that admit a direct decomposition in subnetworks, we can apply the
program separately to each subnetwork. If we implement the constraints (React),
we need first to merge subnetworks with common complexes.

• Each subnetwork can be translated by additional arbitrary translation complexes,
without changing the deficiency or the associated system of ODEs. This can be
used to avoid conflicts between nodes.

In the remainder of the chapter, we describe each of the points above in detail. We first
need to fix some notations. We define B = {0, 1}, and denote by I+ and I− the positive
and negative part of the incidence matrix, respectively, and set Γ+ = YI+, Γ− = YI− ∈
Nn×m. In other words, the columns of Γ+ and Γ− contain the stoichiometric coefficients
of the product and reactant complexes of the network, respectively. Given α cycles and
β stoichiometric elementary modes, we denote by Ih ⊆ {1, . . . ,m}, h = 1, . . . ,α, the in-
dices of reactions in the cyclic elementary modes, and by Jh ⊆ {1, . . . ,m}, h = 1, . . . ,β,
the indices of reactions in the stoichiometric elementary modes.

Translation complexes are well defined: We define a matrix of decision variables Υ ∈
Rn×m where the jth column of Υ corresponds to the translation complex υj of the
reaction rj , i.e. Υ·j = υj . We need to make sure that the reactions in the translated
graph are well-defined, i.e., that all complexes have positive stoichiometric coefficients.
We can optionally require that all the translation complexes are positive, by imposing

Υij ≥ 0, i = 1, . . . ,n, j = 1, . . . ,m. (PosT)

If we do not impose that the translation complexes have positive coefficients, we need to
guarantee that all the coefficients of the complexes resulting from the translations are
positive. To this end, we require

Υij +Γ−ij ≥ 0, Υij +Γ+
ij ≥ 0, i = 1, . . . ,n, j = 1, . . . ,m. (PosC)

To define a translation according to the definition in [Joh14, Joh15, TJ17], since each
complex in the original network can be translated to only one stoichiometric complex in
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10.2 milp framework for network translation

the translated network, any two reactions rj1 and rj2 that have the same reactant need
to be translated by the same translation complex:

Γ−ij1 = Γ−ij2 for all i = 1, . . . ,n⇒ Υij1 = Υij2 for all i = 1, . . . ,n. (React)

Stoichiometric elementary modes translated to cycles: Suppose now that the reactions
rj1 , . . . , rjk define a cycle. To ensure that these reactions form a cycle in the translated
network as well, we impose

Υij1 = Υij2 = · · · = Υijk , i = 1, . . . ,n. (Cycle)

Consider now the stoichiometric elementary modes. Suppose that the reactions rj1 , . . . , rjk
define the hth stoichiometric elementary mode, and υ̂j1 , . . . , υ̂jk are complexes such that
the reactions rj1 + υ̂j1 , . . . , rjk + υ̂jk define a cycle by Lemma 9.1.10, for a fixed order
of the reactions. We denote by Υ̂h ∈ Zn×|Jh| the matrix with columns the complexes
υ̂j1 , . . . , υ̂jk . Write j′ for the position of the index j in Jh, i.e., j = Jhj′ . Then to
guarantee that rj1 , . . . , rjk are translated to the identified cycle we impose

Υij1 − Υ̂h
ij′1

= Υij2 − Υ̂h
ij′2

= · · · = Υijk − Υ̂h
ij′
k
, for h = 1, . . . ,β, i = 1, . . . ,n. (Stoich)

For each stoichiometric elementary mode we have therefore a set of constraints of the
form (Stoich). These constraints might not be satisfiable at the same time for all stoi-
chiometric elementary modes; hence we want to maximize the number of stoichiometric
elementary modes for which these constraints are verified. We do so by introducing
additional variables.

