
PhD Thesis Report

Statistical Shape Analysis of Large Molecular Data Sets

Anthony Hennessey

Principal supervisor:

Dr. Christopher Fallaize

Supervisors:

Prof. Ian L. Dryden

Prof. Huiling Le

School of Mathematical Sciences

November 2017

Abstract

Protein classification databases are widely used in the prediction of protein structure and

function, and amongst these databases the manually-curated Structural Classification of

Proteins database (SCOP) is considered to be a gold standard. In SCOP, functional rela-

tionships are described by hyperfamily and superfamily categories and structural relation-

ships are described by family, species and protein categories. We present a method to

calculate a difference measure between pairs of proteins that can be used to reproduce

SCOP2 structural relationship classifications, and that can also be used to reproduce a

subset of functional relationship classifications at the superfamily level.

Calculating the difference measure requires first finding the best correspondence between

atoms in two protein configurations. The problem of finding the best correspondence is

known as the unlabelled, partial matching problem. We consider the unlabelled, partial

matching problem through a detailed analysis of the approach presented in Green and Mardia

(2006). Using this analysis, and applying domain-specific constraints, we develop a new

algorithm called GProtA for protein structure alignment. The proposed difference measure

is constructed from the root mean squared deviation of the aligned protein structures and

a binary similarity measure, where the binary similarity measure takes into account the

proportions of atoms matching from each configuration.

The GProtA algorithm and difference measure are applied to protein structure data taken

from the Protein Data Bank. The difference measure is shown to correctly classify 62

of a set of 72 proteins into the correct SCOP family categories when clustered. Of the

remaining 9 proteins, 2 are assigned incorrectly and 7 are considered indeterminate. In

addition, a method for deriving characteristic signatures for categories is proposed. The

signatures offer a mechanism by which a single comparison can be made to judge similarity

to a particular category. Comparison using characteristic signatures is shown to correctly

delineate proteins at the family level, including the identification of both families for a subset

of proteins described by two family level categories.

Contents

Contents i

Figures vi

Tables vii

1 Introduction 1
1.1 Motivation and research question . 1
1.2 The Statistical Theory of Shape . 3

1.2.1 Labelling . 4
1.2.2 A matrix representation of labelled landmarks 4
1.2.3 Modulo location . 5

1.2.3.1 The Helmert matrix . 6
1.2.4 Modulo scaling . 8
1.2.5 Shape distance . 9

1.2.5.1 Optimising rotation . 10
1.2.5.2 Chordal shape distance 12
1.2.5.3 Size-and-shape distance 13
1.2.5.4 Isotropic error assumption 14

1.3 Proteins . 15
1.3.1 Chemistry . 15
1.3.2 Describing protein structure . 18

1.4 Software and programming languages . 20
1.5 Thesis structure . 20

2 Recovering labelling using Bayesian Hierarchical Models 22
2.1 Overview . 22
2.2 Quantification of the problem complexity 23
2.3 Green and Mardia (2006) in detail . 25

2.3.1 The model . 26
2.3.2 Likelihood . 30
2.3.3 Prior distributions and sampling conditional posterior distributions . 33

2.3.3.1 Rotation . 33
2.3.3.2 Translation and sigma 37
2.3.3.3 The matching matrix . 37

2.4 Reference implementation . 39
2.4.1 Testing strategy . 39
2.4.2 Reproducing the results from Green and Mardia (2006) 40

2.5 Considerations for unsupervised matching 46
2.5.1 Hyper-parameter λ/ρ . 46
2.5.2 Calculating a minimum enclosing volume 50

i

2.5.3 Information available from the likelihood 53
2.6 Multimodality . 57
2.7 Summary . 58

3 A greedy algorithm 59
3.1 Overview . 59
3.2 A spherical error model of size-and-shape distance 60
3.3 Determining a set of starting matching matrices 64

3.3.1 Candidate matching matrices . 64
3.3.2 A statistical hypothesis test to constrain the set of candidates . . . 66
3.3.3 A worked example of finding starting matching matrices 68
3.3.4 Further checking the selected starting matching matrices 71

3.4 The GProtA algorithm . 74
3.4.1 Extending the use of the hypothesis test to iteratively add matches 74
3.4.2 Greedily following multiple paths to find multiple solutions 75

3.5 A difference measure for proteins . 82

4 Protein structure classification 86
4.1 Overview . 86
4.2 The SCOP2 database . 86
4.3 The Protein Data Bank . 90
4.4 Excluded data . 96
4.5 SCOP2 classification . 102
4.6 Comparing SCOP2 families . 104

4.6.1 Clustering . 107
4.6.2 Characteristic signatures . 115

4.7 Comparing SCOP2 superfamilies and hyperfamilies 123
4.8 Processing times . 125

5 Discussion 127

Appendices 131

A Data tables 131
A.1 Green and Mardia (2006) landmarks . 131
A.2 Co-ordinates of alpha carbon atoms for family characteristic signatures . . . 133

B Code 138
B.1 Reference implementation of Green and Mardia (2006) 139
B.2 Distribution of acceptance probabilities for perturbations of the matching

matrix (Figure 2.11) . 152
B.3 GProtA . 156
B.4 DBSCAN example . 161

C SCOP2 164
C.1 Creating a SCOP2 MySQL database . 165
C.2 Extract mmCIF to CSV and create validation tables 166
C.3 Fetch PDB files . 189
C.4 SQL queries . 192

C.4.1 Families with at least 10 members 192

Bibliography 193
Chapter 1 . 193

ii

Chapter 2 . 195
Chapter 3 . 196
Chapter 4 . 197
Chapter 5 . 198
Code . 198

iii

List of Figures

1.1 An illustration of the information encoded by the shape labels. 4
1.2 Illustration that the arbitrary removal of a landmark to achieve full rank can

loose important shape information. 6
1.3 Illustration of the change in the geometric relationship of landmarks when

they are Helmertized. 8
1.4 The 20 amino acids. 16
1.5 The construction of the polypeptide backbone that is common to all proteins. 17
1.6 Phenylalanine . 17
1.7 A plot of the experimentally determined atomic locations of a random sample

of twenty Phenylalanine amino acids. 18

2.1 The size of the space of possible matching matrices. 25
2.2 Typical trace plots from a run of the reference implementation of Green and

Mardia (2006). 43
2.3 Detail of a single trace plots from a run of the reference implementation of

Green and Mardia (2006). 44
2.4 Trace plots from the single failure of 2000 runs of the reference implemen-

tation of Green and Mardia (2006). 45
2.5 Sensitivity of the prior distribution of L to the estimate of V 47
2.6 Sensitivity of the Green and Mardia (2006) method to the λ/ρ hyperparameter. 48
2.7 A typical set of trace plots for sub-optimal values of λ/ρ. 49
2.8 An example of the type of problem seen using principal component based

methods to find a minimum bounding box. 51
2.9 The algorithm used to generate the Fibonacci points on a sphere. 52
2.10 Spherical Fibonacci points sets generated over the surface of a sphere. . . . 53
2.11 Distribution of acceptance probabilities for perturbations of the matching

matrix. 55
2.12 Frequency counts of the number of residues in the protein asymmetric units

referenced by SCOP2. 56
2.13 Histograms of the number of matching matrix updates taken before 1, 2, 3

or 4 correct matches are found. 57

3.1 Plots of true versus estimated standard deviation, where the estimated stan-
dard deviation was obtained by maximising the likelihood of the Gamma
approximation of the squared chordal distance. 62

3.2 Histograms of the squared chordal size-and-shape distance between two con-
figurations that differ by the addition of a spherical normal error. 63

3.3 Plot used to investigate the behaviour of the number of possible matching
matrices with respect to the number of matches. 65

3.4 A restricted set of sub-configurations. 66
3.5 A 2D projection of the 3D configurations, under optimal alignment, used as

the basis for the example in Section 3.3.3. 69

iv

3.6 2D projections of selected 3D configurations, under optimal alignment, from
the set of candidate matching matrices. 71

3.7 Chordal size-and-shape distances partitioned by δ. 72
3.8 Density plot of the chordal squared distance for the complete set of the

1, 058, 400 M (4) matching matrices. 73
3.9 Plots of normal densities of varying variance centred with separations of

their means of 3.8Å. 74
3.10 Illustration of the number of calculations carried out using the NaiveHypoth-

esis algorithm to find the optimum matching matrix between two configu-
rations of 10 landmarks. 75

3.11 The operation of the GProtA algorithm against the Green and Mardia (2006)
data. 79

3.12 A selection of 2D projections of the optimally aligned (minimise squared dis-
tance between labelled landmarks) configurations for the matching matrices
from the terminations of selected branches. 80

3.13 Plot of results from the GProtA algorithm against the Green and Mardia
(2006) data. 81

3.14 Venn diagram showing the presence /absence counts used in binary similarity
measures. 83

4.1 Example of data from the SCOP2 domains table. 89
4.2 A sample of the _atom_site section of a PDBx/mmCIF from the PDB entry

with PDB ID 2CAR. 93
4.3 A sample of the atom co-ordinate data captured from the PDBx/mmCIF for

each SCOP2 domain. 95
4.4 The tables added to the SCOP2 MySQL database containing metadata

relating to the PDB entries. 96
4.5 Example ERROR and WARNING rows relating to PDB data. 99
4.6 A plot comparing the distance between consecutive alpha carbons for do-

mains that are flagged with validation warnings in the PDB and those that
are not. 101

4.7 Distance calculated between the domain FA-8002409-1FTZA and all of the
other 71 domains in the test set. 104

4.8 Distance calculated between the asymmetric unit 1FTZ_A from which the
domain FA-8002409-1FTZA is derived and all of the other 70 asymmetric
units from which the domains in the group were derived. 106

4.9 MDS plot against the distance matrix of the complete set of pairwise com-
parisons in our test group of domains. 108

4.10 Torsion angles defining the rotamers of Aspartate. 109
4.11 Results of clustering of a random selection of Aspartate residues using DB-

SCAN. 110
4.12 Overview of DBSCAN terminology. 111
4.13 kth nearest neighbour distance plots used to calculate the eps parameter

for the DBSCAN clustering. 111
4.14 OPTICS plot of the clustering structure for the domain data. 112
4.15 OPTICS plot of the clustering structure for the asymmetric unit data. . . . 113
4.16 2D projections of characteristic signatures. 116
4.17 Boxplot of distances obtained by comparing each of the 71 asymmetric units

to each of the five family characteristic signatures. 117
4.18 Results of the comparison between the 5 larger asymmetric units belong-

ing to the FA:4000366 category described in Table 4.6 and each of the
characteristic signatures for the five families in our original test group. . . . 119

v

4.19 Examples of alignment using the GProtA algorithm. 120
4.20 Characteristic signature for family FA:4000157 (49 landmarks). 121
4.21 Results of the comparison between asymmetric units belonging to the FA:4000157

category and each of the characteristic signatures for six families. 122
4.22 Example of domains associated with a selection of hyperfamilies, superfam-

ilies and families. 124
4.23 Comparison of a selection of asymmetric units against characteristic signa-

tures of superfamily categories. 125
4.24 Plot of the performance of the GProtA algorithm. 126

vi

List of Tables

2.1 Summary of MCMC workflow tests. 40
2.2 Details of the best 36 matches found between the 1cyd and 1a27 proteins

in Green and Mardia (2006). 41

3.1 Counts of the number of matrices for each value of δ in the sample of M (4)

used to approximate the null distribution. 69
3.2 Results of p-value calculations for the first 49 candidate starting matching

matrices (the un-reversed set). 70
3.3 A set of proteins chosen from the SCOP database such that one differs from

the next by one classification level. 85

4.1 Counts relating to errors and warnings relating to domains entries in SCOP2. 98
4.2 Count of the number of distinct protein relationships encoded in the SCOP2

database. 103
4.3 The set of protein domains used to test agreement with SCOP2 categorisa-

tion at the family level. 105
4.4 Results of density based clustering on the pairwise distance data for the test

group of 72 domains and 71 asymmetric units. 114
4.5 Results of the comparison between the 5 larger asymmetric units belong-

ing to the FA:4000366 category described in Table 4.6 and each of the
characteristic signatures for the five families in our original test group. . . . 118

4.6 5 larger asymmetric units belonging to the FA:4000366 category that were
not part of the original test group. 118

4.7 The complete set of asymmetric units that are assigned the SCOP2 family
category FA:4000157. 121

4.8 Full results set for the comparison between asymmetric units belonging to
the FA:4000157 category and each of the characteristic signatures for six
families. 123

vii

Acknowledgements

My sincerest thanks:

To my supervisors Dr. Christopher Fallaize, Prof. Ian Dryden and Prof. Huiling Le for their

generosity of knowledge and their guidance.

To Dr Christopher Tench for many valuable and insightful discussions.

To David Parkin for being an excellent and resourceful system administrator.

And to the many other inhabitants of the maths department that have freely given their

help and friendship throughout a long and rewarding stay.

viii

1
Introduction

1.1 Motivation and research question

Structure comparison and structure determination are primary goals of protein science (Tra-

montano 2005; Lesk 2013) and the comparison of protein structures requires the quantifi-

cation of the difference between these protein structures. Most existing protein comparison

techniques quantify structure difference through the application of heuristic algorithms. The

primary goal of this work is to develop a method to quantify protein difference that is based

on probabilistic modelling.

A significant role in protein comparison is often played by structure classifications. Structure

classifications are themselves widely used for purposes such as the prediction of protein func-

tion, understanding evolutionary relationships and constructing data sets of representative

protein structures. There currently exist many structure classification databases (Lesk 2013,

chapter 6; Al-Lazikani et al. 2008; Pavlopoulou and Michalopoulos 2011), amongst these

the SCOP, Structural Classification of Proteins (Hubbard et al. 1999) and CATH Protein

Structure Classification (Sillitoe et al. 2015) databases are widely viewed as the gold stan-

dard (Csaba et al. 2009).1 The SCOP database is the only fully manually curated database;

1An up-to-date list of databases containing either partially automated or fully automated classifications can be found
in the PDB’s Structure Classification links: http://www.rcsb.org/pdb/static.do?p=general_information/web_

1

CATH has a mixture of manually and automatically curated content. With SCOP being

fully manually curated it offers us an ideal reference to gauge the ability of any proposed

quantification of protein difference to capture differences that are considered important by

experts. The importance of the SCOP database within the protein science community is

illustrated by the following statistics: SCOP 1.75 was released in 2009 and contained clas-

sifications for 1,195 proteins (this was the last release before SCOP2 (Andreeva et al. 2014)

which was released containing classifications for 995 proteins). From 2009–2011 (inclusive)

22,993 new protein structures were added to an existing 54,512 structures in the Protein

Data Bank2 and yet even with the relatively limited content in SCOP Fox et al. (2015)

identified 439 articles published in 2012–2013 that use SCOP data.

A principle element of protein comparison is the optimal alignment of the structures being

compared. There are many published protein structure alignment techniques – important

examples of these are the following five which are made available on RCSB PDB3: FAT-

CAT (Ye and Godzik 2003), CE (Shindyalov and Bourne 1998), Mammoth (Lupyan et al.

2005), TM-Align (Zhang and Skolnick 2005), TopMatch (Sippl 2008). There are also many

measures of protein difference, for example Hasegawa and Holm (2009) list 26 structural

similarity measures that are in common use. Despite the importance of the fully manually

curated SCOP classifications and despite these many alignment and comparison techniques,

the author was only able to find a single systematic attempt to reproduce either SCOP or

SCOP2 classifications (Harder et al. 2012). Harder et al. (2012) builds on a technique

to produce protein descriptors that represent protein structures as smoothed curves in 3D

space (Røgen 2005). Harder et al. (2012) reports good agreement for proteins that have

high level classification differences but is less successful for proteins that are closely related

at lower classification levels, particularly when they are of differing sizes. The value of a

comparison with SCOP as a validation of any proposed methods is clear, and as such in

the final chapter of this work we use our developed protein alignment method and proposed

difference measure to reproduce the classifications for a set of proteins included in SCOP2.

The remainder of this chapter is divided into four sections. Section 1.2 describes the

statistical theory of shape. Protein science uses the idea of a protein structure space and

links/structure_classification.html.
2
https://www.rcsb.org/pdb/static.do?p=general_information/pdb_statistics/index.html retrieved 2017-
09-10.

3
http://www.rcsb.org

2

a protein function space. Proteins that are spatially similar are described as being close

together in protein structure space, and proteins of similar function are described as being

close together in, the less well defined, protein function space. The statistical theory of

shape fits well with the concept of protein structure space and has already been used

to investigate the structural alignment of proteins (Hamelryck et al. 2012, Part IV); a

review of these existing Bayesian structural alignment methods is conducted in Chapter 2.

The statistical theory of shape is also the foundation for our proposed protein alignment

algorithm which we develop in Chapter 3. Section 1.3 offers an introduction to protein

chemistry and the current measures used in protein science for protein comparison. This

section concentrates on the aspects of protein chemistry that we will exploit for the algorithm

described in Chapter 3. In Section 1.4 we give a short overview on the reasoning behind the

choice of software and programming languages used to reproduce published work, and for

simulations and the implementation of our work. Finally in Section 1.5 we briefly introduce

the structure of the remainder of the thesis.

1.2 The Statistical Theory of Shape

Shape theory simplifies the representation of an object to a collection of labelled landmarks.

In the case of a geometric object, the landmarks would typically be the intersections of its

edges and the simplification involves disregarding information relating to the faces and edges

themselves (the edges being the intersections of the faces). Defining a protein structure by

a series of landmarks - the derived atomic locations - is a natural choice and so the study

of protein structure is particularly suited to shape theoretic treatment.

The foundation of shape theory is a mechanism to assign a measure of difference between

two shapes. A very high level description of the approach taken is to represent the shape

as a single point in a high dimensional space so that the distance between two points,

representing two shapes, in that space can be measured. In shape theory the shape of an

object must only include the information about the object that is invariant under rotation,

translation and scaling (Kendall 1984); the procedures used to remove location, scale and

rotation information will be referred to as modding out, i.e. if A′ is A modulo location then

A′ is a representation of A once all information relating to the location of A in Euclidean

space has been removed.

3

1.2.1 Labelling

Labelling is used to capture the correspondence of landmarks between objects, and the abil-

ity to assign specific properties to particular landmarks significantly broadens the potential

applications of shape theory. Two possible examples of properties described by the labels

are: a specific label indicates a specific feature in a facial recognition task, and the labels

indicate the order in which landmarks were created. Figure 1.1 is an example in which

labels describe the order in which landmarks were created allowing a path to be inferred.

Four landmarks are arranged in two dimensional space at the corners of a square and here

are 4! possible labelling schemes, each of which correspond to a different shape. Objects

A and B have landmarks in the same spatial arrangement but the additional information

encoded by the labels allows the interpretation of two clearly distinct objects; specifically

in this case the simple representations of the letters N and C.

1

2

3

4

+

+ +

+

A

3

2

4

1

+

+ +

+

B
Figure 1.1: An example of where the addition of labelling information to
landmarks offers a clear distinction in interpretation compared to the unlabelled
spatial arrangement.

1.2.2 A matrix representation of labelled landmarks

A configuration of k landmarks in Rd is represented by a k×dmatrix,A = (a1,a2, . . . ,ak)T,

of Euclidean co-ordinates; where the subscript, i, of each set of Euclidean co-ordinates, ai,

is the label of the specific landmark.

4

1.2.3 Modulo location

The location of a configuration can be described by its centroid, the mean of the Euclidean

co-ordinates

ā = 1
k

k∑
i=1
ai .

Location can then be removed by subtracting the centroid, ā, from the configuration;

intuitively the configuration is translated so that it is centred at the origin

(k×d)
c
A =

(k×d)
A −

(k×1)
1k

(1×d)
āT . (1.1)

Equation 1.1 can be rewritten

c
A = IkA−

1
k

(k×k)
1k1T

k A

=
(

Ik −
1
k

1k1T
k

)
A

= QA . (1.2)

where Q is the k × k, rank k − 1, matrix

Q = Ik −
1
k

1k1T
k . (1.3)

Note that Q depends only on k.

It is clear that
c
A (and by association QA) are not full rank as knowing the location of the

centroid the location of any individual landmark can be derived from the remaining k − 1

landmarks. We want to avoid rank deficiency as our intention is ultimately to align sets of

shapes by minimising squared distances between labelled landmarks, and rank deficiency will

result in the being an ill-conditioned problem. Rank deficiency can be resolved by removing

any row of
c
A, however as a result of the arbitrary nature of the labelling this will present

problems for the consistent comparison of objects. Consider Figure 1.2: the removal of a

row relating to the location of any of landmarks 1, 3 or 4 from the centred configurations

of A and B will result in a smaller perceived object difference for any measure based on

distances of the remaining landmarks from the origin than the removal of the row relating

to landmark 2.

5

A B

+

4

1

3

2

+

+ +

+

+

4

1

3

2

+

+
+

+

Figure 1.2: Two objects represented by four landmarks; the objects differ only
in the location of landmark 2. The objects are shown to demonstrate that the
removal of information relating to one landmark can lead to incorrect inference
about their shape.

1.2.3.1 The Helmert matrix

In formulations of shape by D. G. Kendall4 location is removed using a matrix closely related

to Q called a Helmert matrix.

Recall the definition of the special orthogonal group of rotations

SO(n) =
{
X ∈ Rn×n |XXT = XTX = In and det(X) = +1

}
.

The order k Helmert matrix, H(k), is a member of SO(k) and is of the form

k×k
H(k) =



1√
k

1√
k

1√
k

1√
k

. . . 1√
k

1√
k

1√
k

−1√
2

1√
2 0 0 . . . 0 0 0

−1√
6

−1√
6

2√
6 0 . . . 0 0 0

...
...

...
...

. . .
...

...
...

−1√
(k−2)(k−3)

−1√
(k−2)(k−3)

−1√
(k−2)(k−3)

−1√
(k−2)(k−3)

. . . k−3√
(k−2)(k−3)

0 0

−1√
(k−1)(k−2)

−1√
(k−1)(k−2)

−1√
(k−1)(k−2)

−1√
(k−1)(k−2)

. . . −1√
(k−1)(k−2)

k−2√
(k−1)(k−2)

0

−1√
k(k−1)

−1√
k(k−1)

−1√
k(k−1)

−1√
k(k−1)

. . . −1√
k(k−1)

−1√
k(k−1)

k−1√
k(k−1)


.

It will also be useful to note the following properties of the Helmert matrix which will be

referred to later - using the notation hi as the ith row of the Helmert matrix and h(i...j) is

4Kendall 1984; Kendall et al. 1999.

6

a matrix of the ith to jth rows of the Helmert matrix :

hT
1h1 = 1 (1.4)

hT
(2...k)h(2...k) = Ik −

1
k

1k1T
k (1.5)

h1h
T
1 = 1

k
1k1T

k (1.6)

h(2...k)h
T
(2...k) = Ik−1 (1.7)

It can be seen that the RHS of equation 1.5 is equal to the RHS of equation 1.3 i.e. that

hT
(2...k)h(2...k) is a factorisation of Q, and that equation 1.6 implies that any configuration

matrix
k×m
A pre-multiplied by H(k) will result in a matrix where the first row is proportional

to the centroid of A. Going forward h(2...k) will be referred to as the order k Helmert

sub-matrix using the notation H
(k)
s (the order may not be given if it is clear from the

context).

To get an intuitive feel for the Helmert matrix consider the action of the Helmert matrix

on the co-ordinates of an object with four landmarks (k = 4) in two dimensions (d = 2)

H(4)A =



1√
4

1√
4

1√
4

1√
4

−1√
2

1√
2 0 0

−1√
6

−1√
6

2√
6 0

−1√
12

−1√
12

−1√
12

3√
12





x1 y1

x2 y2

x3 y3

x4 y4



=



√
4 0 0 0

0 1√
1×2 0 0

0 0 2√
2×3 0

0 0 0 3√
3×4





x1+x2+x3+x4
4

y1+y2+y3+y4
4

x2 − x1
1 y2 − y1

1

x3 − x1+x2
2 y3 − y1+y2

2

x4 − x1+x2+x3
3 y4 − y1+y2+y3

3


. (1.8)

When the configuration A is pre-multiplied by the Helmert matrix the first row of the

resulting configuration is a multiple of the centroid which implies that the product of the

Helmert matrix and a centred configuration will be of the form

H
c
A =

(
0 a′1 a′2 . . . a′k−1

)T
. (1.9)

So for any centred configurations the first row of the product will always be zero. However,

the result of pre-multiplying the centred configuration by the Helmert sub-matrix and pre-

7

multiplying the original configuration by the Helmert sub-matrix is always the same

HsQA = HsH
T
s HsA by equation 1.5

= HsA by equation 1.7 . (1.10)

This result shows that pre-multiplication by the Helmert sub-matrix is strictly only removing

location information and also implies that the resulting HsA matrix is of full rank.

It is worth emphasising that H(k) ∈ SO(k) and so there is a change in basis set implying

that the geometric relation between the landmarks will be modified; this is illustrated in

figure 1.3 which plots the result of pre-multiplying a set of landmarks by the Helmert sub-

matrix. Pre-multiplication by H(k) can be thought of as a rotation of co-ordinates in

landmark space rather than a rotation of landmarks in co-ordinate space.

+ +

++

−2 0 2 4

−
2

0
2

4

landmarks

+

++

−2 0 2 4

−
2

0
2

4

helmertized landmarks

Figure 1.3: Comparison of the the original four landmarks of an object con-
figuration to the result of pre-multiplication by a Helmert sub-matrix. This
demonstrates that the geometric relationship between the landmarks is modi-
fied.

To simplify presentation Helmertized configurations will often be represented by the addition

of an apostrophe such that

A′ = HsA

1.2.4 Modulo scaling

To remove size it is possible to normalise using a quadratic measure of size for the centred

configuration

‖
c
A‖F =

√
‖a1 − ā‖2 + ‖a2 − ā‖2 + · · ·+ ‖ak − ā‖2 .

8

This measure of size is the square root of the sum of the squared Euclidean distances between

each landmark and the centroid of the configuration. Since
c
A = QA (equation 1.2)

and HsA = Hs

c
A (using equation 1.10) the orthogonality of Hs implies that ‖

c
A‖F =

‖Hs
c
A‖F, hence we remove scale using the convenient form

A∗ = HsA

‖HsA‖F

and so A∗ is a set of k − 1 normalised, Helmertized landmarks in d dimensional Euclidean

space, Rd, and we assume throughout that the landmarks are not all coincident, i.e that

‖HsA‖F > 0. An alternative interpretation of A∗ is as defining a unit vector in m(k − 1)

dimensional Euclidean space, Rd(k−1), then the set of all possible A∗s would map to the

surface of a hypersphere in Rd(k−1); this interpretation of A∗ is known as the pre-shape of

the original configuration and the space of all possible pre-shapes for particular pair of k

and d is known as the Kendall Skd pre-shape sphere.

Using a similar interpretation for the Helmertized landmarks, A′, these can be thought of

as forming a set of concentric spheres in Rd(k−1) equivalent to a cone in Rdk with its apex

at the origin; this is the pre-size-and-shape space.

1.2.5 Shape distance

The shape of a configuration is the pre-shape, A∗, modulo rotation. The shape space of k

landmarks in m dimensions is written as Σk
d i.e. Σk

d is the quotient of Skd by SO(d). This

concept is somewhat abstract and the descriptions of the topology and geometry of Σk
d

are highly complex; however, what is of concern to this work are measures of differences

between shapes and for this we can work in the much more intuitive pre-shape space.

The set of locations on the pre-shape sphere, Skd , resulting from the action of SO(d) on a

pre-shape configuration is a continuous, open set.5 In essence this means that the rotations

trace a continuous path or fibre over the the surface of the pre-shape sphere and that the

distance between points on distinct fibres is measurable. The minimum length geodesic, in

this case a great circle, between any two fibres on Skd is a measure of distance between the

shapes in Σk
d; this is called the Procrustes distance. The minimum distance between the

fibres calculated in Rd(k−1) in which the Skd is embedded will be referred to as the chordal

5Kendall et al. 1999, Section 6.1.

9

distance (often termed the partial Procrustes distance in the literature). The two distance

measures have a simple functional relationship which is described in Dryden and Mardia

(2016, Section 4.2) along with their relationship to other commonly used shape distances.

Next, a description is given of the method used to optimise the rotation of the pre-shape

configurations which can be used to find the minimum chordal distance and hence the

chordal shape distance. Consideration of the optimisation of the rotation suggests a sim-

plified route to the chordal distance.

1.2.5.1 Optimising rotation

Optimisation of the rotation of two configurations to minimise the squared distance between

associated landmarks is a constrained version of the orthogonal Procrustes problem; the

constraint being that the solution is restricted to rotation matrices i.e. orthogonal matrices

with determinant one. A general singular value decomposition (SVD) based solution was

first given in Schönemann (1966).6 It is noted both that as Helmertized configurations are

being used no consideration of translation is needed, and that the following holds equally

for the rotation optimisation when calculating shape distance or size-and-shape distance.

Minimising the chordal distance is equivalent to minimising the Frobenius norm under

rotation i.e.

inf
R∈SO(d)

‖A∗ −B∗R‖F . (1.11)

Recall that the trace of a square matrix is the sum of its diagonal elements

Tr {X} =
n∑
i=1

x(i,i) where X ∈
n×n
R

and that

Tr {XY } = Tr {Y X} .

Minimising the Frobenius norm with respect to the rotation, R, is equivalent to maximising

6Details pertinent to shape are discussed in Kendall et al. (1999, Section 6.4), with a more algorithmic treatment
suggested in Golub (2013, Section 6.4.1).

10

Tr{A∗TB∗R}, since

‖X − Y R‖2F =
d∑
i=1
‖Xi − Y iΓ‖22

= Tr
{

(X − Y R)T (X − Y R)
}

= Tr
{
XTX −XTY R−RTY TX +RTY TY R

}
= Tr

{
XTX + Y TY − 2XTY R

}
= Tr

{
XTX

}
+ Tr

{
Y TY

}
− 2 Tr

{
XTY R

}
= ‖X‖2F + ‖Y ‖2F − 2 Tr

{
XTY R

}
. (1.12)

If A∗TB∗ is factorised using SVD (Golub 2013, Section 2.4), then

A∗TB∗ = USV T

where U and V are orthogonal matrices, U ,V ∈ O(d), and S is a diagonal matrix,

S = diag(s1, s2, . . . , sd), where s1 ≥ s2 ≥ · · · ≥ sd ≥ 0.

Then

Tr
{
A∗TB∗R

}
= Tr

{
USV TR

}
= Tr

{
SUV TR

}
=

d∑
i=1

si
(
UV TR

)
(i,i)

(1.13)

since U , V and R are all orthogonal and hence the maximum of their product is Id. Thus

equation 1.13 is maximised when

I = UV TR

RTR = UV TR

RT = UV T

R = V UT (1.14)

At this point V UT is only guaranteed to be a member of O(d) i.e. det(V UT) ∈ {−1, 1}.

For the case where det(V UT) = −1 the global optima includes a reflection and a local

11

optima transformation that is only a rotation is required.

Equation 1.13 is a linear function of the (UV TR)(i,i) defined on the space [−1, 1]d. The

linearity implies that optima are reached at the boundaries of the space and as described

the global optima is achieved at (1, 1, . . . , 1). The property of S that the singular values are

ordered implies that the next greatest optima is achieved at (1, 1, . . . ,−1) and clearly this

will have a determinant which is the negative of that of the global maxima, hence equation

1.14 can be modified to give the optima not allowing reflections

R = V



1 0 . . . 0

0 1 . . . 0
...

...
. . . 0

0 0 . . . det(V UT)


UT . (1.15)

It will be useful to note later that a rotation can be parameterised by an axis of rotation

and an angle of rotation around the axis. Using this parameterisation the angle of rotation,

θ, can be derived from the rotation matrix using

Tr(R) = (d− 2) + 2 cos θ . (1.16)

1.2.5.2 Chordal shape distance

The chordal shape distance is given by

d (A, B) = inf
R∈SO(d)

‖A∗ −B∗R‖F . (1.17)

Using details from section 1.2.5.1

d (A, B)2 = inf
R∈SO(d)

‖A∗ −B∗R‖2F

= inf
R∈SO(d)

‖A∗‖2F + ‖B∗‖2F − 2 Tr
{
A∗TB∗R

}
= inf
R∈SO(d)

1 + 1− 2 Tr
{
A∗TB∗R

}

= 2− 2


∑d
i=1 si if det(V UT) = +1(∑d−1
i=1 si

)
− sd if det(V UT) = −1

. (1.18)

12

To achieve 1.18 requires factorising A∗TB∗ to get det(V UT); this is computationally

expensive. However this can be avoided as follows:

The singular values from the SVD factorisation of A∗TB∗ are the positive square roots of

the eigenvalues of the square symmetric matrix (A∗TB∗)T(A∗TB∗) (Horn and Johnson

2012, Theorem 2.6.3). The determinant of V UT must equal the determinant of A∗TB∗

since

� determinants are multiplicative i.e. det(XY) = det(X) det(Y)

� det(X) = det(XT)

� the si are positive

� A∗TB∗ = USV T

Therefore 1.18 is equivalent to

d (A, B)2 = 2− 2


∑d
i=1 λi if det(A∗TB∗) = +1(∑d−1
i=1 λi

)
− λd if det(A∗TB∗) = −1

(1.19)

where the λi are the decreasingly ordered, positive square roots of the eigenvalues of

(A∗TB∗)T(A∗TB∗).

1.2.5.3 Size-and-shape distance

Consider the geometric interpretation of the pre-size-and-shape space. The pre-shape sphere

is a projection of the pre-size-and-shape onto a unit hyper-sphere in Rd(k−1). The pre-size-

and-shape can be thought of as a set of concentric spheres which represent the surface of

a hyper-cone in Rdk with its apex at the origin. It can be seen that rotations of a pre-

size-and-shape would trace out a fibre with a path equidistant from the cone axis, as the

centroid size does not change. This implies that the minimum chordal distance will always

be traced along the cone surface and so be equal to the minimum length geodesic; hence

for size-and-shape the Procrustes distance and chordal distances are equal.

ρss (A, B) = dss (A, B) = inf
R∈SO(m)

‖A′ −B′R‖F . (1.20)

13

It will also be useful later to note that the chordal size-and-shape distance is equal to the

root of the optimised squared distances for the original configurations, when the original

configurations have been centred. This can be seen from

‖Hs
c
A−Hs

c
BR‖2F = Tr

{(
Hs

c
A−Hs

c
BR

)T (
Hs

c
A−Hs

c
BR

)}

= Tr
{(

c
A−

c
BR

)T
HT

s Hs

(
c
A−

c
BR

)}

= Tr
{(

c
A−

c
BR

)T
Q

(
c
A−

c
BR

)}

= Tr
{(

c
A−

c
BR

)T (c
A−

c
BR

)}
since

c
A = QAand Q is idempotent

= ‖
c
A−

c
BR‖2F . (1.21)

Using similar reasoning it can be seen that ‖Hs
c
X‖2F = ‖

c
X‖2F which implies a similar result

to 1.21 for the chordal shape distance i.e. that

d
(

c
A,

c
B

)2
= inf
R∈SO(d)

∥∥∥∥∥∥ Hs
c
A

‖Hs
c
A‖F

− Hs
c
B

‖Hs
c
B‖F

R

∥∥∥∥∥∥
2

F

= inf
R∈SO(d)

∥∥∥∥∥∥
c
A

‖
c
A‖F

−
c
B

‖
c
B‖F

R

∥∥∥∥∥∥
2

F

. (1.22)

1.2.5.4 Isotropic error assumption

Implicit in the above shape distance calculations is the assumption of an isotropic error

model when optimising the rotation (Section 1.2.5.1). Theobald and Wuttke (2006) points

out that this commonly applied technique of minimising the sum of squared distances is

not always robust when “errors have heterogeneous variances or the errors are correlated”

and offers an alternative iterative algorithm to compute a more robust maximum likelihood

estimation. In this work we have chosen to stay with the method of minimising the sum of

squared distances. Initially this decision was made based on parsimony and the additional

cost of calculating the maximum likelihood estimate. Ultimately the performance of the

method has meant that we have not revisited this decision.

14

1.3 Proteins

1.3.1 Chemistry

A protein is a linear polymer made up of one or more amino acids chained together. There

are a set of twenty naturally occurring amino acid types from which all natural proteins are

constructed. All amino acid types have the same backbone structure but are differentiated

by their sidechains, and hence there are twenty distinct sidechain configurations that distin-

guish the naturally occurring amino acids. Structures of the 20 amino acids are illustrated

in Figure 1.4 (Papachristodoulou et al. 2014, Chapter 4).

Protein amino acids always join together via their backbone and the amino acid sidechain

is always connected to the backbone’s central alpha carbon, Cα. Sidechain atoms are

labelled with their chemical symbol and subscripted with Greek letters e.g. Cβ, Cγ , Sδ, Cε.

The protein structure minus the sidechains is called the polypeptide backbone, the bonds

between amino acids in the chain are known as peptide bonds and the amino acids making

up the chain are referred to as the residues. Figure 1.5 illustrates the construction of the

polypeptide backbone.

The polypeptide backbone forms an inscribed curve in three dimensional Euclidean space;

the form of this curve is known as the protein’s folding pattern or fold. Under standardised

conditions of temperature and solvent a protein molecule with the same amino acid sequence

will always achieve the same fold, known as the native fold ; this is the lowest energy

equilibrium structure for the standardised conditions. From here forward in the text fold

and native fold will be used interchangeably. A good introduction to current understanding

of the physical processes that lead to the achievement of the native fold can be found in

Dill and Bromberg (2010).

The differing spatial configurations of amino acids constituting the protein are called con-

formations. The majority of the positional freedom of atoms in the polypeptide backbone

comes from the rotational freedom along the inter atomic bond axes of the bonds con-

necting the backbone atoms; these rotation angles are called conformation angles. The

conformation angles of the N Cα and Cα C bonds are not restricted by the bond

structure and have complete freedom within steric limitations. The term steric refers to

15

Cα COO−N+H3

H

H

Glycine (GLY)

Cα COO−N+H3

CH3

H

Alanine (ALA)

Cα COO−N+H3

CH
H3C CH3

H

Valine (VAL)

Cα COO−N+H3

H

CH2

HCH3C

CH3

Leucine (LEU)

Cα COO−N+H3

H

CH2

CH2

S
CH3

Methionine (MET)

Cα COO−N+H3

H

CH
CH2

CH3

CH3

Isoleucine (LLE)

Cα COO−N+H3

H

CH2

Phenylalanine (PHE)

Cα COO−N+H3

H

CH2

HO

Tyrosine (TYR)

Cα COO−N+H3

H

CH2

N

H

Tryptophan (TRP)

Cα COO−N+H3

H

CH2

OH

Serine (SER)

Cα COO−N+H3

H

CH
HO CH3

Threonine (THR)

Cα COO−N+H3

H

CH2

SH

Cysteine (CYS)

Cα COO−

H

N
H

Proline (PRO)

Cα COO−N+H3

H

CH2

C

O

O−

Aspartate (ASP)

Cα COO−N+H3

H

CH2

CH2

C
H2N O

Glutamine (GLN)

Cα COO−N+H3

H

H+
3N

Lysine (LYS)

Cα COO−N+H3

H

CH2

NHN

Histidine (HIS)

Cα COO−N+H3

H

CH2

C

O

NH2

Asparagine (ASN)

Cα COO−N+H3

H

CH2

CH2

C
O− O

Glutamate (GLU)

Cα COO−N+H3

H

CH2

CH2

CH2

NH

C
H2N NH+

2

Arginine (ARG)

Figure 1.4: The 20 amino acids.

the energy cost associated with atoms being placed too close to each other; atoms can can

be thought of as occupying a volume in space and so conformation angles that result in

16

+H3N Cα

side
chain
one

H

C

O

N

H

Cα

side
chain
two

H

C

O

N

H

Cα

side
chain
three

H

C

O

N

H

Cα

side
chain
four

H

COO−

Figure 1.5: The construction of the polypeptide backbone that is common to
all proteins.

these volumes overlapping are avoided. In addition to steric considerations the conforma-

tion angle of the C N inter amino acid bond has structural characteristics that restrict

its freedom to two main conformation angles of 0 and 180 degrees.

The twenty distinct amino acid sidechains also have some freedom in their spatial configu-

rations, again mainly from rotation around bond axes. The differing spatial configurations

of sidechain atoms specifically resulting from rotation along bond axes are called rotamers,

short for rotational isomers.

Figure 1.6 shows the structure of the amino acid Phenylalanine and illustrates and labels

the bond axial rotational degrees of freedom of both the backbone and sidechain atoms.

Cα

Cβ

C

C

CC

C

C

H

C

O

N

H

CαN

H

C

O

Cα

φ ψ

ω

χ1

χ2

Figure 1.6: A representation of the structure of a Phenylalanine amino acid
within a protein chain. The backbone bonds are shown in black and the
sidechain bonds in blue. φ, ψ and ω are the backbone conformation angles.
The rotamers of the sidechains are defined by the bond torsion angles, χn;
hence, χ1 and χ2 are the sidechain conformation angles of Phenylalanine.
Differing spatial configurations of the sidechain atoms resulting from variation
in sidechain conformation atoms are called rotamers.

17

The physical interactions that lead to the final protein fold are not considered in this text as

they are far too involved to look at in any detail; however, it is worth noting that in practice

certain patterns of local structure tend to show up regularly. Specifically, sidechain rotamers

tend to prefer certain conformations, this can be seen in the example in figure 1.7 which

shows a random sample of twenty experimentally determined structures of the Phenylalanine

amino acid taken from the Protein Data Bank. Additionally, certain spatial arrangements of

Figure 1.7: A plot of the experimentally determined atomic locations of a
random sample of twenty Phenylalanine amino acids taken from the Protein
Data Bank. The groupings indicate preferred low energy configurations of the
sidechain atoms.

subsections of the polypeptide backbone occur regularly. These common arrangements are

referred to as secondary structure and are one of the standard levels used when describing

protein structure.

1.3.2 Describing protein structure

The important terminology for protein structure is now described. The term sequence when

applied to proteins refers to an ordered one dimensional list of the constituent amino acids

of the protein. A piece of structure formed from a single set of consecutive residues is called

a local structure.

Primary Structure The amino acid sequence.

Secondary Structure Structural arrangements of the polypeptide backbone. Secondary

structure types include α-helix, β-sheet and loops.

18

α-helix Consecutive residues forming a helix.

β-sheet Lateral interactions of two or more independent sets of residues; each set

is formed of a strand of consecutive residues, but the strands may be widely

separated within amino acid sequence. In general sheets are not flat. Central

strands in the sheet have two neighbours and edge strands in the sheet have a

single neighbour. There are various sub-types of β-sheet, these include parallel

β-sheet, antiparallel β-sheet, β-hairpin, β-barrel and β-bulge.

loops The regions of the sequence that join the sheets and helices are called loops.

Supersecondary Structure Many proteins show similar patterns of structural interactions

between the helices and sheets in the structure. When these patterns occur in lo-

cal structures they are called supersecondary structure. Supersecondary structures

lie somewhere between secondary and tertiary structure in the hierarchy. Common

supersecondary structures include the α-helix hairpin, the β-hairpin and β-α-β unit.

Tertiary Structure Spatial arrangement of the secondary structure elements. There are

common ways that elements of secondary structure pack together. Folding pattern

is often used as a synonym for tertiary structure.

Quarternary Structure The spatial arrangement of subunits; a subunit being one of a

curated set of common sequences. A protein made of a single subunit is called

monomeric. A subunit in a larger protein that is a monomeric protein in its own

right is called a domain. A protein made up of multiple domains is called a modular

protein. Most domains only combine with a limited set of other domains, and certain

domain combinations are very common.

There is no universally agreed mechanism for identifying domains within protein structures

and so domain mappings differ between protein categorisation databases. Manually identi-

fied domains, such as those in SCOP, are considered to be more reliable than automatically

identified domains (Holland et al. 2006) and in general the domains defined in SCOP tend

to be bigger than those in other classification databases (Csaba et al. 2009).

In protein science Similarity refers to an objective measurement of resemblance, whereas

homology includes inference that sequences have a common evolutionary ancestor i.e. ho-

mology is an inference from similarity – note that the use of the term homology in this

19

context is closer to the typical usage in biology rather than chemistry. Evolutionary muta-

tion occurs both at the sequence and the domain level i.e. evolution seems to try out domain

combinations as well as sequence combinations. Similar sequences do often produce similar

structures, but the converse is very often not true; i.e. similar spatial structure is often

found with very different sequence. Additionally similar function is often found in proteins

which are both non-homologous and have no similar structure. The biologically active part

of a protein structure is often a very small part of the whole, typically ten percent; however,

labelling one part of the structure as active should not necessarily be taken to mean that the

rest of the structure is unimportant scaffolding; for example energy reduction from bonds

in the “scaffolding” may effectively subsidise increased energy configurations in the active

parts.

1.4 Software and programming languages

The primary objective of the software implementations written as part of this work is to

produce trustworthy results; for the results to be trustworthy the code must be tested,

documented, parsimonious and available. To this end the proof of concept, reference

implementations are written using scripting languages. Scripting languages offer readability

and brevity, and rapid development times when compared to low level languages such

as C; the readability along with the brevity also serve to reduce the number of coding

errors. Software is written using the scripting languages R (R Core Team 2016) and Perl

(Christiansen et al. 2012). All methodological work is implemented in R; this was chosen

because of its familiarity to the statistics community and the reliability of the statistical

functions. The primary reference used in understanding the internals of R was Chambers

(2010). Processing and fetching protein data files is implemented using Perl; Perl is

better suited to text processing and system tasks. All open source packages and scripts

incorporated in, or used alongside, code written by the author are detailed in the code

section of the bibliography.

1.5 Thesis structure

The core of the remainder of this thesis consists of three chapters.

20

Chapter 2 quantifies the complexity of the unlabelled partial matching problem in Sec-

tion 2.2 and continues on in Sections 2.3 to review existing Bayesian techniques targeted

at addressing unlabelled partial matching in the context of protein alignment. Section 2.4

describes a reference implementation of the method described in Green and Mardia (2006)

having argued that Green and Mardia (2006) is representative of the spectrum of Bayesian

techniques described in the literature. Finally in Section 2.7 we consider the sensitivity of

the Green and Mardia (2006) method to the required prior information and also show that

without favourable starting conditions that the method will not scale to proteins of typical

size in the Protein Data Bank.

Chapter 3 details the development of a novel new algorithm which can be used to find both

global and good local solutions to the unlabelled partial matching problem in the general

protein case by applying constraints specific to the problem problem. In Section 3.2 we

begin with a description of an approximate distribution of size-and-shape distance calcu-

lated between configurations with known labelling where the difference in configurations is

modelled by spherical normal errors. Using this model, in Section 3.3 we develop a method

to select a set of starting matching matrices which are taken forward into Section 3.4 where

we extend the mechanism to iteratively find additional matches. This idea is further devel-

oped to produce a greedy algorithm that is able to reproduce the results from Green and

Mardia (2006) and that we show is generally applicable to Protein Data Bank data. Finally

in Section 3.5 we propose a difference measure that can be used to quantify the similarity

between proteins.

In Chapter 4 we discuss in detail the structure of the SCOP2 database as it relates to

querying category relationships, and detail the acquisition of data from the Protein Data

Bank along with the criteria for data exclusion. We then continue to apply the new al-

gorithm and difference measure proposed in Chapter 3 to protein atom co-ordinate data

from the Protein Data Bank and quantify the success of the algorithm at reproducing the

classifications from the SCOP2 categorisation database.

21

2
Recovering labelling using Bayesian

Hierarchical Models

2.1 Overview

This chapter reviews existing methods based on Bayesian hierarchical models for determining

the optimal labelling of unlabelled and optionally partially matching sets of landmarks. The

motivation for this chapter is to understand the mechanism by which these methods achieve

a solution, consider the applicability of the methods in the general case and then take this

understanding forward to Chapter 3 where we offer a novel, related method for the mass

comparison of protein structures.

Detailed discussion in this chapter is based on the method described in Green and Mardia

(2006), but the author believes that similar arguments to those presented would also apply

to the alternate models described in Dryden, Hirst, et al. (2007) and Schmidler (2007).

It is also noted that for the elements of the discussion that focus on the number of steps

taken by the Markov process to reach the optimal solution that it may have been more

appropriate to consider an optimisation technique such as the Expectation Maximisation

(EM) algorithm suggested in Green and Mardia (2006, Section 3.7) and Kent et al. (2010)

22

and Chui and Rangarajan (2000). This assertion is not refuted but our choice to consider

MCMC methods is based on a preference for the availability of the posterior distribution as

a diagnostic resource, our interest in minor modes (discussed in detail in Chapter 3), and a

belief that the critical component of both approaches is the likelihood and that a particular

form of the likelihood will influence both methodologies similarly.

The chapter is organised as follows: Section 2.2 quantifies the complexity of the unlabelled

partial matching problem. Section 2.3 considers the formulation of the Green and Mardia

(2006) method in detail. Section 2.4 looks at our reference implementation of the method

from Green and Mardia (2006) and covers the reproduction of the results given in that

paper. Section 2.5 considers sensitivity to required prior information and the information

available to the likelihood when the process is far from the mode. These considerations

are important when looking at the applicability of the method to unsupervised comparison

of large protein data sets containing large protein structures. Finally in Section 2.7 we

summarise the aspects of Green and Mardia (2006) that we will take forward to Chapter 3

where we develop a related method suitable for large scale unsupervised matching.

2.2 Quantification of the problem complexity

Let A and B be two configurations of landmarks where A is a m × d matrix containing

the co-ordinates of m landmarks in Rd and B is a n×d matrix containing the co-ordinates

of n landmarks in Rd. Let aj be the jth landmark co-ordinates in A and let bk be the kth

landmark co-ordinates in B. The order of the landmarks in A and B hold no significance

other than that their indices are used to identify the landmarks.

Labelling is a property ascribed between distinct sets of landmarks that describes correspon-

dence between individual landmarks; that is, landmarks in the distinct configurations that

have the same label are “labelled” as being matched. The labelling between configurations

A and B can be encapsulated in a m× n matching matrix, M , such that

Mj,k =


1 if aj matches bk

0 otherwise

where j ∈ {1, . . . ,m} and k ∈ {1, . . . , n} .

In what follows the additional restriction is applied that a landmark in A can at most be

23

matched to one landmark in B and vice versa. This implies that

m∑
j=1

Mj,k ∈ {0, 1} when k is fixed

n∑
k=1

Mj,k ∈ {0, 1} when j is fixed

(2.1)

and so the total number of matched landmarks is given by

L =
m∑
j=1

n∑
k=1

Mj,k .

Without loss of generality A and B are assigned such that m ≤ n, also implying that

L ≤ m. Considering the total number of possible matching matrices:

L = 0 There is one matching matrix where there are no matches.

L = 1 There are n available column positions in the row that contains the match and m

possible rows, giving nm possible matching matrices.

L = 2 There are n available column positions for the first row that contains a match. The

second row that contains a match then has n − 1 available column positions as a

result of the conditions in (2.1). There are
(m

2
)

ways to choose the first and second

rows giving
(m

2
)
n(n− 1) possible matching matrices.

