
 

 

Sensor Selection for 

Fault Diagnostics 
 
 
 
 
 
 
 
 

Jack David Reeves 
 
 
 
 
 
 

A Doctoral Thesis 

 
 
 

 
 
 
 
 

Thesis submitted to the University of Nottingham for the 

degree of Doctor of Philosophy 

 

 

 

January 2018 



 



 

i 
 

Abstract 

 

 

In the modern world, systems such as aircraft systems are becoming increasingly complex, 

often consisting of a large number of components.  As no component is perfectly reliable, they 

can fail, some in many different ways, leading to a large number of potential component 

failures on complex systems.  Component failures can have detrimental effects on the 

performance of the system, with some component failures even causing system failure, 

potentially damaging the system, or more importantly, potentially endangering human life.  In 

order to be able to detect component failures on complex systems, the inclusion of sensors is 

becoming increasingly common.  In addition to being able to detect component failures, the 

sensors can be used to diagnose component failures, with certain symptoms and the resultant 

sensor readings being produced by certain component failures.  Another benefit is that it may 

also be possible to prevent system failure by detecting component failures early, activating 

redundant components and enabling the mission to be completed.  However, including sensors 

in the system increases the cost of the system, can add weight to the system and require space 

for installation, a factor of particular importance for weight critical systems, such as aircraft 

systems.  Therefore, a balance between being able to detect and diagnose failures in systems 

and the cost, weight and space requirements of the sensors needs to be achieved. 

In this thesis, a novel sensor selection methodology is proposed, which is based on a 

performance metric.  Individual sensors, and combinations of sensors are ranked based on their 

performance of detecting faults and diagnosing failures in the system.  In addition to the 

sensors’ detection and diagnostic performance, the metric also considers the effect that the 

component failures have on the functionality of the system, where sensors that detect critical 

failures are favoured over sensors that do not detect such failures.  The performance metric is 

then extended to consider the time taken to detect and diagnose component failures, as the 

sooner component failures are detected, the more likely system failure can be prevented.  This 

is important in a system that operates in a phased mission.  In addition, a proposed two-level 

Genetic Algorithm is used in order to efficiently determine a suitable combination of sensors 

for larger systems, where an exhaustive calculation of the performance metric for all 

combinations of sensors is not feasible. 

For a simple flow system, a Bayesian Belief Network (BBN) is used to model the effects 

of component failures, and sensor readings.  During the fault diagnostic process, observed 



 

ii 
 

sensor readings can be introduced in the BBN, which then can be used to identify the failed 

components.  However, an alternative system modelling and fault diagnostic technique is 

proposed as a part of this thesis which can be used on larger systems, and can determine sensor 

readings and component failures more quickly than the BBN method.  This method is based 

on a series of if-then-else statements in order to determine the effect that the component states 

have on the performance of the system.  The work proposed in this thesis is applied to three 

example systems: a simple flow system, an example aircraft fuel system and the fuel system 

for an Airbus A380-800 aircraft. 
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 Introduction 
 

 

1.1. Background and research motivation 

Aircraft systems, such as fuel systems, are complex, generally consisting of a large number 

of components.  There can be multiple components of the same type, and also of various 

different types, such as valves and pumps.  There can also be multiple different types of each 

component and multiple ways each component can fail, which further increases the complexity 

of the system.  As the components are not perfectly reliable, they can fail, and it may affect 

overall system performance.  However, whilst some component failures may have little effect 

on the system performance, others may cause the system to malfunction or to fail completely.  

Therefore, it is imperative to be able to detect component failures when they occur.  Note that 

in this thesis “a component failure is detected” means that it is known that a component failure 

has occurred, but which component has failed does not have to be known. 

Therefore, as there are lots of different components on the system, just knowing that there 

has been a component failure is insufficient and as different component failures have different 

effects on the system performance, it is imperative to be able to determine exactly which 

component failure has occurred in order for the appropriate action to be undertaken, such as 

system reconfiguration, modification of the mission or mission abortion.  However, each of 

these actions have different consequences to the operation of the system.  For example, if the 

mission was aborted whenever a component failure was detected, then the unnecessary 

financial losses would be significant, but if the mission was not aborted when necessary, the 

safety of crew, passengers, and people in the vicinity of the aircraft would be at risk.  The 

determination of which component failure has occurred is often referred to as “diagnosing the 

component failure”, which is how it is also referred to in this thesis, i.e. diagnosing a component 

failure means knowing exactly which component failure has occurred.  This will enable the 

appropriate action for the specific component failure to be taken.  Note, this can also be referred 

to as the process of isolating the component failure. 

In order to be able to detect and diagnose component failures, sensors need to be included 

on the system in order to monitor the performance of the system.  If the sensor readings 

produced by the sensors deviate from their expected readings (the sensor readings produced 

during normal operating conditions), a component failure has been detected.  Note, the specific 

component failure may not be determinable without additional information obtained from 
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physical inspection of the system as some component failures may produce the same set of 

symptoms. 

However, whilst sensors can be used to detect failures, they also have associated costs, such 

as the additional fuel costs from the added weight, the cost of any additional maintenance, and 

the purchase and installation costs of the sensor.  Therefore, a balance between the performance 

of the selected sensors and the cost of the selected sensors needs to be achieved.  

 

1.2. Research aims and objectives 

The aim of the research presented in this thesis is to be able to detect and diagnose as many 

different component failures as possible, whilst only using a minimal number of sensors on the 

system.  This aim can be categorised into three objectives. 

The first objective is to develop a sensor selection methodology in order to determine which 

combination of sensors is the most suitable solution to be installed on a system.  This is 

achieved by proposing a measure of performance, referred to as a performance metric, which 

can be used to distinguish between the relative merits of each combination of sensors.  The 

performance metric considers the probability of component failures that the sensors detect, the 

ease of diagnosis of the detected component failures, and the effect that the component failures 

have on system performance, i.e. causes system failure.  A sensor, or combination of sensors, 

with a high performance metric, will be able to detect a large percentage of the component 

failures, (including a large percentage of the component failures that cause system failure), and 

be able to diagnose a large percentage of the component failures with a high probability of 

successful diagnosis. 

The second objective is to develop a system modelling and fault diagnostics methodology 

to enable failures of components in the system to be detected and diagnosed.  The proposed 

method can model systems accurately, and output the sensor readings for each combination of 

component failure.  It can also use observed sensor readings to determine which components 

are most likely to have failed.  This is done by outputting the probability of each component 

being in a failed state, with the component (or components) with the highest probability of 

being in the failed state being the actual failure.  Note, as it is probabilistic, unless a component 

is definitely in a failed state (i.e. 100% probability), it may not be diagnosed correctly, it may 

just be the most likely component failure to have occurred.  It should also be the case that the 

higher the factor of the performance metric that considers the ease of diagnosis, the easier the 

diagnosis of failures. 
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The third objective is to develop an optimisation technique to enable the determination of 

suitable combinations of sensors efficiently when it is not feasible to calculate the performance 

metric for all combinations of sensors exhaustively.  This is particularly useful for large 

systems which can have a large number of possible sensors.  The proposed method involves 

applying a Genetic Algorithm to a set of randomly generated combinations of sensors, in which 

a number of genetic operators are applied to the combinations of sensors in order to obtain a 

more suitable solution.  It does this by favouring good combinations of sensors in each 

generation and applying the genetic operators so that a better combination can be obtained in 

the following generations. 

 

1.3. Thesis outline 

Chapter 2 presents a review of literature relevant to the research presented in this thesis.  

The section begins with an overview of sensor selection techniques, outlining a number of 

performance metric based approaches, before continuing with a brief overview of importance 

measures.  The next section of the chapter presents a number of fault diagnostic techniques, 

including Bayesian Belief Networks, Fault Trees, FMEA and Digraphs.  The next section of 

the chapter presents an overview of optimisation techniques, focusing primarily on Genetic 

Algorithms, as this is the most suitable method for the application, presented in this thesis.  The 

section concludes with a summary of the most suitable techniques in the literature for the work 

presented in the thesis. 

Chapter 3 of the thesis introduces a proposed methodology for sensor selection and fault 

diagnostics.  The chapter begins by introducing an example system which is used to develop 

the proposed methodology.  The performance metric used for sensor selection is proposed next, 

followed by the fault diagnostic methodology.  The section concludes with an application of 

the methodology to the example system and an analysis of its effectiveness. 

Chapter 4 of the thesis introduces a larger example system in order verify the scalability of 

the methodology.  The modifications to the methodology are applied including the automation 

of the sensor selection and fault diagnostic processes.  The chapter finishes with an analysis of 

the application of the methodology, concluding that the system modelling technique does not 

scale up sufficiently for larger systems. 

Chapter 5 of the thesis presents an alternative system modelling approach that will enable 

the application of the methodology to significantly larger systems.  The alternative modelling 

technique also requires modifications to the fault diagnostic technique, which are presented 
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next.  The alternative methodology is applied to the system and presented next, which is 

followed by an application of the originally proposed methodology to the same system.  The 

chapter concludes with a comparison of the two methodologies, demonstrating that the 

alternative methodology presented in this chapter is the more suitable solution. 

Chapter 6 of the thesis presents an extended version of the alternative methodology in order 

to consider time dependence of the component failures.  The system considered in this chapter 

is a real aircraft fuel system, the fuel system from the Airbus A380-800.  In order to do this, a 

proposed mission for a new, significantly larger example system is presented, in which 

component failures can occur at various points of time in the mission.  The next section of the 

chapter presents the time-dependent sensor performance metric, which considers the effect of 

the time taken to detect and diagnose component failures, and the time of failure occurrence in 

the mission.  As the system considered in this chapter is significantly larger than the systems 

considered in Chapters 3, 4, and 5, a proposed two-level Genetic Algorithm based optimisation 

technique is applied to the sensor selection process, which is introduced next.  The chapter 

continues by applying the proposed time-dependent methodology to the example system, 

before concluding with an analysis of the effectiveness of the methodology. 

Chapter 7 of the thesis summarises and concludes the work presented in the thesis.  The 

chapter concludes with a discussion of potential future research avenues that could be 

investigated.
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 Literature Review 
 

 

In this chapter, a review of literature is presented in order to identify potential modelling 

techniques and sensor selection methods that are suitable inspiration for the methodology, 

proposed in this thesis.  This chapter begins with an overview of sensor selection techniques, 

outlining a number of performance metric based approaches, and a brief overview of 

importance measures used in reliability assessment.  The chapter continues by presenting fault 

diagnostic techniques, including Bayesian Belief Networks (BBNs), failure modes and effects 

analysis (FMEA), Fault Trees (FTs), and Digraphs.  In the penultimate section of this chapter, 

an overview of optimisation techniques is also presented, focusing on Genetic Algorithms.  In 

the final section of this chapter, a summary of the most suitable techniques is presented. 

 

2.1 Sensor selection 

In an ideal case, as many sensors as possible would be installed on a system in order to be 

able to detect and diagnose component failures.  However, sensors cost money, add weight to 

the system, and require space for installation, usually resulting in limits being placed on the 

number of sensors that can be installed on a system.  Therefore, a sensor selection process 

needs to be applied, such that the chosen combination of sensors can detect and diagnose the 

most component failures in the system. 

In order to determine the most suitable combination of sensors, a number of factors can be 

considered.  These factors are: 

• The cost of the selected sensors, i.e. less expensive sensors will be favoured, 

• The size and weight of the sensors, i.e. sensors that are smaller and lighter will be 

favoured, 

• The reliability of the sensor, i.e. sensors that are less likely to fail are favoured, 

• The number of different component failures that can be detected by the selected 

sensors, i.e. the sensors that detect a higher number of component failures will be 

favoured, 

• The ease of diagnosis of component failures using the selected sensors, i.e. sensors 

that can distinguish between failures easily will be favoured, 
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• The effect the component failures have on the unreliability of the system, i.e. 

sensors that detect component failures that cause the system to fail will be favoured. 

 

In this section, a number of different sensor selection techniques are discussed, with the 

majority of this section presenting examples of sensor selection techniques in the literature.  

The final part of this section introduces importance measures, which are typically used to 

measure the relative importance of components to the functionality of the system.  However, 

they could be modified in order to apply them during the process of sensor selection, and 

therefore, a brief overview of some importance measures is presented.  The section concludes 

with a brief summary of the sensor selection techniques. 

 

2.1.1. Sensor selection methods 

There are many different approaches for selecting the optimal sensor suite, however, in 

order to be able to compare sensor performance on the system, a measure of performance needs 

to be defined, as a criterion for selecting sensors.  Different methods have different ways of 

referring to the measure of performance, including utility function, cost-benefit function, and 

information metric.  For simplicity and to avoid confusion, they will all be referred to as a 

performance metric. 

A simple version of a performance metric is to consider which sensor detects the most 

component failures.  Snooke (2009) and Kang & Golay (2000) use a fault symptom matrix to 

determine which component failures each sensor can detect.  A fault symptom matrix is 

basically a table, with each column corresponding to a different component failure, and each 

row corresponding to each sensor.  If the sensor can detect a specific component failure then 

the corresponding element of the matrix is entered (with a “1” or “0”, or a tick or a cross).  

After the entire matrix has been completed for all possible component failures, the row with 

the most elements entered will be the sensor that can detect the most component failures.  When 

considering combinations of sensors, the selected sensors can be stored in a new matrix, with 

an additional row at the bottom to represent the combination of sensors.  If any of the elements 

in each column have been completed, then the element in the final row of that column can be 

entered, and the number of elements in that row can be used to determine the number of 

component failures detected by that combination of sensors.  Whilst this approach is a straight 

forward way to determine the best sensor, or the best combination of sensors, it does not appear 

to consider the probability of each component failure occurrence, the effect that the failures 
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have on the system, or the ease of diagnosis.  However, if the matrix was completed with the 

probability of the component failure (instead of a “1” or a tick), then the sensor that detects the 

highest percentage of component failures could be selected, instead of the sensor that detects 

the highest number of different component failures. 

Snooke (2009) applies a fault symptom matrix based method to an aircraft fuel system for 

an unspecified twin engine aircraft.  The method uses an automated failure mode and effects 

analysis (FMEA) technique to successfully diagnose all 184 possible faults in the system.  The 

failures are diagnosed by comparing observed symptoms to the FMEA document and 

determining which failures can produce the observed symptoms.  Note, the FMEA method is 

discussed in section 2.2.2.1.  The authors also develop a tool to aid an engineer with the 

diagnosis of failures in the system, which they demonstrate using the fuel system example.  For 

the selection of sensors on the system, the authors propose choosing additional sensors to the 

combination of sensors based on the number of additional faults that an additional sensor can 

detect.  The author states that this may not result in the best possible combination of sensors as 

each additional sensor is added to the previous combination, and therefore, a sensor that is 

included may detect a smaller number of additional failures, than if one of the sensors from the 

combination was removed, and two sensors added as a pair.  As an example, consider a 

combination of sensors that can detect all failures on a system apart from 10 component 

failures.  If there are three potential sensors that can be added to the system, sensors A, B and 

C, each of which detect some of the 10 component failures that cannot be detected by the 

current sensor combination.  If sensor A can detect failures 1 – 7, (i.e. 7 failures), sensor B can 

detect failures 4 – 9, (i.e. 6 failures), and sensor C can detect failures 1 – 4 and 10, (i.e. 5 

failures), then the method would initially add sensor A, (as this would detect 7 additional 

failures), and then add sensor B, (as this would detect another 2 additional failures).  However, 

if sensor A could be removed, and then sensor B and C added instead, then all 10 failures would 

be detected.  This could be avoided by improving the search using methods such as 

backtracking heuristics, as suggested by the authors.   

The method proposed by Kang & Golay (2000) uses a combination of system-oriented 

hierarchies, a fault symptom matrix and sensor selection and feasibility study in order to 

determine a suitable combination of sensors.  The method begins by breaking the system down 

into sections in order to determine the failure modes of each section, (and therefore, the whole), 

of the system.  Next, a fault symptom matrix is constructed, enabling the determination of the 

causes of the symptoms of the system.  The sensor selection criteria and the feasibility of each 

of the sensors are then determined, before analysis of available sensor data is completed, 
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enabling the determination of a suitable sensor network.  The data analysis includes obtaining 

the data on the system operation (sensor readings), processing the data using techniques such 

as Fast Fourier Transform, and then combining it with data from other sensors, so that a detailed 

interpretation of the systems status can be obtained.  The fault symptom matrix allows the 

sensors to be selected based on which component failures are detected by each sensor, i.e. by 

matching the observed sensor readings to the faults using the matrix.  Sensors can then be 

selected based on which sensors are most useful for fault detection and diagnostics, whilst also 

ruling out sensors that are impractical to use.  The work in the paper is applied to a turbine 

generator for a power plant system, where the sensors monitor the pressure, flow, temperature 

and vibration in the system, among other parameters, so that component failures in the system 

can be detected and diagnosed.  This leads to many different types of sensors being considered, 

where it is likely that not all types of sensors are included in the sensor suite.  In the conclusion 

section of the paper, the authors state that some power plant system experts believe that the 

method could be extended for complete system coverage, in order to consider other complex 

rotating machinery, such as reactor coolant pumps and emergency diesel generators. 

Pourali & Mosleh (2012) present a method for determining the best combination of sensors 

by modelling the system using BBNs.  The 18 step Bayesian sensor placement optimisation 

technique can be summarised as: determining the characteristics of the system, (the failure 

modes, etc.), develop the BBN of the system, determine the possible sensors, determine the 

sensor readings for component failures, and finally choose the optimum sensor placement.  The 

method does not present a specific performance metric to be used for sensor selection, but does 

give two example utility functions, presented in Equations (2.1) and (2.2) respectively.  In the 

paper, the performance metric UI is defined as a monetary scale where its expected values 

represent a decision maker’s preferences. 

 

 

 

where θ is the unknown of interest, E is the evidence, ε is the observation, π0 is the prior 

knowledge about lower level components, π is the calculated posterior at system level, and σ 

𝑈𝐼(𝜃) = ∑ 𝑙𝑛[𝜋(𝜃𝑗|𝐸, 𝜀)]𝜋(𝜃𝑗|𝐸, 𝜀)

𝑗

− ∑ 𝑙𝑛[𝜋0(𝜃𝑗)]𝜋0(𝜃𝑗)

𝑗

 (2.1) 

𝑈𝐼(𝜃) =  ∑
1

𝜎𝜃𝑗

2

𝑗

 (2.2) 
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is the uncertainty.  Whilst the method proposed is useful in that any performance metric can be 

used in the methodology, the aim of the work presented in this thesis is to develop a specific 

performance metric for sensor selection.  The method is applied to a system health monitoring 

system for a power transformer system, and for this application, the performance metric is 

chosen such that it is dependent on the uncertainty about the unknown of interest.  The 

performance metric chosen for this example is the example performance metric given in 

Equation (2.2).  The introduction of uncertainty into the performance metric is useful for when 

there are unknown parameters in the system. 

Spanache et al. (2004) propose a performance metric based on the sensors’ ability to 

diagnose failures, considering the number of non-discriminable faults, (faults that cannot be 

discriminated between, i.e. produce the same symptoms), and the cost of the sensors.  The ratio 

between these values is the evaluation efficiency: the higher the value, the better the sensor 

combination.  This formula is presented in Equation (2.3), where ε is the evaluation efficiency, 

D is the number of non-discriminable faults, and Ci is the cost of sensor i. 

 

 

The cost factor in this paper considers the price, installation costs, and reliability of the 

sensor, and is presented in Equation (2.4). 

 

 

where Pi is a representation of the price of the sensor, Ii is a representation of a measure of the 

ease of installation/replacement of the sensor, and Ri is a representation of the sensors’ 

reliability, as specified by the supplier.  The authors also use a fault symptom matrix as their 

proposed fault diagnostic technique, and use a Genetic Algorithm (GA) based optimisation 

technique in order to not have to calculate the efficiency for all combinations of sensors.  Note 

that an overview of optimisation techniques, such as GA, are presented in section 2.3 of this 

thesis.  The authors present an example application to a Damadics Benchmark actuator which 

is used in the evaporation station in a sugar factory in Poland.  They successfully determine the 

optimal combination of sensors exhaustively (since the system is small), and using the GA.  

However, the authors do state that the difference in time between exhaustively obtaining the 

𝜀 =  
𝐷

∑ 𝐶𝑖
𝑛
𝑖=1

 (2.3) 

𝐶𝑖 =  𝑃𝑖 + 𝐼𝑖 − 𝑅𝑖 (2.4) 
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optimal combination of sensors and obtaining it using the GA will increase as the number of 

sensors increase. 

Santi et al. (2005) also use a GA based optimisation technique in order not to have to 

calculate their performance metric for all of the combinations of sensors.  The authors also 

introduce time dependence in their performance metric, considering the time taken to detect 

the component failure after its occurrence.  To do this they make the performance metric 

proportional to the time taken to reach the detection threshold by the chosen sensor 

combination, divided by the minimum time taken to reach the detection threshold by any 

combination of sensors, where the detection threshold is defined as the minimum deviation of 

measurements from multiple sensors for reliable hardware fault detection.  They also consider 

the risk reduction of the system which is a measure of the reduction of risk of system failure 

by diagnosing the failure within an acceptable amount of time.  Finally, the authors consider 

the sensors’ ability to discriminate between failures, i.e. the probability of correct diagnosis of 

component failures.  However, the value used in the performance metric is the minimum 

probability of correct diagnosis, and could result in unreliable results if one sensor reading can 

be obtained by many different component failures, all of which could potentially have a very 

low probability of occurrence.  This may reduce the performance metric of the combination of 

sensors and change the optimal combination of sensors.  The performance metric proposed by 

the authors could be adapted such that it includes the probability of each of the component 

failures occurrence that are being diagnosed, therefore, the above issue would not occur.  In 

this paper, the authors present an example application of the metric to a boost stage rocket 

developed for the Next Generation Launch Technology program.  The authors achieve a 

performance metric value of 0.62, which the authors believe is reasonable considering the level 

of design definition of the system.  They state that most of the metric reduction from its ideal 

value of 1.0 is due to fault diagnosis issues rather than detection, i.e. there are component 

failures that cannot be diagnosed correctly with complete confidence. 

A performance metric for aircraft systems was developed by Maul et al. (2008), which is 

applied to a subsystem of a space shuttle main engine.  The performance metric consists of 

three terms: a utility cost term, a diagnosability performance factor and a user-specified penalty 

term.  The cost term considers various factors of the sensors, such as the cost of the sensors, 

the weight of the sensors, the power requirements, etc.  The cost term is an average of the 

values for each of the sensors in the sensor combination.  The diagnosability performance factor 

considers the detection of failures by the sensors, the discrimination between the component 

failures, and a term to represent the relative weighting values of the sensors, such as the relative 
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fault criticality, and the relative importance of each the failures.  However, the final factor in 

the performance metric is a user specified penalty factor, which penalises the sensor selection 

if the number of sensors in the suite exceeds the desired amount.  This factor requires user 

specified terms, such as a normalising term for the penalty function, and a term that dictates 

the weight of the penalty term, as well as the difference between the number of sensors in the 

sensor combination and the desired number of sensors.  As some of the terms in the penalty 

term are user specified, subjectivity is introduced into the methodology.  This is undesirable as 

different applications of the same methodology on the same system, but carried out by different 

analysts, may result in a different selection of sensors, and may result in a less than optimal 

combination of sensors being chosen.  The method does not present how the various weighting 

factors, such as the fault criticality weighting factor or the relative importance of each of the 

failures, may also require user specification, as the determination of these factors is not 

discussed in the paper. 

Other authors consider cost specific measures of performance, referred to as cost-benefit 

analysis.  Cost-benefit analysis is a common technique used to evaluate the safety of systems, 

and is often used to assess improvements proposed to the system, i.e. if this component is 

replaced, what is the benefit to the reliability of the system, or if an additional sensor is added 

to the system, what is the benefit to the fault detection ability of the sensor suite.  Cost-benefit 

analysis uses a mathematical function to determine whether the additional cost of the 

modification required is worth the benefit observed by the modification to the system.  

However, the function is usually case-specific and is based on system dependent factors, such 

as the vulnerabilities of sections of the system or the potential risk to life, and as a result the 

cost-benefit function has to be manually determined for each application.  This results in some 

subjectivity being embedded in the method, with different analysts potentially proposing 

different functions for the same application.  On the positive side, this does introduce flexibility 

into the method, as the proposed cost-benefit function can consider the specific factors that the 

analyst considers to be important.  For example, one analyst may think that changing one factor 

may change the reliability of the system linearly, and as a result, make the reliability of the 

system directly proportional to the factor, but a different analyst may think that changing the 

same factor may change the reliability of the system non-linearly, and make the system 

reliability proportional to the factor to a power. 

One particular application of cost-benefit functions for sensor selection is presented by 

Lambert & Farrington (2007), who propose a function to determine the best placement of 

sensors for detection of air contaminants.  The authors define their cost-benefit function as the 
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potential risk avoided ($/year) divided by the annual cost ($/year), i.e. the larger the value, the 

better the combination of sensors.  This also means that the value of the function can be any 

value, and therefore there is no reference point on how good the sensor selection is, except in 

comparison to other combinations of sensors.  In their method, they consider a number of 

factors, such as the average travel time to safety, the population density, the number of 

vulnerable people, the cost of the sensors and their maintenance, and the cost saved by not 

having to treat people who would otherwise become infected.  The authors present a cost-

benefit function that the authors published in an earlier paper, (Lambert & Farrington, 2006), 

and extend the function with multiple iterations, each time considering additional factors, such 

as a constant benefit factor, an exponential exposure term, and factors to consider external 

source of funding.  The different versions of the same function are for specific cases, such as 

if there is exponential intensity or exposure, or if there is an external source of funding available 

for a specific region.  As the authors present a number of different versions of the same 

function, it suggests that there can be some subjectivity in determining which function is the 

best solution. 

Each of the measures of performance are similar in that they all consider how many of the 

component failures can be detected and diagnosed.  A numerical value representing how useful 

each of the combinations of sensors are is a common approach, and is therefore also developed 

in this thesis. 

 

2.1.2. Importance measures 

Component importance measures are a measure of the effect that each of the component 

failures have on the functionality of the system, and the importance measures could be adapted 

to consider the performance of sensors on the system.  Therefore, an overview of component 

importance measures is presented in the following section.  They have a numerical value 

between 0 and 1, allowing the components to be ranked accordingly.  Components that have 

an importance measure of 1 result in system failure when they fail, and components that have 

an importance measure of 0 have no effect on the probability of system failure when they fail.  

Importance measures are typically used to help to identify the sections of the system that are 

more likely to cause system failure, so that increased frequency of maintenance can be 

scheduled, or a system redesign can be undertaken.  There are a number of different importance 

measures, but the most common are Birnbaum’s measure of importance, the Criticality 

measure of importance, and the Fussell-Vesely measure of importance. 
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2.1.2.1. Birnbaum’s measure of importance 

Birnbaum’s importance (BI) measure is defined as the probability that component i is 

critical to system failure, i.e. the probability that the system changes from the working state to 

the failed state when component i fails, (Andrews & Beeson, 2003).  Note, this is often referred 

to as the occurrence of basic event i, which represents component i failing.  Birnbaum’s 

importance measure is presented in Equation (2.5), where Qsys is the system unreliability, and 

qi is the probability of basic event i occurring, i.e. Qsys(qi = 1) is the system unreliability given 

that component i is in its failed state, and Qsys(qi = 0) is the system unreliability given that 

component i is in its working state. 

 

 

2.1.2.2. Criticality measure of importance 

The Criticality importance (CR) measure can be considered as a generalisation of 

Birnbaum’s importance measure, as it normalises BI’s measure by the ratio of the probability 

of the basic event i and of system failure, (Borgonovo, 2007).  The CR measure is presented in 

Equation (2.6), (Borst & Schoonakker, 2001). 

 

 

The CR measure determines whether the failure of the system is a result of the failure of 

the component, i.e. if the system has failed, what is the probability that the failure of the 

component has caused it.  Borgonovo (2007) states that as the CR measure considers the 

probability of component failure, it enables the discrimination among components that have 

the same BI, as the importance measure is proportional to the probability of component failure. 

 

2.1.2.3. Fussell-Vesely measure of importance 

The Fussell-Vesely importance measure is one of the most commonly used importance 

measures, (Cheok et al., 1998).  It is presented in Equation (2.7), (Borst & Schoonakker, 2001). 

 

𝐵𝐼 =  𝑄𝑠𝑦𝑠(𝑞𝑖  =  1)  −  𝑄𝑠𝑦𝑠(𝑞𝑖  =  0) (2.5) 

𝐶𝑅 =  
𝑄𝑠𝑦𝑠(𝑞𝑖  =  1)  −  𝑄𝑠𝑦𝑠(𝑞𝑖  =  0)

𝑄𝑠𝑦𝑠
𝑞𝑖 =

𝐵𝐼

𝑄𝑠𝑦𝑠
𝑞𝑖 (2.6) 
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The Fussell-Vesely importance measure considers the effect that individual components 

have on system unreliability, i.e. it calculates the decrease in the system unreliability by making 

the component perfectly reliable.  The importance measure subtracts the probability of system 

failure given that basic event i has not occurred from the probability of system failure.  The 

importance measure is then normalised by the probability of system failure. 

 

2.1.2.4. Example 

In this section, two simple example systems are presented, each consisting of two 

components, the first with the two components in series, and the second with the two 

components in parallel.  The two components, component 1 and component 2, have reliabilities 

of p1 and p2, respectively, where p1 > p2.  Note, q1 = 1 – p1. 

For a series system, the reliability of the system is equal to p1p2, i.e. if either component 

fails, the system fails.  This results in Qsys = p1q2 + q1p2 + q1q2. The BI measure for component 

1 is presented in Equation (2.8).  Note, in Equations (2.8) – (2.13), the corresponding 

importance measure for component 2 can be determined by changing p1 with p2 and q1 with q2.  

 

 

Likewise, BI for component 2 is equal to p1.  Therefore, as p1 > p2, component 2 is the more 

important component.  The same is the case for the criticality importance measure 

(p1(1 – p2) > p2(1 – p1)), with the criticality importance measure presented in Equation (2.9) 

for component 1, i.e. component 2 is the more important component. 

 

 

The Fussell-Vesely importance measure for component 1 is presented in Equation (2.10), 

and as before component 2 is the more important component ((1 – p2) > (1 – p1)), i.e. it has the 

higher value of the importance measure. 

𝐹𝑉 =  
𝑄𝑠𝑦𝑠  −  𝑄𝑠𝑦𝑠(𝑞𝑖  =  0)

𝑄𝑠𝑦𝑠
 (2.7) 

𝐵𝐼(1)  = 𝑄𝑠𝑦𝑠(𝑞1 = 1) −  𝑄𝑠𝑦𝑠(𝑞1 = 0)

= (0𝑞2 + 1𝑝2 + 1𝑞2) − (1𝑞2 + 0𝑝2 + 0𝑞2) = 𝑝2 

(2.8) 

𝐶𝑅(1) =
𝐵𝐼(1)

𝑝1𝑞2 + 𝑞1𝑝2 + 𝑞1𝑞2
𝑞1 =

𝑝2(1 − 𝑝1)

1 − 𝑝1𝑝2
 (2.9) 
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In all three importance measures, the component that is the least reliable, is the most 

important component to the system.  This is because if any component in the system fails, the 

system fails, therefore, the system is only as reliable as its least reliable component. 

A similar example is presented in Equations (2.11), (2.12) and (2.13), respectively for a 

parallel system.  Note, for a parallel system, in order for the system to fail, both of the 

components must fail, i.e. Qsys = 1 – (p1 + p2 – p1p2). 

 

 

 

 

For parallel components using the BI measure, the most important component is the 

component with the highest reliability and therefore, to improve a parallel system, the most 

reliable component should be improved.  This is because both components need to fail in order 

for the system to fail, and therefore, as the more reliable component is less likely to fail, 

improving this component’s reliability further will reduce the probability of system failure.  

For the CR importance measure, all components in a parallel system are equally important, 

suggesting that the CR importance measure is not the most suitable importance measure for 

parallel systems.  For the FV importance measure, all components have a measure of 1.  This 

is because the FV measure considers the effect of making one of the components perfectly 

reliable, and therefore, the system cannot fail, suggesting that the FV importance measure is 

not the most suitable importance measure for parallel systems. 

 

𝐹𝑉(1) =
𝑄𝑠𝑦𝑠 − 𝑄𝑠𝑦𝑠(𝑞1 = 0)

𝑄𝑠𝑦𝑠
=

𝑝1𝑞2 + 𝑞1𝑝2 + 𝑞1𝑞2 − 𝑞2

𝑝1𝑞2 + 𝑞1𝑝2 + 𝑞1𝑞2
=

𝑝1𝑝2 − (1 − 𝑝2)

𝑝1𝑝2
 (2.10) 

𝐵𝐼(1) = 𝑄𝑠𝑦𝑠(𝑞1 = 1) −  𝑄𝑠𝑦𝑠(𝑞1 = 0) = (1 − (𝑝2)) − (1 − (1 + 𝑝2 − 𝑝2))

= 1 − 𝑝2 

(2.11) 

𝐶𝑅(1) =
𝐵𝐼(1)

1 − (𝑝1 + 𝑝2 − 𝑝1𝑝2)
𝑞1 =

(1 − 𝑝2)(1 − 𝑝1)

1 − (𝑝1 + 𝑝2 − 𝑝1𝑝2)
 (2.12) 

𝐹𝑉(1) =
𝑄𝑠𝑦𝑠 − 𝑄𝑠𝑦𝑠(𝑞1 = 0)

𝑄𝑠𝑦𝑠
=

1 − (𝑝1 + 𝑝2 − 𝑝1𝑝2) − (1 − (1 + 𝑝2 − 𝑝2))

1 − (𝑝1 + 𝑝2 − 𝑝1𝑝2)

=  
1 − (𝑝1 + 𝑝2 − 𝑝1𝑝2)

1 − (𝑝1 + 𝑝2 − 𝑝1𝑝2)
= 1 

(2.13) 
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2.1.3. Summary 

Overall, the work of Pourali & Mosleh (2012) presents a generic methodology that could 

be used for the selection of sensors.  This methodology could be extended to incorporate an 

optimisation technique, like Spanache et al. (2004) and Santi et al. (2005).  This means that 

exhaustive calculation of the performance metric for all combinations of sensors would not 

have to be completed.   

A number of the other authors present performance metrics that could be used as inspiration 

for a new performance metric.  The fault symptom matrix used by Snooke (2009) and Kang & 

Golay (2000) is a useful first step to determine which sensors can detect which component 

failures, this would also help with the construction of the BBN in the methodology presented 

by Pourali & Mosleh (2012).  The performance metrics presented by Spanache et al. (2004), 

Santi et al. (2005), and Maul et al. (2008), all have good features, for example, the 

discrimination between the failures in Spanache et al. (2004), the time dependence factor in 

Santi et al. (2005) and considering a large number of factors in Maul et al. (2008), respectively.  

However, all of the methodologies have drawbacks, for example, Santi et al. (2005) has a factor 

that could result in an unreliable performance metric if the probability of some of the 

component failures is low, and Spanache et al. (2004) and Maul et al. (2008) have factors that 

result in the performance metric being subjective. 

The cost-benefit function presented by Lambert & Farrington (2007) is very thorough and 

considers all possible factors for their application, but it is too application specific to be able to 

be applied for an aircraft fuel system.  Therefore, this methodology is not considered further in 

this study. 

 

2.2. Fault diagnostic techniques 

In this section of the literature review, an overview of a number of fault diagnostic 

techniques is presented.  This section is split into three subsections, the first of which presents 

an overview of Bayesian Belief Networks, the fault diagnostic technique applied in Chapters 

3, and 4 of this thesis.  The second section is an overview of a number of other fault diagnostic 

techniques, including FMEA, Fault Trees and Digraphs.  The final section is a summary of this 

section, presenting the reasons why Bayesian Belief Networks are selected in this study as the 

fault diagnostic technique. 
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2.2.1. Bayesian Belief Networks 

Bayesian Belief Networks (BBNs), also known as Bayes nets, or Causal networks, are 

acyclic probabilistic graphical models, built using data and/or expert knowledge.  They were 

named in 1985 by Judea Pearl, (Pearl, 1985), but are based on Bayesian probability, first 

proposed in Bayes’ rule in the 1700s by Thomas Bayes, (Bayes, 1763).  The networks consist 

of a number of variables, represented by nodes, and connected by edges.  Each variable has a 

finite number of discrete states, each with a finite probability of the variable being in each state.  

The edges represent the relationship between the variables, where the state of one variable 

affects the probability of each of the state occurrence of the other variable.  Note, the networks 

are acyclic as each variables state probabilities affects the connected variables state 

probabilities, and would result in a never ending cycle of updating of event probabilities if the 

network was cyclic.  The probability of each state is entered into a conditional probability table 

(CPT), which is used to calculate the probability of other nodes being in each of their states.  

Note, the relevant equations are presented in section 2.2.1.1.  Each column in the CPT must 

add up to 100% probability, i.e. the node has to be in one of the states, but the CPT can be 

completed using numerical values that do not add up to 100, and the network will calculate the 

probability of each state accordingly.  For example, if there is a column with two “1”s in it, 

each state will have 50% probability, or if there is a column with two “1”s, and a “2”, the state’s 

corresponding to “1”, will have a 25% probability, and the state corresponding to “2” will have 

a 50% probability.  The variables are often referred to as parent and child nodes, with the state 

of the child nodes dependent on the state of the parent nodes.  Note, each parent node can have 

multiple child nodes, and each child node can have multiple parent nodes. 

BBNs are used to model real systems and can therefore be used to determine the probability 

of a specific event occurring.  An example network is presented in Figure 2.1 that can be used 

to determine the probability of car headlights being on at various times of the day and year. 

 

Figure 2.1 BBN for headlights example 
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The three nodes in the network, “Month”, “Time”, “Dark”, each represent the factors that 

affect whether or not the headlights will be on, which is represented by the node, “Headlights”.  

The headlights being on is usually dependent on whether it is dark or not, but other factors, 

such as the driver forgetting to turn them on/off, the headlights being broken, or whether it is 

raining or foggy will also affect them.  Therefore, the conditional probability table for the 

“Headlights” node can be completed accounting for these factors, for example, the probability 

that the headlights are on, given that it is dark, is 98%.  The CPT is presented in Table 2.1, 

where the states along the top represent the states of the “Dark” node, and the states along the 

left hand side represent the states of the “Headlights” node. 

 

Table 2.1 CPT for the headlight node 

Dark Yes No 

On 0.98 0.1 

Off 0.02 0.9 

 

 

Table 2.2 CPT for the Dark node 

Month April 

Time 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 

Dark 1 1 1 1 1 1 0 0 

Not Dark 0 0 0 0 0 0 1 1 

Continued… 

Month April 

Time 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 

Dark 0 0 0 0 0 0 0 0 

Not Dark 1 1 1 1 1 1 1 1 

Continued… 

Month April 

Time 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 

Dark 0 0 0 0 1 1 1 1 

Not Dark 1 1 1 1 0 0 0 0 
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Whether it is dark or not is dependent on the time of day and the time of year, as it is darker 

for longer each day in the winter than it is in the summer.  In order to do represent this using 

the BBN nodes, the “Month” node has 12 states, one for each month, each with equal 

probability.  Note, all months are assumed to be the same length for simplicity.  The “Time” 

node is assigned 24 states, one for each hour of the day, and therefore, each with equal 

probability.  The CPT for the “Dark” node is presented in Table 2.2.  As the CPT for the “Dark” 

node consists of 288 columns, (a column is required for each combination of month, and time 

of day, 12 × 28), only a section of the CPT (for one month, April) is presented.  Note, it is 

assumed to be either dark or not dark in full hour steps for every day of each month. 

Bayesian Belief Networks can have evidence of observed variables introduced to the 

network, and it will update the probability of the states of other variables.  In the headlights 

example, evidence such as the time of day and month could be introduced to the network, and 

the updated probability of the headlights being on can then be calculated.  Alternatively, 

evidence that the headlights are either on or off, and the time of day could be introduced, and 

the probability of each of the months could be updated.  The updated probabilities of the 

corresponding node for both of these cases are presented in Tables 2.3 (Headlights) and 2.4 

(Months), respectively.  In the first example, the time of day is set to 7:00, and the month is set 

to be January.  Using Bayes’ Theorem, this results in a 98% probability that the headlights are 

on.  In the second example, the headlights are set to on, and the time of day is set to 7:00, and 

this results in a 33.11% probability that it is either January or December, and a 3.38% 

probability for each of the other months.  Therefore, if the desired information is the probability 

of it being January, the answer is 33.11%. 

Bayesian Belief Networks can be used for fault diagnostics by using evidence obtained by 

observing symptoms on the system to update the probability of the states of the components.  

The components that are more likely to be in the failed state can be repaired or replaced as 

required. 

 

Table 2.3 Probability of Headlights being on in January at 7:00 

Headlights Probability 

On 98% 

Off 2% 
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Table 2.4 Probability of each month given that the headlights are on and it is 7:00 

Month Probability 

January 33.11% 

February 3.38% 

March 3.38% 

April 3.38% 

May 3.38% 

June 3.38% 

July 3.38% 

August 3.38% 

September 3.38% 

October 3.38% 

November 3.38% 

December 33.11% 

 

 

2.2.1.1. Bayesian probability 

In BBNs, a problem is modelled by considering a list of variables X1, X2, ..., Xn, and the 

joint probability is represented by P(X1, X2, ..., Xn).  In order to calculate the probabilities of 

each of the variables states, Bayes’ rule is used.  Bayes’ rule is stated in Equation (2.14), where 

X1 and X2 are events and P(X2) is not equal to 0, P(X1) is the probability of observing event X1, 

P(X2) is the probability of observing event X2, and P(X1 | X2) and P(X2 | X1) are the probabilities 

of observing event X1 given that X2 is true, and of observing event X2 given that X1 is true, 

respectively, (Koski & Noble, 2009)).  Note, if X1 and X2 are mutually exclusive, P(X1  or X2) 

= P(X1) + P(X2), and if X1 and X2 are independent, P(X1 | X2) = P(X1). 

 

 

In Bayesian probability the joint probability function is defined in terms of the conditional 

probability in the form presented in Equation (2.15), with the generalisation presented in 

Equation (2.16). 

𝑃(𝑋1 | 𝑋2)  =  
𝑃(𝑋2 | 𝑋1) 𝑃(𝑋1)

𝑃(𝑋2)
 (2.14) 
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For a network with n nodes, the joint distribution can be written using the chain rule, as 

presented in Equation (2.17). 

 

 

For example, the joint distribution for the headlights example, given before is presented in 

Equation (2.18), where M represents the Month node, T represents the Time node, D represents 

the Dark node, and H represents the Headlights node. 

 

 

The probability of an event can be calculated using Bayes’ rule (Equation (2.14)), where 

X1 is the set of variables of interest, and X2 is the evidence introduced to the network.  This rule 

can be expressed differently, in the form presented in Equation (2.19), where Y is a set of all 

variables excluding the variables of interest (X1), and the variables that have had evidence 

introduced. 

 

 

If the example presented in Table 2.3 is considered, the conditional probability that the 

headlights are on given that it is January at 7:00 can be expressed by P(Headlights  = On | 

Month  = January, Time =  7:00).  Substituting this expression into the left hand side of 

Equation (2.19), results in the formula presented in Equation (2.20), where for brevity, 

P(Headlights  = On | Month  = January, Time =  7:00) = A. 

 

𝑃(𝑋1  ∩  𝑋2)  =  𝑃(𝑋1 | 𝑋2) 𝑃(𝑋2) (2.15) 

𝑃(𝑋)  =  ∑ 𝑃(𝑋 | 𝑋𝑖) 𝑃(𝑋𝑖)

𝑖

 (2.16) 

𝑃(𝑋1  ∩  𝑋2  ∩  … ∩  𝑋𝑛)  =  𝑃(𝑋𝑛 | 𝑋𝑛−1, … , 𝑋2, 𝑋1) …  𝑃(𝑋2 | 𝑋1) 𝑃(𝑋1) (2.17) 

𝑃(𝑋𝑀  ∩  𝑋𝑇  ∩  𝑋𝐷  ∩  𝑋𝐻)  =  𝑃(𝑋𝑀) 𝑃(𝑋𝑇) 𝑃(𝑋𝐷 | 𝑋𝑀 , 𝑋𝑇)𝑃(𝑋𝐻 | 𝑋𝐷)  (2.18) 

P(X1 | X2) = 
P(X2 | X1) P(X1)

P(X2)
=  

∑ P(X1, X2 ,Y)Y

∑ ∑ P(X1, X2, Y)YX1

 (2.19) 
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The numerator (N) of Equation (2.20) can be evaluated to give the solution presented in 

Equation (2.21), with the denominator (D) evaluated to give the solution presented in Equation 

(2.22).  When Equation (2.21), and Equation (2.22) have been evaluated, the probability that 

the headlights are on given that it is January at 7:00 can be determined, and is presented in 

Equation (2.23). 

 

 

 

 

In the second example, the example presented in Table 2.4 is considered, the conditional 

probability that it is January given that the headlights are on and it is 7:00 can be expressed by 

P(Month = January | Headlights = On, Time = 7:00).  Again, this is substituted for the left 

hand side of Equation (2.19), and is represented by A in Equation (2.24), as in Equation (2.20).  

As before, the numerator (N) and the denominator (D) are calculated in Equations (2.25) and 

(2.26), respectively, with the probability that it is January given that the headlights are on and 

it is 7:00 presented in Equation (2.27).  Note, in Equation (2.26), all months other than January 

are referred to as “Not January” for brevity. 

𝐴 =  
𝑁

𝐷

=  
∑ 𝑃(𝐻𝑒𝑎𝑑𝑙𝑖𝑔ℎ𝑡𝑠  =  𝑂𝑛, 𝑀𝑜𝑛𝑡ℎ  =  𝐽𝑎𝑛𝑢𝑎𝑟𝑦, 𝑇𝑖𝑚𝑒 = 7: 00, 𝐷𝑎𝑟𝑘)𝐷𝑎𝑟𝑘

∑ ∑ ∑ 𝑃(𝐻𝑒𝑎𝑑𝑙𝑖𝑔ℎ𝑡𝑠, 𝑀𝑜𝑛𝑡ℎ =  𝐽𝑎𝑛𝑢𝑎𝑟𝑦, 𝑇𝑖𝑚𝑒 = 7: 00, 𝐷𝑎𝑟𝑘)𝐷𝑎𝑟𝑘𝑇𝑖𝑚𝑒𝑀𝑜𝑛𝑡ℎ
 

(2.20) 

𝑁 =  𝑃(𝐻𝑒𝑎𝑑𝑙𝑖𝑔ℎ𝑡𝑠 =  𝑂𝑛 ∩  𝑀𝑜𝑛𝑡ℎ =  𝐽𝑎𝑛𝑢𝑎𝑟𝑦 ∩  𝑇𝑖𝑚𝑒  =  7: 00  ∩

 𝐷𝑎𝑟𝑘 =  𝐷𝑎𝑟𝑘) +  𝑃(𝐻𝑒𝑎𝑑𝑙𝑖𝑔ℎ𝑡𝑠 =  𝑂𝑛 ∩  𝑀𝑜𝑛𝑡ℎ =  𝐽𝑎𝑛𝑢𝑎𝑟𝑦 ∩  𝑇𝑖𝑚𝑒 =

 7: 00  ∩  𝐷𝑎𝑟𝑘 =  𝑁𝑜𝑡 𝐷𝑎𝑟𝑘) =  0.003403 + 0 =  0.003403  

(2.21) 

𝐷 =  𝑃(𝐻𝑒𝑎𝑑𝑙𝑖𝑔ℎ𝑡𝑠 =  𝑂𝑛 ∩  𝑀𝑜𝑛𝑡ℎ =  𝐽𝑎𝑛𝑢𝑎𝑟𝑦 ∩  𝑇𝑖𝑚𝑒 =  7: 00  ∩

 𝐷𝑎𝑟𝑘 =  𝐷𝑎𝑟𝑘) +  𝑃(𝐻𝑒𝑎𝑑𝑙𝑖𝑔ℎ𝑡𝑠 =  𝑂𝑓𝑓 ∩  𝑀𝑜𝑛𝑡ℎ =  𝐽𝑎𝑛𝑢𝑎𝑟𝑦 ∩

 𝑇𝑖𝑚𝑒 =  7: 00  ∩  𝐷𝑎𝑟𝑘 =  𝐷𝑎𝑟𝑘) +  𝑃(𝐻𝑒𝑎𝑑𝑙𝑖𝑔ℎ𝑡𝑠 =  𝑂𝑓𝑓 ∩  𝑀𝑜𝑛𝑡ℎ =

 𝐽𝑎𝑛𝑢𝑎𝑟𝑦 ∩  𝑇𝑖𝑚𝑒 =  7: 00  ∩  𝐷𝑎𝑟𝑘 =  𝐷𝑎𝑟𝑘)  +  𝑃(𝐻𝑒𝑎𝑑𝑙𝑖𝑔ℎ𝑡𝑠 =  𝑂𝑓𝑓 ∩

 𝑀𝑜𝑛𝑡ℎ =  𝐽𝑎𝑛𝑢𝑎𝑟𝑦 ∩  𝑇𝑖𝑚𝑒 =  7: 00  ∩  𝐷𝑎𝑟𝑘 =  𝑁𝑜𝑡 𝐷𝑎𝑟𝑘) =

0.003403 +  0 +  0.000069 +  0 =  0.003472  

(2.22) 

𝐴 =  
𝑁

𝐷
=  

0.003403

0.003472
 =  0.98 (2.23) 
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In the next section, the different methods of constructing BBNs are discussed, including 

construction from scratch, and construction from Fault Trees. 

 

2.2.1.2. Construction of BBNs 

As BBNs for systems can be large, potentially consisting of a large number of nodes, a 

method of construction of BBNs needs to be determined.  Romesis & Mathioudakis (2006) 

state ‘it is common belief that, there is no “best” method for construction or inference with a 

BBN, only a “most suitable” one, with respect to the information available in each case’.  The 

authors construct BBNs by following a three step methodology; acquire information that 

describes the specific diagnostic problem, define the relationships between the variables, and 

map out the structural elements of the network.  The authors apply the proposed methodology 

to a gas turbine in order to diagnose failures in the gas path.  The authors state that the proposed 

methodology has a strong diagnostic ability, due to the accuracy in the modelling of the 

𝐴 =  
𝑁

𝐷

=  
∑ 𝑃(𝐻𝑒𝑎𝑑𝑙𝑖𝑔ℎ𝑡𝑠  =  𝑂𝑛, 𝑀𝑜𝑛𝑡ℎ  =  𝐽𝑎𝑛𝑢𝑎𝑟𝑦, 𝑇𝑖𝑚𝑒 =   7: 00, 𝐷𝑎𝑟𝑘)𝐷𝑎𝑟𝑘

∑ ∑ ∑ 𝑃(𝐻𝑒𝑎𝑑𝑙𝑖𝑔ℎ𝑡𝑠 =  𝑂𝑛, 𝑀𝑜𝑛𝑡ℎ, 𝑇𝑖𝑚𝑒 =  7: 00, 𝐷𝑎𝑟𝑘)𝐷𝑎𝑟𝑘𝑇𝑖𝑚𝑒𝑀𝑜𝑛𝑡ℎ
 

(2.24) 

𝑁 =  𝑃(𝐻𝑒𝑎𝑑𝑙𝑖𝑔ℎ𝑡𝑠 =  𝑂𝑛 ∩  𝑀𝑜𝑛𝑡ℎ =  𝐽𝑎𝑛𝑢𝑎𝑟𝑦 ∩  𝑇𝑖𝑚𝑒  =  7: 00  ∩

 𝐷𝑎𝑟𝑘 =  𝐷𝑎𝑟𝑘) +  𝑃(𝐻𝑒𝑎𝑑𝑙𝑖𝑔ℎ𝑡𝑠 =  𝑂𝑛 ∩  𝑀𝑜𝑛𝑡ℎ =  𝐽𝑎𝑛𝑢𝑎𝑟𝑦 ∩  𝑇𝑖𝑚𝑒 =

 7: 00  ∩  𝐷𝑎𝑟𝑘 =  𝑁𝑜𝑡 𝐷𝑎𝑟𝑘) =  0.003403 + 0 =  0.003403  

(2.25) 

𝐷 =  𝑃(𝐻𝑒𝑎𝑑𝑙𝑖𝑔ℎ𝑡𝑠 =  𝑂𝑛 ∩  𝑀𝑜𝑛𝑡ℎ =  𝐽𝑎𝑛𝑢𝑎𝑟𝑦 ∩  𝑇𝑖𝑚𝑒 =  7: 00  ∩

 𝐷𝑎𝑟𝑘 =  𝐷𝑎𝑟𝑘) +  𝑃(𝐻𝑒𝑎𝑑𝑙𝑖𝑔ℎ𝑡𝑠 =  𝑂𝑛 ∩  𝑀𝑜𝑛𝑡ℎ =  𝐽𝑎𝑛𝑢𝑎𝑟𝑦 ∩  𝑇𝑖𝑚𝑒 =

 7: 00  ∩  𝐷𝑎𝑟𝑘 =  𝑁𝑜𝑡 𝐷𝑎𝑟𝑘) +  𝑃(𝐻𝑒𝑎𝑑𝑙𝑖𝑔ℎ𝑡𝑠 =  𝑂𝑛 ∩  𝑀𝑜𝑛𝑡ℎ =

 𝑁𝑜𝑡 𝐽𝑎𝑛𝑢𝑎𝑟𝑦 ∩  𝑇𝑖𝑚𝑒 =  7: 00  ∩  𝐷𝑎𝑟𝑘 =  𝐷𝑎𝑟𝑘) +  𝑃(𝐻𝑒𝑎𝑑𝑙𝑖𝑔ℎ𝑡𝑠 =

 𝑂𝑛 ∩  𝑀𝑜𝑛𝑡ℎ =  𝑁𝑜𝑡 𝐽𝑎𝑛𝑢𝑎𝑟𝑦 ∩  𝑇𝑖𝑚𝑒 =  7: 00  ∩  𝐷𝑎𝑟𝑘 =  𝑁𝑜𝑡 𝐷𝑎𝑟𝑘) =

 0.003403 +  0 +  0.003403 +  0.003472 =  0.010278  

   (2.26) 

𝐴 =  
𝑁

𝐷
=  

0.003403

0.010278
 =  0.3311 (2.27) 
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relationships between variables that is achieved because of the proposed construction method 

of the BBN. 

Lampis & Andrews (2009) and Khakzad et al. (2011) propose constructing BBNs using 

Fault Trees.  However, one major problem with constructing Bayesian Belief Networks using 

Fault Trees, is that Fault Trees have to be constructed for each possible system failure mode, 

potentially taking a long time and a lot of resources.  Lampis & Andrews (2009) outline the 

steps of the method, beginning with making a binary node for each of the basic events in the 

Fault Tree.  The binary nodes have two states, one for the event occurring, and one for the 

event not occurring, and are often referred to as root nodes.  The CPTs for the root nodes are 

completed using the probability of event occurrence.  The next step outlined is to introduce 

more binary nodes, one for each of the logic gates in the system, which can be connected to the 

root nodes, as in the Fault Tree.  The logic gates can be represented using the CPTs for the 

nodes.  An AND gate would have the CPT presented in Table 2.5, and the OR gate would have 

the CPT presented in Table 2.6.  For a simple Fault Tree where event A and event B are the 

inputs to the gate, and event C is the output, both event A and event B need to be in the “True” 

state for event C to occur if the gate is an AND gate, and at least one of event A or event B 

must be in the “True” state for event C to occur if it is an OR gate.  Finally, the top event of 

the Fault Tree can be represented using a final binary node. 

 

Table 2.5 CPT for event C, an output of an AND gate with the inputs event A and event B 

Event A True  False  

Event B True False True False 

True 1 0 0 0 

False 0 1 1 1 

 

Table 2.6 CPT for event C, an output of an OR gate with the inputs event A and event B 

Event A  True  False  

Event B True False True False 

True 1 1 1 0 

False 0 0 0 1 

 

Khakzad et al. (2011) state that BBNs can produce a more reliable measure of component 

importance than can be obtained from the minimal cut sets of a fault tree.  This is because they 
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output the probability of the states of the components, enabling more accurate prediction of 

which failure events have occurred.  Also, as events in Fault Trees can either occur or not occur, 

the Fault Trees can contain less information, or be significantly larger than the corresponding 

BBNs, which can consist of more than two states per node, as is the case for the “Month” node 

in the example presented earlier.  Santoso et al. (1999) highlight that BBNs require expert 

knowledge to construct, with values in the CPTs of the root nodes being completed using 

available data, or expert knowledge if data is not available.  This means that it is more difficult 

for computers to construct BBNs than it is for them to construct Fault Trees. 

 

2.2.1.3. Advanced Bayesian networks 

There are a number of modifications that can be made to BBNs to consider more complex 

systems, the first of which is hierarchical BBNs.  Gyftodimos et al. (2002) state that hierarchical 

BBNs consist of two parts, a structural part and a probabilistic part.  The structural part of the 

network considers the system as a whole, with the probabilistic part being a series of smaller 

sub-networks.  The sub-networks model small sections of the system that are independent of 

each other.  The authors present an example of playing golf, with two sub-networks, one 

considering the weather, and one considering the finances required to play golf.  The two 

factors in the example are independent, the weather does not influence the players’ finances, 

and the players’ finances does not influence the weather.  However, as the hierarchical BBNs 

require the different sub-networks to be independent, complex systems, such as aircraft fuel 

systems, can be harder to model as different sections of the system typically influence each 

other and are therefore not independent.  Therefore, the components of the system could be in 

the main network, with sub-networks used to calculate fuel flow in specific sections of the 

system. 

Dynamic BBNs, another extension to BBNs, are time dependent, with the probability of 

the states of each of the variables changing as time progresses.  A number of authors have used 

dynamic BBNs to model systems, with Vileiniskis et al. (2016) modelling a three phase 

separator used in offshore oil processing facilities over three time steps.  The authors create 

three instances of the network, with the outputs of one instance used to update the initial values 

of the next instance.  Other authors, such as Murphy (2002), use dynamic BBNs to generalise 

other modelling techniques, such as hidden Markov models and Kalman filter models, by 

enabling better representation of state space, instead of as single data points. 
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2.2.1.4. Summary 

In summary, Bayesian Belief Networks are an effective system modelling and fault 

diagnostic technique.  The ability to introduce evidence to the network enables the 

determination of component state occurrence probability.  This could enable sensors to be 

modelled in the system, and sensor readings could be introduced to the network as evidence, 

enabling prediction of component states.  As discussed in section 2.2.1.2, there are a couple of 

ways to construct Bayesian Belief Networks, and whilst there is the benefit of using pre-

constructed Fault Trees as the basis for the networks, only using binary nodes may not be the 

most efficient method of modelling complex systems with multiple states for each component.  

Hierarchical and dynamic BBNs are extensions to conventional BBNs that have been applied 

by a number of authors.  A potential problem with hierarchical BBNs is that they require each 

of the sub-networks to be independent, which may not be the case with complex systems.  

However, this problem could be avoided by using component nodes in the main network, 

enabling all sub-networks to consider their states.  A possible solution for introducing time 

dependence is to create multiple instances of the network, an instance for each time step.  

However, as this method requires multiple instances of the network, it could end up being 

computationally intensive. 

 

2.2.2. Other fault diagnostic techniques 

There are a number of other fault diagnostic techniques that can be used for the diagnosis 

of failures in systems.  In this section, an overview of FMEA, Fault Trees and Digraphs is 

presented.  A discussion comparing the benefits of these fault diagnostic techniques and BBNs 

is presented in section 2.2.3. 

 

2.2.2.1. FMEA 

Failure Mode and Effects Analysis (FMEA) is a technique that was first developed by the 

aerospace industry in the 1960s, (Liu et al., 2013), and it has been widely used in a number of 

different applications.  The technique considers individual component failures in the system 

and the effect of each of their failures on the systems performance, (Ostrom & Wilhelmsen, 

2012).  A document is typically created that contains all of the failures and the observed 

symptoms, which can be updated as previously unobserved failures arise.  If a failure is 

detected on a system, the observed symptoms can be compared with the document, enabling 

prediction of failure occurrence. 
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FMEA can be modified to include the probability of each of the failures occurring.  When 

the probability of events is included, it is typically referred to as FMECA, Failure Mode, 

Effects and Criticality Analysis, (Ostrom & Wilhelmsen, 2012).  The created document could 

also be used to highlight sections of the system that are more susceptible to failure, and 

therefore, improvements to the system could be introduced in order to reduce the risk of failure. 

One of the main shortfalls with FMEA and FMECA is that it generally only considers the 

effects of individual failures and not combinations of failures, (Xiao et al., 2011).  This could 

result in symptoms being observed that are not in the document and the fault diagnostic process 

being ineffective.  This could be the case when two component failures occur, but neither 

component failure can be detected if it is the only component failure to occur.  In this case, 

other fault diagnostic techniques, such as BBNs, would be more likely to be able to diagnose 

the component failures. 

 

2.2.2.2. Fault Trees 

Fault Trees are a commonly used reliability assessment technique, which were first 

proposed by Watson in 1961, (Andrews & Beeson, 2003), to be used for the Minuteman 

Intercontinental Ballistic Missile, (Ostrom & Wilhelmsen, 2012).  Fault Trees are used in the 

modelling of system failure modes and the component failures that can cause the system to fail.  

There are three types of events used in Fault Trees: the top event, intermediate events and basic 

events, (Andrews & Moss, 2002).  In each Fault Tree there is only one top event, (usually 

system failure), but there can be many intermediate and basic events.  Basic events typically 

correspond to component failures, and intermediate events correspond to the operation of 

sections of the system.  In between each of the events in the Fault Tree, there are logic gates.  

There are a number of different logic gates, (Andrews & Moss, 2002), but the two most 

common are the AND and OR gates.  The third most common logic gate is the NOT gate, 

which is used in non-coherent Fault Trees.  An example of each of the three gates is presented 

in Figure 2.2. 

 

Figure 2.2 a. AND logic gate, b. OR logic gate, c. NOT logic gate 
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An example (Andrews & Moss, 2002) of a Fault Tree for the brakes on a bicycle is 

presented in Figure 2.3.  Starting from the top event and working down, for the brakes on a 

bicycle to not operate, both the front and rear brake need to have failed.  As both of the events 

need to have occurred, an AND gate is used.  For the front brakes not to work, at least one of 

three basic events needs to occur, the brake blocks need to be worn so that they cannot slow 

the wheel, the cable connecting the brakes to the lever is broken, or the lever is broken.  As 

only one of the three events needs to occur for the front brakes to fail, an OR gate is used.  The 

same is the case for the rear brakes. 

 

Figure 2.3 Fault Tree for the failure of bicycle brakes (Andrews & Moss, 2002) 

 

Fault Trees that include NOT logic are called non-coherent Fault Trees.  A number of 

authors, (Bartlett et al., 2006), (Hurdle et al., 2008), and (Contini & Matuzas, 2011), claim that 

whilst coherent Fault Trees are easier to construct and use, non-coherent Fault Trees can be 

used to provide more information about the system.  The NOT gate is used when the system 

can only fail if it requires one of the components to be in its working state for the system to 

fail.  An example of this is a water tank that is supposed to stop filling up when the water level 

in the tank reaches a certain level.  However, if the water level sensor (LS) has failed, and the 

tap (T) supplying the water has not failed, the water level will keep on increasing, and the water 

will overflow, causing the system to fail.  The Fault Tree for this system is presented in Figure 

2.4. 
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Figure 2.4 Non-coherent Fault Tree for a water tank overflowing 

 

A benefit of analysing systems using Fault Trees is that they aid in the deduction of minimal 

cut sets.  Minimal cut sets are combinations of basic events that if they all occur, the top event 

will occur.  Note, if any of the basic events in the minimal cut sets do not occur, the top event 

will not occur, (Clark & Verwoerd, 2012).  For the bicycle brakes example presented before, 

the minimal cuts sets are {B1, B2}, {B1, C2}, {B1, L2}, {C1, B1}, {C1, C2}, {C1 L2}, {L1, 

B2}, {L1, C2} and {L1, L2}.  If any of the minimal cut sets occur, the bicycles brakes will fail.  

A general rule for minimal cut sets, is that the lower the number of basic events in the minimal 

cut set, the more important the components are to the operation of the system.  However, this 

is not always the case if a minimal cut set consists of a larger number of component failures 

which are more likely to occur than a minimal cut set that consists of a smaller number of 

component failures, but are less likely to occur. 

Fault Trees can be analysed qualitatively or quantitatively.  Qualitative analysis of Fault 

Trees consists of determining the minimal cut sets and the minimal path sets of the Fault Tree.  

A path set is a set of basic events, that if none of the events occur, the top event also does not 

occur.  The minimal path set is the minimum set of basic events that need to have not occurred 

for the top event to not occur.  For the bicycle example presented before, the minimal path sets 

are {B1, C1, L1}, {B2, C2, L2}, i.e. at least one set of brakes works.  Quantitative analysis of 

Fault Trees aims to determine the probability of the top event, or the predicted time to failure 

of the top event.  This can be calculated using the minimal cut sets, i.e. if the probability of the 

basic events in the minimal cut sets is known, the probability of the top event can be calculated, 
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or if the time to failure for the basic events is known, the time to the top event is the highest of 

the basic events, (Lee et al., 1985). 

A disadvantage of using Fault Trees is the time taken to construct and analyse them.  For 

large systems, with a large number of components, the Fault Tree can become extremely large, 

and can take a long time to construct.  In addition, if the trees are too large, it may not be 

possible to model the system exactly, in which case approximations are utilised.  However, 

approximations introduce inaccuracy to the model and may not result in exact solutions.  As a 

result, a number of authors have suggested methods of constructing Fault Trees and analysing 

their solutions more easily.  Examples include constructing Fault Trees from Digraphs, (Lapp 

& Powers, 1977), converting a probabilistic graph into Fault Trees, (Camarda & Trentadue, 

1978), and analysing the trees by simplifying them using Faunet reduction or by 

modularisation, (Reay & Andrews, 2002). 

Fault Trees are used for diagnostics by following the logic gates from the top of the Fault 

Tree down to the basic events, i.e. determining which basic events could have occurred to result 

in the top event. 

 

2.2.2.3. Digraphs 

Digraphs, like BBNs, model systems using a directed graph.  The variables in the graph are 

represented by circular nodes, and are connected by arrows, which are referred to as edges.  

The edges represent the relationships between the variables and are weighted according to the 

strength of the relationships.  By convention the strength of the relationships can be one of five 

values, +10, +1, 0, -1, and -10.  The relationships that are considered to be strong relationships 

are indicated by ±10, and the relationships that are considered to be moderate relationships are 

indicated by ±1.  0 is used to represent that the relationship between two variables is null. 

Alternatively, Allen (1984) suggests that the values could be used to represent a change in 

the normal operating behaviour such as change in the amount of flow through a pipe.  For 

example, 0 can represent no change in behaviour, and ±1 and ±10 can represent varying 

amounts of change to the flow through pipe.  A problem with this is that if, for example, 0 

represents normal flow, -1 is a moderate reduction in flow, and -10 is a large reduction in flow, 

then it is not possible to represent no flow in the pipe, therefore, inaccuracies are introduced. 

Another suggestion by Allen (1984) is that flow through pipes could be modelled by having 

a weighting of 0 for no flow through the pipe, and positive weightings representing flow in one 

direction, and negative weightings representing flow in the opposite direction.  A problem with 



 

31 
 

this suggestion is that it is not clear how to represent the normal flow through the system, as 

there are only two weightings for each direction of flow, but a minimum of three weightings 

are required: normal flow, below normal flow, and above normal flow. 

A more recent suggestion by Bartlett et al. (2006) is to introduce an additional weighting 

of ±5 to increase the accuracy of the relationships.  In order to do this they modify the definition 

of ±1 to a small deviation, and introduce a new definition of a moderate deviation, i.e. ±5.  

Whilst this does increase the accuracy of the modelling of the system, for some applications, it 

could make the relationships between variables more subjective. 

Digraphs can be used to diagnose component failures by initially identifying deviations 

between the expected system behaviour and the observed system behaviour.  The deviations 

can then be back traced through the system in order to diagnose the component failure.  Back 

tracing is completed until a non-deviated node is observed or no further back tracing can be 

carried out, (Bartlett et al., 2006).  An example Digraph for part of the main tank from Bartlett 

et al. (2006) is included in Figure 2.5 to show the form of a Digraph. 

 

 

Figure 2.5 Example Digraph 

 

2.2.3. Summary 

In this section, an overview of a number of fault diagnostic techniques is presented.  The 

section focused on BBNs with other techniques also included, such as FMEA, Fault Trees and 

Digraphs, and discussed briefly.  BBNs have the ability to handle multiple failure modes for 

each component efficiently and they can update the probability of event occurrence based on 

the introduction of evidence.  This evidence could be introduced in the form of sensor readings 

from the system’s sensors, and the resultant component state probability could be determined 

in order to be able to diagnose the component failures.  One problem with BBNs is that as they 
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require expert knowledge to construct, they are difficult for computers to construct accurately, 

and therefore, they need to be constructed manually. 

In section 2.2.1.2 the construction of BBNs by converting Fault Trees is discussed.  

Construction in this way would require a fault tree to be produced for every possible reading 

of each of the sensors, a large number of Fault Trees would have to be produced for larger 

systems.  This is because the logic gates in the fault trees can only output two variables, for 

example, 1 or 0, they cannot represent fuel systems which can have multiple states well.  For 

example, a pipe can have multiple different fuel flow rates passing through it, or no flow at all, 

resulting in many different sensor readings.  Therefore, for each different sensor reading a new 

Fault Tree needs to be constructed.  When all the Fault Trees have been constructed, they need 

to be combined to create the BBN.  This can introduce inefficiency into the BBN as a large 

number of nodes may be introduced, with potentially multiple nodes doing the same, or similar, 

things.  This may cause some confusion in understanding how the BBN works as there may be 

multiple nodes with similar functionality.  If the BBNs are constructed from scratch, these 

nodes can be combined so that there is minimal repetition of nodes, therefore reducing the 

inefficiency and potentially reducing the risk of confusion in understanding how the BBN 

works.  This will also reduce the risk of making incomplete changes if modifications are 

required in the future.  If the BBN has many similar nodes, multiple nodes may need to be 

changed to implement the modifications, as opposed to minimal changes if there is minimal 

repetition of nodes in the network.  Therefore, the BBNs constructed in this work will be 

constructed from scratch, and not by constructing Fault Trees for the system and converting 

them into a BBN. 

The use of BBNs instead of the other fault diagnostic techniques discussed, including Fault 

Trees, Digraphs and FMEA, can be justified by considering the construction process, as 

discussed in the previous paragraph.  As stated in the previous paragraph, a Fault Tree needs 

to be constructed for every possible sensor reading of each of the sensors, making this method 

of system modelling potentially inefficient.  Digraphs also do not model the systems well as 

subjectivity is required to determine the strengths of the relationships between the nodes.  It is 

also not clear how varying amounts of fuel flow through the system would be represented, 

particularly in sections where fuel can flow in multiple directions.  In addition, FMEA and 

FMECA generally only consider individual component failures, making them unsuitable for 

considering systems which can potentially still function after component failure occurrence, 

and can hence tolerate multiple failures.  Therefore, BBNs offer the most suitable solution for 

fault diagnostics for the systems presented in this thesis. 
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2.3. Optimisation techniques 

The Oxford English dictionary defines optimisation as “the action of making the best or 

most effective use of a situation or resource”, i.e. an optimisation technique aims to achieve 

the best result possible, whilst only using a reduced amount of resources, such as time or 

computing power.  Optimisation techniques typically (but not always) involve doing fewer 

calculations to determine the best solution and, as a result, may not always result in the best 

possible solution, but they usually result in a good solution.  In this section, a brief overview 

of optimisation techniques is presented, followed by a description of the GA, an optimisation 

technique that is applied in Chapter 6 of this thesis. 

 

2.3.1. Overview of optimisation techniques 

Optimisation techniques are used to find the best possible solution to a particular problem.  

In order to determine what the best solution is, an objective function needs to be defined.  An 

objective function is a mathematical representation of how suitable the solution is, which can 

be maximised (or minimised) in order to determine the most suitable solution.  Note, there can 

be more than one optimal solution, i.e. multiple different combinations of variables that result 

in the same value of the objective function, in which case it does not matter which solution is 

chosen.  In more advanced systems, there can be multiple objectives, such as minimising cost, 

maximising performance, minimising the safety risk, etc.  This results in the best solution being 

the best trade-off of the values of all objective functions.  The objective functions can be subject 

to constraints, for example, available budget, and therefore, even if there is a better solution 

which costs more money than the operator’s budget, then a suboptimal solution will have to be 

selected. 

There are two main types of optimisation techniques: local optimisation and global 

optimisation.  Venter (2010) states that most local optimisation techniques are gradient based, 

where the gradient information can be used to obtain the optimum solution.  Consider a graph 

representing the fitness value of a set of variables, the graph will have one peak, and by 

comparing the value of the objective function to the previously calculated values, the maximum 

value can be obtained, starting from any initial set of variables.  However, iteratively 

calculating the objective function for all possible solutions can be computationally intensive, 

and it could result in having to exhaustively calculate the objective function for all 

combinations.  Therefore, local optimisation is typically focused on a particular range of 

possible solutions, i.e. some prior knowledge of a potentially suitable solution is required.  For 
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example, if the graph representing the fit of the objective function example introduced above 

is considered, the range of x axis values, in which the best solution lies, would be known.  

Instead of finding the maximum value of the objective function by calculating the objective 

function, the first derivative of the objective function could be calculated, when the resultant 

values are equal to 0, a peak or trough in the graph has been found.  Peaks and troughs can then 

be distinguished by taking the second derivative of the objective function; if the value is 

negative, a peak has been found, i.e. a maximised solution, (Haupt & Haupt, 2004). 

Global optimisation techniques can also often be presented in a graphical form as discussed 

above.  However, instead of there being one peak as in the case of local optimisation 

techniques, there are multiple peaks, each with potentially different magnitudes.  There may 

not be an observable pattern to the peaks and therefore in order to ensure the best solution is 

achieved the full range of parameters needs to be investigated, since if it is not then a 

suboptimal solution may be selected.  Genetic Algorithms are one type of global optimisation 

technique and are applied to a number of systems and processes, including railway bridge asset 

management (Yianni, 2017), firewater deluge systems (Andrews & Bartlett, 2003), and system 

health monitoring system design, ((Maul et al., 2008) and (Jin et al., 2003)).  An overview of 

Genetic Algorithms is presented in the next section. 

 

2.3.2. Genetic Algorithms 

Genetic Algorithms are based on the principal of natural selection, where species that are 

stronger, or have more desirable features, are more likely to reproduce than species with 

weaknesses, or ones that have features that are not desirable.  This principal was proposed by 

Darwin in the 19th century, (Darwin, 1859).  An example of natural selection is that if 

something caused plants close to the ground to die out, the giraffes with longer necks would be 

able to reach more food that is on taller plants than giraffes with shorter necks.  Therefore, the 

giraffes with longer necks have more access to food, and are more likely to survive.  When the 

giraffes reproduce, it is more likely that the parents will both have longer necks as there are 

more of these around, resulting in a higher probability that their offspring also have longer 

necks.  After a number of generations, all, or nearly all, of the giraffes will have long necks. 

Genetic Algorithms were initially proposed by Holland (1975).  They are considered to be 

an effective optimisation technique, as they are attempting a wide range of solutions (known 

as a population), and not just one potential solution, (Samhouri, 2009).  They apply an objective 

function to a set of potential solutions, calculate the best solution out of the available options, 
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and then apply various methods to change the solutions in order to potentially achieve a better 

solution.  An objective function is a measure of how suitable the solution is for the problem, 

and will be discussed in section 2.3.2.2.  The details of the algorithm are presented in section 

2.3.2.1. and a number of example applications are presented in section 2.3.2.3. 

 

2.3.2.1. The algorithm 

The GA begins with a population of strings, each of which represent a potential solution to 

the problem to be solved, (Goldberg, 1989).  In natural selection, the strings represent the 

chromosomes of the animal.  Each of the chromosomes contain a number of different genes 

which affect the features of the animal.  Therefore, each of the elements of the string provides 

different information on the potential solutions for the problem that is to be solved.  The ability 

of each member of the population to achieve the desired task is calculated by an objective 

function, which measures how suitable the solution is at solving the problem.  The best 

members of the population can then have genetic operators applied to them in order to try and 

achieve a better solution.  Applying the operators to the populations results in a new population 

of potential solutions.  This is known as the next generation.  This can be repeated a number of 

times (a number of generations) until the solution for all of the members of the population 

converges to the best solution.  The operations that can be applied to each population include: 

selection, crossover, elitism and mutation.  Note, not all of the operators need to be applied in 

the algorithm, and the objective function for each new generation will only be calculated after 

all operators have been applied. 

The selection operator, as applied by Le (2014), ensures that the best solution from each 

generation are preserved and are not removed, which could potentially result in the next 

generation being less optimal than the previous generation.  For example, if there are 100 

members in the population, the 30 best solutions are preserved and become the first 30 members 

of the next generation.  Note, this selection operation does not need to be applied, and is a 

modification to the standard Genetic Algorithm aimed at improving the result of the 

optimisation process.  The remaining 70 members of the population can then be determined 

randomly, where they are weighted to favour the members of the population that have a higher 

objective function.  For example, all 100 of the members of the population are used as a mating 

pool, where the members with a higher objective function are more likely to be selected.  Note, 

as it is weighted selection, each member can be selected multiple times.  These solutions are 

then paired, for crossover.  Again, these pairs are weighted to favour the solutions with the 



 

36 
 

higher objective functions, i.e. a random member is selected for crossover, and is mated with 

another randomly selected member.  Note, as before, as with the initial weighted selection 

process, the selection of individuals to be paired is also weighted meaning multiples of the 

same member can be selected. 

The crossover operator is then applied to each of the 35 pairs, (70 members).  In each pair 

a random point (or points), in the string is selected, and the values in the pairs of strings are 

swapped at this point.  For example if each solution is a binary string n digits long, then at some 

point between any two digits, the strings can be split into two, and the second half of each pair 

swapped.  For example, if the two strings are “0000000” and “1111111”, and crossover is 

applied after the third element, then the new strings will be “0001111” and “1110000”.  This 

will generate a number of different solutions which may be better than the previous best 

solution.  An example of crossover with two crossover points could be the two strings, 

“0000000” and “1111111”, to “1100011” and “0011100”, where crossover has occurred after 

the second and fifth element of the string.  The two examples of crossover discussed in this 

paragraph are presented in Figure 2.6.  The genetic operators will result in a new population of 

100 members, the best 30 members from the previous generation, and 70 new members.  The 

objective function can then be calculated for each of the members. 

 

 

                 
0 0 0 0 0 0 0  0 0 0 1 1 1 1 

        

 

        
1 1 1 1 1 1 1  1 1 1 0 0 0 0 

                 

               

               

                   
0 0 0 0 0 0 0  0 0 1 1 1 0 0 

                   
1 1 1 1 1 1 1  1 1 0 0 0 1 1 

                   
 

Figure 2.6 One and two point crossover 

 

Once the objective function has been calculated for each of the members, the elitism 

operation can be applied, as also used by Le (2014).  This determines the best solutions and 

preserves them.  It typically preserves a smaller amount of solutions than during the selection 



 

37 
 

operation.  All other solutions have the mutation operation applied to them.  In this operation, 

every digit in each of the strings has a probability of swapping from a “0” to a “1”, or a “1” to 

a “0”.  This probability is low, typically 1% or less, and therefore is not likely to change a large 

number of solutions, (Goldberg, 1989).  This mutation operation enables potential solutions 

that were not in the previous generation to be considered.  For example, in all of the solutions 

for the previous generation, there may have been no solutions with a “1” as the last digit in the 

string.  Therefore, this would have not been considered, but with mutation there is a chance 

that one of the solutions will have its last digit changed to a “1”.  If the mutation rate is too low, 

there is too small a chance that a digit will mutate, but if the mutation rate is too high, it will 

become too close to random selection and the best solution may never be obtained. 

The next generation is populated after each of the four operations.  The objective function 

can then be calculated for each of the members and the operations start again, producing 

another new generation.  It is likely that the optimal solution produced by each generation will 

increase and will eventually converge on the best solution.  When the value of the objective 

function has converged, the algorithm is stopped.  Kilsby (2017) suggests that the results have 

converged when the change in the mean value of the objective functions is less than 0.1% for 

each additional generation.  A summary of the algorithm is presented in Figure 2.7. 

 

Figure 2.7. Flowchart of the Genetic Algorithm 
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2.3.2.2. The objective function 

The objective function is a measure of how suitable a solution is for completing the desired 

task.  This objective function can be directly related to the desired information to be obtained, 

or it can be a representation of the desired information.  For example, the aim of the Genetic 

Algorithm could be to minimise the cost of completing a task, in which case the objective 

function could be the cost of completing the task.  Alternatively, the aim of the Genetic 

Algorithm could be to maximise the performance of a system, in which case the objective 

function could be a performance metric, such as a sensor performance metric. 

The objective function can be subject to a constraint, resulting in a penalty factor applied 

to the objective function if the constraint is broken.  The constraint could be applied if the cost 

of a potential solution is above a certain threshold, or if the solution requires a large number of 

a specific asset that is not available.  Therefore, the penalty factor could be applied such that it 

reduces the objective function by a small amount, (or a large amount), depending on the 

constraint, and how unsuitable the potential solution is.  Goldberg (1989) states that they 

usually use a penalty function that is a square of the violation of the constraint. 

