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Abstract

This thesis investigates a new paradigm for uncertainty modelling by employing a new class

of type-2 fuzzy logic system that utilises fuzzy sets with membership and non-membership

functions that are intervals. Fuzzy logic systems, employing type-1 fuzzy sets, that mark a

shift from computing with numbers towards computing with words have made remarkable

impacts in the field of artificial intelligence. Fuzzy logic systems of type-2, a generalisa-

tion of type-1 fuzzy logic systems that utilise type-2 fuzzy sets, have created tremendous

advances in uncertainty modelling. The key feature of the type-2 fuzzy logic systems, with

particular reference to interval type-2 fuzzy logic systems, is that the membership func-

tions of interval type-2 fuzzy sets are themselves fuzzy. These give interval type-2 fuzzy

logic systems an advantage over their type-1 counterparts which have precise membership

functions. Whilst the interval type-2 fuzzy logic systems are effective in modelling uncer-

tainty, they are not able to adequately handle an indeterminate/neutral characteristic of a

set, because interval type-2 fuzzy sets are only specified by membership functions with an

implicit assertion that the non-membership functions are complements of the membership

functions (lower or upper). In a real life scenario, it is not necessarily the case that the

non-membership function of a set is complementary to the membership function. There

may be some degree of hesitation arising from ignorance or a complete lack of interest

concerning a particular phenomenon. Atanassov intuitionistic fuzzy set, another general-

isation of the classical fuzzy set, captures this thought process by simultaneously defining

a fuzzy set with membership and non-membership functions such that the sum of both

membership and non-membership functions is less than or equal to 1.

In this thesis, the advantages of both worlds (interval type-2 fuzzy set and Atanassov

intuitionistic fuzzy set) are explored and a new and enhanced class of interval type-2 fuzzy

set namely, interval type-2 Atanassov intuitionistic fuzzy set, that enables hesitation, is

introduced. The corresponding fuzzy logic system namely, interval type-2 Atanassov intu-

itionistic fuzzy logic system is rigorously and systematically formulated. In order to assess
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the viability and efficacy of the developed framework, the possibilities of the optimisation

of the parameters of this class of fuzzy systems are rigorously examined.

First, the parameters of the developed model are optimised using one of the most pop-

ular fuzzy logic optimisation algorithms such as gradient descent (first-order derivative)

algorithm and evaluated on publicly available benchmark datasets from diverse domains

and characteristics. It is shown that the new interval type-2 Atanassov intuitionistic fuzzy

logic system is able to handle uncertainty well through the minimisation of the error of the

system compared with other approaches on the same problem instances and performance

criteria.

Secondly, the parameters of the proposed framework are optimised using a decou-

pled extended Kalman filter (second-order derivative) algorithm in order to address the

shortcomings of the first-order gradient descent method. It is shown statistically that the

performance of this new framework with fuzzy membership and non-membership functions

is significantly better than the classical interval type-2 fuzzy logic systems which have only

the fuzzy membership functions, and its type-1 counterpart which are specified by single

membership and non-membership functions.

The model is also assessed using a hybrid learning of decoupled extended Kalman filter

and gradient descent methods. The proposed framework with hybrid learning algorithm is

evaluated by comparing it with existing approaches reported in the literature on the same

problem instances and performance metrics. The simulation results have demonstrated

the potential benefits of using the proposed framework in uncertainty modelling. In the

overall, the fusion of these two concepts (interval type-2 fuzzy logic system and Atanassov

intuitionistic fuzzy logic system) provides a synergistic capability in dealing with imprecise

and vague information.
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Chapter 1

Introduction

There is nothing worse than a sharp

image of a fuzzy concept.

Ansel Adams

Real world problems are fraught with a great deal of uncertainties. Over the years,

there has been a growing interest in the formulation of theories and concepts to handle in

effective and better ways, the effects of these uncertainties. Indeed, the presence of high

level of uncertainty in every aspect of human lives and from a variety of platforms has

provided a paradigm shift in uncertainty modelling. However, the underlying concepts in

this respect is the concept of fuzzy sets [6].

The intention is not to replicate the significant body of work done in the area of fuzzy

sets and systems. Rather, the primary focus in this research is to advance the frontiers

of uncertainty modelling by developing a new framework that fuses the concept of two

important generalisations of fuzzy sets namely interval type-2 fuzzy set (IT2FS) [7] and

intuitionistic fuzzy set (IFS) in the sense of Atanassov [8]. With this new framework,

the three distinct states of a phenomenon namely: membership, non-membership and

indeterminate states can be separately and simultaneously addressed with the capacity

for incorporating uncertainties.

1.1 Problem Statement

A fuzzy set (FS) is a generalisation of the classical notion of a set where an element belongs

to a set to a certain degree. Contrary to classical sets with 0 or 1 membership, fuzzy sets

are characterised by membership functions which define the degree of membership of an

1
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element to a fuzzy set. Fuzzy sets largely reflect a paradigm shift from the computation in-

volving classical binary sets to approximate reasoning and computing with words [9], with

the potential to capture an abundance of information and model vagueness, imprecision

and uncertainty. The rationale behind FS stems from the facts that most human concepts

are complex in nature and these concepts are not binary and have no associated objective

measure [10]. A fuzzy set allows an entity to gradually move from full membership (with

membership degree 1) to non-membership (with membership degree 0) and including ev-

erything in-between (partial membership). For the classical fuzzy set of type-1, the degree

of non-membership is the complement of the membership.

However, because the membership degrees of a type-1 fuzzy set are precise in a referen-

tial set [0,1], they are not robust and do not handle uncertainties well in many applications.

Zadeh in [7], proposed the concept of a type-2 fuzzy set (T2FS) where membership func-

tions are themselves type-1 FS and with a third dimension description. Generally speaking,

these T2FSs, in many instances, are able to cope with and manage uncertainty better than

their type-1 counterparts with precise membership grades [11, 12]. Gorzalczany [13, pp.

2] in support maintained that:

“. . . it is not always possible for a membership function of the type µ : X →

[0, 1] to assign precisely one point from the interval [0, 1] to each element x ∈ X

without loss of at least a part of information.”

and according to Gehrke [14, pp. 1]:

“· · · But an increasingly prevalent view is that models based on [0,1] are in-

adequate. Many believe that assigning an exact number to an expert’s opinion

is too restrictive, and that the assignment of an interval of values is more

realistic.”

In Mendel and John [15], it is conjectured that the additional degrees of freedom

provided by the third dimension of a T2FLS lead to improved performance of a T2FLS

over its type-1 counterpart. Recently, Mendel [16, pp. 2] pointed out that:

“it is the greater sculpting of the state space that lets an IT2 fuzzy system usu-

ally outperform a T1 fuzzy system, and a T1 fuzzy system usually outperform

a crisp system.”

Type-2 fuzzy sets and systems can be classified into general type-2 fuzzy sets (GT2FSs) and

interval type-2 fuzzy sets (IT2FSs). For GT2FS, both primary and secondary membership
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functions are all fuzzy. The third dimension (secondary membership) of a GT2FS has

different magnitudes or weights which associate the amount of uncertainty to every point

within the footprint of uncertainty (bounded-two dimensional region) of a GT2FS. The

third dimension provides GT2FSs with additional design degrees of freedom than IT2FS

and therefore have the potential to outperform a system that uses IT2FSs in the rule base

[17]. Both GT2FSs and IT2FSs are 3-dimensional (3-D) structures. The only difference is

that for an IT2FS, the memberships on the third dimension (secondary memberships) all

take the value 1. The traditional GT2FSs are computationally intensive, difficult to use

and understand [15] because of the computation involving the secondary memberships.

According to Coupland and John, the full GT2FS requires large computational resources

[18], and this may be impractical in real time application systems. Nevertheless, Liu [19]

and Mendel et al. [17] have simplified the use of GT2FSs through the decomposition of

a GT2FS into a set of α-planes, which are horizontal slices equivalent to IT2FSs. In

this way, it is possible to represent a GT2FS as a union of 2-D α-planes, “each of which

is an IT2FS” [17]. Thus, IT2FS stands as the state-of-the-art in uncertainty modelling

and has been widely used [15, 20]. The α-plane representation of a GT2FS demonstrates

that the computational cost of a GT2FS can grow in a linear fashion in relation to that

of the IT2FS. It therefore implies, based on this premise, that a simpler and straight

forward way to understand and use the GT2FS, is to first of all understand the operations

performed upon IT2FS which are quite easy to implement [86]. In recent years, research

has focussed mostly on IT2FSs [20–23, 86] which are quite practical with manageable

computational intricacies since the secondary membership grades all take the value 1

[24]. The uncertainties about an IT2FSs are completely captured only on the bounded

two-dimensional region, otherwise known as the footprint of uncertainties (FOUs) which

are intervals. With the FOUs of IT2FSs, more information is retained and the loss of

information is greatly reduced [25] as compared to T1FS. Mendel [26] argued that using

IT2FSs to model linguistic uncertainties is scientifically correct whereas T1FS is not. The

research presented in this thesis adopts the principles of the simpler and widely used

IT2FS. It is believed that by first understanding this research from the perspective of

IT2FS, will pave the way for the use of GT2FS in the future to further explore the ideas

presented in this thesis.

The use of IT2FSs to model uncertainties in data cannot be over-emphasized as there

exists abundance of applications involving IT2FLSs which employ at least one IT2FS in
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the rule base. The reader is referred to [27–32] for a comprehensive review of IT2FLS

applications. The key advantage of IT2FSs is that the membership functions of these sets

are themselves fuzzy where the actual degrees of membership are assumed to belong. The

IT2FSs have a greater capability to model imprecise and imperfect information because of

the extra degrees of freedom provided by their footprints of uncertainties (FOUs). That

is, IT2FSs are quite useful in cases where it is difficult to specify a single crisp numeric

membership function value and where linguistic and numerical uncertainties abound, par-

ticularly in many real world applications.

According to Wu [33], one of the reasons for the wide spread use of IT2FLSs is the fact

that T2FLSs provide a better way of modelling intrapersonal uncertainties (the uncertainty

a person has about the word [26]) and interpersonal uncertainties (uncertainty that a

group of people have about the word [26]) which are intrinsic to natural language because

their membership functions are uncertain. This increases the robustness of the system.

Also, IT2FLSs are adaptive with the ability to model complex input-output relationships

better than their type-1 counterparts. For a more detailed advantages of using IT2FLSs,

the readers are referred to [33, 34]. Despite the advantages of IT2FSs, the extensive use

of IT2FLSs and their abilities to handle uncertainties in data better than their type-1

counterparts, they still make use of only the membership functions (upper and lower)

to model these uncertainties. For IT2FS, the non-membership for the lower membership

function is complementary to the upper membership function and non-membership for the

upper membership function is complementary to the lower membership function. These

kinds of fuzzy sets (type-1 and type-2) are also known as the complementary fuzzy sets [35].

In a real life scenario, it is not always the case that the non-membership grade of an

element to a set is complementary to the membership (upper or lower). There tend to be

some extra degrees that represent evidence of neither membership nor non-membership,

otherwise known as hesitation or indeterminate degree of an element to a set.

Traditional IT2FLSs lack the mechanism for tackling this phenomenon. This research

is an attempt to address this drawback by incorporating Atanassov’s IFS (non-membership

function and hesitation degrees) into IT2FS. Thus, with the ability of IT2FSs to adequately

capture the uncertainties in their FOUs and the ability of IFS to separately cater for the

membership and non-membership grades of elements with extra degrees of hesitancy, the

integration of these two concepts is adopted to design a new type-2 fuzzy framework for

uncertainty modelling.
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1.2 Background and Motivation

During the first year of this research, experiments utilising different machine learning ap-

proaches, particularly, decision tree, support vector machine and artificial neural network

(ANN) were conducted. Suffice it to say that towards the end of the first year, a paper

titled “Machine Learning and Statistical Approaches to Classification - A Case Study”

was presented at the 15th UK Workshop on Computational Intelligence, UKCI 2015, Ex-

eter. Based on the outcome of these experiments, ANN was adopted as a viable learning

method for the intended model. The main focus of this thesis is to advance the frontiers

of uncertainty modelling by integrating Atanassov’s intuitionism (non-membership and

intuitionistic fuzzy indices) into interval type-2 fuzzy logic system (IT2FLS) with the aim

of investigating the capacity of uncertainty modelling using both the membership and

non-membership function FOUs of a set.

Conventional fuzzy systems make use of type-1 or type-2 FSs. A Type-1 FS with

precise membership grades cannot fully handle the level of uncertainty inherent in many

real world applications. The reason is that once the membership grades of a type-1 FS are

chosen, uncertainty disappears, leaving crisp numerical values. The type-2 FSs with upper

and lower membership functions do handle uncertainties in many applications better than

their type-1 counterparts. These typical approaches to uncertainty modelling rely solely on

the membership function of an entity, x - i.e. µ(x). The underlying assumption being that

the non-membership function (ν(x)) of the element is complementary to the membership

function. (i.e. ν(x) = 1 - µ(x)). As earlier discussed, it is not always the case that the

non-membership grade of an element to an FS is complementary to the membership.

Before continuing the discussion, let us consider a typical scenario to drive home this

thought process and to elaborate more on the motivation. Perhaps the best way to illus-

trate this is in the words of Zadeh [36, pp. 4] in the 50th anniversary of FS:

““Fuzzy set”, ..., What is of historical interest is that initially − and for some-

time thereafter − my paper was an object of indifference, skepticism and deri-

sion. · · · In contrast, my ideas were welcomed with open arms in Japan”.

Fuzzy set theory was a new theory where people had to express their individual opinions

concerning the theory and its veracity. Apparently, some people were in support of the

theory to a certain degree (Group 1 - those in Japan), some were in opposition of the

theory to a certain degree (Group 2 - skeptism and derision) while some people abstained
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from making comments on FS either totally or partially (Group 3 - indifference). The

assumption for these criticisms, according to Zadeh could have been due to lack of under-

standing of the theory of FS [37], or entire lack of interest in the concept. As reflected in

the scenario, using a binary logic of [0,1] to classify these three groups of people simply

as supporters or opponents of the theory will be too hasty and misleading. Furthermore,

by insisting that the assessment (supporters and opponents) is exactly complementary is

arguably too committing [38]. As earlier pointed out, for classical fuzzy sets, the single

membership degree is assumed to include not only the state of membership for an en-

tity but also the state of non-membership. This is arguably an unrealistic assumption.

Thus, FS with only membership function definition, apart from lacking the mechanism

of separately capturing the degree of non-membership, also cannot represent the state of

“neither support nor opposition” [39] of an entity to a fuzzy set, a characteristic which

is termed the indeterminate state (degree of indeterminacy or hesitation). In this thesis,

the terms intuitionistic fuzzy indices, degrees of indeterminacy, and hesitation degrees are

used interchangeably.

Atanassov [8] in 1986 introduced a new kind of fuzzy set, the so-called Atanassov-

intuitionistic fuzzy set (AIFS), which is characterised by independently defined member-

ship function and non-membership function together with some degree of indeterminacy.

The AIFS therefore defies the claim of the FS that µ + ν = 11 “ · · · thus relaxing the

enforced duality that ν = 1 − µ from fuzzy set theory” [38, pp. 1] and maintains a set

whose sum of membership function and non-membership function is less than or equal to

1. With the degrees of membership function, non-membership function and hesitation, the

AIFS becomes more meaningful in the context of human reasoning and natural language

representation [40]. A typical example is voting, where some people will vote for, vote

against or abstain from voting [41].

It is argued here that by exploiting and integrating the capabilities of IT2FS and AIFS

in a FLS, a framework that is more robust and more efficient for uncertainty modelling can

be realised which could lead to the attainment of as accurate an estimate as possible under

uncertainty. The salient discussions above have motivated the design of an interval type-2

Atanassov intuitionistic fuzzy logic system (IT2AIFLS) with the aim of modelling uncer-

tainty better. The marriage of these two concepts - AIFS and classical IT2FS - is able to

1µ represents degree of membership, ν represents degree of non membership
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provide a synergistic capability in dealing with imprecise and vague information [3]. What

is more, with this approach, the evaluation of concepts becomes more precise and close to

human reasoning than classical type-1 FLSs and T2FLSs. The proposed IT2AIFLS frame-

work is a Takagi-Sugeno-Kang (TSK) inference system that employs modified Gaussian

function with uncertain standard deviation. Kayacan and Khanesar [42] have pointed out

that the Gaussian membership functions with uncertain standard deviations is the only

known membership function that is differentiable at all points and they have been one

of the first choices in the design of T2FLSs for many applications. In this research, the

number of membership and non-membership of Gaussian functions is restricted to two

in order to ease the computational burden of the system. The number of membership

(non-membership) can be increased up to eleven depending on the application and the

number of inputs [43]. However, Chopra et al. [43] argued that increasing the number

of membership (non-membership) functions as well as the rules beyond a certain limit is

useless; as doing this only increases the complexity of the system with almost no effect on

the output.

To harness the performance of fuzzy logic systems (FLSs), a variety of enabling tech-

nologies such as ANNs have been incorporated. The two approaches - fuzzy logic and ANN

are known to be universal approximators [44, 45] that can identify and approximate any

nonlinear systems to any arbitrary degree of accuracy. The integration of fuzzy logic and

ANN merges the advantages of both approaches in a synergistic manner in terms of the

excellent generalisation and learning capability of ANN and the ability of FLS to simultane-

ously and effectively handle uncertainties and imprecise information; and to approximately

reason with these information. To show the efficiency of the proposed approach, different

simulation studies have been considered using publicly available benchmark datasets (ar-

tificial and real world) and another real world dataset (commercially sensitive) obtained

from a Nigerian-based power plant. It is worth mentioning at this point that most of the

datasets used in this thesis are time series datasets. The reason is to aid comparison with

previous works in the literature which are mostly based on time series analysis. However,

it will be interesting to investigate the effects of this new model from a human knowledge

modelling perspective using survey data that captures all three concepts namely: mem-

bership, non-membership and intuitionistic fuzzy indices. The intuitionistic fuzzy indices

is of great importance because from the point of view of say, voter behaviour analysis,

for instance, indeterminate voters (those who abstain) after proper enhancements and
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supports can finally vote for or vote against a product or proposal.

1.3 Contributions

The key contributions of this thesis are:

• A general framework that introduces Atanassov’s non-membership functions and

intuitionistic fuzzy indices (IF-indices) into IT2FS with the aim of capturing more

uncertainties in data and enabling hesitation. This framework is henceforth referred

to as the interval type-2 Atanassov’s intuitionistic fuzzy set (IT2AIFS).

• Formulation of a new and enhanced class of IT2FLS based on Takagi-Sugeno-Kang

(TSK)-fuzzy inference using IT2FS and Atanassov IFS otherwise known as the in-

terval type-2 Atanassov-intuitionistic fuzzy logic system (IT2AIFLS-TSK).

• Exploiting the use of both membership and non-membership functions that are in-

tervals with intuitionistic fuzzy indices for uncertainty modelling.

• Investigating the possibility of embedding ANN into the new fuzzy logic framework

in order to assess for the first time its applicability in the learning process of the

proposed framework. The capabilities of gradient descent (GD), a first-order deriva-

tive based learning method is exploited for the first time in tuning the parameters

of the new framework. The developed approach is applied to well-known publicly

available benchmark time series and regression problems of diverse instances and

domains. Detailed description of these procedures and applications are presented in

Chapter 4.

• Encouraged by the previous results, focus is shifted to the second-order derivative

optimisation methods in order to tackle the drawbacks of the first-order derivative

method and improve on the efficiency of the system. A variant of extended Kalman

filter (EKF), a second-order derivative-based optimisation method, known as the

decoupled EKF (DEKF) is exploited for the first time to assess the efficiency of the

proposed model in terms of convergence and prediction accuracy. The full detail of

this learning procedure and evaluation is presented in Chapter 5.

• Evaluation of the proposed model with alternative models such as classical IT2FLS

and type-1 AIFLS to assess their statistical significance. Detailed desription and

evaluation are presented in Chapter 5.
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• Fusion (hybridisation) of two FLS optimisation methods (DEKF and GD) to assess

their combined effects on the parameter tuning of the new proposed methodology

for the first time. A detailed description of this hybrid approach is presented in

Chapter 6.

• Tuning the contributions of the membership and non-membership in order to manage

varying degrees of uncertainties in the rule base of the proposed framework.

1.4 Academic Publications

The following publications were produced as a direct result of the work undertaken during

the course of conducting this research:

1. I. Eyoh, R. John and G. De Maere, “Interval type-2 intuitionistic fuzzy logic sys-

tem for non-linear system prediction,” in 2016 IEEE International Conference on

Systems, Man and Cybernetics (SMC), Budapest, Hungary, pp. 1063-1068, 2016 [2].

This paper presents the first published results on the evaluation of the proposed

model with gradient descent (GD) learning algorithm. The simulation studies are

done using two well known benchmark datasets namely Mackey-Glass time series

and a synthetic dataset. These experiments show the effectiveness of the proposed

approach on non-linear prediction problems as it closely modelled the input-output

relationship of the data well with reduced root mean squared error. Detailed de-

scription is presented as part of Chapter 4.

2. I. Eyoh, R. John and G. De Maere, “Interval Type-2 A-Intuitionistic Fuzzy Logic

for Regression Problems,” IEEE Transactions on Fuzzy Systems,

DOI:10.1109/TFUZZ.2017.2775599 [3].

