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ABSTRACT 

The influence of building occupancy and user behaviour on energy usage has been 

identified as a source of uncertainty in current understanding of operational buildings, and 

yet it is rarely directly monitored. Gathering data on the occupancy of buildings in use is 

essential to improve understanding of how energy is used relative to the actual energy 

requirements of building users. 

This thesis covers the application of occupancy measurement and processing techniques 

in order to address the gap in knowledge around the contextual understanding of how 

occupants’ changing use of a building affects this building’s optimum energy demand in 

real time. Through targeted studies of running buildings, it was found that typical current 

occupancy measurement techniques do not provide sufficient context to make energy 

management decisions. Useable occupancy information must be interpreted from raw 

data sources to provide benefit: in particular, many slower response systems need 

information for pre-emptive control to be effective and deliver comfort conditions 

efficiently, an issue that is highlighted in existing research. Systems utilising novel 

technologies were developed and tested, targeted at the detection and localisation of 

occupants’ personal mobile devices, making opportunistic use of the existing hardware 

carried by most building occupants. It was found that while these systems had the 

potential for accurate localisation of occupants, this was dependent on personal hardware 

and physical factors affecting signal strength. Data from these sources was also used 

alongside environmental data measurements in novel algorithms to combine sensor data 

into a localised estimation of occupancy rates and to estimate near-future changes in 

occupancy rate, calculating the level of confidence in this prediction. The developed 

sensor combination model showed that a selected combination of sensors could provide 

more information than any single data source, but that the physical characteristics and use 

patterns of the monitored space can affect how sensors respond, meaning a generic model 

to interpret data from multiple spaces was not feasible. The predictive model showed that 

a trained model could provide a better prediction of near-future occupancy than the 

typically assumed fixed schedule, up to an average of approximately two hours.  

The systems developed in this work were designed to facilitate the proactive control of 

buildings services, with particular value for slower-response systems such as heating and 

ventilation. With the application of appropriate control logic, the systems developed can 

be used to allow for greater energy savings during low or non-occupied periods, while 

also being more robust to changing occupant patterns and behaviours.  
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1 INTRODUCTION 

1.1 General Introduction 

One of the major sources of energy demand in the UK is the built environment. 

Recent data [1],[2] shows that over 40% of the UK’s energy consumption occurs in 

buildings. More than 80% of energy used over a building’s life cycle occurs during its 

operation [3]. As the built environment is the largest single energy consumer in the 

UK, it is essential that effort is made to reduce the amount of fossil fuel energy used 

by buildings – both by diverting some demand to renewable resources and, more 

importantly, by addressing inefficiencies in the way that buildings are operated in 

order to lower the demand for energy during building use.  

Data collected during building operation typically shows a significant ‘performance 

gap’ between designed and actual energy use in buildings, with this trend consistent 

across multiple sectors [4]. Discrepancies between predicted and real building 

performance are caused by both an underestimation of predicted values for reasonable 

building use at the design stage, and a greater than expected use of resources during 

the running building’s life [5]. Among other factors, such as variations in the 

delivered performance of building fabric and assumptions made in design-stage 

modelling tools, both sides of the discrepancy are affected by the “inability of current 

modelling methods to represent realistic use and operation of buildings” [6]. Occupant 

behaviour is one of the factors contributing to excessive energy use during building 

operation, alongside the effectiveness of building services controls to meet occupant 

energy demands. Uncertainties around the way that occupants actually use buildings 

further contribute to the inability to meet changing occupant energy requirements in 

buildings services control/energy management systems.  

Many of the routes to reducing the performance gap therefore rely on a way to 

effectively reduce the current level of uncertainty around building occupants and their 

behaviours. In particular, building control/energy management systems seeking to 

reduce energy waste while maintaining or improving occupant comfort must have a 

way to gauge realistic occupant energy demand in real time. However, the field of 

detailed exploration into occupant behaviour is relatively young, meaning that there is 

a lack of in-use data for buildings in the UK [7]. In particular, long-term data on 
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occupancy within working buildings is rarely collected. In the commercial sector, 

organisations such as CarbonBuzz are working to address the general lack of in-use 

data by inviting case studies comparing the design and actual energy use of working 

buildings, although explicit measurement of occupancy rates is not required [8]. The 

CarbonBuzz resource states that there is a disconnect in the data available to building 

designers and users, making it difficult to fully understand where building design and 

operation is failing. Current commercial building controls systems often fail to 

account for occupants beyond simple scheduling, leading to wasteful conditioning of 

spaces or control of systems where occupants are not present. In general, there is a 

clearly identified need for a more widely applicable and comprehensive way to gather 

relevant occupant data in order to better inform energy management decisions.  

This thesis seeks to address this need by occupancy measurement techniques targeted 

to improve the contextual understanding of how occupants’ changing use of a 

building affects this building’s energy demand in real time.  

1.2 Aim 

The aim of this work is to develop novel systems and algorithms for the measurement 

and prediction of localised building occupancy rates. These systems are aimed 

towards integration with building energy management systems, to tailor energy used 

in buildings more closely to the actual needs and behaviours of occupants.  

1.3 Objectives 

 

The scope of this research was divided into several more specific objectives: 

1. To assess the current state of occupant-centred Building Energy Management 

Systems and indoor occupancy measurement technologies. 

2. To understand existing approaches to applied indoor occupancy measurement 

and highlight the gap in existing knowledge.  

3. To develop a specification for novel indoor occupancy sensing and prediction 

methods suitable for use in building controls systems. 

4. To develop and test a method for measuring localised indoor occupancy rates 

5. To develop and test a method for predicting short-term future localised 

occupancy rates based on historical data, with sensitivity to the unavoidable 

uncertainties involved in behavioural prediction. 
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1.4 Research Methodology 

In order to address the objectives set out for this work, the following research 

methodology was applied. 

Objective Method(s) 

1 
- Review in detail the market and current state of technology used in 

commercial Building Energy Management Systems  

2 

- Review and compare existing technologies and methods used for indoor 

occupancy measurement 

- Review and compare existing approaches to applying occupant data in a 

Building Energy Management context 

3 

- Assess existing relationships between occupancy and energy use through case 

studies on a range of building types 

- Identify through case studies where uncertainties around occupant patterns and 

behaviours can be reduced through more targeted data collection 

- Define and develop data collection methods targeted towards identified needs 

- Combine knowledge from review work, case studies and data collection 

development into a proposal for an improved occupancy measurement 

framework 

4 
- Select appropriate methods for the proposed measurement of localised 

occupancy rates 

- Develop and test methods for localised occupancy rate measurement 

5 
- Select appropriate methods for the proposed short-term future occupancy 

prediction 

- Develop and test methods for short-term occupancy prediction 

 

1.5 Contributions to Knowledge 

The work presented in this thesis covers the development of novel systems and 

algorithms for the detection and future prediction of localised occupancy rates. This is 

achieved by the following streams of innovation. Occupancy data is gathered through 

multiple sources, including regular environmental sensor readings of motion and CO2 

level and the presence and location of personal mobile devices using Wi-Fi and 

Bluetooth-Low-Energy technologies. The Wi-Fi detection involves the hardware and 

software development of a novel low-cost setup to gather and process presence data, 

while the Bluetooth detection uses zoned beacon placement to gather relevant location 

data without excessive data processing and storage requirements. Data collected is 

processed to build models for the interpretation of raw sensor data into useable 

measures of occupancy: a task that is addressed through a proposed modular approach 

to parsing occupant information. Neural network models are developed and tested for 

inferring local occupancy rates from sensor data, and for predictive probabilistic 

modelling of short-term occupancy informed by current measured occupancy. The 
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level of uncertainty in the predictive output is explicitly quantified, allowing more 

sensitive treatment of the model output in high-uncertainty situations. This system is 

designed to inform proactive building control through BEMS, allowing for more 

effective use of slow-response building services such as heating and ventilation.  

The work also combines broader studies of occupancy and energy in a range of 

building types, assembling a database of in-use performance to allow informed and 

direct targeting of identified energy wastes in relation to building 

occupancy/behaviour. This analysis of in-use data could be valuable in industry, 

where the delivery of buildings that perform to specification is a priority. 

1.6 Thesis Structure 

Chapter 2 introduces a basis of the current state of buildings in the UK and current 

practices in building automation, providing a breakdown of building automation terms 

used in the industry. The influence of building occupants on indoor energy demand is 

also examined through a review of studies in this area.  

Chapter 3 presents a review and cross-analysis of existing work into sensing 

technologies for building occupants, providing detail on the quality of occupant 

information that can be obtained with varying sensor types and methods. Existing 

studies into how varying grades of occupant data can be used in building controls are 

also assessed, with consideration for how the intended application shapes the control 

responses to occupant data.  

In Chapter 4, several case studies are made using data collected from live buildings to 

assess in more detail the relationship between occupancy and energy use across a 

range of building types, and to evaluate the available methods for occupant data 

collection.  

Chapter 5 introduces the major data source for this study – a small office building 

based in Nottingham, UK, fitted with a range of localised environmental sensors. This 

chapter also provides details on the development and testing of Wi-Fi and Bluetooth-

based systems to detect building occupants using personal mobile devices.  

Chapter 6 covers the selection and application of appropriate machine learning 

techniques to infer the local number of occupants from raw sensor data collected in 
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the small office building testbed. The value of each of the sensor types available is 

assessed in its usefulness for this task, and an optimised model proposed.  

Chapter 7 covers the development of a machine learning model to predict future local 

occupancy rates based on recent past behaviours. Using generated long-term datasets 

with varying underlying occupancy patterns, the model is tested against simpler 

prediction heuristics to assess its value in differing situations. A final model is 

proposed to make use of the uncertainty level in the predicted output to defer to a 

safer strategy when uncertainty is high.  

Chapter 8 provides final conclusions and discussion of future work. 
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2 REVIEW OF EXISTING MARKET FOR BUILDING CONTROLS 

2.1 Introduction 

To provide a basis for making a better system to respond to occupant needs in 

buildings, a review was made into the current state of building energy use, current 

building energy management systems practise and the influence of occupants and 

occupant behaviours in building energy demand. This chapter presents the findings of 

this review. 

2.2 UK Building Stock 

This section focuses on current energy issues in the existing building stock in the UK. 

As mentioned in the introduction, buildings represent over 40% of the UK’s overall 

energy demand, with split approximately two thirds domestic and one third non-

domestic, as illustrated in Figure 2-1.  

 

Figure 2-1 – Energy Use in the UK by Sector (2012) [2] 

 

2.2.1 Domestic Buildings 

Domestic buildings made up 29% of the UK total energy consumption in 2012 [9]. As 

Figure 2-2 shows, the majority of this energy is used for space heating and domestic 

hot water. While domestic hot water use is largely behavioural, domestic space 

heating systems often include some degree of automated control. 
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Figure 2-2 - UK Domestic Energy Demand by Fuel and End Use [10] 

There is significant scope to improve the energy efficiency of residences in the UK. 

Given that the majority of houses show poor material performance (see Figure 2-3) 

[11][12], it is likely that those homes wasting the most energy would benefit the most 

from simple material retrofits such as adding insulation. In terms of costs to the 

building owner, cavity wall insulation is typically priced in order of £100 [13], while 

home automation can cost in the order of £1000-£10000 depending on complexity 

[14]. This suggests that, for the worst performing homes, introducing advanced 

controls is not the most viable immediate option. However, recent trends of interest in 

home automation and integrated ‘smart home’ products show that there is still 

considerable scope for the implementation of advanced controls in domestic 

buildings, with significant energy saving possible.  

 

Figure 2-3 - UK Dwelling Energy Efficiency Rating 1996-2011 [11] 

2.2.2 Non-Domestic Buildings 

The service sector (including public buildings, workplaces, schools, hotels etc.) 

accounts for around 13% of the total UK energy consumption [15], while industrial 

buildings use 17% [16]. The majority of industrial energy consumption is used for 

processes and thus not the focus of this study.  
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The performance of non-domestic service buildings in the UK is highly varied 

depending on building purpose. Figure 2-4 summarises the end-use energy 

consumption for various building types. It can be seen that the retail and education 

sub-sectors consume the highest levels of energy, mostly due to space heating and 

lighting.  

 

Figure 2-4 - Service sector energy consumption by end use and sub-sector, UK (2012) [15] 

2.2.3 Discussion 

It can be seen that the energy use during operation of buildings across sectors can be 

highly variable and is spent largely on creating thermal conditions that satisfy the 

comfort of building occupants. However, there is currently a significant lack of 

understanding into how exactly energy consumption within a building relates to the 

behaviours, comfort and response of occupants. This discrepancy can be addressed by 

the implementation of more comprehensive sensing of buildings during operation and 

more sophisticated controls.  

2.3 Building Energy Management Systems 

The automated control of buildings encompasses an array of different technologies 

and is described using many different terms, depending on the context, area of 

application, system manufacturer etc. This section explains the implications and 

overlap of various terms in the building management field. 
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Buildings adopting automation technology: 

• Green Building – a building that employs technologies to save energy and 

minimise negative effects to the environment. Does not directly imply 

automation, although many green buildings will use some form of automated 

system as part of their strategy.  

• Smart/Intelligent Building – definition varies between sources and 

professional bodies [17], but generally implies a building with some form of 

automated control of services to create a more comfortable or environmentally 

friendly space [18]. 

• Sentient Building – more rarely used, implies a step beyond ‘intelligence’; a 

building with high levels of data collection and automation, possibly using a 

continuously updated working model of the whole building [19]. 

Residential buildings with automation technology: 

• Home automation – the field of building services automation when applied 

specifically to a domestic building. 

• Domotics – ‘a contraction of “domus”, meaning “home”, and the words 

informatics, telematics and robotics’ [20], refers to home automation. 

• Smart home – a house that uses internet-connected ‘smart’ devices for 

automation of various functions, including building services [21]. 

Names for the automation system: 

• BMS/BAS(Building Management/Automation System) – these terms are used 

interchangeably [22] and can refer to any building services system using 

automation. Most commonly used by manufacturers of automation equipment. 

• BACS (Building Automation and Control System) – less common term for 

BAS/BMS [23]. 

• BEMS (Building Energy Management System) – encompasses building 

automation and energy priorities, with the implication that data is more 

intelligently analysed than in a purely automated system. ‘Active BEMS’ can 

be used to refer to a BMS with particular focus on energy saving or a sub-

section of the greater BMS dedicated to energy saving. ‘Passive BEMS’ refers 
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to a piece of software to analyse energy use from BMS or sensor data and is 

not directly in control of the building services [24].  

• EMCS/EMS(Energy Management and Control System/Energy Management 

System) – occasionally used to refer to automated control systems with focus 

on energy saving, although used in the wider industry to refer to broader 

energy demand and power quality controls [25]. 

Related terms: 

• DCV (Demand Controlled Ventilation) – HVAC strategy to supply only the 

heating/ventilation/cooling needed by the actual number of occupants in a 

space [26]. 

• DDC (Direct Digital Control) – general term for automated control by a digital 

device [27].  

• EIS (Energy Information System) – software used for data collection, 

visualisation and analysis, not necessarily control [28]. 

In this project, the term ‘BEMS’ is used throughout for simplicity. This reflects the 

priority towards energy saving and potential for more software-based solutions better 

than using the terms ‘BMS’ or ‘BAS’. 

2.3.1 Structure of BEMS 

The hardware of a BEMS is typically divided into three layers, as shown in Figure 

2-5. Each layer has its own functions and will pass data to other layers as appropriate.  

1. Management Layer – This layer contains the supervisory software to control 

the BEMS and provides an interface for the user. Features may include 

automated and manual central control and energy feedback. In hardware 

terms, here the primary bus connects logic controllers, workstation terminals 

and web servers [29].  

2. Automation Layer – In hardware terms, here the secondary bus connects to 

the controllers for the major components of the building services system, such 

as lighting, boiler, central plant and ventilation controllers. Localised 

controllers called ‘outstations’ make up the majority of this layer [30]. 

3. Field Layer – Provides the system’s physical interface with the operation of 

the building. This includes a network of sensors (temperature, CO2, motion, 
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electricity meters etc.) and actuator devices (control valves, light dimmers, 

automated switches etc.) throughout the building.  

 

Figure 2-5 – Building Management System structure [31] 

Most current energy management systems are not equipped with the field-level 

sensing equipment to adequately account for local occupant energy demands. 

Controls for each type of system are often isolated from each other, with poor 

interoperability. This makes the opportunistic use of diverse sensor types more 

difficult if some systems and their sensors are not available for decision making 

processes. At the higher level, management strategies must be developed that are 

more sensitive to the dynamic energy requirements of occupants and their energy 

behaviours. In order to do so, the following improvements must be made standard: 

• Implementation of appropriate sensing equipment to detect localised 

changes in occupant energy demand. 

• Processing applied to interpret sensor data into a defined measure of the 

occupancy data of interest: be that local occupant presence, location, 

number of occupants etc.  

• Logical processing of occupant data to inform demand-driven control 

decisions. 
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2.4 BEMS Manufacturers and Market 

BEMS and other automation in buildings play a significant role in the vision of 

‘ubiquitous computing’ or ‘ambient intelligence’ – the concept that, in the future, 

intelligence will be built into the environment around people in order to learn the 

context of human behaviours and improve function automatically [32]. As such, the 

area of energy and comfort management has received significant research interest 

over the last decade [33]. 

Despite this vision, an estimated 90% of current HVAC control systems do not run 

optimally [34]. This shows the need for an improvement in the way that controls are 

designed and implemented.  

2.4.1 Major Forces in the BEMS Industry 

While a large range of hardware and software companies manufacture components for 

commercial BEMS and building automation, around 70% of business in the field is 

shared between 5 companies [35]: 

• Honeywell [36] – A US-based conglomerate company with both the main 

company and several subsidiaries providing building automation worldwide. 

Subsidiaries include: Trend Controls (UK); Alerton (US); Novar (US) and 

Tridium [37].  

• Johnson Controls [38] – US-based company specializing in control hardware 

and software.  

• Schneider Electric [39] – produces automation and energy management 

components, based in France. 

• Siemens [40] – German conglomerate engineering company, produces 

building automation hardware and software. 

• United Technologies Corp.[41] – conglomerate company based in the US. 

Prominent in both aerospace and building systems industries. 

The above large companies excel at producing the hardware and network components 

required for building automation, but recent industry reports hint towards the 

importance of the software and data analysis side of the business in the near future 

[24]. It is possible that smaller companies with an expertise in software development 

could become more prominent in the future of BEMS. 
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Where commercial systems remain slower to react to recent trends towards more 

occupant centric data-driven control decisions, the domestic market for home 

automation has seen a significant increase in interest during recent years, with a wide 

range of products and services released specifically for the improvement of domestic 

building control. Table 2-1 summarises the capability of several of the most popular 

‘smart’ domestic heating control systems. It can be seen that many major controllers 

are adopting learning algorithms and occupancy-responsive technology, facilitated by 

the wider availability of easily installed wireless sensors. Trends towards occupant-

responsive systems and integration with personal devices for remote control can also 

be seen in popular home automation management hubs and software. These ‘central 

hub’ solutions typically offer a more open system compatible with third party 

hardware using multiple communication protocols [42]. The vision of the ‘internet of 

things’ connecting a comprehensive network of devices in domestic settings has 

motivated several companies to develop domestic-level data collection on occupants 

and their interactions with home technologies and appliances.  

Table 2-1 – Comparison of major ‘smart’ domestic heating controls packages available in the UK 

 

Hive Active 

Heating 2 (2016) 

[43] 

Nest v3 (UK) 

(2017) [44] 

Heat Genius 

(2016) [45] 

Tado (2016) 

[46] 

Honeywell 

Evohome (2015) 

[47] 

Multi-zone control 

Up to 3 zones if 
boiler allows, no 

TRVs 

Per thermostat if 
boiler allows, no 

TRVs 

♦ 
Per thermostat, 

no TRVs 
♦ 

Remote Control ♦ ♦ ♦ ♦ ♦ 

User Motion 

Sensing 
 ♦ ♦   

User Geolocation 

Limited - 
prompts manual 

alterations 

♦  ♦  

Learning heat 

response 
 ♦ ♦ ♦ ♦ 

Weather data use  ♦ ♦ ♦  

Additional 

features 

• Security 

Integration 

 

• Self-learning 

schedules* 

• Security 

Integration 

• Modular 

• Further home 

automation 

• Distance 

dependent 
temperature 

setback 

• High control 

granularity 

* Reviews indicate effectiveness of learning can vary [48] 

The greater sophistication of domestic systems can be difficult to apply to larger, 

more complex commercial systems, where a high number of occupants may cohabit 

in a space and obtaining occupancy/behavioural data becomes more complex. 

2.5 Evidence for the Importance of Occupant Data 

Data collected during building operation typically shows a significant difference 

between designed and actual energy use in buildings. This is clearly demonstrated in 
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Figure 2-6, which highlights the higher than expected use of both heat and electrical 

energy in various commercial building types. There is a greater difference in 

electricity use than heat, which likely reflects the fact that commercial building 

occupants have more control over electrical services (lighting, computers etc.) than 

heating controls. As such, it is easier for electricity to drift further away from design 

values.  

 

Figure 2-6 - Predicted Versus Actual Energy Use in Commercial Buildings [4] 

Several studies have been conducted to assess the contribution of occupancy/occupant 

behaviour towards demand and final energy use in buildings. This is typically 

achieved through simulation or observation of a small set of real-world buildings. The 

findings of such studies are summarised below. 

2.5.1 Impact of Occupant Behaviour in Commercial Buildings 

Firstly, research through simulation typically tries to verify how much energy use 

changes with varying occupancy, allowing buildings’ sensitivity to actions made by 

the occupant to be quantified.  

For example, early sensitivity analysis of a school building [49] showed an energy use 

variation of as much of 150% within the bounds of “typical” occupant behaviour. It 

should be noted that the methods used involved static occupancy schedules, meaning 

that only extreme values of behaviour could be tested and a variation this high is 

unlikely in real building use. 

Simulation of a medical building [50] has shown an overall energy variation of 30% 

when comparing the use of real occupancy patterns in building simulation to the same 

building with standard occupancy templates from simulation software. The simulated 
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person count and electrical equipment use were altered by up to ±68%. This verifies 

that energy use can be highly sensitive to occupant actions.  

Azar and Menassa state that the 30-100% discrepancy between simulated and actual 

building energy use data “can mainly be attributed to misunderstanding and 

underestimating the important role that the occupants’ energy use characteristics play 

in determining energy consumption levels” [51]. In their study, an agent-based model 

was used to account for changes in attitude towards energy and word-of-mouth effects 

between building occupants. Different input influence levels changed energy use in 

the tested building by as much as 25%, given the same behavioural starting point. 

This suggests that influence and change in behaviour over time is a factor that should 

be considered in building modelling. However, further sensitivity analysis on other 

building locations and sizes show that, while still significant, the relative impact of 

occupant behaviour changes with different building contexts [3].  

Secondly, studies of control systems and real buildings quantify the impacts of current 

building services systems’ response to changing occupancy. Simulation will typically 

assume the building services respond properly to changing demand from occupants, 

which is not the case in practice. Typically, a poor response to occupant presence and 

behaviour shows systems wasting energy by running when occupants are not present.  

Martani et al demonstrate that, in real application, building services do not always 

follow actual occupant presence patterns [52]. Wi-Fi connections were used as an 

occupancy counting device in an educational building. Electricity use showed strong 

correlation with occupancy levels, while HVAC energy use did not. This shows the 

poor response of some services systems to actual occupancy. The authors observed 

that “large common areas, such as studios, may be used by one person or a large 

number of people often with no alteration in the amount of energy supplied to the 

space”. 

Masoso and Grobler’s study of commercial buildings in a hot, dry climate showed 

more energy used during non-working hours than working hours [53]. This suggests 

that energy use is not properly linked to periods of occupancy and, once again, shows 

the need for more occupancy-centric control systems.  



16 

 

2.5.2 Impact of Occupant Behaviour in Domestic Buildings 

A study of dwellings in Japan [54] took an alternative approach to quantifying 

occupant impact on energy: by eliminating other factors from a large data set until 

differences in behaviour were the only remaining factors to account for energy 

differences between buildings. This was done by grouping buildings with similar size, 

climate, number of residents etc. The study found that HVAC and most electrical 

equipment loads were heavily influenced by occupant behaviour. Hot water and 

refrigeration were not highly influenced by occupant behaviour.  

Observational study of dwellings in Northern Ireland have shown that houses with 

similar characteristics can have different electricity use profiles, depending on the 

number of residents, patterns of occupancy and socio-economic factors affecting 

energy behaviours [55]. 

A study of PassiveHaus sensitivity showed that occupant presence patterns did not 

affect energy use as significantly as expected [56]. This may be symptomatic of poor 

control systems, as with the studies of commercial buildings in Section 2.5.1. It 

should be noted that occupant-controlled behaviours such as appliance use, set point 

temperatures and airflow behaviour were shown to have a significant impact on 

overall energy demand.  

2.5.3 Discussion 

Most research looking specifically at behavioural impact on building energy use 

shows that there is significant potential for energy saving through greater 

understanding of building use. Some studies offered insight into particular areas 

currently affected by changing behaviour: use of electrical appliances, lighting etc. 

HVAC loads are often not correlated to occupant presence or behaviour, suggesting 

there is scope to reduce wasted energy by making the energy supplied more closely 

match the varying demand from occupants.  

Studies have noted considerable differences in motivation for energy-related 

behaviour in commercial and domestic settings (energy bill responsibility, privacy, 

social factors, typical activities etc.), suggesting that approaches to understand or 

adjust behaviours must be approached sensitively to their context [57]. Further to this 

observation, studies that considered several building types or settings show that 

occupant behavioural patterns can show significant variation between building types 
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[58], suggesting that generic solutions to behavioural modelling and control problems 

will not provide adequate performance for all buildings.  

The above studies suggest that occupancy data can be used to effect change in a 

number of ways (more occupant-centric controls, feedback to occupants, informing 

the design process etc.) This work is focussed on improvements to the occupancy 

measurement systems providing information to building controls and energy 

management. 

2.6 Conclusions 

This review covered the existing state of building energy use and current commercial 

practice towards catering this energy expenditure towards the actual, measured needs 

of building occupants.  

It can be seen that the performance gap between designed and in-use building energy 

rates is a major source of energy waste in the UK, causing a significant contribution 

towards environmental issues. A wide range of studies have shown the importance of 

occupants’ building use in changing a building’s energy demand. 

Current building controls systems rarely explicitly measure occupant data, severely 

limiting their capacity to react appropriately to changing occupant needs and highlight 

potential places to save energy without negatively impacting occupant experience. In 

recent years, the Building Energy Management Systems (BEMS) field has seen an 

increasing interest in the software side of controls: increasing the complexity and 

intelligence of response to data measured by the systems.  

The clear influence of building occupants on dynamic energy demand shows that 

building energy management, particularly in commercial fields, needs a solid basis for 

collecting relevant localised occupant data to inform more intelligent controls, 

sensitive to the limitations of the data collection in an imperfect system. The 

following chapter presents an examination of how the issues of occupant data 

collection and its use in building controls have been addressed in existing research 

work. 
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3 REVIEW OF RESEARCH ON OCCUPANCY SENSING AND OCCUPANT-

CENTRIC BUILDING CONTROLS 

3.1 Introduction 

While current commercial Building Energy Management systems do not typically 

collect high-grade occupant data, there is significant research interest in this field. 

This chapter provides an extensive review on existing research into both the collection 

of occupant data and its application to building controls.  

3.2 Existing Research on the Collection of Occupancy Data 

With advances in the scope and availability of various sensing devices in recent years 

[59], there has been a significant increase in the amount of study into occupancy data 

in the built environment. Many studies focus on improving sensing technology itself; 

either through addressing issues with privacy and invasiveness of occupancy sensing 

or through increasing accuracy of occupancy measurement itself. Other studies 

explore the use of occupancy data in building services control systems, seeking to 

improve occupant comfort or decrease energy consumption. 

This section covers the methods used by occupancy sensing studies that do not use 

collected data for any control purpose. Real-time data on building occupancy can also 

be useful for a range of analytic or user feedback applications, leading to many 

studies that do not specify how the collected data might be used. The occupant data 

collected can take several forms, depending on the level of detail needed. 

3.2.1 Occupant Presence 

The binary parameter of whether or not any occupants are present in a space is one of 

the simplest forms of occupancy sensing, but is still difficult to achieve 100% 

accuracy with current technology. Generally, a reasonable accuracy can be achieved 

by installing motion/PIR sensors, particularly in small spaces with only one occupant 

[60]. However, PIR sensors require a direct line of sight to the person – it is easy to 

create blind spots and the sensor must be in plain sight, leading to aesthetic issues 

[61].  

Some research has explored ways to increase accuracy of presence measurement. For 

example, Hailemariam et al sought to increase the accuracy of sensing presence at 

individual office cubicles [62]. They used data aggregation from an array of sensors 
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measuring illuminance, sound level, carbon dioxide (CO2) concentration, desk power 

use and PIR motion at each cubicle. It was then assessed which variables added the 

most value to the presence estimate. Surprisingly, in this study the motion sensor 

alone performed best, with performance decreasing when more variables were added. 

This may be due to poor training or noise from the other sensors decreasing overall 

accuracy.  

Multi-sensor solutions have also been tested in domestic settings, such as in the work 

of Candanedo et al [63], who used localised environmental sensor data to create a 

model for occupant presence patterns, finding that the highest accuracy was found 

with 5-minute CO2 trend data. In some applications however, it is desirable to avoid 

installing many sensors in an observed space, as this can be seen as intrusive and may 

involve high costs. A method to estimate presence in a domestic setting was 

developed using data on electricity use from a home smart meter [64]. This method 

works on the premise that occupants interact with electrical devices in the home and 

so occupant presence can be inferred from smart meter data. The use of ambient 

sensors in a domestic setting is known to have several problems, including motion 

sensors being falsely triggered by pets/outside events, the slow response time of CO2 

sensors and problem diagnosis issues with a large distributed system of local sensors. 

The overall accuracy of using smart meter electricity use data was as high as 90.63% 

in this study. There is a slight issue with false negative estimates, when the occupant 

is present but not using any electricity. This sensing method is suitable only for small 

residences and does not provide much useful data for control purposes. It is also 

possible to exploit the change in air pressure when occupants move between rooms in 

a residential space in order to sense indoor location to a room level [61]. A transition 

detection accuracy of 75-80% was achieved using only one sensor in the home.  

3.2.2 Number of People 

Estimation of the number of people in a space is considerably more complicated than 

presence alone. Research in the field has explored a wide range of possible methods, 

each with its own benefits and drawbacks.  

The use of a single sensor type to count occupants is attractive due to its lower 

complexity and installation costs. Several studies have been conducted to determine 

which sensors give the best approximation of the number of people in a space. A 
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common option is CO2 concentration sensors, as the release of CO2 from respiration is 

the only major source of CO2 in most buildings [65]. However, the gas takes some 

time to build up to high enough concentrations to show elevated occupancy, meaning 

that response time is slow. Accuracy of counting is also limited by the fact that CO2 

release differs between people and activity levels. Other sensor types used with 

varying success include heavily-processed temperature readings [66] and volatile 

organic compounds (VOCs) from use of an office kitchen area [67].  

Visual methods use the feed from cameras, which can be specially installed or use 

existing CCTV equipment, to count the number of people in within the camera’s 

visual field. With strategic placement of cameras, this can allow the number of people 

in a space to be estimated. Placing cameras only at the entrances and exits of a space 

allows the number of occupants to be inferred without constantly monitoring the 

occupants, as in [68]. More detailed techniques can include full context awareness, 

including the location of tagged objects as well as people [69]. Accuracy of visual 

systems can depend heavily on lighting conditions, arrangement of furniture and the 

movement level of occupants. The large amount of data generated by cameras and the 

need for heavy processing to extract information can make visual systems processing-

heavy and slow to run.  

The most popular method of people counting in recent research is data mining from 

several different sensor types. This has the benefit of being able to use non-intrusive, 

relatively inexpensive sensors and generally achieves higher accuracy than using only 

a single sensor type. Common sensors included are PIR and CO2, which are used 

alongside cameras [68], ventilation actuator signals [70], relative humidity, acoustic 

and temperature sensors [71]–[74]. In analysis of the information gained by each new 

sensor type, Lam et al found that the most useful sensors in an open-plan office space 

were relative humidity, acoustic, CO2 and temperature sensors [72], while a 

systematic approach applied by Ekwevugbe et al favoured CO2 trend, computer use 

and acoustic levels [74].  

Given the current rise of concerns about digital privacy and the collection of data 

from unknowing participants, combining data from several ambient sensors seems a 

reasonable compromise from more intrusive detection methods. Data collected 

through ambient sensor data mining typically does not directly identify the occupant 
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and holds less sensitive information than directly tracking the precise location of 

building users.  

3.2.3 Real-Time Location Sensing (RTLS) 

Location information about building occupants provides a platform for much richer 

analysis of occupant impacts on building energy use and the possibility of tailoring 

building control to an individual level. However, this increased detail of collected 

information causes concerns about privacy and typically requires the specific 

permission of building occupants to be implemented.  

The use of wearable or carried tags to collect location information is not a new 

concept, but has only inspired research interest in the context of occupant location in 

recent years. The most common wearable tags use radio-frequency signals to transmit 

their location to receivers spread around the sensed space [75]–[77]. Radio frequency 

location systems are divided into sub-sets, depending on the type of radio signal used: 

active/passive RFID, Wi-Fi, Ultra-Wide Band UWB, Ultra High Frequency UHF etc. 

When used alone, tagging systems can have some issues with calibration and reflected 

signals adding noise to the receiver input. It can also be more difficult to detect 

moving occupants than stationary [78]. The use of many RF receivers around a space 

[79]–[81] or using RFID in tandem with infrared detectors [82] can significantly 

improve the accuracy of location, with [79] showing an improved average location 

accuracy of 93% after adding additional receivers.  

Tagging of occupants is only truly applicable to a space where all occupants are 

known and can be expected to wear a tag – places of work or potentially residences. 

Ambient sensing can be used to locate occupants in spaces where occupants are not 

regular visitors, such as public buildings and retail. For example, the interference to 

wireless LAN signal caused by the human body can be detected and used to infer the 

location of a person [65], or a dense network of ambient PIR sensors can be used 

alongside existing CO2 and humidity data to infer location [83]. Methods such as 

these are often heavy on computation and may be too slow to run in real-time [83]. 

As uptake of the smartphone and other smart devices has become more common in 

recent years, a significant amount of research interest has been put into using personal 

devices for indoor location [76]. The principle is similar to that of RFID tagging, but 

avoids the costs and inconvenience of carrying dedicated hardware by using an 
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occupant’s own smart device. There are several possible sources of data that could be 

used to calculate a user’s position: 

• Telephone company data/GPS – company data gives a very coarse 

approximation to location by using a mobile phone’s connection to nearby 

telephone masts, while GPS can offer more detail when enabled on a device. 

Both methods suffer accuracy issues when used indoors [84]. 

• Wi-Fi connection – locally distributed Wi-Fi beacons can be used to locate a 

smart device by requesting connections [84] or the ID of a device’s current 

connected Wi-Fi network can be logged over time [85]. However, some smart 

device users turn off Wi-Fi when not in use, due to the high power drain 

caused by leaving it on [84].  

• Bluetooth – inquiries by Bluetooth beacons can be a slow process, but it has 

been shown that speed can be improved by locating devices by which can 

connect to each other [84]. 

• Orientation data – the on-board accelerometer and gyroscope found on many 

smart devices can be used to estimate a 3D path taken by the device, thus 

allowing the user’s location to be inferred if their starting point is known. 

Systems to improve the accuracy of this method have been developed by 

combining this data with inter-device connections to provide known points of 

contact [86] and visual data processing [87].  

3.2.4 Activity and Energy Behaviours 

It is often an advantage to know the specific activity taking place in an indoor space. 

This information can be used for user feedback on energy behaviours (e.g. use of 

appliances, opening/closing windows), analysis of the energy impact of user actions 

or provide building services control specific to the task’s requirements.  

As perhaps the least predictable and most varied aspect of occupancy sensing, even 

when behaviours can be correctly identified, it is important to carefully consider what 

broader conclusions can be drawn. The energy-related behaviours of a person are 

influenced by both physical and non-physical parameters [57], meaning that it can be 

difficult to guess an occupant’s intentions and desired outcome even when perfectly 

recording the physical context in which the behaviours occur. Care must therefore be 

taken when trying to interpret behavioural data.  
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A basic approach to learning behavioural context is presented by Bruckner and Velik 

[32], where a framework is developed for automatically identifying recurring patterns 

in motion sensor data. It is then assumed that these patterns can be linked to 

behaviours and occupant intentions by a human observer. Their system builds a 

Hidden Markov Model (HMM) to build a statistical model of activity level from 

motion sensors in an office building. Along similar lines, Zhao et al aimed to identify 

anomalous events in occupancy and their time span, as these events have the greatest 

impact on the effectiveness of scheduling in building control systems [88]. This 

approach alone has limited applications due to the need for manual labelling of 

activities, but presents the first step towards learning behaviour in buildings.  

Automated detection of activity types can be achieved by including more detail in the 

sensed variables. For example, measurements from a range of ambient sensors 

including motion sensors, sound level and chair pressure pads have been shown to 

detect office activities with high accuracy [89]. Simpler systems have also been 

developed using pressure pads in beds and chairs to identify unusual or low activity 

levels in assisted living spaces in order to identify when an occupant may need 

medical help [90]. Other approaches include the measurement of when appliances and 

objects are used [91]–[94], assuming that most human activities involve interaction 

with some measurable object. A typical problem with this approach is that all 

expected activities must be predefined and sensors specified for each object 

interaction. Activities not originally considered will not be detected at all. In a study 

of multiple domestic buildings [92], it was also found that the accuracy of a trained 

model using similar data sources varied dramatically from house to house, suggesting 

some reliance on occupant behaviour matching the predefined activities designed to 

be caught by the sensors.  

Analysis of camera feeds may provide a more generic solution, but requires an 

extremely high amount of processing and current research cannot produce 

consistently accurate results [95]. As with any use of processed visual data, there are 

also issues with privacy that prevent widespread application.  

An important point to note is the specificity of occupant behaviour, how personal 

preferences, position within the room or movement out of an uncomfortable place can 

change the behaviours occurring. This brings into question the validity of generic 
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occupancy models that can be applied to any building, and highlights the need to 

include more comprehensive sensing technology in buildings [57].  

3.2.5 Summary and Discussion 

It is clear that there is a wide range of sensing technology being tested in current 

research, both hardware and software. Much of this technology is in its early 

developmental stages and can be expected to improve in future applications. Table 

3-1 summarises the main uses, benefits and drawbacks of the various physical sensors 

used to detect human occupancy.  

When selecting which technologies are most appropriate, a balance between the 

perception of privacy for the occupant and the accuracy of measurement must be 

decided. Generally, accuracy increases with the inclusion of more sensors and is 

highest with the more intrusive options, such as wireless tagging of occupants. Across 

the studies reviewed, there was a general perception that vision-based systems 

decrease occupants’ sense of privacy, while systems based on passive collection of 

environmental data are unlikely to be noticed by occupants, and were favoured in 

studies that valued occupant privacy. Different methods also require different levels 

of training: combining passive sensors is less intrusive and can give good accuracy, 

but requires extensive training sets that may not be appropriate for many applications. 

The accuracy of occupancy sensing depends heavily on the level of detail measured 

(e.g. activity sensing gives the highest level of detail but generally has the lowest 

accuracy). Without specific requirements set by an intended application, it can be 

difficult to justify what level of detail should be attempted. The following section 

shows applied examples of occupancy sensing, with further justification of the 

balance between accuracy and detail.   

  



25 

 

Table 3-1 - A summary of sensors used in occupancy detection and their uses 

Technology Level of 

Detection 

Possible 

Strengths Weaknesses Ideal 

Applications 

Passive Infrared 

(PIR)/ Motion 

sensors 

[32], [62], [65], 

[67], [68], [70]–

[74], [83], [85], 

[92], [96] 

Occupant 

presence 

(alone), 

Number of 

people 

(combined) 

- Relatively 

low cost 

- Readily 

available 

- Less intrusive 

- No counting 

capability 

- False 

negatives 

when 

occupants are 

still 

- Require 

direct line of 

sight 

- Single-

person 

offices 

- Individual 

cubicles 

CO2 [62], [63], 

[65], [67], [68], 

[70]–[74], [83] 

Occupant 

presence, 

Number of 

people 

- Readily 

available 

- Non-intrusive 

- Slow 

response 

time 

- Affected by 

ventilation 

- Smaller 

volume 

spaces 

- Known 

activity level 

Volatile Organic 

Compounds VOC 

[67] 

Occupant 

presence, 

Number of 

people 

- Can detect 

activity-

specific 

person count 

- Non-intrusive 

- Very specific 

application 

- Kitchen areas 

Smart meter data 

mining [64] 

Occupant 

presence 

- Uses existing 

infrastructure 

- Non-intrusive 

- False 

negatives 

when 

occupants are 

not using 

electricity 

- Residential 

Illuminance [62], 

[73] 

Occupant 

presence 

- Relatively 

low cost 

- Readily 

available 

- Non-intrusive 

- Must be 

combined 

with other 

sensors 

 

- Ambient 

sensor 

combination 

Acoustic [62], 

[71]–[74] 

Occupant 

presence, 

Number of 

people 

- Relatively 

low cost 

- Readily 

available 

- Less intrusive 

- Must be 

combined 

with other 

sensors 

 

- Ambient 

sensor 

combination 

Appliance/lighting 

use [62], [67], 

[74], [85], [92], 

[94] 

Occupant 

presence, 

Number of 

people, 

Activity 

- Non-intrusive - Misses 

occupants/ 

activities not 

using 

electricity 

- Ambient 

sensor 

combination 

- Workplace 

activity 

sensing 

Temperature [63], 

[66], [71]–[73] 

Occupant 

presence, 

Number of 

people,  

Location 

(combined) 

- Relatively 

low cost 

- Readily 

available 

- Non-intrusive 

- Must be 

combined 

with other 

sensors 

 

- Ambient 

sensor 

combination 

Door Open/Close 

Status [85], [96] 

Occupant 

presence, 

Number of 

people, 

Activity 

- Non-intrusive - Must be 

combined 

with other 

sensors 

- Ambient 

sensor 

combination 
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Door Counter 

[88] 

Number of 

people 

 

- Non-intrusive - Can be 

skewed by 

multiple 

people at 

once 

- Public spaces 

- Workplaces 

Humidity [63], 

[73], [83] 

Occupant 

presence, 

Number of 

people,  

Location 

(combined) 

- Low cost 

- Readily 

available 

- Non-intrusive 

- Must be 

combined 

with other 

sensors 

 

- Ambient 

sensor 

combination 

Cameras [68], 

[69], [87], [95] 

Occupant 

presence, 

Number of 

people,  

Location, 

Activity 

- High level 

detail 

possible 

- Privacy 

concerns 

- Heavy 

processing 

required 

- Workplaces, 

public places 

with existing 

CCTV 

Radio Frequency 

tags [78], [79], 

[82] 

Location - High level 

detail 

possible 

- Privacy 

concerns 

- Hardware 

must be 

carried 

- Workplaces 

Pressure Pads 

[85], [89], [90], 

[92] 

Location, 

Activity 

- Can monitor 

specific 

location of 

interest 

- Privacy 

concerns 

- Assisted 

living, 

domestic, 

office 

HVAC Actuation Occupant 

presence, 

Number of 

people 

- Helps to 

account for 

ventilation 

effects 

- Relationship 

to occupancy 

can be 

indirect 

- Workplaces 

- Existing 

HVAC 

systems 

Air pressure 

change [61] 

Occupant 

presence, 

Location 

- Non-intrusive 

- Can sense 

movement 

between 

spaces 

- Relationship 

to occupancy 

can be 

indirect 

- Low 

occupancy 

spaces 

- Residential 

Smart device 

tracking [84]–[87] 

Location - High level 

detail 

possible 

- Privacy 

concerns 

- Hardware 

must be 

carried 

- Assumes all 

occupants 

have a device 

- Workplaces 

- Residential 

 

3.3 Application of Occupancy Data 

When occupancy data is applied for a specific purpose, it is easier to define the 

requirements from sensing equipment. Development of building control algorithms 

using real building data have been both driven by advances in sensor technology and a 

driver for new sensor types [97]. Studies that use applied occupancy data in the 

control of building services can be categorised into four levels [98]: 

• Control using real-time occupancy data 
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• Accounting for the preferences of individual occupants 

• Control informed by prediction of future occupancy levels 

• Control catered to individual activities 

3.3.1 Control in Real-Time Response to Occupants 

The use of real-time response to building occupancy is well established in commercial 

lighting control, with widespread use of PIR sensors to switch on/off lighting. Some 

research has been dedicated to improving the efficiency and user convenience of such 

lighting systems. For example, Garg and Bansal [99] showed that altering the sensor’s 

time delay through the day according to expected activity level can produce a small 

energy saving and reduce unwanted lighting switch-off, while Labeodan et al showed 

that a relatively simple system of motion and chair sensors could save energy on 

localised office lighting [100]. More significant energy saving was shown by Xu et al 

[101], where real-time complex event processing was used to control localised 

lighting in a system designed to understand how office space was used and be robust 

to changes in equipment or sensor layout.  

Along similar lines to lighting control, occupancy data can inform control of electrical 

power supply to appliances; saving energy by automatically switching off power to 

appliances when not in use. Domestic solutions have been tested [102], but 

commercial applications in multi-occupancy spaces remain more complex. Some 

studies have focussed on local motion sensing to detect presence close to appliances 

[103], while others have used Bluetooth tagging systems to detect when the owner is 

approaching equipment, allowing the equipment to reboot in time to be used [104]. 

However, it was concluded that more context was required for reliable appliance 

control. 

As detailed in section 2.4, the control of building HVAC systems through BEMS is a 

rapidly developing field. As such, there is much research interest in improving the 

response of HVAC to occupants in real-time. Operations to reduce energy use from 

real-time data include [78]: 

• Maintaining temperatures further from the set point in unoccupied areas, 

• Maintaining lower ventilation rates in unoccupied areas, 

• Supplying airflow based on occupancy, 

• Adjusting outside air volume based on occupancy, 
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• Responding to dynamic heat loads on a timely manner, 

• Operating HVAC systems based on occupant preferences, 

• Learning energy consumption patterns, 

• Increasing the flexibility of control. 