The objective function can be modified such that it is more sensitive to smaller changes in 

the fit of the population.  This helps to prevent the algorithm getting stuck at a close to optimal 

solution.  For example, if all the values of the objective function are in a similar range, it is 

unlikely to result in the best possible solution being selected.  This can be achieved by applying 

a scaling function, (Goldberg, 1989), to the objective function, such that smaller differences 

appear larger and are therefore more likely to be chosen than they would be with smaller 

differences.  Alternatively, making the objective function non-linear, (such as exponential), 

will also result in smaller differences of performance having greater effect on the objective 

function, resulting in a higher probability of a better solution being selected. 

 

2.3.2.3. Problems with Genetic Algorithms 

In this section, some of the problems with Genetic Algorithms are discussed.  Note, this is 

not an exhaustive list, and only a few examples are presented. 

A problem experienced in many cases during the application of Genetic Algorithms is 

premature convergence, where the algorithm converges to a solution which is sub-optimal 

because some members in the population become too dominant in later generations, (Fogel, 

2014).  In order to prevent this, it is important to ensure the initial population is divergent 



 

39 
 

enough so that a large number of potential solutions can be reached, or increasing the mutation 

rate will help to prevent premature convergence.  Alternatively, applying the optimisation 

process multiple times will result in a higher probability of getting the true optimal solution. 

Another potential problem with the application of the Genetic Algorithm is the need to 

manually choose the necessary parameters, (Lim, 2014).  These parameters include the 

selection rate, population size, mutation rate, number of crossover points, the number of elite 

members, etc.  Whilst there are a number of different examples of these parameters detailed 

for each individual application of the algorithm, the parameters are case dependent and it may 

be difficult to determine the most suitable for the application being considered. 

 

2.3.3. Summary 

In this section, an overview of optimisation techniques is presented, primarily focussing on 

the Genetic Algorithm.  An overview of the algorithm is presented, detailing each of the 

individual steps.  Note, some of the steps are additions to the algorithm (selection and elitism), 

and are not in the core Genetic Algorithm, but as they are applied in the work presented in 

Chapter 6 of this thesis, they have been presented in this chapter.  The section is completed 

with a brief overview of a couple of problems that are experienced in the application of Genetic 

Algorithms. 

The Genetic Algorithm is a useful optimisation technique that has been used for a large 

number of different research topics.  The method is proven to determine optimal (or close to 

optimal) solutions significantly more efficiently than exhaustive search methods, (Goldberg, 

1989).  The method is also computationally simple, but is a powerful search tool for finding 

better solutions, which is not reliant on a large number of assumptions about the search space, 

(Goldberg, 1989).  Also, as the performance metric for each of the combinations of sensors 

will not be represented on a clear graph with multiple peaks, with neighbouring combinations 

of sensors potentially having very different performance metrics, a typical gradient based 

optimisation technique cannot be used, but a Genetic Algorithm can.  In addition, the binary 

string representation can be used to represent a combination of sensors easily, in which a 

selected sensor could be represented by “1” and an unselected sensor could be represented by 

“0”.  This enables the genetic operators to be applied to the combinations of sensors without 

having to introduce additional complexity.  The suitability of the potential solutions are 

calculated using an objective function in Genetic Algorithms.  For the performance metric 

based sensor selection method proposed in this thesis, the performance metric could be used as 
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the objective function, enabling the performance metric to be the influencing factor for the 

selection of combinations of sensors in each generation of the algorithm. 

 

2.4. Summary 

In this chapter, an overview of sensor selection methods, fault diagnostic techniques and 

optimisation techniques are presented.  The sensor selection methods presented in this chapter 

consider performance metric based evaluations of the sensors in order to determine the best 

sensor or group of sensors.  The authors consider a number of factors, such as the detection of 

failures, the ability to diagnose the failures, the effect of the failures on the system, the cost of 

the sensor, the weight of the sensor and the reliability of the sensor.  Some of the authors 

consider multiple factors, but all of the methodologies presented have potential drawbacks, 

such as subjectivity in the metric in the form of a penalty factor.  Some authors use an 

optimisation technique in order not to have to calculate the performance metric exhaustively. 

In the second section of this chapter, an overview of fault diagnostic techniques is 

presented.  The selected methodology for system modelling and fault diagnostics for the work 

presented in this thesis is BBNs.  BBNs have the ability to consider multiple failure modes for 

each component and the ability to determine the probability of event occurrence based on 

evidence that can be introduced in the system.  Whilst there are benefits to the other fault 

diagnostic techniques presented in this section, they all have drawbacks, as discussed before.  

Therefore, BBNs are the most suitable solution for the work presented in this thesis, and are 

therefore used in Chapters 3 and 4. 

As applied by a number of authors discussed in the sensor selection section of the 

methodology, optimisation techniques are a useful tool in order not to have to calculate the 

performance metric for all combinations of sensors exhaustively.  Therefore, an overview of 

optimisation techniques is presented, focusing on Genetic Algorithms.  The authors that applied 

optimisation techniques to their sensor selection methodology, also applied a Genetic 

Algorithm based approach, and it is a suitable method for the work presented in this thesis.  

Therefore, when the number of combinations of sensors becomes excessive, a Genetic 

Algorithm based optimisation technique is applied.
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 Proposed methodology for 

sensor selection and fault diagnostics 
 

 

A method for sensor selection and fault diagnostics was developed in this thesis in order to 

determine which sensors are most suitable for this purpose.  This method takes ideas from the 

literature discussed in the previous chapter, the literature review.  The method proposes a new 

measure of sensor performance, different to other measures of sensor performance that have 

been suggested by other authors, including Maul et al. (2008), and Spanache et al. (2004), for 

the selection of sensors.  The method also applies a similar methodology for fault diagnosis to 

that suggested by Lampis & Andrews (2009) based on Bayesian Belief Networks. 

This chapter begins by introducing an example system, which is used later in the chapter in 

order to demonstrate an application of the methodology to this system.  After the introduction 

of the system, the proposed methodology is presented, and the chapter concludes by analysing 

the methodology, evaluating its effectiveness and suggesting potential modifications to it.  

These modifications are utilised in all further applications of the methodology, presented in 

Chapters 4, 5 and 6 of this thesis. 

 

3.1. System description and failure effects 

An example system is introduced in this section and used to demonstrate the application of 

the proposed methodology.  A schematic of the system is shown in Figure 3.1. 

This system consists of seven components: two pumps, (P1 and P2) and five valves, (V1, 

V2, V3, V4 and V5).  The flow of the liquid in the system is from the left of the system to the 

right of the system.  The liquid then passes out of the system via the drain, which is represented 

by the down arrow at the right hand side of the system.  There are eleven potential sensor 

locations on the system.  In order to determine which sensor locations are the best, flow sensors 

are positioned in each of the possible locations.  Sensors S1 – S10 are positioned either side of 

each of the valves and sensor S11 is positioned before the drain, as shown in Figure 3.1.  The 

sensors do not affect the flow of fuel in the system, only measure the flow of fuel.  The system 

is a simple representation of an aircraft fuel system, and the liquid represents aircraft fuel.  The 

system can be separated into four sections: section one consists of the two pumps, valves V1 

and V2, and sensors S1 – S4, section two consists of valve V3 and sensors S5 and S6, section 
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three consists of valves V4 and V5, and sensors S7 – S10, and section four consists of sensor 

S11. 

 

Figure 3.1 Schematic of example system 

 

When the system is operating normally, each of the pumps, P1 and P2, supply fuel to the 

system at a constant rate.  This constant rate is represented by “1” in Table 3.1.  The fuel from 

each of the pumps passes through the adjacent valve, valve V1 and V2 respectively, before 

combining and passing through valve V3.  The quantity of fuel passing through valve V3 is 

represented by “2” in Table 3.1.  This fuel then splits equally and passes through the next two 

parallel lines, i.e. through valves V4 and V5.  The flow of fuel through these two valves, valves 

V4 and V5, is equal to the same rate of fuel flow through valves V1 and V2, i.e. “1”.  Finally, 

the fuel is combined again, and exits the system by passing through the drain.  Therefore, the 

flow through the drain will be equal to the flow through valve V3, “2”. 

In Table 3.1, the sensor readings for each combination of considered component failures 

are given.  In the first row of the table, case 0, the system is working under normal operating 

conditions, i.e. no component failures.  The sensor readings are as introduced above, with “1” 

representing the standard amount supplied by each pump, “2” being double this amount, and 

“0.5” being half of this amount.  Sensor readings “E” and “N” represent the line empty, and 

the line full of fuel but no flow of fuel, respectively. 

Each component in the system can be in one of two states, the working state or the failed 

state.  The valves are defined to be working when they are not restricting the flow of fuel in 

any way, i.e. no blockage is present.  The valves are defined to be failed when they are 

restricting the flow of fuel through it, i.e. the valve is blocked or closed.  For this system, no 

partial blockages of valves are considered and no control systems for pumps and valves are 

modelled, i.e. the valves are controlled to be fully open and the pumps are working on.  The 

pumps are defined to be working when they are supplying the constant rate of fuel introduced 

above, “1”, and are defined to be failed when they are not supplying any fuel to the system.  
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For this system, the pumps either supply the constant rate of fuel (“1”) introduced above, or 

they supply no fuel to the system (“0”), i.e. there are no intermediate amounts of fuel (between 

“0” and “1”), or amounts of fuel greater than “1” that can be supplied to the system.  It is 

assumed that sensors are perfectly reliable. 

 

Table 3.1 Sensor readings produced by failure combinations 

No. Failures S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 

0 No fault 1 1 1 1 2 2 1 1 1 1 2 

1 P1 N N 1 1 1 1 0.5 0.5 0.5 0.5 1 

2 P2 1 1 N N 1 1 0.5 0.5 0.5 0.5 1 

3 V1 N N 1 1 1 1 0.5 0.5 0.5 0.5 1 

4 V2 1 1 N N 1 1 0.5 0.5 0.5 0.5 1 

5 V3 N N N N N E E E E E E 

6 V4 1 1 1 1 2 2 N N 2 2 2 

7 V5 1 1 1 1 2 2 2 2 N N 2 

8 P1 P2 E E E E E E E E E E E 

9 P1 V1 E N 1 1 1 1 0.5 0.5 0.5 0.5 1 

10 P1 V2 E E N E E E E E E E E 

11 P1 V3 N N N N N E E E E E E 

12 P1 V4 N N 1 1 1 1 N N 1 1 1 

13 P1 V5 N N 1 1 1 1 1 1 N N 1 

14 P2 V1 N E E E E E E E E E E 

15 P2 V2 1 1 E N 1 1 0.5 0.5 0.5 0.5 1 

16 P2 V3 N N N N N E E E E E E 

17 P2 V4 1 1 N N 1 1 N N 1 1 1 

18 P2 V5 1 1 N N 1 1 1 1 N N 1 

19 V1 V2 N E N E E E E E E E E 

20 V1 V3 N N N N N E E E E E E 

21 V1 V4 N N 1 1 1 1 N N 1 1 1 

22 V1 V5 N N 1 1 1 1 1 1 N N 1 

23 V2 V3 N N N N N E E E E E E 

24 V2 V4 1 1 N N 1 1 N N 1 1 1 

25 V2 V5 1 1 N N 1 1 1 1 N N 1 

26 V3 V4 N N N N N E E E E E E 

27 V3 V5 N N N N N E E E E E E 

28 V4 V5 N N N N N N N E N E E 
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Only up to two component failures can occur at the same time, i.e. combinations of three 

or more component failures are not considered.  This is because of a low probability of such 

events occurring, as for illustration purposes, components are assumed to have a probability of 

failure of 0.05, as further described in section 3.4.  Note, these values are higher than they 

would normally be, but the actual values do not matter, i.e. it only matters that the ratio between 

the component failure rates are realistic.  The combinations of one or two component failures 

are defined as the “considered failures” in this methodology.  Note, the combinations of one 

component failure are defined as one component failed and all the other components working, 

and the combinations of two component failures are defined as two components failed and all 

the other components working.  Note, it is assumed that when two components have failed, 

there is no time delay between the two occurrences, or the sensor readings are taken after the 

effects of both of the failures have stabilised, and no effects of time delay can be observed.  No 

flow back propagation through valves is modelled, however, the fuel is present in the areas of 

the system that the fuel can access. 

Different component failures will have different effects on the systems performance, with 

some failures producing more severe or critical effects than others.  In some cases, this will 

stop the system performing as desired and therefore, cause system failure.  System failure for 

this example system is defined to be when there is a reduction of fuel exiting the system through 

the drain.  This occurs when at least one of the pumps cannot supply fuel to the system by 

failing off, or there being a restriction of flow through the system because of a blockage in the 

valve.  This can be defined by a set of minimal cut sets, {P1}, {P2}, {V1}, {V2}, {V3} and 

{V4, V5}.  Note when either valve V4 or valve V5 (but not both) is blocked, the normal amount 

of fuel will still pass through the drain, as all the fuel can pass through the opposite path to the 

blocked valve.  Therefore, this does not cause system failure. 

The sensor readings in Table 3.1 can be determined by considering the supply of fuel to the 

system from the pumps, and the paths that the fuel can and cannot take in order to pass through 

the drain valve.  This will enable the flow of fuel through each of the sensors to be determined, 

hence producing the sensor readings given in the table.  Each of the sensor readings can be 

calculated independently, they do not rely on information provided by other sensors to 

determine the sensor readings produced.  Therefore, if additional sensors were introduced to 

the system, or some of the sensors were removed from the system, each of the sensors would 

still produce the same sensor readings as given in Table 3.1.  However, if the pumps supplied 

fuel to the system at different rates, the sensor readings produced would be different to the five 
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sensor readings given in the table and there would be more than five sensor readings produced 

if the pumps could output fuel at more than one rate. 

The sensor readings can be produced automatically by using a BBN model of the system to 

represent the different component failures that can occur.  This BBN model is presented in 

section 3.3 of this thesis, and it produces the same sensor readings as given in the table. 

If case 1 from Table 3.1 is taken as an example, “pump P1 failed”, there will be supply of 

fuel to the system from pump P2 only.  Therefore, sensors S3, S4, S5 and S6 will measure the 

amount of fuel, “1”.  This will then pass through the two parallel lines equally, resulting in 

sensors S7, S8, S9 and S10 measuring “0.5”, with sensor S11 measuring “1” as the supply of 

fuel combines.  Sensors S1 and S2 both measure “N” because there will be no flow of fuel in 

the pipe.  They will not measure “E”, because despite there being no flow of fuel in the pipe, 

there will be fuel in the pipe, as there is no blockage stopping the fuel getting to these two 

sensors.  In comparison, if case 9 is taken as a second example, “pump P1 failed” and “valve 

V1 failed”, as valve V1 is blocked, there can be no supply of fuel to sensor S1, resulting in it 

measuring “E”.  All other sensor readings in case 9 are the same as for case 1. 

Each of the combinations of sensor readings in Table 3.1 will be used in order to determine 

the best sensors for the purpose of fault detection and failure identification.  During the fault 

diagnostic process, sensor readings which correspond to a component failure can be introduced 

to the diagnostic model, and therefore, if the model diagnoses the component failures that were 

introduced correctly, the fault diagnostic model can be verified. 

 

3.1.1. Summary of assumptions 

In this section a summary of all assumptions for this system is presented. 

• Each component has one working state and one failed state.  Pumps can supply a fixed 

quantity of fuel (represented by “1”), or supply no fuel, and for valves, they can either 

let all fuel pass through unrestricted (i.e. no resistance), or let no fuel pass through.  

There can be no supply of fuel other than “1” and “0”, and there are no partial blockages 

of valves. 

• The probability of each component being in the failed state is 0.05. 

• Only up to two component failures can occur at the same time, i.e. combinations of 

three or more component failures are not considered. 

• The volume flow rate of fuel remains constant throughout the system, i.e. the same 

quantity of fuel supplied to the system per time interval must also exit the system via 
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the drain per time interval.  Therefore there is no resistance to the flow of fuel by any 

of the components (except for valve failures), connecting pipes, sensors, or the drain, 

i.e. the pipes and the drain cannot be blocked. 

• When the line splits in two, (such as after valve V3), the fuel will split equally along all 

the clear lines, i.e. the lines that do not have blocked valves in them. 

• All sensor readings are measured when the system is operating in the steady state, i.e. 

the flow of fuel has stabilised after the component failures. 

• The sensors are perfectly reliable, they cannot fail, and they always measure the flow 

of fuel through them correctly. 

• The sensors can distinguish between the line being empty, and therefore no flow of fuel, 

and there being fuel in the line, but no flow of fuel. 

• System failure is when there is a reduction in fuel flow passing through the drain. 

  

In the next section, the sensor selection process is proposed. 

 

3.2. Performance metric methodology for sensor selection 

The proposed sensor selection methodology aims to select the best combination of sensors 

to use on the system.  The most suitable sensors are determined by using a performance metric.  

This performance metric considers three factors: the probability of failure occurrences that can 

be detected by the sensors, the ease of diagnosing the component failures, and the effects the 

component failures have on the system performance, i.e. how likely the detected failures are to 

cause the system to fail. 

The three factors are chosen because it is desirable to be able to detect as many of the 

component failures as possible, it is desirable to be able to diagnose which component failure 

has occurred in each case as easily as possible, and it is more desirable to detect the component 

failures that are more likely to cause system failure than the ones that are not.  There are other 

factors that could be considered in the performance metric, such as the reliability of the sensor, 

the weight of the sensor, the size of the sensor, and the cost of the sensor.  However, for the 

work presented in this thesis, the sensors are assumed to be perfectly reliable, the sensors are 

all of the same type, and are therefore the same weight, size and cost.  Therefore, the potential 

additional terms would have little benefit for the applications presented in this thesis.  However, 

a penalty factor could be introduced to the performance metric if the methodology was to be 
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applied to other systems that require multiple different types of sensors with different failure 

rates, weights, sizes, or costs. 

For faults to be detected, a sensor reading that has deviated from what would be expected 

under normal operating conditions needs to be recorded.  Note, in the process of detection, it 

does not matter what the deviated sensor reading is, it only matters that the sensor records a 

deviated sensor reading.  The ability to distinguish between each deviated sensor reading, and 

isolate the component failure, is considered in the diagnostic term of the performance metric, 

section 3.2.2.  The value of the performance metric is limited to a maximum value of 1 and a 

minimum value of 0, where the larger the performance metric the better the suitability of the 

sensor.  The performance metric is limited to this range of values in order to have a reference 

point.  In the following description of the methodology, sensor s can refer to an individual 

sensor or a group of sensors, i.e. the rules are general in terms of individual sensors and groups 

of sensors. 

 

3.2.1. Detection term 

As stated above, for a fault to be detected by a sensor, the sensor reading produced by the 

sensor must deviate from the sensor reading expected during normal system behaviour.  It is 

worth noting that for a group of sensors, only one of the sensors is required to deviate from its 

normal sensor reading for the group of sensors to be able to detect the failure, i.e. it is not 

necessary for all the sensors to deviate from their normal sensor readings for the fault to be 

detected. 

 

The detection term is given in Equation (3.1).  This term, 𝐷𝐸{𝑠}, is equal to the ratio between 

the probability of occurrence of any of the detected failures, and the probability of occurrence 

of any of the considered failures in the system.  The term 𝑃𝑑 is expressed as the sum of 

probabilities of the considered failures’ occurrence that sensor s can detect.  The term 𝑃𝑚𝑑 is 

expressed as the sum of probabilities of the considered failures’ occurrence that can be detected 

by at least one sensor out of all the possible sensors on the system, i.e. the maximum that can 

be detected.  It is worth noting that on some systems, not all combinations of component 

failures will be able to be detected by any of the sensors.  These are called hidden failures, and 

𝐷𝐸{𝑠} =   
𝑃𝑑

𝑃𝑚𝑑
  (3.1) 
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this would result in 𝑃𝑚𝑑 being less than the sum of probabilities of all the considered failures’ 

occurrence. 

𝐷𝐸{𝑠} will be maximised to 1, when sensor s can detect all of the considered failures that 

are possible to detect.  𝐷𝐸{𝑠} would equal 1 if all of the sensors are positioned on the system, 

and it may equal 1 with fewer sensors.  𝐷𝐸{𝑠} will be minimised to 0, when sensor s cannot 

detect any of the failures that can occur on the system.  In this case, the sensor would have no 

use in terms of detection and could therefore be dismissed. 

 

3.2.2. Diagnostic term 

The diagnostic term considers the probability of the failure being diagnosed correctly, using 

the information provided by sensor s.  

 

𝐷𝐼{𝑠}  =   
∑ 𝑃𝑚𝑙𝑖

𝑛𝑟𝑠
𝑖=1

∑ 𝑃𝑠𝑟𝑖
𝑛𝑟𝑠
𝑖=1

 (3.2) 

 

The diagnostic term, 𝐷𝐼{𝑠}, is given in Equation (3.2).  The term is the ratio between the 

sum of the probability of most likely failure occurrence and the sum of the probability for all 

the failure occurrence, across all the readings for sensor s.  This term consists of two terms for 

each deviated sensor reading i that can be produced by sensor s.  The first of these two terms 

is 𝑃𝑠𝑟𝑖, which is defined as the probability that a deviated sensor reading i of sensor s occurs.  

For some of the combinations of deviated sensor readings, multiple different combinations of 

component failures can be their reason for occurrence.  For each of these sensor readings, there 

will be a combination of component failures that will have the highest probability of 

occurrence, and therefore the most likely to have caused the deviated sensor reading.  This is 

represented by 𝑃𝑚𝑙𝑖 and this term is therefore equal to the probability of the most likely 

combination of component failures that can cause the reading i of sensor s.  In Equation (3.2), 

these terms are summed over the number of different deviated readings of sensor s, 𝑛𝑟𝑠.  Note, 

in cases where only one combination of component failures can produce the sensor reading i, 

𝑃𝑚𝑙𝑖  =  𝑃𝑠𝑟𝑖.  Also note, if there are n (more than 1) different combinations of component 

failures that produce sensor reading i, and have the same probability of occurrence, if the 

probability is the highest of all combinations of component failures that can produce sensor 

reading i, then it does not matter which combination of component failures is selected as the 

most likely failure.  This is because each of the n combinations of component failures have 
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equal probability of occurrence, and this will reduce the value of the diagnostic term, as Pmli 

will have a maximum value of 𝑃𝑠𝑟𝑖 𝑛⁄ , if there are no other combinations of component failures 

that produce sensor reading i.  Therefore, this will make the diagnostic term lower, and hence 

sensor s less valuable than sensors which have a 𝑃𝑚𝑙𝑖 𝑃𝑠𝑟𝑖⁄  closer to 1. 

𝐷𝐼{𝑠} is, therefore, the ratio between the sum of the probability of most likely failure 

occurrence and the sum of the probability for all the failure occurrence, across all the readings 

for sensor s.  If there are multiple different deviated sensor reading combinations that can be 

produced by sensor s, then the diagnostic term will be equal to a weighted ratio of the 

probability of the most likely component failure occurrence for each sensor reading and the 

probability of all deviated sensor readings occurrence.  This term is weighted with respect to 

the probability of each of the deviated sensor readings, with deviated sensor readings that have 

a higher probability of occurrence having a greater influence on the diagnostic term than those 

with a lower probability of occurrence.  The weighting is needed so that the diagnostic term 

does not become unrepresentatively large when, for example, a sensor can produce two 

deviated sensor readings, a sensor reading that can be produced by only one combination of 

component failures, i.e. 𝑃𝑚𝑙𝑖1  =  𝑃𝑠𝑟𝑖1, but with a low probability of occurrence, and a second 

sensor reading that can be produced by many different combinations of component failures, 

i.e. 𝑃𝑚𝑙𝑖2 < 𝑃𝑠𝑟𝑖2 but with a significantly higher probability of occurrence i.e. 𝑃𝑠𝑟𝑖1 + 𝑃𝑠𝑟𝑖2 ≈ 

𝑃𝑠𝑟𝑖2.  Without the weighting, the first sensor reading would have a greater influence on the 

diagnostic term as it has a higher ratio, but with the weighting, the second sensor reading will 

have a greater influence on the diagnostic term, as it is significantly more likely to occur. 

For this term to be maximised to 1, a different sensor reading would need to be produced 

for each component failure or combination of component failures detected by sensor s.  This is 

unlikely to occur for most sensors, and would therefore usually result in a value of less than 1, 

as it is common for multiple different component failures to produce the same symptoms, as is 

also the case with this example system.  This term will be close to 0, when there are many 

different component failure combinations that produce the same sensor reading and have the 

same probability of occurrence. 

 

3.2.3. Criticality term 

The criticality term considers the effect that each of the component failures have on the 

system’s performance, and favours sensors which can detect a higher percentage of component 

failures that have severe effects on the system performance. 
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The criticality term is based on one of the importance measures discussed in Chapter 2.  

This importance measure is the Fussell-Vesely importance measure.  It was selected over the 

other importance measures, such as Birnbaum’s importance measure and the Criticality 

importance measure, because it could be adapted to consider sensors, and groups of sensors, 

relatively easily.  In these calculations, the equivalent of a component being in a failed state in 

the context of sensors, was for the sensor to be producing a deviated sensor reading, and the 

equivalent of a component being in a working state, was for the sensor to be producing a non-

deviated sensor reading.  The Birnbaum’s importance measure and the Criticality importance 

measure could not be easily adapted to consider sensors because of the first term of the 

importance measures, Qsys(qi = 1).  The term would need to be adapted to consider cases where 

one sensor’s sensor reading has deviated, but another sensor’s sensor reading has not.  This is 

not a requirement for the Fussell-Vesely importance measure. 

The Fussell-Vesely importance measure, given in Equation (2.7), considers the effect that 

individual components have on the system unreliability.  The importance measure calculates 

the decrease in the system unreliability by making the component perfectly reliable.  The 

importance measure takes the probability of system failure with component j working as 

normal away from the probability of system failure.  It is then normalised by the probability of 

the system failure. 

Note, this Fussell-Vesely importance measure can be applied to groups of components due 

to an equivalent form for minimal cut sets.  In this case, the term representing the probability 

of system failure with component j working, is replaced by the probability of system failure 

with components ja, jb, jc, etc. working. 

In order for the term to be applied to sensors, the probability of system failure given that 

component j has not failed is replaced by the probability of system failure given that sensor s 

produces the non-deviated sensor reading.  Note, for combinations of sensors, all sensors 

should produce the non-deviated sensor readings that would be expected under normal system 

operation behaviour. 

𝐶𝑅{𝑠}, the criticality term, is given in Equation (3.3), where 𝑄𝑠𝑦𝑠  is the probability of system 

failure with no additional knowledge of any of the component states, and 𝑄𝑠𝑦𝑠(𝑞𝑠 = 0) is the 

probability of system failure given that the non-deviated reading of sensor s occurs. 

 

𝐶𝑅{𝑠}  =  
𝑄𝑠𝑦𝑠 − 𝑄𝑠𝑦𝑠(𝑞𝑠 =  0)

𝑄𝑠𝑦𝑠
 (3.3) 
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This term will be equal to its maximum value, 1, when sensor s can detect all of the critical 

component failures and it will be equal to its minimum value, 0, when sensor s cannot detect 

any of the critical component failures.  Note, the ratio of the probability of failures that are 

critical to system performance, and the probability of all failures is not considered in this factor, 

thus this term can be close to its maximum or close to its minimum, regardless of the detection 

term.  This is because the critical component failures are a subset of all of the component 

failures, and can therefore be a small (or large) proportion of the component failures.  However, 

the detection term cannot be 1, without the criticality term also being 1, and the criticality term 

cannot be non-zero, if the detection term is equal to 0.  This is because if all the component 

failures are detected, i.e. the detection term is equal to 1, then all the critical component failures 

must be detected too (as they are a subset of all the component failures), resulting in the 

criticality term being equal to 1, and if none of the component failures are detected, i.e. the 

detection term is 0, then none of the critical component failures can be detected (as they are a 

subset of all the component failures), hence the criticality term is equal to 0. 

 

3.2.4. Discussion 

Now that the three terms have been introduced, a performance metric that consists of the 

three factors needs to be determined.  If each of the three terms are considered to be equally 

important, then the performance metric can be the average of the three terms.  This is shown in 

Equation (3.4). 

 

𝐼{𝑠}  =  
1

3
(

𝑃𝑑

𝑃𝑚𝑑
+

∑ 𝑃𝑚𝑙𝑖
𝑛𝑟𝑠
𝑖=1

∑ 𝑃𝑠𝑟𝑖
𝑛𝑟𝑠
𝑖=1

+  
𝑄𝑠𝑦𝑠 −  𝑄𝑠𝑦𝑠(𝑞𝑠  =  0)

𝑄𝑠𝑦𝑠
) 

(3.4) 

 

However, this could be considered unrepresentative of how good the sensors are, if one of 

the terms is significantly higher or lower than the other two, making the average value to be 

unrepresentative of how good the sensor actually is.  As an example, if a sensor s only detects 

one component failure, then the diagnostic term will be equal to 1, because if the sensor reading 

deviates, then this failure has definitely occurred.  However, if the probability of this failure 

occurring is low, the other two terms in the performance metric will be significantly lower.  

The performance metric in this case may be significantly higher than the performance metric 

expected for such a sensor that detects a low percentage of component failures. 
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The same effect would occur if the probability of a critical failure was comparatively low, 

in comparison to the probability of a non-critical failure occurring.  If the sensor detected all 

of the critical failures but none of the other failures, then this could again result in a 

performance metric that is significantly higher than is expected for a sensor that detects a low 

percentage of component failures. 

In some situations, it may be desirable to favour a specific term, but it is reasonable to 

assume that a balance of the three terms will be desirable for most situations.  Therefore, a 

potential solution is to use the performance metric suggested in Equation (3.4), to determine 

multiple combinations of sensors that can be considered as suitable groups of sensors, for 

example the top X% of sensor combinations, where X can be chosen based on the number of 

sensor combinations.  These combinations could then be studied in more detail, looking at the 

individual terms of the metric, and selecting the best combination of sensors for a specific 

application.  For example, the detection term could be favoured for low safety-risk systems, 

such as a car engine, where the car could pull over safely on the side of the road.  The diagnostic 

term could be favoured for systems where system down-time is expensive, requiring the repair 

work to be completed as quickly as possible, such as a train engine, where the train would block 

the rail line, delaying other services.  The criticality term could be favoured for safety critical 

systems, where it is dangerous not to detect the critical component failures, and therefore 

cannot react as quickly as required, such as an aircraft engine, where emergency rerouting may 

need to be applied immediately.  This could be achieved by looking for the best sensor 

combination with all three terms above a certain threshold, or with one term as high as possible, 

or any other way that might be desired for a specific system.  The proposed sensor selection 

methodology allows for such conditions to be satisfied, and the system analyst will have the 

ability to do this when designing the system. 

In the following section, the methodology for system modelling and fault diagnostics is 

introduced.  This is presented because the selected sensors are included in the system model in 

order to verify that they can be used for fault detection and failure diagnosis, i.e. before they 

would be applied to a real system. 

 

3.3. Fault Diagnostic methodology and the BBN model 

The construction process of the fault diagnostic model and how the model can be used to 

diagnose component failures is introduced in this section.  BBNs are used as a fault diagnostic 

technique because of the ability to introduce evidence to the nodes within the network.  BBNs 
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are constructed using a number of nodes, each with a number of discrete states.  The probability 

of each of the states is obtained from a conditional probability table, CPT.  The relationship 

between nodes can be controlled using CPTs.  The states of one node, known as a parent node, 

will affect the states of another node, known as a child node, that it is connected to.  Note, it is 

common to have multiple parent nodes for each child node, and each node can be a parent node 

to multiple child nodes.  This evidence will update the probability of each state for each of the 

connected nodes.  Therefore, sensor readings can be introduced to the nodes representing 

sensors in the network as evidence, and the connected nodes representing component state 

probabilities will be updated, enabling prediction of which components have/have not failed. 

The BBNs in this work, are constructed using the software, “HUGIN Researcher”.  The 

software is intuitive to use with a simple, drag-and-drop method of positioning the nodes.  The 

nodes can be connected using arcs added in the same way, and the CPTs can be completed by 

selecting the nodes and entering the values into the tables.  When the network is complete, it 

can be “compiled”, and this instructs the network to calculate the probabilities of each of the 

states for the nodes, based on the information provided in the CPTs. 

 

1. The BBN models of the system should be constructed by creating a node for each of 

the components that appear in the system.  Each of these nodes will have a number of 

states, a state for each of the possible states that the component can be in.  The values 

in the CPTs for these nodes should be the probability that each of the components is in 

the corresponding state.  This will introduce the reliabilities of the components in the 

network.  For the example system introduced in this chapter, there are seven nodes 

present, one node for each component.  Each of these nodes has two states, a “working” 

state and a “failed” state.  The probability of each of the component states is taken from 

the probability of each of the components being in the failed state presented in section 

3.1. 

 

2. The next step is to introduce any intermediate nodes required to the network.  The 

intermediate nodes can be used to consider a group of components in the same section 

of the system.  They could be used to determine the supply of fuel from a particular 

subsection of the system, or whether there is a clear path for the fuel to pass through a 

subsection of the system.  The CPTs for these intermediate nodes will consider the states 

of the connected parent nodes, i.e. components’ nodes, and output the desired 

information, i.e. flow through a subsection of the system.  Note, if the system is 
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particularly large, multiple levels of intermediate nodes can be introduced, with some 

intermediate nodes as the child nodes of the component nodes, and then additional 

nodes as the child node of the intermediate nodes. 

 

3. The final step in the construction process of the network is to introduce a node for each 

of the sensors that can be positioned on the system.  These are the child nodes of the 

intermediate nodes and are connected to them using their CPTs accordingly.  Each 

sensor node should have a state for each of the sensor readings that can be produced by 

the sensor.  For systems that can produce many different sensor readings, sensor 

readings can be grouped for the number of states in the node to be kept to a reasonable 

number, if desired.  For example, if there are one hundred different flow rates that can 

be recorded by the sensor, between 1 and 100 units per time interval, then this could be 

grouped in to ranges of 1-10 units per time interval, 11-20 units per time interval, etc.  

Therefore, rather than having 100 potential sensor readings, and therefore 100 states for 

the sensor node, there are only 10 ranges of sensor readings, and only 10 states. 

 

Intermediate nodes are not required to be included in the network, and could therefore be 

omitted if desired.  However, if there are no intermediate nodes included in the network, the 

sensor nodes would have to consider more combinations of component states than if the 

intermediate nodes were included.  The number of entries in the CPTs is equal to the product 

of the number of states for each of the parent nodes to the child node, multiplied by the number 

of states in the child node.  Therefore, the more parent nodes there are, and the more states they 

have, the larger the CPTs for the child (sensor) nodes are.  Let’s consider another simple 

example system in order to demonstrate the positive effect of introducing intermediate nodes 

to a network.   

 

Figure 3.2 Example system 

 

The system shown in Figure 3.2, consists of one pump, which supplies fuel to a drain via 

two parallel pipes, each of which have five valves positioned in series, with a sensor positioned 
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immediately before the drain.  If each of the components have two possible states, working and 

failed, then if there are no intermediate nodes included in the network, i.e. the eleven 

component nodes connected to one sensor node, the number of elements in the CPT for the 

sensor would be equal to 4096 ( = (2
11) × 2).  Note, the ( × 2) factor is to account for the sensor 

having two states: flow, or no flow.  In addition to this, there would be 22 ( = 11 × 2) elements 

in the CPTs of the component nodes, as each of the eleven components has an element for the 

probability that it is in the working state, and an element for the probability that it is in the 

failed state.  However, if two intermediate nodes are introduced to the network, one for each 

of the parallel paths in the network, each considering the five valves on the corresponding path, 

then this can be reduced to 144 ( = ( 25 + 25 + 23) × 2), (2
5) for the two intermediate nodes, 

and (2
3) for the sensor node, plus the 22 ( =  11 ×  2) for each of the component nodes, which 

is a significant reduction.  The sensor node in this case would have three parents, the pump 

node, and the two intermediate nodes, each of which has two states, hence the (23) elements 

per possible sensor state.  Note, the ( × 2) factor in each case is to account for there being two 

states for each of the intermediate nodes, and the sensor node. 

Whilst there is clearly a benefit to introducing intermediate nodes to the network, in some 

cases they may not be necessary, as the additional work and the increase in number of nodes 

in the network may outweigh the benefit of reducing the number of elements in the CPTs.  It 

may be beneficial to have fewer nodes in the network, with larger CPTs, rather than more 

nodes, with slightly smaller CPTs.  Therefore, the number of intermediate nodes introduced to 

the network should be balanced with the number of elements in the CPTs, so that a good 

compromise is achieved. 

When the BBN of the system has been constructed, the network should be “compiled” and 

it can then be used to diagnose component failures that occur on the system.  To do this, sensor 

readings, in the form of evidence, need to be introduced to the network.  When a sensor reading 

is recorded on a real system, this can be inputted into the BBN by selecting that state for the 

sensor to be in.  The BBN will then use this information to update the probabilities of each 

component being in the different states.  The component, with the highest probability of being 

in the failed state is identified, and can be inspected, and repaired or replaced as appropriate. 

Note, “inspected” refers to manually investigating whether the component is functioning, and 

“repaired or replaced” refers to returning the component to full functionality, i.e. so it operates 

as it would do normally.  The exact failures might not be identified with 100% certainty as 

multiple failures may produce the same symptoms.  However, evidence that the inspected 



 

56 
 

component is in its working state, if that is the case, could also be introduced to the BBN.  The 

BBN software will then automatically update the probability of the state of each of the 

components, and can, therefore suggest the next component, or components, to inspect.  This 

will be the component, or group of components, with the highest probability of being in the 

failed state.  This can be repeated until the failed component is found, which can then be 

repaired or replaced, and the system can return to normal operating behaviour. 

In the next section of this chapter, the proposed methodology will be applied to the example 

system introduced at the start of this chapter in section 3.1. 

 

3.4. Application of the proposed methodology 

For the application of the methodology, the reliability of the components needs to be 

known.  Such values are needed for calculating the performance metric and to determine the 

most likely cause of the symptoms during the fault diagnostic process.  For this system, it is 

assumed that all the components are equally reliable, for example, the probability of component 

failure, A, is equal to 0.05, i.e. P(A) = 0.05.  The probability that only one component is failed, 

(and all of the other components are working) and the probability that only two components 

are failed, (and all of the other components are working), are equal to P(A)·(1 – P(A))6 and 

P(A)2·(1 – P(A))5 respectively.  These values are the probabilities of the events, defined in Table 

3.1. 

 

3.4.1. Sensor selection 

The methodology starts with calculations of the best value of the performance metric. It is 

possible to calculate the best achievable performance metric.  Assuming that there are no 

restrictions applied for the number of sensors positioned on the system, the maximum 

performance metric value will be achieved when all of the possible sensors are included in the 

system.  Therefore, the best performance metric value obtained by considering all 11 sensors 

on the system, and applying Equation (3.4), is equal to 0.8961.  The three terms: the detection 

term, the diagnostic term and the criticality term are equal to, 1, 0.6883, and 1, respectively. 

The values of these terms indicate that all of the failures that have been considered on the 

system can be detected, as 𝐷𝐸{𝑠} = 1, and as all component failures can be detected, then all of 

the critical component failures will also be detected, therefore, 𝐶𝑅{𝑠} = 1.  As the diagnostic 

term is less than 1, this means that it will not be possible to diagnose every component failure 
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exactly, and for some component failures it may take a number of inspections to find the failure.  

Note, inspecting the component means manually determining the state of the component by an 

engineer. 

 

3.4.1.1. Results of the sensor selection 

The performance metric was calculated for all combinations of up to three sensors in this 

section.  The performance metric and its terms are given in Tables 3.2, 3.3 and 3.4 for 

combinations of one, two and three sensors, respectively.  The sensors are ranked according to 

the value of the performance metric.  For the combinations of two and three, only one sensor 

combination for each rank are given in the table, with the full ranking given in Appendix A.   

There are multiple sensors, or multiple combinations of sensors, with the same performance 

metric.  This is because of the symmetry in the system, i.e. there are two parallel lines that have 

the same components and sensors on them in all but the central section of the system.  

Therefore, any failure detected by one sensor, will have an equivalent failure which can be 

detected by the equivalent sensor on the opposite line of the system.  For example, if cases 1 

and 2 from Table 3.1 are studied, it can be seen that sensor S1 detects the failure of pump P1, 

and sensor S3 detects the failure of pump P2, the corresponding pump and sensor on the 

opposite parallel line.  However, it is possible that a different value of the performance metric 

is produced, if, for example, two components in the parallel lines have different failure 

probabilities due to their age or usage. 

 

Table 3.2 Ranking of individual sensors 

Rank Sensor I{s} DE{s} DI{s} CR{s} 

1 

 

S7 0.8062 0.9740 0.5067 0.9512 

S8 0.8062 0.9740 0.5067 0.9512 

S9 0.8062 0.9740 0.5067 0.9512 

S10 0.8062 0.9740 0.5067 0.9512 

2 S5 0.6688 0.7532 0.3362 1.0000 

S6 0.6688 0.7532 0.3362 1.0000 

3 S11 0.6667 0.7532 0.3276 1.0000 

4 

 

S1 0.3901 0.4740 0.2740 0.5665 

S2 0.3901 0.4740 0.2740 0.5665 

S3 0.3901 0.4740 0.2740 0.5665 

S4 0.3901 0.4740 0.2740 0.5665 
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Table 3.3 Ranking of combinations of two sensors 

Rank Sensor I{s} DE{s} DI{s} CR{s} 

1 S1 S7 0.8684 0.9870 0.6513 0.9754 

2 S2 S7 0.8663 0.9870 0.6447 0.9754 

3 S5 S7 0.8398 1.0000 0.5195 1.0000 

4 S7 S9 0.8377 1.0000 0.5130 1.0000 

5 S8 S10 0.8355 1.0000 0.5065 1.0000 

6 S7 S8 0.8084 0.9740 0.5133 0.9512 

7 S1 S3 0.7186 0.7532 0.5345 1.0000 

8 S1 S11 0.7121 0.7532 0.5086 1.0000 

9 S2 S4 0.7100 0.7532 0.5000 1.0000 

10 S5 S6 0.6710 0.7532 0.3448 1.0000 

11 S5 S11 0.6688 0.7532 0.3362 1.0000 

12 S1 S2 0.3944 0.4740 0.3014 0.5665 

 

Table 3.4 Ranking of combinations of three sensors 

Rank Sensor I{s} DE{s} DI{s} CR{s} 

1 S1 S3 S7 0.8939 1.0000 0.6818 1.0000 

2 S1 S3 S8 0.8918 1.0000 0.6753 1.0000 

3 S1 S4 S7 0.8896 1.0000 0.6688 1.0000 

4 S1 S4 S8 0.8874 1.0000 0.6623 1.0000 

5 S1 S8 S10 0.8853 1.0000 0.6558 1.0000 

6 S2 S4 S8 0.8831 1.0000 0.6494 1.0000 

7 S1 S2 S7 0.8706 0.9870 0.6579 0.9754 

8 S2 S7 S8 0.8684 0.9870 0.6513 0.9754 

9 S1 S7 S8 0.8555 0.9870 0.6119 0.9754 

10 S5 S6 S7 0.8398 1.0000 0.5195 1.0000 

11 S5 S8 S10 0.8377 1.0000 0.5130 1.0000 

12 S8 S10 S11 0.8355 1.0000 0.5065 1.0000 

13 S2 S5 S6 0.7276 0.7532 0.5704 1.0000 

14 S1 S2 S3 0.7208 0.7532 0.5431 1.0000 

15 S1 S3 S11 0.7186 0.7532 0.5345 1.0000 

16 S1 S2 S6 0.7165 0.7532 0.5259 1.0000 

17 S1 S2 S4 0.7143 0.7532 0.5172 1.0000 

18 S2 S4 S6 0.7121 0.7532 0.5086 1.0000 

19 S2 S4 S5 0.7100 0.7532 0.5000 1.0000 

20 S5 S6 S11 0.6710 0.7532 0.3448 1.0000 
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As discussed above, the best possible performance metric can be achieved by including all 

of the sensors on the system.  However, in this example, this value of the performance metric 

can be achieved by some combinations of four sensors, therefore, it is unnecessary to consider 

combinations of five or more sensors, as there would be no further benefit to the process of 

failure diagnostics and fault detection.  However, due to the large number of combinations of 

four sensors, the performance metric was not calculated for all combinations, and therefore the 

ranking of these combinations is not given.  However, the combinations of four sensors that 

have the maximum performance metric are: 

• S1 S2 S3 S7 

• S1 S2 S3 S9 

• S1 S3 S4 S7 

• S1 S3 S4 S9 

If the values of the performance metric and the terms of the performance metric for the 

combinations of three sensors ranked first are compared with the values of the terms for the 

maximum achievable performance metric, it can be seen that the benefit of introducing the 

fourth sensor is comparatively small, with an improvement of only 0.0065 made in the 

diagnostic term, and an improvement of 0.0022 made in the performance metric.  This 

improvement is an order of magnitude smaller than the improvement between the combinations 

of two sensors ranked first, and the combinations of three sensors ranked first, 0.0305 for the 

diagnostic term and 0.0255 for the performance metric.  Therefore, as the addition of a fourth 

sensor results in a comparatively small improvement in performance metric, but the additional 

calculation time to obtain the performance metric for all combinations of four sensors is 

significant, they were not considered in the rest of the application of the methodology, i.e. 3 

sensors are considered.  If the process was automated, the calculation of the performance metric 

for all combinations of four sensors would be feasible to complete as the performance metrics 

would be calculated quickly. 

 

3.4.1.2. Discussion 

If the individual terms in the performance metric are studied, it suggests that considering 

the individual terms, as opposed to just the performance metric, is beneficial, as previously 

suggested.  As an example, in Table 3.2, the sensors ranked first, sensors S7, S8, S9 and S10, 

have a criticality term of 0.9512, but the sensors ranked second and third, sensors S5 and S6, 

and sensor S11, have a higher criticality term of 1.  Therefore, this enables the analyst to select 
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one of the sensors ranked second if it is possible to only use a single sensor on the system, and 

it is imperative to be able to detect as many as possible of the component failures that are 

critical to system performance. 

Similar conclusions can be made when the values in Table 3.3, the table for combinations 

of two sensors, are studied.  The combinations of sensors ranked third have detection and 

criticality terms of 1, where the combinations of sensors ranked higher than this have lower 

detection and criticality terms.  The diagnostic term for the combination of sensors ranked third 

is significantly lower than the combination of sensors ranked second, hence the lower 

performance metric, resulting in the lower ranking.  As before, the system design constraints 

may require as many as possible of the component failures to be detected, at the expense of the 

ability to diagnose them, and, therefore, the analyst will most likely select one of the 

combinations of sensors ranked third. 

By comparing the values of the performance metric terms in Tables 3.2 and 3.3, it can be 

concluded that there is generally a smaller benefit by introducing a second sensor in close 

proximity to the first selected sensor, than there is by introducing a second sensor not in close 

proximity to the first sensor.  For example, the performance metric for sensor S7 is 0.8062, but 

the performance metric for sensors (S7 S8) is 0.8084, which gives a small improvement of 

0.0022.  In this case, only one term in the performance metric improves, the diagnostic term, 

with the other two terms staying the same.  These two sensors are positioned either side of the 

same valve, V4.  However, when any other sensor from another section of the system is chosen, 

the increase in performance metric is an order of magnitude greater, with the next lowest 

performance metric for a combination of two sensors which includes sensor S7, given by (S7 

S9), with a performance metric of 0.8377, which gives an improvement of 0.0315.  Note, (S7 

S10) and (S7 S11) have the same performance metric.  However, including a sensor that is a 

greater distance away from sensor S7 than sensor S9, such as sensor S1 or S3, with multiple 

components between the two selected sensors, results in an even greater improvement of the 

performance metric of 0.0622 to 0.8684.  Therefore, this suggests that generally sensors should 

not be selected which are in close proximity to each other, as it is likely that the sensors that 

are in close proximity will provide similar information on what is happening in the system.  

This could be useful if there are restrictions on the number of sensors and only a small selection 

is possible.  There will, of course, be exceptions to this rule, but if there is limited time available 

to determine the best sensor combinations, and an exhaustive approach is not possible, then 

this rule could be used as a guide in order to try and determine the best combination as quickly 

as possible. 
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It can be seen that the performance metric increases as the amount of sensors increases.  

This is expected, because it should not be possible for a combination of n sensors to detect and 

diagnose failures better than the same combination of n+1 sensors.  However, there is a 

diminishing return for each additional sensor considered, with the difference, for example, 

between the maximum performance metric for the combinations of three and four sensors being 

less than the difference between the maximum performance metric for the combinations of two 

and three sensors.  The same is true for the difference in the value of the performance metric 

for combinations of two and three sensors, and combinations of one and two sensors.  This is 

expected, and therefore it demonstrates the motivation to find the correct balance between the 

performance metric and the cost of adding additional sensors to the system. 

The selection of sensors to be used for system monitoring and fault diagnostics later in this 

chapter was chosen to be the combination of sensors, (S1 S3 S7).  This combination of sensors 

has the highest performance metric for any combination of three sensors, as shown in Table 

3.4.  The locations of these sensors are such that there is one sensor positioned next to each of 

the pumps, before the valve on the same line of the system, and a sensor positioned before a 

valve in the third section on the system.  Note, as discussed above, the third sensor in the group 

could be positioned on either of the parallel lines, as the system symmetry will mean that they 

are equally beneficial to the detection of faults and diagnosis of failures.  This is reflected in 

Appendix A, Table A.2, by the fact that sensors (S1 S3 S7) and (S1 S3 S9) have the same 

performance metric.  Using these three sensors on the system enables the flow throughout the 

whole system to be determined.  This is because the sensors next to each of the pumps, sensors 

S1 and S3, inform the analyst what fuel is being supplied to the system, and the sensor in the 

final section of the system, sensor S7 or S9, informs the analyst which valve the fuel is passing 

through, if at all, in the third section of the system.  Therefore, if there is a deviation in the 

operating behaviour of the system, this combination of sensors will be able to detect it. 

In the next section, the effect of changing the component failure rates on the sensor selection 

rates is presented. 

 

3.4.1.3. The effect of changing the component failure probabilities on the sensor 

selection 

In order to determine the effect that changing the probability of the component failures has 

on the selection of sensors, different component failure probabilities were assigned to each of 

the components and the performance metrics calculated accordingly.  The pumps are assumed 
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to have a probability of failure of 0.1, and the valves are assumed to have a probability of failure 

of 0.01, i.e. pump failures are significantly more likely to occur.  Note, these probabilities are 

only used in this subsection of the thesis, with the probability of component failures given in 

section 3.1 used in the rest of the chapter.  Only one combination of component failure 

probabilities is considered as it is not possible to exhaustively consider all component failure 

probabilities. 

The resultant performance metrics are given in Tables 3.5, 3.6, and 3.7 for the combinations 

of one, two, and three sensors, respectively.  As before, only one combination of sensors for 

each rank is given in Tables 3.6 and 3.7, with all of the combinations given in Appendix A in 

Tables A.3 and A.4, respectively. 

By comparing the ranking of the individual sensors in Table 3.2 and Table 3.5, it can be 

observed that they are very similar.  The only difference is that in Table 3.2, sensors S5 and S6 

have the same performance metric and hence ranking, but in Table 3.5 they have slightly 

different performance metrics, resulting in a different ranking.  This is because the pumps and 

valve failures have different failure probabilities in this example, so the component with the 

highest probability of being in the failed state is different for these two sensors, which is not 

the case with the normal failure probabilities.  Nonetheless, the general ranking is broadly 

similar.  It is also worth noting that the terms in each of the performance metrics are generally 

similar.  There are however, exceptions to this, e.g. the diagnostic term for sensors S1 – S4 are 

0.2740 in Table 3.2 and 0.8104 in Table 3.5, significantly higher.  If the first deviated sensor 

reading for sensor S1 in Table 3.1 is considered, the sensor reading “N”, the probability of the 

failure of pump P1 is at least an order of magnitude greater than all of the other component 

failures that produce the same deviated sensor reading.  Therefore, if this symptom is observed, 

it is significantly more likely to be this component failure that has occurred than any of the 

other component failures, resulting in the higher diagnostic term.  The same is the case with 

the other deviated sensor reading of sensor S1, “E”.  The probability of failure of both of the 

pumps P1 and P2, is an order of magnitude greater than the probability of failure of the other 

two combinations of component failures that can produce the same symptoms, i.e. pump P1 

and valve V1, or pump P1 and valve V2. 

The ranking of combinations of two and three sensors is broadly similar to that given in 

Tables 3.3 and 3.4, respectively.  There are obviously some exceptions as sensor combinations 

that don’t detect as many component failures, but detect the component failures that are more 

likely to occur, have a higher performance metric and are therefore ranked higher.  An example 

of this is the combination of sensors (S1 S3), which was ranked 7th in Table 3.4, but is ranked 
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3rd in Table 3.6.  In this case, the detection term of the performance metric increases from 

0.7532 to 0.9321.  The opposite of this also happens with sensors ranking lower than before 

when they do not detect the component failures that are most likely to occur.  For example, the 

sensors (S2 S7 S8) were ranked 8th in Table 3.4 but are ranked 14th in Table 3.7.  The effect of 

the component failures having different probabilities of occurrence has also resulted in a larger 

number of rankings, as it resulted in combinations that detected the same number of component 

failures having different diagnostic terms, as discussed briefly above.  For example, the 

combinations of sensors ranked 3rd and 7th in Table 3.7 are all ranked 3rd in Table 3.4.  This has 

resulted in 28 different rankings in Table 3.7, as opposed to the 20 in Table 3.4. 

Another observation is that the maximum achievable performance metric for each amount 

of sensors has increased, going from 0.8062 to 0.8212 for individual sensors, from 0.8684 to 

0.9641 for combinations of two sensors, and from 0.8939 to 0.9738 for combinations of three 

sensors.  This increase is because of the increase in the diagnostic term.  This is predominantly 

because of the difference in probability of failure for the pumps P1 and P2, and the valves V1 

and V2.  If the cases numbered 1 and 3 (or 2 and 4) in Table 3.1 are considered for the best 

combination of three sensors, (S1 S3 S7), this sensor reading combination is the most likely to 

occur because the probability of pump failure is an order of magnitude greater than any other 

failure, and therefore this term will have the most effect on the diagnostic term in the 

performance metric.  Note, this deviated sensor reading, along with the deviated sensor reading 

for cases numbered 2 and 4, was also one of the most likely to occur using the original 

probabilities of failure.  However, the ratio with the new probabilities is 10:1 that if the sensor 

reading is produced, the pump will have failed and not the valve, whereas before it was 1:1.  

This makes the Pmli term significantly higher in comparison to Psri, resulting in the higher 

diagnostic term, and the higher performance metric. 

The work in this subsection suggests that the selection of the sensor combinations is not 

affected too highly by the components having a different failure probability, as the best 

combination of sensors in both cases is the same.  It is not possible to definitely say that the 

combination of sensors (S1 S3 S7) is the best combination of three sensors for all probabilities 

of component failures without calculating the performance metric for a number of different 

probabilities of component failures.  However, as this combination of sensors produces the 

highest number of deviated sensor reading combinations, it is likely that if it is not the best, it 

will still be one of the best combinations of sensors.  It is also unlikely that the components’ 

probability of failure would change drastically in comparison to the probability of other 

components failing during the operation of the system, as there would be regularly scheduled 
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maintenance or part replacement for aircraft systems in order to satisfy safety criteria, i.e. it is 

not expected that one component degrades significantly faster or slower than other components 

in the system. 

 

Table 3.5 Ranking of individual sensors with different component failure rates 

Rank Sensor I{s} DE{s} DI{s} CR{s} 

1 

 

S7 0.8212 0.9918 0.4872 0.9886 

S8 0.8212 0.9918 0.4872 0.9886 

S9 0.8212 0.9918 0.4872 0.9886 

S10 0.8212 0.9918 0.4872 0.9886 

2 S5 0.7938 0.9321 0.4820 1.0000 

3 S6 0.7825 0.9321 0.4459 1.0000 

4 S11 0.7824 0.9321 0.4455 1.0000 

5 

 

S1 0.4723 0.5124 0.8104 0.4895 

S2 0.4723 0.5124 0.8104 0.4895 

S3 0.4723 0.5124 0.8104 0.4895 

S4 0.4723 0.5124 0.8104 0.4895 

 

Table 3.6 Ranking of combinations of two sensors with different component failure rates 

Rank Sensor I{s} DE{s} DI{s} CR{s} 

1 S1 S7 0.9641 0.9959 0.9059 0.9944 

2 S2 S7 0.9629 0.9959 0.9022 0.9943 

3 S1 S3 0.9234 0.9321 0.8991 1.0000 

4 S1 S5 0.9208 0.9321 0.8910 1.0000 

5 S1 S6 0.9197 0.9321 0.8873 1.0000 

6 S1 S11 0.9196 0.9321 0.8870 1.0000 

7 S2 S6 0.9184 0.9321 0.8833 1.0000 

8 S2 S5 0.9183 0.9321 0.8829 1.0000 

9 S5 S7 0.8417 1.0000 0.5251 1.0000 

10 S5 S8 0.8416 1.0000 0.5247 1.0000 

11 S6 S7 0.8304 1.0000 0.4911 1.0000 

12 S8 S10 0.8302 1.0000 0.4907 1.0000 

13 S7 S8 0.8227 0.9918 0.4917 0.9886 

14 S5 S6 0.7939 0.9321 0.4823 1.0000 

15 S5 S11 0.7938 0.9321 0.4820 1.0000 

16 S6 S11 0.7825 0.9321 0.4459 1.0000 

17 S1 S2 0.4749 0.5124 0.8252 0.4895 
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Table 3.7 Ranking of combinations of three sensors with different component failure rates 

Rank Sensor I{s} DE{s} DI{s} CR{s} 

1 S1 S3 S7 0.9738 1.0000 0.9214 1.0000 

2 S1 S3 S8 0.9737 1.0000 0.9211 1.0000 

3 S1 S5 S7 0.9713 1.0000 0.9139 1.0000 

4 S1 S5 S8 0.9712 1.0000 0.9135 1.0000 

5 S1 S6 S7 0.9700 1.0000 0.9101 1.0000 

6 S1 S8 S10 0.9699 1.0000 0.9097 1.0000 

7 S1 S4 S7 0.9692 1.0000 0.9076 1.0000 

8 S1 S4 S8 0.9691 1.0000 0.9072 1.0000 

9 S2 S4 S7 0.9688 1.0000 0.9063 1.0000 

10 S2 S4 S8 0.9687 1.0000 0.9060 1.0000 

11 S1 S2 S7 0.9654 0.9959 0.9097 0.9943 

12 S1 S2 S8 0.9654 0.9959 0.9097 0.9943 

13 S1 S7 S8 0.9642 0.9959 0.9063 0.9943 

14 S2 S7 S8 0.9630 0.9959 0.9025 0.9943 

15 S2 S4 S6 0.9358 0.9321 0.9391 1.0000 

16 S1 S2 S3 0.9236 0.9321 0.8999 1.0000 

17 S1 S3 S5 0.9235 0.9321 0.8995 1.0000 

18 S1 S3 S11 0.9234 0.9321 0.8991 1.0000 

19 S1 S2 S6 0.9210 0.9321 0.8914 1.0000 

20 S1 S2 S4 0.9208 0.9321 0.8910 1.0000 

21 S1 S6 S11 0.9197 0.9321 0.8873 1.0000 

22 S2 S5 S6 0.9184 0.9321 0.8833 1.0000 

23 S2 S4 S5 0.9183 0.9321 0.8829 1.0000 

24 S5 S6 S7 0.8417 1.0000 0.5251 1.0000 

25 S5 S8 S10 0.8416 1.0000 0.5247 1.0000 

26 S6 S7 S8 0.8344 1.0000 0.5033 1.0000 

27 S8 S10 S11 0.8343 1.0000 0.5030 1.0000 

28 S5 S6 S11 0.8048 0.9321 0.5175 1.0000 

 

In the next section, the construction of the BBN fault diagnostics model will be discussed.  

In the remainder of this chapter, the probability of each of the component failures is assumed 

to be 0.05. 
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3.4.2. Construction of the Fault Diagnostics Model 

As discussed before, the fault diagnostics model is a BBN model of the system.  The model 

was created using the software “HUGIN Researcher”, and it includes intermediate nodes, in 

order to minimise the number of elements in the CPTs. 

 

3.4.2.1. BBN development 

Following the methodology outlined in section 3.3, a node for each of the components was 

introduced (the top of Figure 3.3).  The CPTs for each of these nodes consist of one column 

with two rows, one element for each of the states that the component can be in.  Therefore, for 

the working state, the element of the CPT is 0.95, and for the failed state, the element of the 

CPT is 0.05, which is the probability of each component failure as stated in section 3.1. 

The next step in the BBN development process is to introduce intermediate nodes to the 

network.  These nodes are to determine the flow of fuel at various points in the system.  These 

points are: the supply of fuel that will pass through Valve V1 from Pump P1 (Supply 1 node in 

Figure 3.3), the supply of fuel that will pass through Valve V2 from Pump P2 (Supply 2 node 

in Figure 3.3), the supply of fuel coming from both Valve V1 and V2 (Supply node in Figure 

3.3), and finally, whether there is a clear path for the fuel to pass through the final section of 

the system before it reaches the drain, i.e. whether the fuel pass through Valve V4 and/or Valve 

V5, (Section 3 node in Figure 3.3). 

Finally, a node for each of the possible 11 sensors in the system can be introduced to the 

BBN.  These nodes are connected to the intermediate nodes and component nodes, as required.  

Using the states from these nodes, the CPTs for the sensor nodes can be completed and the 

sensor reading states can be added to the sensor nodes, where each row in the CPTs corresponds 

to a sensor reading that can be produced by the corresponding sensor. 

The benefits of introducing the intermediate nodes, discussed earlier, becomes evident in 

this BBN.  For example, for sensors from S5 to S11, the only information required from the 

first section of the system is whether there is a supply of fuel, and how much is being supplied, 

if any.  Therefore, if there is only supply from one of the pumps, it is not necessary to know 

whether the fuel is supplied from pump P1 or pump P2, as it would produce the same symptoms 

for these sensors in both situations.  Therefore, not keeping this information results in a smaller 

CPT for each of these sensors, as without this node in the BBN there would be 16 combinations 

of states for the four nodes in this section, but with this node, the number of combinations of 
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states can be reduced to 3.  These 3 states are: Full Supply (FS, “2”), Partial Supply (PS, “1”) 

and No Supply (NS).  This process results in the CPTs for each of these sensor nodes to have 

less than a quarter of the elements that they would have without it.  Table 3.8 demonstrates 

how these 16 combinations can be reduced to 3 states shown in the last column, and Table 3.9 

gives the resultant CPT for sensor S11.  In this CPT, the section 3 node represents what paths 

are available through the third section of the system as introduced in section 3.1, and the supply 

node represents the supply of fuel that is coming out of the first section of the system.  The 

CPTs for the Supply 1, Supply and Section 3 nodes are given in Tables 3.10, 3.11 and 3.12 

respectively.  Note, the CPT for the Supply 2 node is the same as that for the Supply 1 node 

except the parents of the node are pump P2 and valve V2, instead of pump P1 and Valve V1. 

 

Table 3.8 Reduction of states by introducing an intermediate node for the first section of the system 

Component States Intermediate 

Node States Pump P1 Pump P2 Valve V1 Valve V2 

On On Open Open Full Supply 

On On Open Closed Partial Supply 

On On Closed Open 

On Off Open Open 

On Off Open Closed 

Off On Open Open 

Off On Closed Open 

On On Closed Closed No Supply 

On Off Closed Open  

On Off Closed Closed  

Off On Open Closed  

Off On Closed Closed  

Off Of Open Open  

Off Off Open Closed  

Off Off Closed Open  

Off Off Closed Closed  

 

 



 

68 
 

Table 3.9 CPT for sensor S11 

Section 3 V4 open, V5 open V4 open, V5 blocked 

Valve 3 Open Blocked Open Blocked 

Supply FS NS PS FS NS PS FS NS PS FS NS PS 

E 0 1 0 1 1 1 0 1 0 1 1 1 

1 0 0 1 0 0 0 0 0 1 0 0 0 

2 1 0 0 0 0 0 1 0 0 0 0 0 

Section 3 V4 blocked, V5 open V4 blocked, V5 blocked 

Valve 3 Open Blocked Open Blocked 

Supply FS NS PS FS NS PS FS NS PS FS NS PS 

E 0 1 0 1 1 1 1 1 1 1 1 1 

1 0 0 1 0 0 0 0 0 0 0 0 0 

2 1 0 0 0 0 0 0 0 0 0 0 0 

 

Table 3.10 CPT for Supply 1 node 

Pump P1 On  Off  

Valve V1 Open Closed Open Closed 

Supply 1 0 0 0 

No Supply 0 1 1 1 

 

Table 3.11 CPT for the Supply node 

Supply 1 Supply  No Supply  

Supply 2 Supply No Supply  Supply No Supply 

Full Supply 1 0 0 0 

Partial Supply 0 1 1 0 

No Supply 0 0 0 1 

 

Table 3.12 CPT for the Section 3 node 

Valve 4 Open  Closed  

Valve 5  Open Closed Open Closed 

V4 open, V5 open 1 0 0 0 

V4 open, V5 blocked 0 1 0 0 

V4 blocked, V5 open 0 0 1 0 

V4 blocked, V5 blocked 0 0 0 1 
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Note, for sensors S1 – S6 and sensor S11, the number of elements in the CPTs could have 

been reduced even further, by introducing an alternative node for Section 3, containing two 

states: there is a path through the section or there is no path through the section.  In this process, 

the state which describes whether there is a path through the section would incorporate the 

three states of, “V4 open, V5 open”, “V4 open, V5 blocked” and “V4 blocked, V5 open” states 

and the state which describes there is not a path through the section incorporates the “V4 

blocked and V5 blocked” state.  This is possible because it is not necessary for these sensors 

to know the path(s) that the fuel is passing through, only whether there is a flow of fuel or not.  

However, this step was not implemented because it has a smaller reduction in the number of 

elements in the CPTs than the other intermediate nodes.  If this network was to be constructed 

again, this step would possibly be implemented as the reduction in the size of the CPTs 

provided is greater than the additional CPT required to include it.  Full CPTs for the sensor 

nodes S1 – S10 are given in Appendix B, Tables B.1 – B.10 for reference. 

The complete structure of the BBN is given in Figure 3.3. 

 

 

Figure 3.3 BBN of the example system 

 

3.4.2.2. Discussion 

The sensor nodes, such as “Sensor 01”, in the BBN are used to represent the sensors that 

can be positioned in the system.  They represent the sensor readings accurately, as a state can 

be added to the sensor node for each possible sensor reading that can be produced by this 

sensor.  However, as mentioned earlier, if there are a large number of different sensor readings 

for each sensor, it might be desirable to group the sensor readings into ranges of readings, in 

order to keep the number of states for the nodes reasonable, i.e. preventing the number of 
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elements in the CPTs from becoming too large.  However, this will reduce the accuracy of the 

sensor modelling.  This step is not required for a system of the size considered in this section. 

As discussed previously, the introduction of intermediate nodes to the network, such as 

“Supply 1”, helped to reduce the size of some of the CPTs.  However, the number of entries in 

all of the CPTs of the network for this relatively small example system is still large, around 

1400.  This highlights the fact that the total number of elements in the CPTs could become very 

large, which may be impractical for larger systems. 

The next step in the application of the methodology is to use the BBN to aid the diagnosis 

of component failures in this system.  This is discussed in the following section. 

 

3.4.3. Fault Diagnostics Process 

The developed BBN model can be used to diagnose component failures in the system, by 

applying the method introduced in section 3.3.  As stated previously, the combination of 

sensors, selected for the diagnosis of component failures, is sensors (S1 S3 S7).  All of the 

component failures given in Table 3.1 are used to carry out the diagnosis of component failures 

in the system.  In each case, the corresponding sensor readings from this table are inserted into 

the BBN, by adding evidence about the sensor reading to the sensor nodes of the network.  The 

probability that each component is in the failed state is updated, and the diagnostics process 

can therefore be carried out. 

The BBN successfully diagnoses the component failures for each of the 28 considered 

component failures, detailed in Table 3.1.  For some of these combinations, the correct 

diagnosis was not achieved immediately, but the diagnostics process never resulted in 

inspecting more than one additional component than the number of components that had failed, 

i.e. no more than one component that was working was inspected.  Therefore, with minimal 

additional component inspections, the BBN could be used to diagnose the component failures 

correctly, using the selected sensors. 

In the following paragraphs of this section, each of the diagnoses of the combinations of 

the component failures are discussed.  The 28 component failure combinations are grouped 

into seven different groups, based on how successfully the component failures are diagnosed, 

with explanations given if the diagnostics are not accurate.  These groups, the actual failed 

components, and the diagnosed failed components are given in Table 3.13. 
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Table 3.13 Diagnosis of component failures 

Case No. Actual 

failure 

Diagnosed 

Failure 1 

Probability Diagnosed 

Failure 2 

Probability Diagnosed 

Failure 3 

Probability 

1 6 V4 V4 100%     

 7 V5 V5 100%     

 8 P1 P2 P1 100% P2 100%   

 9 P1 V1 P1 100% V1 100%   

 15 P2 V2 P2 100% V2 100%   

 28 V4 V5 V4 100% V5 100%   

2 5 V3 V3 95.84%     

 10 P1 V2 P1 100% V2 95.47%   

 14 P2 V1 P2 100% V1 95.47%   

3 1 P1 P1 50% V1 50%   

 2 P2 P2 50% V2 50%   

 3 V1 P1 50% V1 50%   

 4 V2 P2 50% V2 50%   

4 12 P1 V4 V4 100% P1 50% V1 50% 

 13 P1 V5 V5 100% P1 50% V1 50% 

 17 P2 V4 V4 100% P2 50% V2 50% 

 18 P2 V5 V5 100% P2 50% V2 50% 

 21 V1 V4 V4 100% P1 50% V1 50% 

 22 V1 V5 V5 100% P1 50% V1 50% 

 24 V2 V4 V4 100% P2 50% V2 50% 

 25 V2 V5 V5 100% P2 50% V2 50% 

5 26 V3 V4 V3 95.84%     

 27 V3 V5 V3 95.84%     

6 11 P1 V3 V3 95.84%     

 16 P2 V3 V3 95.84%     

 20 V1 V3 V3 95.84%     

 23 V2 V3 V3 95.84%     

7 19 V1 V2 V3 95.84%     

 

The first case given in Table 3.13, refers to the component failure combinations, 6, 7, 8, 9, 

15 and 28, from Table 3.1.  These component failures are diagnosed correctly, with the BBN 

predicting 100% probability of these components being failed.  Therefore, by inspecting, and 

then replacing or repairing the components as appropriate, the system will be returned to 

normal operating behaviour.  This will be achieved by inspecting the same number of 
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components as there are failures, i.e. if one component has failed, one component will be 

inspected, and if two components have failed, two components will be inspected. 

The second case given in Table 3.13, refers to the component failure combinations, 5, 10 

and 14, from Table 3.1.  As in the first case, these components are diagnosed correctly, 

however, not with 100% probability, i.e. 95.84% for component failure combination 5, and 

95.47% for the component failure combinations 10 and 14.  In each of the latter two cases, 

there are two components failed, one diagnosed with 100% probability, and the other with 

95.47% probability.  The reduction in probability for the component failure combination 5, V3 

fails closed, results from the fact that the same symptoms are produced for the component 

failure number 19, and for the component failure combination 5, and therefore there is a 

possibility that the component failure combination 19, (V1 and V2), is the actual component 

failure combination.  This case will be discussed further in case seven.  For the component 

failure combinations 10 and 14, the same symptoms can be produced by the combinations of 

three (or more) component failures, and therefore will not be discussed further, as these are not 

being considered.  Note, this is not the only set of symptoms in Table 3.1 that can be produced 

by a combination of three (or more) component failures. 

The third case given in Table 3.13, refers to the component failure combinations, 1, 2, 3 

and 4, from Table 3.1.  For these combinations of component failures, the first component 

selected by the diagnostics process to be inspected will not always be the correct component 

failure that has occurred.  This is true because there are multiple component failures with the 

same probabilities of occurrence that produce the same symptoms for these three sensors.  In 

each case, the component that is inspected will be the component that has actually failed 50% 

of the time.  Therefore, this will result in the system being returned to the normal operating 

behaviour after inspecting a maximum of two components, when only one component has 

failed, i.e. one additional component is being inspected 50% of the time.  An example of this 

is when the selected sensor combination, (S1 S3 S7), produces the sensor reading combination 

(N 1 0.5).  In this case, either pump P1 or valve V1 has failed, both with a probability of 50%.  

Therefore, there is a 50% probability that the component that has failed is inspected first, i.e. 

if the component failure is pump P1, there is a 50% probability that this component will be 

inspected first, but there is also a 50% probability that it is inspected second.  It is worth noting 

that when both the components, P1 and V1, or P2 and V2, are failed, a different set of symptoms 

is observed, and therefore, it is not part of this case. 

The fourth case, given in Table 3.13, refers to the component failure combinations, 12, 13, 

17, 18, 21, 22, 24 and 25, from Table 3.1.  This case is similar to case 3, except that in addition 
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to there being a 50% chance for two components being in the failed state, another component 

has definitely failed.  Therefore, this process will result in the system being returned to normal 

operating behaviour after inspecting a maximum of three components, when only two 

components have failed, i.e. one additional component is inspected 50% of the time. 

The fifth case, given in Table 3.13, refers to the component failure combinations, 26 and 

27, from Table 3.1.  In this case, the diagnosed component is valve V3, but either valve V4 or 

valve V5 has failed in addition to valve V3.  These component failure combinations produce 

the same symptoms as there would be in the case when only valve V3 has failed, but the 

probability of these events is significantly lower, and therefore the component failure is 

predicted to be only valve V3.  However, when valve V3 has been inspected, and repaired or 

replaced as appropriate, the sensor readings will be different than previously observed but they 

will not match the readings produced under normal operating conditions.  It will, therefore, be 

apparent that there is another component failure.  This will then result in case 1, when the 

correct component failure can be diagnosed correctly.  Therefore, the system operation will be 

returned to normal operation behaviour after inspecting, and repairing or replacing two 

components, when two components have failed.  For this case, the predicted probability that 

valve V3 is the failed component is not equal to 100%, but it is equal to 95.84%.  This situation 

occurs for the same reason as discussed briefly in the second case, but it will also be further 

discussed in more detail in the seventh case. 

The sixth case, given in Table 3.13, refers to the component failure combinations, 11, 16, 

20 and 23, from Table 3.1.  This case is similar to the fifth case, where when valve V3 is 

repaired or replaced as required, it will become apparent that there is a second component 

failure, because the sensor readings will not return to the expected sensor readings for normal 

operating behaviour.  This situation will then result in the symptoms observed in the third case 

discussed, where there will be two possible components that could have failed, each with equal 

probability of failing.  Therefore, the system will be returned to normal operation behaviour 

after inspecting, and repairing or replacing as appropriate, two or three components, when only 

two components have failed, i.e. inspecting an additional component 50% of the time.  As with 

cases two and five, it is possible that for those symptoms, valve V3 has not failed, and other 

components have failed instead.  This situation results in the probability of valve V3 being 

failed being equal to 95.84%.  As before, this is discussed in more detail in the seventh case. 

The seventh, and final case given in Table 3.13, refers to the component failure 

combination, 19, from Table 3.1.  In this case, the BBN predicts the incorrect component 

failure, it predicts that valve V3 has failed, when, in actual fact, valve V1 and valve V2 have 
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both failed.  This is because, whilst both combinations produce the same symptoms, the 

probability of valve V3 failing, is significantly higher than the probability of both valve V1 

and valve V2 failing.  Therefore, as valve V3 is more likely to have failed, it is logical to 

investigate this component, rather than the component failure combination of valve V1 and 

valve V2.  However, when valve V3 is inspected, and it is found not to have failed, this 

evidence can be introduced into the BBN.  This will then update the probability of each of the 

other components being in the failed state, and therefore result in the correct components being 

diagnosed, and therefore, inspected, and repaired or replaced as appropriate.  The system 

operation will, therefore, be returned to normal by inspecting three components, when there 

are only two component failures present in the system. 

All of the example cases discussed above, with the exception of the first, result in the 

diagnostic term being less than 1, i.e. (DI{s} = 0.6818).  This is because some component failure 

combinations are not diagnosed correctly initially.  However, all of the component failure 

combinations can be diagnosed correctly with no more than one additional component being 

inspected.  In some of these cases, this is because two component failures produce the same 

symptoms and have an equal probability of occurring, and in other cases, this is because the 

component failure combination considered, has a lower probability of occurring than another 

combination of component failures that produces the same symptoms. 

If the best combination of four sensors is considered, the additional sensor, either sensor S2 

or S4, would result in the component failure combination number 19 being diagnosed correctly 

on the first attempt.  This is the main benefit of introducing the fourth sensor in this example.  

The introduction of this sensor provides the additional information required to be able to 

determine that valve V1 and V2 have failed.  Note, it is possible that valve V3 has still failed 

in addition to these two valves, as this would produce the same symptoms, but the combinations 

of three (or more) component failures are not considered in this thesis. 

In the next section, an analysis of how the diagnostics performance of the sensor 

combinations changes when the diagnostic term of the performance metric changes is given. 

 

3.4.4. Validation of the Diagnostic term 

In order to validate that the diagnostic term of the performance metric is favouring 

combinations of sensors that diagnose component failures more easily, the same combinations 

of component failures are diagnosed using a number of different combinations of sensors.  In 

order to ensure that the diagnostic term is the only factor that is considered, one combination 
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of sensors from each ranking of three sensors that has a detection and criticality term of 1 is 

selected, i.e. (S1 S3 S8), (S1 S4 S7), (S1 S4 S8), (S1 S8 S10), (S2 S4 S8), (S5 S6 S7), (S5 S8 

S11), and (S8 S10 S11), and is compared with the results of the diagnostic process in the 

previous section, i.e. for sensor combination (S1 S3 S7).  These combinations of sensors are 

ranked second, third, fourth, fifth, sixth, tenth, eleventh, and twelfth.  For each combination of 

sensors, a table in the form of Table 3.13 is produced, and is given in Appendix C, Tables C.1 

– C.9, but summary tables are presented as Table 3.14 – 3.17.  Note, a table for the combination 

of sensors ranked first is given in Appendix C for completeness, in order to add an additional 

column for clarity that was not included in Table 3.13.  This additional column groups each of 

the combination of component failures into four groups: 

• Group 1 is when there is one component failure and it is detected. 

• Group 2 is when there are two component failures and they are both detected. 

• Group 3 is when there are two component failures, one of which is detected, but the 

second is only detected when the first component is repaired or replaced. 

• Group 4 is when there are two component failures which are detected, but they are 

diagnosed incorrectly. 

 

Within each of these groups, the combinations of component failures are separated into 

smaller groups indicated by a letter.  For the fourth case, the symptoms are observed, but the 

diagnostics process suggests the wrong component to inspect, for example, case 7 in Table 

3.13.  Each of these four groups are presented in Tables 3.14 – 3.17, respectively. 

If Table 3.14 is studied, the table for group 1, there is a clear step between the sensors 

ranked 6th and the sensors ranked 10th.  This coincides with the big step in the diagnostic term, 

with a difference of 0.1299, where the difference in the diagnostic term between the sensors 

ranked 1st and 6th is 0.0324, less than a quarter of the difference.  At this step, between the 

sensors ranked 6th and the sensors ranked 10th, instead of there being 4 component failures that 

are in group 1c, for which the probability of diagnosing the component failure is approximately 

50%, there are 4 component failures in group 1d, for which the probability of diagnosing the 

component failure is approximately 25%.  In each of the 9 considered rankings, there are three 

component failures that are in group 1a or 1b, with the sensors ranked 3rd having all three in 

the group 1a, and all the others having two in group 1a and one in group 1b.  As group 1a is 

100% probability of the component being in the failed state, it is more desirable to have 

component failures in group 1a than in group 1b.  This would suggest that for this group of 
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failures the combination of sensors ranked 3rd is best, however, as the probability of correct 

diagnosis for the component failures in group 1b is high (>80%), including the combinations 

of sensors ranked 1st and 2nd, the benefit of using the combinations of sensors ranked 3rd is 

small.  Therefore, for group 1, the combinations of sensors ranked 3rd is the best, but the 

combinations of sensors ranked 1st is a close second best, with the combinations of sensors 

ranked 2nd the third best. 