Minimize stoichiometric deficiency of translated network: For the hth stoichiometric
elementary mode, we introduce a binary variable σh that will be equal to 1 if the
elementary mode is not translated to a cycle. The restrictions on σh are obtained by
imposing, for each pair of indices j1, j2 ∈ Jh and for each species Xi the constraint

σh ≥ ε(Υij1 − Υ̂h
ij′1
−Υij2 + Υ̂h

ij′2
). (Count)

Notice that (Count) reduces to (Stoich) if σh = 0. In order to maximize the number of
stoichiometric modes which are translated to cycles, we introduce the following objective
function:

minimize
β∑
h=1

σh. (Obj)

Permutations of stoichiometric modes (optional): As observed in Remark 9.1.12, we
can identify a possible cycle for each possible order of the reactions involved in the
elementary mode. In general, the existence of a solution can depend on the choice of
the order. The following example illustrates this point.

Example 10.2.1. Consider the chemical reaction network

A B C, 2B E B +C.

D

r1 r2

r3

r5 r6

r4

The reactions {r1, r2, r3, r4} form a cycle, while the reactions {r1, r3, r4, r5, r6} identify
a stoichiometric elementary mode. The constraints (Cycle) impose that the reactions in
the cycle have the same translation:

Υi1 = Υi2 = Υi3 = Υi4, for all i = 1, . . . , 5. (118)
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10.2 milp framework for network translation

The translations that convert the stoichiometric elementary mode to a cycle, when the
order above is considered, are υ1 = B + C, υ3 = 2B, υ4 = 2B, υ5 = A and υ6 = A.
Therefore the constraints in (Stoich) include

Υ21 = Υ23 − 1. (119)

The system of equations given by (118) and (119) does not admit any solution; however,
the translation scheme defined by T (r1) = T (r2) = T (r3) = T (r4) = B, T (r5) =
T (r6) = ∅, that can be identified using the order r1, r5, r6, r2, r3, r4, defines a deficiency
zero weakly reversible kinetic translation graph.

We take the order of the reactions into account by introducing variables and con-
straints to keep track of the possible permutations of the reactions in the elementary
mode. In addition, since the order of reactions in the elementary mode is not fixed,
instead of calculating the translations that convert the elementary mode to a cycle, we
consider the matrices Υ̂h ∈ Zn×|Jh| as matrices of decision variables, and impose the
constraint (Count) as done previously in the case of elementary modes with a fixed
order.
To keep all the possible orders into account, for the hth stoichiometric elementary

mode, with set of reaction indices Jh, we define |Jh| × |Jh| binary variables Ph ∈
B|J

h|×|Jh|, that will identify the position of each reaction in the possible orders: Ph
tj will

be equal to 1 if and only if the jth reaction is in position t.
We have therefore the following constraints. To ensure that each reaction is assigned

one and only one position, we impose that each row and column of Ph sums to 1:

k∑
j=1

Ph
tj = 1 for all t = 1, . . . , |Jh|, (Perm1)

k∑
t=1

Ph
tj = 1 for all j = 1, . . . , |Jh|. (Perm2)

Now, suppose that j′1, j′2, t and t′ are indices in {1, . . . , |Jh|} such that t′ = t +
1 (mod |Jh|). Write j1, j2 for Jhj′1 and Jhj′2 , respectively. If Ph

tj′1
and Ph

tj′2
are both equal

to 1, then reaction rj1 is followed by reaction rj2 in the cycle. If this is the case, we
want to impose that the product of reaction rj1 is equal to the reactant of reaction rj2 .
For each pair of indices Jhj′1 , J

h
j′2

in the elementary mode we therefore add the following
constraints, for each species i = 1, . . . ,n:

−1
ε
(2−Ph

tj′1
−Ph

t′j′2
) ≤ Γ+

ij1
−Γ−ij2 + Υ̂h

ij′1
− Υ̂h

ij′2
≤ 1
ε
(2−Ph

tj′1
−Ph

t′j′2
), j′ = j+ 1 (mod |Jh|).