Encouraged by the first experimental studies, the paper is extended for a journal

publication. In this paper, analysis of publicly available regression datasets is con-

sidered. The results are compared with existing studies using the same benchmark

datasets and computational set-ups. The discussion on the strength of the proposed

model and its weaknesses are provided in this paper together with ways of enhanc-

ing the model further for the full utilisation of its capabilities. Detailed analysis is

presented in Chapter 4.
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3. I. Eyoh, R. John and G. De Maere, “Time Series Forecasting with Interval Type-

2 Intuitionistic Fuzzy Logic Systems,” in 2017 IEEE International Conference on

Fuzzy Systems (FUZZ-IEEE), Naples, Italy, pp. 1-6, 2017. (Recommended for

the best paper award) [46].

This paper presents the effectiveness of the proposed framework on time series prob-

lems. Three time series problems are analysed and results are compared with similar

studies in the literature. Analysis of simulation results reveal an improvement in the

performance of the proposed approach. Detailed description is presented in Chap-

ter 5.

4. I. Eyoh, R. John and G. De Maere,“Extended Kalman Filter-based Learning of

Interval Type-2 Intuitionistic Fuzzy Logic Systems,” in 2017 IEEE International

Conference on Systems, Man and Cybernetics, Banff Center, Banff, Canada, pp.

728-733, 2017 [47].

This publication introduces the decoupled extended Kalman filter (DEKF) for the

tuning of the parameters of IT2AIFLS-TSK fuzzy inference for the first time. The

analysis is conducted using real world dataset from Australia’s electricity market.

The IT2AIFLS-DEKF is compared with its type-1 variant and classical IT2FLS.

Analysis of results reveal performance superiority of IT2AIFLS trained with DEKF

over IT2AIFLS trained with gradient descent. The proposed IT2AIFLS-DEKF also

outperforms its type-1 variant and IT2FLS on the same learning platform. Detailed

description is presented in Chapter 5.

5. I. Eyoh, R. John, G. De Maere and K. Erdal, “Hybrid Learning for Interval Type-2

Intuitionistic Fuzzy Logic System as Applied to Identification and Prediction prob-

lems,” IEEE Transactions on Fuzzy Systems, DOI 10.1109/TFUZZ.2018.2803751

In this publication, the DEKF and GD are combined to produce a hybrid learning

algorithm for tuning the parameters of the proposed model for the first time. The

learning strategy is applied to the identification and prediction of well known and

widely used benchmark datasets and results are compared with similar studies in the

literature using the same computational settings. Detailed description is presented

in Chapter 6.

6. I. Eyoh, R. John and G. De Maere, “Interval Type-2 Intuitionistic Fuzzy Logic Sys-

tems: A Comparative Evaluation” (17th Information Processing and Management
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of Uncertainty in Knowledge-Based Systems Conference (IPMU), 2018. Accepted).

In this paper, the assessment of IT2AIFLS with alternative fuzzy logic systems

such as classical IT2FLS and AIFLS is considered with the aim of evaluating their

statistical significance. The parameters of the models are tuned using the DEKF

algorithm. From the simulation results, IT2AIFLS performs significantly better

than the classical IT2FLS and AIFLS. Analysis of results also shows that there is no

significant difference between the classical IT2FLS and AIFLS. Detailed description

is presented in Chapter 5.

7. I. Eyoh and R. John, “Machine Learning and Statistical Approaches to Classifica-

tion: A case Study,” in proceedings of the 15th UK Workshop on Computational

Intelligence,” UKCI 2015, Exeter, UK.

This paper presents a prerequisite study to the understanding of the workings of

ANN - a popular machine learning approach that allows for the adaptive tuning of

the parameters of FLSs.

1.5 Thesis Outline

The discussion in the remaining chapters is outlined as follows:

• In Chapter 2, a précis of the techniques exploited in building a concrete realisation

of the framework proposed in this thesis is exploited. A survey of related work in

uncertainty modelling using IT2FLS and AIFLS is provided. Discussions on the

general drawbacks of classical IT2FLSs and AIFLS to uncertainty modelling are put

forward. Existing fuzzy logic approaches that attempt to address these drawbacks

are also discussed. These techniques underpin the model presented in Chapter 3.

• In Chapter 3, the proposed interval type-2 Atanassov intuitionistic fuzzy logic system

is formulated. The differences between existing interval-valued Atanassov intuition-

istic fuzzy sets (IVAIFS) and the new framework proposed in this thesis, the so-called

IT2AIFS are highlighted. The different components of the developed architecture

are also discussed.

• In Chapter 4, a critical evaluation of the proposed model is performed. The model

is evaluated on same datasets and computational set-ups similar to other works in
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the literature. The analysis of the model is done using first-order derivative-based

learning algorithms namely GD. It is shown that by using interval membership and

non-membership functions with embedded hesitation indices, the error of predic-

tion can be significantly reduced. The assessment is done using publicly available

benchmark time series and regression problems (both artificial and real world).

• In Chapter 5, the decoupled extended Kalman filter (DEKF) is used to optimise the

parameters of the proposed model. The new proposed model trained with DEKF

is evaluated on a synthetic dataset and two real world datasets namely, New South

Wales electricity load and a gas compression system (GCS) dataset of a gas turbine

obtained from a Nigerian-based power plant. Also, in this chapter, the statistical

significance between the model proposed in this thesis and other alternative models

such as classical IT2FLS and type-1 AIFLS is investigated.

• In Chapter 6, the parameters of the proposed framework are tuned using hybrid

algorithm of DEKF and GD. The resulting hybrid model is applied to system iden-

tification and prediction problems with encouraging results.

• In Chapter 7, a critical discussion of the research conducted in this thesis is presented.

The contributions to knowledge contained in this thesis are highlighted. A reflection

on ways to improve and assess them further is provided, and finally wrapped-up with

a summary of the thesis.



Chapter 2

Related Work

It is better to be approximately right

than precisely wrong.

Warren Buffett

2.1 Introduction

To make this thesis self-contained, important underlying concepts exploited in building a

concrete realisation of the proposed framework are reviewed in this chapter. These con-

cepts underpin the new model proposed in this thesis. In Section 2.2, some important

background on the notion of type-1 FSs are discussed. A précis of some of the generalisa-

tions of fuzzy sets, namely type-2 fuzzy sets (T2FSs), Atanassov intuitionistic fuzzy sets

(AIFSs), interval-valued fuzzy sets (IVFSs) and interval valued Atanassov IFSs (IVAIFS)

are also provided in order to differentiate the specific concepts of interval-valued (classical

and intuitionistic) from the much broader concept of interval type-2 (classical and intu-

itionistic) fuzzy sets. Section 2.3 provides a detailed theoretical study of interval type-2

fuzzy sets, after which Section 2.4 presents the different aspects that constitute the inter-

val type-2 FLSs. Section 2.5 discusses uncertainty modelling detailing different forms and

sources of uncertainty. In Section 2.6, a brief overview of the different design methodolo-

gies for optimising the parameters of interval type-2 FLSs is presented, with particular

focus on gradient descent and Kalman filter-based methods. In Section 2.7, some appli-

cation areas of IT2FLSs are reviewed, followed by the drawbacks of IT2FLSs in Section

2.8. Atanassov intuitionistic fuzzy set is discussed in Section 2.9, followed by its practical

applications in Section 2.10 and possible drawbacks in Section 2.11. As this research in-

13
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volves the integration of AIFS and IT2FS, a review of existing studies using both AIFS

and IT2FS is presented in Section 2.12. Finally, Section 2.13 presents a summary and

critique of the chapter. The intention is to motivate the model described in Chapter 3.

2.2 Fuzzy Set Theory

Fuzzy set (FS) was introduced by Zadeh [6] as a generalisation of the classical notion of

a set. Belohlavek et al. [48] argued that the main motivation behind the generalisation of

classical set to FS is to allow representations of concepts that have no sharp boundaries

in a rigorous, mathematical way. According to Zadeh [49, pp. 3176],

“Fuzzy logic is a precise conceptual system of reasoning, deduction and compu-

tation in which the objects of discourse and analysis are, or are allowed to be,

associated with imperfect information. Imperfect information is information

which in one or more respects is imprecise, uncertain, incomplete, unreliable,

vague or partially true.”

Zimmermann [50, pp. 318] lent credence to this when he pointed out that:

“Fuzzy set theory provides a strict mathematical framework (there is nothing

fuzzy about fuzzy set theory!) in which vague conceptual phenomena can be pre-

cisely and rigorously studied. It can also be considered as a modelling language,

well suited for situations in which fuzzy relations, criteria, and phenomena ex-

ist.”

For decades now, FS has served as an effective tool for handling uncertainty (fuzziness or

vagueness) and computing with words [9]. The key idea underlying fuzzy logic is the use

of linguistic variables rather than numbers to describe natural language phenomena such

as voter turnout, age and temperature. A linguistic variable is a variable having words as

their values rather than numbers [37] and the collection of these linguistic variable names

(words) are called linguistic terms. For instance, the linguistic variable “vote” received

each day on a proposal can have linguistic terms such as “low, medium and high.”

Thus FS presents a paradigm shift from the use of numbers to the use of words. Ever

since its introduction, FSs and systems have been successful in many fields and application

domains ranging from real life applications to commercial products. It has found usefulness

in a wide range of problems such as control [51–53], time series [54–56], classification and
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prediction [57, 58], decision making [59–61], load forecasting [62–65] and more. Excellent

reviews of applications of FLSs can be found in [66–69]

2.2.1 Type-1 Fuzzy Set: Definition

A type-1 fuzzy set, A, is characterised by a membership function that determines the

degree of membership of every element x ∈ X and is represented as [6]:

A = {(x, µA(x)) | ∀x ∈ X} (2.1)

The associated non-membership function degree of x in a FS

A = {(x, µA(x), νA(x)) | ∀x ∈ X} (2.2)

may therefore be formulated as a complement of the membership degree as below:

A = {(x, µA(x), 1− µA(x)) | ∀x ∈ X} (2.3)

Hence, the non-membership degree of a classical FS is complementary to the membership

degree. Alternatively, the FS A can be represented as:

A =

∫
x∈X

µA(x)/x (2.4)

for a continuous universe of discourse (UoD) or

A =
∑
x∈X

µA(x)/x (2.5)

for a discrete UoD.

where
∫

and
∑

denote a collection of all admissible points in the UoD. As shown in Figure

2.1, fuzzy sets of type-1 are two dimensional. Once the membership function value is cho-

sen, the uncertainty disappears because the membership degrees of T1FS are completely

precise. For example, the FS ‘vote’ received each day on a proposal may be represented as:

vote = 0.58/Day1 + 0.85/Day2 + 0.24/Day3 (2.6)

where the + sign denotes the collection of all points in the UoD while the / sign links

each element (Day) with its corresponding membership grade. A fuzzy logic system that

utilises T1FSs is referred to as a type-1 FLS.
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Figure 2.1: A Gaussian type-1 membership function
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Figure 2.2: A type-1 FLS [1]

2.2.2 Type-1 Fuzzy Logic Systems

A type-1 FLS consists of a fuzzifier, a rule base, a fuzzy inference engine and a defuzzifier

(see Figure 2.2). The fuzzifier takes every crisp input x ∈ X and maps them into a fuzzy

set. The problem is broken down into sets of rules. Generally, the rule for a type-1 FLS

may be represented as:

Rk : IF x1 is A1k and x2 is A2k and · · · and xn isAnk THEN yk is Fk (2.7)



2.2. Fuzzy Set Theory 17

for Mamdani fuzzy inference systems and

Rk : IF x1 is A1k and x2 is A2k and · · · and xn is Ank THEN yk =
n∑
i=1

wikxi + bk

(2.8)

for TSK-type fuzzy inference systems.

where x′is (i = 1 · · ·n) are inputs, k is the number of rules, Ank are antecedent type-1 FSs

and yk is the output representing a lingustic term (Mamdani FLS) and a function (TSK

FLS) respectively. The inference engine combines these rules using any t− norm usually

a product or minimum t − norm to produce a mapping from a type- 1 fuzzy input sets

to a type-1 fuzzy output sets which are defuzzified into a final crisp output in the case of

Mamdani FLS. Ever since the introduction of FS, many generalisations of FS theory have

been proposed. According to Deschrijver and Kerre [70, pp. 227], “Some of these theories

are extensions of fuzzy set theory, others try to handle imprecision and uncertainty in a

different (better?) way.”

2.2.3 Generalisation of a Fuzzy Set

Over the years, several generalisations or extensions of a fuzzy set have emerged. The

focus of many such FSs have been on the need for appropriate representation of con-

cepts described through imperfect information, as well as the representation of the lack

of knowledge or uncertainty of the experts in a different way [71]. These FS extensions

include  L-fuzzy set [72], type-2 fuzzy set (T2FS) [7], interval-valued fuzzy set (IVFS) [13],

Atanassov intuitionistic fuzzy set (AIFS) [8], interval-valued intuitionistic fuzzy set (IV-

IFS) [73], grey set [74], vague set [75], hesitant fuzzy set [76] and neutrosophic fuzzy set [77].

While a few of these generalisations of FS are listed, a comprehensive and detailed dis-

cussion of the FS extensions are reported elsewhere. Bustince et al. [71], for example,

discussed the history of fuzzy set extensions as well as their relationships. Studies show

that IVFS are isomorphic to AIFS [73,78,79] and AIFSs are sometimes referred to as grey

set [74]. After the introduction of vague set in [75], Bustince and Burillo [80] pointed out

that vague sets are AIFSs. In the literature, IVFSs are also regarded as special cases of

T2FSs [70,71,78,81–84]. Specific discussion of the varieties of these generalisations of FS

is beyond the scope of this research. Rather, the focus is on T2FS (IT2FS) and AIFS; the

generalisations of FSs that underpin the contributions of this research.

As earlier discussed in Section 1.1, a T2FS consists of two instances namely: GT2FS

and IT2FS. Next, a formal definition of a GT2FS is given.
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Definition 2.2.1 A GT2FS is characterised by a type-2 membership function, µÃ(x, u)

for all x ∈ X and u ∈ Jx ⊆ [0, 1] [15]

Ã =
{

((x, u), µÃ(x, u)) | ∀x ∈ X,∀u ∈ Jx ⊆ [0, 1]
}

(2.9)

where x is the primary variable, u is the secondary variable and Jx is the support of

the secondary membership function in the third dimension of x. The GT2FS is a three

dimensional structure, where the third dimension provides extra degrees of freedom to

GT2FS to directly model uncertainties [12, 15]. The main characteristic of a GT2FS is

that the third dimension is fuzzy, otherwise known as the secondary membership function.

This representation for GT2FS makes it very difficult to manage and understand with

increased computational cost [15]. Although the FOUs of the GT2FSs together with

the third dimension of membership functions provide GT2FS with extra design degrees of

freedom to handle uncertainties effectively, they are very complex and rarely used in many

applications [15]. Coupland and John [85] opined that GT2FS are powerful modelling

tool, yet they remain impractical for approximate reasoning (until recently see Section

1.1). Having said these, there exist a simplified version of a T2FS, the so-called IT2FS.

Hence, when all the secondary membership, µÃ(x, u) of a T2FS is equal to 1, an IT2FS is

obtained.

2.3 Interval Type-2 Fuzzy Set

A simpler version of the T2FS, called the interval type-2 fuzzy sets (IT2FSs), is a fuzzy set

where the secondary membership values are all unity, thus reducing the burden of working

with the third dimension values and reducing the computational cost. With the interval

representation of a T2FS, it is possible to project the interval T2FS onto a two dimensional

(2-D) plane by capturing the uncertainties using only the FOU. The FOU which is the

union of all primary memberships is a bounded region that represents the uncertainty in

the primary memberships of an IT2FS (see Figure 2.3). The FOU size determines the

amount of uncertainty captured by the IT2FSs. The wider the FOU, the more uncertain

there is about the primary memberships. An upper membership function and a lower

membership function are two type-1 membership functions that form the bounds for the

FOU of an IT2FS [12]. The definition of the IT2FS by only the membership function

on a 2-D plane simplifies its usage and in the words of Mendel [86, pp. 22], “Almost

all applications use IT2 FSs because, to date, it is only for such sets (and systems that
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use them) that all calculations are easy to perform.” Mendel et al. [24] provided a sound

mathematical framework that simplifies the use of IT2FSs.

Definition 2.3.1 An IT2FS is specified by a footprint of uncertainty circumscribed by a

lower membership function, µ
Ã

(x, u) and an upper membership function, µ̄Ã(x, u) for all

x ∈ X.

Ã =
{

((x, u), µ
Ã

(x, u), µ̄Ã(x, u)) | ∀x ∈ X,∀u ∈ Jx ⊆ [0, 1]
}

(2.10)

where µ
Ã

(x, u) = 1 and µ̄Ã(x, u) =1. Thus, the IT2FS can also be expressed as:

Ã =

∫
x∈X

∫
u∈Jx

1/(x, u) Jx ∈ [0, 1] (2.11)

or

Ã =
∑
x∈X

∑
u∈Jx

1/(x, u) Jx ∈ [0, 1] (2.12)

where
∫

and
∑

represent the union of all admissible points in a continuous and discrete

UoD respectively [24]. For instance, the interpretation of IT2FS for ‘vote’ in Subsection

2.2.1 maybe expressed as:

vote = Medium/Day1 + High/Day2 + Low/Day3 (2.13)

where the linguistic terms Medium, High, and Low are themselves fuzzy sets (two

type-1 FSs each) signifying medium, high and low number of votes for the three days

repectively. In this thesis, a finite UoD is assumed.

2.3.1 Comparison Between Interval Type-2 Fuzzy Set and Interval Val-

ued Fuzzy Set

In the literature, IVFSs [13] are regarded as the special cases of IT2FSs [71, 81, 83, 84].

Specifically, and more notably is the work of Bustince et al. [84] which demonstrates in-

depth, a wider and general view of the relationship between IT2FSs and IVFSs. Many

people often believe that IVFS is equivalent to IT2FS, but according to [84], IVFSs are a

special case of IT2FSs and as such both kinds of fuzzy sets should be treated differently.

In their paper, four representations are defined for the primary membership functions of

IT2FSs namely, as type-1 fuzzy sets, as interval-valued fuzzy sets, as multi-fuzzy sets and

as multi-interval fuzzy sets. Thus, IT2FSs can easily be used to model other concepts, a
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Figure 2.3: A Gaussian interval type-2 membership function

capability not obtainable with IVFSs [84,87]. In this thesis, the interval-valued represen-

tation of the IT2FSs is adopted. A FLS that utilises one or more IT2FSs is referred to as

an IT2FLS.

2.4 Interval Type-2 Fuzzy Logic Systems

The architectural block of an IT2FLS, shown in Figure 2.4, consists of the fuzzifier, fuzzy

inference, fuzzy rule base and the output processing block. This is similar to the T1FLS.

The only difference is the output processing module of the T2FLS which consists of the

type-reducer and the defuzzifier as opposed to only the defuzzifier found in the T1FLS

architecture. As shown in the block diagram of a T2FLS, the external crisp inputs are first

fuzzified into T2FSs (IT2FSs in this case). The IT2FSs generated activate the inference

engine and the rule base to produce IT2FSs as the outputs. These IT2FSs are then

reduced to T1FSs which are finally defuzzified into crisp outputs. Below are the detailed

description of the workings of each process module.

2.4.1 Fuzzification Process

There are two fuzzification procedures namely: singleton and non-singleton. The fuzzifi-

cation process involves the mapping of a crisp numeric input vector with multiple inputs

x ∈ X into IT2FSs Ã in X which activate the inference engine. In IT2FLSs, the join (t)
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and meet operators (u), replace the union and intersection operators of TIFLS.

2.4.2 Rules

The rule representation of an IT2FLS is similar to a T1FLS. The only difference between

these two types of fuzzy sets is with the nature of the membership function and this is

not relevant during rule formation [12]. However, for IT2FLSs, IT2FSs are used in the

antecedent and/or consequent parts of the rules. A general type-2 rule can be expressed

as:

Rk: IF x1 is Ã1k and x2 is Ã2k and · · · and xn is Ãnk THEN yk is F̃k

where Ã1k,Ã2k, · · · ,Ãik,· · · ,Ãnk are antecedent IT2FSs and yk is the output of the

kth rule which is another consequent IT2FS (F̃k), wik’s are the consequent coefficient with

offset bk (k = 1 · · ·M). An IT2FLS has at least one IT2FS in the antecedent or consequent

parts of the “IF . . . THEN” rule.

2.4.3 Fuzzy Inference Engine

The inference engine combines rules and maps input IT2FSs to output IT2FSs. There are

generally two main types of fuzzy inferencing namely: Mamdani and TSK which differ

in their representation and output evaluation and ultimately influence their level of ac-
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curacy and interpretability. The consequent parts of Mamdani fuzzy inference are fuzzy

sets while the consequent part of TSK fuzzy inferencing are linear functions of the inputs.

Depending on the user’s requirements, two fuzzy modelling suffice namely linguistic fuzzy

modelling (LFM - Mamdani) and precise fuzzy modelling (PFM - TSK) [88, 89]. Whilst

Mamdani uses defuzzification to obtain the final output of the fuzzy systems, TSK-type

fuzzy inference uses weighted average to compute the final output. Thus, Mamdani fuzzy

inference entails substantial computational cost because of the time consuming defuzzi-

fication procedure. The TSK inference is therefore more computationally effective and

particularly works well with optimisation and adaptive techniques such as ANN used in

this thesis. Based on these premises, a TSK fuzzy inference is adopted in this research.