 

Table 3.14 Summary of the diagnostic performance of sensor rankings for group 1, (one component failure and 

detected) 

 
1a 1b 1c 1d 

Rank 1 of 1 

(100%) 

1 of 1 

(>80%) 

1 of 1 (~50%) 1 of 1 (~25%) 

1 2 1 (95.84%) 4 (50%) 0 

2 2 1 (91.68%) 4 (50%) 0 

3 3 0 4 (50%) 0 

4 2 1 (95.47%) 4 (50%) 0 

5 2 1 (88.04%) 2 (50%), 2 (51.28%) 0 

6 2 1 (95.47%) 4 (51.28%) 0 

10 2 1 (95.44%) 0 4 (25.64%) 

11 2 1 (95.47%) 0 4 (25.64%) 

12 2 1 (81.46%) 0 4 (25.64%) 

 

If Table 3.15 is studied, the table for group 2, it can be concluded that having more in group 

2a is better, as both of the component failures are diagnosed 100% correctly.  The sensor 

combination ranked 1st has the most combinations of component failures that fall into this 

group.  The second column, case 2b, results in a higher confidence in the diagnosis of 

component failure than cases 2c and 2d, as the second component failure in each case has less 

confidence in diagnosis.  If the top three rankings are compared, it can be concluded that the 

sensor combination ranked 1st is best, followed by the sensor combination ranked 2nd, then by 

the sensor combination ranked 3rd.  Here, the sensor combination ranked 1st is demonstrably 

better than the sensor combination ranked 3rd, having two additional combinations of 
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component failures in cases 2a and 2b, where the probability of correct diagnosis is higher in 

comparison to the four additional combinations of component failures in case 2c for the sensors 

ranked 3rd, i.e. correct diagnosis all the time (and 95% of the time) vs correct diagnosis 

approximately 50% of the time.  The difference between the probability of the components 

being in the failed state of 50% and 51.28% is negligible in comparison to the difference 

between the approximately 50% and 100% (and approximately 95%) of cases 2a (and 2b), 

respectively. 

Whilst it is clear that group 2a is more desirable than group 2b, group 2b is more desirable 

than group 2c, and group 2c is more desirable than 2d, it is not clear exactly where groups 2e, 

2f and 2g, fall in terms of how desirable they are, as they could be considered to be better than 

group 2d as the probability is higher for the second component, but could also be worse than 

group 2d as the probability for the diagnosis of the first component is not 100%.  However, it 

is clear that group 2e is more desirable than group 2f, and group 2f is more desirable than group 

2g, as for group 2e, fewer components are required to be inspected (two), than for groups 2f 

and 2g (maximum of four).  It is also clear that group 2f is more desirable than group 2g as the 

probability of each of the component failures is higher, although in reality, it has no effect as 

up to four components will need to be inspected in each case. 

As observed with the previous table, there is a clear step between ranks 6 and 10, where at 

least eight combinations of component failures are in 2c for rankings 6 and higher, and eight 

combinations of component failures are in 2d for rankings 10 and lower. 

It is also clear that, unlike in the first group, there are different amounts of component 

failures that fall into group 2 for each ranking.  For example, the sensor combination ranked 1st 

has four combinations of component failures in group 2a, two in group 2b, and eight in group 

2c i.e. 14 in total, but the sensor combination ranked 3rd has two combinations of component 

failures in group 2a, twelve in group 2c, and one in group 2e, i.e. 15 in total.  This difference 

in number of combinations for each ranking is because of component failures that fall into 

group 4, where the sensor combination ranked 1st has an additional combination of component 

failures than the sensor combination ranked 3rd. 

It can be concluded from the discussions in the previous paragraphs that the sensor 

combination ranked 1st is the best for the combinations of component failures in group 2.  The 

difference between the sensor combinations ranked 1st, 2nd and 3rd, is much larger than the 

difference observed for the combinations of component failures in group 1. 
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Table 3.15 Summary of the diagnostic performance of sensor rankings for group 2, (two component failures and 

both detected) 

 
2a 2b 2c 2d 2e 2f 2g 

Rank 2 of 2 

(100%) 

2 of 2 

(100%, 

>80%) 

2 of 2 

(100%, 

~50%) 

2 of 2 

(100%, 

~25%) 

2 of 2 

(~50%, 

~50%) 

but both 

failed 

2 of 2 

(~50%, 

~50%), two 

pairs 

2 of 2 

(~25%) 

two out of 

four 

1 4 2 

(95.47%) 

8 (50%) 0 0 0 0 

2 3 2 

(95.26%) 

8 (50%) 0 0 0 0 

3 2 0 4 (50%), 

8 (51.28%) 

0 1 

(51.28%) 

0 0 

4 1 0 4 (50%), 

8 (51.28%) 

0 1 

(51.28%) 

0 0 

5 1 0 4 (50%), 

2 (50.07%), 

4 (51.28%) 

0 1 

(51.28%) 

0 0 

6 0 0 8 (51.28%) 0 2 

(51.28%) 

4 (51.28%) 0 

10 1 0 0 8 

(25.64%) 

0 4 (51.28%) 2 

(25.64%) 

11 0 0 0 8 

(25.64%) 

0 4 (51.28%) 2 

(25.64%) 

12 0 0 0 8 

(25.64%) 

0 0 2 

(25.64%) 

 

In Table 3.16, group 3 is presented.  These are combinations of component failures where 

initially it appears as if there is only one component that has failed, but when this component 

is repaired or replaced, it becomes apparent that there is a second component failure.  If Table 

3.16 is studied, the six groups, 3a – 3f, can be split into two, 3a – 3c, and 3d – 3f, where in the 

first set of groups the first component is diagnosed with 100% confidence, and the second set 

of groups with less than 100% confidence.  Within these two sets, they can be grouped into 

pairs of one from each set based on the probability of the second component being diagnosed 

correctly, i.e. 3a and 3d, 3b and 3e, and 3c and 3f.  For each ranking, there are two combinations 
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of component failures in group 3a or 3d, and four combinations of component failures in group 

3b, 3c, 3e or 3f.  The most desirable pair is 3a and 3b as these have the highest probability for 

each of the possible combinations.  The only combinations of sensors that produce this pair are 

the sensors ranked 3rd.  However, as with group 1, the benefit of 3a as opposed to 3d, and 3b 

as opposed to 3e, is minimal as the probability of the first failure in 3d and 3e is high (>80%), 

therefore the sensor combinations ranked 3rd is the best, but the sensor combinations ranked 1st 

is a close second best, with the sensor combinations ranked 2nd the third best. 

As observed in group 1, there is a clear step between the combinations of sensors ranked 

6th and 10th as the four combinations of component failures go from being in group 3b or 3e, to 

3c or 3f, i.e. a significant decrease in the probability of correct diagnosis, with having to 

potentially inspect an additional two components. 

 
 

Table 3.16 Summary of the diagnostic performance of sensor rankings for group 3, (two component failures, 

one detected and second detected when first is repaired) 

 
3a 3b 3c 3d 3e 3f 

Rank 1 (+1 

delayed) 

100%, 

(100%) 

1 (+1 delayed) 

100%, (~50%) 

1 (+1 

delayed) 

100%, 

(~25%) 

1 (+1 

delayed) 

>80%, 

(100%) 

1 (+1 

delayed) 

>80%, 

(~50%) 

1 (+1 

delayed) 

>80%, 

(~25%) 

1 0 0 0 2 (95.84%) 4 (95.84%, 

50%) 

0 

2 0 0 0 2 (91.68%) 4 (91.68%, 

50%) 

0 

3 2 2 (50%), 

2 (51.28%) 

0 0 0 0 

4 0 0 0 2 (95.47%) 4 (95.47%, 

50%) 

0 

5 0 0 0 2 (88.04%) 2 (88.04%, 

50%), 

2 (88.04%, 

51.28%) 

0 

6 0 0 0 2 (95.47%) 4 (95.47%, 

51.28%) 

0 

10 2 0 4 (25.64%) 0 0 0 

11 2 0 4 (25.64%) 0 0 0 

12 0 0 0 2 (81.46%) 0 4 (81.46%, 

25.64%) 
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Table 3.17 Summary of the diagnostic performance of sensor rankings for group 4, (incorrect diagnosis of some 

component failures) 

 
4a 4b 4c 4d 4e 4f 

Rank 1 wrong 

(~95%), 

followed by 

2 of 2 

(100%), 

inspect 3 

1 wrong 

(>80%), 

followed by 

2 of 2 

(~50%) 

inspect 3 

1 wrong 

(>80%), 

followed by 

1 wrong 

(~50%), 

followed by 

2 of 2 

(100%), 

inspect 4 

1 wrong 

(~95%), 

followed by 

1 (>50%), 

followed by 

delayed 

(~50%), 

inspect 3/4 

1 wrong, 

then wrong 

again, then 

wrong 

again, then 

2 of 2 

(100%), 

inspect 5 

wrong, 2 in 

4 right; 

if right: 1 in 

2, inspect 

3/4. 

if wrong: 1 

right, 

followed by 

1 in 2 right. 

inspect 4/5 

1 1 (95.84%) 0 0 0 0 0 

2 0 1 (91.68%, 

54.60%) 

1, (91.68%), 

(54.60%) 

0 0 0 

3 0 0 0 0 0 0 

4 1 (95.47%) 0 0 0 0 0 

5 0 0 1, (88.04%), 

(66.72%) 

2 (88.04%, 

66.72%, 

50.12%) 

0 0 

6 1 (95.47%) 0 0 0 0 0 

10 0 0 0 0 0 0 

11 1 (95.47%) 0 0 0 0 0 

12 0 0 0 0 1 (81.46%, 

41.63%, 

67.74%) 

4 (81.46%, 

41.63%) if 

2nd insp. 

right, 

(50.12%), if 

2nd insp. 

wrong 

(67.74%, 

50.12%) 

 

In Table 3.17, the final group, group 4, is presented.  It is undesirable to have any 

combinations of failures in group 4, as the actual component failure is not one of the 
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components with the highest probability of being in the failed state, resulting in an incorrect 

diagnosis.  Therefore, the combinations of sensors ranked 3rd and 10th are the most desirable 

for this group as they do not have any combinations of component failures that fall in to this 

group. 

In this group, the most desirable to have is group 4a, followed by 4b, as in both of these 

cases, only three components will need to be inspected when two components have failed.  This 

is better than a number of groups in group 2 and 3, such as, 2d, 2f, 2g, 3c and 3f, where four or 

five components may need to be inspected when only two components have failed.  Therefore, 

the combinations of sensors ranked 1st, 4th, 6th and 11th are the next best, but it can be concluded 

that having component failures in these groups is more desirable than in the groups listed 

above, 2d, 2f, 2g, 3c and 3f.   

Groups 4c and 4d may also require four components to be inspected, so are less desirable 

than groups 4a and 4b, and groups 4e and 4f may require up to five components to be inspected 

so are less desirable than groups 4c and 4d. 

For each of these groups, there was a ranking of sensor combinations that was determined 

to be the best, the combinations of sensors ranked 3rd, for groups 1, 3 and 4, and the 

combinations of sensors ranked 1st for group 2.  However, the difference between the two 

rankings were minimal for groups 1 and 3, with no additional inspections required.  Therefore, 

if the maximum number of inspections required for all of the combinations of component 

failures that fall into groups 2 and 4 is summed, the effect that group 2 has on the performance 

metric can be demonstrated.  This results in a maximum of 39 inspections for the combination 

of sensors ranked 1st, and 43 inspections for the combinations of sensors ranked 3rd.  The 4 

additional inspections result from the fact that more of the component failures have two 

possible failures that produce the same symptoms.  The difference in diagnostic term for the 

two combinations of sensors is small, as discussed earlier, and therefore the diagnostic term is 

more affected by this difference than the difference observed in groups 1 and 3, suggesting that 

the sensor combination ranked 1st is the best.  This also suggests that the sensor combinations 

ranked 2nd is 2nd best, with a maximum number of inspections for all of the combinations of 

component failures in groups 2 and 4 of 40 despite having two combinations of component 

failures in group 4 (where the failures are diagnosed incorrectly), i.e. in between the 39 that 

could be required for the combinations of sensors ranked 1st, and the 43 that could be required 

for the combinations of sensors ranked 3rd. 

This effect is more pronounced when comparing the combinations of sensors ranked 1st and 

12th which have a bigger difference in the diagnostic term.  In this case, the maximum number 
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inspections for all combinations of component failures is considered, which is equal to 66 for 

the combinations of sensors ranked 1st, and is equal to 116 for the combinations of sensors 

ranked 12th, a significant increase.  This demonstrates that the diagnostic term favours the 

combinations of sensors that are better at failure diagnosis. 

In the next section, an analysis of the methodology is given, along with an outline of 

potential improvements to the methodology that are then described in Chapter 4. 

 

3.5. Analysis of the Proposed Methodology 

The methodology consists of three steps, sensor selection, system modelling and fault 

diagnostics.  The sensor selection step is completed by using a performance metric, a measure 

of how well the sensor performs at its desired task, i.e. detecting faults and diagnosing failures.  

The maximum possible performance metric can be calculated initially, therefore removing the 

risk of the analyst looking for improvements that cannot be obtained, which will also prevent 

resources from being wasted, be it computational, or man-hours.  For example, for this system, 

without the knowledge of the maximum performance metric, combinations of five sensors 

could have been calculated unnecessarily, as the best result can be achieved by some 

combinations of four sensors. 

An observation that was made when applying the methodology to the example system was 

that the BBN model of the system could be used to aid the calculation of the performance 

metric.  It means that the metric could be calculated automatically using a computer script.  

This script could introduce component states to the BBN in the form of evidence, compile the 

network and record the resultant sensor readings, and the probability of the evidence 

introduced.  The computer script could repeat this process automatically for all considered 

combinations of component failures.  Using the recorded sensor readings, and probability of 

the evidence introduced, the performance metric could be calculated.  This process would be 

of particular use for complex systems with a large number of components, or a large number 

of component failure modes.  This will be completed in Chapter 4 of this thesis.  Note, when 

introducing component state evidence to the network using HUGIN Researcher, all 

components must have evidence introduced, not just the failed components, in order for the 

BBN to calculate the correct values.  This is because the sensor readings are dependent on all 

of the component states, and without evidence for all of the component states being introduced, 

the sensor readings will not always have 100% probability because the state of the component 

without evidence introduced could affect the state of the sensor reading. 
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A key benefit of the proposed methodology is that it is general, i.e. it can be applied to a 

large number of different types of systems.  For the performance metric, the requirements are 

that the symptoms of component failures must be observable using sensors, and the 

probabilities of the component failures must be known.  For the diagnostic process, a BBN can 

be constructed for any system, as long as it is acyclic, i.e. it does not have any loops in the 

system.  This is because BBNs must be acyclic as otherwise a node’s state will depend on its 

own state, producing an infinite loop of updating the probability of observing each of the node’s 

states. 

 

3.5.1. Sensor selection 

In section 3.2.4 of this thesis, it was suggested that the performance metric, given in 

Equation (3.4), should be used as a guide to reduce the number of sensor combinations 

considered, with the final selection of sensors based on individual terms.  The benefits of this 

process will be greater for larger systems than they are for this, relatively small, example 

system.  It gives the analyst better control over the selection of the sensors, and enables them 

to ensure that they get the sensor combination which suits the application best.  This process 

will also reduce the risk that a sensor combination that has one term significantly lower than 

desired is selected, resulting in a more suitable sensor combination. 

 

3.5.2. Modelling the system 

The system modelling technique, BBNs, produces a good representation of the example 

system, with each component state and sensor state included in it.  Each of the components and 

sensors are assigned a node in the network, so that they can each have evidence introduced to 

the model as desired.  The relationship between the components and sensors is controlled by 

the CPTs, with the desired sensor states output for the corresponding component states. 

The example system is a simple system, where partial failures, such as partial blockages 

and degraded pumps, are not considered and therefore the model does not account for these 

situations arising.  However, further failure models could be added, but it would increase the 

number of elements in the CPTs, increase the number of nodes in the network and therefore, 

result in a larger network.  As mentioned briefly in section 3.4.2, even for this relatively small 

system, the network is large, with approximately 1400 entries in the CPTs.  It highlights a 

potential scalability issue that may arise when the method is applied to significantly larger 
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systems.  When the BBN models cannot be scaled to model larger systems, alternative system 

modelling techniques must be considered, as discussed in Chapter 5. 

 

3.5.3. Fault diagnostics 

The fault diagnostic process was shown to successfully diagnose all of the component 

failures considered on the system.  However, in some cases, components were not diagnosed 

correctly initially, but the method required no more than one additional component to be 

inspected than was actually failed in order for the system to be returned to normal operating 

behaviour by repairing or replacing the failed components. 

One of the main benefits of using the BBN as the fault diagnostics model, is that the BBN 

software automatically outputs the probability that each component is in the failed state.  

Therefore, the analyst could set a threshold probability, such that any component which is 

above a certain probability of being in the failed state could be taken to the aircraft for repair, 

along with the component that is most likely to have failed.  This would reduce the risk of 

unnecessary down-time, but would also prevent large amounts of equipment being transported 

unnecessarily, when the probability of the components being failed is comparatively low.  For 

this example system, if the sensor reading combination produced is that of the first case (for 

example) in Table 3.1, both replacement components, pump P1 and valve V1, would be taken 

to the system for repair.  This is because if the current component cannot be repaired, it would 

result in a reduction of system downtime in comparison to taking the components to the system 

individually, and potentially taking the wrong component first. 

 

3.6. Summary 

In summary, this chapter proposes a methodology for sensor selection and system 

modelling for fault diagnostics.  The method is demonstrated by using an example system 

consisting of seven components: two pumps and five valves.  The sensor selection method 

entails using a newly developed performance metric, which details the sensors that are the best 

to use, based on their ability to detect faults and diagnose failures.  It also considers the effects 

that these failures have on the operation of the system.  It was suggested that the performance 

metric should be used to narrow down the number of combinations of sensors, and the best 

combination of sensors for the specific application should be selected based on the three 

individual terms. 
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A BBN-based system modelling technique was suggested, in order to be able to diagnose 

component failures using the selected sensors.  A BBN was constructed for the example 

system, with nodes for each of the components and sensors, and any other nodes, for some 

parts of the system, depending on its complexity, as required.  The model can have sensor 

readings introduced to the network in the form of evidence, and it is used to update the 

probability that each of the components have failed.  The component failures can then be 

diagnosed, and system operation can be restored to normal operating behaviour by repairing or 

replacing the failed components. 

There are a number of potential improvements to the methodology that are developed in 

Chapters 4, 5, and 6.  For example, the scalability of the methodology can be tested by applying 

it to a larger system.  This will require some automation, particularly for the sensor selection 

process, i.e. calculating the performance metric for each combination of sensors.  Another 

extension could be to consider a system that has multiple operation modes, as this process 

would enable more failure modes to be considered.  Finally, a phased mission could be 

modelled, with the aircraft moving through the different operation modes throughout a mission, 

such as take-off, cruise, fuel transfer and landing.  This process would enable component 

failures to be inserted into the mission at various times in the mission, with the sensor 

performance metric considering how quickly the failures can be detected and diagnosed. 
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 Application of the proposed 

methodology to a simplified aircraft fuel 

system 
 

 

In this chapter the methodology proposed in Chapter 3 is applied to a more complex system 

in order to determine its scalability.  In comparison to the simple system, analysed in Chapter 

3, a larger BBN model is constructed, and more component failures and sensors are considered 

for this system. 

This chapter begins by introducing a simplified aircraft fuel system, (note, that some of the 

simplifications of the system are later removed in Chapter 5 of this thesis).  A simplified aircraft 

fuel system is introduced in order to demonstrate that the scalability of the BBN is not suitable 

for systems that are significantly larger, and an alternative modelling technique is then 

presented in Chapter 5.  The simplifications include ignoring the redundant sections of the 

system and ignoring the operation modes that are not used frequently.  The next step describes 

the application of the methodology to the system, i.e. model the system, select the sensors, and 

diagnose component failures.  The chapter concludes with a discussion of the results of the 

application of the methodology to this system. 

 

4.1. System description 

The system introduced in this section can be found in Moir & Seabridge (2011).  This 

system is a “typical fighter aircraft” fuel system.  Therefore, it is not an accurate representation 

of any physical aircraft fuel system, but it has the main features of operation for this type of 

system.  Four different operation modes of the system are presented: engine feed, fuel transfer, 

fuel jettison, and refuel.  Each of these schematics are given in Figures 4.1 – 4.4, respectively.  

The engine feed operation mode is presented in Figure 4.1, the fuel transfer operation mode is 

presented in Figure 4.2, the fuel jettison operation mode is presented in Figure 4.3, and the 

refuel operation mode is presented in Figure 4.4.  In the figures, the dashed lines represent the 

path of the fuel round the system in each of the operation modes. 

Each of the operation modes is active during different phases of the mission, and each mode 

is intended to complete a different task.  For example, during the engine feed operation mode, 
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fuel should be supplied to the engine and this process occurs during the flight.  During the fuel 

transfer operation mode, fuel should be transferred from the wing tanks to the fuselage tanks, 

where it can then be supplied to the engine.  The system is in this operation mode when the 

aircraft is in the cruise phase of the mission, and the fuel level in the fuel tanks becomes lower 

than a set limit.  This process will, therefore, replenish the engine supply tanks.  The fuel 

jettison operation mode should only be activated in emergency situations.  This operation mode 

jettisons fuel from the system when an emergency landing is required, and is activated in order 

to bring the aircraft weight down to a safe landing weight.  The final operation mode, refuel, is 

normally active before the aircraft takes off (although it can be active mid-flight for some 

aircraft), during which the tanks are refilled from an external source so that the aircraft can start 

a new mission, or complete the current mission. 

 

 

 

 

Figure 4.1 Schematic of the fuel system in engine feed mode from Moir & Seabridge (2011) 
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Figure 4.2 Schematic of the fuel system in the fuel transfer operation mode from Moir & Seabridge (2011) 

 

 

Figure 4.3 Schematic of the fuel system in the fuel jettison operation mode from Moir & Seabridge (2011) 
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Figure 4.4 Schematic of the fuel system in the refuel operation mode from Moir & Seabridge (2011) 

 

In the schematics, there are four types of components, with multiple components of each 

type in the system.  The four types of components are booster pumps , transfer pumps , 

valves  and one-directional valves  (1D valves).  “DC” shows that the pumps require a 

DC power supply and for simplicity the DC power supply is not considered in this work. 

Booster pumps are used to supply fuel to the engine, whereas transfer pumps are used to 

transfer fuel from one tank to another.  The valves (two-directional and one-directional) are 

used to control the flow of fuel around the system.  When the two-directional valves are open, 

they will allow the fuel to flow in either direction, and no fuel can pass when the valves are 

closed or blocked.  The one-directional valves allow the flow in one direction only, which is 

the direction of the point of the triangle, as shown in Figure 4.4.  Note, that one-directional 

valves can fail blocked, i.e. fuel cannot pass through in either direction, and can fail open, i.e. 

fuel can pass through in both directions and does not prevent the flow of fuel in the opposite 

direction to which it is desired.  For the analysis, all of the components in the system are 

labelled in Figure 4.5 with descriptions of the components given in Table 4.1. 
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Table 4.1 Component descriptions for the components in the fuel system 

Type Symbol Description Name Number 

Transfer 

pump 

 Transfer Pump Left wing Top TPLT 1 

Transfer Pump Left wing Bottom TPLB 2 

Transfer Pump Right wing Top TPRT 3 

Transfer Pump Right wing Bottom TPRB 4 

Transfer Pump Forward Fuselage TPFF 5 

Transfer Pump Rear Fuselage TPRF 6 

Booster 

Pump 

 Booster Pump Forward fuselage Left BPFL 7 

Booster Pump Forward fuselage Right BPFR 8 

Booster Pump Rear fuselage Left BPRL 9 

Booster Pump Rear fuselage Right BPRR 10 

Valve  Refuel Valve Left Wing RVLW 11 

Refuel Valve Right Wing RVRW 12 

Refuel Valve Forward Fuselage RVFF 13 

Refuel Valve Rear Fuselage RVRF 14 

Transfer Valve Forward Fuselage TVFF 15 

Transfer Valve Rear Fuselage TVRF 16 

Left Dump isolate Valve LDV 17 

Right Dump isolate Valve RDV 18 

Dump Valve DV 19 

Cross-feed Valve CV 20 

Refuel Point Valve RPV 21 

Left Low-Pressure cock LLP 22 

Left High-Pressure cock LHP 23 

Right Low-Pressure cock RLP 24 

Right High-Pressure cock RHP 25 

Tank Interconnect Valve TIV 26 

1D Valve  One-directional Valve Left NVL 27 

One-directional Valve Right NVR 28 
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Figure 4.5 Schematic of the fuel system with the components numbered 

 

Since the system has multiple operation modes, its components can be in a number of 

working (and failed) states.  For example, in the fuel transfer operation mode, a transfer pump 

should be on, transferring fuel to a fuselage tank, but in the engine feed operation mode, it 

should be off, not transferring fuel to a fuselage tank.  Alternatively, in the fuel jettison 

operation mode, the dump valve should be open, allowing fuel to pass through it and exit the 

system, but in the other operation modes, it should be closed, not allowing fuel to pass through 

it.  Therefore, multiple component failure modes can occur, for example, pumps fail on, pumps 

fail off, valves fail open, and valves fail closed.  This is an additional level of complexity 

considered in comparison to the simple system discussed in Chapter 3.  The working states of 

the components in each operation mode are summarised in Table 4.2. 

There are a number of components in this system that are redundant.  For example, there 

are ten pumps, four of which are secondary pumps, such as TPLB, TPRB, BPFR and BPRR, 

which are only used if the primary pump has failed.  Therefore, if there are primary pump 

failures present on the system, none of these pumps are on.  However, in the fuel jettison 

operation mode, BPFR and BPRR are operational at the same time as BPFL and BPRL so that 

fuel can be jettisoned from the system as quickly as possible. 
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Table 4.2 Component normal working state for each operation mode 

Component Working state for each operation mode 

Name Number Engine Feed Fuel Transfer Fuel Jettison Refuel 

TPLT 1 Off On Off Off 

TPLB 2 Off Off Off Off 

TPRT 3 Off On Off Off 

TPRB 4 Off Off Off Off 

TPFF 5 Off Off Off Off 

TPRF 6 Off Off Off Off 

BPFL 7 On Off On Off 

BPFR 8 Off Off On Off 

BPRL 9 On Off On Off 

BPRR 10 Off Off On Off 

RVLW 11 Closed Closed Closed Open 

RVRW 12 Closed Closed Closed Open 

RVFF 13 Closed Closed Closed Open 

RVRF 14 Closed Closed Closed Open 

TVFF 15 Open Open Open Closed 

TVRF 16 Open Open Open Closed 

LDV 17 Closed Closed Open Closed 

RDV 18 Closed Closed Open Closed 

DV 19 Closed Closed Open Closed 

CV 20 Closed Closed Closed Closed 

RPV 21 Closed Closed Closed Closed 

LLP 22 Open Open Open Closed 

LHP 23 Open Open Open Open 

RLP 24 Open Open Open Closed 

RHP 25 Open Open Open Open 

TIV 26 Closed Closed Closed Closed 

NVL 27 Open Open Open Open 

NVR 28 Open Open Open Open 
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Other components, TPFF, TPRF, CV, and TIV, are also redundant components.  These 

components are only to be used if the other components that are used to transfer fuel in the fuel 

transfer operation mode have failed in the system.  This is used to enable the transfer of fuel 

around the system, when there are component failures that result in fuel not being transferred 

to the fuselage tanks as desired (i.e. TPLT off, TPRT off, TPLB off, TPRB off, TVFF closed 

and TVRF closed).  As a result these components are always in the off/closed state in Table 

4.2, (with the exception of BPFR and BPRR in the fuel jettison operation mode, as discussed 

before).  Note, it is assumed that if a component fails and there is a secondary or redundant 

component to do the same task, then the secondary or redundant pump, or valve, will 

automatically activate or open respectively.  This occurs in order for the system to function as 

normal if it is possible to do this using the redundant components, i.e. the fuel will still be 

supplied to the engine, or transferred to the fuselage tanks as desired. 

In order to calculate the performance metric, and to be able to diagnose the component 

failures in the system, each component failure needs a probability assigned to it.  As there is 

no available data on component reliabilities, the values are assumed to be those presented in 

Table 4.3.  Note, these values are higher than they would normally be, but the actual values do 

not matter, it only matters that there is a realistic ratio between the component failure 

probabilities.  The table summarises the probability of being in the working and failed states 

for each type of component.  The second column in this table gives the desired state for the 

component, which corresponds to the types of states the components are required to be in across 

the different operation modes, given in Table 4.2. 

The probabilities of each component failure mode are also required to determine when the 

system is critical for each operation mode.  The component failures that are critical are different 

for each operation mode.  For example, for the engine feed operation mode, the critical system 

failure occurs if there is no fuel supplied to both engines, or if fuel is exiting through the dump 

valve.  For the fuel transfer operation mode, the critical failure occurs if no fuel is transferred 

from both of the wing tanks to the respective fuselage tanks, or if fuel is exiting through the 

dump valve.  For the fuel jettison operation mode, the critical failure occurs if no fuel is 

jettisoned from the system.  For the refuel operation mode, the critical failure occurs if any of 

the tanks are not refilled. 

The minimal cut sets for each of the operation modes can be determined by considering 

which combinations of component failures cause the system to fail, i.e. what combination of 

component failures have to occur to cause the system to fail.  For example, what combination 

of component failures have to occur in order for there to be no supply of fuel to the engines. 
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The minimal cut sets for the engine feed operation mode are: 

• {LLP closed, RLP closed} 

• {LHP closed, RLP closed} 

• {LLP closed, RHP closed} 

• {LHP closed, RHP closed} 

• {LDV open, DV open} 

• {RDV open, DV open} 

• {BPFL off, BPFR off, RLP closed} 

• {BPFL off, BPFR off, RHP closed} 

• {BPRL off, BPRR off, LLP closed} 

• {BPRL off, BPRR off, LHP closed} 

• {BPFL off, BPFR off, BPRR off, BPRL off} 

 

The minimal cut sets for the fuel transfer operation mode are: 

• {TVFF closed, TVRF closed} 

• {TPLT off, TPLB off, TVFF closed} 

• {TPRT off, TPRB off, TVRF closed} 

• {NVL open 2 way, RPV open, DV open} 

• {NVR open 2 way, RPV open, DV open} 

• {TPLT off, TPLB off, TPRT off, TPRB off} 

 

The minimal cut sets for the fuel jettison operation mode are: 

• {DV closed} 

• {LDV closed, RDV closed} 

• {BPFL off, BPFR off, RDV closed} 

• {BPRL off, BPRR off, LDV closed} 

• {BPFL off, BPFR off, BPRL off, BPRR off} 

 

The minimal cut sets for the refuel operation mode are: 

• {NVL closed} 

• {NVR closed} 

• {RVLW closed} 
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• {RVRW closed} 

• {RVFF closed} 

• {RVRF closed} 

 

Table 4.3 Component state probability 

Component 

type 

Desired 

state 

Component states and their probabilities 

Valve 
- 

Working 

Open 

Failed 

Open 

Failed 

Closed 

Working 

Closed 

Working 

Open 

0.998 0.001 0.001 0 

Working 

Closed 

0 0.001 0.001 0.998 

Pump 
- 

Working 

On 

Failed 

On 

Failed 

Off 

Working 

Off 

Working 

On 

0.990 0.005 0.005 0 

Working 

Off 

0 0.005 0.005 0.990 

1D Valve 
- 

Working 

(1 way) 

Failed open 

(2 way) 

Failed 

(Closed) 

 

Working 

(1 way) 

0.991 0.008 0.001  

 

In order to be able to detect the faults and diagnose component failures, flow sensors need 

to be positioned on the system.  There are 33 possible sensor locations, which are shown in 

Figure 4.6, where a sensor is placed next to each component.  Note, the sensors do not affect 

the flow of fuel through the system, only measure the flow of fuel through the system.  These 

sensors are numbered from S1 to S29, with the remaining four sensors numbered, S1a, S12a, 

S15a and S16a, respectively.  These four sensors are positioned next to the secondary pumps 

in the system, and the corresponding primary pump has a sensor, numbered in the same way, 

i.e. S1, S12, S15 and S16.  For example, the primary pump TPLT has sensor S1 positioned 
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next to it, and the corresponding secondary pump, TPLB, has sensor S1a positioned next to it.  

The reason for this is presented in the next section of this chapter, section 4.2. 

 

 

Figure 4.6 Schematic of the fuel system with sensor locations labelled 

 

The state of sensor readings for each of the operation modes are given in Table 4.4.  As 

before, the sensor readings represent the system in a steady state, i.e. when all the effects of the 

component failures have stabilised.  Only the sensor readings for normal operating behaviour 

have been included in this table, because of the number of different component failures that 

can occur for this larger system.  The sensor readings for all of the individual component 

failures for the engine feed and the fuel transfer operation modes are presented in Tables D.1 

and D.2 in Appendix D, respectively.  A full table of all considered component failures 

(individual failures and combinations of 2 component failures), like the ones presented in Table 

3.1 is not given, as there are approximately 1600 combinations per operation mode.  As in the 

simple system example, the pumps supply a standard amount of fuel to the system, “1”, when 

pipes are empty the sensors read “E”, and when there is no flow of fuel but the pipes have fuel 

in them the reading is “N”.  Note, for valves in the centre of the system, such as NVL, NVR, 

LDV, and RDV, flow of fuel from the centre outwards is positive, e.g. “1”, and for valve RPV, 
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flow from the top of the schematic downwards is positive, with the opposite being negative in 

each case, e.g. “-1”.  The refuel rig is assumed to supply fuel to the system at twice the rate that 

the pumps supply fuel to the engines.  In reality, this value is likely to be significantly higher, 

but it is assumed to be of this value for simplicity. 

 

Table 4.4 Sensor readings for each operation mode 

Operation 

mode 

S1 S1a S2 S3 S4 S5 S6 S7 S8 S9 S10 

Engine feed E E E E E E E E E E E 

Fuel transfer 1 N N N 1 N E E N N 1 

Fuel jettison E E E E E E E E E E E 

Refuel N N 1 1 N 1 1 1 1 1 N 

Continued… 

Operation 

mode 

S11 S12 S12a S13 S14 S15 S15a S16 S16a S17 S18 

Engine feed E E E E E 1 N 1 N N E 

Fuel transfer N 1 N E E E E E E E E 

Fuel jettison E E E E N 1 1 1 1 -1 -1 

Refuel 1 N N N E E E E E E E 

Continued… 

Operation 

mode 

S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 

Engine feed E N E 1 1 1 1 E E N N 

Fuel transfer E E E E E E E E E E E 

Fuel jettison -1 -1 2 1 1 1 1 E E N N 

Refuel E E E E E E E E E E E 

 

The sensor readings in Table 4.4, like with Table 3.1, can be determined by considering the 

supply of fuel to the system from the pumps, and what paths the fuel can and cannot take in 

order to pass into the tanks or engines.  The flow of fuel through each of the sensors is 

determined, hence producing the sensor readings presented in the table.  Information provided 

by other sensors is not required to determine the sensor readings for each sensor, resulting in 
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the same sensor readings produced by a particular sensor regardless of whether there are other 

sensors positioned on the system or not. 

Also, as in Chapter 3, the sensor readings can be produced automatically by using a model 

of the system to represent the different component failures that can occur.  This model is 

presented in section 4.3 of this thesis, and it produces the same sensor readings as given in the 

table, and in Tables D.1 and D.2 from Appendix D. 

In the next section a number of simplifications are applied to this system in order to increase 

the complexity of the system gradually, as the scalability of the methodology is investigated.  

The discussed simplifications are re-introduced to the system in Chapter 5 in order to 

demonstrate the scalability of the alternative modelling technique presented in Chapter 5. 

 

4.2. Simplifications 

A number of simplifications are applied to the system, the first of which is that two of the 

system operation modes are removed and no longer considered.  The two operation modes that 

are ignored are the fuel jettison and the refuel operation modes.  The fuel jettison operation 

mode is ignored because it would only be activated in an emergency, and is therefore not very 

common, and when it is activated, a failure will most likely have already been detected in 

another operation mode.  The refuel operation mode is ignored because in the refuel process it 

should be possible to detect a problem via the refuel rig.  If the refuel rig does not output the 

expected amount of fuel, it is clear that there has been a component failure, or a failure of the 

refuel rig.  In addition, this failure would occur whilst the aircraft is on the ground, minimising 

the corresponding risk.  Therefore, these two operation modes are not considered for this 

system as the failures would be detected in other operation modes, or by external sources. 

The next simplification that is applied to the system is to ignore the redundant components, 

outlined in the previous section.  These components are the secondary pumps, such as TPLB, 

TPRB, BPFR, and BPRR, which are off in the two chosen operation modes, and other 

components that are used to move fuel around the system when there has been a component 

failure, i.e. TPFF, TPRF, CV, and TIV, are also off (for pumps) or closed (for valves) in the 

two chosen operation modes.  Removing these eight components from the system, considerably 

reduces the number of combinations of component states that can occur for each operation 

mode, down to approximately 800 for individual component failures and combinations of two 

component failures.  The redundant components are only used if there has been a related failure 

in the system, but if they are active when they should not be, it is unlikely that they will have 
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a negative effect on the system.  This is because these components are designed to move the 

fuel around the system when it is not possible to do so normally, and therefore moving fuel 

around the system using the redundant components as well as the normal components is 

unlikely to be critical to the systems performance.  The only combination that could result in 

the system being critical is if TIV and either TPFF or TPRF failed, as this could result in the 

fuel level in one of the fuselages dropping too low to supply fuel to the engine when desired.  

However, the system could be prevented from becoming critical by opening the cross-feed 

valve and supplying both engines from the one tank.  The reduced set of components is given 

in Table 4.5, in the same format as Table 4.1.  Note, the components are re-numbered. 

 

Table 4.5 Component descriptions for the components in the fuel system 

Type Symbol Description Name Number 

Transfer 

pump 

 Transfer Pump Left wing Top TPLT 1 

Transfer Pump Right wing Top TPRT 2 

Booster 

Pump 

 Booster Pump Forward fuselage Left BPFL 3 

Booster Pump Rear fuselage Left BPRL 4 

Valve  Refuel Valve Left Wing RVLW 5 

Refuel Valve Right Wing RVRW 6 

Refuel Valve Forward Fuselage RVFF 7 

Refuel Valve Rear Fuselage RVRF 8 

Transfer Valve Forward Fuselage TVFF 9 

Transfer Valve Rear Fuselage TVRF 10 

Left Dump isolate Valve LDV 11 

Right Dump isolate Valve RDV 12 

Dump Valve DV 13 

Refuel Point Valve RPV 14 

Left LP cock LLP 15 

Left HP cock LHP 16 

Right LP cock RLP 17 

Right HP cock RHP 18 

1D Valve  One-directional Valve Left NVL 19 

One-directional Valve Right NVR 20 
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Figure 4.7 and Table 4.6, are restatements of Figure 4.5 and Table 4.2 respectively, with 

the reduced number of components. 

 

 

Figure 4.7 Schematic of the fuel system with the components numbered, for the engine feed operation mode 

 
 

A consequence of reducing the number of components considered in the system is that 

some sensors are no longer required.  This is because some of the sensors will never be able to 

measure the flow of fuel, they will only measure whether there is fuel in the pipe or not.  The 

sensors that can therefore be removed, are the sensors next to the ignored components, i.e. S1a, 

S12a, S15a, S16a, S26, S27, S28 and S29.  This reduces the number of sensors that can be used 

on the system from 33 to 25 sensors.  The schematic with the reduced number of sensors is 

given in Figure 4.8.  The sensor readings for each of the 25 sensors are the same as those for 

each operation mode in Table 4.4.  This is because none of the removed components are used 

in normal operating conditions for the chosen operation modes, as previously stated. 
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Table 4.6 Component working state for each operation mode 

Component Operation mode normal working state 

Name Number Engine Feed Fuel transfer 

TPLT 1 Off On 

TPRT 2 Off On 

BPFL 3 On Off 

BPRL 4 On Off 

RVLW 5 Closed Closed 

RVRW 6 Closed Closed 

RVFF 7 Closed Closed 

RVRF 8 Closed Closed 

TVFF 9 Open Open 

TVRF 10 Open Open 

LDV 11 Closed Closed 

RDV 12 Closed Closed 

DV 13 Closed Closed 

RPV 14 Closed Closed 

LLP 15 Open Open 

LHP 16 Open Open 

RLP 17 Open Open 

RHP 18 Open Open 

NVL 19 Open Open 

NVR 20 Open Open 
 

 

Figure 4.8 Schematic of the fuel system with the sensor locations labelled for the engine feed operation mode 
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In the next section, a full summary of the assumptions is presented. 

 

4.2.1. Summary of assumptions 

• Each component has up to two working states and up to two failure modes.  Pumps can 

supply a fixed quantity of fuel (represented by “1”), (working on or failed on), or supply 

no fuel, (working off or failed off), and valves can either let all fuel pass through without 

restriction (i.e. no resistance), (working open or failed open) or let no fuel pass through, 

(represented by “0”), (working closed or failed closed).  One-directional valves can 

allow flow to pass through in one direction, (working one way), two directions, (failed 

two way), or not at all, (failed closed).  There can be no supply of fuel other than “1” 

or “0”, and no partial blockages of valves are modelled. 

• There are two operation modes considered, engine feed and fuel transfer. 

• The probabilities of each component being in each state for each operation mode are 

summarised in Table 4.3. 

• Only up to two component failures can occur at the same time, i.e. combinations of 

three or more component failures are not considered. 

• No redundant sections on the system are considered. 

• The flow rate of fuel is constant throughout the system, i.e. the same quantity of fuel 

supplied to the system per time interval must also exit the system via an engine or into 

a tank per time interval.  Therefore, there is no resistance to the flow of fuel by any of 

the components, connecting pipes or the drain, i.e. the pipes and the drain cannot be 

blocked. 

• When the pipe line splits in two, the fuel will split equally along all the clear lines, i.e. 

the lines that do not have any blocked valves in them. 

• The fuel will exit the system at equal rates through all available paths. 

• All sensor readings are measured when the system is operating in the steady state, i.e. 

the flow of fuel has stabilised after the occurrence of component failures. 

• The sensors are perfectly reliable, they cannot fail and they always measure the flow of 

fuel correctly. 

• The sensors can distinguish between the line being empty (“E”), and, therefore, no flow 

of fuel is present, and also the line being full, but still no flow of fuel (“N”). 



 

104 
 

• System failure is defined as when there is no supply of fuel to either of the engines in 

the engine feed operation mode, and when there is no transfer of fuel to the fuselage 

tanks in the fuel transfer operation mode. 

 

The proposed system modelling and sensor selection methodology can now be applied to 

the system, and will be presented in the following sections. 

 

4.3. Modelling the system 

As suggested in section 3.5 of this thesis, a BBN model of the system is produced before 

the sensor selection process takes place, as the BBN can be used to automate the performance 

metric calculation.  As before, the BBN is constructed using the software, “HUGIN 

Researcher”. 

 

4.3.1. BBN development 

The methodology outlined in section 3.3 of this thesis is applied and the complete BBN is 

given in Figure 4.9. 

As the BBN consists of a large number of nodes, it is not possible to view all the 

relationships between the nodes in one figure, therefore, the relationships between the nodes in 

the network are presented in Appendix F, Figures F.1 to F.28.  The method normally begins by 

introducing nodes for each of the components in the system.  However, in this case, as the 

component state is dependent on the operation mode of the system, an additional node, which 

is the parent node of all the component nodes, is required.  This node is the “operation mode” 

node at the top of Figure 4.9.  The CPT for the operation mode node can be completed by 

considering the duration and the criticality of each mode.  However, as the system is considered 

in the two operation modes individually, the values in this CPT do not matter.  The CPTs for 

the component nodes can be completed by using the probabilities given in Table 4.3 for the 

desired states of the components given in Table 4.6.  The CPTs for the components are 

presented in Tables E.1 – E.5 in Appendix E. 

These component nodes can then be connected to several intermediate nodes, which are the 

next set of nodes to be introduced in to the network.  As the system is quite complex, there is 

a relatively large number of intermediate nodes.  The intermediate nodes in this network can 

be grouped into three groups: exits, supply, and supply per exit.  The exits group of intermediate 



 

105 
 

 

Figure 4.9 BBN of the aircraft fuel system 
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nodes groups all components that can let fuel pass into one of the tanks, into the engines, or 

out of the system.  There are multiple exit intermediate nodes, one for each section of the 

system, as well as for combinations of sections of the system grouped together.  For example, 

an intermediate node representing a section of the system is ELE (exit left engine), and an 

example of an intermediate node that considers a group of sections of the system together is 

EBFW (exit bottom from wings).  This node groups the exits for the engines and the dump 

valve together, and considers whether RPV is open and fuel from the top of the system can 

pass through one of the exits.  There are multiple supply intermediate nodes, and they consider 

how much fuel is supplied to the system by the pumps.  For example, SFRWTE (supply from 

right wing to elsewhere) considers whether the fuel supplied from the pumps in the right wing 

can exit the system elsewhere in the system (i.e. whether the fuel can pass out of the right 

wing).  As with the exit nodes, some of the supply nodes consider supply from multiple sections 

of the system.  An example of one of these nodes is SFWTCT (supply from wings to centre 

top) and considers whether the fuel in each wing can pass into the centre of the system, i.e. in 

the area between NVL, NVR and RPV.  The final group of intermediate nodes, supply per exit, 

determines how much fuel is supplied per exit that the fuel can pass through.  Therefore, these 

nodes can be used to determine what the sensor readings are.  An example of a node in this 

group is FOLE (fuel out left engine), which considers the amount of fuel that is in the system, 

and the number of exits from the system the fuel can pass through.  This will, therefore, result 

in the amount of fuel that is supplied to the left engine.  For some sensors, it is not important 

to know where the supply of fuel is coming from and where else it is exiting the system, just 

how much fuel is supplied and the number of exits available.  For example, for the FOLE node 

(fuel out left engine), it does not matter which valve the fuel is exiting the system from in the 

wings, it just matters how many exits there are that the fuel will exit the system (as the fuel 

splits equally between all available exits).  Using this information, the fuel passing through the 

sensors, and, therefore, the sensor readings, can be determined. 

The next step is to introduce nodes for each of the sensors, the row towards the bottom of 

the figure.  These nodes can be connected to the intermediate nodes as required, in order to 

determine the sensor readings.  However, unlike in the example system discussed in Chapter 3 

of this thesis, there is a large number of potential sensor readings for each of the sensors.  For 

example, there are 9 exits in the system and a maximum supply of fuel to the system of 4, and 

therefore any fraction of fuel with a numerator up to 4 and a denominator up to 9 can pass 

through each of the sensors positioned next to each of the exits.  For each possible sensor 

reading, a state is required for the sensor node.  This would, therefore, increase the number of 
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the entries in the CPTs for these sensor nodes dramatically.  As a result of this, some of the 

sensor readings were grouped into ranges.  For sensors positioned next to pumps, the flow 

sensor can measure three readings: “E”, “1”, and “N”, where “1” is the normal amount of fuel 

to be supplied by a pump, as outlined earlier.  For sensors positioned next to valves, the sensor 

readings are: “E”, “<1” (i.e. the flow of fuel is less than the normal value), “1” (i.e. the normal 

amount of fuel to pass through the valve), “>1” (i.e. the flow of fuel is greater than the normal 

value), and “N”.  The only exception to this is S21, which has the middle three sensor readings, 

(<1, 1, and >1) grouped together, as for the considered operation modes, there is no “normal” 

amount of fuel to pass through the valve as DV should always be closed in the two considered 

operation modes.  Finally, the sensors which are positioned next to valves that can have fuel 

flowing through in both directions, have the sensor readings, “E”, “+ve” (i.e. all the rates of 

flow of fuel from the centre of the system outwards, or downwards for S13 and S14 grouped 

together), “–ve” (i.e. all the rates of flow of fuel inwards towards the centre of the system, or 

upwards for S13 and S14 grouped together), and “N”.  Note, the sensors positioned next to 

NVL and NVR, fall into this last category as they can fail allowing flow in either direction. 

There are two additional sections in this network that were not discussed in the 

methodology presented in section 3.3 of this thesis.  These sections are introduced because in 

addition to failure diagnostics, this BBN is to be used to calculate the performance metric.  The 

first of these sections is a section that contains nodes to determine whether the system is critical 

for each combination of component failures, to be used for the calculation of the criticality term 

of the performance metric.  This mode considers the states of each of the components and 

determines whether the system is critical or not. 

The second additional section is a series of fault nodes, which output the probability that 

there is a fault in the system based on the sensor readings.  This can be used during the 

diagnostics process to check whether there has been a component failure in the system, rather 

than having to check all the sensor readings for a deviation.  These nodes are not required in 

the network, they are supplementary nodes to make it easier to tell whether there has been a 

component failure during manual inspection of the network, such as when checking whether 

the network has been constructed correctly. 

 

4.3.2. Discussion 

As in the example system discussed in Chapter 3, the BBN is able to represent the flow of 

fuel throughout the system.  However, in this situation, due to the size of the network, the 
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sensor readings have been grouped into ranges, therefore reducing the accuracy of the model.  

This process also reduces the accuracy of the fault diagnostic process, illustrated in section 4.5.  

It is possible to include a state for every sensor reading, but the network would become large. 

Even with this grouping of sensor readings, the total number of elements in the CPTs is 

approximately 80,000, which is comparatively large, as the example system discussed in 

Chapter 3, which contains 7 components and 11 sensors, has approximately 1400 elements in 

the CPTs.  However, the introduction of intermediate nodes has dramatically reduced the 

number of elements in the network.  For comparison, the same system was modelled 

independently using significantly fewer intermediate nodes in the network, 10 instead of 63, 

and the number of elements in the CPTs in this network was approximately 10,000,000.  This 

network is given in Figure 4.10.  For clarity, in this section, Figure 4.9 will be referred to as 

“network A” and Figure 4.10 will be referred to as “network B”.  In the following sections, 

network B will not be referred to unless explicitly stated, and therefore, “the network”, or “the 

BBN” will refer to network A. 

As with Figure 4.9, the BBN consists of a large number of nodes, and it is therefore not 

possible to view all the relationships between the nodes in one figure.  Therefore, the 

relationships between the nodes in the network are presented in Appendix F, Figures F.29 to 

F.33. 

Network B in Figure 4.10 consists of 69 nodes, in comparison to the 122 nodes in network 

A.  Network B represents the same system as network A, but instead of multiple levels of 

intermediate nodes, just one level of intermediate nodes is used in network B, with a few extra 

intermediate nodes included for specific purposes.  If the intermediate nodes in network B are 

compared to the intermediate nodes in network A, the intermediate nodes, ETS and EBS, are 

the exits in the top section (i.e. wings and fuselages) and bottom section (i.e. engines and dump 

valve), respectively.  The intermediate node SF considers the supply in the system, and the 

intermediate node PTC considers the paths along which the fuel can pass through the system.  

Using these four nodes (and in some cases a couple of component nodes), the fuel passing 

through any sensor in the system can be determined.  These four nodes provide the same 

information as all the intermediate nodes in network A, but the intermediate nodes in network 

A are separated into more nodes, in order to consider smaller sections of the system and result 

in smaller CPTs. 

Both networks execute in similar times i.e. the introduction of additional intermediate 

nodes does not slow the execution of the network.  As expected, the networks do take 

significantly longer to execute than the network for the system discussed in Chapter 3. 
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Figure 4.10 BBN of the aircraft fuel system with fewer intermediate nodes 
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However, this simplified system is still comparatively small for an aircraft fuel system.  

Therefore, it is likely that the BBN method used to model the system may not be suitable for 

modelling on significantly larger systems, and an alternative methodology may need to be 

considered, as discussed in Chapter 5.  However, if a BBN is not used to model the system, an 

alternative fault diagnostic technique will need to be developed, which is also presented in 

Chapter 5. 

 

4.3.2.1. Verification of the BBN 

In order to ensure that the BBN is modelling the system correctly, the network needs to be 

verified.  This is to ensure that the sensor readings are produced correctly for each considered 

combination of component failures.  As the CPTs for each of the nodes are manually entered, 

and the CPTs contain a lot of elements, it is inevitable that errors arise, often simply due to 

mistyping.  For example, some could have the wrong state selected for the particular set of 

parent states, or some could have two states selected when only one can be selected. 

The verification of the network can be completed using three methods.  The first of these 

methods is to compare the sensor readings produced by the BBN (network A) for each of the 

combinations of component failures, with the sensor readings produced by network B for the 

same combination of component failures.  If the two sets of sensor readings do not match, then 

there is an error in one or both of the networks, and the CPTs for the corresponding nodes must 

be inspected in order to find the errors.  Note, the error may be in one of the parent nodes’ 

CPTs, which would then be inspected if an error is not found in the nodes’ CPT. 

The second verification technique is to introduce evidence to the BBN that the sensor 

produces a specific reading and then studying the sensor readings of the other sensors in the 

system.  This can highlight errors in the CPTs when combinations of sensor readings occur that 

are impossible.  For example, if sensor S17 indicates fuel is moving through it, i.e. “+ve” or “–

ve”, but sensor S18 does not, there is an error in the CPTs as they should be the same if there 

is fuel passing through.  Alternatively, if sensor S1 indicates that there is fuel in the pipe, but 

sensor S2 indicates that there is no fuel in the pipe, there is an error in the CPTs as they are 

both situated in the same pipe. 

The final verification technique is to manually determine what the sensor readings should 

be for each combination of component failures, and compare them with the sensor readings 

produced by the BBN for the same combination of component failures. 
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By applying the three verification techniques, the network should produce the correct 

sensor readings for each of the considered combinations of component failures and the network 

can be relied upon for modelling the system.  Note, there may be further minor errors in the 

system that would only become apparent when combinations of three or more component 

failures are considered, but these should not significantly affect the performance of the model 

for this application, as these component failures are not considered in this study. 

In the next section, the best combination of sensors is selected using the BBN model to 

automatically calculate the performance metric. 

 

4.4. Sensor selection 

As with the example system discussed in Chapter 3, all combinations of one and two 

component failures are considered for each operation mode.  Also as before, a combination 

with one component failure is defined as one component has definitely failed (the probability 

of failure is 1), and all other components have definitely not failed (the probability of failure is 

0), and a combination with two component failures is defined as two components have 

definitely failed, and all other components have definitely not failed.  No situations with more 

failures are considered due to their low probability of occurrence and the large number of 

combinations.  The probabilities of each event are equal to the probability of the failed 

components being in the corresponding failure mode (as shown in Table 4.3), multiplied by the 

probability of all the other components being in the working state. 

As there are a large number of combinations of component failures considered, 

approximately 800 per operation mode, it is desirable to automate the sensor selection process.  

Also, as there are significantly more considered sensors, 25 sensors instead of 11 sensors as 

used on the system in Chapter 3, the number of combinations of sensors is also significantly 

higher, with approximately 15,000 combinations with 1, 2, 3 and 4 sensors, with it increasing 

exponentially, (approximately 53,000 combinations with 5 sensors, approximately 177,000 

combinations with 6 sensors), after that up until half the maximum number of sensors, where 

the number of combinations decreases again, according to the formula presented in Equation 

(4.1), where r is the number of sensors selected and n is the total number of sensors.   

 

(
𝑛

𝑟
)  =  

𝑛!

𝑟! (𝑛 −  𝑟)!
 (4.1) 
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In addition to this, the number of different sensor reading combinations also increases.  For 

example, if there is a combination of three sensors, each with three different sensor readings, 

the maximum number of different combinations of sensor readings is 27 (33).  However, if 

there is a combination of five sensors, each with three sensor readings, the maximum number 

of different combinations of sensor readings is 243 (35), which is a significant increase.  Note, 

it is unlikely that every single possible combination of sensor readings will be produced and, 

therefore, the actual number of different combinations of sensor readings is lower than this. 

Therefore, a C++ script was written in order to automatically produce the sensor readings 

for all the combinations of component failures used in the BBN, and then use these sensor 

readings to automatically calculate the performance metric for each combination of sensors.  

The next section outlines this C++ script. 

 

4.4.1. Automating the sensor selection 

The C++ script uses the BBN model of the system in order to determine the sensor readings 

for component states.  To do this, three input text files are required, the first of which is a list 

of the sensors in the system.  It provides the C++ script with the information that it needs to 

determine which nodes in the network correspond to the sensors in the system.  The benefit of 

using this input file, is that if some sensors are to be omitted for an external reason, such as 

their reliability or cost, they can be removed from the input file, and no modifications are 

required in the code.  The second input file is a list of the components in the system.  It provides 

the C++ script with the information that it needs to determine which nodes in the network 

correspond to the components in the system.  The final input file is the component state 

combinations, the states of each of the components for all combinations of considered 

component failures (one or two failures).  There are two versions of this file, one for each 

operation mode because the working state for some components is different for each operation 

mode.  These files consist of approximately 800 lines, one for each combination of component 

failures, made up of 20 integer values.  Each integer value corresponds to a component, and 

indicates the state number that the component is in for that combination of component failures.  

The first line of the component state input files corresponds to the component states when there 

are no component failures in the system.  It is used so that a reference set of sensor readings 

can be produced, in order to determine whether there is a failure present in the system. 

The first step in the C++ script, is to set the operation mode to the desired state, and then 

to set the states of all the components in the system, using the first line of the component state 
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file, i.e. the working state.  The C++ script will then execute the BBN, and the states of all the 

nodes in the network will be determined.  The sensor nodes states are recorded, i.e. the sensor 

readings are stored in a vector, the state of the criticality node is stored in a vector for the 

calculation of the criticality term of the performance metric, and the probability of the event is 

stored in a vector for the calculation of the performance metric.  This process can be repeated 

for all the combinations of component failures, and then repeated for the other operation mode. 

The C++ script can then calculate the performance metric.  In order to do this, a 

combination of sensors needs to be selected.  The corresponding sensor readings for each 

combination of component failures can be compared to the first set of sensor readings recorded, 

i.e. the “no fault” sensor readings.  If the sensor readings are different, then the probability of 

that combination of component failures should be summed with the probability of the other 

component failures that are detected by the sensors in order to calculate the detection term 

(Equation (3.1)) of the performance metric.  Note, as before, only one sensor needs to have 

deviated from the “no fault” sensor reading for the component failure to be detected.  This 

should be repeated for all combinations of component failures.  The next step is to group the 

detected combinations of failures into groups of the same sensor readings.  The diagnostic term 

(Equation (3.2)) can then be calculated using the highest probability for each of the 

combinations of component failures for each combination of sensor readings, and the sum of 

the probabilities for each of these combinations of sensor readings.  Finally, the criticality term 

(Equation (3.3)) can be calculated by finding the combinations of failures that are critical and 

comparing these sensor readings to the “no fault” sensor readings.  If they are the same then 

the probability can be summed in order to find the second term in the numerator of the 

criticality term.  The first term in the numerator, (and the denominator), of the criticality term 

can be calculated by summing the probability of all critical failures.  These terms can be used 

to calculate the criticality term, and therefore calculate the performance metric.  This process 

should be repeated for all considered combinations of component failures. 

A number of different criteria can be applied to the sensor selection process via the C++ 

script.  For example, the sensor combination with the highest criticality term can be selected, 

or the sensor combination with the highest detection term can be selected.  Alternatively, the 

calculation of the performance metric can be stopped after all combinations with the same 

number of sensors when the desired performance metric has been achieved, i.e. not to continue 

calculating the performance metric for combinations of sensors with any additional sensors 

than the combination of sensors that can achieve the desired performance metric. 

A flowchart of the sensor selection code is presented in Figure 4.11. 
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Figure 4.11 Flowchart of the sensor selection code 
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4.4.2. Sensor selection results 

There are some hidden failures in this system, which means that there are some component 

failures that cannot be detected by any of the sensors in the system.  The hidden failures are 

failures of components that are not used in the selected operation mode, or are components 

failing in their normal operating state for the selected operation mode.  This phenomenon 

affects the performance metric, as the Pmd term in the detection term is smaller than the 

probability of all of the component failures considered in the system.  As the hidden failures 

are different for each operation mode, the Pmd  term is different for each operation mode, 0.0257 

for the engine feed operation mode, and 0.0412 for the fuel transfer operation mode.  This 

corresponds to detecting 31.0669% (345/800) and 49.8419% (402/800) of the failures for the 

engine feed and the fuel transfer operation modes, respectively.  These values are calculated 

using the sum of the probabilities of detected failures, divided by the sum of the probabilities 

of all considered failures.  Note, for both operation modes, all of the critical component failures 

that are considered in the system can be detected.  Also note, if a phased mission was 

considered, the number of hidden failures would reduce as some of the failures that are hidden 

in one operation node are observable in the other operation mode.  A summary of the hidden 

failures is presented in Table 4.7. 

 

Table 4.7 Hidden component failure states for each operation mode 

Number Operation mode Component Hidden failure 

1 Engine Feed BPFL On 

2 Engine Feed BPRL On 

3 Engine Feed RVLW Open 

4 Engine Feed RVRW Open 

5 Engine Feed RVFF Open 

6 Engine Feed RVRF Open 

7 Engine Feed NVL 2 way 

8 Engine Feed NVR 2 way 

9 Engine Feed TPLT Off 

10 Engine Feed TPRT Off 

11 Engine Feed TVFF Closed 

12 Engine Feed TVRF Closed 

13 Fuel Transfer  TPLT On 

14 Fuel Transfer  TPRT On 
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15 Fuel Transfer  LDV Open 

16 Fuel Transfer  RDV Open 

17 Fuel Transfer  BPFL Off 

18 Fuel Transfer  BPRL Off 

19 Fuel Transfer  LLP Closed 

20 Fuel Transfer  LHP Closed 

21 Fuel Transfer  RLP Closed 

22 Fuel Transfer  RHP Closed 

23 Both TVFF Open 

24 Both TVRF Open 

25 Both DV Open 

26 Both RPV Open 

27 Both LLP Open 

28 Both LHP Open 

29 Both RLP Open 

30 Both RHP Open 

31 Both RVLW Closed 

32 Both RVRW Closed 

33 Both RVFF Closed 

34 Both RVRF Closed 

35 Both LDV Closed 

36 Both RDV Closed 

37 Both DV Closed 

38 Both RPV Closed 

39 Both NVL Closed 

40 Both NVR Closed 

 

The performance metric was calculated using the C++ script for the combination of all 

sensors on the system, in order to determine the maximum achievable performance metric for 

each operation mode.  This maximum performance metric for the engine feed operation mode 

is equal to 0.9713, with a detection term of 1, a diagnostic term of 0.9139, and a criticality term 

of 1, and the maximum performance metric for the fuel transfer operation is equal to 0.9865 

with a detection term of 1, a diagnostic term of 0.9595, and a criticality term of 1. 

The performance metric for all combinations of sensors, starting at one sensor and gradually 

increasing by one was calculated until the detection term reached 1, which was achieved for 

combinations of five sensors for each operation mode.  No combinations with more than five 
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sensors were considered, since the number of combinations increases as the number of sensors 

increases, and the performance metrics are close to the maximum performance metrics.  The 

maximum performance metric for combinations of five sensors is presented in the following 

paragraphs. 

The performance metric for each individual sensor and the terms of the performance metric, 

for each of the operation mode, are given in Tables 4.8 and 4.9 respectively. 

 

Table 4.8 Ranking of individual sensors for the example aircraft fuel system in the engine feed operation mode 

Rank Sensor I{s} DE{s} DI{s} CR{s} 

1 S22 0.6829 0.2717 0.7964 0.9806 

S23 0.6829 0.2717 0.7964 0.9806 

S24 0.6829 0.2717 0.7964 0.9806 

S25 0.6829 0.2717 0.7964 0.9806 

2 S15 0.6764 0.2716 0.7964 0.9612 

S16 0.6764 0.2716 0.7964 0.9612 

3 S17 0.6103 0.1944 0.9288 0.7076 

S20 0.6103 0.1944 0.9288 0.7076 

4 S5 0.3775 0.1959 0.9365 0 

S8 0.3775 0.1959 0.9365 0 

5 S4 0.3753 0.1959 0.9300 0 

S10 0.3753 0.1959 0.9300 0 

6 S1 0.3750 0.1959 0.9291 0 

S12 0.3750 0.1959 0.9291 0 

7 S2 0.3728 0.1959 0.9226 0 

S3 0.3728 0.1959 0.9226 0 

S9 0.3728 0.1959 0.9226 0 

S11 0.3728 0.1959 0.9226 0 

8 S6 0.3263 0.0030 0.9760 0 

S7 0.3263 0.0030 0.9760 0 

9 S14 0.1930 0.0773 0.4638 0.0388 

S18 0.1930 0.0773 0.4638 0.0388 

S19 0.1930 0.0773 0.4638 0.0388 

S21 0.1930 0.0773 0.4638 0.0388 

10 S13 0.1677 0.0030 0.5000 0 
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Table 4.9 Ranking of individual sensors for the example aircraft fuel system in the fuel transfer operation mode 

Rank Sensor I{s} DE{s} DI{s} CR{s} 

1 S4 0.8119 0.5737 0.8620 1.0000 

S10 0.8119 0.5737 0.8620 1.0000 

2 S5 0.7589 0.5023 0.9400 0.8344 

S8 0.7589 0.5023 0.9400 0.8344 

3 S1 0.6916 0.1450 0.9299 1.0000 

S12 0.6916 0.1450 0.9299 1.0000 

4 S2 0.6377 0.1443 0.9345 0.8344 

S3 0.6377 0.1443 0.9345 0.8344 

S9 0.6377 0.1443 0.9345 0.8344 

S11 0.6377 0.1443 0.9345 0.8344 

5 S6 0.4413 0.3843 0.9397 0 

S7 0.4413 0.3843 0.9397 0 

6 S23 0.3506 0.1210 0.9307 0 

S25 0.3506 0.1210 0.9307 0 

7 S15 0.3503 0.1211 0.9298 0 

S16 0.3503 0.1211 0.9298 0 

S22 0.3503 0.1211 0.9298 0 

S24 0.3503 0.1211 0.9298 0 

8 S17 0.3500 0.1211 0.9289 0 

S20 0.3500 0.1211 0.9289 0 

9 S13 0.2841 0.3843 0.4680 0 

10 S14 0.1027 0.0006 0.3076 0 

S18 0.1027 0.0006 0.3076 0 

S19 0.1027 0.0006 0.3076 0 

S21 0.1027 0.0006 0.3076 0 

 

The combinations of sensors with the highest performance metric for combinations of five 

sensors are also given in Tables 4.10 and 4.11 for the engine feed, and the fuel transfer 

operation modes respectively.  Note, all combinations in each of the tables have the same 

performance metric.  The performance metric for the engine feed operation mode is 0.9468, 

with a detection term of 1, a diagnostic term of 0.8405, and a criticality term of 1.  The 

performance metric for the fuel transfer operation mode is 0.9773, with a detection term of 

0.9982, a diagnostic term of 0.9337, and a criticality term of 1.  The highest performance metric 
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for the fuel transfer operation mode, does not have a detection term of 1, which can be achieved 

by some combinations of five sensors.  However, for these combinations, the performance 

metric is 0.9706, with a detection term of 1, a diagnostic term of 0.9117, and a criticality term 

of 1, and is less than the maximum performance metric that can be achieved using five sensors.  

These combinations are given in Table 4.12. 

  

Table 4.10 Combinations of five sensors with the highest performance metric for the engine feed operation 

mode, I = 0.9468, DE = 1, DI = 0.8405, CR = 1 

Sensors Sensors continued 

S1 S10 S14 S22 S24  S4 S12 S14 S22 S24  

S1 S10 S14 S22 S25  S4 S12 S14 S22 S25  

S1 S10 S14 S23 S24  S4 S12 S14 S23 S24  

S1 S10 S14 S23 S25  S4 S12 S14 S23 S25  

S1 S10 S15 S18 S24  S4 S12 S15 S18 S24  

S1 S10 S15 S18 S25  S4 S12 S15 S18 S25  

S1 S10 S15 S21 S24  S4 S12 S15 S21 S24  

S1 S10 S15 S21 S25  S4 S12 S15 S21 S25  

S1 S10 S16 S19 S22  S4 S12 S16 S19 S22  

S1 S10 S16 S19 S23  S4 S12 S16 S19 S23  

S1 S10 S16 S21 S22  S4 S12 S16 S21 S22  

S1 S10 S16 S21 S23  S4 S12 S16 S21 S23  

S1 S10 S18 S22 S24  S4 S12 S18 S22 S24  

S1 S10 S18 S22 S25  S4 S12 S18 S22 S25  

S1 S10 S18 S23 S24  S4 S12 S18 S23 S24  

S1 S10 S18 S23 S25  S4 S12 S18 S23 S25  

S1 S10 S19 S22 S24  S4 S12 S19 S22 S24  

S1 S10 S19 S22 S25  S4 S12 S19 S22 S25  

S1 S10 S19 S23 S24  S4 S12 S19 S23 S24  

S1 S10 S19 S23 S25  S4 S12 S19 S23 S25  

S1 S10 S21 S22 S24  S4 S12 S21 S22 S24  

S1 S10 S21 S22 S25  S4 S12 S21 S22 S25  

S1 S10 S21 S23 S24  S4 S12 S21 S23 S24  

S1 S10 S21 S23 S25  S4 S12 S21 S23 S25  
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Table 4.11 Combinations of five sensors with the highest performance metric for the fuel transfer operation 

mode, I = 0.9773, DE = 0.9982, DI = 0.9337, CR = 1 

Sensors Sensors continued 

S2 S4 S10 S15 S16  S4 S9 S10 S15 S16  

S2 S4 S10 S15 S24  S4 S9 S10 S15 S24  

S2 S4 S10 S16 S22  S4 S9 S10 S16 S22  

S2 S4 S10 S22 S24  S4 S9 S10 S22 S24  

S3 S4 S10 S15 S16  S4 S10 S11 S15 S16  

S3 S4 S10 S15 S24  S4 S10 S11 S15 S24  

S3 S4 S10 S16 S22  S4 S10 S11 S16 S22  

S3 S4 S10 S22 S24  S4 S10 S11 S22 S24  

 

Table 4.12 Combinations of five sensors with the highest performance metric for the fuel transfer operation 

mode that detects all of the component failures, I = 0.9706, DE = 1, DI = 0.9117, CR = 1 

Sensors Sensors continued 

S4 S6 S10 S15 S16  S4 S7 S10 S15 S16  

S4 S6 S10 S15 S24  S4 S7 S10 S15 S24  

S4 S6 S10 S16 S22  S4 S7 S10 S16 S22  

S4 S6 S10 S22 S24 S4 S7 S10 S22 S24 

 

In the next section, a discussion on the selections of sensors is presented. 

 

4.4.3. Discussion 

A conclusion that was made earlier in Chapter 3 can also be confirmed by the work 

completed on this system.  It is better to consider the three terms individually rather than the 

overall performance metric for the final selection of sensors.  In Table 4.8 for the engine feed 

operation mode, the individual sensors ranked 8th, S6 and S7, have a performance metric 

significantly higher than the five sensors ranked lower, despite detecting significantly fewer 

component failures (DE  = 0.0030) than four of these other sensors (DE = 0.0773), with the 

fifth sensor detecting the same number of failures.  The reason the performance metric is higher 

for these two sensors is that the diagnostic term is nearly 1, (DI = 0.9760), the highest of all 

individual sensors for the engine feed operation mode.  It makes the performance metric, which 

is an average of the three terms, higher than the other five sensors with a lower diagnostic term, 

therefore, the results can be misleading.  This is also evident by the combinations of five sensors 
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for the fuel transfer operation mode, when the combinations of sensors (Table 4.11) that have 

the highest performance metric do not have the maximum detection term, but other 

combinations of sensors (Table 4.12) which have a lower performance metric, do have the 

maximum detection term.  As the difference between the performance metrics in these two 

cases is relatively small, the analyst may decide to select one of the combinations of sensors 

that can detect all of the component failures, i.e. DE = 1, and, therefore, sacrifice some of the 

ability to diagnose component failures, i.e. to have a lower diagnostic term.  Note, this is the 

case in the work presented in this chapter. 

Also, as was the case for the example system discussed in the previous chapter, it is 

generally better to select sensors from different parts of the system, i.e. not in close proximity 

to each other.  Although the performance metric for all combinations of two sensors are not 

provided in this thesis for brevity, for illustration consider the combinations of two sensors 

with the highest performance metric for the engine feed operation mode: (S22, S24), (S22, 

S25), (S23, S24), and (S23, S25).  The performance metric in this case is equal to 0.7810, an 

increase of 0.0981 (from 0.6829 in Table 4.8) over each of the individual sensors.  Each of 

these pairs contains a sensor near each engine.  However, if other combinations are considered, 

such as, (S22, S23), and (S24, S25), i.e. both sensors are near the same engine, the increase in 

the performance metric is 0.0439, i.e. it is a significantly smaller increase than the one from 

the combinations of sensors with one sensor near each engine.  In this situation, the increase in 

performance metric for the four sensor combinations above, (S22, S24), (S22, S25), (S23, S24), 

and (S23, S25), comes from an increase in all three of the terms (but mainly the detection term), 

from 0.2717 to 0.5416 for the detection term, from 0.7964 to 0.8014 for the diagnostic term 

and from 0.9806 to 1 for the criticality term, respectively.  However, the increase in the 

performance metric for the other too sensor combinations, (S22, S23), and (S24, S25), comes 

from the increase in the diagnostic term only, from 0.7964 to 0.9282, with the other two terms 

staying exactly the same as for the individual sensors, (S22), (S23), (S24), and (S25).  This 

smaller increase for the two sensor combinations, (S22, S23), and (S24, S25), is in line with a 

proposed rule that it is generally better to select sensors in different sections of the system, than 

to select sensors in close proximity. 

The 25 sensors can be grouped into six sections based on their location on the system, and 

these groups are given in Table 4.13.  Each section of the system is separated by a valve in the 

system, either NVL, NVR, LDV, RDV, or RPV.  The six sections are labelled in Figure 4.12. 

 



 

122 
 

 

Figure 4.12 Sections of the system labelled 

 

Each of the combinations of five sensors that can detect all the component failures given in 

Tables 4.10 and 4.12, contains one sensor from five of the six sections of the system.  For both 

operation modes, the combinations of sensors each consist of a sensor from one of the four 

corner sections of the system, groups 1, 2, 3, and 4, and a sensor from either group 6 or group 

5, for the engine feed and fuel transfer operation modes respectively.  For example, the first 

combination of sensors in Table 4.10 is the sensor combination (S1, S10, S14, S22, S24), which 

are sensors from groups 1, 2, 6, 3, and 4, respectively, and the first combination of sensors in 

Table 4.12 is the sensor combination (S4, S6, S10, S15, S16), which are sensors from groups 

1, 5, 2, 3, and 4, respectively. 

There, are however, in all but group 6, sensors that are not included in any of the 

combinations of sensors, given in Table 4.10 and 4.12, for either operation mode.  This is 

because for each operation mode, there is another sensor in the same section of the system that 

would result in a higher performance metric for the combination of sensors.  The sensors that 

are not selected also have lower individual performance metrics than the selected sensors in 

the groups.  It also suggests that it is better to select sensors in different parts of the system than 

from the same part of the system, as discussed before.  The combinations of sensors for each 
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operation mode are not the same, with the sensors in groups 1 and 2 different for each operation 

mode, either S1 and S10 or S4 and S12, for the engine feed operation mode, and S4 and S10 

for the fuel transfer operation mode.  Another way the combinations of sensors for each 

operation mode is different is that in the engine feed operation mode the combination has a 

sensor from group 6, but the fuel transfer mode has a sensor from group 5.  In each case, this 

is the group that is in closer proximity to the sections of the system that are operational in each 

operation mode.  It means that the best combination of sensors for both operation modes cannot 

be selected by looking at the values of the performance metrics as calculated by the C++ script.  

In order to select the best combination of sensors, the duration of each operation mode and its 

importance to the operation of the system needs to be considered.  It would require the 

information on an example mission for the system to be considered.  Note, this is considered 

in Chapter 6.  As the system is considered in a steady state, a fixed point in time condition, the 

two operation modes, and therefore two sensor selections, are considered individually, where 

one combination of sensors from Table 4.10, and one combination of sensors from Table 4.12, 

will be used to diagnose component failures in the corresponding operation mode. 

For simplicity, the first combination of sensors is selected from each table, i.e. (S1, S10, 

S14, S22, S24), and (S4, S6, S10, S15, S16), respectively.   

 

Table 4.13 The sensors grouped by the sections of the system 

Group Included sensors  Not included sensors 

1 S1 S4    S2 S3 S5 

2 S10 S12    S8 S9 S11 

3 S15 S22 S23   S17   

4 S16 S24 S25   S20   

5 S6 S7    S13   

6 S14 S18 S19 S21     

 

One major observation from this application of the methodology, is the fact that the sensors 

cannot detect all of the failures that can occur on the system, only approximately 31% and 50% 

for the two operation modes, respectively, (as shown in section 4.4.2).  However, it is because 

the remaining failures have no effect on the system performance, and therefore do not produce 

any symptoms.  This is because either a particular component has failed in the state it is 

supposed to be in, such as failed open for a valve that should be open, or that a particular 

component is in a section of the system which is not in use in this operation mode.  Therefore, 
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in the current selection of the type and location of sensors there is no way that these component 

failures can be observed by any of the sensors considered on the system.  It is, therefore, not a 

shortfall of the proposed methodology, the component failures are not observable. 

As discussed before, there are diminishing returns when the number of sensors is increased.  

The performance metrics for a larger number of selected sensors increases by a smaller amount, 

as each additional sensor is introduced to the system.  As before, it adds to the motivation to 

find the balance between the cost of additional sensors in the system, and the benefit that they 

add to the detection of fault, and the diagnostics of failures on the system.  The performance 

metrics for the best combination including up to five sensors is given for each operation mode 

in Table 4.14.  Note, only one combination of sensors is given for each number of sensors, with 

multiple combinations having the same performance metric.  The final row in the table presents 

the maximum performance metric achievable for all sensors on the system.  The diminishing 

return for each additional sensor can be observed in the % difference columns for each 

operation mode. 

 

Table 4.14 Best performance metric for each number of sensors 

 Engine feed Fuel transfer 

Number Sensors I{s} % diff. Sensors I{s} % diff. 

1 S22 0.6829 0 S4 0.8119 0 

2 S22 S24 0.7810 14.37 S4 S10 0.8831 8.77 

3 S5 S22 S24 0.8594 10.04 S4 S10 S15 0.9268 4.95 

4 S1 S10 S22 

S24 

0.9313 8.37 S4 S10 S15 

S16 

0.9696 4.62 

5 S1 S10 S14 

S22 S24 

0.9468 1.66 S2 S4 S10 

S15 S16 

0.9773 0.79 

25 All sensors 0.9713 2.59 All sensors 0.9865 0.94 

 

In the next section, the automation of the fault diagnostics process will be introduced, and 

applied to the system using the sensors selected for each operation mode. 

 

4.5. Fault diagnostics 

The selected sensors for fault diagnostics are the first combination of five sensors from 

Tables 4.10 and 4.12 for the engine feed and fuel transfer operation mode, respectively, i.e. for 
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the engine feed operation mode the selected sensors are (S1, S10, S14, S22, S24) and for the 

fuel transfer operation mode the selected sensors are (S4, S6, S10, S15, S16).  In order to show 

the effectiveness of the selected sensors, they can be used in the BBN to diagnose the 

component failures in the system.  For each operation mode, each of the combinations of 

component failures used to calculate the performance metrics are used as example failures to 

test the fault diagnostic process.  Note, as discussed before, there are some component failures 

that cannot be detected, and therefore cannot be diagnosed for each operation mode.  This 

results in the maximum percentage of component failures that can be detected of approximately 

31% and 50%, for the engine feed and fuel transfer operation modes respectively.  The fault 

diagnostic technique is demonstrated by inputting sensor readings corresponding to a 

component failure and comparing the diagnosed component failure to the actual component 

failure.  This results in all of the component failures being diagnosed.  In order to diagnose the 

combinations of component failures, a C++ script was written to automate the fault diagnostic 

process. 

 

4.5.1. Automating the fault diagnostics 

As in the sensor selection script described in section 4.4.1, this C++ script integrates with 

the BBN model of the system to get the desired information on the state of each component.  

As before, three input files are introduced to the script, an input file that contains a list of 

components, and an input file that contains a list of selected sensors, and the final input file 

contains the sensor readings for the selected sensors for each of the combinations of component 

failures. 

As before, the first step in the C++ script is to choose the operation mode.  The first line of 

the sensor readings file (the sensor readings for the first combination of component failures) 

can then be introduced to the nodes, corresponding to sensors, and the BBN can be compiled, 

as before.  The script can then check the probability of each state for each component and 

output them to a text file.  The script also determines which components are more likely to be 

in one of the failure modes than in the working state, and also outputs this information to a text 

file.  The components that are more likely to be in one of the failure modes are the components 

that are predicted to have failed, and caused deviations in sensor readings.  Therefore, if a 

component failure is detected, the C++ script will output the most likely component failure to 

have occurred.  This process can be repeated for each of the failures, before repeating the whole 

process with the other operation mode. 
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Note, that the reason that the third input file contains the sensor readings for multiple 

combinations of component failures, is in order to verify that the fault diagnostic process can 

be used for multiple different combinations of component failures.  If the fault diagnostic 

process was to be used on a real system, only one combination of sensor readings would be 

introduced, those observed on the system, and the component failure would be diagnosed so 

that the appropriate action can be taken on the real system. 

A flowchart of the fault diagnostics code is presented in Figure 4.13. 

 

 

Figure 4.13 Flowchart for fault diagnostics code 
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4.5.2. Fault diagnostics results 

Each of the combinations of component failures used to calculate the sensor performance 

metric are used to test the diagnostic process, i.e. 800 per operation mode.  The results of each 

of these combinations can be grouped together into cases which consist of combinations of 

component failures that have the same effect on the system.  There are 12 cases for the engine 

feed operation mode and 16 cases for the fuel transfer operation mode.  The cases are presented 

in Tables 4.15 and 4.16 for the engine feed, and fuel transfer operation modes, respectively.  

As there are two failure modes for each component, the bracketed word in these tables indicates 

the mode that the component has failed in, for example, TPLT (On) represents TPLT failed on.  