(Perm3)
We can also fix the position of one reaction arbitrarily, and set

Ph
00 = 1 for all h = 1, . . . ,β. (Perm4)

Proper translations (optional): We might sometimes be interested in identifying a proper
translation with minimum deficiency. To impose that distinct complexes in the original
network are translated to distinct complexes in the translated network, we introduce
n×m×m binary variables Uij1j2 . The variable Uij1j2 encodes whether the reactant
complexes of reactions rj1 and rj2 have been translated to the same complex with respect
to species Xi, i.e.

|Γ−ij1 +Υij1 −Γ−ij2 −Υij2 | = 0 ⇒ Uij1j2 = 1.
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10.2 milp framework for network translation

This is achieved by introducing additional n×m×m auxiliary binary variables Vij1j2 ,
and considering the constraints{

Γ−ij1 +Υij1 −Γ−ij2 −Υij2 ≥ ε(1−Uij1j2)−MVij1j2 ,
Γ−ij1 +Υij1 −Γ−ij2 −Υij2 ≤ −ε(1−Uij1j2) +M(1−Vij1j2),

(Proper1)

as can be easily checked by considering the four possible cases. Finally, we have to
impose that, if the reactants of reactions rj1 and rj2 differ, then their corresponding
translated complexes differ in at least one species. Since the variables Uij1j2 count the
number of matching species, we impose, for j1, j2 = 1, . . . ,m

Γ−ij1 6= Γ−ij2 for any i = 1, . . . ,n ⇒
n∑
i=1

Uij1j2 ≤ n− 1. (Proper2)

The variables Uij1j2 and Vij1j2 corresponding to reactions rj1 and rj2 with the same
reactant can be omitted. The parameters, variables and constraints of the problem are
summarized in the following tables.

Parameters

n ∈N number of species
c ∈N number of complexes
m ∈N number of reactions
Γ ∈Nn×m stoichiometric matrix
Γ− ∈Nn×m stoichiometric coefficients of the reactants
Γ+ ∈Nn×m stoichiometric coefficients of the products
α ∈N number of cyclic elementary modes
β ∈N number of stoichiometric elementary modes
Ih ⊆ {1, . . . ,m}, h = 1, . . . ,α indices of reactions in cycles
Jh ⊆ {1, . . . ,m}, h = 1, . . . ,β indices of reactions in stoichiometric elementary modes
M ∈ R>0 M � 1
ε ∈ R>0 0 < ε� 1

Decision Variables

Υ ∈ Rn×m matrix of translation complexes: Υij = υji is the stoichiometric
coefficient of species Xi in the translation of the reaction rj

Υ̂h ∈ Zn×|Jh|,
h = 1, . . . ,β

matrix of translation complexes which convert elementary mode h
to cycle: Υ̂h

ij = υ̂ji is the stoichiometric coefficient of species Xi in
the translation of the jth reaction in the hth elementary mode to a
cycle. Υ̂h is a matrix of variables if permutations of reactions are
considered, and is otherwise calculated using Lemma 9.1.10.

Ph ∈ B|J
h|×|Jh|,

h = 1, . . . ,β
orders of reactions in elementary mode h: Ph

tj = 1 iff the jth

reaction in the hth stoichiometric elementary mode is in position t
σ ∈ Bβ count the elementary modes that are translated to cycles: σh = 1

iff the hth stoichiometric elementary mode is translated to a cycle
U ∈ Bn×m×m (optional for proper) count the number of matching species in the

translation of the reactants: Uij1j2 = 1 iff the translations of the
reactants of reactions rj1 and rj2 are equal in species i

V ∈ Bn×m×m (optional for proper) auxiliary variables
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10.2 milp framework for network translation

Objective

minimize
∑β
h=1 σh Minimize deficiency by minimizing stoichiometric modes (Obj)

Constraints


Υij ≥ 0, i = 1, . . . ,n, j = 1, . . . ,m translations are positive (optional)

(PosT)

Υij +Γ−ij ≥ 0, Υij +Γ+
ij ≥ 0, i = 1, . . . ,n,

j = 1, . . . ,m
all resulting stoichiometric coefficients
are positive (PosC)