L = 3 There are n available column positions for the first row that contains a match,

n−1 available column positions for the second row that contains a match, and n−2

available column positions for the third row that contains a match. There are
(m

3
)

ways to choose the first, second and third rows giving
(m

3
)
n(n − 1)(n − 2) possible

matching matrices.

In general for L matches the possible number of matching matrices is given by

SL =
(
m

L

)
n (n− 1) (n− 2) . . . (n− (L− 1))

=
(
m

L

)
n!

(n− L)!

= L!
(
m

L

)(
n

L

)
using

(
n

L

)
= n!
L!(n− L)! . (2.2)

24

Hence the number of all possible matching matrices is

S =
m∑
L=0

L!
(
m

L

)(
n

L

)
. (2.3)

As is demonstrated by the tables in Figure 2.1 the size of the space of all possible matching

matrices gets very large even for relatively modest values of m and n.

L 0 1 2 3 4 5 total

SL 1 25 200 600 600 120 1546

(a) m = 5, n = 5
L 0 1 2 3 4 5 6 7 8 9 10 total

SL 1 100 4,050 86,400 1,058,400 7,620,480 31,752,000 72,576,000 81,648,000 36,288,000 3,628,800 234,662,231

(b) m = 10, n = 10
L 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 total

SL 1 225 22050 1.2e06 4.5e07 1.1e09 1.8e10 2.1e11 1.7e12 9.1e12 3.3e13 7.4e13 9.9e13 6.9e13 2.0e13 1.3e12 3.1e14

(c) m = 15, n = 15

Figure 2.1: Illustrations of the size of the space of matching matrices for
various small values of m and n, using (2.2) and (2.3).

2.3 Green and Mardia (2006) in detail

Interest is in drawing inference about the matching matrix and the translation and rota-

tion of the configurations to achieve registration are considered nuisance parameters. The

two main approaches to dealing with these nuisance parameters are represented by Green

and Mardia (2006) and Dryden, Hirst, et al. (2007). Green and Mardia (2006) use prior

distributions on the rotation and translation parameters to obtain a posterior distribution

over the transformations and the matching matrix and then the marginal posterior for the

matching matrix is obtained by integrating out the nuisance transformation. Dryden, Hirst,

et al. (2007) minimise the shape distance using Procrustes registration; the Dryden, Hirst,

et al. (2007) method will not be discussed in any detail but will be considered later in

Section 2.5 when the domain of applicability of the Green and Mardia (2006) method is

discussed.

We consider Green and Mardia (2006) for the comparison of configurations of landmarks

in R3. Green and Mardia (2006) use a hierarchical Bayesian model

π (M ,Γ, τ , σ | A,B) ∝ L (A,B |M ,Γ, τ , σ)π(M)π(Γ)π(τ)π(σ) (2.4)

25

where M is a matching matrix, Γ ∈ SO(3), τ = (τx, τy, τz)T is a translation, and σ is

a standard deviation related to the error in the location of both sets of landmarks. The

prior distributions of M , Γ, τ and σ are assumed to be independent. In Green and Mardia

(2006) Γ is initially generalised to an affine transformation. In the model that follows we

assume the final simplifying assumptions from Green and Mardia (2006) from the outset;

namely that, Γ is a member of the special orthogonal group, and that the data are three

dimensional landmarks.

Sampling of the posterior distribution is achieved using MCMC with a mixture of Gibbs and

Metropolis-Hastings steps. It is assumed that for all but the matching matrix M the prior

information is weak and weakly informative prior distributions are chosen for Γ, τ and σ to

simplify posterior sampling. The final model is given as

π (M ,Γ, τ , σ | A,B) ∝ π(Γ)π(τ)π(σ)
∏
j,k:

Mj,k=1

[
ρ

λσ3 φ3

(
aj − Γbk − τ

σ
√

2

)]

where φ3 (·) is a standard normal density in R3 with mean µ = 0 and standard deviation

Σ = I3. The prior distributions of Γ, τ and σ are chosen to be the matrix Fisher,

multivariate normal and inverse gamma respectively. The resulting full conditionals of τ

and σ are multivariate normal and inverse gamma respectively, with Γ represented by a zyx

Euler Angle-axis Sequence. The full conditionals of θx and θz are von Mises distributions.

The full conditionals for θx, θz, τ and σ are completely known and so Gibbs sampling is

used. M and θy are sampled using Metropolis-Hastings.

2.3.1 The model

The following model is the same as that described by Green and Mardia (2006). The sets of

landmarks {aj} and {bk} are considered to be noisy observations on a set of true locations

{µi}. The observation errors are assumed to be spherical normal. Each true location, µi,

can be represented at most one time in each of {aj} and {bk}. The mappings of the indices

j and k to i are unknown and represented by {ξj} and {ηk} respectively.

{aj} and {µi} occupy the same space. {bk} occupies a space that is related to the {µi}

by a rigid body transformation of a rotation, Γ ∈ SO(3) and a translation τ = (τx, τy, τz).

26

The relationships between {aj}, {bk} and {µi} are explicitly given by

aj = µξj + εj

Γbk + τ = µηk + εk
(2.5)

where εj , εk ∼ N3(0, σ2I).

The matching relationship of landmarks in {aj} and {bk} is represented in terms of ξj and

ηk such that

Mj,k =


1 if ξj = ηk

0 otherwise

which is exactly equivalent to that described in Section 2.2 above.

It is assumed that N true locations of the landmarks {µi} are realised by a homogeneous

spatial Poisson process of intensity λ over some region with volume V in R3. There are

four possibilities for each realisation of a true location: neither an aj nor a bk matches

the µi, only an aj matches the µi, only a bk matches the µi, or both an aj and a bk

match the µi. It is assumed that these four possibilities occur independently and that the

probabilities of each possibility are parameterised respectively as 1−pa−pb−ρpapb, pa, pb

and ρpapb where ρ is some measure of the tendency for landmarks to match. The number of

realisations of each of the four possible outcomes are assumed to be independent Poisson

random variables with counts of N − m − n + L, m − L, n − L and L, and means of

λV (1 − pa − pb − ρpapb), λV pa, λV pb and λV ρpapb respectively, with L being the total

number of events where both an aj and a bk match a particular µi. The count for neither

an aj nor a bk matches the µi comes from N −m− n+L = N − (m− l)− (n−L)−L.

The conditional distribution of L and N is therefore proportional to the product of four

27

Poisson densities parameterised as follows

π (L,N | m,n, λ, V, ρ, pa, pb) ∝

e−λV (1−pa−pb−ρpapb)(λV (1− pa − pb − ρpapb))N−m−n+L

(N −m− n+ L)!

× e−λV pa(λV pa)m−L

(m− L)!

× e−λV pb(λV pb)n−L

(n− L)!

× e−λV ρpapb(λV ρpapb)L

L! .

Only the first term in the product contains N , which can be integrated out as follows

∞∑
N=m+n−L

e−kk(N−m−n+L)

(N −m− n+ L)! = e−k
(
k0

0! + k1

1! + k2

2! + . . .

)
where k = λV (1− pa − pb − ρpapb)

= e−k
∞∑
n=0

kn

n! = e−kek = 1 (Taylor expansion)

leaving the conditional distribution of L as

π (L | m,n, λ, V, ρ, pa, pb) ∝
e−λV pa(λV pa)m−L

(m− L)! × e−λV pb(λV pb)n−L

(n− L)! × e−λV ρpapb(λV ρpapb)L

L!

∝ (λV pa)m−L

(m− L)! ×
(λV pb)n−L

(n− L)! ×
(λV ρpapb)L

L!

∝ (λV pa)−L(λV pb)−L(λV ρpapb)L

(m− L)!(n− L)!L!

∝
(ρ
λV

)L
(m− L)!(n− L)!L! . (2.6)

Now considering (2.2)

L!
(
m

L

)(
n

L

)
= L!× m!

L!(m− L)! ×
n!

L!(n− L)!

= m!n!
L!(m− L)!(n− L)! ,

then

π (L | m,n, λ, V, ρ, pa, pb) ∝ L!
(
m

L

)(
n

L

)(
ρ

λV

)L
and so

π (L | m,n, λ, V, ρ, pa, pb) =
L!
(m
L

)(n
L

) (ρ
λV

)L∑m
l=0{l!

(m
l

)(n
l

) (ρ
λV

)l} .

28

Using the property that each row and column of
m×n
M must sum to 1 or 0 (2.1), for a given

L there will be L!
(m
L

)(n
L

)
possible Ms consistent with L matches. Assuming each of these

possible Ms is equally likely

π(M |L) =
{
L!
(
m

L

)(
n

L

)}−1

and so assuming conditional on m, n, λ, V , ρ, pa and pb

π(M) = π(M , L) = π(M |L) π(L)

= 1
L!
(m
L

)(n
L

) × L!
(m
L

)(n
L

) (ρ
λV

)L∑m
l=0{l!

(m
L

)(n
L

) (ρ
λV

)l}
=

(ρ
λV

)L∑m
l=0{l!

(m
L

)(n
L

) (ρ
λV

)l} . (2.7)

When MCMC is applied to a model where the dimensionality of the unknowns is itself an

unknown, or as Peter Green concisely put it “the number of things you don’t know is one

of the things you don’t know”1, then an extension to Metropolis-Hastings is required. The

usual MCMC approach to this type of trans-dimensional problems is called reversible jump

MCMC and is presented in Green (1995). The role of the matching matrix in the Green

and Mardia (2006) model mediating the addition and removal of hidden point locations

suggests the need for a reversible jump MCMC consideration, however this is not required

for the reason detailed in Green and Mardia (2006, Section 3.1)

Our model has another similarity with a mixture formulation, in that as M varies, the number
of hidden points needed to generate all the observed data also varies, and thus there seems
to be a ‘variable-dimension’ aspect to the model. However, here our approach of integrating
out the hidden point locations eliminates the variable-dimension parameter, so that reversible
jump MCMC is not needed.

1Green 2003.

29

2.3.2 Likelihood

The likelihood contribution of the landmarks in A and B given a particular M are derived

using the relationship given in (2.5) which is repeated here for convenience

aj = µξj + εj where εj ∼ N3(0, σ2I)

Γbk + τ = µηk + εk where εk ∼ N3(0, σ2I) .

The densities for non-matching landmarks – that is when Mj,k = 0 which is equivalent to

when a µi is either matched by a aj or a bk but not both – are: for a µi that is only

matched by an aj

f
(
aj − µξj

)
and for a µi that is only matched by an bk

f
(
Γbk + τ − µηk

)
.

The densities for matched landmarks – that is when Mj,k = 1 which is equivalent to when

a µi is matched by both an aj and a bk – are

f
(
aj − µξj

)
f
(
Γbk + τ − µηk

)
.

Where in each case f(·) is a trivariate normal, parameterised by σ, such that

f(x) = 1
σ3 φ3

(
x

σ

)
= 1

σ
φ

(
x1
σ

)
× 1
σ
φ

(
x2
σ

)
× 1
σ
φ

(
x3
σ

)

where φ(·) is a univariate standard normal.

The combined likelihood for all matched and non matched landmarks given a particular M

30

is then given by

L(a, b |M ,Γ, τ , σ) =
∏
j:

Mj,k=0

1
V

∫
V

f
(
aj − µξj

)
dµ

×
∏
k:

Mj,k=0

1
V

∫
V

f
(
Γbk + τ − µηk

)
dµ

×
∏
j,k:

Mj,k=1

1
V

∫
V

f
(
aj − µξj

)
f
(
Γbk + τ − µηk

)
dµ .

Assuming that V is large the integrals of the densities in the first and second terms can be

approximated to one such that

L(a, b |M ,Γ, τ , σ) ≈
(1
V

)m−L(1
V

)n−L(1
V

)L ∏
j,k:

Mj,k=1

∫
V

f
(
aj − µξj

)
f
(
Γbk + τ − µηk

)
dµ .

(2.8)

Considering the third term of (2.8):

Let

z = (aj − µ)− (Γbk + τ − µ) = aj − Γbk − τ

u = Γbk + τ − µ .
(2.9)

Hence

z + u = (aj − Γbk − τ) + (Γbk + τ − µ) = aj − µ

and

µ = Γbk + τ − u

dµ = −du .

Note that z is independent of µ.

Now assuming that V is large enough to ignore edge effects

∫
R3

f
(
aj − µξj

)
f
(
Γbk + τ − µηk

)
dµ =

∫
R3

1
σ3 φ3

(
aj − µ
σ

) 1
σ3 φ3

(Γbk + τ − µ
σ

)
dµ

= −
∫
R3

1
σ3 φ3

(
z + u
σ

) 1
σ3φ3

(
u

σ

)
du .

31

The implicit diagonal covariance matrix implies that

∫
R3

1
σ3 φ3

(
z + u
σ

) 1
σ3 φ3

(
u

σ

)
du

= 1
σ6

∫
R

∫
R

∫
R
φ

(
z1 + u1
σ

)
φ

(
z2 + u2
σ

)
φ

(
z3 + u3
σ

)
φ

(
u1
σ

)
φ

(
u2
σ

)
φ

(
u3
σ

)
du1 du2 du3 .

Now

∫
R

1
σ
φ

(
z1 + u1
σ

) 1
σ
φ

(
u1
σ

)
du1

= 1
2πσ2

∫
R

exp
{
− 1

2σ2 (z1 + u1)2
}

exp
{
− 1

2σ2u
2
1

}
du1

= 1
2πσ2

∫
R

exp
{
− 1

2σ2

(
z2

1 + 2u2
1 + 2z1u1

)}
du1

= 1√
2πσ2

exp
{
− 1

2σ2

(
z1√

2

)2
}∫

R

1√
2πσ2

exp
{
− 1

2σ2

(
u1
√

2 + z1√
2

)2
}

du1

= 1√
2

1√
2πσ2

exp
{
− 1

2σ2

(
z1√

2

)2
}

= 1
σ
√

2
φ

(
z1

σ
√

2

)
.

Hence

∫
V

f
(
aj − µξj

)
f
(
Γbk + τ − µηk

)
dµ =

(1
σ
√

2

)3
φ3

(
z

σ
√

2

)
=
(1
σ
√

2

)3
φ3

(
aj − Γbk − τ

σ
√

2

)
. (2.10)

Substituting (2.10) into (2.8)

L(a, b |M ,Γ, τ , σ) ≈
(1
V

)m+n−L ∏
j,k:

Mj,k=1

[(1
σ
√

2

)3
φ3

(
aj − Γbk − τ

σ
√

2

)]
. (2.11)

32

In order to substitute this likelihood into the Bayesian model, (2.4), note that

π (M ,Γ, τ , σ | A,B) ∝ L (A,B |M ,Γ, τ , σ)π(M)π(Γ)π(τ)π(σ)

∝ L (A,B,M | Γ, τ , σ)
π(M) π(M)π(Γ)π(τ)π(σ)

∝ L (A,B,M | Γ, τ , σ)π(Γ)π(τ)π(σ) ,

and that multiplying (2.7) and (2.11) we get

L(a, b,M | Γ, τ , σ) ∝
∏
j,k:

Mj,k=1

[(
ρ

λ

)(1
σ
√

2

)3
φ3

(
aj − Γbk − τ

σ
√

2

)]
. (2.12)

Hence the Bayesian model, (2.4), becomes

π (M ,Γ, τ , σ | A,B) ∝ L (A,B |M ,Γ, τ , σ)π(M)π(Γ)π(τ)π(σ)

∝ L (a, b,M | Γ, τ , σ)π(Γ)π(τ)π(σ)

∝ π(Γ)π(τ)π(σ)
∏
j,k:

Mj,k=1

[(
ρ

λ

)(1
σ
√

2

)3
φ3

(
aj − Γbk − τ

σ
√

2

)]
.

(2.13)

2.3.3 Prior distributions and sampling conditional posterior distributions

Prior knowledge of Γ, σ and τ is assumed to be weak and so weakly informative priors are

chosen which facilitate posterior analysis.

2.3.3.1 Rotation

Considering the prior on the rotation Γ, from (2.13) the full conditional distribution of Γ is

π (Γ |M , τ , σ,A,B) ∝ π (Γ)
∏
j,k:

Mj,k=1

φ3

(
aj − Γbk − τ

σ
√

2

)

∝ π(Γ) exp

−
1
2
∑
j,k:

Mj,k=1

(‖aj − Γbk − τ‖
σ
√

2

)2

 . (2.14)

33

Now

exp
{
‖aj − Γbk − τ‖2

}
= exp

{
Tr
[
((aj − τ)− Γbk)T ((aj − τ)− Γbk)

]}
‖X‖ =

[
Tr
(
XTX

)] 1
2

(Householder 1953, p. 39)

∝ exp
{

Tr
[
− (aj − τ)T Γbk − (Γbk)T (aj − τ)

]}
removing non-Γ terms

∝ exp
{

Tr
[
−2bk (aj − τ)T Γ

]} Tr(X) = Tr(XT)

Tr(XY) = Tr(Y X)

Tr(X + Y) = Tr(X) + Tr(Y)

∝ exp
{
−2 Tr

[
bk (aj − τ)T Γ

]}
Tr(cX) = cTr(X) ,

so continuing from (2.14)

π (Γ |M , τ , σ,A,B) ∝ π (Γ) exp

Tr

 1
2σ2

∑
j,k:

Mj,k=1

[
bk (aj − τ)T Γ

]
 . (2.15)

It is noted that the second term of (2.15) is proportional to the density of the Matrix Fisher

distribution2

f(X | F) ∝ exp
{

Tr
[
F TX

]}
and hence a prior of the form

π(Γ) ∝ exp
{

Tr
[
F T

0 Γ
]}

delivers conditional conjugacy such that (2.15) becomes

π (Γ |M , τ , σ,A,B) ∝ exp
{

Tr
[
F TΓ

]}

where

F = F 0 + 1
2σ2

∑
j,k:

Mj,k=1

[
bk (aj − τ)T

]
. (2.16)

The rotation, Γ, can be represented by the Euler Angle-axis Sequence3

2Mardia and Jupp 2000, Section 13.2.3.
3An Euler Angle is an angle of rotation about a co-ordinate axis. When used to multiply from the left the given Euler
Angle-axis Sequence is a rotation about the x-axis by φ, followed by a rotation around the new y-axis by θ, followed
by a rotation about the newest z-axis by ψ (Kuipers 2002, Chapter 4).

34

Γ = Γz(ψ)Γy(θ)Γx(φ)

=


cosψ − sinψ 0

sinψ cosψ 0

0 0 1




cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ




1 0 0

0 cosφ − sinφ

0 sinφ cosφ



=


cosψ − sinψ 0

sinψ cosψ 0

0 0 1




cos θ − sin θ sinφ − sin θ cosφ

0 cosφ − sinφ

sin θ cos θ sinφ cos θ cosφ



=


cosψ cos θ − cosψ sin θ sinφ− sinψ cosφ − cosψ sin θ cosφ+ sinψ sinφ

sinψ cos θ − sinψ sin θ sinφ+ cosψ cosφ − sinψ sin θ cosφ− cosψ sinφ

sin θ cos θ sinφ cos θ cosφ


where

φ ∈ (−π, π] θ ∈ (−π2 ,
π

2] ψ ∈ (−π, π] .

The full conditional of the rotation written in terms of these Euler angles is

∝ exp
{

Tr
[
F TΓ

]}
cos θ

where the cos θ term results from the uniform distribution of rotations having volume mea-

sure

1
8π2 cos θ dψ dθ dφ .

Noting that

Tr
[
XTY

]
=
∑
i,j

XijYij

the conditional distributions of the individual Euler angles can be written as

π (ψ |M , τ , σ,A,B, θ, φ) ∝ exp {cψ cosψ + sψ sinψ} (2.17)

π (θ |M , τ , σ,A,B, ψ, φ) ∝ exp {cθ cos θ + sθ sin θ} cos θ (2.18)

π (φ |M , τ , σ,A,B, ψ, θ) ∝ exp {cφ cosφ+ sφ sinφ} (2.19)

35

where

cψ = F1,1 cos θ − F1,2 sin θ sinφ− F1,3 sin θ cosφ+ F2,2 cosφ− F2,3 sinφ

= (F2,2 − F1,3 sin θ) cosφ+ (−F2,3 − F1,2 sin θ) sinφ+ F1,1 cos θ

sψ = −F1,2 cosφ+ F1,3 sinφ+ F2,1 cos θ − F2,2 sin θ sinφ− F2,3 sin θ cosφ

= (−F1,2 − F2,3 sin θ) cosφ+ (F1,3 − F2,2 sin θ) sinφ+ F2,1 cos θ

cθ = F1,1 cosψ + F2,1 sinψ + F3,2 sinφ+ F3,3 cosφ

sθ = −F1,2 cosψ sinφ− F1,3 cosψ cosφ− F2,2 sinψ sinφ− F2,3 sinψ cosφ+ F3,1

= (−F1,2 sinφ− F1,3 cosφ) cosψ + (−F2,2 sinφ− F2,3 cosφ) sinψ + F3,1

cφ = −F1,2 sinψ − F1,3 cosψ sin θ + F2,2 cosψ − F2,3 sinψ sin θ + F3,3 cos θ

= (F2,2 − F1,3 sin θ) cosψ + (−F1,2 − F2,3 sin θ) sinψ + F3,3 cos θ

sφ = −F1,2 cosψ sin θ + F1,3 sinψ − F2,2 sinψ sin θ − F2,3 cosψ + F3,2 cos θ

= (−F2,3 − F1,2 sin θ) cosψ + (F1,3 − F2,2 sin θ) sinψ + F3,2 cos θ .

The conditional distributions of ψ (2.17) and φ (2.19) are proportional to the Von Mises

distribution4

f(x | κ, α) = 1
2πI0(κ) exp {κ cos (x− α)}

= 1
2πI0(κ) exp {κ cosα cosx+ κ sinα sin x}

which can be sampled using Gibbs steps.

The Von Mises distribution is sampled using the algorithm described in Best and Fisher

(1979). The conditional for θ (2.18) is sampled using a random walk Metropolis step with

a uniform perturbation on [−0.1, 0.1]. It is assumed that there will be no prior knowledge

of the rotation and hence the parameter matrix for the Matrix Fisher distribution, F 0, is a

zero matrix.

4Mardia and Jupp 2000, Section 3.5.17.

36

2.3.3.2 Translation and sigma

The conditional distributions for τ and σ use standard normal and inverse gamma as-

sumption respectively (Gelman et al. 2013, Sections 2.5 and 2.6) giving the following full

conditional distributions which can be sampled using a Gibbs sampler.

The prior for τ is

τ ∼ N3
(
µτ , σ

2
τI
)

and the full conditional for τ

τ |M ,Γ, σ,A,B ∼ N3

(
µτ/σ

2
τ +

∑
j,k:Mj,k=1 (aj − Γbk) /2σ2

1/σ2
τ + L/2σ2 ,

1
1/σ2

τ + L/2σ2

)
.

(2.20)

The prior for σ is

σ−2 ∼ Γ (α , β)

and the full conditional for σ

σ−2 |M ,Γ, τ ,A,B ∼ Γ

α+ 3L/2 , β + 1
4

∑
j,k:Mj,k=1

‖aj − Γbk − τ‖2
 . (2.21)

2.3.3.3 The matching matrix

The matching matrix is updated with a Metropolis-Hastings step. The acceptance proba-

bility is given by

p
(
M ′,M

)
= min

{
π (M ′ | Γ, τ , σ,A,B)
π (M | Γ, τ , σ,A,B)

q (M |M ′)
q (M ′ |M) , 1

}

where M ′ is the proposed matching matrix and q(.) are the proposal probabilities.

As described in Green and Mardia (2006, section 3.4) the matching matrix is perturbed by

considering one possible match at a time as follows. A landmark is chosen at random from

the set of all landmarks across the two configurations.

37

if the choice is matched

[1a] With probability p∗ the proposal is to delete the match.

[1b] With probability 1− p∗ the proposal is to switch the match

to a currently unmatched landmark, chosen at random.

else the choice is un-matched

[2] The proposal is to add a match to a currently unmatched landmark,

chosen at random.

Here p∗ is a parameter introduced to weight the choice between [1a] and [1b]; for the results

given in Green and Mardia (2006) p∗ is set to 0.5.

The ratios q(M |M ′)
q(M ′|M) , given that the landmark under consideration was chosen from config-

uration A, are calculated as follows

q (M |M ′)
q (M ′ |M) =



1
m
1
m

1
L

(B)
u +1
p∗ = 1

(L(B)
u +1)p∗

for [1a]

1
m
1
m

1−p∗
1−p∗ = 1 for [1b]

1
m
1
m

p∗
1

L
(B)
u

= L
(B)
u p∗ for [2]

(2.22)

where L
(B)
u is the number of unmatched landmarks in configuration B when the chain is in

state M . The ratios π(M ′|Γ,τ ,σ,A,B)
π(M |Γ,τ ,σ,A,B) for [1a], [1b] and [2] are straightforward to calculate

from the posterior distribution (2.13)

For [1a]

π (M ′ | Γ, τ , σ,A,B)
π (M | Γ, τ , σ,A,B) =

∏
j,k:Mj,k=1,
j 6=ji,k 6=ki

[(ρ
λ

) (1
σ
√

2

)3
φ3

(
aj−Γbk−τ

σ
√

2

)]
∏
j,k:Mj,k=1

[(ρ
λ

) (1
σ
√

2

)3
φ3

(
aj−Γbk−τ

σ
√

2

)]
= 1(ρ

λ

) (1
σ
√

2

)3
φ3

(
aji−Γbki−τ

σ
√

2

)
=

(
σ
√

2
)3

(ρ
λ

)
φ3

(
aji−Γbki−τ

σ
√

2

) . (2.23)

38

For [1b]

π (M ′ | Γ, τ , σ,A,B)
π (M | Γ, τ , σ,A,B) =

∏
j,k:Mj,k=1,
j 6=ji′ ,k 6=ki′

[(ρ
λ

) (1
σ
√

2

)3
φ3

(
aj−Γbk−τ

σ
√

2

)]
∏
j,k:Mj,k=1
j 6=ji,k 6=ki

[(ρ
λ

) (1
σ
√

2

)3
φ3

(
aj−Γbk−τ

σ
√

2

)]

=
φ3

(
aji′
−Γbki′−τ
σ
√

2

)
φ3

(
aji−Γbki−τ

σ
√

2

) . (2.24)

For [2]

π (M ′ | Γ, τ , σ,A,B)
π (M | Γ, τ , σ,A,B) =

∏
j,k:Mj,k=1

[(ρ
λ

) (1
σ
√

2

)3
φ3

(
aj−Γbk−τ

σ
√

2

)]
∏
j,k:Mj,k=1,
j 6=ji,k 6=ki

[(ρ
λ

) (1
σ
√

2

)3
φ3

(
aj−Γbk−τ

σ
√

2

)]

=
(ρ
λ

)
φ3

(
aji−Γbki−τ

σ
√

2

)
(
σ
√

2
)3 . (2.25)

2.4 Reference implementation

A reference implementation of Green and Mardia (2006) was written by this author as

an R package, this includes a set of formal tests. The code for the package is given in

Appendix B.1.

2.4.1 Testing strategy

It is important that there is significant confidence in the implementation of the described

method. For this reason we applied a formalised testing strategy resulting in a set of tests

that are packaged with the code. Functionality that can be broken out into units that

produce deterministic return values, such as the conversion of Euler angles to a rotation

matrix, is tested with scripts that are packaged as formal test scripts run under ‘R CMD

check’. There is a single unit of functionality broken out that does not produce deterministic

output – the ‘rvonmises’ function produces random samples from a Von-Mises distribution

– we tested this function by producing large samples for various parameter sets and then

visually comparing histograms of the returned samples to an overlaid plot of the density.

The code for these tests is packaged as an example file in the package.

39

The core flow of the code that iterates over the Gibbs and Metropolis steps is constructed

such that a test script can replace any step or combination of steps by predetermined fixed

values, hence the functionality of a single (or combination of) steps can be tested in the

presence of the“correct”values produced by the other steps. We created a set of test using

data from the first eight landmarks of the ‘1cyd’ protein from the Green and Mardia (2006)

data set. The A landmarks of the test data are the eight ‘1cyd’ landmarks which have

been centred to the origin. The B landmarks are the A landmarks re-ordered, translated

and then rotated, with a small Gaussian perturbation applied. The ordering, rotation,

translation and error are then known for the relationship of A to B. We wrote a series of

unit tests to check that the implementation can recover each of the values used to create

the test data; these tests are summarised in Table 2.1.

test held free

σ M , τ , θz, θy, θx
θz M , τ , θy, θx θz, σ
θy M , τ , θz, θx θy, σ
θx M , τ , θz, θy θx, σ
τ M , θz, θy, θx τ , σ
M τ , θz, θy, θx M , σ

Table 2.1: Summary of the tests used to check the validity of the core MCMC
workflow.

The size of the space of all possible matching matrices for eight landmarks versus eight

landmarks is 25, 738 (2.3). A series of test runs demonstrated that 100, 000 matrix updates

is sufficient to sample the posterior when checking the matching matrix update proportion of

the code. In each case the test is performed by checking plots of the posterior distributions

against the known true values.

2.4.2 Reproducing the results from Green and Mardia (2006)

Going forward in this chapter when considering our reference implementation the termi-

nology will reflect that Green and Mardia (2006) “made 10 updates to M in each sweep”.

Hence in what follows an iteration refers to a sweep over all parameters in the model – so

one iteration incorporates a sequence of 10 updates to the matching matrix – and hence

1,000 iterations involves 10,000 updates of the matching matrix and 1,000 updates to all

other parameters.

40

Using the data from Green and Mardia (2006), 2000 runs of 1,000,000 iterations each dis-

carding a burn in of 200,000 iterations were completed using the reference implementation.5

For all runs the algorithm was initiated with a zero matching matrix. A point estimate of

the most probable matches was made by minimising the posterior expected loss with the

cost ratio set to not discriminate between the undesirability of false positives and false neg-

atives, this was implemented as described in Green and Mardia (2006, Section 3.5). Of the

2000 runs only 1 failed to produce the “36 most probable matches”. The 36 most probable

matches are given in Table 2.2.

Matrix index Residue seq No.
row column 1cyd 1a27

1 21 14 9
2 22 15 10
3 23 16 11
4 24 17 12
5 25 18 13
6 26 19 14
7 27 20 15
9 28 38 36

10 29 39 37
11 30 40 38
12 31 43 41
13 32 59 64
14 33 60 65
15 34 61 66
16 35 62 67
17 36 83 90
18 37 84 91
19 38 85 92
20 39 86 93
22 40 106 113
23 41 134 140
24 42 135 141
25 1 136 142
26 2 137 143
38 3 138 144
39 5 143 149
40 6 146 152
27 7 149 155
28 43 153 159
29 8 179 185
30 9 180 186
31 10 181 187
32 44 182 188
33 45 184 190
34 46 185 191
35 11 186 192

Table 2.2: Details of the best 36 matches found between the 1cyd and 1a27
proteins in Green and Mardia (2006).

Green and Mardia (2006) states

5The ‘plain text file’ from http://www.maths.bris.ac.uk/~peter/Align/ retrieved on 2016-01-20. Details of the
data, and the data values, are given in Appendix A.1 in the form of our package documentation.

41

After short runs of 50,000 sweeps, we tested whether or not the threshold log-posterior value
had been exceeded, and if not the run was abandoned. Eighty-three out of the 100 runs
passed this test, and these were allowed to run on for a further 450,000 sweeps. Every one of
these 83 long runs provided exactly the same set of 36 most probable matches.

We chose our log-posterior threshold from examining trace plots from several runs started

with the correct 36 matches. With this 78% of our 2,000 runs were below the log-posterior

threshold after 50,000 iterations (500,000 updates to the matching matrix). In our test

we ran the full set of iterations in all 2,000 cases and in all of the 22% not passing the

log posterior threshold after 50,000 iterations, the run continued on to produce the correct

point estimate of the best 36 matches.

Figure 2.2 shows the trace plots from a typical run of our reference implementation.

42

0 2000 4000 6000 8000 10000

10
20

30
40

matches σ

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
0

1.
0

2.
0

0 2000 4000 6000 8000 10000

1
2

3
4

5

σ

τx

30 35 40 45

0.
0

0.
2

0.
4

0.
6

τy

−10 −5 0 5 10 15

0.
0

0.
2

0.
4

τz

15 20 25 30

0.
0

0.
2

0.
4

0 2000 4000 6000 8000 10000

25
35

45
55

τx

0 2000 4000 6000 8000 10000

−
15

−
5

0
5

10

τy

0 2000 4000 6000 8000 10000
10

20
30

40

τz

θx

0.
0

0.
5

1.
0

1.
5

2.
0

− π − π 2 0 π 2 π

θy

0
1

2
3

4
5

6

− π 2 − π 4 0 π 4 π 2

θz

0
1

2
3

4
5

6
7

− π − π 2 0 π 2 π

0 2000 4000 6000 8000 10000

θx

−
π

−
π

2
0

π
2

π

0 2000 4000 6000 8000 10000

θy

−
π

2
0

π
2

0 2000 4000 6000 8000 10000

θz

−
π

−
π

2
0

π
2

π

Figure 2.2: Typical set of trace plots from a run of the reference implementa-
tion of Green and Mardia (2006). The trace plots represent a run of 1,000,000
iterations (10,000,000 matching matrix updates). The plots are of a thinned
sample where 1 in every hundred iterations is kept.

Figure 2.3 zooms in on the first 100,000 iterations of the number of matches trace plot

from Figure 2.2. Notice the very pronounced shift in mode which was typical of all runs;

43

this will be discussed in detail in Section 2.5.3.

0 200 400 600 800 1000

10
15

20
25

30
35

matches

matching matrix updates (x10−3)

Figure 2.3: The first 100,000 iterations of the number of matches trace plot
from Figure 2.2. Notice the very pronounced shift in mode which was typical
of all runs.

Of the 2,000 runs only a single run failed to produce all 36 matches. This run produced 35

of the 36 matches, the discrepancy resulting from a temporary jump out of the mode just

after the burn in period. This run passed was below the log-posterior threshold. The trace

plots from the failure are given in Figure 2.4.

44

0 2000 4000 6000 8000 10000

10
20

30

matches σ

1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

0 2000 4000 6000 8000 10000

1
2

3
4

5

σ

τx

25 30 35 40 45 50 55 60

0.
00

0.
10

0.
20

0.
30

τy

−15 −10 −5 0 5 10 15

0.
0

0.
1

0.
2

0.
3

τz

10 20 30 40

0.
00

0.
10

0.
20

0.
30

0 2000 4000 6000 8000 10000

30
40

50
60

τx

0 2000 4000 6000 8000 10000

−
15

−
5

5
15

τy

0 2000 4000 6000 8000 10000
10

20
30

40

τz

θx

0.
0

0.
5

1.
0

1.
5

− π − π 2 0 π 2 π

θy

0.
0

1.
0

2.
0

− π 2 − π 4 0 π 4 π 2

θz

0.
0

0.
4

0.
8

1.
2

− π − π 2 0 π 2 π

0 2000 4000 6000 8000 10000

θx

−
π

−
π

2
0

π
2

π

0 2000 4000 6000 8000 10000

θy

−
π

2
0

π
2

0 2000 4000 6000 8000 10000

θz

−
π

−
π

2
0

π
2

π

Figure 2.4: Trace plots from the single failure of 2000 runs of the refer-
ence implementation of Green and Mardia (2006). Details are the same as
Figure 2.2.

45

2.5 Considerations for unsupervised matching

This section considers the applicability of the Green and Mardia (2006) method for unsu-

pervised matching from three perspectives: the required prior information relating to the

expected number of matches as manifested in the hyper parameter λ/ρ, scalability in the

context of the information available through the likelihood to differentiate correct matches

from incorrect matches when finding early correct matches, and dealing with multimodality

in the posterior.

2.5.1 Hyper-parameter λ/ρ

The hyper-parameter λ is the rate of the Poisson process that produces the true locations

and ρ“is a certain measure of the tendency a priori for points to be matched”. The guidance

from Green and Mardia (2006, Section 4.3) for setting the value of λ/ρ

It is clear from inspection that setting λ/ρ equal to (m− L̄)(n− L̄)/L̄V yields a mode of L
that is within 1 of L̄, ... As long as V is known, or at least a representative value is provided,
and the analyst is able to make a prior guess L at the number of matches, this suggests a
reasonable way to specify λ/ρ. The posterior distribution for L tracks the prior rather closely,
confirming that the raw data carry little information about the number of matches.

To see this consider the substitution of (m−L̄)(n−L̄)/L̄V into the conditional distribution

for L given in (2.6)

π(L | . . .) ∝
(ρ
λV

)L
L!(m− L)!(n− L)! =

(
L̄

(m−L̄)(n−L̄)

)L
L!(m− L)!(n− L)!

∝



C
(m−L̄)2(n−L̄)2 if L = L̄

CL̄
(L̄+1)(m−L̄)2(n−L̄)2 if L = L̄+ 1

C
(m−L̄+1)(n−L̄+1) (m−L̄)(n−L̄) if L = L̄− 1

(2.26)

where

C =

(
L̄

(m−L̄)(n−L̄)

)(L̄−1)

(L̄− 1)!(m− L̄− 1)!(n− L̄− 1)!
.

(2.26) illustrates that with the given substitution L = L̄ is at least a local maxima.

In practice the volume term is an estimate and hence we re-examine (2.26) and add a factor,

46

εv, that represents the error in the estimate of V . Now (2.26) becomes

π(L | . . .) ∝

(
L̄

(m−L̄)(n−L̄) εv
)L

L!(m− L)!(n− L)!

∝



Cεv
(m−L̄)2(n−L̄)2 if L = L̄

CL̄ ε2v
(L̄+1)(m−L̄)2(n−L̄)2 if L = L̄+ 1

C
(m−L̄+1)(n−L̄+1) (m−L̄)(n−L̄) if L = L̄− 1

(2.27)

where

C =

(
L̄

(m−L̄)(n−L̄) εv
)(L̄−1)

(L̄− 1)!(m− L̄− 1)!(n− L̄− 1)!
.

(2.27) illustrates that without knowledge of εv there is no information available about the

mode of π(L | . . .). The plots in Figure 2.5 show the distribution for L given in (2.6)

having substituted λ/ρ = (m − L̄)(n − L̄)/L̄V εv. The plots demonstrate the interaction

of the estimation quality of V with the mode of π(L | . . .); the pronounced sensitivity to

εv indicates the importance of both prior information on the number of matches and the

volume in which these matches are enclosed.

0 10 20 30 40

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

L

D
en

si
ty

● ●
●

●

●

●

●

●
●

●

●

●

●

εv = 1 2
εv = 2 3
εv = 1
εv = 3 2
εv = 2

36

(a) m = 40, n = 63, L̄ = 36

0 20 40 60 80

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

L

D
en

si
ty

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●●●●●●●●●●●●●●●●●●●

●

εv = 1 2
εv = 2 3
εv = 1
εv = 3 2
εv = 2

50

(b) m = 80, n = 100, L̄ = 50

Figure 2.5: Plots of the distribution for L given in (2.6) having substituted
λ/ρ = (m − L̄)(n − L̄)/L̄V εv. The plots illustrate the sensitivity of the
prior distribution of L to the estimate of V . (a) illustrates the example given
in Green and Mardia (2006). (b) is given both for additional clarity and to
demonstrate that the influence of the quality of V increases as the number of
landmarks in the configurations increase.

Figure 2.6 shows the sensitivity of the method around the optimum value of λ/ρ = 0.003

47

for the Green and Mardia (2006) data. Notable is that there is a significant drop off the

effectiveness of the method outside of the values 0.0011 ≤ λ/ρ ≤ 0.0033; the skew in this

range could be taken to suggest that estimates of λ/ρ are better to be underestimated

rather than overestimated, although there is indication from the plot in Figure 2.5a that

this is a facet of the closeness of the correct number of matches to the maximum possible

correct number of matches (i.e. the number of landmarks in configuration A).

●

●

●

●

●

●
●

●●

●

●
●●

●● ● ● ●●●●

●

●

●

●●●●●●●●●●●●●● ●

0.000 0.001 0.002 0.003 0.004 0.005

0
20

40
60

80
10

0

λ ρ

%
 o

f r
un

s

(a) The percentage of runs that produce
a point estimate with at least 34 correct
matches and no incorrect matches.

●

●

●

●
●

●
●

●●
●

●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

0.000 0.001 0.002 0.003 0.004 0.005

0
50

00
0

10
00

00
15

00
00

20
00

00

λ ρ

m
ea

n
ite

ra
tio

ns

(b) The mean number of iterations before
the Markov chain first produces a matching
matrix with at least 34 correct matches and
no incorrect matches.

Figure 2.6: Sensitivity of the Green and Mardia (2006) method to the λ/ρ
hyperparameter. Each data point is derived from 50 runs of the reference
implementation using the parameters from Green and Mardia (2006) but with
a total run of 1,000,000 iterations, a burn in of 200,000 iterations (and 10
updates to the matching matrix per iteration). The minimum value tested was
λ/ρ = 0.0001.

Figure 2.7 shows a typical set of traces for a value just outside of 0.0011 ≤ λ/ρ ≤ 0.0033;

the traces indicate a tendency to jump away from the mode.

48

0 2000 4000 6000 8000 10000

5
15

25
35

matches σ

2 4 6 8

0.
0

0.
2

0.
4

0.
6

0 2000 4000 6000 8000 10000

1
2

3
4

5
6

7
8

σ

τx

20 30 40 50 60

0.
00

0.
10

0.
20

τy

−20 −10 0 10 20

0.
00

0.
10

0.
20

τz

10 20 30 40

0.
00

0.
10

0.
20

0 2000 4000 6000 8000 10000

20
30

40
50

60

τx

0 2000 4000 6000 8000 10000

−
20

−
10

0
10

τy

0 2000 4000 6000 8000 10000
10

20
30

40

τz

θx

0.
0

0.
4

0.
8

1.
2

− π − π 2 0 π 2 π

θy

0.
0

0.
5

1.
0

1.
5

− π 2 − π 4 0 π 4 π 2

θz

0.
0

0.
2

0.
4

0.
6

0.
8

− π − π 2 0 π 2 π

0 2000 4000 6000 8000 10000

θx

−
π

−
π

2
0

π
2

π

0 2000 4000 6000 8000 10000

θy

−
π

2
0

π
2

0 2000 4000 6000 8000 10000

θz

−
π

−
π

2
0

π
2

π

Figure 2.7: A typical set of traces for a value just outside of 0.0011 ≤ λ/ρ ≤
0.0033; the traces indicate a tendency to jump away from the mode. Run
details are the same as those described in Figure 2.2.

49

2.5.2 Calculating a minimum enclosing volume

Section 2.5.1 indicates the need for prior information as to the number and spatial arrange-

ment of the true matches so that an estimation can be made of their enclosing volume.

This section is somewhat of an aside as it illustrates a simple numerical method for finding

minimal enclosing volumes. The ideal simplified shape to use as a minimal enclosing volume

for a general point set is the smallest enclosing ellipsoid as the volume approximation error

is independent of the shape of the covering body (Gärtner and Schönherr 1997). The next

best bounding shape is the isothetic bounding box or a hyper-rectangle; we have chosen to

use this because the complexity of the calculation is greatly reduced.

In much of the literature the minimum volume hyper-rectangle containing a set of points is

referred to as minimal enclosing box. Calculating a minimum enclosing box in R3 is solved

using a deterministic algorithm in O’Rourke (1985); however, the implementation of the

method is non-trivial and at the time of writing an implementation is not available in R,

hence the much simpler brute force search described below was used. It is worth noting that

other popular, simple, heuristic methods suffer from common pathological problems such

as those described for principal component based methods in Dimitrov et al. (2009). An

example of the type of problem seen using principal component based methods is shown in

Figure 2.8 which shows the bounding box for a 2D projection of protein secondary structure

landmarks. The locally dense areas of landmarks have a significant unwanted effect on the

principal components resulting in a larger bounding box than is achieved by a simple grid

search over the rotation angle.

Our approach to approximating the minimal enclosing box takes a set of uniformly dis-

tributed rotations in SO(3) calculated from spherical Fibonacci points sets of the type used

in numerical integration over spheres (Hannay and Nye 2004). Each rotation in the set

is applied in turn to the landmarks and then the axis aligned minimum enclosing box is

calculated; the minimum calculated volume is then chosen.

50

●●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●●●

●

●
●

●

●●●

●

●●

●

●

●●

●

●

●

●●

●

PC1

PC2

Figure 2.8: An example of the type of problem seen using principal component
based methods to find a minimum bounding box. The landmarks are a 2D
projection of protein secondary structure co-ordinates. The locally dense areas
of landmarks have a significant unwanted effect on the principal components
resulting in larger bounding box, in yellow, than is achieved by a simple grid
search over the rotation angle, in green.

The procedure in detail is as follows: A set of Fibonacci points are generated on the

surface of a unit sphere, then for each point the rotation matrix required to rotate the point

(0, 0, 1) onto the generated point is calculated using the representation described in Möller

and Hughes (1999), given in (2.28).

R =


c+ hv2

x hvxvy − vz hvxvz + vy

hvxvy + vz c+ hv2
y hvyvz − vx

hvxvz − vy hvyvz + vx c+ hv2
z

 (2.28)

51

where

f = a point from the generated Fibonacci points set

x = (1, 0, 0)

v = f × t

c = f · t

h = 1− c
1− c2 = 1− c

v · v
.

The algorithm in Figure 2.9 is used to generate the Fibonacci points on the sphere and is

based on the description in Hannay and Nye (2004).

N = 1000 // number of Fibonacci points
z = −1
∆z = 2

N
φ = 0
∆φ = π(1 +

√
5)

for j = 1 to N

l =
√

1− z2

(xj , yj , zj) = (l cosφ, l sinφ, z)
z = z + ∆z
φ = φ+ ∆φ

Figure 2.9: The algorithm used to generate the Fibonacci points on a sphere.
Based on Hannay and Nye (2004).

Figure 2.10a illustrates the angles described in the algorithm and figure 2.10b shows a set

of small spheres centred at the generated point set on the surface of the unit sphere to

illustrate their distribution over the surface.

52

θ
r=1

Φz

(a)

(b)

Figure 2.10: Spherical Fibonacci points sets generated over the surface of
a sphere. (a) shows the arrangement of variables used in the description of
the algorithm. The points are generated on a cylinder and then are projected
perpendicularly from the cylinder axis onto a sphere. The sphere is aligned
with its polar axis along the axis of the cylinder. The cylinder is of length 2r,
where r = 1 is the radius of the sphere. (b) illustrates the distribution of a set
of 1000 generated points over the surface of the sphere.

2.5.3 Information available from the likelihood

The focus of this section is the information available to the likelihood. To simplify the

discussion the following simplified problem is considered:

� p∗ is set to 1 so that only adding and deleting matches need be considered.

� The number of landmarks in each configuration is chosen to be the same so that

Lu = L
(A)
u = L

(B)
u .

� At the point of analysis the Markov chain will be assumed to be in a state where the

rotation, Γ, and translation, τ , are ideal for the current state of the matching matrix,

M . This is equivalent to translating the configurations such that the centres of

mass of their currently matched landmarks are at the origin and then optimising their

rotation as described in Section 1.2.5.1; as such this regime is somewhat equivalent

to that described in Dryden, Hirst, et al. (2007).

� The λ/ρ term is chosen to have the ideal value.

53

Under these conditions and using (2.22) and (2.25) the acceptance probability for adding

a match for landmark aj to landmark bk is given by

p
(
M ′,M

)
= min


(ρ
λ

)
φ3

(
aj−Γ̈bk−τ̈

σ
√

2

)
(
σ
√

2
)3 Lu , 1

 (2.29)

= min
{
f
(
M ′,M

)
, 1
}

where Γ̈ and τ̈ are the optimised rotation and translation. It is noted that as the Markov

process is reversible a similar argument to what follows can be made for the deletion of a

match.

It is clear from (2.29) that under the ideal conditions described above the variance is the

critical factor and that assuming, as is the case, that σ has an uninformative prior then the

information available for σ must come from the data. Now consider starting from a zero

matching matrix and consecutively adding correct matches. The variance will have no data

available when adding the first or second matches as it will be constructed from zero and

one data points respectively. Information available to the variance will at best be marginal

when adding the third point as the variance will be calculated from two data points that

can only capture information from a single degree of freedom – it will not be until the fifth

point is being added that all the degrees of freedom come into play. Figure 2.11 illustrates

values for f (M ′,M) under these ideal conditions for the the Green and Mardia (2006)

data set. The specific details of the simulation used in Figure 2.11 are:

� A and B are the 1cyd and 1a27 landmark data respectively from the Green and

Mardia (2006) data set.

� The values for f (M ′,M) are calculated by numerical integration (quadrature) using

1000 equally spaced points between the 0.0005 and 0.9995 percentiles of the variance;

the variance at each point being calculated using (2.21).

� For each addition match the values for f (M ′,M) are given for the best case where

all the previous matches are correct e.g. the values given for the addition of the fifth

matches are calculated starting from a matching matrix with four correct matches.

54

f(
M

'|M
)

1s
t c

or
re

ct

1s
t w

ro
ng

2n
d

co
rre

ct

2n
d

wro
ng

3r
d

co
rre

ct

3r
d

wro
ng

4t
h

co
rre

ct

4t
h

wro
ng

5t
h

co
rre

ct

5t
h

wro
ng

6t
h

co
rre

ct

6t
h

wro
ng

7t
h

co
rre

ct

7t
h

wro
ng

8t
h

co
rre

ct

8t
h

wro
ng

9t
h

co
rre

ct

9t
h

wro
ng

10
th

 co
rre

ct

10
th

 w
ro

ng

match

1e
−

08
1e

−
04

0.
01

1
10

0
10

00
0

Figure 2.11: Plots of the value of f
(
M ′,M

)
for the idealised scenario de-

scribed in Section 2.5.3. This illustrates that the acceptance probability does
not have sufficient information to delineate correct from incorrect matches un-
til adding the fourth match. The 1.490116e-08 was added to all values to
allow a log scale; hence 1e-8 should be treated as zero.6The code used to
create this plot is given in Appendix B.2.

Figure 2.11 indicates that until at least three correct matches have been found the likelihood

does not contain enough information to drive the Markov process toward a mode, and hence

to this point an optimisation would be considered as a random, uninformed search. This has

implications for the scalability of the method with respect to its application to comparing

proteins referenced by the SCOP2 database for which we need to compare structures with

several hundred landmarks (Figure 2.12). For example, from (2.2) the number of possible

matching matrices for L matches is given by L!
(m
L

)(n
L

)
, and of these

(LT
L

)
will be correct –

LT is the true number of correct matches – and hence the ratio of the number of possible

matching matrices containing L correct matches to matching matrices containing at least

one incorrect match, for a matching matrix containing exactly L matches, is one in

L!
(m
L

)(n
L

)(LT
L

) . (2.30)

6
1.490116e-08 is the value of sqrt(.Machine$double.eps) for the R instance on the machine where the code
was executed. .Machine$double.eps is described by the R documentation as “the smallest positive floating-point
number x such that 1 + x 6= 1”.

55

residue count

F
re

qu
en

cy

0 500 1000 1500

0
20

40
60

80
10

0
12

0
14

0

Figure 2.12: Frequency counts of the number of residues in the protein asym-
metric units referenced by SCOP2. The counts have been binned, with bin
widths of 50.