Note, (Off) represents failed off, (Op) represents failed open, (Cl) represents failed closed, and 

(2 way) represents the one directional valve allowing the flow through in both directions. 

In the two tables, all of the combinations of component failures are not given, as there are 

345 and 402 combinations of component failures that are detected for each operation mode, 

respectively, and the higher number of combinations for the fuel transfer operation mode 

results in the higher number of cases.  One of each set of failure combinations within each case 

is presented.  For example, in case 3 of Table 4.15, there are multiple combinations of 

component failures where there are two component failures in the system where one of them 

is TPLT failed on and the other is not diagnosed, and therefore, rather than stating TPLT failed 

on multiple times, only one example is given.  The number of component failures that each 

case represents is given in the third column of the tables.  The second column in the tables, for 

example, 1 of 2, represents the number of component failures that are diagnosed (i.e. 1) of the 

number of component failures in the event considered (i.e. 2). 

The accuracy of the diagnostics for each case is discussed after the tables for each operation 

mode.  Note, in the discussion of each of the cases in the table below, when the confidence is 

approximately 50%, this means that there are two potential component failures that could have 

caused the sensor reading and are equally likely to have occurred.  It is also possible that both 

of the component failures have occurred, but this situation is discussed in more detail during 

individual cases. 
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Table 4.15 Diagnostics of component failures for the engine feed operation mode 
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Table 4.16 Diagnostics of component failures for the fuel transfer operation mode 
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The first case in Table 4.15 consists of component failures where one component has failed, 

and it has been diagnosed correctly with 100% confidence.  These cases consist of failures of 

the transfer pumps and the booster pumps.  The component failures in this case, and also the 

component failures in the second case, consist of only one component failure, and, therefore, 

are significantly more likely to occur than the combinations of two component failures 

described below.  Therefore, it is important that these failures are diagnosed correctly. 

The second case in Table 4.15 consists of component failures where one component has 

failed, but there are two possible component failures that can produce the same symptoms, and, 

therefore, they are diagnosed correctly with approximately 50% confidence in each case.  These 

cases consist of failures of the left and right dump valves, the left and right low-pressure cocks, 

and the left and right high-pressure cocks.  The probability that one component has failed in 

each case is slightly above 50%, because the same symptoms are also produced if both 

components are failed, and, therefore, each component is slightly more likely to have failed 

than not failed.  The situation of both components failing is case number ten in Table 4.15. 

The third case in Table 4.15 is combinations of component failures that have two 

components failed, but only one of the component failures can be diagnosed with 100% 

confidence.  In each combination, the first component failure is one of the component failures 

given in the first case, and the second component failure is a hidden failure, and is, therefore, 

not detected.  Each of these hidden component failures are not normally detected, when they 

are the only component that has failed, and therefore, the presence of the first failure is not 

making the second failure hidden. 

The fourth case in Table 4.15 is similar to the third case, except instead of the first 

component failure being one of the component failures from case one, it is one of the 

component failures from case two.  Therefore, one of the two component failures can be 

diagnosed with a confidence of approximately 50%. 

The fifth case in Table 4.15 describes combinations of component failures that have two 

components failed, and both of the component failures can be diagnosed.  The first component 

failure (booster pumps) is diagnosed with 100% confidence upon first inspection.  However, 

the second component failure (the valves from case two) is not detected, and can, therefore, 

not be diagnosed until the first component failure has been repaired or replaced.  This second 

component failure can then be diagnosed as one of the other two possible component failures 

with a confidence of approximately 50%.  In other words, the sensor readings produced by both 

component failures are the same as the sensor readings produced by just the first component 

failure.  Therefore, in the diagnostic process it is assumed that there is only one component that 
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has failed.  However, when the first failed component has been repaired or replaced, the sensor 

readings do not return to the readings produced under normal operating conditions, and the 

second component failure can therefore be detected, and can be diagnosed. 

The sixth case in Table 4.15 is when the diagnostics process produces an incorrect 

diagnosis.  In this case, each combination of component failures consists of one of the 

components in the failure mode given in the table, (such as one of the valves in case two), and 

therefore diagnosed correctly, but the second component has actually failed in the components 

other failure mode, i.e. if the component failure mode in the table is the failed open mode, then 

the second component is in the failed closed mode, and vice versa.  However, this second 

failure is a hidden failure, so it will still appear like the component is functioning as normal.  

Therefore, whilst the diagnostic process is suggesting a component is in a different failure mode 

than it is, this component failure mode would not normally be detected. 

The seventh case in Table 4.15 are combinations of component failures that consist of two 

failed components, and both components are diagnosed correctly with 100% confidence.  

These cases consist of combinations of the components that are grouped into case one, (such 

as the transfer and booster pumps), as well as a few other combinations of component failures, 

(including the components RPV, DV, LDV, RDV, TVRF and TVFF).  These other 

combinations of component failures consist of component failures that are hidden, but can be 

detected when they both occur together, such as DV and LDV both in the failed open mode. 

The eighth case in Table 4.15 are combinations of component failures that have two 

components failed, and both are diagnosed correctly.  However, the second component failure 

is only observed after the first component (the booster pumps) has failed.  This second 

component (LDV or RDV) failure will be diagnosed with approximately 50% confidence.  

However, in each of the cases, the second option (diagnosed failure 3 column) corresponds to 

the second failure in the fifth and sixth row of the seventh case.  Therefore, it cannot be the 

second option for the second component failure, as the failure would have been diagnosed 

immediately, and must be the first option (diagnosed failure 2 column).  The fault diagnostics 

process does not highlight this, but there will only be a maximum of one additional component 

inspected, i.e. maximum of three components inspected for two component failures. 

The ninth case in Table 4.15 are combinations of component failures that have two 

components failed, and one is diagnosed correctly with 100% confidence, (transfer pump 

failure), and the second component is diagnosed correctly with a confidence of 99.9999%, (one 

directional valves).  In order for this second component not to be the component that has failed, 

at least 3 different components would have to have failed.  Instead of NVL failing two way, 
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TVRF would need to fail closed, TPRT would need to fail on, and either RVRW and/or RVFF 

would need to fail open, in order for these symptoms to occur.  This is extremely unlikely as it 

would require four component failures to occur for this to arise, and, therefore, it results in the 

very high confidence for the second component being failed. 

The tenth case in Table 4.15 was discussed in the paragraph about the second case.  In this 

case, both components have failed, so it is actually diagnosing the component failures 100% 

correctly, but the fault diagnostic process states that each component has a probability of being 

failed of approximately 50%. 

The eleventh case in Table 4.15 are combinations of component failures that have two 

components failed, and for each component failure there are two potential options that are 

equally likely.  Therefore, each pair is diagnosed correctly with a confidence of approximately 

50%.  This would result in approximately 25% probability that the correct pair of failed 

components is selected when the first two components are inspected. 

The twelfth and final case in Table 4.15 is combinations of component failures that have 

two components failed and both component failures are diagnosed, one with 100% confidence, 

and one with approximately 50% confidence.  However, unlike the fifth case, both component 

failures are detected and diagnosed upon first inspection, and the first component is not 

required to be repaired or replaced before the second component can be detected. 

The first case in Table 4.16 consists of combinations of one component failure which are 

diagnosed correctly with 100% confidence.  This is the same as the first case for the engine 

feed operation mode, consisting of failures of the transfer and booster pumps (the other failure 

mode for each component), and some other components, such as NVL, NVR, TVFF and TVRF. 

The second case in Table 4.16 consists of combinations of one component failure (such as 

the refuel valves) which are diagnosed correctly with approximately 50% confidence, and this 

is the same as the second case for the engine feed operation mode.  The confidence being 

slightly above 50% is for the same reason as discussed before, i.e. both components can fail 

and cause the same symptoms, but in this case only one component has failed.  The case in 

which both of the possible components are failed is case eleven for this operation mode. 

The third case in Table 4.16 consists of combinations of two component failures, but 

combinations in which only one of the component failures is diagnosed with 100% confidence, 

(the same component failures as in the first case), with the second component failure in each 

of the combinations a hidden failure.  This case is the same as the third case for the engine feed 

operation mode. 
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The fourth case in Table 4.16 consists of combinations of two component failures, but only 

one of the component failures in each combination is diagnosed with approximately 50% 

confidence, (the same component failures as in the second case).  The second component 

failure in each case is a hidden failure, and therefore not detected or diagnosed.  This is the 

same as the fourth case for the engine feed operation mode. 

The fifth case in Table 4.16 consists of combinations of two component failures, but the 

second component failure is only observable after the first component failure has been repaired 

or replaced.  The first component failure (including failures of the one directional valves, the 

transfer valves and the transfer pumps) is diagnosed with 100% confidence, and the second 

component failure (including failures of the refuel valves) is diagnosed with approximately 

50% confidence.  This case corresponds to the fifth case for the engine feed operation mode. 

The sixth case in Table 4.16 is one of the cases for this operation mode that the diagnostics 

process produces an incorrect diagnosis.  The components in this case are the refuel valves.  In 

this case, one of the components in each combination of component failures has failed in the 

failure mode given in the table, and therefore diagnosed correctly, but the other component has 

failed in the components other failure mode.  However, this second failure is normally a hidden 

failure, so the sensor readings produced suggest the component is functioning as normal.  

Therefore, although the diagnostic process is suggesting a component is in a different failure 

mode than it is in, this component failure would not normally be detected.  This case 

corresponds to the sixth case for the engine feed operation mode. 

The seventh case in Table 4.16 is combinations of component failures that consist of two 

failed components, but the second component in each combination is diagnosed incorrectly.  

The first component is diagnosed to have failed with 100% confidence, but the second 

component is diagnosed to have failed with approximately 71% confidence, (note the other two 

components are predicted to be working).  However, when the first component is repaired or 

replaced, and the second component has been inspected and found to not be failed, then it will 

result in the probability of other components being in the failed state changing.  This results in 

the second component failure being diagnosed with approximately 50% confidence.  For 

example, NVL and TPRT are inspected, NVL is found to be failed but TPRT is found to be 

working.  This evidence will then result in the diagnostic process outputting that RVRW and 

RVFF have failed with a probability of approximately 50%.  This case does not have a 

corresponding case for the engine feed operation mode. 

The eighth case in Table 4.16 are also combinations of two component failures but one of 

the component failures is diagnosed incorrectly.  In this case, one of the 1D valves in each 
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combination of components is in the failed 2 way failure mode as given in the table, but the 

other 1D valve is in the failed blocked failure mode.  The failed blocked failure mode is less 

likely to occur but results in the same symptoms, hence the incorrect diagnostics.  However, in 

this case, the same component will still have to be inspected, so the correct failure will likely 

be observed, and can, therefore, be repaired or replaced, as required.  This case does not have 

a corresponding case for the engine feed operation mode. 

The ninth case in Table 4.16 is combinations of two component failures where both are 

diagnosed with 100% confidence.  This case corresponds to the seventh case for the engine 

feed operation mode.  The failures include the transfer valves, the one directional valves, the 

booster pumps, and the transfer pumps. 

The tenth case in Table 4.16 is combinations of two component failures and one is 

diagnosed with 100% confidence (transfer valves), and the second is diagnosed with 99.9% 

confidence (1D valves).  This is the same as the ninth case for the engine feed operation mode, 

albeit with a slightly lower confidence. 

The eleventh case in Table 4.16 was discussed in the paragraph about the second case.  In 

this case, both components have failed, so it is diagnosing the component failures 100% 

correctly, but the fault diagnostic process states that each component has a probability of being 

failed of approximately 50%. 

The twelfth case in Table 4.16 are combinations of two component failures and both are 

diagnosed with 100% confidence, but the second component (transfer valves and 1D valves) 

only becomes observable after the first component (transfer pumps) has been repaired or 

replaced.  This case does not have a corresponding case for the engine feed operation mode, 

but is similar to case five for both of the operation modes, except that in the fuel transfer 

operation mode the second failure is diagnosed with 100% confidence. 

The thirteenth case in Table 4.16 are combinations of two component failures and both are 

diagnosed correctly, but only with 90% confidence.  (The components are the 1D valves).  This 

is because one of the components can be in the other failure mode and the same sensor readings 

would be produced.  This case does not have a corresponding case for the engine feed operation 

mode. 

The fourteenth case in Table 4.16 are combinations of two component failures, with both 

component failures diagnosed correctly.  However, the first component failure (1D valves) is 

diagnosed with 100% confidence, but the second component failure (transfer pumps) is 

diagnosed with approximately 71% confidence.  This case is also not observed for the engine 

feed operation mode. 
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The fifteenth case in Table 4.16 are combinations of two component failures with both 

component failures diagnosed correctly.  The first component failure (booster pumps, transfer 

pumps or transfer valves) is diagnosed with 100% confidence, but the second component 

failure (refuel valves, high-pressure cocks, and low-pressure cocks) is only diagnosed with 

approximately 50% confidence.  This case corresponds to the twelfth case for the engine feed 

operation mode. 

The sixteenth and final case in Table 4.16 are combinations of two component failures with 

both component failures diagnosed correctly.  (The components in this case are the refuel 

valves).  However, the diagnostics of both component failures has approximately 50% 

confidence for each pair of component failures.  This case corresponds to the eleventh case for 

the engine feed operation mode. 

The next section contains a discussion about how successful the application of the fault 

diagnostic methodology on this system is, whilst also highlighting some of the drawbacks 

observed during the application of the methodology. 

  

4.5.3. Discussion 

All of the combinations of component failures listed above that do not have 100% 

confidence in the diagnosis of the failed components, result in a diagnostic term of less than 1.  

It is possible to get a higher diagnostic term by using more sensors, as stated earlier, and it 

would also increase the confidence with which some of the combinations of component failures 

are diagnosed.  For example, if sensor S23 was added to the selection of sensors for the fuel 

transfer operation mode, giving 6 sensors, (S4, S6, S10, S15, S16, S23), case 15 in Table 4.16 

would have higher confidence in the diagnostics of the failure, as the fault diagnostic process 

will be able to distinguish between the failures of component LLP and LHP.  For the component 

failures, BPFL (On) and LLP (Cl), S23 will measure the sensor reading “E”, but for the 

component failures, BPFL (On) and LHP (Cl), S23 will measure the sensor reading “N”.  Note, 

all other sensors will record the same sensor reading.  As the detection and criticality terms are 

1 for both operation modes, it is not possible to improve on these terms. 

As detailed in the results section, the fault diagnostic process works as desired and 

diagnoses all of the component failures that can be detected.  However, there was a number of 

combinations of component failures where a wrong component failure was diagnosed, case six 

for the engine feed operation mode, and cases six, seven and eight for the fuel transfer operation 
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mode.  However, when additional evidence is introduced, the second component failure can be 

diagnosed (if possible) and it can be dealt with as necessary, i.e. repaired or replaced. 

There are also some component failures that are not diagnosed until one of the component 

failures is repaired.  Therefore, this process would increase the repair time of the system, as the 

engineer would have to delay the process of dealing with the second component, as it would 

only be diagnosed after the first failure is addressed.  This is because the additional component 

failure results in the same symptoms as the symptoms produced by the first component failure, 

and therefore the same sensor readings are produced for both failures.  In each of these cases, 

the probability of the two components failing is less than the probability of just one component 

failing, as the components are more likely to be working than failed, hence the diagnostics 

process predicting only one component failure initially. 

There was also a large number of combinations of component failures that were not 

detected (455 for the engine feed operation mode and 398 for the fuel transfer operation mode), 

and a large number of combinations of component failures where only one of the two 

component failures was detected (280 for the engine feed operation mode, and 320 for the fuel 

transfer operation mode).  This is because of the comparatively large number of hidden failures, 

i.e. failures that have no effect on the system’s performance in that operation mode, and are 

therefore not observable.  These component failures are the failed component being in sections 

of the system that are not used in the operation mode, or the component failing in the same 

failure mode as their working state, i.e. failed open if it is supposed to be working open.  From 

studying Tables 4.15 and 4.16, it is clear that generally the individual component failures that 

are hidden remain as hidden failures when combined with a non-hidden failure to form a 

combination of two component failures, with a couple of exceptions.  The exceptions to this 

observation are given in case seven of Table 4.15, i.e. the combinations of component failures 

including RPV failed open, and DV failed open, and case fifteen of Table 4.16, i.e. the 

combinations of component failures including LLP failed closed, LHP failed closed, RLP 

failed closed, and RHP failed closed.  These component failures are only observable when both 

component failures occur.  Note, a full summary of the hidden failures was presented in Table 

4.7. 

For some of the combinations of component failures that can be diagnosed correctly, 

additional components will be inspected which have not failed.  However, whenever there is a 

combination of component failures, of which one of the component failures can be diagnosed, 

no more than one additional component that has not failed will be inspected.  Note, this is the 

case for combinations of one, and combinations of two component failures.  If there is a 



 

142 
 

combination of component failures in which two component failures can be diagnosed, no more 

than two additional component failures that has not failed will be inspected.  In other words, if 

there is one diagnosable component failure, no more than two components need to be inspected, 

and if there are two diagnosable component failures, no more than four components need to be 

inspected.  Note, in some cases, there will be no need to inspect so many additional 

components. 

 

4.6. Discussion 

One of the techniques introduced in this chapter, which was applied successfully to an 

example system, was the automation of the sensor selection and fault diagnostic processes.  

The automation of this methodology made it possible to calculate the performance metric for 

a large number of combinations of sensors, which would not be feasible to be done manually.  

For the diagnostic process, the diagnosis time is also greatly reduced in comparison to manually 

diagnosing component failures, but as in a real system only one combination of sensor readings 

would be introduced, automating the diagnostic process would not provide a big advantage.  

However, for the testing of the diagnostic process, where approximately 800 combinations of 

sensor readings are attempted to be diagnosed for each operation mode, automating the 

diagnostic process is beneficial. 

As discussed in this chapter, each of the steps of the methodology is applied successfully 

to the system.  One of the potential problems observed in this application is that the size of the 

BBN grows quickly as the size of the system increases.  It was discussed during the 

development of the BBN model (section 4.3.1) that it was not possible to consider exact sensor 

readings because the size of the network would become too large, and the sensor readings had 

to be grouped into ranges.  This process resulted in less accurate modelling of the system than 

desired.  Despite this reduction in accuracy of the model, the network was still comparatively 

large.  This large network resulted in the network compiling comparatively slowly, 

(approximately 10 seconds instead of approximately 0.1 seconds for the system presented in 

Chapter 3), resulting in the sensor readings being determined and the faults being diagnosed 

significantly slower than before.  Whilst the BBN method can be applied to a system of this 

size, it appears that it would not be feasible to apply it to a significantly larger system.  

Therefore, in the next chapter, an alternative modelling technique is introduced which enables 

a more accurate modelling of the system, quicker determination of the sensor readings, and 

quicker fault diagnostics.  This will also require a new fault diagnostic technique to be 
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introduced, as the BBN model used to diagnose the component failures will no longer be 

constructed.  

Another of the potential problems that could be drawn from this application is that as the 

number of potential sensors increases, the number of combinations of sensors increases, and, 

therefore, the required number of performance metric calculations increases, i.e. the 

computation time increases.  In addition to the increase in the number of combinations of 

sensors, the number of sensor readings per sensor is higher than for the simple system discussed 

in the previous chapter, further increasing the computation time to calculate the performance 

metric for each combination of sensors.  Whilst excessive computation time has not been a 

problem for this system, it could potentially be a problem for larger systems which may have 

more potential sensor locations.  The same sensor selection method is applied to the system 

discussed in the next chapter, i.e. the example system discussed in this chapter with some of 

the simplifications removed from the system model.  At the end of the next chapter, a discussion 

about whether an optimisation process needs to be introduced during the sensor selection 

process is given, or if the exhaustive approach applied thus far can be used on larger systems. 

 

4.7. Summary 

In summary, in this chapter the proposed methodology is applied to a simplified version of 

the aircraft fuel system introduced by Moir & Seabridge (2011).  For this system, combinations 

of one and two component failures are considered in two different operation modes: engine 

feed and fuel transfer.  Each of the 20 components have two potential failure modes.  Of these 

component failures, approximately 31% of the failures in the engine feed operation mode, and 

approximately 50% of the failures in the fuel transfer operation mode can be detected by at 

least one of the 25 potential sensors that could be introduced to the system.  As a result, the 

performance metric of each combination of five (and fewer) sensors was calculated for both 

operation modes, and the best combination of five sensors that can detect all of the observable 

component failures is selected for each of the operation modes.  This process was completed 

using a C++ script, instead of the manual calculation applied in Chapter 3. 

In order to calculate the performance metrics for each combination of sensors, and select 

the combinations of sensors, a BBN model of the system was constructed.  This model was 

able to simulate all of the combinations of component failures, and could therefore be used to 

determine the sensor readings for each of the sensors.  However, due to the long compiling 

time of the network, and the requirement of grouping the sensor readings to prevent the network 
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getting too large, an alternative modelling technique is proposed in the next chapter.  The 

method of the performance metric calculation can still be used, if the alternative modelling 

technique outputs sensor readings in the same format as they are by the BBN method. 

As with the previous system, the BBN was used to successfully diagnose all of the 

component failures that can be detected, with only one or two additional components being 

inspected that have not failed.  However, if the BBN is not going to be used to model the 

system, an alternative diagnostic process that does not use the BBN will also need to be 

introduced, as investigated in the next chapter.
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 Proposed methodology for 

fault diagnostics using simulation 
 

 

In this chapter, an alternative but related system modelling and fault diagnostics approach 

to the BBN approach, is proposed.  The alternative method is developed in order to achieve the 

better model scalability required when dealing with large systems.  This method is described 

as an evolution of the BBN based method, drawing on techniques developed during the 

construction of BBNs for use in the construction of simulation based models. This 

methodology is applied to the system presented in Chapter 4 with the simplifications applied 

in Chapter 4 removed.  In order to demonstrate the accuracy of the proposed fault diagnostic 

method, a BBN model of the system is produced for comparison.  Note, the applications of the 

two methodologies are completed independently, with no reference to each other in each of the 

applications, all comparisons between the two methodologies are made in section 5.5, in which 

the comparisons are separated into the three parts of the methodology, system modelling, 

selection of sensors, and diagnosis of failures. 

This chapter begins by introducing the new methodology for modelling and diagnosing 

failures in the system.  Next, a brief overview of minor modifications to the system presented 

in section 4.1 is given followed by the newly proposed methodology and the BBN based 

methodology are applied.  The chapter concludes by presenting a comparison of the two 

methodologies, and detailing why the proposed method is the more suitable solution for large 

systems. 

 

5.1. The methodology 

In order to be able to select sensors and diagnose failures in large systems, a simulation 

method is proposed as an evolution to BBNs.  The sensor selection method is the same as the 

one presented in Chapters 3 and 4, and will, therefore, not be discussed in this section of the 

chapter.  The method involves calculating the performance metric of all combinations of 

sensors.  The sensor selection process will be presented in the application of the methodology 

presented in section 5.3. 
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5.1.1. Modelling the System using flow simulation 

The model of the system is completed using a similar process to that proposed for the 

construction of the BBNs in section 3.3, i.e. considering the quantity of fuel supplied using the 

pumps, considering the exits that the fuel can pass through in the system, and the sections of 

the system that the fuel can pass between.  The method is effectively a streamlined version of 

the BBNs’ conditional probability tables, as only the probabilities that are required for the 

calculation of the performance metric are determined, and not the probability of every state of 

every node as in the BBN method.  In addition, the simulation method should also be more 

efficient because it does not require the software “HUGIN Researcher” to determine the 

probabilities of the sensor states.  The probability of each of the states can be calculated directly 

rather than having to communicate back and forth with the software.  In addition, the 

probability of each state is only calculated from the sensors in the proposed method, but in the 

BBN, the probability of each state for every node is calculated.  The proposed method can be 

described as an evolution of the BBN based methodology, i.e. a streamlined version of the 

BBNs’ conditional probability tables, as opposed to a new unrelated method, which may 

require a completely different approach and thought process. 

The model is constructed using a C++ script consisting of a number of functions.  Each 

function is used to determine sensor readings for each individual sensor and uses a series of if-

then-else statements to determine the sensor readings for each combination of component 

failures, i.e. a function for each sensor.  The if-then-else statements used for determining the 

sensor readings begin by considering the exits in the system which are closest to the sensor 

considered, then determining the exits in other sections of the system if there are clear paths 

between sections of the systems using the components that separate the sections of the system, 

i.e. NVL, NVR, LDV, RDV and RPV as introduced in section 4.1.  The next set of if-then-else 

statements can be completed by considering the supply to the system, i.e. consider the supply 

of fuel to the section of the system that the sensor is located in, and then consider the supply 

from other sections of the system if there are clear paths from these sections of the systems, i.e. 

using the same components as before, NVL, NVR, LDV, RDV and RPV.  A full example of 

the script for sensor S1 is presented in Appendix G, and a flowchart detailing the steps of the 

functions to calculate the sensor readings is presented in Figure 5.1. 

The if-then-else functions in the simulation code that are used to determine the sensor 

readings calculate the amount of fuel available in each section of the system, and the number 

of exits that the fuel can pass through.  The amount of fuel moving in the system can be divided 
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by the number of exits and the flow of fuel through each of the exits can be determined.  This 

enables the flow of fuel at each of the pumps, and through each of the exits to be determined.  

From this, the path which the fuel has to take from the pumps to exit the system can be 

determined, enabling the flow of fuel past the sensors in the middle of the system to be 

determined using formulas, i.e. dividing the supply of fuel in the system by the number of exits 

in the system.  

 

Figure 5.1 Flowchart of the steps of the functions to calculate the sensor readings 

 

The script for the model begins by setting the system operation mode and by introducing 

the occurrence probability of each of the component states, which depends on the operation 

mode.  The component states for the considered component failure can then be set, and the 

probability of the considered event can then be calculated, i.e. the product of the component 
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states.  Next, each of the functions to calculate the sensor reading can be executed and the 

resultant sensor readings stored in a vector.  The script will then output whether due to the 

failures, the system is in a critical state, as defined in section 4.1.  These steps are repeated for 

all combinations of component states and are then used for the selection of the sensors using 

the sensor selection code presented in Chapter 4.  A flowchart of the modelling of the system 

is presented in Figure 5.2.  Note, the step in the flowchart, “Calculate the sensor readings for 

all considered events” corresponds to the flowchart presented in Figure 5.1. 

 

Figure 5.2 Flowchart for the modelling of the system 

 

One of the main benefits of modelling the system in this way, is that instead of having 

predefined states for the sensor readings (like in the BBN), formulas in the functions are used 

to calculate the sensor readings.  Therefore, any value that can be produced in the real system, 

can be output by the model rather than having to group the sensor readings into ranges.  This 

also enables the change in the level of fuel in the tanks to be considered, which was not 

considered in the BBN model constructed in Chapter 4.  The change in the level of fuel in the 

tanks can be calculated by determining the difference between the quantities of fuel exiting, 

Assign probability of component states 

based on operation mode 

Read in component states for all 

considered events 

Set operation mode 

Calculate probability of occurrence 

for each of the considered events 

Calculate the sensor readings for each of 

the considered events (Figure 5.1) 

Calculate critical state 

Finish 

Start 



 

149 
 

and entering each of the tanks.  This is not possible in the BBN as there are ranges of quantities 

of fuel entering the tanks, so the exact level change cannot be determined. 

In the next section, an outline of the diagnostic process using this simulation-based model 

is presented. 

 

5.1.2. Fault Diagnostics 

Using the simulation-based modelling technique requires an alternative fault diagnostics 

method to be developed, as a BBN is not constructed, and can therefore not be used for fault 

diagnostics.  The alternative fault diagnostic method entails building up a library of sensor 

readings for a set of possible component failures.  The library of sensor readings consists of all 

of the sensor readings corresponding to the component failures used to calculate the sensor 

performance metric.  The observed sensor readings for the considered failure can then be 

compared with the readings in the library, and component failures that caused them are 

identified.  A flow chart detailing the steps of the diagnostics process of component failures is 

presented in Figure 5.3. 

 

Figure 5.3 Flowchart for the diagnosis of component failures 
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A potential problem with the proposed fault diagnostics method is when a set of sensor 

readings that is observed is not in the library, i.e. all failure scenarios would not be considered.  

As before, only combinations of one or two component failures are considered in this chapter.  

In addition, a set of sensor readings that is not in the library could be observed if there has been 

a sensor failure, but these are not considered in this study.  However, the C++ script was 

modified so that it offers potential solutions to these two cases if they were to be considered.  

If the observed sensor readings do not match any combinations in the library, the C++ script 

compares the sensor readings observed to the sensor readings in the library progressively 

ignoring an increasing number of sensors until the observed sensor readings match a case in 

the library.  For example, each of the individual sensors will be removed, then every 

combination of two sensors will be removed, then every combination of three sensors will be 

removed, etc.  This will suggest potential component failures that may have occurred, or 

sensors that may have failed.  

 

5.1.3. Summary 

In summary, the methodology uses a C++ simulation to model the system by using a series 

of if-then-else statements to determine sensor readings for each combination of component 

states.  Then the sensor selection process is carried out using the methodology proposed in 

Chapters 3 and 4, i.e. using the input states for individual and combinations of two component 

failures in this system.  Finally, a library of sensor readings for all combinations of considered 

component failures is built, and therefore, any considered combination of component failures 

that can be diagnosed, is diagnosed. 

In the next section, the system from Chapter 4 is presented with some modifications. 

 

5.2. System description 

The un-simplified version of the system presented in Chapter 4 is used for the application 

of this methodology in this chapter.  The schematic of the system was first presented in Figure 

4.1 for the engine feed operation mode, and Figure 4.2 for the fuel transfer operation mode.  

The application considers the 28 components and 33 sensor locations presented in Figures 4.5 

and 4.6, respectively.  Note, the components are labelled in Table 4.1.  As detailed above, it is 

possible to consider fuel tank level sensors in the proposed methodology, resulting in an 

additional 4 level sensors being included, one in each of the tanks, i.e. 37 sensors in total. 
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As in the previous chapter, the only two operation modes considered are the engine feed 

and the fuel transfer operation mode.  However, there are some minor modifications to the 

system considered.  The fuel transfer operation mode is modified such that the fuel is supplied 

to the engines at all times.  Note that in the previous chapter, no supply was considered to the 

engines during fuel transfer as this is how the fuel transfer operation mode is presented in the 

figure, (Figure 4.2).  This results in new minimal cut sets for the fuel transfer operation mode, 

in comparison to those presented in section 4.1.  Minimal cut sets for the engine feed operation 

mode are the same and they are presented in section 4.1.  The new set of minimal cut sets for 

the fuel transfer operation modes can be determined by considering which combinations of 

component failures cause the system to fail.  For example, what combinations of component 

failures cause no fuel to supplied to the engines, or what combinations of component failures 

cause no fuel to be transferred around the system.  The minimal cut sets are: 

• {TPLT off, TPLB off, TPRT off, TPRB off} 

• {TPLT off, TPLB off, TPRT off, TPRB off} 

• {TVFF closed, TVRF closed} 

• {TPLT off, TPLB off, TVFF closed} 

• {TPRT off, TPRB off, TVRF closed} 

• {NVL open 2 way, RPV open, DV open} 

• {NVR open 2 way, RPV open, DV open} 

• {BPFL off, BPFR off, BPRR off, BPRL off,} 

• {LLP closed, RLP closed} 

• {LHP closed, RLP closed} 

• {LLP closed, RHP closed} 

• {LHP closed, RHP closed} 

• {BPFL off, BPFR off, RLP closed} 

• {BPFL off, BPFR off, RHP closed} 

• {BPRL off, BPRR off, LLP closed} 

• {BPRL off, BPRR off, LHP closed} 

• {LDV open, DV open} 

• {RDV open, DV open} 

In the previous chapter, the transfer pumps were assumed to supply fuel at the same rate as 

the booster pumps.  However, if this is the case, the level of fuel in the fuselage tanks will 

remain constant during the fuel transfer operation mode.  Therefore, the transfer pumps are 
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assumed to supply fuel at double the rate of the booster pumps, i.e. “2”, the same notation as 

used in Chapters 3 and 4 is used in the tables, i.e. “E”, “1”, “2”, “N”, etc.  Updated versions of 

Tables 4.2 (component working states) and 4.4 (sensor readings for each operation mode in the 

“no fault” condition) are presented in Tables 5.1 and 5.2, respectively.   

 
Table 5.1 Component normal working state for each operation mode 

Component Name Component Number Engine Feed operation 

mode 

Fuel Transfer 

operation mode 

TPLT 1 Off On 

TPLB 2 Off Off 

TPRT 3 Off On 

TPRB 4 Off Off 

TPFF 5 Off Off 

TPRF 6 Off Off 

BPFL 7 On On 

BPFR 8 Off Off 

BPRL 9 On On 

BPRR 10 Off Off 

RVLW 11 Closed Closed 

RVRW 12 Closed Closed 

RVFF 13 Closed Closed 

RVRF 14 Closed Closed 

TVFF 15 Open Open 

TVRF 16 Open Open 

LDV 17 Closed Closed 

RDV 18 Closed Closed 

DV 19 Closed Closed 

CV 20 Closed Closed 

RPV 21 Closed Closed 

LLP 22 Open Open 

LHP 23 Open Open 

RLP 24 Open Open 

RHP 25 Open Open 

TIV 26 Closed Closed 

NVL 27 Open Open 

NVR 28 Open Open 
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Table 5.2 Sensor readings for each operation mode 

Operation 

mode 

S1 S1a S2 S3 S4 S5 S6 S7 S8 S9 S10 

Engine feed E E E E E E E E E E E 

Fuel transfer 2 N N N 2 N E E N N 2 

Continued… 

Operation 

mode 

S11 S12 S12a S13 S14 S15 S15a S16 S16a S17 S18 

Engine feed E E E E E 1 N 1 N N E 

Fuel transfer N 2 N E E 1 N 1 N N E 

Continued… 

Operation 

mode 

S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 

Engine feed E N E 1 1 1 1 E E N N 

Fuel transfer E N E 1 1 1 1 E E N N 

Continued… 

Operation 

mode 

LWTL RWTL FFL RFL    

Engine feed 0 0 -1 -1    

Fuel transfer -2 -2 1 1    

 

Note, in Table 5.2 LWTL (left wing tank level), RWTL (right wing tank level), FFL 

(forward fuselage tank level), and RFL (rear fuselage tank level) represent the change in fuel 

level observed by the level sensors in each of the fuel tanks.  For these four sensors, negative 

values represent the fuel level in the tanks decreasing, 0 represents the fuel level in the tanks 

remaining constant, and positive values represent the fuel level in the tanks increasing. 

In the next section, the methodology proposed in section 5.1 is applied to the system. 

 

5.3. Application of the methodology 

The proposed methodology is applied to this system.  As in Chapters 3 and 4, all 

combinations of one and two component failures are considered on the system, which can be 

in one of the two operation modes.  This results in 1568 combinations of component failures 
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for each operation mode.  Note, that the probability of each failure event can be calculated 

using Table 4.3, as before. 

 

5.3.1. Modelling the system 

The proposed methodology begins by developing the system model.  For comparison, the 

model was constructed in the form of a C++ script that outputs the sensor readings in the same 

format as they are outputted by the C++ script that uses the BBN.  This enables the same sensor 

selection script to be used as in Chapter 4. 

 

5.3.1.1. System Model development 

As detailed in section 5.1.1, the C++ script begins by choosing the operation mode of the 

system.  The next step is to assign the probability of the states to each component.  However, 

this is dependent on the operation mode, and as a result, this step is completed by using an if-

then-else statement.  For example, if the system is in the fuel transfer operation mode, then the 

probability that the component TPLT is in the “working on” state is 0.990, the probability that 

it is in the “failed on” failure mode is 0.005, the probability that it is in the “failed off” failure 

mode is 0.005, and the probability that it is in the “working off” state is 0, as it cannot work off 

in this mode.  Alternatively, if the system is in the engine feed operation mode, the probability 

that the component TPLT is in the “working on” state is 0, the probability that it is in the “failed 

on” failure mode is 0.005, the probability that it is in the “failed off” failure mode is 0.005, and 

the probability that it is in the “working off” state is 0.990, as it cannot work on in this mode. 

The next step in the methodology is to read in the component states from the input files.  

These component states are detailed in the form of integer values, each of which indicate the 

state number the component is in, i.e. for the pumps, state 0 is working on, state 1 is failed on, 

2 is failed off, and state 3 is working off; and for the valves, state 0 is the working state, state 

1 is failed open, and state 2 is failed closed. 

Once the component states for each considered combination of component failures have 

been stored, the probability of each combination of component failures can be calculated and 

stored.  This is calculated by multiplying the corresponding state probabilities for each of the 

components.  For example, the probability of TPLT being in the failed on failure mode and all 

other components in the working state for the fuel transfer operation mode, is equal to 

0.005×0.9909×0.99816×0.9912 = 0.0004344. 



 

155 
 

The next step is to calculate the sensor readings for each of the sensors.  For each sensor, a 

function was written which considers the states of each the components used to determine 

sensor readings.  As discussed, an example of the function for sensor S1 is presented in 

Appendix G.  The script in each of the functions follows the same format as presented in the 

flowchart in Figure 5.1.  The determination of the sensor readings is repeated for all sensors, 

and then for all considered combinations of component failures. 

The penultimate step is to determine whether the system fails for each combination of 

component failures.  This is completed by comparing the component states to the minimal cut 

sets for each operation mode detailed in sections 4.1 and 5.2 for the engine feed and fuel 

transfer operation modes, respectively.  If one of the minimal cut sets is observed, then the 

system is critical. 

The final step is to output the sensor readings, the event probabilities, and the critical state 

to text files.  These are the outputs to be used in the sensor selection code. 

 

5.3.1.2. Discussion 

There are a number of benefits to the proposed method for system modelling.  The first 

arises because the flow can be calculated using equations, the flow value can be determined by 

the model without having to assign a state to a range of values, as would be required using the 

BBN method.  It makes this modelling technique more accurate than that presented in Chapters 

3 and 4.  Additionally, it enables fuel level sensors to be modelled to record the change of fuel 

level in each of the tanks.  Since fuel tank level sensors are commonly used in real systems, it 

is desirable to be able to model them. 

Another benefit of using this modelling technique is that determining the sensor readings 

for all 37 sensors for all 1568 combinations of one and two component failures for each 

operation mode takes around 1 – 2 seconds.  This is significantly less than the time 

(approximately one hour) it took to determine the sensor readings using the BBN for the 800 

combinations of one and two component failures, presented in Chapter 4.  This means that 

despite considering more sensors, more combinations of component failures, and achieving a 

higher level of accuracy in the model, the method is significantly faster, and is therefore, a 

better option than using the BBN method since larger, more complex systems can be modelled 

using the proposed method. 

In the next section, the selection of sensors to be used for the fault diagnostics process will 

be presented. 
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5.3.2. Sensor Selection 

The next step of the methodology is to select the sensors to be used for the fault diagnostics 

process.  As in Chapters 3 and 4, all combinations of sensors are considered exhaustively until 

a suitable combination of sensors is determined.  In order to determine suitable combinations, 

the maximum possible performance metric needs to be calculated for comparison, i.e. when all 

sensors are considered on the system.  The maximum performance metric for the engine feed 

operation mode is 0.9688, which consists of a detection term of 1, a diagnostic term of 0.9063, 

and a criticality term of 1.  This corresponds to being able to detect 38.9239% (760/1568) of 

all considered failures for the engine feed operation mode.  The maximum achievable 

performance metric for the fuel transfer operation mode is 0.9751, which consists of a detection 

term of 1, a diagnostic term of 0.9253, and a criticality term of 1.  This corresponds to detecting 

53.6849% (1044/1568) of the considered failures for the fuel transfer operation mode.  Note, 

these percentage values are calculated using the sum of the probabilities of detected failures 

divided by the sum of the probabilities of all considered failures.   

As the percentage of detectable failures is less than 100% for both of the operation modes, 

there are a number of hidden failures.  However, like in Chapter 4, none of the hidden failures 

are critical to system performance, i.e. all of the critical failures are detected, therefore, CR = 

1.  A summary of hidden failures is presented in Table 5.3. 

 

Table 5.3 Hidden component failures for each operation mode 

Number Operation mode Component Hidden failure 

1 Engine Feed RVLW Open 

2 Engine Feed RVRW Open 

3 Engine Feed RVFF Open 

4 Engine Feed RVRF Open 

5 Engine Feed NVL 2 way 

6 Engine Feed NVR 2 way 

7 Engine Feed TPLT Off 

8 Engine Feed TPRT Off 

9 Engine Feed TVFF Closed 

10 Engine Feed TVRF Closed 

11 Fuel Transfer TPLT On 
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12 Fuel Transfer TPRT On 

13 Both BPFL On 

14 Both BPRL On 

15 Both TVFF Open 

16 Both TVRF Open 

17 Both DV Open 

18 Both CV Open 

19 Both RPV Open 

20 Both LLP Open 

21 Both LHP Open 

22 Both RLP Open 

23 Both RHP Open 

24 Both TIV Open 

25 Both TPLB Off 

26 Both TPRB Off 

27 Both TPFF Off 

28 Both TPRF Off 

29 Both BPFR Off 

30 Both BPRR Off 

31 Both RVLW Closed 

32 Both RVRW Closed 

33 Both RVFF Closed 

34 Both RVRF Closed 

35 Both LDV Closed 

36 Both RDV Closed 

37 Both DV Closed 

38 Both CV Closed 

39 Both RPV Closed 

40 Both TIV Closed 

41 Both NVL Closed 

42 Both NVR Closed 

 

If Tables 5.3 and 4.7 are compared, it is observed that there are fewer hidden failures that 

are only unobservable in one of the operation modes.  For example, the primary engine feed 
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pumps (BPFL, BPRL) failing off and the valves to the engines (LLP, LHP, RLP, RHP) failing 

closed are no longer hidden in the fuel transfer operation mode.  This is a result of the 

components that are used to supply fuel to the engines being active in both operation modes, 

due to the modification made in section 5.2 (supply of fuel to the engines required in both 

operation modes).  This results in significantly fewer hidden failures that are not observed in 

the fuel transfer operation mode only, as most of the hidden failures for the fuel transfer 

operation mode only in Table 4.7 are components that are used to supply fuel to the engines, 

or are in the engine feed sections of the system.  This accounts for eight (numbers 15 – 22) of 

the ten failures (numbers 13 – 22) that are only hidden in the fuel transfer mode in Table 4.7. 

 

5.3.2.1. Results 

The performance metric for all combinations of sensors, starting with one sensor and then 

gradually increasing the number of sensors, was calculated until the performance metric for 

combinations of nine sensors was achieved.  This resulted in a detection term of 1 for the engine 

feed operation mode, and 0.9249 (less than 1) for the fuel transfer operation mode.  The 

minimum number of sensors required to detect all the component failures for the fuel transfer 

operation mode was determined manually by looking through the sensor readings and 

determining which component failures were not detected by the best combination of nine 

sensors.  The sensors required to detect these failures can be determined, and as a result, the 

minimum number required to detect them can be determined.  This result is twelve sensors, 

and if the performance metric was to be calculated exhaustively, it would require 

approximately 3,000,000,000 additional combinations of sensors to be considered, in addition 

to approximately 176,000,000 combinations of sensors, which the performance metric is 

already calculated for.  This would take in excess of a week, instead of around 8 hours.  This 

suggests that applying an optimisation process to the selection of sensors would be beneficial 

for future, larger systems, as presented in Chapter 6.  The maximum performance metric for 

each operation mode achieved using nine sensors is presented in the following paragraphs.  A 

combination of nine sensors was selected because a combination of nine sensors can detect all 

the failures in the engine feed operation mode. 

The performance metric and each individual term is presented for the engine feed and fuel 

transfer operation modes in Tables 5.4 and 5.5, respectively, when individual sensors are 

considered. 
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Table 5.4 Ranking of individual sensors for the example aircraft fuel system in the engine feed 

operation mode using the simulation 

Rank Sensor I{s} DE{s} DI{s} CR{s} 

1 S23 0.5605 0.1645 0.6836 0.8333 

 S25 0.5605 0.1645 0.6836 0.8333 

2 S15 0.5445 0.0915 0.8754 0.6667 

 S16 0.5445 0.0915 0.8754 0.6667 

3 S22 0.5283 0.1645 0.5870 0.8333 

 S24 0.5283 0.1645 0.5870 0.8333 

4 FFL 0.5095 0.2747 0.5871 0.6667 

 RFL 0.5095 0.2747 0.5871 0.6667 

5 S17 0.3889 0.00003 1.0000 0.1667 

 S20 0.3889 0.00003 1.0000 0.1667 

6 S1 0.3519 0.1837 0.8719 0 

 S1a 0.3519 0.1837 0.8719 0 

 S12 0.3519 0.1837 0.8719 0 

 S12a 0.3519 0.1837 0.8719 0 

7 S26 0.3230 0.0923 0.8766 0 

 S27 0.3230 0.0923 0.8766 0 

8 S18 0.2687 0.0365 0.4361 0.3333 

 S19 0.2687 0.0365 0.4361 0.3333 

9 S14 0.2685 0.0365 0.4357 0.3333 

 S21 0.2685 0.0365 0.4357 0.3333 

10 S5 0.2089 0.1837 0.4431 0 

 S8 0.2089 0.1837 0.4431 0 

11 S4 0.2086 0.1837 0.4422 0 

 S10 0.2086 0.1837 0.4422 0 

12 LWTL 0.2081 0.1822 0.4422 0 

 RWTL 0.2081 0.1822 0.4422 0 

13 S15a 0.2073 0.1819 0.4401 0 

 S16a 0.2073 0.1819 0.4401 0 

14 S2 0.2067 0.1837 0.4364 0 

 S3 0.2067 0.1837 0.4364 0 

 S9 0.2067 0.1837 0.4364 0 

 S11 0.2067 0.1837 0.4364 0 

15 S28 0.1725 0.0738 0.4438 0 

 S29 0.1725 0.0738 0.4438 0 

16 S6 0.1675 0.0026 0.5000 0 

 S7 0.1675 0.0026 0.5000 0 

17 S13 0.0852 0.0026 0.2530 0 
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Table 5.5 Ranking of individual sensors for the example aircraft fuel system in the fuel transfer operation mode 

using the simulation 

Rank Sensor I{s} DE{s} DI{s} CR{s} 

1 FFL 0.5933 0.3659 0.6999 0.7143 

 RFL 0.5833 0.3659 0.6999 0.7143 

2 S23 0.5057 0.1192 0.6836 0.7143 

 S25 0.5057 0.1192 0.6836 0.7143 

3 S15 0.5044 0.0663 0.8754 0.5714 

 S16 0.5044 0.0663 0.8754 0.5714 

4 S22 0.4735 0.1192 0.5870 0.7143 

 S24 0.4735 0.1192 0.5870 0.7143 

5 S4 0.4243 0.3139 0.8163 0.1429 

 S10 0.4243 0.3139 0.8163 0.1429 

6 S17 0.3810 0.00002 1.0000 0.1429 

 S20 0.3810 0.00002 1.0000 0.1429 

7 LWTL 0.3715 0.0924 0.8793 0.1429 

 RWTL 0.3715 0.0924 0.8793 0.1429 

8 S5 0.3664 0.2104 0.8888 0 

 S8 0.3664 0.2104 0.8888 0 

9 S6 0.3662 0.2112 0.8875 0 

 S7 0.3662 0.2112 0.8875 0 

10 S1 0.3193 0.0793 0.7357 0.1429 

 S12 0.3193 0.0793 0.7357 0.1429 

11 S26 0.3145 0.0669 0.8766 0 

 S27 0.3145 0.0669 0.8766 0 

12 S2 0.3015 0.0135 0.8910 0 

 S3 0.3015 0.0135 0.8910 0 

 S9 0.3015 0.0135 0.8910 0 

 S11 0.3015 0.0135 0.8910 0 

13 S18 0.2485 0.0266 0.4331 0.2857 

 S19 0.2485 0.0266 0.4331 0.2857 

 S14 0.2483 0.0266 0.4327 0.2857 

 S21 0.2483 0.0266 0.4327 0.2857 

14 S13 0.2169 0.2112 0.4393 0 

15 S1a 0.1913 0.1321 0.4417 0 

 S12a 0.1913 0.1321 0.4417 0 

16 S15a 0.1907 0.1319 0.4401 0 

 S16a 0.1907 0.1319 0.4401 0 

17 S28 0.1658 0.0535 0.4438 0 

 S29 0.1658 0.0535 0.4438 0 
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In both operation modes, the sensors ranked in the top 4 are the same, except in a different 

order.  This suggests that there are sensors that are good in both of the operation modes.  

However, the same is not the case for the sensors towards the bottom of the table, for example, 

the sensors S1a and S12a are ranked 6th in the engine feed operation mode, but are ranked 15th 

in the fuel transfer operation mode.  This is because different components are used in different 

operation modes and therefore the sensors can detect different amounts of component failures.   

 

Table 5.6 Combinations of nine sensors with the highest performance metric for the engine feed operation mode 

using the simulation, I = 0.9676, DE = 1, DI = 0.9028, CR = 1 

Sensors Sensors continued 

S1 S12 S14 S15 S16a S23 S25 S26 S27  S1a S12 S14 S15 S16a S23 S25 S26 S27  

S1 S12 S14 S15a S16 S23 S25 S26 S27  S1a S12 S14 S15a S16 S23 S25 S26 S27  

S1 S12 S14 S15a S16a S23 S25 S26 S27  S1a S12 S14 S15a S16a S23 S25 S26 S27  

S1 S12 S15 S16a S18 S23 S25 S26 S27  S1a S12 S15 S16a S18 S23 S25 S26 S27  

S1 S12 S15 S16a S19 S23 S25 S26 S27  S1a S12 S15 S16a S19 S23 S25 S26 S27  

S1 S12 S15 S16a S21 S23 S25 S26 S27  S1a S12 S15 S16a S21 S23 S25 S26 S27  

S1 S12 S15a S16 S18 S23 S25 S26 S27  S1a S12 S15a S16 S18 S23 S25 S26 S27  

S1 S12 S15a S16 S19 S23 S25 S26 S27  S1a S12 S15a S16 S19 S23 S25 S26 S27  

S1 S12 S15a S16 S21 S23 S25 S26 S27  S1a S12 S15a S16 S21 S23 S25 S26 S27  

S1 S12 S15a S16a S18 S23 S25 S26 S27  S1a S12 S15a S16a S18 S23 S25 S26 S27  

S1 S12 S15a S16a S19 S23 S25 S26 S27  S1a S12 S15a S16a S19 S23 S25 S26 S27  

S1 S12 S15a S16a S21 S23 S25 S26 S27  S1a S12 S15a S16a S21 S23 S25 S26 S27  

S1 S12a S14 S15 S16a S23 S25 S26 S27  S1a S12a S14 S15 S16a S23 S25 S26 S27  

S1 S12a S14 S15a S16 S23 S25 S26 S27  S1a S12a S14 S15a S16 S23 S25 S26 S27  

S1 S12a S14 S15a S16a S23 S25 S26 S27  S1a S12a S14 S15a S16a S23 S25 S26 S27  

S1 S12a S15 S16a S18 S23 S25 S26 S27  S1a S12a S15 S16a S18 S23 S25 S26 S27  

S1 S12a S15 S16a S19 S23 S25 S26 S27  S1a S12a S15 S16a S19 S23 S25 S26 S27  

S1 S12a S15 S16a S21 S23 S25 S26 S27  S1a S12a S15 S16a S21 S23 S25 S26 S27  

S1 S12a S15a S16 S18 S23 S25 S26 S27  S1a S12a S15a S16 S18 S23 S25 S26 S27  

S1 S12a S15a S16 S19 S23 S25 S26 S27  S1a S12a S15a S16 S19 S23 S25 S26 S27  

S1 S12a S15a S16 S21 S23 S25 S26 S27  S1a S12a S15a S16 S21 S23 S25 S26 S27  

S1 S12a S15a S16a S18 S23 S25 S26 S27  S1a S12a S15a S16a S18 S23 S25 S26 S27  

S1 S12a S15a S16a S19 S23 S25 S26 S27  S1a S12a S15a S16a S19 S23 S25 S26 S27  

S1 S12a S15a S16a S21 S23 S25 S26 S27  S1a S12a S15a S16a S21 S23 S25 S26 S27  
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Table 5.7 Combinations of nine sensors with the highest performance metric for the fuel transfer operation 

mode using the simulation, I = 0.9479, DE = 0.9249, DI = 0.9187, CR = 1 

Sensors 

S1a S12a S15a S16a S18 S26 S27 FFL RFL 

S1a S12a S15a S16a S19 S26 S27 FFL RFL 

 

The combinations of 9 sensors with the highest performance metric are presented in Table 

5.6 for the engine feed operation mode, and in Table 5.7 for the fuel transfer operation mode, 

respectively.  For the engine feed operation mode, this performance metric is 0.9676, with a 

detection term of 1, a diagnostic term of 0.9028, and a criticality term of 1, and for the fuel 

transfer operation mode, the performance metric is 0.9479, with a detection term of 0.9249, a 

diagnostic term of 0.9187, and a criticality term of 1.  Note, in Table 5.6 the combinations of 

sensors are given in two columns for brevity. 

In the next section, a discussion on the selections of sensors is presented. 

 

5.3.2.2. Discussion 

One thing that can be observed from the performance metrics of the individual sensors, is 

that the level sensors are a useful addition to the possible types of sensors already considered.  

This is evident because the level sensors in the front (FFL) and rear (RFL) fuselage tanks are 

ranked 1st for the fuel transfer operation mode, i.e. they are the best sensors to use if only one 

sensor can be installed on the system for the fuel transfer operation mode.  Note, that they are 

ranked 4th for the engine feed operation mode.  The fuselage tank level sensors are also included 

in the combinations of nine sensors as can be observed in Table 5.7.  In addition, the fuselage 

tank level sensors are also members of the best combinations of sensors, up to combinations of 

nine sensors for the fuel transfer operation mode, as presented in Table 5.10 later in this section.  

However, the level sensors are not included in any of the highest ranking combinations of 

sensors for the engine feed operation mode. 

Other factors that were observed and also discussed in Chapters 3 and 4, are that it is best 

to select the sensors by considering the individual terms of the performance metric.  For 

example, the sensors ranked 5th for the engine feed operation mode, sensors S17 and S20, have 

a low detection term (0.00003), and hence detect a small percentage of component failures, but 

are ranked highly because of the high diagnostic term (1).  These individual sensors would not 
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be considered because of the low detection term.  Also, as discussed previously, it is generally 

not beneficial to select two sensors in close proximity to each other, as this typically does not 

increase the performance metric significantly.  If the same example presented in Chapter 4 is 

considered, the sensor groups consisting of S22 and S23, and S24 and S25 have the same 

performance metrics value for the engine feed operation mode as sensors S23 and S25 have 

individually, respectively, i.e. there is no benefit from the additional sensor.  In contrast, as 

shown in Table 5.9, the sensor combination S23 and S25, two sensors from different sections 

of the system, has a 27.17% increase in performance metric over the two sensors individually. 

There are a number of best combinations of nine sensors for each operation mode, 48 

combinations for the engine feed operation mode, and two combinations for the fuel transfer 

operation mode.  If Table 5.6 is studied, there are a number of similarities that can be observed, 

for example, each combination has a pair of sensors, S1 or S1a, and S12 or S12a, one of the 

sensors, from S14, S18, S19 or S21, one of the sensors, from S15 or S15a and one of the 

sensors, from S16 or S16a (note, not including the combination S15 and S16), and then the 

four sensors, S23, S25, S26 and S27.  Likewise, if Table 5.7 is studied, despite the fact that 

there are only two combinations, there is still some symmetry in the results that can be 

observed, i.e. sensor S18 or S19, the sensor next to LDV or the sensor next to RDV, 

respectively.  The other sensors, despite the first four sensors being the same numbers as for 

the engine feed operation mode (i.e. 1, 12, 15 and 16), the only combination of sensors that 

result in the maximum performance metric is using the sensors S1a, S12a, S15a, and S16a.  

This is because these four sensors selected for the fuel transfer operation mode detect failures 

that are not detected by the other sensors in the sensor suite, whereas the sensors, S1, S12, S15, 

and S16, do not detect as many of these failures.  Therefore, the combination of S1a, S12a, 

S15a, and S16a is the only combination that can be selected to achieve the maximum 

performance metric for the fuel transfer operation mode for combinations of 9 sensors. 

In the un-simplified version of the system, sensors S23 and S25 are selected instead of 

sensors S22 and S24 as in the simplified version of the system.  In both cases, the only 

difference in the terms of the performance metric is the diagnostic terms.  This is because of 

the inclusion of the redundant booster pumps in the model.  In the simplified version of the 

system, sensors S22 and S24 produce the same sensor reading for each of the low and high 

pressure cocks failing closed and a different sensor reading for the booster pumps failing off.  

Sensors S23 and S25 produce the same sensor reading for the low pressure cock failing closed 

and the booster pumps failing off, and a different sensor reading for the high pressure cock 

failing closed.  As the probability of the booster pumps being in the failed state is higher than 
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each of the cocks failing closed, sensors S22 and S24 have a higher diagnostic term.  However, 

in the un-simplified version of the system, because of the redundant booster pumps, the sensors 

cannot detect the booster pump failing as the redundant pumps automatically activate when the 

primary pumps fail off.  Therefore, as sensors S23 and S25 can distinguish between the low 

and high pressure cocks failing closed, which sensors S22 and S24 cannot, they are selected in 

the un-simplified version of the system. 

For both operation modes, the sensors are selected from groups of sensors as before.  The 

groups are presented in Figure 5.4, and groups 1 – 6 are the same as presented in Figure 4.12, 

with three additional groups added.  Note, level sensors are grouped together into group 9, but 

are not displayed on the Figure 5.4 for clarity.  Also note, in groups 1 – 4, there are additional 

sensors in comparison to those presented in section 4.4.3, because of the additional sensors 

considered in this chapter, sensors S1a, S12a, S15a, and S16a. 

 

 

 

Figure 5.4 Sections of the system labelled 

 

The best combinations of nine sensors for the engine feed operation mode consist of a 

sensor from each of the groups 1, 2, 6, 7, and 8, and two sensors from each of the groups 3 and 
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4.  As in the previous chapter, no sensor from group 5 is included in the best combination of 9 

sensors for the engine feed operation mode.  In addition no sensor is included from group 9, 

with sensors included from each of the other groups.  However, group 9, the tank level sensors, 

could also be split into groups 1, 2, 3 and 4, with the wing tank level sensors in groups 1 and 

2, respectively, and the fuselage level sensors in groups 3 and 4, respectively.  If this was the 

case, this would result in the selection of sensors for the fuel transfer operation mode following 

the same format as the selection of sensors for the engine feed operation mode.  Note, the best 

combination of nine sensors for the fuel transfer operation mode consists of a sensor from each 

of the groups 1, 2, 3, 4, 6, 7, and 8, and two sensors from group 9, (or one sensor from 1, 2, 6, 

7 and 8 and two sensors from group 3 and 4 if the fuel level sensors are split into groups 1 – 4 

as suggested).  For clarity, each of the groups are presented in Table 5.8, with the “included 

sensors” representing the sensors that are in the best selection of nine sensors for each operation 

mode, and the “not included sensors” representing the sensors that are not in the best 

combinations of 9 sensors for each operation mode. 

 

Table 5.8 The sensors grouped by the sections of the system 

Group Included sensors Not included sensors 

1 S1 S1a S4  S2 S3 S5  

2 S10 S12 S12a  S8 S9 S11  

3 S15 S15a S23  S17 S22 S28  

4 S16 S16a S25  S20 S24 S29  

5     S6 S7 S13  

6 S14 S18 S19 S21     

7 S26        

8 S27        

9 FFL RFL   LWTL RWTL   

 

If the performance metric of the best combination of sensors for each number of sensors is 

compared, it is observed that the increase in performance diminishes as the number of sensors 

is increased.  This is observed in both operation modes, and is presented in the last column of 

Tables 5.9 and 5.10, respectively.  This was also observed in section 4.4.3, and in section 

3.4.1.1. 
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If a phased mission was considered for the system, where the operation mode changes 

throughout the mission, the two operation modes could be combined and the failures weighted 

according to the time spent in each operation mode.  One combination of sensors could then be 

chosen using one performance metric.  This is considered in Chapter 6. 

 

Table 5.9 Best performance metric for the engine feed operation mode for each number of sensors for the 

simulation 

Number Sensors I{s} % diff. 

1 S23 0.5605 0 

2 S23 S25 0.7128 27.17 

3 S1 S23 S25 0.7749 8.71 

4 S1 S12 S23 S25 0.8379 8.13 

5 S1 S12 S23 S25 S26 0.8691 3.72 

6 S1 S12 S23 S25 S26 S27 0.9000 3.56 

7 S1 S12 S15a S23 S25 S26 S27 0.9307 3.41 

8 S1 S12 S15 S16a S23 S25 S26 S27 0.9611 3.27 

9 S1 S12 S14 S15 S16a S23 S25 S26 S27 0.9676 0.68 

37 All sensors 0.9688 0.12 

 

 

Table 5.10 Best performance metric for the fuel transfer operation mode for each number of sensors for the 

simulation 

Number Sensors I{s} % diff. 

1 FFL 0.5933 0 

2 S23 FFL 0.7049 18.81 

3 S18 FFL RFL 0.7945 12.71 

4 S23 S25 FFL RFL 0.8262 3.99 

5 S15a S16a S18 FFL RFL 0.8561 3.62 

6 S1a S15a S16a S18 FFL RFL 0.8795 2.73 

7 S1a S12a S15a S16a S18 FFL RFL 0.9025 2.62 

8 S1a S12a S15a S16a S18 S26 FFL RFL 0.9253 2.53 

9 S1a S12a S15a S16a S18 S26 S27 FFL RFL 0.9479 2.44 

37 All sensors 0.9751 2.87 
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In the next section, the fault diagnostics process is applied to the system using the selected 

group of sensor for each operation mode. 

 

5.3.3. Fault diagnostics 

The selected sensors for fault diagnostics are the first combination of nine sensors obtained 

using the simulation method from Tables 5.6 and 5.7, for the engine feed and fuel transfer 

operation mode, respectively.  Therefore, the combinations of sensors selected for the engine 

feed operation mode are (S1, S12, S14, S15, S16a, S23, S25, S26, S27) and the combination 

of sensors selected for the fuel transfer operation mode are (S1a, S12a, S15a, S16a, S18, S26, 

S27, FFL, RFL).  In order to determine the effectiveness of the selected sensors, they are used 

to diagnose failures in the system using the method presented in section 5.1.2.  As in Chapters 

3 and 4, all combinations of component failures that are used to calculate the performance 

metrics, are used as example failures to test the diagnostic process.  As detailed in section 5.3.2, 

only approximately 39% of the combinations of component failures for the engine feed 

operation mode can be detected, and only approximately 54% of the combinations of 

component failures for the fuel transfer operation mode can be detected.  However, as the 

detection term for the combination of sensors for the fuel transfer operation mode is less than 

1, only approximately 49.65% of the component failures can be detected for the fuel transfer 

operation mode, i.e. the detection term multiplied by the sum of the probability of the failures 

that can be detected in the fuel transfer operation mode, 0.9249×53.6849%. 

The fault diagnostic technique is applied by comparing the observed sensor readings to a 

library of sensor readings for known component failures, and outputting the component failure 

with the highest probability in each case.  The diagnosed failure can then be compared to the 

actual component failure, in order to assess the accuracy of the fault diagnostic method. 

 

5.3.3.1. Fault Diagnosis Results 

Each of the combinations of component failures used to calculate the performance metric 

are used to test the diagnostic process, i.e. 1568 failures for each operation mode.  The results 

of each of these combinations are grouped together into cases which consist of combinations 

of component failures that have similar fault diagnostic results, i.e. such as in the first case of 

Table 5.11.  There are 14 cases for the engine feed operation mode, and 14 cases for the fuel 

transfer operation mode.  The cases are presented in Tables 5.11 and 5.12, for the engine feed, 
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and the fuel transfer operation modes, respectively.  As in Chapter 4, as there are two failure 

modes for each of the components, the bracketed word in the tables indicates the mode that the 

component has failed in, for example, RVLW (Open) represents RVLW failed open.  Note, as 

before (On) represents failed on, (Off) represents failed off, (Open) represents failed open, (Cl) 

represents failed closed, and (2 way) represents the one directional valve allowing the flow 

through in both directions. 

All combinations of component failures are not presented in the tables, as there are 760, 

and 840 combinations of failures that are detected for the engine feed and the fuel transfer 

operation modes, respectively.  Instead, only one of each set of combinations of component 

failures within each case is presented.  The number of failure combinations in each case is 

detailed in the third column of the tables.  The second column in the tables, e.g. 1 of 2, 

represents the number of component failures that are diagnosed, (i.e. 1), of the number of 

component failures in the considered event, (i.e. 2). 

The probability that each component is in the failure mode is presented after each of the 

component failures.  This is equal to the probability of each failure occurrence, divided by the 

probability of all component failures that produce the observed symptoms, respectively, i.e. 

Pmli/Psri.  For example, if the probability is 50%, then there is a 50% likelihood that the 

component has failed. 

The diagnostic results for the engine feed operation mode are presented in Table 5.11, with 

the component failures in each case explained in the same way as they were explained for 

Tables 4.15 and 4.16. 

The first case in Table 5.11 consists of component failures where one component has failed 

and it is diagnosed correctly with approximately 90% confidence.  The component failures in 

this case consist of only one component failure, and are therefore, more likely to occur than 

other combinations of component failures.  This case includes component failures for the 

booster pumps, the transfer pumps, and the low and high pressure cocks. 

The second case in Table 5.11 also consists of component failures where only one 

component has failed, but in this case the probability of each of the component failures is 

approximately 45%.  The component failure is one of the two options presented, and therefore, 

it is diagnosed correctly.  The component failures in this case include the left and right dump 

valves.  It is possible that both of the components can be failed and produce the same set of 

symptoms, this is detailed in case nine of Table 5.11. 

The third and fourth cases in Table 5.11 are combinations of two component failures, but 

only one of them is diagnosed.  The component failures in these two cases are the same as the 
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component failures in cases one and two respectively, but with an additional component failure 

that is hidden.  The additional component failures are component failures that are not normally 

detected when they are on their own, i.e. the failures are hidden failures regardless of the 

presence of the diagnosed failure, the diagnosed failure is not causing the second failure to be 

hidden. 

The fifth case in Table 5.11 are combinations of two component failures where both of 

them are diagnosed.  The combinations of component failures in this case consist of a 

component failure from case one, and a component failure from case two.  Therefore, the 

probability of the first component being failed is 100%, and the probability of the second 

component being failed is 50%.  Note, the reason that the probability of the diagnosis being 

correct is 100% and 50%, respectively, and not approximately 90% and 45%, respectively, is 

because the library of observed component failures only consists of combinations of one and 

two component failures.  Therefore, no additional component failure can be observed in this 

case, but an additional component failure can be in cases one and two, (i.e. cases three and 

four), hence the lower probability of the diagnosis being correct. 

The sixth case in Table 5.11 is when there are two component failures, and both of them 

are diagnosed.  In this case, either the diagnosed failure 1 and diagnosed failure 2, or the 

diagnosed failure 3 and diagnosed failure 4 has occurred, i.e. TPLB (On) and NVL (2 way), or 

TPRB (On) and NVR (2 way).  The probability of each pair occurring is approximately 38%.  

This is less than 50% for each pair as there is another combination of component failures that 

produces the same set of symptoms.  This combinations of component failures are presented in 

case thirteen. 

The seventh case in Table 5.11 is when there are two component failures, both of which 

are diagnosed, but with approximately 60% confidence.  This is because there is another 

combination of component failures that can produce the same symptoms, but the combination 

is less likely to occur.  These combinations of component failures are detailed in case number 

eleven. 

The eighth case in Table 5.11 is combinations of two component failures, and both are 

diagnosed with 100% confidence, i.e. both of the components have definitely failed.  The 

components that are included in this case are the components CV, TIV, DV, and the component 

failures that are in case one. 

The ninth case in Table 5.11 is a combination of two component failures where both are 

diagnosed.  This case was referred to in the paragraph about the second case, where both of the 
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components have failed, and not just one of the components as the diagnostic process suggests.  

The component failures are the same as those presented in case two. 

The tenth case in Table 5.11 is a combination of two component failures, both of which are 

diagnosed, but the second component failure will not be diagnosed until after the first 

component failure has been repaired or replaced.  These combinations of component failures 

include component failures for the transfer pumps, booster pumps, and low and high pressure 

cocks. 

The eleventh case in Table 5.11 was discussed briefly in case seven.  This case consists of 

a combination of component failures that are both diagnosed, but one is incorrect initially.  The 

first component failure is diagnosed correctly, but the second component failure is not 

diagnosed correctly.  However, when further evidence is introduced, the actual second 

component failure will be diagnosed correctly.  As one component failure has already been 

diagnosed, and the limit of the number of component failures is two, the actual second 

component failure will be diagnosed correctly with 100% confidence. 

The twelfth case in Table 5.11 are combinations of two component failures, but one of the 

failures is diagnosed incorrectly.  The incorrectly diagnosed component is actually in its other 

failure mode, i.e. failed closed.  This component failure is normally hidden, and is therefore, 

not normally found.  This is the same as the sixth case from Table 4.15. 

The thirteenth case in Table 5.11 is a combination of two component failures, but the fault 

diagnostics process outputs two pairs of component failures with approximately 38% 

probability of being correct, i.e. as in case six.  However, the actual combination of component 

failures is one component from each pair, TPLB (On) and TPRB (On), which produces the 

same symptoms as the other two combinations, but is less likely to occur.  Therefore, the 

component failures are also diagnosed correctly, but up to four components may be inspected 

in order to determine the correct combination of component failures. 

The final case in Table 5.11 is a combination of two component failures, but is initially 

diagnosed as one component failure, which has not actually failed.  However, when this 

evidence is introduced, the two component failures are diagnosed correctly with 100% 

confidence.  This is because the two component failures produce the same set of symptoms as 

the originally diagnosed component failure, but the combination of failures is less likely to 

occur. 
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Table 5.11 Diagnostics of component failures for the engine feed operation mode using the simulation 
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Table 5.12 Diagnostics of component failures for the fuel transfer operation mode using the simulation 
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Table 5.12 presents the combinations of component failures for the fuel transfer operation 

mode.  The first case in Table 5.12 consists of component failures where one component has 

failed and is diagnosed correctly with approximately 90% confidence.  The component failures 

in this case are more likely to occur than other combinations of component failures, as these 

consist of only one component failure.  This case includes component failures for the booster 

pumps, transfer pumps, transfer valves, refuel valves and 1D valves.  This is the equivalent of 

case one for the engine feed operation mode in Table 5.11. 

The second case in Table 5.12 is the equivalent of the second case of the engine feed 

operation mode.  It consists of individual component failures, diagnosed with approximately 

45% confidence.  The components included in this case are the left and right dump valves, and 

the failed component is one of the two options presented in the table for this case. 

The third and fourth cases in Table 5.12 are the equivalents of the third and fourth cases in 

the engine feed operation mode.  Therefore, they consist of combinations of two component 

failures, one of which is diagnosed.  The third case consists of the component failures from the 

first case, and the fourth case consists of the component failures from the second case.  Both 

cases also have a hidden failure in each combination of component failures. 

The fifth case in Table 5.12 represents combinations of two component failures, both of 

which are diagnosed.  The first component failure is diagnosed with a confidence of 100% and 

the second component with 50% confidence.  This case is the same as the fifth case for the 

engine feed operation mode.  The components in this case are booster pumps, transfer pumps, 

refuel valves, transfer valves, left and right dump valves, low and high pressure cocks, and the 

cross-feed valve. 

The sixth case in Table 5.12 represents combinations of two component failures, both of 

which are diagnosed.  In this case, there are two pairs of component failures that have 50% 

probability of being the combinations of component failures to have occurred.  For the first 

row of this case, it can either be the first two component failures or the second two component 

failures, but for the second row it can be any combination of left and right cocks failed closed. 

The seventh case in Table 5.12 consists of combinations of two component failures that are 

both diagnosed.  The first of which is diagnosed with 100% confidence, but the second 

component can be any of three component failures, all of which are equally likely to occur, and 

therefore, the probability of each of them is approximately 33.33%.  This consists of the 

components, 1D valves, left and right dump valves, and the refuel point valve. 

The eighth case in Table 5.12 consists of combinations of two component failures both of 

which are diagnosed with approximately 90% confidence.  This is because there are other 
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combinations of component failures that can produce the same symptoms but are less likely to 

occur.  These component failures include combinations of the booster pumps and one-

directional valves failing. 

The ninth case in Table 5.12 consists of combinations of two component failures, both of 

which are diagnosed with 100% confidence.  This corresponds to the eighth case of the engine 

feed operation mode.  The component failures in this case include combinations of failures of 

booster pumps, transfer pumps, transfer valves, refuel valves, 1D valves, and the dump valves. 

The tenth case in Table 5.12 consists of a combination of two component failures.  This 

combination is diagnosed as approximately 45% probability of being LDV failed open, or RDV 

failed open, but the actual component failure combination is both of the valves failed open.  

This case is the equivalent of the ninth case in the engine feed operation mode. 

The eleventh case in Table 5.12 consists of combinations of two component failures, both 

of which are diagnosed, but the second component failure is not diagnosed until after the first 

component failure has been repaired or replaced.  The components in this case include the 

transfer pumps, transfer valves, booster pumps, refuel valves, and the 1D valves.  This is the 

equivalent of case ten for the engine feed operation mode. 

The twelfth case in Table 5.12 consists of combinations of two component failures, one of 

which is diagnosed incorrectly.  One of the components in each combination of component 

failures has failed in a different mode than it is diagnosed to be in, i.e. failed closed.   However, 

this component failure would normally be a hidden failure, and therefore, the presence of the 

correctly diagnosed component failure is not affecting the diagnosis of this component failure.  

This is the equivalent of case twelve for the engine feed operation mode. 

The thirteenth case in Table 5.12 consists of combinations of two component failures.  

However, neither of the most likely component failures are the actual component failures 

present in the system, but when this evidence is introduced, the correct combination of 

component failures is diagnosed.  There is no case for the engine feed operation mode that is 

the equivalent of this case. 

The final case in Table 5.12 consists of combinations of two components, but it is initially 

diagnosed as one component failure with approximately 90% confidence.  However, when 

evidence is introduced that the component has not failed, the correct combination of component 

failures is diagnosed correctly with 100% confidence. 

In the next section, a discussion about the success of the proposed fault diagnostic 

technique, is presented. 
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5.3.3.2. Discussion 

The fault diagnostic process successfully diagnoses a large number of combinations of 

component failures, including all of the individual component failures that can be detected.  In 

both operation modes, the accuracy of the diagnostic process could be improved by including 

more sensors, as the maximum achievable diagnostic term is not achieved for either operation 

mode using the 9 sensors.  Note that for the fuel transfer operation mode, the detection term of 

the performance metric can also be increased by including more sensors.  This would result in 

more component failures being detected and diagnosed. 

However, there were a number of cases where the correct component failure was not 

diagnosed initially, but when additional evidence was introduced in the model, the correct 

component failure was diagnosed in all cases.  The cases in which this occurs are cases eleven 

and fourteen for the engine feed operation mode, and cases thirteen and fourteen for the fuel 

transfer operation mode.  In all cases, no more than four components need to be inspected in 

order to find the failed components. 

As detailed before, there are a number of hidden component failures, 808/1568 for the 

engine feed operation mode, and 728/1568 (204 of which are because the detection term is less 

than 1 for the selected combination of 9 sensors) for the fuel transfer operation mode.  These 

hidden component failures consist of components failing in sections of the system that are not 

being used or there is no sensor included, and components failing in the failure mode that they 

are supposed to be in during each operation mode.  Some of the hidden failures cannot be 

detected in cases where there are combinations of two component failures.  This results in a 

large number of cases where only one of the two component failures are diagnosed, but as 

discussed above, the component failure that is not diagnosed correctly would not normally be 

detected.  This affects cases three, four, eleven and twelve for the engine feed operation mode, 

and cases three, four and twelve for the fuel transfer operation mode. 

For both of the operation modes, there are some cases where the second component failure 

is not detected until after the first component has been repaired or replaced.  This would 

increase the repair time of the system, but as the combination of the two component failures 

produces the same symptoms as the first component failure on its own, it is unavoidable unless 

components that are less likely to have failed are to be taken to the system when the system is 

inspected.  The cases in which there are component failures that are only detected after another 

component failure has been repaired or replaced are case ten for the engine feed operation 

mode, and case eleven for the fuel transfer operation mode. 
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5.3.4. Summary 

The proposed methodology has been applied to the aircraft system and the results have 

been presented in this section of the chapter.  In order to ensure that the method works as 

desired, the BBN method, developed in Chapter 4, is also applied to the same system.  This 

will enable the results from both methodologies to be compared, and then the most suitable 

method to be applied in Chapter 6, when a full aircraft system is considered.  This discussion 

is presented in section 5.5. 

 

5.4. Application of the methodology using BBNs for comparison 

In order to verify that the simulation method can be used to determine a good selection of 

sensors and can diagnose the failures efficiently, the system is modelled using a BBN.  The 

BBN is then used to aid the selection of a sensor suite, and finally, it is used to test the capability 

to diagnose component failures.  As before, a sensor suite is selected for each operation mode 

independently.  Note, as stated before, the applications of the two methodologies are completed 

independently, with no reference to each other in each application, all comparisons between 

the two methodologies are made in section 5.5. 

 

5.4.1. Modelling the system 

As the system is more complex than the one used in Chapter 4, i.e. the redundant sections 

of the system are included, a new BBN model for this system is constructed.  It is constructed 

using the same methodology as in Chapter 4 and the same software, “HUGIN Researcher”. 

 

5.4.1.1. BBN development 

As in section 4.3.1, the methodology described in section 3.3 of this thesis is applied to 

construct the network.  The final BBN is presented in Figure 5.7, with some of the sections of 

the system labelled, including the components section, the fault section, the critical section, 

and the sensor section.  As the system is similar to the one presented in Chapter 4, but with the 

redundant sections included, the full development of the BBN is not presented in detail, only 

the modifications to the BBN are explained.  Also, like with Figures 4.9 and 4.10, it is not 

possible to see all the relationships between the nodes in the BBN in one figure, so the 

relationships between the nodes are presented in Appendix H, Figures H.1 – H.36. 
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As discussed in section 5.1.1, the fuel level sensors are not included in the BBN, as in order 

to prevent the number of entries in the CPTs becoming too large, the sensor readings are 

grouped into ranges.  This means that the change in fuel level, fuel in vs fuel out, cannot be 

determined, as ranges and not exact values of fuel flow through the system are modelled.  In 

this chapter, some of the sensors have a larger number of ranges of sensor readings included 

than in Chapter 4.  The sensors with additional states are sensors S2, S3, S4, S9, S10 and S11.  

This is to account for the normal amount of supply passed through them to increase to “2” 

because of the modification to the output of the transfer pumps, as detailed in section 5.2.  The 

states for these sensors are “E”, “<1”, “1”, “1<flow<2”, “2”, “2<flow<4”, “4”, and “N”.  (Note, 

this also results in sensors S1, S1a, S12, and S12a states changing from “E”, “1”, and “N”, to 

“E”, “2”, and “N”).  The additional sensors S1a and S12a, have the same possible sensor 

reading states as sensors S1 and S12, the additional sensors S15a and S16a have the same 

possible sensor readings as sensors S15 and S16, and the additional sensors S26, S27, S28, and 

S29 have the same possible sensor readings as other sensors that are in the central sections of 

the system, i.e. between LDV, RDV, NVL and NVR (for example sensor S17, with the sensor 

readings, “E”, “+ve”, “-ve”, and “N” as in Chapter 4). 

A new addition to the BBN is the introduction of sub-networks, which are used to represent 

a small section of the network, which can be considered in isolation.  The sub-networks take 

nodes from the main network as input nodes, and outputs other nodes, which can then be used 

in the main network.  They are used to aid in the construction of the network, in order to try 

and keep the network tidier, and easier to understand, as small sections of the system can be 

considered in isolation.  An example of a sub-network in the main network is presented in 

Figure 5.5, with the sub-network presented in Figure 5.6.  This sub-network is used to 

determine the supply of fuel to the engines from the pumps, i.e. “Pumps to Engines, PE”.  This 

sub-network has a number of input nodes, they include: 

• The nodes that represent the booster pumps, 

• The supply of fuel, and the number of exits, that is available from the wings, i.e. 

SFWTB (supply from wings to bottom), 

• The nodes that indicate what paths the fuel can take around the system, i.e. PTCB 

(path to centre bottom) and CV (cross-feed valve), 

• The nodes that indicate which engine the fuel can exit through, i.e. ELE (exit left 

engine) and ERE (exit right engine). 

There are also a number of intermediate nodes in the sub-network.  They include: 
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• Nodes that consider whether there is supply from the pumps.  Note, this is the pump 

name followed by a lower case “s”.  This is because it does not matter whether the 

pump is working on, or failed on, it is still supplying the same amount of fuel, and 

therefore, the size of the CPTs for the child nodes can be reduced. 

• For the nodes, SFWTBs and SFWTBe, the amount of fuel supplied (s) from wings 

to bottom, and the number of exits (e) in the wings are separated into two nodes. 

• The nodes, SLPFE and SRPFE, determine the supply of fuel to left/right pumps 

from elsewhere in the system. 

• The final intermediate nodes in the sub-network are EFLP and EFRP, which 

determine whether there are exits for the fuel from the left and right booster pumps 

respectively. 

