Variables	
Nozzle type	4L2G
Air pressure, MPa	0.8
Fuel 1 pressure-Propane, MPa	0.7
Fuel 2 pressure-Propane, MPa	0.7
Carrier gas pressure-N2, MPa	0.4
Feed rate, g/min	150
Pass velocity, m/min	50
Pass spacing, mm/rev.	5
Spray distance, mm	300
Number of Passes	8

Table 1. HVAF process parameters used to spray the NiCrMo and NiCrMo-SiO₂ coatings

Fig. 1. SEM topographic (SE mode) and cross-section (BSE mode) of; a, b) NiCrMo and c, d) NiCrMo-SiO₂ powders, and the corresponding EDS analysis.

Fig. 2. Topographical SEM micrographs (SE mode) of the as-sprayed a) NiCrMo, and b) NiCrMo-SiO₂ coatings.

Fig. 3. SEM micrographs (BSE mode) of cross-sections of the polished coatings, coating/substrate interfaces, and EDS point analysis, a) NiCrMo, and b) NiCrMo-SiO₂.

Fig. 4. XRD patterns of the feedstock powders and corresponding polished NiCrMo and NiCrMo-SiO₂ coatings.

Fig. 5. a) weight change of the exposed NiCrMo and NiCrMo-SiO₂ coatings in $5\%O_2 + 500$ ppm HCl + N₂ with and without KCl deposit for up to 168 h at 600 °C, and b) squared of weight gain versus time (sec.). k_p value for NiCrMo exposed to KCl was measured within the exposure period from 0 to 96 h to avoid the interference by the weight change drop observed from 96 to 168 h.

Fig. 6. XRD patterns of the exposed NiCrMo and NiCrMo-SiO₂ coatings in $5\%O_2 + 500$ ppm HCl + N₂ with and without KCl deposit up to 168 h at 600 °C.

Fig. 7. SEM topographic micrographs (SE mode) of the coatings exposed in $5\%O_2 + 500$ ppm HCl + N₂ with KCl for 168 h at 600 °C a) NiCrMo and, b) NiCrMo-SiO₂.

Fig. 8. Back-scattered SEM micrographs of cross-sections of the exposed coating in 5%O₂ + 500 ppm HCl + N₂ for 168 h at 600 °C, a) NiCrMo exposed without KCl, b) NiCrMo exposed with KCl, c) NiCrMo-SiO₂ exposed without KCl, and d) NiCrMo-SiO₂ exposed with KCl.

Fig. 9. Back-scattered SEM micrographs of cross-sections of the exposed NiCrMo coating in $5\%O_2 + 500$ ppm HCl + N₂ without KCl deposit for 168 h at 600 °C.

Fig. 10. Back-scattered SEM micrographs of cross-sections of the exposed NiCrMo coating in $5\%O_2 + 500$ ppm HCl + N₂ with KCl deposit for 168 h at 600 °C.

Fig. 11. Back-scattered SEM micrograph of the NiCrMo coating/substrate exposed in $5\%O_2 + 500$ ppm HCl + N₂ with KCl deposit for 168 h at 600 °C, and the corresponding EDS analysis, point A at the substrate, point B at the coating/substrate interface and point C at the coating.

Fig. 12. Back-scattered SEM micrographs of cross-sections of the exposed NiCrMo-SiO₂ coating in $5\%O_2 + 500$ ppm HCl + N₂ without KCl deposit for 168 h at 600 °C.

Fig. 13. Back-scattered SEM micrographs of cross-sections of the exposed NiCrMo-SiO₂ coating in $5\%O_2 + 500$ ppm HCl + N₂ with KCl deposit for 168 h at 600 °C.

Fig. 14. Schematic of corrosion mechanism in the coatings exposed into $5\%O_2 + 500$ ppm HCl + N₂ for 168 h at 600 °C without KCl deposit, a) NiCrMo, and b) NiCrMo-SiO₂. SiO₂ promoted the selective oxidation of Cr to form the protective

Cr-rich oxide scale on NiCrMo-SiO₂. While a (Cr,Ni)-rich oxide formed on NiCrMo, a dense Cr-rich scale formed on NiCrMo-SiO₂.

Stage 2: Last stages of corrosion exposure

Fig. 15. Schematic of corrosion mechanism in the NiCrMo coating exposed into 5%O₂ + 500 ppm HCl + N₂ with KCl deposit for 168 h at 600 °C. At the early stages, the corrosion is initiated by the formation of K₂CrO₄ and Cl⁻. K₂CrO₄ depletes the oxide scale in Cr leading to a loss of the protective properties of Cr₂O₃. The metallic chlorides and Cl₂ form in this stage. In the second step, the formed Cl₂ diffuses inward through the defects (cracks and pores) of the non-protectives oxide scale formed in the previous step. Cl⁻ and Cl₂ diffuse through the oxide grain boundaries ("electrochemical" mechanism) and oxide's defects ("active-corrosion" mechanism) respectively to reach the coating/oxide scale interface. Vaporization of the metallic chlorides occurs in this step, which leads to formation of the gap at the coating/chloride layer [45].

Stage 1: Early stages of corrosion exposure Stage 2: Last stages of corrosion exposure

Fig. 16. Schematic of corrosion mechanism in the NiCrMo-SiO₂ coating exposed into 5%O₂ + 500 ppm HCl + N₂ with KCl deposit for 168 h at 600 °C. The dispersoids decelerated formation of Cl⁻ and K₂CrO₄ at the early stages. Random diffusion of Cl⁻ within the oxide layer and a few Cr-depleted regions within the coating were observed; however, in general, the

dispersoids succeeded to protect the coating and accordingly the substrate by promoting formation of a dense and protective Cr-rich oxide scale.