In the case of the example given in Green and Mardia (2006) this equates to

3!
(40

3
)(63

3
)(36

3
) = 329, 701

When matching the smaller proteins in SCOP2, say with 100 residues at 30% matching

(the family level of categorisation is defined as having 30% and greater residue identity

(Hubbard et al. 1999)) then this number rises to

3!
(100

3
)(100

3
)(30

3
) = 38, 640, 724

As a secondary check of these calculations Figures 2.13 show histograms of the number of

matching matrix updates made using the Green and Mardia (2006) data set before 1, 2, 3,

and 4 correct matches are achieved. The histograms are overplotted with a hypergeometric

distribution with the probability being the inverse of (2.30), which would be expected if

the Markov chain was a completely unguided random walk. The plots indicate that the

process is substantively a random walk until a correct 3rd match is found. Once the third

correct match is found the likelihood is able to discern correct matches (as demonstrated

in Figure 2.11) and the Markov process moves strongly toward the mode. This “catching”

is seen in all trace plots that were manually examined, a typical example being that shown

earlier in Figure 2.2.

56

iterations

D
en

si
ty

0 500 1000 1500

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20
0.

00
25

0.
00

30

(a)

iterations

D
en

si
ty

0 10000 20000 30000 40000 50000

0.
00

00
0

0.
00

00
4

0.
00

00
8

0.
00

01
2

(b)

iterations

D
en

si
ty

0 500000 1000000 1500000

0e
+

00
1e

−
06

2e
−

06
3e

−
06

4e
−

06

(c)

iterations

D
en

si
ty

0 500000 1000000 1500000

0.
0e

+
00

1.
0e

−
06

2.
0e

−
06

3.
0e

−
06

(d)

Figure 2.13: Histograms of the number of matching matrix updates taken
before the first 1 (a), 2 (b), 3 (c), and 4 (d) correct matches are found. In
each case a hypergeometric density is overplotted with the probability param-
eter calculated using (2.30). The overplotting for plots (a), (b) and (c) are
calculated with the probability for 1, 2 and 3 matches respectively, and the
overplot for plot (d) is again calculated with the probability for 3 matches, the
same as plot (c). Each histogram represents 5,000 runs using the setup from
Green and Mardia (2006).

2.6 Multimodality

In this chapter we will not present a detailed treatment of multimodality. When considering

the Green and Mardia (2006) data this is not an issue as it is clear from the aligned set of

protein structures (Figure 3.12c) that the data will only present one major mode of interest.

It is worth noting however that a discussion relating to multimodality and techniques such

57

as parallel tempering7 need to be pre-empted by addressing the size of the solution space

away from the modes (Section 2.5.3). The problem of finding modes in this solution space

is treated in detail in Chapter 3 to follow.

2.7 Summary

Green and Mardia (2006) offers important insights into approaching the unlabelled partial

matching problem for proteins. The first of these is that their likelihood can be used to

locate a single solution for their dataset of 40 and 63 landmarks which results a possible

matching matrix solution space of
∑40
L=0 L!

(40
L

)(63
L

)
≈ 3.7 × 1065 matrices. This clearly

demonstrates that this form of likelihood and the model of spherical errors is appropriate

for this problem domain. We see from our analysis that once at least three matches are found

the likelihood strongly drives the Markov process to the mode; this will prove to be useful

for the method discussed in Chapter 3. The method is sensitive to the λ/ρ hyper-parameter

for which in large scale un-supervised matching scenarios prior information is unlikely to be

available, but a range of values could be suggested by considering the minimum enclosing

volumes of the target configurations. The discussion in Section 2.5.3 relating to the limited

information available to the likelihood is further addressed in Chapter 3.

7Gelman et al. 2013, Section 12.3.

58

3
A greedy algorithm

3.1 Overview

This chapter details the development of a new algorithm called GProtA (Greedy Protein

Alignment) which can be used to find global solutions to the unlabelled partial matching

problem for protein data. We begin in Section 3.2 with a description of an approximate

distribution of size-and-shape distance calculated between configurations with known la-

belling where the difference in configurations is modelled by spherical normal errors; this

distribution will be important for several of the sections in the remainder of the chapter.

Section 3.3 details several protein specific constraints that allow us to specify a sufficiently

small set of candidate starting matching matrices that it becomes practical to filter them

based on a comparison to a distribution of shape distances from a random sample of match-

ing matrices. In Section 3.4 we develop the ideas from Section 3.3 to allow us to iteratively

add new high quality matches between the configurations. We then consolidate the ideas

of sections 3.3 and 3.4 into a greedy algorithm that we propose as a general solution to

the unlabelled matching problem when applied to protein data. Finally in Section 3.5 we

propose a difference measure that can be used to quantify the similarity between proteins.

59

3.2 A spherical error model of size-and-shape distance

Consider the model where B is a copy of A with the addition of some form of random

errors, ε

B = A+ ε .

B is observed after the application of some unknown rigid transformation; the transfor-

mation consisting of a rotation, R ∈ SO(m), and a translation by a repeated set of

displacement vectors, τ = (1, . . . , 1)T(τ1, . . . , τm)

Bobs = BR+ τ . (3.1)

When labelling is known, any method for optimally aligning A and B will result in an esti-

mate of B, B̂, containing three sources of variance; these being from the error in estimating

the translation, the error in optimising the rotation, and residual errors. Procrustes mea-

sures of distance between shapes are calculated from the squared distances between labelled

landmarks in each configuration after the sum of squared distances has been minimised, for

example

dss (A, B) = inf
R̂∈SO(m) & τ̂∈T (k,m)

∥∥∥∥A− (Bobs − τ̂) R̂T
∥∥∥∥

F
(3.2)

where R̂ and τ̂ are estimates of the rotation and translation applied to B, and T (k,m) is

the set of all k ×m matrices. If the infimum over the rotation and translation are treated

separately, and the infimum over translation calculated first then this is always achieved

by translating the centroid of each configuration to the origin. When this translation is

performed by Helmertizing the configurations, (3.2) becomes

dss (A, B) = inf
Γ∈SO(m)

‖HsA−HsBobsΓ‖F

= inf
Γ∈SO(m)

∥∥A′ −B′obsΓ
∥∥

F (3.3)

where A′ = HsA and B′obs = HsBobs. Note that since one result of the action of

the Helmert matrix is to modify the geometric relation between the landmarks (see Sec-

tion 1.2.3.1) then the minimising rotation, Γ, is generally no longer an estimate of the

rotation in (3.1).

60

Now consider the special case where the errors on each landmark are iid and have some

form of spherical distribution

ε ∼ f
(
µ = 0, Σ = σ2(Ik ⊗ Im)

)
. (3.4)

In this case the actions of Hs will not transform the covariance matrix since H ∈ SO(k).

The action ofHs onBobs reduces the degrees of freedom by m as the resulting configuration

is represented by a (k−1)×m matrix in the space of derived landmarks. The action of the

optimising rotation Γ ∈ SO(m) in the derived landmark space constrains the result by a

further 1
2m(m−1) degrees of freedom, but the optimisation results in dependency between

the residuals which no longer are iid as the original errors.

If we further specialise our treatment of the errors to consider spherical normal errors such

that (3.4) becomes

ε ∼ N
(
µ = 0, Σ = σ2(Ik ⊗ Im)

)
(3.5)

then a sample of distances of d2
ss (A, B) derived from a set of independent observation of

B would be approximately distributed as

σ2χ2
km− 1

2m(m+1) = Gamma
(
km− 1

2m(m+ 1)
2 , 2σ2

)
. (3.6)

The error in estimating Γ is a function of the number of landmarks being optimised over

and the variance of the initial errors. We quantify the robustness of the approximation in

Figure 3.1 which shows that deviation from (3.6) is minimal for protein data even with as

few as 5 landmarks and a standard deviation of 10Å. In Figure D̊etailed treatment of this

form of approximation can be found in Sibson (1979), Langron and Collins (1985), and

Goodall (1991).

The relationship given in (3.6) will be useful later when we shall use it to help check our

ability to delineate two sets of shape distances; one with the source of variance being

modelled as a measurement error and the other where the variance results from landmark

separations in the order of protein Cα separation distances.

61

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

0 10 20 30 40 50

0
10

20
30

40
50

true standard deviation

es
tim

at
ed

 s
ta

nd
ar

d
de

vi
at

io
n

(a) L = 5

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●

●
●

●
●

0 10 20 30 40 50

0
10

20
30

40
50

true standard deviation

es
tim

at
ed

 s
ta

nd
ar

d
de

vi
at

io
n

(b) L = 10

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

0 10 20 30 40 50

0
10

20
30

40
50

true standard deviation

es
tim

at
ed

 s
ta

nd
ar

d
de

vi
at

io
n

(c) L = 50

Figure 3.1: Plots of true versus estimated standard deviation, where the
estimated standard deviation was obtained by maximising the likelihood of the
Gamma distribution given in (3.6) over possible values of the variance. Each
data point was derived from 10,000 squared chordal size-and-shape distance
between configurations where configuration A is always the first L landmarks
from the 1a27 protein in the Green and Mardia (2006) data and configuration
B is a random sample of 10,000 configurations where each configuration is A
with the addition of a spherical normal error, as described by (3.5), followed by
the application of a random rotation and translation. The plots indicate that
the remaining residues of the original errors on the landmarks are approximated
well by the original error distribution and so that (3.6) is a good description of
the distribution of chordal distances when there are at least 5 landmarks and
the standard deviation is below 10Å.

62

dss2

D
en

si
ty

300 400 500 600 700 800 900

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6

(a) L = 50, sd = 2

dss2

D
en

si
ty

0 5000 10000 15000

0.
00

00
0

0.
00

00
5

0.
00

01
0

0.
00

01
5

0.
00

02
0

0.
00

02
5

0.
00

03
0

(b) L = 5, sd = 20

Figure 3.2: Histograms of the squared chordal size-and-shape distance be-
tween two configurations where configuration A consists of the first ten land-
marks from the 1a27 protein in the Green and Mardia (2006) data and con-
figuration B is configuration A with the addition of a spherical normal error
described by (3.5), followed by the application of a random rotation and trans-
lation. The sample used is 100, 000 generated iid B configurations. The his-
tograms are over-plotted with the theoretical distributions described by (3.6).
(a) shows a good fit for small standard errors, (b) gives an example where the
approximation begins to break down for large standard errors.

63

3.3 Determining a set of starting matching matrices

In this section we show how to determine a set of starting matching matrices that will be

used as the foundation for the GProtA algorithm. In Section 2.5.3 of the previous chapter

we established a need to constrain the early stages of the matching problem; these matching

matrices could also be used to solve that problem. In what is to follow we choose to derive

a set of starting matching matrices with four matches, rather than the three suggested by

the arguments in Section 2.5.3; this is mainly for the reason that four non-planar points

defines orientation in 3 dimensional Euclidean space and this property will be important as

our argument develops in Section 3.4.

Before we begin we shall define some useful terminology: Let a matching matrix containing

γ matches be written as M (γ) where

∀M (γ) :
m∑
j=1

n∑
k=1

Mj,k = γ

and let a matching matrix containing γ matches where δ of the γ matches are correct be

written as M (γ,δ). A matching matrix where δ = γ will be referred to as a fully correct

matching matrix, a matching matrix where 0 < δ < γ will be referred to as a partially

correct matching matrix, and matching matrix where δ = 0 will be referred to as a fully

incorrect matching matrix.

3.3.1 Candidate matching matrices

From (2.3) the number of possible matching matrices containing γ matches is given by

Sγ = γ!
(
m

γ

)(
n

γ

)
(3.7)

where m is the number of landmarks in configuration A and n is the number of landmarks

in configuration B. We have stated that we were going to consider matching matrices with

four matches; although it seems intuitive that the number of possible matching matrices

will always increase with the number of matches we first check the behaviour of (3.7).

64

Consider the ratio

Sγ+1
Sγ

=
(γ + 1)!

(m
γ+1
)(n
γ+1
)

γ!
(m
γ

)(n
γ

)
=

(γ + 1)! m!
(γ+1)!(m−γ−1)!

n!
(γ+1)!(n−γ−1)!

γ! m!
γ!(m−γ)!

n!
γ!(n−γ)!

= γ(γ!)2(m− γ)!(n− γ)!
((γ + 1)!)2(m− γ − 1)!(n− γ − 1)!

= γ(m− γ)(n− γ)
(γ + 1)2 . (3.8)

When this ratio is greater than 1 then Sγ is increasing with γ. The denominator and

numerator are plotted separately in Figure 3.3. The region of interest is for 0 ≤ γ ≤ m.

−1 m n
γ

●

Figure 3.3: Plot of the numerator and denominator of (3.8).

The first crossing point is of little interest as in all practical problems m will be much greater

than γ so this will always be very close to γ = 0. As m gets larger compared to γ the

second crossing, circled in Figure 3.3, moves closer to m, indicating that the value of Sγ

will be smaller for smaller values of γ that are below m. Hence when γ is small compared

to m, Sγ is an increasing function of γ; meaning that there is motivation to choose a small

value of γ.

Currently our set of potential candidates is the complete set of M (γ) matching matrices

and so next we introduce a problem specific constraint against this set. Recall that local

structure explicitly refers to a piece of structure formed from a set of consecutive residues;

this reflects the importance of structural similarity between continuous sections of the amino

acid sequence. Using this preference we restrict consideration to sequences of consecutive

Cα atoms in each of the protein chains. The set of candidate matching matrices is then

based on the matches between combinations of these consecutive sequences. This restric-

65

tion implies that good starting matching matrices of γ matches will only be found if the

proteins being compared have similarity in the conformations of γ consecutive residues. This

restriction is not without precedent as it is analogous to the common use of gap penalties

in protein sequence alignment (Rodriguez and Schmidler 2014). Figure 3.4 shows a set of

sub-configurations with γ = 4 consecutive labelled landmarks from configurations of eight

and ten landmarks.

Configuration A Configuration B

01 02 03 04 05 06 07 08 01 02 03 04 05 06 07 08 09 10

|---------| |---------|

|---------| |---------|

|---------| |---------|

|---------| |---------|

|---------| |---------|

|---------|

|---------|

Figure 3.4: A restricted set of sub-configurations.

The total number of combinations of the complete sets of γ consecutive landmarks from

each configuration is 2(m − γ + 1)(n − γ + 1); the factor of 2 comes from including the

reverse of each of one of the set of configurations i.e. the selection from configuration A

would include both the ordered sequences (01, 02, 03, 04) and (04, 03, 02, 01). This regime

scales well for practical protein comparison.

There are two points of note to make about our use of sequences of consecutive Cα. The in-

clusion of the reverse of each of the configurations allows the method to capture alignments

that cross along the protein sequence. Additionally we have explicitly decided not to choose

the candidates based on possible matches from sequence alignments. Although sequence

alignment is a mature research field we do not want to impose either the assumptions or

heuristics of these techniques on our method and prefer to rely on statistical reasoning.

3.3.2 A statistical hypothesis test to constrain the set of candidates

We now cut down the set of candidates further using a statistical hypothesis test. The

purpose of the test is to give us the information to decide which of a set of candidate

starting matching matrices to keep. The statistic to be used is the squared chordal size-

and-shape distance between the sub-configurations as defined by some candidate matching

66

matrix, M
(γ)
i . The hypothesis test looks for evidence that a particular distance is smaller

than that expected if we had just guessed – chosen at random – a matching matrix. For

a given data set we have the information needed to completely define the null distribution;

namely the distribution of all the distances calculated against the two configurations for

every possible matching matrix, M (γ). In practice the number of matching matrices will be

too large and so we will approximate the null distribution from a random sample of these

matching matrices. No attempt is made to model the null distribution directly as it is clear

from the descriptions of the steric constraints in Section 1.3.1 that determining an analytic

distribution would be non-trivial.

In the null distribution the density of fully correct matching matrices is very low. Of the total

number of possible matching matrices (3.7) there are
(L
γ

)
that are fully correct, where L is

the true total number of correct matches. The ratio of the number of all M (γ) matching

matrices to fully correct M (γ,δ=γ) matching matrices is

#M(γ)

#M(γ,δ=γ) =
γ!
(m
γ

)(n
γ

)(L
γ

) ≥
γ!
(n
γ

)
1 since L ≤ m ≤ n (3.9)

where M(γ) and M(γ,δ=γ) are the complete sets of the M (γ) and M (γ,δ=γ) matching

matrices respectively, and #M(.) is the count of elements in the set. For any realistically

sized protein comparison this ratio is large even for small values of γ, for example the Green

and Mardia (2006) data gives a ratio of
4!(40

4)(63
4)

(36
4) = 22, 179, 913 for γ = 4.

As the null distribution is of the test statistic, the chordal size-and-shape distance, it is still

left to show that the fully correct matching matrices result in distinctly smaller distances

to partially correct and fully incorrect matching matrices. Intuitively this is the case as the

chordal distance for matrices where δ = γ is derived from a set of matching errors whereas

when δ 6= γ at least one of the landmark separations is of the order of the spatial separation

of Cα distances (3.8Å). For the rest of this section we shall make the assumption that the

chordal size-and-shape distance is a monotonic function of δ, but we shall return to this to

offer more evidence at the end of Section 3.3.3.

Incorporating the selection of candidate matching matrices and the statistical hypothesis

test produces the following algorithm for selecting a set of starting matching matrices

67

SelectStarting

1 Create a random sample of N matching matrices each containing γ matches,

Ms = {
m×n

M
(γ)
i : i = 1 . . . N}.

2 For each member of Ms filter the A and B configurations using the matching matrix and then

calculate the squared chordal size-and-shape distance between the filtered configurations.

The resulting squared distances constitute a sample of the null distribution of squared distances

D =
{
δi : M (γ)

i ∈Ms , δi = d2
ss

(
M

(γ)
i ,A,B

)}
3 Create a set of candidate starting matching matrices

Mc = {
m×n

M
(γ)
j : j = 1 . . . 2(m− γ + 1)(n− γ + 1)}

where the M
(γ)
j are chosen as detailed at the end of Section 3.3.1.

4 for each M j ∈Mc

5 Calculate the p-value against the null distribution of the squared chordal size-and-shape distances.

p-valuej = 1
#D
∑

1(δi≤δj , δj=d2
ss(Mj ,A,B), δi∈D, Mj∈Mc)

6 Adjust each p-value with a Bonferroni correction for 2(m− γ + 1)(n− γ + 1) tests.

p-adjustedj = p-valuej × 2(m− γ + 1)(n− γ + 1)

7 Use the p-adjusted values to select a set of starting matching matrices from Mc.

Mstart = {Mk : Mk ∈Mc, p-adjustedk ≤ α}

Where

d2
ss

(
M (γ),A, B

)
= inf

Γ∈SO(m)

γ−1∑
i=1

∥∥∥H(γ)
s a1...γ −H(γ)

s b1...γΓ
∥∥∥2

2

and a and b are the co-ordinates of the individual landmarks in configurations A and b.

It is important to note that SelectStarting is using statistical reasoning to determine the

starting matching matrices. In this way we ensure that we will include all good matches

from all high quality optima. The alternative of just selecting a number of the best matches

would have the advantage that the numerical expense of the calculation could be controlled.

The problem with this approach is that it is easy to find an example where these first best

matches would all be used on some local optima thus potentially excluding the global optima

or other interesting local optima. This is particularly likely to be the case where there are

large regions of secondary structure in both structures.

3.3.3 A worked example of finding starting matching matrices

For this example A is arbitrarily chosen to be the first 10 landmarks of the landmark data

used in Green and Mardia (2006) for the 1cyd protein and B is generated using the model

in Section 3.2 with σ2 = 0.5. Note that in the Green and Mardia (2006) data for 1cyd

68

the first ten landmarks represent a sequence of seven consecutive amino acids followed by a

second sequence of three consecutive amino acids. In Figure 3.5 the two configurations used

in the example are illustrated under optimal alignment, by minimising the sum of squared

distance between labelled landmarks.

Figure 3.5: A 2D projection of the 3D configurations, under optimal align-
ment, used as the basis for the example.

For this example the ratio #M(4)

#M(4,δ=4) = 5, 040 : 1. A random sample of 2, 500 matching

matrices from M(4) was used for the null distribution; for reference the counts of δ for the

sample are given in Table 3.1.

δ 0 1 2 3 4
count 1672 691 124 13 0

Table 3.1: Counts of the number of matrices for each value of δ in the sample
of M (4) used to approximate the null distribution.

There are 98 candidate matching matrices; the distance and p-values calculated for the first

49 (un-reversed) candidates are given in Table 3.2. It can be seen that at a significance

level of α = 0.01 the adjusted p-values offer evidence to reject the null hypothesis for

six of the seven candidates which are in truth fully correct matching matrices. Referring

to the jth matching matrix represented in the table as M j , then for α = 0.01 there is

a single false negative, M33; the optimal alignment using this matching matrix is shown

in Figure 3.6a. There are also two matching matrices, M11 and M16, that would be

significant at α = 0.05; alignment using M11 is shown in Figure 3.6b. Both M11 and M16

represent good local matches in the protein fold even though they are not“correct”matches

in the sense of having the correct modelled labelling. This illustrates the important point

that these lower order matches may be of interest and should not be treated as unwanted

local minima without first careful consideration of the motives of the correspondence search

69

j δ dss2 p-value adjusted p-value

1 4 1.9614 0.0000 0.0000
2 0 7.4791 0.0072 0.3528
3 0 12.0991 0.0220 1.0000
4 0 9.5913 0.0128 0.6272
5 0 42.1011 0.2912 1.0000
6 0 43.1525 0.3024 1.0000
7 0 26.2128 0.1296 1.0000
8 0 6.8120 0.0048 0.2352
9 4 2.3042 0.0000 0.0000

10 0 4.8028 0.0028 0.1372
11 0 2.9553 0.0008 0.0392
12 0 36.3985 0.2296 1.0000
13 0 36.8765 0.2336 1.0000
14 0 14.9172 0.0336 1.0000
15 0 7.7134 0.0076 0.3724
16 0 3.7859 0.0008 0.0392
17 4 2.0833 0.0000 0.0000
18 0 11.0012 0.0180 0.8820
19 0 16.3339 0.0420 1.0000
20 0 29.9842 0.1660 1.0000
21 0 16.2768 0.0416 1.0000
22 0 6.6053 0.0044 0.2156
23 0 5.8328 0.0036 0.1764
24 0 4.4049 0.0020 0.0980
25 4 2.0014 0.0000 0.0000
26 0 41.8145 0.2872 1.0000
27 0 24.8520 0.1120 1.0000
28 0 32.9267 0.1956 1.0000
29 0 44.1472 0.3132 1.0000
30 0 27.4785 0.1396 1.0000
31 0 31.2096 0.1756 1.0000
32 0 43.5972 0.3060 1.0000
33 4 2.6496 0.0004 0.0196
34 0 56.9728 0.4636 1.0000
35 0 38.8228 0.2564 1.0000
36 0 41.7516 0.2860 1.0000
37 0 37.1048 0.2356 1.0000
38 0 26.5258 0.1312 1.0000
39 0 39.0737 0.2584 1.0000
40 0 57.6983 0.4708 1.0000
41 4 0.9349 0.0000 0.0000
42 0 42.3982 0.2936 1.0000
43 0 28.6348 0.1524 1.0000
44 0 23.4574 0.1012 1.0000
45 0 21.1118 0.0804 1.0000
46 0 33.3887 0.1996 1.0000
47 0 33.6942 0.2032 1.0000
48 0 48.1966 0.3624 1.0000
49 4 0.7451 0.0000 0.0000

Table 3.2: Results of p-value calculations for the first 49 candidate starting
matching matrices (the un-reversed set).

being instigated by the protein scientist. These examples also illustrate the importance of

the significance level and choice of method for multiple test correction, as both alignments

illustrated in Figure 3.6 would visually be considered good matches; these points will be

considered in more detail in Section 3.3.4.

70

(a) M33

(b) M11

Figure 3.6: 2D projections of selected 3D configurations, under optimal align-
ment, after applying candidate matching matrices. For both matching matrices
there is evidence to reject the null hypothesis at the α = 0.01 significance level.
(a) is the only “correct” matching matrix that is rejected. (b) is significant at
α = 0.05 and demonstrates that there is potentially interesting good local
matching for a set of not “correct” matches.

Now we return to our assumption at the end of Section 3.3.2 that the chordal size-and-

shape distance is a monotonic function of δ. To do this we consider the null distribution for

the above example. Figure 3.7 shows the distributions of the statistic for each value δ; as

the example problem is small this can be shown both for the sample and the complete set

of the 1, 058, 400 M (4) matching matrices. The expected clear separation of the statistic

calculated against fully correct and not fully correct matching matrices is seen, and in the

complete set all the distances associated to δ = γ = 4 are in the lower 0.01 percentile of

the data. Of the matches where δ < 4, a subset offer the statistic in the range occupied

by δ = 4; these are similar to the example in Figure 3.6b in that although they are not a

subset of the optimal global alignment they may offer interest as local optima.

3.3.4 Further checking the selected starting matching matrices

Section 3.3.2 offers a method for finding a good set of starting matching matrices. In

this section we consider the distribution of a possible alternative hypothesis, this being the

distribution of the statistic under the spherical error approximation detailed in Section 3.2.

As an alternative distribution in the case of the above example this makes sense but in

Section 3.4 we shall argue that this model is useful for real data comparison, and that if

this is the case then such a distribution offers a way to check the validity of any set of

suggested starting matching matrices, offered by any method, if prior knowledge of the

71

−−−− −−−−−

κ

ds
s2

0.
1

0.
5

1
2

4
10

50
30

0

4 3 2 1 0

(a) The null sample.

−

−

−

−
−

−−

−

−

−
−−
−−

−

−

−−

−−

−−

−

−−
−−
−−−

−−−−−

−

−

−

−
−−
−

−−−−

−

−−−

−−
−−

−−−−

−

−−−

−

−−−−−−−−−−−
−−−−−−−−−−−−−
−−
−−−−−−−−
−−−−−−−
−−
−
−
−−−
−
−−−

−

−−−−
−
−−−
−−
−
−−
−
−−−−−−−−−−−
−−−−
−−−−−−

−
−
−
−
−−−
−
−

−−−−−−−−−−−−−
−
−−−

−

−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−

−
−

−−−−−

−

−−

−
−−

−−−−−−−−−−−−−−−−−−−−−−−−−

−−
−

−−

−

−−−−−−−−−−−−
−
−−−−−−−−−−−−

−

−−−−−−−
−−−−−−−−−−−

−

−−−−−−−−−−−−−−−−−−−−−−
−−−
−
−
−
−−−−−−−−−−−−−−−−−−−−−−−−−−
−
−
−−−
−−−−−
−−−−−−−−−−−
−−−−−−−
−−−−−−

−

−

−

−−
−
−−−−−−−−−−−−−−−−−
−
−−−−−−−−
−−−−−−−−−−−−−−−−−
−−−−−
−
−−−−−−
−
−−
−
−−−−−−−−−−−−−−
−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−

−−−−−−−−−−
−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−
−
−−−
−−−−−−−−−−−−
−−−−−
−
−−−−−−−−−
−−−−−−−−−−−−
−−
−
−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−
−−−−−−−−−−−−−−−−−−
−−
−−−−−−−−−
−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−
−−
−−−−−−−−−−−−−−
−−
−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−
−−−−−−
−
−−−−−
−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−
−−−−
−−−
−−−−−−
−
−
−−
−−−
−−
−−−−−−−−−−−
−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−
−−−−−−−−−−−−−−−−
−−−−−−−
−
−−−
−
−−−−−−−−
−−−−−−−
−−−−
−−−−−−
−
−−−−−−−−−−
−−−−
−−−
−−
−−
−−−−−−−−
−−−−−−−−−−−−−−−−
−−
−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−
−−−−−−
−−−−−−−−−
−−−
−−−−−−−−−
−
−
−
−−
−
−−−−−−−

−
−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−
−−
−−−−
−
−−−−−−−−
−
−
−−−−−−−−−−−−−−
−
−−−−−
−−−−−−−−−−
−−−−−
−−
−−−
−−−−−−
−−−−−−−−−−−−−−−−−
−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−
−−−−−−−
−−−
−
−−−−−−−−−−−−−−−−−−
−
−−−−
−−−−−−−−−−−−−−−−−
−−−−−−−−
−−−
−
−−−−−−−−−−−−−
−
−−−−−−−−−−−−−
−
−−−−−
−−−−−
−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−
−−−−−−−
−−−−−−
−
−−−−−
−−−−−−−−−−−−
−−
−−−−−−−−
−−−−−−
−
−−−−
−−−−−
−
−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−

κ

ds
s2

0.
1

0.
5

1
2

4
10

50
30

0

4 3 2 1 0

(b) The complete set of the 1, 058, 400M (4)

matching matrices.

Figure 3.7: Chordal size-and-shape distances partitioned by δ. The dis-
tances are calculated for both the null sample and for the complete set of
the 1, 058, 400 M (4) matching matrices. The dotted line indicates the lower
0.01 percentile of the data. The plots have been adjusted to take account of
the skewed distributions using Hubert and Vandervieren (2007) as implemented
in Maechler, Todorov, et al. (2016).

parameters for the alternative can be elicited.

Figure 3.8 plots the theoretical density of the statistic for spherical errors using the value

of σ2 used to generate the test data. This density is plotted over the density formed by

a histogram generated from the complete set of 1, 058, 400 M (4). The plot indicates the

respective upper and lower 0.01 percentiles, which do not overlap.

Estimating σ2 for real matching could be done in general using the following reasoning.

For Cα atoms in protein data, steric constraints lead to an expected Cα separation of 3.8Å

(Kleywegt 1997) and the variance on crystallographic determinations of the atom positions

is expected to be less than 0.02 (Cruickshank 2006). We confirmed this expectation by

examining a large sample (≈ 106) of distances between consecutive Cα atoms in PDB

data for proteins categorised in SCOP2; this analysis found a mean of 3.80 and variance

of 0.0024 (a graphical representation of this data can be seen in Figure 4.6 in Chapter 4).

Starting with an assumption that a match with an error greater than or equal to 3.8Å

is unreliable – as this is the distance between consecutive Cα atoms – in Figure 3.9 we

72

dss2
0 50 100 150 200 250 300 350

dss2
0 5 10

Figure 3.8: Density plot of the chordal squared distance for the complete
set of the 1, 058, 400 M (4) matching matrices calculated against the A and
B configurations used in this illustrative example. The vertical dotted line
indicates the lower 0.01 percentile. The theoretical distribution (3.6) is over
plotted (not to scale); this is plotted up to the upper 0.01 percentile. The
inset shows an enlarged version of the region of interest in the main plot
around dss2 = 0.

plot the 0.0005 to 0.9995 percentile ranges of normal densities with variances of 1.14Å2

and 0.92Å2; these represent respectively the variance where the percentile range does not

include the expected distance to the adjacent Cα, and the variance where 3.8/2 is two

standard deviations from the mean. Some heuristic following this sort of reasoning would

seem reasonable for choosing the σ2 parameter if assuming spherical errors for an alternative

distribution. As can be seen from the typical set of trace plots for the Green and Mardia

(2006) implementation in Figure 2.2 once the mode is found the value of σ2 concentrates at

1.1± 0.2 also suggesting a similar value for the σ2 parameter of an alternative distribution.

73

−7.6 −3.8 −2.0 0.0 1.9 3.8

σ2 = 0.90 + 0.02
σ2 = 1.12 + 0.02

σ2 = 0.02

Figure 3.9: Plots of normal densities of varying variance centred with separa-
tions of their means of 3.8Å. The densities suggest a mechanism for setting a
σ2 value for the distribution of the alternative hypothesis.

3.4 The GProtA algorithm

In Section 3.3 we detail a hypothesis test that we use to determine good candidates for

starting matching matrices where δ = 4. In this section we develop the use of the hypothesis

test to iteratively add matches to the matching matrix.

3.4.1 Extending the use of the hypothesis test to iteratively add matches

A matching matrix M ′ is called adjacent (increasing) to M if M ′ contains exactly one

more match than M , i.e.

m∑
j=1

n∑
k=1

M ′j,k = 1 +
m∑
j=1

n∑
k=1

Mj,k

and similarly a matching matrix M ′ is defined such that it is adjacent (decreasing) to M

if M ′ contains exactly one less match than M , i.e.

1 +
m∑
j=1

n∑
k=1

M ′j,k =
m∑
j=1

n∑
k=1

Mj,k .

The hypothesis test described in Section 3.3.2 can then be used to filter adjacent match-

ing matrices to the original starting matching matrices, and then as we progressively add

matches by determining the adjacent matrices to those where we reject the null hypothesis

at the previous iteration. This is described in the following NaiveHypothesis algorithm.

74

NaiveHypothesis

1 Initialise M(γ=4)
s =M(γ=4)

start , these being the starting matching matrices described in Section 3.3.

2 for γ = 4 to m− 1

3 Create the set, M(γ+1)
c , of all the adjacent (increasing) matching matrices to the matrices in M(γ)

s .

4 For each M
(γ+1)
j ∈M(γ+1)

c calculate the p-value against the null distribution of the squared chordal

size-and-shape distances, p-valuej = 1
#S
∑

1(
δi≤δj , δj=d2

ss

(
M

(γ+1)
j

,A,B
)
, δi∈S, M

(γ+1)
j

∈M(γ+1)
c

)
where S is a sample of the null distribution of squared distances for (γ + 1) matches

S =
{
δi : δi = d2

ss

(
M

(γ+1)
i ,A,B

)
,M

(γ+1)
i : i = 1 . . . N

}
5 Adjust each p-value with a Bonferroni correction for #M(γ+1)

c tests.

6 Use the p-adjusted values to select a set of starting matching matrices from M(γ+1)
s .

M(γ+1)
s =

{
M

(γ+1)
k : M (γ+1)

k ∈M(γ+1)
c , p-adjustedk ≤ α

}
When this algorithm was applied to the data from the illustrative example of Section 3.3.3

the minimum chordal size-and-shape distance for the set of M(γ=10)
s was for the “cor-

rect” matching matrix and the routine performed a total of 2382 size-and-shape distance

calculations. The number of calculations performed for each value of γ are illustrated in

Figure 3.10.

●●●● ● ●●● ●● ●●● ●● ●●● ●● ●● ●●●● ● ●● ●● ●● ●●● ●●● ●● ●●● ●●● ●● ●● ●● ●●●● ●●● ●●●● ●● ●●●●● ●● ●●● ●● ● ●●● ●

●● ●

●●●●●●●●●● ●●●●●●● ●●●● ● ●●●●●●● ●●● ●● ●●●●●●● ● ● ●●● ● ●●●●●● ● ●●●● ●●● ●●●●● ●●●●●

● ●● ● ●● ●● ●● ●●●●●●●● ●●●● ●●●●●● ●●● ● ●● ●●● ●●● ●● ● ●● ●● ●● ●●● ● ●● ●●●●● ● ●●● ●●● ● ● ●●●●●●● ●●●●●●●●● ●●●●●● ●●●●●● ●● ●● ●●●● ●● ●● ● ●● ● ●● ● ●● ● ●●●●● ● ●● ●●● ● ● ●●● ●●●● ● ●●●●●● ●●●● ●●●● ●● ● ●●●● ●● ●●● ● ● ●● ●●●● ●●●● ● ● ●●● ● ● ●● ●●●● ● ●●●●● ●● ●● ●● ● ● ●● ●●● ● ●● ●● ●●●●● ●●●● ● ●● ● ●●●● ● ●● ●● ●● ● ●● ● ●●● ●● ●● ●● ●● ●● ● ●● ●● ●● ●● ●●●● ●●●● ● ●● ● ●● ●● ●● ●●●●

● ● ●● ● ●● ●●● ●●●● ●●●●●● ●● ●●● ●●● ●●●● ●●● ● ●●●●● ●● ●●● ● ●●● ●●●● ●●●● ● ● ● ●● ●● ●● ●●● ● ●●●●●● ●●● ●●● ●●● ●●●● ●●● ●● ●● ●● ●●● ●● ●● ●●● ●●● ● ● ●●●● ● ●● ● ● ●● ● ●● ●● ● ●●●● ●● ●● ●● ●●●●●● ● ● ●● ●●●● ● ● ●● ● ●● ● ● ●● ● ● ●● ● ●● ● ●● ● ●● ●● ●●●● ●● ●● ●●●● ● ●● ●●● ●●● ●● ●●● ● ●● ● ● ●●●●●● ● ●● ●● ●●● ● ●● ●● ●●● ●●● ●●● ●●●● ● ●●●● ● ●● ●● ●●●●● ●●● ● ●●● ●●●● ●●● ● ● ●● ●●●● ●● ●●●● ● ● ●●●● ● ●●● ● ● ●● ● ●● ●● ●● ●● ● ●● ●● ●● ● ● ●● ●●● ● ● ● ● ●● ●●● ● ● ● ●●●● ● ●●● ●● ● ●●●● ●● ●● ● ●●●● ● ●● ●● ●● ●● ●●●● ● ● ●● ● ●● ●●● ●● ●● ● ●● ●● ●●● ● ● ● ●● ● ● ● ● ●●● ●● ●●● ●●● ●● ●●● ●● ●● ● ● ●● ● ●● ●● ●●● ● ● ●● ●● ● ● ●●● ●●● ● ●●● ● ●● ●●● ● ●●● ● ● ●● ● ●● ● ● ●● ● ● ●● ●●● ● ●● ● ● ● ●● ●●●●●●● ●● ●●●● ●● ● ● ●●● ● ● ●●● ●●● ●● ●● ●●● ●● ● ●● ●●● ●● ●● ●●● ● ● ● ● ● ●● ●●● ●●● ●● ● ● ● ●● ● ●● ● ●●

●● ●● ●●● ●● ● ● ● ● ●● ●●●●●● ●● ● ●●●● ●● ●●● ● ●● ●● ●●●● ● ●●● ●● ●● ●● ●● ● ●●● ●●● ●●● ●● ●●● ● ●●● ● ●● ●● ●● ●●● ●● ● ●● ●● ● ●● ● ● ● ●●● ●●● ●●●● ● ● ● ● ● ● ● ●●● ● ●●● ● ●●●● ●● ● ●● ● ●●● ●●● ●● ●● ● ●● ●● ●● ● ● ●● ●●●●●● ●●● ● ●● ● ● ●● ●● ● ●● ●●● ●● ● ●● ● ● ●●● ●● ● ● ●● ●●●●●● ● ●●● ● ● ●● ● ● ● ●●●● ●● ● ● ● ● ●● ●●● ●● ● ● ●● ●●●● ●● ● ●●● ● ●● ● ● ●●● ●●● ● ●●● ●● ● ● ● ● ● ● ●● ●●● ● ● ●● ●● ●● ● ●● ● ● ●● ● ● ●●●● ●●● ●● ●●● ●●● ●● ●●● ●●● ● ● ●●●● ● ● ●●● ●● ● ● ● ● ● ● ● ●● ●● ● ● ● ●●● ● ●● ●● ● ●● ● ● ●●●● ● ●● ●● ●●● ●● ● ● ●●●● ● ● ● ● ● ● ●●● ●● ●●● ● ● ● ● ●● ● ●● ● ●● ●● ●● ● ●● ● ● ● ●● ●● ●●●● ● ●● ● ● ●●● ●● ●● ●● ● ●●●●● ● ●● ●● ●● ● ●● ●●● ● ●● ● ●●● ●●●● ● ●● ●● ●● ● ● ● ●● ●● ● ●● ● ●●● ● ●●●●● ●● ●●● ●● ●● ●● ●●●● ● ●● ● ●●● ●● ● ●●● ● ●● ● ●● ●●● ●●● ● ●●●● ●● ●●● ●● ●● ●●●● ●● ●● ● ●●● ●● ●● ●● ● ●●● ●●● ●●●● ● ●● ●● ●●●● ● ●●● ●● ● ● ●● ● ● ●● ●● ● ●●● ●● ●●● ●●● ● ●●● ● ●● ● ● ●●● ● ● ●● ● ●● ●● ● ●●● ● ● ● ●● ● ●● ●● ●●● ●● ●●● ● ●●● ●● ●● ●●● ● ● ●●●● ●●●● ●●● ● ● ● ●●● ● ● ●●● ● ● ●● ●● ●●●● ●●● ●● ● ● ●● ●●● ●●● ●●●● ●● ● ●●● ● ●●●● ● ● ●● ●●● ● ●● ●●● ● ●●●● ● ●● ●● ● ● ●● ●●●●● ●● ● ●● ● ●●● ● ●● ●●● ● ●● ● ●●● ●●●● ●● ●●●●● ●●● ●●●●● ● ●●●● ● ●●●● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ●● ●●● ● ●● ● ●●●● ● ●● ● ●● ●●● ● ●● ●● ● ● ●● ●● ● ●● ●● ●● ● ● ●● ● ● ●●●● ●● ● ● ●●● ●● ● ● ● ●●● ● ● ●● ● ●● ●● ●● ●● ●●●●

●●● ●● ●● ● ●● ● ●●● ● ● ●●●● ●● ●● ● ●● ●●● ●● ●● ● ● ● ● ●●● ●● ●● ●●● ●● ● ●● ● ● ●●● ●● ● ●●●●● ●●●● ● ● ●● ● ●● ●●●● ●● ●●● ●● ● ● ● ●● ●●● ● ●● ● ● ● ● ● ● ●● ●● ● ●● ●● ●● ● ●● ●● ● ● ●● ●● ●●● ● ●●● ●●●●●● ●●● ● ●●●● ● ● ● ● ●● ●● ● ● ●●● ●●●● ● ● ● ● ●●●● ●● ● ● ● ● ●●● ●● ● ● ● ● ●● ● ● ● ●● ●● ● ●●● ●● ●● ● ●●●● ●● ● ● ● ● ●● ● ●● ● ● ●●● ●● ●● ●● ●●● ● ●● ● ●●●● ●● ● ● ●● ●●●●● ● ● ● ●●● ●●● ●● ●● ●●● ● ●● ●●● ● ● ● ●●● ● ● ●●● ●● ●●●●● ● ●● ●● ●● ●● ●●●●●● ●●●●●● ●● ●●●● ●●●● ●● ●●●●● ● ● ●●●●● ● ● ● ●●● ●● ●● ●●●● ● ● ● ●●● ●●● ● ●● ●●● ● ●● ● ● ● ●●●●●●● ●●●● ● ●●● ●● ● ●●●● ● ● ●●● ●● ● ●●● ●●● ●● ●● ●●● ● ●●● ●

γ = 4

γ = 5

γ = 6

γ = 7

γ = 8

γ = 9

γ = 10

Figure 3.10: Illustration of the number of calculations carried out using the
NaiveHypothesis algorithm to find the optimum matching matrix between two
configurations of 10 landmarks. The landmarks used were those from the
illustrative example of Section 3.3.3. Each edge in the plot represents a size-
and-shape distance calculation; in total there are 2382 calculations. The larger
black dots represent matching matrices where all the matches are correct.

3.4.2 Greedily following multiple paths to find multiple solutions

In the NaiveHypothesis implementation many of the fully correct matching matrices in

the starting matching matrices for γ = 4 are not being selected to go forward. This is

75

a result of the combination of the significance level, set at 0.01, and what is most likely

a too conservative adjustment for multiple tests in the Bonferroni correction. If we were

able to correctly identify all of the fully correct matching matrices at each level then this

method would not scale to comparing real protein configurations as there are
(L
γ

)
fully correct

matching matrices at each level, where L is the true number of correct matches. For example

a pair of configurations that in truth had 100 correct matches would have
(100

4
)

= 3, 921, 225

matching matrices with γ = 4 correct matches, which may be manageable, but by the time

the algorithm reaches γ = 10 correct matches there are
(100

10
)
≈ 1013 correct matching

matrices.

The overly conservative filtering of results in the NaiveHypothesis algorithm reflects the

intentional mechanism of a greedy algorithm (Cormen et al. 2009, Chapter 16) in that at

each γ level a greedy algorithm would choose the locally optimal solution or set of solutions.

This mechanism presents a clear problem with our NaiveHypothesis algorithm in that it is

sensitive to being misdirected by local optima; it is easy to envisage a scenario where the

set of solutions chosen to continue to the next level is from a strongly similar subset or

subsets of matches that are not part of a larger set that is the global optimum. Our chosen

method to avoid this issue is to treat each starting matching matrix separately; in the

discussion to follow we will refer to each separate treatment as a branch. The treatment of

each starting matching matrix as the base for a separate optimisation leads to the following

two further considerations. Firstly, multiple branches may converge on the same matching

matrix hence a mechanism is needed to merge such branches to stop duplication of effort.

Secondly, branches that lead to local optima will at some point become sub-optimal and

hence a stopping criteria must be introduced.

Assuming that the chordal-size-and-shape distance is within the support of the null distri-

bution then the p-value is a monotonic function of the size-and-shape distance. Hence,

for a greedy algorithm – where only the single best solution is chosen at each stage – the

calculated size-and-shape distances will suffice for selection; this removes the requirement

to calculate a null distribution for each γ, and this also avoids the issue of there being a

loss of resolution in the tail of the distribution.

We now modify the NaiveHypothesis algorithm considering the above discussion giving a

new algorithm that we will refer to as GProtA.

76

Align(M ,A,B)

1 Create sub-configurations of A and B using M ⇒ AM , BM

2 Centre AM and BM at the origin ⇒ AMc, BMc, τ = τB − τA

3 Optimally rotate BMc onto AMc by minimising the sum of squared distances ⇒ B
(opt)
Mc , R

4 return (R, τ)

GProtA(A,B)

1 Initialise M(γ=4)
b =M(γ=4)

start

(these being the starting matching matrices described in Section 3.3)

2 bstopped = {}

3 for γ = 4 to m− 1

4 for each b ∈ {b : b = 1 . . .#M(γ=4)
b AND b /∈ bstopped} // b represents the index of a branch

5 (R, τ) = Align(M (γ)
b ,A,B)

6 Create the set, M(γ+1)
c , of all the adjacent (increasing) matching matrices to M

(γ)
b .

7 for each M
(γ+1)
j ∈M(γ+1)

c

8 if the error on the latest match > tol

9 reject M
(γ+1)
j

10 elseif M (γ+1)
j = = an already processed M (γ+1)

11 merge branches

12 Calculate the squared chordal size-and-shape distances, δj = d2
ss

(
M

(γ+1)
j ,A,B

)
13 if all M(γ+1)

c were rejected

14 add b to bstopped

15 else

16 Set M
(γ+1)
b = M

(γ+1)
j where j is the index of min

j
{δj}

An assumption of the greedy algorithm is that at each γ-level the mechanism for choosing

the next match is able to distinguish between good and bad matches. In the case of

matching the Cα co-ordinate data this is confirmed by simulation, where for values of

γ ≥ 4 plots were produced as in Section 3.3.4 that show increasing separation between the

size-and-shape distance resulting from modelled Gaussian errors and that found by random

samples of matching matrices. The mechanism is then dependant on having high quality

initial guesses, which we achieved through the mechanism of the statistical hypothesis test

described in Section 3.3.2. If the errors between matches in the real Cα co-ordinate data

are well approximated by our modelled Gaussian errors then we should see that the iterative

adding of matches will follow a path progressively improving alignment with the mean of the

residuals reducing at a rate better than
√
γ. This is seen to be the case as we demonstrate

using the Green and Mardia (2006) data.

A value needs to be set for the cutoff tolerance (line 8 of GProtA). We set this value

77

heuristically to 2.7 which is the limit of the 99% confidence interval for a normal distribution

with σ2 = 1.1 – this is the variance seen in the trace plots for the Green and Mardia (2006)

implementation (Figure 2.2) once the mode is found. As previously shown in Figure 3.9

this value is also a sensible intuitive cutoff when considering a spherical normal error model

and protein atom separations around the expected separation of 3.8Å. We hence use this

value going forward for all protein comparisons.

Figure 3.11 shows the operation of the GProtA algorithm against the Green and Mardia

(2006) data and indicates how far each branch continues before it is caught by the stopping

criteria or merges with another branch. The longest lived branch, branch 1, continues

to 35 matches and the 35 matches agree with the non-marginal matches obtained using

the Green and Mardia (2006) method. Figure 3.12 shows a selection of 2D projections of

the optimally aligned configurations for the matching matrices from the terminations of a

selection of branches.

From Section 3.2, under the spherical error model for a set of“correct”matches the squared

chordal size-and-shape distance is approximately distributed as a gamma distribution pa-

rameterised with the shape parameter α = γm− 1
2m(m+1)

2 and rate parameter β = 2σ2. The

expected value of this distribution is

α

β
=
γm− 1

2m(m+ 1)
4σ2 (3.10)

where m = 3 as we are working in R3. As new matches are added and hence γ increases

all other terms in (3.10) remain constant so we would expect that if the model assumption

holds, and if the new correct matches are added in random sequence, then the squared

chordal size-and-shape distance will increase proportionally to γ. This is seen using the

Green and Mardia (2006) data and is shown in Figure 3.13 (crosses). When instead of adding

randomly chosen correct matches the next best match is added (circles in Figure 3.13) the

squared chordal size-and-shape distance will increase at a rate equal to or faster than that

of adding randomly chosen matches; this is also seen. The increase when adding next best

matches using the Green and Mardia (2006) data is very closely proportional to γ3, this

relation is repeated when we examine alignments for Cα data in Chapter 4; the author is

unable explain the specific additional factor of γ2.

78

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

γ

br
an

ch

4 5 6 7 8 9 11 13 15 17 19 21 23 25 27 29 31 33 35

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 3.11: The operation of the GProtA algorithm against the Green and
Mardia (2006) data. The branches run vertically from top to bottom and are
either caught by the stopping criteria in which case they just end, or merge
with another branch in which case a line is shown bridging the two branches.
The code used is given in Appendix B.3.

The GProtA algorithm potentially will require a maximum of

#M(γ=4)
start ×

m−1∑
γ=4

(m− γ)(n− γ)
79

(a) Branch 36: Matches between 6 Cαs on the outer edges of each protein with
no other structure overlap.

(b) Branch 9: Matches between 34 Cαs.
This branch contains many of the “correct”
matches but early on mismatched two Cαs
in the highlighted area.

(c) Branch 1: Matches between 35 Cαs.
These matches agree with those obtained us-
ing the Green and Mardia (2006) method.