Using these intermediate nodes, the sub-network can then determine whether there is a supply 

of fuel from the booster pumps and then determine if there is an exit that the fuel can pass 

through.  Alternatively, if there is no supply of fuel from the booster pumps, it can then 

determine whether there is a supply of fuel from elsewhere in the system.  These nodes are 

PLE (pumps to left engine), and PRE (pumps to right engine), and they can then be used to 

determine the sensor readings for sensors S15 and S15a, and S16 and S16a, respectively, i.e. 

the sensors next to the booster pumps. 

 

 

Figure 5.5 Sub-network "pumps to engines, PE" in the main network 

 

Figure 5.6 Sub-network "pumps to engines, PE" 
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Figure 5.7 BBN of the aircraft fuel system 
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5.4.1.2. Discussion 

As in the examples presented in Chapters 3 and 4, the BBN models the system accurately, 

representing the flow of fuel throughout the system.  Also like in Chapter 4, the sensor readings 

have been grouped into ranges, and therefore, the accuracy of the model is reduced in 

comparison to the simulation method presented in section 5.3.  However, if the number of 

different sensor reading ranges was increased, the size of the conditional probability tables 

would increase further.  This would also increase the size of the network, and the time taken to 

construct it. 

By visually comparing the two figures of the full BBNs from each chapter, Figures 4.9 and 

5.7, it can be seen that the network for the un-simplified version of the system presented in 

Chapter 5 is significantly larger than the BBN for the simplified version of the system presented 

in Chapter 4.  This is confirmed numerically as the network presented in this chapter consists 

of approximately 767,000 entries in the CPTs of the network, and 419 nodes, 108 in the main 

network, and 311 nodes in the 30 sub-networks.  Note, the number of entries in the CPTs 

includes the number of entries in all of the sub-networks.  This is approximately 10 times more 

entries than in the BBN presented in Chapter 4, despite only a few additional components and 

sensors being considered.  There are approximately 4 times as many nodes in the BBN 

constructed in this chapter than there are in the BBN in Chapter 4, which consists of 122 nodes.  

It takes approximately 35 seconds to compile this network, which is significantly slower than 

the BBN in Chapter 4, which takes approximately 10 seconds to compile.  When the 

combinations of one and two component failures are considered it results in an execution time 

of approximately 15 hours to produce the sensor readings for all of the considered combinations 

of component failures for each operation mode.  It is clear that it is not feasible to apply the 

BBN method to a significantly larger system, as the BBN for a system that is only a little bit 

bigger is 10 times larger, and takes more than three times longer to compile.  This was 

hypothesised in section 4.6 of this thesis. 

In the next section, the selection of sensors to be used for the fault diagnostics process is 

presented. 

 

5.4.2. Sensor Selection 

The next step of the methodology is to select the combinations of sensors used for fault 

diagnostics.  As in section 5.3.2, the performance metric for all combinations of sensors is 
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calculated exhaustively until a suitable combination of sensors is determined, but in this section 

the BBN is used to calculate the performance metrics, (instead of the proposed simulation 

method).  In order to determine which combinations of sensors are suitable, the maximum 

possible performance metric needs to be calculated for comparison, i.e. when all sensors are 

considered on the systems.  Using the BBN, the maximum achievable performance metric for 

the engine feed operation mode is 0.9688, which consists of a detection term of 1, a diagnostic 

term of 0.9063, and a criticality term of 1.  This corresponds to being able to detect 38.9239% 

(760/1568) of all considered failures for the engine feed operation mode.  The maximum 

achievable performance metric for the fuel transfer operation mode is 0.9751, which consists 

of a detection term of 1, a diagnostic term of 0.9253, and a criticality term of 1.  This 

corresponds to being able to detect 53.6849% (1044/1568) of the considered failures for the 

fuel transfer operation mode.  In each of these cases, the maximum performance metric is lower 

than that observed in section 5.3.2, but the percentage of failures, i.e. the number of hidden 

failures, are the same as obtained in the simulation method.  As before, these percentage values 

are calculated using the sum of the probabilities of detected failures divided by the sum of the 

probabilities of all considered failures.   

As in section 5.3.2, the maximum percentage of detectable failures is less than 100% for 

each of the operation modes, since there are a number of hidden failures.  The hidden failures 

are the same as in section 5.3.2, (Table 5.3), and are therefore, not presented in this section.  

Note, as before, all critical failures are detected, and therefore, the criticality term, CR is equal 

to 1. 

 

5.4.2.1. Results 

As in the application of the methodology presented in section 5.3, all of the component 

failures can be observed using combinations of nine sensors for the engine feed operation 

mode, and using combinations of twelve sensors for the fuel transfer operation mode.  

Therefore, as before, the performance metric for all combinations of sensors up to nine sensors 

was calculated, as this enables a direct comparison of the two methods.  This comparison is 

presented in section 5.5.  The performance metric for each individual sensor and the terms of 

the performance metric, for each operation mode, are presented in Tables 5.13 and 5.14, 

respectively, and the maximum performance metrics achieved by combinations of nine sensors 

are presented in the following paragraphs. 
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Table 5.13 Ranking of individual sensors for the example aircraft fuel system in the engine feed operation mode 

using the BBN 

Rank Sensor I{s} DE{s} DI{s} CR{s} 

1 S23 0.5601 0.1645 0.6825 0.8333 

 S25 0.5601 0.1645 0.6825 0.8333 

2 S15 0.5445 0.0915 0.8754 0.6667 

 S16 0.5445 0.0915 0.8754 0.6667 

3 S22 0.5279 0.1645 0.5859 0.8333 

 S24 0.5279 0.1665 0.5859 0.8333 

4 S1 0.3519 0.1837 0.8719 0 

 S1a 0.3519 0.1837 0.8719 0 

 S12 0.3519 0.1837 0.8719 0 

 S12a 0.3519 0.1837 0.8719 0 

5 S26 0.3230 0.0923 0.8766 0 

 S27 0.3230 0.0923 0.8766 0 

6 S14 0.2685 0.0365 0.4357 0.3333 

 S18 0.2685 0.0365 0.4357 0.3333 

 S19 0.2685 0.0365 0.4357 0.3333 

 S21 0.2685 0.0365 0.4357 0.3333 

7 S17 0.2222 0.00003 0.5000 0.1667 

 S20 0.2222 0.00003 0.5000 0.1667 

8 S5 0.2089 0.1837 0.4430 0 

 S8 0.2089 0.1837 0.4430 0 

9 S4 0.2086 0.1837 0.4422 0 

 S10 0.2086 0.1837 0.4422 0 

10 S15a 0.2073 0.1819 0.4401 0 

 S16a 0.2073 0.1819 0.4401 0 

11 S2 0.2067 0.1837 0.4364 0 

 S3 0.2067 0.1837 0.4364 0 

 S9 0.2067 0.1837 0.4364 0 

 S11 0.2067 0.1837 0.4364 0 

12 S28 0.1681 0.0738 0.4307 0 

 S29 0.1681 0.0738 0.4307 0 

13 S6 0.1655 0.0026 0.4939 0 

 S7 0.1655 0.0026 0.4939 0 

14 S13 0.0852 0.0026 0.2530 0 
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Table 5.14 Ranking of individual sensors for the example aircraft fuel system in the fuel transfer operation mode 

using the BBN 

Rank Sensor I{s} DE{s} DI{s} CR{s} 

1 S23 0.5053 0.1192 0.6825 0.7143 

 S25 0.5053 0.1192 0.6825 0.7143 

2 S15 0.5044 0.0663 0.8754 0.5714 

 S16 0.5044 0.0663 0.8754 0.5714 

3 S22 0.4731 0.1192 0.5859 0.7143 

 S24 0.4731 0.1192 0.5859 0.7143 

4 S4 0.4242 0.3139 0.8159 0.1429 

 S10 0.4242 0.3139 0.8159 0.1429 

5 S5 0.3646 0.2104 0.8834 0 

 S8 0.3646 0.2104 0.8834 0 

6 S6 0.3644 0.2112 0.8821 0 

 S7 0.3644 0.2112 0.8821 0 

7 S1 0.3193 0.0793 0.7357 0.1429 

 S12 0.3193 0.0793 0.7357 0.1429 

8 S26 0.3145 0.0669 0.8766 0 

 S27 0.3145 0.0669 0.8766 0 

9 S2 0.3015 0.0135 0.8910 0 

 S3 0.3015 0.0135 0.8910 0 

 S9 0.3015 0.0135 0.8910 0 

 S11 0.3015 0.0135 0.8910 0 

10 S14 0.2483 0.0266 0.4327 0.2857 

 S18 0.2483 0.0266 0.4327 0.2857 

 S19 0.2483 0.0266 0.4327 0.2857 

 S21 0.2483 0.0266 0.4327 0.2857 

11 S13 0.2169 0.2112 0.4393 0 

12 S17 0.2143 0.00002 0.5000 0.1429 

 S20 0.2143 0.00002 0.5000 0.1429 

13 S1a 0.1913 0.1321 0.4417 0 

 S12a 0.1913 0.1321 0.4417 0 

14 S15a 0.1907 0.1319 0.4401 0 

 S16a 0.1907 0.1319 0.4401 0 

15 S28 0.1614 0.0535 0.4307 0 

 S29 0.1614 0.0535 0.4307 0 
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The combinations of sensors with the highest performance metric for combinations of nine 

sensors are presented in Tables 5.15 and 5.16 for the two operation modes.  Note, all 

combinations of sensors in each of the tables have the same performance metric.  For the engine 

feed operation mode, this performance metric is 0.9674, with a detection term of 1, a diagnostic 

term of 0.9022, and a criticality term of 1, and for the fuel transfer operation mode, the 

performance metric is 0.9388, with a detection term of 0.9123, a diagnostic term of 0.9040, 

and a criticality term of 1.  As in section 5.3.2, the limit of nine sensors was selected because 

a combination of nine sensors can detect all of the component failures for the engine feed 

operation mode. 
 

Table 5.15 Combinations of nine sensors with the highest performance metric for the engine feed operation 

mode using the BBN, I = 0.9674, DE = 1, DI = 0.9022, CR = 1 

Sensors  

S1 S12 S14 S15a S16a S23 S25 S26 S27  

S1 S12 S15a S16a S18 S23 S25 S26 S27  

S1 S12 S15a S16a S19 S23 S25 S26 S27  

S1 S12 S15a S16a S21 S23 S25 S26 S27  

S1 S12a S14 S15a S16a S23 S25 S26 S27  

S1 S12a S15a S16a S18 S23 S25 S26 S27  

S1 S12a S15a S16a S19 S23 S25 S26 S27  

S1 S12a S15a S16a S21 S23 S25 S26 S27  

S1a S12 S14 S15a S16a S23 S25 S26 S27  

S1a S12 S15a S16a S18 S23 S25 S26 S27  

S1a S12 S15a S16a S19 S23 S25 S26 S27  

S1a S12 S15a S16a S21 S23 S25 S26 S27  

S1a S12a S14 S15a S16a S23 S25 S26 S27  

S1a S12a S15a S16a S18 S23 S25 S26 S27  

S1a S12a S15a S16a S19 S23 S25 S26 S27  

S1a S12a S15a S16a S21 S23 S25 S26 S27  

 

Table 5.16 Combinations on nine sensors with the highest performance metric for the fuel transfer operation 

mode using the BBN, I = 0.9388, DE = 0.9123, DI = 0.9040, CR = 1 

Sensors  

S1a S4 S10 S12a S15a S23 S25 S26 S27  

S1a S4 S10 S12a S16a S23 S25 S26 S27  
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In the next section, a discussion on the selections of sensors is presented. 

 

5.4.2.2. Discussion 

There are a number of combinations of nine sensors for each operation mode that produce 

the maximum performance metric, 16 combinations for the engine feed operation mode, and 2 

combinations for the fuel transfer operation mode.  If Table 5.15 is studied, there are a number 

of similarities that can be observed, for example, each combination has a pair of sensors, S1 or 

S1a, and S12 or S12a, one of the sensors, S14, S18, S19, S21, and the six sensors, S15a, S16a, 

S23, S25, S26 and S27.  Likewise, if Table 5.16 is studied, there is still some symmetry 

observed, i.e. sensor S15a or S16a.  However, unlike the engine feed operation mode, the only 

combination of sensors number 1 and 12 that can be selected is the sensors S1a and S12a, i.e. 

not the sensors S1 or S12.  This will influence the combination of sensors selected if the two 

operation modes were considered together.  As before, the sensors can be separated in to 

groups, and the selection of sensors is distributed throughout the sections.  The groups are the 

same as for the simulation method, and as presented in Figure 5.4.  Note, as there are no level 

sensors considered in the application of the method using BBNs, there are only 8 groups 

considered.  Each of these groups are presented in Table 5.17, with the included sensors 

representing the sensors that are in the best selection of sensors for each operation mode and 

each number of sensors up to 9, and the column entitled, “not included sensors” representing 

the sensors that are not in the selection.  Also note, in groups 1 – 4, there are additional sensors 

in comparison to those presented in section 4.4.3 because of the additional sensors considered 

in this chapter.  The additional sensors are sensors S1a, S12a, S15a, and S16a.  The additional 

sensors to each of the groups are the same as the additional sensors to each of the groups 

presented in section 5.3.2. 

The combinations of nine sensors with the highest performance metric for the engine feed 

consist of combinations of one sensor from the groups, 1, 2, 6, 7, and 8, and two sensors from 

the groups 3 and 4.  Note, no sensor is selected from group 5 as was the case in Chapter 4.  This 

is because the sensors in this section are the least useful in the detection and diagnosis of 

failures in the engine feed operation mode.  The combination of nine sensors with the highest 

performance metric for the fuel transfer operation mode consist of one sensor from groups 7, 

and 8, and two sensors from groups 1 and 2, and depending on the selection of sensors, two 

sensors from group 3 or 4, and one from the other.  Also, as in the applications presented in 
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Chapter 4, no sensor is selected from group 6, but there is also no sensor selected from group 

5 either, unlike in the combination of sensors selected for the fuel transfer operation mode 

presented in Chapter 4. 

As discussed in further detail in Chapters 3 and 4, it is best to select the sensors by 

considering the individual terms of the performance metric.  For example, the sensors ranked 

2nd for the engine feed operation mode, sensors S15 and S16, have a lower detection term 

(0.0663), and criticality term (0.5714) than the sensors ranked 3rd, sensors S22 and S24, which 

have a detection term of 0.1192, and a criticality term of 0.7143.  However, as the diagnostic 

term is higher for sensors S15 and S16 (0.8754), than for sensors S22 and S24 (0.5859), they 

are ranked higher.  However, the sensors S15 and S16 are unlikely to be selected by an analyst 

due to the low detection term.  Also, as discussed in Chapters 3 and 4, it is generally not 

beneficial to select two sensors in close proximity to each other, as this typically does not 

increase the performance metric by much.   

 

Table 5.17 The sensors grouped by sections of the system 

Group Included sensors Not included sensors 

1 S1 S1a S4  S2 S3 S5  

2 S10 S12 S12a  S8 S9 S11  

3 S15 S15a S23   S17 S22 S28  

4 S16 S16a S25  S20 S24 S29  

5     S6 S7 S13  

6 S14 S18 S19 S21     

7 S26        

8 S27        

 

 

If the performance metric of the best combination of sensors for each number of sensors is 

compared, it is observed that the increase in performance diminishes as the number of sensors 

is increased.  This is observed in both operation modes, and is presented in the last column of 

Tables 5.18 and 5.19, respectively.  This was also observed in section 3.4.1.1, section 4.4.3, 

and section 5.3.2.2. 

In the next section, the fault diagnostics process is applied to the system using the selected 

sensor for each operation mode. 
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Table 5.18 Best performance metric for the engine feed operation mode for each number of sensors for the BBN 

Number Sensors I{s} % diff. 

1 S23 0.5601 0 

2 S23 S25 0.7122 27.16 

3 S1 S23 S25 0.7746 8.76 

4 S1 S12 S23 S25 0.8377 8.15 

5 S1 S12 S23 S25 S26 0.8690 3.74 

6 S1 S12 S23 S25 S26 S27 0.8998 3.54 

7 S1 S12 S15a S23 S25 S26 S27 0.9304 3.40 

8 S1 S12 S15a S16a S23 S25 S26 S27 0.9609 3.28 

9 S1 S12 S14 S15a S16a S23 S25 S26 S27 0.9674 0.68 

33 All sensors 0.9688 0.14 

 
Table 5.19 Best performance metric for the fuel transfer operation mode for each number of sensors for the 

BBN 

Number Sensors I{s} % diff. 

1 S23 0.5053 0 

2 S4 S23 0.6919 36.93 

3 S4 S23 S25 0.7830 13.17 

4 S4 S10 S23 S25 0.8216 4.93 

5 S1a S4 S10 S23 S25 0.8458 2.95 

6 S1a S4 S10 S23 S25 S26 0.8695 2.80 

7 S1a S4 S10 S12a S23 S25 S26 0.8928 2.68 

8 S1a S4 S10 S12a S23 S25 S26 S27 0.9160 2.60 

9 S1a S4 S10 S12a S15a S23 S25 S26 S27 0.9388 2.49 

33 All sensors 0.9751 3.87 

 

5.4.3. Fault diagnosis 

The selected sensors for fault diagnostics are the first combination of nine sensors from 

Table 5.15 for the engine feed operation mode, and Table 5.16 for the fuel transfer operation 

mode.  Therefore, the combinations of sensors selected for the engine feed operation mode is 

(S1, S12, S14, S15a, S16a, S23, S25, S26, S27) and the combination of sensors selected for the 

fuel transfer operation mode is (S1a, S4, S10, S12a, S15a, S23, S25, S26, S27).  In order to 

determine the effectiveness of the selected sensors, they are used to diagnose failures in the 

system using the diagnostic method, as applied in section 4.5. 
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5.4.3.1. Fault Diagnosis Results 

Each of the combinations of component failures used to calculate the performance metric 

are used to test the diagnostic process, i.e. 1568 per operation mode.  Due to the hidden failures 

in the system, only approximately 39% of the combinations of component failures for the 

engine feed operation mode can be detected, and only approximately 54% of the combinations 

of component failures for the fuel transfer operation mode can be detected.  However, as the 

detection term for the combination of sensors for the fuel transfer operation mode is less than 

1, only approximately 49.65% of the component failures can be detected. 

The results of the diagnostic process for the selected combinations of sensors are grouped 

together into cases which consist of combinations of component failures that have similar fault 

diagnostic results.  There are 19 cases for the engine feed operation mode, and 17 cases for the 

fuel transfer operation mode.  The cases are presented in Table 5.20 for the engine feed 

operation mode, and Table 5.21 for the fuel transfer operation mode, respectively.  Note, the 

notation in Tables 5.20 and 5.21 is the same as in Tables 4.15, 4.16, 5.11, and 5.12. 

The first case in Table 5.20 consists of component failures where one component has failed, 

and it has been diagnosed correctly with 100% confidence.  As the component failures in this 

case, (and cases two and three), consist of only one component failure, they are significantly 

more likely to occur than the other combinations of component failures.  This case consists of 

component failures for the booster pumps, transfer pumps, and the low and high pressure cocks. 

The second case in Table 5.20 consists of component failures where one component has 

failed, and it has been diagnosed correctly with approximately 99% confidence.  The 

component failures for this case consist of failures for the reserve transfer pumps.  The reason 

the confidence is less than 100%, is because there are other combinations of component failures 

that can produce the same symptoms, but they are less likely to occur.  An example combination 

of component failures for this case is TPRB (On) and NVR (2 way). 

The third case in Table 5.20 consists of component failures where one component has 

failed, but there are two possible single component failures that can produce the same 

symptoms.  This results in a probability of correct diagnosis of approximately 50% for each 

case.  The probability that one component has failed in each case is slightly above 50% because 

the combination of both of the components failing produces the same set of symptoms, making 

each component more likely to be failed than not if this set of symptoms is observed.  This is 

observed in case fourteen.  The components for this case include the left and right dump valves. 
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Cases four, five and six in Table 5.20 consist of combinations of two component failures, 

only one of which is diagnosed.  The cases consist of combinations of the failures in cases one, 

two, and three, respectively, along with a hidden failure, which will not be diagnosed. 

Case seven in Table 5.20 consists of combinations of two component failures which are 

diagnosed correctly with 100% confidence.  The components in this case include the low and 

high pressure cocks, the transfer pumps, the booster pumps, and the left and right dump valves. 

The eighth case in Table 5.20 consists of combinations of two component failures, both of 

which are diagnosed correctly, the first with 100% confidence, and the second with 

approximately 99% confidence.  This means that there are other combinations of component 

failures that produce the same set of sensor readings, but are much less likely to occur.  The 

components included in this case are the booster pumps, the transfer pumps, the cross-feed 

valve, and the low and high pressure cocks. 

Like the eighth case, cases nine and ten in Table 5.20 consist of combinations of two 

component failures, both of which are diagnosed correctly, but in case nine, the second 

component is diagnosed correctly with approximately 60% confidence, and in case ten, the 

second component is diagnosed correctly with approximately 50% confidence.  Also, cases 

eleven, twelve, and thirteen are all combinations of two component failures, and both of the 

failures are diagnosed correctly.  The difference in each of the cases, is the probability of the 

diagnosis being correct.  In case twelve, where “diagnosed failure 2”, and “diagnosed failure 

3” have approximately 50% probability of being correct, in each combination, only one of these 

two failures has occurred. 

The fourteenth case in Table 5.20 is a combination of two component failures where both 

are diagnosed correctly.  This case was referred to in case three.  The diagnostics process 

outputs that only one of the components has failed, but both of the components have actually 

failed.  In order for system behaviour to return to normal, both of the component failures will 

need to be repaired. 

The fifteenth case in Table 5.20 are combinations of two component failures, both of which 

are diagnosed, but the second component failure will not be diagnosed until after the first 

component has been repaired or replaced.  The components included in this case are the transfer 

pumps, the low and high pressure cocks, and the booster pumps. 

The sixteenth and seventeenth cases in Table 5.20 are combinations of two component 

failures, one of which is diagnosed correctly initially.  However, in each combination of 

component failures, the second component failure is diagnosed incorrectly.  When additional 
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evidence of the components state is introduced, the correct component will be diagnosed in 

both of the cases. 

The penultimate case in Table 5.20 are combinations of two component failures, but it is 

initially diagnosed incorrectly as one component failure.  The diagnosed component has not 

actually failed, and when this evidence is introduced, the correct two component failures will 

be diagnosed.  This was diagnosed incorrectly initially because the same set of symptoms are 

produced by the individual component failure, and the combination of two component failures, 

and the individual component failure is more likely to occur than the combination of two 

component failures. 

The final case in Table 5.20 are combinations of two component failures, one of which is 

diagnosed incorrectly.  The incorrectly diagnosed component is in its other failure mode, i.e. 

failed closed.  However, this component failure is normally a hidden failure, and the symptoms 

produced are the same as in cases three and six. 

The first three cases of Table 5.21 are combinations of one component failure, which is 

diagnosed correctly.  In the first case, with 100% confidence, in the second case, greater than 

99% confidence, and in the third case, with 50% confidence.  In the third case, the failed 

component is either the “diagnosed failure 1”, or the “diagnosed failure 2”, with confidence of 

exactly 50% for both of them.  This is because for these sets of sensors, the combination of 

both of the components failed produces a different set of sensor readings, and therefore, it is 

one of the components failed, and not both.  The components in case one include booster 

pumps, transfer pumps, one directional valves, the transfer valves, and the low and high 

pressure cocks.  The components in case two are the left forward fuselage tank booster pump, 

and the transfer pumps.  Note, the reason it is only the left forward fuselage tank booster pump, 

and not the corresponding pump failure on the rear fuselage tank, is because only sensor S15a 

is used in the selection of sensors.  The corresponding failure would be detected for the rear 

fuselage tank, if sensor S16a was included instead or in addition.  The components used in case 

three, include the four refuel valves. 

The fourth, fifth, and sixth cases of Table 5.21 are combinations of two component failures, 

one of which is diagnosed.  The diagnosed component in each of the cases is the same as the 

component failures in cases one, two, and three, respectively, with the second component 

failure being one of the hidden failures. 

The seventh, eighth, ninth, tenth, and eleventh cases of Table 5.21 are combinations of two 

component failures, both of which are diagnosed.  Each of the cases have different probabilities 
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of each component failure being correct.  Note, in cases nine and eleven, the “diagnosed failure 

1” is correct, and one of the “diagnosed failure 2” or “diagnosed failure 3” is correct. 

The twelfth case of Table 5.21 consists of combinations of two component failures.  

However, the fault diagnostic process initially outputs that only one component has failed, but 

when the first component has been repaired or replaced, the second component failure will then 

be diagnosed correctly. 

The thirteenth case of Table 5.21 consists of combinations of two component failures, but 

the fault diagnostic process outputs one component failure, which is not one of the correct 

component failures.  When evidence that this component has not failed has been introduced, 

the correct component failures will be diagnosed.  Note, the second component failure is either 

the “diagnosed failure 3” or “diagnosed failure 4”. 

The fourteenth case of Table 5.21, like the thirteenth case, is a combination of two 

component failures, of which the first component failure is diagnosed correctly.  However, the 

second component failure is not diagnosed correctly.  When evidence that the second 

component is in its working state is introduced, the correct second component failure is 

diagnosed. 

The fifteenth case of Table 5.21 consists of combinations of two component failures, one 

of which is diagnosed correctly.  The second component failure is incorrect, the component is 

actually in its other failure mode, but as this component failure is normally hidden, it would 

not normally be observed.  The resultant symptoms observed by the sensors are the same as in 

cases three and six. 

The sixteenth and seventeenth cases of Table 5.21 expose a problem with the C++ script 

written to output the most likely failure which had not been observed before in either of the 

fault diagnostic methodologies.  In both of these cases, the second component failure (in case 

sixteen) and the two component failures (in case seventeen) are not output by the fault 

diagnostic process.   This is because the probability of the component being in another 

(working) state is slightly higher.  However, as the probability of the component being in the 

failure mode is in excess of 45%, it is fairly likely that the component has failed, and would 

therefore be taken to the aircraft when it is to be repaired.  Therefore, in future applications of 

either of the fault diagnostic techniques, instead of outputting the component’s most likely 

state, the components that have the highest probability of being in the failed state could be 

output.  This is particularly important in case seventeen, as despite the sensors detecting that 

there is a component failure, the fault diagnostic process did not output any failed components, 

they had to be obtained manually by looking at the component state probabilities.  
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Table 5.20 Diagnostics of component failures for the engine feed operation mode using the BBN 
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Table 5.21 Diagnostics of component failures for the fuel transfer operation mode using the BBN 
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In the next section, a discussion about how successful the BBN based fault diagnostic 

technique is on this system, is presented. 

 

5.4.3.2. Discussion 

The BBN based fault diagnostic process correctly diagnoses all the combinations of 

component failures that are detected.  For the engine feed operation mode, all the component 

failures that can be detected, are detected, and can therefore be diagnosed.  For the fuel transfer 

operation mode, the detection term is less than one, and therefore not all the failures that can 

be detected by the selected combination of sensors.  This means that not all the failures are 

diagnosed, i.e. only the detected failures.  For both operation modes, if a combination of sensors 

with a higher performance metric was selected, the diagnostic process could be improved, and 

for the fuel transfer operation mode, more component failures could be detected. 

In some cases, additional evidence is required in order to correctly diagnose the component 

failures.  In each case, no more than four components need to be inspected in order for the 

correct component failures to be determined.  The cases in which this occurs are cases sixteen, 

seventeen and eighteen for the engine feed operation mode, and cases thirteen and fourteen for 

the fuel transfer operation mode. 

There are a large number of hidden failures in each operation mode, 808/1568 for the engine 

feed operation mode and 622/1568 for the fuel transfer operation mode.  Note, for a 

combination of sensors with a detection term of 1 for the fuel transfer operation mode, there 

are 524/1568 hidden failures.  The hidden failures are components failing in the mode they are 

supposed to be in, or components failing in sections of the system that are not being used.  

There is also a large number of combinations of component failures where only one of the 

failures is diagnosed. 

For both operation modes, there are cases where initially only one component failure is 

diagnosed, but the second component failure is diagnosed after the first component has been 

repaired or replaced.  This would increase the repair time of the system, but it is unavoidable, 

unless additional components are taken to the system, increasing the transportation costs, 

potentially unnecessarily for a large number of component failures. 

 

5.4.4. Summary 

The BBN based methodology has been applied to the aircraft system and the results have 

been presented in this section of the chapter.  This was completed in order to compare the 
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results of the BBN based methodology with the results produced by the simulation based 

methodology presented in section 5.3.  The comparison of the two methodologies is presented 

in section 5.5.  

 

5.5. Comparison of the methodologies 

In this section, the simulation based methodology and the BBN based methodology are 

compared.  The comparison of the methodologies is split into four sections:  the first section is 

the modelling of the system, the second is the selection of sensors, the third is the diagnosis of 

component failures, and the fourth provides a brief summary. 

 

5.5.1. Comparison of the models 

Both models represent the system well as the sensors can be used to determine the flow of 

fuel through the sections of the system.  In both of the models, evidence about the component 

states can be introduced to the model, and the resultant sensor readings can be determined.  

Where the two methodologies differ, is the modelling accuracy of the sensor readings.  In the 

BBN model of the system sensor readings are grouped into ranges of flow values in order to 

prevent the model from getting too large, but in the simulation model each sensor reading can 

be calculated numerically without the need for a state to be created for it.  This enables sensor 

readings to be determined (and not have to be grouped into ranges), and therefore, a more 

accurate modelling process can be achieved.  For example, if one pump is supplying 1 unit of 

fuel, in the BBN model the same sensor reading will be observed if there are two or three valves 

open, but in the simulation method, two different values will be observed, i.e. half a unit, and 

a third of a unit. 

Another benefit of the simulation method is that for a given combination of component 

states, the sensor readings can be calculated significantly quicker than the BBN method, a 

fraction of a second instead of approximately 35 seconds.  This is particularly beneficial for 

larger systems where there are a large number of combinations of component failures to be 

considered. 

 

5.5.2. Comparison of the selection of sensors 

In both cases, the sensor selection process is the same, i.e. calculating the performance 

metric for all combinations of sensors using the same equations.  However, the two modelling 
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methods result in slightly different performance metrics in most cases as the sensor readings 

are modelled differently.  If the individual values of the performance metrics from Tables 5.4 

and 5.13, and Tables 5.5 and 5.14 respectively, are compared, it is observed that the detection 

and criticality terms are identical in all cases, but the diagnostic terms are different: the 

diagnostic term is slightly higher for the simulation method in most cases.  This is because of 

the sensor readings being grouped into ranges for the BBN methodology, as it means that some 

of the combinations of component failures produce the same combination of sensor readings 

for the BBN methodology, but produce different combinations of sensor readings for the 

simulation methodology.  This is the same as discussed in the previous section but another 

example of this is in the fuel transfer operation mode, the component failure NVL (2 way) 

produces the sensor reading “-ve” for the BBN methodology, and “-1” for the simulation 

methodology, but the combination of component failures NVL (2 way) and TVRF (Cl) 

produces the sensor reading “-ve” for the BBN methodology, and “-2” for the simulation 

methodology, i.e. different for the simulation method but the same for the BBN methodology.  

Note, there are some sensors, such as sensor S1, which have the same diagnostic term for both 

methodologies.  These are sensors where the sensor readings have not been grouped into ranges 

because they can only be one of three values, i.e. “E”, “2”, and “N”. 

The same is the case for combinations of 9 sensors for the engine feed operation mode, 

with the combinations of sensors in Table 5.15 being a subset of the combinations of sensors 

in Table 5.6.  As with the individual sensors, the diagnostic term obtained by the simulation 

method is higher than the diagnostic term obtained by the BBN method.  One thing that can be 

observed for the combinations of sensors for the engine feed operation mode is that for the 

simulation method the combinations S15a and S16, S15 and S16a, or S15a and S16a can be 

included, but in the BBN method, only the combination S15a and S16a can be included.  The 

reason for this is because of three combinations of component failures, BPFR failed on and 

BPRR failed on, BPFR failed on and CV failed open, and BPRR failed on and CV failed open.  

For sensors S23 and S25 in the simulation method, the failure of the two pumps will result in 

the sensor reading of “2” for each of the sensors, but the other two combinations of component 

failures produce the sensor reading “1.5” for each of the sensors.  Therefore, in order to 

distinguish between the other two combinations of component failures, at least one of the 

sensors, S15a and S16a, needs to be included.  This is so that which of the two reserve booster 

pumps that has failed can be determined.  However, for the BBN methodology, all three 

combinations of component failures result in the same sensor readings for sensors S23 and S25, 

i.e. “>1”, and it means that in order to determine which of the three combinations of failures 



 

214 
 

has occurred, both of the sensors next to the two reserve booster pumps need to be included, 

i.e. S15a and S16a.  The results for the fuel transfer operation mode are not directly comparable 

as the combination of sensors for the fuel transfer operation mode includes fuel tank level 

sensors for the simulation method, and these sensors are not included in the BBN.  However, 

it is worth noting that there are four different sensors in each of the selections of sensors, with 

only S1a, S12a, S26, S27, and either S15a or S16a (depending on which selection is made in 

Table 5.16) being selected in both methods.  It is also worth noting that both the detection and 

diagnostic terms are higher for the simulation method than for the BBN method. 

Another benefit of the simulation method is the ability to include the fuel tank level sensors.  

It is possible to include the level sensors in the BBN, but as discussed earlier, this would require 

not grouping the sensors readings into ranges, making the size of the conditional probability 

tables in the network larger.  The inclusion of the fuel tank level sensors in the simulation 

method is particularly important for the fuel transfer operation mode, as some of the level 

sensors are included in the best combinations of sensors, i.e. enabling a higher maximum 

performance metric to be obtained. 

 

5.5.3. Comparison of the fault diagnostics process  

Both methodologies diagnose all combinations of component failures that are detected.  

However, both of the methods output the probability of the correct diagnosis differently.  This 

is because the BBN method can consider every possible combination of component states, but 

the simulation method can only consider the component failures stored in the library.  

Therefore, in the BBN methodology, the fault diagnostic process outputs the probability of the 

components states, i.e. the probability that each of the components have failed, but in the 

simulation methodology, as it can only choose from the failures in the library, it outputs the 

probability of the most likely component failure divided by the probability of all component 

failures that can produce the observed failures.  This means that the simulation methodology 

may appear to diagnose the component failures with a lower level of confidence.  For example, 

the first failure in Table 5.11, is diagnosed with 91.8554% confidence, and the same failure in 

Table 5.20, is diagnosed with 100% confidence.  However, if the probability that the 

component has failed output by the BBN, is multiplied by the probability of all other 

components being in their most likely state, then very similar values, (but not exactly the same), 

will be produced.  The difference between these values is dependent on whether the 

combinations of sensor readings produced by the BBN method contain one of the sensor 
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readings that is a range of values.  Also, the fact the BBN can consider combinations of three 

(and more) component failures will also affect the value for the BBN if combinations of three 

(and more) component failures also produce the same observed symptoms. 

One disadvantage of the simulation method, is that a library of observed sensor readings 

needs to be created.  This means that component failures that are not in the library, may not be 

diagnosed correctly, but if the library is not exhaustive enough, then this will not be a problem.  

As the determination of the sensor readings using the simulation method is significantly faster 

than for the BBN methodology, (approximately 1 – 2 seconds instead of 15 – 16 hours), a large 

library can be constructed in a reasonable amount of time, reducing the likelihood that a failure 

will be observed that is not in the library. 

 

5.5.4. Summary 

There are a number of benefits of the simulation based methodology detailed in this section.  

Examples include more accurate sensor reading modelling, faster sensor reading determination, 

and better fault diagnosis, due to the higher diagnostic term.  The more accurate sensor reading 

modelling is due to having to group the sensor readings into ranges for the BBN due to the time 

taken to construct the network, and the size of the conditional probability tables.  As a result of 

the sensor reading being determined significantly faster by the C++ script, this method should 

enable modelling of larger systems, and is therefore, the methodology applied on the system 

presented in Chapter 6. 

 

5.6. Summary 

In this chapter, an alternative, simulation based methodology for system modelling and 

fault diagnostics is presented.  This method is demonstrated by applying it to the aircraft fuel 

system presented in Chapter 4, with a few minor changes detailed in section 5.2.  In this chapter, 

combinations of one and two component failures are considered for each of the 28 components 

for both operation modes.  Like in Chapter 4, there are a large number of hidden failures, with 

approximately 39% of failures in the engine feed operation mode, and 54% of failures in the 

fuel transfer operation mode, being detectable by at least one of the 37 potential sensors that 

could be introduced to the system.  The performance metric is calculated for each combination 

of nine (and fewer) sensors for both operation modes.  The limit of nine sensors was selected 

because a combination of nine sensors can detect all of the component failures for the engine 

feed operation mode.  However, twelve sensors would be required to detect all of the 
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component failures for the fuel transfer operation mode.  Using the selected combinations of 

sensors, combinations of one and two component failures were diagnosed using the proposed 

fault diagnostic process. 

In order to verify that the proposed methodology works as desired, the BBN based 

methodology presented in Chapters 3 and 4 is applied to the same system.  However, as the 

sensor readings are grouped into ranges, as discussed in section 5.4.1, there are only 33 possible 

sensor locations, (i.e. no level sensors are considered).  Like in the application of the simulation 

based methodology, the performance metric was calculated for all combinations of nine (and 

fewer) sensors for both operation modes.  The best combinations of sensors for each operation 

mode was selected, and used to diagnose all combinations of one and two component failures. 

The chapter concludes by presenting a comparison of the two methodologies, in which it is 

concluded that the proposed simulation based methodology is the more suitable solution. 

In the next chapter, the system modelling and fault diagnostics methodology proposed in 

this chapter is applied to a phased mission for a system, enabling the introduction of time 

dependence into the sensor selection and fault diagnostic processes.
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 Extension of the sensor 

selection and fault diagnostics 

methodology to phased mission systems 
 

 

6.1. Introduction 

In this chapter, the methodology for sensor selection proposed in Chapter 3, and the fault 

diagnostic process proposed in Chapter 5 are extended to a phased mission system, i.e. a system 

where the operation mode changes over time.  In order to do this, the sensor performance metric 

considers the amount of time between component failure occurrence and its detection, the 

amount of time between failure detection and its diagnosis, and the amount of time between 

component failure occurrence and the time when the failure causes system failure.  Therefore, 

the sensors that can quickly detect faults and diagnose failures are favoured over sensors that 

take longer to detect faults and diagnose failures.  This is because it may be possible to prevent 

system failure by quickly detecting faults and diagnosing failures.  Also, the component failures 

that occur earlier in the phased mission may have more effect on the performance of the system 

than the component failures that occur towards the end of the mission, as they will affect system 

performance for longer, and may therefore result in a higher probability of system failure, i.e. 

mission failure.  However, if the failure occurs later on in the mission, it may still cause system 

failure, and therefore, still has to be considered in the sensor selection process.  Note, system 

failure and mission failure are used in this chapter interchangeably as if the system fails, the 

mission will also fail.  In addition, as the system considered in this chapter is significantly 

larger than the systems considered in the previous chapters, i.e. Chapters 3, 4, and 5 of this 

thesis, the number of possible sensors, and therefore, the number of possible combinations of 

sensors, is also significantly larger.  As a result, an optimisation process, based on a GA 

method, is proposed in order to determine the best sensor combination for the system, as it 

would not be feasible to calculate the performance metric for each combination of sensors 

exhaustively. 

This chapter begins by presenting the system which the methodology is applied to.  The 

chapter continues by outlining the details of the example phased mission and the component 

failures considered.  Next introduction of time dependence to the sensor performance metric is 
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presented, followed by the details of the optimisation process.  After this the proposed 

methodology is applied to the example phased mission system, and the results of the process 

of the modelling of the system, the sensor selection, and the fault diagnostics are presented.  

This chapter concludes with a summary of the work presented in the chapter. 

  

6.2. Phased mission system description 

The system presented in this chapter is the fuel system of the Airbus A380-800.  It is the 

world’s largest passenger aircraft and is powered by four engines which are manufactured by 

either Rolls Royce or Engine Alliance.  It is capable of transporting more than 800 passengers 

a distance of up to 8,500 nautical miles, i.e. capable of flying from Hong Kong to New York 

directly, a flight duration of more than 15 hours.  The aircraft has a maximum take-off weight 

of 575000 kg and a maximum landing weight of 394000 kg, and the aircraft has a maximum 

fuel capacity of approximately 325,000 litres (l), which corresponds to approximately 255000 

kg. 

The fuel is stored in eleven fuel tanks of the aircraft: five in each wing and one in the tail 

of the aircraft.  In addition to the fuel tanks, there are vent and surge tanks in each wing and in 

the tail, which are used to help to reduce the production of air pockets in the fuel tanks during 

the refuel process.  A labelled illustration of the tank layout in the aircraft is given in Figure 

6.1, which is taken from Langton et al. (2009).  The tanks are not of uniform volume, with the 

volumes of each of the tanks given in Table 6.1, where the density of the fuel is 0.785 kg/l.  

The volumes of the tanks and the fuel density are taken from Airbus (2006). 

 
Figure 6.1 Illustration of aircraft fuel tank layout from Langton et al. (2009) 
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Table 6.1 Fuel tank volumes for the Airbus A380-800, (Airbus, 2006) 

 Outer 

tanks 

Outer engine 

feed tanks 

Mid 

tanks 

Inner transfer 

tanks 

Inner engine 

feed tank 

Trim 

tank 

Total 

Volume (l) 10520 27960 36460 46140 29340 23700 324540 

Weight (kg) 8260 21950 28620 36220 23030 18600 254760 

 

In this system, there is a significantly larger number of components than in the fuel system, 

analysed in Chapters 4 and 5; there are 66 components: 21 pumps and 45 valves.  The full 

schematic, adapted from Langton et al. (2009), is given in Figure 6.2.  Note, that the greyed 

out sections of the system are not considered in this thesis.  The central section that is greyed 

out is the section that supplies fuel to the auxiliary power unit (APU), which is used to supply 

power to the on-board equipment, and is therefore, not directly related to the fuel supply to the 

engines.  The other two greyed out sections on the edge of each wing represent heat exchangers, 

which are used to reduce the temperature of any fuel that is supplied to the engines which is 

not consumed so that it can be returned to the tanks.  In this thesis, it is assumed that all fuel 

supplied to the engine will be consumed by the engine if the fuel can reach the engine, and the 

pipe is assumed to end where it changes from black to grey in the diagram.  Therefore, the 

number of components that are considered is 62: 20 pumps and 42 valves. 

 

 

 
 

Figure 6.2 Schematic of Airbus A380-800 fuel system, adapted from Langton et al. (2009) 
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There are two considered phases of operation in this chapter: engine feed, and fuel transfer.  

Within these operation modes there are some sub-phases, for example, within the fuel transfer 

operation mode, there are many different sub-phases, as the fuel is passed from one tank to 

another.  The fuel supplied to the engines is from the engine feed tanks, and therefore, each of 

the other tanks transfer fuel to the engine feed tanks, defined by a specific sub-phase and in a 

specific order to minimise the stress on the wings from the weight of the fuel, which could 

cause wing curvature.  The order that the transferring of fuel is completed is presented in 

section 6.2.1, i.e. the description of the phased mission.  In the engine feed operation mode, 

fuel can be supplied to the engines at different rates, as more fuel is required for take-off than 

cruise.  Schematics for the engine feed and the fuel transfer operation modes are presented in 

Figures 6.3 and 6.4, respectively. 

 
 

Figure 6.3 Schematic of Airbus A380-800 fuel system in the engine feed operation mode 

 

In the two schematics, the greyed out sections are the sections of the system that are not 

used during the respective operation modes in normal operating conditions, i.e. with no 

component failures occurring.  In the fuel transfer operation mode, it is assumed that the supply 

of fuel to the engine is the same as during the engine feed operation mode, in the same manner 

as that presented in Chapter 5, so that a supply of fuel to the engines is maintained.  The engine 

feed process is not shown in Figure 6.4 in order to specifically demonstrate which components 

are used for the transfer of fuel between the tanks only.  As with the previous system in Chapter 

5, it is also assumed that there are primary and secondary pumps for supplying fuel to the 
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engine, and there are also reserve valves for the fuel to pass into the inner engine feed tanks 

from the other tanks in the system during the fuel transfer phase.  In contrast to the system 

modelled in Chapter 5, the secondary components do not automatically switch on/open when 

the primary components fail.  This is because in order for the secondary components to be 

activated, a failure of the primary component must be detected and diagnosed.  Therefore, this 

would require some form of manual or automatic command to activate the secondary 

component.  This has not been considered, only the effect of the component failures on the 

system if no action is taken. 

 

 

Figure 6.4 Schematic of Airbus A380-800 fuel system in the fuel transfer operation mode 

 

In Figures 6.5 – 6.8 and Figures 6.9 – 6.12 the system is split into smaller sections in order 

to be able to label the components and the flow sensor locations more clearly.  In the same 

format as in Chapters 4 and 5, the blue numbers are used to represent the components and the 

red numbers are used to represent the sensor locations.  In addition to the flow sensors labelled 

in the figures, there is also a fuel level sensor in each of the tanks, labelled on Figures 6.9, 6.10 

and 6.12.  As before, the inclusion of sensors on the system does not affect the flow (or level) 

of fuel in the system.  The full list of component numbers, their names and their descriptions 

is presented in Table 6.2.  Note, that components numbers 2, 4, 6, 8, 46, 48, 50 and 52 are 

secondary components.  Also note, all valves are two directional. 

 



 

222 
 

 
 

Figure 6.5 Left wing of Airbus A380-800 with components labelled 

 

 
Figure 6.6 Right wing of Airbus A380-800 with components labelled 
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Figure 6.7 Centre of the Airbus A380-800 with components labelled 

 
 
Figure 6.8 Trim tank of the Airbus A380-800 with components labelled 

 
Figure 6.9 Left wing of Airbus A380-800 with sensor locations labelled 
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Figure 6.10 Right wing of Airbus A380-800 with sensor locations labelled 

 
 
Figure 6.11 Centre of Airbus A380-800 with sensor locations labelled 

 
 
Figure 6.12 Trim tank of Airbus A380-800 with sensor locations labelled 
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Table 6.2 Description of components in the system 

Type Symbol Number Name Description 

Pump  1 L1P1 Left engine 1 Pump 1 

  2 L1P2 Left engine 1 Pump 2 

  3 R1P1 Right engine 1 Pump 1 

  4 R1P2 Right engine 1 Pump 2 

  5 L2P1 Left engine 2 Pump 1 

  6 L2P2 Left engine 2 Pump 2 

  7 R2P1 Right engine 2 Pump 1 

  8 R2P2 Right engine 2 Pump 2 

  9 LOTP Left Outer tank Transfer Pump 

  10 LMTP Left Mid tank Transfer Pump 

  11 LITP Left Inner tank Transfer Pump 

  12 LMDP Left Mid tank Dump Pump 

  13 LIDP Left Inner tank Dump Pump 

  14 ROTP Right Outer tank Transfer Pump 

  15 RMTP Right Mid tank Transfer Pump 

  16 RITP Right Inner tank Transfer Pump 

  17 RMDP Right Mid tank Dump Pump 

  18 RIDP Right Inner tank Dump Pump 

  19 LTP Left Trim tank Pump 

  20 RTP Right Trim tank Pump 

Valves  21 LEV1 Left Engine 1 Valve 

  22 LEV2 Left Engine 2 Valve 

  23 REV1 Right Engine 1 Valve 

  24 REV2 Right Engine 2 Valve 

  25 LRV Left Refuel Valve 

  26 RRV Right Refuel Valve 

  27 LDV Left Dump Valve 

  28 RDV Right Dump Valve 

  29 LFVP Left Fuel Valve Path 

  30 RFVP Right Fuel Valve Path 

  31 LOTV Left Outer tank Transfer Valve 

  32 LOETV Left Outer Engine feed tank Transfer Valve 

  33 LMTV Left Mid tank Transfer Valve 

  34 ROTV Right Outer tank Transfer Valve 

P 
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  35 ROETV Right Outer Engine feed tank Transfer Valve 

  36 RMTV Right Mid tank Transfer Valve 

  37 LSV Left Surge Valve 

  38 RSV Right Surge Valve 

  39 LODV Left Outer tank Dump Valve 

  40 LOEDV Left Outer Engine feed tank Dump Valve 

  41 LMDV Left Mid tank Dump Valve 

  42 RODV Right Outer tank Dump Valve 

  43 ROEDV Right Outer Engine feed tank Dump Valve 

  44 RMDV Right Mid tank Dump Valve 

  45 LIEV1 Left Inner Engine Feed Valve 1 

  46 LIEV2 Left Inner Engine Feed Valve 2 

  47 LITV1 Left Inner Transfer Valve 1 

  48 LITV2 Left Inner Transfer Valve 2 

  49 RIEV1 Right Inner Engine Valve 1 

  50 RIEV2 Right Inner Engine Valve 2 

  51 RITV1 Right Inner Transfer Valve 1 

  52 RITV2 Right Inner Transfer Valve 2 

  53 LCV1 Left Cross feed Valve 1 

  54 LCV2 Left Cross feed Valve 2 

  55 RCV1 Right Cross feed Valve 1 

  56 RCV2 Right Cross feed Valve 2 

  57 CCV Centre Cross feed Valve 

  58 DTV Dump Trim tank Valve 

  59 FTTV Fuel Transfer Trim tank Valve 

  60 TTDV Trim tank Transfer and Dump Valve 

  61 LTTV Left Trim Tank Valve 

  62 RTTV Right Trim Tank Valve 

 

In the next section, details of the example phased mission are presented, and the component 

failures and the considered times of occurrence in the mission are given. 

 

6.2.1. Details of the phased mission 

The fuel is transferred to the feed tanks from the other tanks in a specific order, as detailed 

in Airbus (2006).  This document also details the quantity of fuel supplied to each engine during 
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the cruise phase of the mission, at a rate of approximately 1.1 kg/s per engine.  For simplicity, 

the rate modelled in this thesis is 1 kg/s. 

As Airbus (2006) does not state the maximum flow rates of the pumps, the supply of fuel 

to the engines during the take-off phase can be assumed by considering the approximate 

maximum fuel jettison rate, stated in the document as 150000 kg/h.  12 of the 20 pumps are 

used to eject fuel from the system, and the remaining 8 pumps in the engine feed tanks are not 

used for this purpose.  Note, although not explicitly stated in the document, it is assumed that 

this is to ensure that the supply of fuel to the engines is not lost, as it is possible that the fuel 

can be moved to eject it from the feed tanks if desired.  The maximum jettison rate corresponds 

to approximately 4 kg/s for each of the 12 pumps, because some of the pumps will not be able 

to eject fuel for the whole hour (flow rate is quoted in units of kg per hour), as the maximum 

volume of the fuel in the tanks is less than this.  For example, in an hour, each pump is capable 

of ejecting 14400 kg, but the maximum capacity of the outer tanks is 8260 kg, i.e. less than 

that.  It is reasonable to assume that the fuel will be jettisoned from the system at the maximum 

possible rate, i.e. the maximum output from the pumps.  It is therefore, reasonable to assume 

that the maximum supply of fuel to the engine by each pump will be the same rate, i.e. 4 kg/s.  

This rate, is therefore assumed to be the rate at which the fuel is supplied to the engines during 

take-off. 

Like the rate of supply of fuel to the engines during take-off, the fuel transfer rate between 

tanks is also not stated in Airbus (2006).   It is assumed to be at a rate greater than the rate of 

flow of fuel during the cruise phase in order to replenish the tanks faster than they are being 

depleted, but at a rate lower than the maximum supply rate, as this would most likely put higher 

strain on the pumps.  Therefore, the fuel transfer rate is assumed to be 3 kg/s per pump. 

It is stated in Airbus (2006) that in order to prevent wing bending, the aircraft takes off with 

very little fuel in the outer tanks.  Therefore, immediately after take-off and climb, fuel is 

transferred from the inner tanks to the outer tanks until they are full.  When the engine feed 

tanks are depleted to approximately 30%, (7000 kg), they are replenished by transferring fuel 

to the feed tanks from the inner tanks.  When the inner tanks are nearly empty (it is assumed 

that the tanks are not run dry), the transferring of fuel is paused until the engine feed tanks are 

depleted to approximately 30% again.  This process is then repeated, transferring the fuel from 

the mid tanks to the feed tanks, and then from the trim tanks to the feed tanks, and finally from 

the outer tanks to the feed tanks.  The fuel in the feed tanks is then depleted through descent 

and landing of the aircraft.  Note, typically there are a few hours’ worth of additional fuel 

carried on board, in case of delays during landing, (14,400kg is consumed per hour during the 
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cruise phase, but less than this would be required to remain airborne in proximity to the place 

of landing). 

An example mission is detailed in Tables 6.3 and 6.4, with the duration and description of 

phases given in Table 6.3, and the quantity of fuel in each of the tanks at the end of each phase 

given in Table 6.4, assuming that the mission is completed as expected, i.e. no failure has 

occurred.  Note that the initial quantities of fuel are given in the row for phase 0, and the times 

in Table 6.3 are given in minutes, as this is the time step used in this study.  The total mission 

time is 720 minutes, (12 hours), well within the capability of the aircraft, hence the tanks in the 

aircraft are not full, i.e. 40000 kg under max fuel capacity.  Note, the third column of Table 

6.3, failure time, is discussed in the following section.  For simplicity, take-off and climb are 

combined into one phase, and cruise, descent and landing at the end of the mission, are also 

combined into one phase.  Note that in these operation phases, no fuel transfer is undertaken, 

only engine feed.  Also note, all four engine feed tanks are assumed to start with the same 

quantity of fuel in them, despite having slightly different capacities, and are therefore grouped 

into one column, i.e. the quantity of fuel presented in the third column of Table 6.4 is in each 

of the four feed tanks, for example, 19000kg in each of the four tanks, 76000kg total, at the 

start of the mission. 

 
Table 6.3 Timings of the phased mission 

Phase 

number 

Starting 

time 

(minutes) 

Failure 

time 

(minutes) 

Ending 

time 

(minutes) 

Phase description 

0 0 0 0 Initial quantities 

1 0 13 25 Take-off and climb 

2 25 45 65 Transfer of fuel from the inner to outer tanks 

3 65 95 125 Cruise 

4 125 195 265 Transfer of fuel from the inner to feed tanks 

5 265 300 335 Cruise 

6 335 405 475 Transfer of fuel from the mid to feed tanks 

7 475 510 545 Cruise 

8 545 565 585 Transfer of fuel from the trim to feed tanks 

9 585 595 605 Cruise 

10 605 625 645 Transfer of fuel from the outer to feed tanks 

11 645 683 720 Cruise, descent and landing 
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Table 6.4 Fuel quantities for each phase of the mission 

Phase 

Number 

Outer tank 

quantities 

(kg) 

Feed tank 

quantities 

(kg) 

Mid tank 

quantities 

(kg) 

Inner tank 

quantities 

(kg) 

Trim tank 

quantity 

(kg) 

Total 

quantity 

(kg) 

0 600 19000 27000 34300 15400 215200 

1 600 13000 27000 34300 15400 191200 

2 8000 10600 27000 27100 15400 181600 

3 8000 7000 27000 27100 15400 167200 

4 8000 11200 27000 1900 15400 133600 

5 8000 7000 27000 1900 15400 116800 

6 8000 11200 1800 1900 15400 83200 

7 8000 7000 1800 1900 15400 66400 

8 8000 8200 1800 1900 1000 56800 

9 8000 7000 1800 1900 1000 52000 

10 600 8200 1800 1900 1000 42400 

11 600 3700 1800 1900 1000 24400 

 

6.2.2.  Failure modelling 

As in the previous chapters, there are a number of different component failures and modes 

that have been considered.  In addition, as system operation is not considered at a single point 

in time in this case, the component failures can occur at various times during the mission.  The 

times at which failure occurrence can occur are in the middle of each of the operation phases, 

i.e. there are 11 considered failure times.  However, only one component failure per mission, 

i.e. no combinations of two or more component failures, are considered due to the large number 

of possible combinations, which is the result of the inclusion of multiple component failure 

modes and the time dimension.  Also, due to a low probability of component failure occurrence, 

the probability that a second component failure occurs before the effects of the first failure are 

observed and addressed is low.  In total, there are 2926 cases of failures considered, which 

includes failure of each of the components in each of their failure modes, and at each time of 

failure occurrence in the mission.  For example, in order to analyse the effect that the time at 

which a failure occurs has on the ability of the sensors to detect the failure, multiple time 

instances for failures are considered, one in the middle time step of each phase, as described in 

the third column of Table 6.3. 
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Each of the components have multiple failure modes.  For example, the pumps can fail in 

7 different states.  First of all, they can fail in the on failure modes in the three supply states 

detailed above, i.e. supplying 4 kg/s (take-off), 3 kg/s (transfer) and 1 kg/s (cruise).  In addition, 

they can supply half of these values, i.e. supplying 2 kg/s, 1.5 kg/s and 0.5 kg/s, in order to 

represent degraded performance, with the supply of reduced amounts of fuel.  The final failure 

mode of the pump is the off state, i.e. no movement of fuel, 0 kg/s.  The valves have 3 different 

failure modes: failed open, failed half open (the radius of the opening is half that of a fully open 

valve), and failed closed.  The valves failed open does not restrict the flow in anyway, whereas 

the valves failing closed stops the flow completely.  If a valve is partially failed, it can result 

in a restriction on the quantity of fuel passing through it.  There are two different situations, a 

partially open valve and all other valves closed, and a partially open valve and (at least) one 

other fully open valve in parallel.  The first situation will result in no restriction on the quantity 

of fuel passing through the valve as the quantity of fuel going through the valve has to equal 

the quantity of fuel supplied to it.  This is the case for the valves in the centre of the Airbus 

A380-800 system, i.e. valves that are in series with other valves in the system.  These valves 

include components 29, 30, 37, 38, and 53 – 60.  In reality, this would change the quantity of 

fuel passing through the valves by a small amount due to the added resistance of the smaller 

path, but as the pumps are assumed to be constant fuel output, this is not considered.  The 

second situation, i.e. valves in parallel, results in a reduction in the amount of fuel passing 

through the partially open valve.  If a junction is considered, one pipe splitting into two, each 

with a valve positioned in it, then if both valves were fully open, the flow of fuel would split 

evenly.  However, if one of the valves was only half open, then 80% of the fuel will pass 

through the fully open valve, and 20% will pass through the half open valve.  This is because 

the area of the valve is proportional to the square of the radius of the valve, and therefore, the 

area of a partially closed valve is equal to a quarter of the fully open valve.  Pipe and tank 

failures, such as leaks and ruptures, are not considered in this thesis. 

There are a number of component failures that can cause the system to fail.  However, when 

the time dimension is considered, some component failures may be critical if they occur during 

one part of the mission, but they might not be critical if they occur during another part of the 

mission.  For example, if the pump LITP (component 11) fails off in the first phase (take-off 

and climb) of the mission, it will be critical to the completion of the mission, as there will not 

be enough available fuel to feed the engines to be able to complete the mission, since without 

this pump the fuel will remain in the left inner tank and there will not be enough fuel available 

to complete the mission.  However, if LITP fails off in the seventh phase of the mission, it will 
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not be critical to the completion of the mission, as this pump is not used during the later phases.  

Therefore, the events in this chapter are defined to be critical to the system, but not component 

failures.  Note an event is defined as a component failure occurring at a specific time.  Critical 

events, i.e. events that cause system failure, are defined as events that result in the supply of 

fuel to the engines being below 75% of the amount that is normally supplied in the considered 

phase of the mission, i.e. events in which a supply of less than 12 kg/s between the four engines 

in the take-off phase, or events in which a supply of less than 3 kg/s between the four engines 

throughout the rest of the mission, are described to be critical.  Another critical event for the 

system is an event that results in the weight of fuel in one wing being significantly heavier than 

in the other, because the centre of gravity will cause the aircraft to be imbalanced and 

potentially prevent it from being able to remain airborne.  For demonstration purposes, the 

threshold is set to be one wing 20% heavier than the other.  The final critical event for the 

system is events that result in the weight of fuel in the tanks at the end of the mission being 

above the maximum landing weight.  This threshold is set at 30000 kg in this thesis, which 

corresponds to a take-off weight of approximately 570000 kg, approximately 5000 kg below 

the maximum take-off weight. 

As the minimal cut sets for system failure are time-dependent, there are different minimal 

cut sets for each of the 720 time steps, which results in a large number of minimal cut sets.  

Instead of building a fault tree and obtaining the minimal cut sets, the C++ script used to model 

the system uses a series of if-then-else statements to determine if the criticality criteria are 

satisfied in order to determine whether system failure occurs.  At each time step the supply of 

fuel to the engines is determined, and if it is lower than 75% of the amount of fuel that should 

be supplied at the same time step, then the mission is marked as critical.  Also, at each time 

step, the total mass of the fuel in each wing is compared, and if one is 20% greater than the 

other the mission is marked as critical.  Finally, if the weight of the system is greater than the 

maximum landing weight (i.e. more than 30000 kg of fuel remaining) at the end of the mission, 

the mission is marked as critical. 

  

6.2.3. Summary of assumptions 

In this section a summary of all the assumptions for the Airbus A380-800 system is 

presented.  The assumptions are grouped into three sections, system operation and modelling, 

failures, and sensors. 
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System operation and modelling assumptions 

• The greyed out sections of Figure 6.2 are not considered, i.e. the supply of fuel to 

the APU, and no heat exchangers, since all the fuel supplied to the engines is 

consumed and none is returned to the tanks. 

• The fuel jettison and refuel operation modes are not considered. 

• There is no resistance on the flow of fuel in the system, i.e. by pipes or valves, etc. 

• When the line meets a junction, the fuel will split evenly along all the clear lines, 

i.e. the lines that do not have blocked valves in them. 

• The mission length is 12 hours and the modelling time step is 1 minute. 

• When the level of fuel in the engine feed tanks is reduced to approximately 30% of 

their capacity, they will be replenished by transferring the fuel from other tanks in 

the system.  The order of the tanks that the fuel is transferred from is detailed in 

Airbus (2006) and in section 6.2.1. 

 

Failure assumptions 

• The pumps can move fuel around the system at 7 different rates: take-off rate (4 

kg/s), degraded take-off rate (2 kg/s), fuel transfer rate (3 kg/s), degraded fuel 

transfer rate (1.5 kg/s), cruise rate (1 kg/s), degraded cruise rate (0.5 kg/s), and no 

movement of fuel (0 kg/s). 

• The valves in the system can be fully open, partially open, or closed.  Partially open 

valves in parallel allow 25% of the fuel that would normally pass through the valve, 

and valves in series do not restrict the flow, as detailed in the previous section. 

• Only one component failure is considered per mission, i.e. no combinations of two 

component failures are considered, as was the case in Chapters 3, 4, and 5. 

• The component failures are assumed to occur in the middle of each phase of the 

mission and the effects of the failure have stabilised by the next time step, i.e. within 

1 minute. 

• Once a component has failed, it stays in the same state for the rest of the mission, 

where possible.  For example, a valve will stay open for the rest of the mission if it 

has failed open, and a pump will continue to output fuel (if there is fuel in the tank) 

for the rest of the mission if it has failed on. 
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• There are a number of reserve pumps and reserve valves in the system which would 

not normally be used, but failures of these components, such as pumps failing on 

and valves failing open, are considered in this chapter. 

• The system is deemed to be critical if one wing is 20% heavier than the other, the 

supply of fuel to the four engines is less than 75% of the amount supplied under 

normal operating conditions, or the weight of the aircraft is higher than the 

maximum landing weight of 394000 kg, corresponding to 30000 kg of fuel left at 

the end of the mission. 

 

Sensor assumptions 

• There are two types of sensors: flow sensors and level sensors. 

• The flow sensors can distinguish between the fuel line being empty (and therefore 

no flow of fuel) and the line being full (but no flow of fuel). 

• The sensors are perfectly reliable, the flow sensors always measure the flow of fuel 

through them correctly, the level sensors always measure the fuel level in the tanks 

correctly, and the sensors are assumed not to fail. 

• Flow sensors and level sensors are assumed to have the same cost. 

 

6.3. Introduction of time dependence to the sensor performance 

metric 

In order to apply the performance metric to a time-dependent system, the performance 

metric is adapted to consider the time when the component failures occur in the mission.  The 

probability of component failure occurrence depends on time.  First of all, the probability of 

each component failure is calculated by considering the reliability of the components, as 

detailed in Andrews & Moss (2002), where the probability of a component not failing at time 

𝑇 is equal to the reliability of the component, 𝑅(𝑇), as presented in Equation (6.1).  Note, the 

exact details of the failure rate distribution is not important in this methodology, any failure 

distribution could be used with this method, a negative exponential distribution is used in this 

example. 

 

𝑅(𝑇)  =  𝑒−𝜆𝑇  (6.1) 
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where, λ is the failure rate, which is equal to 1 𝑀𝑇𝑇𝐹⁄ , where 𝑀𝑇𝑇𝐹 is the mean time to failure 

of the component.  It is assumed that the value of λ is 0.000001 per time step for the pumps 

and 0.000005 per time step for the valves, which corresponds to values of 𝑀𝑇𝑇𝐹 of 

approximately 694 days, and 139 days of continuous use, respectively.  If the aircraft is used 

for approximately 16 hours a day, this corresponds to approximately 3 years for the pumps, 

and 7 months for the valves.  Note, the reliability of the component 𝑅(𝑇) is equal to 1 −  𝐹(𝑇 ), 

where 𝐹(𝑇 ) is the unreliability of the component and has a probability density function of 

𝑓(𝑡) =  𝜆𝑒−𝜆𝑡.  Using this probability density function the probability that the component fails 

between two time steps, 𝑡 and 𝑡 +  1, can be calculated.  It is the probability density function 

integrated over limits of 𝑡 and 𝑡 +  1 multiplied by the probability of the failure not occurring 

before time t.  Therefore the probability that a component will fail in the time step is given in 

Equation (6.2). 

 

𝐹(𝑡, 𝑡 +  1)𝑅(0, 𝑡)  =  (∫ 𝑓(𝑡′)𝑑𝑡 ′

𝑡+1

𝑡

)  × (1 − ∫ 𝑓(𝑡′)𝑑𝑡 ′

𝑡

0

)

= (𝑒−𝜆𝑡  − 𝑒−𝜆(𝑡 + 1))(1 + 𝑒−𝜆𝑡 − 1)  = 𝑒−2𝜆𝑡 − 𝑒−2𝜆𝑡−𝜆

=  𝑒−2𝜆𝑡 − 𝑒−2𝜆𝑡𝑒−𝜆 =  𝑒−2𝜆𝑡(1 − 𝑒−𝜆) 

(6.2) 

 

The probability of each event, 𝑃𝑒, can be calculated by multiplying 𝐹(𝑡, 𝑡 +  1) for the 

component that fails, by 𝑅(𝑇) for all other components.  Note, this probability will be small 

because it is only considering the event where the component fails in that specific time step, 

but as all the events considered are when a component fails in one time step, all of the 

probability of events will be small, resulting in the correct ratio between the probability of all 

considered events.  Therefore, the probability of all considered failures will be equal to the sum 

of 𝑃𝑒 for all considered events. 

Now that the probability of each of the component failures has been presented, the time 

dependence in each of the terms of the time-dependent performance metric can be developed. 

 

6.3.1. Detection term 

The detection term of the time-dependent performance metric introduces a factor to the 

detection term presented in Equation (3.1) (re-stated below) which considers the time of the 

failure, and the time of detection.  The mission timeline is represented in the form shown in 

Figure 6.13. 
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  X   O     

t = 0 tf   td   t = T 
 

Figure 6.13 Representation of the timeline for the detection term 

 

In this representation, the left and right vertical lines represent the start, 𝑡 = 0, and end 𝑡 =

𝑇, of the mission, respectively, with time increasing from left to right.  The “X” in the diagram 

is used to represent the time of the component failure occurrence, 𝑡 =  𝑡𝑓, (i.e. in the middle of 

a phase) and “O” represents the time when the sensor can detect the component failure, 𝑡 = 𝑡𝑑.  

Note, the time of “X” and “O” can be identical, i.e. as soon as the failure occurs it can be 

detected, i.e. 𝑡𝑓 =  𝑡𝑑.  Also note, that the time of “X” and “O” can be in different phases of 

the mission.  If the sensor cannot detect the failure, then as before, the probability of this failure 

event is not included in the detection term.  However, if the component failure can be detected, 

then the detection term, presented in Equation (3.1), is multiplied by two factors.  The proposed 

formula for the detection term is presented in Equation (6.3), where 𝑃𝑚𝑑 has the same definition 

as stated in section 3.2.1, i.e. the sum of probabilities of the considered failures’ occurrence 

that can be detected by at least one sensor out of all the possible sensors on the system.  It is 

worth noting that the sum of 𝑃𝑒 for all component failures that are detected (𝑁𝑑{𝑠}) by the 

sensor group is equal to 𝑃𝑑 as defined in section 3.2.1.  Note, (𝑁𝑑{𝑠}) is the number of events 

e detected by sensor s. 

 

 

 

The two additional factors take account of the cases when the component failure is not 

detected immediately, (𝑡𝑑 > 𝑡𝑓), as the delay in detecting the failure will delay the appropriate 

action being taken to prevent system failure, (if it is possible to prevent), and the value of the 

detection term is smaller than in the situation when 𝑡𝑑 =  𝑡𝑓.  For both of the factors, the longer 

the time between the component failure and its detection, the smaller the factor is, resulting in 

a smaller detection term, since it is usually beneficial to be able to detect component failures 

as soon as possible.  The first factor considers the delay of detection, i.e. the amount of time 

between component failure and its detection, in relation to the overall duration of the mission.  

𝐷𝐸{𝑠} =   
𝑃𝑑

𝑃𝑚𝑑
  (3.1) 

𝐷𝐸{𝑠} =   
1

𝑃𝑚𝑑
∑ 𝑃𝑒 (1 −  

(𝑡𝑑,𝑒 − 𝑡𝑓,𝑒)

𝑇
) (1 −  

(𝑡𝑑,𝑒 − 𝑡𝑓,𝑒)

(𝑇 − 𝑡𝑓,𝑒)
)

𝑁𝑑{𝑠}

𝑒=1

  (6.3) 
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The smaller the delay, the higher the factor; also for a longer mission the same delay influences 

the factor less than for a shorter mission.  This factor does not consider when in the mission 

the failure occurs, only how long it takes to detect it, for example, it takes 5 minutes to detect 

failure occurrence.  The second factor, however, considers the delay of detection in relation to 

its time of occurrence, i.e. remaining time of the mission.  This factor does not consider how 

long the system has operated for before the component failure, it only considers how long it 

takes the sensor to detect the component failure in relation to the remaining mission time, i.e. 

how long the failure stays in the system, before and after the detection if no remediation actions 

are taken.  The smaller the delay, the higher the factor; also the earlier in the mission the delay 

occurs or the longer the mission, the higher the factor.  In other words, the first factor considers 

the percentage of mission time that the failure is not detected for, and the second factor 

considers the percentage of the remaining mission time after the failure, that the failure is not 

detected for. 

 

6.3.2. Diagnostic term 

The diagnostic term of the time-dependent performance metric considers when after the 

completion of fault detection the best diagnostic capability can be obtained, i.e. the time step 

when the diagnostic term is at its maximum value due to the change of the sensor readings for 

each component failure.  However, in some cases there may be a large delay between when the 

failure is detected and the highest diagnostic capability is obtained, but a relatively high 

diagnostic term is achieved comparatively soon after the failure being detected.  Consider the 

simple example presented in Figure 6.14. 

 

Sensor 

reading 
      

 
 

         

  (10) (4) (4)   (4)  

       (2)  

   (6) (2)   (2)  

    (4)   (2)  

         

          

0 td td1 td2   td3 T time 

          
Figure 6.14 Representation of the timeline of the mission for the diagnostic term 

 

The black line in the middle of the figure represents the sensor reading produced under 

normal operating conditions, i.e. when no failures occur.  For simplicity, it is assumed to be 
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the same sensor reading throughout the whole mission.  At time 𝑡𝑑 the sensor could detect a 

fault, when a different sensor reading is produced, as represented by the red line.  There may 

be a number of different component failures that are detected at this point of the mission, and 

produce the same sensor reading, for example, 10.  At time 𝑡𝑑1, for some of the component 

failures, the sensor reading will deviate again, and depending on the sensor reading observed 

at this time, the number of potential component failures that could have occurred is reduced, 

i.e. if one sensor reading is produced (red line), one of four component failures could have 

occurred, but if the other sensor reading is produced (blue line), one of six component failures 

could have occurred.  Likewise, at time 𝑡𝑑2, depending on the sensor reading, the failed 

component could be one of 4 (red line), 2 (blue line), or 4 (green line), different component 

failures, respectively.  Also, at time td3, depending on the sensor reading, the failed component 

could be one of 2 (yellow line), 4 (red line), 2 (blue line), or 2 (green line) different component 

failures, respectively.  Note, at time 𝑡𝑑3, the sensor reading represented by the yellow line 

returns to the same value as the sensor reading observed if no failures have occurred.  However, 

this does not mean that the two component failures represented by the yellow line can no longer 

be diagnosed as the sensor readings observed for the rest of the mission are considered, i.e. as 

soon as a failure has been detected, it cannot be undetected. 

If these 10 component failures are the only component failures considered, and if time taken 

to carry out the best diagnostics is not considered, 𝐷𝐼𝑡𝑑3 > 𝐷𝐼𝑡𝑑2 > 𝐷𝐼𝑡𝑑1 >  𝐷𝐼𝑡𝑑, where 𝐷𝐼 

is the diagnostic term, as presented in section 3.2.2 and re-stated below.  However, if the time 

between 𝑡𝑑 and 𝑡𝑑3 is significantly longer than the time between 𝑡𝑑 and 𝑡𝑑2, then it might be 

useful to have a lower diagnostic capability, but in a significantly shorter time.  Therefore, the 

factor used for 𝐷𝐼 evaluation, presented in Equation (6.4), considers the diagnostic term for 

each time step between the time of detection 𝑡𝑑 and the end of the mission 𝑇, until the best 

value is achieved.  Note that 𝑇𝑠𝑡𝑒𝑝 can have any value between 𝑡𝑑 and 𝑇 and is in one minute 

increments as presented in section 6.2.1. 

 

𝐷𝐼{𝑠}  =   
∑ 𝑃𝑚𝑙𝑖

𝑛𝑟𝑠
𝑖=1

∑ 𝑃𝑠𝑟𝑖
𝑛𝑟𝑠
𝑖=1

 (3.2) 

 

 

As with the factor of the time-dependent detection term in section 6.3.1, this factor 

considers the amount of time it takes to achieve the diagnostic term in comparison to the overall 

𝐹𝑎𝑐𝑡𝑜𝑟(𝑇𝑠𝑡𝑒𝑝) =  (1 − 
(𝑇𝑠𝑡𝑒𝑝 −  𝑡𝑑)

𝑇
) (1 − 

(𝑇𝑠𝑡𝑒𝑝 − 𝑡𝑑)

(𝑇 − 𝑡𝑑)
) (6.4) 
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duration of the mission, and in comparison to the remaining mission time after the detection 

has occurred.  To begin with this factor is calculated for each time step, 𝑇𝑠𝑡𝑒𝑝 and it is multiplied 

by the intermediate values of the diagnostic term for that considered deviated sensor reading, 

resulting in 𝑉𝑎𝑙𝑢𝑒(𝑇𝑠𝑡𝑒𝑝), as calculated in Equation (6.5).  Note, in this expression, only the 

combinations of component failures that produce the considered sensor reading at time 𝑡𝑑 are 

considered, i.e. not all of the possible sensor readings.  For example, in Figure 6.14 𝑥𝑚𝑎𝑥(𝑡𝑑) =

1, as there is only one deviated sensor reading (red); 𝑥𝑚𝑎𝑥(𝑡𝑑1) = 2 (red and blue), 

𝑥𝑚𝑎𝑥(𝑡𝑑2) = 3 (red, blue and green), and 𝑥𝑚𝑎𝑥(𝑡𝑑3) = 4 (red, blue, green and yellow).  Note, 

𝑥𝑚𝑎𝑥 is the number of possible deviated sensor readings.  Therefore, the equation without the 

time dependency element, Equation (3.2), is updated, as there can be a number of 𝑃𝑚𝑙𝑥 and 

𝑃𝑠𝑟𝑥. 

 

 

For simplicity, 𝑁(𝑇𝑠𝑡𝑒𝑝) = ∑ 𝑃𝑚𝑙𝑥
𝑥𝑚𝑎𝑥(𝑇𝑠𝑡𝑒𝑝)

𝑥=1  and 𝐷(𝑇𝑠𝑡𝑒𝑝) = ∑ 𝑃𝑠𝑟𝑥
𝑥𝑚𝑎𝑥(𝑇𝑠𝑡𝑒𝑝)

𝑥=1 .  The time 

step that results in the maximum value of the term 𝑉𝑎𝑙𝑢𝑒(𝑇𝑠𝑡𝑒𝑝), is denoted as 𝑇𝑠𝑡𝑒𝑝𝑚𝑎𝑥, and 

it is used in the calculation of the time-dependent diagnostic term in Equation (6.6).  As there 

can be multiple different deviations occurring at 𝑡𝑑 (the number is 𝑛𝑟𝑠(𝑡𝑑)) and any other point 

in time after, this process is repeated for all these different deviations.  For example, in Figure 

6.15, there are three different deviations (red line, blue line, and green line) from the normal 

operating conditions (black line) at time 𝑡𝑑, i.e. 𝑛𝑟𝑠(𝑡𝑑) = 3. 

 

         

         

         

         

         

         

          

0 td       T 

         
Figure 6.15 Representation of the timeline of the mission for the observed sensor readings at time td 

𝑉𝑎𝑙𝑢𝑒(𝑇𝑠𝑡𝑒𝑝) =   
(∑ 𝑃𝑚𝑙𝑥

𝑥𝑚𝑎𝑥(𝑇𝑠𝑡𝑒𝑝)

𝑥=1 ) × 𝐹𝑎𝑐𝑡𝑜𝑟(𝑇𝑠𝑡𝑒𝑝)

∑ 𝑃𝑠𝑟𝑥
𝑥𝑚𝑎𝑥(𝑇𝑠𝑡𝑒𝑝)

𝑥=1

=  
𝑁(𝑇𝑠𝑡𝑒𝑝) × 𝐹𝑎𝑐𝑡𝑜𝑟(𝑇𝑠𝑡𝑒𝑝)

𝐷(𝑇𝑠𝑡𝑒𝑝)
 

(6.5) 
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This process is then repeated for all possible times of 𝑡𝑑, starting from the earliest detection 

time of a failure, 𝑡𝑑𝑚𝑖𝑛, until the end of the mission, 𝑇.  The resulting diagnostic term is 

presented in Equation (6.6). 

 

 

 

6.3.3. Criticality term 

The criticality term of the time-dependent performance metric considers the duration 

between the failure occurrence and the failure causing system failure, i.e. one wing 

significantly heavier than the other, less than 75% of normal supply to the engines, or the 

weight of the aircraft being above the maximum landing weight at the end of the mission.  Like 

with the detection term, the mission can be represented in a timeline in Figure 6.16, where “O” 

represents the time when the system becomes critical, 𝑡𝑐, where 𝑡𝑐 can be any time between 𝑡𝑓 

(“X”), and the end of the mission, 𝑇, i.e. can become critical in a different phase of the mission. 

  

  X   O     

t = 0 tf   tc   t = T 
 

Figure 6.16 Representation of the timeline of the mission for criticality term 

 

The criticality term of the performance metric presented in section 3.2.3, Equation (3.3) is 

restated for reference. 

 

𝐶𝑅{𝑠}  =  
𝑄𝑠𝑦𝑠 − 𝑄𝑠𝑦𝑠(𝑞𝑠 =  0)

𝑄𝑠𝑦𝑠
 

(3.3) 

 

The modification applied to the criticality term is applied to the two individual terms of the 

criticality term, 𝑄𝑠𝑦𝑠, and 𝑄𝑠𝑦𝑠(𝑞 = 0).  Therefore, the criticality term is in the same form as 

that expressed in Equation (3.3), but each of the individual terms are defined using Equations 

(6.7) and (6.8), respectively.  In the criticality term presented in section 3.2.3, 𝑄𝑠𝑦𝑠 is equal to 

the probability of system failure with no knowledge of any of the component states, i.e. the 

sum of the probability of occurrence of all component failures that would make the system 

critical.  𝑄𝑠𝑦𝑠(𝑞 = 0) is defined in a similar way, i.e. the sum of probability of occurrence of 

𝐷𝐼{𝑠} = ∑
∑ 𝑁(𝑇𝑠𝑡𝑒𝑝𝑚𝑎𝑥)𝑖 × 𝐹𝑎𝑐𝑡𝑜𝑟(𝑇𝑠𝑡𝑒𝑝𝑚𝑎𝑥)𝑖

𝑛𝑟𝑠(𝑡)
𝑖=1

∑ 𝐷(𝑇𝑠𝑡𝑒𝑝𝑚𝑎𝑥)𝑖
𝑛𝑟𝑠(𝑡)
𝑖=1

𝑡=𝑇

𝑡=𝑡𝑑𝑚𝑖𝑛

 (6.6) 
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all component failures that would make the system critical given that the non-deviated reading 

of sensor 𝑠 occurs.  If time dependency is considered, each probability of occurrence is 

multiplied by a factor, developed in a similar manner to the detection and diagnostic term.  As 

before, this factor has two terms, the first term considers the percentage of time that the 

component has failed and the system is in a critical state in relation to the total mission time, 

and the second term considers the percentage of time that the system is in a critical state in 

relation to the remaining mission time after the component failure occurs.  This factor will 

decrease the value of the criticality term for component failures that result in the system 

becoming critical later in the mission than the component failure.  The sooner the system 

becomes critical after a failure occurs, the higher the factor, i.e. the failures that make the 

system critical quicker are more important than the failures that take a long time to make the 

system critical.  The equations for the time-dependent expressions of 𝑄𝑠𝑦𝑠 and 𝑄𝑠𝑦𝑠(𝑞 = 0) are 

given in Equations (6.7) and (6.8), respectively.  In Equation (6.7), the summation is over all 

critical events, 𝑁𝑐{𝑠}, i.e. it is the same for all sensors, and in Equation (6.8), the summation is 

over all critical events that are not detected by the selected sensor, 𝑁𝑐𝑛𝑑{𝑠}, i.e. different for 

each sensor.  This is because 𝑄𝑠𝑦𝑠 is the probability of system failure, and 𝑄𝑠𝑦𝑠(𝑞 = 0) is the 

probability of system failure given that the non-deviated sensor reading of the sensor occurs. 