Γ−ij1 = Γ−ij2 ,∀i = 1, . . . ,n ⇒ Υij1 =
Υij2 ,∀i = 1, . . . ,n,

reactions with the same reactant are
translated by the same complex
(optional) (React)

j1, j2 = 1, . . . ,m, j1 6= j2
Υij1 = Υij2 , i = 1, . . . ,n,

j1 = Ihj , j2 = Ihj+1, j = 1, . . . , |Ih| − 1, cycles are preserved (Cycle)

h = 1, . . . ,α




σh ≥ ε(Υij1 − Υ̂h

ij′1
−Υij2 + Υ̂h

ij′2
),

i = 1, . . . ,n, j1 = Jhj′1
, j2 = Jhj′2

,

j′1 = 1, . . . , |Jh|, j′2 = 1, . . . , |Jh|, j′1 6= j′2

σh = 1 if the hth stoichiomet-
ric elementary mode is not trans-
lated to a cycle (Count)

|Jh|∑
j=1

Ph
tj = 1, t = 1, . . . , |Jh| each index in the order cor-

responds to only one reaction
(Perm1)

|Jh|∑
t=1

Ph
tj = 1, j = 1, . . . , |Jh| each reaction is assigned only one

index in the order (Perm2)

Γ+
ij1
−Γ−ij2 + Υ̂h

ij′1
− Υ̂h

ij′2
≤ 1

ε (2−Ph
tj′1
−Ph

t′j′2
),

Γ+
ij1
−Γ−ij2 + Υ̂h

ij′1
− Υ̂h

ij′2
≥ −1

ε (2−Ph
tj′1
−Ph

t′j′2
),

t = 1, . . . , |Jh|, t′ = t+ 1 (mod |Jh|),

i = 1, . . . ,n, j1 = Jhj′1
, j2 = Jhj′2

,

j′1 = 1, . . . , |Jh|, j′2 = 1, . . . , |Jh|, j′1 6= j′2

the product of the reaction with
index t is aligned with the reac-
tant of reaction with index t +
1 (mod |Jh|) (Perm3)

Ph
00 = 1 first reaction is in first position

(Perm4)

h = 1, . . . ,β




Γ−ij1 +Υij1 −Γ−ij2 −Υij2 ≥ ε(1−Uij1j2)−MVij1j2 ,

Γ−ij1 +Υij1 −Γ−ij2 −Υij2 ≤ −ε(1−Uij1j2) +M (1−Vij1j2),

i = 1, . . . ,n

proper translation
(optional) (Proper1)

Γ−ij1 6= Γ−ij2 for any i = 1, . . . ,n ⇒
∑n
i=1 Uij1j2 ≤ n− 1 (Proper2)

j1, j2 = 1, . . . ,m.
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10.3 example: mapk signalling cascade

We conclude this chapter with the analysis of a network model of the mitogen-activated
protein kinase (MAPK) signalling cascade. A schematic of the model, adapted from [SG12],
is given in Figure 21a. The species Sig represents the external signal that activates the
cascade. The kinase MKKK is dephosphorylated by the phosphatase Phos2, MK is
dephosphorylated by Phos1, and MKK is dephosphorilated by both. The model we
consider is introduced in [SG12] as model M4, where it is studied in two different forms,
an “unsequestrated” and a “sequestrated” version. In the latter, the species resulting
from the binding of a phosphorylated kinase with its phosphatase, before the release of
the unphosphorylated kinase, converts to an intermediate compound consisting of the
unphosphorylated kinase and its phosphatases. In [SG12], the authors observe that the
sequestration of a phosphatase by its kinase significantly increases the robustness of the
output, defined as the variation in concentration of MK-PP in response to changes in
kinases, phosphatases and signal concentrations. In this section, using the techniques
described in this thesis, we rewrite the networks as weakly reversible generalised mass
action networks. At the end of the section, we compare the robustness properties of
the complex balancing steady states in the two scenarios. We make the analyses under
the assumption that the phosphatase concentrations are controlled by input and output
reactions.
The reactions in the unsequestrated version of the network are as follows:

X1 +X2 X3 X2 +X4 X5 X2 +X6,

X6 +X13 X21 X4 +X13 X22 X1 +X13 X23,

X7 +X8 X9 X8 +X10 X11 X8 +X2,

X2 +X13 X12 X10 +X13 X14 X7 +X13 X15,

X16 +X18 X17 X8 +X18,

X8 +X20 X19 X16 +X20 X27,

X2 +X20 X24 X10 +X20 X25 X7 +X20 X26.

