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Abstract

Significant strides have been made in computer vision over the past few years due

to the recent development in deep learning, especially deep convolutional neural net-

works (CNNs). Based on the advances in GPU computing, innovative model architec-

tures and large-scale dataset, CNNs have become the workhorse behind the state of

the art performance for most computer vision tasks. For instance, the most advanced

deep CNNs are able to achieve and even surpass human-level performance in image

classification tasks. Deep CNNs have demonstrated the ability to learn very powerful

image features or representations in a supervised manner. However, in spite of the im-

pressive performance, it is still very difficult to interpret and understand the learned

deep features when compared to traditional human-crafted ones. It is not very clear

what has been learned in the deep features and how to apply them to other tasks like

traditional image processing problems.

In this thesis, we focus on exploring deep features extracted from pretrained deep con-

volutional neural networks, based on which we develop new techniques to tackle dif-

ferent traditional image processing problems.

First we consider the task to quickly filter out irrelevant information in an image. In

particular, we develop a method for exploiting object specific channel (OSC) from pre-

trained deep CNNs in which neurons are activated by the presence of specific objects in

the input image. Building on the basic OSC features and use face detection as a specific

example, we introduce a multi-scale approach to constructing robust face heatmaps for

rapidly filtering out non-face regions thus significantly improving search efficiency for

potential face candidates. Finally we develop a simple and compact face detectors in

unconstrained settings with state of the art performance.

Second we turn to the task to produce visually pleasing images. We investigate two

generative models, variational autoencoder (VAE) and generative adversarial network

(GAN), and propose to construct objective functions to train generative models by in-

corporating pretrained deep CNNs. As a result, high quality face images can be gener-
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ated with realistic facial parts like clear nose, mouth as well as the tiny texture of hair.

Moreover, the learned latent vectors demonstrate the capability of capturing concep-

tual and semantic information of facial images, which can be used to achieve state of

the art performance in facial attribute prediction.

Third we consider image information augmentation and reduction tasks. We propose

a deep feature consistent principle to measure the similarity between two images in

feature space. Based on this principle, we investigate several traditional image pro-

cessing problems for both image information augmentation (companding and inverse

halftoning) and reduction (downscaling, decolorization and HDR tone mapping). The

experiments demonstrate the effectiveness of deep learning based solutions to solve

these traditional low-level image processing problems. These approaches enjoy many

advantages of neural network models such as easy to use and deploy, end-to-end train-

ing as a single learning problem without hand-crafted features.

Last we investigate objective methods for measuring perceptual image quality and pro-

pose a new deep feature based image quality assessment (DFB-IQA) index by measur-

ing the inconsistency between the distorted image and the reference image in feature

space. The proposed DFB-IQA index performs very well and behave consistently with

subjective mean opinion scores when applied to distorted images created from a vari-

ety of different types of distortions.

Our works contribute to a growing literature that demonstrates the power of deep

learning in solving traditional signal processing problems and advance the state of the

art on different tasks.
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CHAPTER 1

Introduction

1.1 Overview

One fundamental task in computer vision is visual recognition that gives the computer

the ability to identify visual content information from an image composed of a grid of

raw pixel values. Humans can easily achieve to classify a given image or identify dif-

ferent objects presented in that image. A quick glimpse at an image is enough for us to

catch all the important visual details. Humans are able to learn from only a few exam-

ples and naturally adapt to a variety of conditions such as brightness, scale, rotation,

deformation, angle and so on. Although these tasks seem very natural and straightfor-

ward for us, it should be noted how difficult these challenges are for a computer. Visual

recognition and other machine vision perception cannot be easily solved by manually

designing rules which are used for processing visual inputs. For a computer, an image

is represented as an array of numbers and an intelligent system is designed to be able

to transform a bunch of structured numbers to high level concepts like “faces”. More-

over, not only pixel values for faces from different people are not the same, but also the

pattern of pixel values for the same face could be completely different due to different

visual conditions.

In spite of the difficulty of those tasks, we have witnessed the advanced progress in

the area of visual recognition. With structured visual input, traditional approaches are

trying to figure out effective ways to extract visual features that can preserve useful

and robust semantic information as well as important details against different varia-

tions. Computer vision community has enjoyed the benefits of powerful hand-crafted

features like SIFT [1], HOG [2] and Haar [3] and achieved consistent high performance

in different visual recognition tasks. More importantly, significant breakthroughs have

been achieved in recent years with the advanced development of deep learning. State

1



Chapter 1. Introduction

of the art deep convolutional neural network (CNN) models have the ability to cor-

rectly distinguish image categories on large-scale datasets with millions of images and

thousands of categories with human-level performance [4]. Other related visual tasks

like object detection [5–7], segmentation [8, 9] and image captioning [10, 11] are also

dramatically improved in recent years. In a word, deep CNNs have become the workhorse

behind the state of the art performance for most computer vision tasks. Moreover,

the deep convolutional neural network features (usually called deep features) have

become powerful self-learned visual representations different from classical human

crafted ones and have enabled effective transfer learning from large dataset like Im-

ageNet [12].

Following the impressive performance of deep convolutional neural network models

for visual recognition, it is natural to ask why they perform so well, or how they might

be improved, or what they have learned, or what on earth deep features are, or how

they can be transferred to other tasks. Without a clear understanding of how and why

they work, developing better models or applying them to new applications would be

reduced to trial-and-error experiments, which is unsatisfactory from a scientific point

of view. In computer vision community, there is a trend to develop visualization tech-

niques to reveal the internal representations of different convolutional layers in deep

models. These efforts could help get a better understanding of the existing systems,

and enable more powerful vision systems. At the same time, introducing new meth-

ods to solve well known problems can always provide new perspectives and directions

to the research field. In this thesis, beyond the visual recognition problems we adopt

deep learning based solutions and design deep neural network models for traditional

image processing tasks.

1.2 Contributions

In this thesis we develop different techniques to tackle traditional image processing

problems based on self-learned features from deep convolutional neural networks.

In particular we first consider the task to quickly filter out irrelevant information in an

image. We take face images as a specific example and try to filter out non-face regions

to help build face detector. Specifically we explore and exploit the internal represen-

tations in pretrained deep convolutional neural networks and propose object specific

channel (OSC) features, which are successfully used to rapidly filter out background

regions and build compact face detector with state of the art performance in the wild

settings. In addition, we consider generating visually pleasing images from the per-
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Chapter 1. Introduction

spective of image generation. Particularly we design new architectures to train two

generative models, i.e., variational autoencoder (VAE) and generative adversarial net-

work (GAN) by incorporating deep features in the objective functions. As a result,

realistic and sharp face images can be randomly generated when tested on face im-

age database, moreover the learned latent face image representations can be used to

achieve state of the art performance in facial attributes prediction. Third, we revisit

several image information augmentation and reduction tasks. We develop different

deep models by adopting an end-to-end learning paradigm. We formulate each low-

level image processing task as a single optimization problem in which we use deep

convolutional neural networks as non-linear mapping functions to achieve different

image transformation. More importantly, a deep feature consistent (DFC) framework

is proposed to help construct object function for measuring the perceptual loss for each

image transformation task. Finally a general deep feature based image qualitative as-

sessment (DFB-IQA) index is designed to measure perceptual image quality, which is

robust to different types of distortions and can work in a variety of applications.

1.3 Outline

In order to make each part of the thesis self-contained, we will leave the background

and related work to each individual chapter. The rest of thesis is organized as follows.

Chapter 2 provides the essential background on machine learning in general and re-

views the basic concept and knowledge of neural network (especially convolutional

neural network), gradient decent optimization algorithm as well as other novel model

architectures and techniques, which are the essential components for deep learning.

In Chapter 3 we start to analyze the internal representations in deep convolutional

neural networks and present a method for exploiting object specific channel (OSC) fea-

tures and use face detection as a case study. In particular, we seek to discover and

exploit the convolutional channels of a pretrained CNN in which neurons are activated

by the presence of specific objects in the input images based on both qualitative visu-

alization and quantitative indicators. Specifically a method for explicitly fine-tuning

a pretrained CNN to induce an OSC and systematically identifying it for the human

face object has been developed. Based on the basic OSC features, we introduce a multi-

scale approach to constructing robust face detector with state of the art performance in

unconstrained settings.

Chapter 4 focuses on two generative models used to produce high quality images.

Specifically we consider improving the performance of two popular generative models,
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Chapter 1. Introduction

variational autoencoder (VAE) and generative adversarial network (GAN), by incorpo-

rating pretrained deep features in the objective functions. Both models can process a

random vector and produce an image with a natural appearance. Moreover, we also

show that our VAE model can capture perceptual and semantic information in the la-

tent representation which can be used to achieve state of the art performance for facial

attributes prediction.

Having discussed the effectiveness of deep features for generative models, Chapter 5

and Chapter 6 propose a deep feature consistent principle and move to tackle several

low-level image processing tasks. In Chapter 5 image companding and inverse halfton-

ing are considered. They are essentially information augmentation tasks to expand an

image from a lower bit depth to a higher bit version. We also advance the model ar-

chitecture design by adding skip connections between different layers to strengthen

feature propagation and encourage feature reuse. As a result, our models can achieve

superior results for both tasks.

In Chapter 6 we investigate another 3 challenging image processing problems: image

downscaling, decolorization (colour to grayscale conversion) and high dynamic range

(HDR) image tone mapping. Unlike companding and inverse halftoning that requires

inferring new information, these three tasks essentially try to use reduced images with

less information (low resolution, less color channel and low dynamic range) to express

the original ones. We propose a deep feature consistent deep image transformation

(DFC-DIT) framework and build deep models to unify these 3 image processing tasks

in a similar way. To the best of our knowledge, this is the first work that successfully

uses deep learning to solve these three low level image processing problems in a unified

framework. The experimental results demonstrate the effectiveness of the DFC-DIT

technique and its state of the art performances.

In Chapter 7 we further explore the deep feature consistent concept from the perspec-

tive of image quality assessment and propose an objective method for assessing percep-

tual image quality. The key insight is the capability of pretrained deep convolutional

neural network to contain structural and perceptual image information, which can

be used as an alternative motivating principle for the design of image quality metric.

Compared with other image quality assessment methods (PSNR, SSIM and CW-SSIM),

the proposed method yields superior results and behaves consistently with subjective

mean opinion scores when applied to distorted images created from different types of

distortions.

Finally, in Chapter 8 we come to a conclusion based on previous chapters, and identify

the remaining challenges as well as discuss the path forward.
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CHAPTER 2

Background

Computer vision seeks to generate intelligent and human-understood descriptions of

visual objects and scenes from raw pixels. However it is too difficult to be solved

by manually designed rules for computers to follow. Instead, a special category of

algorithms are designed for machine to learn the internal patterns and useful visual

representations from a given dataset, and the learned features can be then applied to

different computer vision tasks. This alternative approach is usually referred to machine

learning that gives computers the ability to learn without being explicitly programmed.

This chapter provides the essential background on machine learning and deep learning

in general, especially deep convolutional neural networks.

2.1 Machine Learning

Machine learning focuses on designing software or learning algorithms that give com-

puters the ability to learn from and make predictions on data. This approach is quite

useful for a variety of complicated tasks like computer vision related problems, where

designing strictly static program instructions with good performance is infeasible and

impractical based on hard-code knowledge. Instead, machine learning systems are able

to empower computers to solve these problems by discovering patterns and requiring

their own knowledge from data.

A more formal and widely quoted definition of machine learning is “A computer pro-

gram is said to learn from experience E with respect to some class of tasks T and performance

measure P, if its performance at tasks in T, as measured by P, improves with experience E”. In

order to design a machine learning system for computer vision and image processing

tasks, the experience E usually includes different image samples and corresponding

labels if available. Image samples are usually represented as a 4D array X ∈ Rn×c×w×h,
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Chapter 2. Background

where n is the batch size of the images; c, w and h are the color channel, width and

height of a given image. The image samples can be also encoded as a matrix X ∈ Rn×m

and each of n rows describes one sample with m features. In addition, the labels indi-

cating the categories for each image are usually encoded as a vector y ∈ {0, 1, ..., k}n,

each yi represents which of k categories sample i belongs to. For example, in our work

we use 1 to indicate face images while 0 for non-face images.

In this thesis, we explore different tasks T under the machine learning framework.

• Face detection: In this task, the machine learning algorithm is designed to learn a

non-linear function f : Rc×w×h → Rm. Here f (x) is used to estimate the coor-

dinates y of faces for an input image x. Additionally a face image classification

system is also designed as the essential part of the face detector system. The clas-

sification algorithm is asked to output a function f : Rc×w×h → R, to decide

whether the input is a face image or not.

• Density estimation: In this task, the machine learning algorithm is used to tackle

density estimation in high dimensional spaces to learn generative models, i.e.,

f : Rm → Rc×w×h. Specifically this task is asked to output new sample images

following the same probabilistic distribution of a given image dataset from ran-

dom vectors. In order to train models to generate data like the ones in a given

dataset, it is crucial to design performance measure P to force the model to effi-

ciently discover and internalize the essence of the dataset. In this work, we attack

two popular generative models, variational autoencoder (VAE) and generative

adversarial network (GAN).

• Image transformation: In this task, the machine learning algorithm is designed to

learn a transformation function f : Rc1×w1×h1 → Rc2×w2×h2, to process an input

image to an output image which contains certain properties for different trans-

formation purposes. In this work, we explore several image transformation tasks

which can be categorized as two opposite directions: one is information augmen-

tation to expand lower bit images to higher bit ones (like inverse halftoning) by

adding more tiny details and spatial information, the other direction is to present

images with less information (like resolution, color channel and dynamic range),

which can still preserve visually important details and perceptual quality.

Each task should be evaluated by corresponding performance measure P, which is the

objective function or loss function to guide the training. The objective function is de-

signed to estimate the similarity between the model outputs and the ground truth,
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mathematically quantifying the amount by which the prediction deviates from the ac-

tual values from experience E. After the objective function is decided for a given task,

an optimization step is needed to find the “best available” values for a given model.

We will introduce different optimization methods used in this work in the following

sections.

2.2 Supervised Learning

Supervised learning is one type of machine learning algorithms to infer a function from

labeled training data. Each training sample contains the desired output of the model

in advance, which is served as the supervisory signal during training. Mathematically

supervised tasks can be formulated as requiring a computer to estimate a mapping

f : X → Y, where X is the input space and Y is the desired output space. One example

of this is aforementioned face image classification task, where X is the space of input

images and Y is a value between 0 and 1, indicating the probability of a face appearing

somewhere in the image.

Assumptions. The final goal of a supervised learning algorithm is to apply the op-

timized function f to map unseen samples in which the desired outputs cannot be

observed. Therefore, the learning algorithm is required to learn the internal represen-

tations or patterns of the training data and generalize properly to unseen situations. In

fact, we need to assume that there indeed exists some common pattern in the data and

the samples ((x, y) ∈ X × Y) are independently and identically distributed, i.e., i.i.d.

That’s to say, each sample (xi, yi) is drawn from the same distribution and indepen-

dently generated from each other.

Objective. The learning objective is to select the “best” mapping f : X → Y from

a given set of candidates F. f is desired to fit the training data well and generalize

well for unseen data too. The selection is usually based on scalar-valued loss function

L(y, ŷ) to measure the inconsistency between the prediction ŷi = f (xi) and the ground

truth yi. Mathematically, the learning problem can be formulated as an optimization

problem as follows:

f ∗ = arg min
f∈F

1
n

n

∑
i

L(yi, ŷi) (2.2.1)

= arg min
f∈F

1
n

n

∑
i

L(yi, f (xi)) (2.2.2)

Loss functions. The definition of the loss functions could vary from task to task. In
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principle, the scalar-valued loss should reflect the disagreement between the prediction

and the ground truth. For regression tasks there are two commonly used loss functions.

One is the squared distance L(y, ŷ) =
√
||y− ŷ||2, which is also called L2 loss, the other

is the absolute distance L(y, ŷ) = |y− ŷ|, which is also called L1 loss.

For classification tasks, Softmax function and Logistic function are used to define clas-

sification losses. In fact, Softmax classifier is the generalization of Logistic regression

from binary classification to multiple categories. Specifically the corresponding loss

(often called cross-entropy loss) for one sample is defined as follows:

Li = −log

(
e fyi

∑j e f j

)
(2.2.3)

where f j is the jth element for the output vector and yj indicates the ground-truth cat-

egory. e fyi

∑j e f j
is the Softmax function to normalize the an arbitrary output vector to a

vector of values between 0 to 1. Intuitively cross-entropy loss tries to penalize the in-

consistency between the prediction and corresponding ground truth. What’s more,

Softmax classifier could interpret the outputs f j as the unnormalized log probabilities,

therefore minimizing the negative log likelihood of the correct class is, in fact, to per-

form maximum likelihood estimation.

Regularization. In practice, the mapping fW is usually defined as a complicated func-

tion parameterized by weights W, and neural network models are often used for deep

learning. Now that the architecture or shape of f is predefined, the optimization is

transferred to choose the best set of parameters W. However, one issue needed to be

considered is that this set of parameters is not necessarily unique, and many similar W

can achieve the same goal like correctly classifying all the training samples. What we

desired for is that W can generalize well to new and unseen samples, and the gener-

alization is what makes machine learning different from pure optimization. One tech-

nique commonly used to improve generalization is to extend the loss function with a

regularization penalty R(W). More precisely, L1 or L2 norm is commonly used to dis-

courage large weights through an element-wise quadratic penalty over all parameters

R( f ) = R(W) = ∑ W2. Thus, the final loss function is the combination of data loss and

the regularization loss weighted by a hyper-parameter λ:

f ∗ = arg min
f∈F

1
n

n

∑
i

L(yi, f (xi)) + λR( f ) (2.2.4)

= arg min
f∈F

1
n

n

∑
i

L(yi, f (xi)) + λR(W) (2.2.5)
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Figure 2.1: An overview of a generative system.

This penalty gives preferences to select some W over others and follows the principle

of Occam’s razor, which can be stated as: “Suppose there exist two explanations for an

occurrence. In this case the simpler one is usually better”. Mathematically L1 norm has the

property to penalize large weights and prefers smaller and more diffuse weights that

can reduce the complexity of function fW , therefore the final predictions will take all the

input dimensions into small amount rather than depending on only a few dimensions.

For deep learning there exist other effective regularization methods and we will leave

them in the neural network section.

2.3 Unsupervised Learning

Unsupervised learning is another type of machine learning method to infer a function

to describe hidden structure from unlabeled data. The goal is to explore and discover

something about the training data, for example, the trained generative models can gen-

erate high quality data that are similar to the training data from a random input. Figure

2.1 shows an overview of a generative system.

In this work, we attempt to tackle unsupervised learning problems based on deep

generative models. Specifically two popular generative models are considered in this

work. One is variational autoencoder encoder (VAE) [13, 14], the other is generative

adversarial network (GAN) [15]. VAE allows us to formalize image generation task

in the framework of probabilistic graphical models with latent variables. VAE models

can be trained by optimizing a lower bound loss which is the sum of the reconstruc-

tion loss and KL divergence loss. GANs try to formalize the training as a game be-

tween two separate networks: a generator network used to generate new samples and

a second discriminator network used to distinguish between these samples from the

model distribution and these from true distribution. During the training, each time the
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discriminator identifies a difference between the two distributions, the generator will

adjust itself to make the difference go away. Finally, the discriminator in theory can be

“fooled” by the samples produced by the generator, which means an equilibrium has

reached from the perspective of game theory. Therefore the generator is expected to

produced samples similar to those coming from the true distribution.

In addition, not only can generative models produce new samples based on a training

dataset, but also provide an effective way to learn reusable feature representations for

supervised learning.

2.4 Deep Neural Networks

In previous sections, we have shown that we need to estimate a function f : X → Y

for different mapping problems. However, we have not yet given any details about the

function f . We now turn to specify the f we considered in this thesis. In particular,

we focus on formulating the complicated mappings with deep convolutional neural

networks. In the following sections, we will introduce the basic architecture of neural

networks, and one specific biologically inspired variant – convolutional neural network

(CNN, or ConvNet), which has been widely used to process visual data. Finally we

show how to optimize deep CNNs to choose the best model.

2.4.1 Regular Neural Network

Neural network is originally inspired by the goal of modeling biological neural systems

and is among the most successful algorithms for machine learning tasks. In order to

build a neural network system, we first need to model artificial neurons. The earli-

est type of artificial neuron is called perceptron [16], which takes several binary inputs

x1, x2, ..., xi and produces a single binary output y. The value of a perceptron output is

determined by comparing the weighted sum ∑i wixi to a given threshold as follows:

perceptron output =

0 if ∑i wixi ≤ threshold

1 if ∑i wixi >threshold
(2.4.1)

One problem of perceptron neuron is the discontinuity on itself that a small change of

weights can cause the output of that perceptron to flip completely. More advanced type

of artificial neurons are then introduced to solve this problem. New type of neurons are

similar to perceptrons but use a continuous function σ to achieve nonlinearity, which
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Figure 2.2: Diagram for a single artificial neuron and a two layer neural network.

can be formulated as y = σ(∑i wixi + b). Each input xi has a corresponding weight wi

and an overall bias b. A neuron is diagrammed in the left part in Figure 2.2.