Figure 3.12: A selection of 2D projections of the optimally aligned (minimise
squared distance between labelled landmarks) configurations for the matching
matrices from the terminations of selected branches.

size-and-shape calculations. Now

m−1∑
γ=4

γ = 1
2m(m+ 1)− 1

23(3 + 1)−m

= 1
2(m2 −m− 12)

80

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●
●

●
●

●
●

●

●

●

●

●

5 10 15 20 25 30 35 40

γ

ds
s2

0.
05

0.
1

0.
2

0.
5

1
2

5
10

20
50

10
0

40
0

Figure 3.13: Plot of results from the GProtA algorithm against the Green
and Mardia (2006) data. The crosses show an example of the relationship of
the squared chordal size-and-shape distance to γ as new correct matches are
added in random sequence; this closely follows the over plotted line which is
proportional to γ. The circles show the squared distance as the consecutive
next best match is added; again this very closely follows the overlaid curve,
which in this case is proportional to γ3.

m−1∑
γ=4

γ2 = 1
6m(m+ 1)(2m+ 1)− 1

63(3 + 1)(6 + 1)−m2

= 1
6(2m3 − 3m2 +m− 84)

81

m−1∑
γ=4

(m− γ)(n− γ) =
m−1∑
γ=4

(mn−mγ − nγ + γ2)

= 1
6(6m2n− 30mn

− 3m3 + 3m2 + 36m

− 3m2n+ 3mn+ 36n

+ 2m3 − 3m2 +m− 84)

= −1
6(m2 − 7m+ 12)(m− 3n+ 7)

Since in practice the configurations are assigned such that m ≤ n then each branch is at

worst an O(m2n) calculation and there is potential for parallelisation of calculation at each

γ level. When used against the Green and Mardia (2006) data, for which the results were

given above, 42 branches were followed giving a theoretical maximum number of size-and-

shape distance calculations of 44× 1
6(402−7×40+12)(40−3×63+7) = 1, 387, 056. For

the results shown 4, 440 size-and-shape calculations were required with a further 481, 668

being replaced by a single vector length calculation (steps 8 and 9 in the GProtA algorithm).

3.5 A difference measure for proteins

Implicit in our optimisation of the rotation – using SVD to solve the orthogonal Procrustes

problem as described in Section 1.2.5.1 – is a modelling assumption that the errors are

spherical and iid; we are in effect forcing this to be the case as we are minimising the squared

distances with the sum of the distances set to zero. It was shown that this assumption is

plausible in Section 3.2 which then makes use of the RMSD, a standard measure of quality

for closely related proteins, a good choice as the impact of increasing the number of matches

is primarily to reduce the variance. The RMSD is related to the chordal size-and-shape

distance detailed in Section 1.2.5.3 by

drmsd = dss√
L

(3.11)

where L is the number of matched landmarks.

The nature of the RMSD is to reflect the average quality of individual matches between

landmarks, and it does not take account of the number of matches. For example if protein

82

A matches protein B with the same RMSD as protein A matches protein C, but there are

more matched residues between A and B than A and C we would consider protein B to be

a better match to protein A than is protein C.

Binary similarity measures offer a measure of the similarity of two sequences as a function

of a set of presence/absence coefficients. These measures are constructed from the four

counts: #a – present in both A and B, #b – present in A, absent in B, #c – absent in

A, present in B and #d – absent in both A and B. This is illustrated in the Venn diagram

in Figure 3.14. In our case #d has no utility, #a equates to the number of matches, and

A B
ab c

d

Figure 3.14: Venn diagram showing the presence /absence counts used in
binary similarity measures.

#b and #c equate to the numbers of unmatched landmarks in configurations A and B

respectively.

The simplest linear binary similarity measure was chosen from the extensive list referenced

in Hayek (1994, Chapter 9); this is the Kulczynski coefficient

1
2

(
a

a+ b
+ a

a+ c

)

which using our notation for matches becomes

sb = 1
2

(
L

L+ L
(A)
u

+ L

L+ L
(B)
u

)
(3.12)

where L is the number of matches, L
(A)
u is the number of vertices not matched from A,

and L
(B)
u is the number of vertices not matched from B. On examination we also see that

83

the Kulczynski coefficient is equivalent to the average of the conditional probabilities

P(match in B | match in A) + P(match in A | match in B)
2

≡ 1
2 (P(B | A) + P(A | B)) simplifying notation

= 1
2 (P(B ∩A)/P(A) + P(A ∩B)/P(B))

= 1
2 (a/(a+ b) + a/(a+ c))

which captures the essence of the comparison we are interested in.

We need to combine (3.12) and (3.11). Since we will always get at least one match then sb

is in the range (0, 1] with a value of 1 indicating that all landmarks in both configurations are

matched. We want more matching to reduce the distance measure and therefore sb should

be a divisor. Beyond this there is no obviously apparent reasoning to suggest anything other

the simple combination given in (3.13):

d = drmsd
sb

where sb = 1
2

(
L

L+L(A)
u

+ L

L+L(B)
u

)
. (3.13)

To test the efficacy of (3.13) we compared a set of proteins chosen from their descriptions

in the original SCOP database. We used SCOP rather than SCOP2 because SCOP is a

hierarchical classification system which simplifies this test comparison. We chose a test set

of proteins were each protein differs from the next by one SCOP classification level; the set

chosen and their relationship to each other is given in table 3.3.

Using the set of proteins shown in table 3.3 we calculated the distance measure (3.13)

between each protein in the set and the protein with the most specific classification; this is

the eight pairs

{ (1oau,1oau), (1oau,1ocw), (1oau,1ohq), (1oau,1nko), (1oau,1lds), (1oau,2w0p), (1oau,2j71), (1oau,3erj) }

We then used a comparison of the order of this set ordered by the distance measure to the

set ordered by SCOP classification as a measure of the efficacy of the difference measure.

The distance measure (3.13) gave the correct order. Neither the shape measure alone nor

the binary similarity measure recovered the ordering.

It is noted that Davies et al. (2007) propose a binary similarity measure derived from

84

PDB ID class fold super family family domain species protein
1oau 48724 48725 48726 48727 88543 88560 92720
1ocw 48724 48725 48726 48727 88543 88560 92779
1ohq 48724 48725 48726 48727 88543 88562 93028
1nko 48724 48725 48726 48727 89176 89177 85829
1lds 48724 48725 48726 48942 88600 88602 73858
2w0p 48724 48725 81296 81290 141023 141024 153739
2j71 48724 49451 49452 158932 158933 158937 147896
3erj 51349 102461 102462 102463 117608 117609 158194

(a) Proteins and their SCOP classifications labels.

similarity to 1oau
PDB ID

1oau 1ocw 1ohq 1nko 1lds 2w0p 2j71 3erj
same class yes yes yes yes yes yes yes no
same fold yes yes yes yes yes yes no no
same super family yes yes yes yes yes no no no
same family yes yes yes yes no no no no
same domain yes yes yes no no no no no
same species yes yes no no no no no no
same protein yes no no no no no no no

(b) Table clarifying the classification relationship of each protein to protein 1oau.

Table 3.3: A set of proteins chosen from the SCOP database such that one
differs from the next by one classification level.

the Poisson model in Green and Mardia (2006), but they do not propose the measure in

combination with a measure of shape difference.

85

4
Protein structure classification

4.1 Overview

In this chapter we apply the GProtA algorithm and difference measure proposed in Chapter 3

to protein atom co-ordinate data from the Protein Data Bank. Our aim is to reproduce

classifications from the SCOP2 categorisation database. Before we begin the categorisation

experiments we discuss in detail the structure of the SCOP2 database as it relates to

querying category relationships, and detail the acquisition of data from the Protein Data

Bank along with our criteria for excluding malformed data from this study.

4.2 The SCOP2 database

In this chapter we will use the typographical convention of writing database table names and

database attributes (column names) in fixed width fonts, so the ‘domain’ database table is

written domain; this helps, for example, to distinguish references to the domain database

table from use of the noun ‘domain’ when referring to a functional unit of a protein.

Version two of the Structural Classification of Proteins database (SCOP2) (Andreeva et

al. 2014) contains manually curated classifications for a set of protein domains whose

86

experimentally-determined atomic co-ordinates are available in the Protein Data Bank1.

SCOP2 data is released in the form of a MySQL2 database. Appendix C.1 gives details of

obtaining and installing the database.

SCOP2 only provides documentation for the two web based interface tools, the Browser and

Graph tools3, and there is no documentation relating to the MySQL database. Examination

of the database reveals a data structure that is not normalised, in the database design sense

(Date 2012, Chapter 3), and so there is no referential integrity to help reverse engineer the

data representation. The following describes the inference used to determine the entity

representations and relationships.

The usual definition of a domain is as a contiguous region of the protein amino acid chain

that folds into a semi-independent, compact and stable structure (Richardson 1981, Section

II.I). Within the SCOP2 data the domains table is used somewhat differently; from the SCOP2

documentation:

In SCOP2, there is no a priori division of protein structures into domains, in which one domain
size fits all possible relationships. The protein domain is defined as a unit of relationship and its
boundaries are dependent on a given relationship. In general, the protein domain, representing
a child node of the SCOP2 graph, is larger than that representing its parental node domain
of the same protein, especially if there is more than one parental node for a given child node.
For example, Fold is an attribute of a single structural domain, but the domains representing
Family and Superfamily can span over more than one structural domain. Similarly, the Family
domain may contain more than one non-overlapping Superfamily domains.

Hence in the database a particular domain, as identified by a domains.dom_name, represents the

part of a specific protein that relates to a specific relationship; it is allowed that different

domains can be defined as having exactly the same constituent residues. Despite the reuse of

existing terminology this is a useful facet of the data structure as the domains then capture

the parts of a protein’s structure that the curators have considered in the determination of a

specific relationship. The domains are represented as one-to-many subsections of asymmetric

units; here asymmetric unit is used only in the sense that it is protein chain data that is

represented in the asymmetric unit structural elements (_struct_asym) in the PDB data. The

illustrations of alignments in Figure 4.19 later in this chapter give a feel for the structural

relationship between a domain and an asymmetric unit.

The domains.serial, domains.pdb_code, domains.pdb_chain, domains.pdb_begin and domains.pdb_end at-

1Detailed in Section 4.3.
2
http://dev.mysql.com/doc/

3The SCOP2 documentation pages were last accessed 2017-11-12 at http://scop2.mrc-lmb.cam.ac.uk/about.

html.

87

tributes relate to the PDB entry for the domain. The domains.seq_begin, domains.seq_end,

domains.exd_db_name, domains.ext_db_id and domains.seq_length attributes relate to entries in

some other database; in 3,540 of the 3,566 domains this relates to annotation in the

SWISS-PROT protein sequence database (Bairoch and Apweiler 2000), this is when do-

mains.exd_db_name equals SPROT. For the remaining 25 domains domains.exd_db_name equals

PDB, and in these cases the meaning of the external database related attribute entries is

unclear. There are 3,566 distinct domains described in the SCOP2 domains table, which are

derived from 995 proteins. Table 4.1 contains an illustrative set of entries from the domains

table.

88

+------------+------------------+--------+----------+-----------+-----------+---------+-----------+---------+-------------+-----------+------------+

| node | dom_name | serial | pdb_code | pdb_chain | pdb_begin | pdb_end | seq_begin | seq_end | exd_db_name | ext_db_id | seq_length |

+------------+------------------+--------+----------+-----------+-----------+---------+-----------+---------+-------------+-----------+------------+

| PR:5000536 | PR-8003547-1F3UA | 1 | 1F3U | A | 2 | 119 | 2 | 119 | SPROT | P13984 | 249 | (1)

| SF:3000142 | SF-8003550-1F3UA | 1 | 1F3U | A | 2 | 119 | 2 | 119 | SPROT | P13984 | 249 |

| SF:3000142 | SF-8003556-1F3UB | 1 | 1F3U | B | 5 | 153 | 5 | 153 | SPROT | P35269 | 517 | (2)

| PR:5000865 | PR-8003553-1F3UB | 1 | 1F3U | B | 5 | 153 | 5 | 153 | SPROT | P35269 | 517 |

| SP:6001114 | SP-8003629-1J6UA | 1 | 1J6U | A | 1 | 446 | 1 | 446 | SPROT | Q9WY73 | 457 | (3)

| HF:1100005 | HF-8003639-1J6UA | 1 | 1J6U | A | 102 | 282 | 102 | 282 | SPROT | Q9WY73 | 457 |

| CF:2000082 | CF-8003589-3DBHA | 1 | 3DBH | A | 6 | 168 | 6 | 168 | SPROT | Q13564 | 534 | (4)

| CF:2000082 | CF-8003589-3DBHA | 2 | 3DBH | A | 488 | 534 | 488 | 534 | SPROT | Q13564 | 534 |

| CF:2000082 | CF-8003592-3DBHB | 1 | 3DBH | B | 39 | 204 | 60 | 225 | SPROT | Q8TBC4 | 463 | (5)

| CF:2000082 | CF-8003592-3DBHB | 2 | 3DBH | B | 288 | 348 | 309 | 369 | SPROT | Q8TBC4 | 463 |

| CF:2000021 | CF-8017502-2Z3YA | 1 | 2Z3Y | A | 274 | 312 | 274 | 312 | SPROT | O60341 | 852 | (6)

| CF:2000021 | CF-8017502-2Z3YA | 2 | 2Z3Y | A | 570 | 654 | 570 | 654 | SPROT | O60341 | 852 |

| CF:2000021 | CF-8017502-2Z3YA | 3 | 2Z3Y | A | 764 | 831 | 764 | 831 | SPROT | O60341 | 852 |

| CF:2000124 | CF-8003551-1F3U_ | 1 | 1F3U | A | 2 | 119 | 2 | 119 | SPROT | P13984 | 249 | (7)

| CF:2000124 | CF-8003551-1F3U_ | 2 | 1F3U | B | 5 | 153 | 5 | 153 | SPROT | P35269 | 517 |

+------------+------------------+--------+----------+-----------+-----------+---------+-----------+---------+-------------+-----------+------------+

Figure 4.1: Example of data from the SCOP2 domains table: (1) and (2)
Domains entries from the same protein that contain exactly the same set of
residues; (3) Example of domain entries with overlapping sets of residues; (4),
(5), (6) and (7) Examples of domain entries made from multiple separated
residue sets; (7) includes residues from distinct asymmetric units.

89

4.3 The Protein Data Bank

Protein Data Bank refers to the PDB archive which is a repository for freely available

molecular structure data. The worldwide Protein Data Bank (wwPDB) (Berman et al.

2003) refers to a set of organisations that offer windows onto the data of the PDB archive

through internet accessible resources, i.e. the wwPDB makes the source files of the PDB

archive available. The PDB archive file format is PDBx/mmCIF, where mmCIF stands for

macromolecular Crystallographic Information File; the mmCIF specification is an extension

of Version 1.1 of the CIF format4 created by the Union of Crystallography (IUCr) for the

description of crystallographic experiments and their results. The use of mmCIF files by the

PDB is described by the PDB Data Dictionary.5 The modal count of residues per protein

in the Protein Data Bank is 259.6

The atomic co-ordinate data in the PDBx/mmCIF files is encoded by the ATOM records. The

SCOP2 MySQL database domains table attributes map to the PDBx/mmCIF ATOM records

as follows:

pdb_code: This is simply the Protein Data Bank ID7 used to identify the protein containing

the domain.

pdb_chain: A particular asymmetric unit. In the PDB data the asymmetric units are cap-

tured by _struct_asym
8 entries. The _struct_asym.id is referenced by the _atom_site.label_asym_id

9

in the ATOM data. The ATOM entries contain an alternate free text field, the _atom_site.auth_asym_id
10,

that is documented as

[an] alternative identifier for atom site.label asym id that may be provided by an author
in order to match the identification used in the publication that describes the structure

The correspondence between the pdb_chain SCOP2 attribute and the PDB is undocu-

mented. Comparison of the two data sets indicates that the pdb_chain maps to the

alternative free text field, _atom_site.auth_asym_id.

4
http://www.iucr.org/resources/cif/spec/version1.1/cifsyntax

5PDBx/mmCIF Data Dictionary Version 4.064 retrieved from http://mmcif.wwpdb.org/ during May of 2016.
6The mode residue count was taken from https://www.rcsb.org/pdb/static.do?p=general_information/pdb_

statistics (retrieved 2017-10-03).
7
http://www.rcsb.org/pdb/staticHelp.do?p=help/advancedsearch/pdbIDs.html

8
http://mmcif.wwpdb.org/dictionaries/mmcif_pdbx_v40.dic/Categories/struct_asym.html

9
http://mmcif.wwpdb.org/dictionaries/mmcif_pdbx_v40.dic/Items/_atom_site.label_asym_id.html

10
http://mmcif.wwpdb.org/dictionaries/mmcif_pdbx_v40.dic/Items/_atom_site.auth_asym_id.html

90

pdb_begin and pdb_end: The order of the amino acid residues is captured in the PDB

data by the _entity_poly_seq.num
11 entries. These entries are required to be sequential

integers and are referenced by the _atom_site.label_seq_id
12 entries in the ATOM data.

It is not required that there are ATOM entries for every _entity_poly_seq entry. The

ATOM entries contain an alternate sequence id that is an uncontrolled field that is

neither guaranteed to be sequential or an integer, the _atom_site.auth_seq_id
13, which

is documented as

may be provided by an author in order to match the identification used in the publication
that describes the structure

The correspondence between the pdb_begin and pdb_end SCOP2 attributes and the PDB

is undocumented. Comparison of the two data sets indicates that pdb_begin and pdb_end

SCOP2 entries map to the alternative _atom_site.auth_seq_id.

The ATOM record can optionally include an _atom_site.pdbx_PDB_model_num
14 entry. The pdbx_PDB_model_num

differentiates multiple data sets for the same molecule; when there are multiple pdbx_PDB_model_num

entries in the file this indicates that there are multiple different experimental determina-

tions of the structure. The SCOP2 data contains no reference to the model and there is

no machine readable information within the PDB file indicating if one model is preferred to

another. When multiple models are present we arbitrarily choose the first model in the file.

Each ATOM record contains an _atom_site.occupancy
15 attribute. When a residue is observed

with a single conformation then there is a single ATOM record for each residue atom with

an _atom_site.occupancy of 1.00. A residue may be observed in multiple conformations; when

this is the case some or all of the residue atoms will have multiple ATOM records, each

with a _atom_site.occupancy value of less than 1.00. Each of the multiple ATOM records has

a _atom_site.label_alt_id
16 attribute, and this attribute is used to separate the ATOM records

for the particular residue into distinct conformations. There is no PDB documentation

indicating if a label_alt_id for one residue relates to the same label_alt_id in another residue,

i.e. if the ‘A’ label_alt_id is chosen for one residue the ‘A’ label_alt_id should be chosen for

11
http://mmcif.wwpdb.org/dictionaries/mmcif_pdbx_v40.dic/Items/_entity_poly_seq.num.html

12
http://mmcif.wwpdb.org/dictionaries/mmcif_pdbx_v40.dic/Items/_atom_site.label_asym_id.html

13
http://mmcif.wwpdb.org/dictionaries/mmcif_pdbx_v40.dic/Items/_atom_site.auth_asym_id.html

14
http://mmcif.wwpdb.org/dictionaries/mmcif_pdbx_v40.dic/Items/_atom_site.pdbx_PDB_model_num.html

15
http://mmcif.wwpdb.org/dictionaries/mmcif_pdbx_v40.dic/Items/_atom_site.occupancy.html

16
http://mmcif.wwpdb.org/dictionaries/mmcif_pdbx_v40.dic/Items/_atom_site.label_alt_id.html – This
is documented as referencing atom_sites_alt records (http://mmcif.wwpdb.org/dictionaries/mmcif_pdbx_
v40.dic/Categories/atom_sites_alt.html), however there are no atom_sites_alt records in any PDB file
relating to the SCOP2 domains.

91

all other residues. The only relevant comment in the documentation gives the none specific

advice17

Tip: When dealing with PDB entries with multiple co-ordinates, you often need to pay close
attention. It is not always possible to select just the ‘A’ conformations and throw away the
‘B’ conformations. You need to look carefully in each case and make sure that there are not
any bad contacts between mobile sidechains.

It is not required that all atoms within a residue demonstrating multiple conformations

have multiple occupancy i.e. some atoms within the residue may only have a single ATOM

record. The SCOP2 database entries make no reference to the multiple conformations. For

this analysis the ATOM records relating to the conformation with the highest occupancy are

chosen and a random choice is made when the occupancy levels are equal. Each residue is

treated in isolation i.e. the choice of a particular _atom_site.label_alt_id for one residue does

not affect our choice for other residues. Figure 4.2 shows parts of the _atom_site section of

a PDBx/mmCIF representing two residues with multiple occupancy.

17
http://pdb101.rcsb.org/learn/guide-to-understanding-pdb-data/dealing-with-coordinates fetched
November 2016.

92

loop_

_atom_site.group_PDB

_atom_site.id

_atom_site.type_symbol

_atom_site.label_atom_id

_atom_site.label_alt_id <---

_atom_site.label_comp_id

_atom_site.label_asym_id

_atom_site.label_entity_id

_atom_site.label_seq_id

_atom_site.pdbx_PDB_ins_code

_atom_site.Cartn_x

_atom_site.Cartn_y

_atom_site.Cartn_z

_atom_site.occupancy <---

_atom_site.B_iso_or_equiv

_atom_site.Cartn_x_esd

_atom_site.Cartn_y_esd

_atom_site.Cartn_z_esd

_atom_site.occupancy_esd

_atom_site.B_iso_or_equiv_esd

_atom_site.pdbx_formal_charge

_atom_site.auth_seq_id

_atom_site.auth_comp_id

_atom_site.auth_asym_id

_atom_site.auth_atom_id

_atom_site.pdbx_PDB_model_num

| |

V V

ATOM 11 N N . MET A 1 3 ? 15.024 41.549 24.920 1.00 11.73 ? ? ? ? ? ? 1 MET A N 1

ATOM 12 C CA A MET A 1 3 ? 16.444 41.315 25.096 0.52 12.33 ? ? ? ? ? ? 1 MET A CA 1

ATOM 13 C CA B MET A 1 3 ? 16.479 41.289 24.980 0.48 13.55 ? ? ? ? ? ? 1 MET A CA 1

ATOM 14 C C . MET A 1 3 ? 16.816 39.898 25.524 1.00 16.61 ? ? ? ? ? ? 1 MET A C 1

ATOM 15 O O . MET A 1 3 ? 17.725 39.192 25.083 1.00 24.95 ? ? ? ? ? ? 1 MET A O 1

ATOM 16 C CB A MET A 1 3 ? 17.061 42.228 26.163 0.52 15.64 ? ? ? ? ? ? 1 MET A CB 1

ATOM 17 C CB B MET A 1 3 ? 17.236 42.331 25.781 0.48 12.27 ? ? ? ? ? ? 1 MET A CB 1

ATOM 18 C CG A MET A 1 3 ? 18.527 42.466 25.830 0.52 14.39 ? ? ? ? ? ? 1 MET A CG 1

ATOM 19 C CG B MET A 1 3 ? 18.497 41.930 26.525 0.48 14.49 ? ? ? ? ? ? 1 MET A CG 1

ATOM 20 S SD A MET A 1 3 ? 19.683 41.263 26.464 0.52 27.74 ? ? ? ? ? ? 1 MET A SD 1

ATOM 21 S SD B MET A 1 3 ? 19.412 43.348 27.173 0.48 16.91 ? ? ? ? ? ? 1 MET A SD 1

ATOM 22 C CE A MET A 1 3 ? 21.050 42.371 27.032 0.52 3.76 ? ? ? ? ? ? 1 MET A CE 1

ATOM 23 C CE B MET A 1 3 ? 20.260 42.746 28.621 0.48 11.15 ? ? ? ? ? ? 1 MET A CE 1

ATOM 1264 N N A PRO A 1 155 ? 36.210 35.207 56.471 0.60 5.17 ? ? ? ? ? ? 153 PRO A N 1

ATOM 1265 N N B PRO A 1 155 ? 36.238 35.184 56.468 0.41 4.75 ? ? ? ? ? ? 153 PRO A N 1

ATOM 1266 C CA A PRO A 1 155 ? 36.375 35.083 57.929 0.60 3.94 ? ? ? ? ? ? 153 PRO A CA 1

ATOM 1267 C CA B PRO A 1 155 ? 36.429 35.046 57.924 0.41 3.94 ? ? ? ? ? ? 153 PRO A CA 1

ATOM 1268 C C A PRO A 1 155 ? 35.765 36.201 58.790 0.60 4.09 ? ? ? ? ? ? 153 PRO A C 1

ATOM 1269 C C B PRO A 1 155 ? 35.908 36.202 58.790 0.41 4.37 ? ? ? ? ? ? 153 PRO A C 1

ATOM 1270 O O A PRO A 1 155 ? 35.416 35.968 59.957 0.60 5.95 ? ? ? ? ? ? 153 PRO A O 1

ATOM 1271 O O B PRO A 1 155 ? 35.807 36.072 60.021 0.41 3.24 ? ? ? ? ? ? 153 PRO A O 1

ATOM 1272 C CB A PRO A 1 155 ? 37.898 35.046 58.107 0.60 5.74 ? ? ? ? ? ? 153 PRO A CB 1

ATOM 1273 C CB B PRO A 1 155 ? 37.947 34.930 58.115 0.41 5.30 ? ? ? ? ? ? 153 PRO A CB 1

ATOM 1274 C CG A PRO A 1 155 ? 38.420 34.493 56.821 0.60 5.86 ? ? ? ? ? ? 153 PRO A CG 1

ATOM 1275 C CG B PRO A 1 155 ? 38.473 34.449 56.804 0.41 5.64 ? ? ? ? ? ? 153 PRO A CG 1

ATOM 1276 C CD A PRO A 1 155 ? 37.512 35.013 55.788 0.60 5.78 ? ? ? ? ? ? 153 PRO A CD 1

ATOM 1277 C CD B PRO A 1 155 ? 37.553 35.033 55.797 0.41 5.47 ? ? ? ? ? ? 153 PRO A CD 1

Figure 4.2: A sample of the _atom_site section of a PDBx/mmCIF from the
PDB entry with PDB ID 2CAR. The chosen residues demonstrate multiple
conformations.

93

When we process each PDBx/mmCIF file we capture a set of metadata to be investigated

as possible covariates when assessing the efficacy of the derived distance measure as a

predictor of SCOP2 classification. Specifically these are:

� The date of submission, or the date of update, to the PDB; this is derived from the

database_PDB_rev records.18

� The experimental method.19

� The resolution.20 When the experimental method is ‘NMR’ no resolution is given

as “non-diffraction methods such as NMR do not have a resolution specified”21. A

method for inferring a resolution for NMR entries is posited by Berjanskii et al. (2012),

however this is not considered here.

We derive two data sets from the PDBx/mmCIF data files relating to the SCOP2 domains.

These are sets of atomic co-ordinates for each unique PDB ID and asymmetric unit pair,

and sets of atomic co-ordinates for each domain identified by domains.dom_name. These data

are cached in the form of co-ordinate CSV files; Figure 4.3 illustrates a snippet of the

content of one of these files.

18
http://mmcif.wwpdb.org/dictionaries/mmcif_std.dic/Categories/database_PDB_rev.html

19
http://mmcif.wwpdb.org/dictionaries/mmcif_std.dic/Items/_exptl.method.html

20
http://mmcif.wwpdb.org/dictionaries/mmcif_std.dic/Items/_refine.ls_d_res_high.html

21
http://www.rcsb.org/pdb/staticHelp.do?p=help/advancedsearch/xRayResolution.html

94

serial label_atom_id label_alt_id label_comp_id cartn_x cartn_y cartn_z occupancy auth_asym_id auth_seq_id

1 N NA MET -12.817 34.708 32.066 1 A 1

1 CA NA MET -11.663 35.505 32.484 1 A 1

1 C NA MET -11.155 36.336 31.331 1 A 1

1 O NA MET -11.533 36.107 30.171 1 A 1

1 CB NA MET -10.552 34.586 32.994 1 A 1

1 CG NA MET -9.186 34.949 32.513 1 A 1

1 SD NA MET -7.936 34.291 33.604 1 A 1

1 CE NA MET -8.908 33.216 34.674 1 A 1

1 N NA GLU -10.311 37.308 31.630 1 A 2

1 CA NA GLU -9.728 38.123 30.555 1 A 2

1 C NA GLU -8.412 37.497 30.198 1 A 2

1 O NA GLU -7.578 37.245 31.069 1 A 2

Figure 4.3: A sample of the atom co-ordinate data captured from the
PDBx/mmCIF for each SCOP2 domain. The data is displayed as a table for
clarity. The label_alt_id, occupancy and auth_asym_id are supplied as a record
of the choices made in the selection of the records from the PDBx/mmCIF file.

95

In addition we add a set of tables to our local copy of the SCOP2 MySQL database that

capture metadata and issues relating to the PDB entries that were found when processing

the PDB files. The pdb and domain tables contain metadata about the full protein entries and

domains respectively. The pdb_issue, domain_issue and asym_unit_issue tables contain details of

issues relating to the data associated with the PDB entries, domains and asymmetric units

respectively. Figure 4.4 shows these tables. The *_issue issues are discussed in Section 4.4.

+---------------+ +------------+ +------------+

| pdb | | pdb_issue | | asym_unit |

1 +---------------+ 1 * +------------+ +------------+

----| id* |===---------| pdb_id | | pdb_id* |---

| | exptl_method | | | level | | asym_id* |---

| | resolution | | | type | | res_count |

| | creation_date | | | text | +------------+

| | last_mod_date | | +------------+

| | rev_num | |

| +---------------+ |

| -----------------------------

| |

| | +-------------------+

| +----------------+ +-----------------+ | | asym_unit_issue |

| | domain | | domain_issue | | * +-------------------+

| +----------------+ 1 * +-----------------+ ----| pdb_id |

| * | dom_name* |-----------| domain_dom_name | | asym_id |

----| pdb_id | | level | | level |

| count_serial | | type | | type |

| count_residues | | text | | text |

+----------------+ +-----------------+ +-------------------+

Figure 4.4: The tables added to the SCOP2 MySQL database containing
metadata relating to the PDB entries. The *_issue tables capture the issues
found when processing the PDBx/mmCIF files.

The code used to efficiently fetch and cache the PDB mmCIF files is given in Appendix C.3

and the code used to generate the issue table (Figure 4.4) is given in Appendix C.2. The

code in Appendix C.2 also creates a CSV file for each domain and asymmetric unit included

in the SCOP2 database; these files contain the ATOM records relevant to each domain and

asymmetric unit.

4.4 Excluded data

The PDBx/mmCIF files were fetched on 2016-12-27 and the SCOP2 database was the release

dated as 2014-02-05.

Five issues relating to the PDB data are considered when deciding which data to include in

each part of the analysis.

96

1. The entry has been marked as ‘obsolete’

Obsoletion of PDB entries is covered in the ‘Changes to Entries’ section of the ‘ww-

PDB Processing Procedures and Policies Document’.22

2. The data is malformed

Some PDBx/mmCIF files contain malformed data. Usually this is as a result of

the submitter either misunderstanding or intentionally subverting the data definition.

A common example is where residues with multiple conformations are submitted

without using the label_alt_id and occupancy mechanism that is illustrated in Figure 4.2;

instead the data presents multiple ATOM rows for each residue atom with some arbitrary

modification to the label_atom_id to indicate additional conformations. There is no

automated way to process these types of entry.

3. PDB validation errors

Validation of the PDB data against established physical principles is captured in the

PDB validation reports;23 the results of the validation reports are included in the

published PDBx/mmCIF data files.24 Validation reports were made available after

the release of SCOP2.25

4. Residue data is missing

In the SCOP2 data, for each row in the domains table there are pdb_begin and pdb_end

attributes referencing the _atom_site.auth_seq_id entries in the PDBx/mmCIF data.

Domains are noted where residues are missing from the data in the range between

pdb_begin and pdb_end.

5. The PDB entry has been modified post the release of SCOP2

SCOP2 does not state the version or date of the PDB entry that was used to make

relationship determinations. PDB entries are noted where the PDBx/mmCIF file has been

modified since the date of the SCOP2 release.

In SCOP2 the domains table references 3,566 distinct domains derived from 995 PDB entries.

Issues 1 and 2 are treated as ‘errors’ and all data where issues 1 or 2 are observed are

excluded from all analysis. Data ‘errors’ account for 82 PDB entries which in turn affect

22
http://www.wwpdb.org/documentation/policy#toc_changes (Accessed June 2016)

23
http://wwpdb.org/validation/validation-reports (viewed June 2016)

24
http://mmcif.wwpdb.org/dictionaries/mmcif_pdbx_v40.dic/Groups/validate_group.html

25wwPDB News 2016-03-05 New NMR and 3DEM Validation Reports for Archived PDB Structure http://wwpdb.

org/news/news?year=2016#5764490799cccf749a90cdf4.

97

264 domains. Figure 4.5 gives example rows from our pdb_iisue, domain_issue, asym_unit_iisue

tables. A summary of counts for ERRORs and WARNINGs is given in Table 4.1.

Issue Type Level PDBs PDB IDs Domains
1 (obsolete) ERROR 6 1UUL, 1WE3, 2FB1, 2GY9, 2H7M, 2PLI 14
2 (malformed) ERROR 76 1A5Z, 1AU7, 1AWC, 1B72, 1B8I, 1BC8,

1BL0, 1CF7, 1D5Y, 1DP7, 1DUX, 1E3O,

1F6O, 1FJL, 1GAD, 1GDT, 1H88, 1H8A,

1HDG, 1HLV, 1IC8, 1IF1, 1IG7, 1IGN,

1IJW, 1J75, 1JGG, 1K61, 1K78, 1K82,

1LE8, 1LFU, 1LLC, 1LMB, 1PDN, 1PJJ,

1PP7, 1PUE, 1PUF, 1PZG, 1QBJ, 1R2Z,

1REP, 1RM4, 1SFU, 1U78, 1VDC, 1W0T,

1W0U, 1YO5, 1ZH5, 1ZQ3, 2A07, 2A94,

2C6Y, 2EC9, 2FO1, 2IRF, 2J5K, 2LKX,

2NRA, 2P6R, 2PI0, 2PJP, 2R1J, 2R5Y,

2UUB, 2X0J, 3BDN, 3CMC, 3CRO, 3HTS,

3L2C, 6PAX, 9ANT, 9LDT

250

3 (validation) WARNING 884 3039
4 (missing residue data) WARNING 229 640
5 (changed post SCOP2) WARNING 38 1DCQ, 1DXL, 1F76, 1GR0, 1GUZ, 1HD2,

1HKU, 1I0Z, 1I10, 1I8T, 1IUK, 1JAY,

1KS9, 1LDM, 1LLD, 1LNQ, 1LSS, 1MV8,

1OBB, 1OBF, 1PJQ, 1QMV, 1T0F, 1UXG,

1VA0, 1VJI, 1VYR, 2BI7, 2BKA, 2F8A,

2FXA, 2G82, 2OAN, 2RDZ, 2V64, 3HNA,

3OL4, 3TQU

130

Table 4.1: Counts relating to errors and warnings relating to domains entries
in SCOP2. Note that ERRORs are exclusive such that a PDB entry identified
as having an ERROR is excluded and these PDBs and their associated domains
are not considered for, or included in WARNING. WARNINGs are not exclusive so a
particular domain and / or PDB entry could be associated with all three WARNING

types. The WARNING counts relating to PDBs are counts of distinct PDBs i.e.
if a PDB entry is the parent of multiple domains with a particular WARNING the
PDB is only counted once.

Issue types 3, 4 and 5 are treated as ‘warnings’; data is not excluded that have WARNINGs

against them but these may be referenced when discussing results. Apart from issue type 5 it

can be assumed that the included data is as it was seen by those making the categorisations.

In the case of issue type 5 when the data has been modified post the release of SCOP2

these warnings will only be considered if they apply to data where our categorisation fails

to agree with SCOP2.

98

+--------+-------+--------------------------------+---+

| pdb_id | level | type | text |

+--------+-------+--------------------------------+---+

| 2FB1 | ERROR | OBSOLETE | missing mmCIF file |

| 1D5Y | ERROR | UNEXPECTED_ON_ATOM_INSERT | DBD::mysql::st execute failed: Bad label_atom_id: >>O5'<< |

| 2EC9 | ERROR | UNEXPECTED_ON_ATOM_KEEP_INSERT | DOMAIN CF-8003777-2EC9H - DBD::mysql::db do failed: Duplicate entry 'N-60-H' for key 'label_atom_id' |

+--------+-------+--------------------------------+---+

(a) Example ERROR rows from the pdb_issue table.

+--------+-------+---------------------+---+

| pdb_id | level | type | text |

+--------+-------+---------------------+---+

| 3OL4 | WARN | MODIFIED_POST_SCOP2 | mmCIF file last modified 2015-04-22 |

| 3DBH | WARN | VALIDATION | 36 A (torsion), 38 A (torsion), 39 A (torsion), 63 A (torsion), 65 A (torsion), 66 A (torsion), 79 A <snip> |

+--------+-------+---------------------+---+

+------------------+-------+---------------------+---+

| domain_dom_name | level | type | text |

+------------------+-------+---------------------+---+

| CF-8002341-1MIJA | WARN | AUTH_SEQ_ID_MISSING | 1314, 1315, 1316, 1317, 1318, 1319, 1320, 1321, 1322, 1323, 1324, 1325, 1326 |

| SP-8002542-1JT6B | WARN | VALIDATION | 4 (torsion), 18 (torsion), 21 (close_contact), 33 (torsion), 41 (torsion), 44 (torsion), 89 (torsion <snip> |

+------------------+-------+---------------------+---+

+--------+---------+-------+------------+---+

| pdb_id | asym_id | level | type | text |

+--------+---------+-------+------------+---+

| 1OFC | X | WARN | VALIDATION | 734 (rmsd_angle), 751 (peptide_omega), 752 (peptide_omega), 756 (torsion), 794 (chiral), 795 (torsio <snip> |

+--------+---------+-------+------------+---+

(b) Example WARNING rows from the pdb_issue, domain_issue, asym_unit_issue tables.

Figure 4.5: Example ERROR and WARNING rows relating to PDB data.

99

Figure 4.6 shows boxplots of the RMSD distances between consecutive Cα atoms for random

samples of domains taken from the sets of domains with and without warnings. The

expected distance is 3.8Å (Kleywegt 1997). This demonstrates that in data both with and

without warnings there are relatively few significant departures from the expected distance,

and also shows that the PDB validation warnings do not always show departures. As any

significant departures may impact on the efficacy of our matching method departures will

be checked when our matching fails to agree with SCOP2; this check will be calculated

directly against the data and we will not rely on the PDB validation reports.

100

●

●●

●

●

●

●
●●

●●●● ●
●

●

● ● ●

●
●

●
●

●

●

●●
●

●●

●

●●

●

●

●

●

●●

●●

●●●

●●
●
●

●
●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●
●

● ●
●

●

●
●

●

●

●●

●
●
●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●●●●

●
●

●●
●
●● ●

●

●● ●

●

●●

●●

●●

●

●●●

●●

●

●

●

●

●●

●

●

●
●●

●

●

●

●●

●
●
●●●

●

●
●

●

●

●

●

●
●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●●●

● ●●●●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●
●

●●

●

●
●

●●
●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●●

●●

2.
5

3.
0

3.
5

4.
0

al
ph

a
ca

rb
on

 s
ep

ar
at

io
n

(a
ng

st
ro

m
s)

C
F

−
8

0
0

4
2

2
8

−
1

R
7

JA
C

F
−

8
0

0
4

2
4

5
−

1
Z

A
O

A
C

F
−

8
0

0
4

2
4

6
−

1
J7

K
A

C
F

−
8

0
0

4
2

5
9

−
3

B
Z

6
A

C
F

−
8

0
0

4
3

5
9

−
1

Y
0

P
A

C
F

−
8

0
0

4
4

2
3

−
3

V
T

H
A

C
F

−
8

0
1

7
6

8
4

−
2

O
Z

6
A

F
A

−
8

0
0

2
2

9
3

−
2

C
K

X
A

F
A

−
8

0
0

3
4

4
3

−
1

I2
7

A
F

A
−

8
0

0
3

8
6

5
−

2
N

Z
C

A
F

A
−

8
0

0
4

0
7

3
−

3
R

6
N

A
H

F
−

8
0

0
0

8
8

0
−

2
D

T
5

A
H

F
−

8
0

0
2

3
2

1
−

2
G

A
1

A
H

F
−

8
0

0
2

5
9

7
−

1
JH

F
A

H
F

−
8

0
0

2
8

4
1

−
1

M
K

M
A

H
F

−
8

0
0

2
9

8
3

−
2

O
B

P
A

H
F

−
8

0
0

3
2

7
1

−
1

T
6

S
A

H
F

−
8

0
0

3
4

4
5

−
1

I2
7

A
H

F
−

8
0

0
3

4
8

3
−

1
L

V
A

A
H

F
−

8
0

0
3

4
8

4
−

1
L

V
A

A
H

F
−

8
0

0
3

5
5

8
−

1
Y

8
Q

A
H

F
−

8
0

0
3

5
6

1
−

3
C

M
M

C
H

F
−

8
0

0
3

6
5

2
−

1
F

T
5

A
H

F
−

8
0

1
7

6
7

7
−

1
Z

0
5

A
IR

−
8

0
0

1
2

8
2

−
1

D
L

IA
IR

−
8

0
0

1
4

9
2

−
1

Q
1

R
A

IR
−

8
0

0
3

9
7

2
−

1
U

H
S

A
IR

−
8

0
0

4
0

6
0

−
1

L
M

5
B

IR
−

8
0

0
4

0
6

1
−

1
L

M
5

B
IR

−
8

0
0

4
0

8
4

−
1

Y
C

S
B

IR
−

8
0

0
4

1
9

0
−

1
U

O
H

A
IR

−
8

0
1

7
4

5
2

−
3

O
L

4
A

P
R

−
8

0
1

7
4

4
3

−
3

O
L

4
A

S
F

−
8

0
0

2
5

6
8

−
1

T
0

F
A

S
F

−
8

0
0

3
7

2
0

−
2

H
K

JA
S

F
−

8
0

1
7

7
1

8
−

2
Z

C
W

A
S

P
−

8
0

0
2

6
7

9
−

2
P

5
K

A
S

P
−

8
0

0
3

2
5

3
−

2
A

6
1

A
S

P
−

8
0

0
3

3
8

6
−

1
R

3
JC

S
P

−
8

0
0

3
8

7
6

−
2

P
C

6
A

C
F

−
8

0
0

1
3

4
5

−
3

C
O

X
A

C
F

−
8

0
0

4
2

3
4

−
1

S
T

Z
A

C
F

−
8

0
0

4
2

6
3

−
2

B
B

Y
A

C
F

−
8

0
0

4
4

1
3

−
2

B
Y

V
E

C
F

−
8

0
0

4
5

0
6

−
3

R
F

Y
A

C
F

−
8

0
1

7
5

0
2

−
2

Z
3

Y
A

F
A

−
8

0
0

0
6

7
7

−
2

F
Y

8
A

F
A

−
8

0
0

1
0

7
1

−
1

V
L

6
A

F
A

−
8

0
0

1
4

3
7

−
1

P
J5

A
F

A
−

8
0

0
1

5
2

9
−

1
Z

4
5

A
F

A
−

8
0

0
2

7
5

2
−

2
G

A
U

A
F

A
−

8
0

0
3

0
0

4
−

2
B

B
Y

A
F

A
−

8
0

0
3

2
4

2
−

1
O

F
D

A
F

A
−

8
0

0
3

3
1

8
−

1
O

F
D

A
F

A
−

8
0

1
7

6
0

4
−

1
U

S
S

A
H

F
−

8
0

0
1

2
0

5
−

2
I7

6
A

H
F

−
8

0
0

2
6

6
1

−
1

T
B

X
A

H
F

−
8

0
0

3
5

8
5

−
3

D
B

H
A

IR
−

8
0

0
3

8
2

0
−

2
Q

W
1

A
IR

−
8

0
0

4
1

8
0

−
1

B
D

8
A

P
R

−
8

0
0

1
4

5
7

−
1

P
S

9
A

P
R

−
8

0
0

2
2

6
1

−
2

JN
6

A
P

R
−

8
0

0
2

4
6

4
−

1
M

E
O

A
P

R
−

8
0

0
2

6
5

5
−

1
U

2
W

A
P

R
−

8
0

0
2

7
5

9
−

2
Z

C
W

A
P

R
−

8
0

0
2

7
9

7
−

1
S

F
X

A
P

R
−

8
0

0
3

9
1

7
−

2
B

7
JB

P
R

−
8

0
1

7
4

7
2

−
4

H
G

0
A

S
F

−
8

0
0

3
0

6
0

−
1

S
6

L
A

S
F

−
8

0
0

3
4

6
0

−
1

L
D

JA
S

F
−

8
0

0
3

7
3

1
−

1
G

G
4

A
S

F
−

8
0

0
4

5
1

9
−

2
X

3
JA

S
F

−
8

0
1

7
5

0
0

−
2

Z
3

Y
A

S
P

−
8

0
0

0
4

7
3

−
1

G
Z

6
A

S
P

−
8

0
0

0
8

9
9

−
1

J0
X

O
S

P
−

8
0

0
1

4
3

5
−

1
P

J5
A

S
P

−
8

0
0

2
9

9
8

−
2

N
S

0
A

S
P

−
8

0
0

3
4

3
9

−
2

F
M

L
A

S
P

−
8

0
0

3
4

6
8

−
2

H
Y

E
C

S
P

−
8

0
0

3
6

2
4

−
2

B
S

2
B

without warnings with warnings

Figure 4.6: A plot comparing the distance between consecutive alpha carbons
for domains that are flagged with validation warnings in the PDB and those
that are not. The two groups are made up of random samples of domains that
are in SCOP2. Domains where processing found data errors are excluded.

101

4.5 SCOP2 classification

The following is an edited down version of the SCOP2 classification category definitions

taken from http://scop2.mrc-lmb.cam.ac.uk/about.html on 2016-08-15.

Evolutionary relationships:

Hyperfamily: A common region shared by different superfamilies. Unlike a Super-

family region, it can be smaller than a structural domain, as it does not include

the superfamily-specific regions. The Hyperfamily level helps separate the most

populated and structurally-diverse superfamilies.

Superfamily: A common structural region shared by different protein families. The

Superfamily domain spans from the beginning of the first common secondary

structural element to the end of the last common conserved structural element.

Importantly, the domains representing Family and Superfamily levels can span

over more than one structural domain. Moreover, the Family region may contain

more than one non-overlapping Superfamily region.

Family: A conserved sequence region shared by closely-related proteins. The bound-

aries of a family domain region are frequently similar to those derived by sequence

family databases.

Species: Generally the individual gene product represented by its full-length se-

quence. A notable exception is viral polyproteins, for which protein species

correspond to mature posttranslational products.

Protein: This groups together orthologous proteins and is defined as a sub-sequence

that can be found on its own. In general, at this level the boundaries of the

relationship are the same as in Species. The exceptions are fusion proteins found

in some organisms, the Protein parts of which correspond to stand-alone proteins

in other biological species.

Structural relationships:

Fold: An attribute of structural domain defined strictly on the basis of global struc-

tural features as originally described. These features are: the composition of

secondary structures in the domain core, their architecture and topology. If

the structural domains of evolutionarily related proteins differ by any of these

parameters, they can be classified into different folds.

IUPR: (Intrinsically Unstructured Protein Region.) This annotates the protein re-

gions that do not adopt globular folded structure. They are present in some

of the experimentally-determined structures, where they adopt an ordered con-

formation upon binding to other macromolecules. IUPRs may occur in both

individual proteins and protein sequence families.

Table 4.2 gives counts of the number of distinct protein relationships of each type encoded

in the SCOP2 database.

102

category rank count

Protein relationships

Evolutionary relationships Hyper Family HF 296
Super Family SF 492
Family FA 606
Protein PR 635
Species SP 780

Structural relationships Fold CF 681
IUPR

Table 4.2: Count of the number of distinct protein relationships encoded in
the SCOP2 database.

An important point to note is that the classification system is not hierarchical (as it was

in SCOP). Although traditionally the evolutionary relationships from superfamily to protein

are represented as a tree hierarchy, in SCOP2 each specific instance of a categorisation is

represented as a node in an acyclic graph, which is implemented in the database using a

slightly modified version of a Levelled Adjacency List Model implemented in the closure

table. An implication of this is that a protein may not have a categorisation at a particular

level even when it has a categorisation at the level above and below, for example a protein

with both superfamily and species categorisations may not be categorised under family.

In addition a protein may be represented with multiple domains that belong to different

categorisations at the same level of evolutionary relationship.

In its basic form the GProtA algorithm detailed in Chapter 3 is particularly suited to finding

the best global alignment of structures, which in turn is then particularly suited to compari-

son at the family level which is typically the sequence level comparison made when deducing

evolutionary history. If a family categorisation is correctly attributed then most higher level

categorisations can be inferred either uniquely or with a small number of alternatives, and

the number of possible lower level categories is significantly reduced. Family, species and

protein level categorisations are all generally expected to be global matches at the asym-

metric unit level, of these the family categorisation would be expected to be the smallest

subset of structure being matched.

103

4.6 Comparing SCOP2 families

For this section we consider the complete set of protein domains taken from SCOP2 family

categories that include at least 10 members and where the members are associated to

asymmetric units of no greater than 250 residues. This set consists of 5 families containing

a total of 72 domains. The complete set of these data is given in Table 4.3.26 There are

92 of the 295 family categories defined in SCOP2 that contain more than one protein.

For the first illustration we pick one of the domains at random, FA-8002409-1FTZA, and

calculate the distance, using GProtA for alignment and the difference measure in (3.13), to

all other members of the set. The results are plotted in Figure 4.7. Of the 22 members of

●
●●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

0.
8

1.
0

1.
2

1.
4

1.
6

category

di
st

an
ce

FA:4000272 FA:4000291 FA:4000317 FA:4000366 FA:4002490

FA−8002347−1X41A

FA−8002355−1X58A

FA−8002371−1S7EA

FA−8002396−1OCPA

Figure 4.7: Distance calculated between the domain FA-8002409-1FTZA and
all of the other 71 domains in the set. The horizontal alignment of the groups
is jittered to help distinguish between individual members.

the FA:4000291 family (that contains FA-8002409-1FTZA domain) 18 distinguish correctly

from the other 4 families. For the 4 incorrectly distinguished domains there is no apparent

error in the matching from visual examination of the alignment. There is also no apparent

26The SQL used to find this set is given in Appendix C.4.1.