  

 

 

However, in the case where the system is critical because the aircraft is over the maximum 

landing weight at the end of the mission, it is not clear at what time of the mission the system 

becomes critical, i.e. it is above the maximum landing weight from the start of the mission as 

the weight of the aircraft cannot increase mid-flight.  Therefore, if the system is critical at the 

end of the mission only because it is above the maximum landing weight, then there is no time 

dependence included for this failure, i.e. the value that is summed for 𝑄𝑠𝑦𝑠 (and 𝑄𝑠𝑦𝑠(𝑞 = 0) 

if the sensor does not detect the component failure) is 𝑃𝑒, the probability of the event under 

consideration, i.e. with no time-dependent factor included. 

The full criticality term is stated in Equation (6.9), note it is in the same format as Equation 

(3.3). 

𝑄𝑠𝑦𝑠 =  ∑ 𝑃𝑒 (1 −  
(𝑡𝑐,𝑒 − 𝑡𝑓,𝑒)

𝑇
) (1 −  

(𝑡𝑐,𝑒 − 𝑡𝑓,𝑒)

(𝑇 − 𝑡𝑓,𝑒)
)

𝑁𝑐{𝑠}

𝑒=1

 (6.7) 

𝑄𝑠𝑦𝑠(𝑞 = 0) = ∑ 𝑃𝑒 (1 − 
(𝑡𝑐,𝑒 − 𝑡𝑓,𝑒)

𝑇
) (1 − 

(𝑡𝑐,𝑒 − 𝑡𝑓,𝑒)

(𝑇 − 𝑡𝑓,𝑒)
)

𝑁𝑐𝑛𝑑{𝑠}

𝑒=1

  (6.8) 
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𝐶𝑅{𝑠}  =  
𝑄𝑠𝑦𝑠 − 𝑄𝑠𝑦𝑠(𝑞𝑠 =  0)

𝑄𝑠𝑦𝑠
 

(6.9) 

 

6.3.4. Example 

In order to demonstrate how each of the terms of the time-dependent performance metric 

is affected by varying the time of the failure, an example system is presented.  Note, in each of 

the terms, the full term is not calculated as this would require all combinations of component 

failures to be considered for the sensor.  Instead, the relative contribution of each individual 

component failure to each of the terms is compared, i.e. the right hand side of the summations 

for the detection and criticality term, and 𝑉𝑎𝑙𝑢𝑒 for the diagnostic term. 

The example system in Figure 6.17 consists of two pumps in parallel, connected to a valve, 

and the fuel then passes out through a waste gate, as was the case in the system presented in 

Chapter 3.  A sensor is positioned downstream of the valve, before the waste gate. 

 
Figure 6.17 Example system for demonstration of the time-dependent performance metric 

 

For this system, under normal operating conditions, both pumps supply equal amounts of 

fuel for the first 15 seconds of the mission, and then only the top pump supplies fuel for a 

further 5 seconds, i.e. the mission length is 20 seconds made up of two phases, a 15 second 

phase and a 5 second phase.  Under normal operating conditions, the valve remains open 

throughout the whole mission.  The sensor readings for the mission with no component failures 

are presented in Figure 6.18, i.e. for normal operating conditions.  There are six different 

component failures presented here in order to demonstrate how the terms of the time-dependent 

performance metric are affected by different values for 𝑡𝑓, 𝑡𝑑, and 𝑡𝑐.  Note, there may be a 

significantly larger number of component failures that could occur on the system as each 

component could fail at each time step and potentially in many different ways.  The presented 

component failures descriptions, the values for 𝑡𝑓, 𝑡𝑑, 𝑡𝑐 and the figure references are presented 

in Table 6.5.  The system fails (i.e. the system is critical) if no fuel passes through the waste 

gate.  Note, the system does not fail in cases B, C and E. 
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Table 6.5 Details of the considered missions 

Case Description tf td tc Figure 

A Valve fail closed 5 5 5 6.19 

B Bottom pump fail on 5 15 - 6.20 

C Bottom pump fail on 10 15 - 6.21 

D Top pump fail off 5 5 15 6.22 

E Bottom pump fail off 5 5 - 6.23 

F Top pump fail off 10 10 15 6.24 

 
Figure 6.18 Sensor readings under normal operation conditions 

 
Figure 6.19 Sensor readings for case A 

 
Figure 6.20 Sensor readings for case B 
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Figure 6.21 Sensor readings for case C 

 
Figure 6.22 Sensor readings for case D 

 
Figure 6.23 Sensor readings for case E 

 
Figure 6.24 Sensor readings for case F 
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The time-dependent detection term is calculated for cases A, B, and C in Equations (6.10), 

(6.11), and (6.12), respectively, in order to demonstrate the effect of increasing the time 

between failure and detection, and changing the time of failure occurrence.  Note, as stated 

before, the full detection term is not calculated as this would require all cases to be considered, 

instead only one term of the summation is presented for each of the three cases, the relative 

contribution to the detection term of each of the cases.  Also note, that for simplicity 𝑃𝑒 is 

assumed to be the same for each of cases, 0.01, i.e. the probability of that case occurring and 

none of the other cases occurring is 0.01. 

 

 

 

 

Firstly, if the second and third terms in each of the products are compared, it can be seen 

that the first of the two terms is largest for case A (1), and smallest for case B (0.5).  The first 

term considers the time between failure occurrence and its detection, in relation to the duration 

of the mission.  As the sensor detects the failure in case A immediately, the value of this term 

is at its maximum, i.e. equal to 1.  As case B takes the longest for the failure to be detected 

after its occurrence, this value is the lowest of the three values.  The same is observed for the 

second term, which considers the time between failure occurrence and its detection, in relation 

to the remaining time left in the mission.  This results in case A being the most important for 

the detection term (0.01), case C being the second most important for the detection term 

(0.001667), and case B being the least important for the detection term (0.00375).  This is as 

expected, as in case A the failure is detected immediately, in case C the failure is not detected 

for 5 seconds, and in case B the failure is not detected for 10 seconds, i.e. the longer the delay 

time, the smaller the value of the factor. 

For the time-dependent diagnostic term, cases D and E are considered in order to 

demonstrate how the diagnosis of failures can improve over time.  Both cases are detected 5 

𝐶𝑎𝑠𝑒 𝐴: 0.01 (1 − (
5 − 5

20
)) (1 − (

5 − 5

20 − 5
)) = 0.01 × 1 × 1 = 0.01 (6.10) 

𝐶𝑎𝑠𝑒 𝐵: 0.01 (1 − (
15 − 5

20
)) (1 − (

15 − 5

20 − 5
)) = 0.01 × 0.5 × 0.33 = 0.001667 (6.11) 

𝐶𝑎𝑠𝑒 𝐶: 0.01 (1 − (
15 − 10

20
)) (1 − (

15 − 10

20 − 10
)) = 0.01 × 0.75 × 0.5 = 0.00375 (6.12) 
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seconds into the mission, and they produce the same sensor reading up until 15 seconds into 

the mission, where the sensor reading changes in case D (changes to “0”) but stays the same in 

case E.  Therefore, if the sensor reading “1” is observed at 5 seconds into the mission, then it 

can be either case D or case E, but depending on what the sensor reading is at 15 seconds into 

the mission, it will either be case D (if the sensor reading is “0”), or case E (if the sensor reading 

is “1”).  Therefore, using Equation (6.5), 𝑉𝑎𝑙𝑢𝑒(𝑇𝑠𝑡𝑒𝑝) is calculated at the two time points, 5 

seconds (Equation (6.13)) and 15 seconds (Equation (6.14)) into the mission, in order to 

demonstrate how the time taken for diagnosis affects the diagnostic term.  Note, the full 

diagnostic term is not calculated in this example as it would require all cases to be considered, 

instead only 𝑉𝑎𝑙𝑢𝑒(𝑇𝑠𝑡𝑒𝑝) is calculated.  As before, all of the component failures are assumed 

to be equally likely, with a probability of occurrence of 0.01.  Note, at 5 seconds into the 

mission, the probability of the sensor reading is equal to 0.02 as it can be produced by two 

events, i.e. case D and case E.  Also note that as there are two sensor readings at 15 seconds 

into the mission, the first term is equal to 0.01 + 0.01 for the numerator and denominator, as 

there are two different sensor readings, (and therefore, two different most likely failures), i.e. 

they are summed over 𝑥 from Equation (6.5).  

 

 

 

If 𝑉𝑎𝑙𝑢𝑒(5) and 𝑉𝑎𝑙𝑢𝑒(15) are compared, the 𝑉𝑎𝑙𝑢𝑒(5), i.e. 5 seconds into the mission is 

bigger, and as a result, it would be 𝑇𝑠𝑡𝑒𝑝 equals 5 that would be used for the calculation of the 

diagnostic term.  If the two last terms of the product to find 𝑉𝑎𝑙𝑢𝑒(5) and 𝑉𝑎𝑙𝑢𝑒(15) are 

considered, it can be seen that the penultimate and the last terms are significantly smaller in 

Equation (6.14) than in (6.13), which outweighs the difference in the first term of the two 

equations.  As a result this makes 𝑉𝑎𝑙𝑢𝑒(5) larger than 𝑉𝑎𝑙𝑢𝑒(15), despite the better 

diagnostic ability of the sensors after 15 seconds.   

For the time-dependent criticality term, cases A, D and F are considered.  As stated before, 

the full criticality term is not calculated as this would require all cases to be considered, instead 

only one term of the summation is presented for each of the three cases, the relative contribution 

to the criticality term of each of the cases.  Also as before, 𝑃𝑒 is assumed to be 0.01 for all of 

𝑉𝑎𝑙𝑢𝑒(5) =  
0.01

0.02
× (1 − 

(5 −  5)

20
) (1 − 

(5 − 5)

(20 −  5)
) = 0.5 × 1 × 1 = 0.5 

(6.13) 

𝑉𝑎𝑙𝑢𝑒(15) =  
0.01 + 0.01

0.01 + 0.01
× (1 − 

(15 −  5)

20
) (1 − 

(15 − 5)

(20 −  5)
) = 1 ×

1

2
×

1

3
= 0.166667 

(6.14) 
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the cases.  This term is presented in Equations (6.15), (6.16), and (6.17) for the three cases 

respectively. 

 

 

 

 

As the terms in each of the cases are the same as in Equations (6.10), (6.11), and (6.12), 

respectively, the same conclusions can be made as were made for the time-dependent detection 

term.  As case A is critical immediately, this should be the most important case for the criticality 

term.  In case D, the system is not critical until 10 seconds after the component failure has 

occurred, and therefore, it is the least important case for the criticality term.  In case F, the 

system is critical 5 seconds after the occurrence of the component failure, and is therefore, the 

second most important.  The importance of each of the cases is reflected in the values of each 

of the cases. 

 

6.3.5. Discussion 

In order to be able to apply the performance metric to a phased mission, the aspect of time 

dependence was introduced into the performance metric.  The process was carried out in a 

similar way for each of the three terms, by introducing a factor that considered how long the 

failure affected the mission before the considered factor occurred, (detection, diagnosis, or 

becoming critical), in comparison to the length of the mission, and the remaining time of the 

mission from when the component failure occurred, (or was detected for the diagnostics term).  

For the detection and criticality terms, the computational requirements are higher than before, 

but not significantly more than for the time-independent performance metric, as a factor is 

multiplied by each term before the terms are summed for the time-dependent performance 

metric rather than just being summed for the time-independent performance metric.  However, 

the diagnostic term is significantly more complicated than the other two terms, because the 

ability of the sensor to diagnose the component failures may improve as the mission progresses, 

and this had to be considered in the factor.  (Note, the diagnostic ability cannot get worse as 

𝐶𝑎𝑠𝑒 𝐴: 0.01 (1 − (
5 − 5

20
)) (1 − (

5 − 5

20 − 5
)) = 0.01 × 1 × 1 = 0.01 (6.15) 

𝐶𝑎𝑠𝑒 𝐷: 0.01 (1 − (
15 − 5

20
)) (1 − (

15 − 5

20 − 5
)) = 0.01 × 0.5 × 0.33 = 0.001667 

(6.16) 

𝐶𝑎𝑠𝑒 𝐹: 0.01 (1 − (
15 − 10

20
)) (1 − (

15 − 10

20 − 10
)) = 0.01 × 0.75 × 0.5 = 0.00375 

(6.17) 
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time progresses as the previous sensor readings can also be considered in the analysis).  

Therefore, the factor had to be calculated for a number of time steps and it had to be multiplied 

by 𝑃𝑚𝑙𝑖 and divided by 𝑃𝑠𝑟𝑖 for each of the remaining time steps in the mission.  The maximum 

value of this calculation then had to be determined, and the corresponding factor, the 

corresponding value of 𝑃𝑚𝑙𝑖, and the corresponding value of 𝑃𝑠𝑟𝑖 had to be substituted into the 

diagnostic term formula in order to calculate it.  Finally, the values are summed over all 

considered component failures, which is the only step that is required for the time-independent 

diagnostic term.  This makes the diagnostic term significantly more computationally intensive 

than the time-independent version, as a 𝑉𝑎𝑙𝑢𝑒(𝑇𝑠𝑡𝑒𝑝) needs to be calculated for every 𝑇𝑠𝑡𝑒𝑝 

between 𝑡𝑑 and the end of the mission.  This exacerbates the problem of the additional 

computation time required because of the large number of combinations of sensors, therefore 

applying an optimisation process, as discussed at the start of this chapter, to the sensor selection 

process is imperative because of the large number of sensor combinations.  The optimisation 

process is presented in the next section of this chapter.  Note, in order to make the calculation 

of the diagnostic term more efficient, the maximum value of 𝑥𝑚𝑎𝑥(𝑡) can be determined by 

considering the final time step 𝑥𝑚𝑎𝑥(𝑇), and then the calculation of 𝑉𝑎𝑙𝑢𝑒(𝑇𝑠𝑡𝑒𝑝) can be halted 

when 𝑥𝑚𝑎𝑥(𝑇𝑠𝑡𝑒𝑝) = 𝑥𝑚𝑎𝑥(𝑇). 

 

6.4. Sensor selection optimisation using GA 

As there are a large number of sensors on this system, it is not feasible to exhaustively 

calculate the performance metric for all combinations of sensors (in excess of 61 million 

combinations of 5 sensors, and in excess of 1.1 × 1013 combinations of 10 sensors), therefore 

an optimisation process is needed.  The optimisation process chosen in this thesis uses a 

Genetic Algorithm, which was presented in section 2.3.2 of this thesis, i.e. following the format 

presented in Figure 2.7.  

In order to apply a genetic algorithm, the population and a fitness function needs to be 

defined.  As genetic algorithms are typically completed using a population of binary strings, 

the available sensors are represented in this form.  To do this, binary strings the length of the 

number of available sensors are created, in which the digit “1” represents the corresponding 

sensor being selected, and the digit “0” represents the corresponding sensor not being selected.  

For example, for ten possible sensors, the binary string 1001100011 would represent the sensor 

combination, sensor S1, S4, S5, S9 and S10.  There is a constraint placed on the number of 

sensors on the system, which results in a penalty being applied to the value of the fitness if the 
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constraint is broken.  The penalty factor is equal to the square of the number of sensors in the 

combination, and the fitness is divided by it. 

When the population is generated, the fitness function is calculated, and therefore it also 

needs to be defined.  The obvious choice for the fitness function is the performance metric, 

however, as the calculation of the time-dependent diagnostic term takes significantly longer 

than the calculation of the other two terms, (i.e. several minutes for combinations of sensors 

with high performance metrics, in comparison to a couple of seconds for the other two terms), 

a modified fitness function, and resultant GA process is proposed.  This modified GA process 

is referred to as a two-level GA. 

For the two-level GA process, two fitness functions are proposed, the first of which is a 

simplified version of the performance metric, the average of the time-dependent detection and 

criticality terms of the performance metric.  This is because these two terms can be calculated 

quickly, enabling more generations and members of the populations to be considered.  The 

second fitness function is the full time-dependent performance metric.  The two-level GA 

process applies the algorithm as presented in section 2.3.2.1, multiple times on different 

randomly generated populations (A1, A2, A3…), using the simplified performance metric as 

the fitness function.  When the GA has converged, the best member of the final generation of 

each population (A1, A2, A3…), i.e. the one with the highest fitness function, is stored as a 

member in a new population, population (B).  This is repeated until population (B) is populated, 

i.e. instead of one randomly generated population (A), there are multiple randomly generated 

populations (A1, A2, A3….).  As the best combination of sensors for each application of the 

GA is selected, this should result in population (B) having a large number of different solutions, 

all with relatively high fitness values.  The GA using the full time-dependent performance 

metric as the fitness function can then be applied to population (B).  As population (B) should 

all have relatively high fitness values, fewer members in the population, and fewer generations 

will need to be calculated.  This should enable a solution with a high performance metric to be 

obtained without calculating the full performance metric as many times, making the application 

of the GA significantly faster.  A flowchart detailing the steps in the proposed genetic algorithm 

is presented in Figure 6.25.  Note, in the flow chart, “genetic operators” refers to selection, 

crossover, elitism and mutation. 

In the next section, the methodology is applied to the system presented in section 6.2. 
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Figure 6.25 Flowchart for the proposed genetic algorithm 
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6.5. Application of the methodology 

The proposed time-dependent sensor selection methodology is applied to the system 

presented in section 6.2.  As stated in section 6.2.1, only individual component failures are 

considered, but they are considered at each of the eleven failure times presented in Table 6.3.  

This results in 2926 different missions considered, each mission with a different combination 

of failed component, failure mode of the component, and time of failure.  

  

6.5.1. Modelling the system 

The system was modelled using the methodology presented in section 5.1.1, i.e. using a 

series of if-then-else statements to determine the sensor readings at each time step of the 

mission.  This model will enable the automatic calculation of the performance metric, and 

resultant sensor selection. 

 

6.5.1.1. System model development 

The first step in the system modelling methodology is normally to select the operation mode 

of the system, but as a phased mission is considered, the operation mode is different in different 

phases of the mission.  Therefore, the operation mode is not selected at the start of the script.  

Instead, the first step in the script is to set the values of each of the fuel tanks and the fuel levels 

in each of the tanks at the start of the mission.  In addition to this, the fuel supply rates for each 

of the states of the pumps is included, and the effect of each of the valves states on the flow of 

fuel is also added. 

Next, each of the components and their mean-time-to-failures are included in the script, 

before including the time of mission phase changes, and the total length of the mission.  The 

considered component failure times are also included.   

The component states for each of the mission phases can then be read in from the input file 

and stored in vectors, which are then used to calculate each of the sensor readings at all of the 

time steps in the mission.  Calculating the sensor reading is completed in the same way as 

presented in Figure 5.1, but as the fuel level changes throughout the mission, the quantity of 

fuel in the tanks needs to be considered in order to determine whether there is a supply of fuel 

in the system, or if there is an exit in the system for the fuel to pass through.  For example, if a 

pump is on, it will only supply fuel to the system if there is fuel in the tank that the pump is 

located in, or if a valve is open, it will not allow fuel into the tank if the tank is full.  Note, as 

the mission is modelled in time steps, there is either fuel flowing through for the whole time 
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step, or none of the time step, i.e. there can be a small amount of fuel in the tank, but if the 

quantity is less than the amount of fuel supplied by the pump through the entire time step, no 

fuel will be supplied by the pump.  In order to do this, the quantity of fuel in each of the tanks 

also needs to be updated at each time step. 

By considering the component states in each phase of the mission, the probability of the 

mission can be calculated so it can be used in the calculation of the performance metric and 

during the fault diagnostic process.  Finally, again using the component states in each phase of 

the mission, the criticality of the system can be determined. 

 

6.5.1.2. Discussion 

The model calculates the sensor readings for all of the time steps, of all of the missions in 

less than a minute, which is a negligible time in comparison to the time taken to calculate the 

performance metric.  Therefore, the time taken to determine the sensor readings for all 96 

different sensors, 720 time steps, and 2926 different missions considered by the model is not a 

limiting factor. 

In the previous chapters, the sensor readings output by the model were verified by 

comparing to those output by other models, or by manually determining the sensor readings.  

For example, in Chapter 3, the sensor readings were determined manually, in Chapter 4, the 

sensor readings were determined manually and they were compared to the sensor readings 

produced by the alternative BBN presented in Figure 4.10, and in chapter 5, the output of the 

simulation model was compared to the outputs of the BBN developed in section 5.4.  However, 

as this system is significantly larger than previous systems, it is impractical to manually 

determine the sensor readings, or to develop a BBN of the system, in order to verify that the 

model is outputting the correct sensor readings.  Therefore, a series of consistency checks are 

included in the simulation to determine whether there are any errors in the script to calculate 

the sensor readings.  For example, if a sensor in one section of the system measures that there 

is no fuel in that section of the system, but another sensor in the same section measures that 

there is, then there is a problem in the script that needs to be corrected.  Other consistency 

checks include ensuring that the amount of fuel supplied by the pumps equals the amount of 

fuel exiting the system, checking that there is no fuel being supplied from empty tanks, and 

checking that there is no fuel passing through closed valves.  In total, there are 233 consistency 

checks included in the script, and any errors that were found for any mission with a combination 

of two component failures occurring at all of the considered failure times in the mission, 
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(approximately 4.2 million different missions) were corrected.  Therefore, the model can be 

considered an accurate representation of the system. 

In the next section, the model of the system is used to select the most suitable combination 

of sensors. 

 

6.5.2. Sensor selection 

The next step of the methodology is to select the sensors to be used for the diagnosis of 

component failures.  In order to do this, the number of hidden failures needs to be determined.  

There are 2926 considered component failures, of which 778 are hidden, i.e. 2148 failures can 

be detected.  This corresponds to a Pmd of 0.004430, approximately 62% of the failures, where 

the sum of the probabilities of detected failures is divided by the sum of the probabilities of all 

considered failures.  The hidden failures are presented in Table 6.6.  Note, the details of the 

failures are presented in the form TO-1, where the text before the dash represents the 

description of the failure, and the text after the dash represents the phase of the mission in 

which the component fails.  The text before the dash can be seven values for pumps, i.e. 

supplying the fuel at the rate supplied to the engines during take-off (TO), supplying the fuel 

at half of the rate supplied during take-off (TO/2), supplying the fuel at the rate that fuel is 

transferred between tanks (T), supplying the fuel at half of the rate that fuel is transferred 

between tanks (T/2), supplying the fuel at the rate it is supplied to the engines during the cruise 

phase (C), supplying the fuel at half of the rate it is supplied to the engines during the cruise 

phase (C/2), and supplying no fuel (0).  For the valves, the possible values are the valve open 

(Op), the valve half open (Op/2), and the valve closed (Cl).  For example, TO-1 represents the 

pump failure supplying the fuel at the rate supplied to the engines during take-off, in the first 

phase of the mission. 

 

Table 6.6 Hidden component failure modes 

Number of 

failures 

represented 

Components Failure details 

40 L1P1, R1P1, L2P1, 

R2P1 

C-2, C-3, C-4, C-5, C-6, C-7, C-8, C-9, C-10, C-11. 

44 L1P2, R1P2, L2P2, 

R2P2 

0-1, 0-2, 0-3, 0-4, 0-5, 0-6, 0-7, 0-8, 0-9, 0-10, 0-11. 
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14 LITP, RITP 0-5, 0-6, 0-7, 0-8, 0-9, 0-10, 0-11. 

10 LMTP, RMTP 0-7, 0-8, 0-9, 0-10, 0-11. 

6 LTP, RTP 0-9, 0-10, 0-11. 

2 LOTP, ROTP 0-11. 

44 LMDP, RMDP, 

LIDP, RIDP 

0-1, 0-2, 0-3, 0-4, 0-5, 0-6, 0-7, 0-8, 0-9, 0-10, 0-11. 

88 LEV1, LEV2, 

REV1, REV2 

Op-1, Op-2, Op-3, Op-4, Op-5, Op-6, Op-7, Op-8, Op-9, Op-

10, Op-11, Op/2-1, Op/2-2, Op/2-3, Op/2-4, Op/2-5, O/2-6, 

Op/2-7, Op/2-8, Op/2-9, Op/2-10, Op/2-11. 

44 LCV1, LCV2, 

RCV1, RCV2 

Cl-1, Cl-2, Cl-3, Cl-4, Cl-5, Cl-6, Cl-7, Cl-8, Cl-9, Cl-10, Cl-

11. 

13 CCV Op-11, Op/2-11, Cl-1, Cl-2, Cl-3, Cl-4, Cl-5, Cl-6, Cl-7, Cl-8, 

Cl-9, Cl-10, Cl-11. 

182 LRV, RRV, LODV, 

RODV, LDV, RDV, 

LOEDV, ROEDV, 

LMDV, RMDV, 

LITV1 RITV1, 

LITV2, RITV2 

Op-11, Op/2-11, Cl-1, Cl-2, Cl-3, Cl-4, Cl-5, Cl-6, Cl-7, Cl-8, 

Cl-9, Cl-10, Cl-11. 

22 LOTV, ROTV Op-11, Op/2-11, Cl-3, Cl-4, Cl-5, Cl-6, Cl-7, Cl-8, Cl-9, Cl-

10, Cl-11. 

44 LOETV, ROETV, 

LIEV1, RIEV1 

Op-3, Op-4, Op-5, Op-6, Op-7, Op-8, Op-9, Op-10, Op-11, 

Op/2-11, Cl-11. 

78 LMTV, RMTV, 

LFVP, RFVP, 

LIEV2, RIEV2 

Op-11, Op/2-11, Cl-1, Cl-2, Cl-3, Cl-4, Cl-5, Cl-6, Cl-7, Cl-8, 

Cl-9, Cl-10, Cl-11. 

51 DTV, LTTV, RTTV Op-9, Op-10, Op-11, Op/2-9, Op/2-10, Op/2-11, Cl-1, Cl-2, 

Cl-3, Cl-4, Cl-5, Cl-6, Cl-7, Cl-8, Cl-9, Cl-10, Cl-11. 

5 FTTV Op-11, Op/2-11, Cl-9, Cl-10, Cl-11. 

25 TTDV Op-1, Op-2, Op-3, Op-4, Op-5, Op-6, Op-7, Op-8, Op-9, Op-

10, Op-11, Op/2-1, Op/2-2, Op/2-3, Op/2-4, Op/2-5, O/2-6, 

Op/2-7, Op/2-8, Op/2-9, Op/2-10, Op/2-11, Cl-9, Cl-10, Cl-

11. 

66 LSV, RSV All failures hidden 
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The hidden failures in the system are components failing in failure modes they would be in 

during normal operating conditions, or components in sections of the system that are not 

normally used, or components failing in a later phase of the mission, after which the 

components are no longer used in the system.  An example of the first case is LEV1 failing 

open, an example of the second case is any failure for LSV, and an example of the final case is 

LIEV1 failing open in the third phase of the mission, or later. 

The maximum possible performance metric can be calculated by using all sensors on the 

system at once, i.e. all 96 sensors.  The performance metric is 0.7960: with a detection term of 

0.9219, a diagnostic term of 0.4661, and a criticality term of 1.  Unlike for the systems 

discussed in the previous chapters, the maximum detection term is not equal to 1.  This is 

because of the time-dependent factor in the detection term of the performance metric, i.e. some 

of the component failures are not detected at their time of occurrence.  This is not the case for 

the criticality term, it is equal to 1, i.e. all of the critical component failures are detected at their 

time of occurrence.  As in the previous chapters, the diagnostic term is also less than 1, this is 

because some of the component failures cannot be diagnosed exactly, i.e. more than one 

component failure produces the same symptoms for some of the component failures, and can 

therefore not be distinguished without further investigation. 

 

6.5.2.1. Results 

The performance metric was calculated exhaustively for all individual sensors, all 

combinations of two sensors and all combinations of three sensors.  The sensor selection script 

to calculate the performance metric is similar to the sensor selection script used for the system 

presented in Chapters 4 and 5.  There are two main modifications to the script, the first of which 

is comparing the sensor readings for each time step of the mission to the normal operating 

conditions case, instead of single sensor readings for each mission in the previous chapters.  

The second modification is the calculation of the performance metric uses the time-dependent 

version presented in section 6.3, instead of the time-independent version presented in section 

3.2.  The values of the performance metric and each of the terms for all of the individual sensors 

are presented in Table 6.7, and the top five ranked combinations of two and three sensors are 

presented in Table 6.8.  Note, only one combination of sensors for each ranking is included in 

the table, but the number of combinations of sensors for each ranking is presented in the third 

column of Table 6.8. 
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Table 6.7 Ranking of individual sensors for the Airbus A380-800 fuel system 

Rank Sensor I{s} DE{s} DI{s} CR{s} 

1 LOFTL 0.5147 0.5665 0.1795 0.7981 

 ROFTL 0.5147 0.5665 0.1795 0.7981 

2 S45 0.3718 0.3037 0.4440 0.3677 

 S46 0.3718 0.3037 0.4440 0.3677 

3 LIFTL 0.3582 0.3049 0.3411 0.4286 

 RIFTL 0.3582 0.3049 0.3411 0.4286 

4 LMTL 0.3410 0.0294 0.9639 0.0296 

 RMTL 0.3410 0.0294 0.9639 0.0296 

5 S25 0.3147 0.2856 0.2907 0.3677 

 S35 0.3147 0.2856 0.2907 0.3677 

6 S29 0.3138 0.2856 0.2882 0.3677 

 S39 0.3138 0.2856 0.2882 0.3677 

7 S06 0.2731 0.0359 0.6443 0.1390 

 S16 0.2731 0.0359 0.6443 0.1390 

8 S01 0.2701 0.1336 0.1489 0.5278 

 S11 0.2701 0.1336 0.1489 0.5278 

9 S03 0.2665 0.1394 0.1317 0.5283 

 S13 0.2665 0.1394 0.1317 0.5283 

10 S08 0.2504 0.0417 0.5700 0.1395 

 S18 0.2504 0.0417 0.5700 0.1395 

11 LITL 0.2500 0.0189 0.7128 0.0183 

 RITL 0.2500 0.0189 0.7128 0.0183 

12 S02 0.2497 0.1221 0.1194 0.5074 

 S12 0.2497 0.1221 0.1194 0.5074 

13 S07 0.2444 0.0245 0.5912 0.1174 

 S17 0.2444 0.0245 0.5912 0.1174 

14 LOTL 0.2430 0.0685 0.5992 0.0614 

 ROTL 0.2430 0.0685 0.5992 0.0614 

15 S04 0.2401 0.1163 0.0970 0.5070 

 S14 0.2401 0.1163 0.0970 0.5070 

16 S42 0.2274 0.0931 0.0859 0.5033 
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 S44 0.2274 0.0931 0.0859 0.5033 

17 S09 0.2029 0.0187 0.4730 0.1170 

 S19 0.2029 0.0187 0.4730 0.1170 

18 S24 0.1658 0.1209 0.2790 0.0976 

 S34 0.1658 0.1209 0.2790 0.0976 

19 S41 0.1532 0.0050 0.4221 0.0324 

 S43 0.1532 0.0050 0.4221 0.0324 

20 S30 0.1350 0.0846 0.2279 0.0924 

 S40 0.1350 0.0846 0.2279 0.0924 

21 S27 0.1345 0.0846 0.2317 0.0871 

 S37 0.1345 0.0846 0.2317 0.0871 

22 S28 0.1205 0.0741 0.2103 0.0772 

 S38 0.1205 0.0741 0.2103 0.0772 

23 S70 0.1172 0.0203 0.3313 0.0001 

24 S23 0.1149 0.0693 0.1953 0.0801 

 S33 0.1149 0.0693 0.1953 0.0801 

25 S26 0.1092 0.0696 0.1816 0.0763 

 S36 0.1092 0.0696 0.1816 0.0763 

26 S74 0.0968 0.0293 0.2610 0.0001 

27 S79 0.0956 0.0259 0.2607 0.0001 

 S81 0.0956 0.0259 0.2607 0.0001 

28 S05 0.0930 0.1024 0.1767 0 

 S10 0.0930 0.1024 0.1767 0 

 S15 0.0930 0.1024 0.1767 0 

 S20 0.0930 0.1024 0.1767 0 

 S21 0.0930 0.1024 0.1767 0 

 S22 0.0930 0.1024 0.1767 0 

 S31 0.0930 0.1024 0.1767 0 

29 S48 0.0843 0.0924 0.1111 0.0493 

 S50 0.0843 0.0924 0.1111 0.0493 

 S51 0.0843 0.0924 0.1111 0.0493 

 S52 0.0843 0.0924 0.1111 0.0493 

 S53 0.0843 0.0924 0.1111 0.0493 
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 S54 0.0843 0.0924 0.1111 0.0493 

 S55 0.0843 0.0924 0.1111 0.0493 

 S56 0.0843 0.0924 0.1111 0.0493 

 S57 0.0843 0.0924 0.1111 0.0493 

 S58 0.0843 0.0924 0.1111 0.0493 

 S59 0.0843 0.0924 0.1111 0.0493 

 S60 0.0843 0.0924 0.1111 0.0493 

 S61 0.0843 0.0924 0.1111 0.0493 

 S62 0.0843 0.0924 0.1111 0.0493 

 S63 0.0843 0.0924 0.1111 0.0493 

 S64 0.0843 0.0924 0.1111 0.0493 

 S65 0.0843 0.0924 0.1111 0.0493 

 S66 0.0843 0.0924 0.1111 0.0493 

 S67 0.0843 0.0924 0.1111 0.0493 

 S68 0.0843 0.0924 0.1111 0.0493 

 S69 0.0843 0.0924 0.1111 0.0493 

 S84 0.0843 0.0924 0.1111 0.0493 

 S85 0.0843 0.0924 0.1111 0.0493 

30 S71 0.0785 0.0839 0.0775 0.0741 

31 S78 0.0753 0.0315 0.1943 0.0001 

32 S72 0.0747 0.0405 0.1835 0.0001 

 S73 0.0747 0.0405 0.1835 0.0001 

33 S32 0.0725 0.0665 0.0770 0.0741 

 S47 0.0725 0.0665 0.0770 0.0741 

 S49 0.0725 0.0665 0.0770 0.0741 

34 S75 0.0606 0.0319 0.1496 0.0001 

35 S76 0.0593 0.0311 0.1466 0.0001 

 S77 0.0593 0.0311 0.1466 0.0001 

36 S80 0.0454 0.0112 0.1250 0 

 S82 0.0454 0.0112 0.1250 0 

37 TTL 0.0377 0.0236 0.0893 0.0001 

38 S83 0.0246 0.0112 0.0625 0 

 



 

258 
 

Table 6.8 Performance metric for the top five rankings of combinations of two and three sensors for the Airbus 

A380-800 fuel system 

Rank Sensors Number I{s} DE{s} DI{s} CR{s} 

1 S45 LOFTL 4 0.6204 0.6322 0.3607 0.8682 

2 LOFTL LIFTL 4 0.6143 0.6358 0.2925 0.9148 

3 LOFTL ROFTL 1 0.5837 0.6020 0.2531 0.8961 

4 S29 LOFTL 4 0.5790 0.6164 0.2523 0.8682 

5 S06 LOFTL 6 0.5767 0.5942 0.2364 0.8995 

1 S45 LOFTL RIFTL 4 0.6601 0.6658 0.3997 0.9148 

2 S45 LOFTL ROFTL 2 0.6592 0.6654 0.3995 0.9127 

3 LOFTL LIFTL RIFTL 2 0.6555 0.6725 0.3349 0.9593 

4 LOFTL ROFTL LIFTL 2 0.6538 0.6712 0.3327 0.9573 

5 S06 LOFTL RIFTL 4 0.6480 0.6635 0.3215 0.9589 

 

The calculation of the performance metric for all combinations of three sensors took several 

weeks to complete, and as there are more than 20 times as many combinations of four sensors 

as there are three sensors, three sensors was deemed to be a sensible limit to the number of 

sensors to calculate the performance metric exhaustively.  Therefore, the two-level genetic 

algorithm was used to calculate the sensor performance metric for all combinations of four and 

more sensors.  In order to enable a comparison between the best result obtained by the two-

level genetic algorithm and exhaustive calculation of the performance metric, the two-level 

genetic algorithm was also applied to combinations of three sensors.  For the two-level genetic 

algorithm, 50 populations of 100 randomly generated members were considered for the first 

level.  At the end of the 100th generation for each of the 50 populations, the best member of 

each of the populations was used to make up the population for the second level of the genetic 

algorithm.  In the genetic algorithm, the selection rate was 0.2, the elitist rate was 0.1, and the 

mutation rate was 0.01, i.e. the best 20% of the population was exempt from crossover, the best 

10% of the population were exempt from mutation, and 1% of the bits were flipped.  Note, 

these rates were chosen so that the best solutions are preserved in each generation, and so that 

the populations do not converge too quickly, potentially resulting in a local maximum rather 

than a global maximum.  The crossover in the algorithm was a single crossover point at a 

random location in the member.  As stated in section 6.4, the fitness function for the first level 

of the genetic algorithm is the average of the detection and criticality terms, and the fitness 
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function for the second level of the genetic algorithm is the performance metric, i.e. average of 

the terms. 

Table 6.9 presents the best solutions for each number of sensors, (No. S.), for the first level 

of the genetic algorithm.  The earliest generation, (Gen.), in which the best solution is achieved 

in any of the populations, i.e. out of 100, the number of populations in which this solution is 

obtained, (No. Pop), and the number of different combinations of sensors with this fitness 

value, (No. Comb.), both of which are out of 50. 

 

Table 6.9 Best combinations of sensors at the end of the first level of the genetic algorithm using the simplified 

fitness function 

No. 

S. 

Sensors Fit DE{s} CR{s} Gen. No. 

Pop. 

No. 

Comb. 

3 S21 LOFTL RIFTL 0.8265 0.7382 0.9148 2 50 25 

4 S31 ROFTL LIFTL RIFTL 0.8671 0.7749 0.9593 10 35 13 

5 S21 LOFTL ROFTL LIFTL 

RIFTL 

0.9052 0.8104 1.0000 50 8 5 

6 S10 S51 LOFTL ROFTL LIFTL 

RIFTL 

0.9305 0.8609 1.0000 23 10 9 

7 S03 S15 S18 S45 S46 S65 

ROFTL LIFTL 

0.9427 0.8854 1.0000 9 39 39 

8 S08 S13 S21 S34 S60 S76 

LOFTL RIFTL 

0.9525 0.9049 1.0000 23 22 22 

9 S15 S34 S58 S75 S81 LOFTL 

ROFTL LIFTL RIFTL 

0.9610 0.9219 1.0000 37 23 23 

10 S03 S08 S10 S24 S57 S65 S72 

S76 ROFTL RIFTL 

0.9610 0.9219 1.0000 13 46 46 

12 S03 S13 S18 S22 S35 S38 S46 

S72 S76 S85 ROFTL LIFTL 

0.9610 0.9219 1.0000 8 50 50 

 

The value of the fitness function for the combinations of sensors presented in Table 6.9 

increases for all combinations of sensors, apart from for the combinations of 10 and 12 sensors, 

which have the same values as the combination of 9 sensors.  If each of the individual terms in 

the table are studied, it can be observed that the detection term follows the same pattern as the 

fitness function, i.e. the value increases for all combinations of sensors up until combinations 
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of 9 sensors, at which point, the detection term is the same value.  However, the criticality term 

reaches its maximum value much earlier, with a combination of 5 achieving a criticality term 

of 1.  Therefore, with regards to the criticality term there is no benefit in including more than 

5 sensors. 

When the outputs from the first level of the genetic algorithm are studied in more detail, it 

is observed that seven of the combinations of 10 sensors that achieve the maximum fitness 

function, are actually combinations of 9 sensors.  This, along with the combinations of 9 and 

10 sensors having the same fitness values, suggests that there is no benefit to considering more 

than 9 sensors on the system.  However, when the diagnostic term is calculated, the best 

combination of 9 sensors observed for the population of sensors for the start of the second level 

of the genetic algorithm has a diagnostic term approximately 0.03 lower than the best 

combination of 10 sensors.  Note, a similar fact is observed for the combinations of 12 sensors, 

i.e. one combination of sensors is actually a combination of 10 sensors, and six of the 

combinations of sensors are actually combinations of 11 sensors.  Note, the combination of 

sensors for each number of sensors that achieved the best performance metric at the end of the 

first level of the genetic algorithm is presented in Table 6.10. 

 

Table 6.10 Best combinations of sensors at the end of the first level of the genetic algorithm using the 

performance metric as the fitness function 

No. S. Sensors I{s} DE{s} DI{s} CR{s} 

3 S21 LOFTL RIFTL 0.6438 0.7382 0.2785 0.9148 

4 S31 ROFTL LIFTL RIFTL 0.6835 0.7749 0.3164 0.9593 

5 S21 LOFTL ROFTL LIFTL RIFTL 0.7145 0.8104 0.3332 1.0000 

6 S10 S51 LOFTL ROFTL LIFTL RIFTL 0.7296 0.8609 0.3279 1.0000 

7 S06 S11 S21 S45 S59 LOFTL RIFTL 0.7588 0.8737 0.4032 0.9994 

8 S06 S18 S22 S45 S52 S76 LOFTL ROFTL 0.7658 0.8991 0.3985 0.9997 

9 S18 S21 S46 S62 S76 S81 LOFTL ROFTL 

LIFTL 

0.7725 0.9219 0.3956 1.0000 

10 S08 S18 S31 S45 S55 S70 S77 LOFTL 

ROFTL RITL 

0.7735 0.9219 0.3987 1.0000 

12 S03 S13 S18 S22 S35 S38 S46 S72 S76 S85 

ROFTL LIFTL 

0.7784 0.9219 0.4134 1.0000 
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In Table 6.11, the best combinations of each number of sensors at the end of the genetic 

algorithm are presented. 

 

Table 6.11 Best combinations of sensors at the end of the second level of the genetic algorithm using the 

performance metric as the fitness function 

No. S. Sensors I{s} DE{s} DI{s} CR{s} Generation 

3 S46 LOFTL RIFTL 0.6601 0.6658 0.3997 0.9148 10 

4 LOFTL ROFTL LIFTL RIFTL 0.6871 0.7080 0.3532 1.0000 33 

5 S21 LOFTL ROFTL LIFTL 

RIFTL 

0.7145 0.8104 0.3332 1.0000 0 

6 S03 S06 S18 S20 S45 ROFTL 0.7387 0.8290 0.3873 0.9997 35 

7 S06 S11 S21 S45 S59 LOFTL 

RIFTL 

0.7588 0.8737 0.4032 0.9994 0 

8 S06 S18 S22 S45 S52 S76 

LOFTL ROFTL 

0.7658 0.8991 0.3985 0.9997 0 

9 S18 S21 S46 S62 S76 S81 

LOFTL ROFTL LIFTL 

0.7725 0.9219 0.3956 1.0000 0 

10 S07 S13 S22 S45 S53 S74 S77 

LOFTL LIFTL RIFTL 

0.7750 0.9219 0.4031 1.0000 20 

12 S01 S06 S07 S13 S20 S45 S57 

S74 S77 LOFTL ROFTL RIFTL 

0.7784 0.9219 0.4134 1.0000 0 

 

 

Note, in the table, generation 0 refers to the initial population at the start of the second level 

of the genetic algorithm generated by the first level of the genetic algorithm, i.e. no 

improvement in the performance metric is observed throughout the second level of the genetic 

algorithm.  This is observed for the combination of 5, 7, 8, 9 and 12 sensors in Table 6.11.  

There are a couple of potential reasons for this, the first is that the actual best solution is 

achieved during the first level of the genetic algorithm.  This is unlikely to be the case as the 

diagnostic term is not considered in the first level of the fitness function.  However, the best 

combination of sensors as determined by using the performance metric as the fitness function, 

is not the same combination of sensors obtained at the end of the first level of the genetic 

algorithm, using the simplified fitness function.  Alternatively, the genetic operators may not 

be the best values, i.e. not allowing diverse enough combinations of sensors to be considered, 

and therefore, not resulting in the actual best combination of sensors being obtained.  The effect 
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of adjusting the genetic operators on the sensor combinations obtained by the GA could be 

studied in future work.  Preliminary investigations into this are conducted in section 6.5.2.2. 

The combinations of 9 and 10 sensors can both detect all of the failures, and the percentage 

difference to the maximum possible performance metric is 3.04% and 2.71%, respectively.  As 

the performance metric for the combination of 9 sensors can be increased by more than 3%, it 

is considered to be worthwhile including the additional sensor on the system, i.e. using 10 

sensors.  However, it is not considered worthwhile to include an additional two sensors to 

achieve the small increase in performance metric for the combination of 12 sensors.  Therefore, 

the combination of sensors used for fault diagnostics is the combination of 10 sensors presented 

in Table 6.11, i.e. (S07 S13 S22 S45 S53 S74 S77 LOFTL LIFTL RIFTL).  The percentage 

difference between each number of sensors is presented in Table 6.12, and this demonstrates 

the diminishing returns of including additional sensors.  The percentage difference to the 

maximum performance metric is also presented in the table. 

 

Table 6.12 Difference in performance metric for each number of sensors 

No. S. Sensors I{s} % diff. % diff. 

to max 

1 LOFTL 0.5147 0 54.65 

2 S45 LOFTL 0.6204 20.54 28.30 

3 S46 LOFTL RIFTL 0.6601 6.40 20.59 

4 LOFTL ROFTL LIFTL RIFTL 0.6871 4.09 15.85 

5 S21 LOFTL ROFTL LIFTL RIFTL 0.7145 3.99 11.41 

6 S03 S06 S18 S20 S45 ROFTL 0.7387 3.39 7.76 

7 S06 S11 S21 S45 S59 LOFTL RIFTL 0.7588 2.72 4.90 

8 S06 S18 S22 S45 S52 S76 LOFTL ROFTL 0.7658 0.92 3.94 

9 S18 S21 S46 S62 S76 S81 LOFTL ROFTL LIFTL 0.7725 0.87 3.04 

10 S07 S13 S22 S45 S53 S74 S77 LOFTL LIFTL 

RIFTL 

0.7750 0.32 2.71 

12 S01 S06 S07 S13 S20 S45 S57 S74 S77 LOFTL 

ROFTL RIFTL 

0.7784 0.44 2.26 

96 All 0.7960 2.26 0 
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As the performance metric was calculated exhaustively for all combinations of 3 sensors, 

the combination of sensors achieved at each stage of the genetic algorithm can be compared to 

the best possible combination of three sensors.  The performance metric for the combination 

of sensors achieved by the first level of the genetic algorithm is equal to the 20th highest ranked 

combination of three sensors, with 94 combinations of three sensors with a higher performance 

metric than this.  However, at the end of the second level of the genetic algorithm the 

combination of three sensors obtained is one of the four joint best combination of three sensors.  

Whilst the best combination of sensors was obtained at the end of the second level of the genetic 

algorithm of this application, there is no guarantee that the best combination will be achieved 

in every application of the genetic algorithm, as the combination of sensors obtained is 

dependent on the crossover and mutation rates applied in the algorithm.   

The genetic algorithm for combinations of three sensors was completed in approximately 

a seventh of the time taken to calculate the performance metric for all 142880 combinations of 

three sensors exhaustively.  As the best combination of 3 sensors was obtained in the tenth 

generation of the second level of the genetic algorithm, the best combinations of three sensors 

was obtained in less than a tenth of the time (i.e. a couple of days instead of several weeks) to 

calculate the performance metric for all combinations of three sensors exhaustively.  It is also 

worth noting that the reduction in time taken for combinations of three sensors is the smallest 

reduction that will be observed.  This is because the exhaustive calculation of the performance 

metric takes exponentially longer as the number of sensors increases, but the time taken to 

apply the two-level genetic algorithm increases approximately linearly for each additional 

sensor, with the algorithm being applied to the combination of 10 sensors only taking 

approximately three times longer than the algorithm being applied to combinations of three 

sensors. 

 

6.5.2.2. Discussion 

There are a couple of things that are worth considering for future applications of the 

methodology, the first of which is changing the mutation rate in the two-level genetic algorithm 

and seeing how it affects the output of the algorithm.  As the best members of each generation 

are preserved due to the elitism included in the algorithm, the best solution will never be lost, 

and adjusting the mutation rate may increase the chances of achieving the maximum 

performance metric for each number of sensors.  A similar effect may be achieved by 

introducing multi-point crossover.  Applying these modifications may remove the case 
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observed for 5, 7, 8, 9 and 12 sensors, where no increase in the fitness function is achieved in 

the second level of the genetic algorithm.  Preliminary investigations, (20 generations in the 

second level for 6 sensors), into increasing the mutation rate were completed.  However, this 

led to an increased number of combinations of sensors breaking the constraint, and the resulting 

fitness value penalised.  Therefore, increasing the mutation rate did not lead to an increased 

diversity of sensor combinations as many of the combinations could not be included.  This 

could be investigated in future work. 

As there is a constraint placed on the number of sensors for each application of the 

algorithm, some of the members of the population result in a number of sensors greater than 

that allowed by the constraint, and result in the fitness function value having a penalty factor 

applied, resulting in the combination of sensors being ignored.  Therefore, that combination of 

sensors is unlikely to be selected as a member for crossover in the next generation.  However, 

instead of making the fitness of the sensor combinations small, individual sensors could 

randomly be removed from the combination until the constraint is satisfied.  This would result 

in more combinations of sensors being considered, potentially resulting in a better combination 

of sensors being determined.  This may also mean that increasing the mutation rate may not be 

necessary, as currently, for a combination of 10 sensors there are 86 sensors not selected, and 

10 sensors selected, so the probability of a new sensor being included is significantly higher 

than a sensor being removed by mutation.  This would also increase the diversity of the 

population, potentially resulting in a better selection of sensors.  As with modifying the 

mutation rate, preliminary investigations were completed on changing the application of the 

constraint.  This resulted in the GA running faster than when the penalty function was included 

as the combinations of sensors that were breaking the constraint consisted of more sensors, and 

as the time taken to calculate the performance metric scales with the number of sensors, the 

constraint breaking combinations of sensors take longer to complete.  Therefore, if there are no 

constraint breaking combinations of sensors, then the GA will run faster.  There was no 

improvement observed in the selection of sensors, but only a limited number of generations 

(20 in the second level) were completed for one number of sensors (6 sensors), so there has not 

been enough investigation to conclude whether it would improve the selection of sensors or 

not.  This could also be investigated in future work. 

Another potential way that the sensor selection approach could be improved is to do a 

normal, single level genetic algorithm, i.e. using the performance metric as the fitness function 

for one population of 100 members for 100 generations.  The two-level approach is proposed 

in this thesis in order to reduce the time taken to apply the genetic algorithm with the two-level 
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approach taking approximately 25% of the time of the single-level genetic algorithm, but it 

may be affecting the selection of the sensors by not considering the effect of the diagnostic 

term until later in the algorithm.  For example, the combination of three sensors in Table 6.10, 

the same combination as in Table 6.9, has a diagnostic term of 0.2785, but the combination of 

three sensors in Table 6.11 has a diagnostic term of 0.3997, significantly higher.  However, 

only considering the detection and criticality terms in the first level of the genetic algorithm 

has less effect when more sensors are included on the system, as there are more different 

combinations of sensors that have high detection and criticality terms, and therefore, more 

variation in the diagnostic term observed.  In contrast, all 50 combinations of three sensors 

from the end of the first level of the genetic algorithm have the same diagnostic terms.  

Therefore, using the two-level genetic algorithm may not have any negative effect on the 

selection of sensors. 

Like in previous chapters, the combinations of sensors that are selected are distributed 

around the system, with flow sensors from different sections of the system, and level sensors 

in three of the four feed tanks.  The only section of the system with two sensors in is the tail of 

the aircraft.  Therefore, if the sensor combination was to be adapted, one of the sensors in the 

tail of the aircraft may not be included, and a sensor in a different location may be included, 

perhaps a level sensor in the fourth engine feed tank.  However, if this was to be completed, no 

improvement may be found, and a large number of combinations may need to be tried in order 

to achieve a better combination of sensors, if it is possible at all. 

In the next section, the effect of changing the component failure rates on the selection of 

sensors is studied. 

 

6.5.2.3. The effect of changing the component failure rates on the sensor selection 

In the same manner as in Section 3.4.1.3, the effect of changing the probability of the 

component failures on the selection of sensors is studied, so that the sensitivity of the sensor 

selection process on the component failure probabilities can be determined.  In order to do this, 

different failure rates of each of the components are chosen, and the performance metric is 

calculated.  In this subsection, the pumps are assumed to have a failure rate of 0.000005, and 

the valves are assumed to have a failure rate of 0.000001, i.e. the opposite of the failure rates 

presented in section 6.3.  Note, these probabilities are only used in this subsection of the thesis, 

with the probability of component failures given in section 6.3 used in the rest of the chapter. 
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As the same component failures (just with different occurrence probabilities) are 

considered, the same number of component failures are detected, and cause the system to be 

critical.  However, the value of Pmd is different, with a value of 0.006934, which corresponds 

to approximately 84% of the failures that can be detected.  In addition, the maximum 

performance metric is different, with a value of 0.8731: with a detection term of 0.9706, a 

diagnostic term of 0.6488, and a criticality term of 1.  These values, including Pmd are higher 

because of the increase in the probability of pump failure in comparison to valve failure.  As 

pumps supply fuel to the system, a failure can be detected by more of the sensors, than to know 

exactly where the fuel is moving to, as this often requires a sensor on the path that fuel is 

flowing in. 

As the work in this section is not used elsewhere, it is not necessary to calculate the 

performance metric for all numbers of sensors as before.  For comparison, individual sensor 

performance metrics are calculated, and presented in Table 6.13. 

 

 
Table 6.13 Ranking of individual sensors with the different component failure rates 

Rank Sensor I{s} DE{s} DI{s} CR{s} 

1 LOFTL 0.4023 0.3970 0.2884 0.5215 

 ROFTL 0.4023 0.3970 0.2884 0.5215 

2 LIFTL 0.3851 0.3618 0.3159 0.4775 

 RIFTL 0.3851 0.3618 0.3159 0.4775 

3 S45 0.3677 0.3311 0.4536 0.3184 

 S46 0.3677 0.3311 0.4536 0.3184 

4 S06 0.3611 0.0694 0.8029 0.2111 

 S16 0.3611 0.0694 0.8029 0.2111 

5 S07 0.3582 0.0649 0.8068 0.2029 

 S17 0.3582 0.0649 0.8068 0.2029 

6 LMTL 0.3345 0.0410 0.9143 0.0482 

 RMTL 0.3345 0.0410 0.9143 0.0482 

7 S01 0.3171 0.0826 0.6108 0.2581 

 S11 0.3171 0.0826 0.6108 0.2581 

8 S02 0.3067 0.0781 0.5920 0.2500 

 S12 0.3067 0.0781 0.5920 0.2500 



 

267 
 

9 S08 0.3023 0.0892 0.6052 0.2126 

 S18 0.3023 0.0892 0.6052 0.2126 

10 S25 0.3017 0.3268 0.2600 0.3184 

 S35 0.3017 0.3268 0.2600 0.3184 

11 S29 0.3012 0.3268 0.2584 0.3184 

 S39 0.3012 0.3268 0.2584 0.3184 

12 LITL 0.2904 0.0528 0.7678 0.0506 

 RITL 0.2904 0.0528 0.7678 0.0506 

13 LOTL 0.2726 0.0830 0.6154 0.1194 

 ROTL 0.2726 0.0830 0.6154 0.1194 

14 S03 0.2720 0.1024 0.4539 0.2595 

 S13 0.2720 0.1024 0.4539 0.2595 

15 S09 0.2628 0.0451 0.5418 0.2015 

 S19 0.2628 0.0451 0.5418 0.2015 

16 S41 0.2491 0.0159 0.6646 0.0667 

 S43 0.2491 0.0159 0.6646 0.0667 

17 S04 0.2380 0.0583 0.4071 0.2486 

 S14 0.2380 0.0583 0.4071 0.2486 

18 S28 0.2137 0.2215 0.2177 0.2020 

 S38 0.2137 0.2215 0.2177 0.2020 

19 S23 0.2071 0.2168 0.1907 0.2138 

 S33 0.2071 0.2168 0.1907 0.2138 

20 S26 0.2050 0.2179 0.1921 0.2049 

 S36 0.2050 0.2179 0.1921 0.2049 

21 S42 0.1986 0.0450 0.3135 0.2372 

 S44 0.1986 0.0450 0.3135 0.2372 

22 S24 0.1838 0.2184 0.1321 0.2010 

 S34 0.1838 0.2184 0.1321 0.2010 

23 S71 0.1624 0.2300 0.0591 0.1981 

24 S30 0.1546 0.2098 0.0535 0.2004 

 S40 0.1546 0.2098 0.0535 0.2004 

25 S27 0.1544 0.2098 0.0536 0.1997 

 S37 0.1544 0.2098 0.0536 0.1997 
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26 S32 0.1495 0.2074 0.0430 0.1981 

 S47 0.1495 0.2074 0.0430 0.1981 

 S49 0.1495 0.2074 0.0430 0.1981 

27 S76 0.0857 0.0875 0.1696 0.00001 

 S77 0.0857 0.0875 0.1696 0.00001 

28 S75 0.0842 0.0905 0.1621 0.00001 

29 S48 0.0761 0.1779 0.0443 0.0060 

 S50 0.0761 0.1779 0.0443 0.0060 

 S51 0.0761 0.1779 0.0443 0.0060 

 S52 0.0761 0.1779 0.0443 0.0060 

 S53 0.0761 0.1779 0.0443 0.0060 

 S54 0.0761 0.1779 0.0443 0.0060 

 S55 0.0761 0.1779 0.0443 0.0060 

 S56 0.0761 0.1779 0.0443 0.0060 

 S57 0.0761 0.1779 0.0443 0.0060 

 S58 0.0761 0.1779 0.0443 0.0060 

 S59 0.0761 0.1779 0.0443 0.0060 

 S60 0.0761 0.1779 0.0443 0.0060 

 S61 0.0761 0.1779 0.0443 0.0060 

 S62 0.0761 0.1779 0.0443 0.0060 

 S63 0.0761 0.1779 0.0443 0.0060 

 S64 0.0761 0.1779 0.0443 0.0060 

 S65 0.0761 0.1779 0.0443 0.0060 

 S66 0.0761 0.1779 0.0443 0.0060 

 S67 0.0761 0.1779 0.0443 0.0060 

 S68 0.0761 0.1779 0.0443 0.0060 

 S69 0.0761 0.1779 0.0443 0.0060 

 S84 0.0761 0.1779 0.0443 0.0060 

 S85 0.0761 0.1779 0.0443 0.0060 

30 S05 0.0635 0.0139 0.1767 0 

 S10 0.0635 0.0139 0.1767 0 

 S15 0.0635 0.0139 0.1767 0 

 S20 0.0635 0.0139 0.1767 0 
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 S21 0.0635 0.0139 0.1767 0 

 S22 0.0635 0.0139 0.1767 0 

 S31 0.0635 0.0139 0.1767 0 

31 S74 0.0552 0.0260 0.1395 0.00001 

32 S72 0.0530 0.0276 0.1314 0.00001 

 S73 0.0530 0.0276 0.1314 0.00001 

33 S70 0.0525 0.0045 0.1530 0.000007 

34 S79 0.0515 0.0053 0.1491 0.000007 

 S81 0.0515 0.0053 0.1491 0.000007 

35 TTL 0.0476 0.0253 0.1174 0.00001 

36 S78 0.0456 0.0060 0.1307 0.000007 

37 S80 0.0422 0.0015 0.1250 0 

 S82 0.0422 0.0015 0.1250 0 

38 S83 0.0213 0.0015 0.0625 0 

 

 

Whilst there is a change in the ranking due to the different performance metric observed by 

comparing Tables 6.7 and 6.13, the ranking is broadly similar, with an average absolute change 

in ranking of approximately 3.6.  Generally, the higher ranked sensors are ranked higher in 

both cases, and the lower ranked sensors are ranked towards the bottom in both cases.  There 

are some exceptions, with the biggest change being for sensor 70, which is ranked 23rd in Table 

6.7, but ranked 33rd in Table 6.13, a difference of 10.  However, the highest three ranked 

sensors, are the highest three ranked sensors in both of the tables, i.e. no change in rank, but 

the second and third ranked sensors are swapped.  This suggests that the better selection of 

sensors is not affected too much by having different failure probabilities.  However, without 

trying a large number of different component failure probabilities, it is not possible to say 

whether this would be true for a range of probabilities of component failures.  Instead of 

calculating the performance metric for all numbers of sensors with the new probabilities, it was 

calculated using the two-level genetic algorithm for 10 sensors, as this is the number of sensors 

selected for use in the diagnostics process.  The best combination of 10 sensors was achieved 

in the 34th generation, and the combination is (S01 S11 S18 S46 S63 S70 S75 LOFTL ROFTL 

LIFTL), which has a performance metric of 0.8281, consisting of a detection term of 0.9567, a 

diagnostic term of 0.5277, and a criticality term of 1.  This combination of sensors is similar to 

the combination of sensors obtained using the previous failure rates.  The sensors are 
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distributed around the system as before, with sensors in different sections.  However, the sensor 

combinations are different, but the location of the sensors on the system is similar, including 

three feed tank level sensors. 

In the next section of this chapter, the combination of the 10 selected sensors using the 

previous component failure rates, (S07 S13 S22 S45 S53 S74 S77 LOFTL LIFTL RIFTL), is 

used to diagnose component failures in the system.  

 

6.5.3. Fault diagnostics 

The selected sensors are used to detect faults and diagnose failures.  To do this, each of the 

sensor readings corresponding to the component failures used for the sensor selection process 

are introduced to the model, and diagnosis of the failures is attempted.  To be able to diagnose 

the component failures, the C++ script used in Chapter 5 was modified to enable the code to 

compare the sensor readings for all time steps to the reference sensor readings, and not just 

individual sets of sensor readings, as in the Chapter 5.  Another modification enables the code 

to output the diagnostic results when they change as time progresses through the mission.  For 

this to be applied, all the possible failures are stored at each time step and at the following time 

steps, only the possible failures from the previous time step were checked, and not all failures 

in other possible time steps are considered. 

 

6.5.3.1. Fault diagnostic results 

The components are grouped into six groups; engine feed (EF) pumps, fuel transfer (FT) 

pumps, dump (D) pumps, engine feed (EF) valves, cross-feed (CF) valves, and dump and refuel 

(DR) valves.  Table 6.14 presents a summary of the results of the diagnostics process, where 

some of the component failures are grouped together for brevity with the full diagnostic results 

presented in Appendix I.  The probabilities given in Table 6.14 and Tables I.1 – I.6 are the 

probabilities that each component is in the failure mode.  This probability is equal to the 

probability of each failure occurrence divided by the probability of all component failures that 

produce the observed symptoms, respectively, i.e. Pmli/Psri.  For example, if the probability in 

the tables is 50%, then there is a 50% likelihood that the component has failed.  In the tables, 

“a% - b%” refers to a confidence of diagnosis of “a%” initially, but at a later time in the mission, 

a confidence of diagnosis of “b%” is achieved, where “b” > “a”.  Some of the component 

failures are not detected as soon as they occur, therefore, “a%d” refers to a confidence of 

diagnosis of “a%” but the failure is not detected at the time of occurrence, i.e. there is a delayed 
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detection, td ≠ tf.  Note, details of the length of the delay in detection are not presented due to 

the number of different variations observed.  This is also the case when the confidence of 

diagnosis changes from “a% - b%”, as discussed before.  Also note, “0%” diagnosis confidence 

is used to represent hidden failures.   

 

Table 6.14 Summary of diagnostic results of component failures 

Probability EF 

pumps 

FT 

pumps 

D  

pumps 

EF 

valves 

DR 

valves 

CF 

valves 

100% 262 45 - 22 52 - 

50% 240 15 - - 16 - 

a% - 100% 4 197 - - 36 - 

a% - 50% - 40 - - 2 10 

a% - b% - 100% - 124 - - 3 - 

a% - b% - 50% - 20 - - - - 

a% - b% - c% - 100% - 21 - - 1 - 

50% < a% < 100% - - - 22 - - 

0% < a% < 50% - 72 264 - 48 48 

a% - <50% - - - - 116 40 

100%d 4 6 - - 55 - 

50%d - - - - 14 10 

a% - < 100%d - 2 - - 33 - 

0% < a% < 50%d - 42 - - 216 - 

a% - < 50%d - - - - 24 - 

16.66% 22 - - - - - 

0% 84 32 44 88 473 57 

TOTAL 616 616 308 132 1089 165 

 

6.5.3.2. Discussion 

The fault diagnostic process successfully diagnoses 2126 of the 2148 component failures 

that can be detected.  Of these failures, 889 failures are diagnosed correctly with 100% 

confidence before the end of the mission.  The other failures that are detected and diagnosed 

successfully can be grouped into three cases.  The first case is when the observed sensor 

readings can be produced by a number of different component failures occurring at the same 
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time in the mission.  The component failures in this case each have the same probability of 

occurrence, and therefore, it is not possible to determine exactly which component failure has 

occurred without potentially having to inspect multiple components.  The second case is when 

the observed sensor readings can be produced by a number of different component failures, 

however, the failures are either the same component failing in different phases of the mission, 

or the same component failing in a number of modes.  This will mean that the actual failed 

component will be determined, but the failure mode will not be determined until the component 

is physically inspected.  Also, if the component failure is known, but the time of the failure is 

not known, then this should not be a problem as the determination of the failure is more 

important than the determination of the exact time of failure occurrence, the failure is still 

detected at the same time.  The final case is where the observed symptoms can be produced by 

a number of different component failures, some of which are more likely to occur than others.  

In this case, if the more likely failure has occurred, then the failure is diagnosed correctly.  For 

example, LEV1 failing closed and L1P1 failing off both produce the same symptoms for the 

selected combination of sensors.  However, both of the failures have different probabilities of 

occurrence, resulting in a probability of LEV1 being failed closed of 83.34%, and a probability 

of L1P1 being failed off of 16.66%.  Therefore, if these symptoms are observed, if LEV1 has 

failed closed, it will be diagnosed correctly, but if L1P1 has failed off, the failure will not be 

diagnosed correctly initially.  However, when the valve has been inspected and found to be 

working, the correct component failure will be diagnosed.  Note, there are other groups of 

component failures that are initially diagnosed incorrectly, but are diagnosed correctly at a later 

time in the mission.  For example, in the case where LITP fails supplying the fuel at the rate 

supplied during the cruise phase occurring in the second phase of the mission, the probability 

of it being diagnosed correctly is initially 12.49%, and the probability of another component 

failure (LMTV failing open) is higher (62.56%).  However, at a later time in the mission, the 

probability of LITP failing supplying the rate of fuel supplied during the cruise phase, is 100%, 

and is therefore diagnosed correctly. 

 

6.6. Summary 

In this chapter, the methodology is applied to the Airbus A380-800 fuel system.  The model 

of the system is constructed using a C++ script.  The script is able to calculate the sensor 

readings of all 96 sensors at all 720 time steps of all 2926 missions in less than a minute.  This 

is a negligible time in comparison to the rest of the application of the methodology.  This was 
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not the case for Bayesian Belief Network approach used in Chapter 4 (and in section 5.4), 

despite the system in this chapter being significantly larger.  Therefore, the modelling approach 

used in this chapter and proposed in Chapter 5, is a more suitable modelling technique for large 

systems.  In this chapter, consistency checks were introduced into the C++ script in order to 

ensure that there were no errors in the script, which may cause it to output combinations of 

sensor readings that are not possible.  This was a useful addition in order to ensure that the 

model is accurate, without having to manually verify the sensor readings. 

In addition to distinguishing between sensors that can detect and diagnose a large 

percentage of component failures, the time-dependent sensor performance metric considers the 

time taken for the sensor to detect a failure after its occurrence, how the ease of diagnosis 

improves as time passes after the detection of the failure, and the time between component 

failure occurrence and system failure, (if system failure occurs).  The two-level genetic 

algorithm efficiently determines good combinations of sensors for each number of sensors in a 

significantly shorter time than determining them exhaustively.  As it is not feasible to 

exhaustively calculate the performance metric for large numbers of sensors, it is not possible 

to determine definitively whether the best combination of sensors has been obtained.  In section 

6.5.2.2 there are a number of potential improvements to the two-level genetic algorithm 

suggested.  These include modifying the mutation rate and the number of crossover points, in 

order to consider a more diverse population.  Additionally, the application of constraints in the 

script can be changed such that the number of sensors is reduced to within the constraint and, 

therefore, the fitness function will not need a penalty factor to be included. 

The fault diagnostic process correctly diagnoses 2126 of the 2148 component failures that 

can be detected using the selected combination of 10 sensors.  The component failures that 

cannot be diagnosed correctly are cases where there are two different component failures that 

produce the same set of symptoms for the combination of selected sensors.  In these 22 cases, 

the other component failure that produces the same symptoms is more likely to have occurred 

than the component that has actually failed, resulting in incorrect diagnosis.  All of the other 

component failures can be diagnosed correctly, however some of the component failures are 

not diagnosed correctly until a later time in the mission.  For some of the other component 

failures, the failed component is known, but the time of failure occurrence is not known, and 

some of the other component failures are where there are multiple different components and 

component states that are equally likely to have occurred that produce the same symptoms.  In 

the last case, the failed component and its failure mode can be determined, but a number of 

components may need to be inspected beforehand. 
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 Conclusions and future work 
 

 

7.1. Introduction 

In this thesis, a performance metric based sensor selection method has been developed 

which uses models of the system to automatically calculate the performance metric for all 

combinations of sensors in order to determine the most suitable combination.  The aim of the 

research presented in this thesis is to propose a method for selecting sensors which are able to 

detect and diagnose as many different component failures as possible, whilst only using a 

minimal number of sensors on the system.  The proposed sensor selection approach enables 

the most suitable combination of sensors to be chosen by considering the probability of the 

failures that the sensors detect, the ease of diagnosis of the failures, and the effect that the 

component failures have on the probability of system failure.  In addition, time dependence 

was included into the performance metric in order to consider the occurrence time of the 

component failures and how this affects the system.  This chapter summarises the outcomes of 

this research, and highlights work that could be carried out in the future. 

 

7.2. Summary 

The thesis began by presenting a review of the literature relevant to the work presented in 

the thesis.  A number of different sensor selection methods are presented, with a number of 

different performance metric methodologies discussed, highlighting the individual terms of 

each of the metrics.  This led to the proposal of a novel performance metric, consisting of three 

terms, in Chapter 3.  The literature review continues by outlining a number of fault diagnostic 

techniques, focussing on Bayesian Belief Networks.  This method was used to model the 

system in Chapters 3 and 4 and used to diagnose component failures on the system.  The final 

section of the literature review presents an overview of optimisation techniques, primarily 

genetic algorithms, for use on larger systems where it is impossible to exhaustively calculate 

the performance metric for all combinations of sensors, as demonstrated in Chapter 6. 

Chapter 3 of the thesis introduced the methodology for sensor selection and fault 

diagnostics.  Each of the three terms of the newly proposed performance metric were developed 

individually, with the proposed performance metric being an average of the three terms.  

However, a discussion on the suitability of using the average of three terms was presented, 
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suggesting that the relative importance of each of the terms could be tuned for each application 

specifically.  This is a novel factor which is not presented in any of the reference literature 

discussed in Chapter 2.  The presented fault diagnostic approach entailed developing a BBN 

model of the system, and introducing observed sensor readings to the model as evidence.  The 

BBN automatically updates the probability of each of the components states, enabling the 

determination of which components are most likely to have failed.  In order to demonstrate the 

proposed methodology an example system is presented and the methodology is applied to it.  

The flow of fuel throughout the system is modelled well, and the best combination of sensors 

is determined, and is used to diagnose component failures.  Conclusions from this chapter state 

that it is good to select the sensors based on the proposed performance metric and the individual 

terms of the performance metric in order to ensure the sensor combination is suitable for all 

factors.  In addition, it was suggested that the model should be constructed before applying the 

sensor selection process, as it can be used to aid the calculation of the performance metric. 

Chapter 4 of the thesis extended the methodology presented in Chapter 3 by applying it to 

a simplified version of the aircraft fuel system, introduced by Moir & Seabridge (2011).  

Automation is introduced into the methodology by constructing the BBN at the start of the 

methodology rather than after the selection of the sensors, as in Chapter 3.  This enables the 

sensor readings to be determined automatically and the performance metric of each of the 

sensors to be calculated using the BBN and a C++ script.  The chosen combinations of sensors 

are then used to diagnose component failures in the system, and the process is successfully 

completed with all of the component failures diagnosed successfully with no more than two 

components that had not failed being inspected.  Conclusions from this chapter include that 

whilst the BBN methodology models the system well, the size of the network can become 

excessively large for larger systems.  In addition, in order to prevent the size of the network 

becoming excessively large, some of the sensor readings are grouped into ranges, which 

reduces the accuracy of the modelling of the system, and is therefore, not desirable. 

In Chapter 5 an alternative modelling technique is presented in order to be able to model 

larger systems.  This novel modelling technique uses a series of if-then-else statements in a 

C++ script in order to determine the sensor readings for each combination of component states.  

The modelling technique can be thought of as an evolution of BBNs, constructing the model 

using the same thought process used to complete the conditional probability tables of the BBNs.  

In addition, as the previous fault diagnostic technique required a BBN of the system, a new 

alternative fault diagnostic method is also proposed.  This fault diagnostic method involves 

building a library of sensor readings for each combination of component failures that is used 



 

277 
 

to calculate the performance metric.  When the library is completed, observed sensor readings 

can be compared to the library and the component failures can be diagnosed.  In order to ensure 

that the alternative modelling technique and fault diagnostic method is as good as the 

methodology used in Chapters 3 and 4, the two methodologies are applied to the un-simplified 

version of the fuel system introduced by Moir & Seabridge (2011) and the results of the sensor 

selection and fault diagnostics are compared.  Conclusions from this chapter include that the 

system model constructed using the newly proposed C++ system modelling technique is able 

to determine the sensor readings for all combinations of component failures significantly faster 

than the BBN model of the system.  In addition, the C++ model was also able to calculate exact 

sensor readings and not have to group sensor readings into ranges, as was the case for the BBN 

model.  This enabled the C++ model to consider fuel tank level sensors, which the BBN model 

was unable to do due to needing to group the sensor readings into ranges, therefore decreasing 

the accuracy of the BBN model.  Also, the same component failures can be diagnosed using 

the C++ model and the BBN model, but one drawback of the diagnostic technique for the C++ 

model is that it cannot diagnose component failures that were not stored in the library, which 

should not be observed if the library is extensive enough.  However, potential solutions to this 

problem were suggested, such as outputting potential combinations of component failures that 

match some of the observed sensor readings.  This could potentially mean that the component 

failures may be able to be determined. 

In Chapter 6, time dependence was introduced to the proposed performance metric, i.e. 

considering the effect of component failures occurring at various times in a mission.  In order 

to do this, a phased mission was considered for the Airbus A380-800 fuel system which 

included phases such as take-off, cruise and fuel transfer.  This enabled component failures to 

be inserted into the mission at a number of different times, and the time taken to detect and 

diagnose the component failures considered when selecting the sensors.  As in Chapter 5, the 

system was modelled using a series of if-then-else statements in a C++ script in order to 

calculate the sensor readings.  The sensor readings for all sensors for a large number of 

missions, each with a large number of time steps were calculated quickly, significantly quicker 

than would be possible if completed using the BBN method.  The sensor performance metric 

was calculated exhaustively for all combinations of sensors up to combinations of 3 sensors, 

and a novel, newly proposed two-level genetic algorithm was used to calculate the performance 

metric and determine suitable combinations of sensors up to combinations of 12 sensors.  The 

two-level genetic algorithm completed a large number of genetic algorithms on different 

populations of combinations of sensors using a simplified version of the performance metric, 
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before applying another genetic algorithm with the full performance metric on a population 

consisting of the best combinations of sensors from each of the populations in the first part of 

the proposed two-level genetic algorithm.  All bar 22 of the considered component failures 

could be diagnosed correctly.  The reason that the 22 component failures were not diagnosed 

correctly is because there are other component failures that produce the same sensor readings 

but are more likely to occur.  However, when the components with a higher failure rate are 

inspected and found to not have failed, the correct component failures will be diagnosed. 

 

7.3. Conclusions 

There are a number of conclusions that can be made from the work presented in this thesis.  

The conclusions are separated into four sections: sensor selection, system modelling, fault 

diagnostics and optimisation using Genetic Algorithm.  The key points from each of these 

categories are presented in this section, with the novelty in each of the sections of the 

conclusions highlighted. 

 

Sensor Selection 

• The novel performance metric based sensor selection approach enables the 

determination of the most suitable combinations of sensors for a given system by 

considering the percentage of component failures that can be detected, the ease of 

diagnosis of component failures, and the effect the detected failures have on the 

failure of the system. 

• As the C++ sensor selection script outputs each of the individual terms of the 

performance metric, the optimum combination of sensors can be selected based on 

the individual terms of the performance metric according to the requirements of the 

specific system.  This allows flexibility in the selection of sensors, making it 

suitable for a large number of systems.  This is a novel feature not observed in the 

literature presented in the literature review. 

• Time dependence was introduced into the performance metric in order to consider 

the effect of the failures occurring at different times in the mission.  This is 

particularly useful for real systems where the operation mode changes throughout 

the mission.   
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System modelling 

• The newly proposed system modelling technique using if-then-else statements in a 

C++ script enables the sensor readings for all sensors to be determined quickly, 

something that was not possible when using the BBN system modelling technique.  

This enables larger systems to be considered than would ordinarily be possible. 

• The construction of the model in the C++ script took a significant amount of time, 

but it took less time than constructing the equivalent BBN of the system due to 

being able to copy and paste sections of the script.  The time taken to construct the 

model using the C++ script could be further reduced by incorporating more 

modularisation into the code, potentially enabling even larger systems to be 

considered. 

• The proposed novel modelling technique using a C++ script also enabled more 

accurate modelling of the system to be completed, enabling fuel tank level sensors 

to be included.  The fuel tank level sensors were ranked highly for the example 

aircraft fuel system presented in Chapter 5, and the Airbus A380-800 fuel system 

presented in Chapter 6. 

 

 

Fault diagnostics 

• The proposed fault diagnostic technique can successfully diagnose all of the 

considered component failures, with a few exceptions where the observed 

symptoms can be produced by a number of different component failures, and the 

failure present is a failure with a lower failure probability than the other 

components.  However, this would be the case with any probabilistic fault 

diagnostic technique, and is not a specific problem with this method. 

• The library-based fault diagnostic technique has a potential drawback in 

comparison to the BBN-based diagnostic technique.  If the observed symptoms 

have not been previously observed, i.e. the combination of component failures has 

not been seen before, then the diagnostic process will not be able to easily diagnose 

the component failure.  However, if an extensive library is built, this situation 

should not occur.  Also, as discussed in Chapter 5, indications of possible 

component failures can be determined which may help in the manual determination 

of the component failures. 
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Genetic Algorithm 

• The novel two-level Genetic Algorithm was successfully applied to the sensor 

selection methodology.  The newly proposed two-level Genetic Algorithm 

determined suitable combinations of sensors faster than a single-level Genetic 

Algorithm, and significantly faster than determining suitable combinations of 

sensors exhaustively. 

• There is no evidence to suggest that completing a two-level Genetic Algorithm has 

a negative effect on the determination of suitable combinations of sensors when 

compared to a basic single-level Genetic Algorithm, but this cannot be confirmed 

without further investigation. 

 

7.4. Future work 

This section outlines potential future work that could be completed to extend the research 

presented in this thesis.  As in the conclusion section, the future work is separated into four 

sections: sensor selection, system modelling, fault diagnostics and optimisation using Genetic 

Algorithm. 

 

Sensor selection 

• The time taken to calculate the time-dependent performance metric, specifically the 

diagnostic term, is significantly longer than when no time dependence is considered.  

Therefore, the time-dependent performance metric could be modified in the future 

in order to be able to calculate the performance metric faster, enabling more 

combinations of sensors to be considered. 

• The C++ script could also be modified so that it does not penalise sensors that have 

multiples of the same component failure (just occurring at different times) 

producing the same sensor reading, such as the failures presented in group 32 of 

Table I.2 in Appendix I. 