There are several other activation functions σ commonly used in practice: Tanh func-

tion (ex − e−x)/(ex + e−x), logistic function 1/(1 + e−x), Rectified Linear Unit (ReLU)

max(x, 0) [17] and other variants of ReLU such as PReLU [18], RReLU [19], CReLU [20]

and LeakyReLU [19].

Neural networks are often modeled hierarchically as a collection of neurons which are

organized into different layers. Different layers are connected as an acyclic graph in

someway and the data information can be transmitted from one layer to another. The

simplest and most commonly used architecture is the fully connected layer: two adja-

cent layers are pairwise connected and the neurons in the same layer share no connec-

tions. The right diagram in Figure 2.2 shows two layer fully-connected neural network.

The last layer is an output layer in which the size of neurons is determined by different

tasks. For instance, only one neuron is needed for a binary classification task.

To put it in more precise algebraic terms, neural networks can be constructed by repeat-

ing matrix multiplications and element-wise non-linearities. For example, a three-layer

neural network can be formulated as f (x) = W3σ(W2σ(W1x)), where W1, W2 and W3

are matrices.

2.4.2 Deep Convolutional Neural Network

Motivation. Traditionally neural networks are fully connected between all the hid-

den and input units, however it is computationally very expensive, even infeasible

to tackle large dataset. Intuitively one solution is to restrict the connections between

hidden units and input units, i.e., locally connected, allowing each hidden unit only

connects part of input units. This idea draws the inspiration from biological studies on
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Convolutional  operation  
with  sliding  window
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Figure 2.3: Diagram for a convolutional layer. Each neuron in the output layer is the

result of a dot product between a small filter (like 3× 3) and a local input.

For a given convolutional layer, there are several different filters and each

slides over all spatial locations and computes dot products independently.

visual system, especially, neurons in virtual cortex have localized receptive field [21].

Specifically the neurons in convolutional neural network are arranged in 3 dimensions:

height, width and depth. Each layer of CNNs transforms one volume of activations to

another in a more sensible way.

Convolutional layer. It is one type of neural network architectures [22] specifically

designed to handle data with spatial topology like image and video. It is served as

the key block to construct convolutional neural networks to achieve local connections

and parameters sharing (Figure 2.3). A convolutional layer takes an input tensor to a

similar output tensor by spatially convolving the input volume with a set of different

filters. Each filter works independently and computes a dot product with a small chunk

of input by sliding across all spatial positions of the input. What’s more, the weights of

one filter remain unchanged when sliding different locations. As a result, the number

of parameters can be reduced dramatically by this kind of sharing scheme.

CNN architecture. In the past few years, innovated convolutional neural network ar-

chitectures are proposed like AlexNet [23], VGGNet [24], GoogLeNet [25], ResNet [26]

and DenseNet [27]. Typically a convolutional neural network is built by stacking con-

volutional and other layers hierarchically, like [Input− [Conv− BN− ReLU− Pool]×
N − FC]. Take image as an example, the Input represents a 4-dimensional tensor of a

batch of images and Conv represents a convolutional layer described above. BN is a

Batch Normalization layer [28] that performs the normalization for each training mini-

batch, allowing to use much higher learning rates and stabilize the training for very

deep models. ReLU (Rectified Linear Unit) is commonly used as the non-linearity to

threshold at 0. Pool stands for a typical filter (2× 2) pooling layer with stride (2× 2) for

downsampling operation along the spatial dimensions. Max and average pooling are

commonly used. FC is a fully-connected layer stacked in the last few layers to squash
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the output tensors to vectors, which can be further processed for different tasks. In

theory, the architecture could be arbitrary “deep” by stacking different layers.

2.4.3 Optimization

In previous sections, we saw that machine learning tasks can be formulated as an op-

timization problem of the form W∗ = arg minW L(W), where L(W) is the loss function

parameterized by the weights W coming from a convolutional neural network. Now

we move to the techniques on how to optimize deep CNN models.

Gradient descent algorithm. The loss function L(W) defined above is a complicated

and often non-convex function, which can not be easily optimized by any tools in opti-

mization literature. For neural network optimization, we usually try to find a direction

in the parameter space that would improve our weights to give us a lower loss step

by step, which is the key insight of gradient descent algorithm. In particular, we could

restrict us only using continuous functions to build deep models and calculate the gra-

dients∇W L(W) of the loss function L(W) with respect to the weights W. Backpropaga-

tion [29] is the algorithm we use to efficiently compute the gradients of a deep network

based on the chain rule from calculus. Mathematically the gradients are the partial

derivatives and give the direction to increase of the loss L(W) locally, therefore, we can

improve the weights W by subtracting a small amount (weighted by learning rate lr)

along the gradient direction, i.e., W := W − lr∇W L(W). In practice, a mini-batch of

training examples are only used to estimate the gradients rather than the whole dataset,

which can be very large (e.g. ImageNet [12] contains more than 1 million image sam-

ples). The resulting algorithm is often called Stochastic Gradient descent (SGD), which

repeats the same process to reduce the loss until convergence and it works well in most

practical applications.

One critical hyperparameter to implement SGD is the learning rate, which decides the

step of the descent each time. In principle, the learning rate should not be set too big or

too small. The optimization may not converge or even diverge if the learning rate is too

big, on the other hand, the training will be too slow when using a too small learning

rate. In practice, a good rule of thumb is to initialize relatively a big learning rate and

decay it during the training.

Advanced SGD. Standard SGD does not guarantee good convergence and suffers from

several challenges like how to choose a proper learning rate, how to balance the oscilla-

tions, and how to avoid suboptimal local minima, etc. There are a few more advanced

techniques which are commonly used by deep learning to deal with aforementioned
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challenges and improve better convergence for deep networks. The simplest method is

Momentum [30] that helps speed up the training in a relatively small but consistent di-

rection along the gradient. Momentum does it by decaying the sum of previous gradient

directions for each step. Another technique is called Adagrad [31] that does not restrict

the learning rate to be the same for all the parameter updates. Instead, it adapts the

learning rate according to the parameters: smaller updates for frequent parameters. In

addition, Adaptive Moment Estimation (Adam) [32] is a more complicated method to

compute adaptive learning rate for each parameter by exponentially decaying both the

average of past gradients and squared gradients. These improved methods can equal-

ize the updating for different parameters and achieve faster and better convergence.

2.5 Applications

In this section, we will briefly describe the applications of deep learning. Though deep

learning can be widely used to solve applications in computer vision, natural language

processing and speech recognition, we would like to focus on image related tasks.

Computer vision is a broad research field that encompassing a variety of ways to pro-

cess image and video data and has a diversity of different applications. The final goal

is to simulate or reproduce the ability of the human visual system. Most deep learning

techniques for computer vision are used to object recognition tasks like image classi-

fication, which is one of the core problems in computer vision that a variety of other

seemingly distinct problems (like object detection) can be reduced to image classifica-

tion tasks. In fact, new innovated deep network architectures [23–27] are first designed

for image classification problem for large-scale dataset like ImageNet [12]. Other ap-

plications include object detection, which means annotating an image with bounding

boxes around each object [6, 7, 33, 34]; image segmentation, which means labeling each

pixel in an image with the identity of the object it belongs to [8, 9, 33]; image caption-

ing, which means transcribing the content of an image with a sentence [10, 11]; style

transfer, which means recomposing images in the style of other images [35–37]; image

synthesis, which means generating realistic new images [13–15].

2.6 Summary

Deep learning can perform automatic feature extraction without human intervention

through an end-to-end training manner. A typical workflow for deep learning can

be summarized as follows:
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Data preparation. For a given machine learning task, the first step is to obtain a dataset

{X, y}, where X is the images used in the task, and y is the labels for the correspond-

ing images. Usually the dataset will be then divided into 3 folds: training, validation

and testing split. Training split is used for parameters optimization, validation split is

for tuning different hyperparameters and testing split is for evaluating the final perfor-

mance of the trained model. What’s more, it is often a good idea to preprocess the data

before being fed into the neural networks. In the case of images, it is a very common

practice to compute a mean image across the whole dataset and subtract it from every

image. As a result, all the images are zero-centered around 0 and range from approxi-

mately [-1, 1] or [-127, 127] for different scales.

Model architecture and objective function design. When the data is ready, what we

need is to design the architecture of the deep model and the objective function for a

given task. It is commonly built by stacking convolutional and other layers hierar-

chically, like [Input− [Conv− BN − ReLU − Pool]× N − FC]. But how deep should

the network be, anyway? There are no strict rules on the scales of deep models, and

they are often tuned to find the best hyperparameters. A rough rule of thumb is to use

deeper models when large scale data are available. Additionally, the objective function

is often designed as a loss layer that can be directly stacked at the end of the model to

achieve end-to-end training. The last step is to choose the deep learning tools to imple-

ment the designed models. There are a few widely used deep learning frameworks we

can choose such as Caffe[38], TensorFlow[39], Torch [40], Theano[41], MXNet [42], Chainer

[43], PyTorch and so on.

Parameters optimization. After the model is decided, we can move to the training

stage. The optimization with stochastic gradient descent algorithm is a loop process

across the whole dataset until convergence. In addition we can train several indepen-

dent models by trying different hyperparameters (like learning rate). The final pub-

lished model is the one that achieves the best performance on the validation dataset.

Evaluation. After the best model is selected, we can abandon the training data and use

it on testing split to report the final performance. We can quantify the performance via

different metrics like accuracy, area under ROC curve, confusion matrix, etc.

Other tricks. In order to implement excellent deep convolutional neural networks, we

adopt several tricks or tips in this thesis.

• Data augmentation. It is a must-do thing for training a deep convolutional neu-

ral network. Horizontal flipping, random crops and scaling are often used to

augment image data. It is a common way to try the combinations of different
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methods.

• Initialization. It is a good idea to initialize all the parameters with random small

numbers to train deep models from scratch. We can also achieve better initializa-

tion by using the weights from a pretrained model, and fine-tune the model for

different tasks.

• Regularization. For deep learning, it is common to apply weight decay to regu-

larize deep models and add Dropout layer [44] to prevent overfitting for better

generalization.

• Learning rate decay. It is often benefit to anneal the learning rate during the

training. This can be achieved either by multiplying a constant (e.g. 0.5) for

predefined steps, or using continuous annealing schedules.
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CHAPTER 3

Object Specific Deep Feature for

Face Detection

In this chapter, we consider the task to quickly filter out irrelevant information in an

image and use face detection as a case study. In particular we develop approaches

for exploring the internal representations of deep convolutional neural networks and

propose object specific features, which are successfully used to tackle high-level image

processing problem, i.e., face detection, in the wild settings. In particular, a method

for explicitly fine-tuning a pre-trained CNN to induce object specific channel (OSC)

and systematically identifying it for the human faces has been developed. We also

introduce a multi-scale approach for constructing robust face heatmaps based on OSC

features for rapidly filtering out non-face regions thus significantly improving search

efficiency for detection. We show that multi-scale OSC can be used to develop simple

and compact face detectors in unconstrained settings with state of the art performance.

3.1 Introduction

A key motivation of this work is based on the observation that certain convolutional

channels of CNNs exhibit object specific responses [45, 46]. An object specific channel

(OSC) is a convolutional feature map at a hidden layer of a CNN, in which neurons

are strongly activated by the presence of a certain class of objects at the neurons’ cor-

responding regions in the input image. An example is shown in Figure 3.1 where the

last image at the top row is a face specific OSC, in which spatial locations correspond-

ing to the face regions have strong responses (white pixels) while areas corresponding

to non-face regions have weak responses (black pixels). If such an OSC can be reliably

identified, then it can be exploited for various tasks including object detection. Do such
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Figure 3.1: (a) An input image is first processed by a CNN, its face specific convolu-

tional channels are identified and a face response heatmap is generated

from multi-scale face specific convolutional channel features. (b) Face

proposals are generated based on the heatmap and processed by a bi-

nary CNN classifier. Finally detected faces are combined through a Non-

Maximum Suppression (NMS) algorithm.

channels exist for a given class of objects? If so, how can we systematically identify such

channels? If not, can we tune a pre-trained CNN to have such channels? In this chapter,

we propose the object specific channel (OSC) based on pretrained deep convolutional

neural network and systematically identify it for the human faces. We show that OSC

features can be used for rapidly filtering out non-face regions and building compact

face detector with state of the art performance.

3.2 Related Work

Face detection models in the literature can be divided into four categories: Cascade-

based model, Deformable Part Models (DPM)-based model, Exemplar-based model

and Neural-Network-based model. The most famous cascade-base model is the VJ de-

tector [3] based on Haar-like features, which have demonstrated excellent performance

for frontal face detection. However Harr-like features have limited representation abil-

ity to deal with variational settings. Some works try to improve VJ detector via using

more complicated features such as SURF [47], HoG [48] and polygonal Haar-like fea-

tures [49]. Aggregate channel features [50] are also introduced for solving multi-view

face detection problems.

Another category is DPM-based model [51], which treats face as a collection of small

parts. DPM-based model can benefit from the fact that different facial parts indepen-

dently have lower visual variations, therefore it is reasonable to build robust detectors

18



Chapter 3. Object Specific Deep Feature for Face Detection

by combining different models trained for individual parts. For example, Part-based

structural models [52] have achieved success in face detection and a vanilla DPM can

achieve top performance over more sophisticated DPM variants [53].

Exemplar-based detectors [54] try to bring image retrieval techniques into face detec-

tion to avoid explicitly modeling different face variations in unconstrained settings.

Specifically, each exemplar casts a vote following the Bag-of-Words (BOW) [55] re-

trieval framework to get a voting map and uses generalized Hough Voting [56] to locate

the faces in the input image. As a result, faces can be effectively detected in many chal-

lenging settings. However, a considerable amount of exemplars is required to cover all

kinds of variations.

Neural-Networks-based detectors are usually based on deep convolutional neural net-

works. Faceness [57] tries to find faces through scoring facial parts’ responses by their

spatial structure and arrangement, and different facial parts correspond to different

CNNs. A two-stage approach is also proposed by combining multi-patch deep CNNs

and deep metric learning [58]. The CCF detector [59] uses an integrated method called

Convolutional Channel Features, transferring low-level features extracted from pre-

trained CNN models to a boosting forest model. Cascade architectures based on CNNs

[60] have been also designed to help reject background regions at low resolution, and

select face area carefully at high resolution. The DDFD detector [61] uses a single model

based on deep convolutional neural networks for multi-view face detection, and points

out that CNNs can benefit from better sampling and more sophisticated data augmen-

tation techniques.

We try to directly use a single convolutional channel to produce face response heatmap,

which can be used to quickly locate potential face area. The heatmap is similar to the

voting map in exemplar-based approach [54], but the difference is that their voting map

is produced by the Bag-of-Words (BOW) [55] retrieval framework, while our heatmap is

directly extracted from a convolutional channel. Another similar approach is faster R-

CNN [62], which also uses a feature map to extract potential region proposals for object

detection. However, faster R-CNN uses a region proposal network to achieve different

region proposals by regressing the coordinates of bounding boxes while we directly

threshold the intensive values of the feature map to enable face region proposals.

3.3 Method Overview

Our goal is to discover and exploit face specific convolutional channel (features) to

help locate the face areas quickly for further processing. Our system contains two
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stages as shown in Figure 3.1: In the first stage, the face heatmap of a face image can

be generated by face specific channel in a trained CNN with a multi-scale approach.

Thresholding the heatmap quickly filters out non-face regions, dramatically reduces

face search space without throwing away genuine face regions. In the second stage,

a set of face candidate windows can be quickly identified based on the heatmap, and

all candidates are then processed by a CNN based binary classifier. Finally all face

windows are merged using Non-Maximum Suppression (NMS) [63] to obtain the final

detection results.

3.4 Face Specific CNN Channel Extraction

3.4.1 Training Data Preparation and CNN Fine-tuning

We start with the pre-trained “AlexNet” [23] provided by the open source Caffe Library

[38]. In order to adapt the CNN model to our face detection problem, we change the

last classification layer from ImageNet-specific 1000 classes to 2 classes, which repre-

sent images with faces and images with masked faces (Figure 3.2) respectively. Specif-

ically, let Conv be a convolutional layer, LRN a local response normalization layer, P a

max pooling layer and F a fully connected layer, the architecture can be described as

Conv1(55× 55× 96) - LRN - P - Conv2(27× 27× 256) - LRN - P - Conv3(13× 13× 384)

- Conv4(13× 13× 384) - Conv5(13× 13× 256) - P - F(4096) - F(4096) - F(2), where the

numbers inside the brackets indicate the topology of each layer.

The authors of [45, 46] have tried to gain insight into the operation of the CNN models

via visualizing the features and filters of their hidden units. The authors of [46] have

shown that the CNN model is highly sensitive to local structure of the input image and

that particular regions of an image are responsible for firing specific neural units. [45]

discovers that there exist many invariant detectors for faces, shoulders, texts, etc. in

convolutional layers. It shows that CNNs can learn partial information even though

no explicitly labeled faces or texts exist in the training datasets.

If we can be certain that specific objects will fire specific hidden neurons in a CNN,

then it will be very useful because we can infer the objects in the input image from

the response of the hidden neurons. Based on above observations, we believe it is

possible to fine-tune a CNN such that particular neurons will respond to specific objects

if suitably prepared object specific training examples are used. To verify this idea, we

use Annotated Facial Landmarks in the Wild (AFLW) database [64] as training dataset

to fine-tune the AlexNet. AFLW database contains 25,993 faces in 21,997 real world
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Figure 3.2: Examples of masked face images (first row) and original images with faces

(second row) from AFLW [64] for fine-tuning.

images collected from Flickr with a range of diversity and variation in poses, ages and

illuminations. Unlike most common methods that crop the ground-truth face area as

positive samples and non-face area as negative samples, we use the original images as

positive samples. For negative samples, we also use the same images, but mask the

facial parts with random noises (R, G, B value are randomly generated from 0-255).

Some examples of these positive and negative samples are shown in Figure 3.2. The

idea is that if the CNN model can discriminate the masked image from the original

image, it will be forced to use the partial information from face area for classification.

What we desired is that through re-enforcing the CNN to discriminate images with

faces and images without faces, then the network could organise itself such that certain

units will be responsible for representing faces, thus enabling the extraction of face

specific channels for various post-processing.

3.4.2 Face Specific Convolutional Channel Identification

In order to quantify how well each convolutional channel responds to faces after fine-

tuning, we’ve studied the 5th convolutional layer which has a 13 × 13 × 256 topol-

ogy and can be visualized as 256 different 2-D heatmaps (13 × 13). We resize every

heatmap from shape (13× 13) to (227× 227), the same size as the input image, using

a bicubic interpolation. We calculate the average intensity value of the heatmap both

inside and outside the face areas respectively, which are denoted as “face-score”, i.e.,
1

wh ∑x+w
i=x ∑

y+h
j=y Ii,j, for a given bounding box, where (x, y) is the top left coordinate, (w,

h) are the width and height, and Ii,j is the intensity value at point (i, j). The resized

heatmap has the same shape as the input image, and the face area in the heatmap can

be located by directly using the ground-truth face annotations. To calculate the face-

score in the face areas, all the intensity value of pixels inside the face area are added up

and divided by the number of pixels in that face area. Similarly, the face-score outside
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the face area can be calculated easily. We then use 1,000 images randomly chosen from

AFLW [64] to calculate the face-scores inside and outside face areas of all the channels

in the 5th convolutional layer of the fine-tuned model. The final value of face-score is

the average value across all the 1,000 images. The results are shown in Figure 3.3. We

can see that the 196th channel has the highest face-score inside the face areas, followed

by the 139th channel. The value of face-score outside face area is small in all channels.

This shows that there do exist face specific channels where specific neurons are fired at

the spatial positions corresponding to the face regions in the input image. Though it

seems empirical to choose the channel index, however consistent responding channels

can be produced by randomly choosing different face images. We use the 196th channel

in all experiments, which can get better results than using 139th channel.
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Figure 3.3: Face-scores of inside and outside face area for each channel in conv5 layer,

averaged over 1,000 images randomly chosen from ALFW.

3.4.3 Multi-scale Features

From above, we could compute the face heatmap (conv5196) and generate the bounding

box of potential face regions by a given threshold. As a result, the bounding box could
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be used to represent the face position. However, as shown in Figure 3.4, there are two

problems if we want to use the heatmap directly for face detection. One is that the

heatmap cannot capture small faces, the other is that the strong firing neurons in the

heatmap tend to shift to the edge of the image if the face is not in the center of an image.

We have developed a multi-scale approach to solving these problems: the input image

is divided into small sub-images by a sliding window at multiple scales. We specify

the stride, with which the sliding window is moved each time, to be half of the sub-

image’s size. Thus the adjacent sub-images are able to overlap with each other. In this

work, the sizes of the sub-images are 1/4, 1/6 and 1/8 of the size of the original image

to achieve multi-scale feature extraction. All sub-images and the original image are

then resized and fed to the fine-tuned CNN to extract the channel heatmaps (conv5196),

which are then merged to be a single heatmap according to the corresponding locations

in the original image scale. Specifically, each heatmap of sub-images is extended to the

original image scale, and the intensity value outside the sub-image areas are set to

be zero. The merging is achieved by selecting the maximum intensity value of each

heatmap at each pixel position in the original image scale, i.e., Ii,j = max
1≤l≤n

I l
i,j, where Ii,j

is the intensity value of the merged heatmap at point (i, j) in the original image scale,

and I l
i,j is the intensity value of the lth sub-image’s heatmap at point (i, j). As a result

(see Figure 3.4), the merged heatmap is able to capture small faces and locate faces in

the input image more precisely. This is because small faces in the original scale become

“larger” in the sub-image scale, which can be captured by our model. In particular,

different scales of sub-images can be used to extract different scales of face response

heatmaps, thus faces with different sizes can be detected. However it will increase the

amount of computational cost when using different scales of sub-images.