104

domain
PDB

ID

asym

unit node

domain
res

count

asym

unit
res

count exptl method
last mod

date
dom
warn

asym

unit
warn

FA-8002765-1FT9A 1FT9 A FA:4000272 132 210 X-RAY DIFFRACTION 2009-02-24 1 1
FA-8002757-1ZYBA 1ZYB A FA:4000272 147 230 X-RAY DIFFRACTION 2011-07-13 1 1
FA-8002725-1I5ZA 1I5Z A FA:4000272 132 201 X-RAY DIFFRACTION 2009-02-24 1 1
FA-8002746-3E5UC 3E5U C FA:4000272 139 219 X-RAY DIFFRACTION 2011-07-13 1 1
FA-8002761-2ZCWA 2ZCW A FA:4000272 113 194 X-RAY DIFFRACTION 2009-02-24 0 1
FA-8002731-2OZ6A 2OZ6 A FA:4000272 129 201 X-RAY DIFFRACTION 2011-08-10 1 1
FA-8002753-2GAUA 2GAU A FA:4000272 137 218 X-RAY DIFFRACTION 2011-07-13 1 1
FA-8002769-2BGCA 2BGC A FA:4000272 135 235 X-RAY DIFFRACTION 2011-07-13 1 1
FA-8002357-2CRAA 2CRA A FA:4000291 57 70 SOLUTION NMR 2009-02-24 1 1
FA-8002396-1OCPA 1OCP A FA:4000291 66 67 SOLUTION NMR 2009-02-24 1 1
FA-8002353-1X2NA 1X2N A FA:4000291 59 73 SOLUTION NMR 2009-02-24 1 1
FA-8002355-1X58A 1X58 A FA:4000291 49 62 SOLUTION NMR 2009-02-24 1 1
FA-8002387-1HDPA 1HDP A FA:4000291 63 63 SOLUTION NMR 2009-02-24 1 1
FA-8002351-2E1OA 2E1O A FA:4000291 57 70 SOLUTION NMR 2009-02-24 1 1
FA-8002403-1BW5A 1BW5 A FA:4000291 65 66 SOLUTION NMR 2009-02-24 1 1
FA-8002344-2CQXA 2CQX A FA:4000291 59 72 SOLUTION NMR 2009-02-24 1 1
FA-8002386-1FTTA 1FTT A FA:4000291 67 68 SOLUTION NMR 2009-02-24 1 1
FA-8002371-1S7EA 1S7E A FA:4000291 46 147 SOLUTION NMR 2009-02-24 1 1
FA-8002369-2ECCA 2ECC A FA:4000291 63 76 SOLUTION NMR 2009-02-24 1 1
FA-8002413-2ECBA 2ECB A FA:4000291 76 89 SOLUTION NMR 2009-02-24 1 1
FA-8002378-1ENHA 1ENH A FA:4000291 54 54 X-RAY DIFFRACTION 2009-02-24 0 0
FA-8002365-1WH7A 1WH7 A FA:4000291 67 80 SOLUTION NMR 2009-02-24 1 1
FA-8002347-1X41A 1X41 A FA:4000291 45 60 SOLUTION NMR 2009-02-24 1 1
FA-8002411-1VNDA 1VND A FA:4000291 76 77 SOLUTION NMR 2009-02-24 1 1
FA-8002363-1WH5A 1WH5 A FA:4000291 67 80 SOLUTION NMR 2009-02-24 1 1
FA-8002356-2CUFA 2CUF A FA:4000291 76 95 SOLUTION NMR 2009-02-24 1 1
FA-8002332-1UHSA 1UHS A FA:4000291 64 72 SOLUTION NMR 2009-02-24 1 1
FA-8002367-1WI3A 1WI3 A FA:4000291 58 71 SOLUTION NMR 2009-02-24 1 1
FA-8002345-2CUEA 2CUE A FA:4000291 67 80 SOLUTION NMR 2009-02-24 1 1
FA-8002409-1FTZA 1FTZ A FA:4000291 69 70 SOLUTION NMR 2009-02-24 1 1
FA-8002350-1X2MA 1X2M A FA:4000291 51 64 SOLUTION NMR 2009-02-24 1 1
FA-8002301-1XC5A 1XC5 A FA:4000317 68 68 SOLUTION NMR 2009-02-24 1 1
FA-8002293-2CKXA 2CKX A FA:4000317 83 83 X-RAY DIFFRACTION 2009-02-24 0 0
FA-8002295-2CRGA 2CRG A FA:4000317 57 70 SOLUTION NMR 2009-02-24 1 1
FA-8002302-2CU7A 2CU7 A FA:4000317 65 72 SOLUTION NMR 2009-02-24 1 1
FA-8002307-1FEXA 1FEX A FA:4000317 59 59 SOLUTION NMR 2009-02-24 1 1
FA-8002290-2CJJA 2CJJ A FA:4000317 63 63 X-RAY DIFFRACTION 2011-07-13 1 1
FA-8002311-1A5JA 1A5J A FA:4000317 55 110 SOLUTION NMR 2009-02-24 1 1
FA-8002297-2IW5B 2IW5 B FA:4000317 65 133 X-RAY DIFFRACTION 2011-07-13 1 1
FA-8002312-1UG2A 1UG2 A FA:4000317 81 95 SOLUTION NMR 2009-02-24 1 1
FA-8002299-2CQQA 2CQQ A FA:4000317 59 72 SOLUTION NMR 2009-02-24 1 1
FA-8002303-1WGXA 1WGX A FA:4000317 60 73 SOLUTION NMR 2009-02-24 1 1
FA-8002294-2AJEA 2AJE A FA:4000317 97 97 SOLUTION NMR 2009-02-24 1 1
FA-8002310-1A5JA 1A5J A FA:4000317 53 110 SOLUTION NMR 2009-02-24 1 1
FA-8002300-2CQRA 2CQR A FA:4000317 60 73 SOLUTION NMR 2009-02-24 1 1
FA-8002251-1IRZA 1IRZ A FA:4000317 64 64 SOLUTION NMR 2009-02-24 1 1
FA-8004157-1MYOA 1MYO A FA:4000366 118 118 SOLUTION NMR 2009-02-24 1 1
FA-8004154-1IKND 1IKN D FA:4000366 215 215 X-RAY DIFFRACTION 2009-02-24 1 1
FA-8004166-1OY3D 1OY3 D FA:4000366 207 220 X-RAY DIFFRACTION 2009-02-24 1 1
FA-8004080-1YCSB 1YCS B FA:4000366 130 193 X-RAY DIFFRACTION 2009-02-24 1 1
FA-8004144-3UI2A 3UI2 A FA:4000366 138 234 X-RAY DIFFRACTION 2012-06-06 1 1
FA-8004163-1OT8A 1OT8 A FA:4000366 186 209 X-RAY DIFFRACTION 2011-07-13 1 1
FA-8004153-3B7BA 3B7B A FA:4000366 234 236 X-RAY DIFFRACTION 2009-02-24 1 1
FA-8004104-1IHBA 1IHB A FA:4000366 156 156 X-RAY DIFFRACTION 2009-02-24 1 1
FA-8004107-1BI7B 1BI7 B FA:4000366 125 125 X-RAY DIFFRACTION 2009-02-24 1 1
FA-8004159-1K1AA 1K1A A FA:4000366 228 228 X-RAY DIFFRACTION 2009-02-24 1 1
FA-8004097-1BD8A 1BD8 A FA:4000366 156 156 X-RAY DIFFRACTION 2009-02-24 1 1
FA-8004128-3C5RA 3C5R A FA:4000366 122 125 X-RAY DIFFRACTION 2011-07-13 1 1
FA-8004111-1UOHA 1UOH A FA:4000366 223 223 X-RAY DIFFRACTION 2011-07-13 1 1
FA-8017485-2P4PA 2P4P A FA:4002490 82 84 X-RAY DIFFRACTION 2011-07-13 1 1
FA-8017483-2NQWA 2NQW A FA:4002490 87 87 X-RAY DIFFRACTION 2011-07-13 1 1
FA-8017481-2O3GA 2O3G A FA:4002490 76 76 X-RAY DIFFRACTION 2011-07-13 1 1
FA-8017489-3LLBA 3LLB A FA:4002490 81 81 X-RAY DIFFRACTION 2010-03-16 1 1
FA-8017479-2P13A 2P13 A FA:4002490 85 85 X-RAY DIFFRACTION 2011-07-13 1 1
FA-8017474-4HG0A 4HG0 A FA:4002490 81 232 X-RAY DIFFRACTION 2013-02-06 1 1
FA-8017482-2R2ZA 2R2Z A FA:4002490 84 84 X-RAY DIFFRACTION 2011-07-13 1 1
FA-8017488-2P3HA 2P3H A FA:4002490 98 98 X-RAY DIFFRACTION 2011-07-13 1 1
FA-8017478-2PLSA 2PLS A FA:4002490 84 86 X-RAY DIFFRACTION 2011-07-13 1 1
FA-8017486-2OAIA 2OAI A FA:4002490 80 80 X-RAY DIFFRACTION 2011-07-13 1 1
FA-8017477-2RK5A 2RK5 A FA:4002490 84 86 X-RAY DIFFRACTION 2009-02-24 1 1
FA-8017487-3DEDA 3DED A FA:4002490 87 87 X-RAY DIFFRACTION 2011-07-13 1 1
FA-8017480-3LAEA 3LAE A FA:4002490 78 81 X-RAY DIFFRACTION 2010-01-19 1 1

Table 4.3: The set of protein domains used to test agreement with SCOP2
categorisation at the family level. These are the complete sets of SCOP2
family categories that include at least 10 members and where the members
are associated to asymmetric units of no greater than 250 residues. Residue
counts are given for both the domain and associated asymmetric unit.

correlation in their captured metadata. In all 4 cases the domain length is at the short

end of the distribution; FA-8002347-1X41A, FA-8002371-1S7EA and FA-8002355-1X58A

being the three shortest domains in our data set. However, there does not seem an obvious

explanation for the incorrect distinction.

105

The comparison of domains offers evidence that our alignment and distance measure work

well when the important region of the protein has been isolated, i.e. the domain region has

been identified by the expert as the region of the asymmetric unit that contains the residues

important in identifying the family category.

Next we make a comparison for the same set using the asymmetric unit associated with

the domain. If we are correctly identifying the global best match this should offer similar

results to the domain comparison, as the family categorisation is generally attributed to

global similarity at the asymmetric unit level. Note that the asymmetric unit definitions are

taken from the Protein Data Bank.

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●
●●

●●

●

●
●

●

●

●

●

●●●

●

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

category

di
st

an
ce

FA:4000272 FA:4000291 FA:4000317 FA:4000366 FA:4002490

1OCP_A

1S7E_A

1X41_A1X58_A

Figure 4.8: Distance calculated between the asymmetric unit 1FTZ_A from
which the domain FA-8002409-1FTZA is derived and all of the other 70 asym-
metric units from which the domains in the group were derived. The horizontal
alignment of the groups is jittered to help distinguish between individual mem-
bers.

The results for the comparison using the asymmetric units, Figure 4.8, are consistent with

the comparisons made using the domain residues, Figure 4.7. As with the domain compari-

son 4 asymmetric units failed to correctly distinguish the categorisation, and these four are

106

the asymmetric units from which the failing domains are derived.

In this comparison there are 70 rather than 71 comparisons made as the asymmetric unit

1A5J_A contains two separate domains both of which are in the FA:4000317 family cate-

gory. Both sequences are of the same length and examination of our alignment results show

that subsets of the two sequences were in every case the first and second best matches in

comparisons within family, although their order was not consistent across all comparisons.

4.6.1 Clustering

In this section we look at a brute force comparison of every domain in our test group

with every other domain, using GProtA for alignment and the difference measure in (3.13).

For the 72 domains in the group this requires
(72

2
)

= 2556 individual comparisons. The

first examination of the results is done using multidimensional scaling using the cmdscale

command from R. The results, shown in Figure 4.9, are poor for delineating the FA:4000291

and FA:4000317 categories, and an examination of the eigenvalues suggests that dimension

reduction techniques will be poor at clustering these data using two or three dimensions

since the first three dimensions only explain about 40% of the variation in the data.27

27Only marginally improved results were achieved using the isoMDS and sammon functions from the MASS package.

107

●

●
●

●

●

●
●

●

● ●
● ●

●●
● ●

●

●●
●
●

●

●

●●
●

●●●
●
●●

●
●

●
●

●

●

FA:4000272
FA:4000291
FA:4000317
FA:4000366
FA:4002490

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●●
●●

●●
●●

●●●
●●●●

●●●●●●●●

0 10 20 30 40 50 60 70

0.
2

0.
4

0.
6

0.
8

1.
0

index of ordered eigen values

cu
m

ul
at

iv
e

su
m

Figure 4.9: MDS plot against the distance matrix of the complete set of
pairwise comparisons in our test group of domains. The accompanying plot
of the cumulative sum of the ordered eigenvalues shows that less than 30% of
the variance in the data is captured in the first 2 dimensions.

Going forward we opt to use density based clustering; the following uses the DBSCAN

(Density Based Spatial Clustering of Applications with Noise) method detailed in Ester et

al. (1996).

DBSCAN is parameterised using Eps and a MinPts values and uses the following defini-

tions:

Eps-neighbourhood A point q is in the Eps-neighbourhood of a point p if: dist(p, q) ≤

Eps.

core point A point p is a core point if the number of points that are in its Eps-neighbourhood:

NEps(p) ≥MinPts.

border point A point p is a border point if the number of points that are in its Eps-

neighbourhood: 0 < NEps(p) < MinPts.

directly density-reachable A point q is directly density-reachable from a point p if q is in

the Eps-neighbourhood of p and p is a core point.

density-reachable A point q is density reachable from a point p1 if a chain can be made

(p1, p2, . . . , pn, q) where each point pi is a core point.

108

density-connected Points p and q are density-connected if there is a point r from which

both p and q are density reachable.

Using these definitions a cluster is defined as “a set of density-connected points which is

maximal wrt. density-reachability”, and noise is defined as those points that do not belong

to a cluster. Figure 4.12 gives a diagrammatic overview of the above definitions.

It is difficult to demonstrate that DBSCAN is an effective method of clustering using images

of large protein data sets and so we make an aside to show a visual representation of the

results of clustering a set of randomly selected Aspartate residues. There follows a brief

explanation of these data. The data are pairwise size-and-shape distances of a sample of

experimentally determined atomic co-ordinates for the amino acid Aspartate taken from

PDB files. The atoms from an amino acid that are not part of the protein backbone

form the sidechain and the different conformations of a sidechain are called its rotamers,

short for rotational isomers. Rotations along the axis of bonds within a sidechain, called

torsion angles, result in the different conformations. Torsion angles are preferred that avoid

minimise proximety between atoms (steric hindrance). The torsion angles for Aspartate are

illustrated in Figure 4.10.

Cα

Cβ

C
O	O

H

C

O

N

H

CαN

H

C

O

Cα

φ ψ

χ1

χ2

Figure 4.10: To a first approximation the torsion angles χn define the rotamers
of the sidechain. This figure illustrates the torsion angles χ1 and χ2 that define
the rotamers of Aspartate.

The results of the clustering the Aspartate data are shown in Figures 4.11, the function

of the reachability plot will be described later in this section. The code for this example

is given in Appendix B.4 and we use the implementation of DBSCAN from the R DBSCAN

package.

109

2

4

6

8

10

R
ea

ch
ab

ili
ty

 d
is

t.

(a) Reachability plot.

(b) Registered rotamers, coloured by cluster. The different clusters within the visual groupings, for
example the green and yellow, are as a result of the torsion angle χ2 differing by approximately π
radians.

Figure 4.11: Results of clustering of a random selection of Aspartate residues
using DBSCAN.

Returning to the clustering of the protein domain data: The eps and minPts parameters are

set at 1.9 and 6 respectively for the domain data, and at 2.1 and 6 for the asymmetric unit

data. The parameters were determined using the procedure outlined in Ester et al. (1996,

Section 4.2). The associated k-nearest neighbour distance plots are given in Figure 4.13.

110

Figure 4.12: Overview of DBSCAN terminology.

0 100 200 300 400

1.
0

1.
5

2.
0

2.
5

3.
0

Points (sample) sorted by distance

6−
N

N
 d

is
ta

nc
e

(a) domain data

0 100 200 300 400

1.
0

1.
5

2.
0

2.
5

3.
0

Points (sample) sorted by distance

6−
N

N
 d

is
ta

nc
e

(b) asymmetric unit data

Figure 4.13: kth nearest neighbour distance plots used to calculate the eps

parameter for the DBSCAN clustering.

A useful way to visualise the clustering structure discovered by density based clustering is

to traverse the data by plotting the distances to the nearest neighbour whilst only visiting

each data point once. This method is formalised in the OPTICS algorithm (Ordering

Points To Identify the Clustering Structure) detailed in Ankerst et al. (1999). Plots of the

111

clustering structure for both the domains and asymmetric units are given in Figure 4.14 and

Figure 4.15 respectively. The detailed results of the clustering are given in Tables 4.4.

1.5

2.0

2.5

3.0

3.5

R
ea

ch
ab

ili
ty

 d
is

t.

FA
−

80
02

25
1−

1I
R

Z
A

FA
−

80
02

35
5−

1X
58

A
FA

−
80

02
34

7−
1X

41
A

FA
−

80
02

30
3−

1W
G

X
A

FA
−

80
02

30
2−

2C
U

7A
FA

−
80

02
30

0−
2C

Q
R

A
FA

−
80

02
29

9−
2C

Q
Q

A
FA

−
80

02
29

0−
2C

JJ
A

FA
−

80
02

31
1−

1A
5J

A
FA

−
80

02
29

7−
2I

W
5B

FA
−

80
02

29
5−

2C
R

G
A

FA
−

80
02

30
7−

1F
E

X
A

FA
−

80
02

29
3−

2C
K

X
A

FA
−

80
02

36
3−

1W
H

5A
FA

−
80

02
31

2−
1U

G
2A

FA
−

80
02

36
5−

1W
H

7A
FA

−
80

02
40

9−
1F

T
Z

A
FA

−
80

02
38

6−
1F

T
TA

FA
−

80
02

40
3−

1B
W

5A
FA

−
80

02
36

7−
1W

I3
A

FA
−

80
02

35
7−

2C
R

A
A

FA
−

80
02

37
8−

1E
N

H
A

FA
−

80
02

36
9−

2E
C

C
A

FA
−

80
02

35
3−

1X
2N

A
FA

−
80

02
35

1−
2E

1O
A

FA
−

80
02

34
5−

2C
U

E
A

FA
−

80
02

33
2−

1U
H

S
A

FA
−

80
02

35
0−

1X
2M

A
FA

−
80

02
35

6−
2C

U
FA

FA
−

80
02

41
3−

2E
C

B
A

FA
−

80
02

41
1−

1V
N

D
A

FA
−

80
02

34
4−

2C
Q

X
A

FA
−

80
02

39
6−

1O
C

PA
FA

−
80

02
38

7−
1H

D
PA

FA
−

80
02

30
1−

1X
C

5A
FA

−
80

02
37

1−
1S

7E
A

FA
−

80
02

29
4−

2A
JE

A
FA

−
80

02
31

0−
1A

5J
A

FA
−

80
02

76
5−

1F
T

9A
FA

−
80

02
76

9−
2B

G
C

A
FA

−
80

02
76

1−
2Z

C
W

A
FA

−
80

02
75

3−
2G

A
U

A
FA

−
80

02
74

6−
3E

5U
C

FA
−

80
02

73
1−

2O
Z

6A
FA

−
80

02
72

5−
1I

5Z
A

FA
−

80
02

75
7−

1Z
Y

B
A

FA
−

80
17

48
7−

3D
E

D
A

FA
−

80
17

48
6−

2O
A

IA
FA

−
80

17
48

8−
2P

3H
A

FA
−

80
17

48
0−

3L
A

E
A

FA
−

80
17

47
9−

2P
13

A
FA

−
80

17
48

9−
3L

LB
A

FA
−

80
17

48
3−

2N
Q

W
A

FA
−

80
17

48
5−

2P
4P

A
FA

−
80

17
48

2−
2R

2Z
A

FA
−

80
17

47
8−

2P
LS

A
FA

−
80

17
47

4−
4H

G
0A

FA
−

80
17

47
7−

2R
K

5A
FA

−
80

17
48

1−
2O

3G
A

FA
−

80
04

15
7−

1M
Y

O
A

FA
−

80
04

14
4−

3U
I2

A
FA

−
80

04
16

3−
1O

T
8A

FA
−

80
04

16
6−

1O
Y

3D
FA

−
80

04
15

9−
1K

1A
A

FA
−

80
04

15
3−

3B
7B

A
FA

−
80

04
11

1−
1U

O
H

A
FA

−
80

04
15

4−
1I

K
N

D
FA

−
80

04
09

7−
1B

D
8A

FA
−

80
04

10
4−

1I
H

B
A

FA
−

80
04

10
7−

1B
I7

B
FA

−
80

04
12

8−
3C

5R
A

FA
−

80
04

08
0−

1Y
C

S
B

FA:4000317
FA:4000291
FA:4000272
FA:4002490
FA:4000366

Figure 4.14: OPTICS plot of the clustering structure for the domain data.

The two nearest neighbour distance plots, Figures 4.14 and 4.15, show very similar structure

for the domains and asymmetric units, which reflects the fact that the residue matches are

very similar. The choice of eps parameter used for the DBSCAN clustering is marked on

the plots (horizontal dotted line); the choices are seen to be well chosen for delineating

the five families. The structure within the plots reveals that the FA:4000272, FA:4002490

and FA:4000366 family proteins demonstrate tighter clustering than the FA:4000317 and

FA:4000291 families suggesting less variation and hence a lower energy structure being

characteristic of these families.

Of note in these results is that we have correctly clustered into 5 distinct sets 62 of the

112

1.5

2.0

2.5

3.0

R
ea

ch
ab

ili
ty

 d
is

t.

1A
5J

_A
2I

W
5_

B
2C

U
7_

A
2C

R
G

_A
2C

Q
R

_A
2C

Q
Q

_A
2C

JJ
_A

1X
41

_A
1F

E
X

_A
2C

K
X

_A
1X

58
_A

1W
G

X
_A

1I
R

Z
_A

1U
G

2_
A

1W
H

5_
A

2C
U

F
_A

2E
C

C
_A

1X
2N

_A
2E

1O
_A

2C
R

A
_A

1U
H

S
_A

1X
2M

_A
1F

T
T

_A
1E

N
H

_A
1B

W
5_

A
2C

U
E

_A
1W

I3
_A

1F
T

Z
_A

1O
C

P
_A

1V
N

D
_A

1H
D

P
_A

2E
C

B
_A

2C
Q

X
_A

1W
H

7_
A

1X
C

5_
A

2A
JE

_A
1F

T
9_

A
3E

5U
_C

2Z
C

W
_A

2O
Z

6_
A

2G
A

U
_A

2B
G

C
_A

1I
5Z

_A
1Z

Y
B

_A
1S

7E
_A

1Y
C

S
_B

3C
5R

_A
1O

T
8_

A
3B

7B
_A

1U
O

H
_A

1O
Y

3_
D

1K
1A

_A
1I

H
B

_A
1I

K
N

_D
1B

I7
_B

1B
D

8_
A

3U
I2

_A
1M

Y
O

_A
4H

G
0_

A
3D

E
D

_A
2R

K
5_

A
3L

LB
_A

3L
A

E
_A

2R
2Z

_A
2P

13
_A

2P
LS

_A
2O

A
I_

A
2N

Q
W

_A
2O

3G
_A

2P
3H

_A
2P

4P
_A

FA:4000317
FA:4000291
FA:4000272
FA:4002490
FA:4000366

Figure 4.15: OPTICS plot of the clustering structure for the asymmetric unit
data.

71 asymmetric units, and of the remaining 9 only two are incorrectly clustered with the

remaining 7 being indeterminate. The clustering has been achieved using no information

from SCOP2 except that used to make the original choice of the 71 asymmetric units. Here

we have discovered a set of SCOP2 family categorisations directly from the data available

in the Protein Data Bank using GProtA and our proposed difference measure. This strongly

suggests that for global matching the difference measure is capturing the same information

from the data as the expert curator.

113

domain family cluster
FA-8002371-1S7EA FA:4000291 -
FA-8002251-1IRZA FA:4000317 -
FA-8002294-2AJEA FA:4000317 -
FA-8002301-1XC5A FA:4000317 -
FA-8002310-1A5JA FA:4000317 -
FA-8002312-1UG2A FA:4000317 -

FA-8002347-1X41A FA:4000291 1 ←
FA-8002355-1X58A FA:4000291 1 ←
FA-8002363-1WH5A FA:4000291 1 ←
FA-8002290-2CJJA FA:4000317 1
FA-8002293-2CKXA FA:4000317 1
FA-8002295-2CRGA FA:4000317 1
FA-8002297-2IW5B FA:4000317 1
FA-8002299-2CQQA FA:4000317 1
FA-8002300-2CQRA FA:4000317 1
FA-8002302-2CU7A FA:4000317 1
FA-8002303-1WGXA FA:4000317 1
FA-8002307-1FEXA FA:4000317 1
FA-8002311-1A5JA FA:4000317 1

FA-8002332-1UHSA FA:4000291 2
FA-8002344-2CQXA FA:4000291 2
FA-8002345-2CUEA FA:4000291 2
FA-8002350-1X2MA FA:4000291 2
FA-8002351-2E1OA FA:4000291 2
FA-8002353-1X2NA FA:4000291 2
FA-8002356-2CUFA FA:4000291 2
FA-8002357-2CRAA FA:4000291 2
FA-8002365-1WH7A FA:4000291 2
FA-8002367-1WI3A FA:4000291 2
FA-8002369-2ECCA FA:4000291 2
FA-8002378-1ENHA FA:4000291 2
FA-8002386-1FTTA FA:4000291 2
FA-8002387-1HDPA FA:4000291 2
FA-8002396-1OCPA FA:4000291 2
FA-8002403-1BW5A FA:4000291 2
FA-8002409-1FTZA FA:4000291 2
FA-8002411-1VNDA FA:4000291 2
FA-8002413-2ECBA FA:4000291 2

FA-8002725-1I5ZA FA:4000272 3
FA-8002731-2OZ6A FA:4000272 3
FA-8002746-3E5UC FA:4000272 3
FA-8002753-2GAUA FA:4000272 3
FA-8002757-1ZYBA FA:4000272 3
FA-8002761-2ZCWA FA:4000272 3
FA-8002765-1FT9A FA:4000272 3
FA-8002769-2BGCA FA:4000272 3

FA-8004080-1YCSB FA:4000366 4
FA-8004097-1BD8A FA:4000366 4
FA-8004104-1IHBA FA:4000366 4
FA-8004107-1BI7B FA:4000366 4
FA-8004111-1UOHA FA:4000366 4
FA-8004128-3C5RA FA:4000366 4
FA-8004144-3UI2A FA:4000366 4
FA-8004153-3B7BA FA:4000366 4
FA-8004154-1IKND FA:4000366 4
FA-8004157-1MYOA FA:4000366 4
FA-8004159-1K1AA FA:4000366 4
FA-8004163-1OT8A FA:4000366 4
FA-8004166-1OY3D FA:4000366 4

FA-8017474-4HG0A FA:4002490 5
FA-8017477-2RK5A FA:4002490 5
FA-8017478-2PLSA FA:4002490 5
FA-8017479-2P13A FA:4002490 5
FA-8017480-3LAEA FA:4002490 5
FA-8017481-2O3GA FA:4002490 5
FA-8017482-2R2ZA FA:4002490 5
FA-8017483-2NQWA FA:4002490 5
FA-8017485-2P4PA FA:4002490 5
FA-8017486-2OAIA FA:4002490 5
FA-8017487-3DEDA FA:4002490 5
FA-8017488-2P3HA FA:4002490 5
FA-8017489-3LLBA FA:4002490 5

(a) domain data

asym unit family cluster
1S7E_A FA:4000291 -
1A5J_A FA:4000317 -
1UG2_A FA:4000317 -
1XC5_A FA:4000317 -
2AJE_A FA:4000317 -
2IW5_B FA:4000317 -
4HG0_A FA:4002490 -

1X41_A FA:4000291 1 ←
1X58_A FA:4000291 1 ←
1FEX_A FA:4000317 1
1IRZ_A FA:4000317 1
1WGX_A FA:4000317 1
2CJJ_A FA:4000317 1
2CKX_A FA:4000317 1
2CQQ_A FA:4000317 1
2CQR_A FA:4000317 1
2CRG_A FA:4000317 1
2CU7_A FA:4000317 1

1BW5_A FA:4000291 2
1ENH_A FA:4000291 2
1FTT_A FA:4000291 2
1FTZ_A FA:4000291 2
1HDP_A FA:4000291 2
1OCP_A FA:4000291 2
1UHS_A FA:4000291 2
1VND_A FA:4000291 2
1WH5_A FA:4000291 2
1WH7_A FA:4000291 2
1WI3_A FA:4000291 2
1X2M_A FA:4000291 2
1X2N_A FA:4000291 2
2CQX_A FA:4000291 2
2CRA_A FA:4000291 2
2CUE_A FA:4000291 2
2CUF_A FA:4000291 2
2E1O_A FA:4000291 2
2ECB_A FA:4000291 2
2ECC_A FA:4000291 2

1FT9_A FA:4000272 3
1I5Z_A FA:4000272 3
1ZYB_A FA:4000272 3
2BGC_A FA:4000272 3
2GAU_A FA:4000272 3
2OZ6_A FA:4000272 3
2ZCW_A FA:4000272 3
3E5U_C FA:4000272 3

1BD8_A FA:4000366 4
1BI7_B FA:4000366 4
1IHB_A FA:4000366 4
1IKN_D FA:4000366 4
1K1A_A FA:4000366 4
1MYO_A FA:4000366 4
1OT8_A FA:4000366 4
1OY3_D FA:4000366 4
1UOH_A FA:4000366 4
1YCS_B FA:4000366 4
3B7B_A FA:4000366 4
3C5R_A FA:4000366 4
3UI2_A FA:4000366 4

2NQW_A FA:4002490 5
2O3G_A FA:4002490 5
2OAI_A FA:4002490 5
2P13_A FA:4002490 5
2P3H_A FA:4002490 5
2P4P_A FA:4002490 5
2PLS_A FA:4002490 5
2R2Z_A FA:4002490 5
2RK5_A FA:4002490 5
3DED_A FA:4002490 5
3LAE_A FA:4002490 5
3LLB_A FA:4002490 5

(b) asymmetric unit data

Table 4.4: Results of density based clustering on the pairwise distance data
for the test group of 72 domains and 71 asymmetric units. A cluster value
of ‘-’ indicates that the data point was identified as noise. Incorrect category
assignment is highlighted using an arrow.

114

4.6.2 Characteristic signatures

In this section we create a characteristic signature for each category family. The character-

istic signature is a set of landmarks that represent the identifying structure of the family.

If such a characteristic signature can be identified then rather than following our previ-

ous procedure of brute force pairwise comparison followed by clustering we could simply

compare a new configuration to each characteristic signature to see which it most closely

resembles. Although derived differently the characteristic signature of a category is analo-

gous to the templates constructed in Mardia, Nyirongo, et al. (2011) to be representative

of pharmacophores.

In the first instance we derive a characteristic signature from the clustered asymmetric units.

Although the clustered domains would offer a marginally better starting point, the use of

the clustered asymmetric units is interesting as the asymmetric unit definitions are available

in the PDB, and so this suggests the possibility of a primarily data driven approach to family

level categorisation. The basic procedure has the following steps applied in turn for each

cluster

CharacteristicSignature

1 for each asymmetric units cluster

2 Find the configuration that has the smallest mean RMSD for the pairwise alignments

to each other configuration in the cluster and call this the central configuration.

(Use the labelling calculated during clustering.)

3 Identify the subset of landmarks in the central configuration that are matched to

a landmark in all other of the cluster configurations and call these the

characteristic landmarks. (You will now have identified the same number of

characteristic landmarks in each configuration of the cluster.)

4 Calculate a mean shape using the characteristic landmarks for each configuration

in the cluster using partial Procrustes analysis (Dryden and Mardia 2016, Section 7.5).

This mean shape is the characteristic signature of the cluster.

The mean shape derived above is used as the characteristic signature for the family associ-

ated with the cluster. When we follow this procedure using the clustered asymmetric unit

data we establish the characteristic signatures illustrated in Figure 4.16, the co-ordinates

of which are given in Appendix A.2.

115

(a) FA:4000272 (57 landmarks)
(b) FA:4000317 (37 landmarks)

(c) FA:4002490 (50 landmarks)

(d) FA:4000291 (41 landmarks)

(e) FA:4000366 (93 landmarks)

Figure 4.16: 2D projections of characteristic signatures. The blue spheres
represent the locations of the landmarks used for the characteristic signatures.
The smaller grey spheres are the aligned sets of landmarks used in the partial
Procrustes analysis. The co-ordinates are given in Appendix A.2.

First we check that the signatures work using the data that we used to create them. We

would expect this to produce results very similar to the clustering that we illustrated in

the nearest neighbour distance plot for the pairwise comparisons of all asymmetric units,

Figure 4.15, and this is the case. The distances obtained by comparing each of the 71

asymmetric units to the family characteristic signatures are given in the form of a boxplot

116

in Figure 4.17. The boxplots show good separation between distances to the characteristic

signature for members of the characteristic signature’s family compared to asymmetric units

not belonging to the characteristic signature’s family.

0.5

1.0

1.5

2.0

di
st

an
ce

●

FA
:4

00
02

72

FA
:4

00
02

91

FA
:4

00
03

17

FA
:4

00
03

66

FA
:4

00
24

90

0.5

1.0

1.5

2.0

●

FA
:4

00
02

72

FA
:4

00
02

91

FA
:4

00
03

17

FA
:4

00
03

66

FA
:4

00
24

90

0.5

1.0

1.5

2.0

●

●

FA
:4

00
02

72

FA
:4

00
02

91

FA
:4

00
03

17

FA
:4

00
03

66

FA
:4

00
24

90

0.5

1.0

1.5

2.0

FA
:4

00
02

72

FA
:4

00
02

91

FA
:4

00
03

17

FA
:4

00
03

66

FA
:4

00
24

90

0.5

1.0

1.5

2.0

●

●

●

FA
:4

00
02

72

FA
:4

00
02

91

FA
:4

00
03

17

FA
:4

00
03

66

FA
:4

00
24

90

0.5

1.0

1.5

2.0

FA:4000272 FA:4000291 FA:4000317 FA:4000366 FA:4002490

Figure 4.17: Boxplot of distances obtained by comparing each of the 71
asymmetric units to each of the five family characteristic signatures. For each
comparison to a characteristic signature the results have been grouped by their
family according to SCOP2, the boxes of the groups that have the same family
as the characteristic signature are coloured.

Next we look at comparisons using data that was not part of the original data set. Fig-

ure 4.18 and Table 4.5 show the distances between the 5 larger asymmetric units belonging

to the FA:4000366 family category with each of the characteristic signatures derived from

the clustered asymmetric units. The details of these new 5 larger asymmetric units are

given in Table 4.6. The results show a clear distinction in distances when compared against

the correct family category.

117

asym

unit
characteristic

signature dss2 matches m n sb d
1DCQ_A FA:4000272 7.107 36 57 276 0.251 1.768
1N11_A FA:4000272 6.856 36 57 404 0.234 1.861
1S70_B FA:4000272 6.902 33 57 291 0.234 1.952
1SW6_A FA:4000272 7.234 34 57 254 0.246 1.876
1WDY_A FA:4000272 6.750 35 57 285 0.245 1.793
1DCQ_A FA:4000291 6.566 31 41 276 0.266 1.732
1N11_A FA:4000291 5.812 32 41 404 0.256 1.666
1S70_B FA:4000291 6.970 30 41 291 0.258 1.868
1SW6_A FA:4000291 6.649 31 41 254 0.270 1.717
1WDY_A FA:4000291 6.557 35 41 285 0.285 1.519
1DCQ_A FA:4000317 6.501 28 37 276 0.261 1.843
1N11_A FA:4000317 6.952 30 37 404 0.258 1.863
1S70_B FA:4000317 6.731 30 37 291 0.271 1.750
1SW6_A FA:4000317 6.290 27 37 254 0.259 1.864
1WDY_A FA:4000317 6.437 30 37 285 0.271 1.706
1DCQ_A FA:4000366 5.049 89 93 276 0.366 0.650
1N11_A FA:4000366 2.829 93 93 404 0.344 0.508
1S70_B FA:4000366 6.653 85 93 291 0.352 0.795
1SW6_A FA:4000366 5.249 80 93 254 0.351 0.730
1WDY_A FA:4000366 6.486 91 93 285 0.368 0.725
1DCQ_A FA:4002490 7.133 36 50 276 0.267 1.667
1N11_A FA:4002490 6.887 34 50 404 0.241 1.866
1S70_B FA:4002490 7.038 34 50 291 0.255 1.786
1SW6_A FA:4002490 7.134 32 50 254 0.251 1.881
1WDY_A FA:4002490 5.619 34 50 285 0.256 1.590

Table 4.5: Results of the comparison between the 5 larger asymmetric units
belonging to the FA:4000366 category described in Table 4.6 and each of the
characteristic signatures for the five families in our original test group.

asym
unit

residue
count exptl method

last
mod date warnings

1DCQ_A 276 X-RAY DIFFRACTION 2016-12-14 1
1N11_A 404 X-RAY DIFFRACTION 2009-02-24 1
1S70_B 291 X-RAY DIFFRACTION 2009-02-24 1
1SW6_A 254 X-RAY DIFFRACTION 2009-02-24 1
1WDY_A 285 X-RAY DIFFRACTION 2009-02-24 1

Table 4.6: 5 larger asymmetric units belonging to the FA:4000366 category
that were not part of the original test group.

118

0.
5

1.
0

1.
5

2.
0

di
st

an
ce

1
D

C
Q

_
A

1
N

1
1

_
A

1
S

7
0

_
B

1
S

W
6

_
A

1
W

D
Y

_
A

1
D

C
Q

_
A

1
N

1
1

_
A

1
S

7
0

_
B

1
S

W
6

_
A

1
W

D
Y

_
A

1
D

C
Q

_
A

1
N

1
1

_
A

1
S

7
0

_
B

1
S

W
6

_
A

1
W

D
Y

_
A

1
D

C
Q

_
A

1
N

1
1

_
A

1
S

7
0

_
B

1
S

W
6

_
A

1
W

D
Y

_
A

1
D

C
Q

_
A

1
N

1
1

_
A

1
S

7
0

_
B

1
S

W
6

_
A

1
W

D
Y

_
A

FA:4000272 FA:4000291 FA:4000317 FA:4000366 FA:4002490

Figure 4.18: Results of the comparison between the 5 larger asymmetric units
belonging to the FA:4000366 category described in Table 4.6 and each of the
characteristic signatures for the five families in our original test group.

To summarise the different data sets that we have applied the GProtA algorithm to so far,

Figure 4.19 shows examples of alignment between asymmetric units, alignment between

domains as defined in SCOP2, and alignment between an asymmetric unit and a family

characteristic signature.

119

(a) Alignment of the asymmetric units 1OT8_A and 3UI2_A.

(b) Alignment of the domains for the FA:4000366 family as defined by
SCOP2 for the asymmetric units in (a), FA-8004163-1OT8A and FA-

8004144-3UI2A.

(c) Alignment of the 3UI2_A asymmetric unit from (a) with the characteristic signature
for the SCOP2 family FA:4000366.

Figure 4.19: Examples of alignment using the GProtA algorithm.

120

Finally in this section we derive a characteristic signature directly from a set of SCOP2

domains. To do this we consider the complete set of asymmetric units that are assigned

the family category FA:4000157; these are detailed in Table 4.7.

asym
unit

residue
count exptl method

last
mod date warnings

1I5Z_A* 201 X-RAY DIFFRACTION 2009-02-24 1
2OZ6_A* 201 X-RAY DIFFRACTION 2011-08-10 1
1ZYB_A 230 X-RAY DIFFRACTION 2011-07-13 1
1FT9_A* 210 X-RAY DIFFRACTION 2009-02-24 1
3E5U_C* 219 X-RAY DIFFRACTION 2011-07-13 1
2GAU_A 218 X-RAY DIFFRACTION 2011-07-13 1
2ZCW_A 194 X-RAY DIFFRACTION 2009-02-24 1
2BGC_A 235 X-RAY DIFFRACTION 2011-07-13 1

Table 4.7: The complete set of asymmetric units that are assigned the SCOP2
family category FA:4000157.

Of these we randomly select 4 (indicated by a * in the table) to use to create a characteristic

signature. The characteristic signature is created using the same procedure as was used

with a cluster of the asymmetric units except that here we use the 4 randomly chosen units

rather than those from the core of the cluster. The resulting characteristic signature is

shown in Figure 4.20.

Figure 4.20: Characteristic signature for family FA:4000157 (49 landmarks).

Distances are then calculated between the remaining 4 asymmetric units categorised in

121

family FA:4000157 and all of the 5 plus 1 characteristic signatures. The results of this

comparison are given in Figure 4.21 and Table 4.8.

0.
8

1.
0

1.
2

1.
4

1.
6

di
st

an
ce

1
Z

Y
B

_
A

2
B

G
C

_
A

2
G

A
U

_
A

2
Z

C
W

_
A

1
Z

Y
B

_
A

2
B

G
C

_
A

2
G

A
U

_
A

2
Z

C
W

_
A

1
Z

Y
B

_
A

2
B

G
C

_
A

2
G

A
U

_
A

2
Z

C
W

_
A

1
Z

Y
B

_
A

2
B

G
C

_
A

2
G

A
U

_
A

2
Z

C
W

_
A

1
Z

Y
B

_
A

2
B

G
C

_
A

2
G

A
U

_
A

2
Z

C
W

_
A

1
Z

Y
B

_
A

2
B

G
C

_
A

2
G

A
U

_
A

2
Z

C
W

_
A

FA:4000157 FA:4000272 FA:4000291 FA:4000317 FA:4000366 FA:4002490

Figure 4.21: Results of the comparison between the 4 unstarred asymmetric
units belonging to the FA:4000157 category described in Table 4.7 and each
of the characteristic signatures for the five families in our original test group
along with the newly characteristic signatures of FA:4000157 derived from the
domains associated with the starred asymmetric units in Table 4.7.

122

asym

unit
characteristic

signature dss2 matches m n sb d
1ZYB_A FA:4000157 4.048 46 49 230 0.325 0.912
1ZYB_A FA:4000272 7.039 57 57 230 0.349 1.006
1ZYB_A FA:4000291 7.173 32 41 230 0.280 1.689
1ZYB_A FA:4000317 4.799 28 37 230 0.270 1.535
1ZYB_A FA:4000366 7.168 47 93 230 0.253 1.545
1ZYB_A FA:4002490 5.999 36 50 230 0.277 1.474
2BGC_A FA:4000157 3.257 48 49 235 0.332 0.784
2BGC_A FA:4000272 5.775 57 57 235 0.348 0.916
2BGC_A FA:4000291 6.929 33 41 235 0.285 1.610
2BGC_A FA:4000317 6.678 29 37 235 0.275 1.747
2BGC_A FA:4000366 6.553 48 93 235 0.255 1.449
2BGC_A FA:4002490 5.875 33 50 235 0.260 1.621
2GAU_A FA:4000157 5.217 49 49 218 0.342 0.955
2GAU_A FA:4000272 6.086 57 57 218 0.354 0.924
2GAU_A FA:4000291 7.012 32 41 218 0.283 1.653
2GAU_A FA:4000317 6.352 30 37 218 0.284 1.618
2GAU_A FA:4000366 6.609 44 93 218 0.245 1.585
2GAU_A FA:4002490 7.186 39 50 218 0.295 1.455
2ZCW_A FA:4000157 2.764 49 49 194 0.351 0.677
2ZCf_A FA:4000272 3.785 57 57 194 0.364 0.709
2ZCW_A FA:4000291 7.183 34 41 194 0.301 1.526
2ZCW_A FA:4000317 6.737 30 37 194 0.291 1.629
2ZCW_A FA:4000366 7.033 45 93 194 0.257 1.537
2ZCW_A FA:4002490 6.446 37 50 194 0.293 1.426

Table 4.8: Full results set for Figure 4.21.

The family FA:4000157 was specifically chosen for this test because, unusually for SCOP2,

all asymmetric units containing a domain categorised as FA:4000157 also contain a do-

main in a separate part of the asymmetric unit with a different family category, namely

FA:4000272. The results demonstrate that by isolating the characteristic signature of each

family category we are able to correctly identify when an asymmetric unit is given multiple

categories.

4.7 Comparing SCOP2 superfamilies and hyperfamilies

A hyperfamily categorisation offers a general description of the protein structure. For

example, these are the first three of ten defined hyperfamilies:

� Core: 3-helices, bundle, closed or partly opened, right-handed twist, up-and down

(HF:1100001 – hyperfamily DNA/RNA-binding 3-helical bundle).

� 3 layer core: alpha/beta/alpha, parallel beta-sheet of 6 strands, order 321456; com-

mon region begins with strand 1 and ends with strand 6; the core is packed against

the helix that, depending on a particular superfamily member, either precedes strands

1 (rare), or follows strand 6 (common) (HF:1100002 – hyperfamily Rossmann-like

nucleotide-binding lobe).

123

� Variable number of helices and little beta structure, not a true fold (HF:1100003 –

hyperfamily Multiheme cytochromes).

These descriptions allow for significant variability in structure and so no attempt was made

to reproduce categorisation at this level. It is noted that the relation and closure tables

in the SCOP2 database imply a hierarchy in the levels of categorisation, an example of which

is captured in Figure 4.22. However, although membership of a hyperfamily is suggested

by membership of a superfamily or family, in practice this is not always the case as the

asymmetric unit may not have associated domains in the database for those categorisations.

For example, in Figure 4.22 the asymmetric unit 1WH7_A has a SCOP2 domain associated

to the family FA:4000291 but not ones for the superfamily or hyperfamily in the implied

hierarchy.

HF:1100001

1ZYB_A 1SW6_A1UHS_A1WH7_A

SF:3000001 SF:3000034

FA:4000157

SF:3000084

FA:4000272FA:4000291 FA:4000317

SF:3000154

FA:4000366

Figure 4.22: Example of domains associated with a selection of hyperfamilies,
superfamilies and families.

A superfamily categorisation offers a mixture of general descriptions and specific detail

of protein structure. For example, these are the three superfamily definitions that cover

asymmetric units that we have already examined:

� Contains a small beta-sheet (wing) (SF:3000034 – superfamily Winged helix DNA-

binding domain).

� One turn of helix is made by two pairs of antiparallel strands linked with short turns has

appearance of a sandwich of distinct architecture and jelly-roll topology (SF:3000084

– superfamily cAMP-binding domain-like).

� Consists only of helices (SF:3000001 – superfamily Homeodomain-like).

124

SF:3000001 is very general which suggests that we will be unable to identify a characteristic

signature – actually identifying structures that only contain helices is possible from the

metadata available in the PDB. The descriptions of SF:3000034 and SF:3000084 are

more specific, but in the case of SF:3000084 it is unclear if the description “linked with

short turns” implies that the two parts of the structure need not be globally aligned.

Using the procedure to create characteristic signatures described in the previous section,

Figure 4.23 shows the results of a small study against the SF:3000001, SF:3000034 and

SF:3000084 families using the asymmetric units shown in Figure 4.22. As expected the

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

di
st

an
ce

1
S

W
6

_
A

1
U

H
S

_
A

1
W

H
7

_
A

1
Z

Y
B

_
A

1
S

W
6

_
A

1
U

H
S

_
A

1
W

H
7

_
A

1
Z

Y
B

_
A

1
S

W
6

_
A

1
U

H
S

_
A

1
W

H
7

_
A

1
Z

Y
B

_
A

SF:3000001 SF:3000034 SF:3000084

Figure 4.23: Comparison of a selection of asymmetric units against char-
acteristic signatures of superfamily categories. The green points indicate the
asymmetric unit that does belong to the category for each group.

plot in Figure 4.23 shows no ability to determine the SF:3000001 superfamily but suggests

potential for the SF:3000034 and SF:3000084 categories.

4.8 Processing times

In Section 3.4.2 we estimated the worst case order of the GProtA algorithm as O(m2n)

size-and-shape distance calculation, these calculations being the most expensive part of

the algorithm, and m and n being the number of landmarks in configurations A and B

125

respectively. In Figure 4.24 we show a scatter plot of the time taken against m + n for

multiple runs of the algorithm when comparing asymmetric units and domains. This data

set was chosen as all the runs are from a single ring-fenced machine and so the times are

comparable. The overplotted blue points are the data fitted against αm2n+ c, the general

agreement in the structure offers validation of the order calculation. The fit produces

α = 0.00057, this value reflects the number of calculations that are avoided by setting

the tolerance in the algorithm and is dependant on the ratio of the variance of the error

between true matches and the variance of the spatial separation of the landmarks. The plot

suggests a mechanism for predicting run times for larger configurations.