There are basically three models for generating the output of a type-2 TSK inference

system namely [42,90]:

• Model I: The antecedent parts are type-2 fuzzy set while the consequent parts are

type 1 fuzzy sets denoted by A2-C1.

• Model II: The antecedent parts are type-2 fuzzy sets with crisp numbers as conse-

quents denoted by A2-C0.

• Model III: Both the antecedent and consequent parts are T1 fuzzy sets represented

as A1-C1.

Models I and II use IT2FSs in the antecedent parts and thus have more degrees of

freedom to model uncertainties and ultimately minimise their effects in data modelling.

In this work, an A2-C0 TSK fuzzy inferencing is assumed. The Takagi-Sugeno [91] and

Sugeno-Kang [92] - TSK fuzzy model have been extensively adopted for fuzzy modelling

with great success. A Type-2 TSK fuzzy logic system first proposed in [90] makes it

possible to handle linguistic uncertainties effectively. In particular, the intention is to

use the proposed model to closely approximate the input-output relationship of a system,

hence, TSK fuzzy inferencing becomes the most suitable and appropriate for the proposed

framework. The IT2-TSK fuzzy models use IT2FS to capture uncertainty with respect

to the assignment of membership function and describe the level of uncertainty in the

antecedent and/or consequent parts of a fuzzy logic system. For A2-C0 fuzzy model,

IT2FS are used in the antecedent while the consequent is expressed as a linear combination
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of the inputs. The A2-C0 can be described by IF · · · THEN rules as:

Rk : IF x1 is Ã1k and x2 is Ã2k and · · · and xn is Ãnk THEN yk =

n∑
i=1

wikxi + bk

(2.14)

where x1 · · ·xn are the inputs variables, wik and bk represent the consequent parame-

ters (i = 1 · · ·n, k = 1 · · ·M), yk is the output variable and Ãik’s are T2FS.

After obtaining the rules (either from expert or from numerical data), the rules are

combined using appropriate t− norm to obtain the firing strength of each rule. The final

output of a T2FLS-TSK is computed as follows [1]:

y = [yL, yR] =

∫
f1∈[f1,f̄1]

· · ·
∫
fM∈[fM , ¯fM ]

1
/∑M

k=1 fkyk∑M
k=1 fk

(2.15)

where fk and f̄k are the lower and upper firing strength of the rules which are computed

as:

fk(x) = µ
Ã1k

(x1) ∗ µ
Ã2k

(x2) ∗ · · · ∗ µ
Ãnk

(xn) (2.16)

fk(x) = µÃ1k
(x1) ∗ µÃ2k

(x2) ∗ · · · ∗ µÃnk(xn) (2.17)

where µ
Ã

(x) is the lower membership function and µ̄Ã(x) is the upper membership

function of element x ∈ X.

2.4.4 Type Reduction

The outputs from the inference engine of an IT2FLS are IT2FSs. These outputs are con-

verted into T1FSs, otherwise called type-reduced sets (TRSs), by the type reducer. Ac-

cording to Tai et al. [32], the type reduction (TR) procedure; which involves determining

the centroid of “an extraordinary large” number of type-1 fuzzy sets [20], poses a com-

putational bottleneck in computing the output of an IT2FLSs. According to Greenfield

and Chiclana [93], the most widely used TR methods is the Karnik-Mendel (K-M) [12,94]

iterative procedure which reduces a T2FS into a T1FS by computing the two end-points

[yL, yR]. This iterative procedure is computationally intensive especially with large number

of rules [95]. Interested readers are referred to [96] for a critical review of TR strategies.

2.4.5 Defuzzification

During the defuzzification process, the TRSs are sent to the defuzzifier in order to obtain

a crisp output from the IT2FLS. The TRSs are formed by taking their left and right
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end-points, the defuzzified value is computed by taking the average of these two end

points. The TR procedure leading to defuzzification is very complex and challenging [97].

Based on this premise, different methods have been formulated for TR of an IT2FLSs in

order to by-pass this computationally intensive step. Alternative methods proposed in the

literature for computing the outputs of IT2FLSs include those reported in [98–105]. Some

of these alternative algorithms have closed-form representations and with these closed-

form representations, analysis become much faster [106] and more convenient [107] than

the K-M algorithm. Examples of the closed form algorithms include Nie-Tan (NT) [103],

Wu-Tan [101], Begian-Melek-Mendel (BMM) [98] methods and those reported in Ulu et

al. [104, 105]. The iterative K-M procedure and the Wu-Mendel algorithms entail the

computations of the centroids. The output of the framework proposed in this thesis

adopts the BMM approach.

The output of an IT2FLS based on BMM closed form representation is expressed

as [98]:

y = (1− β)

∑M
k=1 fkyk∑M
k=1 fk

+ β

∑M
k=1 f̄kyk∑M
k=1 f̄k

(2.18)

It can be observed from Equation 2.18 that the output of the IT2FLS is a combination

of the outputs of two T1FLSs consisting of the lower membership and upper membership

functions, where β is an adjustable coefficient to weigh the output of the two T1 FLS.

With the BMM TR and defuzzification method, it is not a requirement that the rules’

output be sorted as is the case of the K-M iterative method. However, BMM approach

requires that yk = ȳk ≡ yk. It is worth mentioning that the BMM algorithm is an off-shoot

of NT method that by-passes the computationally complicated TR procedure to directly

compute the outputs of an IT2FLSs [32].

2.5 Uncertainty Modelling

Type-1 FSs have been used extensively for uncertainty modelling in the last few decades

and have been applied in many applications with great success. Despite the widespread

use of FS and its connotation of uncertainty, FS handles uncertainty about the meaning

of words by using membership functions that are precise [12]; which is not necessarily

realistic [32]. Real world applications are fraught with higher order uncertainties that make

it difficult to determine the exact membership functions for the antecedent and consequent
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parts of a fuzzy set [31]. With these levels of uncertainties, it becomes inappropriate to

use type-1 FS in certain applications. According to Hagras [34], using type-1 fuzzy sets

can cause degradation in the FLS’s performance, which can lead to poor control and

inefficiency; and time wastage due to attempts to frequently redesign or tune the type-1

FL system in order to cope with the different uncertainties. Because uncertainty modelling

cannot be properly accomplished with type-1 FSs, Zadeh [7] introduced the idea of type-2

FS (T2FS) which is characterised by membership functions that are themselves fuzzy and

defined in the interval [0,1]. Mendel [12] stated that T2FLSs control the effects of the

uncertainties associated with the meaning of words by modelling the uncertainties and

concluded in [26] that IT2FLS is a scientifically correct model for modelling uncertainties

associated with words. John and Coupland [108] pointed out that the use of IT2FLS is a

step in the right direction to computing with words.

This implies the existence of uncertainty in determining the membership function val-

ues, and therefore, the introduction of the notion of the footprint of uncertainty (FOU)

in IT2FS to model uncertainties that invariably exist in the rule base of the system [12].

According to Klir [109, pp. xiii] “uncertainty is viewed as a manifestation of some infor-

mation deficiency.” Mendel [12, pp. 66] quoting Klir and Folger [110] states:

“ When dealing with real world problems, we can rarely avoid uncertainty.

At the empirical level, uncertainty is an inseparable companion of almost any

measurement, resulting from the combination of inevitable measurement errors

and resolution limits of measuing instruments. At the cognitive level, it emerges

from the vagueness and ambiguity inherent in natural language. At the social

level, uncertainty has even strategic uses and it is often created and maintained

by people for different purposes (privacy, secrecy, propriety)”.

In Mendel [12], three groups of uncertainties are identified namely fuzziness, strife and

nonspecificity. Mendel pointed out that fuzziness is the uncertainty about the meanings

of the words that are used in the definition of the rules in the rule base, strife is synony-

mous to the uncertainty about the rule consequent while nonspecificity is associated with

uncertainty about the measurements that activate the FLS. Other kinds of uncertainties

and ways of handling them are mentioned elsewhere. For example, in Mendel [86] two

classes of uncertainties are identified namely random uncertainties which are mainly han-

dled by probability theory and linguistic uncertainties which are fully handled by FS and

its variants. According to Mendel, FS can successfully be used to handle both kinds of
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uncertainties. Mendel [12] outlined the different sources of uncertainty that can occur in

a FLS. These include:

• Linguistic uncertainties. These may arise from different opinions of experts about

words that are used to define the antecedents and consequent of the rule base as

words mean different things to different people [12].

• Uncertainty about the rule consequent as different experts do not all agree about

the consequent of a rule.

• Uncertainty about the measurements that activate the FLS. For example, sensors

have uncertainties associated with the measurements.

• Uncertainty about the data that are used to tune the parameters of a FLS. This

could arise as a result of noise in the training data.

All these uncertainties translate into uncertainties about FS membership functions [15].

Mendel et al. [1], re-echo that using a FS with precise membership function to model these

forms of uncertainties can degrade the overall performance of the system. A generally

maintained view is that a T2FS with a third dimension and additional degrees of freedom

provided by the FOUs can directly model and handle these forms of uncertainties in most

applications as their membership functions are uncertain. John and Coupland [108] pro-

vided an excellent historical perspective of T2FLSs and their role in uncertainty modelling.

In order for a T2FLS to be successful in uncertainty modelling, different approaches have

been adopted in the literature for the optimal adaptation of its design parameters.

2.6 IT2FLSs Design Methodology

Many methods have been proposed in the literature for the design of IT2FLSs. The

design consists of the structure and parameter optimisations where intelligent methods

are adopted to determine the optimal antecedent and consequent parameters through a

process of learning and tuning. While learning does not involve predefined parameters for

the optimisation of FLSs, tuning begins the optimisation with some predefined parameters

and attempts to find the best set of parameters [111]. Quite often, in FLSs, the two terms

are used interchangeably as there is no tuning without a learning capability in a FLS. This

research only considers parameter optimisation or parameter tuning. The parameters of

a FLS consist of the antecedent and the consequent parameters. Whilst the input space
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is partitioned into different fuzzy regions in the antecedent parts, the behaviours of the

system in those regions are described in the consequent parts.

Methods employed for the parameter optimisation of FLSs are often drawn from

derivative-based otherwise known as gradient descent (GD) methods (algorithmic optimi-

sation methods), non-derivative-based (heuristics methods) and hybrid approaches [111].

In Hassan et al. [111], the authors listed the derivative-based methods to include such

algorithms as back-propagation algorithms, least square method, radial basis function,

Levenberg−Marquardt algorithm, Kalman filter-based algorithms and simplex method

while the derivative-free methods include genetic algorithms, simulated annealing, parti-

cle swarm optimisation, artificial bee colonies, ant colony optimisation and sliding mode

theory. The hybrid approaches are either combinations of the derivative-based, or deriva-

tive and derivative-free approaches. Specific discussion of these varieties of algorithms

is beyond the scope of this research, rather this research focusses on two well known

derivative-based methods for FLSs parameter update namely, the GD backpropagation

algorithm and the extended Kalman filter (EKF)-based method namely, the decoupled

EKF (DEKF).

2.6.1 The Gradient Descent Methods

Different algorithms have been reported in the literature for the design of IT2FLSs.

However, gradient-based methods (iterative optimisation algorithms) are probably the

most widely used methods for the optimisation of the parameters of fuzzy logic sys-

tems [2, 12, 112–117]. The most popular GD learning algorithm is the back-propagation

methods [118], where the first derivatives of the cost function is computed with respect

to the design parameters. The back-propagation GDs consist of learning iterations where

a single iteration is called an epoch. The back-propagation learning algorithm consists of

two passes namely:

• The feed-forward pass where the external inputs are transmitted forward and the

outputs of each training vector is computed. During this phase, the parameters of

the consequent parts of the IF-THEN rules are updated.

• The backward propagation then propagates the difference between the model output

and the actual output backward towards the input. During this phase, the antecedent

parameters of the FLS are updated.
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According to Wang [119], the GD method is simple, easy to use, and with a fast rep-

etition each time of the iteration. Wang further pointed out that the GD algorithm is

guaranteed to find the local minimum through numerous times of iterations as long as it

exists. Generally, the GD method arises when an algorithm follows the negative of the

gradient of the function to reach its minimum. The GD start at a point, for instance, θi

and compute the gradient at that point Oθif(θ) and then takes a step, γ, in the direction

of the negative of the gradient to find a new point θi+1, where every θi+1 is computed as

θi+1 = θi - γOθif(θ). The gradient is computed at this new point and another step, γ,

is taken in the direction of the negative of the gradient to obtain a new point θi+2. The

algorithm proceeds until a minimum (local or global) is reached. The update rule for the

generic parameter θ using GD is as expressed in Equation 2.19:

θi+1 = θi − γ
∂E

∂θi
(2.19)

The GD method has been used over the years to update either or both the antecedent

or/and consequent parts of a FLS. For example, Wang et al. [120] proposed a dynamical

design of IT2FLS through a combination of an artificial neural network (ANN) and IT2FLS

for handling uncertainties. The GD is adopted to tune the antecedent and consequent

parts of the rules while a genetic algorithm is utilised to determine the optimal spread

and learning of the designed system.

Khanesar et al. [4] proposed a T2FLS using a novel elliptic type-2 membership function

in order to investigate the noise reduction property of a T2FLS. The authors in [4] utilised

GD approach to tune both the antecedent and consequent parameters of the proposed

type-2 membership function. Lin et al. [95] proposed a simplified TSK-type IT2FNN with

online structure and parameter learning. These authors used the GD algorithm to adapt

the parameters of the proposed model.

Juang and Tsao [121] proposed a self evolving interval type-2 fuzzy neural network

(SEIT2FNN) with online structure and parameter learning with GD method used to up-

date the parameters in the antecedent parts and rule-ordered Kalman filter to adjust the

consequent parts. Lin et al. [122] proposed a TSK-based self-evolving compensatory inter-

val type-2 fuzzy neural network (TSCIT2FNN) for minimising the effect of uncertainty in

the rule base of a FLS. Their proposed system adopted two derivative-based methods (a

first-order and second-order derivative methods). The antecedent parameters of the rules

are tuned using GD algorithm while the consequent parameters are tuned using variable
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expansive Kalman filter approach. The designed system utilised A2-C0 TSK-design model

and is applied to system modelling and noise cancellation. Castillo et al. [123] and Hassan

et al. [111] provided excellent surveys of the different approaches for optimal design of an

IT2FLSs. Detailed parameter update rule based on GD and applications using the model

proposed in this thesis are presented in Chapter 4.

2.6.2 The Kalman Filter-based Methods

Despite the extensive use of the GD method for fuzzy systems’ parameter tuning, it still

suffers some drawbacks. Gradient descent being a first-order derivative-based method has

the disadvantage of slow convergence and the possibility of getting stuck in local minima,

leading to poor solutions [124]. To tackle this problems, second-order GD-based methods

have been adopted in the literature for the adaptation of the parameters of FLSs among

them is the Kalman filter (KF)-based approaches [115, 125], as they can converge in few

iterations and are less likely to get trapped in local minima [125].

For instance, Juang et al. [126] investigated some dynamic system identifications and

chaotic signal predictions under both noise-free and noisy conditions using a recurrent

self-evolving IT2FNN (RSEIT2FNN). The authors utilised a rule-ordered KF algorithm

to tune the consequent part parameters and GD to tune the antecedent parts. Lin et

al. [122] adopted a variable expansive Kalman filter approach to tune the consequent

parameters of their proposed TSCIT2FNN.

However, the basic KF works well for linear dynamic systems with white process and

measurement noise but real world and problems are non-linear. Hence, for nonlinear sys-

tems, the KF is extended (Extended Kalman Filter- (EKF)) through a process of lineari-

sation where the nonlinear function is linearised around the current parameter estimates.

The EKF has been used to learn the parameters of some traditional FLSs with great

success. For instance, Simon [115] used EKF to optimise the parameters of a fuzzy system

and demonstrate the effectiveness of the approach using a motor current estimator. The

results of evaluation was compared with the optimisation of fuzzy systems using GD

approach and adaptive neuro-fuzzy inference system (ANFIS). It is interesting to note that,

with the performance of KF-based method in Simon [115], the author concluded that the

use of KF-approach for the optimisation of FLS should be given serious consideration. In

the same vein, Slim [127] investigated the prediction and estimation of non-linear dynamic

system using a neuro-fuzzy system trained with EKF algorithm. The developed approach
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is evaluated using a Mackey-Glass benchmark problem and a financial time series. Analysis

of results show that neuro-fuzzy approach trained with EKF compared favourably with

classical ANN trained with back-propagation and ANFIS scheme. The EKF has also been

used to update the parameters of intuitionistic fuzzy systems of type-1. For instance,

Yihong [128] applied adaptive IF neural network for air defence situation and threat

assessment in battle grounds. Although no comparisons are made with other models,

the simulated results reveal creditability enhancement of threat assessment and improved

quality of assessment with precision.

However, because of the high dimensionality of the fuzzy system parameters, using the

standard EKF can be more complicated [42,125] especially for larger problem domains. In

order to alleviate this computational burden, the EKF is used in a decoupled form (DEKF)

because it is faster and easier to implement [42] with the most useful properties of the

EKF still preserved [129]. The DEKF algorithm has been used previously in Khanesar et

al. [125] to train a T2FLS where the parameters of both the antecedent and consequent

parts of the T2FLS are grouped into two separate vectors (antecedent and consequent

parameter vectors). The proposed system in [125] is applied to different problem domains

and comparison is made with type-1 FLS trained with DEKF and T2FLS trained with

GD. The authors concluded that the T2FLS trained with DEKF outperforms type-1 FLS

trained with DEKF and T2FLS trained with GD.

Two stages are involved in the parameter update using the DEKF namely: the time

update and the measurement update. During the time update, the current state is pro-

jected forward in time in order to obtain a prior estimate that is used for the next step.

During the measurement update, a new measurement is propagated in order to obtain the

posteriori estimate. In using the DEKF to learn the parameters of a FLS, the antecedent

and consequent parameters are grouped into two separate vectors - one for the antecedent

and the other for the consequent parameters. The generic parameter update rule in the

ith group is as expressed in Equation (2.20) to (2.22):

θit = θit−1 +Ki
t [yt − h(θt−1)] (2.20)

Ki
t = P itH

i
t [(H

i
t)
TP itH

i
t +Ri]−1 (2.21)

P it+1 = P it −Ki
tP

i
t (H

i
t)
T +Qi (2.22)
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where K is the Kalman gain, P is the covariance matrix of the state estimation error, R

is the measurement noise covariance and Q is the covariance of process noise. Detailed

parameter update rule using DEKF for the model proposed in this thesis and applications

are presented in Chapter 5.

The methods adopted in this thesis to optimise the parameters of the proposed model

are derivative-based methods only namely: a first-order back-propagation GD method

and a second-order extended Kalman filter (EKF)-based method, the so-called DEKF and

their hybrid - DEKF and GD (see Chapter 6).

2.7 Application of IT2FLSs to Uncertainty Modelling

The IT2FLSs have proven effective in many practical applications. Thanks to the simpli-

fication of the computations of IT2FSs provided by Mendel et al. [24], many people can

now implement T2FLSs on a far greater scale. Some excellent reviews of IT2FLSs and

their applications can be found in [27, 28, 30, 32]. In this section, a review of applications

of IT2FLSs for uncertainty modelling in some problem domains is presented.

2.7.1 Application to Classification and Prediction Problems

In Najafi et al. [130], a new method for the automatic classification of celiac disease

using IT2FLS is presented. Fuzzy C-mean clustering is applied for the determination

of membership functions. The model is evaluated using a dataset from Poursina Hakim

Research Institute. Analysis is carried out using IT2FLS with fuzzy C-mean, IT2FLS

without fuzzy C-mean and type-1 FLS. Results reveal that both IT2FLSs outperformed

the type-1 FLS.

Due to insufficient reliability and robustness in brain-computer interface technology,

the practical use of brain-computer interface is limited. The main problem being the

extensive variability and inconsistency of brain signal patterns. To cope with this prob-

lem, Pawel et al. [131] presented a new T2FLS classifier within the framework of an

electroencephalogram-based brain-computer-interface. Evaluation of results demonstrate

the superior performance of T2FLS over conventional brain-computer interface approaches

such as linear discriminant analysis and support vector machine in terms of maximum

classification accuracy and information transfer. Study shows that different support vec-

tor machines may produce different hyperplanes for the same sample [132]. Using these



2.7. Application of IT2FLSs to Uncertainty Modelling 32

hyperplanes for decision making often lead to different conclusions. To circumvent this

problem, Zarei et al. [132] proposed an IT2 fuzzy fusion model where different support vec-

tor machines are combined in an ensemble for classification problems. Simulation results

demonstrate that IT2 fuzzy fusion model generates the best classifications compared to

other models such as ANFIS, type-1 FLS and single support vector machine. The authors

re-echo that the best performance of IT2 fuzzy fusion model is due to the model’s ability

to overcome the uncertainties in the rule-base and the shape of the membership function.

Yao et al. [133] proposed a novel approach for human behaviour recognition and sum-

marisation based on IT2FL classification system. The parameters of the proposed model

are optimised using big-bang big-crunch evolutionary algorithm. The big-bang big-crunch-

based IT2FLS with fuzzy classification technique is shown to outperform classical IT2FLS.

David Enke et al. [134] presented a three stage stock market prediction involving

differential evolution-based T2 fuzzy clustering and fuzzy type-2 neural network (FT2NN).