3.4.4 Fast Non-Face Region Filtering

The face heatmap contains information about the likelihood of a pixel belonging to a

face region. The higher the intensity the more likely it is from a face region. Therefore,

this allows us to quickly filter out non-face regions by simply setting a threshold to the

heatmap. Only pixels above a certain threshold will likely contain faces. Therefore,

in the face detection stage, we only need to search regions covered by these pixels

thus significantly reducing the search space and speeding up face detection. To get an

idea about the kind of saving we can achieve, we randomly pick 1,000 images from

ALFW and threshold the heatmaps. We count the average number of pixels above the

threshold which contains areas of potential faces. At the same time, we also count the

average number of faces that are covered by these remaining pixels. Obviously, we
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Figure 3.4: Examples for single-
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Figure 3.5: Diagram for the average percentage
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remaining faces (red line) above dif-

ferent thresholds.

want the number of remaining pixels to be small and at the same time these remaining

pixels should cover all genuine faces. Figure 3.5 shows the percentage of pixels above

different thresholds, and for each threshold, the percentage of genuine faces covered

by the remaining pixels. It is seen that by simply thresholding the heatmap, we can

dramatically reduce the search regions without missing genuine faces. For example,

by setting a threshold value to about 110, just a little over 10% of the pixels remain and

at the same time all faces are covered by these pixels. This means that compared with

full search, this procedure will reduce face detection search region by 90%.

3.5 Face Proposals and Detection

The second stage of our method (Figure 3.1(b)) locates faces more precisely and sep-

arates overlapped faces which cannot be distinguished in the heatmap. We first use

face-score defined above (average intensity of a specific area in a heatmap) to quickly

select face proposals. Then another binary CNN classifier is trained to discriminate

face images from non-face images. In the end, Non-Maximum Suppression is used to

merge multiple face windows for final detection.

3.5.1 Face Proposals by Face-Score

Instead of using category-independent region proposals method like selective search

[65] used in R-CNN [33] for general object detection, we simply use a multi-scale

sliding window to select potential face windows based on face-score defined above.
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Specifically, while scanning the input image, the face-score of the sliding window is

calculated at the same position in the corresponding heatmap. The sliding windows

are selected as face region proposals if the face-scores exceed a given threshold (80 in

our case). This approach can reject non-face regions effectively based on the above

observation that the pixel intensity values around the face regions are higher than non-

face regions. All potential face proposals of one image are collected as a batch to feed

to a binary CNN classifier described below.

Original Blurred OccludedDarked Occluded Double-sized Padded Padded Background Background

(a) Examples for Face Images (b)  Examples for Non-Face Images

Figure 3.6: Example face images(a) and non-face images (b) from AFLW for face clas-

sifier training.

3.5.2 Candidate Face Window Selection by CNN

Due to a range of visual variations such as poses, expressions, lightings and occlusions,

a robust face classifier is trained by using augmented data. The fine-tuned CNN model

used to extract face response heatmap is used as pre-trained model, and then fine-

tuned again with face images and non-face images. All the face images are cropped

from AFLW dataset [64] by the ground-truth bounding box, and augmented by mak-

ing them darkened, blurred and occluded (Figure 3.6(a)). Non-face images are col-

lected in the following ways (Figure 3.6(b)): (1) background images randomly cropped

from AFLW images with a given Intersection-over-Union (IoU) ratio (0, 0.1 and 0.2) to

a ground-truth face; (2) cropped by double-sized ground-truth faces; (3) face images

padded with non-face images. Each candidate face window has a classification score

after being processed by the trained binary classifier. Finally all detected face windows

are sorted from highest to lowest based on classification score, and then non-maximum

suppression (NMS) is applied to the detected windows to reject the window if it has an

Intersection-over-Union (IoU) ratio bigger than a given threshold.
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3.5.3 Face Detection Experiments

As described above, the AFLW dataset is used to train our model, and then we use

PASCAL Face [52] and FDDB dataset [66] to evaluate our face detector. PASCAL Face

dataset is a widely used face detection benchmark, containing 851 images and 1,341

annotated faces. FDDB dataset is a larger face detection benchmark, consisting of 5,171

annotated faces in 2,845 images. It contains a wide range of difficulties including oc-

clusions, various poses and out-of-focus faces.

Figure 3.7: Performance comparison on PASCAL Face dataset for the original (left)

and adjusted annotations (right).

One problem in the evaluation of face detection is the different annotations between

training datasets and testing datasets such as policies for what constitutes a face, size

of annotation boxes and minimum/maximum of face size. In order to solve this prob-

lem, some works [50, 53, 60] try to manually adjust the annotations to get better results.

In our work, we use both the original and adjusted annotations [53] of PASCAL Face

dataset with the toolbox provided by [53]. FDDB dataset is evaluated with the origi-

nal elliptical annotations by two evaluation protocols provided in [66]: the continuous

score and discontinuous score. In order to better fit the elliptical annotations that cover

the whole faces, we extend our detected square boxes vertically by 40% to upright

rectangles for FDDB dataset. We also fit the largest upright ellipses for the extended

rectangles as elliptical outputs for evaluation (Figure 3.9).

We report the average precision on PASCAL Face dataset (Figure 3.7), discontinuous

and continuous ROC for all the 10 folds (Figure 3.8 (a) and (b)) and individual ROC

(Figure 3.8 (c) and (d)) for each fold on FDDB dataset. By comparing with other state-

of-the-art face detectors [48, 54, 60, 61, 67–70], our method can achieve similar results

both on PASCAL faces [52] and FDDB [66] datasets while having lower complexity.

In addition, we design several comparative experiments to investigate the impact of

data augmentation. The CNN binary classifier in the second stage is retrained with a
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(c) FDDB Discontinuous results for each fold (d) FDDB Continuous results for each fold

(a) FDDB Discontinuous results

(f)  FDDB Continuous results with different training data(e)  FDDB Discontinuous results with different traing data

(b) FDDB Continuous results

Figure 3.8: Performance comparison on FDDB dataset with discrete and continuous

protocols.

slightly different training dataset, while all the other components are left unchanged.

For face images, we remove the darkened, blurred and occluded face images (Fig-

ure 3.6(a)) respectively, and then the padded and double-sized images (Figure 3.6(b))

are removed from non-face images. As before, all the newly trained models are tested

on FDDB dataset as shown in Figure 3.8(e) and (f). We can see that the augmented train-

ing dataset has a significant influence on the performance of the detector. By removing

one type of augmented training data, there is an obvious drop in the performance of

detection. For example, the padded and double-sized non-face images could help the

model locate face area more precisely, i.e., neither too big nor too small, thus bounding

box regression is not needed for post-processing. Therefore, better data augmenta-

tion makes full use of the high-capacity of CNN to achieve better performance. In our

case, all kinds of facial variations can be represented in a single CNN model. Some

qualitative results on PASCAL Face and FDDB dataset together with the face response
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Figure 3.9: Qualitative face detection results and face response heatmap on PASCAL

face (top three rows) and FDDB dataset (bottom three rows).

heatmaps are shown in Figure 3.9. It is seen that our detectors can successfully detect

faces in challenging settings.

3.6 Discussion

The contribution of this work is not only on the face detector itself, but rather the intro-

duction of a face specific channel in a deep neural network that can be easily exploited

for face detection. This is the first work that introduces the concept of object specific

channel in a deep convolutional neural network. Although we use face as a specific

case study, our method does not depend on any human knowledge about faces or any

special processing for faces. Our method could be extended to other classes of objects

in a similar way to turn the convolutional feature maps of a CNN into object specific

feature channels for object detection and other computer vision tasks.
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Compared to many methods in the literature, our method is much simpler: ground-

truth bounding boxes are the only information needed to train our model, and one

single model can capture all the facial variations based on the carefully designed data

augmentation. In contrast, Faceness [57] needs additional hair, eye, nose, mouth and

beard annotations to train several attribute-aware face models and uses bounding box

regression to refine detected windows. DPM and HeadHunter [53] use extra anno-

tation to train view-specific components to tackle facial variations. JointCascade [68]

uses face alignment to help face detection with manually labeled 27 facial points. Our

method only needs a single feed-forward calculation to achieve fast multi-scale face de-

tection for a batch size of images in an end-to-end manner without any post-processing

like bounding box regression. The runtime of our model is around 70 ms on a single

GPU (Nvidia Tesla k40) for a 640 × 480 VGA image.

3.7 Summary

In this chapter, we have developed a method to exploit the internal representation

power of hidden units of a deep convolutional neural network. We seek to discover

and exploit the convolutional channels of a CNN in which neurons are activated by the

presence of specific objects in the input image. Through a purposefully designed face

specific training, object specific channels are extracted and automatically identified for

human faces. Building on the object specific channels, a multi-scale approach is used

to build state of the art face detectors with the advantage of being simple and compact.
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CHAPTER 4

Image Generation

In this chapter, we develop generative models to produce visually pleasing images from

a latent space. A generative model trained with a given dataset can be used to gener-

ate data having similar properties as the samples in the dataset, learning the internal

essence of the dataset and “storing” all the information in the limited parameters that

are significantly smaller than the training dataset. In particular, variational autoen-

coder (VAE) [13] and generative adversarial networks (GAN) [15] are the two gener-

ative models considered in this work. Although the two approaches have achieved

some success in generating natural images of the real world in the original work, the

samples often suffer from being blurry for VAE and being noisy and incomprehensi-

ble for GANs. To overcome these limitations, we try to construct objective functions

to train generative models by incorporating deep features extracted from pretrained

deep convolutional neural networks. Our experiments demonstrate that our models

can produce high quality images and the learned latent representations that can cap-

ture the semantic information. The rest of this chapter is organized around two projects

that leverage the capability of these models to generate high quality images. We will in-

troduce two improved models for variational autoencoder and generative adversarial

network in turn.

4.1 Variational Autoencoder (VAE)

Variational Autoencoder [13, 14] has become a popular generative model, allowing us

to formalize image generation task in the framework of probabilistic graphical models

with latent variables. A VAE [13] helps us to do two things. Firstly it allows us to

encode an image x to a latent vector z = Encoder(x) ∼ q(z|x) with an encoder network,

and then a decoder network is used to decode the latent vector z back to an image that
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will be as similar as the original image x̄ = Decoder(z) ∼ p(x|z). That’s to say, we need

to maximize the marginal log-likelihood of each observation (pixel) in x, and the VAE

reconstruction loss Lrec is the negative expected log-likelihood of the observations in

x. Another important property of VAE is the ability to control the distribution of the

latent vector z, which has characteristic of being independent unit Gaussian random

variables, i.e., z ∼ N (0, I). Moreover, the difference between the distribution of q(z|x)
and the distribution of a Gaussian distribution (called KL Divergence) can be quantified

and minimized by gradient descent algorithm [13]. Therefore, VAE models can be

trained by minimizing the sum of the reconstruction loss (Lrec) and KL divergence loss

(Lkl) by gradient descent.

Lrec = −Eq(z|x)[log p(x|z)] (4.1.1)

Lkl = Dkl(q(z|x)||p(z)) (4.1.2)

Lvae = Lrec + Lkl (4.1.3)

4.1.1 Related Work

Several methods have been proposed to improve the performance of VAE. [71] extends

the variational auto-encoders to semi-supervised learning with class labels, [72] pro-

poses a variety of attribute-conditioned deep variational auto-encoders, and demon-

strates that they are capable of generating realistic faces with diverse appearance, Deep

Recurrent Attentive Writer (DRAW) [73] combines spatial attention mechanism with a

sequential variational auto-encoding framework that allows iterative generation of im-

ages. Considering the shortcoming of pixel-by-pixel loss, [74] replaces pixel-by-pixel

loss with multi-scale structural-similarity score (MS-SSIM) and demonstrates that it

can better measure human perceptual judgments of image quality. [75] proposes to

enhance the objective function with discriminative regularization. Another approach

[76] tries to combine VAE and generative adversarial network (GAN) [15, 77], and use

the learned feature representation in the GAN discriminator as the basis for the VAE

reconstruction objective.

By default, pixel-by-pixel measurement like L2 loss, or logistic regression loss is used

to measure the difference between the reconstructed and the original images. Such

measurements are easily implemented and efficient for deep neural network training.

However, the generated images tend to be very blurry when compared to natural im-

ages. This is because the pixel-by-pixel loss does not capture the perceptual difference

and spatial correlation between two images. For example, the same image offsetted
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Figure 4.1: Model overview. The left is a deep CNN-based Variational Autoencoder

and the right is a pretrained deep CNN used to compute feature perceptual

loss.

by a few pixels will have little visually perceptual difference for humans, but it could

have a very high pixel-by-pixel loss. This is a well known problem in the image quality

measurement community [78].

In this chapter, we propose replacing the pixel-by-pixel loss with feature perceptual

loss, which is defined as the difference between two images’ hidden representations

extracted from a pretrained deep CNN such as AlexNet [23] and VGGNet [24] trained

on ImageNet [12]. The main idea is trying to improve the quality of generated images

of a VAE by ensuring the consistency of the hidden representations of the input and

output images, which in turn imposes spatial correlation consistency of two images.

4.1.2 Model

Overview. Our system consists of two main components as shown in Figure 4.1: an au-

toencoder network including an encoder network E(x) and a decoder network D(z),

and a loss network Φ that is a pretrained deep CNN to define feature perceptual loss.

An input image x is encoded as a latent vector z = E(x), which will be decoded back

to image space x̄ = D(z). After training, a new image can be generated by the de-

coder network with a given vector z. In order to train a VAE, we need two losses,

one is KL divergence loss Lkl = Dkl(q(z|x)||p(z)) [13], which is used to make sure

that the latent vector z is an independent unit Gaussian random variable. The other

is feature perceptual loss. Instead of directly comparing the input image and the gen-

erated image in the pixel space, we feed both of them to a pre-trained deep CNN Φ

respectively and then measure the difference between hidden layer representations,

i.e., Lrec = L1 + L2 + ... + Ll , where Ll represents the feature loss at the lth hidden
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Layer Output Size

input image (x) 3 x 64 x 64

Layer Name Output Size

64 x 16 x 16

32x4x4 conv, stride 2 + BN + LeakyReLU 32 x 32 x 32

128 x 8 x 8

64x4x4 conv, stride 2 + BN + LeakyReLU

128x4x4 conv, stride 2 + BN + LeakyReLU

256 x 4 x 4256x4x4 conv, stride 2 + BN + LeakyReLU

FC 100 FC 100 100 100

z: sample from encoder q(z|x) 100

Layer Output Size

latent variable z 100

Layer Name Output Size

128 x 8 x 8

FC 4096 

64 x 16 x 16

upsample + conv128x3x3 + NB + LeakyReLU 

32 x 32 x 32

256 x 4 x 4

upsample + conv64x3x3 + NB + LeakyReLU 

upsample + conv32x3x3 + NB + LeakyReLU 

upsample + conv128x3x3 3 x 64 x 64

Figure 4.2: Autoencoder network architecture. The left is encoder network and the

right is decoder network.

layer. Thus, we use the high-level feature loss to better measure the perceptual and se-

mantic differences between the two images, this is because the pretrained network on

image classification has already incorporated perceptual and semantic information we

desired for. During the training, the pretrained loss network is fixed and just for high-

level feature extraction, and the KL divergence loss Lkl is used to update the encoder

network while the feature perceptual loss Lrec is responsible for updating parameters

of both the encoder and decoder.

Variational autoencoder network architecture. Both encoder and decoder network are

based on deep CNN like AlexNet [23] and VGGNet [24]. We construct 4 convolutional

layers in the encoder network with 4 x 4 kernels, and the stride is fixed to be 2 to

achieve spatial downsampling instead of using deterministic spatial functions such as

maxpooling. Each convolutional layer is followed by a batch normalization layer and

a LeakyReLU activation layer. Then two fully-connected output layers (for mean and

variance) are added to the encoder, and will be used to compute the KL divergence loss

and sample latent variable z (see [13] for details). For decoder, we use 4 convolutional

layers with 3 x 3 kernels and set stride to be 1, and replace standard zero-padding

with replication padding, i.e., feature map of an input is padded with the replication

of the input boundary. For upsampling we use nearest neighbor method by a scale

of 2 instead of fractional-strided convolutions used by other works [8, 77]. We also

use batch normalization to help stabilize training and use LeakyReLU as the activation

function. The details of autoencoder architecture are shown in Figure 4.2.

33



Chapter 4. Deep Feature for Image Generation

4.1.3 Feature Perceptual Loss

Feature perceptual loss of two images is defined as the difference between the hidden

features in a pretrained deep convolutional neural network Φ. Similar to [35], we use

VGGNet [24] as the loss network in our experiment, which is trained for classification

problem on ImageNet dataset. The core idea of feature perceptual loss is to seek the

consistency between the hidden representations of two images. As the hidden repre-

sentations can capture important perceptual quality features such as spatial correlation,

a smaller difference of hidden representations indicates the consistency of spatial corre-

lations between the input and the output, as a result, we can get a better visual quality

of the output image.

Specifically, let Φ(x)l represent the representation of the lth hidden layer when input

image x is fed to network Φ. Mathematically Φ(x)l is a 3D volume block array of the

shape [Cl x W l x Hl], where Cl is the number of filters, W l and Hl represent the width

and height of each feature map for the lth layer. The feature perceptual loss for one

layer (Ll
rec) between two images x and x̄ can be simply defined by squared Euclidean

distance. Actually it is quite like pixel-by-pixel loss for images except that the color

channel is not 3 anymore.

Ll
rec =

1
2ClW l Hl

Cl

∑
c=1

W l

∑
w=1

Hl

∑
h=1

(Φ(x)l
c,w,h −Φ(x̄)l

c,w,h)
2 (4.1.4)

The final reconstruction loss is defined as the total loss by combining different layers of

VGG Network, i.e., Lrec = ∑l Ll
rec. Additionally we adopt the KL divergence loss Lkl

[13] to regularize the encoder network to control the distribution of the latent variable z.

To train VAE, we jointly minimize the KL divergence lossLkl and the feature perceptual

loss Ll
rec for different layers, i.e.,

Ltotal = αLkl + β
l

∑
i
(Ll

rec) (4.1.5)

where α and β are weighting parameters for KL Divergence and image reconstruction.

It is quite similar to style transfer [35] if we treat KL Divergence as style reconstruction.

4.1.4 Experiment

We perform experiments on face images to test our method. Specifically we evaluate

the image generation performance and compare with other generative models. Fur-
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DCGAN
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Figure 4.3: Generated fake face images from 100-dimension latent vector z ∼ N (0, 1)

from different models. The first part is generated from the decoder net-

work of plain variational autoencoder (PVAE) trained with pixel-based

loss [13], the second part is generated from generator network of DCGAN

[77], and the last two parts are the results of VAE-123 and VAE-345 trained

with feature perceptual loss based on layers relu1_1, relu2_1, relu3_1, and

relu3_1, relu4_1, relu5_1 respectively.

thermore, we also investigate the latent space and study the semantic relationship be-

tween different latent representations and apply them to facial attribute prediction.

Training details. Our model is trained on CelebFaces Attributes (CelebA) Dataset [79].

CelebA is a large-scale face attribute dataset with 202,599 face images, 5 landmark lo-

cations, and 40 binary attributes annotations per image. We build the training dataset

by cropping and scaling the aligned images to 64 x 64 pixels like [76, 77]. We train

our model with a batch size of 64 for 5 epochs over the training dataset and use Adam

method for optimization [32] with an initial learning rate of 0.0005, which is decreased

by a factor of 0.5 for the following epochs. The 19-layer VGGNet [24] is chosen as loss

network Φ to construct feature perceptual loss for image reconstruction.

We experiment with different layer combinations to construct feature perceptual loss
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Figure 4.4: Image reconstruction from different models. The first row is input image,

the second row is generated from decoder network of plain variational au-

toencoder (PVAE) trained with pixel-based loss [13], and the last two rows

are the results of VAE-123 and VAE-345 trained with feature perceptual

loss based on layers relu1_1, relu2_1, relu3_1, and relu3_1, relu4_1, relu5_1

respectively.

and train two models, i.e., VAE-123 and VAE-345, by using layers relu1_1, relu2_1,

relu3_1 and relu3_1, relu4_1, relu5_1 respectively. In addition, the dimension of latent

vector z is set to be 100 like DCGAN [77], and the loss weighting parameters α and β

are 1 and 0.5 respectively. Our implementation is built on deep learning framework

Torch [40].