●
●

●

●

●

●

● ●

●

●

●

●
●●
●

●

●
●●●

●
●●●●

●

●

●●●

●

●

●

●
●●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●●●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●
●

●

●
●●●●●●

●

●

●
●●●

●
●●●●

●

●
●

●●

●
●

● ●● ●● ●
●●●
●

● ●
●

●

●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●● ●
●

●●
●

●

●

●

●

●

●

●

●●●
●●●

●

●

●
●●

●

●

●

●●

●
●

●

●

●

●

●

●

●●
●

●●

●

●

●
●●

●

● ●

●

●

● ●

●

●●

●

● ●●
●
●●

●

●●
●●●●●

●
●●

●

●●●●
●●●

●●

●

●

●●●

●●

●

●

●

●

● ●

●

●
●

●
●

●

● ●●

●

●●
●
●●●●

●

●

●●●● ●●●●●

●

●

●●●

●
●

● ●
●

●●
●●

●

●

●

●

●

●
● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●●

●

●

●

●

●

●●●
●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●●
●●

●

●

●
●●

●
●

●

●

●

●

●
●

●

●
●
●
●

●

●

●
●
●

●

●
●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●●
● ●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●
●

●
●●

●

●●

●

●

●
●●

●●

●
●●

●
●

●

● ●

●

● ●

●

●

●

●

● ●●
●●●

●

●●

●
●●●●

●●
●

●
●
●●

●
●●●●

●

●

●●●

●●

●

●

●

●

●

●

●

●●

● ●●●

●
●

●

●

●
●
●

●
●

●
●

●

●

●

●

●●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●
●
●

●

●

●
●●

●

●

●●
●●

●

●

●
●
●

●

●

●

●
●

● ●

●

●
●●

●

●●●
● ●●

●
●●

●

●

●
●●

●●

●

●

●

●
●

●

● ●

●

● ●

●

●

●

● ●●
●●

●

●
●

●
●●●●

●

●

●●●●
●

●●●
●

●

●

●
●●

●
●

●

●

●

●

●

●
●
●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●
●

●

● ●
●

●●●

●

●

●●
●
●●●

●
● ●●

●

●●●● ●
●
●●●

●

●

●●
●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●●●●

●

●●
●

●
●

●●●●

●

●

●●●

●●

●

●

●
●

● ●

●

● ●

●

●

●

●●

●

●
●

●●●●
●

●

●●●●
●

●
●●●

●

●

●●
●

●●

●

●

●

●●

●

● ●

●

●

●

●

●

●

● ●●●

●

●●
●●●●● ●

●
●

●
●●

●
●●●●

●

●

●
●●

●●

●

●
●

●●

●

●

●

●

●
●

●

●

●

● ●
●

●

●
●

●●●●●
●

●

●●●●
●

●●
●●

●

●
●●

●

●●

●
●

●
●

● ●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●
●

●

● ●

●

●
●

●

● ●●●●

●

●
●●●●●●

●

●

●
●●●

●
●●●●

●

●

●●●

●
●

● ●● ●●
●

●

●●

●

● ●●
●●●

●

●
●

●

● ●

●

● ●

●

●
●

●
●●●

●

●
●
●● ●●●●●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●
●

●

●
●

●

●

●

●

●

●

●●●●●
● ●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

● ●

●

●

●●

●

●●●●●

●

●●●●
●

●●●
●

●

●

●●●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●
●●

●

●

●

●

●

●
●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●
●

●

●

●

●

●

●
●

●●

●
●● ●

●
●
●
●●

●

●

●

●

●

● ●

●

●
●

●●
●

●

●
●●●

●●●●●

●

●

●●●

●
●

●

●
●

●
●

●

●
●

●

●

●

●
●

●
●● ●
●●●●

●

●

●●●

●●

●

● ●

●

●

●

●
●

●

●●

●●

●

●
●
●●

●●●●●

●

●

●
●●

●●

●

●

●
●

● ●

●

●
●

●

●

●

●
●●

●

●●
●●●●

●

●

●
●●● ●●●

●
●

●

●

●●●

●●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●
●

●

●● ●●
●●●

●

●●●●●●●
● ●

● ●
●

●

●●●● ●●●●●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●●●●
●●●●●

●

●
●●●

●●

●

●
●

●

● ●

●

●
●

●

●

●

●

●●●●

●

●
●●● ●●

●●●

●

●

●
●●

●
●

●

●

●

●●●

●

●

●

●

●

●
●

●

●●

●

●● ●●
●●

●

●

●●
●●●●●

●

●
●●

●

●●●
●

●
●●●●

●

●

●●●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

● ●●●●●

●

●
●

●
●
●●●

●

●

●
●
●

●
●

●●●●

●

●

●●●

●●

●

●
●

●●●

●

●
●

●
●

● ●

●

●●

●

●
●●●●●

●

●
●

●●●●●
●●

●

●

●●●● ●
●●●●

●

●

●●●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●
●

●
●●●

●

●
●
●●

●●●●●

●

●

●
●●

●
●

●

●
●

●●

●

●
●

●
●

●
●

●

●
●

●

● ●●●●●

●

●●●●●●
●

●●

●

●●●●
●

●●●●

●

●

●
●
●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●
●

●
●

●

●●●

●

●

●

●

●●●●●
●

●

●

●

●●

●

●
●●

●

●

●

●●
●

●

●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●●●

●

●
●
●
●

●

●

●●●

●●

● ● ●●
● ●●●● ●

●●●
●
●●●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
● ●

●●
●

●

●

●

●

●●●●●●
●

●

●

●
●

●

●

●

●
●

●

●

●●●●

●

●

●

●

●

●
●

●

●

●●
●●● ●●●●●●●

●

●● ● ●●

●

●

●

● ●●
●●●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●
●

●●

●

●
●●

●●

●●

●

●

●

●

●

●

●

●●
●

● ●

●

●●
●

●

●

●
●
●

●
●

●

●

●●

●

●

●●

●

●

●

●
●●

●

●

●
●●● ●●●●●●●●

●

●● ●
●●●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●
●

●

●

●

●

●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●
●●

●●

●
●

●
●

●●

●

●● ●
●●●●●

●

●

●

●

●

●●
●

●

●

●
●
●

●

●

●
●●

●

●
● ●

●
●

●

●●

●

●

●
●

●
●

●

●
●

●

●●●●●● ●●●●
● ●

●●●
●

●
●●

●

●

● ●

●●

●

●

●

●

●●●●●● ●●●● ●
●

●●●● ●●●●
●

●

●●

●

●

●
●

●
●

●

●
● ●

●
●
●
●●● ●●●● ●

●
●●●

●

●
●●

●
●●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●●●
●
● ●●●
●

● ●
●

●●●
●

● ●
●

●

●

● ●

●
●

●

●

●

●

●●●●●● ●●●● ● ●
●

●●●
●●

●

●
●●

●

●

●
●

●

●

●

●

● ●

●●●●●● ●●●● ●
●

●
●●●●

●

●
●
●

●

●

● ●

●
●

●

●

● ●

●●
●●●● ●
●●● ● ●

●
●●● ●●●

●

●
●●

●

●

● ●

●
●

●

●

●
●

●●●●●● ●
●●● ● ●

●●●
●

● ●●●●●●
●

●
●●

●

●

● ●

●
●

●

●

●
●

●●
●●●● ●●●

●
●

●
●

●●
●

● ●●● ●
●●●

●

●

●●

●

●

●
●

●●

●

●
● ●

●●●●●● ●●●● ● ●
●●●
●

●
●●●●

●

●
●
●●

●

●
●

●●

●

●
●

●

●●●●●● ●●●● ● ●●
●●

●
● ●●●●●

●

● ●●

●

●

●
●

●
●

●

●●
●

●●●●●● ●●●
● ●

●●●

●

●●
●

●

●
●

●●

●

●
● ●

●●●●●● ●●●
● ● ●
●

●●

●
●

●●

●

● ●

●

●

●

●

●

●

●●●●●
●

●●●● ● ●●

●●
●

●

● ●●● ●●●●●
●●

● ●●●●
●● ●

●

●
●

●

●

● ●

●●

●

●
●

●

●●
●●●● ●
●●●
● ●●

●● ●
●

● ●●● ●●●●●
●●

●
●

●
●●

●

●

●
●

●
●

●

●
●

●

●●●●●● ●
●●● ● ●●

●●
● ●

● ●●● ●●●●●
●

●●
●●●●●

●●●●●
●

●
●●●●

●●

●
●
●

●

●

●
●

●
●

●

●

● ●

●●●●
●● ●

●●●
● ●●

●● ●
●

● ●●● ●●●●●
●●●●●●● ●●●●●● ● ●●●● ●●

● ●●●

●

●
●

●
●

●

●

●
●

●●●●●● ●●●● ● ●●●●
● ●

● ●●●
●●●●●

●
●●●

●
●●●●●

● ● ●●● ●

● ●●●

●

● ●

●
●

●

●

●

●

●●●●●● ●●●● ●
●●●● ●

●

● ●●● ●●●●●
●

●●● ●●
●●●●●

● ●
●●●● ●

●
●
●●

●

● ●

●
●

●

●

● ●

●
●●●●● ●●●

●
● ●

●●●
● ●

● ●●● ●●●●●
●●

●●
●●●●
●● ●

●
●●

●

●

●
●

●
●

●

●

● ●

●●●●●● ●●●●
●

●●
●●

● ●
● ●●● ●●●●●

●
● ●●●

●● ●

●

●
●●

●

● ●

●
●

●

●
● ●

●●●●●● ●●●● ● ●
●

●●
●

●

●
●

●● ●●●●●
●

●●●●
●●●

● ● ●● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●●●●● ●●
●●

● ●
●

●●
● ●

● ●●● ●●●●●
●●● ●

●●●●●
●

●●●●● ● ●●●●● ●●

●
●●

●

●

●
●

●
●

●

●
● ●

●
●
●●●● ●●●

● ●
●●●●

●
●

● ●●●
●●●●● ●

●
●

●
●●

●

●

● ●

●
●

●

●

● ●

●●●●●●
●●
●● ●

●●
●●

●
●

● ●
●●

●●●●●
●

●● ●●●
●● ●

● ●
●

●

●

●
●

●●

●

●

●
●

●●●●●● ●●●● ● ●
●

●●
● ●

● ●●
●

●
●●●●

●
● ●

● ●
● ●

●
●●

●

●

●
●

●
●

●

●

● ●

●●●●●● ●
●●● ● ●●●●
● ●

●
●●● ●●●●●

●
●●●●

●●●●● ● ●●● ●

●
●●

●

●

●
●

●

●

●

●

● ●

●●●●●● ●●●●
● ●

●
●● ● ●

●
●●● ●●●●● ●●

●
●●●

●

● ●

●
●

●

●
●

●

●
●●●●● ●
●●● ● ●●●●
● ●

● ●●● ●●●●●
●●●●

●
●●●●
●● ●

●
●●

●

●

●
●

●●

●

●

●

●

●●●●●● ●●●
●

● ●
●●●

● ●
● ●●● ●●●●●

●
●●● ●●

●●●
●

●
● ● ●●●

●

●
●
●

●

●

● ●

●
●

●

●

●
●

●●●●●● ●●●●
● ●

●
●●

● ●

● ●●● ●●●●●
●

●●
●

●●●●●
●●●●●● ● ●●●● ●●

●
●●

●

●

●
●

●
●

●

●
● ●

●●●●●● ●●●● ●
●

●●●
●

●

●
●●● ●●●●●

●
●●●●

●
●●●

●
●

●● ●

●

●●

●

●

●
●

●●

●

●

●
●

●●●●●●
●
●

●● ● ●
●

●●
● ●

● ●●● ●●●●●
●● ●

●
● ●

●
●
●

●

●

●
●

●●

●

●

●

●

●●●●●● ●●●● ●
●

●●●
● ●

● ●●●
●

●●●●
●

●
●

●
●

● ●●
●

●

●
●

●
●

●

●

●
●

●●●●●● ●●●●
● ●

●●
●

●
●

● ●●● ●●
●●●

●
●●●●●●

●●●●●
● ● ●●●●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●●●●●● ●
●●●
●

●
●

●●
●

●

● ●●●
●

●●●●
●

●

●●

●

●

● ●

●

●

●

●

●

●

●●●
●●

●
●●●● ● ●

●
●
●

●
●

●
●

●● ●●●●●

●

●●
●

●●
●●

●

●

● ●
●

●
●

●
●

●●●●
●

●●

●
●

●●

●

●

●
●

●
●

●

●

●
●

●●
●●

●
●

●
●●●
●

●

●

●●
●

●

●
●

●●
●

●
●

●●

●

●
●

●

●●
●●

●

●
● ●

●
●●

● ●
●●●●
●

●●

●
●●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●●
●●

●●●● ●
●

●
●
●

●

●

●
●●●
●

●●●●

●
●

●
●

●
●●●●

●

●
●●

●
●

●

●

●●●●● ●●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●●
●●

●●
●
●

●●
● ●

●
●●

● ●

●
●

●
●

●
●●

●●

●
●

●
●

●●●
●

●

●
● ●●●●

●
●

●
●●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●
●

●●
●
●

●
●

● ●
●

●
●

●
●

●
●

●● ●●●●●

●

●●
●

●●
●●

●

●

●
●●●●

●
● ●●●●

● ●●

●
● ●

●

●

●●
●

●
●

●

●

● ●

●

●

●

●

●

●

●
●●●

●●
●
●

●
●

● ●●

●●

● ●

● ●

●
● ●●●●●

●
●● ●

●●●●

●

●

●
●●

●●
● ●

●●●●●
●●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●
●●●●
●

●
●
●
●

●
●

●
●

●● ●●●
●
●

●

●●
●

●●●●
●

●

●
●●●●

● ●

●●
●
●●

●●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●●●
●

●●●
●

●

●

●
●

● ●

●

●
●●

●
●●●●

●

●
●

●

●●
●●

●

●

●
●●

●

●

● ●

●
●●
●
● ●●

●● ●
●

●
●
●

●
●

●

●

●

●

●●

●

●

●

●

●
●●●

●●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●●

●
●●
●●

● ●
●

●

●

●

●●●
●

●●
●●
●● ●

●

●

●

●●

●

●

●
●

●●
●
●●●
●
●●● ●

●

●

●

●

●

●

●●

●
●●●

●

● ●●●● ●
●

●

●
●

●

●

●

●

●

●

●
●●
●

●●

●

●
●
● ●

●

●

●

●●●●●● ●
●

●● ●

●

●

●

●

●

●

●

●●●●●● ●
●

●● ● ●●

●

●

●
●●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●
●●

●

●●
●●●●
● ●

●

●

●●

●

●

●

●

●

●

●

●
●
●●●● ●●
●
● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●●●
●●

●
●

●●
● ●

●

●●

●

●

●

●

●

●
●

●●●●

●
●

●●●●
●

●

●
●
●●●

●

●
●●●

●

●
●

●

●●● ● ●
● ●

●●●●
● ●●●●●● ●

●
●●

●●●
●●

●● ●
● ●

●
●●● ●

●●●
●

●● ●
●● ● ●

●●
●●●●

●
●●●

●●
●
●●●●●
● ●

●
●●●
●●●
●●

●

100 200 300 400

0
20

00
40

00
60

00
80

00

m + n

se
co

nd
s

Figure 4.24: Time taken for multiple runs of the GProtA when comparing
protein asymmetric units. The blue points are fitted against αm2n+ c which
gave α = 0.00057.

126

5
Discussion

In Chapter 2 we looked in detail at the method in Green and Mardia (2006); this method

provides both the motivation and the basis for many of the ideas developed for the GProtA

algorithm described in Chapter 3. The outcome of the analysis was the identification of

two limitations related to applying Green and Mardia (2006) to large scale unsupervised

matching. The first limitation relates to the information available to the likelihood which

results in the search for the first few matches being essentially random; such a random

search will not scale to large configurations because of the exponential nature of the size of

the space of possible matching matrices. A solution to this problem was offered in Chapter 3

where a set of starting matching matrices – used as the base for each of the branches in the

GProtA algorithm – can be used as a set of over-dispersed starting points (Gelman et al.

2013, Section 11.4) for multiple simulated Markov chains in the Green and Mardia (2006)

method. The second limitation relates to the need for prior knowledge of the number of

matches which is captured in the λ/ρ parameter; the sensitivity to this was shown to be

significant and we were unable to determine a mechanism to derive or approximate a value

from the data.

In Chapter 3 we proposed a new algorithm called GProtA for solving the unlabelled, partial

matching problem within the protein alignment problem domain. SCOP2 considers only

the structure of the Cα atoms and does not distinguish the type of amino acids. Steric

127

considerations offer the constraint that Cα atoms should be separated by at least a distance

of 3.8Å and that consecutive Cα atoms in a protein chain should have a separation very

close to 3.8Å; this allows us to make modelling assumptions about the maximum errors

allowed for a match to be valid. We also use the constraint that a matching solution

must contain matches between at least four consecutive Cα atoms in each protein chain.

This constraint is valid for matching protein fold descriptions as it follows directly from the

domain-specific definition of local structure. The four consecutive Cα constraint gives a

manageable set of candidate starting matching matrices that we test for evidence against

a null hypothesis that the matching matrices were chosen at random. The resulting set of

starting matching matrices are then individually pursued, iteratively adding matches using

a greedy algorithm that in essence chooses the match with the smallest p-value against

a null hypothesis that the new match is chosen at random. The results of this GProtA

algorithm is a set of optima from which we choose the one with the greatest number of

matches, and the remaining local optima may be of use to an investigator (but were not

used in this work). Using a pre-cached null distribution the GProtA algorithm implemented

in R finds the solution for the Green and Mardia (2006) data in approximately 45 seconds

using a single core of a Intel Core i7-3520M 2.90GHz processor. Also in Chapter 3 we

proposed a difference measure for the matched proteins that combines a binary similarity

measure with the RMSD calculated against the aligned configurations.

In Section 4.6.1 of Chapter 4 we were able to show that we could discover a set of SCOP2

family categorisations directly from the data available in the Protein Data Bank using

GProtA and our proposed difference measure. This strongly suggests that for global match-

ing the difference measure is capturing the same information from the data as the expert

curator. As the algorithm was applied directly against asymmetric units, as defined in the

PDB, this also suggests the potential for the discovery of new family level similarity in as

yet uncategorised proteins.

Using the curated domain definitions from SCOP2 we created characteristic signatures to

give a single reference point for comparisons against a family category. An important conse-

quence of defining a configuration that acts as a characteristic signature is that we then are

assured that the global best match is the required solution. Characteristic signatures there-

fore also offer potential in unsupervised matching of superfamily categories, as a superfamily

category may be derived from a subset of a family region and so may not be equivalent

128

to a global alignment. A clear limitation of the characteristic signature mechanism when

applied to the SCOP2 database is the relatively small size of the database. This manifests

in that only 92 of the 295 families defined have been applied to more than one protein, with

only 40 being applied to 3 or more proteins; 3 is a practical minimum number of family

members before there is enough information to define a useful characteristic signature.

Currently, the mechanism for deriving the characteristic signatures from the SCOP2 domain

definitions is quite simple and only uses a small amount of the available information; an

important piece of future work is to find a more comprehensive solution to this problem

probably based on the construction of templates in Mardia, Nyirongo, et al. (2011).

Currently we have no mechanism to match the superfamilies where multiple instances of

local structure are described with their relative position and orientation being free. The

GProtA algorithm makes available the local optima derived from each branch and so there

is potential for future research incorporating methods such as those developed by the Crit-

ical Assessment of protein Structure Prediction project (CASP) (Adcock et al. 2016) for

combining distinct local matches.

129

Appendices

130

Appendix A

Data tables

A.1 Green and Mardia (2006) landmarks

The landmark data was retrieved from http://www.maths.bris.ac.uk/~peter/Align/

nicola.txt (plain text file) on 2016-01-20. From the description of the source:

Origin of data: the two examples are taken from the pdb data bank (a data bank of protein
structures about 33,000 proteins available on the website http://www.rcsb.org/pdb/) and
their pdb codes are 1cyd (the x configuration, 40 points) and 1a27 (the y configuration, 63
points). These two proteins belongs to the same family in what is called a SCOP classification
(the family is Tyrosine-dependent oxireductase).

The two sets of landmarks are derived from experimentally determined co-ordinates for a

subset of the amino acids in their respective proteins. The current Protein Data Bank data

files are http://www.rcsb.org/pdb/files/1cyd.cif and http://www.rcsb.org/pdb/

files/1a27.cif. The table row names are the SeqNo from the source data file which ref-

erences the _atom_site.label_seq_id1 in the Protein Data Bank data. The table rows

are not ordered by SeqNo, this reflects the data source and not the Protein Data Bank.

The AA table column is the AA column from the source data file and is the standard sin-

gle letter amino acid identifier and equates to the _atom_site.label_comp_id2 in the

Protein Data Bank data. The Grp table column is the Grp column from the source data

file. This is not specified in the PDB data and indicates membership of one of a set of

of amino acid groupings, the source of which is not specified in the data. The x, y and

z table columns are the derived amino acid co-ordinates. In Green and Mardia (2006) the

1
http://mmcif.wwpdb.org/dictionaries/mmcif_pdbx_v40.dic/Items/_atom_site.label_seq_id.html

2
http://mmcif.wwpdb.org/dictionaries/mmcif_pdbx_v40.dic/Items/_atom_site.label_comp_id.html

131

co-ordinates are described as being of “the centres of gravity of the amino acids”. It is

assumed that these were derived from the _atom_site.Cartn_x, _atom_site.Cartn_y

and _atom_site.Cartn_z from the Protein Data Bank data.

$`1a27` $`1cyd`

AA Grp x y z AA Grp x y z

142 S polar 11.025 4.871 0.160 14 G glycine 47.297 -3.124 21.673

143 V hydrophobic 9.952 7.763 -2.125 15 A hydrophobic 48.890 -6.527 22.166

144 G glycine 8.368 4.823 -4.003 16 G glycine 50.774 -5.660 25.364

147 M hydrophobic 4.696 8.465 -5.391 17 K charged 48.000 -6.147 27.923

149 L hydrophobic 6.845 4.892 -10.564 18 G glycine 44.442 -7.348 28.422

152 N polar 7.394 -0.619 -10.226 19 I hydrophobic 42.242 -8.488 25.570

155 Y polar 6.923 -2.595 -5.550 20 G glycine 44.937 -7.862 23.009

185 C polar 14.936 7.175 1.208 37 V hydrophobic 51.849 -4.186 18.012

186 G glycine 15.532 7.818 -2.508 38 T polar 51.871 -2.283 21.289

187 P hydrophobic 17.855 5.625 -4.572 39 R charged 53.063 0.915 22.967

192 F hydrophobic 19.001 -3.613 -4.107 40 T polar 55.232 -0.358 25.854

193 M hydrophobic 18.666 -2.704 -7.750 43 D charged 55.141 -5.983 27.393

218 Y polar 12.409 3.386 -18.180 59 V hydrophobic 54.890 2.040 18.270

221 H polar 16.164 6.563 -17.341 60 D charged 52.512 4.657 19.606

222 S polar 16.649 4.763 -14.018 61 L hydrophobic 49.489 4.190 17.324

225 V hydrophobic 18.443 8.564 -11.840 62 G glycine 48.321 7.742 18.033

259 F hydrophobic 11.985 14.693 -4.509 83 N polar 42.241 -3.550 19.597

262 L hydrophobic 7.456 16.258 -7.132 84 A hydrophobic 44.352 -0.650 20.956

279 M hydrophobic 6.434 11.881 -14.028 85 A hydrophobic 42.349 2.045 22.748

282 E charged 10.655 12.932 -16.619 86 L hydrophobic 42.692 4.346 25.724

9 G glycine 18.051 -7.229 6.714 102 R charged 44.371 11.711 22.039

10 C polar 21.652 -6.572 7.700 106 V hydrophobic 44.403 6.259 19.174

11 S polar 23.632 -8.613 5.123 134 V hydrophobic 37.155 -4.076 19.165

12 S polar 24.082 -5.417 3.065 135 S polar 34.387 -1.714 20.108

13 G glycine 22.962 -1.857 2.371 136 S polar 32.332 -1.529 23.301

14 I hydrophobic 21.065 0.299 4.872 137 M hydrophobic 28.723 -1.789 24.405

15 G glycine 20.787 -2.443 7.492 149 Y polar 35.493 7.259 24.722

36 L hydrophobic 20.001 -11.513 8.524 153 K charged 33.149 3.738 19.801

37 R charged 17.847 -13.806 6.381 179 P hydrophobic 31.877 -6.104 25.315

38 D charged 20.834 -16.125 5.996 180 T polar 30.579 -4.818 28.626

41 T polar 26.167 -14.058 4.337 181 V hydrophobic 33.088 -4.253 31.456

64 L hydrophobic 15.786 -13.813 11.074 182 V hydrophobic 35.973 -6.790 31.411

65 D charged 13.749 -14.524 7.956 184 T polar 41.577 -5.807 32.609

66 V hydrophobic 10.738 -12.135 7.944 185 D charged 43.448 -2.637 33.586

67 R charged 8.493 -14.567 5.933 186 M hydrophobic 40.885 -0.618 31.636

90 N polar 14.423 -2.637 7.110 187 G glycine 37.870 -2.371 33.166

91 A hydrophobic 14.228 -5.856 5.148 190 V hydrophobic 36.341 2.371 34.675

92 G glycine 12.779 -5.295 1.662 138 V hydrophobic 29.134 1.967 25.013

93 L hydrophobic 12.653 -6.493 -1.961 143 F hydrophobic 28.267 5.221 30.820

113 V hydrophobic 8.345 -9.707 2.620 146 L hydrophobic 33.006 8.051 29.247

140 T polar 12.996 2.001 6.206

141 G glycine 10.761 3.973 3.851

159 K charged 5.900 0.544 -0.187

188 V hydrophobic 20.630 4.149 -2.397

190 T polar 23.152 -1.038 -2.104

191 A hydrophobic 22.705 -3.783 -4.760

195 K charged 18.746 -7.927 -8.157

226 F hydrophobic 20.621 6.145 -9.867

94 G glycine 12.235 -4.847 -5.329

95 L hydrophobic 10.206 -6.019 -8.297

110 V hydrophobic 7.165 -8.887 -2.605

114 N polar 7.752 -5.964 2.390

145 G glycine 5.831 4.545 -1.113

146 L hydrophobic 4.948 8.258 -1.554

153 D charged 3.640 -1.184 -9.854

154 V hydrophobic 3.836 -3.971 -7.258

156 C polar 5.193 0.809 -5.111

157 A hydrophobic 2.049 -1.074 -4.061

158 S polar 4.127 -2.681 -1.314

160 F hydrophobic 2.641 2.546 -0.113

163 E charged 2.949 3.940 4.681

183 I hydrophobic 12.924 6.969 7.094

184 E charged 12.086 8.074 3.530

132

A.2 Co-ordinates of alpha carbon atoms for family character-

istic signatures

x y z
19 7.426 -5.637 -10.815
20 6.160 -7.342 -7.755
21 7.131 -6.200 -4.315
22 6.579 -7.768 -0.959
23 5.917 -5.983 2.212
24 5.882 -7.390 5.726
25 3.303 -6.289 8.261
26 4.055 -2.844 9.660
27 6.382 -1.860 6.825
28 5.861 1.506 5.155
29 5.140 1.315 1.447
30 5.119 5.057 0.954
31 5.812 8.075 3.072
32 4.412 11.501 3.015
33 6.805 13.793 1.523
38 5.162 5.139 -9.495
39 1.401 3.779 -8.820
40 0.777 0.689 -6.854
41 -1.771 -2.043 -7.105
42 -2.503 -4.201 -4.076
43 -2.571 -7.832 -5.153
44 -2.954 -9.410 -1.741
45 -3.110 -8.144 1.805
46 -4.266 -4.993 3.521
47 -2.808 -1.524 3.795
48 -3.658 1.493 5.883
49 -3.512 5.064 4.636
50 -2.618 7.529 7.333
51 -1.950 11.119 7.870
59 -5.668 9.624 11.371
60 -6.343 6.503 9.542
62 -8.622 4.403 5.117
63 -7.865 0.758 4.691
64 -7.140 -0.625 1.247
65 -7.699 -4.235 0.338
66 -6.912 -6.530 -2.524
67 -7.467 -5.207 -5.828
68 -7.112 -1.568 -5.072
69 -4.825 1.058 -6.509
70 -2.954 3.594 -4.429
83 0.385 13.126 0.443
84 -0.212 10.298 3.090
85 1.641 7.321 4.458
86 0.763 3.820 3.333
87 1.582 1.047 5.792
88 1.109 -2.710 5.523
89 -1.436 -3.949 8.055
90 -0.797 -7.540 7.091
91 1.932 -9.253 4.722
92 1.166 -7.678 1.364
93 2.015 -8.267 -2.264
94 1.982 -5.167 -4.422
95 2.661 -4.425 -8.064
96 4.349 -1.137 -8.814
99 4.032 6.771 -13.802
103 0.708 6.850 -18.715
117 -10.874 6.521 -11.338

Table A.1: FA:4000272

133

x y z

8 3.536 2.283 -9.050
9 5.763 2.598 -6.072

10 4.026 4.333 -3.200
11 5.170 5.473 0.219
12 3.482 3.665 3.104
13 2.555 6.996 4.625
14 0.459 8.042 1.628
15 -3.042 8.878 2.814
16 -5.773 6.570 1.598
17 -7.696 9.532 0.296
18 -4.744 10.561 -1.828
19 -4.189 7.031 -3.058
21 -7.872 9.057 -5.595
22 -4.771 8.403 -8.048
24 -9.461 5.903 -9.012
25 -10.601 3.227 -6.057
35 -5.662 6.515 7.297
36 -2.645 5.490 5.251
37 -1.728 2.881 2.687
38 0.561 1.160 5.185
39 -2.291 1.046 7.691
40 -4.568 -0.506 5.102
41 -2.003 -3.156 4.329
42 -1.380 -3.941 7.964
43 -5.089 -4.217 8.566
44 -5.524 -6.603 5.653
50 7.378 -8.737 5.789
52 7.538 -9.599 -0.288
53 4.135 -10.137 1.193
54 1.302 -9.308 -1.115
55 -2.331 -8.537 -0.683
56 -5.060 -8.126 -3.189
57 -7.779 -5.621 -2.766
58 -10.123 -4.535 -5.950
60 -5.093 -4.048 -7.052
61 -2.156 -6.068 -5.910
62 -0.083 -4.492 -3.171
63 3.398 -5.825 -2.464
64 5.572 -4.759 0.444
65 8.820 -3.593 -1.062
66 10.495 -2.089 1.968
67 9.923 -2.158 5.683
71 6.542 0.253 9.385
72 5.843 -0.434 5.798
73 7.899 2.124 3.994
74 7.364 1.366 0.286
75 4.683 -0.593 -1.524
76 4.411 -1.670 -5.141
77 0.914 -1.401 -6.593
78 -0.107 -3.236 -9.720

Table A.2: FA:4002490

134

x y z
146 4.878 11.727 -10.997
147 6.660 13.340 -8.135
149 5.608 8.399 -7.083
150 9.276 9.183 -6.790
151 8.951 10.631 -3.337
154 12.316 7.182 -1.904
155 10.525 7.757 1.314
157 7.960 12.037 4.038
158 8.135 15.712 3.981
159 8.009 15.844 0.210
160 4.962 13.618 0.081
161 3.429 16.229 2.365
163 2.993 17.548 -2.748
164 -0.276 16.363 -1.309
165 -1.162 20.233 -1.109
176 -3.016 10.246 -5.164
177 -4.549 7.632 -7.390
178 -2.132 7.991 -10.069
179 -0.749 4.868 -11.583
180 2.596 4.438 -13.278
182 3.170 -0.790 -14.268
183 -0.086 0.039 -12.641
184 1.394 0.928 -9.310
185 0.075 3.785 -7.229
186 2.126 5.713 -4.699
187 0.558 3.569 -1.979
188 1.746 0.387 -3.679
189 5.268 1.792 -3.716
190 5.200 2.906 -0.091
191 3.891 -0.501 0.976
192 6.505 -2.358 -1.028
193 9.307 -0.342 0.529
194 7.816 -0.596 3.992
195 7.407 3.100 4.581
196 4.731 3.034 7.255
197 4.656 6.775 7.743
198 4.107 7.440 4.035
199 1.433 4.751 3.875
200 -0.352 6.461 6.764
201 -0.123 9.889 5.154
202 -1.426 8.601 1.822
203 -4.319 6.841 3.519
204 -5.131 9.921 5.566
205 -5.211 11.846 2.301
206 -7.698 9.485 0.729
207 -5.635 7.019 -1.208
208 -7.659 4.009 -2.282
209 -6.428 1.194 -0.064
210 -7.921 -1.398 -2.367
211 -6.366 -0.216 -5.612
212 -5.168 -3.090 -7.788
213 -2.070 -2.984 -9.916
217 -4.315 -7.520 -9.602
218 -2.379 -7.122 -6.408
219 -3.564 -4.714 -3.752
220 -1.266 -2.930 -1.319
221 -2.061 -5.664 1.218
222 -0.791 -8.332 -1.166
223 2.451 -6.406 -1.479
224 2.812 -5.898 2.268
225 2.210 -9.604 2.757
226 4.674 -10.597 0.067
227 7.276 -8.303 1.541
228 6.664 -9.562 5.027
229 5.906 -6.151 6.475
230 3.717 -6.872 9.485
231 3.454 -3.279 10.661
232 2.255 -2.211 7.229
233 -0.213 -5.077 7.065
234 -1.591 -4.090 10.447
235 -1.955 -0.494 9.307
236 -3.717 -1.447 6.090
237 -6.099 -3.730 7.933
238 -6.866 -0.727 10.417
240 -9.942 -0.812 5.985
241 -8.233 -3.020 3.427
242 -10.124 -5.991 2.019
243 -8.341 -9.050 3.302
244 -10.065 -11.288 0.818
245 -9.252 -9.580 -2.442
247 -5.330 -11.427 -7.279
248 -5.326 -12.605 -11.121
249 -4.920 -16.052 -9.205
251 -4.547 -15.734 -4.384
252 -5.374 -13.709 -1.302
253 -2.844 -11.845 0.800
254 -2.904 -14.726 3.268
256 -0.221 -16.123 0.038
265 1.755 -12.027 9.012
266 -0.313 -15.120 8.532
267 -1.450 -14.875 12.095
268 -2.507 -11.289 11.716
269 -4.879 -12.188 8.402

Table A.3: FA:4000366

135

x y z

16 -0.214 10.693 -7.841
17 1.290 7.467 -9.465
18 1.813 6.047 -6.032
19 -1.711 6.755 -4.892
21 -1.667 2.254 -7.401
22 -2.347 2.026 -3.619
23 -5.999 2.741 -4.319
24 -6.269 -0.041 -6.874
25 -4.897 -2.491 -4.324
26 -7.211 -1.292 -1.586
27 -10.277 -1.823 -3.778
29 -8.380 -5.996 -0.487
31 -5.471 -5.660 4.083
32 -2.282 -6.706 2.443
33 -0.055 -9.394 3.727
34 3.636 -9.087 4.331
35 4.397 -10.646 1.055
36 2.227 -8.274 -0.891
37 3.187 -5.198 0.999
39 6.163 -6.280 -3.069
40 4.020 -3.069 -3.539
41 6.818 -1.189 -1.864
42 9.047 -2.119 -4.722
43 6.517 -1.339 -7.340
44 5.559 2.024 -6.075
45 8.901 2.732 -4.531
46 7.673 3.298 -0.996
47 8.670 1.829 2.365
48 6.759 -1.063 3.934
49 5.953 1.268 6.812
50 4.516 3.955 4.557
51 2.319 1.485 2.691
52 1.050 0.018 5.951
53 0.108 3.406 7.376
54 -1.656 4.455 4.165
55 -3.813 1.315 4.230
56 -4.569 1.807 7.924
57 -5.736 5.394 7.461
58 -7.741 4.481 4.378
59 -9.767 1.873 6.239
60 -10.563 4.342 8.922

Table A.4: FA:4000291

136

x y z

20 -9.950 -6.368 2.478
21 -8.074 -3.394 3.454
22 -8.888 -1.341 6.511
24 -5.618 2.185 8.784
25 -4.021 0.062 6.107
26 -5.269 2.313 3.352
27 -3.891 5.379 5.097
28 -0.581 3.705 5.767
29 -0.288 2.770 2.108
30 -1.019 6.276 0.956
31 1.510 7.687 3.368
32 4.082 5.135 2.325
33 3.602 5.815 -1.339
34 4.418 9.410 -0.665
35 7.673 8.340 1.142
37 7.521 6.308 -4.485
44 6.736 -1.646 -2.966
45 8.830 -3.947 -0.885
46 9.378 -0.952 1.334
47 5.738 -0.025 1.536
48 4.815 -3.556 2.494
50 5.081 -0.411 6.721
51 2.196 -2.395 6.365
54 0.149 -7.129 3.506
55 2.509 -8.414 0.943
56 4.296 -6.493 -1.759
57 2.047 -7.862 -4.411
58 -1.011 -7.070 -2.389
59 0.112 -3.491 -2.030
60 0.793 -3.172 -5.724
61 -2.593 -4.530 -6.618
62 -4.233 -2.133 -4.217
63 -2.471 0.777 -5.788
64 -3.964 -0.011 -9.099
65 -7.530 0.077 -7.424
66 -6.700 3.236 -5.785
67 -5.386 4.866 -8.762

Table A.5: FA:4000317

137

Appendix B

Code

138

B.1 Reference implementation of Green and Mardia (2006)

pkg_vars <- new.env()
pkg_vars$unittest_GM_fix_M <- FALSE
pkg_vars$unittest_GM_fix_theta_x <- FALSE
pkg_vars$unittest_GM_fix_theta_y <- FALSE
pkg_vars$unittest_GM_fix_theta_z <- FALSE
pkg_vars$unittest_GM_fix_tau <- FALSE
pkg_vars$unittest_GM_fix_sigma <- FALSE

R_matrix <- function (theta) {
cx <- cos(theta[’x’])
sx <- sin(theta[’x’])
cy <- cos(theta[’y’])
sy <- sin(theta[’y’])
cz <- cos(theta[’z’])
sz <- sin(theta[’z’])
R <- matrix(c(

cz*cy, -cz*sy*sx-sz*cx, -cz*sy*cx+sz*sx,
sz*cy, -sz*sy*sx+cz*cx, -sz*sy*cx-cz*sx,

sy, cy*sx, cy*cx
), byrow = TRUE , nrow = 3)
return(R)

}

M_filter <- function(M, A, B) {
return(list(a = A[, M@i[M@x == 1]+1, drop = FALSE], b = B[, M@j[M@x == 1]+1, drop = FALSE])) # sometimes there are stray zero

entries
}

m = nrow(a), n = nrow(b)
x is in the range 1 to n+m
M is a matching matrix
M_propose <- function(x, M, m, n) {

if (x > m) {
we chose from B
k <- x - m
j <- M@i[M@j+1 == k]+1 # will be numeric (0) if there is no match
matched <- length(j) > 0 # should be 0 or 1
if(! matched) { j <- NA }
available <- setdiff (1:m, M@i + 1)
if(length(available) == 0) {

139

j_prop <- NA
}
else {

if(length(available) == 1) {
j_prop <- available

} else {
j_prop <- sample(available , 1) # behaviour changes if this is not a vector

}
}
k_prop <- k

}
else {

we chose from A
j <- x
k <- M@j[M@i+1 == j]+1
matched <- length(k) > 0
if(! matched) { k <- NA }
j_prop <- j
available <- setdiff (1:n, M@j + 1)
if(length(available) == 0) {

k_prop <- NA
}
else {

if(length(available) == 1) {
k_prop <- available

} else {
k_prop <- sample(available , 1)

}
}

}
return(list(matched = matched , j = j, k = k, j_prop = j_prop , k_prop = k_prop))

}

x is a three vector
tristdnorm <- function(x) {

return(prod(dnorm(x)))
}

wrap [-pi/2, pi/2)
wrap <- function(a) {

a = (a + pi/2) %% pi
a <- ifelse(a < 0, a + pi, a)
return(a - pi/2)

}

mcmc_GM <- function(A, B, mcmc_params) {

140

m <- ncol(A)
n <- ncol(B)

defaults = list(
iterations = list(

total = 1000000 ,
burn = 200000 ,
thin = 100,
Mm = 10 # M multiplier - M updates per iteration

),
starting_values = list(

sigma = 1.0,
theta = c(x = 0.0, y = 0.0, z = 0.0), # radians
tau = c(x = 0.0, y = 0.0, z = 0.0),
M = uniqTsparse(as(Matrix(0, nrow = m, ncol = n), "dgTMatrix"))

),
config = list(

delta_theta_y = 0.1,
tau_sigma = 50,
tau_mu = c(0.0, 0.0, 0.0),
sigma_alpha = 1,
sigma_beta = 36,
p_star = 0.5,
lambda_over_rho = 0.003

)
)
if(is.null(mcmc_params)){

params <- defaults
} else {

params <- list.merge(defaults , mcmc_params)
}

if(class(params$starting_values$M) != "dgTMatrix") {
stop("params$starting_values$M not a Matrix of class ’dgTMatrix ’")

}
if(! all(params$starting_values$M@x == as.integer(params$starting_values$M@x))) {

stop("some content of params$starting_values$M is not integer")
}
params$config$tau_mu <- matrix(params$config$tau_mu, ncol = 1, dimnames = list(c(’x’, ’y’, ’z’)))

stats for metropolis acceptance rate
stats <- list(

theta_y_accept = 0,
M_delete_propose = 0,
M_delete_accept = 0,
M_switch_propose = 0,
M_switch_accept = 0,
M_add_propose = 0,

141

M_add_accept = 0
)

how many to keep (burn in wanted for visuals)
N <- with(params$iterations , floor(total / thin))
somewhere to put the sample
sample <- list(

theta = data.frame(x = numeric(N), y = numeric(N), z = numeric(N)),
tau = data.frame(x = numeric(N), y = numeric(N), z = numeric(N)),
sigma = numeric(N),
M = list()[1:N],
L = integer(N)

)

starting values
sigma = params$starting_values$sigma
theta = params$starting_values$theta
tau = matrix(params$starting_values$tau , ncol = 1, dimnames = list(c(’x’, ’y’, ’z’)))
M = params$starting_values$M

it is slightly more efficient to cache randomness
cache <- list(

matrix
M_choice = sample(m+n, params$iterations$total * params$iterations$Mm + params$iterations$Mm, replace = TRUE),
runif_01 = runif(params$iterations$total * params$iterations$Mm + params$iterations$Mm),
runif_02 = runif(params$iterations$total * params$iterations$Mm + params$iterations$Mm),
transformations
runif_03 = runif(floor(params$iterations$total)),
runif_rot_01 = runif(floor(params$iterations$total), min = -params$config$delta_theta_y, max = params$config$delta_theta_y)

)

fix values if unit testing
if(pkg_vars$unittest_GM_fix_theta_x) {

theta[’x’] <- pkg_vars$unittest_GM_values_theta_x
}
if(pkg_vars$unittest_GM_fix_theta_y) {

theta[’y’] <- pkg_vars$unittest_GM_values_theta_y
}
if(pkg_vars$unittest_GM_fix_theta_z) {

theta[’z’] <- pkg_vars$unittest_GM_values_theta_z
}
if(pkg_vars$unittest_GM_fix_tau) {

tau <- pkg_vars$unittest_GM_values_tau
}
if(pkg_vars$unittest_GM_fix_sigma) {

sigma <- pkg_vars$unittest_GM_values_sigma
}
if(pkg_vars$unittest_GM_fix_M) {

142

M <- pkg_vars$unittest_GM_values_M
}

R <- R_matrix(theta)
L <- length(M@x)
nu <- n - L # num non matched landmarks in B

k <- 1 # keep counter
for(i in 1: params$iterations$total) {

if(! pkg_vars$unittest_GM_fix_M) {
multiple matrix updates per iteration
for(ii in 0:(params$iterations$Mm - 1)) {

iii <- i * params$iterations$Mm + ii

M - matches - metropolis -hastings
choice <- M_propose(cache$M_choice[iii], M, m, n)
if (choice$matched) {

currently matched
if (cache$runif_01[iii] <= params$config$p_star) {

propose deleting the match
stats$M_delete_propose <- stats$M_delete_propose + 1
if(L > 1) { # we would always reject if no matches

accept <- params$config$lambda_over_rho * (sigma * sqrt (2))^3 /
(tristdnorm ((A[, choice$j, drop = FALSE] - R %*% B[, choice$k, drop = FALSE] - tau) / (sigma *

sqrt (2))) * params$config$p_star * (nu + 1))
if (cache$runif_02[iii] < min(1, accept)) {

M[choice$j, choice$k] <- 0
stats$M_delete_accept <- stats$M_delete_accept + 1

}
}

}
else {

propose a switch
stats$M_switch_propose <- stats$M_switch_propose + 1
if(! any(is.na(c(choice$j_prop , choice$k_prop)))) { # none available , must reject

accept <- tristdnorm((A[, choice$j_prop , drop = FALSE] - R %*% B[, choice$k_prop , drop = FALSE] - tau) / (
sigma * sqrt (2))) /

tristdnorm((A[, choice$j, drop = FALSE] - R %*% B[, choice$k, drop = FALSE] - tau) / (
sigma * sqrt (2)))

if (cache$runif_02[iii] < min(1, accept)) {
M[choice$j, choice$k] <- 0
M[choice$j_prop , choice$k_prop] <- 1
stats$M_switch_accept <- stats$M_switch_accept + 1

}
}

}
}

143

else {
not currently matched
propose a match
stats$M_add_propose <- stats$M_add_propose + 1
if(! any(is.na(c(choice$j_prop , choice$k_prop)))) { # none available or all already matched , must reject

accept <- (tristdnorm ((A[, choice$j_prop , drop = FALSE] - R %*% B[, choice$k_prop , drop = FALSE] - tau) / (sigma
* sqrt (2))) * params$config$p_star * nu) /

(params$config$lambda_over_rho * (sigma * sqrt (2))^3)
if (cache$runif_02[iii] < min(1, accept)) {

M[choice$j_prop , choice$k_prop] <- 1
stats$M_add_accept <- stats$M_add_accept + 1

}
}

}

L <- length(M@x)
nu <- n - L

}
}

f <- M_filter(M, A, B)

R - rotation
with F_0 being the zero matrix F is given by (3rd equation , section 3.1, GM 2006)
ff <- t((f$b %*% t(f$a - tau[, rep(1, L)])) / (2 * sigma ^2)) # TODO explain the transpose

theta_x - gibbs
cy <- cos(theta[’y’])
sy <- sin(theta[’y’])
cz <- cos(theta[’z’])
sz <- sin(theta[’z’])
if(! pkg_vars$unittest_GM_fix_theta_x) {

ax <- (ff[2, 2] - ff[1, 3] * sy) * cz + (- ff[1, 2] - ff[2, 3] * sy) * sz + ff[3, 3] * cy
bx <- (- ff[2, 3] - ff[1, 2] * sy) * cz + (ff[1, 3] - ff[2, 2] * sy) * sz + ff[3, 2] * cy
aa <- atan2(bx , ax)
kk <- ifelse(sin(aa) == 0, 0, bx / sin(aa))
theta[’x’] <- rvonmises(1, k = kk, a = aa)

}

theta_y - metropolis -hastings
cx <- cos(theta[’x’])
sx <- sin(theta[’x’])
if(! pkg_vars$unittest_GM_fix_theta_y) {

theta_y_prop <- wrap(theta[’y’] + cache$runif_rot_01[i])
ay <- ff[1, 1] * cz + ff[2, 1] * sz + ff[3, 2] * sx + ff[3, 3] * cx
by <- (- ff[1, 2] * sx - ff[1, 3] * cx) * cz + (- ff[2, 2] * sx - ff[2, 3] * cx) * sz + ff[3, 1]
accept <- exp((ay * cos(theta_y_prop) + by * sin(theta_y_prop)) - (ay * cy + by * sy)) * cos(theta_y_prop) / cy
if (cache$runif_03[i] < min(1, accept)) {

144

theta[’y’] <- theta_y_prop
stats$theta_y_accept <- stats$theta_y_accept + 1

}
}

theta_z - gibbs
cy <- cos(theta[’y’])
sy <- sin(theta[’y’])
if(! pkg_vars$unittest_GM_fix_theta_z) {

az <- (ff[2, 2] - ff[1, 3] * sy) * cx + (- ff[2, 3] - ff[1, 2] * sy) * sx + ff[1, 1] * cy
bz <- (- ff[1, 2] - ff[2, 3] * sy) * cx + (ff[1, 3] - ff[2, 2] * sy) * sx + ff[2, 1] * cy
aa <- atan2(bz, az)
kk <- ifelse(sin(aa) == 0, 0, bz / sin(aa))
theta[’z’] <- rvonmises(1, k = kk, a = aa)

}

R <- R_matrix(theta)
Rb <- R %*% f$b

tau - translation - gibbs
if(! pkg_vars$unittest_GM_fix_tau) {

tau_denominator <- params$config$tau_sigma ^(-2) + L * 0.5 * sigma ^(-2)
tau_mean <- (params$config$tau_mu / params$config$tau_sigma ^(2) + (rowSums(f$a - Rb) / (2 * sigma ^2))) / tau_denominator
tau_cv <- diag(1 / tau_denominator , 3)
tau[, 1] <- mvrnorm(1, tau_mean , tau_cv)

}

sigma ^-2 - variance of noisy measurements - gibbs
if(! pkg_vars$unittest_GM_fix_sigma) {

sigma_shape <- params$config$sigma_alpha + 1.5 * L
sigma_rate <- params$config$sigma_beta + 0.25 * norm(f$a - Rb - tau[, rep(1, L)], type = ’F’)^2
sigma <- 1 / sqrt(rgamma(1, sigma_shape , rate = sigma_rate))

}

store
if (i %% params$iterations$thin == 0) {

sample$theta[k,] <- theta
sample$tau[k,] <- tau
sample$sigma[k] <- sigma
sample$M[[k]] <- uniqTsparse(M)
sample$L[k] <- L
k <- k + 1

}
}

return(bprota_mcmc(
sample = sample ,
sample_metadata = list(

145

total = N,
burn = with(params$iterations , floor(burn / thin))

),
accept_rates = with(stats , c(

theta_y = theta_y_accept / params$iterations$total ,
M_delete = M_delete_accept / M_delete_propose ,
M_switch = M_switch_accept / M_switch_propose ,
M_add = M_add_accept / M_add_propose))

))
}

estimate_loss <- function(x, A, B) {

Ms <- x$sample$M[x$sample_metadata$burn:x$sample_metadata$total]
M_sum <- as.matrix(Reduce(’+’, Ms))
Pjk <- M_sum / length(Ms)
K <- 0.5
loss_jk <- K - Pjk # const = 0, l_ab = l_ba = 0.5

pad
m <- nrow(M_sum)
n <- ncol(M_sum)
if (m < n) {

loss_jk <- rbind(loss_jk, matrix (0.5, nrow = n - m, ncol = n))
}

linear assignment
M <- (lp.assign(loss_jk, direction = ’min’))$solution
bug in lp.assign are not exactly 1 so exact equality tests would have unexpected results
M <- round(M)

filter
if an assignment has +ve loss remove it
M[loss_jk >= 0] = 0
remove padding
M <- M[1:m,]

return(bprota_estimate(
M = uniqTsparse(as(M, "dgTMatrix")),
A = A,
B = B

))
}

align <- function(
A,
B,
mcmc_params = NULL

146

) {
if(! is.matrix(A) || ! is.matrix(B) || ncol(A) < 2 || ncol(B) < 2 || nrow(A) != 3 || nrow(B) != 3)

stop("’A’ and ’B’ must be 3 row matrices , each with at least two columns.")
if(ncol(A) > ncol(B)) stop("’B’ must not have a greater number of columns than ’B’.")

mcmc_rv <- mcmc_GM(
A = A,
B = B,
mcmc_params = mcmc_params

)

estimate_rv <- estimate_loss(
x = mcmc_rv,
A = A,
B = B

)

rv <- bprota(
mcmc = mcmc_rv,
estimate = estimate_rv,
A = A,
B = B,
CALL = match.call()

)

return(rv)
}

rvonmises <- function(n, k, a) {
if(k == 0){

vm <- runif(n = n, min = 0, max = 2*pi)
} else {

a <- a + pi
vm <- c(1:n)
aa <- 1 + (1 + 4 * (k^2))^0.5
bb <- (aa - (2 * aa)^0.5)/(2 * k)
rr <- (1 + bb^2)/(2 * bb)
obs <- 1
while(obs <= n) {

U1 <- runif(1, 0, 1)
zz <- cos(pi * U1)
ff <- (1 + rr * zz)/(rr + zz)
cc <- k * (rr - ff)
U2 <- runif(1, 0, 1)
if(cc * (2 - cc) - U2 > 0) {

U3 <- runif(1, 0, 1)
vm[obs] <- sign(U3 - 0.5) * acos(ff) + a
vm[obs] <- vm[obs] %% (2 * pi)

147

obs <- obs + 1
}
else {

if(log(cc/U2) + 1 - cc >= 0) {
U3 <- runif(1, 0, 1)
vm[obs] <- sign(U3 - 0.5) * acos(ff) + a
vm[obs] <- vm[obs] %% (2 * pi)
obs <- obs + 1

}
}

}
}
vm <- vm - pi
return(vm)

}

dvonmises <- function (theta , k, a) {
rv <- 1/(2 * pi * besselI(x = k, nu = 0, expon.scaled = TRUE)) * (exp(cos(theta - a) - 1))^k
return(rv)

}

constructor
bprota_estimate <- function(M, A, B) {

obj <- structure(
list(

M = M,
A = A,
B = B

),
class = ’bprota_estimate ’

)

invisible(obj)
}

s3 methods

ref: http://cran.r-project.org/doc/manuals/r-devel/R-exts.html#Generic -functions -and -methods
for explanation of argument names

#summary.bprota_estimate <- function(object ,...) {
print (" TODO\n")
invisible (object)
#}

148

print.bprota_estimate <- function(x,...) {
print(x$M)
invisible(x)

}

plot.bprota_estimate <- function(x, ...) {
A_matches <- rowSums(x$M)
B_matches <- colSums(x$M)
ff <- M_filter(xM, xA, x$B)

witch A and B
A <- t(x$A)
B <- t(x$B)
a <- t(ff$a)
b <- t(ff$b)
ac <- scale(a, center = TRUE , scale = FALSE)
bc <- scale(b, center = TRUE , scale = FALSE)
R <- optimal_rotation(ac, bc)
Ap <- A - matrix(attr(ac, ’scaled:center ’), byrow = TRUE , ncol = 3, nrow = nrow(A))
Bp <- B - matrix(attr(bc, ’scaled:center ’), byrow = TRUE , ncol = 3, nrow = nrow(B))
BpR <- Bp %*% R
plot3d(Ap, type = ’s’, radius = 0.4, box = FALSE , col = ’#4daf4a’, axes = FALSE , xlab = ’’, ylab = ’’, zlab = ’’, alpha = ifelse(A_

matches , 1.0, 0.3))
plot3d(BpR , type = ’s’, radius = 0.4, add = TRUE , col = ’#984 ea3’, alpha = ifelse(B_matches , 1.0, 0.3))