Most research in this field focuses on commercial applications, making use of the 

prevalence of existing building sensing and automation equipment in the commercial 

sector. However, some research shows that in residential applications there is 

potential for significant energy saving from sensing occupant presence in real-time, 

rather than using a typical fixed HVAC schedule [105]. Meyer and Rakotonirainy 

provided an overview of context-aware home projects and their differences to 

commercial applications [106]. In particular it was noted that commercial and home 

applications of automation will have different sets of priorities, with homes catered to 

comfort while commercial systems focus on productivity. 

The focus on improving productivity while reducing energy is particularly true for 

office environments: an area with significant existing research. The benefits of real-

time occupancy-based HVAC control vary significantly with the location and building 

utilisation: up to a 56% saving using simple CO2-based estimation of number of 

people in a busy Hong Kong office [107]. Yang et al developed a model to detect 

presence and the number of people in office space, using ambient sensors. This 

sensing was used to simulate the potential energy saving from demand-based HVAC 

control [108] and build models of occupancy for simulation [109]. Agarwal et al have 

conducted a range of studies on office applications, simulating an energy saving 

potential between 10-15% relative to a conventional HVAC control system in single-

person offices [110]. Comparison of system complexities suggest that single-

occupancy offices gain significant benefit from simple occupancy or CO2 responsive 

HVAC, with a smaller marginal benefit of more complex strategies [111]. It is 

demonstrated that the combination of PIR and door open/close sensors can yield 96% 

accuracy in single-occupancy office spaces [112], providing greater accuracy than 

Wi-Fi smartphone tracking [113], but only suitable for single-person spaces. When 

applied to a real building with varying space types, energy saving from their Wi-Fi 

based control system was higher, at 17.8%. In a similar vein, Zeiler et al [114] used 

wireless tags to locate occupants in a multi-use office space, demonstrating energy 

saving with localised heating control.  
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Occupant-driven HVAC can be particularly effective when combined with other 

sustainability technologies. For example, Rosiek and Batlles used PIR and CO2 

sensors to inform the energy use and storage from renewably driven air conditioning 

[115]. In a building with highly variable use levels, energy saving of 42% was 

demonstrated by accounting for occupant presence.  

3.3.2 Control to Individual Occupant Preference 

Some control applications benefit from comfort input from individual users, catering 

building conditioning to each person’s own preferences. This typically requires one of 

three ways to estimate the comfort level of building occupants: 

• Voluntary information provided by the user, 

• Estimation of comfort from empirical models and environment data, 

• Attempts to measure user comfort automatically. 

Once collected, preferences can be applied to a range of building controls. 

Personalised lighting levels at a desk surface can be achieved by controlling lamp 

output using occupant preference data, natural light levels and a physical relationship 

between the lamp settings and work surface illuminance [116]. 

More commonly, occupant preferences are collected and used for control of thermal 

systems in a building. Thermal comfort is highly subjective and depends on a wide 

range of variables [117]. In theory, better knowledge of a person’s comfort level 

should allow much more responsive HVAC systems, greater overall comfort and 

improved energy efficiency. The use of a calculated ‘predicted mean vote’ comfort 

level among occupants was demonstrated by Zhao et al [118], Kolokotsa et al [119], 

and Gao and Keshav [120]. The latter developed a system to control heating supplied 

to individual desks in an office space. Here, occupant preference was estimated by 

calculating a modified version of ‘predicted mean vote’, an empirically-based value 

for expected comfort level. This calculation was informed by local air temperature, 

humidity, air speed, radiant temperature and clothing level. Equipment for the system 

was costly and required much calibration.  

A more specific way to implement user preference into control is to record and 

maintain a set of preferences for a specific individual while tracking their location in 

the building. This can be achieved by: surveying occupants at their single-occupancy 
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desks [121]; using personal smart devices to locate users and perform periodic 

comfort surveys [122]; using a range of ambient sensors to locate users while 

recording manual control adjustments [123]; or RFID tagging and recording manual 

adjustments to building controls made by each user [124], with the inclusion of PIR 

for greater accuracy of location sensing [125]–[127]. In multi-occupant spaces, 

distinction can be made between groups with tracked locations/preferences and 

unknown occupants detected by ambient sensors [128]. It has also been demonstrated 

that occupant skin temperature observed with an IR camera can be used as a basis to 

determine comfort levels and adjust local conditioning [129].  

It should be noted that some of the above applications are highly specific to the type 

of space in which they are implemented: the iDorm project [123] used a range of 

sensors that are only applicable to learn personal preferences in a residential context 

with a single main occupant. The learning of rules is designed to occur based on the 

exact context of the occupant at the time (sleeping, working etc.), requiring a system 

that is more detailed, but less widely applicable to other buildings and spaces. By 

contrast, the work of  Moreno-Cano et al [125]–[127] is designed to be a generic 

platform that can learn the requirements of each user in any type of space. While less 

detailed than the iDorm project, this application proved to be effective and yielded an 

average energy saving of 20% during testing in a multi-use building.   

3.3.3 Control to Individual Behaviours/Activity Types 

Although much study has been conducted on the detection of occupant activities, this 

information has not often been implemented into control systems. This is partially due 

to continuing problems with detection accuracy (see Section 3.2.4) and the lack of 

hardware required to control building systems finely enough to cater to individuals’ 

activities.  

Some initial experiments into activity-based control include optimisation of localised 

lighting [130], in which cameras are used to define whether occupants are working, 

moving, sleeping etc. and choose appropriate lighting configurations for each activity. 

While energy saving was demonstrated, the more energy-efficient control options 

were perceived as less useful lighting by occupants, suggesting that the system was 

not successful enough for application.  
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A simpler approach was demonstrated in [131], where individual office desks were 

conditioned only when the occupant was present. Control inputs for lighting, 

appliance power supply etc. were adjusted when it was sensed that the user was 

working on their computer/working on paper. This strategy is only possible in a space 

with office desks that are sufficiently isolated from one another. The issue of 

detecting multiple occupant activities in one zone was also encountered in a domestic 

study [132], where motion and in-room location were manually mapped to predefined 

activity types. When the start of an activity was identified, the heating system was 

adjusted in response. If continuation of the activity was then confirmed by 

observation, the heating strategy continued. However, the system was not built to 

respond to conflicting activities within a single zone. 

3.3.4 Control through Occupancy Prediction 

While the studies in Section 3.3.2 attempt to estimate the control action needed given 

a particular context, research in this section tries to predict the context of a space in 

the near future in order to pre-emptively condition the space to acceptable levels. In 

theory, this allows areas to drift further away from comfort conditions while not 

occupied, saving energy that would have been used keeping a space to ‘standby’ 

comfort levels in case it becomes occupied in the near future. This control method 

offers a step beyond simple reaction to an occupant’s presence and generally requires 

a more complex control system. 

Studies into occupancy prediction can be categorised by exactly what parameters are 

being predicted and the intended horizon of prediction. For applications that require a 

fast response, the prediction horizon is typically low, in the order of minutes/hours 

[133] or simply concerned with predicting the next action in a sequence. This form of 

prediction is useful for the control of power supply to household appliances, lighting 

etc. as in the Adaptive House [134], [135] and MavHome [102], [136] projects, where 

the environment around a user records typical sequences of actions during use of the 

home and then attempts to automate more common sequences. 

For application to systems with a slower response time, such as HVAC control, 

predictions of occupancy must run over a longer time horizon. This requires the 

construction of a model of occupant behaviour from extended observation of a space. 

It has been shown that the predictability of occupancy is dependent on how the space 
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is used [133]. However, there has been some degree of success in this field. For 

example, Mamidi et al [137], [138] and Howard et al [139] developed prediction from 

the current state, up to 90 minutes in the future. Between the two studies, several 

different prediction methods were tested, trained with ambient sensor data from two 

educational buildings. Accuracy of prediction using real building data from a large 

educational space was high, ~90% for Mamidi et al. It was found that more variation 

in short-term occupancy gave lower accuracy of prediction. Other applications have 

sought to predict the duration of the currently observed binary occupant presence 

status by comparing to the most similar situations in previous observations using a k-

Nearest-Neighbours algorithm [140]. Identified issues with the systems above include 

the need for a large amount of training data.  

Dong et al built upon their previous work on counting the number of people in a 

commercial space [71] to develop a system to predict the duration of the current 

occupancy state from historic event sequences inferred from ambient sensor data 

[141]. An advantage of this approach is that it requires no training period, simply 

starting learning when it is implemented. The predictive control was then refined to 

include office calendar data, weather data and a physical model of the building for 

fully optimised proactive control [142], [143]. This proved to save 18-30% energy in 

implementation on a real building. A relatively simple system of motion sensors was 

used with a stochastic algorithm to predict occupancy duration and highlight absent 

days for lower heating setpoints in the work of Gunay et al, with simulated heating 

savings of 10-15% [144]. Another approach to online learning was proposed by 

Dobbs and Hencey [145], who used sensor input to gradually build a predictive model 

of occupant presence, weighting newer data to account for changes in building use 

over time. Aswani et al [146], [147] produced a thermal model that did not require 

manual training, as the thermal impact of occupancy was automatically identified by 

the model. This model predictive approach showed 30-70% energy saving over 

simple temperature control. 

Domestic HVAC is also the subject of predictive control research [96], [148], [149]. 

In [148], daily profiles of use and comfort preferences were created from observation 

in a test home fitted with several sensor types. A daily profile from an observed set 

was selected based on home use the previous day and corrected if observation no 

longer matched the selected profile. In [149], the cell network and Wi-Fi connections 
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of personal mobile devices were used to measure the room-level location of domestic 

occupants, which then was used in a Markov predictive model to estimate transitions 

between rooms. It was found that the system was accurate while occupants behaved 

within typical routines, but was not able to handle unusual behavioural patterns.  

It is also possible to predict occupancy over several timescales in order to better 

account for unusual behaviours. The work of Erickson et al uses short prediction 

windows to ensure infrequently occupied spaces are conditioned and longer windows 

to ensure that frequent but short visit spaces are conditioned. Erickson developed 

predictive HVAC control strategies over several years, with testing of several 

different methods for prediction of occupancy and control algorithms based on such 

prediction. Early work [150], [151] focussed on comparing two prediction models 

informed by a network of cameras: a multivariate Gaussian distribution model 

(MVGM) was used to generate a coarse prediction of when a room is empty or 

occupied, while an agent-based model (ABM) was used to simulate the route taken by 

individual building users. It was found that ABM produced good simulation of 

building use for design purposes, but was not suitable for predicting future room 

usage. MVGM was determined to be better for real-time prediction, as it is informed 

by current occupancy states, but poorly represented certain behaviours, such as 

underrepresenting rooms that are not often occupied. 

In response to the limitations identified above, a system based on a Markov Chain 

model was developed for predictive HVAC control [152], [153]. After training with 

ground truth data to build a probability matrix of transitions between states, the 

current occupancy state is used to predict occupancy per room over the next several 

time steps. These steps are then used to inform whether the space should be 

conditioned to comfort or setback temperatures. In simulation, this system is shown to 

reduce energy use by up to 42% relative to fixed HVAC schedules. The energy saving 

and comfort provided by occupancy prediction is noted to be higher than a purely 

reactive strategy. It is also shown that knowledge of the number of occupants in the 

space provided greater energy saving for ventilation than binary presence. The 

prediction method was then tested in a real-life application [154]. An estimated 

annual energy saving of 30.0% from trial results suggests that the simulation work 

was optimistic, but essentially sound.   
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The use of occupancy data to predict internal gains over the long term (up to 60 

hours) for the purpose of optimising HVAC suggests that energy can be saved without 

making changes to set points when a room is vacant [155].  

While many studies show the benefits of occupancy prediction in appropriate 

applications, there is some debate about the value of including complex predictive 

control over simple reaction. Oldewurtel et al tested the benefit of prediction over 

real-time reactive control by simulation of a single-occupancy office environment 

[156] [157]. Prediction was used to determine the likelihood of occupancy on a given 

day, offsetting the HVAC load when the room is vacant all day. It was concluded that 

predictive control did not provide a significant benefit above reactive control. Along 

similar lines, Goyal et al  tested several HVAC control methods, including fixed 

schedules, reaction and prediction through simulation [158] [159] and 

experimentation [160] for a small office space. Both reaction and prediction improved 

response relative to the baseline, but prediction did not show significant improvement 

over reaction. Inclusion of a building thermal model reduced oscillation, but was 

sensitive to uncertainties in the input data for the plant model and occupancy [161]. 

This suggests that more robust occupancy measurement technology would further 

strengthen the case for predictive control.  

It should be noted that in the above studies, the tested spaces are generally small and 

are not expected to have many occupants. Other studies have noted that spaces such 

as this, which can be conditioned quickly to comfort conditions, are not ideal 

candidates for predictive control [120] [162]. Simulation of different room sizes and 

constructions shows that prediction can be more useful in larger spaces with higher 

thermal mass [161], but this effect is not fully explored in this paper. In spaces with 

slower response times, it has been shown that effective preconditioning of the space 

can yield significant energy savings [163]. Indeed, in a review of relative savings 

from various control strategies, those with occupancy prediction showed the greatest 

percentage energy saving [59]. 

3.3.5 Discussion 

Table 3-2 to Table 3-5 show a summary of the occupancy-based controls discussed in 

this section. The vast majority of studies show that accounting for occupancy in the 

control of building systems can significantly reduce the energy used in a building. 
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Occupancy data is used in the control of appliance power supply, electrical lighting, 

automated blind placement, heating, ventilation and air conditioning. The amount of 

energy saved varies dramatically between applications and control intentions. 

Due to the wide range of building types and control methods applied, it is difficult to 

truly compare the energy saving made by different studies. In research that directly 

compares different strategies in the same building, it appears that the greatest overall 

energy savings can be achieved with controls that combine reactive and predictive 

approaches to optimise conditioning of a space. However, there is debate on whether 

the benefits of predictive control justify the significant increase in complexity and 

computing power required over purely reactive control. In general, the value of 

predicting behaviours over real-time response depends on the application – most 

prediction models are applied to HVAC operation, as this typically has the slowest 

response of any building system and so can benefit the most from early warning of 

demand changes. This is discussed in more detail in Section 3.3.4.  

Controlling building systems to individual preference is shown to create issues with 

conflicts in multi-occupancy rooms. Energy saving varies on the preference of the 

occupant, but comfort levels should be held as high as possible for all occupants. 

Further research may be required on how best to balance conflicting comfort 

standards in a multi-occupancy space. 

An attribute common to most studies in the above section is that the control is often 

tested through simulation, rather than deployment in a real building. Given that there 

are many identified issues with current simulation technology, there would be 

significant worth in testing systems by implementation in real-life buildings where 

possible.  

It should also be noted that the comfort of occupants should be accounted for, as well 

as direct energy saving. With the rise in sophisticated automated controls, it is worth 

considering that occupant comfort is highly subjective and can often be related to the 

illusion of control: placebo-like effects have been demonstrated with dummy controls 

[57]. This highlights the need to check that occupant satisfaction is not negatively 

affected by energy saving measures.  
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Table 3-2 - Summary of real-time occupancy-based control studies 

Authors Control 

Type 

Occupancy 

Data Used 

Techniques Building 

Type 

Energy 

Saving 

Demonstrated 

Garg & 

Bansal 

[99] 

Lighting Occupant 

presence 

- PIR 

 Office 25% 

Labeodan 

et al [100] 

Lighting Local Presence 

- PIR 

- Chair Status 

Rule-based 

control 

Office 24% 

Xu et al 

[101] 

Lighting Occupant 

presence 

- PIR 

- Door Status 

- Light 

Barrier 

Complex event 

processing 

Office ≤ 34% 

Park et al 

[103] 

Appliances Occupant 

presence 

- PIR 

 Office ≤ 21% 

Harris & 

Cahill 

[104] 

Appliances Real-time 

location 

- Smart 

device 

tracking 

 Office Not reported 

Batra et al 

[105] 

Domestic 

HVAC 

PIR/Door status  Domestic Not reported 

Sun et al 

[107] 

HVAC Number of 

people  

- CO2 

 Office ≤ 56% 

Agarwal et 

al [110] 

HVAC Occupant 

presence 

- PIR 

- Door status 

 Single & 

multi 

occupant 

offices 

10-15% 

Agarwal et 

al [113] 

HVAC - Smart 

device 

tracking 

 Single & 

multi 

occupant 

offices 

17.8% 

Zeiler et al 

[114] 

HVAC Real-time 

location 

- Wireless 

tagging 

Zone allocation Multi 

occupant 

offices 

30-45% 

Rosiek and 

Batlles 

[115] 

HVAC PIR/CO2  Lab/office/ 

Meeting 

room 

42% 

Gruber et 

al [111] 

HVAC Number of 

occupied 

offices/CO2 

 

Simple totals 

vs multi-

objective 

optimisation 

Energy 

Simulation 

Single occ 

office 

6-39% 

Yang et al 

[108] 

HVAC Number of 

people  

- Ambient 

sensors 

Decision Trees 

for detection  

Energy 

simulation 

Office/ 

Classroom 

18-20% 

  



37 

 

Table 3-3 - Summary of preference-based control studies 

Authors Control 

Type 

Occupancy Data 

Used 

Techniques Building 

Type 

Energy Saving 

Demonstrated 

Singhvi et 

al [116] 

Lighting - Illuminance 

- Appliance/Lighting 

use 

- RF Tags 

  Not reported 

Zhao et al 

[118] 

HVAC - Temperature 

- Surveying 

Predicted 

Mean Vote 

comfort 

model 

Measured 

MV 

Office 44%* 

 

 

*Simulated result 

Kolokotsa 

et al 

[119] 

HVAC, 

Lighting, 

blinds, 

window 

opening 

Individual presence and 

comfort 
- Temperature 

- Humidity 

- Air Speed 

- CO2 

- Illuminance 

Predicted 

Mean Vote 

comfort 

model 

Fuzzy 

controller 

Single-

occupancy 

office 

Not reported 

Gao & 

Keshav 

[120] 

HVAC Individual presence and 

comfort 
- Temperature 

- Humidity 

- Air Speed 

- Cameras 

Predicted 

Personal 

Vote comfort 

model 

Office Not reported 

Jazizadeh 

et al 

[121] 

HVAC Individual presence and 

comfort 
- Temperature 

- Comfort surveying 

Fuzzy Logic 

for profile 

construction 

Single-

occupancy 

office 

26-39% 

Yong et al 

[122] 

HVAC - CO2/Temperature/ 

Humidity 

- Illuminance 

- Acoustic 

- Air Speed 

- Smart device comfort 

surveying 

Individual 

agents 

Office Not reported 

Hagras et 

al [123] 

Domestic 

HVAC, 

lighting, 

blinds 

- PIR 

- Illuminance 

- Appliance use 

- Temperature 

- Pressure pads 

- Window opening 

Fuzzy logic, 

individual 

agents 

Domestic Not reported 

Chen et al 

[124] 

Lighting, 

HVAC 

Real-time location 
- Appliance use 

- RF tags 

 Office Not reported 

Moreno-

Cano et al 

[125]–

[127]  

Lighting, 

HVAC, 

switches, 

blinds 

Real-time location 
- PIR 

- Appliance use 

- RF tags 

Radial Basis 

Functions 

Neural 

Network 

Office 20% 

Yeh et al 

[128] 

Lighting, 

HVAC, 

switches 

Real-time location 
- RF tags 

- Light sensor 

- Acoustic 

- Temperature 

 Office 16.5-46.9% 

Vissers 

and Zeiler 

[129] 

HVAC Individual comfort 
- IR cameras 

- Ambient 

Temperature 

 Office <17% 
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Table 3-4 - Summary of activity-based control studies 

Authors Control 

Type 

Occupancy 

Data Used 

Techniques Building 

Type 

Energy Saving 

Demonstrated 

Xu et al 

[101] 

Lighting Occupant presence 

- PIR 

- Door Status 

- Light Barrier 

Complex 

event 

processing 

Office ≤ 34% 

Lee et al 

[130]  

Lighting Activity type 

- Cameras 

Conditional 

random field 

model 

Generic Not explicitly 

reported 

Milenkovic 

& Amft 

[131] 

Lighting, 

power 

supply 

Activity type 

- PIR 

- Appliance use 

at desk 

Finite 

state 

machines, 

Probabilistic 

layered hidden 

Markov 

models  

Office 21.9% 

Pallotta et 

al [132] 

Heating Activity type 

- PIR 

- IR camera 

- Accelerometer 

 Domestic Not reported 

 

Table 3-5 - Summary of occupancy prediction-based control studies 

Authors Control 

Type 

Occupancy 

Data Used 

Techniques Building 

Type 

Energy Saving 

Demonstrated 

Harle & 

Hopper 

[133] 

Lighting, 

Appliances 

Real-time 

location 

- Ultrasonic 

location 

Ingress zones for 

lighting/applianc

es.  

Office 50% Lighting 

only 

Mozer 

[134], 

[135] 

Lighting Activity type 

- Ambient 

sensors 

- Appliance 

use 

Neural network 

predictor 

Domestic Not reported 

Cook et al 

[102], 

[136] 

Appliances

, lighting 

Activity type 

- Ambient 

sensors 

- Appliance 

use 

Modified text 

compression 

algorithm 

Domestic Not reported 

[137], 

[138] 

Mamidi et 

al 

HVAC Occupant 

presence  

Number of 

people 

- Ambient 

sensors 

Multilayer 

perceptron and 

logistic 

regression 

classifier 

Lab/Office Not reported 

Howard & 

Hoff 

[139] 

Not 

reported 

Occupant 

presence  

- PIR 

network 

Bayesian 

combined 

forecasting 

Lab/Office Not reported 

Peng et al 

[140] 

HVAC Occupant 

Presence 

- Motion 

sensors 

k-Nearest 

Neighbours 

Single & 

Multi 

Office 

20.3% 
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Dong et al 

[141]–

[143] 

HVAC Number of 

people 

- Ambient 

sensors 

Online model 

building, 

machine 

learning, MPC 

Office 18-30% 

Gunay et 

al [144] 

HVAC Occupant 

presence  

- PIR 

network 

Online stochastic 

model 

Office 10-15% 

Dobbs and 

Hencey 

[145] 

HVAC Occupant 

presence 

Online model 

building, Markov 

chain, MPC 

 8% 

Aswani et 

al [146], 

[147] 

HVAC Number of 

people 

- Temperatur

e 

MPC Computer 

lab 

30-70% 

Barbato et 

al [148] 

Domestic 

HVAC 

Occupant 

presence 

- PIR 

network 

 Domestic ≤ 28% 

Lee et al 

[149] 

Domestic 

HVAC 

Occupant 

Presence, 

Room-Level 

Location 

Markov Chain Domestic  Not reported 

Erickson 

et al [150]–

[154] 

HVAC Occupant 

presence, 

Number of 

people 

- Camera 

network 

Agent based 

modelling, 

Multivariate 

Gaussian model, 

Markov chain 

model 

Lab/Office

/ 

Meeting 

room 

≤ 42% 

Zhang et 

al [155] 

HVAC Number of 

people as part of 

internal gains 

 

MPC variations Single-

occupant 

offices 

Not reported 

Oldewurte

l et al 

[156] 

[157] 

HVAC Occupant 

presence 

- PIR 

MPC Single-

occupant 

offices 

≤ 34%* 

Goyal et al 

[158]–

[161] 

HVAC Occupant 

presence 

Number of 

people 

MPC Single-

occupant 

offices/ 

Meeting 

room 

≤ 56-61%* 

 

*Simulated result 

of ideal 

prediction 

 

3.3.6 Simulation and Testing 

Occupancy data can also be useful for improving the accuracy of simulation, energy 

prediction and testing of design hypotheses. The energy demands and overall 

consumption of a building can be significantly affected by occupancy. It is therefore 

essential that simulation and testing use realistic occupancy patterns for accurate 
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results – a need that is not fulfilled by the static occupancy schedules typically input 

to current simulation tools.  

There have been several studies that attempt to use large datasets of how a building in 

used to derive a model to generate any amount of typical occupancy data. In 

particular, domestic Time Use Survey (TUS) data has been used to build stochastic 

models that can generate daily occupancy schedules based on household size [164]–

[170]. Most of these studies find their basis in the Richardson model [168]–[170], 

available online. In this model, UK TUS data is used for energy prediction as an 

aggregate for the whole house, based on estimated activities. The load for HVAC is 

not included. Additions include consideration of duration of activity [165] [167] and 

detailed estimation of HVAC load [166]. Meidani and Ghanem [171], [172] attempted 

to derive a similar model from a much smaller input data set, accounting for the 

higher uncertainty present when less data is available. It is noted that transition 

matrices based on observed data will always have some error and variability: the best 

that can be done is to minimise the error, rather than eliminate it.  

In commercial settings, the lack of large-scale TUS data means that models have been 

developed through smaller scale measurement of more specific processes. For 

example, office-based small power energy use was estimated by two different models 

developed by Menezes et al [173]. The first model used random sampling from 

detailed measurement of the use of office equipment, while the second used coarse 

data on the number of appliances and office schedules to estimate use profiles. Both 

approaches had some inaccuracies, including underestimation of peaks, which may be 

detrimental to design use and demonstrate the need for more data collection in the 

field. Models have also been developed for interaction with natural ventilation [174] 

and the presence of occupants at office cubicles [175]. Here, the model uses data on 

the frequency, duration and starting time of absence periods to create daily presence 

profiles that fall within typical bounds of building use.  

Lee and Malkawi made use of agent-based modelling to estimate window use 

behaviours for simulation of commercial buildings [176]. The comfort of occupants 

was calculated and used to predict when windows are opened/closed over time. Use of 

this model in simulation resulted in significantly different internal temperatures 

predicted relative to standard simulation methods. This agent-based approach was 
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then extended to include other behaviours for the simplified case of a single-person 

office [177]. In order to address uncertainties in real-world application, it was 

assumed that human behaviour is logical according to the perceptions and 

expectations of the individual.  

Liao et al developed an agent-based model to simulate the location of occupants over 

time [178], [179]. This allows the number of people in each arbitrary zone to be 

predicted at any time, given the initial conditions. The model developed in this study 

is easily scalable to an arbitrary number of zones and agents. However, it is not 

suitable for real-time estimation in this form. Surveying, scheduled activities and 

access rights of building occupants are used to build profiles for each agent. Agents 

are assigned a primary zone, in which they will spend most of their time. The model is 

calibrated by comparing the results to measurements for whole-building mean 

occupancy etc. Testing showed that mean occupancy was overestimated and daily 

entry/leaving times were not accurate, but general accuracy to real building use was 

acceptable. 

Most of the above studies cover Monte Carlo simulation – running a deterministic 

model many times with stochastic inputs. This creates a distribution of the output 

variable over many runs of the model. An alternative method is to model energy use 

over time in two parts, such as in the work of  Brohus et al [180]: here building loads 

were modelled as a function of the mean value over time, with an addition of 

fluctuating noise to represent randomness from occupant behaviours, weather 

fluctuations etc. 

Another study [181] utilises in-use measurements to predict energy consumption of 

buildings. On-line models do not require the high volumes of training data that is 

needed for accuracy in static models. Regression models are suited to estimating 

average energy use, not specific use in small time steps. Accumulative training 

(constantly revising model with input data) can allow both local and global trends to 

be found. However, over time the volume of data may slow the running of the system. 

Newer trends also have a smaller impact relative to the rest of the data. Sliding 

window training does not have problems with aggregating large volumes of data. 

Older data is discarded over time. This could lose longer-term trends. It is also 

difficult to choose the optimum window size. The MATLAB ANN toolbox is used to 
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develop this paper’s model, with several pre-set algorithms for training tested. Despite 

stating the need for on-line training, the adaptive models did not significantly 

outperform the static models.  

3.3.7 Discussion 

The differences of approach between control-oriented and design-oriented 

applications of occupancy data reflect the different requirements of each process. 

Control must be quick to process and typically works on a short horizon – between 

minutes to a day. 

 

Design data is typically used for long-term simulations, so is not constrained by 

processing time. It needs to generate a large dataset that accurately represents the 

mean and variation of real data, without the need for accuracy when comparing 

particular days. This means that it is much easier to extrapolate design data from a 

historical dataset than to predict specific behaviours that will happen on a particular 

day, as is needed for control. This highlights the need for continual real-time updating 

of context for control models, so that both reactive and predictive actions are accurate 

and provide useful results for energy saving and comfort.  

3.4 Conclusions 

From the wide range of approaches into the collection of occupant data, it can be seen 

that the measurement of building occupants is a highly complex problem that requires 

a clearly defined aim in the type and level of data collected, as well as a necessary 

trade-off between the level of detail measured and the perceived intrusion into 

occupants’ privacy. ‘Occupant data’ could encompass a wide range of actual data 

types, from simple binary presence to highly computationally intensive systems to 

infer specific occupants’ activities. 

The review of studies applying occupancy data to building control has highlighted 

areas of interest within the field. The existing body of research has tested the 

application of occupant-centred building control across a range of building services 

and to varying levels. Applications were split broadly into four categories: systems 

that respond in real time to occupants, those that collect and utilise data on individual 

occupant comfort preferences, controls catered to specific occupant activity and 

proactive control based on prediction of future events. In particular, the study of 
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predictive energy management and control was found to have significant potential for 

energy saving, particularly from systems with a slow response time, where real-time 

response alone may result in energy waste or uncomfortable conditions as the system 

catches up to the demands of the current occupancy state. In research that compared 

different strategies in the same building, the greatest overall energy saving was 

achieved with controls that combined reactive and predictive approaches to optimise 

conditioning of a space, although some authors questioned the added value of 

prediction versus its increased computational requirements. 

It is proposed that a combined responsive-predictive strategy shows the greatest 

potential for improving the efficient control of building systems towards actual 

occupant energy requirements. However, it has been demonstrated that the field of 

occupancy prediction and its application to control is a problem that has not been 

exhaustively solved. The focus of this research work was therefore directed towards 

the development of a system that could supply useful predicted occupancy data for 

building control in multi-occupant spaces, with sensitivity to the fact that future 

events will never be predicted with perfect accuracy. As a basis for this development, 

data sources needed to be selected for the feasible collection of occupant data and 

analysis to target the type of situations where occupant-centric energy saving 

measures could provide the most benefit.  
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4 POST-OCCUPANCY CASE STUDIES OF OCCUPANCY AND ENERGY 

4.1 Introduction 

As an introductory work for this study, a series of case studies across sectors were 

used to assess the current state of applied occupancy data collection and to make 

initial assessments of the existing relationship between occupancy rates/behaviours 

and energy usage.  

Data sets of some measure of occupancy and energy were acquired for two case 

studies: a domestic setting based in Nottingham, UK and a large office building based 

in Worksop, UK. Some qualitative occupancy-related assessment was also conducted 

for a school building in Dagenham, UK. 

4.2 Green Street Domestic Dataset 

4.2.1 Building layouts, uses and data types available  

The Green Street housing project is based in the Meadows area of Nottingham, UK, 

situated as shown in Figure 4-1. The houses were developed in three ‘phases’, with 

slight variations on building design between phases as shown in Appendix 10.1.  

Historic energy use and basic occupancy data was available from eight houses across 

all three phases.  The investigation of the Green Street data focussed on several key 

questions: 

• How well can occupancy be quantified using motion sensor and CO2 data with 

no ground truth available to verify results? 

• Does energy use relate to occupancy? Which types of energy have the closest 

correlation? 

• If types of energy use correlate directly with occupancy, can they be used to 

add reliability to simple motion sensor data? 

• Does the behaviour of occupants in different houses cause quantifiable energy 

waste relative to other houses? 
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Figure 4-1 - Green Street Project, Meadows Area, Nottingham, UK 

The data types available and sensor locations for the eight houses are summarised in 

Table 4-1. Data was collected via wireless sensor nodes, detected by a centralised hub 

and sent to a central storage point. This allowed web access to the data in CSV format 

and was maintained by a contracted company during the study. However, the nature 

of the centralised wireless detection caused some issues with data fidelity, discussed 

below. The layout of the house sensor equipment differed between houses A, B, C, D 

from Phase 1 and houses E, F, G, H from Phases 2 and 3. Diagrams of both house 

types can be found in Appendix 10.1. 
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Table 4-1 - Occupancy and Energy Data available from the Green Street Project 

Information 

Type 

Data Name Description Measured 

Units 

Houses 

Available 

Occupancy Footfall – 

Downstairs 

Number of times the downstairs 

hallway PIR motion sensor was 

triggered 

Count (whole 

numbers) 

All 

Footfall – 

Upstairs 

Number of times the downstairs 

hallway PIR motion sensor was 

triggered 

Count (whole 

numbers) 

All 

CO2 CO2 concentration in living room ppm (parts per 

million) 

C, G 

Electrical 

Energy 

Main Electric 

Import 

Total electricity imported to 

house on top of any generated 

electricity 

kWh All 

Main Electric 

Export 

Total electricity exported from 

house from generated electricity 

kWh All 

Extraction 

System/Heat 

Recovery 

Electrical energy used by the 

house ventilation system 

kWh All 

Hob/Cooker Electrical energy used by the 

cooker 

kWh All 

Sockets 

Downstairs  

Phase 1 - 1st Floor and Kitchen, 

Phase 2&3 – Ground Floor 

kWh All 

Sockets Upstairs Phase 1 – 2nd Floor, Phase 2&3 – 

1st and 2nd Floor 

kWh All 

Heating 

Energy 

(Gas boiler) 

Heating Energy used in heating the house  m3 for A, C, D 

and kWh for 

B, E-H 

All 

Main Gas Gas used by the boiler for heating 

and hot water 

m3 All 

Water Use Hot Water Hot water use in the house m3 for A, C, D 

and kWh for 

B, E-H 

All 

Mains Water Total water use in the house m3 All 

4.2.2 Data Fidelity 

A visual comparison of data from the motion sensors for each of the houses – shown 

in Figure 4-2 and Figure 4-3 – indicated that there were common periods of sensor 

dropout, indicated with the shaded sections of the figures. Features common to these 

sensor dropout periods included: 

• Timing of dropout is common to buildings in Phase 1, different timing for 

Phase 2 buildings. 

• Dropout was observed across most sensor types at once. 

• Dropout was immediately followed by an unfeasibly high peak. Further 

examination showed that the peak was approximately equal to the sum of 

expected readings over the dropout period. 

• Dropouts have consistent zero readings. 
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Phase 1 houses showed the largest dropout period, lasting from 14th August – 3rd 

October 2013 and affecting all sensor types from the Phase 1 houses. Phase 2 

buildings showed different periods of common sensor dropout – most notably the 

period 14th – 23rd February 2014. House G additionally had no PIR readings from 

February 2014 onwards, indicating a likely sensor failure within this building.  

 

 

Figure 4-2 - Common Data Dropout Periods in PIR data for Phase 1 buildings A and B 

  

 

 

Figure 4-3 - Common Data Dropout Periods in PIR data for Phase 2 buildings E and G 
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Given the consistent nature of the dropout periods, it was possible to write a script to 

flag any instance of sensor dropout, allowing for identification of shorter dropouts 

than could be found with manual inspection of the data. This algorithm is described in 

pseudocode below. 

Algorithm: 

Start indicator set to zero 

For each 5 minute timeslot of data 

 If all sensors read zero and start indicator is zero 

  Note the timeslot at which zeros start in start indicator 

 Else if start indicator is not zero and extractor data peaks in this or next timeslot 

  Note the timeslot at which the peak occurs 

  Add start indicator to list of dropout start points 

 Else if start indicator is not zero and there is no peak 

  Return start indicator to zero 

 End 

Next timeslot 

The algorithm was run on data from house C in order to verify its success rate. A total 

of 183 dropouts were identified during the period 15/05/2013-06/07/2014. 18 

randomly sampled dropouts were manually verified and were found to be correctly 

identified. It was therefore assumed that the algorithm could detect sensor dropouts 

accurately.  

Through the algorithmic identification, it was found that data dropouts occurred with 

a relatively high frequency over a wide range of timescales. Dropout periods lasting 

less than 5 minutes can be neglected for most analysis as their effect is to aggregate 

measured energy use for just a short period into the future. However, longer dropouts 

that offset large, aggregated readings to the next day, week or month can significantly 

affect the quality of analysis. The algorithm was adjusted to distinguish between 5-

minute gaps and longer gaps. The 5-minute gaps were corrected by splitting the peak 

value over the previous two time slots. Gaps larger than five minutes and their peaks 

were deleted from the data for the short-time-dependent analysis in Section 4.2.5, so 

that unusually high peaks did not affect average energy use during occupancy.  
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4.2.3 Inferring Occupancy by CO2-PIR Correlation 

CO2 data was available for two of the houses for a limited time period. As it has been 

shown in previous studies that the motion sensor data alone cannot provide accurate 

readings of the number of people [65], it was investigated whether CO2 could be used 

to provide any further context. This investigation began with a visual inspection into 

the trends seen with the motion sensor data across houses C and G. 

4.2.3.1 House C 

The visual correlation between CO2 and PIR readings in house C largely followed a 

logical pattern: the greatest daily peak in PIR readings corresponded to the greatest 

daily peak in CO2, with a delay of around 0-2 hours. This pattern is illustrated with a 

sample of the available data in Figure 4-4. The delay between peak values was 

significantly longer than the 10-20 minutes observed in previous studies using room-

level CO2 sensing [65], likely due to  the time required for a localised increase in CO2 

level to circulate to the single CO2 sensor in the house.  

 

Figure 4-4 - Comparison of daily peak of total motion sensor and CO2 readings for House C over 

one week period 

4.2.3.2 House G 

The visual correlation between CO2 and motion sensor data for house G, illustrated in 

Figure 4-5, was less well defined. This may be due to the higher variation in daily 

cycle of occupancy or the lack of clearly defined daily peak. This may also indicate 
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the importance of the location of a single-point CO2 sensor: if a large number of 

occupants are present in a room far away from the sensor, depending on the layout of 

the house, the local peak in CO2 level may not be recorded before it is dispersed or 

ventilated to the outside. 

 

Figure 4-5 - Comparison of daily peak of total motion sensor and CO2 readings for House G over 

one week period 

4.2.4 Correlation of PIR/ CO2 with energy use 

Investigation into how the energy use relied on occupancy in the Green Street 

buildings began with a comparison of the direct correlation between various energy 

measurements and the magnitude of motion sensor or CO2 readings. This provided 

some insight into how well the PIR and CO2 data related to actual occupancy levels as 

well as with energy use. 

It was expected that for most of the energy measurements, there would be a high 

number of zero-energy readings for all levels of occupancy. This is because an 

occupant does not use all forms of energy in a house all the time s/he is present. The 

expected indicator of good correlation was that the highest cases of energy use 

occurred during high PIR or CO2 readings.  

Figure 4-6 shows a comparison of Daily (Figures a and d), Hourly (b and e) and 5-

minute (c and f) occupancy measurements relative to imported electricity for the 

period 15/05/2013 – 06/07/2014. It can be seen that on a daily level, a positive 
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correlation between detected occupancy and electricity demand exists: higher 

demands generally occurred on days with higher total motion counts and higher 

average CO2 levels. However, on an hourly and 5-minute scale this correlation 

became less distinct. No correlation at shorter time scales could be observed with 

other energy uses, which has several possible reasons and implications: 

• Given that motion and CO2 sensors are centrally located, if the occupant is out 

of sensor range inside a room and using energy, their presence will not be 

logged until they enter/leave – this creates a disconnect between short-term 

occupancy measurement and energy use. 

• Motion sensor count and CO2 level cannot be directly used to infer the number 

of active occupants at a given time, but when summed/averaged over a day 

inaccuracies are evened out allowing for better correlation with daily energy. 

It should be noted that the number of active occupants does not directly imply 

a proportional increase in energy use, as behavioural aspects and external 

factors have a significant influence on individual energy use, however the 

observed positive correlation on a daily scale suggests that, on average, there 

is some relationship present between number of occupants and energy use.   

• The disconnect may also imply energy waste, if true occupant presence is not 

related to short-term energy use, this implies that energy consumed is not 

always providing benefit to the occupants and could be saved. 
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Figure 4-6 - House C. Correlation between Energy and Daily, Hourly and 5 Minute values for 

CO2 and PIR, using data 15/05/13-06/07/14 

As daily values showed the strongest observable relationship to energy use, these 

were used to compare the relative relationship of various domestic energy uses to the 

motion count and CO2 concentration data in houses C and G. 

Most energy uses in house C (Figure 4-7) show the pattern that the lowest daily 

consumption occurs on days with the lowest motion count and CO2 concentration – 

and so by implication the lowest number of occupants present. The strongest trends 

appear to have a linear pattern, allowing a correlation coefficient to be calculated, as 
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shown in Table 4-2. Here, a coefficient close to zero implies no correlation between 

two variables, and a coefficient closer to -1 or 1 implies a strong negative or positive 

correlation, respectively. For each correlation coefficient, the corresponding ‘p-value’ 

is also shown in Table 4-3. A low p-value implies there is a low probability of the 

correlation coefficient occurring when no relationship exists between the variables. It 

is therefore expected that a strong correlation between variables would have a high 

correlation coefficient and low p-value.  

The strongest correlation of energy with occupancy in house C was seen for water, 

hot water, downstairs sockets and electrical import, all of which showed an 

approximately linear positive trend. This was confirmed by the correlation coefficient 

(Table 4-2) and the low probability of observing this trend if no relationship existed 

(P-value shown in Table 4-3). The trend suggests that the days with the highest 

motion count and highest average CO2 levels are those with the greatest consumption, 

with two potential implications: 

• Electrical and water consumption depend on the number of people present 

• Electrical and water consumption depend on the length of time the house is 

occupied during the day 

Without explicit knowledge of the number of people in the house at a given time, it is 

difficult to confirm which of these implications has the strongest influence. 

The weakest correlation in house C is seen in the extractor and upstairs sockets, both 

of which appear to be independent of occupancy levels. In the case of upstairs 

sockets, it appears that the building occupants have a small, constant load, but do not 

often use much more electrical energy upstairs.  

All other energy uses show a weak positive relationship with occupancy. The low p-

values in Table 4-3 imply that the weak correlation is not coincidental, but that 

occupancy rate was not a significant factor in the magnitude of energy used, 

suggesting either: 

• Dependence on other factors - for example, the energy used by the heating 

system will heavily depend on outside temperature and so is difficult to relate 

only to occupancy. 
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• Potential indication of energy use without full benefit to the occupant, 

resulting in wasted energy. In the case where higher levels of energy are being 

used while occupants are not present, this may indicate that systems or 

appliances have been left on when not needed. However, this is difficult to 

prove conclusively with the evidence available. 

The correlation between the gas/heating use and the CO2 data was significantly 

different to that for the motion data, as shown in Table 4-2 and Table 4-4. The reasons 

for this were further explored in Section 4.2.5.  