• The number of terms in the performance metric could also be extended, including 

factors such as the size and weight of the sensors, the cost of the sensors, the 

availability of the sensors, and the reliability of the sensors.  This would make the 

method more suitable for real world applications, enabling multiple different types 

of sensors to be considered. 
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• The time of the component failure occurrences could be considered more 

dynamically, i.e. the time of occurrence in relation to the end of the phase changing, 

and the effect of this on the selections of the sensors. 

• The time dependent performance metric could be extended to consider missions 

where multiple component failures occur, potentially changing the detection of 

failures, and how the method accounts for the detection of the second failure. 

• The criticality term of the performance metric could also be adapted such that it 

considers the probability of the system becoming critical should another component 

fail. 

 

 

System modelling 

• Whilst the construction of the model in the C++ script took a significant amount of 

time, it took less time than constructing the equivalent BBN of the system.  There 

are also sections of the script that can be re-used to construct other models, and 

when constructing models, copy and pasting of sections of script can be used.  

However, it may be possible to further increase the number of sections of code that 

can be used to determine multiple sensor readings, perhaps making the production 

of the model more efficient, and therefore, faster.  This could potentially be 

achieved by a more extensive use of modularisation. 

• Accurate flow of fuel modelling could also be developed, enabling a number of 

assumptions on how the flow propagates through the system to be removed.  This 

would enable a more accurate simulation of the system, with the effects of 

component failures seen dynamically, rather than after the sensor readings had 

steadied.  This would remove the requirement to consider longer time steps, such 

as the minute time step used in Chapter 6, and could be fractions of a second instead. 

• The modelling of various other different types of systems could be considered, in 

order to determine the suitability of the proposed sensor selection, system 

modelling, and fault diagnostic methodology for other systems.  There is no obvious 

reason why the methodology would not be suitable for a wide variety of different 

systems, but this needs to be investigated if the methodology is to be applied to 

other types of systems. 

• The effect of redundant components in the system could be studied further, for 

example, the amount of time after failure occurrence that a secondary component 



 

282 
 

would be activated, and whether this would prevent the system from failing, and 

whether this would influence the selection of sensors. 

• The effect of the environment the aircraft is in on the flow of fuel could also be 

studied, i.e. if the aircraft has a tail-wind, less power, and therefore less fuel, would 

be required to fly the aircraft.  This may need to be accounted for in the modelling 

of the system, as it may suggest that a component failure has occurred when no 

components have failed. 

 

 

Fault diagnostics 

• Work could be completed on determining the accuracy of diagnosing component 

failures which are not included in the library.  Whilst some suggestions were 

presented in Chapter 5, little investigation was completed on whether combinations 

of component failures that were not in the library could be diagnosed correctly. 

• The fault diagnostic technique could be extended to be able to deal with the same 

component failure occurring at multiple different times in the mission better.  This 

is of particular importance in real systems where each of the phases of the mission 

can take a long time, resulting in a large number of failure occurrence times, 

especially if the systems are modelled in time steps that are fractions of a second 

long. 

• Further work could be completed on the fault diagnostic technique in order to 

determine how to diagnose component failures where multiple component failures 

have occurred but at different times, where the occurrence of the second component 

failure may mask the symptoms of the first component failure and confuse the fault 

diagnostic results. 

 

 

Genetic Algorithm 

• Future work on the Genetic Algorithm could include studying the effect of changing 

the mutation rate and the other genetic operators on the selection of sensors. 

• In addition, the method could be extended by removing the penalty function when 

the constraint is broken, and instead, randomly removing one of the sensors from 

the combinations of sensors until the constraint is no longer broken, as suggested in 

Chapter 6.  This prevents the random mutation from including more sensors than 
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are removed from the combinations of sensors, and as a result, not breaking the 

constraint.  For example, for a combination of 10 sensors when there are 100 

available sensors, 90 sensors can be included but only 10 sensors can be removed, 

therefore, making it significantly more likely that a sensor will be included than 

removed, and increasing the probability of breaking the constraint. 

• Finally, further investigation could be undertaken on the effect of considering a two-

level genetic algorithm, and whether this negatively affects the selection of the 

sensor combinations. 
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Appendix A  

 

 

Table A.1 Ranking for combinations of two sensors 

Rank Sensor I{s} DE{s} DI{s} CR{s} 

1 S1 S7 0.8684 0.9870 0.6513 0.9754 

S1 S8 0.8684 0.9870 0.6513 0.9754 

S1 S9 0.8684 0.9870 0.6513 0.9754 

S1 S10 0.8684 0.9870 0.6513 0.9754 

S3 S7 0.8684 0.9870 0.6513 0.9754 

S3 S8 0.8684 0.9870 0.6513 0.9754 

S3 S9 0.8684 0.9870 0.6513 0.9754 

S3 S10 0.8684 0.9870 0.6513 0.9754 

2 S2 S7 0.8663 0.9870 0.6447 0.9754 

S2 S8 0.8663 0.9870 0.6447 0.9754 

S2 S9 0.8663 0.9870 0.6447 0.9754 

S2 S10 0.8663 0.9870 0.6447 0.9754 

S4 S7 0.8663 0.9870 0.6447 0.9754 

S4 S8 0.8663 0.9870 0.6447 0.9754 

S4 S9 0.8663 0.9870 0.6447 0.9754 

S4 S10 0.8663 0.9870 0.6447 0.9754 

3 S5 S7 0.8398 1.0000 0.5195 1.0000 

S5 S9 0.8398 1.0000 0.5195 1.0000 

4 S5 S8 0.8377 1.0000 0.5130 1.0000 

S5 S10 0.8377 1.0000 0.5130 1.0000 

S6 S7 0.8377 1.0000 0.5130 1.0000 

S6 S8 0.8377 1.0000 0.5130 1.0000 

S6 S9 0.8377 1.0000 0.5130 1.0000 

S6 S10 0.8377 1.0000 0.5130 1.0000 

S7 S9 0.8377 1.0000 0.5130 1.0000 

S7 S10 0.8377 1.0000 0.5130 1.0000 

S7 S11 0.8377 1.0000 0.5130 1.0000 



 

292 
 

S8 S9 0.8377 1.0000 0.5130 1.0000 

S9 S11 0.8377 1.0000 0.5130 1.0000 

5 S8 S10 0.8355 1.0000 0.5065 1.0000 

S8 S11 0.8355 1.0000 0.5065 1.0000 

S10 S11 0.8355 1.0000 0.5065 1.0000 

6 S7 S8 0.8084 0.9740 0.5133 0.9512 

S9 S10 0.8084 0.9740 0.5133 0.9512 

7 S1 S3 0.7186 0.7532 0.5345 1.0000 

S1 S4 0.7143 0.7532 0.5172 1.0000 

S1 S5 0.7143 0.7532 0.5172 1.0000 

S1 S6 0.7143 0.7532 0.5172 1.0000 

S2 S3 0.7143 0.7532 0.5172 1.0000 

S3 S5 0.7143 0.7532 0.5172 1.0000 

S3 S6 0.7143 0.7532 0.5172 1.0000 

8 S1 S11 0.7121 0.7532 0.5086 1.0000 

S2 S6 0.7121 0.7532 0.5086 1.0000 

S3 S11 0.7121 0.7532 0.5086 1.0000 

S4 S6 0.7121 0.7532 0.5086 1.0000 

9 S2 S4 0.7100 0.7532 0.5000 1.0000 

S2 S5 0.7100 0.7532 0.5000 1.0000 

S2 S11 0.7100 0.7532 0.5000 1.0000 

S4 S5 0.7100 0.7532 0.5000 1.0000 

S4 S11 0.7100 0.7532 0.5000 1.0000 

10 S5 S6 0.6710 0.7532 0.3448 1.0000 

11 S5 S11 0.6688 0.7532 0.3362 1.0000 

S6 S11 0.6688 0.7532 0.3362 1.0000 

12 S1 S2 0.3944 0.4740 0.3014 0.5665 

S3 S4 0.3944 0.4740 0.3014 0.5665 
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Table A.2 Ranking for combinations of three sensors 

Rank Sensor I{s} DE{s} DI{s} CR{s} 

1 S1 S3 S7 0.8939 1.0000 0.6818 1.0000 

S1 S3 S9 0.8939 1.0000 0.6818 1.0000 

2 S1 S3 S8 0.8918 1.0000 0.6753 1.0000 

S1 S3 S10 0.8918 1.0000 0.6753 1.0000 

3 S1 S4 S7 0.8896 1.0000 0.6688 1.0000 

S1 S4 S9 0.8896 1.0000 0.6688 1.0000 

S1 S5 S7 0.8896 1.0000 0.6688 1.0000 

S1 S5 S9 0.8896 1.0000 0.6688 1.0000 

S2 S3 S7 0.8896 1.0000 0.6688 1.0000 

S2 S3 S9 0.8896 1.0000 0.6688 1.0000 

S3 S5 S7 0.8896 1.0000 0.6688 1.0000 

S3 S5 S9 0.8896 1.0000 0.6688 1.0000 

4 S1 S4 S8 0.8874 1.0000 0.6623 1.0000 

S1 S4 S10 0.8874 1.0000 0.6623 1.0000 

S1 S5 S8 0.8874 1.0000 0.6623 1.0000 

S1 S5 S10 0.8874 1.0000 0.6623 1.0000 

S1 S6 S7 0.8874 1.0000 0.6623 1.0000 

S1 S6 S8 0.8874 1.0000 0.6623 1.0000 

S1 S6 S9 0.8874 1.0000 0.6623 1.0000 

S1 S6 S10 0.8874 1.0000 0.6623 1.0000 

S1 S7 S9 0.8874 1.0000 0.6623 1.0000 

S1 S7 S10 0.8874 1.0000 0.6623 1.0000 

S1 S7 S11 0.8874 1.0000 0.6623 1.0000 

S1 S8 S9 0.8874 1.0000 0.6623 1.0000 

S1 S9 S11 0.8874 1.0000 0.6623 1.0000 

S2 S3 S8 0.8874 1.0000 0.6623 1.0000 

S2 S3 S10 0.8874 1.0000 0.6623 1.0000 

S3 S5 S8 0.8874 1.0000 0.6623 1.0000 

S3 S5 S10 0.8874 1.0000 0.6623 1.0000 

S3 S6 S7 0.8874 1.0000 0.6623 1.0000 

S3 S6 S8 0.8874 1.0000 0.6623 1.0000 

S3 S6 S9 0.8874 1.0000 0.6623 1.0000 

S3 S6 S10 0.8874 1.0000 0.6623 1.0000 



 

294 
 

S3 S7 S9 0.8874 1.0000 0.6623 1.0000 

S3 S7 S10 0.8874 1.0000 0.6623 1.0000 

S3 S7 S11 0.8874 1.0000 0.6623 1.0000 

S3 S8 S9 0.8874 1.0000 0.6623 1.0000 

S3 S9 S11 0.8874 1.0000 0.6623 1.0000 

5 S1 S8 S10 0.8853 1.0000 0.6558 1.0000 

S1 S8 S11 0.8853 1.0000 0.6558 1.0000 

S1 S10 S11 0.8853 1.0000 0.6558 1.0000 

S2 S4 S7 0.8853 1.0000 0.6558 1.0000 

S2 S4 S9 0.8853 1.0000 0.6558 1.0000 

S2 S5 S7 0.8853 1.0000 0.6558 1.0000 

S2 S5 S9 0.8853 1.0000 0.6558 1.0000 

S2 S6 S7 0.8853 1.0000 0.6558 1.0000 

S2 S6 S8 0.8853 1.0000 0.6558 1.0000 

S2 S6 S9 0.8853 1.0000 0.6558 1.0000 

S2 S6 S10 0.8853 1.0000 0.6558 1.0000 

S2 S7 S9 0.8853 1.0000 0.6558 1.0000 

S2 S7 S10 0.8853 1.0000 0.6558 1.0000 

S2 S7 S11 0.8853 1.0000 0.6558 1.0000 

S2 S8 S9 0.8853 1.0000 0.6558 1.0000 

S2 S9 S11 0.8853 1.0000 0.6558 1.0000 

S3 S8 S10 0.8853 1.0000 0.6558 1.0000 

S3 S8 S11 0.8853 1.0000 0.6558 1.0000 

S3 S10 S11 0.8853 1.0000 0.6558 1.0000 

S4 S5 S7 0.8853 1.0000 0.6558 1.0000 

S4 S5 S9 0.8853 1.0000 0.6558 1.0000 

S4 S6 S7 0.8853 1.0000 0.6558 1.0000 

S4 S6 S8 0.8853 1.0000 0.6558 1.0000 

S4 S6 S9 0.8853 1.0000 0.6558 1.0000 

S4 S6 S10 0.8853 1.0000 0.6558 1.0000 

S4 S7 S9 0.8853 1.0000 0.6558 1.0000 

S4 S7 S10 0.8853 1.0000 0.6558 1.0000 

S4 S7 S11 0.8853 1.0000 0.6558 1.0000 

S4 S8 S9 0.8853 1.0000 0.6558 1.0000 

S4 S9 S11 0.8853 1.0000 0.6558 1.0000 

6 S2 S4 S8 0.8831 1.0000 0.6494 1.0000 
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S2 S4 S10 0.8831 1.0000 0.6494 1.0000 

S2 S5 S8 0.8831 1.0000 0.6494 1.0000 

S2 S5 S10 0.8831 1.0000 0.6494 1.0000 

S2 S8 S10 0.8831 1.0000 0.6494 1.0000 

S2 S8 S11 0.8831 1.0000 0.6494 1.0000 

S2 S10 S11 0.8831 1.0000 0.6494 1.0000 

S4 S5 S8 0.8831 1.0000 0.6494 1.0000 

S4 S5 S10 0.8831 1.0000 0.6494 1.0000 

S4 S8 S10 0.8831 1.0000 0.6494 1.0000 

S4 S8 S11 0.8831 1.0000 0.6494 1.0000 

S4 S10 S11 0.8831 1.0000 0.6494 1.0000 

7 S1 S2 S7 0.8706 0.9870 0.6579 0.9754 

S1 S2 S8 0.8706 0.9870 0.6579 0.9754 

S1 S2 S9 0.8706 0.9870 0.6579 0.9754 

S1 S2 S10 0.8706 0.9870 0.6579 0.9754 

S3 S4 S7 0.8706 0.9870 0.6579 0.9754 

S3 S4 S8 0.8706 0.9870 0.6579 0.9754 

S3 S4 S9 0.8706 0.9870 0.6579 0.9754 

S3 S4 S10 0.8706 0.9870 0.6579 0.9754 

8 S2 S7 S8 0.8684 0.9870 0.6513 0.9754 

S2 S9 S10 0.8684 0.9870 0.6513 0.9754 

S4 S7 S8 0.8684 0.9870 0.6513 0.9754 

S4 S9 S10 0.8684 0.9870 0.6513 0.9754 

9 S1 S7 S8 0.8555 0.9870 0.6119 0.9754 

S1 S9 S10 0.8555 0.9870 0.6119 0.9754 

S3 S7 S8 0.8555 0.9870 0.6119 0.9754 

S3 S9 S10 0.8555 0.9870 0.6119 0.9754 

10 S5 S6 S7 0.8398 1.0000 0.5195 1.0000 

S5 S6 S8 0.8398 1.0000 0.5195 1.0000 

S5 S6 S9 0.8398 1.0000 0.5195 1.0000 

S5 S6 S10 0.8398 1.0000 0.5195 1.0000 

S5 S7 S8 0.8398 1.0000 0.5195 1.0000 

S5 S7 S9 0.8398 1.0000 0.5195 1.0000 

S5 S7 S10 0.8398 1.0000 0.5195 1.0000 

S5 S7 S11 0.8398 1.0000 0.5195 1.0000 

S5 S8 S9 0.8398 1.0000 0.5195 1.0000 
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S5 S9 S10 0.8398 1.0000 0.5195 1.0000 

S5 S9 S11 0.8398 1.0000 0.5195 1.0000 

11 S5 S8 S10 0.8377 1.0000 0.5130 1.0000 

S5 S8 S11 0.8377 1.0000 0.5130 1.0000 

S5 S10 S11 0.8377 1.0000 0.5130 1.0000 

S6 S7 S8 0.8377 1.0000 0.5130 1.0000 

S6 S7 S9 0.8377 1.0000 0.5130 1.0000 

S6 S7 S10 0.8377 1.0000 0.5130 1.0000 

S6 S7 S11 0.8377 1.0000 0.5130 1.0000 

S6 S8 S9 0.8377 1.0000 0.5130 1.0000 

S6 S8 S10 0.8377 1.0000 0.5130 1.0000 

S6 S8 S11 0.8377 1.0000 0.5130 1.0000 

S6 S9 S10 0.8377 1.0000 0.5130 1.0000 

S6 S9 S11 0.8377 1.0000 0.5130 1.0000 

S6 S10 S11 0.8377 1.0000 0.5130 1.0000 

S7 S8 S9 0.8377 1.0000 0.5130 1.0000 

S7 S8 S10 0.8377 1.0000 0.5130 1.0000 

S7 S8 S11 0.8377 1.0000 0.5130 1.0000 

S7 S9 S10 0.8377 1.0000 0.5130 1.0000 

S7 S9 S11 0.8377 1.0000 0.5130 1.0000 

S7 S10 S11 0.8377 1.0000 0.5130 1.0000 

S8 S9 S10 0.8377 1.0000 0.5130 1.0000 

S8 S9 S11 0.8377 1.0000 0.5130 1.0000 

S9 S10 S11 0.8377 1.0000 0.5130 1.0000 

12 S8 S10 S11 0.8355 1.0000 0.5065 1.0000 

13 S2 S5 S6 0.7276 0.7532 0.5704 1.0000 

S4 S5 S6 0.7276 0.7532 0.5704 1.0000 

14 S1 S2 S3 0.7208 0.7532 0.5431 1.0000 

S1 S3 S4 0.7208 0.7532 0.5431 1.0000 

S1 S3 S5 0.7208 0.7532 0.5431 1.0000 

S1 S3 S6 0.7208 0.7532 0.5431 1.0000 

15 S1 S3 S11 0.7186 0.7532 0.5345 1.0000 

16 S1 S2 S6 0.7165 0.7532 0.5259 1.0000 

S1 S4 S6 0.7165 0.7532 0.5259 1.0000 

S1 S5 S6 0.7165 0.7532 0.5259 1.0000 
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S2 S3 S6 0.7165 0.7532 0.5259 1.0000 

S3 S4 S6 0.7165 0.7532 0.5259 1.0000 

S3 S5 S6 0.7165 0.7532 0.5259 1.0000 

17 S1 S2 S4 0.7143 0.7532 0.5172 1.0000 

S1 S2 S5 0.7143 0.7532 0.5172 1.0000 

S1 S2 S11 0.7143 0.7532 0.5172 1.0000 

S1 S4 S5 0.7143 0.7532 0.5172 1.0000 

S1 S4 S11 0.7143 0.7532 0.5172 1.0000 

S1 S5 S11 0.7143 0.7532 0.5172 1.0000 

S1 S6 S11 0.7143 0.7532 0.5172 1.0000 

S2 S3 S4 0.7143 0.7532 0.5172 1.0000 

S2 S3 S5 0.7143 0.7532 0.5172 1.0000 

S2 S3 S11 0.7143 0.7532 0.5172 1.0000 

S3 S4 S5 0.7143 0.7532 0.5172 1.0000 

S3 S4 S11 0.7143 0.7532 0.5172 1.0000 

S3 S5 S11 0.7143 0.7532 0.5172 1.0000 

S3 S6 S11 0.7143 0.7532 0.5172 1.0000 

18 S2 S4 S6 0.7121 0.7532 0.5086 1.0000 

S2 S6 S11 0.7121 0.7532 0.5086 1.0000 

S4 S6 S11 0.7121 0.7532 0.5086 1.0000 

19 S2 S4 S5 0.7100 0.7532 0.5000 1.0000 

S2 S4 S11 0.7100 0.7532 0.5000 1.0000 

S2 S5 S11 0.7100 0.7532 0.5000 1.0000 

S4 S5 S11 0.7100 0.7532 0.5000 1.0000 

20 S5 S6 S11 0.6710 0.7532 0.3448 1.0000 
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Table A.3 Ranking of combinations of two sensors with different component failure rates 

Rank Sensor I{s} DE{s} DI{s} CR{s} 

1 S1 S7 0.9641 0.9959 0.9059 0.9944 

 S1 S8 0.9641 0.9959 0.9059 0.9944 

 S1 S9 0.9641 0.9959 0.9059 0.9944 

 S1 S10 0.9641 0.9959 0.9059 0.9944 

 S3 S7 0.9641 0.9959 0.9059 0.9944 

 S3 S8 0.9641 0.9959 0.9059 0.9944 

 S3 S9 0.9641 0.9959 0.9059 0.9944 

 S3 S10 0.9641 0.9959 0.9059 0.9944 

2 S2 S7 0.9629 0.9959 0.9022 0.9943 

 S2 S8 0.9629 0.9959 0.9022 0.9943 

 S2 S9 0.9629 0.9959 0.9022 0.9943 

 S2 S10 0.9629 0.9959 0.9022 0.9943 

 S4 S7 0.9629 0.9959 0.9022 0.9943 

 S4 S8 0.9629 0.9959 0.9022 0.9943 

 S4 S9 0.9629 0.9959 0.9022 0.9943 

 S4 S10 0.9629 0.9959 0.9022 0.9943 

3 S1 S3 0.9234 0.9321 0.8991 1.0000 

4 S1 S5 0.9208 0.9321 0.8910 1.0000 

 S3 S5 0.9208 0.9321 0.8910 1.0000 

 S1 S4 0.9208 0.9321 0.8910 1.0000 

 S2 S3 0.9208 0.9321 0.8910 1.0000 

5 S1 S6 0.9197 0.9321 0.8873 1.0000 

 S3 S6 0.9197 0.9321 0.8873 1.0000 

6 S1 S11 0.9196 0.9321 0.8870 1.0000 

 S3 S11 0.9196 0.9321 0.8870 1.0000 

7 S2 S6 0.9184 0.9321 0.8833 1.0000 

 S4 S6 0.9184 0.9321 0.8833 1.0000 

8 S2 S5 0.9183 0.9321 0.8829 1.0000 

 S2 S11 0.9183 0.9321 0.8829 1.0000 

 S4 S5 0.9183 0.9321 0.8829 1.0000 

 S4 S11 0.9183 0.9321 0.8829 1.0000 
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 S2 S4 0.9183 0.9321 0.8829 1.0000 

9 S5 S7 0.8417 1.0000 0.5251 1.0000 

 S5 S9 0.8417 1.0000 0.5251 1.0000 

10 S5 S8 0.8416 1.0000 0.5247 1.0000 

 S5 S10 0.8416 1.0000 0.5247 1.0000 

11 S6 S7 0.8304 1.0000 0.4911 1.0000 

 S6 S8 0.8304 1.0000 0.4911 1.0000 

 S6 S9 0.8304 1.0000 0.4911 1.0000 

 S6 S10 0.8304 1.0000 0.4911 1.0000 

 S7 S9 0.8304 1.0000 0.4911 1.0000 

 S7 S10 0.8304 1.0000 0.4911 1.0000 

 S7 S11 0.8304 1.0000 0.4911 1.0000 

 S8 S9 0.8304 1.0000 0.4911 1.0000 

 S9 S11 0.8304 1.0000 0.4911 1.0000 

12 S8 S10 0.8302 1.0000 0.4907 1.0000 

 S8 S11 0.8302 1.0000 0.4907 1.0000 

 S10 S11 0.8302 1.0000 0.4907 1.0000 

13 S7 S8 0.8227 0.9918 0.4917 0.9886 

 S9 S10 0.8227 0.9918 0.4917 0.9886 

14 S5 S6 0.7939 0.9321 0.4823 1.0000 

15 S5 S11 0.7938 0.9321 0.4820 1.0000 

16 S6 S11 0.7825 0.9321 0.4459 1.0000 

17 S1 S2 0.4749 0.5124 0.8252 0.4895 

 S3 S4 0.4749 0.5124 0.8252 0.4895 
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Table A.4 Ranking of combinations of three sensors with different component failure rates 

Rank Sensor I{s} DE{s} DI{s} CR{s} 

1 S1 S3 S7 0.9738 1.0000 0.9214 1.0000 

 S1 S3 S9 0.9738 1.0000 0.9214 1.0000 

2 S1 S3 S8 0.9737 1.0000 0.9211 1.0000 

 S1 S3 S10 0.9737 1.0000 0.9211 1.0000 

3 S1 S5 S7 0.9713 1.0000 0.9139 1.0000 

 S1 S5 S9 0.9713 1.0000 0.9139 1.0000 

 S3 S5 S7 0.9713 1.0000 0.9139 1.0000 

 S3 S5 S9 0.9713 1.0000 0.9139 1.0000 

4 S1 S5 S8 0.9712 1.0000 0.9135 1.0000 

 S1 S5 S10 0.9712 1.0000 0.9135 1.0000 

 S3 S5 S8 0.9712 1.0000 0.9135 1.0000 

 S3 S5 S10 0.9712 1.0000 0.9135 1.0000 

5 S1 S6 S7 0.9700 1.0000 0.9101 1.0000 

 S1 S6 S8 0.9700 1.0000 0.9101 1.0000 

 S1 S6 S9 0.9700 1.0000 0.9101 1.0000 

 S1 S6 S10 0.9700 1.0000 0.9101 1.0000 

 S1 S7 S9 0.9700 1.0000 0.9101 1.0000 

 S1 S7 S10 0.9700 1.0000 0.9101 1.0000 

 S1 S7 S11 0.9700 1.0000 0.9101 1.0000 

 S1 S8 S9 0.9700 1.0000 0.9101 1.0000 

 S1 S9 S11 0.9700 1.0000 0.9101 1.0000 

 S3 S6 S7 0.9700 1.0000 0.9101 1.0000 

 S3 S6 S8 0.9700 1.0000 0.9101 1.0000 

 S3 S6 S9 0.9700 1.0000 0.9101 1.0000 

 S3 S6 S10 0.9700 1.0000 0.9101 1.0000 

 S3 S7 S9 0.9700 1.0000 0.9101 1.0000 

 S3 S7 S10 0.9700 1.0000 0.9101 1.0000 

 S3 S7 S11 0.9700 1.0000 0.9101 1.0000 

 S3 S8 S9 0.9700 1.0000 0.9101 1.0000 

 S3 S9 S11 0.9700 1.0000 0.9101 1.0000 

6 S1 S8 S10 0.9699 1.0000 0.9097 1.0000 

 S1 S8 S11 0.9699 1.0000 0.9097 1.0000 

 S1 S10 S11 0.9699 1.0000 0.9097 1.0000 
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 S3 S8 S10 0.9699 1.0000 0.9097 1.0000 

 S3 S8 S11 0.9699 1.0000 0.9097 1.0000 

 S3 S10 S11 0.9699 1.0000 0.9097 1.0000 

7 S1 S4 S7 0.9692 1.0000 0.9076 1.0000 

 S1 S4 S9 0.9692 1.0000 0.9076 1.0000 

 S2 S3 S7 0.9692 1.0000 0.9076 1.0000 

 S2 S3 S9 0.9692 1.0000 0.9076 1.0000 

8 S1 S4 S8 0.9691 1.0000 0.9072 1.0000 

 S1 S4 S10 0.9691 1.0000 0.9072 1.0000 

 S2 S3 S8 0.9691 1.0000 0.9072 1.0000 

 S2 S3 S10 0.9691 1.0000 0.9072 1.0000 

9 S2 S4 S7 0.9688 1.0000 0.9063 1.0000 

 S2 S4 S9 0.9688 1.0000 0.9063 1.0000 

 S2 S5 S7 0.9688 1.0000 0.9063 1.0000 

 S2 S5 S9 0.9688 1.0000 0.9063 1.0000 

 S2 S6 S7 0.9688 1.0000 0.9063 1.0000 

 S2 S6 S8 0.9688 1.0000 0.9063 1.0000 

 S2 S6 S9 0.9688 1.0000 0.9063 1.0000 

 S2 S6 S10 0.9688 1.0000 0.9063 1.0000 

 S2 S7 S9 0.9688 1.0000 0.9063 1.0000 

 S2 S7 S10 0.9688 1.0000 0.9063 1.0000 

 S2 S7 S11 0.9688 1.0000 0.9063 1.0000 

 S2 S8 S9 0.9688 1.0000 0.9063 1.0000 

 S2 S9 S11 0.9688 1.0000 0.9063 1.0000 

 S4 S5 S7 0.9688 1.0000 0.9063 1.0000 

 S4 S5 S9 0.9688 1.0000 0.9063 1.0000 

 S4 S6 S7 0.9688 1.0000 0.9063 1.0000 

 S4 S6 S8 0.9688 1.0000 0.9063 1.0000 

 S4 S6 S9 0.9688 1.0000 0.9063 1.0000 

 S4 S6 S10 0.9688 1.0000 0.9063 1.0000 

 S4 S7 S9 0.9688 1.0000 0.9063 1.0000 

 S4 S7 S10 0.9688 1.0000 0.9063 1.0000 

 S4 S7 S11 0.9688 1.0000 0.9063 1.0000 

 S4 S8 S9 0.9688 1.0000 0.9063 1.0000 

 S4 S9 S11 0.9688 1.0000 0.9063 1.0000 

10 S2 S4 S8 0.9687 1.0000 0.9060 1.0000 
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 S2 S4 S10 0.9687 1.0000 0.9060 1.0000 

 S2 S5 S8 0.9687 1.0000 0.9060 1.0000 

 S2 S5 S10 0.9687 1.0000 0.9060 1.0000 

 S2 S8 S10 0.9687 1.0000 0.9060 1.0000 

 S2 S8 S11 0.9687 1.0000 0.9060 1.0000 

 S2 S10 S11 0.9687 1.0000 0.9060 1.0000 

 S4 S5 S8 0.9687 1.0000 0.9060 1.0000 

 S4 S5 S10 0.9687 1.0000 0.9060 1.0000 

 S4 S8 S10 0.9687 1.0000 0.9060 1.0000 

 S4 S8 S11 0.9687 1.0000 0.9060 1.0000 

 S4 S10 S11 0.9687 1.0000 0.9060 1.0000 

11 S1 S2 S7 0.9654 0.9959 0.9097 0.9943 

 S1 S2 S9 0.9654 0.9959 0.9097 0.9943 

 S3 S4 S7 0.9654 0.9959 0.9097 0.9943 

 S3 S4 S9 0.9654 0.9959 0.9097 0.9943 

12 S1 S2 S8 0.9654 0.9959 0.9097 0.9943 

 S1 S2 S10 0.9654 0.9959 0.9097 0.9943 

 S3 S4 S8 0.9654 0.9959 0.9097 0.9943 

 S3 S4 S10 0.9654 0.9959 0.9097 0.9943 

13 S1 S7 S8 0.9642 0.9959 0.9063 0.9943 

 S1 S9 S10 0.9642 0.9959 0.9063 0.9943 

 S3 S7 S8 0.9642 0.9959 0.9063 0.9943 

 S3 S9 S10 0.9642 0.9959 0.9063 0.9943 

14 S2 S7 S8 0.9630 0.9959 0.9025 0.9943 

 S2 S9 S10 0.9630 0.9959 0.9025 0.9943 

 S4 S7 S8 0.9630 0.9959 0.9025 0.9943 

 S4 S9 S10 0.9630 0.9959 0.9025 0.9943 

15 S2 S4 S6 0.9358 0.9321 0.9391 1.0000 

16 S1 S2 S3 0.9236 0.9321 0.8999 1.0000 

 S1 S3 S4 0.9236 0.9321 0.8999 1.0000 

17 S1 S3 S5 0.9235 0.9321 0.8995 1.0000 

 S1 S3 S6 0.9235 0.9321 0.8995 1.0000 

18 S1 S3 S11 0.9234 0.9321 0.8991 1.0000 

19 S1 S2 S6 0.9210 0.9321 0.8914 1.0000 

 S1 S4 S6 0.9210 0.9321 0.8914 1.0000 
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 S1 S5 S6 0.9210 0.9321 0.8914 1.0000 

 S2 S3 S6 0.9210 0.9321 0.8914 1.0000 

 S3 S4 S6 0.9210 0.9321 0.8914 1.0000 

 S3 S5 S6 0.9210 0.9321 0.8914 1.0000 

20 S1 S2 S4 0.9208 0.9321 0.8910 1.0000 

 S1 S2 S5 0.9208 0.9321 0.8910 1.0000 

 S1 S2 S11 0.9208 0.9321 0.8910 1.0000 

 S1 S4 S5 0.9208 0.9321 0.8910 1.0000 

 S1 S4 S11 0.9208 0.9321 0.8910 1.0000 

 S1 S5 S11 0.9208 0.9321 0.8910 1.0000 

 S2 S3 S4 0.9208 0.9321 0.8910 1.0000 

 S2 S3 S5 0.9208 0.9321 0.8910 1.0000 

 S2 S3 S11 0.9208 0.9321 0.8910 1.0000 

 S3 S4 S5 0.9208 0.9321 0.8910 1.0000 

 S3 S4 S11 0.9208 0.9321 0.8910 1.0000 

 S3 S5 S11 0.9208 0.9321 0.8910 1.0000 

21 S1 S6 S11 0.9197 0.9321 0.8873 1.0000 

 S3 S6 S11 0.9197 0.9321 0.8873 1.0000 

22 S2 S5 S6 0.9184 0.9321 0.8833 1.0000 

 S2 S6 S11 0.9184 0.9321 0.8833 1.0000 

 S4 S5 S6 0.9184 0.9321 0.8833 1.0000 

 S4 S6 S11 0.9184 0.9321 0.8833 1.0000 

23 S2 S4 S5 0.9183 0.9321 0.8829 1.0000 

 S2 S4 S11 0.9183 0.9321 0.8829 1.0000 

 S2 S5 S11 0.9183 0.9321 0.8829 1.0000 

 S4 S5 S11 0.9183 0.9321 0.8829 1.0000 

24 S5 S6 S7 0.8417 1.0000 0.5251 1.0000 

 S5 S6 S8 0.8417 1.0000 0.5251 1.0000 

 S5 S6 S9 0.8417 1.0000 0.5251 1.0000 

 S5 S6 S10 0.8417 1.0000 0.5251 1.0000 

 S5 S7 S8 0.8417 1.0000 0.5251 1.0000 

 S5 S7 S9 0.8417 1.0000 0.5251 1.0000 

 S5 S7 S10 0.8417 1.0000 0.5251 1.0000 

 S5 S7 S11 0.8417 1.0000 0.5251 1.0000 

 S5 S8 S9 0.8417 1.0000 0.5251 1.0000 
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 S5 S9 S10 0.8417 1.0000 0.5251 1.0000 

 S5 S9 S11 0.8417 1.0000 0.5251 1.0000 

25 S5 S8 S10 0.8416 1.0000 0.5247 1.0000 

 S5 S8 S11 0.8416 1.0000 0.5247 1.0000 

 S5 S10 S11 0.8416 1.0000 0.5247 1.0000 

26 S6 S7 S8 0.8344 1.0000 0.5033 1.0000 

 S6 S7 S9 0.8344 1.0000 0.5033 1.0000 

 S6 S7 S10 0.8344 1.0000 0.5033 1.0000 

 S6 S7 S11 0.8344 1.0000 0.5033 1.0000 

 S6 S8 S9 0.8344 1.0000 0.5033 1.0000 

 S6 S8 S10 0.8344 1.0000 0.5033 1.0000 

 S6 S8 S11 0.8344 1.0000 0.5033 1.0000 

 S6 S9 S10 0.8344 1.0000 0.5033 1.0000 

 S6 S9 S11 0.8344 1.0000 0.5033 1.0000 

 S6 S10 S11 0.8344 1.0000 0.5033 1.0000 

 S7 S8 S9 0.8344 1.0000 0.5033 1.0000 

 S7 S8 S10 0.8344 1.0000 0.5033 1.0000 

 S7 S8 S11 0.8344 1.0000 0.5033 1.0000 

 S7 S9 S10 0.8344 1.0000 0.5033 1.0000 

 S7 S9 S11 0.8344 1.0000 0.5033 1.0000 

 S7 S10 S11 0.8344 1.0000 0.5033 1.0000 

 S8 S9 S10 0.8344 1.0000 0.5033 1.0000 

 S8 S9 S11 0.8344 1.0000 0.5033 1.0000 

 S9 S10 S11 0.8344 1.0000 0.5033 1.0000 

27 S8 S10 S11 0.8343 1.0000 0.5030 1.0000 

28 S5 S6 S11 0.8048 0.9321 0.5175 1.0000 
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Appendix B  

 

 

Table B.1 CPT for sensor S1 

Supply 2 Supply 

Valve 1 Open 

Section 3 V4 Open, V5 Open V4 Open, V5 Blocked 

Valve 3 Open  Blocked Open Blocked 

Pump 1 On Off On Off On Off On Off 

N 0 1 1 1 0 1 1 1 

E 0 0 0 0 0 0 0 0 

1 1 0 0 0 1 0 0 0 

Supply 2 Supply 

Valve 1 Open 

Section 3 V4 Blocked, V5 Open V4 Blocked, V5 Blocked 

Valve 3 Open Blocked Open Blocked 

Pump 1 On Off On Off On Off On Off 

N 0 1 1 1 1 1 1 1 

E 0 0 0 0 0 0 0 0 

1 1 0 0 0 0 0 0 0 

Supply 2 Supply 

Valve 1 Blocked 

Section 3 V4 Open, V5 Open V4 Open, V5 Blocked 

Valve 3 Open  Blocked Open Blocked 

Pump 1 On Off On Off On Off On Off 

N 1 0 1 0 1 0 1 0 

E 0 1 0 1 0 1 0 1 

1 0 0 0 0 0 0 0 0 

Supply 2 Supply 

Valve 1 Blocked 

Section 3 V4 Blocked, V5 Open V4 Blocked, V5 Blocked 

Valve 3 Open Blocked Open Blocked 

Pump 1 On Off On Off On Off On Off 

N 1 0 1 0 1 0 1 0 
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E 0 1 0 1 0 1 0 1 

1 0 0 0 0 0 0 0 0 

Supply 2 No Supply 

Valve 1 Open 

Section 3 V4 Open, V5 Open V4 Open, V5 Blocked 

Valve 3 Open  Blocked Open Blocked 

Pump 1 On Off On Off On Off On Off 

N 0 0 1 0 0 0 1 0 

E 0 1 0 1 0 1 0 1 

1 1 0 0 0 1 0 0 0 

Supply 2 No Supply 

Valve 1 Open 

Section 3 V4 Blocked, V5 Open V4 Blocked, V5 Blocked 

Valve 3 Open Blocked Open Blocked 

Pump 1 On Off On Off On Off On Off 

N 0 0 1 0 1 0 1 0 

E 0 1 0 1 0 1 0 1 

1 1 0 0 0 0 0 0 0 

Supply 2 No Supply 

Valve 1 Blocked 

Section 3 V4 Open, V5 Open V4 Open, V5 Blocked 

Valve 3 Open  Blocked Open Blocked 

Pump 1 On Off On Off On Off On Off 

N 1 0 1 0 1 0 1 0 

E 0 1 0 1 0 1 0 1 

1 0 0 0 0 0 0 0 0 

Supply 2 No Supply 

Valve 1 Blocked 

Section 3 V4 Blocked, V5 Open V4 Blocked, V5 Blocked 

Valve 3 Open Blocked Open Blocked 

Pump 1 On Off On Off On Off On Off 

N 1 0 1 0 1 0 1 0 

E 0 1 0 1 0 1 0 1 

1 0 0 0 0 0 0 0 0 
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Table B.2 CPT for sensor S2 

Section 3 V4 Open, V5 Open 

Valve 3 Open Blocked 

Supply 2 Supply No Supply Supply No Supply 

Supply 1 Sup No Sup Sup No Sup Sup No Sup Sup No Sup 

N 0 1 0 0 1 1 1 0 

E 0 0 0 1 0 0 0 1 

1 1 0 1 0 0 0 0 0 

Section 3 V4 Open, V5 Blocked 

Valve 3 Open Blocked 

Supply 2 Supply No Supply Supply No Supply 

Supply 1 Sup No Sup Sup No Sup Sup No Sup Sup No Sup 

N 0 1 0 0 1 1 1 0 

E 0 0 0 1 0 0 0 1 

1 1 0 1 0 0 0 0 0 

Section 3 V4 Blocked, V5 Open 

Valve 3 Open Blocked 

Supply 2 Supply No Supply Supply No Supply 

Supply 1 Sup No Sup Sup No Sup Sup No Sup Sup No Sup 

N 0 1 0 0 1 1 1 0 

E 0 0 0 1 0 0 0 1 

1 1 0 1 0 0 0 0 0 

Section 3 V4 Blocked, V5 Blocked 

Valve 3 Open Blocked 

Supply 2 Supply No Supply Supply No Supply 

Supply 1 Sup No Sup Sup No Sup Sup No Sup Sup No Sup 

N 1 1 1 0 1 1 1 0 

E 0 0 0 1 0 0 0 1 

1 0 0 0 0 0 0 0 0 
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Table B.3 CPT for sensor S3 

Supply 1 Supply 

Valve 2 Open 

Section 3 V4 Open, V5 Open V4 open, V5 blocked 

Valve 3 Open  Blocked Open Blocked 

Pump 2 On Off On Off On Off On Off 

N 0 1 1 1 0 1 1 1 

E 0 0 0 0 0 0 0 0 

1 1 0 0 0 1 0 0 0 

Supply 1 Supply 

Valve 2 Open 

Section 3 V4 Blocked, V5 Open V4 blocked, V5 blocked 

Valve 3 Open Blocked Open Blocked 

Pump 2 On Off On Off On Off On Off 

N 0 1 1 1 1 1 1 1 

E 0 0 0 0 0 0 0 0 

1 1 0 0 0 0 0 0 0 

Supply 1 Supply 

Valve 2 Blocked 

Section 3 V4 Open, V5 Open V4 open, V5 blocked 

Valve 3 Open  Blocked Open Blocked 

Pump 2 On Off On Off On Off On Off 

N 1 0 1 0 1 0 1 0 

E 0 1 0 1 0 1 0 1 

1 0 0 0 0 0 0 0 0 

Supply 1 Supply 

Valve 2 Blocked 

Section 3 V4 Blocked, V5 Open V4 blocked, V5 blocked 

Valve 3 Open Blocked Open Blocked 

Pump 2 On Off On Off On Off On Off 

N 1 0 1 0 1 0 1 0 

E 0 1 0 1 0 1 0 1 

1 0 0 0 0 0 0 0 0 
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Supply 1 No Supply 

Valve 2 Open 

Section 3 V4 Open, V5 Open V4 open, V5 blocked 

Valve 3 Open  Blocked Open Blocked 

Pump 2 On Off On Off On Off On Off 

N 0 0 1 0 0 0 1 0 

E 0 1 0 1 0 1 0 1 

1 1 0 0 0 1 0 0 0 

Supply 1 No Supply 

Valve 2 Open 

Section 3 V4 Blocked, V5 Open V4 blocked, V5 blocked 

Valve 3 Open Blocked Open Blocked 

Pump 2 On Off On Off On Off On Off 

N 0 0 1 0 1 0 1 0 

E 0 1 0 1 0 1 0 1 

1 1 0 0 0 0 0 0 0 

Supply 1 No Supply 

Valve 2 Blocked 

Section 3 V4 Open, V5 Open V4 open, V5 blocked 

Valve 3 Open  Blocked Open Blocked 

Pump 2 On Off On Off On Off On Off 

N 1 0 1 0 1 0 1 0 

E 0 1 0 1 0 1 0 1 

1 0 0 0 0 0 0 0 0 

Supply 1 No Supply 

Valve 2 Blocked 

Section 3 V4 Blocked, V5 Open V4 blocked, V5 blocked 

Valve 3 Open Blocked Open Blocked 

Pump 2 On Off On Off On Off On Off 

N 1 0 1 0 1 0 1 0 

E 0 1 0 1 0 1 0 1 

1 0 0 0 0 0 0 0 0 
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Table B.4 CPT for sensor S4 

Section 3 V4 Open, V5 Open 

Valve 3 Open Blocked 

Supply 1 Supply No Supply Supply No Supply 

Supply 2 Sup No Sup Sup No Sup Sup No Sup Sup No Sup 

N 0 1 0 0 1 1 1 0 

E 0 0 0 1 0 0 0 1 

1 1 0 1 0 0 0 0 0 

Section 3 V4 Open, V5 Blocked 

Valve 3 Open Blocked 

Supply 1 Supply No Supply Supply No Supply 

Supply 2 Sup No Sup Sup No Sup Sup No Sup Sup No Sup 

N 0 1 0 0 1 1 1 0 

E 0 0 0 1 0 0 0 1 

1 1 0 1 0 0 0 0 0 

Section 3 V4 Blocked, V5 Open 

Valve 3 Open Blocked 

Supply 1 Supply No Supply Supply No Supply 

Supply 2 Sup No Sup Sup No Sup Sup No Sup Sup No Sup 

N 0 1 0 0 1 1 1 0 

E 0 0 0 1 0 0 0 1 

1 1 0 1 0 0 0 0 0 

Section 3 V4 Blocked, V5 Blocked 

Valve 3 Open Blocked 

Supply 1 Supply No Supply Supply No Supply 

Supply 2 Sup No Sup Sup No Sup Sup No Sup Sup No Sup 

N 1 1 1 0 1 1 1 0 

E 0 0 0 1 0 0 0 1 

1 0 0 0 0 0 0 0 0 
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Table B.5 CPT for sensor S5 

Section 3 V4 Open, V5 Open 

Valve 3 Open Blocked 

Supply FS  NS PS FS NS PS 

N 0 0 0 1 0 1 

E 0 1 0 0 1 0 

1 0 0 1 0 0 0 

2 1 0 0 0 0 0 

Section 3 V4 Open, V5 Blocked 

Valve 3 Open Blocked 

Supply FS  NS PS FS NS PS 

N 0 0 0 1 0 1 

E 0 1 0 0 1 0 

1 0 0 1 0 0 0 

2 1 0 0 0 0 0 

Section 3 V4 Blocked, V5 Open 

Valve 3 Open Blocked 

Supply FS  NS PS FS NS PS 

N 0 0 0 1 0 1 

E 0 1 0 0 1 0 

1 0 0 1 0 0 0 

2 1 0 0 0 0 0 

Section 3 V4 Blocked, V5 Blocked 

Valve 3 Open Blocked 

Supply FS  NS PS FS NS PS 

N 1 0 1 1 0 1 

E 0 1 0 0 1 0 

1 0 0 0 0 0 0 

2 0 0 0 0 0 0 
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Table B.6 CPT for sensor S6 

Section 3 V4 Open, V5 Open 

Valve 3 Open Blocked 

Supply FS  NS PS FS NS PS 

N 0 0 0 0 0 0 

E 0 1 0 1 1 1 

1 0 0 1 0 0 0 

2 1 0 0 0 0 0 

Section 3 V4 Open, V5 Blocked 

Valve 3 Open Blocked 

Supply FS  NS PS FS NS PS 

N 0 0 0 0 0 0 

E 0 1 0 1 1 1 

1 0 0 1 0 0 0 

2 1 0 0 0 0 0 

Section 3 V4 Blocked, V5 Open 

Valve 3 Open Blocked 

Supply FS  NS PS FS NS PS 

N 0 0 0 0 0 0 

E 0 1 0 1 1 1 

1 0 0 1 0 0 0 

2 1 0 0 0 0 0 

Section 3 V4 Blocked, V5 Blocked 

Valve 3 Open Blocked 

Supply FS  NS PS FS NS PS 

N 1 0 1 0 0 0 

E 0 1 0 1 1 1 

1 0 0 0 0 0 0 

2 0 0 0 0 0 0 
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Table B.7 CPT for sensor S7 

Section 3 V4 Open, V5 Open 

Valve 3 Open Blocked 

Supply FS  NS PS FS NS PS 

N 0 0 0 0 0 0 

E 0 1 0 1 1 1 

0.5 0 0 1 0 0 0 

1 1 0 0 0 0 0 

2 0 0 0 0 0 0 

Section 3 V4 Open, V5 Blocked 

Valve 3 Open Blocked 

Supply FS  NS PS FS NS PS 

N 0 0 0 0 0 0 

E 0 1 0 1 1 1 

0.5 0 0 0 0 0 0 

1 0 0 1 0 0 0 

2 1 0 0 0 0 0 

Section 3 V4 Blocked, V5 Open 

Valve 3 Open Blocked 

Supply FS  NS PS FS NS PS 

N 1 0 1 0 0 0 

E 0 1 0 1 1 1 

0.5 0 0 0 0 0 0 

1 0 0 0 0 0 0 

2 0 0 0 0 0 0 

Section 3 V4 Blocked, V5 Blocked 

Valve 3 Open Blocked 

Supply FS  NS PS FS NS PS 

N 1 0 1 0 0 0 

E 0 1 0 1 1 1 

0.5 0 0 0 0 0 0 

1 0 0 0 0 0 0 

2 0 0 0 0 0 0 
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Table B.8 CPT for sensor S8 

Section 3 V4 Open, V5 Open 

Valve 3 Open Blocked 

Supply FS  NS PS FS NS PS 

N 0 0 0 0 0 0 

E 0 1 0 1 1 1 

0.5 0 0 1 0 0 0 

1 1 0 0 0 0 0 

2 0 0 0 0 0 0 

Section 3 V4 Open, V5 Blocked 

Valve 3 Open Blocked 

Supply FS  NS PS FS NS PS 

N 0 0 0 0 0 0 

E 0 1 0 1 1 1 

0.5 0 0 0 0 0 0 

1 0 0 1 0 0 0 

2 1 0 0 0 0 0 

Section 3 V4 Blocked, V5 Open 

Valve 3 Open Blocked 

Supply FS  NS PS FS NS PS 

N 1 0 1 0 0 0 

E 0 1 0 1 1 1 

0.5 0 0 0 0 0 0 

1 0 0 0 0 0 0 

2 0 0 0 0 0 0 

Section 3 V4 Blocked, V5 Blocked 

Valve 3 Open Blocked 

Supply FS  NS PS FS NS PS 

N 0 0 0 0 0 0 

E 1 1 1 1 1 1 

0.5 0 0 0 0 0 0 

1 0 0 0 0 0 0 

2 0 0 0 0 0 0 
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Table B.9 CPT for sensor S9 

Section 3 V4 Open, V5 Open 

Valve 3 Open Blocked 

Supply FS  NS PS FS NS PS 

N 0 0 0 0 0 0 

E 0 1 0 1 1 1 

0.5 0 0 1 0 0 0 

1 1 0 0 0 0 0 

2 0 0 0 0 0 0 

Section 3 V4 Open, V5 Blocked 

Valve 3 Open Blocked 

Supply FS  NS PS FS NS PS 

N 1 0 1 0 0 0 

E 0 1 0 1 1 1 

0.5 0 0 0 0 0 0 

1 0 0 0 0 0 0 

2 0 0 0 0 0 0 

Section 3 V4 Blocked, V5 Open 

Valve 3 Open Blocked 

Supply FS  NS PS FS NS PS 

N 0 0 0 0 0 0 

E 0 1 0 1 1 1 

0.5 0 0 0 0 0 0 

1 0 0 1 0 0 0 

2 1 0 0 0 0 0 

Section 3 V4 Blocked, V5 Blocked 

Valve 3 Open Blocked 

Supply FS  NS PS FS NS PS 

N 1 0 1 0 0 0 

E 0 1 0 1 1 1 

0.5 0 0 0 0 0 0 

1 0 0 0 0 0 0 

2 0 0 0 0 0 0 
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Table B.10 CPT for sensor S10 

Section 3 V4 Open, V5 Open 

Valve 3 Open Blocked 

Supply FS  NS PS FS NS PS 

N 0 0 0 0 0 0 

E 0 1 0 1 1 1 

0.5 0 0 1 0 0 0 

1 1 0 0 0 0 0 

2 0 0 0 0 0 0 

Section 3 V4 Open, V5 Blocked 

Valve 3 Open Blocked 

Supply FS  NS PS FS NS PS 

N 1 0 1 0 0 0 

E 0 1 0 1 1 1 

0.5 0 0 0 0 0 0 

1 0 0 0 0 0 0 

2 0 0 0 0 0 0 

Section 3 V4 Blocked, V5 Open 

Valve 3 Open Blocked 

Supply FS  NS PS FS NS PS 

N 0 0 0 0 0 0 

E 0 1 0 1 1 1 

0.5 0 0 0 0 0 0 

1 0 0 1 0 0 0 

2 1 0 0 0 0 0 

Section 3 V4 Blocked, V5 Blocked 

Valve 3 Open Blocked 

Supply FS  NS PS FS NS PS 

N 0 0 0 0 0 0 

E 1 1 1 1 1 1 

0.5 0 0 0 0 0 0 

1 0 0 0 0 0 0 

2 0 0 0 0 0 0 
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Appendix C  

 

 

Table C.1 Diagnosis of component failures using sensors (S1 S3 S7), ranked 1st with a diagnostic term of 

0.6818 

Case No. Failure DF1 Prob DF2 Prob DF3 Prob Group 

1 6 V4 V4 100%         1a 

 7 V5 V5 100%     1a 

 8 P1 P2 P1 100% P2 100%   2a 

 9 P1 V1 P1 100% V1 100%   2a 

 15 P2 V2 P2 100% V2 100%   2a 

  28 V4 V5 V4 100% V5 100%     2a 

2 5 V3 V3 95.84%     1b 

 10 P1 V2 P1 100% V2 95.47%   2b 

  14 P2 V1 P2 100% V1 95.47%     2b 

3 1 P1 P1 50% V1 50%   1c 

 2 P2 P2 50% V2 50%   1c 

 3 V1 P1 50% V1 50%   1c 

  4 V2 P2 50% V2 50%     1c 

4 12 P1 V4 V4 100% P1 50% V1 50% 2c 

 13 P1 V5 V5 100% P1 50% V1 50% 2c 

 17 P2 V4 V4 100% P2 50% V2 50% 2c 

 18 P2 V5 V5 100% P2 50% V2 50% 2c 

 21 V1 V4 V4 100% P1 50% V1 50% 2c 

 22 V1 V5 V5 100% P1 50% V1 50% 2c 

 24 V2 V4 V4 100% P2 50% V2 50% 2c 

  25 V2 V5 V5 100% P2 50% V2 50% 2c 

5 26 V3 V4 V3 95.84%     3d 

  27 V3 V5 V3 95.84%         3d 

6 11 P1 V3 V3 95.84%     3e 

 16 P2 V3 V3 95.84%     3e 

 20 V1 V3 V3 95.84%     3e 

  23 V2 V3 V3 95.84%         3e 

7 19 V1 V2 V3 95.84%         4a 
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Table C.2 Diagnosis of component failures using sensors (S1 S3 S8), ranked 2nd with a diagnostic term of 

0.6753 

Case No. Failure DF1 Prob DF2 Prob DF3 Prob Group 

1 6 V4 V4 100%         1a 

 7 V5 V5 100%     1a 

 8 P1 P2 P1 100% P2 100%   2a 

 9 P1 V1 P1 100% V1 100%   2a 

  15 P2 V2 P2 100% V2 100%     2a 

2 5 V3 V3 91.68%     1b 

 10 P1 V2 P1 100% V2 95.26%   2b 

  14 P2 V1 P2 100% V1 95.26%     2b 

3 1 P1 P1 50% V1 50%   1c 

 2 P2 P2 50% V2 50%   1c 

 3 V1 P1 50% V1 50%   1c 

  4 V2 P2 50% V2 50%     1c 

4 12 P1 V4 V4 100% P1 50% V1 50% 2c 

 13 P1 V5 V5 100% P1 50% V1 50% 2c 

 17 P2 V4 V4 100% P2 50% V2 50% 2c 

 18 P2 V5 V5 100% P2 50% V2 50% 2c 

 21 V1 V4 V4 100% P1 50% V1 50% 2c 

 22 V1 V5 V5 100% P1 50% V1 50% 2c 

 24 V2 V4 V4 100% P2 50% V2 50% 2c 

  25 V2 V5 V5 100% P2 50% V2 50% 2c 

5 26 V3 V4 V3 91.68%     3d 

  27 V3 V5 V3 91.68%         3d 

6 11 P1 V3 V3 91.68%     3e 

 16 P2 V3 V3 91.68%     3e 

 20 V1 V3 V3 91.68%     3e 

  23 V2 V3 V3 91.68%         3e 

7 28 V4 V5 V3 91.68%         4b 

8 19 V1 V2 V3 91.68%         4c 
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Table C.3 Diagnosis of component failures using sensors (S1 S4 S7), ranked 3rd with a diagnostic term of 

0.6688 

Case No. Failure DF1 Prob DF2 Prob DF3 Prob Group 

1 5 V3 V3 100%         1a 

 6 V4 V4 100%     1a 

 7 V5 V5 100%     1a 

 9 P1 V1 P1 100% V1 100%   2a 

  28 V4 V5 V4 100% V5 100%     2a 

2 1 P1 P1 50% V1 50%   1c 

 2 P2 P2 50% V2 50%   1c 

 3 V1 P1 50% V1 50%   1c 

  4 V2 P2 50% V2 50%     1c 

3 12 P1 V4 V4 100% P1 50% V1 50% 2c 

 13 P1 V5 V5 100% P1 50% V1 50% 2c 

 21 V1 V4 V4 100% P1 50% V1 50% 2c 

 22 V1 V5 V5 100% P1 50% V1 50% 2c 

 8 P1 P2 P1 100% P2 51.28% V2 51.28% 2c 

 10 P1 V2 P1 100% P2 51.28% V2 51.28% 2c 

 14 P2 V1 V1 100% P2 51.28% V2 51.28% 2c 

 17 P2 V4 V4 100% P2 51.28% V2 51.28% 2c 

 18 P2 V5 V5 100% P2 51.28% V2 51.28% 2c 

 19 V1 V2 V1 100% P2 51.28% V2 51.28% 2c 

 24 V2 V4 V4 100% P2 51.28% V2 51.28% 2c 

  25 V2 V5 V5 100% P2 51.28% V2 51.28% 2c 

4 15 P2 V2 P2 51.28% V2 51.28%     2e 

5 26 V3 V4 V3 100%     3d 

  27 V3 V5 V3 100%         3d 

6 11 P1 V3 V3 100%     3e 

 16 P2 V3 V3 100%     3e 

 20 V1 V3 V3 100%     3e 

  23 V2 V3 V3 100%         3e 
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Table C.4 Diagnosis of component failures using sensors (S1 S4 S8), ranked 4th with a diagnostic term of 

0.6623 

Case No. Failure DF1 Prob DF2 Prob DF3 Prob Group 

1 6 V4 V4 100%     1a 

 7 V5 V5 100%     1a 

  9 P1 V1 P1 100% V1 100%     2a 

2 5 V3 V3 95.47%         1b 

3 1 P1 P1 50% V1 50%   1c 

 2 P2 P2 50% V2 50%   1c 

 3 V1 P1 50% V1 50%   1c 

  4 V2 P2 50% V2 50%     1c 

4 12 P1 V4 V4 100% P1 50% V1 50% 2c 

 13 P1 V5 V5 100% P1 50% V1 50% 2c 

 21 V1 V4 V4 100% P1 50% V1 50% 2c 

 22 V1 V5 V5 100% P1 50% V1 50% 2c 

 8 P1 P2 P1 100% P2 51.28% V2 51.28% 2c 

 10 P1 V2 P1 100% P2 51.28% V2 51.28% 2c 

 14 P2 V1 V1 100% P2 51.28% V2 51.28% 2c 

 17 P2 V4 V4 100% P2 51.28% V2 51.28% 2c 

 18 P2 V5 V5 100% P2 51.28% V2 51.28% 2c 

 19 V1 V2 V1 100% P2 51.28% V2 51.28% 2c 

 24 V2 V4 V4 100% P2 51.28% V2 51.28% 2c 

  25 V2 V5 V5 100% P2 51.28% V2 51.28% 2c 

5 15 P2 V2 P2 51.28% V2 51.28%     2e 

6 26 V3 V4 V3 95.47%     3d 

  27 V3 V5 V3 95.47%         3d 

7 11 P1 V3 V3 95.47%     3e 

 16 V1 V3 V3 95.47%     3e 

 20 P2 V3 V3 95.47%     3e 

  23 V2 V3 V3 95.47%         3e 

8 28 V4 V5 V3 95.47%         4a 
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Table C.5 Diagnosis of component failures using sensors (S1 S8 S10), ranked 5th with a diagnostic term of 

0.6558 

Case No. Failure DF1 Prob DF2 Prob DF3 Prob Group 

1 6 V4 V4 100%     1a 

 7 V5 V5 100%     1a 

  9 P1 V1 P1 100% V1 100%     2a 

2 5 V3 V3 88.04%         1b 

3 1 P1 P1 50% V1 50%   1c 

 3 V1 P1 50% V1 50%   1c 

 2 P2 P2 51.28% V2 51.28%   1c 

  4 V2 P2 51.28% V2 51.28%     1c 

4 12 P1 V4 V4 100% P1 50% V1 50% 2c 

 13 P1 V5 V5 100% P1 50% V1 50% 2c 

 21 V1 V4 V4 100% P1 50% V1 50% 2c 

 22 V1 V5 V5 100% P1 50% V1 50% 2c 

 8 P1 P2 P1 100% P2 50.07% V2 50.07% 2c 

 10 P1 V2 P1 100% P2 50.07% V2 50.07% 2c 

 17 P2 V4 V4 100% P2 51.28% V2 51.28% 2c 

 18 P2 V5 V5 100% P2 51.28% V2 51.28% 2c 

 24 V2 V4 V4 100% P2 51.28% V2 51.28% 2c 

  25 V2 V5 V5 100% P2 51.28% V2 51.28% 2c 

5 15 P2 V2 P2 51.28% V2 51.28%     2e 

6 26 V3 V4 V3 88.04%     3d 

  27 V3 V5 V3 88.04%         3d 

7 11 P1 V3 V3 88.04%     3e 

 20 V1 V3 V3 88.04%     3e 

 16 P2 V3 V3 88.04%     3e 

  23 V2 V3 V3 88.04%         3e 

8 28 V4 V5 V3 88.04%         4c 

9 14 P2 V1 V3 88.04%     4d 

  19 V1 V2 V3 88.04%         4d 
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Table C.6 Diagnosis of component failures using sensors (S2 S4 S8), ranked 6th with a diagnostic term of 

0.6494 

Case No. Failure DF1 Prob DF2 Prob DF3 Prob DF4 Prob Group 

1 6 V4 V4 100%       1a 

  7 V5 V5 100%             1a 

2 5 V3 V3 95.47%             1b 

3 1 P1 P1 51.28% V1 51.28%     1c 

 2 P2 P2 51.28% V2 51.28%     1c 

 3 V1 P1 51.28% V1 51.28%     1c 

  4 V2 P2 51.28% V2 51.28%         1c 

4 12 P1 V4 V4 100% P1 51.28% V1 51.28%   2c 

 13 P1 V5 V5 100% P1 51.28% V1 51.28%   2c 

 17 P2 V4 V4 100% P2 51.28% V2 51.28%   2c 

 18 P2 V5 V5 100% P2 51.28% V2 51.28%   2c 

 21 V1 V4 V4 100% P1 51.28% V1 51.28%   2c 

 22 V1 V5 V5 100% P1 51.28% V1 51.28%   2c 

 24 V2 V4 V4 100% P2 51.28% V2 51.28%   2c 

  25 V2 V5 V5 100% P2 51.28% V2 51.28%     2c 

5 9 P1 V1 P1 51.28% V1 51.28%     2e 

 15 P2 V2 P2 51.28% V2 51.28%     2e 

 8 P1 P2 P1 51.28% P2 51.28% V1 51.28% V2 51.28% 2f 

 10 P1 V2 P1 51.28% P2 51.28% V1 51.28% V2 51.28% 2f 

 14 P2 V1 P1 51.28% P2 51.28% V1 51.28% V2 51.28% 2f 

  19 V1 V2 P1 51.28% P2 51.28% V1 51.28% V2 51.28% 2f 

6 26 V3 V4 V3 95.47%       3d 

  27 V3 V5 V3 95.47%             3d 

7 11 P1 V3 V3 95.47%       3e 

 16 P2 V3 V3 95.47%       3e 

 20 V1 V3 V3 95.47%       3e 

  23 V2 V3 V3 95.47%             3e 

8 28 V4 V5 V3 95.47%             4a 
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Table C.7 Diagnosis of component failures using sensors (S5 S6 S7), ranked 10th with a diagnostic term of 

0.5195 

Case No. Failure DF1 Prob 

(%) 

DF2 Prob 

(%) 

DF3 Prob 

(%) 

DF4 Prob 

(%) 

DF5 Prob 

(%) 

Group 

1 6 V4 V4 100             1a 

 7 V5 V5 100         1a 

  28 V4 V5 V4 100 V5 100             2a 

2 5 V3 V3 95.44                 1b 

3 1 P1 P1 25.64 V1 25.64 P2 25.64 V2 25.64   1d 

 2 P2 P1 25.64 V1 25.64 P2 25.64 V2 25.64   1d 

 3 V1 P1 25.64 V1 25.64 P2 25.64 V2 25.64   1d 

  4 V2 P1 25.64 V1 25.64 P2 25.64 V2 25.64     1d 

4 12 P1 V4 V4 100 P1 25.64 V1 25.64 P2 25.64 V2 25.64 2d 

 13 P1 V5 V5 100 P1 25.64 V1 25.64 P2 25.64 V2 25.64 2d 

 17 P2 V4 V4 100 P1 25.64 V1 25.64 P2 25.64 V2 25.64 2d 

 18 P2 V5 V5 100 P1 25.64 V1 25.64 P2 25.64 V2 25.64 2d 

 21 V1 V4 V4 100 P1 25.64 V1 25.64 P2 25.64 V2 25.64 2d 

 22 V1 V5 V5 100 P1 25.64 V1 25.64 P2 25.64 V2 25.64 2d 

 24 V2 V4 V4 100 P1 25.64 V1 25.64 P2 25.64 V2 25.64 2d 

  25 V2 V5 V5 100 P1 25.64 V1 25.64 P2 25.64 V2 25.64 2d 

5 8 P1 P2 P1 51.28 P2 51.28 V1 51.28 V2 51.28   2f 

 10 P1 V2 P1 51.28 V1 51.28 P2 51.28 V2 51.28   2f 

 14 P2 V1 P1 51.28 V1 51.28 P2 51.28 V2 51.28   2f 

  19 V1 V2 P1 51.28 V1 51.28 P2 51.28 V2 51.28     2f 

6 9 P1 V1 P1 25.64 V1 25.64 P2 25.64 V2 25.64   2g 

  15 P2 V2 P1 25.64 V1 25.64 P2 25.64 V2 25.64     2g 

7 26 V3 V4 V3 100         3a 

  27 V3 V5 V3 100                 3a 

8 11 P1 V3 V3 100         3c 

 16 P2 V3 V3 100         3c 

 20 V1 V3 V3 100         3c 

  23 V2 V3 V3 100                 3c 
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Table C.8 Diagnosis of component failures using sensors (S5 S8 S10), ranked 11th with a diagnostic term of 

0.5130 

Case No. Failure DF1 Prob 

(%) 

DF2 Prob 

(%) 

DF3 Prob 

(%) 

DF4 Prob 

(%) 

DF5 Prob 

(%) 

Group 

1 6 V4 V4 100         1a 

  7 V5 V5 100                 1a 

2 5 V3 V3 95.47                 1b 

3 1 P1 P1 25.64 V1 25.64 P2 25.64 V2 25.64   1d 

 2 P2 P1 25.64 V1 25.64 P2 25.64 V2 25.64   1d 

 3 V1 P1 25.64 V1 25.64 P2 25.64 V2 25.64   1d 

  4 V2 P1 25.64 V1 25.64 P2 25.64 V2 25.64     1d 

4 12 P1 V4 V4 100 P1 25.64 V1 25.64 P2 25.64 V2 25.64 2d 

 13 P1 V5 V5 100 P1 25.64 V1 25.64 P2 25.64 V2 25.64 2d 

 17 P2 V4 V4 100 P1 25.64 V1 25.64 P2 25.64 V2 25.64 2d 

 18 P2 V5 V5 100 P1 25.64 V1 25.64 P2 25.64 V2 25.64 2d 

 21 V1 V4 V4 100 P1 25.64 V1 25.64 P2 25.64 V2 25.64 2d 

 22 V1 V5 V5 100 P1 25.64 V1 25.64 P2 25.64 V2 25.64 2d 

 24 V2 V4 V4 100 P1 25.64 V1 25.64 P2 25.64 V2 25.64 2d 

  25 V2 V5 V5 100 P1 25.64 V1 25.64 P2 25.64 V2 25.64 2d 

5 8 P1 P2 P1 51.28 P2 51.28 V1 51.28 V2 51.28   2f 

 10 P1 V2 P1 51.28 P2 51.28 V1 51.28 V2 51.28   2f 

 14 P2 V1 P1 51.28 P2 51.28 V1 51.28 V2 51.28   2f 

  19 V1 V2 P1 51.28 V1 51.28 P2 51.28 V2 51.28     2f 

6 9 P1 V1 P1 25.64 V1 25.64 P2 25.64 V2 25.64   2g 

  15 P2 V2 P1 25.64 V1 25.64 P2 25.64 V2 25.64     2g 

7 26 V3 V4 V3 100         3d 

  27 V3 V5 V3 100                 3d 

8 11 P1 V3 V3 100         3f 

 16 P2 V3 V3 100         3f 

 20 V1 V3 V3 100         3f 

  23 V2 V3 V3 100                 3f 

9 28 V4 V5 V3 95.47                 4a 
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Table C.9 Diagnosis of component failures using sensors (S8 S10 S11), ranked 12th with a diagnostic term of 

0.5065 

Case No. Failure DF1 
Prob 

(%) 
DF2 

Prob 

(%) 
DF3 

Prob 

(%) 
DF4 

Prob 

(%) 
DF5 

Prob 

(%) 
Group 

1 6 V4 V4 100         
    

1a 

  7 V5 V5 100                 1a 

2 5 V3 V3 81.46                 1b 

3 1 P1 P1 25.64 V1 25.64 P2 25.64 V2 25.64   1d 

 2 P2 P1 25.64 V1 25.64 P2 25.64 V2 25.64   1d 

 3 V1 P1 25.64 V1 25.64 P2 25.64 V2 25.64   1d 

  4 V2 P1 25.64 V1 25.64 P2 25.64 V2 25.64     1d 

4 12 P1 V4 V4 100 P1 25.64 V1 25.64 P2 25.64 V2 25.64 2d 

 13 P1 V5 V5 100 P1 25.64 V1 25.64 P2 25.64 V2 25.64 2d 

 17 P2 V4 V4 100 P1 25.64 V1 25.64 P2 25.64 V2 25.64 2d 

 18 P2 V5 V5 100 P1 25.64 V1 25.64 P2 25.64 V2 25.64 2d 

 21 V1 V4 V4 100 P1 25.64 V1 25.64 P2 25.64 V2 25.64 2d 

 22 V1 V5 V5 100 P1 25.64 V1 25.64 P2 25.64 V2 25.64 2d 

 24 V2 V4 V4 100 P1 25.64 V1 25.64 P2 25.64 V2 25.64 2d 

  25 V2 V5 V5 100 P1 25.64 V1 25.64 P2 25.64 V2 25.64 2d 

5 9 P1 V1 P1 25.64 V1 25.64 P2 25.64 V2 25.64   2g 

  15 P2 V2 P1 25.64 V1 25.64 P2 25.64 V2 25.64     2g 

6 26 V3 V4 V3 81.46         3d 

  27 V3 V5 V3 81.46                 3d 

7 11 P1 V3 V3 81.46         3f 

 16 P2 V3 V3 81.46         3f 

 20 V1 V3 V3 81.46         3f 

  23 V2 V3 V3 81.46                 3f 

8 28 V4 V5 V3 81.46                 4e 

9 8 P1 P2 V3 81.46         4f 

 10 P1 V2 V3 81.46         4f 

 14 P2 V1 V3 81.46         4f 

  19 V1 V2 V3 81.46                 4f 
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Appendix D  

 

Table D.1 Sensor readings for the individual component failures for the engine feed operation mode 

Component 

failure 

S01 S01a S02 S03 S04 S05 S06 S07 S08 S09 S10 

No fault E E E E E E E E E E E 

TPLT on 1 N N N 1 N E E E E E 

TPLT off E E E E E E E E E E E 

TPLB on N 1 N N 1 N E E E E E 

TPLB off E E E E E E E E E E E 

TPRT on E E E E E E E E N N 1 

TPRT off E E E E E E E E E E E 

TPRB on E E E E E E E E N N 1 

TPRB off E E E E E E E E E E E 

TPFF on E E E E E E E E E E E 

TPFF off E E E E E E E E E E E 

TPRF on E E E E E E E E E E E 

TPRF off E E E E E E E E E E E 

BPFL on E E E E E E E E E E E 

BPFL off E E E E E E E E E E E 

BPFR on E E E E E E E E E E E 

BPFR off E E E E E E E E E E E 

BPRL on E E E E E E E E E E E 

BPRL off E E E E E E E E E E E 

BPRR on E E E E E E E E E E E 

BPRR off E E E E E E E E E E E 

RVLW open E E E E E E E E E E E 

RVLW closed E E E E E E E E E E E 

RVRW open E E E E E E E E E E E 

RVRW closed E E E E E E E E E E E 

RVFF open E E E E E E E E E E E 

RVFF closed E E E E E E E E E E E 
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RVRF open E E E E E E E E E E E 

RVRF closed E E E E E E E E E E E 

TVFF open E E E E E E E E E E E 

TVFF closed E E E E E E E E E E E 

TVRF open E E E E E E E E E E E 

TVRF closed E E E E E E E E E E E 

LDV open E E E E E E E E E E E 

LDV closed E E E E E E E E E E E 

RDV open E E E E E E E E E E E 

RDV closed E E E E E E E E E E E 

DV open E E E E E E E E E E E 

DV closed E E E E E E E E E E E 

CV open E E E E E E E E E E E 

CV closed E E E E E E E E E E E 

RPV open E E E E E E E E E E E 

RPV closed E E E E E E E E E E E 

LLP open E E E E E E E E E E E 

LLP closed E E E E E E E E E E E 

LHP open E E E E E E E E E E E 

LHP closed E E E E E E E E E E E 

RLP open E E E E E E E E E E E 

RLP closed E E E E E E E E E E E 

RHP open E E E E E E E E E E E 

RHP closed E E E E E E E E E E E 

TIV open E E E E E E E E E E E 

TIV closed E E E E E E E E E E E 

NVL 2 way E E E E E E E E E E E 

NVL closed E E E E E E E E E E E 

NVR 2 way E E E E E E E E E E E 

NVR closed E E E E E E E E E E E 

Continued… 

Component 

failure 

S11 S12 S12a S13 S14 S15 S15a S16 S16a S17 S18 
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No fault E E E E E 1 N 1 N N E 

TPLT on E E E E E 1 N 1 N N E 

TPLT off E E E E E 1 N 1 N N E 

TPLB on E E E E E 1 N 1 N N E 

TPLB off E E E E E 1 N 1 N N E 

TPRT on N 1 N E E 1 N 1 N N E 

TPRT off E E E E E 1 N 1 N N E 

TPRB on N N 1 E E 1 N 1 N N E 

TPRB off E E E E E 1 N 1 N N E 

TPFF on E E E E E 1 N 1 N N E 

TPFF off E E E E E 1 N 1 N N E 

TPRF on E E E E E 1 N 1 N N E 

TPRF off E E E E E 1 N 1 N N E 

BPFL on E E E E E 1 N 1 N N E 

BPFL off E E E E E N 1 1 N N E 

BPFR on E E E E E 1 1 1 N N E 

BPFR off E E E E E 1 N 1 N N E 

BPRL on E E E E E 1 N 1 N N E 

BPRL off E E E E E 1 N N 1 N E 

BPRR on E E E E E 1 N 1 1 N E 

BPRR off E E E E E 1 N 1 N N E 

RVLW open E E E E E 1 N 1 N N E 

RVLW closed E E E E E 1 N 1 N N E 

RVRW open E E E E E 1 N 1 N N E 

RVRW closed E E E E E 1 N 1 N N E 

RVFF open E E E E E 1 N 1 N N E 

RVFF closed E E E E E 1 N 1 N N E 

RVRF open E E E E E 1 N 1 E E E 

RVRF closed E E E E E 1 N 1 E E E 

TVFF open E E E E E 1 N 1 N N E 

TVFF closed E E E E E 1 N 1 N N E 

TVRF open E E E E E 1 N 1 N N E 

TVRF closed E E E E E 1 N 1 N N E 
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LDV open E E E E N 1 N 1 N N N 

LDV closed E E E E E 1 N 1 N N E 

RDV open E E E E N 1 N 1 N N N 

RDV closed E E E E E 1 N 1 N N E 

DV open E E E E E 1 N 1 N N E 

DV closed E E E E E 1 N 1 N N E 

CV open E E E E E 1 N 1 N N E 

CV closed E E E E E 1 N 1 N N E 

RPV open E E E E E 1 N 1 N N E 

RPV closed E E E E E 1 N 1 N N E 

LLP open E E E E E 1 N 1 N N E 

LLP closed E E E E E N N 1 N N E 

LHP open E E E E E 1 N 1 N N E 

LHP closed E E E E E N N 1 N N E 

RLP open E E E E E 1 N 1 N N E 

RLP closed E E E E E 1 N N N N E 

RHP open E E E E E 1 N 1 N N E 

RHP closed E E E E E 1 N N N N E 

TIV open E E E E E 1 N 1 N N E 

TIV closed E E E E E 1 N 1 N N E 

NVL 2 way E E E E E 1 N 1 N N E 

NVL closed E E E E E 1 N 1 N N E 

NVR 2 way E E E E E 1 N 1 N N E 

NVR closed E E E E E 1 N 1 N N E 

Continued… 

Component 

failure 

S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 

No fault E N E 1 1 1 1 E E N N 

TPLT on E N E 1 1 1 1 E E N N 

TPLT off E N E 1 1 1 1 E E N N 

TPLB on E N E 1 1 1 1 E E N N 

TPLB off E N E 1 1 1 1 E E N N 

TPRT on E N E 1 1 1 1 E E N N 
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TPRT off E N E 1 1 1 1 E E N N 

TPRB on E N E 1 1 1 1 E E N N 

TPRB off E N E 1 1 1 1 E E N N 

TPFF on E N E 1 1 1 1 1 1 N N 

TPFF off E N E 1 1 1 1 E E N N 

TPRF on E N E 1 1 1 1 -1 -1 N N 

TPRF off E N E 1 1 1 1 E E N N 

BPFL on E N E 1 1 1 1 E E N N 

BPFL off E N E 1 1 1 1 E E N N 

BPFR on E N E 2 2 1 1 E E N N 

BPFR off E N E 1 1 1 1 E E N N 

BPRL on E N E 1 1 1 1 E E N N 

BPRL off E N E 1 1 1 1 E E N N 

BPRR on E N E 1 1 2 2 E E N N 

BPRR off E N E 1 1 1 1 E E N N 

RVLW open E N E 1 1 1 1 E E N N 

RVLW closed E N E 1 1 1 1 E E N N 

RVRW open E N E 1 1 1 1 E E N N 

RVRW closed E N E 1 1 1 1 E E N N 

RVFF open E N E 1 1 1 1 E E N N 

RVFF closed E N E 1 1 1 1 E E N N 

RVRF open E N E 1 1 1 1 E E N N 

RVRF closed E N E 1 1 1 1 E E N N 

TVFF open E N E 1 1 1 1 E E N N 

TVFF closed E N E 1 1 1 1 E E N N 

TVRF open E N E 1 1 1 1 E E N N 

TVRF closed E N E 1 1 1 1 E E N N 

LDV open N N N 1 1 1 1 E E N N 

LDV closed E N E 1 1 1 1 E E N N 

RDV open N N N 1 1 1 1 E E N N 

RDV closed E N E 1 1 1 1 E E N N 

DV open E N E 1 1 1 1 E E N N 

DV closed E N E 1 1 1 1 E E N N 
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CV open E N E 1 1 1 1 E E N N 

CV closed E N E 1 1 1 1 E E N N 

RPV open E N E 1 1 1 1 E E N N 

RPV closed E N E 1 1 1 1 E E N N 

LLP open E N E 1 1 1 1 E E N N 

LLP closed E N E N E 1 1 E E N N 

LHP open E N E 1 1 1 1 E E N N 

LHP closed E N E N N 1 1 E E N N 

RLP open E N E 1 1 1 1 E E N N 

RLP closed E N E 1 1 N E E E N N 

RHP open E N E 1 1 1 1 E E N N 

RHP closed E N E 1 1 N N E E N N 

TIV open E N E 1 1 1 1 E E N N 

TIV closed E N E 1 1 1 1 E E N N 

NVL 2 way E N E 1 1 1 1 E E N N 

NVL closed E N E 1 1 1 1 E E N N 

NVR 2 way E N E 1 1 1 1 E E N N 

NVR closed E N E 1 1 1 1 E E N N 
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Table D.2 Sensor readings for the individual component failures for the fuel transfer operation mode 