A_index <- as.integer(rownames(A))
for(i in 1:(nrow(A) -1)) {

if(A_index[i] == (A_index[i+1] - 1)) {
plot3d(Ap[i:(i+1),], col = ’#4daf4a’, type = ’l’, lwd = 3, add = TRUE , alpha = ifelse(A_matches[i] == 1 && A_matches[i+1] ==

1, 1.0, 0.3))
}

}

B_index <- as.integer(rownames(B))
for(i in 1:(nrow(B) -1)) {

if(B_index[i] == (B_index[i+1] - 1)) {
plot3d(BpR[i:(i+1),], col = ’#984 ea3’, type = ’l’, lwd = 3, add = TRUE , alpha = ifelse(B_matches[i] == 1 && B_matches[i+1]

== 1, 1.0, 0.3))
}

}

invisible(x)
}

constructor
bprota_mcmc <- function(sample , sample_metadata , accept_rates) {

obj <- structure(
list(

149

sample = sample ,
sample_metadata = sample_metadata ,
accept_rates = accept_rates

),
class = ’bprota_mcmc’

)
invisible(obj)

}

s3 methods

ref: http://cran.r-project.org/doc/manuals/r-devel/R-exts.html#Generic -functions -and -methods
for explanation of argument names

plot.bprota_mcmc <- function(x, ...) {
cache_par <- par(no.readonly = TRUE) # save default

par(mfrow = c(5, 3), mar = c(4, 3, 3, 1), lwd = 0.5, bty = ’n’)
matches
plot(x$sample$L, type = ’l’, main = expression(paste(’# matches ’)), xlab = ’’, ylab = ’’)
abline(v = x$sample_metadata$burn , col = ’blue’, lty = 5)
sigma
hist(x$sample$sigma[x$sample_metadata$burn:x$sample_metadata$total], freq = FALSE , breaks = 20, main=expression(sigma), xlab = ’’,

ylab = ’’)
plot(x$sample$sigma , type = ’l’, main=expression(sigma), xlab = ’’, ylab = ’’)
abline(v = x$sample_metadata$burn , col = ’blue’, lty = 5)
tau
hist(x$sample$tau[, ’x’][x$sample_metadata$burn:x$sample_metadata$total], freq = FALSE , breaks = 20, main = expression(tau [x]),

xlab = ’’, ylab = ’’)
hist(x$sample$tau[, ’y’][x$sample_metadata$burn:x$sample_metadata$total], freq = FALSE , breaks = 20, main = expression(tau [y]),

xlab = ’’, ylab = ’’)
hist(x$sample$tau[, ’z’][x$sample_metadata$burn:x$sample_metadata$total], freq = FALSE , breaks = 20, main = expression(tau [z]),

xlab = ’’, ylab = ’’)
plot(x$sample$tau[, ’x’], type = ’l’, main = expression(tau [x]), xlab = ’’, ylab = ’’)
abline(v = x$sample_metadata$burn , col = ’blue’, lty = 5)
plot(x$sample$tau[, ’y’], type = ’l’, main = expression(tau [y]), xlab = ’’, ylab = ’’)
abline(v = x$sample_metadata$burn , col = ’blue’, lty = 5)
plot(x$sample$tau[, ’z’], type = ’l’, main = expression(tau [z]), xlab = ’’, ylab = ’’)
abline(v = x$sample_metadata$burn , col = ’blue’, lty = 5)
theta
hist(x$sample$theta[, ’x’][x$sample_metadata$burn:x$sample_metadata$total], freq = FALSE , breaks = 20, xlim=c(-pi, pi), main =

expression(theta [x]), xlab = ’’, ylab = ’’, xaxt = ’n’)
axis(1, at = c(-pi, -pi/2, 0, pi/2, pi), labels = c(expression(-pi), expression(-pi/2), expression (0), expression(pi/2), expression(

pi)), las = 0)
hist(x$sample$theta[, ’y’][x$sample_metadata$burn:x$sample_metadata$total], freq = FALSE , breaks = 20, xlim=c(-pi/2, pi/2), main =

expression(theta [y]), xlab = ’’, ylab = ’’, xaxt = ’n’)
axis(1, at = c(-pi/2, -pi/4, 0, pi/4, pi/2), labels = c(expression(-pi/2), expression(-pi/4), expression (0), expression(pi/4),

150

expression(pi/2)), las = 0)
hist(x$sample$theta[, ’z’][x$sample_metadata$burn:x$sample_metadata$total], freq = FALSE , breaks = 20, xlim=c(-pi, pi), main =

expression(theta [z]), xlab = ’’, ylab = ’’, xaxt = ’n’)
axis(1, at = c(-pi, -pi/2, 0, pi/2, pi), labels = c(expression(-pi), expression(-pi/2), expression (0), expression(pi/2), expression(

pi)), las = 0)
plot(x$sample$theta[, ’x’], type = ’l’, main = expression(theta [x]), ylim = c(-pi, pi), xlab = ’’, ylab = ’’, yaxt = ’n’)
abline(v = x$sample_metadata$burn , col = ’blue’, lty = 5)
axis(2, at = c(-pi, -pi/2, 0, pi/2, pi), labels = c(expression(-pi), expression(-pi/2), expression (0), expression(pi/2), expression(

pi)), las = 0)
plot(x$sample$theta[, ’y’], type = ’l’, main = expression(theta [y]), ylim = c(-pi/2, pi/2), xlab = ’’, ylab = ’’, yaxt = ’n’)
abline(v = x$sample_metadata$burn , col = ’blue’, lty = 5)
axis(2, at = c(-pi/2, 0, pi/2), labels = c(expression(-pi/2), expression (0), expression(pi/2)), las = 0)
plot(x$sample$theta[, ’z’], type = ’l’, main = expression(theta [z]), ylim = c(-pi, pi), xlab = ’’, ylab = ’’, yaxt = ’n’)
abline(v = x$sample_metadata$burn , col = ’blue’, lty = 5)
axis(2, at = c(-pi, -pi/2, 0, pi/2, pi), labels = c(expression(-pi), expression(-pi/2), expression (0), expression(pi/2), expression(

pi)), las = 0)

par(cache_par)
invisible(x)

}

151

B.2 Distribution of acceptance probabilities for perturbations of the matching matrix (Figure 2.11)

library(phdutils)
library(Matrix)
library(rgl)
library(robustbase)

x is a three vector
tristdnorm <- function(x) {

return(prod(dnorm(x)))
}

A <- as.matrix(green_mardia_2006_active_sites$‘1cyd ‘[, c(’x’, ’y’, ’z’)])
B <- as.matrix(green_mardia_2006_active_sites$‘1a27 ‘[, c(’x’, ’y’, ’z’)])

m <- nrow(A)
n <- nrow(B)

rho_o_lambda <- 1 / 0.003

M_best_36 <- readRDS(’best_36.rds’)
correct_indexes <- summary(M_best_36)
correct <- paste(correct_indexes$i, correct_indexes$j, sep = "_")

probs <- function(M, sigma_beta) {
L <- length(M@x)

if(L == 0) {
a <- A
b <- B
R <- diag (3)

this_beta <- sigma_beta
} else {

f <- M_filter(M, A, B)

ac <- scale(f$a, center = TRUE , scale = FALSE)
bc <- scale(f$b, center = TRUE , scale = FALSE)
R <- optimal_rotation(ac, bc)

a <- A - matrix(attributes(ac)$‘scaled:center ‘, nrow = nrow(A), ncol =3, byrow = TRUE)
b <- (B - matrix(attributes(bc)$‘scaled:center ‘, nrow = nrow(B), ncol =3, byrow = TRUE)) %*% R

this_beta <- sigma_beta + 0.25 * norm(ac - bc %*% R, type = ’F’)^2
}

152

this_alpha <- sigma_alpha + 1.5 * L

vals_this <- seq(
from = qgamma (0.0005 , shape = this_alpha , rate = this_beta),
to = qgamma (0.9995 , shape = this_alpha , rate = this_beta),
length.out = 1000

)
density_this <- dgamma(vals_this , shape = this_alpha , rate = this_beta)
density_this <- 0.999 * density_this / sum(density_this)
sigma_this <- 1 / sqrt(vals_this)

id <- setdiff (0:(nrow(M) -1), M@i) + as.integer (1)
jd <- setdiff (0:(ncol(M) -1), M@j) + as.integer (1)

p <- expand.grid(i = id, j = jd, KEEP.OUT.ATTRS = FALSE)

dss2 <- rowSums ((a[p$i, , drop = FALSE] - b[p$j, , drop = FALSE])^2)

LuA <- m - L + 1

z <- sapply(sqrt(dss2), function(x) {
calculations for quadrature (integration) over sigma
acceptance probability
h <- sapply(sigma_this , function(y){ tristdnorm(x / (y * sqrt (2))) }, USE.NAMES = FALSE)
sum(density_this * (LuA * rho_o_lambda * h / (sigma_this * sqrt (2))^3))

}, USE.NAMES = FALSE)

assume M is correct
M_adj_c <- paste(pi, pj, sep = "_") %in% correct

return(list(good = z[M_adj_c], bad = z[! M_adj_c]))
}

sigma_alpha <- 1
sigma_beta <- 1/36

results <- list()

M <- as(Matrix(0, nrow = m, ncol = n), ’dgTMatrix ’)
results [[1]] <- probs(M , sigma_beta)

for(i in 1:9) {
for(ii in 1:100) {

make a starting matrix
M <- as(Matrix(0, nrow = m, ncol = n), ’dgTMatrix ’)
if(i == 1) {

if(ii == 37) { break }
M[as.matrix(correct_indexes[i, c(’i’, ’j’)])] <- 1

153

} else {
M[as.matrix(correct_indexes[sample (36, i), c(’i’, ’j’)])] <- 1

}
M <- uniqTsparse(M)
#
rv <- probs(M, sigma_beta)
if(ii == 1) {

results [[i+1]] <- rv
} else {

results [[i+1]]$good <- c(results [[i+1]]$good , rv$good)
results [[i+1]]$bad <- c(results [[i+1]]$bad , rv$bad)

}
}

}
#saveRDS(results , ’results.rds ’)

#pdf(file = ’two_regimes_01.pdf ’, height = 7, width = 10)
par(mar = c(8, 5, 4, 2) + 0.1)
labels <- c(’1st correct ’, ’1st wrong’, ’2nd correct ’, ’2nd wrong’, ’3rd correct ’, ’3rd wrong’, ’4th correct ’, ’4th wrong’, ’5th correct ’

, ’5th wrong’, ’6th correct ’, ’6th wrong’, ’7th correct ’, ’7th wrong’, ’8th correct ’, ’8th wrong’, ’9th correct ’, ’9th wrong’, ’10th
correct ’, ’10th wrong ’)

at <- c(1,2, 3.5,4.5, 6,7, 8.5,9.5, 11,12, 13.5 ,14.5 , 16,17, 18.5 ,19.5 , 20.5 ,21.5 , 23,24)
err <- sqrt(. Machine$double.eps)
vals <- adjbox(list(

results [[1]]$good +err ,
results [[1]]$bad +err ,
results [[2]]$good +err ,
results [[2]]$bad +err ,
results [[3]]$good +err ,
results [[3]]$bad +err ,
results [[4]]$good +err ,
results [[4]]$bad +err ,
results [[5]]$good +err ,
results [[5]]$bad +err ,
results [[6]]$good +err ,
results [[6]]$bad +err ,
results [[7]]$good +err ,
results [[7]]$bad +err ,
results [[8]]$good +err ,
results [[8]]$bad +err ,
results [[9]]$good +err ,
results [[9]]$bad +err ,
results [[10]]$good +err ,
results [[10]]$bad +err

), log = ’y’, xlab = "", ylab = "f(M’|M)", cex.lab = 1.5, frame = FALSE , col = c(gray (0.9), gray (0.9), gray (0.75) , gray (0.75)), pch = 4,
pars = list(xaxt = ’n’, yaxt = ’n’), at = at)

axis(1, at = at, labels = FALSE)
text(at, 1e-9, srt = 45, adj = 1, labels = labels , xpd = TRUE , col = c(gray (0.4), gray (0.4), gray (0.1), gray (0.1)))

154

mtext(side = 1, text = "match", line = 5, cex = 1.5)
ylab = c(1e-16, 1e-12, 1e-8, 1e-4, 0.01, 1, 100, 1e4, 1e6)
axis(2, at = ylab , labels = ylab)
abline(h = 1, lty = 5, col = gray (0.1), lwd = 1.2)
#dev.off ()

155

B.3 GProtA

hack to stop R CMD check warnings
M = parent_M = gamma = dss2 = branch = status = NULL

dss2 <- function(M, A, B, Hs) {
f <- M_filter(M, A, B)
ah <- Hs %*% f$a
bh <- Hs %*% f$b
min_f_norm(ah, bh)^2

}

M_adjacent_greedy <- function(M, A, B) {
f <- M_filter(M, A, B)
ac <- scale(f$a, center = TRUE , scale = FALSE)
bc <- scale(f$b, center = TRUE , scale = FALSE)
R <- optimal_rotation(ac, bc)

a <- A - matrix(attributes(ac)$‘scaled:center ‘, nrow = nrow(A), ncol =3, byrow = TRUE)
b <- (B - matrix(attributes(bc)$‘scaled:center ‘, nrow = nrow(B), ncol =3, byrow = TRUE)) %*% R

summary_M <- summary(M)
id <- setdiff (1:(nrow(M)), summary_M$i)
jd <- setdiff (1:(ncol(M)), summary_M$j)

p <- expand.grid(i = id, j = jd)

dss2 <- rowSums ((a[p$i, , drop = FALSE] - b[p$j, , drop = FALSE])^2)
wanted <- which.min(dss2)

L <- length(M@x)
M@i[L+1] <- as.integer(p$i[wanted]-1)
M@j[L+1] <- as.integer(p$j[wanted]-1)
M@x[L+1] <- 1

return(list(M = uniqTsparse(M), dss2 = dss2[wanted]))
}

consec_subs <- function(X, gamma){
lapply (1:(nrow(X) - gamma + 1), function(x){

return(x:(x + gamma - 1))
})

}

get_candidates <- function(A, B, gamma = 4) {

156

A_sets <- consec_subs(A, gamma)
A_sets <- c(A_sets , lapply(A_sets , rev)) # plus the reverse
B_sets <- consec_subs(B, gamma)
set_combinations <- expand.grid (1: length(A_sets), 1: length(B_sets))

Mc <- apply(set_combinations , 1, function(x) {
T <- sparseMatrix(i = A_sets[[x[1]]], j = B_sets[[x[2]]], x = rep(1, gamma), dims = c(nrow(A), nrow(B)), giveCsparse = FALSE)
uniqTsparse(T)

})
return(Mc)

}

get_starting <- function(A, B, Mc, snull , fdr = 0.01, max_starts = NULL) {
gamma <- sum(Mc [[1]])
Hs <- helmert(gamma , submatrix = TRUE)
d <- sapply(Mc, dss2 , A = A, B = B, Hs = Hs)
p_value <- sapply(d, function(x) { sum(snull <= x) / length(snull) })
p_adjusted <- p.adjust(p_value , method = ’bonferroni ’)
significant <- which(p_adjusted <= fdr)

filter out overlaps
oo <- order(d)
keep <- c()
used <- c()
for(i in oo) {

if(! i %in% significant) { break } # must be significant
f <- summary(Mc[[i]])
g <- paste(fi, fj, sep = ’_’)
if(any(g %in% used)) { next }
used <- c(used , g)
keep <- c(keep , i)

}

if(! is.null(max_starts) && length(keep) > max_starts) {
keep <- keep [1:max_starts]

}

return(list(matrices = Mc[keep], dss2 = d[keep]))
}

align <- function(A, B, snull , tolerance = 3.51, fdr = 0.01, starting_gamma = 4, max_branches = NULL) {

Mc <- get_candidates(A, B, gamma = starting_gamma)
Ms <- get_starting(A, B, Mc, snull , fdr , max_starts = max_branches)

status
*C*ontinue from here on branch

157

*J*oined with other branch (this one is a repeat with a different parent [denormalized])
*S*topped

this_Ms <- Ms[[’matrices ’]]
lMs <- length(this_Ms)
results <- data.table(

M = this_Ms,
parent_M = rep(’none’, lMs),
gamma = rep(starting_gamma , lMs),
dss2 = Ms[[’dss2’]],
branch = 1:lMs ,
status = ’C’,
key = c(’gamma’,’dss2’, ’status ’, ’branch ’)

)

for(g in (starting_gamma + 1):(nrow(A))) {
branches <- results[gamma == g - 1 & status == ’C’]
if(nrow(branches) == 0) { break }
Hs <- helmert(g, submatrix = TRUE)
tmp <- rbindlist(apply(branches , 1, function(x) {

Mc <- M_adjacent_greedy(M = x$M, A = A, B = B)
return(data.table(M = list(Mc$M), branch = x$branch , parent_M = list(x$M), dss2 = Mc$dss2 , gamma = g, status = ifelse(sqrt(

Mc$dss2) <= tolerance , ’C’, ’S’)))
}), use.names = TRUE , fill = TRUE)

tmp[duplicated(M), status := ’J’]
results <- rbindlist(list(results , tmp), use.names = TRUE)

}
setkey(results , gamma , branch , dss2 , status)
M <- results[status == ’C’][gamma == max(gamma)][dss2 == min(dss2), M][[1]]
gprota(

M = M,
results = results ,
A = A,
B = B,
CALL = match.call()

)
}

null_sample <- function(A, B, gamma , N) {
m <- nrow(A)
n <- nrow(B)
Hs <- helmert(gamma , submatrix = TRUE)
Ms <- replicate(N, sparseMatrix(i = sample(m, gamma), j = sample(n, gamma), x = rep(1, gamma), dims = c(m, n), giveCsparse = FALSE))
return(sapply(Ms, dss2 , A = A, B = B, Hs = Hs))

}

158

constructor
gprota <- function(M, results , A, B, CALL) {

obj <- structure(
list(

M = M,
results = results ,
A = A,
B = B,
CALL = CALL ,
PACKAGE_VERSION = packageVersion(’GProtA ’)

),
class = ’gprota ’

)
invisible(obj)

}

s3 methods

ref: http://cran.r-project.org/doc/manuals/r-devel/R-exts.html#Generic -functions -and -methods
for explanation of argument names

summary.gprota <- function(object , ...) {
tmp <- object$results[status %in% c(’C’, ’J’)]
gammas <- sort(unique(tmp$gamma))
branches <- sort(unique(tmp$branch))
plot(tmp$gamma , tmp$branch , bty = ’n’, xaxt = ’n’, yaxt = ’n’, xlab = expression(gamma), ylab = ’branch ’, cex.lab = 1.5)
axis(1, tick = FALSE , lty = 0, las = 1, at = gammas , labels = gammas , line = -1)
axis(2, tick = FALSE , lty = 0, las = 1, at = branches , labels = branches , line = -0.5)
for(b in branches) {

lines(tmp$gamma[tmp$branch == b], rep(b, sum(tmp$branch == b)))
}
for(f in which(tmp$status == ’J’)) {

from <- tmp[f,]
i <- which(M2hash(tmp[status == ’C’ & gamma == from$gamma]$M) == M2hash(from$M))
to <- tmp[status == ’C’ & gamma == from$gamma][i]
arrows(x0 = from$gamma , y0 = from$branch , x1 = to$gamma , y1 = to$branch , length = 0.2)

}
points(tmp$gamma , tmp$branch , pch = 16, col = ifelse(tmp$status == ’C’, ’darkgray ’, ’lightgray ’), cex = 2)
invisible(object)

}

print.gprota <- function(x, ...) {
print(list(

M = x$M,
results = x$results[, list(gamma , branch , dss2 , status)],
PACKAGE_VERSION = x$PACKAGE_VERSION ,
CALL = x$CALL

))

159

invisible(x)
}

plot.gprota <- function(x, branch = NULL , ...) {
if(is.null(branch)) {

M <- x$M
} else {

p_branch <- branch # can ’t use a variable same as column name
M <- x$results[status == ’C’ & branch == p_branch][gamma == max(gamma), M][[1]]

}
A_matches <- rowSums(M)
B_matches <- colSums(M)
ff <- M_filter(M, xA, xB)
ac <- scale(ff$a, center = TRUE , scale = FALSE)
bc <- scale(ff$b, center = TRUE , scale = FALSE)
R <- optimal_rotation(ac, bc)
Ap <- x$A - matrix(attr(ac, ’scaled:center ’), byrow = TRUE , ncol = 3, nrow = nrow(x$A))
Bp <- x$B - matrix(attr(bc, ’scaled:center ’), byrow = TRUE , ncol = 3, nrow = nrow(x$B))
BpR <- Bp %*% R
plot3d(Ap, type = ’s’, radius = 0.4, box = FALSE , col = ’#4daf4a’, axes = FALSE , xlab = ’’, ylab = ’’, zlab = ’’, alpha = ifelse(A_

matches , 1.0, 0.3))
plot3d(BpR , type = ’s’, radius = 0.4, add = TRUE , col = ’#984 ea3’, alpha = ifelse(B_matches , 1.0, 0.3))

A_index <- as.integer(rownames(x$A))
for(i in 1:(nrow(x$A) -1)) {

if(A_index[i] == (A_index[i+1] - 1)) {
plot3d(Ap[i:(i+1),], col = ’#4daf4a’, type = ’l’, lwd = 3, add = TRUE , alpha = ifelse(A_matches[i] == 1 && A_matches[i+1] ==

1, 1.0, 0.3))
}

}

B_index <- as.integer(rownames(x$B))
for(i in 1:(nrow(x$B) -1)) {

if(B_index[i] == (B_index[i+1] - 1)) {
plot3d(BpR[i:(i+1),], col = ’#984 ea3’, type = ’l’, lwd = 3, add = TRUE , alpha = ifelse(B_matches[i] == 1 && B_matches[i+1]

== 1, 1.0, 0.3))
}

}

invisible(x)
}

160

B.4 DBSCAN example

161

library(rgl)
library(shapes)
library(phdutils)
library(dbscan)
library(RColorBrewer)

paths <- sample(list.files(’~/work/phd/data/PDB/asymetric_units/’, full.names = TRUE , pattern = ’*.csv.gz’), 15)

sequence <- c(’N’, ’CA’, ’C’, ’O’, ’CB’, ’CG’, ’OD1’, ’OD2’)
residues <- lapply(paths , function(path) {

A_all <- read.delim(path , header=TRUE , sep=’,’, stringsAsFactors = FALSE)
A <- A_all[A_all$label_comp_id == ’ASP’ & A_all$label_atom_id != ’H’, c(’label_atom_id’, ’auth_seq_id’, ’cartn_x’, ’cartn_y’, ’cartn_

z’)]
A <- split(A, A$auth_seq_id)
lapply(A, function(x) {

if(all(sequence %in% x$label_atom_id) && nrow(x) == length(sequence)) {
rownames(x) <- x$label_atom_id
x <- x[sequence ,]
rv <- as.matrix(x[, c(’cartn_x’, ’cartn_y’, ’cartn_z’)])

} else {
stop(’DAMMIT!’)

}
return(rv)

})
})
residues <- do.call(c, residues)

saveRDS(residues , file = ’residues.rds’)

create a distance matrix
Hs <- helmert(length(sequence)-1, submatrix = TRUE)

N <- length(residues)
d <- matrix(0, nrow = N, ncol = N)
cbs <- combn (1:N, 2)
for (i in 1:ncol(cbs)) {

Ah <- Hs %*% residues [[cbs[1,i]]][c(’N’, ’CA’, ’C’, ’CB’, ’CG’, ’OD1’, ’OD2’),] # no oxegen
Bh <- Hs %*% residues [[cbs[2,i]]][c(’N’, ’CA’, ’C’, ’CB’, ’CG’, ’OD1’, ’OD2’),]
d[cbs[1,i],cbs[2,i]] <- min_f_norm(Ah, Bh)

}
d <- d + t(d) # make symetric

kNNdistplot(d, k = 5)
abline(h = 2.9, lty = 2, col = "blue")

rv <- dbscan(d, eps = 2.9, minPts = 5)

162

to a matrix k x m x N (shapes package likes this)
residues.m <- sapply(residues , function(x) x, simplify=’array’, USE.NAMES=FALSE)

cols <- c(’lightgray ’, brewer.pal(8, ’Set1’))

bb.rot <- procGPA(residues.m[c(1,2,3,5) ,,])$rotated
bb.reg <- transformations(bb.rot , residues.m[c(1,2,3,5) ,,])

sphere_size <- 0.05
plot3d(matrix(c(0,0,0),byrow=TRUE ,ncol =3), col=’white’, aspect=TRUE , xlab=’’, ylab=’’, zlab=’’, axes=FALSE)
for (i in 1:dim(residues.m)[3]) {

this.col <- cols[rv$cluster[i] + 1]
r <- residues.m[,,i]
rc <- t(apply(r, 1, function(y) y + bb.reg$translation[,i]))
rc <- rc %*% bb.reg$rotation[,,i]
plot3d(rc[c(4,4) ,], type=’s’, col=this.col , radius=sphere_size , add=TRUE) # seems to least at least two coords
plot3d(rc[c(3,4) ,], type=’l’, col=’grey’, add=TRUE)
plot3d(rc[c(1,3) ,], type=’s’, col=this.col , radius=sphere_size , add=TRUE)
plot3d(rc[c(1,2,3) ,], type=’l’, col=this.col , add=TRUE)
plot3d(rc[c(-1,-3,-4) ,], type=’s’, col=this.col , radius=sphere_size , add=TRUE)
plot3d(rc[c(2,5,6,7) ,], type=’l’, col=this.col , add=TRUE)
plot3d(rc[c(6,8) ,], type=’l’, col=this.col , add=TRUE)

}

res <- optics(d, eps = 15, minPts = 5)

plot(res , col = cols[rv$cluster[res$order] + 1], lwd = 2, bty = ’n’, main = "", las = 2, xaxt = "n", cex.lab = 1.5, xlab = "")
abline(h = 2.9, lty = 2, col = "blue")

163

Appendix C

SCOP2

164

C.1 Creating a SCOP2 MySQL database

The latest version of the SCOP2 data can be found here: http://scop2.mrc -lmb.cam.ac.uk/downloads/
As of 2016 -12 -06 the latest release of SCOP2 was from 2014 -02 -05 data (scop2 -rel20140205.sql)

Assuming admin rights on a local MySQL instance the database is created as the root user like this
replace ’secret ’

create database scop2;
CREATE USER ’scop2rw ’@’localhost ’ IDENTIFIED BY ’secret ’;
GRANT ALL ON scop2.* TO ’scop2rw ’@’localhost ’;

allow the user to write files if they are on the local machine
this has to be applied for all databases , files will be written as the mysql user

GRANT FILE ON *.* TO ’scop2rw ’@’localhost ’;
flush privileges;

To create the tables and data (linux)

wget http://scop2.mrc -lmb.cam.ac.uk/downloads/scop2 -rel20140205.sql
mysql -u scop2rw -p scop2 < ./scop2 -rel20140205.sql

If everything has worked the list of tables should look like this

mysql > show tables;
+-----------------+
| Tables_in_scop2 |
+-----------------+
| closure |
| domains |
| keywords |
| kwd2nodes |
| relation |
| relation_type |
| structural_tags |
| tags2nodes |
| term |
+-----------------+

165

C.2 Extract mmCIF to CSV and create validation tables

#!/usr/bin/perl

use strict;
use warnings;
use Carp;

use Getopt ::Long;
use File::Path qw/make_path/;
use File::Spec;
use POSIX;
use Fcntl ’O_RDONLY ’, ’O_RDWR’, ’O_CREAT’;
use File::Slurp;
use File::Copy;
use Data:: Dumper;

use Term:: ReadKey;
use DBI;

use STAR:: Parser;
use File::Temp qw/:POSIX/;
use IO:: Uncompress :: Gunzip qw(gunzip $GunzipError);
use Text::CSV_XS qw/csv/;
use List::Util qw/first max min/;
use List:: MoreUtils qw/indexes/;
use Time::Piece;
use Time::Piece::MySQL;

my $help = 0;
my $quiet = 0;
my $indir = ’’;
my $outdir = ’’;
GetOptions(

’help’ => \$help ,
’quiet’ => \$quiet ,
"indir=s" => \$indir ,
"outdir=s" => \$outdir ,

);

if ($help) {
require Pod::Usage;
Pod::Usage:: pod2usage(-verbose => 2);

}

166

croak "You must supply a directory path to the PDBx/mmCIF file directory" unless($indir && -d $indir);
croak "You must supply a directory path for the output files" unless($outdir);
make_path($outdir) unless (-d $outdir);
my $domaindir = File::Spec ->catdir($outdir , ’domains ’);
make_path($domaindir) unless (-d $domaindir);
my $asymunitdir = File::Spec ->catdir($outdir , ’asymetric_units’);
make_path($asymunitdir) unless (-d $asymunitdir);

my $tmpdir = File::Spec ->catdir($outdir , ’tmp’);
make_path($tmpdir) unless (-d $tmpdir);
my $tmpdomaindir = File::Spec ->catdir($tmpdir , ’domains ’);
make_path($tmpdomaindir) unless (-d $tmpdomaindir);
my $tmpasymunitdir = File::Spec ->catdir($tmpdir , ’asymetric_units’);
make_path($tmpasymunitdir) unless (-d $tmpasymunitdir);

SCOP2 database
print ’Enter scop2rw password: ’;
ReadMode(’noecho ’);
chomp(my $scop2_pass = ReadLine (0));
ReadMode (0);
print("\n");
my $dbh = DBI ->connect(’DBI:mysql:database=scop2new;host=localhost ’, ’scop2rw ’, $scop2_pass , {AutoCommit => 0, ’RaiseError ’ => 1});
my $sth_select_dom_names = $dbh ->prepare(qq/SELECT DISTINCT(dom_name) FROM domains WHERE pdb_code = ?/);
my $sth_select_serial = $dbh ->prepare(qq/SELECT serial , pdb_chain , pdb_begin , pdb_end FROM domains WHERE dom_name = ? ORDER BY serial/);

$dbh ->do(qq/
DROP TABLE IF EXISTS atom

/) or croak $DBI:: errstr;
$dbh ->do(qq/

DROP TABLE IF EXISTS atom_keep
/) or croak $DBI:: errstr;
$dbh ->do(qq/

DROP TABLE IF EXISTS domain_issue
/) or croak $DBI:: errstr;
$dbh ->do(qq/

DROP TABLE IF EXISTS domain
/) or croak $DBI:: errstr;
$dbh ->do(qq/

DROP TABLE IF EXISTS pdb_validation
/) or croak $DBI:: errstr;
$dbh ->do(qq/

DROP TABLE IF EXISTS asym_unit_issue
/) or croak $DBI:: errstr;
$dbh ->do(qq/

DROP TABLE IF EXISTS pdb_issue
/) or croak $DBI:: errstr;
$dbh ->do(qq/

167

DROP TABLE IF EXISTS pdb
/) or croak $DBI:: errstr;
$dbh ->do(qq/

DROP TABLE IF EXISTS asym_unit
/) or croak $DBI:: errstr;

create metadata tables
$dbh ->do(qq/

CREATE TABLE pdb (
id VARCHAR (4) NOT NULL ,
exptl_method VARCHAR (20),
resolution FLOAT ,
creation_date DATE ,
last_mod_date DATE ,
rev_num INTEGER ,
PRIMARY KEY(id),
INDEX(exptl_method),
INDEX(resolution),
INDEX(creation_date),
INDEX(last_mod_date)

)
/) or croak $DBI:: errstr;
my $sth_insert_pdb = $dbh ->prepare(qq/INSERT INTO pdb(

id,
exptl_method ,
resolution ,
creation_date ,
last_mod_date ,
rev_num

) VALUES (?, ?, ?, ?, ?, ?)/);

my $sth_update_pdb = $dbh ->prepare(qq/UPDATE pdb
SET

exptl_method = ?,
resolution = ?,
creation_date = ?,
last_mod_date = ?,
rev_num = ?

WHERE
id = ?/);

$dbh ->do(qq/
CREATE TABLE pdb_issue (

pdb_id VARCHAR (4) NOT NULL ,
level VARCHAR (5) NOT NULL ,
type VARCHAR (30) NOT NULL ,
text VARCHAR (150) NOT NULL ,
INDEX(pdb_id),

168

INDEX(type),
INDEX(level),
FOREIGN KEY (pdb_id) REFERENCES pdb(id)

)
/) or croak $DBI:: errstr;
my $sth_insert_pdb_issue = $dbh ->prepare(qq/INSERT INTO pdb_issue(

pdb_id,
level ,
type ,
text

) VALUES (?, ?, ?, ?)/);

$dbh ->do(qq/
CREATE TABLE asym_unit (

pdb_id VARCHAR (4) NOT NULL ,
asym_id VARCHAR (3) NOT NULL ,
PRIMARY KEY(pdb_id, asym_id),
FOREIGN KEY (pdb_id) REFERENCES pdb(id)

)
/) or croak $DBI:: errstr;
my $sth_insert_asym_unit = $dbh ->prepare(qq/INSERT INTO asym_unit(

pdb_id,
asym_id

) VALUES (?, ?)/);

$dbh ->do(qq/
CREATE TABLE asym_unit_issue (

pdb_id VARCHAR (4) NOT NULL ,
asym_id VARCHAR (3) NOT NULL ,
level VARCHAR (5) NOT NULL ,
type VARCHAR (30) NOT NULL ,
text VARCHAR (150) NOT NULL ,
INDEX(pdb_id),
INDEX(asym_id),
INDEX(type),
INDEX(level),
FOREIGN KEY (pdb_id) REFERENCES pdb(id)

)
/) or croak $DBI:: errstr;
my $sth_insert_asym_unit_issue = $dbh ->prepare(qq/INSERT INTO asym_unit_issue(

pdb_id,
asym_id,
level ,
type ,
text

) VALUES (?, ?, ?, ?, ?)/);

$dbh ->do(qq/

169

CREATE TABLE domain (
dom_name VARCHAR (32) NOT NULL ,
pdb_id VARCHAR (4) NOT NULL ,
count_serial INTEGER NOT NULL ,
count_residues INTEGER ,
PRIMARY KEY(dom_name),
FOREIGN KEY(pdb_id) REFERENCES pdb(id),
INDEX(count_serial),
INDEX(count_residues)

)
/) or croak $DBI:: errstr;
my $sth_insert_domain = $dbh ->prepare(qq/INSERT INTO domain(

dom_name ,
pdb_id,
count_serial ,
count_residues

) VALUES (?, ?, ?, ?)/);
my $sth_update_domain = $dbh ->prepare(qq/UPDATE domain

SET count_residues = ?
WHERE dom_name = ?

/);
$dbh ->do(qq/

CREATE TABLE domain_issue (
domain_dom_name VARCHAR (32) NOT NULL ,
level VARCHAR (5) NOT NULL ,
type VARCHAR (30) NOT NULL ,
text VARCHAR (150) NOT NULL ,
INDEX(domain_dom_name),
INDEX(type),
INDEX(level),
FOREIGN KEY (domain_dom_name) REFERENCES domain(dom_name)

)
/) or croak $DBI:: errstr;
my $sth_insert_domain_issue = $dbh ->prepare(qq/INSERT INTO domain_issue(

domain_dom_name ,
level ,
type ,
text

) VALUES (?, ?, ?, ?)/);

temporary table for processing ATOM records
$dbh ->do(qq/

CREATE TABLE atom (
id INT NOT NULL ,
label_atom_id VARCHAR (4) NOT NULL ,
label_alt_id CHAR (1),
label_comp_id CHAR (3) NOT NULL ,
label_asym_id VARCHAR (3) NOT NULL ,

170

label_seq_id INT NOT NULL ,
cartn_x FLOAT NOT NULL ,
cartn_y FLOAT NOT NULL ,
cartn_z FLOAT NOT NULL ,
occupancy FLOAT NOT NULL ,
auth_asym_id VARCHAR (3) NOT NULL ,
auth_seq_id INT NOT NULL ,
pdbx_PDB_model_num INT NOT NULL ,
PRIMARY KEY(id),
INDEX(auth_asym_id),
INDEX(auth_seq_id),
INDEX(occupancy),
INDEX(label_alt_id),
INDEX(pdbx_PDB_model_num)

)
/) or croak $DBI:: errstr;
$dbh ->do(qq/

CREATE TRIGGER test_label_atom_id
BEFORE INSERT
ON atom
FOR EACH ROW

BEGIN
IF NEW.label_atom_id NOT REGEXP ’^[[: alnum :]]+\$’ THEN

SET \@msg = CONCAT(’Bad label_atom_id: >>’, NEW.label_atom_id, ’<<’);
SIGNAL SQLSTATE ’45000’ SET MESSAGE_TEXT = \@msg;

END IF;
END;

/) or croak $DBI:: errstr;
my $sth_insert_atom = $dbh ->prepare(qq/INSERT INTO atom (

id,
label_atom_id,
label_alt_id,
label_comp_id,
label_asym_id,
label_seq_id,
cartn_x,
cartn_y,
cartn_z,
occupancy ,
auth_asym_id,
auth_seq_id,
pdbx_PDB_model_num

) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)/) or croak $DBI:: errstr;
all three bind variables are the auth_asym_id
my $sth_select_asym_unit = $dbh ->prepare(qq|

/* rows without a label_alt_id */
SELECT e.*

FROM atom e

171

WHERE pdbx_PDB_model_num = 1
AND auth_asym_id = ?
AND label_alt_id IS NULL

UNION
SELECT c.*

FROM atom c
INNER JOIN (

/* ensure a single label_alt_id for each auth_seq_id:
- this should be the label_alt_id that offers the maximum occupancy;

but this is only guaranteed if all rows of the label_alt_id for a particular auth_seq_id have the same
occupancy

- note that only a subset of rows for a auth_seq_id may have a (none ’.’) label_alt_id */
SELECT MIN(a.label_alt_id) AS label_alt_id,

b.auth_seq_id AS auth_seq_id,
b.max_occupancy

FROM atom a
INNER JOIN (

SELECT auth_seq_id,
MAX(occupancy) AS max_occupancy

FROM atom
WHERE pdbx_PDB_model_num = 1

AND auth_asym_id = ?
AND label_alt_id IS NOT NULL

GROUP BY auth_seq_id
) b

ON (a.occupancy = b.max_occupancy)
GROUP BY b.auth_seq_id,

b.max_occupancy
) d

ON (
c.pdbx_PDB_model_num = 1

AND c.auth_asym_id = ?
AND c.auth_seq_id = d.auth_seq_id
AND c.label_alt_id = d.label_alt_id

)
ORDER BY auth_seq_id, id

|) or croak $DBI:: errstr;
the constraint acts as data validation
$dbh ->do(qq/

CREATE TABLE atom_keep (
id INT NOT NULL ,
serial TINYINT (3) NOT NULL ,
label_atom_id VARCHAR (4) NOT NULL ,
label_alt_id CHAR (1),
label_comp_id CHAR (3) NOT NULL ,
cartn_x FLOAT NOT NULL ,
cartn_y FLOAT NOT NULL ,
cartn_z FLOAT NOT NULL ,

172

occupancy FLOAT NOT NULL ,
auth_asym_id VARCHAR (3) NOT NULL ,
auth_seq_id INT NOT NULL ,
PRIMARY KEY(id),
UNIQUE(label_atom_id, auth_seq_id, auth_asym_id)

)
/) or croak $DBI:: errstr;
my $sth_select_atom_keep = $dbh ->prepare (qq|SELECT * FROM atom_keep ORDER BY serial , auth_seq_id, id|);
my $sth_select_atom_keep_seq_ids = $dbh ->prepare (qq|SELECT auth_seq_id FROM atom_keep WHERE label_atom_id = ’CA’ ORDER BY auth_seq_id|);

PDB validation
$dbh ->do(qq/

CREATE TABLE pdb_validation (
auth_seq_id INT NOT NULL ,
auth_asym_id VARCHAR (3) NOT NULL ,
PDB_model_num INT NOT NULL ,
failure VARCHAR (20) NOT NULL ,
INDEX(auth_seq_id),
INDEX(auth_asym_id),
INDEX(PDB_model_num),
INDEX(failure)

)
/) or croak $DBI:: errstr;
my $sth_insert_pdb_validation = $dbh ->prepare(qq/INSERT INTO pdb_validation(

auth_seq_id,
auth_asym_id,
PDB_model_num ,
failure

) VALUES (?, ?, ?, ?)/);
my $sth_select_pdb_validation = $dbh ->prepare(qq/

SELECT CONCAT(auth_seq_id, ’ ’, auth_asym_id, ’ (’, failure , ’)’) AS failure
FROM pdb_validation
WHERE PDB_model_num = 1
GROUP BY auth_seq_id, auth_asym_id, failure
ORDER BY auth_asym_id, auth_seq_id

/);
my $sth_select_domain_validation = $dbh ->prepare(qq/

SELECT CONCAT(a.auth_seq_id, ’ (’, a.failure , ’)’) AS failure
FROM pdb_validation a, atom_keep b
WHERE a.auth_seq_id = b.auth_seq_id
AND a.auth_asym_id = b.auth_asym_id
AND a.PDB_model_num = 1
GROUP BY a.auth_seq_id, a.failure
ORDER BY a.auth_seq_id

/);
my $sth_select_asym_unit_validation = $dbh ->prepare(qq/

SELECT CONCAT(auth_seq_id, ’ (’, failure , ’)’) AS failure
FROM pdb_validation

173

WHERE PDB_model_num = 1
AND auth_asym_id = ?
GROUP BY auth_seq_id, failure
ORDER BY auth_seq_id

/);

object for writing outpus files
my $csv = Text::CSV_XS->new ({ binary => 1, eol => "\r\n" });

cycle through proteins
my %asym_unit;
my $pdb_ids_ref = $dbh ->selectcol_arrayref(qq/SELECT DISTINCT(pdb_code) FROM domains WHERE pdb_code IS NOT NULL/);
#my $pdb_ids_ref = $dbh ->selectcol_arrayref(qq/SELECT DISTINCT(pdb_code) FROM domains WHERE pdb_code IN (’2J5K ’)/);
PDB: foreach my $pdb_id (@$pdb_ids_ref) {

print "\n=======\n$pdb_id\n-------\n" unless $quiet;
unlink_tmp_csv_files();
my %meta_pdb = (

id => $pdb_id,
resolution => undef ,
exptl_method => undef ,
creation_date => undef ,
last_mod_date => undef ,
rev_num => undef ,

);
insert_pdb_meta (\% meta_pdb);
$dbh ->commit or croak $DBI:: errstr;

my $data = parse_mmcif($pdb_id);
if(! defined($data)){

insert_pdb_issue($pdb_id, ’ERROR’, ’OBSOLETE ’, ’missing mmCIF file’);
$dbh ->commit or croak $DBI:: errstr;
next PDB;

}
my @mod_date = $data ->get_item_data(-item => ’_database_PDB_rev.date’);
@mod_date = map {Time::Piece ->strptime($_, ’%Y-%m-%d’) } @mod_date;
my $max_mod_date = max(@mod_date);
my @rev_num = $data ->get_item_data(-item => ’_database_PDB_rev.num’);
%meta_pdb = (

id => $pdb_id,
resolution => defined $data ->get_item_data(-item => ’_refine.ls_d_res_high’) ? ($data ->get_item_data(-item => ’_refine.ls_d_res_

high’))[0] : undef ,
exptl_method => ($data ->get_item_data(-item => ’_exptl.method ’))[0],
creation_date => min(@mod_date),
last_mod_date => $max_mod_date ,
rev_num => max(@rev_num),

);
update_pdb_meta (\% meta_pdb);
$dbh ->commit or croak $DBI:: errstr;

174

if ($max_mod_date > Time::Piece ->strptime(’2014 -02 -05’, ’%Y-%m-%d’)) {
insert_pdb_issue($pdb_id, ’WARN’, ’MODIFIED_POST_SCOP2’, ’mmCIF file last modified ’. $max_mod_date ->strftime(’%Y-%m-%d’));

}
get ATOM data into tmp table
$dbh ->do(qq/DELETE FROM atom/) or croak $DBI:: errstr;
get_item_data returns a list rather than a reference so we don ’t want to keep calling it , hence
my %atoms = (

group_PDB => [$data ->get_item_data(-item => ’_atom_site.group_PDB’)],
id => [$data ->get_item_data(-item => ’_atom_site.id’)],
type_symbol => [$data ->get_item_data(-item => ’_atom_site.type_symbol ’)],
label_atom_id => [$data ->get_item_data(-item => ’_atom_site.label_atom_id’)],
label_alt_id => [$data ->get_item_data(-item => ’_atom_site.label_alt_id’)],
label_comp_id => [$data ->get_item_data(-item => ’_atom_site.label_comp_id’)],
label_asym_id => [$data ->get_item_data(-item => ’_atom_site.label_asym_id’)],
label_seq_id => [$data ->get_item_data(-item => ’_atom_site.label_seq_id’)],
cartn_x => [$data ->get_item_data(-item => ’_atom_site.Cartn_x’)],
cartn_y => [$data ->get_item_data(-item => ’_atom_site.Cartn_y’)],
cartn_z => [$data ->get_item_data(-item => ’_atom_site.Cartn_z’)],
occupancy => [$data ->get_item_data(-item => ’_atom_site.occupancy ’)],
auth_asym_id => [$data ->get_item_data(-item => ’_atom_site.auth_asym_id’)],
auth_seq_id => [$data ->get_item_data(-item => ’_atom_site.auth_seq_id’)],
pdbx_PDB_model_num => [$data ->get_item_data(-item => ’_atom_site.pdbx_PDB_model_num’)],

);
eval {

ATOM: for (0 .. scalar(@{$atoms{’id’}} - 1)) {
next ATOM unless $atoms{’group_PDB’}->[$_] eq ’ATOM’;
next ATOM if $atoms{’type_symbol ’}->[$_] eq ’H’;
$sth_insert_atom ->execute(

$atoms{’id’}->[$_],
$atoms{’label_atom_id’}->[$_],
$atoms{’label_alt_id’}->[$_] eq ’.’ ? undef : $atoms{’label_alt_id’}->[$_],
$atoms{’label_comp_id’}->[$_],
$atoms{’label_asym_id’}->[$_],
$atoms{’label_seq_id’}->[$_],
$atoms{’cartn_x’}->[$_],
$atoms{’cartn_y’}->[$_],
$atoms{’cartn_z’}->[$_],
$atoms{’occupancy ’}->[$_],
$atoms{’auth_asym_id’}->[$_],
$atoms{’auth_seq_id’}->[$_],
$atoms{’pdbx_PDB_model_num’}->[$_]

);
}

};
if($@) {

my ($text) = $@ =~ m/^(.+) at .*\/mmcif_to.+$/;
$dbh ->rollback or croak $DBI:: errstr; # do not want any warnings

175

insert_pdb_issue($pdb_id, ’ERROR’, ’UNEXPECTED_ON_ATOM_INSERT ’, $text);
$dbh ->commit or croak $DBI:: errstr;
next PDB;

}

capture PDB validation
$dbh ->do(qq/DELETE FROM pdb_validation/) or croak $DBI:: errstr;
my %validation;
for my $type ((’chiral ’, ’close_contact ’, ’main_chain_plane’, ’peptide_omega’, ’planes ’, ’planes_atom’, ’polymer_linkage ’, ’rmsd_

angle’, ’rmsd_bond’, ’symm_contact ’, ’torsion ’)){
%validation = (

auth_seq_id => [$data ->get_item_data(-item => "_pdbx_validate_${type}.auth_seq_id")],
auth_asym_id => [$data ->get_item_data(-item => "_pdbx_validate_${type}.auth_asym_id")],
auth_seq_id_1 => [$data ->get_item_data(-item => "_pdbx_validate_${type}.auth_seq_id_1")],
auth_asym_id_1 => [$data ->get_item_data(-item => "_pdbx_validate_${type}.auth_asym_id_1")],
auth_seq_id_2 => [$data ->get_item_data(-item => "_pdbx_validate_${type}.auth_seq_id_2")],
auth_asym_id_2 => [$data ->get_item_data(-item => "_pdbx_validate_${type}.auth_asym_id_2")],
auth_seq_id_3 => [$data ->get_item_data(-item => "_pdbx_validate_${type}.auth_seq_id_3")],
auth_asym_id_3 => [$data ->get_item_data(-item => "_pdbx_validate_${type}.auth_asym_id_3")],
PDB_model_num => [$data ->get_item_data(-item => "_pdbx_validate_${type}.PDB_model_num")],

);
can have single residue or 1, 2, or 3 atoms
if(scalar(@{$validation{’auth_seq_id_3’}})) {

for (0 .. scalar(@{$validation{’auth_seq_id_3’}} - 1)) {
$sth_insert_pdb_validation ->execute(

$validation{’auth_seq_id_3’}->[$_],
$validation{’auth_asym_id_3’}->[$_],
$validation{’PDB_model_num’}->[$_],
$type

);
};

} elsif(scalar(@{$validation{’auth_seq_id_2’}})) {
for (0 .. scalar(@{$validation{’auth_seq_id_1’}} - 1)) {

$sth_insert_pdb_validation ->execute(
$validation{’auth_seq_id_1’}->[$_],
$validation{’auth_asym_id_1’}->[$_],
$validation{’PDB_model_num’}->[$_],
$type

);
$sth_insert_pdb_validation ->execute(

$validation{’auth_seq_id_2’}->[$_],
$validation{’auth_asym_id_2’}->[$_],
$validation{’PDB_model_num’}->[$_],
$type

);
};

} else {
for (0 .. scalar(@{$validation{’auth_seq_id’}} - 1)) {

176

$sth_insert_pdb_validation ->execute(
$validation{’auth_seq_id’}->[$_],
$validation{’auth_asym_id’}->[$_],
$validation{’PDB_model_num’}->[$_],
$type

);
};

}
}
my $pdb_validation = $dbh ->selectcol_arrayref($sth_select_pdb_validation);
if(scalar(@{$pdb_validation })) {

my $text = join(’, ’, @{$pdb_validation });
$text = substr($text , 0, 100) . ’ <snip >’ if (length($text) > 100);
insert_pdb_issue($pdb_id, ’WARN’, ’VALIDATION ’, $text);

}

cycle through domains for the protein
$sth_select_dom_names ->execute($pdb_id) or croak $sth_select_dom_names ->errstr;
croak "domain SELECT got zero rows" if ($sth_select_dom_names ->rows == 0);
DOMAIN: while (my $domain = $sth_select_dom_names ->fetchrow_arrayref ()) { # DISTICT

$dbh ->do(qq|DELETE FROM atom_keep|) or croak $DBI:: errstr;
my $dom_name = $domain ->[0];
print "\n$dom_name\n" unless $quiet;
$sth_select_serial ->execute($dom_name) or croak $sth_select_serial ->errstr;
croak "serial SELECT got zero rows" if ($sth_select_serial ->rows == 0);
my %meta_domain = (

dom_name => $dom_name ,
pdb_id => $pdb_id,
count_serial => $sth_select_serial ->rows ,
count_residues => undef ,

