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Abstract 

 

Carbon fiber reinforced carbon matrix containing ZrC (C/C–ZrC) composites were 

prepared by hydrothermal deposition combined with carbothermal reduction. The 

submicron ZrC particles (100~300 nm) were dispersed in the matrix. The stress-strain 

curves of the composites presented a typical pseudo-plastic fracture behavior. The 

 

mass and linear ablation rates of the composites were 3.7×10 
-3

g/s and 4.2×10 
-3

 mm/s, 

respectively. The formation of ZrO2 glass layer reduced erosion of the composites in 
 

the ablation center. The continuous C–ZrC–ZrO  2  skeleton layer generated from the 

 

oxidation of ZrC can protect the composites from erosion at the ablation brim region. 

The obtained C/C–ZrC composites present a promising potential as ablation 

resistance materials. 

 
Keywords: C/C–ZrC composites; hydrothermal deposition; microstructure; 

ablation resistance; 
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(C/C–UHTCs) composites present a promising application as high temperature 

structural components for space vehicles, such as nose tips, leading edges, and 

nozzles, due to their excellent high temperature mechanical properties, good thermal 

shock resistance and ablation resistance [1,2]. To date, various techniques have been 

used to prepare the C/C–UHTCs composites, such as precursor infiltration and 

pyrolysis (PIP) process [3], reactive melt infiltration (RMI) [4,5], solution infiltration 

[6,7], and powder slurry infiltration [8,9]. As a current popular method, PIP can 

prepare the C/C–UHTCs composites with uniform distribution of UHTCs particles 

[10-12]. However, for the PIP method, the synthesis of the UHTCs precursor is 

complicated and the ceramic yield of the precursor is low in the pyrolysis process, 

which results in a high cost for the fabrication of the C/C–UHTCs composites. 

 
Recently, Lu et al. [13] proposed to deposit the ZrC precursors in the carbon fiber 

preform by chemical liquid-vapor deposition (CLVD) process. After that, the C/C– 

ZrC composites were prepared by heat treatment and isothermal chemical vapor 

infiltration (ICVI) densification. Results showed that the pyrolytic carbon and 

ceramics were co-deposited on the carbon fibers. The C/C–ZrC composites exhibited 

excellent ablation resistance and a brittle fracture behavior due to relatively strong 

interfacial bonding strength between fibers and matrix. In addition, a joint methods of 

CLVD and PIP for the fabrication of C/C–ZrC composites was reported to improve 

the fully and homogeneously infiltrate of the composites [14]. Our previous work [15] 

introduced ZrC precursors into the carbon fibers preforms by the microwave 

hydrothermal process. The C/C–ZrC composites were prepared by subsequent the 

thermal gradient chemical vapor infiltration (TCVI) and carbothermal reduction. 

Results showed that submicron ZrC particles homogeneously dispersed in the carbon 

matrix, which is helpful to form a continuously melting ZrO2 layer and can prevent 
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carbon from oxidation and restrain the mechanical erosion of the composites. 

 

Up to the present, the carbon matrix of the composite was mainly pyrolytic carbon 

generated from ICVI or TCVI process. Biomass as carbon sources for the preparation 

of carbonaceous materials, such as carbon microspheres and carbon materials with 

nanostructure has also been studied. The C/C composites fabricated by hydrothermal 

carbonization using starch as the carbon source, indicating that using biomass as 

precursors for the densification of C/C composites is feasible [16]. Cao et al. [17] 

reported that Cf/C–SiC–MoSi2 composites were fabricated by a two-step 

      hydrothermal treatment. SiC and MoSi2 ceramics were first infiltrated into porous C/C 

 

composites by a hydrothermal step. Then, the samples contained ceramics was 

densified by a second hydrothermal process using glucose as carbon source. The good 

ablation behavior was attributed to the higher density of the ceramics, and the 

generation of SiO2 and MoO2. However, the inhomogeneity distribution of ceramic 

 
particles in the composites restricted further improvement of the ablation resistance. 

Hydrothermal technology is a common method for the preparation oxide 

 
nanoparticles [18,19]. The UHTCs can be prepared by the reaction of the oxide 

nanoparticles with carbon at high temperature [20,21]. In this study, we proposed a 

novel method to prepare C/C–ZrC composites containing sub-micron scale ZrC 

particles. The matrix of the composites, that is, C–ZrC matrix was formed by repeated 

alternating hydrothermal deposition combined with the carbothermal reduction. The 

microstructure and mechanical properties of the C/C–ZrC composites were studied. 