r1 r2
r−1

r3
r−3

r4

r5
r−5

r6 r7
r−7

r8 r−9

r9
r10
r−10

r11 r12
r−12

r13

r14
r−14

r15 r16
r−16

r17 r−18

r18
r19
r−19

r20

r21
r−21

r22 r−24

r24
r23
r−23

r25 r26
r−26

r27 r−28

r28

(120)

The species have been renamed as shown in Figure 21b. We have used the same labelling
of species and reactions provided for the network in the BioModels database [LDR+10]
(model 430). To this network, we add two input and output reactions regulating Phos1
and Phos2:

X20
r29−−−⇀↽−−−
r−29

∅, X13
r30−−−⇀↽−−−
r−30

∅. (121)

We consider a mass action system on this network, writing κi, κ−i for the kinetic rates
assigned to reactions ri, r−i.

We start by partitioning the network in subnetworks, that we can study separately.
The reactions in (121) define two subnetworks with deficiency zero; as a consequence,
any mass action system on (120) displays ACR in Phos1 and Phos2 (the concentrations
at steady state are κ−29

κ29
and κ−30

κ30
respectively). We will use this observation shortly

to resolve some conflicts in the translation of the network. The network admits 11
subnetworks, 6 with deficiency zero

{r9, r−9}, {r18, r−18}, {r24, r−24},
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10.3 example: mapk signalling cascade

MKKK MKKK-P

MKK MKK-P MKK-PP

MK MK-P MK-PP

Sig

P1

P1,P2 P1,P2

P2 P2

(a)

MK = X1

MKK-PP = X2

MK-MKK-PP = X3

MK-P = X4

MK-P-MKK-PP = X5

MK-PP = X6

MKK = X7

MKKK-P = X8

MKK-MKKK-P = X9

MKK-P = X10,
MKK-P-MKKK-P = X11,
MKK-PP-P2 = X12,
Phos2 = X13,
MKK-P-P2 = X14,
MKK-P2 = X15,
MKKK = X16,
MKKK-Sig = X17,
Sig = X18,

MKKK-P-P1 = X19,
Phos1 = X20,
MK-PP-P2 = X21,
MK-PP2 = X22,
MK-P2 = X23,
MKK-PP-P1 = X24,
MKK-P-P1 = X25,
MKK-P1 = X26,
MKKK-P1 = X27.

(b)

Figure 21: (a): Schematics of the MAPK cascade in network (120). (b): Renaming of the species
in network (120).

{r28, r−28}, {r29, r−29}, {r30, r−30},

3 with deficiency one
{r1, r−1, r2, r7, r−7, r8},

{r3, r−3, r4, r5, r−5, r6},

{r19, r−19, r20, r21, r−21, r22},

and 2 the deficiency two subnetworks

{r10, r−10, r11, r16, r−16, r17, r26, r−26, r27},

{r12, r−12, r13, r14, r−14, r15, r23, r−23, r25}.

The deficiency one subnetworks fall under the hypothesis of Proposition 9.1.13: they ad-
mit only one stoichiometric elementary mode, and some 2-cycles. Using the translation
scheme described in Proposition 9.1.10 and Remark 9.1.11, we identify the three weakly
reversible generalised mass action networks

�
�

�


X1 +X2 +X13
(X1 +X2)

�
�

�


X3 +X13
(X3)

�
�

�


X2 +X4 +X13
(X4 +X13)

�
�

�


X2 +X22
(X22)

,

�
�

�


X2 +X4 +X13
(X2 +X4)

�
�

�


X5 +X13
(X5)

�
�

�


X2 +X6 +X13
(X6 +X13)

�
�

�


X2 +X21
(X21)

,

�
�

�


X16 +X18 +X20
(X16 +X18)

�
�

�


X17 +X20
(X17)

�
�

�


X8 +X18 +X20
(X8 +X20)

�
�

�


X18 +X19
(X19)

.