The energy consumption of house G follows some similar trends to C, as shown in 

Figure 4-8, Table 4-4 and Table 4-5. Once again, the strongest correlation between 

energy and occupancy was found with electrical and water consumption. The heat 

recovery system was independent of occupancy and other energy uses show a weak 

correlation. It should be noted that in house G, the average CO2 level correlated more 

strongly than the motion count for several energy measurements including electrical 

import, downstairs socket and cooker use. This may be due to the CO2 sensor being 

placed closer to commonly used electrical equipment in house G, where the kitchen 

and living room are on the same storey, while in house C the kitchen is located one 

storey below the CO2 sensor. It may also imply that the motion sensor 

location/sensitivity in house G was not as effective at detecting true occupancy as in 

house C. 
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Figure 4-7 - House C. Correlation between energy use and a) motion count b) CO2 measurements 

b
) 

a) 
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Table 4-2 - House C. Correlation Coefficient between Daily Sensor Measurements (see Table 4-1 

for sensor details) 
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CO2 1.00 0.69 0.63 0.67 0.27 -0.16 0.35 0.29 0.02 0.53 0.45 0.06 0.66 0.54  0.38 

Tot. PIR 0.69 1.00 0.92 0.96 0.29 -0.02 0.14 0.08 0.12 0.43 0.59 0.03 0.71 0.64  0.43 

PIR Down 0.63 0.92 1.00 0.78 0.31 -0.01 0.18 0.11 0.14 0.45 0.59 0.04 0.70 0.67  0.42 

PIR Up 0.67 0.96 0.78 1.00 0.25 -0.02 0.11 0.05 0.09 0.38 0.53 0.02 0.64 0.55  0.39 

Cooker 0.27 0.29 0.31 0.25 1.00 0.12 0.17 0.08 0.05 0.49 0.41 0.03 0.39 0.48  0.26 

Extractor -0.16 -0.02 -0.01 -0.02 0.12 1.00 0.03 -0.07 0.09 0.02 0.08 -0.02 0.06 0.05  0.01 

Gas 0.35 0.14 0.18 0.11 0.17 0.03 1.00 0.80 0.06 0.67 0.17 -0.01 0.17 0.29  0.24 

Heating 0.29 0.08 0.11 0.05 0.08 -0.07 0.80 1.00 0.07 0.57 0.12 -0.03 0.05 0.12  0.17 

Elec. Export 0.02 0.12 0.14 0.09 0.05 0.09 0.06 0.07 1.00 0.09 0.10 0.05 0.06 0.04  0.08 

Elec. Import 0.53 0.43 0.45 0.38 0.49 0.02 0.67 0.57 0.09 1.00 0.65 0.19 0.48 0.51  0.42 

Sockets D 0.45 0.59 0.59 0.53 0.41 0.08 0.17 0.12 0.10 0.65 1.00 0.10 0.68 0.57  0.39 

Sockets U 0.06 0.03 0.04 0.02 0.03 -0.02 -0.01 -0.03 0.05 0.19 0.10 1.00 0.07 0.07  0.05 

Water 0.66 0.71 0.70 0.64 0.39 0.06 0.17 0.05 0.06 0.48 0.68 0.07 1.00 0.83  0.42 

Hot Water 0.54 0.64 0.67 0.55 0.48 0.05 0.29 0.12 0.04 0.51 0.57 0.07 0.83 1.00  0.41 

 

Table 4-3 - House C. P-values for correlation coefficients 
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CO2 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.71 0.00 0.00 0.29 0.00 0.00 

Tot. PIR 0.00 1.00 0.00 0.00 0.00 0.71 0.01 0.15 0.03 0.00 0.00 0.61 0.00 0.00 

PIR Down 0.00 0.00 1.00 0.00 0.00 0.80 0.00 0.05 0.01 0.00 0.00 0.52 0.00 0.00 

PIR Up 0.00 0.00 0.00 1.00 0.00 0.68 0.06 0.35 0.09 0.00 0.00 0.71 0.00 0.00 

Cooker 0.00 0.00 0.00 0.00 1.00 0.03 0.00 0.15 0.33 0.00 0.00 0.63 0.00 0.00 

Extractor 0.00 0.71 0.80 0.68 0.03 1.00 0.61 0.22 0.10 0.77 0.13 0.75 0.27 0.41 

Gas 0.00 0.01 0.00 0.06 0.00 0.61 1.00 0.00 0.30 0.00 0.00 0.83 0.00 0.00 

Heating 0.00 0.15 0.05 0.35 0.15 0.22 0.00 1.00 0.23 0.00 0.04 0.61 0.36 0.03 

Elec. Export 0.71 0.03 0.01 0.09 0.33 0.10 0.30 0.23 1.00 0.11 0.06 0.33 0.29 0.45 

Elec. Import 0.00 0.00 0.00 0.00 0.00 0.77 0.00 0.00 0.11 1.00 0.00 0.00 0.00 0.00 

Sockets D 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.04 0.06 0.00 1.00 0.08 0.00 0.00 

Sockets U 0.29 0.61 0.52 0.71 0.63 0.75 0.83 0.61 0.33 0.00 0.08 1.00 0.19 0.21 

Water 0.00 0.00 0.00 0.00 0.00 0.27 0.00 0.36 0.29 0.00 0.00 0.19 1.00 0.00 

Hot Water 0.00 0.00 0.00 0.00 0.00 0.41 0.00 0.03 0.45 0.00 0.00 0.21 0.00 1.00 
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Figure 4-8 - House G. Correlation between energy use and a) motion count b) CO2 measurements 

b
) 

a) 
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Table 4-4 - House G. Correlation Coefficients between Sensor Measurements (see Table 4-1 for 

sensor details) 
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CO2 1.00 0.43 0.49 0.28 0.41 -0.16 0.47 0.43 -0.24 0.76 0.64 0.12 0.55 0.54  0.36 

Tot. PIR 0.43 1.00 0.94 0.90 0.12 0.31 0.01 -0.05 0.17 0.38 0.10 0.34 0.70 0.59  0.38 

PIR Down 0.49 0.94 1.00 0.71 0.09 0.23 0.06 0.01 0.15 0.39 0.16 0.25 0.65 0.54  0.36 

PIR Up 0.28 0.90 0.71 1.00 0.12 0.36 -0.07 -0.12 0.18 0.29 0.00 0.40 0.64 0.54  0.33 

Cooker 0.41 0.12 0.09 0.12 1.00 -0.10 0.16 0.13 -0.12 0.53 0.44 0.16 0.29 0.27  0.19 

Extractor -0.16 0.31 0.23 0.36 -0.10 1.00 -0.56 -0.57 0.43 -0.22 -0.18 0.25 0.25 0.13  0.01 

Gas 0.47 0.01 0.06 -0.07 0.16 -0.56 1.00 1.00 -0.55 0.60 0.36 -0.12 0.02 0.21  0.12 

Heating 0.43 -0.05 0.01 -0.12 0.13 -0.57 1.00 1.00 -0.56 0.56 0.34 -0.15 -0.05 0.13  0.09 

Elec. Export -0.24 0.17 0.15 0.18 -0.12 0.43 -0.55 -0.56 1.00 -0.45 -0.27 0.28 0.24 0.02  -0.06 

Elec. Import 0.76 0.38 0.39 0.29 0.53 -0.22 0.60 0.56 -0.45 1.00 0.68 0.03 0.49 0.50  0.35 

Sockets D 0.64 0.10 0.16 0.00 0.44 -0.18 0.36 0.34 -0.27 0.68 1.00 -0.06 0.18 0.14  0.19 

Sockets U 0.12 0.34 0.25 0.40 0.16 0.25 -0.12 -0.15 0.28 0.03 -0.06 1.00 0.32 0.29  0.16 

Water 0.55 0.70 0.65 0.64 0.29 0.25 0.02 -0.05 0.24 0.49 0.18 0.32 1.00 0.84  0.39 

Hot Water 0.54 0.59 0.54 0.54 0.27 0.13 0.21 0.13 0.02 0.50 0.14 0.29 0.84 1.00  0.37 

 

Table 4-5 - House G. P-Values for correlation coefficients 
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CO2 1.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.01 0.00 0.00 0.21 0.00 0.00 

Tot. PIR 0.00 1.00 0.00 0.00 0.23 0.00 0.94 0.63 0.07 0.00 0.30 0.00 0.00 0.00 

PIR Down 0.00 0.00 1.00 0.00 0.33 0.02 0.52 0.89 0.12 0.00 0.10 0.01 0.00 0.00 

PIR Up 0.00 0.00 0.00 1.00 0.20 0.00 0.50 0.23 0.07 0.00 0.96 0.00 0.00 0.00 

Cooker 0.00 0.23 0.33 0.20 1.00 0.31 0.10 0.16 0.20 0.00 0.00 0.10 0.00 0.00 

Extractor 0.10 0.00 0.02 0.00 0.31 1.00 0.00 0.00 0.00 0.02 0.06 0.01 0.01 0.18 

Gas 0.00 0.94 0.52 0.50 0.10 0.00 1.00 0.00 0.00 0.00 0.00 0.22 0.81 0.02 

Heating 0.00 0.63 0.89 0.23 0.16 0.00 0.00 1.00 0.00 0.00 0.00 0.13 0.60 0.16 

Elec. Export 0.01 0.07 0.12 0.07 0.20 0.00 0.00 0.00 1.00 0.00 0.01 0.00 0.01 0.82 

Elec. Import 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 1.00 0.00 0.78 0.00 0.00 

Sockets D 0.00 0.30 0.10 0.96 0.00 0.06 0.00 0.00 0.01 0.00 1.00 0.52 0.07 0.15 

Sockets U 0.21 0.00 0.01 0.00 0.10 0.01 0.22 0.13 0.00 0.78 0.52 1.00 0.00 0.00 

Water 0.00 0.00 0.00 0.00 0.00 0.01 0.81 0.60 0.01 0.00 0.07 0.00 1.00 0.00 

Hot Water 0.00 0.00 0.00 0.00 0.00 0.18 0.02 0.16 0.82 0.00 0.15 0.00 0.00 1.00 
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4.2.5 Using PIR and CO2 to indicate binary occupancy 

Without some ground truth data to provide context, it is impossible to accurately tell 

how many people are present from PIR and CO2 data alone. As investigated above, it 

may be possible to use localised CO2 levels to strengthen the PIR’s reliability and 

infer occupancy levels, although this is extremely difficult to verify without known 

accurate occupancy measurement for at least some period of time in order to train a 

model.  

As an alternative measure, this section covers the exploration of using PIR and CO2 

data to infer binary occupancy – whether occupants are present or not at any given 

time. Once again, it is not possible to verify without true occupancy data, but an 

estimate of effectiveness can be made by comparing different methods and correlation 

to energy use. A test was conducted on the five-minute resolution data by comparing 

the average energy use when assumed unoccupied to when assumed occupied: here a 

greater difference implies the means of assuming occupant presence was more 

successful. Various assumptions were applied to allow binary occupancy to be 

estimated using the PIR and CO2 level data: 

Assumptions for PIR: 

• A nonzero value of motion sensor count for either upstairs or downstairs 

denotes occupant presence for that five-minute timestep. 

• Zero values for both upstairs and downstairs denote occupant absence for that 

timestep. 

• Downstairs sockets are reliant on downstairs PIR only, and upstairs sockets on 

upstairs PIR. 

• The kitchen cooker/hob circuit is reliant on downstairs PIR only, assuming 

that the occupant must be in or near the kitchen to use the hob. 

Assumptions for three methods of classifying binary occupancy through CO2:  

1. Occupancy is assumed when CO2 is above a certain threshold in the given 

five-minute timestep – in this case above the mean value over the observed 

period (519ppm for house C and 597ppm for G). 

2. Occupancy is assumed when current CO2 is higher than the mean over the 

previous 30 minutes. 
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3. Occupancy is assumed when the mean CO2 over the last 10 minutes is higher 

than the mean over the previous 1 hour – this was tested to reduce the effect of 

minor variations caused by noise on the sensor data. 

Figure 4-9 shows the results of this analysis for house C using PIR motion sensors. 

Graphs with both occupied and non-occupied values close to the overall average 

(denoted by a grey dashed line) show a lower correlation between assumed occupancy 

and energy use, while a larger percentage difference between occupied and non-

occupied suggests a higher correlation. It should be noted that the mean occupied 

value does not represent an estimated value of energy in use, as people will not use all 

systems all the time they are present. 

The percentage difference for all occupancy estimation methods is summarised in 

Figure 4-10 for house C and Figure 4-11 for house G. It can be seen that no single 

method of assuming occupancy consistently correlated best with all forms of energy 

use. PIR was generally better correlated to water and cooker use, while CO2 was 

better correlated to heating. This implies that either: 

• The relative location of the motion and CO2 sensors allowed each to detect 

some activities better than the other. Referring to the house layouts (Appendix 

10.1), some logical connections can be seen. For example, both houses had 

PIR sensors directly outside the main bathroom and kitchen, meaning that 

when an occupant travels to these rooms to use water, the PIR was more likely 

to sense their presence than the living-room-based CO2 sensor.  

• Outside factors can bias the effectiveness of PIR or CO2 in certain situations – 

for example, CO2 is correlated to heating use much more strongly than PIR. 

This may be because occupants are more likely to keep windows closed during 

winter when heating is most required, so conserving high CO2 levels. 

One of the possible explanations for the correlation between CO2 level and heating 

use is that the users were more likely to keep their windows closed during the winter 

period, allowing CO2 levels to increase and thus associating higher CO2 with heating. 

However, the presence of the constantly-running ventilation system in the houses 

could negate this effect and should theoretically keep the CO2 level constant. In order 

to investigate this further, the average CO2 level was calculated for the summer (1st 
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April – 30th September) and winter (1st October – 30th March) periods within the 

available data.  

As presented in Table 4-6, for both of the houses fitted with CO2 sensors the average 

CO2 level is higher during the heating period. The difference is much larger in House 

G, although it should be noted that the data set for this house was smaller, and in 

particular included only 18 days of data for the heating season, whereas 182 days 

were available for House C. However, the trend towards higher CO2 levels in general 

during the heating period supports the hypothesis that CO2 was conserved by keeping 

windows closed during colder weather.   

Table 4-6 - Average CO2 levels for the summer and winter periods 

 Cooling period (summer) Heating period (winter) 

House C 512 ppm 530 ppm 

House G 580 ppm 696 ppm 

 

The most consistent strong correlation for both the PIR and CO2 presence assumption 

methods was found with hot water and cooker use – this is logical as most domestic 

systems do not allow for these to be operated when the occupant is not directly 

controlling them. 

The least correlation with estimated presence for both houses was found with the 

extraction ventilation system and upstairs sockets. In particular, the extraction system 

showed no correlation at all with occupancy. This potentially means that energy was 

being wasted while the houses were not occupied. It should be noted that slow-

response systems such as heating/ventilation may need to run when occupants are not 

there to achieve comfort, but it is unlikely that they are required to run constantly. 

The graphs also confirm that neither PIR nor CO2 can be used to perfectly estimate 

whether occupants are present or away. The ‘unoccupied’ mean for water and cooker 

use was not zero, despite the assumption that occupants will not use either if not 

present in the building. These are ‘false negative’ occupancy estimations - reading 

zero occupancy when in reality there are occupants present. As there were only two 

PIR sensors and one CO2 sensor per house, this can be explained by people being out 

of range of the sensors but still present in the house. This is further supported by both 

water use and cooking occurring in specific rooms, meaning that the occupants 
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directly involved in cooking or water use would not have been triggering the 

centrally-placed PIR/ CO2. 

With the data available it was impossible to prove if ‘false positives’ (reading 

occupancy when nobody is present) occurred, as it might be that occupants were 

present in the house without actively using any energy. 

The high uncertainty and proven presence of sensing errors show that a system based 

purely on untrained analysis of limited CO2 and PIR data cannot provide enough 

reliable occupant data to control energy services.  

 

Figure 4-9 - Average 5-minute values for House C energy uses when occupied/not occupied, using 

motion sensor activity 

 

Figure 4-10 - Percentage Increase in Energy Use when Occupied, Comparison of various 

Occupancy Estimation Methods for House C 
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Figure 4-11 - Percentage Increase in Energy Use when Occupied, Comparison of various 

Occupancy Estimation Methods for House G 

4.2.6 Low Occupancy Periods - Extended occupant absence during 

the heating period 

As the previous sections show, it was difficult to verify when exactly the occupants 

were not present in the houses from a limited number of motion and CO2 sensors. One 

instance in which it can be confidently said that the house is not occupied is during 

extended periods of absence: when the occupants are on holiday, for example. 

It was carefully considered which combinations of parameters denote low or zero 

occupancy. This study was intended to investigate the relationship between energy 

use and occupancy; it could not be assumed therefore that energy uses such as socket 

loads and heating use would be consistently low when occupants were not present, as 

it is feasible that they would be left switched on during periods of absence. For the 

purpose of this study, it was assumed that: 

• Typical domestic water outlets are not possible to use when occupants are not 

present in the home. 

• If all sensors and meters read zero, the cause is likely dropout and not 

occupant absence, as it has been confirmed in Section 4.2.2 that prolonged 

dropouts occurred in this dataset. 

Water consumption was therefore used to verify the motion sensor readings denoting 

extended periods of occupant absence. Two examples of absence during the heating 

period (October to April) were identified in houses C and D: 22/12/2013-03/01/2014 

for house C and 04/01/2014-12/01/2014 for house D. Thus the impact of different 

heating behaviours was investigated.  
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Figure 4-12 and Figure 4-13 show water, electrical, heating and ventilation use over 

the two identified periods of absence. For each house, the consistent drop in both 

water/electric use confirmed absence over the period, as detailed above. In house C, 

the motion sensor registered a consistent 1-2 readings throughout the period, 

suggesting that the sensor was too sensitive or was triggered by movement outside the 

building through windows. The extractor was in near-constant operation over the 

whole absence period – it was not affected by occupancy level, presumaby supplying 

the same amount of fresh air to the house despite the fact that no occupants were 

present. This strengthens the conclusions made in Section 4.2.5 that the extract 

ventilation system was uncorrelated with occupant presence. A point of interest in 

Figure 4-12c) is that the heating was apparently turned off during the occupants’ 

absence. This is not an automated behaviour and so must have been manually chosen 

by the occupants. A slight peak in heating demand can be seen after the off-period, 

corresponding to the need to heat the house from a lower than typical temperature 

upon returning.  

In house D, a shorter absence period can be seen & verified by water/electricity use. 

The motion sensor count is zero during absence, unlike house C, suggesting that this 

motion sensor was not affected by outside movement or air currents. The extractor 

was once again apparently unaffected by whether occupants were inside the house or 

not.  

 

 

  



65 

 

 

 

Figure 4-12 - a) Mains Water b) Electric Import c) Heating d) Extractor energy for House C 

during a period of occupant absence in the heating period 
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Figure 4-13 - a) Mains Water b) Electric Import c) Heating d) Extractor energy for House D 

during a period of occupant absence in the heating period 
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Heating was also consistent over the absence and the following week: the same 

amount of energy was used for heating when the occupants were not in the house. In 

total, the use of 12.92m3 of natural gas was recorded during the period 04 Jan - 12 

Jan. Assuming the energy derived from natural gas is 10.75kWh/m3 [182] and a boiler 

efficiency of 90% [183], the heating energy delivered over the 9 day period was 

125kWh – nearly 14kWh per day. It should be noted that retaining some level of 

home heating during an absence can be beneficial, in order to keep pipes from 

freezing, ensure the house is comfortable as soon as the occupants return and 

eliminate a spike in heating demand when occupants return home. However, the 

above heating behaviours show that without intervention, heating beyond this base 

level will continue to be supplied during extended periods of occupant absence, 

leading to a waste of energy in the home. Systems to automate the heating and 

ventilation within these homes based on real-time occupancy measurement would 

reduce the overall energy demand of the houses.  

4.2.7 Discussion 

One of the major conclusions to draw from the study of Green Street data is that 

gaining meaningful, reliable information can be extremely difficult given limited data. 

The PIR and CO2 data showed some similar trends, but did not agree closely enough 

to confidently estimate occupancy at a given time. It is also impossible to relate the 

magnitude of sensor reading to a physical number of people without prior training 

with known true occupancy rates.   

Whole-house occupancy is difficult to relate to energy, as presence in the house does 

not imply that any particular activity must be taking place. It is also impossible to 

prove that energy being consumed is actually providing utility to the user without 

context on where the user is at a given time. This makes it difficult to highlight energy 

waste at any time other than extended periods of absence. 

It was found that some measured variables could be used to verify periods of occupant 

absence over the longer term – for example a lack of water use over a whole day 

implies the occupant is not at home. However, this cannot be extended to shorter 

timescales as it is possible for the occupant to be present for short periods without 

using water.  
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However, it was proven that an occupant’s behaviour towards heating control can 

have a significant impact on the energy used while away for a period of several days. 

In a study between two Green Street houses, it was shown that approximately 14kWh 

more energy per day was used on heating an empty home depending on whether the 

occupants turned off their heating prior to a holiday during winter 2013/2014.  

The study also highlighted that data quality issues can affect what conclusions can be 

drawn from data analysis. For example, the frequent sensor dropouts can look similar 

to periods of occupant absence, making it difficult to reliably draw conclusions on 

changing energy use with occupancy. Issues such as this will be common to many 

sensing applications and inference should be designed to be as robust as possible to 

sensor dropouts, interference etc.  

4.3 Explore Innovation Park Office Dataset 

4.3.1 Building layouts, uses and data types available  

The Explore Innovation Park site in Worksop, UK, contains several buildings used for 

office space, factory space for concrete production etc. Some energy and occupancy 

data was made available from the office building on this site, providing a case study 

of a larger-scale office space. Energy data from the building’s metering system was 

made available over a one year period from Nov 2014 to September 2015, with 

readings from the building’s energy meters available at a 30 minute resolution. As 

data was recorded at the meter level, the electricity use recorded is not disaggregated 

to a highly localised level, but is described broadly by area as shown in Table 4-7. 

Occupancy data was collected over five of the recorded months from the office’s 

access control system, which logged the time and card ID when any occupant holding 

an access card passed through a controlled entrance within the office. A diagram of 

the doors monitored by the access control system is included in Appendix 10.2. 

It should be noted that the access control in this building did not monitor all internal 

doors, and most monitored doors provided one-way access control, meaning that 

occupants needed to scan their card to go into a space, but did not need to scan to 

leave the same space. This means that the data cannot be used to directly represent the 

number of people present, as it was not known how long an occupant stayed after they 

scanned in. However, other ways of querying the available data were tested to 

highlight trends in occupancy rates over time. 
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Table 4-7 - Description of Energy Metering Data Available at EIP Offices 

Meter Name Description Units 

GF Office Covers electrical energy demand from all ground floor areas not on a 

separate meter 

kWh 

1F Office Covers electrical energy demand from all first floor office areas kWh 

2F Office Covers electrical energy demand from all second floor office areas kWh 

Kitchen Electrical energy demand from ground floor kitchen area kWh 

Heat Pump Energy used by heat pump system in office building kWh 

IT Room AC Ground floor IT Room climate control system  kWh 

Roof Switch-

board 

Covers demand from switchboard on roof of office building kWh 

 

4.3.2 Inferring occupancy rates from unique visitors per day 

In order to gain a broad idea of how the office use changed over longer time periods, 

the number of unique occupants logged to either the main entrance or main exit 

reception doors per day was calculated from the access data. Figure 4-14 shows a 

summary of the 7-month period for which both occupancy and energy data was 

available. Both occupancy and energy use follow a weekly pattern with distinct 

decreases during weekends, although some gaps are present in the data. Occupancy 

was not obtained for the period 28th Nov-31st Dec 2014. Some issues were present in 

the energy meter readings from 14th-27th Mar 2015. These periods were therefore 

omitted from any further calculations. 

 

Figure 4-14 - Occupancy Rates vs Total Office Energy Use over a 7-Month Period 

As the graph in Figure 4-14 shows, the reduction in total office energy use at 

weekends is smaller than the reduction in occupancy rates. This is to be expected to 

some extent, as some systems should be run at a background level regardless of the 

presence of occupants, giving a ‘baseline’ energy use for the building. However, the 

difference in magnitude may also indicate potential energy waste while the building is 
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close to unoccupied. A breakdown of the percentage decrease by energy meter is 

shown in Figure 4-15. It can be seen that the kitchen meter shows the greatest energy 

decrease at weekends: indicative of the lack of need to prepare food for working staff. 

The IT room air conditioning saw a slight increase in energy demand at weekends – it 

was expected that this area would have a consistent energy demand over the week, as 

the environment of any server equipment etc. should be kept constant. The slight 

increase may be due to a change in the temperature of the surrounding rooms: if 

occupied zones are conditioned to a lesser extent at weekends, the IT room may have 

to spend more energy to maintain its own temperature. The three floors of the office 

showed differing levels of variation from weekday to weekend. Unfortunately, as 

these meters covered both local heating systems as well as electrical demand from 

lighting etc, it is difficult to highlight where this difference comes from. It may be that 

the behaviours of occupants on some floors mean that more electrical equipment is 

left on over weekends, or that due to the layout of the building the relative heating 

demand varies floor to floor. 

 

Figure 4-15 - Comparison of the Reduction in Occupancy Rates and Energy Use on Weekends 

relative to Weekdays 

When constrained to weekdays only, the correlation coefficient between daily 

occupancy and energy rates shows some unexpected relationships. Table 4-8 and 

Table 4-9 indicate a relatively strong negative relationship between the heat pump 

energy demand and the number of occupants, suggesting that the presence of people 

producing heat in the office space offset some of the need for the heat pump during 

heating weather. The kitchen circuit showed a slight correlation to the number of 

occupants per day, which once again can be explained logically as higher numbers of 

occupants will require more services from the kitchen. However, the three floors of 
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the office showed significantly different relationships to the global number of 

occupants. The ground and second floors showed a positive relationship, indicating 

that a higher population on these floors generally meant a higher energy demand. On 

the first floor, however, little to no correlation was found. This has several potential 

implications: 

• Significantly different use of the first floor in terms of what equipment uses 

the most energy – this option is unlikely, as the building floor plans show a 

similar layout for the first and second floors. 

• Visitors to the first floor are not detected by the access system – given the 

similar use to the second floor, this again seems unlikely. It is possible that the 

higher number of meeting rooms on this floor mean that more visitors, who 

may bypass the access control system if accompanied by staff affect the 

energy use without being detected as occupants.  

• Behavioural differences mean that equipment is left on regardless of 

occupancy on this floor. 

Table 4-8 - Correlation Coefficient between Daily Occupancy and Energy Measurements 

 

Office 

Total 
GF Office 1F Office 2F Office Kitchen 

Heat 

Pump 

IT Room 

AC 

Roof 

Switch-

board 

No. Daily 

Occupants 
0.03 0.52 0.09 0.34 0.27 -0.58 -0.15 0.11 

 

Table 4-9 – P-Value for Correlation between Daily Occupancy and Energy Measurements 

 

Office 

Total 
GF Office 1F Office 2F Office Kitchen 

Heat 

Pump 

IT Room 

AC 

Roof 

Switch-

board 

No. Daily 

Occupants 
0.68 0.00 0.22 0.00 0.00 0.00 0.04 0.12 

 

4.3.3 Half-hourly Local Activity Levels 

Although the exact number of people present in each location could not be known for 

the reasons discussed above, it was investigated whether a more localised measure of 

activity over the course of a day could be obtained using the number of events logged 

at internal doors. Each known door was assigned to a floor, as shown in the diagrams 
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in Appendix 10.2. A profile of the activity level of occupants could then be made, 

with a resolution of 30 minutes chosen to match the available energy data.  

Figure 4-16 and Figure 4-17 show the mean daily energy profile for each of the 

energy meters plotted against the 30-minute activity level from the access control 

system, for weekdays and weekends respectively. The energy meters for the 

individual floors of the building were compared to the activity level of doors only 

from this floor, while the global energy meters were compared to the total activity 

over all monitored doors. The weekday activity level shows two distinct daily peaks at 

the start of the working day and at typical lunch break hours. The lack of a similarly 

sized peak at the end of the day is likely because most doors monitored only incoming 

occupants, although this may also indicate that leaving time was more variable 

between occupants. Weekends showed a much lower activity level, with a broader 

peak, likely as weekend occupants were not constrained to visiting for typical work 

hours.  

Most meters saw an increase in energy use during occupied hours, with the exception 

of the IT room AC system, which was run at a constant rate independent of building 

occupancy. The individual floors appear to show a general trend of energy use 

following occupancy, with the consideration that sharp peaks in door activity denote 

more moving occupants, not necessarily more occupants overall. Interestingly, the 

second floor office shows a small dip in energy use during the spike of occupants 

leaving for lunch, while the first floor does not. This may indicate more wasteful 

energy behaviours of occupants on the first floor such as leaving equipment running, 

as discussed in the previous section. The heat pump use shows a daily peak that is 

offset by several hours from the daily peak in occupants. This may be due to high 

thermal mass in the building delaying the largest environmental conditioning loads. 

The kitchen also shows an offset daily peak, with the majority of energy used in the 

morning as occupants arrive and food is prepared for the busy lunchtime period. 

Table 4-10 and Table 4-11 show the correlation coefficient and corresponding p-value 

between the half-hourly measured activity levels and the energy meter readings. The 

correlation of floor-level energy use and the associated floor’s door activity is more 

strongly positive than the global number of occupants per zone. The heat pump use 

shows no correlation to activity, in contrast with the stronger negative correlation seen 
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in the daily values. The consistently low p-values show a low likelihood that the 

correlations could have been observed where no correlation existed, with the 

exception of the heat pump use and second floor activity level. As the correlation 

coefficient between these two was already small, this observation makes sense.   

 

 

Figure 4-16 – Average Energy and Occupancy Profiles for each Office Meter – weekday 

 

Figure 4-17 – Average Energy and Occupancy Profiles for each Office Meter – weekend 
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Table 4-10 - Correlation Coefficient between Half-Hourly Energy and Access Activity Level 

 
Roof 

Switch-

board 

Kitchen 
IT Room 

AC 

Heat 

Pump 

GF 

Light 

Heat 

1F Light 

Heat 

2F Light 

Heat 

Activity 

Total 
0.16 0.49 -0.12 -0.10 0.52 0.52 0.55 

Activity GF 0.18 0.51 -0.08 -0.06 0.48 0.53 0.55 

Activity 1F 0.15 0.58 -0.09 -0.05 0.47 0.54 0.54 

Activity 2F 0.19 0.46 -0.08 -0.02 0.45 0.54 0.55 

 

Table 4-11 - P-Value for Correlation between Half-Hourly Energy and Access Activity Level 

 Roof 

Switchboard 
Kitchen 

IT 

Room 

AC 

Heat 

Pump 

GF 

Light 

Heat 

1F Light 

Heat 

2F Light 

Heat 

Activity 

Global 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Activity GF 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Activity 1F 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Activity 2F 0.0000 0.0000 0.0000 0.0525 0.0000 0.0000 0.0000 

 

4.3.4 Discussion 

From the analysis of daily totals, it appeared that the office energy use varied by less 

than occupancy rates on weekdays/weekends. Different floors showed different 

correlations to daily occupancy rates. 

Energy profiles over the course of a day indicate some finer characteristics of the 

relationship between local occupancy and energy use, with some office areas 

appearing to be more conservatively managed than others. From this analysis, it 

became clearer that some systems were run continuously, and that some energy 

systems had an offset daily peak relative to the peak occupancy level. 

As with the domestic case study, much of the potential to identify areas of energy 

waste relies on a more detailed picture of where occupants are in the building, in order 

to prove whether utility is actually being provided by expended energy. In the case of 

the office building, the energy meter values provided did not make a distinction 

between energy used for local lighting, heating and electrical demand, meaning that 

highlighting specific occupant behaviours that may be better improved or accounted 

for in the building controls was difficult. However, the characteristics identified in 

this study could be a useful starting point for further work making a deeper analysis 
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into the potential mismatches between energy use and occupant demand seen in some 

systems.  

4.4 Dagenham Park School 

Energy use data was also made available for Dagenham Park School, located in 

Dagenham, UK. In this case, no occupancy measurements were available, but the 

scheduled hours of occupancy for the school day were known. During its first year of 

operation, the building was known to exceed the contracted energy usage, and it was 

investigated internally whether this excess energy use was occurring during school 

hours or outside of school hours [184]. In this report, it was found that behavioural 

factors outside of scheduled building usage hours had a significant effect on the total 

electrical and gas energy use, as presented in Figure 4-18. It can be seen that the 

building performed under its electrical and biomass targets during ‘core’ school hours 

and ‘plus’ additional community opening hours, but that a significant percentage of 

the total energy use was expended during hours when the school was closed, for 

which time the energy use was not accounted for in the operational targets. It was 

concluded that poor energy behaviours such as leaving on small power and lighting 

loads overnight and during school holidays was the major contributing factor to the 

overall failure to achieve electrical energy targets during this year. The balance of 

biomass versus gas heating use was also attributed to behavioural factors, where it 

appeared the lower-carbon biomass system was not used by the school as much as 

was expected.  

These results clearly highlight the likelihood of significant disparities between the 

way that a building and its systems are expected to be used and the results in practice. 

However, this study also shows a potential area for further study: without specifically 

querying the actual occupant use patterns of the building, it is not known whether the 

assigned core, additional and out-of-hours periods were appropriate. The higher than 

expected energy use during out-of-hours periods could indicate that the building was 

still in use during some of these hours, which would add further complexity to the 

issue of whether all energy use during this period was energy wasted. This is also true 

for the occupied hours: although performing under target, without specific knowledge 

of local occupancy it is impossible to identify whether all energy used in this period 

actually provided utility to building occupants, or whether the energy use during this 

time could be further reduced. 
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Figure 4-18 - Dagenham Park School Energy Use Breakdown over 1 Year Period 

A qualitative assessment of energy behaviours in the school was made via site visit 

and interviews with staff. A tour of the building identified several areas where energy 

use was not being controlled according to the actual energy needs of occupants, with 

some examples presented in Figure 4-19. In these images it can be seen that electrical 

equipment within classrooms was left on despite occupants not being present, and that 

the electrical lighting in naturally lit circulation spaces within the school was in 

operation despite providing no benefit during daylight hours. 

 

 

Figure 4-19 - Energy behaviours observed in Dagenham Park School 

It was also found through the interview process that some areas of the school were left 

in excessive temperatures while occupied by classes of students, in particular 
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classrooms located on sun-facing sides of the building where a full class of students 

was present, which were served by a ventilation/AC system that could not address 

such localised peaks in temperature. This failure of the designed ventilation system 

highlights the need to consider the cooling load caused by large incoming groups of 

occupants. In the case of a school where room use by large groups of occupants 

should be centrally scheduled, the potential benefits of a pre-emptive control system 

based on the anticipated occupancy levels can be seen. The issue also highlights an 

important factor for occupant-centric control of services: where highly localised 

energy demand is observed through occupant data, the building actuation system must 

be able to appropriately respond to this localised need. In the case of Dagenham Park 

School, it was found that some sections of the HVAC system served rooms spanning 

multiple departments of the school, with varying space uses and occupancy schedules. 

Without the ability to enact services control choices to the same resolution as 

occupant monitoring, the energy saving opportunities highlighted by occupant-centric 

systems cannot be used to their greatest potential. 

4.5 Conclusions 

The overlying conclusion from the case studies presented in this chapter is a 

confirmation of some of the issues around occupant data collection that were 

identified in the review chapters. During the identification of suitable data sources, it 

was repeatedly found that, while long-term energy datasets were available for a wide 

range of buildings, the collection of any kind of in-use occupancy data was extremely 

rare. Where occupant data was collected, it was typically somewhat abstract and 

would not be appropriate for direct application to building controls without some form 

of higher-quality verification of the data’s reliability to discern actual occupancy. 

In a domestic setting, it was found that binary occupant presence can be inferred from 

single-point motion and CO2 data, but the reliability of this inferred value is not high. 

The number of occupants is not possible to infer from this data without some form of 

ground truth to compare against. In its relationship with energy, water and electrical 

socket use showed the closest correlation to occupancy rates. However, the poor 

response of some environmental controls to occupancy was confirmed, with some 

heating and ventilation systems run without regard to occupant presence. Whether 

these responses were intended by the building occupants was not possible to 
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determine with the available data, but would be a highly relevant question to consider 

when determining the priorities of a more occupancy-responsive control system. 

In a large office setting, access control data was used as a proxy for building 

occupancy, but was not able to provide reliable local occupancy levels due to the lack 

of coverage on some doors. A potential mismatch between occupants’ energy needs 

and the actual energy use was identified, with occupancy rates showing a stronger 

weekday to weekend decrease than any of the energy meters. Different office floors 

showed different correlations to their daily occupancy rate, potentially highlighting 

more wasteful energy or control behaviours on these floors. 

In a school setting, the collection of explicit occupancy data ran into concerns about 

privacy. Through examination of predefined active school hours, it was found that 

occupant actions had a significant effect on the energy use relative to expected rates, 

with higher than expected occupancy outside of contracted hours raising the overall 

energy use above the accepted threshold for the building’s energy contract. Through 

qualitative interviewing it was seen that the conditioning of some spaces did not 

adequately account for sudden large changes in occupancy, highlighting the need for 

slow-response building systems to be able to work pre-emptively where sudden 

changes in occupant rates can be anticipated. 

While each of the occupant data sources in the case studies provided some 

information, in order to make informed control decisions based on occupancy a more 

comprehensive source of occupant data is needed. In control application, it is essential 

that this data source can provide data on both occupants that are expected to be 

present (such as office staff, who may interact with access systems or carry tagging 

equipment) and unknown occupants, who can be detected through passive 

environmental data such as motion and CO2 level. For this purpose, a multi-sensor 

model was proposed to combine the benefits of multiple data sources for the 

predictive system. The following chapter introduces the data sources selected for this 

study to allow the collection of data on both known individuals and unknown visitors 

in an office setting. 
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5 DEVELOPMENT OF SYSTEMS FOR OCCUPANCY DETECTION 

5.1 Introduction and Aims 

As discussed in Chapter 3, occupancy detection is not a simple concept and requires 

careful definition of what type of data is needed. In this study, the main aim was to 

develop a viable way to improve the occupant data provided to building controls, with 

emphasis on the feasibility of implementing at a wider scale, preferably applicable to 

existing buildings without intrusive installation requirements. These restraints ruled 

out some of the more intensive and detailed systems such as RF tagging, which 

require extensive installation of additional hardware, as well as needing all building 

occupants to carry tags. 

Although some existing studies use highly detailed occupant data, most applications 

to building controls showed that a localisation to room level is appropriate for most 

applications. As was seen in the case studies of larger buildings, typical building 

controls systems are not able to localise environmental controls any closer than to 

room-level or wider, depending on the system in question. Different building systems 

favour different occupant data types. Of particular interest are the binary presence of 

occupants for on/off systems such as lighting, and the number of local occupants in a 

conditioned space for HVAC applications. Given that local occupancy rates can be 

easily converted into binary data, it was decided to pursue a system to most 

effectively provide room-level occupancy rates for this study. 

This chapter introduces the testbed used for the major part of this study and the 

development of sensor hardware/software systems to collect occupant data within this 

testbed. 
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5.2 Mark Group House Testbed 

5.2.1 Testbed Description 

The major data source of occupancy and energy data for the following sections of this 

project was the Mark Group House, based on the University of Nottingham campus, 

Nottingham, UK. This building was in use as a small office building for the duration 

of the project, with single-occupancy and multi-occupancy office rooms alongside 

shared spaces such as a kitchen and meeting room.  

Data was collected in the house using a range of environmental sensors and 

disaggregated energy meters as described in the following diagrams. The 

experimental work completed with this data was conducted in two phases, each 

having a different layout of the occupancy-specific sensors as described below. 

Two additional systems were put in place to detect the presence of occupants’ 

personal mobile devices. As these systems can be used to collect personally 

identifiable data in the case where occupants disclose their device IDs or disclose data 

collected using beacon-detecting software, an ethics assessment was completed with 

the University of Nottingham Faculty Research Ethics Committee for engineering to 

ensure appropriate data collection and storage strategies. An example participation 

consent form for the named occupants is included in Appendix 10.3. Where personal 

device IDs were not disclosed, it was not possible to link the data collected to an 

occupant’s real identity – in this case, the detected devices contributed only to an 

anonymised count of unknown local devices.  

5.2.2 Designation of Zones 

For the purpose of this study, the building was divided into ten zones of interest. Each 

of the major spaces in the building that can be expected to be consistently occupied 

was designated as a single major zone – highlighted in Figure 5-1. Each of these 

major zones was subject to localised occupancy monitoring. It was decided that 

restrooms would not be included in the monitored zones due to privacy 

considerations. All spaces in the building that were not directly monitored, including 

the restrooms, circulation spaces, storage rooms etc. were designated as a collective 

final zone, which was not locally monitored, but was subject to the building-wide 

sensors. A summary of the zones by expected use is shown in Table 5-1. 
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Figure 5-1- Mark Group House Directly Monitored Zones 

 

Table 5-1 - Summary of Mark Group House zone names and uses 

Zone Type Zone Name Local Monitoring 

Single-occupant Office 

Room A04 Y 

Room A05 Y 

Room B01 Y 

Multi-occupant Office 
Room A02 Y 

Room B02 Y 

Meeting Room Room A01 Y 

Kitchen Room A03 Y 

Multi-Use Space 
Room LG01 Y 

Room LG03 Y 

Circulation Spaces etc. - N 

 

5.2.3 Phases and Timing of Data Collection 

While coverage from most of the installed environmental sensors spanned from late 

2013 until early 2017, ongoing issues with the third-party data collection platform and 

updates to the amount of sensing equipment available meant that the full range of 

sensors was not consistently available across the entire period of study.  

The addition of further sensors to the house part-way through the project split the data 

collection into two phases: 

• Phase 1 – Two motion sensors in total, placed in upper and ground floor 

corridor areas. Wi-Fi detector placed in upper floor office. Bluebar iBeacons 

Basement Floor                   Ground Floor                               Upper Floor 
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placed in each monitored zone, but detection software run on only one 

occupant’s device. 

• Phase 2 – Eight motion sensors in total, placed in each of the directly 

monitored zones. Wi-Fi detector placed in upper floor corridor. Kontakt 

iBeacons placed in each monitored zone, with software run on all regular 

occupants’ devices.  

Further details on the changes to the sensor layout made between phases are presented 

in the following sections. No significant changes were made to the setup of the 

environmental or energy sensors between phases.  

As discussed in more detail in Section 5.2.7 below, it was necessary to collect 

manually recorded data on the location of building occupants for the work in later 

chapters. Due to the intensive nature of this manual location recording, this was 

limited to two week-long periods: one during Phase 1 and one during Phase 2. Table 

5-2 summarises the timing of the two test weeks used for the model developed in 

Chapter 6. 

Table 5-2 - Summary of Phase 1 and Phase 2 Data Test Weeks 

 Phase 1 Phase 2 

Manual data collection dates 10/06/2015-16/06/2015 03/02/2017-09/02/2017 

No. Days 7 7 

Climate Conditions Spring/Summer Period Winter Period 

No. Regular Occupants 

Returning Manual Data 
9 13 

 

5.2.4 Full Sensor List 

Table 5-3 shows a summary of all the sensing devices used in the Mark Group House 

over the test period, with their locations and their models. Sensing devices have been 

divided into three categories: environmental sensors, used to contextualise the 

building’s internal environment; occupancy sensors, specifically for measuring 

occupancy through movement or presence of personal devices; and energy sensors, 

used to measure the electrical and heating energy use during operation.    
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Table 5-3 – List of all sensors used in the Mark Group House Installation 

Type Sensor Location(s) Sensor Model(s) Used 

E
n

v
ir

o
n

m
en

ta
l 

CO2 All modelled zones 
Pressac CO2, Temperature & 

Humidity Sensor [185] 

Temperature All modelled zones 
Pressac CO2, Temperature & 

Humidity Sensor [185] 

Relative Humidity All modelled zones 
Pressac CO2, Temperature & 

Humidity Sensor [185] 

Window All openable windows 
Enocean contact sensor, unknown 

manufacturer 

Door All outside-leading doors 
Enocean contact sensor, unknown 

manufacturer 

O
cc

u
p

an
cy

 

Passive Infra-Red 

PIR (Phase 1) 
B-floor corridor, A-floor corridor Servodan 41-580 [186] 

Passive Infra-Red 

PIR (Phase 2) 
All modelled zones but LG03 Thermokon SR-MDS [187] 

Wi-Fi Device 

Detection (Phase 1) 
A02, covering whole building 

Raspberry Pi B+ [188] with Wireless 

in Listener Mode 

Wi-Fi Device 

Detection (Phase 2) 
B01, covering whole building 

Raspberry Pi B+ [188] with Wireless 

in Listener Mode 

Bluetooth Beacon 

(Phase 2) 
All modelled zones Kontakt iBeacon [189] 

E
n

er
g

y
 

MVHR 

Temperatures 
n/a 

Temperature probe, unknown 

manufacturer 

ASHP Energy n/a Kamstrup Multical 402 [190] 

Heating Water 

Energy Use 
n/a Kamstrup Multical 402 [190] 

Hot Water tap 

Energy Use 
n/a Kamstrup Multical 402 [190] 

Solar Thermal Array 

Energy 
n/a Kamstrup Multical 402 [190] 

Lighting Circuits 
Basement, 2 Ground Floor, 

Upper Floor, Loft 

Current clamp, manufacturer 

unknown 

Power Circuits 

Basement, Ground Floor, 

Kitchen, Upper Floor, Boiler, 

ASHP, Solar Thermal, 

Immersion Heater, Outside 

Lights, Velux motors 

Current clamp, manufacturer 

unknown 

Photovoltaic 

Generation 
n/a 

Current clamp, manufacturer 

unknown 

 

All sensors but the Bluetooth beacon detection reported data points on value change 

by default, although for calculation in the models developed in later chapters, the data 

was converted to a discrete time interval of five minutes. For the count-based sensors 

such as PIR, this was achieved by summing all data points reported per five-minute 

period, while for the measurement-based sensors such as temperature this was 

achieved by taking the mean value of all data points per five minutes.  

The choice of a five-minute time resolution was determined as a compromise between 

the immediacy of response for the proposed control system application, the 

computational time requirements of running predictive models in real time and a 
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feasible time resolution at which the model’s manually collected training data could 

be expected. For some control systems such as lighting control, a response would be 

expected on the order of seconds, however it was not considered feasible for building 

occupants to accurately manually record their location to the nearest second in this 

work. Given that existing study suggests that predictive control systems have the 

greatest benefit for slower response systems such as heating and ventilation, a five-

minute interval was considered adequate for this purpose and a realistic interval for 

manual data collection. For other applications beyond the aims of this work, the 

processes described in the following chapters could be adapted to a finer-grained time 

resolution. 

5.2.5 Environmental Sensor layouts 

5.2.5.1 CO2/Temperature/Humidity 

The distribution of the CO2/Temperature/Humidity sensors is shown in Figure 5-2. 

One such sensor was placed in each of the major monitored spaces in the building. 

The specific placement of the sensors was determined by two factors: strength of light 

in order to recharge the unit battery, and height to ensure a representative CO2 

measurement. Where possible, sensors were kept at a consistent height across all 

zones. 

 

 

Figure 5-2 - CO2/Temperature/Humidity Sensor Placement in the Mark Group House 

Basement Floor                                      Ground Floor                                             Upper Floor 
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5.2.5.2 Door/window 

The placement of door/window sensors was constrained to openings to the external 

atmosphere, as demonstrated in Figure 5-3. This was intended to allow for analysis of 

air flows relevant to heating/ventilation energy usage. 

 

Figure 5-3 – Door/Window Sensor Placement in the Mark Group House 

5.2.6 Occupancy-specific Sensors 

5.2.6.1 PIR Motion Sensors 

The layout of the PIR motion sensors was varied between data collection phases 1 and 

2. Figure 5-4 shows the layout used in Phase 1,where the two available motion 

sensors were placed in the ground and upper floor circulation spaces for maximum 

coverage across the used spaces of the building with limited sensors. For Phase 2, 

Motion/PIR sensors were placed in each major monitored space, shown in Figure 5-5. 

However, the unit intended for Room LG03 was found to be non-functional, and so 

has been omitted from this study. The PIR sensors were placed with the intention to 

maximise coverage of the room, while minimising interference from neighbouring 

spaces. The range of each sensor was approximated using the manufacturer’s data at a 

given ceiling height, and is indicated in the layout diagrams. As shown in the figures, 

there may be some issue with movement outside some windows causing false positive 

readings, however where possible this has been kept to a minimum.  

Basement Floor                                       Ground Floor                                              Upper Floor 
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Figure 5-4 - PIR Sensor Placement and Range in the Mark Group House, Phase 1 Layout 

 

 
 

Figure 5-5 - PIR Sensor Placement and Range in the Mark Group House, Phase 2 Layout 

5.2.6.2 Wi-Fi Detection and Bluetooth iBeacons 

Bluetooth low-energy (BTLE) iBeacons were, once again, placed in each monitored 

zone as shown in Figure 5-6. Where possible, beacons were placed on an outside wall, 

such that each beacon was as far as possible from other beacons. In particular, 

beacons on the ground floor were placed low on the wall where possible, while upper 

Basement Floor                                        Ground Floor                                            Upper Floor 
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1.7m 

Basement Floor                                        Ground Floor                                            Upper Floor 

2.7m 
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floor beacons were placed high on the wall. This was intended to minimise areas 

where two beacons can be detected with equal signal strength. During Phase 1 of data 

collection, Bluebar iBeacons were placed in each zone, but were used only for testing 

of the beacon location software on one occupant’s personal device. For Phase 2, the 

more consistent Kontakt iBeacon hardware was installed in place of the original 

beacons, and was used for data collection across all occupants.  