);
insert_domain_meta (\% meta_domain);
my @expected_auth_seq_ids;
serial , pdb_chain , pdb_begin , pdb_end
SERIAL: while (my $s = $sth_select_serial ->fetchrow_arrayref ()) {

my ($serial , $pdb_chain , $pdb_begin , $pdb_end) = @{$s};
push(@expected_auth_seq_ids , ($pdb_begin .. $pdb_end));
unless ($asym_unit{join(’_’, $pdb_id, $pdb_chain)}++) {

write_asym_unit_csv($pdb_id, $pdb_chain); ## TODO
my $asym_unit_validation = $dbh ->selectcol_arrayref($sth_select_asym_unit_validation , {}, $pdb_chain);
if(scalar(@{$asym_unit_validation })) {

my $text = join(’, ’, @{$asym_unit_validation });
$text = substr($text , 0, 100) . ’ <snip >’ if (length($text) > 100);
insert_asym_unit_issue($pdb_id, $pdb_chain , ’WARN’, ’VALIDATION ’, $text);

}
};
eval {

$dbh ->do(qq|

177

INSERT INTO atom_keep
/* rows without a label_alt_id */
SELECT id,

’$serial ’,
label_atom_id,
label_alt_id,
label_comp_id,
cartn_x,
cartn_y,
cartn_z,
occupancy ,
auth_asym_id,
auth_seq_id

FROM atom
WHERE pdbx_PDB_model_num = 1

AND auth_asym_id = ’$pdb_chain’
AND label_alt_id IS NULL
AND auth_seq_id >= $pdb_begin
AND auth_seq_id <= $pdb_end

UNION
SELECT c.id,

’$serial ’,
c.label_atom_id,
c.label_alt_id,
c.label_comp_id,
c.cartn_x,
c.cartn_y,
c.cartn_z,
c.occupancy ,
c.auth_asym_id,
c.auth_seq_id

FROM atom c
INNER JOIN (

/* ensure a single label_alt_id for each auth_seq_id:
- this should be the label_alt_id that offers the maximum occupancy;

but this is only guaranteed if all rows of the label_alt_id for a particular auth_seq_id
have the same occupancy

- note that only a subset of rows for a auth_seq_id may have a (none ’.’) label_alt_id */
SELECT MIN(a.label_alt_id) AS label_alt_id,

b.auth_seq_id AS auth_seq_id,
b.max_occupancy

FROM atom a
INNER JOIN (

SELECT auth_seq_id,
MAX(occupancy) AS max_occupancy

FROM atom
WHERE pdbx_PDB_model_num = 1

AND auth_asym_id = ’$pdb_chain’

178

AND label_alt_id IS NOT NULL
GROUP BY auth_seq_id

) b
ON (a.occupancy = b.max_occupancy)

GROUP BY b.auth_seq_id,
b.max_occupancy

) d
ON (

c.pdbx_PDB_model_num = 1
AND c.auth_asym_id = ’$pdb_chain’
AND c.auth_seq_id = d.auth_seq_id
AND c.label_alt_id = d.label_alt_id

)
WHERE c.auth_seq_id >= $pdb_begin

AND c.auth_seq_id <= $pdb_end
|) or die $DBI:: errstr;

};
if ($@) {

$dbh ->rollback or die $DBI:: errstr; # this is considered a PDB error so get rid of all deeper references
$sth_select_serial ->finish;
$sth_select_dom_names ->finish;
my ($text) = $@ =~ m/^(.+) at .*\/mmcif_to.+$/;
insert_pdb_issue($pdb_id, ’ERROR’, ’UNEXPECTED_ON_ATOM_KEEP_INSERT ’, ’DOMAIN ’ . $dom_name . ’ - ’ . $text);
$dbh ->commit or die $DBI:: errstr;
next PDB;

}
}
$sth_select_serial ->finish;

my $got_auth_seq_ids = $dbh ->selectcol_arrayref($sth_select_atom_keep_seq_ids) or die $DBI:: errstr;
my $count_residues = scalar(@{$got_auth_seq_ids});
#update domain meta with count
$sth_update_domain ->execute($count_residues , $dom_name) or die $DBI:: errstr;

write_domain_csv($dom_name);

my ($only_expected , $only_got) = compare_lists(\ @expected_auth_seq_ids , $got_auth_seq_ids);
if(scalar(@{$only_expected }) or scalar(@{$only_got})) {

if(scalar(@{$only_expected })) {
my $text = join(’, ’, @{$only_expected });
$text = substr($text , 0, 100) . ’ <snip >’ if (length($text) > 100);
insert_domain_issue($dom_name , ’WARN’, ’AUTH_SEQ_ID_MISSING ’, $text);

}
if(scalar(@{$only_got})) {

my $text = join(’, ’, @{$only_got});
$text = substr($text , 0, 100) . ’ <snip >’ if (length($text) > 100);
insert_domain_issue($dom_name , ’WARN’, ’AUTH_SEQ_ID_UNEXPECTED ’, $text);

}

179

}

validation reports
my $domain_validation = $dbh ->selectcol_arrayref($sth_select_domain_validation);
if(scalar(@{$domain_validation })) {

my $text = join(’, ’, @{$domain_validation });
$text = substr($text , 0, 100) . ’ <snip >’ if (length($text) > 100);
insert_domain_issue($dom_name , ’WARN’, ’VALIDATION ’, $text);

}

}
$sth_select_dom_names ->finish;
$dbh ->commit or die $DBI:: errstr;
mv_tmp_csv_files();

}

$dbh ->do(qq/
DROP TABLE IF EXISTS atom

/) or croak $DBI:: errstr;
$dbh ->do(qq/

DROP TABLE IF EXISTS atom_keep
/) or croak $DBI:: errstr;
$dbh ->do(qq/

DROP TABLE IF EXISTS pdb_validation
/) or croak $DBI:: errstr;

$dbh ->disconnect ();

subroutines

sub parse_mmcif {
my $id = shift;
$id = lc($id);

my $cifpath = File::Spec ->catfile($indir , substr($id , 1, 2), $id . ’.cif.gz’);
return(undef) unless(-f $cifpath);

STAR :: Parser does not accept file handles so we need to write the physical unzipped file
my $tmp_file = tmpnam ();
gunzip $cifpath => $tmp_file or croak "gunzip failed: $GunzipError\n";
my @data = STAR::Parser ->parse(

-file => $tmp_file ,
);
unlink $tmp_file or croak "Could not unlink $tmp_file: $!";

180

die ’STAR:: Parser found multiple DataBlocks ’ if @data != 1;

return $data [0];
}

sub insert_pdb_meta {
my $meta = shift;
$sth_insert_pdb ->execute(

$meta ->{’id’},
$meta ->{’exptl_method ’},
$meta ->{’resolution ’},
defined $meta ->{’creation_date’} ? $meta ->{’creation_date’}->mysql_date : undef ,
defined $meta ->{’last_mod_date’} ? $meta ->{’last_mod_date’}->mysql_date : undef ,
$meta ->{’rev_num’}

) or croak $DBI:: errstr;
}

sub update_pdb_meta {
my $meta = shift;
$sth_update_pdb ->execute(

$meta ->{’exptl_method ’},
$meta ->{’resolution ’},
defined $meta ->{’creation_date’} ? $meta ->{’creation_date’}->mysql_date : undef ,
defined $meta ->{’last_mod_date’} ? $meta ->{’last_mod_date’}->mysql_date : undef ,
$meta ->{’rev_num’},
$meta ->{’id’}

) or croak $DBI:: errstr;
}

sub insert_pdb_issue {
my ($pdb_id, $level , $type , $text) = @_;
$sth_insert_pdb_issue ->execute(@_) or croak $DBI:: errstr;
print $level . ": " . $type . " - " . $text . "\n" unless $quiet;

}

sub insert_domain_meta {
my $meta = shift;
$sth_insert_domain ->execute(

$meta ->{’dom_name’},
$meta ->{’pdb_id’},
$meta ->{’count_serial ’},
$meta ->{’count_residues ’}

) or croak $DBI:: errstr;
}

sub insert_domain_issue {
my ($dom_name , $level , $type , $text) = @_;
$sth_insert_domain_issue ->execute(@_) or croak $DBI:: errstr;

181

print $level . ": " . $type . " - " . $text . "\n" unless $quiet;
}

sub write_domain_csv {
my $dom_name = shift;
my $outpath = File::Spec ->catfile($tmpdomaindir , $dom_name . ’.csv’);
print "Writing $outpath\n" unless $quiet;
open my $fh, ’>’, $outpath or die "Cannot open ’$outpath ’ for writing: $!";
$sth_select_atom_keep ->execute;
$csv ->print ($fh, $sth_select_atom_keep ->{NAME_lc});
while (my $row = $sth_select_atom_keep ->fetch) {

$csv ->print ($fh, $row);
}
$sth_select_atom_keep ->finish;
$fh->close();

}

sub insert_asym_unit_issue {
my ($pdb_id, $pdb_chain , $level , $type , $text) = @_;
$sth_insert_asym_unit_issue ->execute(@_) or croak $DBI:: errstr;
print $level . ": " . $type . " - " . $text . "\n" unless $quiet;

}

sub write_asym_unit_csv {
my ($pdb_id, $pdb_chain) = @_;
my $outpath = File::Spec ->catfile($tmpasymunitdir , $pdb_id . ’_’ . $pdb_chain . ’.csv’);
print "Writing $outpath\n" unless $quiet;
open my $fh, ’>’, $outpath or die "Cannot open ’$outpath ’ for writing: $!";
$sth_select_asym_unit ->execute((($pdb_chain) x 3));
$csv ->print ($fh, $sth_select_asym_unit ->{NAME_lc});
while (my $row = $sth_select_asym_unit ->fetch) {

$csv ->print ($fh, $row);
}
$sth_select_asym_unit ->finish;
$fh->close();

}

sub compare_lists {
my ($a, $b) = @_;
my %seen;
my @aonly;
@seen{@{$b}} = ();
foreach my $item (@{$a}) {

push(@aonly , $item) unless exists $seen{$item};
}
my @bonly;
@seen{@{$a}} = ();
foreach my $item (@{$b}) {

182

push(@bonly , $item) unless exists $seen{$item};
}
return (\@aonly , \@bonly);

}

sub mv_tmp_csv_files {
my @files = glob File::Spec ->catfile($tmpdomaindir , ’*.csv’);
foreach my $file (@files) {

print "Moving $file to $domaindir\n" unless $quiet;
move($file , $domaindir) or croak "Could not move $file to $domaindir: $!\n";

}
@files = glob File::Spec ->catfile($tmpasymunitdir , ’*.csv’);
foreach my $file (@files) {

print "Moving $file to $asymunitdir\n" unless $quiet;
move($file , $asymunitdir) or croak "Could not move $file to $asymunitdir: $!\n";

}
}

sub unlink_tmp_csv_files {
my @files = glob File::Spec ->catfile($tmpdomaindir , ’*.csv’);
if(scalar(@files)) {

print "Unlinking " . join(’, ’, @files) . "\n" unless $quiet;
unlink @files or croak "Failed to unlink all files in $tmpdomaindir: $!\n";

}
@files = glob File::Spec ->catfile($tmpasymunitdir , ’*.csv’);
if(scalar(@files)) {

print "Unlinking " . join(’, ’, @files) . "\n" unless $quiet;
unlink @files or croak "Failed to unlink all files in $tmpasymunitdir: $!\n";

}
}

=pod

=head1 NAME

mmcif_to_domain_landmarks.pl - extract domain ATOM data from PDBx/mmCIF files into csv files

=head1 SYNOPSIS

mmcif_to_domain_landmarks.pl -i <pdb_file_dir > -o <csv_out_dir >

mmcif_to_domain_landmarks.pl -h

mmcif_to_domain_landmarks.pl -i ./mmCIF/ -o ./csv/

=head1 Commandline Options

183

=over 4

=item -h

Display this POD.

=item -q

Do not print any progress to STDOUT.

=item -i dir_path , --indir=dir_path

Path to the directory containing the PDBx/mmCIF files.

=item -o dir_path , --outdb=dir_path

Path to the directory where the output CSV files are to be written.

=back

=head1 DESCRIPTION

Extract ATOM coordinates data from Protein Data Bank PDBx/mmCIF files for all domains in the SCOP2 database.

The script was written to run once so there are no formal unit tests.
The script is supplied only as a record of the data extraction process.
Database integrity constraints are used where possible to validate the output.
Testing of the results was done manually after the run.

The code assumes that there exists a local instance of the L<scop2|http://scop2.mrc -lmb.cam.ac.uk/download.html > database with a C<
scop2rw > user that can C<CREATE > and C<DROP > tables.

When run the script will prompt for the database password.

=head2 CSV files

The script creates and populates two sub directories within C<csv_out_dir > these are named C<asymetric_units > and C<domains >.
The C<domains > directory contain CSV files containing the atomic co-ordinates for each of the domains in the SCOP2 database , with the

exception of domains referencing PDB files that have been marked as C<OBSOLETE > in the PDB.
The file name is the domain reference as given in the SCOP2 database (C<domains.dom_name >).

$ ls -l domains
-rw-r--r-- 1 tonyh tonyh 57876 Jan 7 09:10 CF -8000575 -1 SAYA.csv
-rw-r--r-- 1 tonyh tonyh 28608 Jan 7 09:11 CF -8000764 -2 PWZA.csv
-rw-r--r-- 1 tonyh tonyh 42865 Jan 7 09:09 CF -8000817 -2 JHFA.csv
-rw-r--r-- 1 tonyh tonyh 27604 Jan 7 09:09 CF -8000825 -1 QORA.csv

$ head domains/CF -8000575 -1 SAYA.csv
id,serial ,label_atom_id,label_alt_id,label_comp_id,cartn_x,cartn_y,cartn_z,occupancy ,auth_asym_id,auth_seq_id

184

1,1,N,,MET , -12.817 ,34.708 ,32.066 ,1 ,A,1
2,1,CA,,MET , -11.663 ,35.505 ,32.484 ,1 ,A,1
3,1,C,,MET , -11.155 ,36.336 ,31.331 ,1 ,A,1
4,1,O,,MET , -11.533 ,36.107 ,30.171 ,1 ,A,1
5,1,CB,,MET , -10.552 ,34.586 ,32.994 ,1 ,A,1

The C<asymetric_units > directory contains CSV files containing the complete set of atomic co-ordinates for every asymetric unit
referenced by the SCOP2 domains.

$ ls -l asymetric_units
total 94744
-rw-r--r-- 1 tonyh tonyh 110105 Jan 7 09:52 1A4I_B.csv
-rw-r--r-- 1 tonyh tonyh 44098 Jan 7 09:31 1A5J_A.csv
-rw-r--r-- 1 tonyh tonyh 120022 Jan 7 09:51 1A5Z_A.csv
-rw-r--r-- 1 tonyh tonyh 88068 Jan 7 09:27 1A8L_A.csv

$ head asymetric_units/1A4I_B.csv
id,label_atom_id,label_alt_id,label_comp_id,label_asym_id ,label_seq_id,cartn_x,cartn_y,cartn_z,occupancy ,auth_asym_id,auth_seq_id,

pdbx_pdb_model_num
2160,N,,ALA ,B,2 , -2.875 ,17.033 ,57.446 ,1 ,B,2,1
2161,CA,,ALA ,B,2 , -3.679 ,17.481 ,56.266 ,1 ,B,2,1
2162,C,,ALA ,B,2 , -2.742 ,17.664 ,55.077 ,1 ,B,2,1
2163,O,,ALA ,B,2 , -2.582 ,18.769 ,54.567 ,1 ,B,2,1
2164,CB,,ALA ,B,2 , -4.435 ,18.761 ,56.575 ,1 ,B,2,1

These CSV data files can be read into C<R> using code something like

atom_data <- read.delim(’domains/CF -8000575 -1 SAYA.csv’, header=TRUE , sep=’,’, stringsAsFactors = FALSE , row.names = 1)

which gives a C<data.frame > of the form

> head(atom_data , 12)
serial label_atom_id label_alt_id label_comp_id cartn_x cartn_y cartn_z occupancy auth_asym_id auth_seq_id

1 1 N NA MET -12.817 34.708 32.066 1 A 1
2 1 CA NA MET -11.663 35.505 32.484 1 A 1
3 1 C NA MET -11.155 36.336 31.331 1 A 1
4 1 O NA MET -11.533 36.107 30.171 1 A 1
5 1 CB NA MET -10.552 34.586 32.994 1 A 1
6 1 CG NA MET -9.186 34.949 32.513 1 A 1
7 1 SD NA MET -7.936 34.291 33.604 1 A 1
8 1 CE NA MET -8.908 33.216 34.674 1 A 1
9 1 N NA GLU -10.311 37.308 31.630 1 A 2
10 1 CA NA GLU -9.728 38.123 30.555 1 A 2
11 1 C NA GLU -8.412 37.497 30.198 1 A 2
12 1 O NA GLU -7.578 37.245 31.069 1 A 2

and hence the co-ordinates of just the backbone atoms could be obtained something like this

185

> backbone_atoms <- atom_data[atom_data$label_atom_id %in% c(’CA’, ’C’, ’N’, ’O’), c(’cartn_x’, ’cartn_y’, ’cartn_z’)]

> head(backbone_atoms)
cartn_x cartn_y cartn_z

1 -12.817 34.708 32.066
2 -11.663 35.505 32.484
3 -11.155 36.336 31.331
4 -11.533 36.107 30.171
9 -10.311 37.308 31.630
10 -9.728 38.123 30.555

and a 3D plot to check the data looks OK

library(rgl)
plot3d(backbone_atoms , type = ’s’, col = ’darkgreen ’, radius = 0.4)

or plot all atoms , coloring sidechain atoms differently

library(rgl)
cols <- ifelse(atom_data$label_atom_id %in% c(’CA’, ’C’, ’N’, ’O’), ’darkgreen ’, ’gray’)
plot3d(atom_data[, c(’cartn_x’, ’cartn_y’, ’cartn_z’)], type = ’s’, col = cols , radius = 0.4)

=head2 Database tables

The script also creates the following database tables in the C<scop2 > schema

+---------------+ +------------+
| pdb | | pdb_issue |

1 +---------------+ 1 * +------------+
----| id* |===---------| pdb_id |

	exptl_method			level
	resolution			type
	creation_date			text
	last_mod_date		+------------+ +-------------------+	
	rev_num			asym_unit_issue
+---------------+	* +-------------------+			
---------------------------------	pdb_id			
	asym_id			
	level			
+----------------+ +-----------------+	type			
	domain		domain_issue	
+----------------+ 1 * +-----------------+ +-------------------+				
*	dom_name*	-----------	domain_dom_name	
----| pdb_id | | level |

| count_serial | | type |
| count_residues | | text |
+----------------+ +-----------------+

186

The C<pdb > and C<domain > tables contain metadata about the full protein entries and specific domains; derived from the PSB mmCIF files.

The quality of the data in the PDB is very variable.
The C<pdb_issue >, C<domain_issue > and C<asym_unit_issue > tables contain details of issues relating to the set of C<ATOM > records for each

of the structures.
The issues are rated with one of two possible levels C<ERROR > or C<WARN >.

C<ERROR > indicates that the script was unable to process the the C<ATOM > records for the structure.
For records with an C<ERROR > the associated CSV files are NOT created.

+--------+-------+--------------------------------+---+

| pdb_id | level | type | text
|

+--------+-------+--------------------------------+---+

| 2FB1 | ERROR | OBSOLETE | missing mmCIF file
|

| 1D5Y | ERROR | UNEXPECTED_ON_ATOM_INSERT | DBD::mysql::st execute failed: Bad label_atom_id: >>O5’<<
|

| 2EC9 | ERROR | UNEXPECTED_ON_ATOM_KEEP_INSERT | DOMAIN CF -8003777 -2 EC9H - DBD::mysql::db do failed: Duplicate entry ’N-60-H’ for
key ’label_atom_id’ |

+--------+-------+--------------------------------+---+

C<WARN > indicates either an error in the data where the data is still understandable , or when there are data validation issues as
indicated by the PDB validation reports.

+--------+-------+---------------------+---+

| pdb_id | level | type | text
|

+--------+-------+---------------------+---+

| 3OL4 | WARN | MODIFIED_POST_SCOP2 | mmCIF file last modified 2015 -04 -22
|

| 3DBH | WARN | VALIDATION | 36 A (torsion), 38 A (torsion), 39 A (torsion), 63 A (torsion), 65 A (torsion), 66 A (
torsion), 79 A <snip > |

+--------+-------+---------------------+---+

+------------------+-------+---------------------+---+

| domain_dom_name | level | type | text
|

+------------------+-------+---------------------+---+

187

| CF -8002341 -1 MIJA | WARN | AUTH_SEQ_ID_MISSING | 1314, 1315, 1316, 1317, 1318, 1319, 1320, 1321, 1322, 1323, 1324, 1325, 1326
|

| SP -8002542 -1 JT6B | WARN | VALIDATION | 4 (torsion), 18 (torsion), 21 (close_contact), 33 (torsion), 41 (torsion), 44 (
torsion), 89 (torsion <snip > |

+------------------+-------+---------------------+---+

+--------+---------+-------+------------+---+

| pdb_id | asym_id | level | type | text
|

+--------+---------+-------+------------+---+

| 1OFC | X | WARN | VALIDATION | 734 (rmsd_angle), 751 (peptide_omega), 752 (peptide_omega), 756 (torsion), 794 (chiral),
795 (torsio <snip > |

+--------+---------+-------+------------+---+

=head1 See Also

C<fetch_pdb_files.pl>

=cut188

C.3 Fetch PDB files

#!/usr/bin/perl

use strict;
use warnings;

use Getopt ::Long;
use File::Slurp;
use File::Path qw/make_path/;
use File::Spec;
use File::Temp qw(tempfile);
use POSIX;

use constant ERROR_FILE => ’FETCH_ERRORS_’ . strftime("%Y%m%d%H%M%S",localtime) . ’.txt’;

my $help = 0;
my $outdir;
my $infile = ’’;
my $pdbids = ’’;
GetOptions(

’help’ => \$help ,
"outdir=s" => \$outdir ,
"infile=s" => \$infile ,
"pdbids=s" => \$pdbids ,

);

if ($help) {
require Pod::Usage;
Pod::Usage:: pod2usage(-verbose => 2);

}

die "You must provide either a list of PDB IDs on the command line or in a file (not both)" unless (($infile || $pdbids) && ! ($infile &
& $pdbids));

die "You must supply a directory path for the retrieved data files" unless($outdir);
make_path($outdir) unless (-d $outdir);

my @pdbids;
if ($pdbids) {

@pdbids = split(/,/,$pdbids);
}
else {

@pdbids = read_file($infile ,chomp=>1) ;
}
die "List of PDB IDs looks wrong" if (grep { ! m/^[A-Za-z0 -9]{4}$/ } @pdbids);

189

my @sources = map { File::Spec ->catfile(lc(substr($_ ,1,2)), lc($_).’.cif.gz’) } @pdbids;
my ($tmp_fh, $tmp_path) = tempfile ();
foreach (@sources) { print $tmp_fh $_ ."\n" };
close $tmp_fh;

my $status = system("rsync -rlpt -v -z --delete --files -from=$tmp_path rsync.ebi.ac.uk::pub/databases/pdb/data/structures/divided/mmCIF/
$outdir");

warn "rsync had errors: $?" unless $status == 0;

unlink $tmp_path or warn "Could not unlink $tmp_path: $!";

=pod

=head1 NAME

fetch_pdb_files.pl - fetch PDBx/mmCIF files

=head1 SYNOPSIS

fetch_pdb_files.pl (-i <pdb_id_file > | -p <pdb_ids >) -o <fetched_file_dir > [-q]

fetch_pdb_files.pl -h

fetch_pdb_files.pl -i ./pdb_ids.txt -o ./mmCIF/
fetch_pdb_files.pl -p 1a7w ,1aab ,1adz -o ./mmCIF/

=head1 DESCRIPTION

Fetches Protein Data Bank files from wwpdb.org and puts them in a specified directory.

This script uses C<rsync >, as described at L<http://www.wwpdb.org/downloads.html >, so if a file is already present in the fetched_files_
dir and is up-to-date it will not be re-fetched.

The fetched files are gzipped PDBx/mmCIF files and are created in a one level deep directory structure within fetched_file_dir. The
directory structure is as per ftp server at wwpdb.org and looks something like this:

mmCIF/j2/2j2u.cif.gz
/2j2z.cif.gz

...
mmCIF/jm/1jm0.cif.gz

/1jm1.cif.gz
/1jm4.cif.gz
/1jm6.cif.gz

...

190

Note if you want to fetch a single file it is probably easier to do something like:

wget ’http://www.rcsb.org/pdb/files/1a7w.cif’

=head2 Commandline Options

You can only specify one of B<-i> and B<-p>.

=over 4

=item -h

Display this POD.

=item -i filepath , --infile=filepath

A text file containing the four character PDB IDs of the PDB files to be fetched; one PDB ID per line.

Example file content:

1a7w
1aab
1adz

=item -p comma_seperated_PDB_IDs , --pdbids=comma_seperated_PDB_IDs

Specify multiple PDB IDs on the command line as a comma seperated list.

=item -o directory_path , --outdir=directory_path

Directory to store the retrieved PDB files.

If the folder does not exist the script will try to create it.

=back

=cut

191

C.4 SQL queries

C.4.1 Families with at least 10 members

Domains from families with at least 10 members that are associated to asymetric units of no greater than 250 residues. The results are given in Table 4.3.

SELECT
ds.dom_name ,
CONCAT_WS(’_’, ds.pdb_code , ds.pdb_chain) AS asym_unit ,
ds.node ,
d.count_residues AS dom_res_count ,
au.count_residues AS asym_unit_res_count ,
IF(di.domain_dom_name IS NULL , FALSE , TRUE) as dom_val_warn ,
IF(aui.pdb_id IS NULL , FALSE , TRUE) as asym_unit_val_warn

FROM
domains ds LEFT JOIN domain_issue di ON

(ds.dom_name = di.domain_dom_name AND di.type = ’VALIDATION ’)
LEFT JOIN asym_unit_issue aui ON

(ds.pdb_code = aui.pdb_id AND ds.pdb_chain = aui.asym_id AND aui.type = ’VALIDATION ’),
asym_unit au,
domain d

WHERE
au.pdb_id = ds.pdb_code AND au.asym_id = ds.pdb_chain
AND au.count_residues <= 250
AND ds.serial = 1
AND d.dom_name = ds.dom_name
AND ds.node IN (SELECT

node
FROM

domains
WHERE

LEFT(node , 2) = ’FA’
GROUP BY node
HAVING COUNT(*) >= 10)

ORDER BY ds.node

192

Bibliography

Chapter 1

Andreeva, A. et al. (Jan. 1, 2014).“SCOP2 prototype: a new approach to protein structure

mining”. In: Nucleic Acids Research 42 (D1), pp. D310–D314. issn: 0305-1048, 1362-

4962. doi: 10.1093/nar/gkt1242.

Bookstein, F. L. (June 28, 1997). Morphometric Tools for Landmark Data: Geometry and

Biology. Cambridge University Press. 459 pp. isbn: 978-0-521-58598-9.

Chambers, J. (Nov. 23, 2010). Software for Data Analysis: Programming with R. Softcover

reprint of hardcover 1st ed. 2008 edition. New York, NY: Springer. 516 pp. isbn: 978-1-

4419-2612-8.

Christiansen, T. et al. (Mar. 9, 2012). Programming Perl: Unmatched power for text pro-

cessing and scripting. 4 edition. Beijing ; Sebastopol: O’Reilly Media. 1184 pp. isbn:

978-0-596-00492-7.

Csaba, G., F. Birzele, and R. Zimmer (Apr. 17, 2009).“Systematic comparison of SCOP and

CATH: a new gold standard for protein structure analysis”. In: BMC Structural Biology

9, p. 23. issn: 1472-6807. doi: 10.1186/1472-6807-9-23.

Dill, K. and S. Bromberg (Dec. 13, 2010). Molecular Driving Forces: Statistical Thermo-

dynamics in Biology, Chemistry, Physics, and Nanoscience. 2nd edition. London ; New

York: Garland Science. 778 pp. isbn: 978-0-8153-4430-8.

Dryden, I. L. and K. V. Mardia (1998). Statistical shape analysis. Chichester; New York:

John Wiley & Sons. isbn: 0-585-26570-4.

– (July 8, 2016). Statistical Shape Analysis: With Applications in R. 2nd Ed. Wiley. 496 pp.

Fox, N. K., S. E. Brenner, and J. Chandonia (Nov. 1, 2015).“The value of protein structure

classification information—Surveying the scientific literature”. In: Proteins: Structure,

Function, and Bioinformatics 83.11, pp. 2025–2038. issn: 1097-0134. doi: 10.1002/

prot.24915.

Golub, G. H. (2013). Matrix computations. In collab. with C. F. Van Loan. 4th ed. Johns

Hopkins studies in the mathematical sciences. Baltimore: The Johns Hopkins University

Press. 756 pp. isbn: 978-1-4214-0794-4.

Green, P. J. and K. V. Mardia (June 1, 2006). “Bayesian alignment using hierarchical

models, with applications in protein bioinformatics”. In: Biometrika 93.2, pp. 235–254.

issn: 0006-3444, 1464-3510. doi: 10.1093/biomet/93.2.235.

193

Hamelryck, T., K. V. Mardia, and J. Ferkinghoff-Borg, eds. (Mar. 24, 2012). Bayesian

Methods in Structural Bioinformatics. Springer. 385 pp. isbn: 978-3-642-27224-0.

Harder, T. et al. (Feb. 15, 2012). “Fast large-scale clustering of protein structures using

Gauss integrals”. In: Bioinformatics 28.4, pp. 510–515. issn: 1367-4803. doi: 10.1093/

bioinformatics/btr692.

Hasegawa, H. and L. Holm (June 1, 2009). “Advances and pitfalls of protein structural

alignment”. In: Current Opinion in Structural Biology 19.3, pp. 341–348. issn: 0959-

440X. doi: 10.1016/j.sbi.2009.04.003.

Holland, T. A. et al. (Aug. 18, 2006). “Partitioning Protein Structures into Domains: Why

Is it so Difficult?” In: Journal of Molecular Biology 361.3, pp. 562–590. issn: 0022-2836.

doi: 10.1016/j.jmb.2006.05.060.

Horn, R. A. and C. R. Johnson (2012). Matrix Analysis. Cambridge University Press. 663 pp.

isbn: 978-1-139-78888-5.

Hubbard, T. J. P. et al. (Jan. 1, 1999). “SCOP: a Structural Classification of Proteins

database”. In: Nucleic Acids Research 27.1, pp. 254–256. issn: 0305-1048, 1362-4962.

doi: 10.1093/nar/27.1.254.

Kendall, D. G. (Mar. 1, 1984). “Shape Manifolds, Procrustean Metrics, and Complex Pro-

jective Spaces”. In: Bulletin of the London Mathematical Society 16.2, pp. 81–121.

Kendall, D. G. et al. (1999). Shape and Shape Theory. John Wiley & Sons. isbn: 0-471-

96823-4.

Al-Lazikani, B., E. E. Hill, and V. Morea (Jan. 1, 2008).“Protein Structure Prediction”. In:

Bioinformatics. Ed. by J. M. Keith. Methods in Molecular Biology 453. Humana Press,

pp. 33–85.

Lesk, A. M. (Nov. 2013). Introduction to Bioinformatics. Oxford University Press. 395 pp.

isbn: 978-0-19-965156-6.

Lupyan, D., A. Leo-Macias, and A. R. Ortiz (Aug. 1, 2005). “A new progressive-iterative

algorithm for multiple structure alignment”. In: Bioinformatics 21.15, pp. 3255–3263.

issn: 1367-4803. doi: 10.1093/bioinformatics/bti527.

Papachristodoulou, D. K. et al. (2014). Biochemistry and molecular biology. 5th ed. Oxford:

Oxford University Press. 591 pp. isbn: 978-0-19-960949-9.

Pavlopoulou, A. and I. Michalopoulos (May 23, 2011).“State-of-the-art bioinformatics pro-

tein structure prediction tools (Review)”. In: International Journal of Molecular Medicine.

issn: 1107-3756, 1791-244X. doi: 10.3892/ijmm.2011.705.

R Core Team (2016). R: A Language and Environment for Statistical Computing. Vienna,

Austria: R Foundation for Statistical Computing.

Røgen, P. (2005).“Evaluating protein structure descriptors and tuning Gauss integral based

descriptors”. In: Journal of Physics: Condensed Matter 17.18, S1523. issn: 0953-8984.

doi: 10.1088/0953-8984/17/18/010.

Schönemann, P. H. (Mar. 1966).“A generalized solution of the orthogonal procrustes prob-

lem”. In: Psychometrika 31.1, pp. 1–10. issn: 0033-3123, 1860-0980. doi: 10.1007/

BF02289451.

194

Shindyalov, I. N. and P. E. Bourne (Sept. 1, 1998). “Protein structure alignment by incre-

mental combinatorial extension (CE) of the optimal path.”In: Protein Engineering, Design

and Selection 11.9, pp. 739–747. issn: 1741-0126. doi: 10.1093/protein/11.9.739.

Sillitoe, I. et al. (Jan. 28, 2015). “CATH: comprehensive structural and functional annota-

tions for genome sequences”. In: Nucleic Acids Research 43 (D1), pp. D376–D381. issn:

0305-1048. doi: 10.1093/nar/gku947.

Sippl, M. J. (Mar. 15, 2008). “On distance and similarity in fold space”. In: Bioinformatics

24.6, pp. 872–873. issn: 1367-4803. doi: 10.1093/bioinformatics/btn040.

Small, C. (1996). The statistical theory of shape. Springer. isbn: 0-387-94729-9.

Theobald, D. L.. and D. S. Wuttke (Dec. 5, 2006).“Empirical Bayes hierarchical models for

regularizing maximum likelihood estimation in the matrix Gaussian Procrustes problem”.

In: Proceedings of the National Academy of Sciences 103.49, pp. 18521–18527. issn:

0027-8424, 1091-6490. doi: 10.1073/pnas.0508445103.

Tramontano, A. (May 24, 2005). The Ten Most Wanted Solutions in Protein Bioinformatics.

1 edition. Boca Raton, FL: Chapman and Hall/CRC. 216 pp. isbn: 978-1-58488-491-0.

Ye, Y. and A. Godzik (Sept. 27, 2003). “Flexible structure alignment by chaining aligned

fragment pairs allowing twists”. In: Bioinformatics 19 (suppl 2), pp. ii246–ii255. issn:

1367-4803. doi: 10.1093/bioinformatics/btg1086.

Zhang, Y. and J. Skolnick (Jan. 1, 2005).“TM-align: a protein structure alignment algorithm

based on the TM-score”. In: Nucleic Acids Research 33.7, pp. 2302–2309. issn: 0305-1048.

doi: 10.1093/nar/gki524.

Chapter 2

Best, D. J. and N. I. Fisher (1979).“Efficient Simulation of the von Mises Distribution”. In:

Journal of the Royal Statistical Society. Series C (Applied Statistics) 28.2, pp. 152–157.

issn: 0035-9254. doi: 10.2307/2346732.

Chui, H. and A. Rangarajan (2000). “A feature registration framework using mixture mod-

els”. In: Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image

Analysis. MMBIA-2000 (Cat. No.PR00737). Proceedings IEEE Workshop on Mathemat-

ical Methods in Biomedical Image Analysis. MMBIA-2000 (Cat. No.PR00737), pp. 190–

197. doi: 10.1109/MMBIA.2000.852377.

Dimitrov, D. et al. (Oct. 1, 2009). “Bounds on the quality of the PCA bounding boxes”.

In: Computational Geometry. Special Issue on the 23rd European Workshop on Compu-

tational Geometry 42.8, pp. 772–789. issn: 0925-7721. doi: 10.1016/j.comgeo.2008.

02.007.

Dryden, I. L., J. D. Hirst, and J. L. Melville (Mar. 1, 2007).“Statistical Analysis of Unlabeled

Point Sets: Comparing Molecules in Chemoinformatics”. In: Biometrics 63.1, pp. 237–

251. issn: 1541-0420. doi: 10.1111/j.1541-0420.2006.00622.x.

Gärtner, B. and S. Schönherr (1997). “Smallest Enclosing Ellipses – Fast and Exact”. In:

Informatik. Series B.

195

Gelman, A. et al. (Nov. 1, 2013). Bayesian Data Analysis, Third Edition. CRC Press. 677 pp.

isbn: 978-1-4398-4095-5.

Green, P. J. (Dec. 1, 1995). “Reversible jump Markov chain Monte Carlo computation and

Bayesian model determination”. In: Biometrika 82.4, pp. 711–732. issn: 0006-3444. doi:

10.1093/biomet/82.4.711.

– (2003). “Trans-dimensional markov chain monte carlo”. In: Highly Structured Stochastic

Systems. Oxford Statistical Science Series. Oxford University Press, pp. 179–198.

Green, P. J. and K. V. Mardia (June 1, 2006). “Bayesian alignment using hierarchical

models, with applications in protein bioinformatics”. In: Biometrika 93.2, pp. 235–254.

issn: 0006-3444, 1464-3510. doi: 10.1093/biomet/93.2.235.

Hannay, J. H. and J. F. Nye (2004). “Fibonacci numerical integration on a sphere”. In:

Journal of Physics A: Mathematical and General 37.48, p. 11591. issn: 0305-4470. doi:

10.1088/0305-4470/37/48/005.

Householder, A. S. (1953). Principles of numerical analysis. International series in pure and

applied mathematics. New York ; London: McGraw-Hill. 274 pp.

Hubbard, T. J. P. et al. (Jan. 1, 1999). “SCOP: a Structural Classification of Proteins

database”. In: Nucleic Acids Research 27.1, pp. 254–256. issn: 0305-1048, 1362-4962.

doi: 10.1093/nar/27.1.254.

Kent, J. T., K. V. Mardia, and C. C. Taylor (2010). Exploring an EM interpretation of the

Softassign algorithm for alignment problems. Research report STAT10-03. University of

Leeds.

Kuipers, J. B. (2002). Quaternions and Rotation Sequences: A Primer with Applications to

Orbits, Aerospace, and Virtual Reality. Princeton University Press. 398 pp. isbn: 0-691-

10298-8.

Mardia, K. V. and P. E. Jupp (2000). Directional Statistics. John Wiley & Sons. isbn:

0-471-95333-4.

Möller, Tomas and John F. Hughes (1999). “Efficiently building a matrix to rotate one

vector to another”. In: Journal of graphics tools 4.4, pp. 1–4.

O’Rourke, J. (June 1, 1985).“Finding minimal enclosing boxes”. In: International Journal of

Computer & Information Sciences 14.3, pp. 183–199. issn: 0091-7036, 1573-7640. doi:

10.1007/BF00991005.

Schmidler, S. C. (2007). “Fast Bayesian shape matching using geometric algorithms”. In:

Baysian Statistics 8. Proceedings of the Valencia / ISBA 8th World Meeting on Bayesian

Statistics. Ed. by J. M. Bernardo et al. Vol. 8. Benidorm, Alicante, Spain.: Oxford Uni-

versity Press, pp. 471–490. isbn: 978-0-19-921465-5.

Chapter 3

Cormen, T. et al. (Aug. 20, 2009). Introduction to Algorithms. 3rd edition. Cambridge,

Mass.: MIT Press. 1312 pp. isbn: 978-0-262-53305-8.

Cruickshank, D. W. J. (2006). “Coordinate uncertainty”. In: International Tables for Crys-

tallography Volume F: Crystallography of biological macromolecules. Ed. by M. G. Ross-

196

mann and E. Arnold. International Tables for Crystallography F. Springer Netherlands,

pp. 403–418. doi: 10.1107/97809553602060000697.

Davies, J. R. et al. (Nov. 15, 2007). “The Poisson Index: a new probabilistic model for

protein-ligand binding site similarity”. In: Bioinformatics 23.22, pp. 3001–3008. issn: 1367-

4803, 1460-2059. doi: 10.1093/bioinformatics/btm470.

Goodall, C. R. (1991).“Procrustes Methods in the Statistical Analysis of Shape”. In: Journal

of the Royal Statistical Society. Series B (Methodological) 53.2, pp. 285–339. issn: 0035-

9246.

Green, P. J. and K. V. Mardia (June 1, 2006). “Bayesian alignment using hierarchical

models, with applications in protein bioinformatics”. In: Biometrika 93.2, pp. 235–254.

issn: 0006-3444, 1464-3510. doi: 10.1093/biomet/93.2.235.

Hayek, L. C. (1994).“Analysis of amphibian biodiversity data”. In: Measuring and Monitoring

Biological Diversity: Standard Methods for Amphibians. Ed. by W. R. Heyer et al. 1st.

Biological Diversity Handbook Series. Smithsonian Institution Press, pp. 207–269. isbn:

1-56098-284-5.

Hubert, M. and E Vandervieren (2007). “An adjusted boxplot for skewed distributions”. In:

Computational Statistics and Data Analysis 52, pp. 5186–5201.

Kleywegt, G. J. (Oct. 24, 1997). “Validation of protein models from C alpha coordinates

alone”. In: Journal of Molecular Biology 273.2, pp. 371–376. issn: 0022-2836. doi: 10.

1006/jmbi.1997.1309.

Langron, S. P. and A. J. Collins (1985). “Perturbation Theory for Generalized Procrustes

Analysis”. In: Journal of the Royal Statistical Society. Series B (Methodological) 47.2,

pp. 277–284. issn: 0035-9246.

Maechler, M., V. Todorov, et al. (Dec. 8, 2016). Basic Robust Statistics. Version 0.92-7.

Rodriguez, A. and S. C. Schmidler (2014). “Bayesian protein structure alignment”. In: The

annals of applied statistics 8.4, pp. 2068–2095. issn: 1932-6157. doi: 10.1214/14-

AOAS780.

Sibson, R. (1979). “Studies in the Robustness of Multidimensional Scaling: Perturbational

Analysis of Classical Scaling”. In: Journal of the Royal Statistical Society. Series B

(Methodological) 41.2, pp. 217–229. issn: 0035-9246.

Chapter 4

Andreeva, A. et al. (Jan. 1, 2014).“SCOP2 prototype: a new approach to protein structure

mining”. In: Nucleic Acids Research 42 (D1), pp. D310–D314. issn: 0305-1048, 1362-

4962. doi: 10.1093/nar/gkt1242.

Ankerst, M. et al. (1999). “OPTICS: Ordering Points to Identify the Clustering Structure”.

In: Proceedings of the 1999 ACM SIGMOD International Conference on Management of

Data. SIGMOD ’99. New York, NY, USA: ACM, pp. 49–60.

Bairoch, A. and R. Apweiler (Jan. 1, 2000).“The SWISS-PROT protein sequence database

and its supplement TrEMBL in 2000”. In: Nucleic Acids Research 28.1, pp. 45–48. issn:

0305-1048. doi: 10.1093/nar/28.1.45.

197

Berjanskii, M. et al. (July 1, 2012). “Resolution-by-proxy: a simple measure for assessing

and comparing the overall quality of NMR protein structures”. In: Journal of Biomolecular

NMR 53.3, pp. 167–180. issn: 0925-2738, 1573-5001. doi: 10.1007/s10858-012-9637-

2.

Berman, H. M., K. Henrick, and H. Nakamura (Dec. 2003). “Announcing the worldwide

Protein Data Bank”. In: Nature Structural Biology 10.12, pp. 980–980.

Date, C. J. (Apr. 27, 2012). Database Design and Relational Theory: Normal Forms and All

That Jazz. 1 edition. Sebastopol, Calif: O’Reilly Media. 278 pp. isbn: 978-1-4493-2801-6.

Dryden, I. L. and K. V. Mardia (July 8, 2016). Statistical Shape Analysis: With Applications

in R. 2nd Ed. Wiley. 496 pp.

Ester, M. et al. (1996). “A density-based algorithm for discovering clusters in large spa-

tial databases with noise”. In: Proceedings of The Second International Conference on

Knowledge Discovery and Data Mining (KDD-96). AAAI Press, pp. 226–231.

Kleywegt, G. J. (Oct. 24, 1997). “Validation of protein models from C alpha coordinates

alone”. In: Journal of Molecular Biology 273.2, pp. 371–376. issn: 0022-2836. doi: 10.

1006/jmbi.1997.1309.

Mardia, K. V., V. B. Nyirongo, et al. (June 1, 2011). “Hierarchical Bayesian Modeling of

Pharmacophores in Bioinformatics”. In: Biometrics 67.2, pp. 611–619. issn: 1541-0420.

doi: 10.1111/j.1541-0420.2010.01460.x.

Richardson, J. S. (1981).“The Anatomy and Taxonomy of Protein Structure”. In: Advances

in Protein Chemistry. Vol. 34. Academic Press, pp. 167–339.

Chapter 5

Adcock, J. et al. (Sept. 1, 2016). “Critical assessment of methods of protein structure

prediction: Progress and new directions in round XI”. In: Proteins: Structure, Function,

and Bioinformatics 84, pp. 4–14. issn: 1097-0134. doi: 10.1002/prot.25064.

Gelman, A. et al. (Nov. 1, 2013). Bayesian Data Analysis, Third Edition. CRC Press. 677 pp.

isbn: 978-1-4398-4095-5.

Green, P. J. and K. V. Mardia (June 1, 2006). “Bayesian alignment using hierarchical

models, with applications in protein bioinformatics”. In: Biometrika 93.2, pp. 235–254.

issn: 0006-3444, 1464-3510. doi: 10.1093/biomet/93.2.235.

Mardia, K. V., V. B. Nyirongo, et al. (June 1, 2011). “Hierarchical Bayesian Modeling of

Pharmacophores in Bioinformatics”. In: Biometrics 67.2, pp. 611–619. issn: 1541-0420.

doi: 10.1111/j.1541-0420.2010.01460.x.

Code

Adler, Daniel, Duncan Murdoch, et al. (2017). rgl - 3D Visualization Using OpenGL. R

package version 0.98.1. url: https://CRAN.R-project.org/package=rgl.

Atkinson, Kevin (2011). GNU Aspell. Version 0.60.7-20110707. url: http://aspell.net/.

198

Bates, Douglas and Martin Maechler (2017). Matrix - Sparse and Dense Matrix Classes and

Methods. R package version 1.2-11. url: https://CRAN.R-project.org/package=

Matrix.

Bluhm, Wolfgang (2004). STAR::Parser. Package version 0.59. url: http://www.iucr.

org/resources/cif/software/starparser.

Brand, H. Merijn (2017). Text::CSV XS - comma-separated values manipulation routines.

CPAN package version 1.33. url: http://search.cpan.org/perldoc?Text%3A%

3ACSV_XS.

Bunce, Tim (2017). DBI - Database independent interface for Perl. CPAN package version

1.637. url: http://search.cpan.org/perldoc?DBI.

Collins, John (2017). latexmk – Fully automated LATEX document generation. Version

4.41. url: https://ctan.org/pkg/latexmk.

Dahl, David B. (2016). xtable - Export Tables to LaTeX or HTML. R package version 1.8-2.

url: https://CRAN.R-project.org/package=xtable.

Dowle, Matt and Arun Srinivasan (2017). data.table - Extension of ‘data.frame‘. R package

version 1.10.4. url: https://CRAN.R-project.org/package=data.table.

Dryden, I. L. (2017). shapes - Statistical Shape Analysis. R package version 1.2.1. url:

https://CRAN.R-project.org/package=shapes.

Evans, Paul (2017). List::Util - A selection of general-utility list subroutines. CPAN package

version 1.49. url: http://search.cpan.org/perldoc?List%3A%3AUtil.

Golden, David (2013). File::Temp - return name and handle of a temporary file safely. CPAN

package version 0.2304. url: http://search.cpan.org/perldoc?File%3A%3ATemp.

Guttman, Uri (2011). File::Slurp - Simple and Efficient Reading/Writing/Modifying of Com-

plete Files. CPAN package version 9999.19. url: http://search.cpan.org/perldoc?

File%3A%3ASlurp.

Hahsler, Michael and Matthew Piekenbrock (2017). dbscan - Density Based Clustering of

Applications with Noise (DBSCAN) and Related Algorithms. R package version 1.1-1.

url: https://CRAN.R-project.org/package=dbscan.

Ihaka, Ross et al. (2016). colorspace - Color Space Manipulation. R package version 1.3.2.

url: https://CRAN.R-project.org/package=colorspace.

Keenan, James E. (2017). File::Path - Create or remove directory trees. CPAN package

version 2.15. url: http://search.cpan.org/perldoc?File%3A%3APath.

Lentin, Jamie and Anthony Hennessey (2017). unittest - TAP-Compliant Unit Testing. R

package version 1.3-0. url: https://CRAN.R-project.org/package=unittest.

Maechler, Martin, Peter Rousseeuw, et al. (2016). robustbase - Basic Robust Statistics. R

package version 0.92-7. url: https://CRAN.R-project.org/package=robustbase.

Marquess, Paul (2017). IO::Uncompress::Gunzip - Read RFC 1952 files/buffers. CPAN pack-

age version 2.074. url: http://search.cpan.org/perldoc?IO%3A%3AUncompress%

3A%3AGunzip.

Müller, Steffen (2016). Data::Dumper - stringified perl data structures, suitable for both

printing and eval. CPAN package version 2.161. url: http://search.cpan.org/

perldoc?Data%3A%3ADumper.

199

Pauley, Marty (2008). Time::Piece::MySQL - Adds MySQL-specific methods to Time::Piece.

CPAN package version 0.06. url: http://search.cpan.org/perldoc?Time%3A%

3APiece%3A%3AMySQL.

R Special Interest Group on Databases (R-SIG-DB), Hadley Wickham, and Kirill Müller

(2017). DBI - R Database Interface. R package version 0.7. url: https://CRAN.R-

project.org/package=DBI.

Rehsack, Jens (2017). List::MoreUtils - Provide the stuff missing in List::Util. CPAN package

version 0.426. url: http://search.cpan.org/perldoc?List%3A%3AMoreUtils.

Ripley, Brian et al. (2017). MASS - Support Functions and Datasets for Venables and

Ripley’s MASS. R package version 7.3-47. url: https : / / CRAN . R - project . org /

package=MASS.

SIGNES, Ricardo (2015). Carp - alternative warn and die for modules. CPAN package

version 1.38. url: http://search.cpan.org/perldoc?Carp.

– (2016). File::Spec - portably perform operations on file names. CPAN package version

3.62. url: http://search.cpan.org/perldoc?File%3A%3ASpec.

Smith, Samuel (2017). Time::Piece - Object Oriented time objects. CPAN package version

1.3202. url: http://search.cpan.org/perldoc?Time%3A%3APiece.

Stowe, Jonathan (2016). Term::ReadKey - A perl module for simple terminal control. CPAN

package version 2.37. url: http://search.cpan.org/perldoc?Term%3A%3AReadKey.

Tange, O. (2011). GNU Parallel - The Command-Line Power Tool. Version 20161222. url:

http://www.gnu.org/s/parallel.

Vromans, Johan (2017). Getopt::Long - Extended processing of command line options.

CPAN package version 2.5. url: http://search.cpan.org/perldoc?Getopt%3A%

3ALong.

200