κ1

κ−1

κ2 κ7

κ−7

κ8

κ3

κ−3

κ4 κ5

κ−5

κ6

κ19

κ−19

κ20 κ21

κ−21

κ22

(122)
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10.3 example: mapk signalling cascade

These three networks have deficiency and kinetic deficiency equal to zero. For the two
deficiency 2 subnetworks, we use the algorithm of the previous section and find two
deficiency zero kinetic translation graphs

X9 +X13 +X20

X7 +X8 +X13 +X20 X8 +X13 +X25 X8 +X10 +X13 +X20

X8 +X14 +X20,

κ11x9κ10x7x8

κ−10x9

κ27x25

κ−26x25

κ26x10x20

κ17x14

κ−16x14

κ16x10x13

and

X11 +X13 +X20

X8 +X10 +X13 +X20 X8 +X13 +X24 X2 +X8 +X13 +X20

X8 +X12 +X20,

κ13x11κ12x8x10

κ−12x11

κ25x24

κ−23x24

κ23x2x20

κ15x12

κ−14x12

κ14x2x13

The two kinetic graphs have a conflict at X8 +X10 +X13 +X20 and one at X2 +X8 +
X13 +X20, respectively. Since the network has ACR in X13 and X20, the complexes
X10 + X20 and X10 + X13 have a robust ratio, as do the complexes X2 + X20 and
X2 + X13. As a consequence, the conflicts are resolvable, and, choosing the kinetic
complexes X10 +X20 and X2 +X20, we can define the two weakly reversible generalised
mass action networks �

�
�


X9 +X13 +X20
(X9)

�
�

�


X7 +X8 +X13 +X20
(X7 +X8)

�
�

�


X8 +X13 +X25
(X25)

�
�

�


X8 +X10 +X13 +X20
(X10 +X20)

�
�

�


X8 +X14 +X20
(X14)

κ11κ10

κ−10

κ27

κ−26

κ26

κ17

κ−16

κ16
κ−30κ29
κ30κ−29

(123)
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and �
�

�


X11 +X13 +X20
(X11)

�
�

�


X8 +X10 +X13 +X20
(X8 +X10)

�
�

�


X8 +X13 +X24
(X24)

�
�

�


X2 +X8 +X13 +X20
(X2 +X20)

�
�

�


X8 +X12 +X20
(X12)

κ13κ12

κ−12

κ25

κ−23

κ23

κ15

κ−14

κ14
κ−30κ29
κ30κ−29

(124)
Putting together the deficiency zero networks and the networks in (122), (123) and (124),
we find a weakly reversible generalised network with deficiency and kinetic deficiency
equal to zero. Since all the positive steady states of the associated system M̃ also satisfy
x20 = κ−29

κ29
and x13 = κ−30

κ30
, by Proposition 9.2.3 the systems M̃ andM have the same

positive steady states. By Theorem 7.4.3, the system M̃ has complex balancing steady
states for any choice of the kinetic parameters. For any pair of kinetic complexes in
the same linkage class, the ratio xyiκ

xy
j
κ
takes the same value at each positive steady state.

We can use this to study how the concentration of MK-PP at steady state varies as a
function of the input species, defined as the input signal X18 and the kinases X1, X7
and X16. To do so, we can intersect the kinetic-order subspace with the subspace of Rn

generated by e1, e6, e7, e16, e18. We find that the intersection is generated by the vector

−e6 + e1 + 2e7 + 4e16 + 4e18

meaning that the complexes X6 and X1 + 2X7 + 4X16 + 4X18 have a robust ratio. In
other words, there exists a function f(κ) of the kinetic parameters such that x6 =
f(κ)x1x