The differential evolution is an optimisation technique in evolutionary computation. The

differential evolution-based fuzzy-type clustering method generated the type-2 fuzzy IF-

THEN rules. The authors pointed out that the difficulty associated with the choice of the

parameter, “m” in standard FCM is removed with the use of IT2FCM. It is shown that

the use of IT2FCM leads to better location of the cluster centers with better fuzzy rule

model. For training the model, FT2NN was employed. The proposed model was used to

forecast stock prices. Analysis of results reveals better stock price prediction accuracies

using T2-fuzzy approach compared to fuzzy type-1 approaches.

Sumati et al. [135] investigated the application of IT2 subsethood-based neural FIS

(IT2SUNFIS) for pattern classification of iris flower. The proposed model is compared

with existing approaches using number of parameters, number of rules and re-substitution

accuracy. Results revealed that IT2SUNFIS performs better than other comparative mod-

els.

Bernado et al. [136] developed a genetic T2FLS for modelling and predicting financial

applications. The authors opined that the proposed framework is able to generate a

summarised optimised T2FLSs financial models that are easy to read and analyse by any

user of the model for financial predictions. The proposed system was evaluated using

two financial domains namely: to predict the good or bad customers in a credit card

approval domain and to predict arbitrage opportunities in the stock market. Experimental

evaluation shows that the IT2FLS-based genetic approach outperformed other financial
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models such as evolving decision rule with comparable performance to ANN.

Recently, there has been an increased interest in sport videos, and intelligent methods

need to be developed to automatically classify sport videos for easy analysis and under-

standing by experts as well as providing entertainment opportunities. Because of the

complicated and dynamic nature of video sequences, classification of these videos becomes

difficult due to inherent uncertainties in the images. In order to address these uncer-

tainties, Song and Hagras [137] proposed an IT2FL classification system (IT2FLCS) for

sport videos. The parameters of the proposed model are tuned using big-bang big-crunch

algorithm. The proposed IT2FLCS is evaluated using soccer video with three classes and

found to outperform its type-1 version and back propagation neural network.

Load forecasting is one of the important aspects in the energy sector needed for efficient

management and operations of the energy system. However, the process of load forecasting

is very complex and challenging due to nonlinear and random characteristics of the load

demands. In order to cope with these challenges, Khosravi et al. [138] presented an

IT2FLS for short term load forecasting. The constructed system implement the TSK fuzzy

inferencing using Gaussian membership function with fixed mean and uncertain standard

deviation. The authors adopted the A2-C0 and A2-C1 TSK-models trained with genetic

algorithm. To test the viability of their proposed model, the authors also implemented

an ANN and T1 TSK FLS on the short term load forecasting problem. The conclusions

drawn show that IT2FLS outperforms both the type-1 FL and ANN on the short term

load forecasting problem.

2.7.2 Application to Pattern Recognition Problems

One of the popular research areas in computer vision is face recognition and many ap-

proaches have been adopted for face recognition analysis. In Mendoza et al. [139], a face

recognition application is proposed based on IT2FLS and modular neural networks. Two

IT2FLSs are adopted for the construction of the overall model. The first IT2FLS extracts

useful features from the training samples while the second IT2FLS rates the relevance of

each module in the network. The Sugeno fuzzy integral is used for response integration in

the integration module of the modular network and IT2 fuzzy system to rank the relevance

of each module. The authors concluded that IT2FLSs improved the overall performance

results in image recognition.

Melin [140] proposed IT2FL for image processing and pattern recognition. The author
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applied a new T2FL approach for image edge detection and the model is compared with

three traditional approaches namely Sobel operators, edge detection by gradient magnitude

and detection with type-1 fuzzy logic. The IT2FLS was found to outperform these three

traditional approaches.

Recently, Yadav and Vishwakarma [141] proposed an improved approach based on

IT2FL-based information extraction for face recognition systems. The purpose of the pro-

posed system according to the authors is to minimize the effect of uncertainty in face recog-

nition systems arising from variations in light direction, facial expression, etc. The model

is evaluated using data from American Telephone & Telegraph (AT&T) face database.

The authors claim that the sensitivity variations between images is reduced with IT2

membership functions.

2.7.3 Application to Clustering Problems

Qin et al. [142] proposed the clustering of sea surface temperature using IT2 fuzzy C-mean

(IT2FCM) in order to discover spatial temporal patterns for enhanced climate change. The

authors pointed out that due to the level of uncertainty in sea surface temperature, the use

of standard FCM approach becomes inappropriate as it does not take into consideration

the uncertainty in membership grades, hence the use of IT2 variant of FCM. According

to the authors, IT2FCM achieved improved performance compared to standard FCM.

Yu et al. [143] presented a fuzzy clustering approach called interval type-2 possibilistic

C-mean (IT2PCM) with alternating cluster estimation. The authors suggested that with

the proposed approach, users are able to construct IT2 fuzzy membership functions with

the flexibility of building cluster prototypes. The authors also claimed that the proposed

approach is robust to inliers and outliers.

Wireless sensor networks have been applied in the monitoring of surrounding envi-

ronments and communication of information to disparate base stations. The challenge

in wireless sensor networks is the network lifetime that must be prolonged while ensur-

ing precision. In order to maintain this balance, Cuevas-Martinez et al. [144] proposed a

new fully distributed IT2FL controller for clustering in wireless sensor networks. The au-

thors claimed that their proposed method significantly improve the whole network lifetime

without incurring any central computation or complex procedures in the network nodes.

The design of IT2FCM-based NN is proposed in Kim et al. [145]. The hidden layer of

the proposed model utilised IT2FCM clustering to handle uncertainty in the input space.
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The connection weights of the proposed architecture are adjusted using local least square

estimation-based learning. The authors pointed out that with the application of IT2FCM

in the hidden layer, the proposed model is able to efficiently handle uncertainty in the

input space better than the type-1 FCM.

2.7.4 Application to Control Problems

In Wati [146], a multi-input-multi-output IT2FL controller (IT2FLC) is designed for the

automatic control of bath system temperature and water flow rate. The input to the shower

system are hot water and cold water and the output is water at a certain temperature.

Experimental analysis revealed an improved performance of IT2FLC over type-1 FLC in

terms of fast step response of the output temperature and output flow rate of the shower

systems.

Linda and Manic [147] designed an IT2FLS by incorporating into the model two

novel quantifiers namely: the antecedent uncertainty quantifier and consequent uncer-

tainty quantifier. The new proposed model was used in the design of a wall following

navigation of a controller for autonomous mobile robot. Analysis of results shows that

the proposed model provides accurate interpretation of uncertainty in the output of the

IT2FLS.

In Ri et al. [148], the control of a mobile wheeled inverted pendulum is designed using

the notion of IT2FL controller (IT2FLC) in order to model uncertainties and external

disturbances. In particular, the study focused on the velocity, balancing and yaw steering

controllers of mobile wheeled inverted pendulum. The proposed system is simulated under

two conditions namely, with measurement uncertainties and external disturbances. In both

cases, IT2FLC outperforms the T1FLC.

Bai and Wang [149] proposed a model-free approach for robot calibration based on

IT2 fuzzy error interpolation method. In this way, the robot calibration does not undergo

kinematic modelling and identification steps as opposed to the model-based approach.

The proposed system is evaluated and compared with other interpolation techniques such

as tri-linear, cubic spline and type-1 fuzzy error interpolation. Analysis of results revealed

that the IT2 fuzzy interpolation outperforms the type-1 fuzzy error interpolation and other

interpolation approaches.

IT2FS have also been used extensively in decision making. For instance, Cheng et

al. [150] proposed a novel autocratic group decision making strategy using recommendation
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system by ranking IT2FSs. Other works employing IT2FSs in group decision making

include [151–153]. A comprehensive survey of IT2FSs in decision making is provided

in [29] and there are still more grounds to be explored [154].

2.8 Drawbacks of IT2FLSs

Despite the literature being replete with several works revolving around IT2FLSs that

utilises IT2FSs in the rule base, it is worth noting that with IT2FSs, the variations of

the uncertainties within the FOU of IT2FSs are not captured because the uncertainty is

evenly spread across the FOU which practically leads to loss of some information [155] as

compared to the GT2FSs. Another issue IT2FLSs, in particular, encounter is the curse

of dimensionality [156], that is, the number of rules is exponentially proportional to the

number of inputs and this increases the computational complexity of the system compared

to the type-1 counterpart. Moreover, the IT2FSs strong assumption that non-membership

functions are complementary to membership functions can make them unsuitable in some

situations. IT2FLSs lack the capability of handling a situation with the characteristic

of neither belonging nor not-belonging (indeterminate), which is a common phenomenon

in natural language context. All the models so far discussed concentrate on using only

the membership function in their fuzzy set definitions with an implicit assertion that

non-membership functions are complementary to membership functions. Nevertheless,

few models have attempted to address this problem by exploiting both membership and

non-membership functions with hesitation indices otherwise known as Atanassov IFLSs

utilising the Atanassov intuitionistic fuzzy sets (AIFSs).

2.9 Atanassov Intuitionistic Fuzzy Set

Because the classical FS non-membership function (ν) is complementary to the member-

ship function (µ), that is, ν = 1−µ with no form of uncertainty whatsoever, Atanassov [8]

extended the concept of Zadeh’s fuzzy sets to intuitionistic fuzzy sets, hereafter referred

to as AIFSs, which handle uncertainty by taking into account both the membership and

non-membership degrees of an element x to a fuzzy set A together with extra degree of

indeterminacy (hesitation).

An Atanassov intuitionistic fuzzy set (AIFS), characterized by a membership and non-

membership functions, is a generalization of FS. Whereas the FS focuses on assigning mem-
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Figure 2.5: A-intuitionistic Gaussian membership and non-membership functions - AIFS

bership grades to elements in a UoD, AIFS assigns both membership and non-membership

to each element of a set, and allows explicit representation of non-belongingness.

According to Ejegwa et al. [157], the degree of non-membership of an element in

a fuzzy set may not always be 1 minus the degree of membership, that is, (v(x) 6=

1 − µ(x)), an assertion implicit in classical FS, because there may be some degree of

hesitation of that element to the set. Thus the semantic representation of AIFS, A∗ in-

cludes the degree of membership, degree of non-membership and the hesitation margin

{(µA∗(x), νA∗(x), πA∗(x)) | x ∈ X} respectively. Given the background of AIFS, it can

formally be defined as follows:

2.9.1 Type-1 AIFS: Definition

Definition 2.9.1 Given a finite, non-empty set X, an AIFS A∗ in X is an object having

the form: A∗ = {(x, µA∗(x), νA∗(x)) : x ∈ X)}, where the function µA∗(x) : X → [0, 1]

defines the degree of membership and νA∗(x) : X → [0, 1] defines the degree of non-

membership of element x ∈ X and for every element x ∈ X, 0 ≤ µA∗(x) + νA∗(x) ≤ 1 [8].

When νA∗(x) = 1−µA∗(x) for every x ∈ X, then the AIFS A∗ collapses to ordinary fuzzy

set A. Thus, given an AIFS, the degree of hesitancy of x to A∗ is given by:

πA∗(x) = 1− (µA∗(x) + νA∗(x)).

This is called the A-intuitionistic fuzzy (IF) index of x in A∗. Barrenechea et al. [158]

pointed out that the IF-index is an important attribute of AIFS as valuable information
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of each element can be obtained. The authors also noted that the IF-index plays very

important role in algorithms performance.

For ordinary fuzzy set A, πA(x) = 0 ∀x ∈ X.

Given an instance of a FS:

A = {(x, µA(x)) | ∀x ∈ X} (2.23)

The FS A can be represented as AIFS:

A = {(x, µA(x), 1− µA(x)) | ∀x ∈ X} (2.24)

where 1− µA(x) represent the non-membership function of a FS.

Conversely, given an AIFS:

A∗ = {(x, µA∗(x), νA∗(x)) | ∀x ∈ X} (2.25)

If all the elements of the AIFS satisfy the condition:

µA∗(x) + νA∗(x) = 1, a classical FS is recovered. Then A∗ can also be expressed as:

A∗ = {(x, µA∗(x), 1− µA∗(x)) | ∀x ∈ X} (2.26)

A FLS that utilises AIFSs in their rule base is referred to as Atanassov intuitionistic fuzzy

logic system (AIFLS).

2.9.2 Atanassov Intuitionistic Fuzzy Logic Systems

The AIFLS consists of four basic modules similar to classical type-1 FLS. However for

AIFLS, these modules utilise intuitionistic fuzzy sets and are therefore referred to as the

intuitionistic fuzzifier, the intuitionistic fuzzy rulebase, the intuitionistic inference engine

and the intuitionistic defuzzifier [128]. The intuitionistic fuzzifier maps the external crisp

inputs into AIFS for which the corresponding membership and non-membership degrees

are obtained. The rules may be constructed using experts knowledge or from numerical

data. The inference engine combines the rule using a t − norm to produce a type-1 IFS

which are then defuzzified to obtain the final crisp output.

Apart from the T2FSs, one of the the most accepted generalisations of fuzzy sets is

the Atanassov IFSs [76] as it has received greater attention since its appearance [159] and

increasingly new concepts are linked to the notion of AIFSs [160]. According to [161–163],

AIFSs are found to be useful for dealing with vagueness. With AIFS, the fuzzy charac-

teristic of “neither this nor that” (indeterminate state) can be effectively described, thus
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Figure 2.6: Structure of AIFLS

providing AIFS the flexibility and the ability to capture more information than FS [39].

Szmidt and Kacprzyk [164] stated that AIFSs are useful in problem domains where the

use of linguistic variable to describe the problem in terms of membership functions only

seems too restrictive. According to Olej and Hajek [165], the representation of attributes

by means of membership and non-membership functions provides a better way to express

uncertainty. Castillo et al. [41] pointed out that the non-membership degrees and intu-

itionistic fuzzy indices enable the representation of imperfect knowledge and also allow

adequate description of many real world problems. In particular, Cornelis et al. [166]

pointed out that the real essence of AIFS is that often when people are assessing a degree,

they are often reluctant to pinpoint the degree decisively, which could mean strong com-

mitment because to some extent they are hesitant about such assessments. People prefer

to fix a certain threshold to indicate the positive and negative evidence with some hesita-

tion. According to Shinoj and Sunil [167], AIFS can be used as a more appropriate tool in

this context for simultaneously representing both membership and non-membership of an

element to a set and not insisting that the assessment be complementary [38]. The AIFS-

based models are appropriate in a wide variety of situations in which human opinions are

elicited. A typical example is the scenario painted in Chapter 1 about people’s perception
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of Zadeh’s seminal paper on fuzzy set. Another good example is a voting scenario given

in [38, 39], for example, there are people who will vote for, vote against, abstain or cast

invalid votes [41]. In this voting contexts, the description by a linguistic variable using the

membership function only is inadequate. This voting example will be recalled whenever

it becomes relevant.

According to Own [81], when dealing with the problem of vagueness where there is

insufficient information leading to an inability to satisfactorily specify the membership

function, the AIFS theory becomes more suitable than fuzzy sets to deal with such prob-

lems. In Szmidt and Kacprzyk [168], it is argued that AIFS is a tool for a more human

consistent reasoning under imperfectly defined facts and imprecise knowledge.

2.10 Practical Applications of AIFSs

Studies involving AIFSs have drawn much attention in recent times and have been success-

fully applied in different problem domains. In medical domain, for instance, Chaira [169]

proposed a novel global medical image thresholding approach using AIFS. Due to un-

certainties in real time medical images with noisy, vague and indistinguishable char-

acteristics, conventional approaches become inadequate. In particular, Chaira pointed

out that thresholding approach with two uncertainty specifications of membership and

non-membership helps to appropriately segment the image for thresholding. The author

adopted the Sugeno-type intuitionistic fuzzy generator for computing the non-membership

values of the medical images. It is concluded that the thresholded images with the pro-

posed IF approach provides better medical images than the conventional fuzzy approaches

employing fuzzy cluster-based thresholding, measures of fuzziness and fuzzy compactness.

Khatibi and Montazer [170] proposed a medical classification of bacteria using five

similarity measures. The method of IFSs are compared with classical FSs to examine their

capabilities in handling uncertainty in the medical pattern recognition. The authors noted

that utilizing the AIFS framework not only provides more accurate classification results,

but also, the related errors generated by the AIFS are smaller than those of traditional

FSs. Other works employing AIFS in medical domains are reported in [164,171].

Hajek and Olej [172] proposed a TSK-based intuitionistic fuzzy neural network (IFNN)

with application to credit scoring using text information. The proposed IFNN is trained

using two approaches namely GD and KF. The authors pointed out that the introduction
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of non-membership function into a fuzzy inference system improve the performance of the

system. Particularly, the proposed methods of IFNN-GD and IFNN-KF are compared

with ANFIS and found to significantly outperform ANFIS. Hajek and Olej concluded

that KF approach is one of the viable approaches for the adaptations of the consequent

parameters of IFNN. In a different application context, Yihong et al. [128], demonstrated

how IFNN based on TSK-inference can be applied to threat assessment in battle grounds.

The authors re-echo that the use of AIFS is more appropriate for analysing the situation

and threat assessment information than the traditional FS. The proposed method employs

a neural network learning based on EKF. Results show improvement of assessment quality

with enhanced threat assessment creditability.

In Hajek and Olej [173], an adaptive IF- inference system (IFIS) based on TSK fuzzy

inferencing for regression problems is presented. Several optimisation approaches such as

subtractive clustering algorithm, Moore-Penrose pseudo-inverse, KF, Kaczmarz algorithm

and gradient descent are utilised to tune the parameters of the IFIS. The performance

evaluations in terms of the root mean squared error (RMSE) show that IFIS outperforms

the classical FIS in all the problem instances. In Olej [165, 174], a novel TSK based IFIS

for time series prediction is also proposed.

Castillo et al. [41] presented an intuitionistic fuzzy system for time series analysis in

plant monitoring and diagnosis. The output of the proposed intuitionistic fuzzy system is

a combination of two traditional fuzzy systems. The authors in [41] used their proposed

approach for plant monitoring and claimed that intuitionistic fuzzy logic has the poten-

tial of modelling uncertainty in a dynamic process. The authors concluded that the new

method of fuzzy inferencing with intuitionistic fuzzy systems can be applied to control

problems and time series predictions. Olej and Hajek [165] presented a TSK-type intu-

itionistic fuzzy inference systems for ozone time series prediction. The authors opined that

the use of AIFS “present a strong possibility to express uncertainty”. Intarapaiboon [175]

applies AIFS to text classification using similarity measures. Szmidt and Kacprzyk [176]

presented IFSs as an efficient and effective tool for feature selection in text categorisation.

Other application domains using AIFS worth mentioning include: control [177, 178],

bankcruptcy forecasting [179], decision making [162, 180–182] and e-learning to evaluate

student knowledge of Mathematics in university courses [183]. As more number of neurons

tend to slow down the learning process of a modular neural network, Sotirov et al. [184],

proposed an intuitionistic fuzzy intercriteria analysis approach for reducing the number
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of neurons/parameters in a modular neural network thereby speeding up the learning

process.

2.11 Drawbacks of AIFSs

These studies adopting AIFS have focussed on type-1 AIFSs and AIFLSs. AIFSs and

AIFLSs have their limitations. With uncertainties arising from different sources, it be-

comes more appropriate to map such uncertainties into membership and non-membership

function uncertainties. Using AIFS with single membership and non-membership func-

tions in handling such uncertainties is not realistic, as the determination of the exact

membership and non-membership functions is difficult to pinpoint. Hence, similar to the

notion of a classical T1FS, the type-1 AIFS may not handle or minimize the plethora of

uncertainties that are inherent in many real world applications as their membership and

non-membership degrees are exactly defined. For AIFS, the uncertainty disappears once

the membership and non-membership parameters are specified.

To tackle this problem, Atanassov and Gargov [73] extended the concept of AIFS to

interval valued AIFSs (IVAIFS) which is a generalization of the notion of AIFS in the

sense of IVFS (a special case of IT2FS). The IVAIFS are characterised by membership

and non-membership functions that are intervals and defined in the referential set of [0, 1].

In Chapter 3 the semantic differences between IVAIFS and the new framework proposed

in this thesis are highlighted.

2.12 Studies Involving Combination of AIFSs and IT2FSs

Few studies have been conducted involving the combination of AIFS and IT2FS. Naim

and Hagras [185] argued that the combination of AIFS and T2FLS are well suited for

handling imprecision and vagueness. Some research has shown interest in the arithmetic

operations of T2AIFS. In Cuong et al. [186] some set theoretic operations for T2AIFS and

their properties are discussed. The authors concluded that many applications will benefit

from the use of such sets. Similarly, Jana [187] has proposed some novel arithmetic oper-

ations on GT2AIFS on the basis of (α, β)-cut methods with application to transportation

problems. Recently, Singh and Garg [188] proposed some distance measures for T2AIFS

and applied the proposed measures to multi-criteria decision making. A few FL structure

have attempted to solve the problem of uncertainty modelling by exploiting both AIFS
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and IT2FS. An example application in this category (of the combination of AIFS and

IT2FS) is found in the work of Nguyen et al. [189], where IT2 fuzzy C-mean (IT2FCM)

and AIFS are applied for clustering of different types of images especially those corrupted

with noise. Experimental results reveal improvement in the clustering quality of images

using IT2FCM and AIFS compared to representative algorithms like FCM and IT2FCM.

The combination of AIFS and IT2FS have also been applied to image thresholding.

For instance, Nghiem et al. [190] applied intuitionistic T2FS to image thresholding using

Sugeno intuitionistic fuzzy generator. The authors claim that their proposed method ex-

hibits higher thresholding quality with noisy images compared to typical algorithms such

as image segmentation using type-1 fuzzy set and AIFS alone.