Wi-Fi detection used a device placed at a single point in the building to listen for Wi-

Fi devices throughout the whole house. The upper floor location was chosen to 

minimise the signal strength received from devices outside of the building at ground 

level – the closest of which should be detected through both floor and wall material, 

rather than wall material only if the detector was placed on the ground floor. Further 

details on the placement of the Wi-Fi detection device can be found in section 5.4.2. 

 

Figure 5-6 - iBeacon & Wi-Fi Detector Placement in the Mark Group House 

5.2.7 Manually Recorded Occupancy Data 

In later sections of this study, it was necessary to use manually recorded location data 

from building occupants in order to assess the effectiveness of the Wi-Fi and 

Bluetooth based personal device detection and to train models used to combine sensor 

data into an estimate of the local number of occupants. A one-week period of manual 

location data collection from all building occupants was conducted for each of the two 

Basement Floor                                       Ground Floor                                             Upper Floor 
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sensor layout phases. Appendix 10.4 shows an example of the datasheet used to 

collect this information.  

Data was collected to the nearest 5 minutes, which was considered the best 

compromise between obtaining information precise enough to match the sensor data 

resolution, while keeping the amount of work required by the participants to a realistic 

level. Initial informal surveying of occupants had suggested that a data collection 

process that took too much effort would discourage some occupants from 

participating. 

As the responsibility for maintaining accurate results from this manual data collection 

was reliant on each individual occupant, it was expected that there would be some 

variation in response from person to person. In the first phase of testing, two 

occupants did not complete the assessment at all and so their respective zones were 

omitted from the phase 1 model. In the second phase of testing, occupants were issued 

with questions on their experience with the data collection process, with the received 

responses shown in Table 5-4. It can be seen that the majority of occupants felt that 

they were able to provide location data to the required 5-minute accuracy, but it 

should be noted that some respondents felt their data was less accurate than this. In 

comments from some respondents, it was said that longer periods of occupancy in the 

same space were likely more accurate than short stays, some of which were forgotten 

before they were logged on the datasheet. This is an important factor to consider in 

the model training sections, as inaccuracies in the training data could potentially 

create an inaccurate model. It is assumed that, with enough positive responses in 

similar situations, a small subset of inaccurate data points in the training set should be 

treated as outliers in most trained model types, without a significant effect on the 

overall model performance. However, in cases where few examples of a particular 

situation exist, these inaccurate training data points may present issues for the 

accuracy of the model.  
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Table 5-4 - Occupant Responses to Manual Location Data Collection 

Occupant 

Type 
Occupant Main Zone 

Datasheet completed 

During or After Events 

Do you feel you 

achieved 5-minute level 

accuracy? 

Student A02 During Yes 

Student A02 During Yes 

Researcher LG01 During Yes 

Researcher LG01 During, mostly Yes 

Researcher LG01 After No 

Researcher A02 During Yes 

Teaching Staff A04 After No 

Teaching Staff B01 During No 

Teaching Staff A05 During Yes 

 

5.3 Selection of Appropriate Data Collection Methods 

There is a large variety of methods to detect occupancy available, as discussed in the 

literature review. Each data source has characteristics that determine how appropriate 

the sensor type is for a given situation – whether occupancy needs to be detected, 

counted or classified, and what type of building space is being monitored. The data 

collection for this project is centred on a small office space, but has the added 

complexity of being a demonstration building on a university campus, meaning that 

the space is often open to groups of temporary visitors for academic meetings, 

building tours etc.  

As this study is investigative, it was planned to collect as wide a range of occupancy 

data as possible in order to compare the value of data from each source and test how 

much information can be gained in the combination of data sources. As described in 

section 5.2, environmental sensors were placed in each monitored zone of the 

building. Additional detection for the personal devices of building occupants was 

identified as a valuable addition to the dataset, as this can be used for localisation of 

individual occupants beyond the capability of environmental sensors alone, but does 

not require extensive use of additional sensing hardware.  

The detection of personal devices typically uses some form of wireless signal: 

telephone network, Wi-Fi or Bluetooth. Previous studies have shown the viability of 

using Wi-Fi connections from personal devices as a proxy for building occupancy 

levels [52]. One of the shortfalls identified in the Wi-Fi network based solutions 

shown in this study is the ability to detect the devices of people previously unknown 

to the system. Indeed, in many popular detection methods, devices not running 

specific software or not connected to the local Wi-Fi network are not able to be 
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counted. It is also known that some commercial systems exist to estimate footfall in 

retail applications [191]. These systems work by detecting the MAC address – a 

unique device identifier used for internet connection. Such systems are typically used 

as a way to analyse broad trends in occupancy over time, rather than accurate 

localisation in a small space. 

It was also decided that a more localised room-level system would be implemented 

alongside the Wi-Fi traffic detection, which, sensing from a single point, would not be 

able to locate occupants at a room level without further hardware. Sensing full 

location in 3-dimensional space is highly complex and costly to gather data and to 

analyse [80] and is not a viable option for most commercial applications. The use of 

localised Bluetooth Low-Energy (BTLE) beacons and mobile phones was designated 

as a good solution for an office application, as: 

• Office occupants can be assumed to have a mobile phone present with them in 

the building for the majority of the time. 

• Privacy issues related to the collection of personally identifiable data are 

somewhat negated, as the system collecting data is the individual’s mobile 

phone, meaning that any data stored can be personally reviewed and data is 

only collected from occupants who have opted to use the location software. 

• Bluetooth Low Energy allows for a more viable use of occupants’ mobile 

phones with minimal disruption to battery life from frequent scanning in 

comparison to earlier versions of the Bluetooth standard.  

• A minimal amount of extra hardware needs to be installed – each zone only 

requires one small wireless beacon. 

5.4 Development of Data Collection Methods 

5.4.1 Raspberry Pi Wi-Fi Detector Setup 

In this study, a smaller-scale, low-cost solution was explored using the Raspberry Pi – 

a small, inexpensive, Linux-based computer board. Using a Wi-Fi monitor-mode 

compatible USB Wi-Fi adapter, it is possible to scan for the presence of Wi-Fi traffic 

in the surrounding area. This has the benefit of detecting occupants who are not 

previously known to the system and is appropriate for a small office space. In a larger 

space, the degradation of Wi-Fi signal strength over distance and through building 

material would mean that multiple devices would be needed to cover the area.  
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The detector was set up using a standard Raspberry Pi B+ board and USB Wi-Fi 

adapter compatible with monitor mode – in this case, an adapter using the Ralink 

RT5370 chipset. A list of compatible chipsets was found in the support information of 

an open-source software package utilising Wi-Fi monitoring [192].  

Using open-source software to interface with the Wi-Fi adapter [193], a script was 

written to collect the MAC address, signal strength and connection type of devices 

broadcasting Wi-Fi probe signals within range of the detector. The script was based 

upon an open source solution using the same monitoring software [194]. 

The raw data from the Wi-Fi detector required pre-processing before meaningful 

information on occupancy could be extracted, including elimination of static devices 

such as Wi-Fi routers and identification of people passing outside the building. 

5.4.2 Raspberry Pi Wi-Fi Detection Testing 

5.4.2.1 Analysis of a Small Office Setting 

An analysis of the Wi-Fi detection data was conducted on a week with manually 

labelled occupancy for the building – detail on how this data was acquired can be 

found in section 5.2.7. The unprocessed data from the Wi-Fi detector shows a high 

density of devices detected, with 0.7 million detection events from 888 unique device 

IDs detected over a 7-day period. Over 78% of such events are from 5 devices, as 

illustrated in Figure 5-7. These are likely static background devices - defined as 

devices that have visible Wi-Fi traffic, but are in a fixed, static location in the building 

and thus are not related to occupancy levels. Examples include Wi-Fi network routers, 

Wi-Fi enabled display PCs etc.  Other signals received at low-strength for a short time 

can be assumed to be from people passing by outside the building. It can also be 

expected that some building occupants carry multiple Wi-Fi enabled devices, and 

some carry none. 
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Figure 5-7 - Number of Sightings of the 20 Most Frequently Detected Device IDs, Phase 1 

Static devices can be omitted by identifying when the building is empty of occupants, 

and creating a ‘blacklist’ of MAC addresses to be ignored from the IDs still found 

during this time. Two methods were tested to identify when the building was empty: 

manual designation of times believed to be sufficiently outside of office hours to 

guarantee zero occupancy, and automated designation of zero occupancy based on 

environmental sensor measurements. The first method is limited to a short period of 

time when the working patterns of occupants was known by survey and may lose 

accuracy over time as devices in the house are changed, while the automated method 

has the potential to falsely blacklist genuine occupant devices if zero occupancy is 

incorrectly assumed.  

Manual identification of static devices yielded a list of 11 MAC addresses that were 

present during the hours of 00:00 to 04:00 during the test period. Automated 

identification of static devices was based on the environmental readings of CO2, PIR 

and cold water use. These three measures were found to be as the best indicators of 

occupancy in the domestic case study covered in section 4.2. Non-occupied periods 

were assumed when the following conditions were met: 

• Zero motion count from all PIR sensors in the last 60 minutes. 

• CO2 level below 700ppm in all zones (value determined by mean value when 

known unoccupied during test weeks). 

• Zero cold water use recorded in the last 60 minutes. 
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The assumed non-occupied periods are shown against the verified non-occupied 

periods in Figure 5-8. It can be seen that the automatic detection is intentionally more 

prone to false negatives than false positives, as omitting some data from a non-

occupied period is less of a problem than blacklisting IDs from an occupied period. 

For the test week data, 24 devices were identified. This included two MAC addresses 

known to belong to occupants of the building shown as crosses in Figure 5-8. Both 

false positive detections occur at the start of a day, implying that there is some lag in 

the detection of occupancy using the PIR, CO2 and water sensor combination with the 

equipment arranged as in the Phase 1 test period. To counter this problem, the last 15 

minutes of each automatically detected non-occupied period was ignored.  

 

Figure 5-8 Real vs Assumed Periods of Zero Occupancy 

A total of 9 devices were on the blacklist of both methods for Phase 1 of testing. 

These IDs were the top 9 most detected MAC addresses, representing 97% of all 

detection events. Omitting this list of devices from Phase 1 data processing both 

removes factors irrelevant to occupancy rates and significantly reduces the 

computational load for calculations on the Wi-Fi data. During the testing for Phase 2, 

it was found that the most commonly seen static devices had changed (Figure 5-9). In 

a working building, it is reasonable to expect that static devices in the building will 

change over time. For this reason, the detection model developed in Chapter 6 was set 

up to automatically identify static devices in the given Wi-Fi data at the start of any 

training, using the methods described above. In practice, an occupant data model run 
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over long periods without retraining would need the blacklist of static devices to be 

periodically updated using historic sensor data.  

 

Figure 5-9 - Number of Sightings of the 20 Most Frequently Detected Device IDs, Phase 2 

Once the static devices were omitted, the Wi-Fi data had to be processed. Each device 

detection represents a single point in time; in order to translate a series of distinct 

detections to continuous states of occupancy/non-occupancy, a reasonable gap 

between detections must be assumed. In practice, this takes the form of a period after 

each detection where the device is assumed to still be present, but silent. The average 

length of time between detections was investigated over the test week in order to find 

an appropriate length for this assumed period. Figure 5-10 shows a histogram of the 

duration between detections for all devices over the entire test period. It can be seen 

that the majority of detections occur with a frequency below 20 seconds, however, 

this data is skewed by the prevalence of signals from background devices as discussed 

above. A more accurate frequency for devices of interest can be found by measuring 

the time between detections for devices belonging to known occupants of the building 

during only hours these occupants are verified to be present. Figure 5-11 shows the 

results of this analysis. It can be seen that the majority of detections occur with an 

average frequency of 10 minutes or less: with 80% of detections occurring within 5.3 

minutes of each other, and 90% known detections within 10.1 minutes. This suggests 

that assuming an occupant is present for 5-10 minutes after each detection is a 

reasonable threshold to estimate continuous occupancy. The threshold value for 

assuming continuous occupancy was set at 10 minutes. 
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Figure 5-10 - Length of time between detections for all devices 

 

Figure 5-11 - Duration Between Detections for Occupant Devices Known to be Consistently 

Present 

Figure 5-12 shows the results of Wi-Fi detection over a single day in the Mark Group 

House, showing only regular occupants of the office whose MAC address was 

manually identified.  

Table 5-5 Summary of Individual Wi-Fi Detection Frequency while Present for the Test Week 

Occupant 
Mean Gap Between 

Detections (min) 

90th Percentile Gap Between 

Detections (min) 
Device OS 

Person E 31.5 108.0 Android 

Person D 13.4 36.1 iOS 

Person A 11.7 30.0 Android 

Person I 7.4 2.4 iOS 

Person L 5.3 8.0 Android 

Person C 4.6 10.1 Android 

Person F 4.5 7.7 iOS 

Person B 3.8 8.5 iOS 
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Figure 5-12 - Example day of Wi-Fi based detection - known office occupants only 

It can be seen that, despite the threshold optimised to cover 90% of the average 

detection frequency, some devices are detected consistently throughout the day, while 

others are more sporadic. This is likely due to: 

• Operating system specifics – those with iOS based devices showed a general 

tendency to be more consistently visible than Android, as shown in Table 5-5. 

Android devices in this study were more likely to leave large gaps between 

Wi-Fi activity. Default settings on data use and updates specific to the 

operating system may have influence on the visibility of devices.  

• Setup of the device in question – it is not a guarantee that occupants will have 

their device’s Wi-Fi enabled at all times. 

• Software/apps running background processes and updates – those with a larger 

number of apps using internet connection (email checking, automatically 

obtaining weather forecasting/news etc.) will experience greater background 

levels of Wi-Fi traffic than those without. 

• Personal device usage patterns – it is expected that some occupants will use 

their devices for internet-based tasks more often throughout the day than 

others, allowing more visible traffic.  
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While the varying coverage of different individuals is a potential hit to the reliability 

of the passive Wi-Fi listening method, it was not considered feasible to try to 

calculate more personalised thresholds for assuming continuous occupancy. One 

significant reason for this is that longer assumed occupancy could begin to introduce 

false-positives to the data, where an individual is recorded as present when they are 

actually absent. As the data currently stands, it should only have false negative errors 

for the vast majority of cases, as it is physically impossible to detect signals from a 

device that is not present. As part of a wider system of inference, this bias against 

false positives provides some information in itself: if a user’s device is detected, the 

user is most likely present, but if not detected, other data may be required to gain 

more certainty. A general threshold of 10 minutes (or two timesteps of a 5-minute 

resolution system) over all devices was considered the best compromise between 

continuous detection and avoiding false positives from the Wi-Fi detection.    

5.4.2.2 Signal Strength Received in a Small Office Setting 

During the initial testing of the Mark Group House, a correlation was found between 

the total number of devices detected over a threshold signal strength and the total 

number of people in the building at that time, including guests previously unknown to 

the system. However, this initial test did not include any significant number of 

occupants in the basement areas of the building. A more comprehensive test of the 

signal strength achieved was conducted at the extreme points in the building, to test 

whether the previously found threshold is appropriate for all zones equally.  

A series of spot tests of signal strength were conducted using a single mobile device 

with known MAC address. The Wi-Fi functionality of this device was switched off 

and on several times, prompting an outgoing signal at reliable intervals that could then 

be identified from the Raspberry Pi data. The Raspberry Pi data collection device was 

placed in an office on the upper floor of the building, as shown in the diagrams in 

section 5.2. 
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Figure 5-13 - Results of Wi-Fi Detector Signal Strength Spot Test in the Mark Group House 

The averaged results of the spot tests are shown on the building plans in Figure 5-13. 

It can be seen that a signal strength threshold of -65dbm would be a reasonable 

cutting off point for occupants on the ground or upper floor, as all measurements from 

within these spaces are stronger than this value. Measurements from outside the 

building walls all fall below this value. However, the measurements taken in the 

basement zones show signal strengths significantly below the previous threshold, with 

the most extreme locations not registering any detected signals at all. It should also be 

noted that these spot tests were conducted with a single device only: it can be 

expected that different devices may output Wi-Fi signals of varying strengths, 

meaning that the -65dbm threshold would not be universal for all occupants.  

5.4.2.3 Analysis of a Large Occupied Space 

The Mark Group House, as a small office in a single building, represents an 

uncommon case where the area of monitored is physically independent of any other 

occupied spaces. In other applications, it might be expected that adjacent spaces, 

external footpaths etc. will produce interference in the local device detection. 

It was decided to test the Wi-Fi detection in an internal space on the university 

campus during a lecture period. Figure 5-14 shows the room highlighted in blue. The 

space is surrounded by 5 other lecturing spaces, all of which were in use during the 

Basement Floor                                            Ground Floor                                             Upper Floor 
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test period. The test was run from 10:55 to 13:20, covering a 2-hour lecture scheduled 

from 11:00 to 13:00. 

The placement of the detection hardware is shown on Figure 5-14. Due to the need to 

site the hardware next to a power supply, it could not be placed centrally.  

 

Figure 5-14 - Floor Plan of Test Space 

Background devices are defined as devices that have visible Wi-Fi traffic, but are in a 

fixed, static location in the building and thus are not related to occupancy levels. 

Examples include Wi-Fi network routers, Wi-Fi enabled display PCs etc. These 

devices were identified during a secondary testing period, taken 18:30-19:00 on the 

day following the initial sample. During this time, the lecture spaces were 

unoccupied. In an ideal situation, the building would be fully vacated of occupants for 

this test. However, due to restrictions on the opening times of lecture buildings, the 

test could not be conducted with a guarantee of zero occupant devices in range 

beyond the lecture halls. It was assumed, however, that any devices detected more 

than once during this period were background devices and so were omitted from the 

following analysis. 

Figure 5-15 shows the majority of detected devices broadcast with a mean frequency 

of under 5 minutes. The average length of time between detections for 90% of the 

devices was 10.4 minutes. This suggests that the optimal length of time a device can 

be presumed present after an instantaneous detection is between 5 and 10 minutes: in 

the following graphs, a value of 5 minutes was used. 
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Figure 5-15 - Histogram of average length of time between detections, per device 

Figure 5-16 shows the total number of non-background devices detected over the 

period. It can be seen that the total number of devices far exceeds the number of 

people in the space. This confirms the effects of interference from other adjacent 

spaces. 

However, the pattern of the data over time can be mapped to observed events in the 

tested space and adjacent spaces. This means that, while the magnitude of the number 

of devices detected is not a perfect measure of occupancy, there is information to be 

gained from analysis over time. Seven events have been identified in the data below: 

1. Peak as people gather in the corridor space for the next lecture period 

2. Drop as previous lectures empty from the lecture rooms 

3. Relatively stable period, lectures continue 

4. Peak/drop as lectures ending at 12:00 switch or leave 

5. Lower stable period, indicating an adjacent room is no longer in use 

6. Peak as people gather in the corridor space for the next lecture period 

7. Staggered drop as lectures empty 

The higher signal strength detections (-60dbm and above) show peaks at the start and 

end of the lecture period. However, there is also an unexplained series of 

peaks/troughs in device detections between these two points in time. This could be 

due to several factors, such as a lecturer periodically walking in front of the sensor, or 
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potentially some synchronisation of data use cycles across a large number of devices. 

Without further data, however, the source of the peaks cannot be determined. 

 

 

Figure 5-16 - All Devices Captured During the Test Period 

The total duration of stay for each device was also calculated – this being the length 

of time between the first and last detection made. Figure 5-17 shows the results of this 

analysis for devices of signal strength -70dBm or higher, with background devices 

and devices seen only once during the period omitted. It can be seen that a high 

number of devices are detected for less than 10 minutes – likely these devices were 

held by people passing the lecture hall or further away in the building. A sharp peak at 

50 minutes shows the devices of people in neighbouring lecture halls who arrived and 

left during the first hour of the test. A smaller peak around 120 minutes shows a 

significant number of people who were present over a two hour period – likely 

occupants of the tested lecture hall during the two-hour lecture.  

4 1 

2 3 5 

6 

7 
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Figure 5-17 - Histogram of total detected presence time 

5.4.2.4 Signal Strength Received in a Large Occupied Space 

In order to better understand the signal strength attenuation by distance and building 

material around a monitored sub-space as part of a larger building, a series of spot 

tests were conducted during the out-of-hours test, in a similar manner to the spot 

testing in the Mark Group House. As Figure 5-18 shows, signal strength was 

generally attenuated more by walls than distance, as expected from the results in the 

Mark Group House. However, an occupant in an adjacent room close to the sensor 

could have higher signal strength than someone in the back of the test room. This 

situation suggests that, if wishing to measure the occupancy of a single room with Wi-

Fi detection, care should be taken to locate the sensor as centrally as possible in the 

room, although this may not always be possible. Another potential solution is to use 

multiple Wi-Fi sensors and attempt to triangulate signals detected. 
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Figure 5-18 - Signal Strength Spot Test Results in the Lecture Hall 

5.4.2.5 Discussion 

Initial analysis of the results suggests that Wi-Fi probe signal detection can provide 

valuable information on building occupancy patterns and is able to provide some 

measure of non-regular occupants who are not connected to the local Wi-Fi networks. 

However, due to the infrequent detection of some devices, it cannot be used alone as a 

consistently accurate occupancy measure and thus must be used as a supplement to 

other sensing systems. 

The system also detects any Wi-Fi connected devices including local routers and other 

permanently placed devices. In public spaces that are closed at night, these can be 

identified during periods with no occupancy. The signal strength received can also be 

used to filter out false positive results from personal devices being carried outside of 

the monitored area, but this is dependent on the location of the sensor and makeup of 

the building.  

In spaces with a large population, the trend in number of devices seen gives 

potentially more information than the actual number of devices seen, which was 

found to be significantly greater than the local number of people. 
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5.4.3 iBeacon Hardware Setup 

In theory, all iBeacon hardware should have similar performance under the iBeacon 

protocol. However in practice, this was found to not be the case. Initial tests were 

conducted with Bluebar USB iBeacons [195], supplied with power from mains 

electricity adaptors. This hardware had the benefit of not relying on batteries for 

power, meaning that the longevity of the signal output should not be an issue over a 

long time period. However, it was found that the performance from beacon to beacon 

was highly variable, with some beacons failing to send out a consistent signal after 

several weeks of use.  

As an alternative hardware, Kontakt [189] beacons were then selected, as they were 

these were found to be the most consistent between different beacons in reviews of 

several beacon types [196], and have a reasonably long battery life compared to other 

beacon brands [197]. In an application where it is likely that multiple beacons can be 

detected at once, it is important that the signal strength received from each beacon is 

consistent with its distance from the user.  

Both beacon types were sampled in the Mark Group House for a period of 40 minutes 

using an Android-based beacon scanner. It was found that all Kontakt beacons tested 

emitted signals at a more consistent interval, shown in Figure 5-19a, while the 

Bluebar beacons were inconsistent, with some beacons showing a profile similar to 

the Kontakt, some showing larger gaps between signal emissions as in Figure 5-19b, 

and some not emitting signals. It was therefore chosen to use the Kontakt beacons 

only for further testing in the Mark Group House. 

 

  

Figure 5-19 Sample Detection Rate for a) Kontakt and b) Bluebar iBeacons 

Kontakt                                                                               Bluebar 
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5.4.4 iBeacon Software Testing - iOS 

A survey of occupants in the test building revealed that all regular occupants owned 

either an iOS or Android based device with Bluetooth. For iOS devices, the app 

‘Geofency’ was found [198], which covered the majority of requirements and so was 

selected for iOS users. 

When the unique identifiers of an iBeacon are entered into a user’s Geofency app and 

the device Bluetooth enabled, the app will log an entry/exit time for when the user is 

within detection range of the iBeacon. This functionality can also be enabled for GPS 

locations, although this was not required for the study. It should be noted that each 

location in the app is treated independently of the others, meaning that there is no 

logic applied when multiple iBeacons are in range. The user is simply logged as 

present in multiple locations. For the purpose of locating an individual within the 

Mark Group House, this means that the combination of zones visible to the device 

will likely be a better indication of location than just recorded presence in the zone of 

interest. 

Figure 5-20 shows a sample of data collected from Geofency during the first Phase of 

experimentation: with one BlueBar beacon per zone. It can be seen that there is some 

agreement between the Wi-Fi detection and the bluetooth, but that the user is logged 

into two zones simultaneously for most of the occupied period. The user also becomes 

‘stuck’ in one zone overnight, despite the occupant not being present: this appears to 

be an artifact from the Geofency application caused by some incorrect sign out of the 

zone. The ‘stuck’ zone is corrected only when this beacon is encountered again the 

next day. The overnight errors are easily indentified, however, it should be noted that 

these errors could also occur for shorter periods during the day. This means that, 

although it was previously expected that the rate of false positives from this method 

would be low to zero, ‘stuck’ beacons could introduce false positive readings that are 

not easily identified. 

Over the period of one week, the data collected from Geofency and Wi-Fi detection 

were compared for a single user. As an estimation of binary occupant presence 

(presence assumed when the user was logged into any zone), the methods agreed for 

89.1% of the text week. Given the long periods of absence overnight and at weekends, 

this value may appear to be optimistic. As a measure of agreement during occupied 
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periods only, it was assumed that the user was present any time at least one method 

reported presence. During ‘occupied’ times only, the amount of time where both 

methods reported presence was 48.0%. This much reduced number may be due in part 

to the false positive overnight values in Geofency.  

 

Figure 5-20 - Geofency Results vs Wi-Fi Detection - Phase 1 Bluebar iBeacons 

In the second phase of testing, the beacon hardware was switched to Kontakt 

iBeacons, and the Geofency app was implemented on the devices of 6 building 

occupants. During this time, the occupants recorded their location manually for 

reference. The reliability of this manual recording is discussed in section 5.2.7. It can 

be seen that Geofency showed a level of accuracy to the self-reported presence of 

occupants that was consistently above 90%. Wi-Fi detection was more variable, as the 

consistency of detection depends on device use patterns, discussed above. For 

example, occupant D can be detected consistently with the Geofency data, but is only 

detected sparsely with the Wi-Fi detector (Figure 5-21). It can be seen in Table 5-7 

that Wi-Fi detection was generally more prone to false negatives, while the Geofency 

detection was more prone to false positives, likely due to the ‘stuck’ zone problem 

that was identified in Phase 1. 

It should be noted that all occupants tested in Phase 2 found that Geofency logged 

their device into multiple zones consistently whenever they were present in the 

building. Therefore, the accuracy of detected zone cannot be easily quantified. 
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Table 5-6 - Summary of Geofency vs Wi-Fi Agreement per Occupant 

Occupant 
Wi-Fi-Geofency 

Agreement  

Wi-Fi-Geofency 

Agreement while 

assumed occupied 

Geofency Accuracy 

with Self-reported 

Occupancy 

Wi-Fi Accuracy 

with Self-reported 

Occupancy 

Person B 96.5% 42.1% 98.0% 96.7% 

Person D 78.7% 12.4% 99.0% 79.3% 

Person F 98.1% 31.6% 99.6% 97.8% 

Person J 90.4% 40.3% 90.1% 90.4% 

Person K 92.0% 63.4% 97.7% 91.8% 

Person P 94.6% 52.2% 99.2% 94.1% 

Average 93.1% 49.7% 97.2% 93.1% 

 

Table 5-7 - Summary of False Negative/Positive Rates for Geofency and Wi-Fi Detection 

Occupant 

Geofency False 

Negative as a 

Percentage of 

Occupied Time 

Geofency False 

Positive as a 

Percentage of 

Unoccupied Time 

Wi-Fi False 

Negative as a 

Percentage of 

Occupied Time 

Wi-Fi False 

Positive as a 

Percentage of 

Unoccupied Time 

Person B 24.6% 0.6% 46.5% 0.7% 

Person D 0.2% 1.3% 81.7% 1.4% 

Person F 6.8% 0.3% 56.8% 0.8% 

Person J 28.9% 7.9% 28.4% 5.3% 

Person K 4.2% 1.9% 14.8% 2.7% 

Person P 6.1% 0.2% 25.9% 0.7% 

Average 11.8% 2.0% 42.3% 1.9% 

 

 

 

Figure 5-21 - Geofency Results vs Wi-Fi Detection and Self-Reported Presence - Phase 2 Kontakt 

iBeacons 
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5.4.5 iBeacon Software Development – Android 

An app equivalent to the iOS Geofency was not found for Android users – with most 

options available not able to run in the background over a long period of time. It was 

decided that the best solution would be to use open-source libraries available for 

Android development to produce an app that met the testing requirements. The 

requirements for the Android iBeacon Localisation software were as follows: 

• Scans using Bluetooth-LE for nearby iBeacons from a predefined set of 

beacon hardware. 

• Scanning is run on a continuous background service, even when the app is not 

active. 

• Creates a log of when the phone is within range of each of the localised 

beacons. 

• Allows visual review of the logged data for manual verification by the user. 

• Where multiple beacons are detected at once, the closest beacon is identified 

as the current location. 

• Noise reduction on data where necessary. 

The Bluetooth-LE scanning app was developed in Android Studio [199] using the 

Java programming language. A plain-language version of the algorithms used in the 

app is included in Appendix 10.5, with the full Android Studio project included in the 

physical copy of this work in Appendix 10.7. 

The AltBeacon Android Library [200] is a widely used and well documented library 

available for Android development. By default it is compatible with the AltBeacon 

standard, but can be configured to detect any generic iBeacon signal [201]. The app 

was developed with a similar structure to the open-source project described in the 

article above, with a background service running periodic Bluetooth scans for local 

iBeacons. 

During each periodic scan for beacons, a list of visible beacons and their received 

signal strength is generated. From this list, the closest beacon is calculated every 

thirty seconds. When the closest beacon changes or is not found, this is logged to a 

file stored on the device’s internal storage, which can be reviewed via the app or sent 

out by email. 
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5.4.5.1 Testing and Troubleshooting 

The app was initially tested in a simplified 3-zone setting over a single storey, with 

two regular occupants. The location of one occupant was recorded manually to an 

accuracy of one minute. Figure 5-22 shows the manual ‘ground truth’ data, while 

Figure 5-23 shows the data collected by the Android app. It can be seen that the 

location estimation is accurate for the majority of the testing period. 

 

Figure 5-22 - Ground Truth Occupancy Data for Test Period 

 

Figure 5-23 - App-Collected Data for Test Period 

Figure 5-24 shows a visualisation of the app performance against the ground truth 

data for each zone, and a summary of the accuracy of binary presence (whether the 

occupant is present in any zone over the whole house) over the same period.  As 

shown, the overall accuracy on this simplified case is high, with an overall accuracy 

of 98% for binary occupancy, and each individual zone between 97% and 99%. The 

rate of false negatives is higher than the rate of false positives. This is to be expected: 

false negatives can occur when the service is interrupted or the signal is not received 

due to interference etc. False positives, on the other hand, should not be possible 

except in the case where multiple zones are seen at once and the closest one is 

misidentified. In theory, a presence signal from the beacon cannot be received unless 

the occupant is actually present, so the whole-house binary presence graph should 
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show a zero false positive rate. The brief false positive shown on the binary 

occupancy graph can be explained due to a slight rounding inaccuracy in the ground 

truth reporting.  

 

Figure 5-24 False Positive and False Negatives for each zone over the test period 

After showing promising results in the simplified test, the app was tested on the same 

mobile device in the Mark Group House, with one beacon per zone over three storeys 

of the building, and up to 15 occupants present in the building during tests. The 

results were found to be much more variable over several tests, with accuracy of 

location ranging from 0% to >60% for the same location on different days. An 

example test is shown in Figure 5-25: while the user was static in Room A02, the app 

logged their location in 4 different zones over the tested period. 

 

Figure 5-25 App-collected data from the Mark Group House while User was in Room A02 
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After observing the conditions of the building over several tests (summarised in Table 

5-8), it was found that the number of occupants present around the mobile device and 

the location of the device relative to its owner appeared to have an effect on the 

beacon signal strength received. This was tested more formally by recording the 

location of a device during different conditions within the same zone. The 

configurations tested are described in Table 5-9. 

Table 5-8 - Summary of Several Software Tests During Occupied Hours 
 

Percentage of time identifying correct 

zone 

Occupants present local to device 

Test 1 41.40% Single occupant 

Test 2 84.10% Single occupant 

Test 3 3.20% Additional occupant sitting between beacon 

and phone 

Test 4 7.50% Additional occupant sitting between beacon 

and phone 

Test 5 0% Single occupant, device held by occupant 

 

In this test, a third-party application was used that creates a log of each individual 

beacon detection and its received signal strength (RSSI) [202]. This application can 

only function while running in the foreground of a device, and so was not suitable for 

use over longer periods of time. 
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Table 5-9 - Occupant-device configurations tested for their effect on signal strength 

Test Period Condition Diagram 

A - 15:50-15:55 

Mobile device is plugged in to PC for 

charging. Device is placed with a 

human body in the direct line of sight 

from beacon to device.  

 

B - 15:55-16:00 

Mobile device is kept in the same 

location as previously, but unplugged 

from the PC. 

 

C - 16:00-16:05 
Mobile device is held in hand, but 

otherwise in the same location. 

 

D - 16:05-16:10 

Device is moved away from the user, 

approximately 1m closer to the 

beacon. The user’s body is no longer 

between the beacon and device. 

 

E - 16:10-16:15 

Device is moved to approximately 

1m away from the beacon, with no 

physical obstructions between the 

two. 

 

 

The received signal strength graph in Figure 5-26 shows that the local conditions of 

the receiving device have a significant effect on the signal strength received from 

each beacon, even so far as to change the perceived order of closeness: 

• Objects touching the receiving device can affect its received signal strength – 

in sections A and C the range of signal strengths received is increased while 

the device is in contact with a charging wire or the human body. Closer 

beacons are detected with increased signal strength, suggesting that another 
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body in physical contact with the device may be acting as a boosted receiver 

for the Bluetooth signal.  

• The beacon in the room above the tested zone (purple markers, 7643-22828) 

shows step changes in the strength of signal between sections B, D and E, 

despite only a small change in actual distance to this beacon. The lowest 

received strength occurs in section E, when the device is placed closer to the 

beacon than in section B or D. This suggests that the materials of the building 

structure or furniture can have a significant effect on the signal strength, with 

some obstruction between the device and beacon present in location E.  

• The beacon of the tested zone (red markers, 23429-1275) has the lowest 

average signal strength when a person sits between the device and beacon 

(section B). 

• When the device is placed furthest from the person, the signal strength 

received for the closest beacons becomes more consistent – this may suggest 

that the small movements made by an occupant can affect the signal strength 

in between each detection.  

 

Figure 5-26 - Signal Strength Received by Device in Test under Different Conditions 
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It was then investigated how effectively the received signal strength was translated to 

the closest reported zone by the location app. The developed app was run concurrently 

with the third-party scanner used in the test above, and the results compared. A 

second beacon was added to the test zone (see Table 5-10), to measure whether a 

more central location could reduce interference from bodies between the device and 

beacon.  

Table 5-10 - Occupant-device configurations tested with two local beacons 

Test Period Condition Diagram 

F - Figure 

5-27 

Mobile device is plugged in to PC 

for charging. Five occupants 

present in zone, seated as shown.  

Two beacons placed in zone. 

 

G - Figure 

5-28 

Device is placed clear of lower 

left occupant. Five occupants 

present in zone, seated as shown.  

Two beacons placed in zone. 

 
 

The distance of each beacon can be calculated using the RSSI and the expected power 

level at 1m (Tx). The formula used by the Altbeacon library [203] is: 

𝑑 = 𝐴 (
𝑅𝑆𝑆𝐼

𝑇𝑥
)

𝐵

+ 𝐶 

Where d is the estimated distance from the beacon in metres, RSSI is the received 

signal strength in dbm, Tx is the expected signal strength in dbm at a reference 

distance of 1m (this value being beacon-specific and broadcast as part of the beacon 

signal by the beacon hardware), and A, B and C are constants determined empirically 

for different models of mobile phone [200]. Figure 5-27 shows the signal strength 

calculated manually from the RSSI data, using the AltBeacon library data for a 

Motorola device, as well as the reported closest beacon from the developed app. 
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In theory, the A04 beacon is the closest to the occupants sitting at the desks, and 

should not be affected by signal attenuation from human bodies. It should be noted 

during the test, there was significant movement of occupants around the building. It 

was also noticed that, while the phone was not placed behind any full bodies, the 

occupant at the lower left desk blocked the direct line of sight to the beacon with their 

arms while typing, which occurred intermittently through the experiment. This may 

have had an effect on the received signal strength.  

The results in Figure 5-27 show that the signal strength received is still highly 

variable – such that during the half-hour test period, the four of the five visible 

beacons had similar amounts of time identified as the closest. Beacon A02 was logged 

for 27.6% of the tested period. A04 was logged for 32.6% of the tested period. 

 

Figure 5-27 - Third-Party App and Location App Detections during test F 

With the device placed out of range of the occupant at the first desk (Figure 5-28), the 

results show that the two closest beacons were always correctly identified when the 

phone was placed away from the occupant’s arms, suggesting that even the arms of an 

occupant can attenuate the signal enough to affect the closest detected beacon. 
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Figure 5-28 - Third-Party App and Location App Detections for test G 

The app results were also tested as a measurement of binary occupant presence, in a 

similar manner to the testing for the iOS app in Section 5.4.4. One week of manually 

recorded location data was used as a reference for detection accuracy. When 

implemented across six Android devices for the test week, it was found that the 

Android app suffered a dramatically reduced performance on some occupants’ 

devices. While the app remained active on all but one device, it was found that 

devices running the ‘stock’ Android operating system (persons A and O) kept 

receiving Bluetooth signals while the device was not active, and devices running 

manufacturer-modified versions of Android (persons E, L and Q) did not receive any 

Bluetooth signals while the app was running in the background. This suggests that 

Android device manufacturers may apply more aggressive system checks to shut 

down background processes using Bluetooth connections – a problem that may not be 

possible to overcome on all device types. Table 5-11 demonstrates how the overall 

accuracy can be a misleading measure of success: the average accuracy for the app is 

over 90% despite some occupants receiving no Bluetooth signals over the test week, 

due to the relatively short periods of occupancy over a full 24h period, estimating 

occupancy as a constant zero can yield a high accuracy, although it is clearly not a 

successful detection method. A better measure of success is shown in Table 5-12, 

where the false negative rate as a percentage of self-reported occupied time is 
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presented. This measures how often the app ‘misses’ an occupant while they are 

actually present. For occupants A and O, it can be seen that the app outperforms the 

Wi-Fi detection in this measurement. For the other occupants, it can be seen that their 

presence is completely missed. For occupant S, the results are poor, although it should 

be noted that this was due to issues with the app crashing and losing data for the first 

6 days of the test week. While the app was functional, the successful detection rate 

appeared to be similar to occupants A and O, as shown in Figure 5-29. 

Table 5-11 - Summary of Android iBeacon App vs Wi-Fi Agreement per Occupant 

Occupant 
Wi-Fi-Android 

App Agreement 

Wi-Fi-Android 

App Agreement 

while assumed 

occupied 

Android App 

Accuracy with 

Self-reported 

Occupancy 

Wi-Fi Accuracy 

with Self-reported 

Occupancy 

Person A 97.1% 86.2% 99.4% 96.9% 

Person E 92.5% 0.0% 90.6% 93.8% 

Person L 93.0% 0.0% 86.6% 91.1% 

Person O 92.8% 30.6% 99.7% 92.9% 

Person Q 86.6% 0.0% 85.2% 96.7% 

Person S 83.8% 19.3% 84.1% 93.5% 

Average 90.9% 22.7% 90.9% 94.1% 

 

Table 5-12 - Summary of False Negative/Positive Rates for Android iBeacon App and Wi-Fi 

Detection 

Occupant 

App False Negative as 

a Percentage of 

Occupied Time 

App False Positive 

as a Percentage of 

Unoccupied Time 

Wi-Fi False 

Negative as a 

Percentage of 

Occupied Time 

Wi-Fi False 

Positive as a 

Percentage of 

Unoccupied Time 

Person A 1.4% 0.4% 11.8% 0.9% 

Person E 100.0% 0.0% 43.2% 2.4% 

Person L 100.0% 0.0% 56.8% 1.4% 

Person O 1.5% 0.2% 66.5% 0.8% 

Person Q 100.0% 0.0% 15.8% 1.2% 

Person S 78.8% 0.1% 17.5% 3.8% 

Average 63.6% 0.1% 35.3% 1.7% 
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Figure 5-29 – Android App Results vs Wi-Fi Detection and Self-Reported Presence – Person S, 

final day 

5.5 Proposed Framework for Inferring Occupant Information 

The work above has set out the methods applied to collect a wide range of occupant-

centred data. However, for this data to be useable, there needs to be a further step to 

parse raw data into streams of information that are more directly relevant to the 

intended application. As discussed in previous sections, this work focuses on a system 

for the short-term prediction of localised occupancy rates, identified through the 

review of existing commercial BEMS and applied research in Chapters 2 and 3.  

To make the most effective control decisions, the system must be able to detect all 

types of occupants within a space, including non-regular occupants and those not 

carrying personal devices. This suggests that, while the device detection methods 

tested in this chapter show promise as standalone systems, a combination of data 

sources is likely necessary for a more comprehensive solution. In the study of existing 

work, it was found that there is little standardisation of occupancy data collection 

within buildings, highlighting the need for a more systematic way to assess what is 

needed and how to structure data collection/processing systems.  

The proposed predictive system is effectively split into two tasks: being able to infer 

local occupancy rates from raw sensor data, and then using inferred rates to predict 

near-future changes. There are a number of benefits to deliberately separating these 

tasks into two independently run, but interacting systems: 
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• Recent years have shown rapid advances in the technologies available for 

indoor occupant data collection. Separation of detection and prediction allows 

for updates and improvements to the technologies used for detection without 

requiring a new predictive model to be built. 

• Frequency of updating required is likely to be different for the two tasks: 

future prediction models need to respond quickly to changing behavioural 

patterns and so should be regularly updated, while this is not necessarily the 

case for the relationship between sensor data and occupancy rate. 

• The ability to draw and use current occupancy state separately to the 

predictive outcome: while the predictive future occupancy rate is useful for 

slow-response systems, the current occupancy state alone could be drawn to 

use in faster-response systems or wider building monitoring uses. 

• Potential for operating at different time resolutions: some fast-response 

systems such as lighting require immediate feedback when occupancy is 

detected, while it would be unnecessary to re-calculate a one-hour future 

prediction on the same timeframe. Splitting the two tasks allows the detection 

and prediction of occupants to be operated at time resolutions appropriate to 

each task.  

Given these benefits, in this work the system to parse occupant information is split 

into two interacting, but distinct modules as shown in Figure 5-30. This figure 

illustrates how the occupancy modelling modules could function as part of a greater 

building monitoring and control system, with a centralised information processing 

system able to output information to the building controls and other analytics as 

needed.  
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Figure 5-30 - Diagram of Proposed Occupancy Modelling Structure 

 

5.6 Conclusions 

In this chapter, systems aimed at minimal-cost, opportunistic collection of occupant 

data using wireless signals and users’ personal devices were set up and tested. Two 

methods were pursued: the collection of existing Wi-Fi signals from personal devices, 

and the use of personal devices to listen for locally placed Bluetooth LE beacons. 

Both systems were tested against manual recording of local occupancy rates over a 

limited time period. 

The system set up to detect probe signals from Wi-Fi devices was able to provide 

valuable information on building occupancy trends over time. The detection of 

devices from Wi-Fi traffic can collect more generic information than counting the 

number of devices connected to a specific network, as this system also counts visitors 

who do not actively connect to any local Wi-Fi networks. Devices were found to not 

be detected continuously, however 80-90% of continuous detections from the same 

device were seen to occur within a 5-10 minute window. This number, however, was 

highly variable by device, with some devices consistently showing a number of hours 

between probe signals. 
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The signal strength of the received Wi-Fi signals was found to have a relation to 

locality, with a significant drop in signal strength seen caused by both distance and 

blocking by building fabric. This allows the signal strength to be used to filter out 

false positive results from people passing nearby the monitored area, but this is 

dependent on the location of the sensor and makeup of the building. In spaces with a 

large population, the trend in the number of devices seen gives potentially more 

information than the actual number of devices, which was not equal to the estimated 

local population. 

Bluetooth beacon based systems can provide localised data with easier installation 

and lower hardware costs than listening for Wi-Fi probe signals, but such systems 

require data collection software to be installed and run on participants’ own devices. 

The use of Bluetooth-LE specifically allows for more frequent probes, meaning that 

finer-grade data can be collected with less of an impact on the battery life of 

components. However, signal strength of Bluetooth was found to be highly variable 

due to physical properties of Bluetooth frequency waves: the signal was easily 

blocked by people, furniture and building fabric. This was seen to significantly skew 

results when comparing the closeness of multiple beacons. It was also found that 

some personal devices had more aggressive energy saving software, turning off active 

processes for Bluetooth scanning while the device was asleep. This meant that some 

of the participants produced no useable data during the test period. For those that did 

collect data, binary presence accuracy of the BT system was high, while location 

accuracy varied depending on the local environment.  

Where issues were found with the physical signal attenuation using the Bluetooth LE 

beacons, there is potential for improvement with recent advances in technology. The 

Bluetooth 5.0 protocol was released in late 2016, with devices supporting the protocol 

releasing through 2017. This Bluetooth update has been reported to increase the range 

of signal by up to four times the previous Bluetooth 4.2 specification [204]: this could 

reduce some of the signal strength issues seen in this chapter and may allow a 

Bluetooth-based solution to provide more reliable indoor location across a wider 

range of applications. 

In general, it was found that both tested systems for a low-cost solution to detect 

personal mobile devices saw mixed success, and would not be appropriate for use 
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alone in an occupancy detection system where accuracy and reliability are important. 

As part of a greater system, these two measures may provide valuable information. As 

stated in previous chapters, for the purpose of control decision making, it is also 

important that all building occupants are detected: a diverse set of data sources are 

needed to ensure that occupants who may not be carrying mobile phones, may not 

interact with access control systems etc. are still counted.  