2
7x

4
16x

4
18 holds at each positive steady state. Hence the value at steady state of

MKPP varies with the fourth power of the input signal Sig, for instance.
Let us consider the sequestrated version of the network in (120), defined by the reac-

tions

X1 +X2 X3 X2 +X4 X5 X2 +X6,

X6 +X13 X21 X4 +X13 X22 X23 X1 +X13,

X7 +X8 X9 X8 +X10 X11 X8 +X2,

X2 +X13 X12 X10 +X13 X14 X15 X7 +X13,

X16 +X18 X17 X8 +X18,

X8 +X20 X19 X27 X16 +X20,

X2 +X20 X24 X10 +X20 X25 X26 X7 +X20,

r1 r2
r−1

r3
r−3

r4

r5
r−5

r6 r7
r−7

r8 r9
r−9

r10
r−10

r11 r12
r−12

r13

r14
r−14

r15 r16
r−16

r17 r18
r−18

r19
r−19

r20

r21
r−21

r22 r24
r−24

r23
r−23

r25 r26
r−26

r27 r28
r−28

(125)
to which we add again the reactions in (121). The networks in (120) and (125) differ in
reactions r8, r17, r22 and r27: in the sequestrated version, the intermediate species X22
converts to the intermediate species X23, instead of dissociating directly to X1 +X13,
and similarly for X15, X27 and X25. Let us see how these changes affect the analysis
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10.3 example: mapk signalling cascade

above. First, we calculate a decomposition of the network in subnetworks, finding only
two deficiency zero subnetworks

{r29, r−29}, {r30, r−30},

3 with deficiency one subnetworks

{r1, r−1, r2, r7, r−7, r8, r9, r−9},

{r3, r−3, r4, r5, r−5, r6},
{r19, r−19, r20, r21, r−21, r22, r24, r−24},

and 2 the deficiency two subnetworks

{r10, r−10, r11, r16, r−16, r17, r18, r−18, r26, r−26, r27, r28, r−28},

{r12, r−12, r13, r14, r−14, r15, r23, r−23, r25}.
The networks {r3, r−3, r4, r5, r−5, r6} and {r12, r−12, r13, r14, r−14, r15, r23, r−23, r25} are
unchanged, and we can write for them the same deficiency zero generalised mass action
networks we found for the unsequestrated case.
For the remaining three networks with positive deficiency, the algorithm identifies the

following kinetic graphs:

X1 +X2 +X13 X3 +X13 X2 +X4 +X13

X2 +X23 X2 +X22

κ1x1x2

κ−9x1x13

κ2x3
κ−1x3

κ7x4x13
κ9x23

κ−7x22

κ8x22

(126)

X16 +X18 +X20 X17 +X20 X8 +X18 +X20,

X27 +X18 X19 +X18

κ19x16x18

κ−24x16x20
κ−19x17

κ20x17

κ21x8x20
κ24x27

κ−21x19

κ22x19

(127)

X15 +X8 +X20 X14 +X8 +X20

X7 +X8 +X20 +X13 X9 +X20 +X13 X8 +X10 +X20 +X13

X26 +X8 +X20 X25 +X8 +X20

κ18x15 κ−16x14

κ17x14

κ10x7x8

κ−18x7x13

κ−28x7x20
κ−10x9

κ11x9

κ16x10x13

κ26x10x20
κ28x26

κ−26x25

κ27x25

(128)

The first kinetic graph has a conflict at X1 +X2 +X13, the second has a conflict at X16 +
X18 +X20 and the third one at X7 +X8 +X20 +X13 and one at X8 +X10 +X20 +X13.
The difference between the kinetic complexes at X8 +X10 +X20 +X13 is X20 −X13,
therefore this conflict can be resolved as done for the conflicts of the unsequestrated
network. The same is true for one of the conflicts at X7 + X8 + X20 + X13. The
remaining conflicts cannot be resolved with the same technique. To associate generalised
mass action networks to each of the kinetic graphs, we create separate nodes for each of
the kinetic complexes at the nodes with conflicts. We determine the following generalised
mass action networks:�

�
�


X1 +X2 +X13
(X1 +X2)

�
�

�


X3 +X13
(X3)

�
�

�


X2 +X4 +X13
(X4 +X13)

�
�

�


X1 +X2 +X13
(X1 +X13)

�
�

�


X2 +X23
(X23)

�
�

�


X2 +X22
(X22)

κ1 κ2
κ−1

κ7

κ−9

κ9

κ−7

κ8

(129)
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�
�

�


X16 +X18 +X20
(X16 +X18)