In the literature, numerous approaches based on type-1 AIFS for decision-making have

also been proposed. However, few examples are recorded in the literature involving the

combined approach of AIFS and IT2FL. For instance, Naim and Hagras [185], presented

a hybrid approach where IT2 and AIFS are utilised in multi-criteria group decision mak-

ing (MCGDM). The proposed system employs IT2FS to handle the linguistic uncertainty

while utilising intuitionistic evaluation in the design of the non-membership function de-

grees. The authors applied the proposed method to the evaluation of postgraduate study

involving ten candidates. Analysis of results shows that variations in the group decision

making using the proposed method of IT2FS and IF evaluation provided better agreement

with the human experts decision than AIFS, FS and IT2 fuzzy systems.

In Naim et al. [191], fuzzy logic-MCGDM (FL-MCGDM) is proposed for selecting ap-

propriate and convenient lighting level for reading to meet each individual needs as this

varies among users. The proposed hybrid system was developed using the concepts of

IT2FS and the hesitation indices provided by the AIFS. The membership function of the

IT2FS for the left and right end-points were represented in intuitionistic values. Experi-

mental evaluation revealed a significant correlation between the user’s linguistic appraisal

and the result provided by the proposed FL-MCGDM system. The authors concluded

that the combination of T2FS and AIFS provides FL-MCGDM with enhanced capabil-

ity for decision making. Another FL-MCGDM is proposed in Naim and Hagras [35] for

intelligent shared environment. The proposed model also utilised IT2FS and hesitation

indices of AIFS in the design of the decision making model. In order to evaluate the

effectiveness of the designed approach, the authors applied the model to an intelligent

apartment and concluded that the results are consistent with the human decision as com-
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pared to classical fuzzy MCGDM. In a study by Own [81], a switching between T2FSs

and AIFSs is proposed. In [81], the switching relation between T2FSs and AIFSs is de-

fined axiomatically. The advantages of T2FSs are exploited and the switching results are

applied in pattern recognition and medical diagnosis reasoning to show the usefulness of

the proposed method.

The research reported here adopts a similar idea, as discussed above, of using both

AIFS and IT2FS in the design of the proposed framework. However, the motive and

approach for the framework proposed in this thesis are quite distinct from those advanced

in the above models. Among other things, no framework listed above obviously shows the

benefit of explicitly using membership and non-membership functions that are intervals

together with IF-indices for uncertainty modelling. Moreover, these existing models do

not have any learning or parameter optimisation mechanism whatsoever. Hence, this

work is an attempt in this direction to develop a framework that fuses both concepts and

models uncertainty using separately defined membership and non-membership functions

that are intervals with ANN learning capability. A more careful treatment of the proposed

framework is provided in Chapter 3.

2.13 Summary

In this chapter, a survey of related works in uncertainty modelling is provided. In partic-

ular, the discussion focussed on approaches involving IT2FSs and AIFSs and their fusion.

How these existing approaches address the issues of uncertainty modelling are discussed.

In the context of minimising the effects of uncertainties in applications, existing relevant

works separately adopting the notion of IT2FSs and AIFs and systems are reviewed. The

major barriers to the effective application of IT2FSs and AIFSs and systems, which this

thesis aim to investigate have been highlighted. Whilst the classical IT2FLSs have made

significant waves in modelling large amounts of uncertainties, they are not able to man-

age indeterminate (hesitant) states well. For IT2FLSs, it is the assignments of only the

membership grades (lower and upper) to every element in a UoD with no hesitation, thus

enforcing duality that non-membership degrees are complementary to the membership de-

grees. AIFLSs, on the other hand, may not handle the amount of uncertainty inherent in

many real world applications as their single membership and non-membership functions

cannot incorporate information from diverse sources simulteneously. In other words, AI-

FLSs are useful for defining an uncertain term from a single point of view. Any change in
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perception of the same linguistic term will entail frequent re-tuning of the AIFS member-

ship and non-membership functions so that it can deal with the various uncertainties. This

may lead to a sub-optimal system performance under certain operation and environment

conditions.

Although, different approaches for dealing with these challenges in terms of the combi-

nation of AIFS and IT2FS have been addressed, most of these approaches are less relevant

to the problem domain investigated in this thesis. In addition, some of these approaches

utilise only a single IT2FS and evaluate the hesitation on the primary membership function

of the IT2FS. For instance, the works of [35,185,191] while effective in handling MCGDM,

do not consider the specification of non-membership function as a separate region but

rather IT2FS is employed with intuitionistic evaluation (hesitation) on the membership

function FOUs. They do not explicitly apply membership and non-membership functions

that are intervals. Moreover, no learning or optimisation whatsoever, has been carried

out on these sets. The model presented in Chapter 3 provides a point of departure of the

model proposed in this thesis from existing approaches in the literature. As mentioned

earlier, the focus of this research is to systematically integrate Atanassov’s notion of IFS

into IT2FLS with the aim of modelling linguistic uncertainties using membership and

non-membership functions that are intervals in [0,1] with the hesitation degrees defined

for both membership and non-membership functions.



Chapter 3

Model Formulation

As complexity rises, precise statements

lose meaning and meaningful

statements lose precision.

Lotfi A. Zadeh

3.1 Introduction

In Chapter 2, some concepts which underpin the contributions of this research are intro-

duced. The main purpose of this chapter is to introduce a new TSK-based interval type-2

Atanassov-intuitionistic fuzzy logic system (IT2AIFLS-TSK) that utilises fuzzy member-

ship and non-membership functions together with intuitionistic fuzzy indices (IF-indices)

for uncertainty modelling. The general framework is based on TSK-fuzzy inference. It is

argued that the fuzzy non-membership and intuitionistic fuzzy indices can be incorporated

into an IT2FLS in order to handle uncertainty well and mitigate their effects. As pointed

out in Eyoh et al. [3], the integration of these two concepts can bring about a synergistic

effect in uncertainty modelling with the capacity for improved system performance.

3.2 Generalised Type-2 A-Intuitionistic Fuzzy Set

Here, a new definition for a generalised T2AIFS (GT2AIFS) is provided, for the first time.

A GT2AIFS Ã∗ in the universe of discourse, X consists of type-2 membership and non-

membership grades of x ∈ X defined as µÃ∗(x, u) : u ∈ Jµx ⊆ [0, 1] and νÃ∗(x, u) : u ∈ Jνx ⊆

[0, 1] respectively [2]. The primary membership (Jµx ) and primary non-membership (Jνx )

of element x ∈ Ã∗ are elements in the domain (x, u) which form supports of a GT2AIFS

46



3.3. Interval Type-2 Atanassov Intuitionistic Fuzzy Set 47

in the third dimension for membership and non-membership functions respectively and

are defined as follows [2]:

Jµx =
{

(x, u) : u ∈
[
µ
Ã∗ (x) , µÃ∗ (x)

]}
Jνx =

{
(x, u) : u ∈

[
νÃ∗ (x) , νÃ∗ (x)

]}
Definition 3.2.1 A generalised T2AIFS denoted by Ã∗ is characterised by a type-2 mem-

bership function µÃ∗(x, u), and a type-2 non-membership function νÃ∗(x, u) [2], i.e.,

Ã∗ = {(x, u) , µÃ∗ (x, u) , νÃ∗ (x, u) | ∀x ∈ X,∀u ∈ Jµx , ∀u ∈ Jνx} (3.1)

in which 0 ≤ µÃ∗ (x, u) ≤ 1 and 0 ≤ νÃ∗ (x, u) ≤ 1

where ∀u ∈ Jµx and ∀u ∈ Jνx conform to the T1 constraint that 0 ≤ µA∗ (x) +νA∗ (x) ≤ 1.

That is, when uncertainties disappear, a T2 membership and non-membership func-

tions must reduce to a T1 membership and non-membership functions respectively. Also

the amplitudes of both membership and non-membership functions must lie in the closed

interval of 0 and 1. That is, 0 ≤ µÃ∗ (x, u) ≤ 1 and 0 ≤ νÃ∗ (x, u) ≤ 1. Alternatively, a

GT2AIFS, Ã∗, may be represented as [2]:

Ã∗ =

∫
x∈X

[∫
u∈Jµx

∫
u∈Jνx

{
µÃ∗ (x, u) , νÃ∗ (x, u)

}]
/ (x, u) (3.2)

where
∫ ∫ ∫

represents union over all admissible values of x and u for the membership and

non-membership over a continuous UoD, and
∫

is replaced by
∑

for discrete UoD. When

the secondary membership functions µÃ∗(x, u) = 1, and secondary non-membership func-

tions νÃ∗(x, u) = 1, a GT2AIFS translates to an interval type-2 Atanassov intuitionistic

fuzzy set (IT2AIFS) (see Figure 3.1)

3.3 Interval Type-2 Atanassov Intuitionistic Fuzzy Set

Many real life problems involve dealing with multiple assessments. Returning to the voting

scenario mentioned in Chapter 2, Section 2.9, where some people will:

• vote for

• vote against

• cast invalid vote or abstain from the poll
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Figure 3.1: An IT2 A-intuitionistic Gaussian membership and non-membership functions

- IT2AIFS [2]

Suppose further that the task is to classify the different classes of voters according to their

ages. Employing a single membership and non-membership functions, while useful in

many situations, might not be sufficient in this context. Ideally, people, when making any

assessments are reluctant to decisively pin-point a single numerical value, be it membership

or non-membership as doing so entails strong commitment [166] and no individual wants

to be overly involved. Rather, people prefer to specify a certain range because they are

hesitant to some degree about such assessment. Incorporating the notion of IF-indices

into IT2FSs gives room for more flexibility in fuzzy set descriptions. This allows for

more ease and ability to handle uncertainty and non-linearity. With the capacity to deal

with uncertain membership and non-membership functions, IT2AIFSs allow for better

modelling of real life situations than classical IT2FSs. What follows is a formal definition

of IT2AIFS.

Definition 3.3.1 An IT2AIFS, Ã∗, is characterised by membership bounding functions

and non-membership bounding functions defined as µ̄Ã∗(x), µ
Ã∗(x) and ν̄Ã∗(x), νÃ∗(x)

respectively for all x ∈ X with constraints: 0 ≤ µÃ∗(x) + νÃ∗(x) ≤ 1 and 0 ≤ µ
Ã∗(x) +

νÃ∗(x) ≤ 1 [189].

For instance, the interpretation of IT2AIFS for ‘vote’ is similar to the classical IT2FS

expressed as:
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vote = Medium/Day1 + High/Day2 + Low/Day3 (3.3)

The difference is that the linguistic terms: Medium, High, and Low are now fuzzy-

fuzzy (membership and non-membership) sets. That is, two membership type-1 AIFSs

and two non-membership type-1 AIFSs. For each x ∈ X, there exist a third parameter

π(x) called the IF-index or hesitancy degree which comes as a result of an expert not being

certain of the degree of membership and non-membership of element x ∈ X, and may cater

to either membership, non-membership values or both. In the framework proposed in this

thesis, the IF-index caters for both the membership and the non-membership functions of

a set.

Two IF-indices used in this thesis are the IF-index of centre and IF-index of variance1.

These indices were previously used in Hajek and Olej [172] and defined in this work as:

πc(x) = max
(
0,
(
1−

(
µÃ∗(x) + νÃ∗(x)

)))
πvar(x) = max

(
0,
(
1−

(
µÃ∗(x) + νÃ∗(x)

)))
πvar(x) = max

(
0,
(

1−
(
µ
Ã∗(x) + νÃ∗(x)

)))
such that: 0 ≤ πc(x) ≤ 1 and 0 ≤ πvar(x) ≤ 1.

The IF-indices for this study are m− by − n matrices randomly generated in the interval

[0,1], where m is the number of linguistic terms and n is the number of inputs. These

IF-indices are then incorporated into the FOUs of the IT2AIFS. The capability of taking

the contribution of IF-index into account, aside from the non-membership degree, in the

partitioning of the input space gives this approach an advantage over some conventional

IT2 fuzzy approaches [3].

As defined above, an IT2AIFS Ã∗ is characterised by interval type-2 membership function,

µÃ∗(x, u) and interval type-2 non-membership function, νÃ∗(x, u) for all x ∈ X expressed

as:

Ã∗ =

∫
xεX

∫
uεJµx

∫
uεJνx

1/ (x, u)

=

∫
xεX

[∫
uεJµx

∫
uεJνx

1/ (u)

]/
x

(3.4)

1Petr Hajek in an email conversation pointed out that “IF-index of centre is used to express the hesitancy

on the centre of the membership function while the IF-index of variance represents the hesitancy on the

radius” and these values are small numbers in the interval [0,1]
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where x is the primary variable, and u is the secondary variable. The uncertainty about

an IT2AIFS is completely described by the FOUs that are bounded by two T1 member-

ship functions - an upper membership function given as µ̄Ã∗(x) and a lower membership

function expressed as µ
Ã∗(x) and two T1 non-membership functions which are - an upper

non-membership function, ν̄Ã∗(x) and a lower non-membership function, νÃ∗(x) as shown

in Figure 3.1 and expressed as:

µ̄Ã(x) ≡ FOUµ(Ã∗) ∀x ∈ X

µ
Ã

(x) ≡ FOUµ(Ã∗) ∀x ∈ X

ν̄Ã(x) ≡ FOUν(Ã∗) ∀x ∈ X

νÃ(x) ≡ FOUν(Ã∗) ∀x ∈ X

(3.5)

Thus, two FOUs are defined for IT2AIFS namely: FOUµ regarding the uncertainty of

the membership function and FOUν defined with respect to the non-membership function

of IT2AIFS Ã∗ (see Figure 3.1) as follows [3, 40,46]:

FOUµ

(
Ã∗
)

=
⋃
∀x∈X

[
µ
Ã∗(x), µ̄Ã∗(x)

]
(3.6)

FOUν

(
Ã∗
)

=
⋃
∀x∈X

[
νÃ∗(x), ν̄Ã∗(x)

]
(3.7)

The background on which the proposed fuzzy framework is based is provided. The different

variants of fuzzy sets that have motivated this research are highlighted. However, because

of the associated complexities of the GT2FS as discussed in Section 1.1 and Subsection

2.2.3, the IT2 Atanassov intuitionistic fuzzy logic framework is constructed based on the

notion of IT2FS.

3.4 A Comparison Between Interval Valued Atanassov In-

tuitionistic Fuzzy Set and Interval Type-2 Atanassov

Intuitionistic Fuzzy Set

In Subsection 2.3.1, the differences between IVFS and IT2FS [84] are discussed. similar

to the discussion on IT2FS and its representations, it is argued that IT2AIFS can also

be used in a more general perspective to represent concepts that are not possible with

IVAIFSs namely as intuitionistic type-1 fuzzy sets, as interval-valued intuitionistic fuzzy
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sets, as intuitionistic-fuzzy multi sets and as multi-interval intuitionistic fuzzy sets, hence

the adoption of IT2AIFS instead of IVAIFSs. Secondly, for IVAIFS, the general constraints

is that the summation of the upper-bound membership and upper-bound non-membership

degrees is less than or equal to 1. i.e.

0 ≤ µ̄Ã + ν̄Ã ≤ 1 (3.8)

The point of departure is that, for IT2AIFS proposed here, the summation of the

upper-bound membership and lower-bound non-membership is less than or equal to 1 and

the summation of the lower-bound membership and upper-bound non-membership degrees

is less than or equal to 1, i.e. for IT2AIFS, the constraints are [189]:

0 ≤ µÃ∗(x) + νÃ∗(x) ≤ 1 (3.9)

and

0 ≤ µ
Ã∗(x) + νÃ∗(x) ≤ 1 ∀x ∈ X. (3.10)

These two constraints present IT2AIFS as a new and distinct concept completely different

from IVAIFS. It is useful to make these distinctions in the context of this research as it

serves to distinguish the much broader concept of IT2AIFS from the more specific concept

of IVAIFS. A FLS that utilises at least one IT2AIFS in the rule base is referred to as

interval type-2 Atanassov intuitionistic fuzzy logic system (IT2AIFLS) - a new and sound

framework proposed in this thesis.

3.5 TSK-based Interval Type-2 Atanassov-Intuitionistic Fuzzy

Logic System Framework

The proposed IT2AIFLS-TSK takes the best of two worlds - AIFLS and IT2FLS. This

way, IT2AIFLS-TSK:

• Assigns to each element of a set both membership and non-membership grades that

are intervals.

• Enables hesitation and thus relaxes the complementarity assessments of classical

IT2FS such that:

Ã∗µc = 1
/
FOU

(
Ã∗µc

)
6≡ 1
/ [

1− µ̄A(x), 1− µ
A

(x)
]

(3.11)
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and

Ã∗νc = 1
/
FOU

(
Ã∗νc

)
6≡ 1
/

[1− ν̄A(x), 1− νA(x)] (3.12)

• Relaxes the inequality of IVAIFS in Equation 3.8 (See Equations 3.9 and 3.10 )

• Incorporates more uncertainties (fuzziness) and captures more information, thus re-

laxes the single membership and non-membership functions of AIFSs.

The reference to TSK-type inference for IT2AIFLS is hereafter omitted for notational

convenience. According to Hisdal [192, pp. 385], “increased fuzziness in a description

means increased ability to handle inexact information in a logically correct manner.” The

structure of IT2AIFLS (see Figure 3.2) is similar to the AIFLS except in the defuzzification

module. For IT2AIFLS, there is a type-reducer before the actual defuzzification. The

type-reducer converts the IT2AIFS from the IF-inference engine into an AIFS. The type-

reduced set (AIFS) is then defuzzified into crisp number as the final output. Another

difference between AIFLS and IT2AIFLS, is that the fuzzy sets are IT2AIFS.

Intuitionistic 
fuzzifier

Intuitionistic 
rule base

Intuitionistic 
inference 

engine

Crisp
inputs

Intuitionistic output
processing

Defuzzifier

Type reducer

T2 intuitionistic fuzzy 
input sets

T2 intuitionistic fuzzy 
output sets

Crisp 
outputs

Type
reduced 
Set (AIFS)

Figure 3.2: Type-2 A-Intuitionistic Fuzzy Logic System [3]
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3.5.1 Fuzzification

There are two fuzzification procedures namely: singleton and non-singleton. In this thesis,

the focus is on singleton fuzzification because it is faster to compute [154] and therefore

suitable for the proposed model of IT2AIFLS. The fuzzification process involves the map-

ping of a numeric input vector x ∈ X into an IT2AIFS Ã∗ in X which activates the

inference engine. For each crisp input x ∈ X, interval type-2 A-intuitionistic fuzzy val-

ues for membership and non-membership are generated. Here, interval singleton type-2

fuzzification is used to obtain membership and non-membership values, because with this,

obtaining a closed-form computation for the inference mechanism is possible [118].