The ablation resistance and mechanism of the composites were also investigated. 

 
2. Experimental 

 

2.1 Fabrication of composites 
 

Needled carbon fiber felts with a density of 0.40 g/cm
3
 (Yixing Tianniao High 
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Technology Co., Ltd, Jiangsu, China) fabricated by alternatively stacked non-woven 

layers and short-cut fiber webs by a needle-punching technique, were used as 

reinforcement of the composites. Sucrose (Chemically Pure, Aladdin Industrial 

Corporation) was employed as the carbon source. Zirconium tetrachloride (ZrCl4, 

 

analytical grade, Sinopharm Chemical Reagent Co., Ltd, Shanghai, China) was used 

as ZrO2 precursor. 

 

Fig. 1 shows the schematic for the preparation of the C/C–ZrC composites. Sucrose 

was dissolved in water with a concentration of 200 g/L. The carbon felts and 60 ml 

sucrose solution were put into a Teflon autoclave. The hydrothermal reaction was 

performed in a microwave accelerated reaction system (MARS-10, Sineo Microwave) 

 
for 120 min at 180 C. And then the carbon fiber felts were dried at 80 C for 2 hours. 

ZrCl4 was dissolved in deionized water, and the concentration of zirconium ion was 

 

set to 0.5 m/L. pH value of the solution was set to 9 using 2 m/L sodium hydroxide 

solution. The prepared solution and the treated carbon fiber felts were transferred to a 

Teflon autoclave. Hydrothermal deposition was performed in the aforementioned 

 

reaction system for 30 min at 200 C. The treated carbon fiber preforms were washed 

 

by water to get rid of the Na
+
 and then dried at 80 C for 2 hours. The hydrothermal 

deposition of carbon and ZrO2 was carried out for 10 cycles to get the densified C/C– 
 

ZrO2 composites, which were treated at 1,500 °C for 2 h in an argon atmosphere. The 
 

density and open porosity of the composites were 1.68±0.05 g/cm
3
 and 11.4±0.1%, 

respectively. 

2.2 Tests and characterization 

 

The phase composition of the composites was investigated by X-ray diffraction 

(XRD, X’Pert Pro MPD). The microstructure of the composites was investigated by 

scanning electron microscopy (SEM, JEOL6390) combined with energy dispersive 
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spectroscopy (EDS). Raman spectra were collected from the composites at 300–3500 
 

cm
-1

 by Raman Microscope (Renishaw, London, England). Three-point bending test 

was carried out on the electron universal testing machine (CSS-1110). Specimens 

dimension was 55×10×4 mm. Specimens were tested with a speed of 0.5 mm/min at 

room temperature. The loading direction was perpendicular to laminated carbon fiber 

layers. Four samples were used to evaluate the flexural strength of the composites. 

The ablation of the C/C–ZrC composites was performed using an oxyacetylene torch 

 

for the plate specimens (Φ3010 mm). The flame temperature was around 3000 °C. 

The specimens were exposed to the flame for 60 s. The details of ablation parameters 

were set as previously reported [22]. 

 
3. Results and discussion 

 

3.1 Microstructure of the prepared C/C–ZrC composites 

 

Fig.2 (a) shows SEM morphology of C/C porous sample. Carbon microspheres was 

formed and deposited on the surface of the carbon fibers after the hydrothermal 

deposition. Thus, the carbon generated on the carbon fibers, which will provide the 

carbon source and protect carbon fibers from damaging during the formation of ZrC 

by carbothermal reduction. Fig. 2(b) presents Raman spectrum of the carbon matrix in 

C/C porous sample. The Raman spectrum shows two wide bands at 1350 and 1580 

 

cm
-1

, indicating that the carbon matrix is mostly composed of amorphous structure 

[16, 23]. The amorphous carbon matrix prepared by hydrothermal deposition was 

used as carbon source to react with ZrO2 during carbothermal reduction, which was 

 

expected to form C–ZrC matrix. 