In this work, we also train additional two generative models for comparison. One is

the plain Variational Autoencoder (PVAE), which has the same architecture as our pro-

posed model, but trained with pixel-by-pixel loss in the pixel space. The other is Deep

Convolutional Generative Adversarial Networks (DCGAN) consisting of a generator

and a discriminator network [77], which has shown the ability to generate high quality

images from noise vectors. DCGAN is trained with open source code [77] in Torch.

Qualitative results for image generation. The comparison is divided into two parts:

arbitrary face images generated by the decoder based on latent vectors z drawn from

N (0, 1), and face image reconstruction.
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In the first part, random face images (shown in Figure 4.3) are generated by feeding

latent vector z drawn from N (0, 1) to the decoder network in our models and the gen-

erator network in DCGAN respectively. We can see that the generated face images

by plain VAE tend to be very blurry, even though the overall spatial face structure

can be preserved. It is very hard for plain VAE to generate clear facial parts such as

eyes and noses, this is because it tries to minimize the pixel-by-pixel loss between two

images. The pixel-based loss does not contain the perceptual and spatial correlation in-

formation. DCGAN can generate clean and sharp face images containing clearer facial

features, however it has the facial distortion problem and sometimes generates weird

faces. Our method based on feature perceptual loss can achieve better results. VAE-123

can generate faces of different genders, ages with clear noses, eyes and teeth, which

are better than VAE-345. However, VAE-345 is better at generating hair with different

textures.

We also compare the reconstruction results (shown in Figure 4.4) between plain VAE

and our two models, and DCGAN is not compared because of no input image in their

model. We can get a similar conclusion as above. In addition, VAE-123 is better at

keeping the original color of input images and generating clearer eyes and teeth. The

VAE-345 can generate face images with more realistic hair, but the color could be dif-

ferent from the original in the input images. This is because VAE-345 is trained with

higher hidden layers of VGGNet and captures spatial correlation on a coarser scale

than VAE-123, hence the images generated by VAE-345 are more blurry than those of

VAE-123. Additionally as textures such as hair reflects larger area correlations, this may

explain why VAE-345 generates better textures than VAE-123. The other way around,

local patterns like eyes and noses reflect smaller area correlations, thus VAE-123 can

generate clearer eyes and noses than VAE-345.

Linear interpolation of latent space. As shown in Figure 4.5, we investigate the lin-

ear interpolation between the generated images from two latent vectors denoted as

zle f t and zright. The interpolation is defined by linear transformation z = (1− α)zle f t +

αzright, where α = 0, 0.1, . . . , 1, and then z is fed to the decoder network to generate

new face images. Here we show three examples for latent vector z encoded from input

images and one example for z randomly drawn from N (0, 1). From the first row in

Figure 4.5, we can see the smooth transitions between vector(“Woman without smiling

and short hair”) and vector(“Woman with smiling and long hair”). Little by little the

hair becomes longer, the distance between lips becomes larger and teeth are shown in

the end as smiling, and pose turns from looking slightly right to looking front. Addi-

tionally we provide examples of transitions between vector(“Man without eyeglass”)

37



Chapter 4. Deep Feature for Image Generation

α=0

z ~
 𝒩(0, 1)

α=1

z ~
 𝒩(0, 1)

Figure 4.5: Linear interpolation for latent vector. Each row is the interpolation from

left latent vector zle f t to right latent vector zright. e.g. (1− α)zle f t + αzright.

The first row is the transition from a non-smiling woman to a smiling

woman, the second row is the transition from a man without eyeglass to a

man with eyeglass, the third row is the transition from a man to a woman,

and the last row is the transition between two fake faces decoded from

z ∼ N (0, 1).

and vector(“Man with eyeglass”), and vector(“Man”) and vector(“Woman”).

Facial attribute manipulation. The experiments above demonstrate interesting smooth

transitional property between two learned latent vectors. In this part, instead of ma-

nipulating the overall face images, we seek to find a way to control a specific attribute

of face images. In previous works, [80] shows that vector(“King”) - vector(“Man”) +

vector(“Woman”) generates a vector whose nearest neighbor is the vector(“Queen”)

when evaluating learned representation of words. [77] demonstrates that visual con-

cepts such as face pose and gender could be manipulated by simple vector arithmetic.

In this work, we investigate two facial attributes wearing eyeglass and smiling. We

randomly choose 1,000 face images with eyeglass and 1,000 without eyeglass respec-

tively from the CelebA dataset [79]. The two types of images are fed to our encoder

network to compute the latent vectors, and the mean latent vectors are calculated for

each type respectively, denoted as zpos_eyeglass and zneg_eyeglass. We then define the dif-

ference zpos_eyeglass − zneg_eyeglass as eyeglass-specific latent vector zeyeglass. In the same

way, we calculate the smiling-specific latent vector zsmiling. Then we apply the two

attribute-specific vectors to different latent vectors z by simple vector arithmetic like z

+ α zsmiling. As shown in Figure 4.6, by adding a smiling vector to the latent vector of a

non-smiling man, we can observe the smooth transitions from non-smiling face to smil-

ing face (the first row). Furthermore, the smiling appearance becomes more obvious
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add 
smiling 
vector

α=0 α=1

subtract 
smiling
 vector

add 
sunglass
vector

add 
sunglass
vector

subtract 
sunglass
vector

Figure 4.6: Vector arithmetic for visual attributes. Each row is the generated faces from

latent vector zle f t by adding or subtracting an attribute-specific vector, i.e.,

zle f t + α zsmiling, where α = 0, 0.1, . . . , 1. The first row is the transition by

adding a smiling vector with a linear factor α from left to right, the second

row is the transition by subtracting a smiling vector, the third and fourth

row are the results by adding a eyeglass vector to the latent representation

for a man and women, and the last row shows results by subtracting an

eyeglass vector.

when the factor α is bigger, while other facial attributes are able to remain unchanged.

The other way around, when the latent vector of smiling woman is subtracted by the

smiling vector, the smiling face can be translated to not smiling by only changing the

shape of mouth (the second row in Figure 4.6). Moreover, we could add or wipe out an

eyeglass by playing with the calculated eyeglass vector.

Correlation between attribute-specific vectors. Considering the conceptual relation-

ship between different facial attributes in natural images, for instance, bald and gray

hair are often related to old people. We selected 13 of 40 attributes from CelebA dataset

and calculate their attribute-specific latent vectors respectively (the calculation is the

same as calculating eyeglass-specific vector above). We then calculate the correlation

matrix (Pearson’s correlation) of the 13 attribute-specific vectors, and visualize it as

shown in Figure 4.7. The results are consistent with human interpretation. We can

see that Attractive has a strong positive correlation with Makeup, and a negative cor-

relation with Male and Gray Hair. It makes sense that female is generally considered

more attractive than male and uses more makeup. Similarly, Bald has a positive cor-

relation with Gray Hair and Eyeglasses, and a negative correlation with Young. Addi-

tionally, Smiling seems to have no correlation with most of other attributes and only

has a weak negative correlation with Pale Skin. It could be explained that Smiling is
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Figure 4.7: Diagram for the correlation between selected facial attribute-specific vec-

tors. The blue indicates positive correlation, while red represents negative

correlation, and the color shade and size of the circle represent the strength

of the correlation.

a very common human facial expression and it could have a good match with many

other attributes.

Visualization of latent vectors. Considering that the latent vectors are nothing but the

encoding representation of the natural face images, we think that it may be interesting

to visualize the natural face images based on the similarity of their latent represen-

tations. Specifically we randomly choose 1600 face images from CelebA dataset and

extract the corresponding 100-dimensional latent vectors, which are then reduced to 2-

dimensional embedding by t-SNE algorithm [81]. t-SNE can arrange images that have

similar high-dimensional vectors (L2 distance) to be nearby each other in the embed-

ding space. The visualization of 40 x 40 images is shown in Figure 4.8. We can see

that images with a similar background (black or white) tend to be clustered as a group,

and females with smiling are clustered together (green rectangle in Figure 4.8). Fur-

thermore, the face pose information can be also captured even no pose annotations in

the dataset. The face images in the upper left (blue rectangle) are those looking to the

right and samples in the bottom left (red rectangle) are those looking to the left, while

in other area the faces look to the front.
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Looking Right

Looking Left

Figure 4.8: Visualization of 40 x 40 face images based on latent vectors by t-SNE algo-

rithm [81].

Facial attribute prediction. We further evaluate our model by applying the latent vec-

tor to facial attribute prediction, which is a very challenging problem. Similar to [79],

20,000 images from CelebA dataset are selected for testing and the rest for training.

Instead of using a face detector, we use ground truth landmark points to crop out the

face parts of the original images like PANDA-l [83], and the cropped face images are

fed to our encoder network to extract the latent vectors for both VAE-123 and VAE-345,

which are then used to train standard Linear SVM [84] classifiers with the correspond-

ing 40 binary attributes annotations per image provide by CelebA. As a result, we train

40 binary classifiers for each attribute in CelebA dataset respectively. As a baseline,

we also train different Linear SVM classifiers for each attribute with 4096-dimensional
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PANDA-l 93 93 84 93 65 91 71 85 87 93 92 69 77 78 96 93 67 91 84 85.43

LNets+ANet 92 95 81 95 66 91 72 89 90 96 92 73 80 82 99 93 71 93 87 87.30
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VAE-345 88 96 89 91 74 96 74 92 94 96 91 80 79 84 98 91 88 93 84 88.73

VGG-FC 60 93 87 84 66 96 58 86 93 85 65 68 70 49 98 82 87 89 74 79.85

Table 4.1: Performance comparison of 40 facial attributes prediction. The accuracies

of FaceTracer [82], PANDA-w [83], PANDA-l [83], and LNets+ANet [79]

are collected from [79]. PANDA-l, VAE-123, VAE-345 and VGG-FC use the

truth landmarks to get the face part.

deep features extracted from the last fully connected layer of pretrained VGGNet [24].

We then compare our method with other state-of-the-art methods. The average of pre-

diction accuracies of FaceTracer [82], PANDA-w [83], PANDA-l [83], and LNets+ANet

[79] are 81.13, 79.85, 85.43 and 87.30 percent respectively. The results of our method

with latent vectors of VAE-123 and VAE-345 are 86.95 and 88.73 respectively, whilst

that of VGG last layer features (VGG-FC) is 79.85. From Table 4.1, we can see that

our method VAE-345 outperforms other methods. In addition, we notice that all the

methods can achieve a good performance to predict Bald, Eyeglasses and Wearing_Hat

while it is difficult for them to correctly predict attributes like Big_Lips and Oval_Face.

It might be explained that attributes like wearing_hat and Eyeglasses are much more

obvious in face images, than attributes like big_lips and Oval_ f ace, and the extracted

features are not able to capture such subtle differences. Future work is needed to find

a way to extract better features which can also capture these tiny variations of facial

attributes. In addition, we discover that though some attributes like necklaces and hats

are not visible due to the original images has been cropped tightly to the face, these

attributes can be still predicted correctly to some degree. This is because the cropped

training images are labelled with different attributes even though they are not visible.

Moreover some attributes like Necklace and Blond Hair can coexist in the same image,
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thus training with one attribute (Blond Hair) can be useful for other attributes predic-

tion (Necklace).

4.2 Generative Adversarial Network (GAN)

Now we move to generative adversarial network, which is another popular generative

model first introduced by [15] based on minmax game. Two networks are simulta-

neously trained: a generator network G tries to map a noise variable pz(z) to data

space G(z) to generate new samples, and a discriminator network D aims to distin-

guish between the samples from the true data and generated samples by maximizing

the probability of assigning the correct label for each category. The generator network

G is trained simultaneously to minimize log(1− D(G(z))) by playing against the ad-

versarial discriminator network D. Thus the minmax game between G and D can be

formulated as follows:

min
G

max
D

L(D, G) = Ex[log(D(x))] + Ez[log(1− D(G(z)))] (4.2.1)

where D and G are the discriminator and generator network respectively, z is the ran-

dom vector sampled from a Gaussian distribution, and x is the generated image.

4.2.1 Related Work

There are some following works [77, 85–88] trying to improve GAN either focusing

on generating clearer and better perceptual quality images, or learning better repre-

sentation for semi-supervised learning. LAPGAN [85] adopts a cascade of convolu-

tional networks with a Laplacian pyramid framework to generate high quality images.

[77] proposes deep convolutional generative adversarial networks known as DCGAN

that contains certain architectural constrains, and can learn a hierarchy of representa-

tions both in the generator and discriminator. Several improved techniques are also

introduced by [87] to encourage convergence of the GANs game, and improve the per-

formance of semi-supervised classification problems. Additionally InfoGAN [88] can

learn interpretable representations by maximizing the mutual information between a

small subset of the latent variables and the observations.

In this work, we adopt deep feature matching strategy to improve the visual quality

of the generated images and the stability of GANs training. We propose to distinguish

deep features of the real and generated images to train the discriminator and generator

network. That’s to say, our discriminator is able to distinguish the deep features of
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Pretrained CNN
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Real or Fake

Generator vector z Discriminator

Figure 4.9: Model overview. The left is a generator network to produce fake images

from a noise vector z, the middle is a pretrained CNN to extract features

for both real and fake images, and the right is a discriminator network to

distinguish the deep features of real images from fake images.

generated samples from the ones of real samples, meanwhile the generator is capable

of producing fake samples that have similar deep features to the real samples.

4.2.2 Model

Our GAN system consists of three components as shown in Figure 4.9: A generator

network G(z) used to generate fake samples from a given noise vector z, a feature

extraction network Φ used to extract deep features, and a discriminator network D(x)

designed to be a binary classifier. During the training, the generator (G) transforms

a noise vector to a fake image through in-network sampling. Unlike traditional GAN

that directly feeds the raw real images and fake images to a discriminator, our method

first preprocesses the images with a pretrained deep CNN to extract the corresponding

features, which are then fed to the discriminator network. Because the convolutional

features are of a 3-dimensional array, they could be interpreted as “images” except that

the color channel is not 3 anymore.

Generator network. Our generator and discriminator network are based on the archi-

tectural innovations of DCGAN [77]. For generator, fractionally-strided convolution or

full convolution is used for upsampling the input by a scale of 2 and each fractionally-

strided convolution is followed by a spatial batch normalization layer [28] and a ReLU

nonlinear layer [17] with the exception of the output layer. The output layer uses a

scaled tanh layer to restrict the pixel value of the generated image to the range [0, 255].

Additionally we also use total variation regularizer [89] to help improve the spatial

smoothness of the generated images.

Discriminator network. As for discriminator, stride convolution is used for down-
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sampling by a scale of 2 instead of deterministic functions such as maxpooling. In our

model the filter size of the first stride convolution is not fixed to 3 (RGB channels) any

longer and should be compatible with the shape of extracted deep features. Each stride

convolution is followed by a batch normalization and LeakyReLU layer [90] except for

the last one, which is flattened and then fed into a sigmoid layer to achieve binary

classification.

Feature extraction network. The 19-layer VGGNet [24] trained on ImageNet [12] is

chosen as pretrained CNN Φ for feature extraction. Specifically let Φ(x)l stand for the

lth hidden representations of an input image x, and mathematically the extracted deep

feature Φ(x)l is a 3-dimensional array of shape [Cl x W l x Hl], where Cl is the number

of filters, W l and Hl represent the width and height of the feature map for the lth layer.

And then the extracted features Φ(x)l of the real and fake images instead of raw images

x are used to train the discriminator and generator. Because of the same 3-dimensional

array structure of Φ(x) and image x, Φ(x) could be considered as a “feature image”

that consists of more than 3 color channels. Thus, the first convolutional layer of dis-

criminator should be consistent with the number of color channels of the input “feature

image”.

4.2.3 Experiments

We perform two experiments in this work: face images generation and a Turing test.

We use public face and flower image dataset to train our GAN model and compare

the visual quality of generated samples with other generative models. Moreover we

conduct a visual Turing test to figure out how well humans can distinguish the real

and generated face images.

Training details. Our GAN models are also trained on CelebFaces Attributes Dataset

(CelebA) [91] similar to experiments for VAE in the previous section. We use the

aligned images in CelebA and crop out each face image to the shape [64 x 64] as the

final training dataset. In addition, all the training images are scaled to the range [-1, 1].

Our models are trained with a batch size of 64 for 10 epochs across the training images.

Adam [32] optimizer is used for stochastic optimization. The learning rate is initially

set to 0.0001 and decreased by a factor of 0.5 every 3 epochs. Additionally the constant

scale factor of the tanh layer in the generator is fixed to 150 that is compatible with the

image preprocessing of VGGNet [24]. The generated images are regularized by total

variation regularization with a strength of 1 x 10−8. The 100-dimensional noise vector

z is randomly drawn from normal distribution N (0, 1).
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Our model Real DCGAN1 DCGAN2 DFC-VAE

Figure 4.10: Generated face images from 100-dimension latent vector z ∼ N (0, 1) for

different models. The most left part is the real faces, the second part is

the results generated by our model trained with relu1_1 representations

of VGGNet. The two parts in the middle are the samples by DCGAN

[77] (DCGAN1 is the samples directly from the paper [77] and DCGAN2

is retrained with raw images), and the most right part is results of DFC-

VAE in previous section.

We also adjust the training process in order to improve the stability of training. GAN

[15] and DCGAN [77] take turns to train the generator and discriminator for each iter-

ation and try to achieve a balance between them in the end. However we discover that

the discriminator is much easier for training and produce lower training loss than the

generator. Ideally if the generated images are very similar to the real ones then the out-

put of discriminator should be 0.5, because the discriminator is fooled and cannot tell

the difference. Therefore, both the training loss for discriminator and generator (Dloss

and Gloss) should be around −log(0.5) = 0.69 due to the loss function for binary classi-

fication. In order to prevent the discriminator from overtraining, we perform up to N

(0 to 10) more gradient decent learning on the generator if the Gloss is bigger than 0.8 or

the Dloss is less than 0.7. Our implementation is built on machine learning framework

Torch [40].

Qualitative results for image generation. We separately experiment with different

layer representations of VGGNet as deep features to train our models. In additional,

we compare our generated images with the samples of DCGAN [77] and our DFC-VAE

from previous section.

In Figure 4.10 we show the qualitative examples comparing our results with those of

other generative models. The resolution of all the generated samples is 64 by 64, and

all the models use the same training dataset CelebA [91]. Our model is trained with

relu1_1 features. In these results, DCGAN can generate sharp images, however the fa-

cial structure could be distorted and generate weird faces which can be easily identified

by humans. The faces produced by DFC-VAE have clear mouths, noses and eyes but

blurred hairs. In general our model can produce sharp and more realistic face images
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Figure 4.11: Generated samples of our models trained with different layer features.

The GAN_11, GAN_31 and GAN_51 are trained with extracted features

of layer relu1_1, relu3_1 and relu5_1 of VGGNet respectively.

with clear facial parts like the tiny texture of hair and reasonable background, showing

that relu1_1 features are effective to train better GAN models than directly raw pixels.

One explanation could be that the first convolution layer in VGGNet transfers the raw

image of shape [3 x 64 x 64] to “feature image” of shape [64 x 64 x 64], which can

contain more diverse information of the raw image. This is because the first layer of

the pretrained networks mainly responds to corners and other edge/color conjunctions

[45], which can be used for transfer learning. On the other hand, one could argue that

the first layer in the discriminator is able to achieve the same effect. However, it is

more difficult to obtain the filters trained from scratch as good as those of networks

pretrained on a large dataset like ImageNet.

As demonstrated in Figure 4.11, we then compare the performance of our models

trained with relu1_1, relu3_1 and relu5_1 layer representations of VGGNet, denoted as

GAN_11, GAN_31 and GAN_51. And the discriminators contains 5, 3 and 1 convolu-

tion layers respectively due to the maxpooling in VGGNet. It is clear that the generated

samples of GAN_11 are much better than those of the other two models. The samples

of GAN_31 can keep the facial structure in general with recognized mouths and eyes,

which are better than those produced by GAN_51. Moreover, both the samples of

GAN_31 and GAN_51 lack of diversity and the generated faces could be visually the

same with different input vectors z. It shows that the lower layer features can be ef-

fective for GAN training. This could be explained that more detailed pixel information
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Fake Real Real 

Figure 4.12: Randomly generated flowers by our method.

is preserved in lower layers while higher layers contain more abstract information for

classification, and the high-level features could be very similar if the inputs are just

slightly different face images.

In addition, we also test our method on a flower dataset [92], containing 8,189 images

for 102 different categories, and all the images are scaled to 64 x 64 as training sam-

ples. Figure 4.12 shows the randomly generated samples and real flowers. Though our

model can produce reasonable flowers, it is still very difficult to generate tiny textures.

Linear interpolation of input vectors. Like [77, 93] we also investigate the linear prop-

erty between two given noise vectors for image generation. Specifically we choose

pairs of noise vectors and compute the intermediate representations by linear inter-

polation between them, and then generate images using the intermediate vectors. As

shown in Figure 4.13, the generated images shows smooth transitions between each

other in pixel space.