Following from these conclusions, a framework for parsing useable occupancy 

information from raw data sources was proposed. Within this framework, a modular 

approach was chosen to allow for greater flexibility to changing sensor technologies, 

the possibility of delivering occupancy information to different systems at time 

resolutions appropriate to each application and the ability to update parts of the 

occupancy model independently as required. The following chapters will focus on 

developing and testing models for these two tasks. Chapter 6 covers the combination 

of data from multiple sensors with the aim of improving the overall accuracy and 

reliability of occupant detection beyond the capability of the systems developed in 

this chapter when applied alone. Chapter 7 covers the development of a model to 

predict near-future occupancy rates based on the inferred occupancy level from the 

previous module.   
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6 OCCUPANCY DETECTION MODEL DEVELOPMENT 

6.1 Introduction & Aims 

As discussed in the review of existing work on occupancy detection, it was found that 

short-term prediction of future occupancy can allow for the greatest energy saving in 

pre-emptive control of systems. As discussed in the previous chapter, the task of 

converting sensor data to a prediction of the number of occupants in a space has been 

split into two modules, to allow for changes in available technology. The first module 

is a model to convert sensor data into an estimation of the number of people currently 

in a space in real time. The second module is a model to take the number of people 

over a recent time period and predict the number of people in the future. 

This chapter covers the first stage of this model – ‘occupancy detection’, designed to 

convert a range of sensor data from environmental and personal devices detection 

sources into a localised measure of the number of people in a space. The development 

of this occupancy detection model included as wide a range of occupancy data as 

possible in order to compare the value of data from each source, test how much 

information can be gained in the combination of data sources and highlight any 

redundancies that could allow for more efficient data collection in future applications. 

A full description of the small office building tested can be found in section 5.2. The 

data used in this chapter includes environmental sensors for motion, CO2, temperature 

and humidity in each zone, external door/window interactions and the Wi-Fi and 

Bluetooth data collected through the systems described in Chapter 5. Ground truth 

values used for training were collected by manual surveying of occupant location over 

a test period. The range of sensors implemented was designed to achieve the greatest 

range of occupancy data while minimising disruption to the building and maintaining 

privacy for any occupants who have not specifically opted in to being personally 

tracked by the system.  

6.2 Selection of Appropriate Machine Learning Methods 

Given the wide range of data sources available, many of which are interdependent, it 

is unlikely that the occupancy rate can be well represented by a simple set of 

heuristics. The application of machine learning techniques offers an automated way to 

learn the complex interactions between sensor data and occupancy rate. 
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One of the initial choices to be made was whether the model would be based on 

classification or regression. In the case of a model estimating the number of people in 

a space, either model type could be feasible. Figure 6-1 illustrates the difference in 

how the model output is represented for classification a) and regression b). For 

classification problems, the output of the model is constrained to a set of pre-defined 

categories. Given sensor data inputs, a classification occupancy model would output 

the most likely category given the input data: in the illustrated case, 3 occupants in the 

zone. For a regression model, the estimated number of people could be any number, 

including non-integer values, based on a modelled relationship between the value of 

the sensor input and the value of the number of people during training. All of the 

methods described below are ‘supervised’, using a set of labelled training data or 

‘ground truth’, where a number of examples of the output variable with their 

corresponding input variables are provided. Non-trained ‘unsupervised’ techniques 

are typically used for identifying recurring patterns or clustering data into similar 

groups, which then must be manually interpreted into actionable situations by a 

human reader, but would typically not be able to interpret actual numbers of 

occupants. 

 

Figure 6-1 - Illustration of a) Classification and b) Regression Based Model Outputs 

For spaces where the number of occupants is known to always be within a certain, 

limited range, a classification model will likely be more effective. For example, the 

work of Yang et al [108] concluded that classification, in this case especially using 

Decision Tree methods, was more effective for both single and multi-occupancy 

spaces. In the above study, the maximum number of occupants in a space was 

predefined and was not exceeded during the data collection period. 

However, in this study, the building tested has several spaces that can be occupied by 

an unpredictable number of people, with large groups of visitors occasionally 

occupying a demonstration space or mixed groups of known and unknown occupants 
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filling a meeting space beyond its usual capacity for a short meeting or presentation. 

More importantly, it is unlikely that the manually labelled training data over one week 

will cover all possible numbers of occupants for each space. For a classification 

model, this behaviour represents a challenge: any categories without training data 

cannot be correctly modelled, and the number of people in a space must be assigned a 

definite limit. For these reasons, it was decided that, for this study, a regression model 

trained on the limited ‘ground truth’ data available, with its ability to interpolate from 

known numbers of occupants, would be more effective at identifying reasonable 

occupancy rates, in particular in identifying occupancy levels that fall beyond the 

scope of the initial training dataset.  

There are several machine learning techniques that can be used for supervised 

regression problems. The methods considered are summarised briefly below. 

6.2.1 Statistical Regression Methods 

Linear Regression 

The linear regression method is generally applied in cases with a less complex 

relationship between the input variables and the output. Linear regression assumes 

this relationship takes a linear form [205], for example: 

𝑓(𝑥) =  𝜃0 +  𝜃1𝑥1 + 𝜃2𝑥2 ( 1 ) 

Where x is the vector of input variables (in the case of this study, the sensor data) and 

f(x) is the prediction of the output variable. The objective is then to find the values of 

the θ parameters that most closely satisfy the training data. This can be achieved using 

one of a range of optimisation techniques, which will be discussed in a later section. 

Linear Regression is not considered appropriate for this application, as the 

relationships between sensor data and the number of local occupants will likely not be 

well described with linear relationships. 

Polynomial regression 

Polynomial regression uses the same process as linear regression, but the assumed 

relationship takes a polynomial form, rather than linear [206]. In the case of a 

complex relationship between inputs and outputs, this method is more likely to be 

useful than linear regression, but needs the order of polynomial to be predefined. 

Given that in this case, the nature of the relationship between the sensor data and 
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number of occupants is largely unknown, but is likely to be highly nonlinear, 

polynomial regression may not be the most appropriate method.  

One of the major considerations when setting up most types of supervised learning 

models is the issue of over or underfitting to the training data. In the case of 

polynomial regression this typically takes the form of choosing the wrong order of 

polynomial, and is illustrated in Figure 6-2. Underfitting issues arise when the model 

is not capable of properly representing the complexities of the training data, while 

overfitting is seen when the model is too complex for the amount of data supplied and 

finds patterns or correlations in small errors in the training data. Overfitting is 

characterised by low error on the training data, but high error on new examples.  

   

Figure 6-2 - Illustration of Polynomial Underfitting and Overfitting Issues 

6.2.2 Instance-based Learning 

K-Nearest Neighbours (kNN) 

One of the simpler machine learning methods based on labelled training data, k-

Nearest Neighbours is a non-parametric method based on the most similar available 

examples from the training set [207]. The kNN method does not explicitly train a 

generalised model, meaning that it can be quick to set up. Based on its input variables, 

the output value of a new example is taken as the mean of the k nearest examples 

from the training data, where k is a number chosen to optimise the fit of the model. 

As this method works on proximity to previously seen examples, it does not give 

good performance outside of the scope of the original training data. In the case of 

estimating the number of occupants per room with a limited amount of training data, 

this causes significant problems, as it cannot be expected that all rooms will encounter 

a full range of possible occupant numbers within the training data period.  
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Decision Tree/Random Forest 

Decision trees are generally used for classification problems, but can also be applied 

to regression. This method was found to be the most effective for a classification-

based occupancy model in a comparison of different machine learning techniques 

[108]. As a non-parametric method, decision trees are able to represent highly 

nonlinear relationships without manual specification of the expected complexity of 

the model [208]. At each branch, the decision tree divides the training examples using 

some criteria from their input variables (for example, dividing cases where PIR count 

> 0 from those where PIR count = 0), with the aim of maximising the variation in the 

output variable at each division. This produces a model structure as shown in Figure 

6-3, where a new example is sorted by travelling down the tree structure according to 

the values of its input variables, with its class or value estimated by the most common 

class or mean value of training examples at the end node.  

 

Figure 6-3 - Illustration of Decision Tree Model Structure 

As the tree structure divides data based on the value of the input variables, it is 

typically more suited to discrete or categorical inputs than continuous variables, with 

which it can be more difficult to draw definite boundaries. This would potentially be a 

problem with the sensor data for this study, which has both continuous (CO2, 

temperature) and discrete (PIR, Wi-Fi presence) inputs. As with kNN, this method is 

also not able to predict values beyond the scope of the training data, as its outputs are 

based on a mean of examples that have been seen before. This method was therefore 

considered unsuitable for application in this study. 

The random forest method uses multiple decision tree models trained on different 

subsets of the training data. Each tree’s output counts as a ‘vote’, with the mode (for 

classification) or mean (for regression) output of all trees taken as the estimated value 

of a new example. This method can reduce the issues with overfitting found with a 

single decision tree, but still suffers from the characteristics described above that 
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make the method unsuitable for this application. However, ensemble training methods 

similar to the random forest can be applied to other machine learning types.  

6.2.3 Support Vector Machine Regression (SVM) 

As a classification tool, SVMs seek to draw a linear boundary between classes that 

maximises the distance between the training examples and the decision boundary, 

producing a more robust model [209]. With the use of kernels this method can 

represent highly nonlinear systems without the need to specify polynomial 

parameters. This is achieved by mapping the original input variables to higher-

dimensional features using kernel functions, such that a linear solution can be found 

for these higher-dimensional features. A simplified case is illustrated in Figure 6-4, 

where two classes x and o are represented by input variables i1 and i2. The classes 

cannot be separated using linear or low-order polynomial methods, when the inputs 

are mapped to a feature f1 using a Gaussian kernel function centred at point A, the 

boundary can be represented by a linear plane in f1. 

 
Figure 6-4 - Illustration of Kernel-based Classification using SVM 

SVM kernel methods can also be applied to regression problems using a similar 

process to map inputs onto features that can be represented using linear regression. As 

this method is appropriate for highly nonlinear systems and can give robust solutions, 

it was considered a potential candidate for application in this study. 

6.2.4 Bayesian Methods 

Bayesian methods apply Bayes’ theorem (equation ( 2)) with the aim of outputting a 

probability distribution across possible outputs y given a set of input values x, rather 

than a single value output as in other machine learning methods. The estimated value 

of the output variable can then be taken as the highest probability value of y, but some 

consideration can be given to the certainty of this output using the output probability 

distribution itself. 
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𝑃(𝑦|𝑥) =  
𝑃(𝑥|𝑦)𝑃(𝑦)

𝑃(𝑥)
 ( 2 ) 

The following methods apply Bayes’ theorem directly in their ‘core’ versions, but it 

should be noted that several non-probabilistic machine learning models can also be 

modified to include Bayesian techniques. 

Naïve Bayes 

Naïve Bayes models are typically used for classification problems, but can also be 

applied to regression [210]. These models are generally favoured in cases that require 

a simple structure and quick implementation. A model for the probability of observed 

input values x given the known output y is constructed using a labelled set of 

‘training’ data. The major assumption applied to this model type is that each of the 

input features in x can be considered to be independent given y. In the case of 

occupancy detection using environmental sensors, this may not be a valid assumption, 

as some variables depend on external influences such as the external weather 

conditions and some variables are directly related, such as the temperature and 

relative humidity. Some studies also show that Naïve Bayes is less effective in 

regression problems than for classification [210]. It was decided that a Naïve Bayes 

model would not be the best solution for this application. 

Gaussian Process 

The Gaussian Process regression method seeks to find the probability of a function 

f(x) that describes the output y when given inputs x. The ‘prior’ in this case is to 

assume a probability for a theoretically infinite range of possible functions, and refine 

the probability of this range based on the observed training data, as illustrated in 

Figure 6-5. It can be seen that the range of possible functions drawn from the 

posterior is limited to those that fit the observed data, meaning the model becomes 

more certain close to observed data points.  

Similarly to SVMs, Gaussian Process models can use a range of kernel functions that 

can affect the outcome of the model. In this case, the kernel or covariance function of 

the Gaussian Process prior is used to encode some expectations about function f(x), 

although not its exact parameters or structure. For example, certain hyperparameters 

of the covariance function can affect the ‘smoothness’ of functions drawn from the 
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prior, which could be used to tune over or underfitting issues. The values of the 

covariance function hyperparameters can be determined from the training data using 

methods described in the work of Rasmussen and Williams [211]. 

 

Figure 6-5 - Visualisation of Gaussian Process functions drawn from the prior distribution before 

data (a) and posterior distribution after inclusion of training data (b) [211] 

One of the major advantages to the Gaussian Process method is the ability to extract a 

level of certainty in the model outputs. In the case of reducing uncertainty around 

building occupancy, a level of confidence in the number of people could be a useful 

parameter to feed into controls systems. Gaussian Processes were therefore 

considered for application in this study. 

6.2.5 Artificial Neural Networks (ANN) 

Artificial Neural Networks, also called multi-layer perceptrons, are designed to 

represent the relationship between a set of inputs x and the output y without explicit 

knowledge of what form this relationship will take. This is achieved by mimicking the 

way that neurons in the brain function: representing the model as a network of nodes 

or ‘neurons’, linked by pathways which are assigned weights w [212]. Each of the 

individual inputs is represented as a node on one side of the network and the output(s) 

on the other side, as shown in Figure 6-6. A number of ‘hidden’ nodes are arranged in 

layers between the inputs and outputs. Each node has an input function, activation 

function and output such that a set of input values x are passed through each layer, 

being altered by the weights of each node connection, until an estimated value of the 

output y is calculated at the output layer.  

The values of the weights w that give the best estimated output must be found by 

optimisation using labelled training data, for which the inputs and outputs are known. 

Various optimisation algorithms can be used for this training period, with the aim to 

find weights to minimise the ‘cost function’, which is a measure of the total error in 

the output over the training dataset as a function of the weight values.  
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Figure 6-6 - Simplified ANN Structure Diagram 

ANNs have been found to be a highly effective tool for regression in direct 

comparisons of different machine learning methods on time-series data [213]. The 

ability to represent highly nonlinear relationships without the need to predetermine a 

polynomial structure or evaluate high-order polynomial terms is a benefit for 

application in this study. ANNs were therefore considered as a potential solution for 

application. 

6.2.6 Discussion 

From the array of possible machine learning algorithms available, several viable 

model types were identified: support vector regression, Gaussian processes and neural 

networks. As each of these model types has no outright failings when considered for 

this application, to some extent the model type used is less important than the way the 

model is refined once initial tests have been made on the dataset. After consideration, 

an Artificial Neural Network model was selected, given that:  

• ANNs are able to represent nonlinear systems without prior knowledge of the 

complexity of the problem – in the case of a large number of sensor inputs 

with some degree of dependency on non-occupancy factors, it is expected that 

the relationship will be highly nonlinear and potentially noisy. 

• Has been shown to be effective in studies directly comparing methods: while 

this is no guarantee that ANN would be the most effective method in this 

particular application, the general characteristics shown by ANN models 

suggest they should be appropriate. 

• The availability of support resources for this model type was found to be more 

robust in the chosen programming language than other model types. 

It should be noted that, as a supervised learning method, ANNs rely on manually 

labelled training data to build the relationship between the input values and the output 
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estimation. As was discussed in Chapter 5, two periods of manually recorded building 

occupancy data were collected for this purpose. During the course of this collection, it 

was found that some occupants reported to a greater degree of precision than others, 

and some occupants reported rounding time values as they were unsure of the exact 

time of transitions. For the purpose of this study, it must be assumed that the training 

data used represents the true occupancy of the space, and the model output will be 

compared to this value as if it is 100% accurate. Where this assumption may have 

affected the results of the model, this will be discussed in the following sections, 

although it is expected that the overall effect on this work is minimal. 

6.3 Model Structure 

A range of software for the implementation of ANN is available. In this study, it was 

chosen to use the Matlab Neural Network toolbox, due to: 

• Availability of functions within this software. 

• Researcher familiarity with the programming language. 

• Existing scripts for the analysis of occupancy data in Matlab for the other case 

studies in this project. 

Figure 6-7 shows the initially tested structure for the detection model. In this diagram, 

each circle represents a neuron, with the lines between neurons representing the 

weights that are optimised during model training. During the first stages of testing, 

one such model was trained per zone of the building, as the number of people in a 

zone with a given set of sensors should be independent of the occupancy of other 

zones. Training individual models also allows for a quicker way to test the 

effectiveness of different structures, data inputs etc. on each room type. In real 

application, the separate models could be combined into a single model structure, with 

the inputs of each zone separated from each other, or the models could be run one at a 

time over the 5-minute update period of a real-time system.  
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Figure 6-7 – Initial Tested ANN structure for Detection Model 

When training the ANN model, a large number of variables can affect the likelihood 

to over/underfit to data, including: 

• Number of neurons in hidden layer(s) 

• Number of hidden layers  

• Number of data inputs 

• Format of data inputs 

• Format of data outputs 

To attempt to try every permutation of each of these variables in order to optimise the 

ANN performance is not computationally viable. Some logical rules can be applied to 

eliminate combinations that are extremely unlikely to yield good results. For example, 

introducing a high number of data inputs to a network with a low number of neurons 

is unlikely to be able to represent any complex relationships between inputs. 

Conversely, training a network with few inputs, with a high number of hidden layers, 

each with many neurons, will overfit the network to the training data.  

Given the limited amount of training data, a highly complex ANN structure is not 

feasible without introducing overfitting, even if the complexity of the relationship 

between sensor data and occupancy rate would otherwise warrant it. It was therefore 

decided to start with a single hidden layer structure. As a starting point, the number of 

neurons was chosen to be around the same order of magnitude as the number of inputs 

for a single zone. Figure 6-8 shows the average Root Mean Square Error (RMSE) 

over all zones on the training and test data for varying numbers of neurons. RMSE is 
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used to show the magnitude of errors without allowing positive and negative errors to 

cancel out. It can be seen from the increased test RMSE that overfitting of the 

network is an issue even at the lower numbers of neurons, likely due to the small size 

of the training dataset and the relatively large number of sensor inputs. During initial 

tests, a structure with 10 hidden neurons was proposed: here, the model may be able 

to reflect some complexity of relationship, but avoids the more severe overfitting 

issues with higher numbers of neurons. As mentioned above, the optimum weights in 

the neural network can be found using a range of optimisation techniques. By default, 

the Matlab ANN toolbox uses Levenberg-Marquardt optimisation method [214] for 

the training process: this method was used during the following tests unless otherwise 

stated, with alternative methods explored in later sections. 

 

Figure 6-8 - Error on the Test and Training Data with Varying No. Neurons 

The data used for the following model development is taken from two samples of 

manually-recorded occupancy data, one from the Phase 1 sensor arrangement, and 

one from the Phase 2 sensor arrangement as described in Section 5.2. The default 

Matlab ratio between training and test data was used: with 70% of available data used 

for training, 15% for validation and 15% for testing. Given the tendency for 

conditions in the building to stay relatively steady for multiple consecutive timesteps, 

it was found that the standard practice of selecting the test and validation data samples 

randomly from the whole dataset gave overly optimistic low errors on the test data 

results. This occurred because most of the test data samples had closely corresponding 
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entries with very similar sensor values within the training data, for which the model 

had been specifically optimised. This meant that overfitting to the training data was 

not properly indicated on the test data results, but had the model been run on a new 

week of sensor data, the model performance would be extremely poor. To avoid this 

issue, in the following work the training, test and validation data were sampled as 

continuous blocks from the whole dataset, with approximately the first five days of 

each test week assigned for training data and the last two days assigned for validation 

and testing respectively.  With this continuous block sampling, the test data samples 

do not have direct equivalents in the training dataset, and so a more realistic idea can 

be gained on the model’s overfitting issues/performance on previously unseen sensor 

data. 

6.4 Tendency to find Local Minima 

As Neural Networks typically optimise their parameters using some form of gradient 

descent, it is possible for networks with a complex cost function to get ‘stuck’ in local 

minima of the cost function without finding the global optimum values for the internal 

weights. This concept is illustrated in Figure 6-9, where a possible network cost 

function over all possible weight values is visualised as a 3D surface. As the network 

is trained, the weights are initially assigned random values and the weights are 

adjusted in steps towards a lower value of the cost function until a minimum is 

reached. If the random initialisation of the weights happens to fall close to point 1, the 

network is likely to find the minimum cost at point A, which in this case is the global 

minimum. However, if the random initialisation falls closer to point 2, the network 

may find the local minimum at point B, leading to a higher cost than the global 

minimum. 
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Figure 6-9 - Illustration of an ANN Cost Function with Local Minima 

In many networks, the possibility of finding a local minimum is not considered a 

problem, as in many cases the cost function tends to be more valley-shaped than the 

illustration in the figure or local minima tend to take similar values. However, given 

the complex relationship between noisy sensor data and occupancy rates, and the 

planned methods of comparing error rates of various sensor configurations to optimise 

how data is presented to the network, it was decided to investigate whether local 

minima could be an issue in this study. 

A network was trained for each zone using the full set of environmental sensors 

attributed to these zones. This method was repeated 100 times, with the outputs of the 

network recorded each time. Figure 6-10 shows the distribution of the error rates from 

these 100 trainings. It can be seen that the error rate of the same neural network 

structure can vary significantly depending on the randomised initialisation, suggesting 

that the network training is prone to falling into local minima and that this may be an 

issue for this particular application. 
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Figure 6-10 - Distribution of Root Mean Squared Error from 100 randomised-initialisation 

trainings of the same ANN structure and inputs 

With several alternative training functions available in Matlab, it was investigated 

whether any were more effective than the default Levenberg-Marquardt optimisation, 

with the results shown in Table 6-1. It was found that the Levenberg-Marquardt 

optimisation, alongside Conjugate Gradient-based methods, gave a relatively low 

mean error with the lowest variation in outcomes. It was therefore decided to proceed 

with Levenberg-Marquardt training as a basis for comparing the performance of 

different network inputs. In order to reduce the effect of falling into local minima 

when comparing configurations, the RMSE used in the following tests was calculated 

by training the same structure at least 5 times and averaging RMSE values.  

Table 6-1 – RMSE Mean and Range over 100 trainings of the same ANN structure for all default 

training functions available in Matlab 

Training Function Mean RMSE RMSE Range 

Levenberg-Marquardt 0.626 0.358 

Conjugate Gradient with Powell/Beale Restarts 0.628 0.349 

Polak-Ribiére Conjugate Gradient 0.633 0.298 

Fletcher-Powell Conjugate Gradient 0.635 0.345 

BFGS Quasi-Newton 0.650 0.882 

Scaled Conjugate Gradient 0.661 0.429 

One Step Secant 0.693 0.790 

Resilient Backpropagation 0.754 0.522 

Gradient Descent 0.783 0.995 

Variable Learning Rate Gradient Descent 0.869 0.656 

Bayesian Regularisation 1.118 2.480 

Gradient Descent with Momentum 1.536 1.333 
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6.5 Model Optimisation 

As found in the previous sections, an ANN model trained on all available sensors for 

a given zone tends to overfit, showing a significantly larger error on test data than the 

training data. Figure 6-11 illustrates this issue for a single zone: it can be seen that, in 

the test day, the occupancy rate is never estimated to be at zero, even during the night. 

As gathering a reliable training dataset of a longer timeframe was not viable with the 

data collection techniques used, it was necessary to explore options to address the 

overfit issue.  

Model Combination/Mixture of Experts – One way to improve overfitting issues 

and the estimations made for inputs not in the training set is to average the estimations 

from several models. Deliberately training models that make varied, although equally 

accurate, predictions can allow an aggregate performance that is much more effective 

than any single model alone [215]. 

Regularisation – As the model is trained, the cost function is used to ensure that the 

overall error is reduced at each step. Assigning an additional penalty in the cost 

function for higher model weights can penalise overly complex models, creating a 

bias against including superfluous variables and tending towards a smoother fit to the 

training data. 

Model Structure – One of the more effective ways to reduce overfitting issues is to 

reduce the number of input variables or features, discarding any that do not contribute 

meaningful information to the network. A potential starting point was to test the 

information gained from each of the sensor types.  

It was decided that the initial model optimisation would be to remove any of the input 

features that were not providing useful information to the network. If overfitting 

issues were still present after this process, further options were to be explored. 
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Figure 6-11 - ANN training, validation and test outputs for Multi-Occupant Office, Trained on 

all Zone Sensors 

 

6.5.1 Single Sensors for Manual Feature Selection 

One way to measure the information gain from each sensor was to train an ANN with 

data from a single sensor as the input. By comparing the error in the estimated number 

of people on the test data after training with each sensor, an idea of how relevant each 

sensor is to occupancy levels can be formed. It should be stressed that this is not a 

perfect approach to prioritising sensors, as some sensors may produce a high error 

alone but provide valuable context to the readings from other sensors (for example, 

the effect of opening a window on the CO2 level). The comparison of single sensors is 

intended to be simply a starting point to systematically rank sensors where no other 

logical distinctions can be applied.  

Phase 1 Data 

Table 6-2 shows the RMSE for each sensor type when used as the sole input for an 

ANN trained on one week of manually labelled data, with a visual representation of 

each sensor’s results in Figure 6-12. From this, it could be assumed that the window 

Training Data Val         Test 
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use, ground floor PIR and CO2 sensor provide the most occupancy-relevant 

information, and should be included in any reduced feature set for this zone.  

Table 6-2 - Average Error in No People Estimated by ANN Trained on Single Sensors, Single 

Occupancy Office 

Window 
Ground 

Floor PIR 

CO2 

Sensor 

First 

Floor PIR 
Temperature Ext Door Humidity 

0.460 0.541 0.549 0.600 0.610 0.614 0.669 

 

It should be noted that there are likely some false equivalencies, as in the test week it 

happens that the ground-floor single office occupant is present during the same hours 

as occupants triggering the upstairs PIR, for example. The external door sensor was 

also not used during the test week – meaning that it provided no information despite 

the similar window sensor being highly ranked. This is one of the disadvantages of 

attempting to train a comprehensive model on a single week of manually labelled 

data, and can only be guaranteed to be improved by collecting training data over a 

longer period. Unfortunately, due to the intrusive and time-consuming nature of 

collecting manual occupancy data from 10-15 occupants, it was not considered 

feasible to collect a larger training dataset in this manner.  

Table 6-3 shows the sensors for all Phase 1 zones, ranked by individual error rate. 

Some general patterns were noted: 

• Local CO2 level was in the top 3 features for all but one zone – this confirms 

previous research findings on the value of CO2 as an occupancy measure. 

• The ground floor PIR ranked higher than the upper floor PIR for all zones – 

even the ones on the upper floor (Zone 1) – this could indicate a coincidental 

correlation due to the limited training data, or a potential fault with the upper 

floor PIR hardware or location. It should also be noted that the ground PIR 

was placed in an area that is passed when accessing most other spaces in the 

building, while the upper floor sensor is more isolated. 

• Window behaviours were indicative of occupancy during Phase 1, which was 

conducted during a summer period. It should be noted that this pattern will not 

follow through to winter behaviours. If training a model on summer data, care 

must be taken to check if the model still works on winter data for the same 

zone. 
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Table 6-3 - Ranking of Information Gained from Single Sensors for each Zone – Phase 1 

 

Zone 1 
(multi 

office) 

Zone 2 
(meeting 

space) 

Zone 3 
(multi 

office) 

Zone 4 
(single 

office) 

Zone 5 
(kitchen) 

Zone 6 
(display 

space) 

Zone 7 
(display 

space) 

Zone 8 
(corridor) 

1 CO2 Velux 2 GF PIR Window CO2 
Temperat

ure 
CO2 GF PIR 

2 GF PIR Velux 5 CO2 GF PIR Window 2 Ext Door Humidity UF PIR 

3 UF PIR Velux 3 UF PIR CO2 Window 1 CO2 
Temperat

ure 
 

4 
Temperat

ure 

Temperat

ure 
Window 4 UF PIR GF PIR Humidity GF PIR  

5 
Window 

Velux 
CO2 Window 2 

Temperat

ure 

Temperat

ure 
GF PIR UF PIR  

6 Window Humidity Window 3 Ext Door Ext Door UF PIR   

7 Humidity Velux 4 Window 1 Humidity UF PIR    

8 Ext Door Velux 1 
Temperat

ure 
 Humidity    

9  GF PIR Humidity      

10  UF PIR       

11  Ext Door       

 

Table 6-4 shows the RMSE of networks trained with reduced feature sets based on the 

individual sensor error rates as calculated above. A clear correlation can be seen 

between the number of features included and the error rate, with a reduced number of 

inputs giving a reduced error. This follows the hypothesis that the baseline ANN 

structure suffered from overfitting to the data. From the results in Table 6-4, it appears 

that 1-5 features is the optimum on average, providing a 28% reduction to the baseline 

average RMSE. 
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Figure 6-12 - Results of ANN Trained on Individual Sensors for Single-Occupancy Office 
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Table 6-4 – Manual Feature Selection RMSE against Baseline ANN Structure – Phase 1 

 

Phase 2 Data 

The above process was also conducted on the data from Test Phase 2 for comparison. 

In this data, more zones of the building are included in the study.  

The ranked sensors for each zone are shown in Table 6-5. In comparison to the Phase 

1 data rankings: 

• The newly included PIR motion sensors ranked highly for information gain in 

all zones. This highlights the value of motion sensing for effective occupancy 

detection. 

• The CO2 level ranked similarly in several zones, but is notably placed last for 

information gain in five of the zones tested in Phase 2: the meeting space, 

kitchen, upper floor single office and basement level offices. For the basement 

office LG01, this can be explained by patchy data from the 

CO2/temp/humidity sensor due to distance from the wireless signal receiver, 

which changed locations between Phase 1 and Phase 2. For the other zones, 

the CO2 sees a decreased ranking in the winter test period versus the summer: 

this was counter to expectations, given the tendency for occupants to open 

windows and affect CO2 concentration during the summer months. This may 

 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 8 Avg* 

Baseline 1.135 1.089 1.166 0.596 0.319 0.118 0.401 0.689 

1 Feature 0.964 0.397 0.957 0.453 0.252 0.099 0.273 0.485 

2 Features 0.929 0.432 0.888 0.421 0.446 0.099 0.305 0.503 

3 Features 0.962 0.439 0.908 0.420 0.344 0.099  0.494 

4 Features 0.961 0.532 0.905 0.419 0.318 0.100  0.503 

5 Features 0.963 0.462 0.879 0.445 0.332 0.101  0.495 

6 Features 0.989 0.694 0.936 0.430 0.501 0.102  0.562 

7 Features 0.921 1.492 1.005 0.447 0.343   0.657 

8 Features 1.000 1.011 0.936  0.332   0.588 

9 Features  0.707 1.002     0.554 

10 Features  1.309      0.640 

11 Features  2.128      0.757 
* Average calculated using the maximum no. features in zones with fewer than the stated number of 

features 
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indicate a negative interaction with the mechanical ventilation system, which 

was in operation during the winter month testing. 

• One pattern to note is that the rooms with a low CO2 ranking were occupied 

intermittently during the Phase 2 test period. This may indicate the time lag of 

increasing CO2 levels can be counterproductive to a quick detection of 

occupants when the duration of occupancy is low. 

• The window opening behaviour during this period continued to provide 

information gain in the meeting and kitchen spaces. In other zones such as the 

single offices A04 and A05, as was expected from the Phase 1 testing, the 

windows were not used as frequently during the heating period and so were 

not as indicative of occupancy.  

Table 6-5 - Ranking of Information Gained from Single Sensors for each Zone – Phase 2 
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Table 6-6 shows the performance of reduced feature sets relative to a baseline case 

using all sensors available for each zone. As with the Phase 1 data, features were 

chosen in order of information gain as shown in Table 6-5, estimated from the error 

rate when trained on each sensor input alone. It can be seen that a reduced sensor set 

gives a lower average error, as with Phase 1. However, the highest error rate is seen at 

4 features. This is due to the jump in error rate on office LG01, highlighted in the 
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table. When this office is omitted, the error rate is similar for the first 5 features in the 

other zones, with an increase in error after 5 features. The RMSE with 5 features 

shows a reduction of 14% from the full feature set: a smaller reduction seen than in 

Phase 1 testing. This suggests a possibility that the overfitting problem may not be as 

present with the Phase 2 data. 

Table 6-6 – Manual Feature Selection RMSE against Baseline ANN Structure – Phase 2 

 

'M
G

H
 A

0
1

' 

(m
eetin

g
 sp

a
ce

) 

'M
G

H
 A

0
2

' 

(m
u

lti o
ffice) 

'M
G

H
 A

0
3

' 

(k
itch

en
) 

'M
G

H
 A

0
4

' 

(sin
g

le o
ffice) 

'M
G

H
 A

0
5

' 

(sin
g

le o
ffice) 

'M
G

H
 B

0
1

' 

(sin
g

le o
ffice) 

'M
G

H
 B

0
2

' 

(m
u

lti o
ffice) 

'M
G

H
 L

G
0

1
' 

(m
u

lti o
ffice) 

'M
G

H
 L

G
0

3
'  

(d
isp

la
y

 sp
a

ce
) 

A
v

g
*
 

A
v

g
*

 w
/o

 L
G

0
1

 

Baseline 0.76 1.02 0.17 0.38 0.21 0.38 0.63 1.84 0.00 0.60 0.45 

1 Feature 0.49 0.85 0.16 0.39 0.17 0.28 0.70 0.49 0.00 0.39 0.38 

2 Features 0.49 0.85 0.16 0.61 0.18 0.28 0.63 0.60 0.00 0.42 0.40 

3 Features 0.49 0.85 0.16 0.70 0.18 0.28 0.63 1.85 0.00 0.57 0.41 

4 Features 0.49 0.86 0.16 0.49 0.18 0.28 0.63 2.20  0.59 0.39 

5 Features 0.49 0.85 0.18 0.49 0.18 0.30 0.61 1.54  0.52 0.39 

6 Features 0.49 1.27 0.17 0.44 0.22 0.32 0.60   0.56 0.44 

7 Features 0.50 1.11 0.18   0.32    0.55 0.42 

8 Features 0.59 0.97        0.54 0.41 

9 Features 0.54         0.53 0.41 

10 Features 0.71         0.55 0.43 

* Average calculated using the maximum no. features in zones with fewer than the stated number of 

features 

 

It should also be noted that the RMSE of zones included in Phase 1 and Phase 2 

shows a reduction of error with the inclusion of the PIR sensors in Phase 2, as shown 

in Table 6-7. Some change in the error rate can be attributed to changed space uses: in 

particular the zones B02, which changed office users between tests, and LG01, which 

was converted to a shared office space between tests and so saw a much higher 

occupancy during Phase 2. However, the reduced error rate on other zones suggests 

the value of including local PIR data to correctly detect occupancy rates.  

Table 6-7 – Average RMSE of full feature set – Phase 1 vs Phase 2 

 

'MGH 
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'MGH 

A01' 

'MGH 

A02' 

'MGH 

A05' 

'MGH 

A03' 

'MGH 

LG01' 

'MGH 

LG03' 
Avg 

RMSE Phase 1 1.135 1.089 1.166 0.596 0.319 0.118 0.401 0.689 

RMSE Phase 2 0.629 0.761 1.022 0.215 0.171 1.845 0.000 0.663 
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6.5.2 Sensor Combinations 

As mentioned in the previous section, it is possible that some sensors may be of more 

value when combined with another sensor type than they are alone. Where two 

measured variables interact, such as the opening of a window affecting the CO2 level, 

it is logical that a network trained on both of these variables together should be able to 

gain more information. For the single-occupant office tested in the previous section, 

three logical sensor combinations were tested: 

• CO2 level and window opening, 

• Relative humidity and window opening, 

• Absolute humidity, calculated from RH and temperature. 

The relative humidity (Figure 6-12 g) was surprisingly low in terms of information 

value. It was investigated whether absolute humidity (Figure 6-12 h) would provide 

more information after accounting for temperature changes. While this did negate the 

peak in estimated occupancy seen at the weekend in the graph and improve the 

average error, it can be seen that there is still little to no sign of changes in occupancy 

during weekdays, suggesting that the absolute humidity is still not a valuable 

occupancy measure. 

For the other sensor combinations summarised in Table 6-8, the combination of 

sensors appears to improve the error rate more significantly. In particular it should be 

noted that the combination of CO2 level and window opening gave a lower error rate 

than either sensor alone for the Phase 1 testing.  

Table 6-8 - Average Error in No People Estimated by ANN Trained on Single/Combined Sensors, 

Single Occupancy Office, Phase 1 Data 

CO2 & 

Window 
Window 

RH% & 

Window 

Ground 

Floor 

PIR 

CO2 Temp 
Abs 

Humidity 
RH% 

0.427 0.454 0.489 0.542 0.546 0.572 0.610 0.823 

While these manually constructed sensor combinations in general showed a positive 

effect in the Phase 1 testing during warm weather conditions, the same windows were 

found not to be opened at all during the Phase 2 testing in cold weather conditions. 

This highlights some of the issues around models that rely on short periods of training 

data: a model trained during the summer may rely heavily on window-related 

behaviours that are not present during winter, meaning that the model performance 
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would be significantly reduced at different times of year, or when users with different 

habits move into the same space. To avoid these problems, the model would need to 

be trained on deliberately diverse training data, or periodically updated. Due to the 

change in sensor layout between Phases 1 and 2 of this study, it was not possible to 

train a model on both summer and winter data at once in this work.     

6.5.3 Principal Component Analysis (PCA) 

Aside from manually selecting a reduced set of inputs to the ANN, the set of features 

can also be reduced using Principal Component Analysis (PCA). This technique can 

be used where the set of input variables have some correlation to each other: the data 

is mapped to a new set of variables based along the axis of greatest variation in the 

original data [216]. In this way, the technique aims to represent the greatest variation 

from a dataset within a reduced number of variables, allowing the total number of 

variables to be reduced. 

In Matlab, a function is available to calculate the principal components of a dataset 

using singular value decomposition [217]. The data must first be normalised, to 

ensure that the numerical value of data (for example, CO2 data ranged between 500-

1000ppm and Wi-Fi presence ranged between 0-1) does not skew the results towards 

the variables with the greatest numerical variance. Normalising ensured that all inputs 

were rescaled to range from -1 to 1. 

6.5.3.1 Phase 1 Data 

Table 6-9 shows an example of the calculated principal components for the single-

occupant office zone. By default, the components are ordered from most to least 

variation, meaning that, in theory, the most useful information should be encoded in 

the first few components. The first principal component features several sensor types 

with near-equal weighting, suggesting that the CO2, temperature, window use and 

motion sensors tend to vary together, with a positive correlation. The second PC 

features the humidity and temperature, while the third features the window most 

strongly. The final PC, which describes the least variance, features only the external 

door, which did not see any use during the tested period, and so reported a constant 

value.  
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Table 6-9 - Principal Component Coefficients for Single-Occupant Office 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 

 Zone 4 CO2 Level 0.51 -0.06 -0.34 -0.48 0.19 0.60 0.00 

Zone 4 Humidity -0.12 0.64 -0.50 0.46 0.30 0.16 0.00 

Zone 4 Ext Door 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

Zone 4 Temp 0.39 0.56 -0.10 -0.33 -0.46 -0.45 0.00 

Zone 4 Window 0.29 0.38 0.76 0.21 0.02 0.38 0.00 

GF PIR 0.55 -0.16 0.05 0.19 0.61 -0.50 0.00 

UF PIR 0.43 -0.32 -0.23 0.60 -0.53 0.13 0.00 

 

One of the disadvantages of using PCA to reduce the number of model inputs is that 

PCA cannot identify where features vary due to occupancy independent factors. For 

example, the internal temperature can see a large variation depending on the weather 

and time of day, but may not be greatly affected by occupancy rates. As PCA seeks 

only to maximise the variance in each component, a varied temperature is likely to be 

given more importance than necessary for occupancy detection. This drawback may 

be the cause of the unstable effect on error rate on networks trained on different 

numbers of PCs, as seen in Table 6-10. It appears from this table that the number of 

PCs used as ANN inputs does not have a simple correlation with the average RMSE. 

However, it can be seen that the RMSE is reduced for some numbers of PCA 

components relative to the baseline ANN structure. 4-5 principal components appears 

to be the optimum on average giving a 25% reduction on the baseline error, although 

the unstable variation suggests this number may be coincidental. 
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Table 6-10 - PCA RMSE in Comparison to the Baseline ANN – Phase 1 

 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 8 Avg* 

Baseline 1.135 1.089 1.166 0.596 0.319 0.118 0.401 0.689 

1 PC 1.039 1.299 0.990 0.470 0.281 0.098 0.268 0.635 

2 PCs 0.881 0.720 0.928 0.456 0.301 0.099 0.304 0.527 

3 PCs 0.883 1.094 0.859 0.434 0.317 0.099  0.570 

4 PCs 0.891 0.725 0.875 0.439 0.305 0.100  0.520 

5 PCs 0.971 0.677 0.801 0.437 0.308 0.099  0.514 

6 PCs 0.950 1.031 0.986 0.417 0.279 0.100  0.581 

7 PCs 0.991 1.186 1.051 0.415 0.288   0.619 

8 PCs 0.952 1.819 0.927  0.293   0.687 

9 PCs  0.666 0.961     0.527 

10 PCs  1.134      0.594 

11 PCs  0.805      0.547 

* Average calculated using the maximum no. PCs in zones with fewer than the stated number of 

features 

 

6.5.3.2 Phase 2 Data 

Table 6-11 shows the average RMSE of networks trained with different numbers of 

PCs for the Phase 2 data. It can be seen that the tendency for fewer PCs to give a 

lower rate of error is somewhat reversed in the Phase 2 test, with lower error rates as 

more features were included. This is somewhat counter to the expectation that 

reducing the number of inputs would decrease error rates from overfitting. On 

inspection of the PCs, it was found that the less useful environmental measures that 

tend to change together such as the humidity and temperature had been ‘bundled’ into 

the first few PCs, with the more valuable motion sensor data featured more highly in 

the later PCs. The percentage reduction in error that could be achieved with a reduced 

number of ANN inputs was similar to the Phase 1 data, with a maximum reduction of 

27% at 5 features. 
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Table 6-11 - PCA RMSE in Comparison to the Baseline ANN – Phase 2 
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Baseline 0.761 1.022 0.171 0.381 0.215 0.380 0.629 1.845 0.000 0.601 

1 PC 0.602 1.075 0.161 0.515 0.455 0.305 0.974 2.268 0.000 0.706 

2 PCs 0.675 0.918 0.164 0.383 0.335 0.295 0.574 1.943 0.000 0.587 

3 PCs 0.582 0.867 0.164 0.428 0.198 0.309 0.584 1.089 0.000 0.469 

4 PCs 0.495 1.219 0.163 0.396 0.188 0.373 0.568 1.303  0.523 

5 PCs 0.462 0.961 0.170 0.350 0.193 0.316 0.585 0.918  0.440 

6 PCs 0.586 0.819 0.163 0.356 0.199 0.362 0.557   0.440 

7 PCs 0.841 0.836 0.162   0.346    0.468 

8 PCs 0.634 0.848        0.447 

9 PCs 0.626         0.446 

10 PCs 0.617         0.445 

* Average calculated using the maximum no. PCs in zones with fewer than the stated number of 

features 

 

6.5.4 Signal smoothing and pre-processing 

One of the limitations identified with using only the latest raw sensor data is the lack 

of any trend or temporal value to the data inputs. As each 5-minute step of the 

detection model takes only a single data value per sensor, it is also highly susceptible 

to noise on the sensor inputs. 

Two potential solutions to this issue were identified: smoothing the data from noisy 

sensors using a moving average as input rather than the raw data values, or pre-

processing the data to identify trends in the data as they occur. Processing trends in 

the sensor data was identified as a potentially valuable source of extra information, 

especially for air quality measures such as CO2 concentration, for which the absolute 

value is less indicative of occupancy than whether the concentration is rising or 

falling. For the following tests, CO2 concentration data was used to test the 

effectiveness of each strategy. 

Figure 6-13 shows a sample of raw CO2 data against two datasets smoothed using 

moving averages. While it can be seen that the noise on the data is significantly 

reduced while the CO2 level is steady during the night, the moving average introduces 
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a lag on peaks/troughs. In the example highlighted in the figure, the transition from 

falling to rising is delayed by 30 min for the simple moving average and 15 min for 

the exponential moving average. In a control system where changes in occupancy 

need to be detected as quickly as possible, introducing further time lag to an already 

slow-response data source may prove to be more of a hindrance than a help. 

Figure 6-14 and Figure 6-15 show the pre-processed CO2 variable against a sample of 

raw CO2 data. In this case, the variable used was the gradient of a linear equation 

fitted to the previous hour’s data points. In practice, this could be calculated in real 

time using the Matlab ‘polyfit’ function, and should have a faster response to sudden 

changes in CO2 concentration than the moving average. The gradient provides a 

clearer distinction between when the CO2 is rising or falling than the raw data alone. 

However, the first figure shows that the gradient still includes some amount of noise, 

with nonzero gradients present throughout the unoccupied night-time periods.  A 

second, filtered version of the gradient variable was introduced, which set all 

gradients below a threshold value to 0.  

 

Figure 6-13 - Comparison of Moving Average Smoothed CO2 Data 
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Figure 6-14 – Comparison of CO2 Trend Variable and Raw CO2 Data 

 

Figure 6-15 - Comparison of Filtered CO2 Trend Variable and Raw CO2 Data 

All of the above processed variables were tested for usefulness by training a room-

level ANN, using Levenberg-Marquardt training, for each monitored zone of the 

building, omitting zones without CO2 data and without occupancy during the test 

period (Zones 7 and 8). Each zone was given a designated list of relevant sensors, 

plus some combination of the processed variables relevant to the zone. A summary of 

the average error over 5 randomised-initialisation ANN trainings of various 

combinations of the processed data is shown in Table 6-12 and Figure 6-16. Using the 



153 

 

RMSE from a network trained on the unprocessed data only as a baseline, it can be 

seen that both moving average variables increased the RMSE, likely due to the 

increased lag highlighted in Figure 6-13. The average RMSE is not significantly 

affected when replacing CO2 with linear gradient trend data. The RMSE is reduced 

when the network is trained with a combination of raw CO2 and trend data. It is 

therefore concluded that, on average, supplying a pre-processed linear gradient with 

the raw CO2 data is the most effective combination. It should be noted that the 

decrease in RMSE is not consistent across all zones: with no significant decrease to 

RMSE in the multi-occupant offices, or the single-occupant office. The greatest 

decrease in error was seen in the intermittently used spaces, in particular the meeting 

room. This may suggest that the CO2 trend data is most useful for detecting 

occupancy events that do not last long enough to reliably push the CO2 level above a 

threshold value.  