 

The XRD pattern of the prepared C/C–ZrC composites is shown in Fig. 3(a). The 

C/C–ZrC composites are composed of carbon and ZrC, indicating that amorphous 

carbon and deposited ZrO2 have reacted and converted to ZrC after heat treatment 
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(Reaction (1)). The carbothermal reduction of ZrO2 and carbon lead to the shrinkage 

 

of the matrix and form lots of closed pores, which might lead to low density of the 
 

C/C–ZrC composites (1.68 g/cm
3
). 

 
 

Fig. 3(b) shows backscattered electron image of the cross section of C/C–ZrC 

composites. White spots are found in the matrix of the composites, which are ZrC 

 
particles. This phenomenon indicates that Zr

4+
 precursor solution can adequately 

infiltrated into the fiber webs and nonwoven layer under hydrothermal condition. 

Obviously, ZrC particles were enriched in fiber webs. During hydrothermal deposition, 

more ZrO2 particles was deposited in the fiber webs as the spaces in fiber webs were 

 

larger than that in nonwoven layer. 

 

Fig.4 (a) shows the SEM morphology of nonwoven layer in the C/C–ZrC 

composites. The space among fibers was fully filled with matrix materials. Fig.4 (b) 

 

presents the magnified micrographs of 90
o
 nonwoven layer (area 1). The C–ZrC 

matrix fills the space among the carbon fibers and forms a dense matrix surrounding 

carbon fibers. BSE image further indicated that many ZrC particles uniformly 

distribute in the matrix of the C/C–ZrC composite ( Fig. 4(c)). Fig. 4(d) is the 

magnified micrographs of area 2. A carbon layer can be found on the carbon fiber, 

resulting from the carbon formed by hydrothermal deposition. A large amount of ZrC 

particles are formed on the surface of the carbon layer, further confirming the uniform 

distribution of ZrC surrounding carbon fiber in the matrix. In addition, no obvious 

crack can be found at the interface between the carbon fiber and the C–ZrC matrix. 

The dimension of ZrC particles in the matrix is 100~300 nm, as shown in Fig. 4(e). It 

is indicated that carbothermal reduction of hydrothermal deposition carbon and ZrO2 

can form sub-micro ZrC particles. The magnified micrograph of 0
o
  nonwoven layer 
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(as pointed by arrows in Fig.4 (a)) display a gathered microspheres structure with 

many ZrC particles on carbon fiber surface (Fig.4 (f)). These gathered microspheres is 

relate to the deposited carbon microspheres on the carbon fiber surface. Fig.4 (g) 

shows the SEM morphology of fiber webs in the composites. A large amount of ZrC 

particles filled the spaces among fibers. A carbon layer can also be found on the fiber 

surfaces shown in Fig.4 (h). These results indicated that sucrose and Zr
4+

 precursor 

solution can adequately infiltrated into the carbon fiber felts both in nonwoven layer 

and fiber webs under hydrothermal condition, and then ZrC matrix is formed by the 

reaction of carbon with ZrO2 in the carbothermal reduction process. 

 

3.3 Mechanical property of the prepared C/C–ZrC composites 

 

The flexural strength and modulus of the composites were about 93.9±7.5  MPa 

 

and 12.6±2.3 GPa, respectively. The bending strength was close to that of the C/C– 

 

ZrC composites prepared by PIP with a TCVI carbon matrix ( 95.7±8.3 MPa) [24] 

 

and that of the C/C–ZrC composites prepared by CLVD (95.9±8.3 MPa) [14]. 

However, it was lower than those of the C/C–ZrC composites prepared by CLVD 

(103.5±6.9 MPa) [13] and CLVD+PIP (154.1±9.2 MPa) [ 14]. Fig. 5(a) shows a 

typical stress-strain curve of the obtained C/C–ZrC composites. The curve presents an 

initial quasi-linear elastic behavior before reaching the maximum load. After the 

flexural stress reach to the maximum, a step-shape change occur at first and then 

dropped gradually, suggesting a typical pseudo-plastic fracture behavior of the 

composites. The bending fracture behavior of composites largely depends on the 

interfacial bonding strength of carbon fibers and the matrix [25,26]. Lu et al. reported 

that the C/C–ZrC composites prepared by PIP and CLVD presented a brittle fracture 

due to a relatively strong interfacial bonding strength between fibers and matrix [13]. 

The fracture modes of the C/C–ZrC composites changed from the tough fracture to 
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the brittle fracture with increase of ZrC content, which was attributed to strong 

interfacial bonding caused by the reaction between ZrC precursors with carbon fiber. 