For membership:

µÃ∗(x) =


1/1, if x = x′

1/0, if x 6= x′

For non-membership:

νÃ∗(x) =


1/1, if x = x′

1/0, if x 6= x′

The firing strength for membership and non-membership functions are intervals [fµ, fµ]

and [fν , fν ] respectively. A number of membership functions exists which are employed

in the computation of type-2 fuzzy grades (fuzzification). These include triangular, trape-

zoidal, Gaussian, sigmoidal and others. In the literature, many applications benefit from

the use of Gaussian functions for the design of FLSs [12, 16]. In this thesis, the Gaus-

sian function is also adopted for the representation of both the membership and non-

membership functions of the IT2AIFS, because according to Wu [193, pp. 7], “Gaussian

IT2 FLCs are simpler in design because they are easier to represent and optimize, always

continuous, and faster for small rulebases.” Moreover, computing the derivatives of mem-

bership function parameters is straightforward with the Gaussian function especially in

gradient descent-based optimisation algorithms [16] adopted in this research. For classical

Gaussian IT2FLS, uncertainties can be associated to the standard deviation or mean of

the fuzzy set. Mathematically, the classical Gaussian membership function is defined as

follows:

µik (xi) = exp

(
−(xi − cik)2

2σ2
ik

)
(3.13)

where each membership function in the antecedents of the rule can be represented as an

upper and lower membership functions with c and σ representing the centre and standard
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deviation respectively assigned to the ith input and kth rule of the fuzzy system.
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Figure 3.3: Gaussian MF with uncertain standard deviation

In this thesis, the classical Gaussian function is modified with the inclusion of hesitation

indices. Thus, for IT2AIFS, Atanassov intuitionistic Gaussian membership (Equations

3.14 and 3.15) and non-membership functions (Equations 3.16 and 3.17) with uncertain

standard deviation are utilised which are defined as follows:

µik (xi) = exp

(
−(xi − cik)2

2σ2
2,ik

)
∗ (1− πc,ik(xi)) (3.14)

µik (xi) = exp

(
−(xi − cik)2

2σ2
1,ik

)
∗ (1− πc,ik(xi)) (3.15)

νik (xi) = (1− πvar,ik(xi))−

[
exp

(
−(xi − cik)2

2σ2
1,ik

)
∗ (1− πc,ik(xi))]

(3.16)

νik (xi) =
(
1− πvar,ik(xi)

)
−

[
exp

(
−(xi − cik)2

2σ2
2,ik

)
∗ (1− πc,ik(xi))]

(3.17)

where πc,ik is the IF-index of centre and πvar,ik is the IF-index of variance [172]. The

parameters σ̄2,ik, σ1,ik, πc,ik, πvar,ik and c are premise parameters that define the degree

of membership and non-membership of each element to the fuzzy set Ã∗. Shown in Figure
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3.1 is an IT2 A-intuitionistic Gaussian membership and non-membership functions which

characterise IT2AIFS. The FOU for the membership is bounded by lower membership

and upper membership functions while the FOU of the non-membership is bounded by

lower non-membership and upper non-membership functions respectively. The FOUs of

the model are as shown in Figure 3.1. The bounds of the FOUs are somewhat wavy

(ripples). A concept which incorporates the hesitations in the definition of the FOUs of

IT2AIFS. The scaling in Equations 3.14 and 3.15 captures the hesitation of the expert

in the definition of the membership function FOU while Equations 3.16 and 3.17 include

some shifting which captures the hesitation in the FOU of the non-membership function of

the IT2AIFS. This representation satisfies the constraint in Definition 3.3.1. For instance,

the membership and non-membership grades of x = 4.0 in Figure 3.4 are approximately

{0.60, 0.88, 0.11, 0.39}, which satisfies the constraints: 0 ≤ µÃ∗(x) + νÃ∗(x) ≤ 1 and 0 ≤

µ
Ã∗(x) + νÃ∗(x) ≤ 1 as shown below:
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Figure 3.4: IT2AIFS

µÃ∗(x) + νÃ∗(x) = 0.88 + 0.11

= 0.99 ∈ [0, 1]

πÃ∗(x) = 1− 0.99

= 0.01 ∈ [0, 1]

µ
Ã∗(x) + νÃ∗(x) = 0.60 + 0.39

= 0.99 ∈ [0, 1]

πÃ∗(x) = 1− 0.99

= 0.01 ∈ [0, 1]
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3.5.2 Rules

The rule representation of IT2AIFLS is similar to the classical IT2FLS, the only exception

is that both membership and non-membership functions are involved in the inputs of the

IT2AIFLS, that is, the fuzzy sets are IT2AIFSs. The IF-THEN rule of an IT2AIFLS can

thus be expressed as follows:

Rk : IF x1 is Ã∗1k and · · · and xn is Ã∗nk

THEN yk is f (x1, x2, · · · , xn)

= w1kx1 + w2kx2 + · · ·+ wnkxn + bk (3.18)

where Ã∗1k, Ã∗2k, · · · ,Ã∗ik, · · · , Ã∗nk are IT2AIFS and yk is the output of the kth rule

formed by linear combination of the input vector: (x1, x2, · · · , xn). The above general rule

for IT2AIFLS can be decomposed into both membership and non-membership functions

as follows:

For the function indicating membership in an IT2AIFS, the rule in Equation 5.1 translates

to:

Rµk : IF x1 is Ã∗
µ
1k and · · · and xn is Ã∗

µ
nk THEN yµk = wµ1kx1+wµ2kx2+· · ·+wµnkxn+bµk

(3.19)

For the function indicating non-membership in an IT2AIFS, the rule becomes:

Rνk : IF x1 is Ã∗
ν
1k and · · · and xn is Ã∗

ν
nk THEN yνk = wν1kx1+wν2kx2+· · ·+wνnkxn+bνk

(3.20)

where yµk and yνk are the membership and non-membership outputs of the kth rule,

w′s are the function parameters (coefficients of the independent variables) plus a constant

term b known as the bias.

3.5.3 Inference

There are generally two main types of fuzzy inferencing namely: Mamdani and TSK which

differ in their representation and output evaluation. In this work, a TSK fuzzy inferencing

where the output of each IF-THEN rule is a linear function is assumed. What necessitate

this assumption is the intention to optimise the parameters of the proposed model with

the aim of obtaining more accurate input-output relationships between pairs of data as

possible under uncertainty.
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In this research, model II, otherwise known as A2-C0, discussed in Chapter 2, Subsec-

tion 2.4.3, is adopted to investigate the reasoning behind IT2AIFLS with learning ability

similar to adaptive-neuro fuzzy inference system (ANFIS) [194] and T2-ANFIS [195] ap-

proaches. The antecedent parts of the IT2AIFLS are IT2AIFS while the consequent parts

are linear functions of the inputs. An IT2AIFLS structure with two inputs, three mem-

bership and non-membership functions and nine rules is as shown in Figure 3.5.

Figure 3.5: An IT2AIFLS Structure - adapted from [4]

3.5.4 Output Processing

According to Hajek and Olej [179], the output of AIFLS-TSK can be computed us-

ing two approaches: (i) by the composition of membership function output, yµ, and

non-membership function output, yν [173] and (ii) by defuzzification methods based on

weighted average and weighted sum [179]. This research adopts the direct defuzzification

based on weighted average of the membership and non-membership functions to compute

the output of the proposed IT2AIFLS. In particular, to align with closed-form represen-

tation, the proposed IT2AIFLS adopts the inference mechanism proposed in Begian et

al. [98] for the classical IT2FLS which is expressed as:

y = (1− β)

∑M
k=1 fkyk∑M
k=1 fk

+ β

∑M
k=1 f̄kyk∑M
k=1 f̄k

(3.21)
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with the condition that:

0 ≤ (1− β)
f
k∑M

k=1 fk

+ β
f̄k∑M
k=1 f̄k

≤ 1 (3.22)

The output of IT2AIFLS in closed-form is an offshoot of Equation 3.21 and represented

as [2, 46]:

y =
(1− β)

∑M
k=1

(
fµk + fµk

)
yµk∑M

k=1 f
µ
k +

∑M
k=1 f

µ
k

+
β
∑M

k=1

(
fνk + fνk

)
yνk∑M

k=1 f
ν
k +

∑M
k=1 f

ν
k

(3.23)

With this representation, the contribution of each rule to the final output becomes:

rk =
(1− β)

(
fµk + fµk

)
∑M

k=1 f
µ
k +

∑M
k=1 f

µ
k

+
β
(
fνk + fνk

)
∑M

k=1 f
ν
k +

∑M
k=1 f

ν
k

(3.24)

where fµ
k
, f

µ
k , fν

k
and f

ν
k are the lower membership, upper membership, lower non-

membership and upper non-membership firing strengths respectively. This is a modifica-

tion of a novel inference method proposed in [98] for IT2-TSK fuzzy systems and motivated

by the Nie-Tan [103] closed form type-reduction method for IT2FLSs where iterations are

not required in the computation of the defuzzified crisp value but depends only on the

lower and upper bounds of the membership function FOUs. As shown in Equation 3.23,

the final output of IT2AIFLS apart from also utilising the bounds of the membership

function FOUs, also utilises the upper and lower bounds of the non-membership function

FOUs with an additional design factor β [98] to weigh their contributions in the final

output, similar to Equation 3.21. In this thesis, the implication operator employed is the

“prod” t− norm such that:

fµk (x) = µ
Ã∗

1k
(x1) ∗ µ

Ã∗
2k

(x2) ∗ · · · ∗ µ
Ã∗

nk
(xn)

fµk (x) = µÃ∗
1k

(x1) ∗ µÃ∗
2k

(x2) ∗ · · · ∗ µÃ∗
nk

(xn)

fνk (x) = νÃ∗
1k

(x1) ∗ νÃ∗
2k

(x2) ∗ · · · ∗ νÃ∗
nk

(xn)

fνk (x) = νÃ∗
1k

(x1) ∗ νÃ∗
2k

(x2) ∗ · · · ∗ νÃ∗
nk

(xn)

where ∗ is the “prod” operator, yµk and yνk are the outputs of the kth rule corresponding

to membership and non-membership functions respectively. In IT2AIFLS, the final out-

put is a weighted average of each IF-THEN rule’s output and as such do not require any

defuzzification procedure [173]. The parameter β is a user defined parameter, 0 ≤ β ≤ 1;
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specifying the contribution of the membership and non-membership values in the final

output. Obviously, if β = 0, the outputs of the IT2AIFLS is determined by the mem-

bership function only and if β = 1, then only the non-membership will contribute to the

system’s outputs. If 0 ≤ β ≤ 1, then both the membership and non-membership functions

contribute to the final output. The parameter β in Equation 3.23 is initially specified

and then tuned to allow for adaptive adjustment of the membership and non-membership

functions in the final output. With the neural network learning ability, the parameters of

the IT2AIFS are tuned with learning algorithms as discussed in Chapters 4, 5 and 6.

To support the argument in this thesis, the proposed model of IT2AIFLS is presented

and evaluated on well known benchmark datasets from diverse domains and characteristics.

Details of these are presented in Chapters 4, 5 and 6.

3.6 Summary

In this chapter, the detailed design of a new class of IT2FLS, otherwise known as IT2AIFLS

utilising the new IT2AIFS is presented. In addition, the IT2AIFS and existing IVAIFS

are clearly distinguished and a new definition for a T2AIFS is given. The proposed model

merges the capabilities of AIFS and IT2FS in a synergistic manner coupled with the

ANN learning capability. The embedded ANN architecture in the proposed model allows

for the optimisation of its parameters. The proposed framework is intended to be more

robust with the capacity to capture more information and enable hesitation. In this way,

important limiting assumptions underlying existing approaches of AIFSs, IVAIFSs and

IT2FSs are relaxed. The next chapters demonstrate how effective this framework can be

used to achieve an improved system performance.



Chapter 4

Gradient Descent Learning of

IT2AIFLS with Application to

Time Series and Regression

Problems

Knowledge is an unending adventure

at the edge of uncertainty

Jacob Bronowski

4.1 Introduction

In Section 2.6, some existing approaches for tuning the parameters of a FLS for improved

performance in uncertain environments are listed. In this chapter, a novel application of

the GD method to tune the parameters of the developed IT2AIFLS framework is presented.

The empirical evaluation is carried out in the context of simulations of benchmark time

series and regression problems to aid comparison with existing studies in the literature.

60
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4.2 IT2AIFLS Rule Structure

For ease of reference, the IF-THEN rule of an IT2AIFLS discussed in Subsection 3.5.2 is

recalled. The generic TSK rule representation is expressed in Equation 4.1:

Rk : IF x1 is Ã∗1k and x2 is Ã∗2k and · · · and xn is Ã∗nk

THEN yk =
n∑
i=1

wikxi + bk (4.1)

where Ã∗1k, Ã∗2k, · · · , Ã∗ik, · · · , Ã∗nk are IT2AIFS and yk is the output of the kth rule.

For the function indicating membership in an IT2AIFS, the rule in Eqn (4.1) is decomposed

to:

Rµk : IF x1 is Ã∗
µ
1k and x2 is Ã∗

µ
2k and · · · and xn is Ã∗

µ
nk

THEN yµk =
n∑
i=1

wµikxi + bµk (4.2)

For the function indicating non-membership in an IT2AIFS, the rule becomes:

Rνk : IF x1 is Ã∗
ν
1k and x2 is Ã∗

ν
2k and · · · and xn is Ã∗

ν
nk

THEN yνk =
n∑
i=1

wνikxi + bνk (4.3)

where yµk is the membership function output and yνk is the non-membership function output

of the kth rule, w and b are the consequent parameters. This research utilises the GD

algorithm for the update of both the antecedent and the consequent parts of the rules.

The cost function for a single output is defined as:

E =
1

2
(ya − y)2 (4.4)

where ya is the actual output and y is the proposed model output.

4.3 Parameter Update Rule

In this section, the antecedent and consequent parameters of the developed framework

of IT2AIFLS are tuned using the GD method because it is simple, easy to use and is

guaranteed to find a minimum (local) [119], for convex optimisation problems.
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4.3.1 Consequent Parameter Update

For ease of reference, the generic GD parameter update rule in Subsection 2.6.1 is recalled

in Equation 4.5:

θi+1 = θi − γ
∂E

∂θi
(4.5)

The generic updates for the consequent parameters are as expressed in Equations 4.6 and

4.7.

wik(t+ 1) = wik(t)− γ
∂E

∂wik
(4.6)

bk(t+ 1) = bk(t)− γ
∂E

∂bk
(4.7)

From Equations 4.6 and 4.7, the consequent parameters (w and b) update for membership

functions are as expressed in Equations 4.8 and 4.9.

wµik(t+ 1) = wµik(t)− γ
∂E

∂wµik
(4.8)

bµk(t+ 1) = bµk(t)− γ ∂E
∂bµk

(4.9)

and for the non-membership function, the consequent parameters update are as defined

in Equations 4.10 and 4.11.

wνik(t+ 1) = wνik(t)− γ
∂E

∂wνik
(4.10)

bνk(t+ 1) = bνk(t)− γ ∂E
∂bνk

(4.11)

where γ is the learning rate (step size) that must be carefully chosen as a large value

may lead to instability, and small value on the other hand may lead to a slow learning

process. The learning rates were chosen using trial and error approach. The learning rate

and IF-indices for this research are assumed to be fixed, that is, they are not tuned. The

derivatives in Equations 4.6 and 4.7 are computed as follows:

∂E

∂wik
=
∂E

∂y

∂y

∂yk

∂yk
∂wik

=
∑
k

∂E

∂y

[
∂y

∂yµk

∂yµk
∂wµik

+
∂y

∂yνk

∂yνk
∂wνik

]

= (y (t)− ya (t)) ∗

[
(1− β)

(
fµk∑M

k=1 f
µ
k

+
∑M

k=1 f
µ
k

+
f
µ
k∑M

k=1 f
µ
k

+
∑M

k=1 f
µ
k

)

+ β

(
fvk∑M

k=1 f
v
k +

∑M
k=1 f

v
k

+
fvk∑M

k=1 f
v
k +

∑M
k=1 f

v
k

)]
∗ xi (4.12)
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∂E

∂bk
=
∂E

∂y

∂y

∂yk

∂yk
∂bk

=
∑
k

∂E

∂y

[
∂y

∂yµk

∂yµk
∂bµk

+
∂y

∂yνk

∂yνk
∂bνk

]

= (y (t)− ya (t)) ∗

[
(1− β)

(
fµk∑M

k=1 f
µ
k

+
∑M

k=1 f
µ
k

+
f
µ
k∑M

k=1 f
µ
k

+
∑M

k=1 f
µ
k

)

+ β

(
fvk∑M

k=1 f
v
k +

∑M
k=1 f

v
k

+
fvk∑M

k=1 f
v
k +

∑M
k=1 f

v
k

)]
∗ 1 (4.13)

where yk is defined as in Equation 4.1.

4.3.2 Antecedent Parameter Update

The antecedent parts of the rules accept crisp external values which are fuzzified using the

membership and non-membership functions of the IT2AIFLS. For optimal performance of

the developed framework, the antecedent parameters are also tuned to obtain values that

are good enough for estimation close to the actual output values.

In this study, the classical Gaussian function is modified with the inclusion of hesitation

indices. Thus, for IT2AIFS, intuitionistic Gaussian membership functions (Equations

3.14 and 3.15) and non-membership functions (Equations 3.16 and 3.17) with uncertain

standard deviation are utilised which are defined as follows [2, 46,47]:

µik (xi) = exp

(
−(xi − cik)2

2σ2
2,ik

)
∗ (1− πc,ik(xi)) (4.14)

µik (xi) = exp

(
−(xi − cik)2

2σ2
1,ik

)
∗ (1− πc,ik(xi)) (4.15)

νik (xi) = (1− πvar,ik(xi))−

[
exp

(
−(xi − cik)2

2σ2
1,ik

)
∗ (1− πc,ik(xi))]

(4.16)

νik (xi) =
(
1− πvar,ik(xi)

)
−

[
exp

(
−(xi − cik)2

2σ2
2,ik

)
∗ (1− πc,ik(xi))]

(4.17)

The antecedent parameters in Equation 4.14 to 4.17 are c, σ1 and σ2. The centre, c,

for both membership and non-membership functions, is the same. For the membership

function, the standard deviation (σ) for lower membership function is σ1 and the standard

deviation of the upper membership function is σ2. For the non-membership functions, the

reverse is the case (i.e. ν ← σ2 and ν ← σ1).

cik(t+ 1) = cik(t)− γ
∂E

∂cik
(4.18)
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σ1,ik(t+ 1) = σ1,ik(t)− γ
∂E

∂σ1,ik
(4.19)

σ2,ik(t+ 1) = σ2,ik(t)− γ
∂E

∂σ2,ik
(4.20)

The derivatives in Equation 4.18 to 4.20 are computed as follows:
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With the use of a t-norm “prod” operator,
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The output of IT2AIFLS in closed-form is represented as [2, 46,47]:
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where fµ
k
, f

µ
k , fν

k
and f

ν
k are the lower membership, upper membership, lower non-

membership and upper non-membership firing strengths respectively.

The parameter β in Equation 4.36 is tuned for adaptive adjustment of the membership

and non-membership function values in the final output. The value of β is adjusted as

follows:
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In the next section, the experimental analysis and discussion of simulation results are

presented.

4.4 Experiments and Results

In this section, the experimental analyses on publicly available benchmark time series and

regression problems are presented. The datasets and the criteria used in the evaluation

were carefully selected to facilitate comparison of the approach introduced here with ex-

isting methods in the literature. Each of the datasets are arranged as closely as possible to
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those reported previously in the literature. The robustness of the approach is measured by

evaluation in the presence of some noise in the data such as the Friedman problem [196].

The performance metrics are evaluated on the test dataset. Using the test dataset to eval-

uate model performance gives an unbiased estimate of the model errors 1. The following

performance metrics are adopted to aid comparison with existing studies in the literature.

• the mean squared error (MSE)

MSE =
1

N

N∑
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(yai − yi)
2 (4.38)

• the root mean squared error (RMSE)
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• the mean absolute error (MAE)
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• the non-dimensional error index (NDEI)
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(4.41)

• the normalised mean squared error (NMSE)
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where ya is the actual output, y is the output of the model and N is the number of testing

data points. The MSE is a quadratic expression which has only one minimum. According

to Picton [197], GD method is a faster approach at arriving at this minimum where the

parameter adjustments are proportional to the derivative of the error functions, but in

opposite direction.

The number of parameters of the proposed framework for all datasets is 8n+ 2M(n+ 1),

where n is the number of inputs, and M is the number of rules. For each input in

this study, the number of linguistic terms are arbitrarily set to two in order to reduce the

1https://uk.mathworks.com
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computational burden of the system. The β value for all experiments is initialised to 0.5 to

ensure equal initial membership and non-membership contributions. The initial values of

membership and non-membership function consequent parameters are randomly generated

from unit interval [0,1]. For all experiments, it is assumed that there are uncertainties in

only the antecedent part of each rule. The entire experiments were conducted using

MATLAB c© 2016 running on a 64-bit Intel core i3-4130 CPU@3.40GHz /8GB RAM

configuration computer.

4.4.1 A Comparison of IT2AIFLS, FIS, IFIS and IT2FLS on Regression

Problems

This section compares the performance of IT2AIFLS with FIS, IFIS and IT2FLS on re-

gression problems. The regression datasets used for the analysis are energy, stock and

autoMPG6 which are obtained from [198] and Friedman from [196]. The same compu-

tational protocol in Hajek and Olej [173] are adopted for Friedman, energy, stock and

autoMPG6 dataset to aid comparison with FIS and IFIS.

Datasets Description

Friedman [196]: The Friedman prediction problem uses a synthetic dataset with the fol-

lowing data generation formula:

y = 10sin (πx1x2) + 20 (x3 − 0.5)2 + 10x4 + 5x5 + n̂ (4.43)

where xi
′s are the input variables and n̂ is white Gaussian noise with a mean of zero

and standard deviation of 1. Shown in Figure 4.1 is the histogram of additive white

Gaussian noise distribution for Friedman problem. The Friedman data consists of five

input variables x1, x2, x3, x4, x5 independently and uniformly distributed over [0, 1] and

one target variable, y, generated using equation (4.43). For the Friedman dataset, 1200

data samples are randomly generated which are then split equally into 600 samples for

training and 600 samples for testing (this is referred to as Friedman#1). There are a total

of 32 rules for Friedman dataset with 8(5) + 2*32(5+1) = 424 parameters.

Energy [198]: The daily electric energy problem involves the prediction of the daily

average price of TkWhe electricity energy in Spain. The data set contains real values from

2003 about the daily consumption in Spain of energy from hydroelectric, nuclear electric,

carbon, fuel, natural gas and other special sources of energy. There are a total of 365
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Table 4.1: Dataset characteristics

Dataset No. of input No. of samples Train set Test set

Friedman#1 5 1200 600 600

Friedman#2 5 1200 200 1000

Energy 6 365 183 182

Stock 9 950 475 475

AutoMPG6 5 392 196 196

Elect.

volt. line 2 495 396 99

Elect.Maint 4 1059 847 212

Mackey-Glass 4 1000 500 500

Annual sunspot 4 280 221 (35)(24)

Tree ring 8 1533 1150 383

Canadian lynx 7 114 100 14

Abalone 8 4177 3342 835

House sales 15 21613 15129 6484
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Figure 4.1: Histogram of additive white Gaussian noise for noisy Friedman problem

data instances. For the energy dataset, IT2AIFLS generated 64 rules with a total of 944

parameters. Shown in Table 4.2 is the excerpt from the energy data.

Stock [198]: The stock dataset is a highly non-stationary dataset and consists of daily
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Table 4.2: Excerpt from energy dataset

hydroelectric nuclear coal fuel gas special consume

1 179183 175973 78429.1 4680.73 8117.13 8023 1.7328

2 206035 186774 79129.5 4342.43 5715.18 8159 1.5835

3 198435 180633 64465.2 4566.84 0 8215 1.50531

4 187029 171382 51913.4 5342.54 0 8346 0.955205

5 199096 168691 126091 13155.7 24428 8525 1.87965

stock prices from January 1988 to October 1991 for ten aerospace companies. The task is

to predict the price of the 10th company based on the prices of the other nine companies.