Table 6-12 - Summary of Average RMSE over 5 trainings of ANN with pre-processed CO2 data – 

Phase 1 Data 

 
Zone 1 

(multi 

office) 

Zone 2 

(meeting 

space) 

Zone 3 

(multi 

office) 

Zone 4 

(single 

office) 

Zone 5 

(kitchen) 

Zone 6 

(display 

space) 

Average 

Baseline CO2 0.98 1.77 1.26 0.43 0.58 0.12 0.85 

Trend, no filter 1.19 1.54 1.06 0.40 0.70 0.15 0.84 

Trend, filtered 1.01 1.59 1.13 0.43 0.89 0.12 0.86 

CO2 and trend 0.99 1.23 1.11 0.45 0.52 0.14 0.74 

CO2 and trend, 

filtered 
0.95 1.08 1.30 0.41 0.51 0.15 0.73 

Simple moving 

avg CO2 
1.06 1.46 1.45 0.45 0.60 0.11 0.85 

Exp moving avg 

CO2 
1.13 1.60 1.56 0.41 0.60 0.14 0.91 

 

When compared in the same manner as the manual feature selection in the previous 

sections, the information gain from the CO2 level and trend values can be assessed. 

Table 6-13 shows the ranking of these sensors for each zone tested in the Phase 1 

period, where the trend data was ranked as more useful than the static CO2 level in 

some spaces, in particular the intermittently occupied meeting space. This highlights 

the usefulness of observing whether the CO2 level is rising or falling in zones that are 

not occupied for long enough to build up CO2 levels beyond a predefined threshold. 

However, in summer months it can be seen that the CO2 trend is not always reliable, a 

likely cause for the low ranking of trend in the kitchen area, where windows and 
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doors were opened during most occupied times, reducing the CO2 level increase. 

During the heating season test in Phase 2 (Table 6-14) it can be seen that the CO2 

trend more consistently outranks the static CO2 level. Once again this difference is 

particularly strong in the meeting space.  

Table 6-13 - Compared Input Ranking of Raw CO2 Data vs CO2 Trend Gradient - Phase 1 Data 

 

Zone 1 

(multi 

office) 

Zone 2 

(meeting 

space) 

Zone 3 

(multi 

office) 

Zone 4 

(single 

office) 

Zone 5 

(kitchen) 

Zone 6 

(display 

space) 

CO2 Ranking 1 6 3 4 1 4 

CO2 Trend 

Ranking 
4 1 6 2 6 2 

 

Table 6-14 - Compared Input Ranking of Raw CO2 Data vs CO2 Trend Gradient - Phase 2 Data 
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Figure 6-16- Summary of Average RMSE over 5 trainings of ANN with pre-processed CO2 data 

6.5.5 Wi-Fi Detection Data 

In addition to the environmental sensors in the test building, data on the number of 

Wi-Fi-enabled devices present in the building was also collected during the testing 

periods. The method of collection and pre-processing of the Wi-Fi detection data is 
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discussed in detail in section 5.4.2. Data was received from the sensor as a series of 

discrete detection events, each with an associated device ID and signal strength. There 

are a variety of ways that this data can be included as an input to the ANN model. A 

range of these were tested in order to find the most effective way to utilise the Wi-Fi 

data: 

• All data as a 0/1 presence for each discovered device: this is not feasible in 

the long term. For one, the inputs for the ANN model need to be constant, so 

any new devices would have no way to be included. This configuration was 

therefore not tested. 

• Total number of devices seen: a sum of the number of devices seen at any 

given time. 

• Total number of devices seen at each band of signal strength: summed 

number of devices, separated by signal strength. 

• Known individuals detected: from a predefined list of known building 

occupant device IDs, a 0/1 indicator for each occupant at each time step. 

• Known individuals detected, signal strength: from a predefined list of known 

building occupant device IDs, a value indicator for each occupant at each time 

step showing the average signal strength received over the last 5 minutes. 

• Combinations of the total and individual data described above. 

As with the testing of CO2 trend data, each of the Wi-Fi data types was tested against 

a baseline model for each zone, trained on the full set of environmental sensors 

associated with this zone. For each data type, an ANN model was trained using the 

same structure as the baseline. Table 6-15 shows the average error over 5 randomised-

initialisation trainings for each set of data inputs during the Phase 1 test week. It can 

be seen that the average error rate is decreased with the inclusion of the total number 

of devices seen, while the error is increased when only the presence of known 

individuals is included. As each individual is represented to the network as a separate 

input feature, this likely indicates that the individual data from this period is not 

providing enough worth to counter the increased tendency for the network to overfit 

when supplied with more features.  



156 

 

Table 6-15 - Average RMSE per Zone for ANNs trained with different Wi-Fi Data Inputs – 

Phase 1 Data 
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Zone 1 

(multi office) 
1.01 0.93 0.92 1.02 1.12 1.03 0.98 

Zone 2 

(meeting space) 
2.31 1.02 1.38 1.31 1.21 1.10 1.12 

Zone 3  

(multi office) 
0.96 0.88 0.92 1.50 1.38 1.37 1.43 

Zone 4  

(single office) 
0.42 0.40 0.43 0.46 0.42 0.44 0.45 

Zone 5  

(kitchen) 
0.32 0.32 0.31 0.55 0.56 0.64 0.67 

Zone 6  

(display space) 
0.10 0.14 0.10 0.14 0.11 0.15 0.19 

Zone 7  

(display space) 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Zone 8 

(corridor) 
0.29 0.31 0.29 0.62 0.53 0.47 0.39 

Mean 0.68 0.50 0.54 0.70 0.67 0.65 0.65 

 

This process was repeated for the data from the Phase 2 test week, with the results 

shown in Table 6-16. Once again, it can be seen that the inclusion of the total number 

of devices seen reduces the average error rate across all zones in the building. 

However, in the Phase 2 testing, the lowest error rates were achieved when the data 

for known individuals was included: a definite contrast to the Phase 1 tests. The 

largest error reduction from the baseline was seen in the multi-occupant office LG01 

due to the poor environmental sensor coverage in this area, while the other zones 

show an error increase more consistent with the Phase 1 findings. This shows that the 

set of sensors that is most useful can be highly dependent on the specific circumstance 

of a zone’s use. 
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Table 6-16 - Average RMSE per Zone for ANNs trained with different Wi-Fi Data Inputs – 

Average Results from 100 Trainings with Phase 2 Data 
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MGH A01 

(meeting space) 
0.780 0.765 0.771 0.554 0.577 0.584 0.624 

'MGH A02' 

(multi office) 
1.035 1.090 0.991 0.943 0.937 0.988 1.000 

'MGH A03' 

(kitchen) 
0.185 0.186 0.220 0.211 0.222 0.219 0.221 

'MGH A04' 

(single office) 
0.410 0.416 0.467 0.487 0.480 0.506 0.515 

'MGH A05' 

(single office) 
0.218 0.213 0.240 0.261 0.242 0.262 0.292 

'MGH B01' 

(single office) 
0.361 0.330 0.353 0.395 0.377 0.385 0.382 

'MGH B02' 

(multi office) 
0.608 0.569 0.631 0.670 0.681 0.654 0.690 

'MGH LG01' 

(multi office) 
1.936 1.679 1.181 0.675 0.963 0.753 0.831 

MGH LG03' 

(display space) 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Other 0.296 0.300 0.305 0.304 0.306 0.304 0.308 

Mean 0.692 0.656 0.607 0.524 0.560 0.544 0.569 

 

The information gain of the Wi-Fi data relative to the environmental sensors was also 

tested using the same method as the feature selection: training networks with each of 

the sensor types as a single input and comparing error rates. For each monitored zone, 

the top ten sensors in order of information gain are presented in Table 6-17 and Table 

6-18 for Phase 1 and Phase 2 respectively. Phase 1 shows that the total number of Wi-

Fi devices detected over the whole house is a consistently information-rich feature for 

each of the zones. This input was valuable to the multi-occupant spaces in particular, 

such as the Research Office, PhD Office and Circulation Spaces in the building. As 

this feature is a global measure of the occupancy across the whole building, this 

association is logical. However, in the Phase 2 testing, the total number of devices 

was less highly ranked: this may have been due to the local PIR sensors fulfilling a 

similar role in providing an indicator for whether the space was occupied or not. 

It should be noted that the Wi-Fi-detected presence of personal devices is a high-

ranking feature for each of the zones. For some zones, the individual selected has a 
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logical association with the zone, as is the case with the single-occupant office, for 

which the highest rated feature is the presence of the office owner’s mobile device. In 

many cases, however, there does not appear to be a logical connection between the 

individual and the zone – these cases are highlighted in the tables. These cases are 

likely due to coincidental overlap of the individual’s presence and occupancy in a 

zone – a situation that could be better avoided with a larger training dataset. Given a 

limited set of training data, these features appear to be too prone to coincidental mis-

assignment to provide benefit.   

Table 6-17 – Wi-Fi Inclusive Ranking of Information Gained from Single Sensors for each Zone 

– Phase 1 

 
Zone 1 

(meeting 

space) 

Zone 2 

(meeting 

space) 

Zone 3 

(multi 

office) 

Zone 4 

(single 

office) 

Zone 5 

(kitchen) 

Zone 6 

(display 

space) 

Zone 7 

(display 

space) 

Zone 8 

(Corridors) 

1 
Total Wifi 
Devices 

Sunspace 
Window 5 

Total Wifi 
Devices 

Zone 4 
Occupant 

Other 
Occupant 

Other 
Occupant 

CO2 Level 
Total Wifi 
Devices 

2 CO2 Level 
Zone 1 

Occupant 
GF PIR Window 1 

Total Wifi 

Devices 

Zone 3 

Occupant 
Humidity 

Zone 1 

Occupant 

3 
Other 

Occupant 
Temperature UF PIR 

Total Wifi 

Devices 
CO2 Level Temperature Temperature GF PIR 

4 GF PIR 
Sunspace 
Window 2 

CO2 Level GF PIR 
Zone 3 

Occupant 
Zone 3 

Occupant 
GF PIR 

Zone 3 
Occupant 

5 
Zone 1 

Occupant 

Zone 3 

Occupant 

Other 

Occupant 
CO2 Level 

Zone 3 

Occupant 

Zone 4 

Occupant 
UF PIR 

Zone 3 

Occupant 

6 UF PIR 
Zone 1 

Occupant 

Zone 3 

Occupant 
Temperature 

Kitchen 

Window 1 

Zone 1 

Occupant 

Total Wifi 

Devices 

Zone 3 

Occupant 

7 
Zone 3 

Occupant 
Sunspace 
Window 3 

Zone 1 
Occupant 

Other 
Occupant 

Kitchen 
Window 2 

GF PIR 
Zone 3 

Occupant 
Zone 1 

Occupant 

8 
Zone 4 

Occupant 
Humidity 

Zone 3 

Occupant 

Zone 3 

Occupant 
GF PIR 

Zone 3 

Occupant 

Other 

Occupant 

Zone 1 

Occupant 

9 
Zone 3 

Occupant 
CO2 Level 

Zone 4 

Occupant 
UF PIR 

Other 

Occupant 
Basement Door 

Zone 4 

Occupant 

Zone 4 

Occupant 

10 Humidity 
Zone 3 

Occupant 
PhD Window 4 

Zone 1 
Occupant 

Zone 4 
Occupant 

Zone 1 
Occupant 

Zone 3 
Occupant 

Other 
Occupant 
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Table 6-18 – Wi-Fi Inclusive Ranking of Information Gained from Single Sensors for each Zone 

– Phase 2 

 

MGH 

A01 

(meeting 

space) 

'MGH 

A02' 

(multi 

office) 

'MGH 

A03' 

(kitchen) 

'MGH 

A04' 

(single 

office) 

'MGH 

A05' 

(single 

office) 

'MGH 

B01' 

(single 

office) 

'MGH 

B02' 

(multi 

office) 

'MGH 

LG01' 

(multi 

office) 

MGH 

LG03' 

(display 

space) 

Other 

1 PIR 
A02 

Occupant 

B01 

Occupant 
PIR PIR 

A02 

Occupant 
PIR 

A02 

Occupant 

Temperatur

e 

B02 

Occupant 

2 
A02 

Occupant 
CO2 

A02 

Occupant 

A02 

Occupant 

A02 

Occupant 
PIR Wifi Total 

B01 

Occupant 
Humidity 

A04 

Occupant 

3 
B02 

Occupant 

B01 

Occupant 

B02 

Occupant 

B01 

Occupant 

A04 

Occupant 

A02 

Occupant 
CO2 

A02 

Occupant 
CO2 

LG01 

Occupant 

4 
B01 

Occupant 
A04 

Occupant 
A04 

Occupant 
LG01 

Occupant 
B02 

Occupant 
A04 

Occupant 
B02 

Occupant 
LG01 

Occupant 
Wifi Total 

A02 
Occupant 

5 
A04 

Occupant 

A02 

Occupant 

A02 

Occupant 

B02 

Occupant 

A05 

Occupant 

A02 

Occupant 

A05 

Occupant 

A02 

Occupant 

A02 

Occupant 

LG01 

Occupant 

6 
A05 

Occupant 

B02 

Occupant 
PIR 

A02 

Occupant 
CO2 

A02 

Occupant 

LG01 

Occupant 
CO2 

LG01 

Occupant 

B01 

Occupant 

7 
B02 

Occupant 
LG01 

Occupant 
A05 

Occupant 
A02 

Occupant 
Wifi Total Ext Door 1 

A02 
Occupant 

B02 
Occupant 

A02 
Occupant 

LG01 
Occupant 

8 
LG01 

Occupant 

A02 

Occupant 

B02 

Occupant 

Temperatur

e 

A02 

Occupant 
Ext Door 2 

B02 

Occupant 

A02 

Occupant 

B02 

Occupant 

A02 

Occupant 

9 
A02 

Occupant 
PIR 

LG01 

Occupant 
Window 1 

B02 

Occupant 

LG01 

Occupant 

B01 

Occupant 

LG01 

Occupant 

LG01 

Occupant 

A02 

Occupant 

10 Window 1 
A02 

Occupant 
Window 1 

A04 
Occupant 

B01 
Occupant 

LG01 
Occupant 

A04 
Occupant 

LG01 
Occupant 

LG01 
Occupant 

A02 
Occupant 

 

In general, the above tests suggest that the total number of Wi-Fi enabled devices 

detected in a building can provide information useful to estimating local occupancy 

rates. Providing data on the signal strength of these detected devices showed mixed 

results on whether it provided more benefit than a global measure of devices detected. 

The presence of individuals can provide benefit depending on the specific 

circumstances of a zone’s space use and occupants, but is also more likely to 

exacerbate overfitting issues with models trained on a limited training dataset. For the 

purpose of this study, where only short training datasets were available, it was 

decided to omit individual occupants from the final model. However, in cases where a 

longer period can be used for training, the problems with false association of 

individual devices should be reduced and so it would be recommended to include the 

binary presence of known individuals.   
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6.5.6 Bluetooth Beacon Data 

During the Phase 2 testing, data was also collected from known occupants using 

personal mobile devices to detect local Bluetooth Beacons. The setup and analysis of 

this data collection method is presented in Section 5.4. As with the Wi-Fi data, there 

are multiple ways that this Bluetooth data could be represented to a NN model: 

• Total number of occupants detected within the whole building: as the binary 

presence of occupants was shown to be more reliable than the exact location in 

initial testing (Section 5.4.5). 

• Binary presence over whole building for each individual occupant: as above, 

but disaggregated to the level of each occupant. 

• Total number of occupants logged in to each room over time, supplied as an 

integer value. It was expected that this would be of high value if the Bluetooth 

system was more reliable, but may not provide the best value given the known 

issues with exact location. 

• Binary presence of each known occupant is supplied as an input to their ‘main 

zone’: this requires a manual assignment of a main zone for the occupants, 

based on the location of their working office desk. 

The averaged results of 100 randomised initialisation trainings of each of these 

configurations are shown in Table 6-19. In these trials, the average error across the 

building was slightly decreased when the Bluetooth data was included in most 

formats, although the configuration with the greatest decrease was when occupants’ 

data were manually assigned to their most frequently occupied zone. This is not ideal, 

as it requires further manual input and makes the system less robust to unusual 

occupant behaviours, when occupants spend time outside of their typical office spaces 

for meetings, breaks etc. This configuration would also not be appropriate in settings 

where occupants spend a more equal amount of time in each zone, such as in a 

domestic application. The house and room total values also showed a reduction on 

average error rate, although it should be noted that the even the greatest error 

reduction was only 5%. This is significantly less impact than the Wi-Fi data, likely 

due to the technical limitations with collecting any Bluetooth data at all from several 

of the participants.  



161 

 

Table 6-19 - Average RMSE per Zone for ANNs trained with different Bluetooth Beacon Data 

Inputs – Average Results from 100 Trainings with Phase 2 Data 
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MGH A01 
(meeting space) 

0.79 0.86 0.92 0.80 0.80 0.90 

'MGH A02'  
(multi office) 

0.84 0.80 0.96 0.80 0.62 0.63 

'MGH A03' 
(kitchen) 

0.18 0.19 0.30 0.18 0.18 0.26 

'MGH A04' 
(single office) 

0.44 0.44 0.79 0.42 0.41 0.41 

'MGH A05' 
(single office) 

0.20 0.20 0.59 0.20 0.73 0.70 

'MGH B01' 
(single office) 

0.38 0.34 0.57 0.35 0.41 0.39 

'MGH B02'  
(multi office) 

0.51 0.47 0.63 0.52 0.45 0.45 

'MGH LG01' 
(multi office) 

1.94 1.73 1.04 1.84 1.41 1.47 

MGH LG03' 
(display space) 

0.00 0.00 0.00 0.00 0.00 0.00 

Other 0.30 0.30 0.38 0.30 0.30 0.39 

Mean 0.66 0.63 0.73 0.64 0.63 0.65 

 

One of the goals of running the Bluetooth Beacon data collection was to assess 

whether a system such as this could be run in place of a more complex multi-sensor 

model. The findings suggest that this particular setup is not appropriate to run as a 

standalone occupancy detection system due to the issues found with signal strength 

attenuation by bodies and building materials, and due to the same factors may not be a 

significant contribution to a system attempting to aggregate the number of occupants 

within a larger space. This data, however, may have value as a contribution to a 

system attempting to track the location of individual occupants alongside 

supplementary data.  

6.6 Alternative Model Structures 

6.6.1 Two-stage Total-then-Distribution Method 

In the analysis of the manually counted occupancy data from test phase 1, it was 

found that the Wi-Fi data from this period provided a good approximation of the total 

number of people present in the house at a given time, including visitors unknown to 
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the house, as shown in Figure 6-17. This figure shows the number of occupants 

detected at signal strength of -60dbm or stronger, with static devices omitted as 

described in section 5.4.2. 

 

Figure 6-17 - Comparison of Number of People and Number of Wi-Fi Detections, Phase 1 Data 

Given the likelihood that some occupants were not carrying a Wi-Fi enabled device 

and the inconsistent detection of some tested devices, it is unlikely that a model based 

purely on the Wi-Fi data can attain a perfect estimation of occupancy. However, with 

the close correlation shown in Figure 6-17, it was proposed that an alternative model 

structure could give a level of accuracy similar to the all-sensors model, but with a 

reduced number of sensors needed and amount of computational time needed to train 

and run an estimation of the number of people per zone. 

Figure 6-18 shows the proposed alternative structure: two networks run 

simultaneously to estimate the total number of people in the building using the Wi-Fi 

data and the distribution of people in the building based on the local CO2 

concentrations. The output of the total occupancy model is constrained to positive 

outputs only, while the output of the distribution is constrained so that all outputs total 

to 1. The estimated number of people can then be calculated by multiplying the 

distribution outputs by the total occupancy. 
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Figure 6-18 – Two-stage Alternative Model Structure to Estimate Occupancy from Wi-Fi and 

CO2 levels 

The RMSE for this approach against alternative ANN structures is summarised in 

Table 6-20. For the phase 1 test week, this approach gave an average error that was 

comparable to the other ANN structures tested, although higher than the reduced-

feature set model. It should be noted that Wi-Fi-Distribution method was effective at 

eliminating false negatives when the building was not occupied, thanks to the heavy 

reliance on the presence-based Wi-Fi data. It is also worth noting that this method 

uses a considerably smaller set of sensors and training time, to produce comparable 

results. 

When applied to the Phase 2 data, Table 6-21, this method saw a similar rate of 

success. The close correlation between the number of detected devices and the 

number of occupants that was observed in Phase 1 was not seen so consistently in 

Phase 2, suggesting that the closeness of the correlation may have had an element of 

coincidence. While in most zones this method produced an increased error relative to 

the manual feature selection model, it should be noted that the intermittently occupied 

meeting space A01 saw a lower average error with this simpler model. This suggests 

that a Wi-Fi-based approach may have value in spaces that cannot be represented well 

by the physical sensors: those that are occupied intermittently, awkwardly shaped 

with PIR blind spots or that feature sudden large changes in population. For the 

building in general, this model type was not experimented with further, as the feature 

select ANN performed better.  

 

Wi-Fi Total

Inputs                                     Hidden layer(s)      Outputs

Estimated total 

people

Estimated 

distribution of 

people over zones

…

Local CO2

Levels

Estimated no 

people per zone
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Table 6-20 - Average RMSE of the Wi-Fi Total-Distribution ANN Structure against Alternatives 

– Phase 1 Data 

 

Whole-

house 

single 

model 

Whole-

House, 

with Wi-

Fi 

Individual 

room 

models, full 

set 

PCA, 

4(/max) 

features + 

Wi-Fi 

Feature 

select- 5 

features 

Total-then-

distribution, 

Wi-Fi and 

CO2 

Research 

office 
1.02 1.14 1.12 0.96 0.92 1.39 

Sunspace 1.97 1.32 1.17 1.69 0.43 0.80 

PhD office 1.31 1.44 1.26 1.23 0.76 1.30 

Single-occ 

office 
0.50 0.49 0.45 0.41 0.37 0.76 

Kitchen 0.66 0.59 0.47 0.56 0.29 0.34 

Basement 

outer 
0.27 0.33 0.15 0.11 0.10 0.15 

Basement 

inner 
0.00 0.00 0.00 0.00 0.00 0.07 

Other 0.43 0.50 0.30 0.30 0.25 0.45 

Mean 0.77 0.73 0.61 0.66 0.39 0.66 

 

Table 6-21 - Average RMSE of the Wi-Fi Total-Distribution ANN Structure against Alternatives 

– Phase 2 Data 

 

Whole-

house 

single 

model 

Whole-

House, 

with Wi-Fi 

Individual 

room models, 

full set 

PCA, 

5(/max) 

features + 

Wi-Fi 

Feature 

select- 4 

features 

Total-then-

distribution, Wi-

Fi and CO2 

'MGH A01' 1.17 1.40 0.60 0.73 0.88 0.68 

'MGH A02' 1.53 2.05 1.01 0.85 1.00 1.32 

'MGH A03' 0.46 0.32 0.24 0.16 0.18 0.16 

'MGH A04' 1.12 0.95 0.56 0.50 0.46 0.49 

'MGH A05' 0.46 0.45 0.21 0.30 0.18 0.40 

'MGH B01' 0.83 0.77 0.41 0.33 0.31 0.33 

'MGH B02' 0.77 1.06 0.77 0.56 0.64 0.80 

'MGH LG01' 0.72 0.74 1.22 0.66 0.43 0.50 

'MGH LG03' 0.00 0.00 0.00 0.00 0.00 0.07 

Other 0.48 0.45 0.32 0.31 0.30 0.31 

Mean 0.88 0.97 0.63 0.51 0.51 0.59 
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6.7 Interchangeability of Trained Relationships 

One of the factors of the trained model that has been identified in the above sections is 

how application-specific the optimum solutions of a passive occupancy detection 

model can be. This can limit the easy deployment of wider-scale systems for 

occupancy detection as it suggests the need for labelled training data from all zones to 

be monitored. It was investigated whether the need for training data could be reduced 

by applying a model trained in one zone to the sensor data from another zone. This 

was investigated by grouping the zones tested into similar types, which could feasibly 

be interchanged.  

Table 6-22 shows a summary of the zones tested in the second phase of data 

collection in the Mark Group House. Some zones showed very similar sets of 

effective sensors, while others of the same type required highly different sensor 

combinations to most effectively gauge their presence. As a general trend, PIR data 

and CO2 trend were valuable in most zones. The absolute CO2 level was found to be 

more valuable in multi-occupant spaces, less so in single-occupant spaces.  

When compared with the observed occupancy patterns and physical characteristics of 

the zones, some of the differences in effective sensors can be explained. The single-

occupant offices A04 and A05, with similar volumes and usage patterns weighted the 

local CO2 trend heavily, while the larger-volume single-occupant office B01 that was 

occupied more sparsely did not. This could be explained by the shorter average 

presence duration and the larger room volume, which would mean that the local CO2 

level did not have the time to accumulate a noticeable increasing trend in CO2 before 

the occupant had left once again. A similar effect can be seen in the kitchen meeting 

space A03, which was occupied for an average of 10 minutes at a time and so did not 

receive a large gain of information from the local CO2 level.  
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Table 6-22 – Phase 2 Test Week Occupancy Characteristics grouped by Space Type 

 Zone 
Max 

Occ. 

Zone Volume 

(approx.) 

Mean 

Duration 
Most Effective Sensors 

No. 

Effective 

Sensors 

S
in

g
le

-

O
cc

u
p

a
n

t 

O
ff

ic
e 

A04 5 27 m3 94 min PIR, CO2 Trend 2 

A05 1 27 m3 106 min PIR, CO2 Trend 2 

B01 5 68 m3 46 min PIR, Ext Door, Windows 4 

M
u

lt
i-

O
cc

u
p

a
n

t 

O
ff

ic
e 

A02 5 63 m3 217 min 
CO2 Trend & Level, PIR, 

Windows 
5 

B02 3 65 m3 170 min 
PIR, CO2 Level & Trend, 

Windows, RH, Temp 
8 

LG01 3 55 m3 176 min Ext Door, Wi-Fi Total, PIR 2 

M
ee

ti
n

g
/ 

C
o

m
m

u
n

a
l 

S
p

a
ce

s 

A01 7 128 m3 45 min PIR, CO2 Trend, Windows 9 

A03 2 34 m3 10 min PIR, Windows, Ext Door 4 

Other 2 n/a 27 min Wi-Fi total 1 

 

Given the dependency on physical properties and behavioural usage patterns, it was 

proposed that spaces with similar values for both of these may be possible to 

interchange without a decrease in the model performance. The two similar single-

occupant office spaces were identified as a possible target for a single-training model 

that could apply equally to either office. A network was trained on the local PIR and 

CO2 trend data from zone A04. This pre-trained network was then supplied with new 

data points from the corresponding sensors in zone A05, making estimates of the 

occupancy rate in this zone. The error on this estimate was calculated from the known 

actual occupancy rate of A05. For comparison, this process was repeated for each of 

the single-occupancy offices, with the results summarised in Figure 6-19. Here it can 

be seen that zones A04 and A05 gave the best error rate when trained on their own 

data, but gave a similarly good error rate when their network was trained on the 

opposite zone’s data. This suggests that rooms with similar physical characteristics 

and usage patterns could have an effective trained occupancy detection model applied 

with a significantly reduced need for labelled training data: in offices with large 

numbers of similar rooms, this relationship would be particularly useful. 

In comparison with the similarly sized zones, the larger volume, more sparsely 

occupied single-user office B01 did not offer an effective training for the other zones, 

seeing a significantly increased error rate. As a point of interest, the networks trained 

on A04 and A05 did perform reasonably well in zone B01, although not as well as a 
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network trained on the larger set of optimum sensors found for zone B01 during 

feature selection.  

It should be noted that the tests in this section were conducted on the winter-climate 

Phase 2 data only, as some of the single-occupant offices were omitted from Phase 1 

due to lack of manual occupant location data. This means that highly user-specific 

behavioural data such as the window opening patterns during summer was not 

factored into this test. It can be expected that a trained model that relies on more 

heavily behavioural data streams would have less success in application to other 

spaces populated by different users. This effect is seen somewhat with the decreased 

performance in the more sparsely occupied zone B01, and further highlights the 

application-specific nature of the trained multi-sensor model approach.  

 

Figure 6-19 - Interchangeability of Networks Trained on Single-Occupant Office Data 

Figure 6-20 and Figure 6-21 show the results of a similar process applied to the multi-

occupant offices and meeting spaces, respectively. Due to the varying set of ideal 

sensors for each of these zones, these tests were conducted on sets of sensors that 

showed a high information gain on most of the zones in the category. This meant that 

none of the zones were trained on the exact optimum sensor set as found in the feature 

selection stages. It was expected that the networks trained on other zones’ data would 

be less effective than those trained on data from the same zone, due to the larger 

differences in the physical characteristics, maximum occupancy and use patterns of 

these spaces. This effect was seen across most zones, reinforcing the finding that 

passive occupancy detection can be highly dependent on the properties of the space 

being monitored.  

0

0.2

0.4

0.6

0.8

1

1.2

A04 A05 B01

R
M

SE

Trained on A04 Data Trained on A05 Data Trained on B01 Data



168 

 

 

Figure 6-20 - Interchangeability of Networks Trained on Multi-Occupant Office Data 

 

Figure 6-21 - Interchangeability of Networks Trained on Single-Occupant Office Data 

It should be noted that the tests on the interchangeability of trained networks were 

limited to a small sample size of each space type in this application. A more 

comprehensive picture of the relationship between usage patterns, physical 

characteristics and the relationship to measured physical properties could be made in a 

study with a greater number of examples of rooms with similar properties. 

6.8 Proposed Model Structure 

A final proposed model structure was developed using the combined findings from 

the sections above. Given the marked improvement on the model accuracy made by 

including the PIR data, the final proposed model includes PIR in each zone as a 

requirement. As this was not available in the Phase 1 test data, the following is based 

on the Phase 2 data onwards. The models were constructed with the following criteria: 

• Room-level ANNs, with a separate network trained for each monitored zone. 

• Feature Selection to omit unnecessary inputs, driven by the information gain 

estimated by training networks on individual sensors. 

• Pre-processing of CO2 level to include noise-reduced trend data as an input 
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• Wi-Fi total number of devices included as an input, selected individual users 

not included due to the erroneous assignment seen in testing. 

• Levenberg-Marquardt training, as this was found to be the most consistent in 

testing. 

The proposed structures for each zone were selected through a directed, cyclical trial-

and-error process. The optimum sensors for each zone were ordered according to their 

individual performance as detailed in the previous sections, with the number of 

features included in each zone determined by the lowest error rate observed. The 

optimum hidden layer structure was selected by testing a range around the initial 10-

neuron baseline structure and testing further structures similar to the most successful 

result. Through several iterations of selecting the most successful combination of 

structure and inputs, the proposed detection model per zone is summarised in Table 

6-23. 

Table 6-23 - Summary of Proposed Detection Model per Zone 

 
Optimum 

Hidden Layer 

Structure 

Optimum 

No 

Features 

Features 

Overall 

RMSE 

on test 

days 

'MGH 

A01' 
[5 2 2] 2 PIR, CO2 Trend 0.42 

'MGH 

A02' 
[10] 4 

CO2 Trend, CO2 Level, 

PIR, Window 1 
0.66 

'MGH 

A03' 
[5 2 2] 3 

PIR, Window 1, 

Window 2 
0.16 

'MGH 

A04' 
[5 2] 2 PIR, CO2 Trend 0.34 

'MGH 

A05' 
[5 2] 2 PIR, CO2 Trend 0.16 

'MGH 

B01' 
[5 2] 4 

PIR, Ext Door1, 

Window 1, Ext Door 2 
0.28 

'MGH 

B02' 
[5 2 2] 5 

PIR, Wifi Total, CO2, 

CO2 Trend, Humidity 
0.50 

'MGH 

LG01' 
[5 2] 3 

Wifi Total, Ext Door, 

CO2 Trend 
0.45 

Other [5 2 2] 1 Wifi Total 0.30 

6.8.1 Multiple Models to Reduce Overfitting 

While the most successful sensor sets and model complexities were found, some 

zones still showed some indications of overfitting when presented with new data 

points. It was investigated whether a model combination approach, as described in 

section 6.5, could further improve the error on the test data. By this method, a set of 

networks trained on the same data that have found slightly different local minima 
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should produce a lower error if their outputs are averaged, as the individual failings of 

each network should be cancelled out to some extent by the other networks. 

For each zone, twenty separate neural networks were trained with the optimum 

structure as described in Table 6-23. Each of these networks produced a slightly 

different set of outputs, due to the tendency to fall into local minima. Table 6-24 

shows the RMSE when these twenty networks were used individually (where the 

output of each network was used to calculate its own RMSE value) and as a combined 

model (where the final estimation of the occupancy rate was taken as the averaged 

output of all twenty networks). It can be seen that the RMSE on the test data was 

reduced when the models were combined. The final proposed model therefore uses 

the combination on 20 trained networks for its final output.  

Table 6-24 - Comparison of the RMSE of 20 networks when used individually or combined as a 

group 

 A01 A02 A03 A04 A05 B01 B02 LG01 Other 

Avg Individual RMSE 

 of 20 Trainings 
0.53 0.70 0.16 0.37 0.17 0.28 0.55 0.48 0.30 

RMSE of 20 Combined  

Trainings 
0.42 0.66 0.16 0.34 0.16 0.28 0.50 0.45 0.30 

 

The output from these models is visualised in Figure 6-22 and Figure 6-23. It can be 

seen that the ability of the model to appropriately represent changes in occupancy 

varies by zone, with a relatively poor performance seen in zones A03, B01 and the 

circulation spaces. In each of these zones, the occupancy patterns are characterised by 

short stays by small groups of occupants, meaning that the measures with a delay such 

as the CO2-based inputs fail to respond enough during occupancy to register reliably 

with the model. There were also known issues with the manual location reporting of 

B01’s main occupant, who gave feedback that the timing of their shorter stays may 

not have been accurately reported. However, in zones with greater number of 

occupants and longer periods of presence, the performance of the detection model is 

shown to be relatively successful. Across all zones during the test days of the training 

data, the models averaged a RMSE of 0.36, meaning that the average estimation of 

the local number of people was within less than 0.5 away from the actual number of 

occupants. It should be noted that individual errors over the testing period did exceed 
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this value. A sample of the Matlab code used to construct the final models is included 

in the physical copy of this work in Appendix 10.7. 

 

 

 

 

 
 

Figure 6-22 - Training Week Performance of Proposed Occupancy Detection Models 1-4 
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Figure 6-23 - Training Week Performance of Proposed Occupancy Detection Models 5-9 
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6.9 Conclusions 

The focus of this chapter was the development of a model to interpret useable 

occupancy data from raw sensor data. For this task, machine learning techniques were 

applied to train a model based on a set of labelled training data. A range of methods 

were reviewed for suitability, with an Artificial Neural Network selected due to its 

ability to represent highly nonlinear systems without the need to specify exactly what 

form the model should take. 

Initial testing of the model proved that it is possible to gain more information on the 

number of people in a zone from a neural network trained on multiple sensors than 

any one sensor alone can provide. However, including all available data to the model 

decreased performance relative to a smaller set, meaning that a balance must be found 

in the exact inputs supplied to the model. A range of techniques to allow for a 

reduction in the number of inputs to the model were tested. Typical principal 

component analysis methods were found to be unsuitable for this purpose, as variation 

in the sensor data was affected by external sources other than occupancy, for example 

the internal temperature was affected by local weather conditions. Manual feature 

selection based on a systematic assessment of information gain was found to be a 

more successful method. 

Methods for pre-processing incoming data were tested, with some successes. It was 

found that including the hourly trend in local CO2 data provided more information 

than the absolute CO2 level alone, particularly in spaces that were not occupied 

consistently throughout the day. Noise removal on data inputs was found to be 

effective as long as the noise removal technique did not cause a significant time lag 

on changes in the data values. Data from personal mobile devices also required some 

pre-processing to ignore non-personal devices and to reduce the total number of 

inputs supplied to the model. 

One of the major observations of the testing covered in this chapter is that the passive-

sensor-based model was highly specific to the characteristics of its application: the 

effectiveness of sensor types and complexity of pattern recognition possible varied 

significantly between zones in the same building. Where common trends between 

spaces were observed, these were still somewhat dependent on the specifics of how 

the sensor data was measured or processed. For example, the common occupancy-
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measurement sensors of local PIR count and CO2 level were found to be common 

high-ranking features across multiple zones in this work. However, the Phase 1 PIR 

data from adjoining circulation spaces was ranked as one of the least valuable 

features, calling into question the value of single-point PIR sensing strategies as was 

seen in Chapter 4. The absolute CO2 level was also ranked as a less useful feature in 

some spaces, where the CO2 trend data provided more value. Sensors that were 

consistently ranked as less useful included the local temperature and humidity.  

The variation in effectiveness of sensor data types appeared to be linked to both the 

physical characteristics and behavioural patterns of occupants, meaning that the same 

system applied in different spaces could produce significantly different accuracies. It 

was also shown that a model trained on a limited time period could even change in 

accuracy over time, as demonstrated with the season-dependent window opening 

behaviours that were highly effective in the Phase 1 summer model, but not observed 

at all in the Phase 2 winter model. In application, it is essential that these differences 

are accounted for if a system or model has only been tested in one type of space and 

for a limited time period, as is typical in many research applications discussed in 

Chapter 3. For more comprehensive research into the relationship between space use 

and the effectiveness of passive occupancy sensing methods, much broader datasets of 

diverse space types would be needed. It should also be noted that some spaces did not 

see enough use during the training period to properly encode their patterns into the 

model: this is a consequence of relying on a relatively small amount of training data. 

A significant shortcoming found in this approach was the reliance on manually 

labelled training data. As discussed in previous sections, due to the multi-occupant 

nature of the office space tested, it was prohibitively difficult to collect 5-minute 

resolution location data from all occupants over a longer time period, meaning that the 

amount of training data available was not sufficient to train a more complex model 

sensitive to more intricate interactions between the physical sensor data collected and 

the observed occupancy rate. Models had to be kept relatively simplistic to avoid the 

overfitting issues associated with a smaller training dataset. However, without some 

form of manually labelled data, it would be impossible to verify the effectiveness of 

the model. Where non-trained unsupervised modelling approaches are taken, the 

model must be manually encoded with assumptions about occupancy events, similar 
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to the assumptions made in Chapter 4 when examining case study data with no 

verified context for motion sensor data.  

Ultimately, it is expected that as technologies progress, an occupancy detection model 

based on the particular passive data sources tested in this work may become 

redundant. For example, if a more reliable system to detect known occupants can be 

made using data from personal devices, this would perform mostly the same function 

at a considerably lower time and monetary cost than installing the full range of sensor 

types tested in this work, and may only require a smaller supplement of additional 

sensors to detect outlying occupants who do not carry devices. In post-occupancy 

trend analysis or general pattern observation, there is less penalty if some occupants 

are missed. However, in building services control it is essential that the building can 

respond to any occupant. In theory, any reliable occupancy detection system could be 

used as a data supply for a predictive model for future occupancy, which is developed 

in the next chapter. 
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7 OCCUPANCY PREDICTION MODEL DEVELOPMENT 

7.1 Introduction & Aims 

As discussed in Chapter 6, it was decided that a system to use sensor data to estimate 

the local number of occupants and produce a short-term prediction of future 

occupancy rates would be produced in this study in order to allow for improved pre-

emptive control of building systems. The task of converting sensor data to a 

prediction of the number of occupants in a space was split into two modules to allow 

for changes in available technology on the detection side. The first module is a 

‘detection’ model to convert sensor data into an estimation of the number of people 

currently in a space in real time, discussed in detail in Chapter 6. This chapter covers 

the development of the second module: a ‘prediction’ model to take the number of 

people over a recent time period and predict the number of people in the future. In 

order to systematically test this model, a method to generate occupancy datasets with 

varying pattern complexities was also developed as part of this chapter. 

The detection model was designed to be trained on a relatively small length of 

training data, with the assumption that the relationship between sensor data and the 

local number of people largely relies on physical properties, and so should stay 

relatively constant. However, when predicting patterns in local occupancy over time, 

it was considered more likely that, as building occupants, schedules and room uses 

change over time, a predictive model trained only once would quickly become 

outdated and encounter higher errors as patterns diverge from those learned by the 

model. It was therefore a key aim to produce a model that could feasibly be updated 

continuously during its operation. It was also decided that the model must reach a 

reasonable error rate within three weeks of training data, as it is unreasonable to 

expect a non-functional system to run in a building for months before it begins 

working as intended. 

Another aim for the predictive model was to achieve an improved performance in 

unusual situations relative to simpler prediction heuristics. For example, a static 

assumed schedule of full occupancy during office working hours may give a 

reasonable estimation on most regular days, but would consistently fail in its 

predictions on a day when most regular occupants are on holiday. As was shown in 

the case studies presented in Chapter 4, these unusual situations are often associated 
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with a poor match between energy use and demand, leading to a higher than typical 

energy waste or discomfort of the building users. This makes unusual occupancy 

situations a primary target for systems aiming to reduce energy waste and so these 

were considered a priority for the prediction model. 

As with the detection model, the prediction model was based on data from the Mark 

Group House testbed as described in section 5.2. The model was tested for its long-

term performance using a generated dataset designed to have the same characteristics 

as the Mark Group House data. 

7.2 Selection of Appropriate Machine Learning Methods 

Similarly to the detection model, the prediction model was treated as a regression 

problem, allowing for prediction outside the scope of the initial training data. 

However, while the sensor data and number of occupants could be treated as a series 

of discrete samples, the prediction model was required to deal with time series data, 

where the continuity from one sample to the next is considered. While the machine 

learning methods discussed in Chapter 6 are still mostly applicable in this case, some 

variations are required to properly process time series data. 

A neural network approach was preferred for coherency: if needed, the ANNs for 

detection and prediction could technically be combined and run as a single network 

after training, in order to streamline the process of running at each 5-minute timestep. 

The following time-series appropriate methods were considered: 

7.2.1 Nonlinear Input-Output 

This structure, similar to the detection model, would simply take a set of inputs and be 

trained towards the required output, as illustrated in Figure 7-1. Data from the current 

time y0 is provided as an input. Data from previous timesteps could also be manually 

formatted and provided as additional inputs to allow the network to account for the 

recent past. If the network is needed to predict multiple steps into the future, this 

could be achieved by including multiple outputs, as in the figure.  
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Figure 7-1 - ANN Time Series: Nonlinear Input-Output 

A disadvantage with this method is that the data would have to be manually 

restructured into appropriate chunks at each 5-minute timestep for both the training 

and operation of the model. 

7.2.2 Nonlinear AutoRegressive (NAR) 

A recurrent neural network can be used to automate the process of including data 

from previous timesteps. Recurrent networks such as the Matlab Toolbox Nonlinear 

AutoRegressive direct the output at each timestep to feed back into the network at the 

next timestep, as shown in Figure 7-2. This creates a set of ‘delay’ inputs from 

previous timesteps, shown in grey in the figure. If the network is needed to predict 

multiple timesteps into the future, this is typically achieved by iteratively feeding a 

single-timestep predicted value back into the model multiple times, at each iteration 

receiving a prediction of one step further into the future. This means that predictions 

further into the future are based more heavily on assumptions from previous 

timesteps, meaning that errors could compound quickly.  

 

Figure 7-2 - ANN Time Series: Nonlinear AutoRegressive 

7.2.3 Nonlinear AutoRegressive with eXternal input (NARX) 

Similarly to the NAR structure, the NARX (Nonlinear AutoRegressive with eXternal 

input) Neural Network structure automates the data handling of time series. The 

output is returned as feedback to the inputs for the next timestep. This structure also 
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includes additional input variables that are not part of the output feedback loop – 

denoted in the figure by x0, x-1 etc. In this case, the external inputs could include 

contextual information on the timestep in question, such as the time of day or day of 

week. This allows the network to better represent patterns that rely on factors other 

than the output variable. In this study, it is expected that the occupancy patterns will 

rely heavily on time-related factors, and so this structure was chosen for the prediction 

model. 

 

Figure 7-3 - ANN Time Series: Nonlinear AutoRegressive with eXternal input 

7.3 Accounting for Uncertainty in Models 

With the prediction of future events, it is known that the model will never have a 

perfect accuracy, as there will always be some unexpected variability to human 

behaviours. It is therefore of particular interest to be able to provide some measure of 

confidence in the model output, where unusual situations can be identified and 

potentially poor predictions will not be treated in the same way as those with higher 

certainty. The confidence of the model output, or a potential range of expected 

outputs, can be obtained through a range of methods. This section discusses some of 

these methods. 

7.3.1 Combining models 

As was introduced in Chapter 6, the combination of multiple models trained on 

largely the same dataset can provide several benefits, including the reduction of 

overfitting issues [215]. This technique can also provide a range of potential outputs 

from the same input data by considering the variation in each model’s output. Where 

all models in the group provide similar answers, the output might be considered more 

certain. Where models give highly varied answers, the output is less certain, likely 

due to a lack of similar situations in the training set or a high variability of outcomes 

from similar situations in the training set. 
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7.3.2 Mixture of Experts 

This method requires the training of several models as above. However, the spread of 

models is more structured, with each model intended to specialise in a certain aspect 

of the data. To define these aspects, the data can be clustered into groups of similar 

input-output relationship (not just similar inputs or similar outputs).  Nets are then 

weighted according to which aspects they address. With smaller training sets, this 

technique can have limited benefits, due to a lack of examples to cluster in order to 

identify the aspects targeted in the model training. As the system in this study is 

designed to start training on a relatively small initial training set, this method was 

deemed inappropriate. 

7.3.3 Bayesian ANN 

Producing similar results to combining models, Bayesian methods seek to account for 

uncertain data by producing a distribution of potential predictions (whether formally 

solved or via sampling). This allows for more effective combined prediction 

compared to a single model, and also allows confidence in the predicted value to be 

evaluated using the spread of answers from the distribution [218]. 

For all but the simplest models/networks, Bayesian ANN methods are not feasible to 

solve fully, as the computational need can be intensive and increases exponentially 

with the number of hidden units [219]. Instead, sampling methods such as Markov 

Chain Monte Carlo (MCMC) sampling can be applied.  