In this study, the C/C–ZrC composites exhibit typical pseudo-plastic fracture behavior, 

indicating that a proper interfacial bonding of the carbon fibers and matrix was formed 

in the C/C–ZrC composites by the hydrothermal deposition combined with 

carbothermal reduction reaction. 

 
Fig. 5(b) presents the fracture surface of the C/C– ZrC composites after the three-

point bending test. The fracture surface of the C/C–ZrC composites is coarse with lots 

of pulled-out carbon fibers and fiber bundles, which is consistent with the typical 

pseudo-plastic fracture mode from the flexural stress-strain curve. Many holes exist on 

the fracture surface due to the pulled-out carbon fibers from matrix (Fig. 5(c)). The 

fractures surface presents a stepped shape. The pulled-out fibers were rough and 

adhered matrix materials, indicating moderate interface bond strength between fibers 

and matrix. The carbon layer deposited on carbon fiber not only hinders the damage of 

carbon fibers during the carbothermal reduction but also serves as interface layer 

improve the interface bonding. Moreover, interface debonding can be found on the 

fracture surface, which can dissipate fracture energy during the loading process, 

avoiding a brittle fracture behavior. Therefore, fiber pull-out, interfacial debonding, 

and fibers fracture leads to a typical pseudo-plastic fracture behavior of the C/C–ZrC 

composites. 

 
3.3 Ablation resistance of the C/C–ZrC composites 

 

Fig.6(a) shows macroscopic morphology of the C/C–Zr C composites after ablation. A 

small ablation pit was formed in the ablation center region. A uniform grey phase was 

generated on the ablation brim region of the composites. The mass and linear 

      ablation rate  of  the  C/C–ZrC composites is 3.7 ×10
-3 

g/s and 4.2 ×10
-3

 mm/s, 
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      respectively. The ZrO2, ZrC and C peaks can be found in the XRD pattern of the 

 

composites after ablation, as shown in Fig. 6 (b). The ZrC peaks of the composites 

after ablation decrease comparing with that of the composites before ablation. It is 

indicated that part of ZrC in the composite was oxidized during ablation. The 

preferential oxidation of ZrC would absorb heat from the flame and decrease the 

thermal erosion of ZrC-carbon matrix [7]. 

 
Fig. 7 shows the SEM morphology and EDS analysis of ablation center in the C/C– 

 

ZrC composites. The morphology of the 90
o
 and 0

o
 nonwoven layer, as well as the 

fiber webs were significantly different after ablation (Fig. 7(a)). Fig. 7 (b) is a 
 

magnify image of the 90
o
 nonwoven layer (area A). Some gaps were formed in the 

interfaces between carbon fibers and matrix. Many holes were left due to the 

oxidation of carbon fibers. Furthermore, the matrix surrounding of carbon fiber 

presents the accumulation of spherical particles with 3~5 um in size after ablation. 

The EDS analysis of the area 1 reveals that the spherical particles are mainly 

composed of C as well as small amount of Zr and O (Fig. 7 (e)). The cross section of 

 

carbon fiber lack of protection of ZrC. Fig. 7 (c) is a magnified image of the 0
o
 

nonwoven layer (area B). The carbon fibers are ablated into needle-shaped and the 

ablated matrix is coarse with many pits. The ZrO2 generated from the oxidation of 

 

matrix was blown away under high velocity flame and hardly form continuous oxide 

layer for the protection of carbon fibers. Fig. 7 (d) is a magnified image of the fiber 

webs (area C). A large amount of ablation product can be formed on the ablation 

surface due to more ZrC in the fiber webs. The ablation products contain elements of 

C, O, and Zr (Fig. 7 (f)), which demonstrates that the ablation products are ZrO2. The 

 
oxidation of ZrC can absorb heat from the flame, leading to reduced erosion of the C/C–

ZrC composites in the ablation center. In addition, ZrO2 glass layer can be found 
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on the surface, which can effectively prevent the diffusion of oxidizing substances, 

acting as an ablation resistance layer for the composite. 

 
Fig. 8 shows the SEM morphology of ablation brim region of the C/C–ZrC composites. 