The dataset consists of 950 samples. Stock data is a high-dimensional dataset with a total

number of 512 rules and 10312 parameters for the IT2AIFLS. Table 4.3 shows the input

samples excerpted from stock data.

Table 4.3: Excerpt from stock dataset

x1 x2 x3 x4 x5 x6 x7 x8 x9 y

1 17.219 50.5 18.75 43 60.875 26.375 67.75 19 48.75 34.875

2 17.891 51.375 19.625 44 62 26.125 68.125 19.125 48.75 35.625

3 18.438 50.875 19.875 43.875 61.875 27.25 68.5 18.25 49 36.375

4 18.672 51.5 20 44 62.625 27.875 69.375 18.375 49.625 36.25

5 17.438 49 20 41.375 59.75 25.875 63.25 16.5 47.5 35.5

AutoMPG6 [198]: The task here is to predict the city-cycle fuel consumption in miles

per gallon (mpg) in terms of 1 multi-valued discrete and 5 continuous attributes (where

two multi-valued discrete attributes - Cylinders and Origin - from the original dataset are

removed). For autoMPG6, 392 data samples are available for analysis. The total number

of parameters for AutoMPG6 are 424 with 32 rules. Table 4.4 contains the first four sam-

ples excerpted from autoMPG6 data.

Table 4.4: Excerpt from autoMPG6 dataset

displacement horse-power weight acceleration model_year mpg

1 91 70 1955 20.5 71 26

2 232 100 2789 15 73 18

3 350 145 4055 12 76 13

4 318 140 4080 13.7 78 17.5

5 113 95 2372 15 70 24

The analysis of the above datasets was previously conducted by Hajek and Olej [173]

using type-1 intuitionistic fuzzy inference system (IFIS) and fuzzy inference system (FIS).

The study in [173] is extended by employing IT2AIFLS to the same datasets. For ease
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of comparison, the above datasets are arranged as closely as possible to those reported

in Hajek and Olej [173]. The datasets (Friedman#1, energy, stock and autompg6) are

randomly sampled 5 times and sequentially split into two equal parts as in Table 4.1 for

each run, with 500 training epochs. The results presented in Table 4.5 show the average

RMSE and standard deviation over 25 simulations for each dataset. The initial values

of the consequent parts of the rule (w and b) for membership and non-membership, are

generated randomly from the interval [0, 1] and updated using equations in Subsection

4.3.1. The learning rate is chosen as 0.1. The RMSE defined in Equation 4.39 is used

as a performance criterion. Table 4.5 shows the comparison of the RMSE on the test

data using IT2AIFLS, FIS, IFIS and IT2FLS (which also use the design parameter β to

weigh the lower and upper membership contributions to the final output). From Table

4.5, IT2AIFLS outperforms both FIS and IFIS on the selected test samples. This is

consistent with the reports in the literature that T2FLSs (IT2AIFLSs in this case) model

uncertainty in certain applications better than T1FLSs [4, 11]. The proposed model with

both membership and non-membership functions, in the overall, also outperforms the

classical IT2FLS defined with only the fuzzy membership functions.

Table 4.5: RMSE and std of IT2AIFLS vs FIS/IFIS/IT2FLS on regression problems

Models Friedman#1 Energy Stock AutoMPG6

FIS [173] 1.353 ± 0.026 7.443 ± 1.579 1.423± 0.227 3.702 ± 0.211

IFIS [173] 1.332 ± 0.032 4.776 ± 2.776 1.402 ± 0.219 3.684 ± 0.195

IT2FLS 1.095 ± 0.046 0.567 ± 0.125 0.750 ± 0.026 1.792 ± 0.048

IT2AIFLS 1.026 ± 0.011 0.558 ± 0.005 0.611 ± 0.006 1.700 ± 0.064

Due to additive noise in the Friedman dataset, 30 Monte-Carlo simulations are also

realised and the average RMSE and standard deviation are 1.0865 and 0.058 respectively.

4.4.2 Friedman#2

This example studies the Friedman problem as reported in Juang et al. [199]. In this

example, further experiments are performed using the Friedman dataset to evaluate the

performance of the proposed model on non-fuzzy and fuzzy approaches, particularly with

other type-2 fuzzy approaches. For comparison purpose, the experimental set-up as re-

ported in [199] are adopted. Similar to Juang et al. [199], 1400 samples are randomly

generated using Equation (4.43), 200 samples are used for training, 200 for validation
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while the remaining 1000 samples are used for testing (referred to as test set 1) and this

is repeated 20 times with the average RMSE and standard deviation reported in Table

4.6. The learning rate, γ = 0.1. The plot of the actual and predicted output is as shown

in Figure 4.2. This problem was also analysed in [200] and [201]. While Carney and

Cunningham [200] employed neural bootstrap aggregation (NBAG), benchmark and sim-

ple bagged ensemble; Lee et al. [201] on the other hand proposed a general regression

neural network with fuzzy adaptive resonance theory (GRNNFA) for the analysis of this

first set of data. Similar to Juang et al. [199], noise free nonlinear Friedman equation is

also investigated. In this second case, 1000 test samples are generated with n̂ = 0 (no

noise added - referred to as test set 2). Similar studies using this dataset are reported in

Juang et al. [199] namely, self-constructing neural fuzzy inference network (SONFIN) and

support vector based fuzzy model (SVR-FM) are reported for type-1 fuzzy models. The

parameters of SONFIN are learned using training-error minimisation through the combi-

nation of Kalman filtering and a GD algorithm. For type-2 systems, approaches such as

T2FLS, self-evolving interval type-2 fuzzy neural network (SEIT2FNN) and interval type-

2 fuzzy neural network with support vector regression (IT2FNN-SVR) are reported. The

T2FLS employs GD for parameter learning and referred to as T2FLS-G. The SEIT2FNN

is designed with structure learning and utilised rule-ordered Kalman filter together with

GD for parameter learning. The SEIT2FNN has IT2FS in the antecedents trained with

GD with TSK interval type-1 sets in the consequent. Two flavours of IT2FNN-SVR are

proposed in Juang et al. [199] namely IT2FNN-SVR(N) and IT2FNN-SVR(F). The differ-

ence between these two is in the representation of the input nodes. The former consists of

input nodes with numerical values and interval output nodes while the latter consists of

input nodes with fuzzy numbers and interval output nodes. The SONFIN and SEIT2FNN

are previous studies involving Juang in [199]. The results are compared with these models

already reported in the literature as shown in Table 4.6. The results in Table 4.6 indi-

cate the RMSE and standard deviation for AIFLS, IT2AIFLS and similar works in the

literature. It is shown that IT2AIFLS exhibits lower RMSE compared to its type-1 coun-

terpart, the non-fuzzy, the two T1FLSs and the T2FLSs. For 30 Monte-Carlo realisations,

the average RMSE and standard deviation for IT2AIFLS on Friedman#2 with additive

noise are 1.5057 and 0.1022 respectively.
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Figure 4.2: Actual and predicted outputs of Friedman with Gaussian white noise

Table 4.6: Performance comparison of IT2AIFLS with existing models on Friedman#2

Models RMSE(tst1) (N) Test1(std) RMSE(tst2) (NF) Test2 (std)

NBAG [200] 2.1218 - - -

Bench [200] 2.3178 - - -

Simple [200] 2.2244 - - -

GRNNFA [201] 2.136 - - -

SONFIN [202] 2.531 0.138 2.398 0.131

T2FLS-G [118] 2.597 0.137 2.479 0.145

SEIT2FNN [121] 1.941 0.170 1.598 0.216

IT2FNN-SVR(N) [199] 1.788 0.145 1.537 0.201

IT2FNN-SVR(F) [199] 1.597 0.120 1.291 0.151

IT2FLS 1.778 0.152 1.419 0.210

AIFLS 2.375 0.129 2.227 0.186

IT2AIFLS 1.494 0.111 1.116 0.104

N = Noisy, NF = Noise free

4.4.3 Electrical Engineering Distribution Problems

In Cordón et al. [203], two problems involving electrical distribution in rural towns in

Spain are reported and have become real-world benchmark problems in fuzzy logic fields.
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The task here is to relate some characteristics of certain village with actual low voltage

line it contains and also relate the maintenance cost of the network in certain towns with

some of their characteristics.

• Computing the Length of Low Voltage Lines

The first problem proposed in [203] is to estimate the length of low voltage lines in rural

towns using some available inputs. The dataset consist of 495 instances with actual values

measured by a company. Table 4.7 contains the first four input samples for computing

the length of low voltage lines. The dataset is randomly sampled and divided into 396

instances for training set and 99 instances for testing set with each consisting of three

attributes namely:

- Number of clients in the population (inhabitants).

- Radius of i population in the sample (distance).

- Line length, population i (length).

Table 4.7: Excerpt from low voltage line lengths

inhabitants distance length

15 605 2146

13 696.669983 2148

25 443.329987 2178

22 373.329987 1322

19 340 1075

There are a total of 4 rules generated for low voltage line estimation with 40 parameters.

The results presented in Table 4.8 are averaged over 10 simulations (similar to previous

studies) with 100 epochs and learning rate set to 0.1. It can be observed in Table 4.8

that IT2AIFLS has superior performance compared to the classical non-linear regression

models, neural networks, the evolutionary approaches and other fuzzy approaches.

Further experiments were conducted to ascertain if extra number of parameters leads

to improved system performance. To achieve this, the same Gaussian consequents are

applied to both the membership and non-membership outputs of the IT2AIFLS, however,

with the additional 4 parameters of IF-indices, these translate to 4 rules and 28 parameters

for IT2AIFLS with 4 rules and 24 parameters for the classical IT2FLS. The results in Table

4.9 are averaged over 10 simulation runs. As shown in Table 4.9, IT2AIFLS outperforms

the classical IT2FLS because of the additional number of parameters in terms of IF-indices.
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Table 4.8: Performance comparison of IT2AIFLS with existing models on low voltage line

length estimation problem

Models RMSE(tst)

Linear [203] 457.8821

Exponential [203] 443.8513

Second order Polynomial [203] 450.8126

Third-order polynomial [203] 450.5452

Three layer Perceptron [203] 408.7689

GA-P [203] 399.7962

Interval GA-P [203] 398.4181

WM Fuzzy model [203] 424.384

Mamdani Fuzzy model [203] 408.2511

TSK Fuzzy model [203] 385.3751

Gr + MF [204] 390.7979

Genetic Learning Process [205] 383.4866

HSLR(WM,3,5) [206] 409.04523

GT2FLS-sampling [207] 594.02365

GT2FLS-VSCTR [207] 590.90565

AIFLS 262.2775

IT2AIFLS 255.3325

Table 4.9: Performance comparison of IT2AIFLS with classical IT2FLS on voltage length

estimation problem

Models Parameter RMSE(std) Run-time (s)

IT2FLS 24 260.7010 12.35

IT2AIFLS 28 260.1041 24.76

• Computing the Maintenance Costs of Medium Voltage Lines

The second problem is to estimate the maintenance cost (not based on real data). The

dataset consists of 1059 samples with 5 attributes namely:

- Sum of the length of all street in the town (x1).

- Total area of the town (x2).
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- Area that is occupied by buildings (x3).

- Energy supply to the town (x4).

- Maintenance costs of medium voltage line (y).

Shown in Table 4.10 are a few samples of the inputs for electricity maintenance cost

estimation problem. Similar to previous studies, the 1059 samples are randomly sampled

and divided into two sets: 847 instances for training and 212 instances for testing as

reported in [203–206]. The IT2AIFLS model is executed for 100 epochs with learning

rate set to 0.1. There are 16 rules generated for maintenance cost estimation with a total

of 192 parameters. In order to relate the dependent variable (maintenance cost) with

the independent variables, the IT2AIFLS is applied to both the training and test sets

and results are compared with those in the literature. Figure 4.3 shows the adaptation

of β values for electrical maintenance cost estimation problem while Figure 4.4, shows

the correlation between the actual and predicted outputs for electrical maintenance cost

estimation. This result is significant because it means that IT2AIFLS has a high predictive

Table 4.10: Excerpt from electrical maintenance cost dataset

x1 x2 x3 x4 y

1 11 3.3 54.96 55 4329.33

2 4 1.2 19.98 40 2016.44

3 0.9 0.27 4.5 1.8 249.42

4 2 1.2 19.98 10 1044.22

5 2 1.8 19.98 30 1761.92

capability and can be useful in modelling natural attributes of physical phenomena. Table

4.11 shows the performance of IT2AIFLS with other models in the literature in terms of

their RMSEs. The results in Table 4.11 show a significant performance improvement of

IT2AIFLS over other works in the literature.

4.4.4 Time Series Prediction

In this subsection, the IT2AIFLS is evaluated using well known publicly available bench-

mark time series problems.

• Mackey-Glass Time Series

Mackey-Glass is a well known time series dataset defined by the following differential delay

equation:
dx (t)

dt
=

a ∗ x (t− τ)

1 + x (t− τ)n
− b ∗ x (t)
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Figure 4.3: Adaptation of β values for electrical maintenance cost
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Figure 4.4: Correlation analysis between the actual and predicted outputs for electrical

maintenance cost

where a, b and n are constant real numbers, t is the current time and τ is a non-negative

time delay constant. The system tends to display a deterministic/periodic behaviour at

τ ≤ 17 which turns chaotic when τ > 17. For comparison with other works in the liter-

ature such as [42, 210–213], the target output, y, is chosen as x(t + 6), with input vector
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Table 4.11: Performance comparison of IT2AIFLS with other models on electrical main-

tenance cost estimation problem

Models RMSE(tst)

Linear [203] 191.8828

Second order Polynomial [203] 212.9131

Three layer Perceptron [203] 181.9478

GA-P [203] 147.9324

Interval GA-P [203] 135.3699

WM Fuzzy model [203] 166.1776

Mamdani Fuzzy model [203] 150.3030

TSK Fuzzy model [203] 108.7934

Gr + MF [204] 102.0490

Genetic LP [205] 102.3034

HSLR(WM,3,5) [206] 154.3276

SA-IT2FLS [208] 75.2400

AT1-SCRATCH [209] 89.6619

AT2-SCRATCH [209] 101.7790

AT2-OPT [209] 88.4542

AT2-BLUR [209] 82.8083

AIFLS 61.1401

IT2AIFLS 53.7200

(x(t− 18), x(t− 12), x(t− 6), x(t)) and τ = 17. For each input in this study, two linguistic

terms are used. Similar to previous studies, 1000 data instances are generated with the

first 500 data points used for training and the remaining 500 for testing. The results of

applying different approaches to the prediction of Mackey-Glass are listed in Table 4.12 in

terms of their RMSE. As shown in Table 4.12, IT2AIFLS outperforms the modified dif-

ferential evolution radial basis function neural network (MDE-RBF NN) and other fuzzy

approaches.

For a fair comparison with existing IT2FLS (TSK), another experiment is conducted

with the same computational settings (1000 number of training and 200 testing instances)

as reported in Kayacan and Khanesar [42]. The motive for this separate experiment is

to compare the performance of the model proposed in this thesis with an existing study
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utilising classical IT2FLS. Similar to IT2AIFLS, the antecedent and consequent param-

eters of the IT2FLS in [42] are updated using GD and equally used the same parameter

β to adjust the upper and lower values of the membership grades in the final output. As

shown in Table 4.13, after training and testing, IT2AIFLS outperforms IT2FLS with the

RMSE of 0.0168. An AIFLS for Mackey-Glass prediction is also implemented in order

to evaluate the performance of the IT2AIFLS over its T1 model. From Tables 4.12 and

4.13, IT2AIFLS outperforms AIFLS because of the extra degrees of freedom offered by

the FOUs of the IT2AIFLSs.

Table 4.12: Performance comparison of IT2AIFLS with other appraches on Mackey-Glass

time series forecasting

Models Train/Test set RMSE (tst)

ANFIS Ensemble with IT2 FLS [214] 400/400 0.04933

ANFIS Ensemble with T1 FLS [214] 400/400 0.12043

Fuzzy-Singular Value Decomposition [212] 500/500 0.012

MDE-RBF NN [211] 500/500 0.013

Genetic Fuzzy Ensemble [213] 500/500 0.0264

Fuzzy Genetic Algorithm [213] 500/500 0.049

Radial Basis Function AFS [210] 500/500 0.0114

AIFLS 500/500 0.0236

IT2AIFLS 500/500 0.0079

Table 4.13: Comparison of IT2FLS-TSK and IT2AIFLS on Mackey-Glass time series

Models Train/Test set RMSE(tst)

IT2FLS-TSK [42] 1000/200 0.0250

AIFLS 1000/200 0.0234

IT2AIFLS 1000/200 0.0168

• Annual Sunspot Time Series

In this example, the annual sunspot time series, a highly complex and non-stationary real

world time series is considered to evaluate the effectiveness of the proposed model. The

annual sunspot series for the years 1700 to 1979 is investigated. The series reflects the

yearly average relative number of sunspots observed and the dataset is available at the
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National Geographical Data Center website [215]. For a fair comparison with previous

studies as reported in [194,216–223], the whole dataset is divided into three sets: the data

from 1700 to 1920 are used for training, data from 1921 to 1955 form the first test set

while data from 1956 to 1979 form the second test set. The input generation vector is:

[x(t− 4), x(t− 3), x(t− 2), x(t− 1)] with x(t) as the output variable. Table 4.14 contains

the first four samples of the sunspot data. For sunspot dataset, 16 rules are generated

Table 4.14: Excerpt from sunspot time series data

x1 x2 x3 x4 y

1 8.3 18.3 26.7 38.3 60

2 18.3 26.7 38.3 60 96.7

3 26.7 38.3 60 96.7 48.3

4 38.3 60 96.7 48.3 33.3

5 60 96.7 48.3 33.3 16.7

with 192 parameters. The model is trained for 200 epochs. The performance measure

utilised for this time series is the NMSE defined in Equation 4.42.
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Figure 4.5: Actual and predicted values of sunspot time series using IT2AIFLS

Figure 4.5 shows the actual and predicted output of sunspot time series while Figure

4.6 shows the adaptation of its β values. From Table 4.15, it can be seen that IT2AIFLS

has lower NMSE on both test sets compared to its type-1 variant and similar works in

the literature. This indicates a good generalisation capability of IT2AIFLS on data not

used during the training of the model. Using the same procedure for the results presented

in Table 4.9, the performance of the traditional IT2FLS is compared with the proposed

intuitionistic version using sunspot time series dataset. The results are averaged over 10
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Figure 4.6: Adaptation of β values for sunspot time series

Table 4.15: Performance comparison of IT2AIFLS with other models on sunspot time

series

Models NMSE(trn) NMSE (tst1) NMSE (tst2)

Tong and Lim [216] 0.097 0.097 0.28

Weigend [217] 0.082 0.086 0.35

Svarer [218] 0.090 0.082 0.35

Transversal Net [219] 0.0987 0.0971 0.3724

Recurrent Net [219] 0.1006 0.0972 0.4361

RFNN [220] - 0.074 0.21

ANFIS [194] 0.0550 0.1915 0.4068

FENN [221] - - 0.18

FWNN-S [222] 0.0895 0.1093 0.1510

FWNN-R [222] 0.0796 0.1099 0.2549

FWNN-M [222] 0.0828 0.0973 0.1988

LLNF [223] - 0.085 0.1219

OSSA-LLNF [223] - 0.0602 0.0846

AIFLS 0.1250 0.0136 0.0174

IT2AIFLS 0.1207 0.0105 0.0148
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Table 4.16: Performance comparison of IT2AIFLS with classical IT2FLS using sunspot

time series dataset

Models Parameter NMSE (trn) NMSE (tst1) NMSE (tst2) Run-time(s)

IT2FLS 184 0.1352 0.0129 0.0189 17.51

IT2AIFLS 192 0.1258 0.0120 0.0172 32.58

simulations and presented in Table 4.16. As shown in Table 4.16, IT2AIFLS outperforms

classical IT2FLS because of the aditional number of parameters provided by the non-

membership functions and IF-indices. It is conjectured that IT2AIFLS is computationally

more efficient in terms of prediction accuracies because of the non-membership and IF-

indices (hesitations) embedded in the FOUs of both the membership and non-membership

functions of IT2AIFSs which increase the fuzziness of the system leading to improved

performance. However, in both problem instances, low voltage line estimation and sunspot

datasets, the IT2AIFLS suffers some drawback in terms of the runtime. This poses a

challenge to this algorithm. Nevertheless, if the main goal of analysis is to predict the

model’s output as closely as possible to the actual values, and if the computational time

is not an issue, then the use of IT2AIFLS for prediction is justified.

• Tree Ring Time Series

The tree ring time series obtained from [224] contains annual measures of tree rings width

measured in Argentina for the period 441-1974. Similar to Pouzols and Lendasse [225], the

data generating format is [x(t−9), x(t−8), x(t−7), x(t−5), x(t−3), x(t−2), x(t−1), x(t)],

except x(t−4) and x(t−6). The task is to predict x(t+1) and this represents the width of

the tree ring for the next year. Shown in Table 4.17 are the first few samples of the tree ring

time series input data. Shown in Figure 4.7 is the plot of the tree ring dataset. The dataset

Table 4.17: Excerpt from tree ring time series data

x1 x2 x3 x4 x5 x6 x7 x8 y

1 0.731 1.061 1.03 0.904 1.134 0.945 1.043 1.027 0.783

2 1.061 1.03 1.104 1.167 0.945 1.043 1.027 0.783 1.058

3 1.03 1.104 0.904 1.134 1.043 1.027 0.783 1.058 1.029

4 1.104 0.904 1.167 0.945 1.027 0.783 1.058 1.029 0.886

5 0.904 1.167 1.134 1.043 0.783 1.058 1.029 0.886 0.979

is randomly split into 75% training and 25% testing. In Pouzols and Lendasse [225], the

evolving fuzzy optimally pruned extreme learning machine (eF-OP-ELM), is reported for

analysing this time series. The dynamic evolving neuro-fuzzy inference system (DENFIS),
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evolving Takagi-Sugeno (eTS) model and online sequential method for fuzzy systems based

on online sequential ELM (OS-fuzzy-ELM) are also reported in [225] for tree ring time

series analysis. All computational protocols in this study are arranged as close as possible

to those reported in [225] to ease comparison with existing studies in the literature. The

performance criterion adopted for this analysis is the NDEI defined in Equation 4.41.