The premise of Bayesian treatment of Neural Networks is to assess the likelihood of 

any possible values of the network’s parameters when given the training data. The 

training is started with an assumed ‘prior’ distribution over the possible parameters, 

which can be assigned based on intuitive knowledge or standard rules to initiate the 

process. 

The prior is then adjusted to reflect the given training data points, which make certain 

configurations of parameters more or less likely. The adjusted probability distribution 

is called the posterior. With enough training data, the posterior is guided towards 

favouring values of the parameters that explain the training data well. 

The posterior distribution can then be used to give an estimation of the confidence in 

the output in two ways: 
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Multiple models: A range of models can be generated using values of the parameters 

that comply with the posterior distribution. When given new input data for testing, 

these models should produce similar outputs where the model is certain and more 

varying outputs where the model is less certain, as with the combined models 

approach. A single-value prediction output can be taken from the outputs using an 

average weighted by the posterior distribution, or a predicted distribution can be 

inferred from all the model outputs.   

Gaussian Distribution: The confidence in the model output can also be estimated as 

a Gaussian distribution, with a mean of the actual model output and a standard 

deviation that represents the outer confidence limits of the model output. Here, a 

larger standard deviation on the output for some particular input shows that the model 

is less certain of this output, and a smaller standard deviation indicates a higher level 

of certainty. This method does include an assumption that the range of outputs from 

the model would take a Gaussian form, which may not always be appropriate. 

However, this method avoids the need to calculate the output from large range of 

models.  

7.3.4 Selected Method – Bayesian Neural Network 

Although the methods requiring the training of multiple models have seen high levels 

of success in other studies, they were considered less appropriate for this study’s 

application. As the prediction model is intended to be re-trained continuously during 

its operation, any method that requires the training of a large range of models 

becomes less feasible in terms of computational time, especially as the training 

dataset becomes larger and larger over time. It was decided that the Bayesian ANN 

method would be tested, using the confidence levels computed by assumption of a 

Gaussian distribution, once again to minimise computational stress on a system 

intended to operate in real time.  

In direct comparisons of machine learning methods, Bayesian Neural Networks using 

the techniques found in the Matlab NN toolbox were one of the most effective 

solutions alongside Gaussian Processes [220] or compared favourably to most other 

methods [213]. It was assumed that this method would produce a reasonable fitting 

performance as well as providing the uncertainty estimation. 



182 

 

The remainder of this section provides a more detailed explanation of the BNN 

method and a derivation of the method used to calculate the confidence levels.  

Where most machine learning methods seek to minimise the error over the training 

set, Bayesian Neural Network treats the problem in a probabilistic manner. That is, all 

possible weight and bias values for the network are treated as a distribution of n-

dimensions, where n is the total number of weights and biases in the network. Given a 

set of training data, it can be assumed that some values of the weights and biases will 

be more likely than others. This introduces the concept of the probability of weights, 

given the training data as a probability distribution across all possible weights.  

Network training then becomes a problem of finding the maximised probability of 

weights given the data. As mentioned above, there are two potential approaches to 

this problem: 

• Train a set of models from within the distribution via application of numerical 

sampling techniques such as MCMC. The overall model output can then be 

taken as the average of the trained sub-models, and an uncertainty measure 

can be quantified by taking models at the 5th and 95th percentile. This 

technique is not supported in native Matlab applications, although some 3rd 

party software exists. 

• Treat the optimisation in a similar manner to error minimisation, using similar 

learning algorithms (e.g. Levenberg-Marquardt optimisation) to find the 

optimal weight distribution. It is assumed that the solution found will be 

global, although in some applications it should be noted that local minima are 

found.  

Bayesian functionality in the Matlab NN toolbox utilises the second approach, based 

on the work of MacKay [221], Foresee and Hagan [222]. The derivation described in 

the following sections is based upon these works. With the Matlab toolbox 

functionality alone, the Bayesian method is used as a means of network regularisation 

as follows: 

The core principle of the Bayesian method is Bayes’ theorem: 

 
𝑃(𝐴|𝐵) =  

𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 ( 1 ) 
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Here, the posterior distribution 𝑃(𝐴|𝐵) describes the probability distribution of 

random variable 𝐴, given information 𝐵. This posterior distribution is informed by a 

prior belief on the probability of  𝑃(𝐴), the likelihood 𝑃(𝐵|𝐴) and the probability 

of 𝐵, 𝑃(𝐵). In essence, the posterior distribution can be considered an updated 

version of the prior, when given further information.  

The aim of Neural Network training is to minimise the objective function F, typically 

a measurement of the magnitude of errors on the training set such as the mean squared 

error, ED. Weights/biases of the system are adjusted to minimise this error. 

Regularisation also seeks to minimise the complexity of the NN model, which can be 

measured by the sum square of all weights/biases in the model EW. A regularised 

objective function can thus be represented by: 

 𝐹 = 𝛽𝐸𝐷 +  𝛼𝐸𝑊 ( 2 ) 

A Neural Network model can be described in probabilistic terms if the weights/biases 

of the model are treated as a random variable 𝑾, which can take values 𝒘. Training 

the model involves finding a set of weights/biases that allow the model to best 

describe the observed data. Using Bayes’ rule, this can be represented as: 

 
𝑃(𝒘|𝐷, 𝐻𝑖) =  

𝑃(𝐷|𝒘, 𝐻𝑖)𝑃(𝒘|𝐻𝑖)

𝑃(𝐷|𝐻𝑖)
 ( 3 ) 

Where 𝐷 represents the network training data and 𝐻𝑖 represents the particular NN 

model hypothesised. Figure 7-4 shows a visualisation of the relationship between the 

prior (dotted line) and posterior (solid line). It can be seen that the ideal update from 

prior to the posterior decreases the width of the probability distribution, representing a 

decrease in uncertainty on the location of the optimum set of weights 𝒘𝑀𝑃. 

 

Figure 7-4 - Visualisation of the relationship between Prior and Posterior Distributions [221] 
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The hypothesised model 𝐻𝑖 can be broken down into components 𝑀: the model 

structure/basis functions chosen, and 𝛼 and 𝛽: the regularisation parameters. Bayes 

rule is thus represented as: 

 
𝑃(𝒘|𝐷, 𝛼, 𝛽, 𝑀) =  

𝑃(𝐷|𝒘, 𝛽, 𝑀)𝑃(𝒘|𝛼, 𝑀)

𝑃(𝐷|𝛼, 𝛽, 𝑀)
 ( 4 ) 

Here, there is an assumption that noise on the training set data is Gaussian and prior 

distribution for weights is Gaussian. Using the probability density function for 

Gaussian distributions allows the likelihood function and prior to be calculated as: 

 
𝑃(𝐷|𝒘, 𝛽, 𝑀) =  

1

𝑍𝐷(𝛽)
exp (−β𝐸𝐷) ( 5 ) 

 
𝑃(𝒘|𝛼, 𝑀) =  

1

𝑍𝑊(𝛼)
exp (−α𝐸𝑊) ( 6 ) 

Where 𝑍𝐷 = (𝜋/𝛽)
𝑛

2⁄ ,  β =  1 𝜎𝑣
2⁄ , 𝐸𝐷 =  ∑

1

2
[𝑦(𝑥𝑚) − 𝑡𝑚]2

𝑚 , 𝑍𝑊 = (𝜋/𝛼)
𝑁

2⁄ , 𝛼 is 

the regularising constant and 𝐸𝑊 is the sum squared of the network weights/biases. 

Other potential choices exist for the prior, as described in [221], but this project will 

be focusing on the equations as above, as used in the Matlab toolbox. 

The posterior can now be represented by: 

 

𝑃(𝒘|𝐷, 𝛼, 𝛽, 𝑀) =  

1

𝑍𝑊(𝛼)

1

𝑍𝐷(𝛽)
exp(−β𝐸𝐷 − α𝐸𝑊)

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟
       

=
1

𝑍𝐹(𝛼, 𝛽)
exp(−𝐹(𝒘)) 

( 7 ) 

 

Where 𝑍𝐹(𝛼, 𝛽) =  ∫ 𝑑𝑘𝒘  exp(−𝑀). In application, this is typically difficult or 

impossible to calculate directly, but can be estimated via Taylor series expansion 

[222].  

The weights at the maximal probability 𝒘𝑀𝑃 can be found using optimisation 

methods as discussed in previous sections, as minimising the objective function 

should be equivalent to maximising the probability. 

With known values of 𝒘𝑀𝑃, 𝛼 and 𝛽, the model can then be used to make predictions 

from new data inputs. This is as far as the default Bayesian method is applied in the 

Matlab ANN toolbox at the time of writing. 
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The confidence in the BNN predicting a target value 𝑡 when given a new set of inputs 

𝒙 and weights 𝒘 can be modelled as a Gaussian distribution [223] [224]. Here, the 

most probable output (Gaussian mean) is the model output 𝑦(𝑥, 𝑤𝑀𝑃) using the 

maximum probability weights. The variance is given by β−1, which is related to the 

level of noise assumed on the training data.  

 𝑝(𝑡|𝒙, 𝒘, 𝛽) =  𝑁(𝑡|𝑦(𝒙, 𝒘), 𝛽−1) ( 8 ) 

Marginalising with respect to 𝒘 gives the predicted output for inputs 𝒙 in terms of the 

weight-dependent model output and the posterior distribution: 

 
𝑝(𝑡|𝒙, 𝐷) = ∫ 𝑝(𝑡|𝑦(𝒙, 𝒘))𝑝(𝒘|𝐷)𝑑𝒘 ( 9 ) 

This evaluation would involve calculation of the model output for every possible set 

of weights. Once again, this is not a computationally viable evaluation for a neural 

network with a nontrivial number of weights. To simplify, two assumptions are 

applied: 

• The objective function is approximated locally to 𝒘𝑀𝑃 

• The gradient between network outputs for weights close to 𝒘𝑀𝑃 is 

approximated as linear, allowing network output at 𝒘 to be evaluated quickly 

For the first assumption, the objective function for weights local to 𝒘𝑀𝑃 is described 

by: 

 
𝐹(𝒘) ≈ 𝐹(𝒘𝑀𝑃) +

1

2
(𝒘 − 𝒘𝑀𝑃)𝑇𝑨(𝒘 −  𝒘𝑀𝑃) ( 10 ) 

Where 𝑨 =  𝛽∇∇𝐸𝐷 +  𝛼𝐼. ∇∇𝐸𝐷 can also be called the Hessian of the error function, 

and represents a matrix of second derivatives of the error function with respect to the 

weights.  

For the second assumption: 

 𝑦(𝒙, 𝒘𝑀𝑃 + ∆𝒘) ≈ 𝑦(𝒙, 𝒘𝑀𝑃) + 𝑔𝑇∆𝒘 ( 11 ) 

Where 𝑔 =  ∇𝑦(𝒙, 𝒘)|𝒘=𝒘𝑀𝑃
, a vector of partial gradient of the network output with 

respect to the weights, taken at the weight set 𝒘𝑀𝑃. A single element of this gradient 

vector is plotted for illustrative purposes in Figure 7-5.  
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Figure 7-5 - Estimated Network Output Gradient, varying First System Weight Value (data 

sampled from network trained later in this chapter) 

Using assumptions above, equation 8 can be expressed as: 

 𝑝(𝑡|𝒙, 𝒘, 𝛽) ≈  𝑁(𝑡|𝑦(𝒙, 𝒘𝑀𝑃) + 𝑔𝑇(𝒘 − 𝒘𝑀𝑃), 𝛽−1) ( 12 ) 

 

This expression can then be marginalised with respect to 𝒘, leaving: 

 

 𝑝(𝑡|𝒙, 𝐷, 𝛼, 𝛽) =  𝑁(𝑡|𝑦(𝒙, 𝒘𝑀𝑃), 𝜎𝑡
2(𝑥)) 

or 

𝑝(𝑡|𝒙, 𝐷, 𝛼, 𝛽) =  
1

√2𝜋𝜎𝑡

exp (−
(𝑡 − 𝑦(𝒙, 𝒘𝑀𝑃))

2

2𝜎𝑡
2 ) 

 

( 13 ) 

Where 𝜎𝑡
2(𝑥) =  𝛽−1 + 𝑔𝑇𝑨−1𝑔. The variance of the Gaussian 𝜎𝑡

2 represents the level 

of uncertainty in the model prediction – with a higher variance showing that the 

model is less certain about this output. This means that the uncertainty term depends 

on both the noise on the training dataset (𝛽−1) and the variability of network output 

under changing weights (𝑔𝑇𝑨−1𝑔). The second term is dependent on 𝒙 value.  
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7.4 MATLAB Uncertainty Implementation  

It can be seen above that, in order to calculate the variance, and so the confidence 

level, the following quantities must be known: 

• 𝒙 : matrix of network inputs for which the error bars are to be calculated 

• 𝛼, 𝛽 : parameters of regularisation, set during the network training process 

• 𝑨 =  𝛽∇∇𝐸𝐷 +  𝛼𝐼 : regularised Hessian matrix of network errors on the 

training set 

• 𝑔 – the vector of partial gradient of the network output with respect to the 

model’s weights 

The Bayesian Regularisation training process featured in the MATLAB ANN toolbox 

(version supplied with Matlab 2015a) is governed by the function “trainbr”, 

following the process described above and in the work of Foresee [222]. During this 

process, the Hessian of the network error ∇∇𝐸𝐷 is approximated internally, using the 

squared Jacobian matrix (first order derivative). This is considered a valid 

approximation for the purposes of this work. The parameters 𝛼 and 𝛽 are also 

evaluated as part of the training process. 

Calculation of the error bars was therefore a matter of extracting these values from the 

“trainbr” function during training. This was achieved by editing the local copies of 

relevant MATLAB functions to output the relevant data alongside their normal 

outputs.  

The gradient 𝑔 at the final trained weight values was numerically calculated by: 

• Unpacking trained network weights. 

• Making a matrix of varied network weights, including a small increase and 

decrease on either side of the final weight values 𝒘𝑀𝑃. 

• Repacking each set of varied weights into the network and calculating network 

output for these varied weights. 

• Calculating the linear gradient of network output from two points either side 

of 𝒘𝑀𝑃. 
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7.5 Dataset Generation for Training over a Long Time Period 

In order to fully test the long-term performance of a continually updating model, as 

well as to test the model’s response to different complexities of patterns in occupancy 

data, a dataset was needed that could produce data following the patterns of 

occupancy observed in the test space, over a time period of arbitrary length. 

The data characteristics required were: 

• Single-occupancy and multi-occupancy spaces within the same building. 

• Known recurring staff with an assigned main zone of the building. 

• Unknown visitors to the building. 

• Varying occupancy profiles per person, grouped into sets with common 

features (e.g. teaching staff more likely to have regular weekly absences for 

lecturing, start time of PhD students more likely to be variable). 

Within this structure, the following features were identified in order to generate a 

realistic dataset: 

• Daily patterns – actions dependent on a certain time of day (occupancy 

profiles) 

• Weekly patterns - actions dependent on the day of the week 

(weekday/weekend, adjusted leaving times on a certain day) 

• Date-based patterns - actions dependent on the day of the year 

• Random low-level variation – variation on the start/end times of occupancy 

about the mean value determined by occupancy profiles 

• Long-term absences – holidays (some regular, some variable) 

• Short-term absences – day meetings, sub-day meetings 

• Long-term variations – changes of staffing or of zone associated with an agent 

over the long term. 

A set of occupant or ‘agent’ profiles were constructed designed to mimic the 

behaviours of different groups observed in the test building. Table 7-1 provides a 

summary of how each of the pattern types was implemented, with Table 7-2 providing 

the specific values used to draw different agent characteristics within each profile 

group. It should be noted that for all of the profiles, overlapping time periods of 

absence were aggregated and long-term absences were biased towards starting on 
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Mondays and/or ending on Fridays. The plain-text algorithm used to generate this 

data is shown in Appendix 10.6, with the full Matlab code used included in the 

physical copy of this work in Appendix 10.7. 

Table 7-1 - Generated Occupancy Profile Characteristics 

Pattern Type Method 

Main Zone Zone assigned to each agent dependent on occupant type. 

Regular Daily Profile Standard profile 9:00-18:00. 

Variation +/- in hours drawn from Gaussian for each agent 

Regular Lunch Profile Standard profile 13:00-14:00. 

Daily Variations Regular daily events that interrupt the standard profile. Number of 

events drawn from exponential distribution. Start and end times 

randomly drawn within the 9-18 range for most occupants.  

Weekly Variations Regular weekly events that interrupt the standard profile. Drawn as 

above. Day of the week randomly assigned to each event. 

Monthly Variations Regular monthly events that interrupt the standard profile. Drawn as 

above. Day of the month randomly assigned to each event. 

Date-based 

patterns/Long-term 

absences 

Common holiday periods drawn in three parts of the year for each 

agent. Spring holidays of all agents confined to include a common 

‘Easter’ weekend. Summer holidays drawn of Gaussian length, with 

Gaussian start date and adjustment to bias towards start/end on Mon/Fri. 

Winter holiday constrained to include 25 Dec – 01 Jan. 

Random low-level 

variation 

Standard deviation values for random variation for each agent drawn 

from Gaussian distribution. 

Random weekly variation Each agent assigned a likelihood of presence at weekends, randomly 

drawn within a range specified based on occupant type. 

A number of unknown visit events each day drawn from Gaussian, 

number of people drawn from exponential distribution and rounded, 

zone randomly assigned from subset. 

Short-term absences Likelihood of non-regular day-long absences randomly drawn from 

range specified based on occupant type. Mean number of non-regular 

daily short absences drawn from Gaussian for each agent. 

Long-term changes Staff agents reassigned weekly patterns at typical university term times. 

Random reassignment of a completely new agent determined by given 

frequency. 
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Table 7-2 – Values used for Pattern Formation for each Occupant Type 

Pattern Type Profile 1 
(Teaching 
Staff) 

Profile 2 
(Researcher) 

Profile 3 
(PhD 
Student) 

Profile 4 
(Cleaning 
staff) 
 

Profile 5 
(Regular 
visitor) 
 

Profile 6 
(Unknown 
Visitor) 

Main Zone Single-
occupant 
zone for 
each agent 

Shared 
within 
group 
subset 

Shared 
within 
group 
subset 

No Shared 
within 
group 
subset 

No 

Regular Daily 
Profile 

mean = 0  
start time 
std dev =  
0.5 
end time 
std dev =  
0.5 

mean = 0  
start time 
std dev =  
0.5 
end time 
std dev =  
1.5 

mean = 0  
start time 
std dev =  1 
end time 
std dev =  2 

Regular 
profile 
07:00-
08:30. 

Random 
start time 
between 9-
17. 
Gaussian 
length 
mean 1 hr 
std dev 2 

 

Daily 
Variations 

Mean = 0.5 Mean = 0.5 Mean = 0.5  Can only 
enter 
assigned 
zone when 
already 
occupied 

 

Weekly 
Variations 

Mean = 6 Mean = 2 Mean = 0.5    

Monthly 
Variations 

Mean = 4 Mean = 4 Mean = 0.5    

Date-based 
patterns/Long-
term absences 

Length 
mean = 10, 
std dev = 7 
Summer 
date mean 
= 196, std 
dev = 35 
 

Length 
mean = 10, 
std dev = 7 
Summer 
date mean 
= 196, std 
dev = 35 

Length 
mean = 10, 
std dev = 7 
Summer 
date mean 
= 196, std 
dev = 35 

Length 
mean = 10, 
std dev = 7 
Summer 
date mean 
= 196, std 
dev = 35 

Length 
mean = 10, 
std dev = 7 
Summer 
date mean 
= 196, std 
dev = 35 

 

Random low-
level variation 

Mean = 0 
Start std 
dev = 0.1 
End std 
dev = 0.5 
Lunch std 
dev = 0.1 

Mean = 0 
Start std 
dev = 0.1 
End std 
dev = 0.5 
Lunch std 
dev = 0.1 

Mean = 0 
Start std 
dev = 1 
End std 
dev = 1 
Lunch std 
dev = 0.1 

Mean = 0 
Start std 
dev = 0.1 
End std 
dev = 0.5 

Mean = 0 
Start std 
dev = 1 
End std 
dev = 1 

 

Random 
weekly 
variation 

Range 0-
0.125 

Range 0-
0.33 

Range 0-
0.1 

  No daily 
events 
mean 2 std 
dev 1.2. No 
visitors 
mean 1.5 

Short-term 
absences 

Likelihood 
Range 0-
0.25 
Short event 
mean = 1.4 
Short event 
std dev = 
0.8 

Likelihood 
Range 0-
0.1 
Short event 
mean = 0.8 
Short event 
std dev = 
0.8 

Likelihood 
Range 0-
0.17 
Short event 
mean = 0.5 
Short event 
std dev = 
0.5 

   

Long-term 
changes 

Frequency 
of long-
term 
changes: 
500 days 

Frequency 
of long-
term 
changes: 
500 days 

Frequency 
of long-
term 
changes: 
500 days 

 Frequency 
of long-
term 
changes: 
500 days 

 

 

An example of data generated by the process described above is shown in Figure 7-6, 

where the total occupancy of the building is plotted on the upper graph, with each 
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individual agent’s presence in the building plotted in the lower graphs. It can be seen 

that this process creates a feasible occupancy profile, with most occupants keeping to 

a regular, but slightly varying pattern over the long term.  

 

Figure 7-6 - Example of Generated Data for 14-day period 

7.6 Testing Model Structure 

As the detection model operates on a 5-minute interval, a predictive model that works 

on the same data needs to predict multiple timesteps into the future to provide useful 

data, as anticipating the next 5 minutes alone is not especially valuable for the control 

of building systems with a slow response time. Several methods to predict multiple 

timesteps into the future were considered for this model. Each of these models was 

tested on a 50-day occupancy dataset generated with the algorithm described in 

section 7.5. 

7.6.1 NARX 

As described above, the NARX network structure is recurrent, meaning that to predict 

multiple timesteps into the future at time t, the output prediction for t+2 is typically 
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produced iteratively by producing a single-step prediction for t+1 and feeding this 

prediction back into the model. One of the concerns with this approach was that 

without a defined way to signify to the model that the t+1 value is an assumed 

prediction rather than a known observation; poor predictions would be quickly 

compounded to lead to large errors over longer prediction horizons. The standard 

NARX structure was tested for comparison with two alternatives that could reduce 

this compounding error issue.  

Figure 7-7 shows the absolute error averaged across a 12-timestep prediction horizon 

over a 50-day training on the generated dataset, with the network re-training to 

account for new data at the end of each day. It can be seen that, while the error on the 

predicted number of people was generally low, the system would occasionally spike 

to more extreme errors, exacerbated by the compounding error caused by the use of 

previous erroneous predictions to make further predictions. The spikes in error rate 

were reduced in size as the network was retrained, suggesting that this issue may 

reduce over longer time periods. Figure 7-8 illustrates how the average error varied 

depending on how many timesteps into the future were predicted: as expected, the 

further prediction horizons show a higher average error.  

 

Figure 7-7 – Error Rates of the NARX structure, iterative 12-step prediction across 50-day 

training period 
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Figure 7-8 - Mean Absolute Error per Prediction Horizon for iterative 12-step prediction 

7.6.2 Non-recurrent Network 

As a point of comparison, a non-recurrent network was trained on the same data. A 

structure to predict 12 future timesteps at once was used: similar to that described in 

section 7.2.1, with the Matlab structural diagram shown in Figure 7-9. The ‘feedback’ 

of the past targets was produced manually and appended to the input matrix. This 

means that the feedback targets and the future predictions were not each directly 

linked to their own set of time attributes. The only time attributes input were those for 

the current time.  

 

Figure 7-9 – Multiple-Output Simple NN structure on the prediction training set, still trained 

with trainbr 

Over a 50-day run in Figure 7-10 it can be seen that this network structure was less 

prone to extreme spikes in its prediction error, with all errors averaging to within 2 

people of the actual number of occupants, rather than the 14 people seen by the 

iterative NARX structure within its first week online. However the range of errors 

was not improved as the network was retrained over time, while the NARX error 

improved, leaving the average error after 50 days slightly higher on the non-recurrent 

network. This point is further supported by the average error per prediction horizon 
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shown in Figure 7-11, which shows no average improvement even on the furthest 

prediction horizon versus the iterative NARX structure.  

The training times, however, were much higher for the multi-output model. Given that 

the increase in training time with training set size is nearly linear (Figure 7-12) it was 

decided that the non-recurrent multi-output approach was not a viable option for long-

term online training.  

 

Figure 7-10 – Error Rates of the Multi-Output Nonlinear Input-Output structure across 50-day 

training period 

 

Figure 7-11 – Error Rates of the Multi-Output Nonlinear Input-Output structure across 50-day 

training period 
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Figure 7-12 – Training Cycle running time vs amount of training data 

7.6.3 NARX Network with Multiple Outputs 
  

Figure 7-13 shows a potential NARX structure to predict 12 timesteps into the future 

in a single calculation, rather than using the standard closed NARX structure to 

iteratively predict the next 1 step 12 times.  

  

Figure 7-13 - Example of multiple-output open NARX structure 

The major issue with this approach was the significantly increased training time and 

memory requirements. For a single zone, it was not possible to train a model of this 

structure for 24 timesteps into the future, as the available computer did not have 

sufficient memory for the task. The initial batch training time for a 12-timestep 

structure was 1560 seconds, as opposed to 218 seconds for non-recurrent structure.  

Due to memory constraints on the test computer, it was not possible to run the full 50-

day retraining period on this structure, showing that it was not suitable for wider 

application.  

Figure 7-14 also illustrates a potential issue with the fit of the model – the model fit 

on the initial training data is characteristic of extreme overfitting, with constant 

oscillation around the training data. 
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Figure 7-14 – Examples of Model fit on Multiple-Output Open NARX Structure 

7.6.4 Selected Base Structure for Further Testing 

The structure selected for the initial tests of this model was the iterative NARX 

method, as indicated in Figure 7-15. As with the initial testing of the detection model, 

a relatively low number of hidden units was selected to avoid the more extreme 

overfitting while other factors were tuned. The model was implemented with the 

manually adjusted Matlab Bayesian method described in Sections 7.3.4 and 7.4. 

However, in order to cut down computational times and avoid crowding graphs, the 

final steps to calculate and plot the confidence levels have been omitted in some test 

stages in the following sections. The prediction horizon was extended to two hours in 

24 5-minute timesteps in order to better test the limits of the developed model. In 

application, the prediction horizon of most interest would be related to the time it 

would take to condition a space to its desired set point from its current state, which 

could vary significantly depending on the systems, space and current state in place. A 

two-hour horizon was considered a balance between feasible prediction and a realistic 

conditioning time for the Mark Group House application. 
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Figure 7-15 – Proposed Prediction NARX Neural Network Model Structure 

Detailed testing was planned in order to find: 

• Method and frequency of updates to the model using new training data 

• Set of features that gives the best performance 

o Time-based features – time of day, day of week, day of year etc. 

o Occupancy features – occupancy rates, binary presence data 

o Number/spacing of previous timesteps included 

• Investigation into effectiveness in predicting more or less complex occupancy 

pattern types 

• Optimisation of model structure for reasonable performance/training times 

o Magnitude of error on training/running data 

o Length of training period required to reach acceptable error levels 

Throughout the testing conducted, one of the major considerations was achieving an 

acceptable error performance within a reasonable length of training time. If a system 

structure could achieve a more complex model of occupancy patterns at the cost of 

requiring two years of training data before any reasonable predictions could be made, 

for example, this was considered unacceptable performance. In a practical system, it 

is not viable to expect such a long time before the system becomes useful.  

7.7 Method of Continuous Retraining 

One of the major aims for the predictive model was the ability to train ‘online’: 

retraining over time in between predictions. This would mean that the model could 

adapt to change in the underlying occupancy patterns over the long term. Several 

…
 

…
 

Number of 
people in 

zone for last 
n time steps 

 

Time-based 
attributes of 

the n+1 time 
steps 

(Future) 
Estimated 
number of 
people in 
zone 
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different approaches to this aim were considered and tested for their effectiveness, 

computational requirements and feasibility in terms of time taken. 

7.7.1 Matlab ‘adapt’ function 

The Matlab ANN toolbox contains functionality for online model training – the adapt 

function [225]. This function takes one gradient descent step of the weight/bias values 

each time it is called. This is technically not a Bayesian training process. However, it 

should in theory produce a similar optimum result and so was treated as described in 

section 7.4.  

Initial tests of the adapt function on the generated data set showed results that did not 

meet the expected performance standards. Figure 7-16 shows the MSE over time for 

two tested networks based on the same training data: 

• ‘Adapt Only’ – network started at a random initialisation, with ‘adapt’ 

function called at each time step. In theory, this should start with a high error, 

which should decrease over time. 

• ‘Train then Adapt’ – network pre-trained in a single batch with 15 days of data 

prior to the adaptation start. The ‘adapt’ function was then called at each time 

step as above. In theory, this should start at a lower error than the random start 

and either maintain or decrease error over time.  

For reference, the MSE of the initial training from ‘Train then Adapt’ is included in 

the graph as ‘Train Only’. After 500 adaptations of these networks, it was found that 

both methods using the ‘adapt’ function performed significantly worse than the 

standard ANN training process, with the MSE appearing to stabilise around 3-4 for 

both methods, while the initial training showed an error of 0.13. The reasons for this 

poor performance were investigated. 
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Figure 7-16 - MSE at each adaptation iteration using the same input data at 500 adapt steps 

7.7.2 Reducing Adaptation Step Size 

A possible explanation for the poor performance of the adapt at each timestep was 

that the adaptation step size used by the function was too large, causing the model to 

overshoot its optimum weight values and potentially increase error. The step size was 

manually adjusted to a range of sizes and compared. 

For the Matlab ‘adapt’ function, the step size at each adaptation is determined by the 

learning rate lr and the momentum constant mc. A smaller value of lr equates to a 

smaller step size, which should reduce the average error seen over adaptations if 

overshooting the optimum weight values is the issue seen in section 7.7.1. The 

momentum constant mc relates to the momentum of the gradient descent, as described 

in the Matlab documentation [226]. Set between 0 and 1, a higher value gives the 

adaptation more momentum, allowing it to overcome local minima in the cost 

function, but at the risk of skipping over the global minimum if set too high. By 

default, lr was set to 0.01 and mc was set to 0.09. 

In trials of different values for mc between 0 and 1, it was found that the momentum 

had no discernible effect on the error increase seen during adaptation. The learning 

rate did show some relationship to the error rate, as shown in Table 7-3. It can be seen 

that the smaller step sizes did give a smaller mean error. However, all of the adapt 

step sizes still produced a significantly higher error than the unadapted initial training 

solution. 
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Table 7-3 - Overall RMSE from adapting with different Learning Rates 

 LR 0.0001 LR 0.001 LR 0.01 LR 0.1 

2.135 2.325 2.292 1.124e+152 

 

Figure 7-17 shows that the mean error visibly increased the more adaptations 

occurred. From the graph, it appears that the error from each learning rate converged 

to a value around 2.3, with the lower learning rate taking longer to reach this average, 

while the higher learning rate showed more variation once it reached this average. As 

each learning rate separately approached this increased error value, the source of the 

increased error could not be from a mismatch of the learning rate causing overshoot of 

the optimum solution. Further investigation was required. 

 

Figure 7-17 - Moving Average Mean Error per Adaptation Step for Varying Step Size 

7.7.3 Adapting every Timestep – further investigation 

The poor performance of the adapt function was further investigated by plotting the 

output from the network at each timestep. Figure 7-18 shows one day of the NARX 

network after an initial batch training of a 9-day dataset. It can be seen that the 

network correctly predicted most general trends in occupancy through the day, 

although difficulty is encountered around the short lunchtime drop to 0 occupants. 

Figure 7-19 shows the aggregated results of one day’s adaptation, having started on a 

9-day initial training from the same simulated dataset as Figure 7-18. Here, it can be 

seen that the network begins to favour prediction of a constant occupancy rate, 

significantly reducing the performance of the prediction relative to the non-adapting 
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case. This is counter to the intention of adaptation. Some potential conclusions to 

draw are: 

• The long periods where occupancy stays constant outnumber the periods when 

occupancy varies, due to the nature of an intermittently occupied office space. 

• This appears to bias the adapting network towards solutions that provide the 

simplest explanation for the data seen – occupancy stays constant 

• As the adaptation updates its weights by only one step per timestep, the times 

with varying occupancy are not sufficient to ‘pull back’ from the training 

obtained during long constant-occupancy periods, and such steps are quickly 

reversed during constant occupancy again. 

• This may be able to be manipulated by adaptation step size, but the solution 

more likely to avoid this problem is to adapt in larger batches, perhaps 

overnight at the end of each day or week. 

• This finding verified the existence of an optimum between responsiveness to 

changing circumstances and maintaining a robust model.  

 

Figure 7-18 - Non-Adapting NARX run on Simulated Data 

 

Figure 7-19 - Adapting per Time Step NARX run on Simulated Data 
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7.7.4 Adapting in 1-day Batches 

As an alternative, it was tested whether calling the adapt function at the end of each 

day would improve the results shown. It was found that the 1-day adaptation suffered 

from the same issues as adapting at each timestep, as shown in Figure 7-20.  

Upon inspection of the adaptation process used by Matlab, it was found that calling 

adapt on a batch of new data points runs iteratively through each new point, 

suggesting that the adaption process may simply not be suitable for this application. 

The long unoccupied periods during the night cause a steady state solution to be 

favoured too strongly to be countered by the daytime values.  

 

 

 

Figure 7-20 – 1-day Batch Adapt – Sample of a) Initial Training b) Model after 1 day of Adapt 

Data 

7.7.5 Batch Full Retraining 

Another potential option was to fully re-train the network periodically during its 

online operation. This process accounts for all new data points at the same time and so 

should not suffer the bias towards constant values that was seen in the single-step 

adapt function. However, by the same process it was expected to need a significantly 

longer computational time than the ‘adapt’ function, and so was not feasible to update 
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the network on every timestep. At each retraining, the training dataset consisted of the 

full initial train dataset, plus all data points up to the current time from the ‘online’ 

dataset. In order to limit the increase in training time as more and more training data 

was included, a one-year ‘sliding window’ was used on the total length of the training 

data, meaning that after a year of training, older data would begin to be discarded in 

favour of new data.  

Figure 7-21 shows a sample from the end of a 100-day run of daily retraining on a 

generated dataset. In comparison to the equivalent from the inbuilt ‘adapt’ function, as 

seen in the previous section, this shows a much more successful fit to the data after 

the adaptation process. However, it was found that the training time required to 

completely retrain the network each day was high enough to inhibit repeated testing 

for the later stages of optimisation.  

It was investigated what effects would be seen if the frequency of retraining was 

decreased. 100-day runs were made on the same base dataset, retraining every 1, 2, 7 

and 28 days. The moving average RMSE for each of these runs is shown in  Figure 

7-22. It was found that the error rate for most frequencies decreased within the first 4 

weeks of retraining before stabilising around a similar level. The one-day retraining 

frequency saw several days with a much higher spike in error rate, likely caused by 

poor instances of retraining on particular days, where the cost function reached a less 

effective local minimum during training. While the lower frequency trainings did not 

encounter a particularly bad retraining during the 100-day run sampled, it should be 

noted that if a bad retrain was to occur, it would take longer to be corrected if the 

model was updated less frequently. It was therefore decided to remain with a daily 

retraining frequency. 
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Figure 7-21 – Sample of model output after 100 day Daily Full Retraining 

 

 

Figure 7-22 - Moving Average Mean Abs Error per Time Step – Varying Frequency of trainbr 

retraining, 100 day run 

Parallelisation of the training process 

Once work began on the realistically-sized training set, it became clear that the 

training process was prohibitively slow to quickly calculate the effects of changing 

various options while adapting over time. One measure to decrease the calculation 

time was to parallelise the training function. In MATLAB, this can be achieved 

relatively easily, as MATLAB has inbuilt parallel calculation functionality. However, 

it was necessary to re-edit the trainbr function to ensure that the parallel-mode 

functions also output the Hessian and other parameters used to calculate the error 

bars.  

First 28 days 



205 

 

To illustrate the reduced calculation time, the same model structure was trained on the 

same 50-day online training set (14-day initial training, 36-day online training). The 

run times were as follows: 

 Single Worker 
MATLAB Parallel 

Workers 
Percentage reduction 

Total Run Time 791.504 s 617.795 s 22% 

Training-specific 

functions run time 
667.458 s 473.021 s 29% 

 

Parallelised training reduced the training time by almost 30%. This translated to a 

22% reduction in the total run time for a short training period.  

7.8 Feature Selection 

7.8.1 Time-based External Input Variables 

Given that the occupancy data contained patterns on a range of time scales, it was 

investigated how much value was provided to a network of the same structure trained 

on 100 days of training data when including following time-based data as an external 

input: 

• Day of Week – represented as an integer value 1-7. This allows the day to be 

input as a single variable, but encodes some continuity between days, so that 

Monday (day ‘1’) is perceived as more similar to Tuesday (day ‘2’) than 

Sunday (day ‘7’), where in reality it is one day away from each. This could 

produce undesired effects in the trained network. 

• Day of Week, binary – represented as seven discrete inputs with a 0/1 value. 

This avoids the issues discussed above, but the larger number of inputs could 

introduce overfitting issues. 

• Weekday/Weekend – represented as a single 0/1 value to denote if the day is a 

weekday or weekend day. 

• Time of Day – represented as an integer 1-288 to denote each of the 288 five-

minute slots in a day. This representation suffers some of the issues described 

above, but is not viable to include as 288 separate inputs.  

• Day of Year – represented as an integer 1-366. 
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Figure 7-23 shows a comparison of the mean RMSE over a 2-hour prediction horizon 

across the 85 days of runtime after an initial 15-day training period, where a higher 

RMSE indicates a worse performance. It can be seen that the binary day of the week 

gave a poor performance, while combinations featuring the time of day produced the 

lowest errors. The following analysis was made to pick out some of the ways in which 

these features affected the performance in specific situations. 

 

Figure 7-23 - RMSE Comparison with Varying Time-Based External Inputs 

The difference in model output caused by the input format of the weekday is 

illustrated in Figure 7-24, which shows the actual training data versus the model’s 

representation when trained on this data. When provided with the binary day of the 

week, the model shows a nonzero value on the two weekdays at the end of the 

training set, despite the actual occupancy being (unusually for the typical occupancy 

pattern) zero. This is likely indicative of a closer association with certain patterns 

being strongly connected to particular days. However, the model was clearly prone to 

overfitting issues, as illustrated in Figure 7-25, which shows the model output 

fluctuating around extreme values when the model is presented with new data from 

the 100th day of the test dataset. 
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Figure 7-24 - Training Data vs Model Representation for a) Integer and b) Binary Day of Week 

Models 

 

 

Figure 7-25 - Sample of Model Output on 100th day of training, Binary Day of Week Input 

While the error rate alone shows that the time of day data was beneficial, Figure 7-26 

illustrates how the inclusion of this data changed the model output. Graph a) shows 

that when provided weekend data only, the model always predicts a similar pattern of 

rising occupancy when the zone had been recently vacated. This is because the model 

has no way to distinguish between the short absence seen at lunch break and other 

absences. When provided with the time of day as in graph b), the model can then 

define the strong pattern of a short absence at midday without predicting the same 

return of occupants when all occupants leave in the evening. 

a)              b) 
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Figure 7-26 - Sample of Model Output on 100th day of training for a) Weekend Data Only b) 

Time of Day & Weekend Data Input 

A final observation was made on the difference in the model’s behaviour on unusual 

weekdays when supplied with some data combinations. It was found over multiple 

random-initialisation trainings that the Time of Day-Day of Week combination tended 

towards a fit more biased towards the current observed occupancy level than other 

combinations, as shown in Figure 7-27, where both graphs show the same day of the 

test data. The model trained on the time of day, day of week and day of year tended 

towards predictions that occupancy would rise to its typical weekday levels, while the 

model trained on just time of day and day of week was more responsive to unusual 

situations. The reason for this was not clear: none of the time-based attributes should 

specifically allow for these unusual situations. It was assumed that this effect was 

seen due to random variations in the fit from different trainings and may not have 

occurred had a much larger number of trials of each data combination been 

conducted. However, this effect was considered in the further studies of model 

structure below.  

a) 

 

 

 

               

b) 

Recurring Pattern 
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Figure 7-27 - Sample of Model Output on 100th day of training for a) ToD-DoW-DoY b) ToD-

DoW Input 

7.8.2 Including binary presence of occupants in zone 

In the occupancy data provided for training, the general trends in local occupancy rate 

are informed by individual patterns from each occupant agent. It was investigated 

whether including specific data on known occupants would improve the performance 

of the prediction model. The past presence of each individual known occupant was 

included as 16 discrete binary inputs to the network.  

 

Figure 7-28 - Sample of Model Output on 24th day of training, binary presence of individual 

known occupants included 

a) 

 

 

 

               

b) 
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Figure 7-28 shows a sample from the training of a network trained with this additional 

binary presence input. The resulting model is clearly prone to extreme fluctuations, 

likely indicating overfitting issues. Providing a larger initial training dataset could 

reduce this issue, but it was deemed unacceptable that the model would not reach 

anything close to stable operation within a 3-week setup period.  

The overfit problem could be potentially reduced by including fewer occupants, such 

as only those occupants who are known to spend the majority of their time in the zone 

being trained. However, Table 7-4 shows that both presence-data-inclusive models 

performed significantly worse than an equivalent model without these inputs. The 

error was slightly reduced by including only the most relevant individuals, but no by a 

margin large enough to justify including this data at all.  

Table 7-4 - Comparison of Average RMSE of Prediction Model using Occupant Presence Data 

 No individuals All individuals Select individuals 

RMSE 0.250 1.730 1.540 

 

7.8.3 Number/Spacing of previous timesteps included 

As it was previously shown that the model had a tendency towards overfitting to the 

training data, it was important to ensure that the total number of inputs, and so 

internal weights, of the model was not excessively high. As each previous timestep 

included is treated as a separate input, it was investigated how far back into the past it 

was necessary to include for adequate training of the model. In the following tests, the 

‘delay’, or number of previous timesteps included in the network training was varied 

on several training runs using the same 100-day generated dataset. 

One of the behaviours of the predictive model that had been observed in previous runs 

was the tendency to predict a typical number of occupants returning from a lunch 

break, regardless of the number of occupants seen on a morning. This led to an 

overestimate on unusual days when fewer occupants were present, as shown in Figure 

7-29. It was tested whether including further previous timesteps would reduce this 

issue. However, it was found that as the number of previous steps was increased, 

overfitting issues leading to unstable predictions on new data were increasingly 

strong, as shown in Figure 7-30. It was clear that the total number of previous 

timesteps included could not extend beyond 12 individual inputs.  
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Figure 7-29 - Sample Unusual Day - Illustration of Lunch Break Prediction when supplied with 

up to 12 (1 hour) previous timesteps 

 

Figure 7-30 - Sample Day when supplied with 15 (1.25 hour) previous timesteps – overfitting 

encountered 

A series of tests were made with reduced delays. It was also tested whether non-

consecutive timesteps could be an effective way to reduce the number of individual 

inputs while maintaining the furthest horizon included: for example, a delay of ‘1-7-

12’ takes three past timesteps in total, spaced 5, 35 and 60 minutes into the past 

respectively. The 1-day moving average RMSE of some of the more successful delay 

variations is shown in Figure 7-31. It can be seen that the RMSE was generally 

reduced by reducing the number of previous timesteps included as model inputs. 

Where the same number of inputs were used with different timeslots, the slots further 

into the past showed a higher general error rate, suggesting that these inputs were less 

relevant to the future occupancy.  
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Figure 7-31 - Comparison of Varying no Previous Timesteps - RMSE over 100-day run 

 

Figure 7-32 - Comparison of Varying no Previous Timesteps – average RMSE over prediction 

horizon 

7.9 Recognition of pattern types 

The generated dataset was used to assess how the complexity of the underlying 

occupancy patterns affected how useful the prediction model was relative to simpler 

prediction heuristics. The two simpler rules tested were: 

• Base – this ‘prediction’ was based on a typical unchanging occupancy 

schedule, as might be found applied to a standard building control system. It 

assumed that all occupants arrived at 09:00 and left at 18:00, with a 1-hour 

break 13:00-14:00. Weekends were assumed to have zero occupancy. 

12 consecutive 

1 delay 

1-7-12 delay 

1-8-15 delay  

12 consecutive 

1 delay 

1-7-12 delay 

1-8-15 delay  
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• Mean – assuming that accurate occupancy data is being collected, a simpler 

way to predict occupancy for a given time of day on a given day of the week 

would be to take the mean of all previous observed occupancy rates at that 

time and day. 

It was hypothesised that the simpler heuristics would perform less well against the 

prediction model the more realistically complex the observed occupancy patterns 

became. 

7.9.1 Regular patterns only 

The model was initially trained on a dataset generated with occupant agents that never 

deviated from their personal default schedules, as defined in Section 7.5. This meant 

that the occupancy of each zone followed a set weekly pattern with no variations. 

From Figure 7-33 and Figure 7-34 it can be seen that the prediction model was prone 

to instabilities on this highly regular dataset, giving a relatively high error rate. The 

‘mean’ method of prediction performed perfectly with this unrealistically regular 

occupancy data due to the lack of variation on the standard weekly schedule.  

 

Figure 7-33 - Regular Occupancy Only - Sample of multi-occupant zone after 99 days of training 

 

Figure 7-34 - Regular Occupancy Only – Comparison of Error Rates for each Prediction Method 
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7.9.2 Regular Patterns + Gaussian Noise on start/end times 

Building up the realistic variations on the agent occupancy profiles, the next training 

was run on a dataset with the same regular patterns as previously, but with a 

Gaussian-based agent-dependent variation on each occupant’s entry/exit times for any 

occupied period. Figure 7-35 shows a sample day at the end of a 100-day training 

period. The instabilities in the prediction model are no longer present, with a 

smoother prediction less prone to extreme fluctuations. The mean prediction had 

become less effective.  

 

Figure 7-35 - Regular + Noise - Sample after 99 days of training 

7.9.3 Noise and Random Events 

The next iteration included additional random events that took occupants out of their 

regular zones for short periods of the day in order to simulate non-regular meetings 

and other typical daily events. Figure 7-36 shows the prediction model sample after 

training, which continues the trend of the mean and base schedules becoming less 

effective for prediction purposes. 