Component 

failure 

S01 S01a S02 S03 S04 S05 S06 S07 S08 S09 S10 

No fault 1 N N N 1 N E E N N 1 

TPLT on 1 N N N 1 N E E N N 1 

TPLT off N 1 N N 1 N E E N N 1 

TPLB on 1 1 N N 2 N E E N N 1 

TPLB off 1 N N N 1 N E E N N 1 

TPRT on 1 N N N 1 N E E N N 1 

TPRT off 1 N N N 1 N E E N N 1 

TPRB on 1 N N N 1 N E E N N 2 

TPRB off 1 N N N 1 N E E N N 1 

TPFF on 1 N N N 1 N E E N N 1 

TPFF off 1 N N N 1 N E E N N 1 

TPRF on 1 N N N 1 N E E N N 1 

TPRF off 1 N N N 1 N E E N N 1 

BPFL on 1 N N N 1 N E E N N 1 

BPFL off 1 N N N 1 N E E N N 1 

BPFR on 1 N N N 1 N E E N N 1 

BPFR off 1 N N N 1 N E E N N 1 

BPRL on 1 N N N 1 N E E N N 1 

BPRL off 1 N N N 1 N E E N N 1 

BPRR on 1 N N N 1 N E E N N 1 

BPRR off 1 N N N 1 N E E N N 1 

RVLW open 1 N 0.5 N 0.5 N E E N N 1 

RVLW closed 1 N N N 1 N E E N N 1 

RVRW open 1 N N N 1 N E E N N 0.5 

RVRW closed 1 N N N 1 N E E N N 1 

RVFF open 1 N N N 1 N E E N 0.5 0.5 

RVFF closed 1 N N N 1 N E E N N 1 

RVRF open 1 N N 0.5 0.5 N E E N N 1 

RVRF closed 1 N N N 1 N E E N N 1 

TVFF open 1 N N N 1 N E E N N 1 
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TVFF closed 1 N N N 1 N E E N N N 

TVRF open 1 N N N 1 N E E N N 1 

TVRF closed N N N N N N E E N N 1 

LDV open 1 N N N 1 N E E N N 1 

LDV closed 1 N N N 1 N E E N N 1 

RDV open 1 N N N 1 N E E N N 1 

RDV closed 1 N N N 1 N E E N N 1 

DV open 1 N N N 1 N E E N N 1 

DV closed 1 N N N 1 N E E N N 1 

CV open 1 N N N 1 N E E N N 1 

CV closed 1 N N N 1 N E E N N 1 

RPV open 1 N N N 1 N E E N N 1 

RPV closed 1 N N N 1 N E E N N 1 

LLP open 1 N N N 1 N E E N N 1 

LLP closed 1 N N N 1 N E E N N 1 

LHP open 1 N N N 1 N E E N N 1 

LHP closed 1 N N N 1 N E E N N 1 

RLP open 1 N N N 1 N E E N N 1 

RLP closed 1 N N N 1 N E E N N 1 

RHP open 1 N N N 1 N E E N N 1 

RHP closed 1 N N N 1 N E E N N 1 

TIV open 1 N N N 1 N E E N N 1 

TIV closed 1 N N N 1 N E E N N 1 

NVL 2 way 1 N N N 0.5 -0.5 -0.5 0.5 0.5 N 1.5 

NVL closed 1 N N N 1 N E E N N 1 

NVR 2 way 1 N N N 1.5 0.5 0.5 -0.5 -0.5 N 0.5 

NVR closed 1 N N N 1 N E E N N 1 

Continued… 

Component 

failure 

S11 S12 S12a S13 S14 S15 S15a S16 S16a S17 S18 

No fault N 1 N E E E E E E E E 

TPLT on N 1 N E E E E E E E E 

TPLT off N 1 N E E E E E E E E 
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TPLB on N 1 N E E E E E E E E 

TPLB off N 1 N E E E E E E E E 

TPRT on N 1 N E E E E E E E E 

TPRT off N N 1 E E E E E E E E 

TPRB on N 1 1 E E E E E E E E 

TPRB off N 1 N E E E E E E E E 

TPFF on N 1 1 E E E E E E E E 

TPFF off N 1 1 E E E E E E E E 

TPRF on N 1 1 E E E E E E E E 

TPRF off N 1 1 E E E E E E E E 

BPFL on N 1 1 E E 1 N E E N E 

BPFL off N 1 1 E E E E E E E E 

BPFR on N 1 1 E E N 1 E E N E 

BPFR off N 1 1 E E E E E E E E 

BPRL on N 1 1 E E E E 1 N E E 

BPRL off N 1 1 E E E E E E E E 

BPRR on N 1 1 E E E E N 1 E E 

BPRR off N 1 1 E E E E E E E E 

RVLW open N 1 1 E E E E E E E E 

RVLW closed N 1 1 E E E E E E E E 

RVRW open 0.5 1 1 E E E E E E E E 

RVRW closed N 1 1 E E E E E E E E 

RVFF open N 1 1 E E E E E E E E 

RVFF closed N 1 1 E E E E E E E E 

RVRF open N 1 1 E E E E E E E E 

RVRF closed N 1 1 E E E E E E E E 

TVFF open N 1 1 E E E E E E E E 

TVFF closed N N N E E E E E E E E 

TVRF open N 1 1 E E E E E E E E 

TVRF closed N 1 1 E E E E E E E E 

LDV open N 1 1 E E E E E E E E 

LDV closed N 1 1 E E E E E E E E 

RDV open N 1 1 E E E E E E E E 
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RDV closed N 1 1 E E E E E E E E 

DV open N 1 1 E E E E E E E E 

DV closed N 1 1 E E E E E E E E 

CV open N 1 1 E E E E E E E E 

CV closed N 1 1 E E E E E E E E 

RPV open N 1 1 E E E E E E E E 

RPV closed N 1 1 E E E E E E E E 

LLP open N 1 1 E E E E E E E E 

LLP closed N 1 1 E E E E E E E E 

LHP open N 1 1 E E E E E E E E 

LHP closed N 1 1 E E E E E E E E 

RLP open N 1 1 E E E E E E E E 

RLP closed N 1 1 E E E E E E E E 

RHP open N 1 1 E E E E E E E E 

RHP closed N 1 1 E E E E E E E E 

TIV open N 1 1 E E E E E E E E 

TIV closed N 1 1 E E E E E E E E 

NVL 2 way N 1 1 N E E E E E E E 

NVL closed N 1 1 E E E E E E E E 

NVR 2 way N 1 1 N E E E E E E E 

NVR closed N 1 1 E E E E E E E E 

Continued… 

Component 

failure 

S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 

No fault E E E E E E E E E E E 

TPLT on E E E E E E E E E E E 

TPLT off E E E E E E E E E E E 

TPLB on E E E E E E E E E E E 

TPLB off E E E E E E E E E E E 

TPRT on E E E E E E E E E E E 

TPRT off E E E E E E E E E E E 

TPRB on E E E E E E E E E E E 

TPRB off E E E E E E E E E E E 
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TPFF on E E E E E E E 1 1 E E 

TPFF off E E E E E E E E E E E 

TPRF on E E E E E E E -1 -1 E E 

TPRF off E E E E E E E E E E E 

BPFL on E E E 1 1 E E E E N E 

BPFL off E E E E E E E E E E E 

BPFR on E E E 1 1 E E E E N E 

BPFR off E E E E E E E E E E E 

BPRL on E N E E E 1 1 E E E N 

BPRL off E E E E E E E E E E E 

BPRR on E N E E E 1 1 E E E N 

BPRR off E E E E E E E E E E E 

RVLW open E E E E E E E E E E E 

RVLW closed E E E E E E E E E E E 

RVRW open E E E E E E E E E E E 

RVRW closed E E E E E E E E E E E 

RVFF open E E E E E E E E E E E 

RVFF closed E E E E E E E E E E E 

RVRF open E E E E E E E E E E E 

RVRF closed E E E E E E E E E E E 

TVFF open E E E E E E E E E E E 

TVFF closed E E E E E E E E E E E 

TVRF open E E E E E E E E E E E 

TVRF closed E E E E E E E E E E E 

LDV open E E E E E E E E E E E 

LDV closed E E E E E E E E E E E 

RDV open E E E E E E E E E E E 

RDV closed E E E E E E E E E E E 

DV open E E E E E E E E E E E 

DV closed E E E E E E E E E E E 

CV open E E E E E E E E E E E 

CV closed E E E E E E E E E E E 

RPV open E E E E E E E E E E E 
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RPV closed E E E E E E E E E E E 

LLP open E E E E E E E E E E E 

LLP closed E E E E E E E E E E E 

LHP open E E E E E E E E E E E 

LHP closed E E E E E E E E E E E 

RLP open E E E E E E E E E E E 

RLP closed E E E E E E E E E E E 

RHP open E E E E E E E E E E E 

RHP closed E E E E E E E E E E E 

TIV open E E E E E E E E E E E 

TIV closed E E E E E E E E E E E 

NVL 2 way E E E E E E E E E E E 

NVL closed E E E E E E E E E E E 

NVR 2 way E E E E E E E E E E E 

NVR closed E E E E E E E E E E E 
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Table D.3 Sensor readings for the individual component failures for the fuel jettison operation mode 

Component 

failure 

S01 S01a S02 S03 S04 S05 S06 S07 S08 S09 S10 

No fault E E E E E E E E E E E 

TPLT on 1 N N N 1 N E E E E E 

TPLT off E E E E E E E E E E E 

TPLB on N 1 N N 1 N E E E E E 

TPLB off E E E E E E E E E E E 

TPRT on E E E E E E E E N N 1 

TPRT off E E E E E E E E E E E 

TPRB on E E E E E E E E N N 1 

TPRB off E E E E E E E E E E E 

TPFF on E E E E E E E E E E E 

TPFF off E E E E E E E E E E E 

TPRF on E E E E E E E E E E E 

TPRF off E E E E E E E E E E E 

BPFL on E E E E E E E E E E E 

BPFL off E E E E E E E E E E E 

BPFR on E E E E E E E E E E E 

BPFR off E E E E E E E E E E E 

BPRL on E E E E E E E E E E E 

BPRL off E E E E E E E E E E E 

BPRR on E E E E E E E E E E E 

BPRR off E E E E E E E E E E E 

RVLW open E E E E E E E E E E E 

RVLW closed E E E E E E E E E E E 

RVRW open E E E E E E E E E E E 

RVRW closed E E E E E E E E E E E 

RVFF open E E E E E E E E E E E 

RVFF closed E E E E E E E E E E E 

RVRF open E E E E E E E E E E E 

RVRF closed E E E E E E E E E E E 

TVFF open E E E E E E E E E E E 
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TVFF closed E E E E E E E E E E E 

TVRF open E E E E E E E E E E E 

TVRF closed E E E E E E E E E E E 

LDV open E E E E E E E E E E E 

LDV closed E E E E E E E E E E E 

RDV open E E E E E E E E E E E 

RDV closed E E E E E E E E E E E 

DV open E E E E E E E E E E E 

DV closed E E E E E E E E E E E 

CV open E E E E E E E E E E E 

CV closed E E E E E E E E E E E 

RPV open N N N N 0.8 0.8 0.8 0.8 N N 0.8 

RPV closed E E E E E E E E E E E 

LLP open E E E E E E E E E E E 

LLP closed E E E E E E E E E E E 

LHP open E E E E E E E E E E E 

LHP closed E E E E E E E E E E E 

RLP open E E E E E E E E E E E 

RLP closed E E E E E E E E E E E 

RHP open E E E E E E E E E E E 

RHP closed E E E E E E E E E E E 

TIV open E E E E E E E E E E E 

TIV closed E E E E E E E E E E E 

NVL 2 way E E E E E E E E E E E 

NVL closed E E E E E E E E E E E 

NVR 2 way E E E E E E E E E E E 

NVR closed E E E E E E E E E E E 

Continued… 

Component 

failure 

S11 S12 S12a S13 S14 S15 S15a S16 S16a S17 S18 

No fault E E E E N 1 1 1 1 -0.66 -0.66 

TPLT on E E E E N 1 1 1 1 -0.66 -0.66 

TPLT off E E E E N 1 1 1 1 -0.66 -0.66 
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TPLB on E E E E N 1 1 1 1 -0.66 -0.66 

TPLB off E E E E N 1 1 1 1 -0.66 -0.66 

TPRT on N 1 N E N 1 1 1 1 -0.66 -0.66 

TPRT off E E E E N 1 1 1 1 -0.66 -0.66 

TPRB on N N 1 E N 1 1 1 1 -0.66 -0.66 

TPRB off E E E E N 1 1 1 1 -0.66 -0.66 

TPFF on E E E E N 1 1 1 1 -0.66 -0.66 

TPFF off E E E E N 1 1 1 1 -0.66 -0.66 

TPRF on E E E E N 1 1 1 1 -0.66 -0.66 

TPRF off E E E E N 1 1 1 1 -0.66 -0.66 

BPFL on E E E E N 1 1 1 1 -0.66 -0.66 

BPFL off E E E E N N 1 1 1 N N 

BPFR on E E E E N 1 1 1 1 -0.66 -0.66 

BPFR off E E E E N 1 N 1 1 N N 

BPRL on E E E E N 1 1 1 1 -0.66 -0.66 

BPRL off E E E E N 1 1 N 1 -1 -1 

BPRR on E E E E N 1 1 1 1 -0.66 -0.66 

BPRR off E E E E N 1 1 1 N -1 -1 

RVLW open E E E E N 1 1 1 1 -0.66 -0.66 

RVLW closed E E E E N 1 1 1 1 -0.66 -0.66 

RVRW open E E E E N 1 1 1 1 -0.66 -0.66 

RVRW closed E E E E N 1 1 1 1 -0.66 -0.66 

RVFF open E E E E N 1 1 1 1 -0.66 -0.66 

RVFF closed E E E E N 1 1 1 1 -0.66 -0.66 

RVRF open E E E E N 1 1 1 1 -0.66 -0.66 

RVRF closed E E E E N 1 1 1 1 -0.66 -0.66 

TVFF open E E E E N 1 1 1 1 -0.66 -0.66 

TVFF closed E E E E N 1 1 1 1 -0.66 -0.66 

TVRF open E E E E N 1 1 1 1 -0.66 -0.66 

TVRF closed E E E E N 1 1 1 1 -0.66 -0.66 

LDV open E E E E N 1 1 1 1 -0.66 -0.66 

LDV closed E E E E N 1 1 1 1 N N 

RDV open E E E E N 1 1 1 1 -0.66 -0.66 
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RDV closed E E E E N 1 1 1 1 -0.66 -0.66 

DV open E E E E N 1 1 1 1 -0.66 -0.66 

DV closed E E E E N 1 1 1 1 N N 

CV open E E E E N 1 1 1 1 -0.66 -0.66 

CV closed E E E E N 1 1 1 1 -0.66 -0.66 

RPV open N N N -1.6 -1.6 1 1 1 1 -1.2 -1.2 

RPV closed E E E E N 1 1 1 1 -0.66 -0.66 

LLP open E E E E N 1 1 1 1 -0.66 -0.66 

LLP closed E E E E N 1 1 1 1 -2 -2 

LHP open E E E E N 1 1 1 1 -0.66 -0.66 

LHP closed E E E E N 1 1 1 1 -2 -2 

RLP open E E E E N 1 1 1 1 -0.66 -0.66 

RLP closed E E E E N 1 1 1 1 N N 

RHP open E E E E N 1 1 1 1 -0.66 -0.66 

RHP closed E E E E N 1 1 1 1 N N 

TIV open E E E E N 1 1 1 1 -0.66 -0.66 

TIV closed E E E E N 1 1 1 1 -0.66 -0.66 

NVL 2 way E E E E N 1 1 1 1 -0.66 -0.66 

NVL closed E E E E N 1 1 1 1 -0.66 -0.66 

NVR 2 way E E E E N 1 1 1 1 -0.66 -0.66 

NVR closed E E E E N 1 1 1 1 -0.66 -0.66 

Continued… 

Component 

failure 

S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 

No fault -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 E E N N 

TPLT on -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 E E N N 

TPLT off -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 E E N N 

TPLB on -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 E E N N 

TPLB off -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 E E N N 

TPRT on -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 E E N N 

TPRT off -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 E E N N 

TPRB on -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 E E N N 

TPRB off -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 E E N N 
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TPFF on -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 1 1 N N 

TPFF off -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 E E N N 

TPRF on -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 -1 -1 N N 

TPRF off -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 E E N N 

BPFL on -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 E E N N 

BPFL off -1 -1 -1 -1 -1 -1 -1 E E N N 

BPFR on -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 E E N N 

BPFR off -1 -1 -1 -1 -1 -1 -1 E E N N 

BPRL on -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 E E N N 

BPRL off N N -1 -1 -1 -1 -1 E E N N 

BPRR on -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 E E N N 

BPRR off N N -1 -1 -1 -1 -1 E E N N 

RVLW open -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 E E N N 

RVLW closed -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 E E N N 

RVRW open -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 E E N N 

RVRW closed -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 E E N N 

RVFF open -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 E E N N 

RVFF closed -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 E E N N 

RVRF open -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 E E N N 

RVRF closed -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 E E N N 

TVFF open -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 E E N N 

TVFF closed -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 E E N N 

TVRF open -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 E E N N 

TVRF closed -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 E E N N 

LDV open -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 E E N N 

LDV closed -0.66 -0.66 -1 -2 -2 -1 -1 E E N N 

RDV open -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 E E N N 

RDV closed N N -1 -1 -1 -2 -2 E E N N 

DV open -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 E E N N 

DV closed N N N -2 -2 -2 -2 E E N N 

CV open -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 E E N N 

CV closed -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 E E N N 

RPV open -1.2 -1.2 -0.8 -0.8 -0.8 -0.8 -0.8 E E N N 
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RPV closed -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 E E N N 

LLP open -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 E E N N 

LLP closed N N -2 N E -2 -2 E E N N 

LHP open -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 E E N N 

LHP closed N N -2 N N -2 -2 E E N N 

RLP open -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 E E N N 

RLP closed -2 -2 -2 -2 -2 N E E E N N 

RHP open -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 E E N N 

RHP closed -2 -2 -2 -2 -2 N N E E N N 

TIV open -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 E E N N 

TIV closed -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 E E N N 

NVL 2 way -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 E E N N 

NVL closed -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 E E N N 

NVR 2 way -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 E E N N 

NVR closed -0.66 -0.66 -1.33 -1.33 -1.33 -1.33 -1.33 E E N N 
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Table D.4 Sensor readings for the individual component failures for the refuel operation mode 

Component 

failure 

S01 S01a S02 S03 S04 S05 S06 S07 S08 S09 S10 

No fault N N 1 1 N 2 2 2 2 1 N 

TPLT on 1 N 1.5 1.5 N 2 2 2 2 1 N 

TPLT off N N 1 1 N 2 2 2 2 1 N 

TPLB on N 1 1.5 1.5 N 2 2 2 2 1 N 

TPLB off N N 1 1 N 2 2 2 2 1 N 

TPRT on N N 1 1 N 2 2 2 2 1.5 N 

TPRT off N N 1 1 N 2 2 2 2 1 N 

TPRB on N N 1 1 N 2 2 2 2 1.5 N 

TPRB off N N 1 1 N 2 2 2 2 1 N 

TPFF on N N 1 1 N 2 2 2 2 1 N 

TPFF off N N 1 1 N 2 2 2 2 1 N 

TPRF on N N 1 1 N 2 2 2 2 1 N 

TPRF off N N 1 1 N 2 2 2 2 1 N 

BPFL on N N 1 1 N 2 2 2 2 1 N 

BPFL off N N 1 1 N 2 2 2 2 1 N 

BPFR on N N 1 1 N 2 2 2 2 1 N 

BPFR off N N 1 1 N 2 2 2 2 1 N 

BPRL on N N 1 1 N 2 2 2 2 1 N 

BPRL off N N 1 1 N 2 2 2 2 1 N 

BPRR on N N 1 1 N 2 2 2 2 1 N 

BPRR off N N 1 1 N 2 2 2 2 1 N 

RVLW open N N 1 1 N 2 2 2 2 1 N 

RVLW closed N N N 2 N 2 2 2 2 1 N 

RVRW open N N 1 1 N 2 2 2 2 1 N 

RVRW closed N N 1 1 N 2 2 2 2 N N 

RVFF open N N 1 1 N 2 2 2 2 1 N 

RVFF closed N N 1 1 N 2 2 2 2 2 N 

RVRF open N N 1 1 N 2 2 2 2 1 N 

RVRF closed N N 2 N N 2 2 2 2 1 N 

TVFF open N N 1 1 N 2 2 2 2 0.66 0.66 
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TVFF closed N N 1 1 N 2 2 2 2 1 N 

TVRF open N N 0.66 0.66 0.66 2 2 2 2 1 N 

TVRF closed N N 1 1 N 2 2 2 2 1 N 

LDV open N N 1 1 N 2 2 2 2 1 N 

LDV closed N N 1 1 N 2 2 2 2 1 N 

RDV open N N 1 1 N 2 2 2 2 1 N 

RDV closed N N 1 1 N 2 2 2 2 1 N 

DV open N N 1 1 N 2 2 2 2 1 N 

DV closed N N 1 1 N 2 2 2 2 1 N 

CV open N N 1 1 N 2 2 2 2 1 N 

CV closed N N 1 1 N 2 2 2 2 1 N 

RPV open N N 1 1 N 2 2 2 2 1 N 

RPV closed N N 1 1 N 2 2 2 2 1 N 

LLP open N N 1 1 N 2 2 2 2 1 N 

LLP closed N N 1 1 N 2 2 2 2 1 N 

LHP open N N 1 1 N 2 2 2 2 1 N 

LHP closed N N 1 1 N 2 2 2 2 1 N 

RLP open N N 1 1 N 2 2 2 2 1 N 

RLP closed N N 1 1 N 2 2 2 2 1 N 

RHP open N N 1 1 N 2 2 2 2 1 N 

RHP closed N N 1 1 N 2 2 2 2 1 N 

TIV open N N 1 1 N 2 2 2 2 1 N 

TIV closed N N 1 1 N 2 2 2 2 1 N 

NVL 2 way N N 1 1 N 2 2 2 2 1 N 

NVL closed E E E E E E N 4 4 2 N 

NVR 2 way N N 1 1 N 2 2 2 2 1 N 

NVR closed N N 2 2 N 4 4 N E E E 

Continued… 

Component 

failure 

S11 S12 S12a S13 S14 S15 S15a S16 S16a S17 S18 

No fault 1 N N N E E E E E E E 

TPLT on 1 N N N E E E E E E E 

TPLT off 1 N N N E E E E E E E 
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TPLB on 1 N N N E E E E E E E 

TPLB off 1 N N N E E E E E E E 

TPRT on 1.5 1 N N E E E E E E E 

TPRT off 1 N N N E E E E E E E 

TPRB on 1.5 N 1 N E E E E E E E 

TPRB off 1 N N N E E E E E E E 

TPFF on 1 N N N E E E E E E E 

TPFF off 1 N N N E E E E E E E 

TPRF on 1 N N N E E E E E E E 

TPRF off 1 N N N E E E E E E E 

BPFL on 1 N N N E 1 N E E N E 

BPFL off 1 N N N E E E E E E E 

BPFR on 1 N N N E N 1 E E N E 

BPFR off 1 N N N E E E E E E E 

BPRL on 1 N N N E E E 1 N E E 

BPRL off 1 N N N E E E E E E E 

BPRR on 1 N N N E E E N 1 E E 

BPRR off 1 N N N E E E E E E E 

RVLW open 1 N N N E E E E E E E 

RVLW closed 1 N N N E E E E E E E 

RVRW open 1 N N N E E E E E E E 

RVRW closed N N N N E E E E E E E 

RVFF open 1 N N N E E E E E E E 

RVFF closed 2 N N N E E E E E E E 

RVRF open 1 N N N E E E E E E E 

RVRF closed 1 N N N E E E E E E E 

TVFF open 0.66 N N N E E E E E E E 

TVFF closed 1 N N N E E E E E E E 

TVRF open 1 N N N E E E E E E E 

TVRF closed 1 N N N E E E E E E E 

LDV open 1 N N N E E E E E E E 

LDV closed 1 N N N E E E E E E E 

RDV open 1 N N N E E E E E E E 
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RDV closed 1 N N N E E E E E E E 

DV open 1 N N N E E E E E E E 

DV closed 1 N N N E E E E E E E 

CV open 1 N N N E E E E E E E 

CV closed 1 N N N E E E E E E E 

RPV open 1 N N N N E E E E E N 

RPV closed 1 N N N E E E E E E E 

LLP open 1 N N N E E E E E E E 

LLP closed 1 N N N E E E E E E E 

LHP open 1 N N N E E E E E E E 

LHP closed 1 N N N E E E E E E E 

RLP open 1 N N N E E E E E E E 

RLP closed 1 N N N E E E E E E E 

RHP open 1 N N N E E E E E E E 

RHP closed 1 N N N E E E E E E E 

TIV open 1 N N N E E E E E E E 

TIV closed 1 N N N E E E E E E E 

NVL 2 way 1 N N N E E E E E E E 

NVL closed 2 N N N E E E E E E E 

NVR 2 way 1 N N N E E E E E E E 

NVR closed E E E N E E E E E E E 

Continued… 

Component 

failure 

S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 

No fault E E E E E E E E E E E 

TPLT on E E E E E E E E E E E 

TPLT off E E E E E E E E E E E 

TPLB on E E E E E E E E E E E 

TPLB off E E E E E E E E E E E 

TPRT on E E E E E E E E E E E 

TPRT off E E E E E E E E E E E 

TPRB on E E E E E E E E E E E 

TPRB off E E E E E E E E E E E 
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TPFF on E E E E E E E 1 1 E E 

TPFF off E E E E E E E E E E E 

TPRF on E E E E E E E -1 -1 E E 

TPRF off E E E E E E E E E E E 

BPFL on E E E 1 1 E E E E N E 

BPFL off E E E E E E E E E E E 

BPFR on E E E 1 1 E E E E N E 

BPFR off E E E E E E E E E E E 

BPRL on E N E E E 1 1 E E E N 

BPRL off E E E E E E E E E E E 

BPRR on E N E E E 1 1 E E E N 

BPRR off E E E E E E E E E E E 

RVLW open E E E E E E E E E E E 

RVLW closed E E E E E E E E E E E 

RVRW open E E E E E E E E E E E 

RVRW closed E E E E E E E E E E E 

RVFF open E E E E E E E E E E E 

RVFF closed E E E E E E E E E E E 

RVRF open E E E E E E E E E E E 

RVRF closed E E E E E E E E E E E 

TVFF open E E E E E E E E E E E 

TVFF closed E E E E E E E E E E E 

TVRF open E E E E E E E E E E E 

TVRF closed E E E E E E E E E E E 

LDV open E E E E E E E E E E E 

LDV closed E E E E E E E E E E E 

RDV open E E E E E E E E E E E 

RDV closed E E E E E E E E E E E 

DV open E E E E E E E E E E E 

DV closed E E E E E E E E E E E 

CV open E E E E E E E E E E E 

CV closed E E E E E E E E E E E 

RPV open N E N E E E E E E E E 
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RPV closed E E E E E E E E E E E 

LLP open E E E E E E E E E E E 

LLP closed E E E E E E E E E E E 

LHP open E E E E E E E E E E E 

LHP closed E E E E E E E E E E E 

RLP open E E E E E E E E E E E 

RLP closed E E E E E E E E E E E 

RHP open E E E E E E E E E E E 

RHP closed E E E E E E E E E E E 

TIV open E E E E E E E E E E E 

TIV closed E E E E E E E E E E E 

NVL 2 way E E E E E E E E E E E 

NVL closed E E E E E E E E E E E 

NVR 2 way E E E E E E E E E E E 

NVR closed E E E E E E E E E E E 
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Appendix E  

 

 

Table E.1 CPT for the components TPLT and TPRT 

Operation mode Engine Feed Fuel Transfer 

Working on 0 0.990 

Failed on 0.005 0.005 

Failed off 0.005 0.005 

Working off 0.990 0 

 

Table E.2 CPT for the components BPFL and BPRL 

Operation mode Engine Feed Fuel Transfer 

Working on 0.990 0 

Failed on 0.005 0.005 

Failed off 0.005 0.005 

Working off 0 0.990 

 

Table E.3 CPT for the components RVLW, RVRW, RVFF, RVRF, LDV, RDV, DV, RPV 

Operation mode Engine Feed Fuel Transfer 

Working open 0 0 

Failed open 0.001 0.001 

Failed closed 0.001 0.001 

Working closed 0.998 0.998 

 

Table E.4 CPT for the components TVFF, TVRF, LLP, LHP, RLP and RHP 

Operation mode Engine Feed Fuel Transfer 

Working open 0.998 0.998 

Failed open 0.001 0.001 

Failed closed 0.001 0.001 

Working closed 0 0 
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Table E.5 CPT for the components NVL and NVR 

Operation mode  Engine Feed Fuel Transfer 

Working (1 way) 0.991 0.991 

Failed open (2 way) 0.008 0.008 

Failed closed 0.001 0.001 
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Appendix F  

 

In this appendix, the relationships between all the nodes in Figures 4.9 and 4.10 are 

presented.  Note, nodes that end in a lower case “s” have the same description as the nodes 

with same name, they simplify the conditional probability tables for the determination of states 

for other nodes.  For example, the pump, BPFL has an additional node, BPFLs.  BPFL has four 

states, working on, failed on, failed off and working off, but for most other nodes, it does not 

matter whether the pump is working on or failed on, only that the pump is on.  Therefore, 

BPFLs is added and only has two states, on and off.  The nodes in the network presented in 

Figure 4.9 are presented in Figures F.1 – F.28, and the nodes in the network presented in Figure 

4.10 are presented in Figures F.29 to F.33.  Note, the relationships of the fault and criticality 

nodes are not presented for Figure 4.10 as they are the same as those for Figure 4.9, and can be 

found in Figures F.27 and F.28, respectively. 

 

Figure F.1 Relationships of the nodes ELW and ERW (exit left/right wing) 

 
Figure F.2 Relationships of the nodes SFLWTE and SFRWTE (supply from left/right wing to elsewhere) 
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Figure F.3 Relationships of the nodes ELE and ERE (exit left/right engine) 

 
Figure F.4 Relationships of the nodes ELEFE and EREFE (exit left/right engine from elsewhere) 

 
Figure F.5 Relationships of the nodes SFLECB and SFRECB (supply from left/right engine to centre bottom) 

 
Figure F.6 Relationships of the node EBFWs (exit bottom from wings) 
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Figure F.7 Relationships of the nodes SFETCT and SFETCTs (supply from engines to centre top) 

 
Figure F.8 Relationships of the nodes SFWTCT and SFWTCTs (supply from wings to centre top) 

 

Figure F.9 Relationships of the nodes EWFCTs and EWFCBs (exit wings from centre top/bottom) 

 
Figure F.10 Relationships of the nodes SFWTCB and SFWTCBs (supply from wings to centre bottom) 
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Figure F.11 Relationships of the nodes SFETLWs and SFETRWs (supply from elsewhere to left/right wing) 

 
Figure F.12 Relationships of the nodes EEFLWs and EEFRWs (exit elsewhere from left/right wings) 

 
Figure F.13 Relationships of the nodes FOLW and FORW (fuel out left/right wing) 

 
Figure F.14 Relationships of the nodes SFETNVL and SFETNVR (supply from elsewhere to NVL/NVR) 
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Figure F.15 Relationships of the node SFETCB (supply from engines to centre bottom) 

 
Figure F.16 Relationships of the nodes SFETLEs and SFETREs (supply from elsewhere to left/right engine) 

 
Figure F.17 Relationships of the nodes EEFLEs and EEFREs (exit elsewhere from left/right engine) 

 
Figure F.18 Relationships of the nodes SFETLDV and SFETRDV (supply from elsewhere to LDV/RDV) 



 

358 
 

 
Figure F.19 Relationships of the node FODV (fuel out dump valve).  Note, the relationship of node S21 is also 

presented in this figure. 

 
Figure F.20 Relationships of the nodes FOLE and FORE (fuel out left/right engine). Note, the relationships of 

nodes S22, S23, S24 and S25 are also presented in this figure. 

 
Figure F.21 Relationships of the nodes S01 and S12 

 
Figure F.22 Relationships of the nodes S02, S03, S04, S09, S10 and S11 
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Figure F.23 Relationships of the nodes S05, S06, S07 and S08 

 
Figure F.24 Relationships of the nodes S13 and S14 

 
Figure F.25 Relationships of the nodes S15 and S16 

 
Figure F.26 Relationships of the nodes S17, S18, S19 and S20 

 
Figure F.27 Relationships of the fault nodes 
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Figure F.28 Relationships of the critical nodes 

 
Figure F.29 Relationships of the supply of fuel node (SF) 

 
Figure F.30 Relationships of the exits in the top section nodes (ETS) 
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Figure F.31 Relationships of the exits in the bottom section nodes (EBS) 

 
Figure F.32 Relationships of the path to centre nodes (PTC) 

 
Figure F.33 Relationships of the supply per exit left/right wing nodes (SELW and SERW) 
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Appendix G  

 

 

The C++ script for calculating the sensor reading for sensor S1 of the system considered in 

Chapter 4 is presented in this section.  In this script, each of the components are represented by 

the label given in Table 4.1.  The component states are represented by a number, where for the 

pumps, state 0 is working on, state 1 is failed on, 2 is failed off, and state 3 is working off, and 

for the valves, state 0 is the working state, state 1 is failed open, and state 2 is failed closed.  

Note, for the valves, only one working state is observed in the two considered operation modes, 

hence only three states are required for the valves.  For the one directional valves, (NVL and 

NVR), state 0 represents the working state, state 1 represents the failed two-way mode, and 

state 2 represents the failed closed mode. 

The additional variables, ELE, ERE, EEFW, ELW and EFLW, represent Exit Left Engine, 

Exit Right Engine, Exit Elsewhere From Wings, Exit Left Wing, and Exit From Left Wing, 

respectively, i.e. detailing which sections of the system the fuel can exit in.  Note, in each case, 

0 represents that there is an open exit, and state 1 represents that there is not an open exit. 

Note, for the sensor state, 0 represents the state E, -100 represents the state N, and any other 

number represents the amount of fuel passing through the sensor. 

 

int (CalculateS1(int s1)) 
{ 
 if ((LLP == 0 || LLP == 1) && (LHP == 0 || LHP == 1)) 
 { 
  ELE = 0; 
 } 
 else 
 { 
  ELE = 1; 
 } 
 if ((RLP == 0 || RLP == 1) && (RHP == 0 || RHP == 1)) 
 { 
  ERE = 0; 
 } 
 else 
 { 
  ERE = 1; 
 } 
 if (RPV == 1) 
 { 

if ((ELE == 0 && (LDV == 1 || (RDV == 1 && (CV == 0 || CV == 1)))) || 
(ERE == 0 && (RDV == 1 || (LDV == 1 && (CV == 0 || CV == 1)))) || 
DV == 1) 

  { 
   EEFW = 0; 
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  } 
  else 
  { 
   EEFW = 1; 
  } 
 } 
 else 
 { 
  EEFW = 1; 
 } 
 if (TVRF == 0 || TVRF == 1 || RVLW == 1 || RVRF == 1) 
 { 
  ELW = 0; 
 } 
 else 
 { 
  ELW = 1; 
 } 
 if (NVL == 1) 
 { 

if ((NVR == 1 || NVR == 0) && (TVFF == 0 || TVFF == 1 || RVRW == 1 || 
RVFF == 1)) 

  { 
   EFLW = 0; 
  } 
  else 
  { 
   if (EEFW == 0) 
   { 
    EFLW = 0; 
   } 
   else  
   { 
    EFLW = 1; 
   } 
  } 
 } 
 else 
 { 
  EFLW = 1; 
 } 
 if (TPLT == 0 || TPLT == 1) 
 { 
  if (ELW == 0 || EFLW == 0) 
  { 
   s1 = 2; 
  } 
  else 
  { 
   s1 = -100; 
  } 
 } 
 else 
 { 
  if (TPLB == 0 || TPLB == 1) 
  { 
   s1 = -100; 
  } 
  else 
  { 
   if (NVL == 0 || NVL == 1) 
   { 
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if (NVR == 1 && (TPRT == 0 || TPRT == 1 || TPRB == 0 ||  
TPRB == 1)) 

    { 
     s1 = -100; 
    } 
    else 
    { 
     if (RPV == 1) 
     { 

if (((BPFL == 0 || BPFL == 1 || BPFR == 0 || 
BPFR == 1) && (LDV == 1 || (RDV == 1 
&& (CV == 0 || CV == 1))))  || ((BPRL 
== 0 || BPRL == 1 || BPRR == 0 || BPRR 
== 1) && (RDV == 1 || (LDV == 1 && (CV 
== 0 || CV == 1))))) 

      { 
       s1 = -100; 
      } 
      else 
      { 
       s1 = 0; 
      } 
     } 
     else 
     { 
      s1 = 0; 
     } 
    } 
   } 
   else 
   { 
    s1 = 0; 
   } 
  } 
 } 
 return s1; 
} 
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Appendix H  

 

In this appendix, the relationships between the nodes of the BBN presented in Figure 5.7 

are presented.  Note, as in Appendix F, nodes that end in a lower case “s” have the same 

description as the nodes with same name, they just slightly simplify the conditional probability 

tables for the determination of states for other nodes.  For example, the pump, BPFL has an 

additional node, BPFLs.  BPFL has four states, working on, failed on, failed off and working 

off, but for most other nodes, it does not matter whether the pump is working on or failed on, 

only that it is on.  Therefore, BPFLs is added and only has two states, on and off.  The nodes 

in the network presented in Figure 5.7 are presented in Figures H.1 – H.36.  Figures H.1 – H.36 

are each of the sub-networks in the network.  In the sub-networks, the nodes with the grey 

border are input and output nodes, with input nodes having a dashed border, and output nodes 

having a solid border.  The output nodes can then be used as an input node for other sub-

networks.  A brief description of the input and output nodes in each of the sub-networks is 

presented after each figure.  Note a description of the components are not given as they can be 

found in Table 4.1. 

 

Figure H.1 Relationships of the nodes in the left engine section 

• SLE (supply left engine). 

• ELE (exit left engine). 
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Figure H.2 Relationships of the nodes in the right engine section 

• SRE (supply right engine). 

• ERE (exit right engine). 

 
Figure H.3 Relationships of the nodes in the left wing section 

• SLW (supply left wing). 

• ELW (exit left wing). 

 
Figure H.4 Relationships of the nodes in the right wing section 

• SRW (supply right wing). 

• ERW (exit right wing). 
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Figure H.5 Relationships of the nodes in the centre top 

• ALWFB (access to left wing from bottom). 

• PTCT (path to centre top). 

• ARWFB (access to right wing from bottom). 

 
Figure H.6 Relationships of the nodes in the centre bottom. 

• PTCB (path to centre bottom). 

 
Figure H.7 Relationships of the nodes in supply from engines to wings 

• VICO (valves in centre open). 

• SFE (supply from engines). 

• SFETW (supply from engines to wings). 
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Figure H.8 Relationships of the nodes supply from left wing to bottom 

• SFLWTRPV (supply from left wing to RPV). 

• SFLWTB (supply from left wing to bottom). 

 
Figure H.9 Relationships of the nodes supply from right wing to bottom 

• SFRWTRPV (supply from right wing to RPV). 

• SFRWTB (supply from right wing to bottom). 

 
Figure H.10 Relationships of the nodes supply from left wing 

• SFLW (supply from left wing). 

 
Figure H.11 Relationships of the nodes from right wing 

• SFRW (supply from right wing). 
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Figure H.12 Relationships of the cross-feed valve (CV) 

• CV (cross-feed valve). 

 
Figure H.13 Relationships for the tank interconnect path 

• TIP (tank interconnect path). 

 
Figure H.14 Relationships for NVL 

• FNVL (fuel through NVL). 

 
Figure H.15 Relationships for NVR 

• FNVR (fuel through NVR). 



 

372 
 

 
Figure H.16 Relationships for wing pumps 

• SETW (supply from engines to wings). 

• EEFW (engine exits from wings). 

• EFLW (exits from left wing). 

• EFRW (exits from right wing). 

• STLW (supply to left wing). 

• STRW (supply to right wing). 

• PLW (pumps left wing). 

• PRW (pumps right wing). 

 
Figure H.17 Relationships fuel out left wing 

• FOLW (fuel out left wing). 

 
Figure H.18 Relationships fuel out right wing 

• FORW (fuel out right wing). 
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Figure H.19 Relationships for supply from wings 

• SFWTRPV (supply from wings to RPV). 

• SFWTB (supply from wings to bottom). 

 
Figure H.20 Relationships for fuel out left engine 

• VICO (valves in centre open). 

• FRE (fuel right engine). 

• FOLE (fuel out left engine). 

 
Figure H.21 Relationships for fuel out right engine 

• VICO (valves in centre open). 

• FLE (fuel left engine). 

• FORE (fuel out right engine). 
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Figure H.22 Relationships for engine pumps 

• SFWTBs (supply from wings to bottom supply). 

• SFWTBe (supply from wings to bottom exits). 

• SLPFE (supply left pumps from elsewhere). 

• SRPFE (supply right pumps from elsewhere). 

• EFLP (exits from left pumps). 

• EFRP (exits from right pumps). 

• PLE (pumps left engine). 

• PRE (pumps right engine). 

 
Figure H.23 Relationships at dump valve 

• SSFWTB (simple supply from wings to bottom). 

• VICO (valves in centre open). 

• SE (supply engines). 
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Figure H.24 Relationships at left dump valve 

• VICO (valves in centre open). 

• FLE (fuel left engine). 

• FRE (fuel right engine). 

• FLDV (fuel through LDV). 

 

Figure H.25 Relationships at right dump valve 

• VICO (valves in centre open). 

• FLE (fuel left engine). 

• FRE (fuel right engine). 

• FRDV (fuel through RDV). 

 

Figure H.26 Relationships for sensors S01, S01a, S12 and S12a 

 
Figure H.27 Relationships for sensors S02, S03, S04, S09, S10 and S11 
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Figure H.28 Relationships for sensors S05, S06, S07 and S08 

 
Figure H.29 Relationships for sensors S13 and S14 

 
Figure H.30 Relationships for sensors S15, S15a, S16 and S16a 

 
Figure H.31 Relationships for sensors S17, S18, S19, S20 and S21 

 
Figure H.32 Relationships for sensors S22, S23, S24 and S25 

 
Figure H.33 Relationships for sensors S26 and S27 
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Figure H.34 Relationships for sensors S28 and S29 

• VICO (valves in centre open). 

• FLE (fuel left engine). 

• FRE (fuel right engine). 

 

Figure H.35 Relationships for the fault node 

• FEE (fault engine exits). 

• BPF (booster pump faults). 

• CBF (centre bottom faults). 

• WVF (wing valve faults). 

• TPF (transfer pump faults). 

• CTF (centre top faults). 

• RSF (tank interconnect section faults). 
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Figure H.36 Relationships for the critical node 

• CDV (critical dump valve). 

• CLW (critical left wing). 

• CRW (critical right wing). 

• CE (critical engines). 
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Appendix I  

 

 

In this appendix the diagnostic results from section 6.5.3 are presented.  The components 

are grouped into six groups; engine feed (EF) pumps, fuel transfer (FT) pumps, dump (D) 

pumps, engine feed (EF) valves, cross-feed (CF) valves, and dump and refuel (DR) valves.  

Tables I.1 – I.6 present the results of the diagnostic process for each of the groups of 

components, respectively.  As in Chapter 5, the probability that each component is in the failure 

mode is presented after each of the component failures.  This is equal to the probability of each 

failure occurrence divided by the probability of all component failures that produce the 

observed symptoms, respectively, i.e. Pmli/Psri.  For example, if the probability in the tables is 

50%, then there is a 50% likelihood that the component has failed.  In the tables, “a% - b%” 

refers to a confidence of diagnosis of “a%” initially, but at a later time in the mission, a 

confidence of diagnosis of “b%” is achieved, where “b” > “a”.  Some of the component failures 

are not detected as soon as they occur, therefore, “a%d” refers to a confidence of diagnosis of 

“a%” but the failure is not detected at the time of occurrence, i.e. there is a delayed detection, 

td ≠ tf.  Note, details of the length of the delay in detection are not presented due to the number 

of different variations observed.  This is also the case when the confidence of diagnosis changes 

from “a% - b%”, as discussed before.  Also note, “0%” diagnosis confidence is used to 

represent hidden failures. 

As before, for brevity, the details of the failures are presented in the form TO-1, where the 

text before the dash represent the description of the failure, and the text after the dash represents 

the phase of the mission in which the component fails, i.e. as presented in Table 6.3. 

 

 
Table I.1 Diagnostic results for the engine feed pumps 

Group Probability Number Description 

1 100% 262 • L1P1, C/2 all phases, TO-1, TO/2-1, C-1, T-1, 

T/2-1. 

• L2P1, TO, TO/2, C/2, T, T/2, 0 all phases, C-1. 

• R1P1, C/2, 0 all phases, TO-1, TO/2-1, C-1, T-1, 

T/2-1. 
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• R2P1, C/2, all phases, TO-1, TO/2-1, C-1, T-1, 

T/2-1. 

• L1P2, TO all phases. TO/2-1, C-1, C/2-1, T-1, 

T/2-1, T/2-2, T/2-3, T/2-5, T/2-7, T/2-9, T/2-11.  

• L2P2, TO, TO/2, C, C/2, T, T/2, all phases. 

• R1P2, R2P2, TO, T/2, all phases, TO/2-1, C-1, 

C/2-1, T-1. 

2 100%d 4 • L1P1, L2P1, R1P1, R2P1, TO-1. 

3 50% 240 • L1P1, R1P1, R2P1, TO, TO/2, T, T/2, phases 2 

– 11. 

• L1P2, R1P2, R2P2, TO/2, C, C/2, T/2, phases 2 

– 11. 

4 16.66% 22 • L1P1, 0, all phases – Diagnosed incorrectly. 

• R2P1, 0, all phases – Diagnosed incorrectly. 

5 0.707% - 

100% 

4 • L1P2, L2P2, T/2-4, T/2-6, T/2-8, T/2-10. 

6 0% 84 • L1P2, L2P2, R1P2, R2P2, 0, all phases. 

• L1P1, L2P1, R1P1, R2P1, C, phases 2 – 11. 

 

 

In Table I.1, all of the failure occurrence times are determined correctly.  The component 

failures in group 2 are detected at the beginning of the next phase, but the correct failure 

occurrence time is determined.  The component failures that are in group 3 are either the 

primary pump (except L2P1) failing or the corresponding secondary pump (except L2P2) 

failing in phases 2 – 11.  Note, the pump supply rates are different in each case, but always in 

pairs, for example, either the primary pump is outputting the fuel at the take-off supply rate, or 

the secondary pump is outputting the fuel at the transfer supply rate.  The component failures 

in group 4 are diagnosed incorrectly.  These are the only failures in the system that are not 

diagnosed correctly.  In each case, the corresponding engine feed valve failing closed (i.e. 

LEV1 for L1P1) results in the same set of symptoms.  As the valves have a higher failure rate 

than the pumps, the failure is diagnosed as the valve failing closed.  However, if evidence is 

introduced to the system that the valve is open, the correct failure will be diagnosed correctly 

with 100% confidence.  The component failures in group 5 are diagnosed incorrectly initially, 

with 14 other components each having a probability of approximately 3.55% of being in two 
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different states.  The components are the dump and refuel valves.  At the start of the next phase, 

the sensor reading changes and the failure is then diagnosed correctly with 100% confidence.  

The hidden failures in Table I.1, group 6, are the secondary pumps failing off, i.e. the state they 

are supposed to be in, and the primary pumps failing supply the fuel at the rate normally 

supplied during the cruise phase in phases 2 – 11, i.e. the state they are supposed to be in.  The 

reason that the pump failure supplying the fuel at the rate that is supplied to the engines during 

the cruise phase are not hidden in phase 1, is because the pumps should supply fuel at a different 

rate in the first phase of the mission, i.e. take-off rate. 

 

Table I.2 Diagnostic results for the fuel transfer pumps 

Group Probability Number Description 

7 100% 45 • LOTP, ROTP, TO/2-10, C-10, C/2-10, T/2-10, 

0-10. 

• LTP, RTP, TO-8, TO/2-8, C-8, C/2-8, T-8, T/2-

8. 

• LMTP, RMTP, TO/2-6, C-6, C/2-6, T/2-6, 0-6. 

• LITP, RITP, TO/2-4, C-4, C/2-4, T/2-4, 0-4. 

• LMTP, TO/2-10. 

• LITP, RITP, C/2-2. 

8 100%d 6 • LITP, RITP, 0-1, 0-3. 

• LTP, RTP, 0-8. 

9 50% - 100% 52 • LOTP, ROTP, TO-2, TO-4, TO-6, C/2-2, C/2-4, 

C/2-6, T-4, T-6, T/2-4, T/2-6. 

• LOTP, TO/2-4, TO/2-6. 

• LMTP, RMTP, TO-2, TO-4, C/2-2, C/2-4, T-4, 

T-6, T/2-4, T/2-10.  

• LMTP, TO/2-4. 

• LITP, RITP, TO-6, C/2-6, T-2, T-6, T/2-6, T/2-

10. 

• LITP, TO/2-6. 

10 33.33% - 

100% 

29 • LOTP, ROTP, TO-8, TO-10, C-8, C/2-8, T-2, T-

8, T/2-2. 

• LOTP, TO/2-8. 
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• LMTP, RMTP, T-2, T/2-2, T/2-8. 

• LITP, RITP, TO-4, C-6, T/2-2, 0-2. 

11 33.33% - 

50% - 100% 

16 • LOTP, ROTP, C-4, C-6, T/2-8. 

• LMTP, RMTP, TO-6, C-4, C/2-8. 

• LITP, RITP, C/2-8, T/2-8. 

12 50% - 

100%d 

2 • LITP, RITP, T-4. 

13 25% - 100% 4 • LOTP, ROTP, C-2. 

• LITP, RITP, TO/2-2. 

14 14.26% - 

100% 

2 • ROTP, TO/2-4. 

• RITP, TO/2-6. 

15 14.26% - 

16.64% - 

100% 

2 • ROTP, TO/2-6. 

• RMTP, TO/2-4. 

16 14.26% - 

50% 

2 • RMTP, TO/2-8. 

• RITP, TO/2-10. 

17 12.49% - 

16.64% - 

100% 

1 • ROTP, TO/2-8. 

18 12.49% - 

33.33% - 

100% 

3 • ROTP, TO/2-2. 

• RMTP, TO/2-4. 

• LITP, C-2. 

19 12.49% - 

50% 

2 • RMTP, TO/2-8. 

• RITP, TO/2-8. 

20 7.68% - 

12.49% - 

100% 

2 • LOTP, TO/2-2. 

• LMTP, TO/2-2 

21 8.33% - 

100% 

84 • LTP, RTP, TO, TO/2, C, C/2, T, T/2, phases 1 – 

7. 

22 2.77% - 

100% 

26 • LOTP, ROTP, TO/2-9, C-9, C/2-9, T/2-9. 

• LMTP, RMTP, TO/2-5, C-5, C/2-5, T/2-5. 

• LITP, RITP, TO/2-3, C-3, C/2-1, C/2-3, T/2-3. 
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23 2.77% - 25% 

- 50% - 

100% 

4 • LMTP, RMTP, C-1. 

• LITP, RITP, TO-1. 

24 2.77% - 

33.33% - 

50% - 100% 

16 • LOTP, ROTP, C-3, C-5, T/2-7. 

• LMTP, RMTP, TO-5, C-3, C/2-7. 

• LITP, RITP, C/2-7, T/2-7. 

25 2.77% - 25% 

- 100% 

4 • LOTP, ROTP, C-1. 

• LITP, RITP, TO/2-1. 

26 2.77% - 

33.33% - 

100% 

30 • LOTP, ROTP, TO-7, TO-9, TO/2-1, TO/2-7, C-

7, C/2-7, T-7, T/2-1. 

• LMTP, RMTP, TO/2-1, T/2-1, T/2-7. 

• LITP, RITP, TO-3, C-1, C-5, T/2-1. 

27 2.77% - 50% 

- 100% 

62 • LOTP, ROTP, TO-1, TO-3, TO-5, TO/2-3, 

TO/2-5, C/2-1, C/2-3, C/2-5, T-1, T-3, T-5, T/2-

3, T/2-5. 

• LMTP, RMTP, TO-1, TO-3, TO/2-3, C/2-1, 

C/2-3, T-1, T-3, T-5, T/2-3, T/2-9. 

• LITP, RITP, TO-5, TO/2-5, C/2-5, T-1, T-3, T-

5, T/2-5, T/2-9. 

28 2.77% 36 • LOTP, ROTP, TO-11, TO/2-11, C-11, C/2-11, 

T-11, T/2-11. 

• LMTP, RMTP, TO-11, TO/2-11, C-11, C/2-11, 

T-11, T/2-11. 

• LITP, RITP, TO-11, TO/2-11, C-11, C/2-11, T-

11, T/2-11. 

29 2.77% - 50% 18 • LOTP, ROTP, T-9. 

• LMTP, RMTP, TO-9, TO/2-9, C/2-9, T-9. 

• LITP, RITP, TO-9, TO/2-9, C/2-9, T-9. 

30 2.77% - 

33.33% - 

50% 

20 • LMTP, RMTP, TO-7, TO/2-7, C-7, C-9, T-7. 

• LITP, RITP, TO-7, TO/2-7, C-7, C-9, T-7. 

31 50% 15 • LOTP, ROTP, T-10. 

• LMTP, RMTP, TO-10, C/2-10, T-10. 

• LITP, RITP, TO-10, C/2-10, T-10. 
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• LITP, TO/2-10. 

32 20%d 10 • LMTP, RMTP, 0, phases 1 – 5. 

33 11.11%d 18 • LOTP, ROTP, 0, phases 1 – 9. 

34 14.26%d 14 • LTP, RTP, 0, phases 1 – 7. 

35 33.33% - 

50% 

18 • LMTP, RMTP, TO-8, C-8, C-10, T-8. 

• LMTP, TO/2-8. 

• LITP, RITP, TO-8, C-8, C-10, T-8. 

• LITP TO/2-8. 

36 25% - 50% - 

100% 

4 • LMTP, RMTP, C-2. 

• LITP, RITP, TO-2. 

37 8.33% 36 • LTP, RTP, TO, TO/2, C, C/2, T, T/2, phases 1 – 

7. 

38 7.67% - 

12.48% - 

16.64% - 

100% 

1 • RITP, C-2. 

39 0% 32 • LOTP, ROTP, 0-11. 

• LTP, RTP, 0, phases 9 – 11. 

• LMTP, RMTP, 0, phases 7 – 11. 

• LITP, RITP, 0, phases 5 – 11. 

 

In Table I.2 the component failures in group 7 are all detected and diagnosed correctly, at 

their time of occurrence.  Each of the different component failures in this group are when the 

components fail in the phases in which they are supposed to be active.  In group 8, the failures 

are not detected immediately, they are detected at the start of the next phase of the mission, i.e. 

when the component is supposed to be active.  In group 9 there are initially two possible 

component failures that could have caused the failure, two different pumps located on the same 

side of the system, for example, LOTP and LITP.  At a later point in the mission, (within the 

same phase), the confidence of diagnosis changes, and the correct component failure is 

diagnosed.  The next group, group 10, is the same as the previous group, except that when the 

failure is first detected, there are three possible component failures.  The following group, 

group 11, is when there are three possible failures when the failure is first detected, but at a 

later stage in the mission, there are two possible failures, and then at a later step only one 

possible failure, i.e. similar to the previous two groups, but three steps rather than two.  The 
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failures in group 12 are similar to the failures in group 9 except that they occur in a phase where 

the pumps are supposed to be in the state that they have failed in, and therefore, the failures are 

not detected until the start of the next phase, i.e. when it deviates from its normal operational 

behaviour.  Group 13 follows the same pattern as groups 9 and 10, except that there are four 

possible failures when the failure is first detected, but then at a later time of the mission, the 

exact failure is determined.  The next group, group 14, consists of component failures which 

are initially diagnosed incorrectly, with two failures with the probability given in the table, and 

one with approximately 71% confidence given as the possible solutions.  However, within the 

same phase of the mission, the failure is diagnosed correctly with 100% confidence as the 

number of possible solutions is reduced.  The next group, group 15, is similar to the previous 

group, except with an intermediate step, where one of the component failures with 14.26% can 

no longer occur, increasing the probability of the other two failures.  The following group, 

group 16, begins like the previous groups, but the minimum number of possible failures it 

reduces to throughout the mission is two, both of which are equally likely to occur, therefore 

resulting in a maximum probability of correct diagnosis of 50%.  The next set of groups, groups 

17 – 19, are similar to the previous set of groups, groups 14 – 16.  The first group, group 17, 

has four possible failures when the failure is first detected, i.e. three with a probability of 

12.49% of being the failure.  In group 18 there are four possible failures, three with a probability 

of 12.49% and one with a probability of approximately 62%.  At a later stage in the mission, 

the failure with approximately 62% probability is no longer possible, making each of the other 

failures equally likely to have occurred, before the correct failure is diagnosed at a later time 

step.  The final group in this set, group 19, only reduces down to two possible failures 

throughout the mission, both of which are equally likely to occur.  The following group, group 

20, has five possible failures initially, three with 7.68% probability, and two with higher 

probability.  At a later time step, one of the failures with higher probability can no longer be 

the cause of the symptoms, increasing the probability of the other failures.  At a later time step, 

only the actual failure produces the observed symptoms, and is therefore diagnosed with 100% 

confidence.  For the next group, group 21, when the failure is first detected, it can be a failure 

of one of two components, in each of the 6 states, but the time of failure is diagnosed correctly.  

In each of the cases, at the start of the 8th phase, the correct component failure is determined.  

For the next group, group 22, initially the failure can be one of six components failing in six 

different states, hence a probability of 2.77% initially, but at a later time in the mission, i.e. in 

the phase where the failed component is supposed to be used, it will be diagnosed correctly.  

The next group, group 23, begins with the same possible component failures, but at a later time 
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step, there are only four possible failures, followed by two possible failures, followed by the 

correct failure being diagnosed with 100% confidence at later time steps, respectively.  The 

next group, group 24, is very similar, but instead of four possible failures, there are three 

possible failures at the second step.  The next group, group 25, skips the third step of the 

previous groups, i.e. from four possible failures to the actual component failure.  The group 

after that, group 26, is the same, except it goes from three possible failures, to the actual failure, 

and group 27 goes from two possible failures, to the actual failure.  The next group, group 28, 

begins with the same possible failures, but the diagnosis is not improved at a later time in the 

mission.  The next two groups, groups 29 and 30, begin with the same possible failures as the 

previous groups, but the minimum number of possible failures obtained at later stages of the 

mission is two.  The following group, group 31, is when two component failures produce the 

same symptoms so there are two possible failures which are equally likely to occur.  There is 

no increase in diagnosis confidence throughout the mission.  The following group, group 32, 

corresponds to a situation when five possible failures could cause the observed symptoms.  

However, these five failures are the same component failure, just occurring at different times 

in the mission.  The failures are detected at the start of the sixth phase.  The same is the case 

with group 33, except that there are nine potential times of the same failure occurring, and the 

failures are detected at the start of the tenth phase of the mission.  Group 34 consists of seven 

different failure times for the same component failure, which is detected at the start of the 

eighth phase, i.e. the component failure is known, just not its time of occurrence as in the 

previous two groups.  The failures in group 35 are when initially there are three possible 

failures, but at some point later on in the mission, it reduces to two possible failures.  The next 

group, group 36, consists of cases where there are four possible component failures that 

produce the observed symptoms initially, but at a later point in the mission, only two 

component failures produce the same set of observed symptoms, and finally, at a later point in 

the mission, only one component failure produces the symptoms, and is therefore diagnosed 

correctly with 100% confidence.  Group 37 consists of one of two component failing in any of 

6 modes, therefore, there is a 50% probability that the correct component will be inspected 

initially.  The penultimate group, group 38, is similar to some of the earlier groups, in that 

initially there are five possible failures, three with a probability of 7.67% and the other two 

with probabilities of approximately 38%.  At a later point in the mission, one of the failures 

that initially had a probability of approximately 38% no longer produces the observed 

symptoms, and is therefore not one of the possible solutions.  After this, the group is the same 

as the group, “12.49% - 16.64% - 100%”, except a different component has failed than is in 
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that group.  The final group, group 39, is the failures that are not detected by the sensors.  The 

failures are the component failing in the off failure mode after they have transferred the fuel to 

a different tank, i.e. when the pumps are no longer required. 

 
Table I.3 Diagnostic results for the dump pumps 

Group Probability Number Description 

40 4.167% 264 • LMDP, LIDP, RMDP, RIDP, TO, TO/2, T, T/2, 

C, C/2, all phases. 

41 0% 44 • LMDP, LIDP, RMDP, RIDP, 0, all phases. 

 

 

In Table I.3, all of the component failures that are detected produce the same set of 

symptoms, therefore, each of the 4 components can fail in any of 6 modes in which they output 

fuel, and the selection of sensors cannot distinguish between them.  Therefore, there is a 

probability of 25% that the component that has failed is inspected first.  All of the component 

failures are detected as soon as they occur.  The hidden failures in Table I.3, group 41, are the 

pumps failing off, i.e. in the state they are supposed to be in. 

 

Table I.4 Diagnostic results for the engine feed valves 

Group Probability Number Description 

42 100% 22 • LEV2, REV1, Cl, all phases 

43 83.44% 22 • LEV1, REV2, Cl, all phases 

44 0% 88 • LEV1, LEV2, REV1, REV2, Op, Op/2, all 

phases 

 

In Table I.4, the component failures are all detected as soon as they occur.  The component 

failures in group 43 correspond to the other failure that has actually occurred in the group, 

“16.66%” in Table I.1, the group where the failure is diagnosed incorrectly.  Therefore, these 

component failures are diagnosed correctly as they are more likely to occur than the 

corresponding pump failure.  The hidden failures, group 44, can be split into two categories, 

the first of which is where the valves fail open.  These failures are hidden because the 

components fail in their normal operating state.  The other category is when the valves fail half 

open.  These component failures are not detected because there are no other valves that are 

open in parallel with these components, and therefore, all the fuel must pass through these 

valves, the failures are not detected. 
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Table I.5 Diagnostic results for the dump and refuel valves 

Group Probability Number Description 

45 100% 52 • LOTV, ROTV, Op/2-2. 

• LMTV, RMTV, Op/2-2. 

• LOETV, Op-2, Op/2-2, Op/2-4, Op/2-6, O/2-8, 

Op/2-10, Cl-4, Cl-6, Cl-8, Cl-10. 

• ROETV, Op/2-4, Op/2-6, Op/2-8, Op/2-10. 

• LIEV1, RIEV1, Op/2-4, Op/2-6, Op/2-8, Op/2-

10, Cl-4, Cl-6, Cl-8, Cl-10. 

• LIEV2, RIEV2, Op-4, Op-6, Op-8, Op-10, 

Op/2-4, Op/2-6, Op/2-8, Op/2-10. 

• FTTV, Cl-8. 

• TTDV, Cl-8. 

46 100%d 55 • LOTV, ROTV, Op/2-1, Cl-1, Cl-2. 

• LMTV, Op-1, Op/2-1. 

• RMTV, Op/2-1. 

• LOETV, Op-1, Op/2-1, Op/2-3, Op/2-5, Op/2-

7, Op/2-9, Cl-5, Cl-7, Cl-9. 

• ROETV, Op/2-3, Op/2-5, Op/2-7, Op/2-9, Cl-5, 

Cl-7, Cl-9. 

• LIEV1, RIEV1, Op/2-3, Op/2-5, Op/2-7, Op/2-

9, Cl-5, Cl-7, Cl-9. 

• LIEV2, RIEV2, Op-3, Op-5, Op-7, Op-9, Op/2-

3, Op/2-5, Op/2-7, Op/2-9. 

47 71.47% - 

100% 

1 • ROETV, Cl-10. 

48 38.49% - 

100% 

1 • RMTV, Op-2. 

49 71.47% - 

83.36% - 

100% 

2 • ROETV, Cl-4, Cl-6. 

50 62.56% - 

83.36% - 

100% 

1 • ROETV, Cl-8. 
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51 38.49% - 

62.56% - 

83.36% - 

100% 

1 • ROETV, Op-2. 

52 62.56% - 

100% 

1 • LMTV, Op-2. 

53 50% - 100% 33 • LOTV, ROTV, Op-4, Op-6, Op-8, Op/2-4, 

Op/2-8, Op/2-10. 

• LMTV, RMTV, Op-4, Op-6, Op-8, Op/2-4, 

Op/2-6, Op/2-8. 

• ROETV, Op/2-2. 

• LIEV1, RIEV1, Op-2, Op/2-2. 

• LIEV2, RIEV2, Op-2, Op/2-2. 

54 50% - 

100%d 

31 • LOTV, ROTV, Op-5, Op-7, Op/2-3, Op/2-5, 

Op/2-7. 

• LMTV, Op-5, Op-7, Op/2-3, Op/2-5, Op/2-7. 

• RMTV, Op-1, Op-5, Op-7, Op/2-3, Op/2-5, 

Op/2-7. 

• ROETV, Op-1, Op/2-1. 

• LIEV1, RIEV1, Op-1, Op/2-1. 

• LIEV2, RIEV2, Op-1, Op/2-1. 

55 50% 16 • LOTV, ROTV, Op-10, Op/2-10. 

• LMTV, RMTV, Op-10, Op/2-10. 

• FTTV, Op-2, Op-4, Op-6, Op-10, Op/2-2, 

Op/2-4, Op/2-6, Op/2-10. 

56 50%d 14 • LOTV, ROTV, Op-9, Op/2-9. 

• LMTV, RMTV, Op-9, Op/2-9. 

• FTTV, Op-1, Op-3, Op-5, Op/2-1, Op/2-3, 

Op/2-5. 

57 33.33%d 12 • LOETV, ROETV, Cl-1, Cl-2, Cl-3. 

• LIEV1, RIEV1, Cl-1, Cl-2, Cl-3. 

58 25% - 

33.33%d 

6 • LOTV, ROTV, Op-1, Op-2, Op-3. 

59 25% - 

100%d 

2 • LMTV, RMTV, Op-3. 
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60 25%d 16 • LFVP, RFVP, Op-1, Op-3, Op-5, Op-9, Op/2-

1, Op/2-3, Op/2-5, Op/2-9. 

61 25% 20 • LITV, RITV, Op-8, Op/2-8. 

• LFVP, RFVP, Op-2, Op-4, Op-6, Op-10, Op/2-

2, Op/2-4, Op/2-6, Op/2-10. 

62 5.55% - 

25%d 

4 • LFVP, RFVP, Op-7, Op/2-7. 

63 5.55% - 

7.15%d 

14 • DTV, Op, Op/2, phases 1 – 7. 

64 16.66% - 

50% 

2 • DTV, Op-8, Op/2-8 

65 16.66% - 

25% 

4 • LFVP, RFVP, Op-8, Op/2-8. 

66 16.66%d 6 • FTTV, Op-7, Op-8, Op-9, Op/2-7, Op/2-8, 

Op/2-9. 

67 14.3%d 14 • FTTV, Cl, phases 1 – 7. 

• TTDV, Cl, phases 1 – 7. 

68 3.57%d 140 • LRV, RRV, Op-1, Op-3, Op-5, Op-7, Op-9, 

Op/2-1, Op/2-3, Op/2-5, Op/2-7, Op/2-9. 

• LODV, RODV, Op-1, Op-3, Op-5, Op-7, Op-9, 

Op/2-1, Op/2-3, Op/2-5, Op/2-7, Op/2-9. 

• LDV, RDV, Op-1, Op-3, Op-5, Op-7, Op-9, 

Op/2-1, Op/2-3, Op/2-5, Op/2-7, Op/2-9. 

• LOEDV, ROEDV, Op-1, Op-3, Op-5, Op-7, 

Op-9, Op/2-1, Op/2-3, Op/2-5, Op/2-7, Op/2-9. 

• LMDV, RMDV, Op-1, Op-3, Op-5, Op-7, Op-

9, Op/2-1, Op/2-3, Op/2-5, Op/2-7, Op/2-9. 

• LITV1, RITV1, Op-1, Op-3, Op-5, Op-7, Op-9, 

Op/2-1, Op/2-3, Op/2-5, Op/2-7, Op/2-9. 

• LITV2, RITV2, Op-1, Op-3, Op-5, Op-7, Op-9, 

Op/2-1, Op/2-3, Op/2-5, Op/2-7, Op/2-9. 

69 3.54% - 

3.57% 

112 • LRV, RRV, Op-4, Op-6, Op-8, Op-10, Op/2-4, 

Op/2-6, Op/2-8, Op/2-10. 

• LODV, RODV, Op-4, Op-6, Op-8, Op-10, 

Op/2-4, Op/2-6, Op/2-8, Op/2-10. 
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• LDV, RDV, Op-4, Op-6, Op-8, Op-10, Op/2-4, 

Op/2-6, Op/2-8, Op/2-10. 

• LOEDV, ROEDV, Op-4, Op-6, Op-8, Op-10, 

Op/2-4, Op/2-6, Op/2-8, Op/2-10. 

• LMDV, RMDV, Op-4, Op-6, Op-8, Op-10, 

Op/2-4, Op/2-6, Op/2-8, Op/2-10. 

• LITV1, RITV1, Op-4, Op-6, Op-8, Op-10, 

Op/2-4, Op/2-6, Op/2-8, Op/2-10. 

• LITV2, RITV, Op-4, Op-6, Op-8, Op-10, Op/2-

4, Op/2-6, Op/2-8, Op/2-10. 

70 3.57% 28 • LRV, RRV, Op-2. 

• LODV, RODV, Op-2. 

• LDV, RDV, Op-2. 

• LOEDV, ROEDV, Op-2. 

• LMDV, RMDV, Op-2. 

• LITV1, RITV1, Op-2. 

• LITV2, RITV, Op-2. 

71 3.57%d 28 • LTTV, RTTV, Op, Op/2, phases 1 – 7. 

72 0% 473 • LRV, RRV, Op-11, Op/2-11, Cl-1, Cl-2, Cl-3, 

Cl-4, Cl-5, Cl-6, Cl-7, Cl-8, Cl-9, Cl-10, Cl-11. 

• LODV, RODV, Op-11, Op/2-11, Cl-1, Cl-2, 

Cl-3, Cl-4, Cl-5, Cl-6, Cl-7, Cl-8, Cl-9, Cl-10, 

Cl-11. 

• LDV, RDV, Op-11, Op/2-11, Cl-1, Cl-2, Cl-3, 

Cl-4, Cl-5, Cl-6, Cl-7, Cl-8, Cl-9, Cl-10, Cl-11. 

• LOEDV, ROEDV, Op-11, Op/2-11, Cl-1, Cl-2, 

Cl-3, Cl-4, Cl-5, Cl-6, Cl-7, Cl-8, Cl-9, Cl-10, 

Cl-11. 

• LMDV, RMDV, Op-11, Op/2-11, Cl-1, Cl-2, 

Cl-3, Cl-4, Cl-5, Cl-6, Cl-7, Cl-8, Cl-9, Cl-10, 

Cl-11. 

• LITV1 RITV1, Op-11, Op/2-11, Cl-1, Cl-2, Cl-

3, Cl-4, Cl-5, Cl-6, Cl-7, Cl-8, Cl-9, Cl-10, Cl-

11. 
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• LITV2, RITV2, Op-11, Op/2-11, Cl-1, Cl-2, 

Cl-3, Cl-4, Cl-5, Cl-6, Cl-7, Cl-8, Cl-9, Cl-10, 

Cl-11. 

• LOTV, ROTV, Op-11, Op/2-11, Cl-3, Cl-4, Cl-

5, Cl-6, Cl-7, Cl-8, Cl-9, Cl-10, Cl-11. 

• LOETV, ROETV, Op-3, Op-4, Op-5, Op-6, 

Op-7, Op-8, Op-9, Op-10, Op-11, Op/2-11, Cl-

11. 

• LIEV1, RIEV1, Op-3, Op-4, Op-5, Op-6, Op-7, 

Op-8, Op-9, Op-10, Op-11, Op/2-11, Cl-11. 

• LIEV2, RIEV2, Op-11, Op/2-11, Cl-1, Cl-2, 

Cl-3, Cl-4, Cl-5, Cl-6, Cl-7, Cl-8, Cl-9, Cl-10, 

Cl-11. 

• LMTV, RMTV, Op-11, Op/2-11, Cl-1, Cl-2, 

Cl-3, Cl-4, Cl-5, Cl-6, Cl-7, Cl-8, Cl-9, Cl-10, 

Cl-11. 

• LFVP, RFVP, Op-11, Op/2-11, Cl-1, Cl-2, Cl-

3, Cl-4, Cl-5, Cl-6, Cl-7, Cl-8, Cl-9, Cl-10, Cl-

11. 

• DTV, LTTV, RTTV, Op-9, Op-10, Op-11, 

Op/2-9, Op/2-10, Op/2-11, Cl-1, Cl-2, Cl-3, Cl-

4, Cl-5, Cl-6, Cl-7, Cl-8, Cl-9, Cl-10, Cl-11. 

• FTTV, Op-11, Op/2-11, Cl-9, Cl-10, Cl-11. 

• TTDV, Op-1, Op-2, Op-3, Op-4, Op-5, Op-6, 

Op-7, Op-8, Op-9, Op-10, Op-11, Op/2-1, 

Op/2-2, Op/2-3, Op/2-4, Op/2-5, O/2-6, Op/2-

7, Op/2-8, Op/2-9, Op/2-10, Op/2-11, Cl-9, Cl-

10, Cl-11. 

• LSV, RSV, all hidden. 

 

In Table I.5, the first group, group 45, consists of component failures that are detected and 

diagnosed with 100% confidence at their time of occurrence.  The failures in this group are all 

when the transfer pumps are active.  The components in the next group, group 46, are all 

diagnosed correctly with 100% confidence, but all occur in phases where the transfer pumps 

are not active, and are therefore not detected until the start of the next phase of the mission.  In 



 

393 
 

the following group, group 47, initially there are three possible failures that produce the 

observed symptoms, one of which has a probability of 71.47% and the other two have 

probabilities of approximately 14%, at a later point in the mission, the other two failures no 

longer produce the observed symptoms, and therefore, the failure is diagnosed with 100% 

confidence.  The same is the case with the next group, group 48, except that there are two 

failures with a probability of 38.49% and three other failures with a probability of 

approximately 7%.  At a later point in the mission, only one of the failures produces the 

symptoms observed, and therefore, the failure is diagnosed with 100% confidence.  The next 

group, group 49, has three possible causes for the symptoms when the failure is first detected, 

but at a later time, one of the failures no longer produces the observed symptoms, and then 

later, another failure no longer produces the observed symptoms, resulting in a diagnosis 

confidence of 100%.  The following group, group 50, is the same as the previous group, except 

that there are initially four possible failures that produce the observed symptoms.  Group 51 is 

the same as group 50 except that initially there are five possible failures, but at a later time one 

of the failures is no longer possible, at which point, it is the same as the previous group.  When 

the failure is detected for the next group, group 52, there are four possible failures that produce 

the observed symptoms, one of which has a probability of 62.56%, and the three others have 

probabilities of approximately 12%, but at a later time step in the mission, the other three 

failures no longer produce the observed symptoms, and the failure is then diagnosed with 100% 

confidence.  The next group, group 53, is cases when the observed symptoms can be produced 

initially by one of two failures, but at a later time in the mission, only one of the failures 

produces the observed symptoms, and the failure is therefore diagnosed correctly.  The failures 

in this group occur when the transfer pumps are active.  The next group, group 54, is the same 

as the previous group, except the failures occur in phases of the mission where the transfer 

pumps are not active, and the failures are therefore not detected until the start of the following 

phase, when the transfer pumps are active.  The next group, group 55, consists of cases when 

there are two possible causes for the failure, and the failure occurs when the transfer pumps are 

active.  In this case, the failures are one component failing in one of two possible modes, i.e. 

the correct component is always diagnosed, but the mode is not known.  The other failures in 

this case are when it is one of two components that has failed.  The next case, group 56, is the 

same, except that the failures occur when the pumps are not active, and are therefore not 

detected until the start of the next phase.  In the next group, group 57, there is only one possible 

failure, but the failure is not detected until the start of the fourth phase, and therefore it is not 

known which phase the component failed in, i.e. the component failure is always known, but 
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the time of occurrence is not.  The next group, group 58, is when the failure is detected at the 

start of the fourth phase, and can be one of four component failures, three of which are the 

same component failing in different phases.  At a later time, the fourth possible failure can no 

longer produce the observed symptoms, and the component is therefore diagnosed correctly, it 

is just the time of failure occurrence which is not known.  The next group, group 59, is when 

the component failure is the fourth failure from the previous group, and therefore, at a later 

point in the mission the failure is diagnosed with 100% confidence.  The next group, group 60, 

consists of cases where there are four possible failures that can produce the observed 

symptoms, two possible failures for each component occurring at the same time, i.e. 50% 

probability of selecting the correct component.  The failures in this case occur in a phase where 

the transfer pumps are not active, and they are detected at the start of the next phase.  The 

failures in the following group, group 61, are the same, except that they occur in a phase where 

the transfer pumps are active and are detected as soon as they occur.  The next group, group 

62, is when there are three potential components that could have failed, one of which has 

fourteen potential failures, and the other two have two potential failures.  At a later point in the 

mission, the fourteen failures produce different symptoms to those observed, and result in a 

case similar to the previous group.  The following group, group 63, is the opposite way round 

to the previous group, i.e. at a later point in the mission, the other four failures produce a 

different set of symptoms to those observed.  Therefore, the component will be diagnosed 

100% correctly, but the time of failure occurrence, and the mode in which the component has 

failed in, is not determined.  When the failures in the next group, group 64, are first detected, 

there are three possible components that produce the observed symptoms, two failures for each 

component, but at a later time, only one component can produce the observed symptoms, and 

the component is therefore diagnosed correctly, but the failure mode of the component is not 

known.  The next group, group 65, is similar except that at the later stage in the mission there 

are two possible components that could have failed.  Group 66 is a case where only one 

component can produce the observed symptoms, but the failure can be at three different times 

in two different modes.  Therefore, the failed component is diagnosed but the failure mode and 

time of occurrence is not determined.  The next group, group 67, is when there is one 

component failing in one failure mode, but there are a number of possible times of failure 

occurrence, i.e. the failure and failure mode is known, but the time of occurrence is not.  The 

next group, group 68, consists of symptoms that can be produced by fourteen different 

components, each failing in one of two modes.  The following group, group 69, is when there 

is an additional component that has potentially failed when the symptoms are first observed, 
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but at a later point in the mission, that component no longer produces the same set of symptoms, 

therefore, one of the fourteen components has failed, as in the previous group.  The next group, 

group 70, is where one of the same fourteen components has failed, but the failure is detected 

as it occurs.  This is when the failure occurs in the second phase of the mission.  The penultimate 

group in the table, group 71, consists of cases when one of two components has failed, in one 

of two modes at one of seven times in the mission.  Therefore, there is a 50% probability of 

correctly diagnosing which component has failed.  The final group, group 72, is component 

failures that are not detected.  These are components failing in modes that they are in during 

normal operating conditions, or failures in sections of the system that are not normally used. 

 
Table I.6 Diagnostic results for the cross-feed valves 

Group Probability Number Description 

73 50%d 10 • CCV, Op-1, Op-3, Op-5, Op-7, Op-9, Op/2-1, 

Op/2-3, Op/2-5, Op/2-7, Op/2-9. 

74 12.5% 48 • LCV1, LCV2, RCV1, RCV2, Op-1, Op-3, Op-5, 

Op-7, Op-9, OP-11, Op/2-1, Op/2-3, Op/25, 

Op/2-7, Op/2-9, Op/2-11. 

75 10% - 12.5% 40 • LCV1, LCV2, RCV1, RCV2, Op-2, Op-4, Op-6, 

Op-8, Op-10, Op/2-2, Op/2-4, Op/2-6, Op/2-8, 

Op/2-10. 

76 10% - 50% 10 • CCV, Op-2, Op-4, Op-6, Op-8, Op-10, Op/2-2, 

Op/2-4, Op/2-6, Op/2-8, Op/2-10. 

77 0% 57 • LCV1, LCV2, RCV1, RCV2, CCV, Cl, all 

phases 

• CCV, Op-11, Op/2-11. 

 

In Table I.6, the component failures in group 73 are detected at the start of the following 

phase.  This is because they are only detected when there is fuel being transferred between 

tanks.  In this case, the component that has failed is known, just not which failure mode the 

component has failed in.  The component failures in group 74 can be of the four cross-feed 

valves to the engines (LCV1, LCV2, RCV1, RCV2) failing either open or half open, in phases 

in which fuel is not being transferred between tanks.  The component failures in the next group, 

group 75, are the same component failures as the previous group, with the addition of CCV 

also failing open or half open when the failures are first detected.  The failure in this group 
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occurs in a phase where the fuel is being transferred between tanks.  When the operation phase 

changes to a phase where the fuel is not being transferred between tanks, the possible 

component failures changes to the possible component failures of the previous group, i.e. group 

“12.5%”.  The following group, group 76, is a failure of CCV, but when it is first detected the 

possible failures are the same failures as in group “10% - 12.5%”.  However, when the phase 

changes, only the failures of CCV are possible.  The final group, group 77, the hidden failures, 

are all the failures for all of the valves failing closed, i.e. the mode they are supposed to be in.  

In addition, CCV failing open or half open in the final phase of the mission is hidden.  Failures 

of CCV failing open or half open are only detected in phases of the mission where fuel is being 

transferred between tanks.  However, there is no fuel being transferred between tanks in the 

final phase of the mission, and therefore, the failures are not detected.  Note, the other phases 

where the fuel is not transferred between tanks is followed by another phase where fuel is 

transferred, and the failure can be detected in those phases. 