Human evaluation. In order to evaluate to how much the generated fake faces are

similar to the real faces, we design a visual Turing test via a web interface 1 2 3 to invite

35 undergraduate volunteers from faculty of science and engineering in our university

to distinguish the fake face images from real ones. We choose 50 fake images generated

by our GAN_11, DCGAN1, DFC-VAE and real samples respectively (Figure 4.10). All

the images are randomly shuffled for different volunteers and they need to choose a

“Real” or “Fake” label for each image, which is a binary classification task. The average

accuracies on the whole dataset are 0.71, 0.84 and 0.87 for GAN_11, DCGAN1 and

DFC-VAE. It shows that our method can generate more realistic face images and the

1https://goo.gl/forms/cuNsJBAVJTUlizt23
2https://goo.gl/forms/KyEg5Kee13GFGCSJ2
3https://goo.gl/forms/eRcCQkBr0EFN5twp1
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𝛂=0 𝛂=1

Figure 4.13: Linear interpolation of input vector z. Each row is the generated images

for intermediate vectors from left vector zle f t to right vector zright. e.g.

(1− α)zle f t + αzright.

volunteers could be “fooled” and cannot distinguish fake faces from real ones easily.

4.3 Summary

In this chapter we have developed two generative models that can produce new realis-

tic images similar to the ones in a given dataset. We propose to incorporate pretrained

deep convolutional neural network that helps construct objective functions for vari-

ational autoencoder and generative adversarial network respectively. We show that

the pretrained CNN can be seamlessly stacked on VAE and GAN, therefore, the entire

models can be optimized end-to-end on raw image dataset. The experiments demon-

strate that our models can generate realistic images better than previous methods. In

addition, We also show that our method can produce latent vectors that can capture the

conceptual and semantic information of natural images. In particular, we achieve new

state of the art performance in facial attribute prediction by using the learned latent

representations in VAE.

As shown in this chapter, deep features extracted from pretrained CNN can be used to

train state of the art generative models. In Chapter 5 and Chapter 6, we will further

explore the effectiveness of deep features based loss as image quality measurement

for two categories of image processing tasks: image information augmentation and

information reduction.
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CHAPTER 5

Image Information Augmentation

In this chapter, we develop deep learning techniques to tackle two traditional low-level

image processing tasks, image companding and inverse halftoning, which are essentially

information augmentation problems that require inferring new information. In partic-

ular, we propose to train a deep convolutional neural network as a nonlinear transfor-

mation function to map a lower bit depth image to a higher bit depth or from a halftone

image to a continuous tone image, and at the same time employs another pretrained

deep CNN as a feature extractor to derive visually important features to construct the

objective function to guide the training. Extensive experimental results are presented

to show that the new deep learning based solution significantly outperforms previous

methods and achieves new state of the art results.

5.1 Introduction

Companding is a process of compression and then expanding, allowing signals with

a higher dynamic range to be transmitted with a lower dynamic range by reducing

the number of bits. This technique is widely used in telecommunication and signal

processing such as audio processing. For image processing, companding could be re-

garded as an encoding and decoding framework. The encoding or quantized com-

pression process, while fairly simple and efficient, could also produce a lot of undesir-

able artifacts, such as blocking artifacts, contouring and ringing effects (see Figure 5.1).

These degraded artifacts become more obvious with lower bit quantization.

Inverse halftoning, another similar image processing problem considered in this work,

is the inversed process for halftoning. Halftone images are binary images served as

analog representation and widely used in digital image printing, trying to convey the

illusion of having a higher number of bit levels (continuous-tone) to maintain the over-
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all structure of the original images. As a result, distortions will be introduced to the

halftone images due to a considerable amount of information being discarded. Inverse

halftoning, on the other hand, addresses the problem of recovering a continuous-tone

image from the corresponding halftoned version. This inversed process is needed since

typical image processing techniques such as compression and scaling can be success-

fully applied to continuous-tone images but very difficult to halftone images.

However, these two problems are ill-posed considering that there could be an infinite

number of possible solutions due to different information augmentation. They are es-

sentially one-to-many mappings and the input image could be transformed into an

arbitrary number of plausible outputs even if the compression and halftone methods

are known in advance. Solving both problems requires finding a way to estimate and

add more information into the images that do not exist. There are no well-defined

mathematic functions or guidelines to describe the mappings to produce high-quality

images.

In this work, we take advantage of the recent development in machine learning, in

particular deep convolutional neural networks (CNNs), which have become the state

of the art workforce for most computer vision tasks [23, 24]. Unlike previous human-

engineered methods [94–97], we formulate the two image processing problems, i.e.,

companding and inverse halftoning, from the perspective of machine learning. We

train deep convolutional neural networks as non-linear mapping functions in a super-

vised manner to expand images from a lower bit depth to a higher bit depth in order to

reduce artifacts in image companding and produce continuous-tone images in inverse

halftoning. Moreover, we also investigate the effect to construct loss functions based

on different level convolutional layers, which have shown different properties when

applying an inverting processing to reconstruct the encoded images [98].

Our core contributions in this work are two folds. Firstly, to the best knowledge of

the authors, this is the first work that has successfully developed deep learning based

solutions to these two traditional image processing problems. This not only introduces

new methods to tackle well-known image processing problems but also contributes to

the literature that demonstrates the power of deep learning in solving traditional signal

processing problems. Secondly, building on the insights into the properties of visual

quality of images and the hidden representation properties of deep CNNs, and also

inspired by recent works that use deep CNNs in other image processing applications

[35, 36, 99], we take full advantage of the convolutional neural networks both in the

nonlinear mapping functions and in the neural networks loss functions for low-level

image processing problems. We not only use a deep CNN as a nonlinear transfor-
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mation function to map a low bit depth image to a higher bit depth image or from a

halftone image to a continuous tone image, but also employ another pre-trained deep

CNN as a feature extractor or convolutional spatial filter to derive visually important

features to construct the objective function for the training of the transformation neural

network. Through these two low-level image processing case studies, we demonstrate

that a properly trained deep CNN can capture the spatial correlations of pixels in a

local region and other visually important details, which can be used to infer the “cor-

rect” values of pixels and their neighbors as well. Our work further demonstrates that

halftone images and heavily compressed low bit depth images, even though showing

visually annoying artifacts, they have still preserved the overall structure information

of the images which are sufficient to enable deep neural networks to recover the origi-

nal signals to a high degree of fidelity.

5.2 Related Work

5.2.1 Image Companding

Companding, a combination of the words compressing and expanding, is a signal pro-

cessing technique to allow signals with a large dynamic range transmitted in a smaller

dynamic range format. This technique is widely used in digital telephony systems.

Image companding [94, 100, 101] is designed to squeeze higher-bit images to lower bit

ones, based on which to reproduce outputs with higher bits. Multi-scale subband archi-

tecture [94] successfully compressed high dynamic range (HDR) images to displayable

low dynamic range (LDR) ones. They also demonstrated that the compression process

can be inverted by following the similar scheme as the previous compression. As a

result, low dynamic range images can be expanded to approximate the original higher-

bit ones with minimal degradation.

5.2.2 Halftoning and Inverse Halftoning

The typical digital halftoning process is considered as a technique of converting a

continuous-tone grayscale image with 255 color levels (8 bits) into a binary black-and-

white image with only 0 and 1 two color levels (1 bit). These binary images could

be reproduced to “continuous-tone” images for humans based on an optical illusion

that tiny dots are blended into smooth tones by human eyes at a macroscopic level.

In this work, we focus on the most popular halftoning technique known as error dif-

fusion, in which the residual quantization error of a pixel is distributed to neighbor-

52



Chapter 5. Image Information Augmentation

ing pixels. Floyd-Steinberg dithering is commonly used by image manipulation soft-

ware to achieve error diffused halftoning based on a simple kernel. The reversed

processing known as inverse halftoning is to reconstruct the continuous-tone images

from halftones. Many approaches to addressing this problem have been proposed in

the literature, including non-linear filtering [96], vector quantization [102], projection

onto convex sets [103], MAP projection [104], wavelets-based [105], anisotropic diffu-

sion [95], Bayesian-based [106], a method by combining low-pass filtering and super-

resolution [107], Look-up table [108], sparse representation [109], local learned dictio-

naries [110] and coupled dictionary training [111].

5.2.3 Deep Learning for Image Transformation

In this work, we seek to formulate the image companding and inverse halftoning as im-

age transformation problems and employ deep convolutional neural networks as non-

linear functions to map input images to output images for different purposes. Recent

deep CNNs have become a common workhorse behind a wide variety of image trans-

formation problems. These problems can be formulated as per-pixel classification or

regression by defining low level loss. Semantic segmentation methods [8, 112, 113] use

fully convolutional neural networks trained by per-pixel classification loss to predict

dense scene labels. End-to-end automatic image colorization techniques [114, 115] try

to colorize grayscale image based on low level losses. Other works for depth [79, 116]

and edge detection [117] are also similar to transform input images to meaningful out-

put images through deep convolutional neural networks, which are trained with per-

pixel classification or regression loss. However the per-pixel measurement essentially

treats the output images as “unstructured” in a sense that each pixel is independent

with all other pixels for a given image.

Considering the shortcoming of per-pixel loss, other “structured” measurements have

been proposed such as structural similarity index measure (SSIM) [118] and conditional

random fields (CRF) [119], which take context into account. These kinds of “struc-

tured” loss have been successfully applied to different image transformation problems.

However these measurements are human-crafted, the community has successfully de-

veloped structure loss directly learned from images. Generative adversarial networks

(GANs) [15] are able to generate high-quality images based on adversarial training.

Many works have tried to apply GANs in conditional settings such as discrete labels

[120], texts [121] and of course images. Image-conditioned GANs involve style transfer

[122], inpainting [123], frame prediction [124]. In addition, image-to-image translation

framework [125] based on adversarial loss can effectively synthesize photos under dif-
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ferent circumstances.

Another way to improve per-pixel loss is to generate images by optimizing a percep-

tual loss which is based on high level features extracted from pretrained deep convo-

lutional neural networks. By optimizing individual deep features [45] and maximizing

classification score [126], images can be generated for a better understanding of hidden

representations of trained CNNs. By inverting convolutional features [127], the colors

and the rough contours of an image can be reconstructed from activations in pretrained

CNNs. In addition, artistic style transfer [35] can be achieved by jointly optimizing the

content and style reconstruction loss based on deep features extracted from pretrained

CNNs. A similar method is also used for texture synthesis [128]. Similar strategies are

also explored to achieve real-time style transfer and super-resolution [36].

5.2.4 Image Quality Metric

Peak Signal to Noise Ratio (PSNR). PSNR is the simplest and most widely used full-

reference image quality metric and represents the ratio between the maximum possible

power of a signal and the power of distortion noise. In the context of image processing,

distortion noise is measured by the per-pixel mean squared error (MSE) between the

original image and the distorted image while the maximal power of a signal is the

maximum possible pixel value of the image (e.g. 255 for 8 bits images). Mathematically

PSNR can be formulated as follows:

PSNR = 10 log10

(
MAX2

MSE

)
(5.2.1)

We can see that PSNR is quite simple and easy to calculate with meaningful physical

interpretation. In general, a higher PSNR value usually indicates better image quality,

however in some cases it may not and could not generalize well to perceived visual

quality [129–132]. In particular, for image reconstruction or generation the output im-

ages tend to be very blurry when compared to natural images. This is because the per-

pixel loss (MSE) only considers point-wise signal difference rather than the perceptual

difference and spatial correlation between two images.

Structural Similarity (SSIM) Index. SSIM [118] is another widely used and cited full-

reference image quality metric and designed to improve on traditional methods like

PSNR. The essential difference with respect to PSNR and MSE is that these methods

only estimate the absolute point-wise error while SSIM is a more perceptual-based ap-

proach by comparing the structures of the reference and the distorted signals. SSIM

is based on the assumption that the human visual system is highly adapted to extract
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𝓛conv2_1 𝓛conv3_1 𝓛conv4_1
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Input T(x)

𝓛conv5_1

Figure 5.1: Method overview. A transformation convolutional neural network (CNN)

to expand lower-bit images to higher-bit ones. A pretrained deep CNN for

constructing perceptual loss to train the transformation network.

structural information from visual information and considers image degradations as

perceived changes in structural information variation. The final SSIM index between

two patches (x, y) is the combination of Luminance, Contrast and Structural comparison

as follows:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(5.2.2)

where µx and µy are the mean intensity of x and y; σ2
x and σ2

y are the variance of x and

y; σxy is the covariance of x and y; c1 = (k1L)2, c2 = (k2L)2 are used to stabilize the

division with weak denominator; L is the dynamic range of the pixel values; k1 = 0.01

and k2 = 0.03 by default. The “universal quality index” (UQI) proposed in [132] is the

special case when k1 and k2 are equal to 0.

5.3 Method

In this work, we propose to use deep convolutional neural networks with skip connec-

tions as non-linear mapping functions to expand images from a lower bit depth to a

higher bit depth. The objective of generating the higher bit depth version of the im-

age is to ensure that this image is visually pleasing and can capture visually important

properties of the original version of the image. Instead of using per-pixel losses, i.e.

measuring pixel-wise difference between the output image and its target (the original)

image, we measure the difference between the output image and target image based on

the high level features extracted from pretrained deep convolutional neural networks.

The key insight is that the pretrained networks have already encoded perceptually

useful information we desired, such as the spatial relationship between pixels nearby.

Our system is diagrammatically illustrated in Figure 5.1, which consists of two parts:
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an autoencoder transformation neural network with skip connections T(x) to achieve

end-to-end mapping from an input image to an output image, and a pretrained neural

network Φ(x) to define the loss function.

5.3.1 Network Architecture

Our non-linear mappings are deep convolutional neural networks, which have been

demonstrated to have state-of-the-art performances in many computer vision tasks.

Successful network architecture like AlexNet [23], VGGNet [24] and ResNet [26] are

designed for high level tasks like image classification to output a single label, and they

cannot be directly applied to image processing problems. Instead, previous works have

employed an encoder-decoder architecture [36, 99] to firstly encode the input images

through several convolutional layers until a bottleneck layer, followed by a reversed

decoding process to produce the output images. Such encoder-decoder architecture

forces all the information to pass through the networks layer by layer. Thus the final

generated images are produced by higher layers’ features. However for image process-

ing, the output images can retain a great deal of lower layers’ information of the input

images, and it would be better to incorporate lower layers’ features in the decoding

process. Based on the architecture guidelines of previous work on image segmentation

[133], image-to-image translation [125] and DCGAN [77], we add skip connections to

construct a “U-Net” network to fuse lower layers and higher layers features and em-

ploy fully convolutions for image transformation.

The details of our model are shown in Figure 5.2, we first encode the input image to

lower dimension vector by a series of stride convolutions, which consists of 4 x 4 convo-

lution kernels and 2 x 2 stride in order to achieve its own downsampling. We also use a

similar approach for decoding to allow the network to learn its own upsampling by us-

ing deconvolutions [8]. Spatial batch normalization [28] is added to stabilize the deep

network training after each convolutional layer except the input layer of the encoder

and the last output layer of the decoder as suggested in [77]. Additionally leaky rec-

tified activation (LeakyReLU) and ReLU are served as non-linear activation functions

for encoder and decoder respectively. Finally we directly concatenate all the encod-

ing activations to the corresponding decoding layers to construct a symmetric “U-Net”

structure [133] to fuse the features from both low layers and high layers.
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256 x 1 x 1

256 x 2 x 2

256 x 4 x 4

256 x 8 x 8

256 x 16 x 16

128 x 32 x 32

64 x 64 x 64

512 x 2 x 2

512 x 4 x 4

512 x 8 x 8

512 x 16 x 16

256 x 32 x 32

128 x 64 x 64

32 x 128 x 128

3 x 256 x 256

3 x 256 x 256

64 x 128 x 128

conv  +  bn  +  LeakyReLU

deconv  +  bn  +  ReLU

Figure 5.2: The architecture of the transformation networks. The “U-Net” network is

an encoder-decoder with skip connections between the encoder and de-

coder. The dash-line arrows indicate the features from the encoding layers

are directly copied to the decoding layers and form half of the correspond-

ing layers’ features.

5.3.2 Perceptual Loss

It is well known that per-pixel loss for regression and classification is problematic and

could produce blurry outputs or other visual artifacts. This is because each pixel is

regarded as an individual object for optimization, resulting in average outputs to some

degree. A better strategy is to construct the loss by incorporating the spatial correla-

tion information. Rather than encouraging matching each individual pixels of input

and output images, we follow previous works [35, 36, 99] to measure the difference

between two images at various deep feature levels based on pretrained deep convo-

lutional neural networks. We seek to capture the input images’ spatial correlations by

means of convolution operations in the deep CNNs.

We denote the loss function as L(ŷ, y) to measure the perceptual difference between

two images. As illustrated in Figure 5.1, both the output image ŷ = T(x) generated

by the transformation network and the corresponding target image y are fed into a

pretrained deep CNN Φ for feature extraction. We use Φi(y) to represent the hidden

representations of image y at ith convolutional layer. Φi(x) is a 3D array of shape [Ci,

Wi, Hi], where Ci is the number of filters, Wi and Hi are the width and height of the

given feature map of the ith convolutional layer. The final perceptual loss of two images

at ith layer is the Euclidean distance of the corresponding 3D arrays as following:

Li(ŷ, y) =
1

CiWi Hi

Ci

∑
c=1

Wi

∑
w=1

Hi

∑
h=1

(Φi(ŷ)c,w,h −Φi(y)c,w,h)
2 (5.3.1)

In fact, above loss still follows the per-pixel manner if we treat the hidden features
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which are 3D arrays as “images” with more than 3 color channels. However this kind

of loss has already incorporated the spatial correlation information because the “pix-

els” in these images are the combinations of the original pixels through convolution

operations.

5.3.3 Training Details

Our implementation uses open source machine learning framework Torch [40] and a

Nvidia Tesla K40 GPU to speed up training. The pretrained 19-layer VGGNet [24]

is chosen as the loss network for deep feature extraction which is fixed during the

training. In addition, due to the similar convolutional architecture, the loss network can

be seamlessly stacked to our “U-Net” neural network to achieve end-to-end training.

The training images are of the shape 256×256 and we train our model with a batch

size of 16 for 30,000 iterations. Adam optimizer [32] is used for stochastic optimization

with a learning rate of 0.0002. For the LeakyReLU in the encoder, the slope of the leak

is set to 0.2 in all layers. Additionally we experiment with conv1_1, conv2_1, conv3_1,

conv4_1 and conv5_1 layers in VGGNet to construct perceptual loss for comparison.

5.4 Experimental Results

In our experiments, we use Microsoft COCO dataset [134] which is a large-scale database

containing more than 300,000 images as our training images. We resize the training im-

ages to 256×256 as our inputs to train our models. We perform experiments on two

image processing problems: image companding and inverse halftoning.

5.4.1 Image Companding

One essential part of image companding is to expand lower bit images to higher bit

outputs. This technique has been investigated in the context of high dynamic range

(HDR) imaging [94], firstly compressing the range of an HDR image into an LDR im-

age, at which point the process is then reversed to retrieve the original HDR image.

Since it is impossible to display a true HDR image with more than 8 bits, we use 8

bit images as our highest bit depth images in the experiments. The 8 bit images are

reduced by different depths as the lower bit depth images, and then expanded back

to 8 bits. Take 4 bit images for example, they can only have 16 different levels for

each color channel while there are 256 different levels for 8 bit images. The default

approach [94] for converting 8 bit images to 4 bit images is to divide by 16 to quantize
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the color level from 256 to 16, which will be then scaled up to fill the full range of the

display. Mathematically we can use the formula below to easily convert 8 bit images

to different lower bit outputs. This operation can be applied to both grayscale images

and color images by processing each channel separately.

Ilow = b
Ihigh

2(h−l)
c2(h−l) (5.4.1)

where the Ilow and Ihigh are the pixel intensity of converted lower and higher bit depth

images respectively, l and h are the bit depth for lower and higher bit depth images.

We first preprocess the training images to different lower-bit ones as input data, and

use the original images as higher-bit targets we want to retrieve. After training, the

validation split of Microsoft COCO is used for testing. We first compare the results of

different lower-bit input images, and then evaluate how the perceptual loss constructed

from different convolutional layers affects the expanding quality.

Different bit depths. We have separately trained models for different lower-bit input

images for comparison and use the conv1_1 layer of VGGNet to construct the percep-

tual loss for all the models.

Figure 5.3 and Figure 5.4 show the qualitative results for a variety of color and grayscale

images taken from Microsoft COCO 2014 validation split. We can see that the linearly

quantized lower-bit images display severe blocking and contouring artifacts. The com-

pression process amplifies low amplitudes and high frequencies which dominate the

quantization artifacts because we try to show a lower dynamic range image on a higher

dynamic range displayable device. For instance, our device is appropriate for the orig-

inal 8 bit targets with 256 color levels. We could drop the bit depths of the original

images by 5 bits and linearly quantize them to 3 bit images with only 8 color levels.

Since the compressed images contain 5 fewer bits, they should be theoretically dis-

played on 1/32 dynamic range device. It is obvious that this kind of lossy compression

introduces visible artifacts in pixel blocks and at block boundaries.

We also show the corresponding expanded images retrieved from our models in Fig-

ure 5.3 and Figure 5.4. The blocking and contouring artifacts are effectively reduced

to show smooth appearance in the expanded outputs. For example in the airplane im-

age in Figure 5.4, the compressed images show obvious contouring artifacts in the sky

while the expanded images have homogeneous gradually changing colors. This can be

further validated from the distribution of intensity histograms. Figure 5.5 shows the

intensity histograms for the compressed 2 and 4 bit airplanes and the expanded ones

in Figure 5.4. It is clear that our methods are able to infer the “correct” values for a
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Original 2 Bit Expanded

Figure 5.3: Results on color images from Microsoft COCO validation split for block-

ing and contour artifacts reduction. A pair of compressed 2 bit images

and the corresponding expanded ones are shown together. Additionally

an enlarged sub-image of each image is given at the bottom for better com-

parison.