 

Figure 7-36 - Regular + Noise + Random Events - Sample after 99 days of training 
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7.9.4 Noise, Random and Visit Events 

The next addition to the dataset complexity was visit events, where non-regular visits 

to occupied zones were included, simulating meeting attendees, students attending 

drop-in sessions with staff, site visit groups etc. Figure 7-37 shows the prediction 

model sample after training, which further continues the trend of the mean and base 

schedules becoming less effective and the trained prediction model producing more 

realistic estimations based on the current occupancy. 

 

Figure 7-37 - Regular + Noise, Random, Visit Events - Sample after 99 days of training 

7.9.5 Full Complexity - Noise, Random, Visit and Holiday Events 

The final dataset complexity included all the factors listed in Section 7.5, with the 

same base schedules as the previous examples and including the time-of-year based 

holiday events where agents would be absent for a prolonged period around certain 

times of year. In this case, at times close to national holidays when most office 

occupants are on holiday, the daily number of occupants in a zone can differ 

significantly from the usual profile. In the case of this training data, one of these 

unusually low-occupancy days was found at the end of the 100-day test period, as 

shown in Figure 7-38. Here, the trained prediction model outperformed the simpler 

heuristics by a much larger margin, as the model was able to react to an unusually low 

number of occupants logged in the recent past and adjust its future predictions 

accordingly. Figure 7-39 shows a more typical weekday for comparison.  
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Figure 7-38 – Full Complexity Simulated Dataset – Unusual Weekday Sample 

 

 

Figure 7-39 - Full Complexity Simulated Dataset – Typical Weekday Sample 

7.9.6 Full Complexity – Positive-Constrained Model 

It is possible to constrain the output from an ANN model to only non-negative values, 

however this was found to increase some overfitting issues found in Chapter 6 and so 

was not tested as the default structure for the prediction model. However, as the full-

complexity prediction model appeared to show less signs of overfitting than the 

detection model, it was tested with a positive-constrained output to check if this 

reduced the error rate by ensuring that negative occupancy values could not be 

predicted.  

Figure 7-40 and Figure 7-41 shows this model’s results on the same reference days to 

Figure 7-38 and Figure 7-39, respectively. It can be seen that the positive-constrained 

model produced predictions that stayed tighter to the actual occupancy rate, but with a 

much stronger, and sometimes inappropriate, bias towards the current value of 

occupancy, as shown in the unusual day, where the model fails to predict that the 

present occupant will leave until after they have done so.  
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Figure 7-40 - Full Complexity Simulated Dataset, Positive Output - Unusual Weekday Sample 

 

 

Figure 7-41 - Full Complexity Simulated Dataset, Positive Output - Typical Weekday Sample 

7.9.7 Comparison 

One measure to assess the effectiveness of the trained prediction model was to 

calculate how far into the future it was able to produce more accurate predictions than 

the other two methods. Figure 7-42 shows the comparison to the Base Schedule for 

each dataset complexity level: as the dataset became more realistically complex, the 

trained prediction model was able to outperform the baseline up to 110 minutes into 

the future on average. When compared to the Mean Schedule in Figure 7-43, it was 

found that the trained model showed a less pronounced, but still positive 

improvement, outperforming the mean up to 50 minutes into the future on average. A 

clear relationship can be seen in both cases, that the trained model was able to account 

for unusual circumstances where the simpler methods could not.  
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Figure 7-42 – Horizon with lower RMSE of Trained Prediction Models against Base Schedule 

 

Figure 7-43 - Horizon with lower RMSE of Trained Prediction Models against Mean Schedule 

It was also tested whether the outputs from the prediction model could accurately 

predict binary presence – whether the tested zone was occupied by any people or not. 

For the chosen regression model, presence was assumed when the prediction was 

greater than 0.5. Occupant absence was assumed when the presence was less than or 

equal to 0.5. Once again, this accuracy was compared to simpler prediction methods, 

including the binary presence assumed by whether the running daily mean was greater 

or smaller than 0.5.  

Figure 7-44 shows a sample of the binary accuracy of the predictive model when 

compared to the mean. Where the bar is above the axis, the model is outperforming 

the mean method and when the bar is under, the mean is outperforming the model. 

Figure 7-45 shows a summary of the performance across all data pattern types. From 

this analysis, it was possible to observe the following: 
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• The accuracy of the mean estimation was independent of the time horizon, as 

it was not based on the current reading. 

• This meant that for shorter prediction horizons, the BNN prediction produced 

more accurate predictions. 

• As a general rule, the more randomness/complexity measures were included in 

the dataset, the longer the prediction horizon where BNN was more effective 

than mean. 

• With the model setup tested, for the most realistic dataset, BNN produced a 

better accuracy than the mean for an average of 40 minutes into the future.  

• For most of the datasets, the prediction performed better on weekends. 

• On the holiday-inclusive datasets, the common holiday periods could be 

clearly identified by the performance of BNN prediction over the mean 

prediction. BNN performed consistently better during these periods, as 

indicated in Figure 7-44. 

It should be noted that this analysis does not account for the uncertainty level obtained 

in the BNN prediction. In application to a control system, the uncertainty could be 

used to supplement the final prediction, potentially allowing some of the erroneous 

predictions to be identified and ignored in real time. This could potentially further 

improve the performance of this option.  
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Figure 7-44 – a) Comparison of Binary Accuracy from Predictive Model vs Mean Occupancy b) 

Binary Occupancy During this Period 

 

Figure 7-45 – Binary Presence - Horizon with higher accuracy of Trained Prediction Models 

against Mean Schedule 

7.9.8 Long-term Changes in Pattern 

In order to test a long-term change of occupant agent, a dataset was generated with a 

change of one agent in a multi-occupant space at around 2/3 of the full dataset length. 

Figure 7-46 shows the results of this test. The error rate over time showed no 

Holiday Event Weekend Events 
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significant increase in the average error after the occupancy change was introduced. 

This is likely because: 

• In a multi-occupancy room, the relative effect of a single person changing 

patterns is low 

• Given the multiple occupants, but no way to define between them, the model 

in this form does not capture features detailed enough to be greatly affected by 

a single occupant change 

 

 

Figure 7-46 - Mean Error of Predictive Model vs Mean Method after Long-term Change in 

Agent a) Mean Absolute Error b) Comparison of methods 

In terms of performance against the mean strategy, the results were not clear. It does 

appear that the prediction model performed on average better than the mean after the 

occupancy change, but this was often also true before the change. It should also be 

noted that the worst performance against the mean occurs after the occupancy change 

– on a weekend when the post-lunchtime increase in occupancy was falsely predicted 

by the model. 
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7.10 Model Optimisation 

7.10.1 Deep Learning 

Although the initial tests of the model to define the most useful sets of inputs etc. 

were conducted on a relatively simple network structure with a single hidden layer, it 

was investigated whether adding further layers would allow for the capture of more 

complex behaviours in the occupancy patterns. A comparison of several multi-layer 

configurations was made, although due to computing restraints the number of neurons 

in the hidden layers was required to be kept to a similar level as the simple testing. As 

the system was repeatedly shown to be prone to overfitting even at low numbers of 

neurons in the previous testing, it was assumed that much more complex deep 

learning structures would not have been able to reach an acceptable performance level 

within the 1-4 week boundary set for reasonable operation of the model in a real 

application.  

 

Figure 7-47 - Comparison of Multi-Layer Networks – Max. Prediction Horizon that outperforms 

Simple Prediction Heuristics 

Figure 7-47 shows that the average beneficial performance against single-layer 

network of 10 neurons for the full-complexity test dataset is varied. The high variation 

between similar structure types suggests that the training tends to fall into local 

maxima and so depends on the initial state of the network. This means that the 

comparison in the graph should not be taken as definite ranking, but as a general 

indication of what types of structure were more or less successful. 
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Figure 7-48 and Figure 7-49 show the moving average performance of each structure 

over time, demonstrating some of the differences between the structure types. The 

two-layer structures starting with a 2-neuron layer showed a relatively low error on 

the first 2 weeks of training data, but began to underperform relative to the other 

structures as the length of training data available increased. The structures with an 

initial layer greater than 8 neurons showed a much larger error during the first three 

weeks of adaptation data, and then settle to a performance similar to the other 

structures over time. This suggests that overfitting is an issue with smaller datasets as 

the structure becomes even slightly more complex.  

In general, it appeared that a two-layer approach can yield a better performance than a 

single-layer over the long term.  For the three-layer models, it appeared that 

overfitting to the training data became more of an issue. It should also be noted that 

most of the three-layer structures tested required more than one attempt at training, as 

they ended towards local minimum solutions such as prediction of zero occupancy at 

all times.  

Another consideration when increasing the complexity of the network is the 

computational training time required in order to achieve a certain level of accuracy.  

There are many ways to include this as a metric for success. The total training time 

over a 100-day run for each variation is shown in Figure 7-50, while Figure 7-51 

shows the average error weighted by total training time. Here it can be seen that the 

structures with fewer neurons offer a better error per runtime. However, runtime can 

be sacrificed to some extent to benefit the accuracy over the long term, as long as the 

system could feasibly run in real-time. It was considered that any of the structures up 

to the three-layer configurations would be feasible to run as part of a system re-

training daily.  
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Figure 7-48 a-c - Moving Average Mean Error for various Prediction BNN structures over 100-

day Training Period 

 

a) Baseline single-layer model 

b) Two-layer models starting with 2 neurons: 

Lower RMSE at start, but higher over long term 

c) Two-layer models starting with 5 neurons: 

Lower RMSE at start, similar to 10n over long term 
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Figure 7-49 d-f - Moving Average Mean Error for various Prediction BNN structures over 100-

day Training Period 

d) Two-layer models starting with 8 neurons: 

some higher RMSE at start, lower over long term 

e) Two-layer models starting with 10 neurons: 

High RMSE at start, similar long term 

 

f) Three-layer models starting with 10 neurons: 

High RMSE at start, similar long term 
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Figure 7-50 – Total training time over the whole 85 day online training for various BNN 

structures 

 

Figure 7-51 - Error averaged over the whole training period, weighted by multiplying by total 

training time/max training time 
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7.11 Proposed Model 

A finalised model was proposed to combine the optimal findings as discussed in the 

previous sections. This included the following: 

• NARX neural network trained with the Bayesian optimization to allow for 

calculation of uncertainty levels on the predictive output. 

• Daily retraining of the model at the end of each day to update the patterns 

found with new data as occupant schedules change over time. 

• Inclusion of the time of day and day of week as model inputs.  

• Superfluous previous timesteps omitted from the model inputs. 

• Relatively simple internal structure of hidden layers – as more complex 

structures were found to overfit badly with smaller amounts of training data, 

they were considered unsuitable even if they could have had the potential to 

encode more complex patterns over a much longer timescale of training. An 8-

2 hidden layer structure was selected. 

It was found in section 7.9 that the trained predictive model could perform better than 

all tested simpler prediction heuristics up to around 45 minutes into the future, and 

against the baseline fixed schedule up to 2 hours. It was also observed that the highest 

errors in the prediction model output were most often associated with a high value of 

the calculated uncertainty variable. In order to improve the overall performance of the 

model after the 45-minute prediction horizon, a hybrid model was proposed to defer 

to the mean-based heuristic when the output of the model was too uncertain.  

The optimum threshold for the uncertainty level was determined by testing the overall 

RMSE found with several different thresholds. It was found that during a 100-day run 

of the trained prediction model that the uncertainty variable 𝜎2 showed a wide range 

of values, indicating an extremely low certainty in the model output at some points. 

The range of threshold values for 𝜎2 used are shown in Table 7-5.  
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Table 7-5 - Hybrid Model Values Tested 

Model Name 𝝈𝟐 Threshold Value 

Hybrid 1 1 

Hybrid 2 10 

Hybrid 3 100 

Hybrid 4 1000 

Hybrid 5 10000 

Hybrid 6 100000 

Hybrid 7 1000000 
 

Figure 7-52 summarises the performance of each of these hybrid models against the 

fully predictive model and the fixed-schedule baseline as described in section 7.9. 

Hybrid 1 favours the mean-based heuristic more often, while Hybrid 7 favours the 

trained model in all but the most uncertain cases. It can be seen that at the lower 

thresholds, the far-future prediction performance is significantly improved, but the 

near-future is less accurate, as the hybrid model is predicting the mean-based value 

more frequently even within a 15-minute prediction horizon. This suggests that a 

balance can be made depending on the prediction horizon of most interest, which is 

determined by the system to be controlled and its projected response time in the space 

being monitored. 

 

  

Figure 7-52 – Comparison of overall Hybrid Model Performance against Fully Trained Model 

and Baseline Schedule 

In the case studies made in Chapter 4 and the review of existing research, it was 

established that times when the occupants’ behaviours significantly deviates from 

typical patterns are the most critical in terms of energy saving opportunities. The 

balance of performance between the trained prediction model and the mean-based 
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heuristic in these unusual situations was compared for only days with unusual 

occupancy patterns. This was defined as any weekend day with nonzero occupancy, 

or any weekday that had fewer than the expected number of regular occupants for the 

given zone all day. Figure 7-53 summarises the RMSE for each of the hybrid models 

for unusual days only: it can be seen that the mean-favouring thresholds performed 

significantly worse up to a 1-hour horizon during these days, with the optimum 

overall performance found with Hybrid 5 at a threshold of 10000. This threshold 

appeared to provide the best balance between ignoring extremely uncertain outputs 

from the trained model, but allowing for some increase in uncertainty that is seen 

when an unusual situation arises. It is this threshold that is therefore proposed for the 

final predictive model. 

 

Figure 7-53 – Comparison of overall Hybrid Model Performance against Fully Trained Model 

and Baseline Schedule over days with Unusual Occupancy Patterns 

It should be noted that the exact structure and numerical thresholds discussed above 

for the final model are location-specific and would likely need to be adjusted if the 

predictive model was to be applied to a different building. Selection of appropriate 

values for these parameters of the model could be automated for a more general 

application, if supplied with an amount of training data and a known optimal 

prediction horizon/pattern trait to aim for.  

From the graphs shown, it can be seen that the final proposed model was able to 

predict the local number of people in a multi-occupant space with an average error of 

less than one person, with increasing accuracy at closer prediction horizons. The 
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output of the model is complemented by a calculated uncertainty level that can be 

supplied to building controls systems in order to better inform the logic used to 

optimise building energy use in response to measured and predicted demand levels. A 

sample of the Matlab code used to construct the final models is included in the 

physical copy of this work in Appendix 10.7. 

7.12 Conclusions 

In this chapter, a model to predict the changing number of occupants in a space across 

the near future was developed based on measured values of recent past occupancy 

rates. A Bayesian Neural network was selected to allow for the calculation of 

uncertainty levels in the model output, with the acknowledgement that achieving a 

perfect prediction of future events is not possible, the level of certainty in the 

predictions made is a valuable measure for the purpose of making control decisions.  

The structure and optimisation of the proposed model was developed using a 

generated dataset to allow for testing on training data of an arbitrary length and 

control over the types of patterns shown in the data. A method to generate a dataset 

with same characteristics as the test building was developed as a part of this work, 

with a basis on using individual occupant agents with individual variations on 

characteristics such as typical times of occupancy and likelihood of staying longer 

than usual. While the use of generated data allowed for more detailed enquiry into the 

timescales required to reach a relatively stable error rate and the types of pattern that 

could be predicted by a trained model, it should be noted that there are potential 

limitations to not testing on long-term sets of real-world occupancy data. For 

example, the generated dataset may not represent all patterns and complexities found 

in real-world data. A potential extension to this work would be to apply a similar 

testing strategy with a real-world dataset covering a similar time span.  

Several alternative methods were explored for the issues of predicting a variable 

multiple timesteps into the future and adapting a trained model to new data over time. 

The best overall performance for these issues was found with a recurrent NARX 

neural network that was retrained in a batch at the end of each day. One of the issues 

with this system was the tendency for errors to accumulate on successive predictions: 

this issue was addressed to some extent with the hybrid model method based on the 

calculated uncertainty level. 
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Investigation into the most effective input variables for the trained model showed a 

general tendency towards overfitting, as with the detection model. This meant that, in 

order to achieve a reasonable performance within a 3-week initial training period, the 

number of input variables and model structure needed to be kept to a minimal level. 

Time-based data most useful to pattern prediction was the time of day, with some 

limited value to the day of week or weekend/weekday indicator. Including the binary 

presence of occupants was found to be too much data for a system to train quickly – it 

caused overfitting over a full 100-day training period and so was discarded from the 

final model. The number of past timesteps included needed a balance between 

keeping the number of inputs low to avoid overfitting and including enough past 

context to avoid issues around expecting the correct number of occupants back after 

absences. 

As it was possible to manipulate the complexity of occupancy patterns in the 

generated training data, it was investigated how the trained model performed against 

simpler prediction techniques as the data became more realistically complex. It was 

found that the model gave a better performance than the baseline fixed occupancy 

schedule up to 110 minutes into the future when trained on a realistic dataset.  

The final proposed predictive model was a hybrid approach that avoided some of the 

more extreme errors from the trained neural network by deferring to a simpler mean-

based prediction when the calculated uncertainty level was beyond a given threshold. 

This threshold was determined by the emphasis on improving the performance in 

unusual occupancy situations, but could be altered depending on the priorities 

required by the building energy management system in application to real building 

controls. 

The system developed in this chapter is designed to facilitate the proactive control of 

slower-response systems such as heating and ventilation. The prediction horizon of 

interest was set at 2 hours in this work, but the most useful prediction horizon in 

application would depend on the characteristics of the space, the system to be 

controlled and the gap between its starting state and desired state. For many 

applications, a prediction horizon lower than two hours would be sufficient. 

In application, a factor of interest is how failures of the predictive model could be 

handled, and what consequences could arise from a misprediction. An incorrect 
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prediction could be caused in two different ways: failure of the model itself, or 

incorrect inputs from the detection model. 

Failure of the predictive model itself – as there will always be some unpredictability 

in real occupant patterns, even a predictive model that could perfectly represent the 

patterns in its training data would not be able to perfectly anticipate future events at 

all times, and so mispredictions should be expected within normal running conditions. 

The predicted uncertainty level should allow for informed treatment of many such 

situations, as higher errors were typically associated with higher uncertainty, as 

shown by the improved performance of the hybrid model in section 7.11. However, 

there will also be some situations where occupants diverge from their typical patterns 

and a higher-certainty prediction will prove to be false. In these cases, the control 

outcome will depend on the priorities of the building manager: control logic could be 

implemented to enact more aggressive energy saving measures, where a failed 

prediction would result in less comfortable occupant conditions, or if occupant 

comfort takes a higher priority, the space conditions could be kept closer to comfort 

levels at the expense of losing some smaller energy saving opportunities.  

Failure of occupant data supplied to the predictive model – to allow for systematic 

analysis of the prediction model developed in this chapter, the assumption had to be 

made that the training data supplied was representative of actual occupancy rates. The 

work in Chapter 6 suggests that this will not always be the case: occupancy detection 

systems that count all occupants of a space were not always correct. If the prediction 

model is working on incorrect data, there is potential for a greater deviation from 

actual future occupancy rates. Once again, the Bayesian treatment of the predictive 

model is designed to counter these issues to some extent: the possibility of random 

noise on the prediction model inputs is accounted for in the uncertainty method used. 

However, in the case of systematic errors, which could feasibly be encountered where 

the detection data side has either been poorly trained or encounters sensor data far 

outside the scope of its original training, this would represent a failure for the 

predictive model where errors from the detection model could be compounded. This 

is one of the drawbacks to splitting the job of occupant detection and prediction into 

two separate modules. Where a predictive model is consistently producing poor 

outputs due to poor input data, a manual intervention may be required to replace or re-

train the occupant detection source. As part of a greater control system, it may be 
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possible to include logic where manual interventions to the building controls could 

prompt an automated assessment and re-train of the occupancy sensing models to 

attempt to reduce such errors over time. This possibility is beyond the scope of this 

work, but would be a valuable consideration for further study. 
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8 DISCUSSION AND CONCLUSIONS 

The body of this work covers the development of systems and methods to address 

uncertainties around building occupancy through the collection and processing of 

real-time occupant data for building energy management purposes. Through 

identifying areas of interest in case studies, systems targeted at a feasible and low-cost 

solution to occupant localisation were developed and tested in a small office setting. 

Models to combine sensor data into an estimation of local occupancy rates and to 

predict near-future changes in occupancy were developed through the application of 

machine learning techniques, with the aim of generating relevant and useable 

occupant information to better inform building automation systems and to target 

building energy use more closely towards actual occupant needs. 

While there is a significant performance gap between designed and actual building 

energy use, in which occupant behavioural and building control issues are a 

significant factor, it was found that current building controls systems rarely explicitly 

measure occupant data, severely limiting their capacity to react appropriately to 

changing occupant needs and highlight potential places to save energy without 

negatively impacting occupant experience. In recent years, the Building Energy 

Management Systems (BEMS) field has seen an increasing interest in the intelligence 

included in building automation software.  

From the wide range of approaches into the collection of occupant data undertaken in 

existing research, it can be seen that the measurement of building occupants is a 

highly complex problem that requires a clearly defined aim in the type and level of 

data collected, as well as a necessary trade-off between the level of detail measured 

and the perceived intrusion into occupants’ privacy. ‘Occupant data’ could encompass 

a wide range of actual data types, from simple binary presence to highly 

computationally intensive systems to infer specific occupants’ activities. In 

application to building controls, occupant data can be used in a range of ways, 

approximately falling into four categories: real-time response to occupant changes, 

control to individual preference, control based on activity type and pre-emptive 

predictive control. Due to the wide range of building types and control methods 

reviewed, it is difficult to directly compare the energy saving made by different 

studies. In research that compares different strategies in the same building, it appeared 
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that the greatest overall energy saving was achieved with controls that combine 

reactive and predictive approaches to optimise conditioning of a space, although some 

authors questioned the added value of prediction versus its increased computational 

requirements. The occupant-predictive energy management and control was identified 

as an area with a potential for expansion as available computing resources develop. 

This finding informed the emphasis on predictive algorithms for occupancy rate in the 

later stages of this work. 

The overarching conclusion from the case studies presented in Chapter 4 is a 

confirmation of some of the issues around occupant data collection that were 

identified in the review chapters: the collection of any kind of in-use occupancy data 

is not widely implemented, and where data is collected, it is often not sufficient for a 

full understanding of where energy expenditure actually provides benefit to the 

building user. In a domestic setting, it was found that binary occupant presence can be 

inferred from single-point motion and CO2 data, although with some reliability issues. 

Broad energy trends were analysed, finding that the heating and ventilation systems 

were often controlled without regard to the presence of the occupants. In a large office 

setting, access control data was used as a proxy for building occupancy, identifying 

some mismatch between the change of energy use and building population across 

weekdays and weekends. Different office floors showed different correlations to their 

daily occupancy rate, potentially highlighting more wasteful energy or control 

behaviours on these floors. In a school setting, the collection of explicit occupancy 

data ran into concerns about privacy. Through examination of predefined active 

school hours, it was found that occupant actions had a significant effect on the energy 

use relative to expected rates, with higher than expected occupancy outside of 

contracted hours raising the overall energy use above the accepted threshold for the 

building’s energy contract. Through qualitative interviewing it was seen that the 

conditioning of some spaces did not adequately account for sudden large changes in 

occupancy, highlighting the need for slow-response building systems to be able to 

work pre-emptively where sudden changes in occupant rates can be anticipated. 

The technologies set up and tested in Chapter 5 showed some successes in their goals 

of minimal-cost, passive collection of occupant data using wireless signals and users’ 

personal devices. Using the single-point Raspberry Pi device to listen for local Wi-Fi 

probe signals, more generic information can be collected than with the more typical 
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method of counting the number of devices connected to a specific network, as this 

system also counts visitors who do not actively connect to any local Wi-Fi networks. 

Assumptions were applied to group together detection events for each device, 

allowing a continuous measure of presence. However, the frequency of detection was 

found to be highly variable depending on factors such as the type and use of the 

personal device. The signal strength of the received Wi-Fi signals was found to have a 

relation to locality, with a significant drop in signal strength seen caused by both 

distance and blocking by building fabric. This allows the signal strength to be used to 

filter out false positive results from people passing nearby the monitored area, but this 

is dependent on the location of the sensor and makeup of the building. The second 

system tested used software running on specific personal devices to detect the 

distance from a series of Bluetooth-LE beacons around the monitored building. An 

Android-based app was developed for this purpose. The use of Bluetooth-LE 

specifically allowed for more frequent probes with the same battery capacity, meaning 

that finer-grade data can be collected with less of an impact on the battery life of 

components. However, signal strength of Bluetooth was found to be highly variable 

due to physical properties of Bluetooth frequency waves: the signal was easily 

blocked by people, furniture and building fabric. The capture rate of both of the tested 

systems rely to some extent on properties of occupants’ personal devices, which 

cannot be relied upon across an entire building population. This means that personal 

device detection in these forms would not currently be appropriate for use alone in a 

building energy management occupancy detection system, where reliability and 

consistency are important. However, as part of a greater system, these two measures 

can provide valuable information.  

As a more comprehensive and uncertainty-sensitive system was needed, a system was 

proposed to combine sensor data from multiple sources, allowing benefit from the 

specific strengths of multiple sensor types. From the review of existing studies, it was 

decided that the most effective BEMS occupancy measure should also include some 

prediction of future events, remaining sensitive to the unavoidable uncertainties in 

future prediction. The task of interpreting this occupant data was split into two 

modules: the first focussing on occupancy detection, and the second focussing on 

probabilistic prediction.    
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The first stage of the data interpretation was the development of a model to interpret 

useable occupancy data from raw sensor data, which was detailed in Chapter 6. For 

this task, an Artificial Neural Network model was trained on labelled ground truth 

data, with the aim of combining raw sensor data to estimate a local number of 

occupants. It was found that zone-level networks trained on a selected subset of the 

available sensors provided the lowest error on the test data. Methods for pre-

processing incoming data were tested, finding that the recent trend in local CO2 was 

better able to represent occupancy rate than the absolute value in most zones. Noise 

removal on data inputs was found to be effective as long as the noise removal 

technique did not cause a significant time lag on changes in the data values. Data from 

personal mobile devices also required some pre-processing to ignore non-personal 

devices and to reduce the total number of inputs supplied to the model. The most 

effective combination of sensors varied from zone to zone, with reliance on the type 

and pattern of space use, as well as some physical properties of the zone. In 

application, it is essential that these differences are accounted for if a system or model 

has only been tested in one type of space. It was also found that some spaces did not 

see enough use during the training period to properly encode their patterns into the 

model. For more comprehensive research into the relationship between space use and 

the effectiveness of passive occupancy sensing methods, much broader datasets of 

diverse space types would be needed in testing.  

A significant shortcoming found in the supervised learning approach used in this 

chapter was the reliance on manually labelled training data. As the data collection 

periods were short due to the practical issues around manual location recording, 

models had to be kept relatively simplistic to avoid the overfitting issues associated 

with a smaller training dataset. This issue is common to any supervised learning 

approach and cannot be avoided without introducing other potential sources of error, 

such as relying on the personal judgement that is typically needed to interpret useable 

information from unsupervised models.  

Ultimately, it is expected that as technologies progress, an occupancy detection model 

based on the particular passive data sources tested in this work may become 

redundant. For example, if a more reliable system can be made using data from 

personal devices, this would perform mostly the same function at a considerably 

lower time and monetary cost than installing the full range of sensor types tested in 
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this work. However, it should be noted that some form of sensor combination is 

necessary if all occupant types are to be detected: not all occupants have mobile 

devices switched on at all times, not all occupants are regular office users that could 

be expected to carry tagging equipment. In long-term post-occupancy analysis or 

general pattern observation, there is less penalty if some occupants are missed. 

However, in building services control it is essential that the building can respond to 

any occupant. In theory, any reliable occupancy detection system could be used as a 

data supply for a predictive model for future occupancy, which is developed in the 

next chapter. 

As the second stage of the occupant data interpretation, in Chapter 7 a predictive 

model was developed to pre-emptively estimate changes in local occupancy rate 

based on the recent past. A Bayesian Neural network was selected to allow for the 

calculation of uncertainty levels in the model output, with the acknowledgement that 

achieving a perfect prediction of future events is not possible, the level of certainty in 

the predictions made is a valuable measure for the purpose of making control 

decisions. The structure and optimisation of the proposed model was developed using 

a generated dataset to allow for testing on training data of an arbitrary length and 

control over the types of patterns shown in the data. A method to generate a dataset 

with same characteristics as the test building was developed as a part of this work, 

with a basis on using individual occupant agents with individual variations on 

characteristics such as typical times of occupancy and likelihood of staying longer 

than usual. A restriction was placed on the model performance that any model that 

required more than three weeks of training data to start giving reasonable results 

would be discarded even if it provided better results over longer periods, as it is 

unreasonable to expect a non-functional system to run in a building for months before 

it begins working as intended. This limited the complexity of patterns that the model 

was able to represent, but it was considered unrealistic to have a poor performance for 

too long in a live system. After optimisation and testing, it was found that the trained 

model gave a lower prediction error on the local number of occupants than the 

baseline fixed occupancy schedule up to 110 minutes into the future when trained on a 

realistic dataset. The final proposed predictive model was a hybrid approach that 

avoided some of the more extreme errors from the trained neural network by deferring 

to a simpler mean-based prediction when the calculated uncertainty level was beyond 
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a given threshold. This threshold was determined by the emphasis on improving the 

performance in unusual occupancy situations, but could be altered depending on the 

priorities required by the building energy management system in application to real 

building controls. 

The predictive system developed was designed to facilitate the proactive control of 

slower-response systems such as heating and ventilation. The prediction horizon of 

interest was set at 2 hours in this work, but the most useful prediction horizon in 

application would depend on the characteristics of the space, the system to be 

controlled and the gap between its starting state and desired state. 

Through each stage of this work, the findings have reinforced that while there is a 

clear need to increase the understanding around occupants and energy use and to 

increase the responsiveness of buildings to their occupants, the ways that occupant 

data can be collected are affected by a wide variety of application-specific challenges. 

The ways in which occupants can interact with built environments are as diverse as 

occupants themselves, and any system to tie this interaction down to a single 

measurable value will necessarily lose some nuance in doing so. It is therefore of the 

highest importance that occupancy sensing systems are designed sensitively to the 

desired application and the space being monitored. There are several, often 

competing, factors to consider: 

• Application requirements – exactly what aspect of occupant data needs to be 

measured (presence, location, activity etc.) depends heavily on how the data is 

to be used. In controls, reliability of data collection is very important as there 

is a comfort or energy cost to making errors; for general trend analysis to feed 

back into designs, this is less so. For fast-response systems occupants must be 

detected instantly, but slow-response systems may need pre-emptive 

anticipation of patterns or prediction of future events. 

• Privacy of occupants – both perceived and in terms of data security. 

Occupants may not be comfortable with systems perceived as intrusive, and 

where data is linked directly to a person’s identity, participant consent must be 

sought and data must be appropriately protected. Passive data collection is not 

as likely to collect information that can be directly tied to one person, but this 

approach may not provide enough information for some controls, such as pre-
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emptively switching on a user’s office equipment as they are detected 

approaching.  

• Installation costs and practicalities – in many cases, improved controls 

systems will be applied in existing buildings where it is not feasible to install a 

large number of wired sensors. Developments in wireless technology have 

allowed for a more viable approach to indoor data collection. 

• Physical components – it was shown through this work that space 

characteristics can affect the way systems react to similar situations. In 

particular, the detection of personal devices through Wi-Fi and Bluetooth were 

found to be significantly affected by the building fabric and layout. 

Environmental sensors were also seen to have different responses depending 

on the characteristics of their location. 

• Behavioural components – the response of physical sensors was also shown to 

be somewhat dependent on stay duration. Systems based on occupant 

participation depend heavily on the correct use of equipment from occupants – 

be that remembering to carry tags or ensuring that Bluetooth is enabled on 

their personal device.  

The complicating factors for data measurement discussed above were part of the 

motivation to keep the data processing solutions developed in this work in a modular 

form: by keeping the sensor-end separated from the controls-facing predictive model, 

the system could theoretically allow for the introduction of new data sources or an 

updated way to interpret occupancy rates while maintaining the established learned 

occupancy patterns in the prediction model. This also highlights some benefits of 

building a system that makes use of multiple sensor types: where single sensors leave 

room for uncertainty, multiple sensors affected by different factors may be able to fill 

in gaps and create a more robust whole. 
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8.1 Recommendations for Future Work 

The work presented in this thesis covers several stages of a greater process in the 

inclusion of occupant data into building energy management. The direct continuation 

of this work would be to apply the occupancy detection and prediction models 

developed here to a live building automation system: a process that would involve 

further levels of appropriate machine intelligence to make the most effective use of 

the local anticipated occupancy changes and their calculated uncertainty. While 

predictive controls are an area of increasing interest in the built environment, to the 

author’s knowledge the application of explicitly calculated occupancy uncertainty 

would be a further novel step for building controls.  

A major consideration for further study is the issue of how failures in the detection 

and prediction of occupancy rate could be appropriately handled by an energy 

management system. As mentioned in Chapter 7, the logic of how a control system 

responds to high uncertainty situations, as well as the priorities for whether 

unpredicted events end in energy wasted or deviation from comfort conditions depend 

on the specific requirements of an application and the priorities of the building 

manager. 

In order to make the best use of localised occupant data, it is also essential that 

building controls are able to match the granularity of the observed occupant energy 

demand. A clear need has been established to tighten the use of building energy 

systems such as HVAC, lighting etc. to more closely meet what occupants actually 

need. This requires change on the control logic side, but also needs the physical 

capability of building controls to better localise building services. In many buildings 

services systems, large numbers of rooms can be fed by a single-actuator feed from a 

centralised control system. In this case, localised drops in energy requirement cannot 

be acted upon even if detected. To some extent, solutions to localised actuation of 

buildings services can be implemented on top of existing systems using controllable 

local actuators such as relays, local Wi-Fi-enabled sockets, local thermostats etc. For 

bigger systems, this change would need to be brought into the design stages of 

automation systems. 

The systems tested as part of this work were assessed for their usefulness in control 

applications, but could also be applied to other post-occupancy evaluation studies or 
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real-time analytics. In particular, the Wi-Fi and Bluetooth-LE based personal device 

detection showed the ability to gather localised occupant counts and to follow the 

indoor location of specific occupants with relatively low-cost equipment. If applied 

more widely, these technologies could provide long-term occupant usage data to feed 

back into the design stages for new buildings, addressing one of the other contributing 

factors to the observed building performance gap.  
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8.2 Publications from this work 

Some sections of the work in this thesis have been presented in published work. 

Further publications are pending and planned. 

Current publications from this work: 

• “A Post-Occupancy Case Study on the Relationship between Domestic Energy 

Use and Occupancy Profiles” [227] – presented at SET 2015 conference. 

• “A concept review of power line communication in building energy 

management systems for the small to medium sized non-domestic built 

environment” [228] – Renewable and Sustainable Energy Reviews. 

• “Bluetooth-based Mobile Device Detection for Improved Energy-Saving 

Controls System” [229] – presented at SET 2017 conference. 

• “The Development of Occupancy Monitoring for Removing Uncertainty 

within Building Energy Management Systems” [230] – presented at ICL-

GNSS 2017. 

Pending publications: 

• “A Review of Occupant-Centric Building Control Strategies to Reduce 

Building Energy Use” – Renewable and Sustainable Energy Reviews. 

Submission has received feedback from reviewers and amendments are in 

progress.  

Planned Publications: 

• “Developing a System for Localised Occupancy Detection for Building 

Energy Management” (Working Title). 

• “Developing a System for Occupancy Prediction for Building Energy 

Management” (Working Title). 
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10 APPENDICES 

10.1 Appendix – Green Street House Diagrams 

 

 

                . 

 

      .                                    

 

Figure 10-1 - Plans of house C showing the location of PIR and CO2 sensors on a) Second Floor 

b) First Floor c) Ground Floor 

  

CO2 Sensor 

PIR Motion Sensors 

a) Second Floor 

 

 

 

 

b) First Floor 

 

 

 

 

 

c) Ground Floor 



252 

 

 

 

 

Figure 10-2 - Plans of house G showing the location of PIR and CO2 sensors on a) Second Floor 

b) First Floor c) Ground Floor 
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10.2 Appendix – Explore Innovation Park Diagrams 

 

 

Figure 10-3 – Large office Case Study Layout: Ground Floor 
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Figure 10-4 – Large office Case Study Layout: First Floor 
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Figure 10-5 – Large office Case Study Layout: Second Floor 
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10.3 Appendix – Example Named Participant Consent Form 

EXAMPLE PARTICIPANT INFORMATION SHEET 

My project will be looking at the ways occupant data can be used to inform the 

controls in a building. I am using the existing sensing platform at the Mark Group 

House to collect environmental data on the temperature, CO2 level and motion in 

the office spaces. I intend to combine this non-identifying data with more explicit 

data on when the regular members of the office are present. This data will involve 

either or both of the following: 

• Detection of a Wi-fi enabled device, selected by you for use in this study, 

while in the office 

• Detection to the level of which room you are in while in the office through 

Bluetooth sensors placed around the house. This option is only possible for 

office members with handsets enabled with Bluetooth 4.0. 

In order to test the accuracy of occupancy detection through these methods, I 

will also be running a test period in which I will ask office members to manually 

sign in/out of the building on paper sheets placed near the doors. 

The above should involve a few minutes of your time for setup, and will otherwise 

be automatically collected upon your entry to the building. Those participating in 

the Bluetooth location sensing will be required to send their collected log file to 

the researcher periodically. 

All data will be anonymised as far as possible before publication: no names or 

personal device identities will be associated with the data at the time of public 

presentation. Raw data will be stored on the data collection hardware and 

researcher’s work computer(s), and will only be accessible by password entry. 

Note that the raw data alone will not identify the participants by name: data 

linking device IDs to real people will be stored in a separate file, also password 

protected. The raw data will only be accessed by the researcher and project 

supervisors.  

Please note that participation in this research is completely voluntary. Participants 

are at liberty to withdraw at any time without any consequences. In accordance 

with university ethics policy, participants have a right to access data stored on 

them at any time. 

Contact Details: 

Sophie Naylor - ___________ 

Supervisor Prof. Mark Gillott - ___________ 
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PARTICIPANT CONSENT FORM 

 

Project title: Managing the uncertainty of occupant behaviour through real-time 

building energy evaluation and management 

Researcher’s name: Sophie Naylor 

Supervisors’ names: Mark Gillott, Ed Cooper 

 

(Please tick all that apply) 

 I have read and understood the statement of intent to use occupancy data 

from the Mark Group House offices. 

 I have been given an opportunity to ask questions. 

 I understand I can withdraw from the research project at any time without 

any consequences. 

 I understand that while information gained during the study may be 

published, information which might potentially identify me will not be 

made public. 

 I understand that I may contact the researcher or supervisor if I require 

further information about the research. 

I consent to the use of my presence data in the Mark Group House via: 

 Wi-Fi – nominated MAC address is 

………………………………………………………………………… 

 Bluetooth 

 Manual sign-in test period 

 

Signed …………………………………………………………………………   

 

Print name …………………………………………………………………   Date ………………………………… 

 

Contact Details: 

Sophie Naylor - _________ 

Supervisor Prof. Mark Gillott - __________ 
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10.4 Appendix – Example Manual Location Data Collection Sheet 

  

Figure 10-6 – Sample Manual Location Data Collection Sheet 
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10.5 Appendix – iBeacon Software Plain-Language Algorithms 

10.5.1 Main Screen 
When the screen is first opened: 

 Initiate receiver for changes in occupied status 

 

 Check whether scanning is enabled/disabled 

  Set scanning slider to enabled/disabled 

 Initiate listener for slider. When slider is 

changed: 

  Start/End background service 

  Save new scanning status to internal 

storage 

  Set display text to indicate status 

   

 Initiate listener for ‘Send Results’ Button. When 

clicked: 

  Build email intent with log file attached 

 Initiate listener for ‘Edit Beacons’ Button. When 

clicked: 

  Start ‘Edit Beacons’ activity 

 Initiate listener for ‘Graph’ Button. When clicked: 

  Start ‘Graph’ activity 

   

When the screen is started/restarted: 

 Load the list of known beacons from internal 

storage 

 

 Load the status of each known beacon from shared 

preferences 

  Update display to current beacon if 

occupied 

 

When the screen is closed: 

 Stop receiver for changes in occupied status 

 

 

10.5.2 Adding/Editing Beacon List 

 

When the screen is first opened: 

 Initiate receiver for changes in occupied status 

 

 Load the list of known beacons from internal 

storage 

  Display the known beacons list 

 

 Initiate listener for ‘Add Beacon Button. When 

clicked: 

  Build alert dialog for input of Name, 

UUID, Major, Minor 

  When dialog is entered: 

   Extract text from fields 

   If entered text is an appropriate 

format: 

    Add new beacon to the 

known beacon list 

    Save known beacon list to 

internal storage 

    Make a new beacon status 

in shared preferences 

    Refresh display of beacon 

list 
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When a beacon on the list is clicked: 

 Build alert dialog for editing of Name, UUID, Major, Minor 

 When edited text is entered: 

  If entered text is an appropriate format: 

   Remove old beacon from beacon list, beacon status 

   Refresh display of beacon list 

 When delete button is pressed: 

  Build confirmation dialog 

  If confirmed: 

   Remove beacon from beacon list, beacon status 

   Refresh display of beacon list 

  

 

10.5.3 Background Service 
 

Import altbeacon library classes 

Import various android library classes 

 

Initialise local variables 

Set hardcoded scan duration and timeout duration 

 

When service is first started: 

 Initialise broadcaster for status change receiveron main screen 

 

 Initialise manager for scanning service from altbeacon library 

  Set scan duration and time between scans 

  Set format for parsing beacon information to ibeacon format 

 

 Build android system notification to denote background service is 

working 

  

 Load time of last activity from internal storage 

  If last activity was more than 5 min ago 

   Log service outage 

   Exit any zones that are logged as occupied 

 

 Update activity log 

 

When service is closed: 

 Update status of all beacons to zero 

 

When altbeacon manager is started: 

 Load list of known beacons from internal storage 

 

 Loop each of the known beacons, identify any IDs common to them all 

 

 Initiate altbeacon Range Notifier (listener for nearby beacons and 

their distance). When a beacon is ranged: 

  Update activity log time 

  Check against last activity, log any service outage 

 

  Start ScanTimer: a timer for the duration of the scan 

period 

  Load the list of known beacons from internal storage 

 

  Put all beacons ranged into a set 

 

  Loop the list of known beacons: 

   If the known beacon has been ranged: 

    Keep known beacon in the ranged list 

    Update distance if closer than a previous 

entry 

  Discard any beacons not in the known beacon list 
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  When ScanTimer finishes: 

   Get the list of beacons seen during the ScanTimer 

   Start or refresh TimeoutTimer: it resets beacons to 

unoccupied if none are seen for the allotted time 

   Load the list of known beacons from internal 

storage 

   Load the beacon status from shared preferences 

   Loop through the list of beacons seen during the 

scan 

    Get the calculated distance, update 

closest beacon 

   If no beacons are currently occupied: 

    Write entry of closest beacon to log file 

on external storage 

    Send broadcast to update the display on 

main screen 

    Update the beacon status in shared 

preferences 

   Else:  

    If the closest beacon was not already 

occupied: 

 

     Write exit of last beacon to log 

file on external storage 

     Write entry of closest beacon to 

log file on external storage 

     Send broadcast to update the 

display on main screen 

     Update the beacon status in shared 

preferences 

 

      

 

 

  When TimeoutTimer finishes: 

   Update beacon status in shared preferences to sign 

out of all zones 
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10.6 Appendix – Long-term Occupancy Dataset Generation Algorithm 
Each occupant is assigned a main zone and lunchbreak zone.  

One zone is designated as a meeting/lunch space. One zone is assigned 

as the visitor space. Teaching staff are assigned a single-occupancy 

zone from the remaining zones. Other office members are assigned a 

zone from the final remaining shared space zones. Each occupant is 

assigned either lunch zone or absence for lunch break period. 

Each occupant is assigned a personal start/end time. 

Start/end times are drawn from a Gaussian distribution, with mean of 

the base office worker profile as specified above, standard deviation 

determined by profile type. 

Each occupant is assigned a personal variability level for start/end times. 

Variabilities are drawn from a Gaussian distribution, with mean of 0, 

standard deviation determined by profile type. 

Each occupant is assigned a likelihood of occupancy at weekends. 

Drawn from random number generator determined by profile type. 

Each occupant is assigned a profile of regular daily/weekly/monthly events. 

Drawn from random number generator determined by profile type. Zone 

assigned per event, biased towards leaving the building. 

Each occupant is assigned a likelihood of random day-long and sub-day 

absences. 

Drawn from random number generator determined by profile type. 

Generate Data: 

Assign a start date based on the day of data generation 

If longterm changes, generate days on which schedule and office changes will 

happen 

Loop number of days of data required 

 Increment date  

If longterm changes, check if current day on list. Generate new 

attributes for the relevant occupant agents and replace old 

attributes. 

 If new year, or profiles do not exist, Generate long-term absence 

profiles 
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Draw occupant start/end times from Gaussian, mean and standard 

deviation from personal profiles 

Generate random sub-day events per occupant using personal absence 

likelihood and random event flag 

If day is not in assigned long-term absence periods, Assign each 

person to their main zone according to their generated profile. Assign 

to lunch/absence zone for lunch break according to personal profile. 

Apply regular daily/weekly/monthly patterns per occupant, according to 

profiles 

Apply random events as generated above 

If day is not in assigned long-term absence periods, Generate number 

of unknown visitor events that day from Gaussian, mean 2, std dev 1.2 

Draw the number of people per visit from exponential 

distribution, lambda 1.5. Skew towards lower numbers by 

dividing any <4 by 1.5. Round up to whole numbers.  

Generate start times with a random number between 10:00 and 

16:00 

Draw durations from exponential distribution, lam 0.5 h 

Loop each event 

Assign groups over 7 to the visitor space. Assign groups 

over 2 to the meeting space. Assign groups <=2 to a 

random zone, if that zone is occupied by a regular 

occupant 

Next event. 

Next day 
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10.7 Appendix – Attached CD containing Code Used in Thesis 