�
�

�


X17 +X20
(X17)

�
�

�


X8 +X18 +X20
(X8 +X20)

,

�
�

�


X16 +X18 +X20
(X16 +X20)

�
�

�


X27 +X18
(X27)

�
�

�


X19 +X18
(X19)

κ19
κ−19

κ20

κ21

κ−24

κ24

κ−21

κ22

(130)

�
�

�


X15 +X8 +X20
(X15)

�
�

�


X14 +X8 +X20
(X14)

�
�

�


X7 +X8 +X20 +X13
(X7 +X20)

�
�

�


X9 +X20 +X13
(X9)

�
�

�


X8 +X10 +X20 +X13
(X10 +X20)

�
�

�


X7 +X8 +X20 +X13
(X7 +X8)

�
�

�


X26 +X8 +X20
(X26)

�
�

�


X25 +X8 +X20
(X25)

κ18 κ−16

κ17

κ−18κ−30κ29/(κ30κ−29)

κ−28

κ−10

κ11

κ16κ−30κ29/(κ30κ−29)

κ26

κ10
κ28 κ−26

κ27

(131)
Each of the three networks has deficiency equal to one and kinetic deficiency equal to
zero. Overall, we have obtained a generalised mass action network Ñ with deficiency
three and kinetic deficiency zero. By Theorem 7.4.3, any mass action system on (125)
admits complex balancing steady states. The dashed reactions can be added to obtain
the weak reversibility. If the dashed reactions are not added, Theorem 7.5.7 can be
applied to (129), (130) and (131) (in each network, all pairs of non-terminal kinetic
complexes have a robust ratio). Using this observation one can find that the value of x6
at each steady state is again proportional to x1x

2
7x

4
16x

4
18.

Let us focus now on the complex balancing steady states. Take a pair of kinetic com-
plexes yiκ, yjκ in Ñ the same linkage class. The ratio xyiκ/xy

j
κ takes the same value at

each complex balancing steady state x. For instance, X8 and X20 have a robust ratio
on the complex balancing steady states, but not on all the positive steady states. If we
check how the concentration of X6 writes in terms of the input species when limiting
the analysis to the complex balancing steady states (by intersecting the kinetic-order
subspace and the subspace generated by e1, e6, e7, e16 and e18), we find that x6 is pro-
portional to x1, and does not vary when the input concentrations of X7, X16 and X18
vary. Could this give a possible explanation for the stronger robustness properties dis-
played by the sequestrated network? Notice that the proportionality constant between
x1 and x6 at complex balancing steady states depends on the kinetic parameters chosen
for the dashed reactions in (129), (130) and (131), which do not have a clear biological
interpretation.

10.4 open questions

In this section we describe some open questions and directions of future work.

(i) Can conclusions can be drawn around preservation and number of steady states
for the elimination method of Section 8.3? In addition, can robustness properties
be used in combination with elimination methods to simplify the analysis of steady
states?
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10.4 open questions

Consider for instance the deficiency two Envz-Ompr model model in (58). We know
from (112) that, at each positive steady state, xXD = κ2(κ4+κ5)

κ1κ3
xXT holds. The

mass action system obtained by eliminating the species XD using the reduction
method described in 8.3 is the following:

X XT Xp

Xp + Y XpY X + Yp

κ2+κ3

κ4+ακ1

κ5

κ6

κ7

κ8

XTYp

XT + Yp XT + Y

XDYp

κ10

κ11κ9

ακ12
κ14κ13

where α = κ2(κ4+κ5)
κ1κ3

. This is a deficiency one network, that can be analysed for
instance by considering a dynamically equivalent generalised mass action network
with deficiency and kinetic deficiency zero.

(ii) Identify classes of networks that admit a weakly reversible generalised mass action
realisation with deficiency zero or kinetic deficiency zero.

(iii) Describe methods for the identification of low deficiency or weakly reversible gen-
eralised mass action realisations that do not rely on the calculation of steady state
fluxes. Consider the minimization of the kinetic deficiency.
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