Expanded4 BitExpanded2 BitOriginal

Figure 5.4: Results on grayscale images from Microsoft COCO validation split for

blocking and contour artifacts reduction. A pair of compressed 2 bit and 4

bit images and the corresponding expanded ones are shown together. Ad-

ditionally an enlarged sub-image of each image is given at the bottom for

better comparison.

60



Chapter 5. Image Information Augmentation

0 50 100 150 200 250
Pixel Value

0

50000

100000

150000

200000

250000

N
o.

 o
f 

Pi
xe

ls

0 50 100 150 200 250
Pixel Value

0

10000

20000

30000

40000

50000

60000

70000

80000

N
o.

 o
f 

Pi
xe

ls

0 50 100 150 200 250
Pixel Value

0

5000

10000

15000

20000

25000

30000

35000

N
o.

 o
f 

Pi
xe

ls

0 50 100 150 200 250
Pixel Value

0

5000

10000

15000

20000

25000

N
o.

 o
f 

Pi
xe

ls

0 50 100 150 200 250
Pixel Value

0

5000

10000

15000

20000

25000

N
o.

 o
f 

Pi
xe

ls

2 Bit image 4 Bit image

2 Bit companding image

Original 8 bit image Original image

4 Bit companding image

Figure 5.5: Intensity histogram of different compressed and expanded images.

single pixel based on its neighbors, and convey a more attractive impression with rich

and saturated colors.

In order to have a comprehensive quantitative evaluation for our models, we report

peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) [118]

for quality assessment. PSNR is per-pixel based measurement defined via the mean

squared error (MSE) while SSIM index is known as perceptual-aware method for mea-

suring the structural similarity between two images. For both measurements, a higher

value indicates better quality. Table 5.1 summarizes the average PSNR (dB) and SSIM

values of 100 images selected from COCO validation split. Similar to qualitative re-

sults, the higher bit images have higher PSNR and SSIM values, indicating better image
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Table 5.1: The average companding results of PSNR(dB) and SSIM for 100 color and

grayscale images randomly selected from Microsoft COCO validation split.

The expanded results were based on a perceptual loss constructed using

conv1_1 layer.

Input Bit-depth
PSNR SSIM

Compressed Expanded Compressed Expanded

Bit 1
Color 11.73 18.67 0.40 0.55

Grayscale 11.58 18.81 0.35 0.49

Bit 2
Color 17.37 25.65 0.67 0.81

Grayscale 17.29 25.84 0.61 0.74

Bit 3
Color 23.13 30.79 0.85 0.90

Grayscale 23.16 31.33 0.78 0.87

Bit 4
Color 29.03 34.52 0.94 0.95

Grayscale 29.19 36.69 0.90 0.94

Bit 5
Color 34.85 37.59 0.98 0.97

Grayscale 35.08 40.24 0.96 0.97

Original 3 Bit conv1_1 conv3_1 conv5_1

Figure 5.6: Results on color images for blocking and contour artifacts reduction. The

compressed images are fixed to 3 bits with 8 color levels for each channel.

The conv1_1, conv3_1, conv5_1 are the expanded results produced by the

models trained with perceptual loss constructed by corresponding convo-

lutional layers. Additionally an enlarged sub-image of each image is given

at the bottom for better comparison.

quality. Additionally, the expanded images produced by our method have significantly

higher PSNR and SSIM values compared to the corresponding compressed ones. It is

clear that our method can effectively improve the image quality especially for lower bit

depth images.
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Perceptual loss at different convolutional layers. Due to the multi-layer architecture

of deep convolutional neural networks, the perceptual loss can be defined by differ-

ent convolutional layers. Therefore, we conduct experiments to investigate the perfor-

mance for different perceptual losses. In all the experiment we use 3 bit depths (8 color

levels) as input images to train our deep networks for both color and grayscale images.

As shown in Figure 5.6, all the expanded outputs can effectively reduce the blocking

and contouring artifacts and reveal continuous-tone results in general. However, the

reconstruction based on perceptual loss of higher-level layers could introduce new ar-

tifacts such as grid patterns as shown in images for conv3_1 and conv5_1 layers. We

observed similar phenomenons for input images of different bit-depths. One expla-

nation is that the higher layers will cover a larger area in the input image. The areas

covered by conv3_1 and conv5_1 layers are too large to construct a natural looking

image and the spatial correlations across a large area of the image do not capture the

natural appearances of an image. Expanding based on perceptual loss of deep fea-

tures of conv1_1 layer or lower layers does not have this kind of artifacts. This could

be also validated by previous work [98] that tries to compute an approximate inverse

image from its deep features. It shows that the first few layers in a pretrained CNN

are essentially an invertible code of the image and maintain a photographically faithful

representations, and the higher level features are corresponding to a more coarse space

area of the encoded image.

Table 5.2 shows the average PSNR and SSIM values for 100 COCO testing images

based on perceptual losses constructed with different convolutional layers. On the one

hand, both the PSNR and SSIM of our expanded images are much higher than those of

the compressed lower bit images, and the compressed images can be significantly im-

proved by our method. On the other hand, the expanded images based on perceptual

losses of lower level layers have higher PSNR and SSIM values. This is because new

artifacts like grid pattern will be introduced (Figure 5.6) although the blocking artifacts

can be reduced.

5.4.2 Inverse halftoning

Another similar image processing problem we are interested in is inverse halftoning.

This task is to generate a continuous-tone image from halftoned binary images. This

problem is also inherently ill-posed since there could exist multiple continuous-tone

images corresponding to the halftoned ones. In our experiments we try to use deep

feature based perceptual loss to allow the inversed halftones perceptually similar to the

given targets. We experiment with both color and grayscale images by using the same
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Table 5.2: The average companding results of PSNR(dB) and SSIM for 100 color and

grayscale testing images. The compressed input images are 3 bits, and the

expanded results based on perceptual loss constructed with different con-

volutional layers are shown.
Perceptual

Loss Layer

PSNR SSIM

Compressed Expanded Compressed Expanded

Conv1
Color 23.13 32.64 0.85 0.93

Grayscale 23.16 32.57 0.78 0.91

Conv2
Color 23.13 30.00 0.85 0.88

Grayscale 23.16 30.74 0.78 0.85

Conv3
Color 23.13 28.17 0.85 0.87

Grayscale 23.16 29.60 0.78 0.81

Conv4
Color 23.13 25.74 0.85 0.84

Grayscale 23.16 29.54 0.78 0.82

Conv5
Color 23.13 25.43 0.85 0.87

Grayscale 23.16 27.50 0.78 0.77

approach and employ error diffusion based Floyd-Steinberg dithering for halftoning.

Qualitative results. We test our models on random samples of images from Microsoft

COCO validation split. The inverse halftoning results are shown in Figure 5.7. We can

see that the inversed outputs produced by our method are visually similar to the orig-

inal images. All the outputs can show much smoother textures and produce sharper

edges. For instance, sharp kite line and smooth sky can be reconstructed in the kite

image. When comparing with the inversed outputs produced by using perceptual loss

of different level layers, the outputs from lower-level layer is visually better than those

from higher-level layer. Like image companding, grid pattern artifacts can be intro-

duced when using higher-level layer to construct perceptual loss.

In addition, we also compare our method on two widely used grayscale images Lenna

and Peppers with other algorithms. Figure 5.8 shows comparative grayscale results

against previous Fastiht2 [95] and Wavelet-based WInHD [105] algorithms. We also

report the PSNR / SSIM measurement for each image. It is clear that our learning-based

method can achieve state-of-the-art results and produce sharp edges and fine details,

such as the hat in the Lenna image. Our deep models can effectively and correctly learn

the relevant spatial correlation and semantic information between different pixels and

infer the “best” values for a single pixel based on its neighbors. Moreover, our method

can be naturally adapted to color images and produce high-quality continuous-tone

color images from corresponding halftones. Figure 5.9 shows the resulting images for

the Koala and Cactus image, which include fine textures and structures. We compare our

results (CNN Inverse) with those of two recent methods GLDP [109] and LLDO [110].

We can see that our method can provide better resulting images with well expressed
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Original Halftone conv1_1 conv5_1

Figure 5.7: Inverse halftoning results on images from Microsoft COCO validation

split. The conv1_1, conv5_1 are the results produced by the models trained

by the perceptual losses of corresponding convolutional layers. Addition-

ally an enlarged sub-image of each image is given at the bottom for better

comparison.

fur and bark in the Koala image, and distinct boundaries of the fine sand and sharpened

edges of splines in the Cactus image.

Quantitative results. We use PSNR and SSIM as quality metrics to quantitatively eval-

uate our inverse halftoning results. Table 5.3 shows the average PSNR and SSIM values

for 100 COCO testing images constructed from different convolutional layers. It is clear

that based on these image evaluation metrics, our method can improve the images by

a large margin for both color and grayscale images. In our experiment, the best results

are produced by the model trained with conv1_1 layer. When using perceptual loss

based on higher layers gives rise to a slight grid pattern artifacts visible under magni-
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PSNR / SSIM 6.71 / 0.40 31.37 / 0.85 31.77 / 0.86 33.85 / 0.90
Original Halftone Fastiht2 WInHD CNN Inverse

PSNR / SSIM 6.93 / 0.05 31.46 / 0.83 31.05 / 0.84 33.22 / 0.87
Original Halftone Fastiht2 WInHD CNN Inverse

Figure 5.8: A comparison of inverse halftoning results on grayscale Lena and Peppers

images by different methods. We compare our CNN Inverse method with

those of Fastiht2 [95] and Wavelet-based WInHD [105]. We report PSNR /

SSIM for each example.

Table 5.3: The average inversed halftoning results of PSNR(dB) and SSIM for 100 color

and grayscale images selected from Microsoft COCO validation split.
Perceptual

Loss Layer

PSNR SSIM

Halftone CNN Inverse Halftone CNN Inverse

Conv1
Color 8.08 31.43 0.20 0.91

Grayscale 7.92 31.36 0.14 0.90

Conv2
Color 8.08 20.98 0.20 0.59

Grayscale 7.92 23.98 0.14 0.67

Conv3
Color 8.08 24.05 0.20 0.73

Grayscale 7.92 27.44 0.14 0.74

Conv4
Color 8.08 26.48 0.20 0.85

Grayscale 7.92 27.82 0.14 0.76

Conv5
Color 8.08 25.47 0.20 0.84

Grayscale 7.92 26.48 0.14 0.69

fication, which harms the PSNR and SSIM.
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PSNR / SSIM 8.17 / 0.25 24.58 / 0.78 25.01 / 0.80 27.63 / 0.89
CNN InverseLLDOGLDPHalftoneOriginal

PSNR / SSIM 6.83 / 0.23 25.40 / 0.81 25.55 / 0.82 27.69 / 0.92
CNN InverseLLDOGLDPHalftoneOriginal

Figure 5.9: A comparison of inverse halftoning results on color Koala and Cactus im-

ages by different methods. We compare our CNN Inverse method with

those of GLDP [109] and LLDO [110]. We report PSNR / SSIM for each

example.

Moreover, we conduct experiments to compare with several previous methods. We

use 6 images Koala, Cactus, Bear, Barbara, Shop and Peppers, the same as [110] for testing.

Table 5.4 shows the PSNR and SSIM results for conventional methods based on MAP

estimation [104], ALF [95], LPA-ICI [135] and recent GLDP [109] and LLDO [110]. We

can see that our algorithm (CNN Inverse) can achieve new state-of-the-art results and

significantly outperform previous methods for inverse halftoning.

5.5 Summary

Image companding and inverse halftoning are two similar image processing problems

in the sense that they attempt to use a lower bit depth image to represent a higher bit

depth version of the same image to achieve information augmentation. In order to

expand the compressed images and inverse the halftones, traditional methods usually
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Table 5.4: PSNR (dB) and SSIM comparison of different inverse halftoning methods

for color images: MAP [104], ALF [95], LPA-ICI [135], GLDP [109], LLDO

[110] and our CNN Inverse.

Image
ALF MAP LPA-ICI GLDP LLDO CNN Inverse

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Koala 22.36 0.66 23.33 0.74 24.17 0.76 24.58 0.78 25.01 0.80 27.63 0.89

Cactus 22.99 0.64 23.95 0.77 25.04 0.79 25.40 0.81 25.55 0.82 27.69 0.92

Bear 21.82 0.62 22.63 0.72 23.14 0.72 23.66 0.77 24.17 0.78 26.35 0.89

Barbara 25.41 0.71 26.24 0.78 27.88 0.83 27.12 0.80 28.48 0.85 31.79 0.92

Shop 22.14 0.64 22.46 0.69 24.12 0.77 23.86 0.75 24.61 0.80 27.27 0.89

Peppers 30.92 0.87 28.25 0.77 30.70 0.87 30.92 0.87 31.07 0.87 31.44 0.89

need to design expanding and inverse operators manually. For example, the halftone

technique such as the specific dithering algorithms should be given in advance in order

to design an inverse operator. In this chapter, we show that a learning based method

can formulate the two problems in the same framework and a perceptual loss based

on pretrained deep networks can be used to guide the training. Our method is very

effective in dealing with compressed blocking and contouring artifacts for companding

and reproduces state of the art continuous-tone outputs from binary halftone images.
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CHAPTER 6

Image Information Reduction

In the last chapter, we saw that we can effectively train deep convolutional neural net-

work for two image information augmentation problems: image companding and in-

verse halftoning. The key point is to measure the similarity between the outputs and

ground-truth images based their deep features extracted from pretrained deep mod-

els. In this chapter, we turn to other image processing problems that require reducing

image information such as image downscaling, decolorization (colour to grayscale con-

version) and high dynamic range (HDR) image tone mapping (Figure 6.1). We cannot

directly apply the strategy used in the last chapter because no ground-truth are avail-

able for these problems. In this chapter, we propose the Deep Feature Consistent Deep

Image Transformation (DFC-DIT) framework and build deep models to tackle these 3

image processing tasks in a similar way. DFC-DIT uses a convolutional neural network

as a non-linear mapper to transform an input image to an output image following the

deep feature consistent principle which is enforced through another pretrained and

fixed deep convolutional neural network. For each problem, we reason about a suit-

able learning objective function based on image features extracted from deep models

and develop an effective solution under the DFC-DIT framework. This is the first work

that uses deep learning to solve and unify these three common image processing tasks.

We present experimental results to demonstrate the effectiveness of the DFC-DIT tech-

nique and its state of the art performances.

6.1 Related Work

Image downscaling. Classical image downscaling techniques usually involve process-

ing the input images by applying a spatially constant low-pass filter, subsampling, and

reconstructing the result to prevent aliasing in the reconstructed signal. Approxima-
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Larson et al. Tumblin and Turk

OursRaanan Fattal et al.

Subsamping Color image Luminance

Ours

Bicubic

SSIM-basedInput Ours
Grundland et al.

Figure 6.1: Examples of classic image transformation tasks. Image downscaling (left)

where we show results of our method, two traditional methods (subsam-

pling and bicubic) and a state-of-the-art SSIM-based method [136]. Decol-

orization (middle) where we show results of our method, the Luminance

channel and a state-of-the-art method [137]. HDR image tone mapping

(right) where we show results of our method and 3 methods from the lit-

erature [138–140].

tions to the theoretically optimum sinc filter such as the Lanczos filter, and other filters

(e.g., bilinear and bicubic) have been developed and used in practice. However the

filtering kernels of these methods do not adapt to the image content. A recent content-

adaptive technique [141] is proposed to overcome the above shortcoming by adapting

the shape and location of every kernel to the local image content and demonstrates bet-

ter downscaling results. A better depiction of the input image was proposed [136] by

formulating image downscaling as an optimization problem with the structural simi-

larity (SSIM) [118] as the perceptual image quality metric. In addition convolutional

filters [142] are used to preserve visually important details in downscaled images.

Decolorization. Decolorization aims to convert color images into grayscale images

while preserving structures and contrasts as much as possible. The baseline method is

to extract the luminance channel of a given color image from the RGB channels. How-

ever it could fail to express salient structures of the color image because of the fixed

weights for combining RGB channels. Other more advanced techniques are proposed

to obtain better results by either focusing on local contrasts or global contrasts. Local

contrasts [143, 144] use different mapping functions in different local regions of the im-

age, while global contrasts [145–148] are designed to produce one mapping function

for the whole image. [149] takes into account multi-scale contrast preservation in both

spatial and range domain and uses bilateral filtering to mimic human contrast percep-

tion. [150] uses a bimodal objective function to alleviate the restrictive order constraint

for color mapping. In addition image fusion based strategy [151] is proposed for image
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and video decolorization.

HDR image tone mapping. HDR image tone mapping aims to reproduce high dy-

namic range radiance maps in low dynamic range reproduction devices. Tone mapping

operators can be classified as global operators and local operators. Global operators

[152–154] usually employ the same mapping function for all pixels and can preserve

the intensity orders of the original scenes to avoid “halo” artifacts, however the global

operators will generally cause loss of details in the mapped image. In contrast, local

operators [139, 155, 156] use mapping functions which vary spatially across the image.

Most local operators employ a pipeline to decompose an image into different layers

or scales and then recompose the mapped results from various scales after contrast re-

duction. However, the major shortcoming of local operators is the presence of haloing

artifacts. In addition, global operator is used in the local regions to reproduce local con-

trast and ensure better quality [157]. What’s more, an up-to-date, detailed guide on the

theory and practice of high dynamic range imaging is included in the book [158], which

also provide MATLAB code for common tone mapping operators. In this chapter, we

use their code to reproduce previous methods.

Image quality metrics. The choice of image quality metric is essential for image trans-

formation tasks. Standard pixel-by-pixel measurement like mean square error is prob-

lematic and the resultant images are often of low quality. This is because the measure-

ment is poorly correlated with human perception and can not capture the perceptual

difference and spatial correlation between two images. Better metrics have been pro-

posed for image quality assessment in recent years. Structural similarity (SSIM) index

[118] is one of the most popular metrics, which computes a matching score between two

images by local luminance, contrast, and structure comparisons. It has been success-

fully used for image downscaling [136], image denoising [118] and super-resolution

[159].

Relevant deep learning/CNN literature. Recently, there has been an explosion of pub-

lications on deep learning/CNN, similar to previous sections we here briefly review

the most related publications to our current work. A number of papers have success-

fully generated high-quality images based on the high-level features extracted from

pretrained deep convolutional neural networks. By optimizing individual deep fea-

tures [45, 93, 160, 161], better visual quality images can be generated, which in turn can

help understand the learned representations of deep networks. Additionally [35] have

achieved style transfer by minimizing content and style reconstruction loss which are

also based on features extracted from deep networks. Other works try to train a feed-

forward network for real-time style transfer and super-resolution [36]. Different loss
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𝓛 𝓛conv2_1 𝓛conv3_1 𝓛conv4_1 𝓛conv5_1

Pretrained network for feature perceptual loss  

𝓛conv1_1

Input Image
Transformation network
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HDR
tone

 mapping

Decolorization
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Figure 6.2: The Deep Feature Consistent Deep Image Transformation (DFC-DIT)

framework. A convolutional neural network transforms an input to an

output. A pretrained deep CNN is used to compute feature perceptual

loss for the training of the transformation network.

functions are compared for image restoration with neural networks [162]. In addition

image-to-image translation framework [125] are proposed to generate high quality im-

ages based on adversarial training.

It is worth noting that the downscaling problem studied in this work has the opposite

goal to super-resolution. Deep CNN based super-resolution training data has a unique

corresponding target for a given input image and is a many-to-one mapping. The

downscaling operation, however, is a one-to-many mapping; for a given input, there is

no known target in the training data. Therefore, existing end to end super-resolution

learning [36, 163, 164] and other similar CNN based image processing techniques such

as colorization [115, 165] cannot be directly applied to the problems studied in this

work.