The surface of the composites presents a coarse microstructure because of the formation 

of ZrO2 from the oxidation of matrix and the spraying product from the 

 

ablation center (Fig. 8(a)). The magnified image of Area 1 showed that roughened 

spherical particles are formed on the ablation surface (Fig. 8(b)). The spherical 

particles are bonded to each other and form a continuous structure (Fig. 8(c)). These 

spherical particles results from the spherical carbon formed form hydrothermal 

carbonization of biomass [27, 28]. Furthermore, the surface of spherical particles 

presents continuous skeleton layer rather than molten states (inset of Fig. 8(c)). The 

EDS analysis of the area 3 displays the roughened spherical particles contains C, O, 

and Zr elements (Fig. 8(e)). In the ablation brim region, the temperature and gas 

pressure is much lower than that in the ablation center. The formed ZrO2 particles 

 
after ablation are difficult to melt and form the molten layer. Therefore, most of the 

formed ZrO2 particles are peeled off due to the weak viscosity and cause the 

formation of skeleton layer. It probably contain C-ZrC-ZrO2 demonstrates that the 

roughened spherical particles phases in ablation brim region. The continuous 

C-ZrC-ZrO2 skeleton layer was also formed on the surface of carbon fiber, as shown 

in Fig. 8(d). The preferential oxidation of ZrC plays an important role in the ablation 

brim region, which can consume oxidizing atmosphere and absorb heat from the 

flame, leading to reduction in material ablation. Moreover, the continuous C-ZrC-

ZrO2 skeleton layer generated from the oxidation of ZrC can reduce heat 

 

transfer and oxygen transport to the underlying material, as a thermal barrier material 

to protect the C/C–ZrC composites from erosion. 

 
 



11 
 

ACCEPTED MANUSCRIPT  
 

4. Conclusions 

 

C/C–ZrC composites were prepared by hydrothermal de position combined with 

 

carbothermal reduction. Sub-micron ZrC particles were uniformly introduced into the 

nonwoven layer and fiber webs due to good permeability of the precursor solution 

under hydrothermal condition. The flexural strength of the C/C–ZrC composites was 

about 93.9±7.5 MPa and presented a typical pseudo-plastic fracture behavior. The 
 

mass and linear ablation rates of the composites were 3.7×10
-3

g/s and 4.2×10
-3

 mm/s 

under oxyacetylene ablation, respectively. The oxidation of ZrC, formation of ZrO2 
 

glass layer in ablation center and continuous C–ZrC –ZrO 2  skeleton layer in ablation 

 

brim region could effectively decrease the erosion of the C/C–ZrC composites during 

ablation. The C/C–ZrC composites prepared by hydrothermal deposition combined 

with carbothermal reduction present a promising potential as resistance ablation 

materials. 
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Fig.1. Schematic diagram of preparation process of the C/C–ZrC composites. 

 

Fig. 2 SEM morphology (a) and Raman spectrum (b) of C/C porous sample. 

 

Fig. 3 XRD pattern (a) and backscattered electron image of the cross section (b) of 

C/C–ZrC composites. 

 
Fig. 4 SEM morphology of nonwoven layer in C/C–ZrC composites (a), (b) is the 

 

  magnified  micrographs  of  90
o
  nonwoven  layer  (area  1),  (c)  is  the  backscattered 

 

electron image of (b), (d) is the magnified micrographs of 90
o
 nonwoven layer (area 

 

2), (e) is high magnification of the matrix, (f) is the magnified micrographs of 0
o
 

nonwoven layer, (g) and (h) are the SEM morphology of fiber webs and the 

corresponding magnified micrographs. 

 

Fig. 5 Flexural stress-strain curve (a), low magnification image (b) and high 

magnification image of fracture surface of the C/C– ZrC composites. 

 
Fig. 6 Macroscopic morphology (a) and XRD pattern (b) of the C/C–ZrC composite 

after ablation. 

 
Fig. 7 SEM morphology of ablation center of the C/C–ZrC composites (a), (b) and (c) 

 

are the magnified images of the 90
o
 and 0

o
 nonwoven layer (area A and B), 

respectively, (d) is the magnified image of the fiber webs (area C), (e) and (f) are EDS 

analysis of area 1 and 2, respectively. 

 

Fig. 8 SEM morphology of ablation brim region of the C/C–ZrC composites (a), the 

magnified images of area 1 (b) and (c), the magnified image of area 2 (d), EDS 

analysis of area 3. 
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