6.2 Method

We seek to train a convolutional neural network as a non-linear mapper to transform

an input image to an output image following what we call the deep feature consistent

principle. The schematic is illustrated in Figure 6.2. Our system consists of two compo-

nents: a transformation network TW(x) and a loss network Φ(x). The transformation

network is a convolutional neural network parameterized by weights W, which trans-

forms an input image x to an output image x̂, i.e. x̂ = TW(x). The other component

is the loss network Φ which is a pretrained deep convolutional neural network to help

define the feature perceptual loss function for training TW(x). We feed both the origi-

nal image x and the transformed image x̂ to Φ and compute the feature perceptual loss

L(x, x̂). Training TW(x) is to find the weights W that minimize L(x, x̂), i.e.
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(a) Image downscaling (b) Image decolorization (c) HDR image tone mapping

Layer Output Size

input image (x) 3 x N x M

Layer Name Output Size

64 x N/2 x M/2

64x4x4x2x2 conv + ReLU 64 x N/2 x M/2

3 x N x M

padding + 64x3x3x1x1 conv + ReLU

upsampling, scale 4

Layer Name Output Size

3 x N/4 x M/4

64x4x4x2x2 conv + ReLU 64 x N/4 x M/4

padding +3x3x3x1x1 conv + ReLU

Layer Output Size

input image (x) 3 x N x M

Layer Name Output Size

64 x N x M

padding + 64x3x3x1x1 conv + ReLU 64 x N x M

3 x N x M

padding + 64x3x3x1x1 conv + ReLU

replicated

Layer Name Output Size

1 x N x M

padding + 64x3x3x1x1 conv + ReLU 64 x N x M

padding + 3x3x3x1x1 conv

Layer Output Size

input image (x) 3 x N x M

Layer Name Output Size

3 x N x M

padding + 64x3x3x1x1 conv + ReLU 64 x N x M

3 x N x M

padding + 3x3x3x1x1 conv

Scaled Tanh

Layer Name Output Sizepadding + 64x3x3x1x1 conv + ReLU 64 x N x M

Layer Name Output Sizepadding + 64x3x3x1x1 conv + ReLU 64 x N x M

Figure 6.3: Transformation neural network architecture for image downscaling, decol-

orization and HDR image tone mapping.

W∗ = arg min
W

Ex[L(x, TW(x))] (6.2.1)

Our approach in this chapter can be regarded as the extensions of the previous chapter.

But these extensions are non-trivial and non-obvious; each requires in-depth under-

standing of the problem and ingenuity that cannot be readily derived from existing

works. Unlike previous applications, none of our problems has a known ground truth

or target for a supervised learning network. Instead, we have to reason about the suit-

able target and develop solutions to construct the perceptual loss for each application

accordingly. In downscaling, we created a perceptual loss to match two images with

different shapes (sizes). In colour2gray, we constructed a perceptual loss to match two

images with different number of colour channels. In HDR tone mapping, we intro-

duced a perceptual loss to match two images with different dynamic ranges.

6.2.1 Feature Perceptual Loss

As alluded to earlier, the spatial correlation of an image is a major determining factor

of the visual integrity of an image. The goal of image transformation in Figure 6.2 and

the tasks in Figure 6.1 is to ensure x̂ preserves the visual integrity of x. This can be

alternatively stated as making the spatial correlations in x̂ consistent with those in x.

Instead of using handcrafted functions to describe an image’s spatial correlations, we

make use of a pretrained deep CNN. The hidden layers outputs, which we call deep

features, capture the spatial correlations of the input image.

The definition of feature perceptual loss is following the previous section. Specifically,

let Φi(x) represent the ith hidden activations when feeding the image x to Φ. If the ith

is a convolutional or ReLU layer, Φi(x) is a feature map of shape [Ci, Wi, Hi], where

Ci is the number of filter for the ith convolutional layer, Hi and Wi are the height and
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width of the given feature map respectively. The feature perceptual loss Li(x, x̂) for

a given layer of two images x and x̂ = TW(x) is defined as the normalized Euclidean

distance between the corresponding 3D feature maps. The final loss Li(x, TW(x)) is the

total loss of different layers.

Li(x, TW(x)) =
1

CiWi Hi

Ci

∑
c=1

Wi

∑
w=1

Hi

∑
h=1

(Φi(x)c,w,h −Φi(TW(x))c,w,h)
2 (6.2.2)

L(x, TW(x)) = ∑
i
Li(x, TW(x)) (6.2.3)

It is worth noting that Φ is pre-trained and fixed during the training of TW(x), it is used

as convolutional filters to capture the spatial correlations of the images.

6.2.2 Transformation Networks Architecture

The transformation networks are convolutional neural networks based on the architec-

ture guidelines from VGGNet [24] and DCGAN [77], and the details of the architecture

vary with different image transformation tasks (Figure 6.3).

Image downscaling. For image downscaling we use strided convolutions to construct

the networks with 4 x 4 kernels. The stride is fixed to be 2 x 2 to achieve in-network

downsampling instead of deterministic spatial functions such as max pooling and av-

erage pooling. The ReLU layer is used after the first convolutional layer as non-linear

activation function. Thus after two strided convolutions, the size of the input image

can be downscaled to 1/4. In order to compute the feature perceptual loss we need to

make sure that the transformed image and the original image have the same shape. In

our experiments we apply a 2D upsampling of a factor of 4 over every channel of the

transformed output (see Figure 6.4), thus upscaling the downscaled image back to the

same size as the original input. The nearest neighbor upsampler is chosen to ensure

the upsampled image has the same information as the downscaled image. Thus we

can feed the upscaled version and the original image into the loss network to compute

the feature perceptual loss.

Image decolorization. The image decolorization transformation only affects the color

of the input images, and there is no need to incorporate downsampling architecture in

the network. We use 3 x 3 kernels with 1 x 1 stride for all the convolutions. In addition,

each feature map of a given input is padded by 1 pixel with the replication of the

input boundary before the convolution operation. Thus the convolutional layers do not

change the size of the input image. Like the image downscaling network we use ReLU
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➠
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Figure 6.4: Nearest neighbor upsampling for the transformed image. The upsampled

image contains the same amount of information as the downscaled image

and is the same size as the original input image.

layer after the first convolutional layer, but only a single filter for the last convolution

to represent the transformed grayscale image. What we desired is the deep feature

consistency of the decolorized output and the original image. We replicate the single

channel of the decolorized output to a 3 channel color image (3 channels are identical),

which is then fed to the loss network Φ(x) to calculate the feature perceptual loss with

the original input. This is designed to ensure the replicated 3 channel color image have

the same amount of information as the decolorized output.

HDR image tone mapping. The network architecture for HDR image tone mapping

is similar to the one used in image decolorization above. We use replication to pad

the input boundary, and all the convolutions are 3 x 3 kernels with 1 x 1 stride. The

difference is that 3 filters are needed for the last convolutional layer for reproducing a

color image. The output layer is a scaled Tanh layer, restricting the pixel value of the

transformed image to the displayable range [0, 255] from a high dynamic range. During

the training we seek the deep feature consistency of the tone mapped and the original

high dynamic range image. Specific implementation details of each of the applications

are described in the experimental section.

6.3 Experiments

We present experimental results on three image transformation tasks: image downscal-

ing, image decolorization and HDR image tone mapping to demonstrate the effective-

ness of our method. We also investigate how the feature perceptual loss constructed

with different hidden layers of the loss network affects the performances.
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6.3.1 Training Details

Our image downscaling and decolorization transformation CNNs are trained offline

using Microsoft COCO dataset released in 2014 [134], which is a large-scale dataset

containing 82,783 training images. We resize all the image to 256 × 256 as the final

training data, and train our models with a batch size of 16 for 10 epochs over all the

training images. Once the transformation CNN is trained, it can be used to perform

downscaling or decolorization.

For HDR image tone mapping, the transformation CNN is trained online, i.e., an HDR

image is compressed using the transformation CNN trained with its own data. The

practical consideration is that it is difficult to collect large enough training dataset. With

large enough collection of training data, the model can also be trained offline.

For training, Adam [32] method is used for stochastic optimization with a learning

rate of 0.0002. A pretrained 19-layer VGGNet [24] is used as loss CNN Φ to compute

feature perceptual loss which is fixed during the training of the transformation CNN.

When constructing the feature perceptual loss for a pretrained network, the first step is

to decide which layer (layers) should be used. Unlike image generation works [36, 93]

using ReLU layers, we use convolution layers for feature extraction. This is because

the ReLU activation is just the corresponding convolutions output thresholded at 0,

the convolutions could contain more subtle information when compared with ReLU

output. Specifically we experiment feature perceptual loss by using convolutional layer

conv1_1, conv2_1, conv3_1, conv4_1 and conv5_1 for comparison. Our implementation

is built on open source machine learning framework Torch [40].

6.3.2 Image Downscaling

Image downscaling is trying to transform a high-resolution input image to a low-

resolution output image. In our experiments we focus on the× 1/4 image downscaling

similar to previous works [136, 141]. This seemingly simple routine image operation

is actually a technically challenging task because it is very difficult to define the cor-

rect low-resolution image. As already discussed, this is a one-to-many mapping and

there are many plausible solutions. Based on our DFC-DIT framework, we ensure that

the downsampled image and the original image will have similar deep features which

means that the output will maintain the spatial correlations of the original image thus

keeping the visual integrity of the original image.

Qualitative results. Although our network is trained on images of shape 256 × 256, it

can be adapted to any image sizes because of its fully convolutional architecture. After
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Figure 6.5: A comparison of natural images downscaled by different methods. The

results are downscaled by a factor of × 1/4 while the original inputs are

resized for better display. For each image, results of common filters such as

Bicubic, Bilateral, Lanczos and Subsampling are shown in the first row. Re-

sults of recent methods, generalized sampling [166], content-adaptive[141]

and SSIM-based downsampling [136] and ours are shown in the second

row. Our conv123_1 results are produced by a model trained with a com-

bined loss of convolutional layers conv1_1, conv2_1, and conv3_1. The

bottom row of the second image shows a local region of the downscaled

image by different methods. All the images are courtesy of [136]. The re-

sults are best viewed in native resolution electronically.

training, we evaluate our method on the testing images from [136]. We first show the

qualitative examples and compare our results with other state of the art methods. We

then evaluate how perceptual losses constructed at different convolutional layers affect

the performances.

Figure 6.5 shows qualitative examples of our results, other common techniques and

state of the art methods. We only show results of downscaling by a factor of × 1/4, the

original images are resized for better display. We can see that bicubic filter is known to

lead to oversmoothing results and cannot preserve fine structures such as the fence area

highlighted by the red rectangle (Figure 6.5(b)). Other filters such as bilateral filter and

Lanczos filter achieve sharper downscaled results, however these filters are also prob-
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conv5_1 conv123_1conv1_1 conv2_1 conv3_1 conv4_1

Figure 6.6: A comparison of natural images downscaled with the DFC-DIT framework

with different levels of feature perceptual loss. The examples, from left

to right, are × 1/4 downscaling results with perceptual losses computed

with individual hidden layers of VGGNet (from layer 1 to layer 5). The

last column is the results based on a perceptual loss combining the first 3

layers.

lematic. Bilateral filter can lead to ringing artifacts (the hair in Figure 6.5(a)), and Lanc-

zos filter could not preserve small-scale features such as the fence area in Figure 6.5(b).

More advanced methods such as generalized sampling [166], and content-adaptive

downscaling [141] and SSIM-based downscaling [136] could produce better results, but

still cannot preserve all perceptually important details. In contrast our method trained

by a feature perceptual loss constructed using layer conv1_1, conv2_1 and conv3_1

deep features can capture important fine textures and produce better transformed re-

sults, visually closer to the original high-resolution inputs. From Figure 6.5(b), the fine

textures of the fence area can be seen clearly in the downscaled image. Although sim-

ple (nearest neighbor) subsampling can also achieve sharper images, the results are

sometimes noisy and suffer from aliasing (see the hair in Figure 6.5(a)). Our algorithm

avoids both oversmoothing and aliasing problems and produces a crisp and noise-free

image. These results demonstrate that by keeping the deep features of the downscaled

image consistent with those of the original can indeed preserve the visual integrity of

the input.

Deep feature consistency at different layers. Figure 6.6 shows results of DFC-DIT

downscaled images using perceptual losses computed using conv1_1, conv2_1, conv3_1,

conv4_1 and conv5_1 layer of the VGGNet individually. We find that keeping the deep

feature consistent at these individual layers can in general preserve the original tex-

ture or content well. However for the high level layers, the downscaled images could

lose detailed pixel information such as pixel color. For example, results of conv4_1 and

conv5_1 in Figure 6.6 have higher color contrasts. We also found that by combining the

first three layer deep features in general works very well.
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6.3.3 Image Decolorization

Like in image downscaling we also train a four-layer convolutional network to trans-

form color images into grayscale images using the DFC-DIT framework. One of the

major problems in traditional approach to this task is that in iso-luminant areas the

color contrasts will disappear in the grayscale image because even though the pixels

have different colors their luminance levels are the same. In our neural network based

nonlinear mapping framework, we enforce deep feature consistency which means that

the spatial correlations of the color images are preserved in the grayscale image. Thus

even in iso-luminant regions, the color contrasts will be preserved as grayscale con-

trasts.

Qualitative results. Again, our fully convolutional neural network architecture can be

applied to process images of any sizes even though the training images have a fixed

size. Figure 6.7 shows several comparative results against standard luminance and re-

cent color to grayscale methods [143, 144, 150, 167]. Our training-based approach can

preserve the color contrasts of the original images, the grayscale images appear sharp

and fine details are well protected. It is interesting to note that unlike previous meth-

ods, we did not explicitly compute color contrasts and grayscale contrasts, instead we

only enforce deep feature consistency of the color and the decolorized images. From

these examples, we have shown convincingly that our DFC-DIT framework is an effec-

tive decolorization method.

Deep feature consistency at different layers. We also conduct experiments to evaluate

how deep feature consistency at different hidden layer of the loss network affects the

decolorization results. Results produced by models trained with perceptual loss of dif-

ferent hidden layers are shown in Figure 6.8. Again we can see that all the transformed

images are able to reconstruct the content of the original color image and preserve the

contrasts. Compared to lower layers, the decolorized images from higher layers do

a better job at reconstructing fine details, especially the contrast preservation that is

desired. Specifically the results from lowest layers, i.e., conv1_1 are similar to the lu-

minance channel (Figure 6.7), isoluminant regions are mapped onto the same output

intensity and global appearance is not well preserved. Constructing feature perceptual

loss from higher layer is better for contrast preserving. However when using the high-

est conv5_1 layer (Figure 6.8), the contrast of the outputs is too high that makes the

decolorized images look unnatural. Our best model is trained by using conv4_1 layer.
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Color image Ours Lu et al. Luminance Gooch et al. Smith et al. Kim et al.

Figure 6.7: A comparison of decolorized images by different methods. We compare

our method trained with conv4_1 layer with standard luminance and other

recent methods [143, 144, 150, 167]. The results are best viewed electroni-

cally.

Color image conv1_1 conv2_1 conv3_1 conv4_1 conv5_1

Figure 6.8: A comparison of decolorization by our methods trained with different

level feature perceptual loss. The examples are trained from low level to

high level layers in VGGNet. The results are best viewed electronically.

6.3.4 HDR Image Tone Mapping

Unlike image downscaling and decolorization where a single model is trained offline

using a large collection of training images and used to process all testing images, we

adapt one network to a single HDR image due to the lack of large HDR dataset avail-

able for training. This can be seen as an online process where we use an HDR image’s

own data to optimize its own transformation function. It is important to note that this

approach is realistic in practice as the process only needs the HDR input to produce
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its tone mapped output and there is no need to use any other extra information. The

only slight disadvantage is that it requires online training the neural network using an

HDR image’s own data before outputting the final tone mapped image. Comparing

with training the model offline using a large collection of training images, this online

approach will be slower because it needs to adapt the neural network to the current

testing image before producing the output tone mapped image. In our implementation

on a machine with an Intel Core i7-4790K CPU and a Nvidia Tesla K40 GPU, it takes

around 20 seconds to tone map a 768 x 512 HDR image.

It is a common practice to process the HDR radiance map in the logarithmic domain, we

feed the logarithm of the radiance signal to the transformation CNN. Dynamic range

compression is achieved by a Tanh function in the last layer of the transformation net-

work (Figure 6.3(c)). In practice, the dynamic range of the input HDR radiance signal is

compressed to the displayable range [0, 255]. Following the principle of DFC-DIT, the

HDR tone mapping transformation network is optimized by enforcing deep feature

consistency between the transformation output image and the original HDR radiance

map.

Rendering display image. The output of the transformation network will have the

correct dynamic range suitable for display, however, its colour may not be correct due

to the nonlinear mapping operations of the transformation CNN. We therefore need to

render the output of the transformation network to have the correct colour for display.

Therefore, we only use the luminance channel of tonemapped image and combine it

with the color channels of the original HDR image. As in other tone mapping method

[154], the final tone mapped image is rendered as:

Rout =
(Rin

Lin

)γLout (6.3.1)

Gout =
(Gin

Lin

)γLout (6.3.2)

Bout =
(Bin

Lin

)γLout (6.3.3)

where Rout, Gout and Bout are the final tone-mapped RGB channels, Rin, Gin and Bin are

the original radiance values in the corresponding HDR channels, and γ can be used to

render the correct display colour. Lin and Lout are respectively the luminance value of

the HDR radiance map and the luminance value of the transformation image by the

transformation CNN. According to the literature, γ should be set between 0.4 and 0.6

and we set it to 0.5 in all our results.

Qualitative results. Figure 6.9 and Figure 6.10 show examples of tone mapping results
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Larson et al. Expoblend Lischinski et al. Reinhard et al.

Gradient domain Fast bilateral filtering Kim et al. Ours

Figure 6.9: Stanford Memorial Church displayed using different methods. We show

those of Larson et al. [138], Expoblend [168], Lischinski et al. [169], Rein-

hard et al. [156], gradient domain [140], fast bilateral filtering [155] and

Kim et al. [170]. Our results are based on feature perceptual loss of 3 layers

conv1_1, conv2_1 and conv3_1.

Larson et al. Expoblend Lischinski et al. Reinhard et al.

Gradient domain Fast bilateral filtering Kim et al. Ours

Figure 6.10: Sunset image displayed using different methods. We show those of [138],

Expoblend [168], Lischinski et al. [169], Reinhard et al. [156], gradient

domain [140], fast bilateral filtering [155] and Kim et al. [170]. Our re-

sults are based on feature perceptual loss of 3 layers conv1_1, conv2_1

and conv3_1. Our results are based on feature perceptual loss of 3 layers

conv1_1, conv2_1 and conv3_1.
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Conv1_1 Conv2_1 Conv3_1 Conv4_1 Conv5_1

Figure 6.11: A comparison of HDR image tone mapping by our methods trained with

different level feature perceptual loss. The results are best viewed elec-

tronically.

𝛂 = 2.0𝛂 = 1.5𝛂 = 1.0𝛂 = 0.5𝛂 = 0.1

Figure 6.12: A demonstration of the effects of logarithmic compression based on fea-

ture perceptual loss of 3 layers conv1_1, conv2_1 and conv3_1.

of some HDR radiance maps of real scenes that are widely used in the literature, i.e.,

“Stanford Memorial Church” and “Vine Sunset”. We compare our results with some

of the best known and latest methods in the literature including Larson et al. [138],

Expoblend [168], Lischinski et al. [169], Reinhard et al. [156], gradient domain [140],

fast bilateral filtering [155] and Kim et al. [170]. From Figure 6.9 and Figure 6.10, we

can see that our method is able to render the images with excellent visual appearances

to keep tiny details and contrast of the radiance map, which are at least as good as

those produced by the best methods.

Deep feature consistency at different layers. In Figure 6.11 we show how feature

perceptual loss from different hidden layers affect the tone mapped images of the DFC-

DIT framework for HDR tone mapping. Overall the tone mapped images based on

perceptual losses from the middle level (conv2_1 and conv3_1) have a good balance

between local and global contrasts. Combining the perceptual losses of first several

layers together tend to produce somewhat better results than using a single layer. The

tone mapped outputs based on higher layers (conv4_1 and conv5_1) appear slightly

bumpy effect on different regions.

The effects of logarithmic compression. As mentioned above, we first compress the
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Figure 6.13: Subjective evaluation results. The red areas represent the percentage that

our algorithm is selected, green areas for no preference and the blue ones

for the other methods.

HDR radiance map with the logarithmic functions and try to seek the deep feature

consistency in the logarithmic domain. We can multiply the compressed radiance map

with a factor α to control the logarithmic transformation. The tone mapping results

with different α are shown in Figure 6.12. It can be seen that a higher α can lead to

a more noticeable local contrast and crisp appearance of tone mapped results. This is

because the compressed HDR radiance map with a higher α retains a higher dynamic

range in logarithmic domain and retain more important details. It is clear that our

method can extract exquisite details from high-contrast images. It works well when α

is around 0.5 in our experiments.

6.3.5 Subjective Evaluation of DFC-DIT Framework

We have conducted a subjective evaluation of results of downscaling, decolorization

and HDR tone mapping of the new DFC-DIT framework. For each transformation,

we evaluate our technique against several best techniques in the literature. For down-

scaling, we use bicubic, bilateral, lanczos, subsampling, generalized sampling [166],

content-adaptive [141] and SSIM based method [136] as the benchmarks. For decol-

orization, we use luminance the methods of Smith et al. [144], Kim et al. [167], Gooch

et al [143] and Lu et al. [150] as benchmarks. For HDR tone mapping we use Larson

et al. [138], fast bilateral filtering [155], gradient domain [140], Expoblend [168], Kim

et al. [170], Lischinski et al. [169] and Reinhard et al. [156] as benchmarks. For each

image, we show the original input image (in the case of HDR tone mapping, the origi-

nal radiance map cannot be shown), a version produced by our method and a version

of one benchmark technique to subjects and ask which version they prefer or indicate

no preference. 50 undergraduate science and engineering students from our university

evaluated 10 pairs of images for image downscaling and 8 pairs of images for image

decolorization and HDR tone mapping. Figure 6.13 shows the voting results. We can

see that there is an obvious preference for our method against all other methods for all
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the transformation tasks. These results demonstrate DFC-DIT framework is compara-

ble to or better than state of the art techniques. In image downscaling, subsampling

and SSIM-based are two competing methods to produce sharp and crisp downscaled

images, however subsampling sometimes suffers strong aliasing artifacts like the hair

in Figure 6.5. In image decolorization, the method of Lu et al. [150] is the best com-

peting candidate that maximally preserves color contrast. However some participants

prefer ours than theirs because the decolorized versions of Lu et al. [150] may show

too strong contrast while the corresponding color images in fact have low contrasts.

For HDR image tone mapping, fast bilateral filtering [155] is the best comparable tone

mapping operator in our study.

6.4 Summary

Traditional image processing tasks like image downscaling, image decolorization and

HDR image tone mapping require reducing image information while preserving visu-

ally and perceptually important details. These problems are inherently ill-posed and

there is no well-defined ground truth and they are one-to-many mapping problems.

For image downscaling fine details should be preserved from visually ambiguous high-

resolution inputs; for image decolorization the gray image should be semantically sim-

ilar to the original color version and preserve the contrast as much as possible in spite

of drastic loss of color information; for HDR image tone mapping we want to compress

the scene radiance to displayable range while preserving details and color appearance

to appreciate the original scene content. In this chapter, we propose to compare per-

ceptual similarities between two images in feature space and have developed the deep

feature consistent deep image transformation (DFC-DIT) framework to tackle these im-

age information reduction problems. Our experiments demonstrated the effectiveness

of the method and its state of the art performances.
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CHAPTER 7

Deep Feature Based Image Quality

Assessment

With the previous chapters showing the effectiveness of deep models to tackle different

image processing problems like image generation and image transformation (informa-

tion augmentation and reduction) by constructing objective functions that ensure the

consistency of deep features between two images, in this chapter we further explore the

deep feature consistent concept from the perspective of image quality assessment. To

this end, we propose a new deep feature based metric for assessing perceptual image

quality by measuring the inconsistency between the distorted image and the reference

image in feature space built on deep convolutional neural network. We further demon-

strate the effectiveness and promise of the proposed method through a set of intuitive

examples, as well as quantitative comparison to other commonly used image quality

assessment methods based on a large subjective image quality database with different

distortion types.

7.1 Related Work

Objective image quality assessment (IQA) aims to measure the degradation and pre-

dict the quality of images in accordance with human perception. Depending on the

accessibility of the original images, with which distorted images are compared, IQA

algorithms can be classified into different categories [171], i.e., full-reference, no-reference

and blind image quality assessment. In this section, we will review several commonly

used full-reference image quality metrics.

The simplest one is Peak Signal to Noise Ratio (PSNR), which represents the ratio be-

tween the maximum possible power of a signal and the power of distortion noise,
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which is based on per-pixel mean squared error (MSE) between the original image and

the distorted image. In general, a higher PSNR value usually indicates better image

quality, however in some cases it could not generalize well to perceived visual quality

[129–132]. In particular, for image reconstruction or generation tasks the output images

tend to be very blurry when compared to natural images. This is because the per-pixel

loss (MSE) only considers point-wise signal difference rather than the perceptual dif-

ference.

Another widely used and cited one is SSIM index [118], which is designed to improve

on traditional methods like PSNR. The essential difference with respect to PSNR is

that SSIM is a more perceptual-based approach by comparing the structures of the

reference and the distorted signals instead of absolute point-wise error. SSIM is based

on the assumption that the human visual system is highly adapted to extract structural

information from visual information and considers image degradations as perceived

changes in structural information variation.

Additionally complex wavelet structural similarity (CW-SSIM) index [172] is proposed

as an extension of the SSIM to the complex wavelet domain as a general purpose image

similarity metric. The key idea is that certain image distortions can lead to consistent

phase change in the local wavelet coefficients, and the structural content of the image

doesn’t change with a consistent phase shift of the coefficients.

The image quality assessment indexes mentioned above are purely human-crafted, and

the key insight is to design better method by incorporating the structural information

to measure the inconsistency (or similarity) of a given pair of images. In this work, we

start from a learning-based approach to constructing IQA index in feature space.

7.2 Deep Feature Based Image Quality Assessment (DFB-IQA)

7.2.1 Motivation

The previously mentioned IQA indexes, i.e., SSIM and CW-SSIM demonstrate that it is

crucial to manually extract structural information of an image either in pixel or complex

wavelet domain. In parallel, the fact that natural image signals are highly structured

is also considered to build state of the art object recognition systems like deep convo-

lutional neural networks (CNNs). In particular, CNNs use a set of filters or kernels

like 11× 11× 3 (i.e. 11 pixel width and height, and 3 for channel depth) to spatially

convolve across the width and height of the input volume to compute dot products

between the entries of each filter and the input at any position. Thus, each output ele-
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Figure 7.1: 96 convolutional kernels of size 11× 11× 3 learned by the first convolu-

tional layer of pretrained AlexNet [23].

ment is the result of a local region of the input volume with a given filter. Conceptually

these kind of convolution operations are able to capture the structural information due

to the local connectivity. Previous works on image recognition tasks have shown that

deep convolutional neural networks can learn interpretable filters based on a large-

scale dataset. Figure 7.1 shows the 96 convolutional kernels of size 11× 11× 3 learned

by first convolutional layer of AlexNet [23] trained on ImageNet [12]. We can see that

there are a variety of meaningful frequency and orientation-selective kernels, as well

as various colored blobs.

At each hidden layer, a deep feature covers a different size of an input receptive field

as illustrated in Figure 7.2. Equivalently, a deep feature in convolutional layer 1 com-

putes the local structure of a 3x3 spatial block. Inspecting the convolutional weights in

Figure 7.1, it is not difficult to see that some filters will compute the local luminance

or weighted average (when all weights have the same signs), some will compute local

contrasts along different directions (when the weights have both positive and negative

values). For higher layers, each hidden unit covers a (larger and larger) local block in

the input image and it can be easily shown that each hidden unit in these higher layers

also has an equivalent convolutional kernel the same size as its corresponding recep-

tive field covering the input spatial block. Again, depending on the signs of the filter
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11x119x97x7
3x3

5x5
7x7

9x9

11x11
Input Image

Layer 1 deep features

Layer 2 deep features

Layer 3 deep features

Layer 4 deep features

Layer 5 deep features

Equivalent receptive field sizes for 
different convolutional layers features

Figure 7.2: Deep features at different hidden layers and their corresponding equiva-

lent receptive field size. In essence, each hidden layer unit (deep feature)

computes the local pixel structure of its corresponding receptive field re-

gion.

coefficients, they either compute the local luminance or local contrasts of various sorts.

7.2.2 Deep Feature Based Image Quality Assessment Index

Our DFB-IQA index tries to provide a good approximation to perceived image distor-

tion by incorporating image pixel spatial correlation and object structure information,

which are implicitly captured by the the learned filters through a large-scale image

dataset training instead of human engineering. In other words, the proposed DFB-IQA

index measures the structural similarity of two images in the learned feature space.

In order to measure the similarity between a distorted image and a reference image,

we first need to process the input images from pixel space to feature space. Similar to

the definition of feature loss in the previous chapters, we choose the pretrained VG-

GNet (denoted as Φ(x) ) [24] on ImageNet [12] as our deep feature extraction filter.

Specifically, let Φi(x) represent the ith hidden activations when feeding the image x to

Φ. Φi(x) is a feature map of shape [Ci, Wi, Hi], where Ci is the number of filter for the

ith convolutional layer, Hi and Wi are the height and width of the given feature map

respectively. Thus, we can easily define the deep feature based mean squared error

(DFB-MSE) for a reference image x and a distorted image x̃ as follows:

DFB-MSE(x, x̃) =
1

CiWi Hi

Ci

∑
c=1

Wi

∑
w=1

Hi

∑
h=1

(Φi(x)c,w,h −Φi(x̃)c,w,h)
2 (7.2.1)

The final DFB-IQA index is defined via the DFB-MSE in logarithmic scale similar to

PSNR. DFB-IQA index can be formulated as:
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DFB-IQA(x, x̃) = 10 log10
MAX2(Φ(x), Φ(x̃))

DFB-MSE
= 20 log10(MAX(Φ(x), Φ(x̃)))− 10 log10(DFB-MSE)

where MAX(Φ(x), Φ(x̃)) is the maximum possible signal value of deep feature ex-

tracted from a reference x and the corresponding distorted image x̃.

7.3 Experiments

Image quality assessment is a very subjective task, which requires a plenty of human

labeled dataset and carefully designed experiments. Although many existed image

quality assessment methods can achieve consistent results for a given set of distorted

images with the same type of distortions, the effectiveness of these algorithms for im-

age quality prediction could be diluted significantly when applied to more compli-

cated conditions in which there exist a variety of different types of distortions. Thus,

cross-distortion testing environment is needed to evaluate the generalizability of image

quality assessment algorithms.

7.3.1 Testing dataset

In this work, we evaluate the proposed DFB-IQA index on Release 2 version of LIVE

Image Quality Assessment Database [118, 173, 174], which is a large dataset including

30 reference images and 779 distorted versions. It contains 5 distortion types: JPEG

Compression (169 images), JPEG2000 Compression (175 images), Gaussian Blur (145

images), White Noise (145 images) and Fast Fading Rayleigh (145 images). In addition,

the difference mean opinion score (DMOS) (1 to 100) value for each distorted image is

computed according to human rating. Specifically about 20-29 human observers rated

each image and all the observers were asked to provide the perception of quality on a

continuous linear scale marked as adjectives “Bad”, “Poor”, “Fair”, “Good” and “Ex-

cellent”. The raw scores for each subject were converted to difference scores (between

the test and the reference) by the mean and variance of scores for that subject, and then

the entire dataset was scaled and shifted to the range 1 to 100. In our experiments, we

convert difference mean opinion score (subtracted by 100) to mean opinion score (MOS)

for comparison.
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reference 
image

distorted
image

absolute
error
map

SSIM
map

DFB-IQA
map

Figure 7.3: Samples with different distortions, the left is compressed by JPEG2000 and

the right is processed by Gaussian bur. The last 3 rows show absolute error

map, SSIM index map and DFB-IQA index map.
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Figure 7.4: Scatter plots of mean opinion scores (MOS) versus PSNR, SSIM, CW-

SSIM and DFB-IQA. DFB-IQA index is calculated based the features from

conv1_1 layer.

7.3.2 Results

Based on LIVE Image Quality Assessment Database, we conduct experiments to com-

pare the performance of the proposed DFB-IQA index with PSNR and SSIM. One the

other hand, due to the hierarchical architecture of deep convolutional neural network

we also investigate the effect of different level features on the performance of DFB-IQA.

Qualitative analysis. In Figure 7.3, we show two samples in the LIVE database with

different types of distortions: the left image is called“churchandcapitol” and com-

pressed by JPEG2000 with bit rate of 0.13, the right one is “monarch” and distorted

by Gaussian bur with σ of 11.33. Additionally the absolute error map, SSIM index map

and DFB-IQA index map are calculated for each distorted image. The absolute error
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Figure 7.5: Scatter plots of mean opinion scores (MOS) versus DFB-IQA indexes cal-

culated by different convolutional layers. The vgg mean is the average

results across the 5 convolutional layers in VGGNet.
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map and DFB-IQA index map are contrast-inverted for easier comparison with SSIM

index map.

From Figure 7.3, we can see that the absolute error map is quite sensitive to the point-

wise difference between each pixel and contains some “visual noise” (visually not im-

portant for humans), which gives the error map a mottled or grainy appearance (e.g.

the sky and buildings in the church image). As a result, the absolute error map focuses

more on the point-wise details rather than overall structural information, which is more

important to perceived visual quality. In contrast, the error maps of SSIM and DFB-IQA

index are more sensitive to structural difference and can capture the perceived changes

in structural information variation. Moreover, the DFB-IQA index map shows a much

clearer structural appearance and local structures of the original image are better pre-

served, for example, we can observe the well-structured flag in the “church” image and

sharp skeleton of the butterfly in Figure 7.3.

In order to get a more comprehensive comparison of different image quality assess-

ment algorithms, we show the correlation map of MOS versus different model predic-

tions with different types of distortions. The DFB-IQA index is based on features from

the first convolutional layer conv1_1. From Figure 7.4, we can see that the proposed

DFB-IQA performs quite well in this test and behaves consistently with MOS. Though

SSIM performs well for a single type of distortion, it cannot generalize well for cross-

distortion testing. On the contrary, the scatter plot of DFB-IQA index is more compact,

demonstrating that it supplies remarkably good prediction of the mean opinion scores.

In addition, we investigate the effect of different level features on the performance of

DFB-IQA for subjective MOS prediction. In Figure 7.5, we show the scatter plots of

MOS versus DFB-IQA by using layer conv1_1, conv2_1, conv3_1, conv4_1, conv5_1

and the average results of the 5 layers. We can observe the trend that DFB-IQA indexes

constructed from higher layers behave more consistently with mean opinion scores

when applied to distorted images created from different types of distortions. Specif-

ically, there is an obvious divergence in the scatter plot for white noise distortion in

lower layers (conv1_1 and conv2_1), while it shows a more compact distribution for

all types of distortions by using higher layers (conv4_1 and conv5_1). This could be

explained that higher layers of the convolutional neural network mainly capture the

high-level content in terms of objects and overall structures with bigger receptive field

size instead of limiting to detailed pixel information. From Figure 7.2, it can be eas-

ily understood because these higher layers cover a larger receptive field in the input

image. Thus, the difference between different types of distortions will not be quite

significant, what matters is the degradation degree for each type of distortion method.
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Table 7.1: Performance comparison of different image quality assessment indexes.

CC: correlation coefficient after regression analysis; MAE: mean absolute er-

ror; RMS: root mean square error; SROCC: Spearman rank-order correlation

coefficient. 6 DFB-IQA results are calculated: the first 5 are calculated based

on DFB-IQA of single convolutional layer in VGGNet, DFB-IQA-Mean is

based on the average features from the 5 convolutional layers.

Linear Regression Loess Regresssion Rank-order

Model CC MAE RMS CC MAE RMS SROCC

PSNR 0.70 9.56 11.54 0.72 10.10 11.96 0.72

SSIM 0.74 9.17 10.84 0.83 8.38 9.84 0.85

CW-SSIM 0.69 9.71 11.65 0.74 9.68 11.53 0.79

DFB-IQA1 0.79 8.15 9.82 0.83 8.64 10.15 0.82

DFB-IQA2 0.77 8.60 10.37 0.82 8.86 10.42 0.80

DFB-IQA3 0.78 8.16 10.02 0.83 8.57 10.20 0.82

DFB-IQA4 0.80 7.58 9.65 0.82 8.57 10.36 0.82

DFB-IQA5 0.79 7.94 9.91 0.81 8.71 10.48 0.81

DFB-IQA-Mean 0.81 7.68 9.46 0.85 8.23 9.80 0.84

Quantitative analysis. We further conduct quantitative experiments to measure the

performances of different image quality assessment algorithms. We follow the eval-

uation procedures in [118] to fit different regression models between subjective mean

opinion scores and other objective image quality assessment indexes, and use the pre-

dictions of the regression models to build quantitative measures. Specifically we con-

sider both linear regression and non-linear regression model in our experiments, and

we choose Local Polynomial Regression (known as LOESS) as our non-linear fitting.

LOESS is an attractive non-parametric regression method that combines much of the

simplicity of linear least squares regression with the flexibility of nonlinear regression.

LOESS fitting curves are shown in Figure 7.4.

We then choose three metrics to evaluate the performances of different IQA indexes.

We first calculate the correlation coefficient (CC) between the subjective MOS scores

and objective IQA scores after regression analysis, served as an evaluation of predic-

tion correlation and dependence; we also calculate the mean absolute error (MAE) and

root mean square error (RMS) between the subjective and objective scores after regres-

sion, providing the evaluation of accuracy; Lastly Spearman rank-order correlation co-

efficient (SROCC) between the subjective MOS scores and objective IQA scores is used

as a measure of prediction monotonicity.

The evaluation results are shown in Table 7.1. All the results are calculated based on all

the types of distortions in the LIVE Image Quality Assessment Database [174]. Specifi-
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cally we compare DFB-IQA with PSNR, SSIM and CW-SSIM. DFB-IQA1 to DFB-IQA5

are calculated based on the features extracted from the conv1_1 to conv5_1 layer and

DFB-IQA-Mean is based on the average features from the 5 convolutional layers. We

can see that our proposed DFB-IQA methods work well in general and DFB-IQA-Mean

performs better than all the other methods. It is demonstrated that DFB-IQA index has

a better consistent and stable correlation with subjective mean opinion scores in cross-

distortion evaluation.

7.4 Discussion

In this and previous chapters, we show that the learned features extracted from pre-

trained deep convolutional neural network for image classification task can be applied

to different image processing problems. This is because modern deep neural networks

can learn from low-level to high-level visual features when trained on image dataset,

and the learned features can be used for different image related tasks under the trans-

fer learning framework [175]. The first-layer features extracted from pretrained deep

CNN usually resemble either edge detectors or color blobs (Figure 7.1), which are con-

sidered as general features. On the other hand, the features computed by the last layer

(i.e., fully connected layer for image classification tasks) of a trained network are con-

sidered as specific features, because they must depend greatly on the chosen dataset

and specific task. Therefore the features extracted from first few layers of a pretrained

model contain low-level and general image information, which are suitable for the im-

age processing tasks considered in this work.

7.5 Summary

In this chapter, we propose the use of learned features to design image quality as-

sessment metrics under deep learning framework. The key insight is the capability of

pretrained deep convolutional neural network to incorporate structural and perceptual

image information, which can be used as an alternative motivating principle for the de-

sign of image quality measures. Our experiments demonstrate the effectiveness of the

proposed DFB-IQA index with respect to subjective mean opinion scores prediction in

cross-distortion settings. DFB-IQA can be seen as an alternative or complementary to

traditional approaches like SSIM, which tries to incorporate structural information by

human engineering while DFB-IQA seeks to extract image pixel spatial correlation and

object structure information from learned features based on image recognition tasks.
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CHAPTER 8

Concluding Remarks

8.1 Summary of the Thesis and Contributions

It is both surprising and thrilling to witness the rapid advances in the fields of deep

learning in the past few years. Deep convolutional neural networks have become the

workhorse behind the state of the art performance for most computer vision and object

recognition tasks. Deep CNN methods have been shown to learn robust feature rep-

resentations directly from image pixels through end-to-end training. In this thesis we

developed models and techniques that push the frontier of traditional image process-

ing problems by exploring the deep features extracted from pre-trained deep CNNs.

Concretely, in Chapter 3 we first consider quickly filtering out irrelevant information

in an image for a given task. Specifically we dived into certain hidden neurons of the

deep CNN and proposed Object Specific Channel (OSC) that responds more strongly

to certain object categories. We then used face as a case study and introduced a multi-

scale approach for extracting OSC features, based on which we built a compact and fast

face detector with state of the art performance in unconstrained settings. In Chapter 4

we turned to the task to produce visually pleasing images. We proposed to incorporate

pretrained deep CNN into the architecture of two popular generative models: varia-

tional autoencoder and generative adversarial networks. This allowed us to produce

high quality images and learn powerful image representations in the latent space. In

Chapter 5 and Chapter 6, we revisited both image information augmentation and re-

duction tasks. We proposed a deep feature consistent framework and developed deep

models to tackle traditional image processing problems for both image information

augmentation (companding and inverse halftoning) and reduction (downscaling, de-

colorization and HDR tone mapping). Finally, in Chapter 7 we further explored the

deep feature consistent concept and proposed a new deep feature based metric for
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assessing image quality from the perspective of learned structural image information,

which demonstrated it’s effectiveness and promise for image quality assessing in cross-

distortion settings.

From a modeling perspective, the methods and models developed in this work be-

long to the category of deep learning. In particular, our deep models are designed

seamlessly integrated with a pretrained convolutional neural network, which is used

to extract learned features in order to define objective functions. As a result, the whole

architecture is just a single differentiable function used to process raw images for dif-

ferent image processing tasks and it can be optimized through an end-to-end training

manner on GPUs. We hope the design of our model architecture can be reused or re-

ferred in future work.

8.2 Future Work

In spite of the rapid advance of deep learning and progress in visual recognition, the

research opportunities in computer vision and image processing are far from dimin-

ishing, on the contrary, deep learning has energized the related research fields and

stimulated a variety of new problems and research directions. Moreover, introducing

new methods to solve well known problems can always provide new perspectives and

directions to the research field. It is clear that many challenges still remain and new

ideas need further explore. For example, in this thesis we consider the traditional im-

age processing problems in a learned feature space which is based on high-level visual

recognition tasks. In comparison, the traditional methods mainly focus on manually

engineering in low-level pixel space. In other words, the traditional image process-

ing paradigm is a bottom-up approach, piecing together of base elements which are

then linked together to give rise to more complex systems; Our new paradigm is a

top-down approach, starting with an overview of the whole system and mimicking the

overall hypothesized functionality of the input. With this new top-down paradigm,

visual recognition systems can be used as “black boxes” to assist traditional image pro-

cessing tasks. To make further progress, this kind of visual recognition assisted image

processing paradigm is a worthy research direction we can turn to next.
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