Table 4.18 shows the average cross validation NDEI and standard deviation of the tree

ring dataset for 25 trials. Figure 4.8 shows the actual and predicted output of the tree

ring time series. From Table 4.18, IT2AIFLS outperforms other fuzzy models with reduced

NDEI.
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Figure 4.7: Tree ring dataset
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Figure 4.8: Actual and predicted outputs of tree ring time series
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Table 4.18: Performance comparison of IT2AIFLS with other models using tree ring time

series forecasting

Models NDEI NDEI (std)

DENFIS [226] 0.959 0.624

eTS [227] 0.714 0.457

OS-Fuzzy-ELM [228] 0.794 0.511

eF-OP-ELM [225] 0.841 0.536

IT2AIFLS 0.395 0.157

• Canadian Lynx Time Series

The Canadian lynx time series is selected in order to compare the performance of IT2AIFLS

against non-fuzzy approaches. Canadian lynx dataset is a time series that shows the

number of lynx trapped in the Mckenzie river district per year in northern Canada and

corresponds to the period 1821-1934. Similar to previous studies such as [229–231], the

logarithms to the base 10 of the data are used in the analysis. Figures 4.9 and 4.10 show

the original and the logarithmic transformed data of the Canadian lynx series respectively,

with a periodicity of approximately 10 years. Table 4.19 contains the first four samples of

the Canadian lynx time series input data. The time series consists of 114 observations of

which 100 samples are used for training and the remaining 14 are used for testing. Similar

Table 4.19: Excerpt from Canadian lynx time series data

x1 x2 x3 x4 x5 x6 x7 y

1 3.5942 3.4504 3.1688 2.94 2.7672 2.5065 2.4298 3.774

2 3.774 3.5942 3.4504 3.1688 2.94 2.7672 2.5065 3.6946

3 3.6946 3.774 3.5942 3.4504 3.1688 2.94 2.7672 3.4111

4 3.4111 3.6946 3.774 3.5942 3.4504 3.1688 2.94 2.7185

5 2.7185 3.4111 3.6946 3.774 3.5942 3.4504 3.1688 1.9912

to Wang et al. [231], the maximum training epoch adopted is 2000. For this time series,

the MSE and MAE defined in Equations 4.38 and 4.40 are utilised as the performance

evaluation metrics. As shown in Table 4.20, IT2IFLS outperforms the listed non-fuzzy

approaches on the Canadian lynx dataset.

• Santa Fe A Time Series

This example considers the Santa Fe Laser dataset of the Santa Fe A time series compe-

tition obtained from [241]. The data were measured from a far-infra-red laser in a chaotic
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Table 4.20: Performance comparison of IT2AIFLS with non-fuzzy models on Canadian

lynx time series

Models MSE(tst) MAE(tst)

Zhang’s ARIMA [229] 0.020486 0.112255

ANN [229] 0.020466 0.112109

ANN (p,d,q) [232] 0.013609 0.089625

Zhang’s Hybrid

ARIMA/ANNs model [229] 0.017233 0.103972

Hybrid ARIMA/ERNN model [233] 0.009 -

SETAR [234] 0.014 -

FNN [234] 0.009 -

Generalised Hybrid

ARIMA/ANNs model [235] 0.00999 0.085055

ANN/PNN model [230] 0.014872 0.079628

ARIMA/PNN model [230] 0.011461 0.084381

MNM-ANN-DEA [236] 0.00663 -

GA-BPNN [231] 0.013599 0.081477

DE-BPNN [231] 0.012899 0.080542

ANN Ensemble [237] 0.00715 -

RBF-AR [238] 0.0073 -

ADE-BPNN [231] 0.010392 0.070723

GMDH [239] 0.0082 0.0634

LSSVM [239] 0.0074 0.0657

GLSSVM [239] 0.0056 0.0552

L&NL-ANN [240] 0.006 -

IT2AIFLS 0.00463 0.0205
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Figure 4.9: Original Canadian lynx time
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Figure 4.10: Transformed Canadian lynx

time series (log10)

state. This series had been analysed in [242], and a model called pattern modelling and

recognition system (PMRS) are proposed. The performance comparison using neural net-

work (NN) and a statistical exponential-smoothing (ES) are also reported. The Santa Fe

A time series is a univariate time series measured from a physical system in the laboratory.

Shown in Table 4.21 are the first four samples of the Santa Fe A time series data. To aid

comparison with previous studies, the experimental set-ups are arranged as closely as pos-

sible to those reported in [199, 242]. From the Santa Fe A time series, 1000 input-output

data pairs are generated using the format: [x(t−1), x(t−2), x(t−3), x(t−4), x(t−5);x(t)]

giving five inputs and one output, y = x(t). All samples are scaled to be within the range

Table 4.21: Excerpt from Santa Fe A time series data

x1 x2 x3 x4 x5 y

1 22 41 95 141 86 21

2 21 22 41 95 141 32

3 32 21 22 41 95 72

4 72 32 21 22 41 138

5 138 72 32 21 22 111

[0, 1] by dividing each by the maximum value of the dataset [199]. A reverse of this scaling

procedure is performed before comparing with the actual output values. Similar to [199],

90% of the samples are used for training while 10% are used for testing. The learning rate

is set to 0.5 with 100 training epochs. Table 4.22 shows the performance of IT2AIFLS and

other models (fuzzy and non-fuzzy) on both the training and test sets. The results show

that IT2AIFLS reduces the RMSE of the test set compared to the non-fuzzy and other

fuzzy approaches except SVR-FM with ε = 0.001. The reason for this could be in the
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large number of parameters [243] (4484 parameters) which could lead to the possible im-

provement in the approximation capability of SVR-FM ( ε = 0.001). The performance of

IT2AIFLS on the test set of Santa-Fe time series is an indication of a good generalisation

capability of the model. The Santa Fe A dataset is shown in Figure 4.11.
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Figure 4.11: Plot of Santa Fe A time series

Table 4.22: Performance comparison of IT2AIFLS with other models on Santa Fe A time

series dataset

Models Rule Parameter RMSE(trn) RMSE(tst)

ES [242] - - - 56.20

NN [242] - - - 24.6

PMRS [242] - - - 14.23

SONFIN [202] 9 144 6.956 5.983

T2FLS-G 5 135 8.50 7.16

SEIT2FNN [121] 5 135 7.677 5.766

IT2FNN-SVR(N) [199] 5 106 13.565 4.337

IT2FNN-SVR(F) [199] 5 106 9.094 3.474

SVR-FM (ε = 0.1) [244] 31 188 14.370 9.707

SVR-FM (ε = 0.001) [244] 747 4484 7.069 1.650

IT2AIFLS 32 424 8.355 2.261
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4.4.5 Complex High Dimensional Regression Problems

The effectiveness of the proposed model is demonstrated using a real world high dimen-

sional regression datasets namely the abalone dataset. The abalone dataset is a highly

noisy dataset that contains physical measurements of abalone (large edible sea snails). The

dataset consists of 4177 samples with 8 input attributes. The goal is to predict the age

of abalone by counting the number of rings on the abalone through a microscope [198].

Shown in Figures 4.12 and 4.13 are the inputs and measured outputs of abalone data

respectively. Table 4.23 contains a few samples of the abalone data.

Table 4.23: Excerpt from abalone dataset

sex length diameter height whole_wt shucked_wt viscera_wt shell_wt rings

1 3 0.4 0.305 0.1 0.3415 0.176 0.0625 0.0865 7

2 2 0.635 0.5 0.15 1.376 0.6495 0.361 0.31 10

3 3 0.37 0.27 0.09 0.1855 0.07 0.0425 0.065 7

4 1 0.68 0.54 0.155 1.534 0.671 0.379 0.384 10

5 3 0.375 0.285 0.09 0.2545 0.119 0.0595 0.0675 6

Similar to [245–248], 5-fold cross validation is adopted where the dataset is randomly

split into five folds with each set containing 20% of the dataset. For each run, four folds

are used for training and one for testing. Each fold is executed 5 times and the average

cross validation error for 25 trials is computed. Each trial was executed for 100 epochs

with learning rate set to 0.1. For the abalone dataset, 256 rules are generated while 4672

parameters are tuned. Figure 4.14 shows the actual and predicted output of abalone data

using IT2AIFLS trained with GD. The result of evaluation of the abalone dataset using

IT2AIFLS is compared with IT2FLS, AIFLS and similar works in the literature. As shown

in Table 4.24, IT2AIFLS exhibits MSE that is lower than other models in this problem

domain. The reason for this improved performance may be due to the fact that other

models such as those reported in [245–248] all make use of type-1 FLSs. The proposed

model also outperforms the classical IT2FLS and the AIFLS because of the additional

parameters provided by the non-membership function FOU and IF-indices of IT2AIFLS.

These additional parameters provide IT2AIFLS the extra design degrees of freedom with

the potential to outperform type-1 FLS, AIFLS and classical IT2FLS in this problem

domain.

• House Sales in King County, USA [249]

The house sales dataset is one of the large-scale high dimensional regression problems

obtained from [249]. The purpose of this analysis is to demonstrate the prediction per-
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Figure 4.12: Plot of abalone data inputs set
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Figure 4.13: Plot of actual outputs of abalone dataset
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Table 4.24: Comparison of IT2AIFLS with other models using abalone dataset

Models MSE(tst) MSE(std)

TS-NSGA-II [248] 2.526 0.242

TS-NSGA-SPEA2Acc [248] 2.511 0.263

TS-NSGA-IIA [248] 2.535 0.265

TS-NSGA-IIU [248] 2.520 0.237

TS-NSGA-SPEA2 [248] 2.518 0.246

TS-NSGA-SPEA2Acc2 [248] 2.517 0.230

Multiobjective GFS [247] 2.423 0.173

FSMOGFS [246] 2.697 0.204

FSMOGFSe [246] 2.708 0.216

FSMOGFS+TUN [246] 2.454 0.163

FSMOGFSe +TUNe [246] 2.509 0.184

ANFIS-SUB [245] 2.733 -

TSK-IRL [245] 2.642 -

Linear-LMS [245] 2.472 -

LEL-TSK [245] 2.412 -

METSK-HDe [245] 2.392 -

IT2FLS 2.798 0.045

AIFLS 2.763 0.074

IT2AIFLS 1.042 0.034
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Figure 4.14: Actual and predicted outputs of abalone dataset

formance between IT2AIFLS and classical IT2FLS. The house sales dataset consists of 18

features and 21,613 samples and the task is to predict the house price as closely as possible

to the actual price. Figure 4.15 shows the house sales feature ranking. All the features

below the mean ranking of 0.2 are regarded as negligible and a total of 15 input features

are used in the analysis in order to reduce the computational burden of the system. The

entire dataset is split into 70% training and 30% testing with 10 simulation runs and 100

epochs for each run.

Figure 4.15: Feature ranking of house sales data [5]
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Table 4.25: Comparison of IT2AIFLS with classical IT2FLS using large and high dimen-

sional house sales data

Models RMSE (trn) RMSE(tst)

IT2FLS 3.2348e-05 1.5337e-05

IT2AIFLS 2.9157e-05 1.4159e-05

Table 4.25 shows the performance of IT2AIFLS and the classical IT2FLS. As shown

in the table, IT2AIFLS performs better than the classical IT2FLS with reduced RMSE

on this problem domain. It can be concluded that the proposed model of IT2AIFLS is

a more viable method for regression problems. Thus, IT2AIFLS with fuzzy membership

and non-membership functions tend to be more consistent with human or natural lan-

guage description than the classical IT2FLS with only the interval membership function.

Presented in Table 4.26 are the results of all the datasets analysed in this chapter. The

best results are shown in bold face.

Table 4.26: Summary of results

Dataset Measure Proposed Model Best other

Friedman#1 RMSE 1.0260 IT2FLS - 1.0950

Friedman#2 (tst1) RMSE 1.4940 IT2FNN-SVR(F) - 1.5950

Friedman#2 (tst2) RMSE 1.1160 IT2FNN-SVR(F) - 1.2910

Energy RMSE 0.5580 IT2FLS - 0.5670

Stock RMSE 0.6110 IT2FLS - 0.7500

AutoMPG6 RMSE 1.7000 IT2FLS - 1.7920

Low voltage line RMSE 255.3325 Genetic LP - 383.4866

Maintenance cost RMSE 53.7200 SA-IT2FLS - 75.2400

Mackey-Glass RMSE 0.0079 RBF AFS - 0.0114

Sunspot NMSE 0.0105 OSSA-LLNF - 0.0602

Tree ring NDEI 0.3950 RBF AFS - 0.7140

Canadian lynx MSE 0.0046 GLSSVM - 0.0056

Santa Fe RMSE 2.2610 SVR-FM - 1.6500

Abalone MSE 1.0420 METSK-HDe - 2.3920

House sales RMSE 1.4159e-05 IT2FLS - 1.5337e-05
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4.5 Summary

In this chapter, a novel application of GD learning technique for the adjustment of the

antecedent and consequent parameters of the proposed IT2AIFLS IF-THEN rules is in-

vestigated for the first time. The GD-based IT2AIFLS is evaluated on benchmark time

series and regression problems. The performance of the proposed framework is compared

with its type-1 variant, classical IT2FLS and other similar studies in the literature (fuzzy

and non-fuzzy). Analysis of results reveal that with the integration of non-membership

functions and IF-indices into IT2FLS, the new IT2AIFLS outperforms its type-1 variant

with precise membership and non-membership functions and the classical IT2FLS with

only membership functions in many applications investigated in this chapter. The perfor-

mance of the IT2AIFLS is also better than most of the similar works in the literature. The

IT2AIFLS accommodate more imprecision from the IF-indices and non-membership func-

tions. Whilst the non-membership functions allow IT2AIFLS to capture more information,

the IF-indices allow evaluation of concepts to be more meaningful and consistent with hu-

man reasoning and natural language representation than other representative FLSs such

as classical IT2FLSs. These lead to increased level of fuzziness in IT2AIFS with increase

in the prediction accuracy. In the next chapter, the effectiveness of the new framework -

IT2AIFLS - is demonstrated by exploiting a second-order learning strategy.



Chapter 5

Extended Kalman Filter-based

Learning of IT2AIFLS for System

Identification and Time Series

Predictions

Believe in uncertainty, because by it

anything is possible

Imo Eyoh

5.1 Introduction

In Chapter 4, the parameters of the IT2AIFLS are optimised using a first order derivative

based method - GD. In this chapter, the parameters of the proposed framework is tuned

using decoupled extended Kalman filter (DEKF), a second-order derivative based method.

The resulting system is evaluated using one synthetic dataset and two real world datasets.

To aid comparison with alternative approaches, the classical IT2FLS and AIFLS are also

implemented. Statistical comparison between the pairs of FLS models investigated here

is conducted.
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5.1.1 Rules

The generic IT2AIFLS IF-THEN rule structure is rewritten in Equation 5.1 for ease of

reference:

Rk : IF x1 is Ã∗1k and x2 is Ã∗2k and · · · and xn is Ã∗nkTHEN yk =
n∑
i=1

wikxi + bk (5.1)

where Ã∗1k, Ã∗2k, · · · , Ã∗ik, · · · , Ã∗nk are IT2AIFS applied to the kth rule and yk is the

output, wik’s and bk’s (k = 1 · · ·M) are the consequent parameters.

5.1.2 Inference

The inference mechanism for IT2AIFLS is expressed in Equation 5.2 [2, 46,47].

y =
(1− β)

∑M
k=1

(
fµk + fµk

)
yµk∑M

k=1 f
µ
k +

∑M
k=1 f

µ
k

+
β
∑M

k=1

(
fνk + fνk

)
yνk∑M

k=1 f
ν
k +

∑M
k=1 f

ν
k

(5.2)

where fµ
k
, f

µ
k and fν

k
, f

ν
k are the lower, upper membership and the lower, upper non-

membership firing strength respectively, yµk and yνk are the corresponding outputs of the

kth rule. The design parameter β is defined in Equation 5.3 such that, 0 ≤ β ≤ 1.

y =


MF only if β = 0

MF and NMF if 0 < β < 1

NMF only, if β = 1

(5.3)

Hence, the parameter β in the unit interval [0,1] determines the magnitude of membership

and non-membership functions in the final output. The “prod” t-norm is used as the

implication operator and are defined for membership function, Equations 5.4 and 5.5 and

non-membership function, Equations 5.6 and 5.7 as follows:

fµk (x) = µ
Ã∗

1k
(x1) ∗ µ

Ã∗
2k

(x2) ∗ · · · ∗ µ
Ã∗

nk
(xn) (5.4)

fµk (x) = µÃ∗
1k

(x1) ∗ µÃ∗
2k

(x2) ∗ · · · ∗ µÃ∗
nk

(xn) (5.5)

fνk (x) = νÃ∗
1k

(x1) ∗ νÃ∗
2k

(x2) ∗ · · · ∗ νÃ∗
nk

(xn) (5.6)

fνk (x) = νÃ∗
1k

(x1) ∗ νÃ∗
2k

(x2) ∗ · · · ∗ νÃ∗
nk

(xn) (5.7)

where ∗ is the “prod” operator.
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5.2 Parameter Updates

In Chapter 4, the GD is used to optimise the parameters of the proposed model. Whilst GD

is guaranteed to reach a minimum [119], they are known disadvantages [117]. Particularly,

GD with a learning rate parameter may lead to slow convergence and the possibility of

getting trapped in local minima. Exploiting second-order derivative-based method such

as the EKF-based methods for the parameter update of the T2FLSs may help to speed

up the convergence with smaller possibility of getting stuck in local minima [42,125]. The

authors in [125] pointed out that Kalman filter-based approaches can be a powerful tool

for the optimisation of T2FLSs. Hence, in this section, the antecedent and consequent

parameter updates for IT2AIFLS using EKF-based approach are exploited.

5.2.1 Extended Kalman Filter Parameter Update Rule

The basic idea behind the IT2AIFLS prediction method is to approximate the relation-

ship between inputs and outputs of a system as closely as possible. Assuming that the

IT2AIFLS model is trained by adjusting the parameters using sets of input-output pairs,

then the output of a fuzzy logic system may be represented as y = f(X, θ). The parame-

ter X denotes the inputs into the system with θ representing the unknown parameters of

the model. For IT2AIFLS, these will include both the membership and non-membership

functions parameters. The generic non-linear dynamic state equation can be expressed as:

θt+1 = f(θt) + ωt (5.8)

yt = h(θt) + υt (5.9)

where θ is the system’s state, ω is the process noise with zero mean and covariance Q

while υ is the measurement noise with zero mean and covariance R. For Kalman filter,

the process and measurement noise are assumed to be Gaussian and uncorrelated and:

E(θ0) = θ0 (5.10)

E[(θ0 − θ0)(θ0 − θ0)T ] = P0 (5.11)

E(ωt) = 0 (5.12)

E(ωtω
T
l ) = Qδtl (5.13)

E(υt) = 0 (5.14)
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E(υtυ
T
l ) = Rδtl (5.15)

where E(.) is the expectation operator and δtl is the Kronecker delta. The state can be

estimated using Taylor expansion as:

f(θt) = f(θ̂t) + Ft(θt − θ̂t) +H.O.T

h(θt) = h(θ̂t) +Ht(θt − θ̂t) +H.O.T
(5.16)

where:

Ft =
∂f(θ)

∂θ

∣∣∣∣
θ=θ̂t

and HT
t =

∂h(θ)

∂θ

∣∣∣∣
θ=θ̂t

and H.O.T is the higher order term. The system in Eqn (5.16) can be approximated as in

Eqn (5.17) when the higher order terms are neglected.

θt+1 = Ftθt + ωt + φt

yt+1 = HT
t θt + υt + ϕt

(5.17)

where φt and ϕt are random error terms for state and observation equations respectively

and expressed as:

φt = f(θ̂t)− Ftθ̂t

ϕt = h(θ̂t)−Htθ̂t

(5.18)

The desired estimation of the parameters in Equation 5.17 can therefore be obtained using

the recursive Kalman procedures in Equation 5.19 to 5.21 [115,250,251].

Kt = PtHt[(Ht)
TPtHt +R]−1 (5.19)

θ̂t = f(θ̂t−1) +Kt[yt − h(θ̂t−1)] (5.20)

Pt+1 = Ft(Pt −KtPt(Ht)
T )F Tt +Q (5.21)

The vector Ft is taken as an identity matrix (I) and Equation 5.22 to 5.24 are obtained

[125].

Kt = PtHt[(Ht)
TPtHt +R]−1 (5.22)

θ̂t = θ̂t−1 +Kt[yt − h(θ̂t−1)] (5.23)

Pt+1 = Pt −KtPt(Ht)
T +Q (5.24)

where K is the Kalman gain and P is the covariance matrix of the state estimation error.

In applying the EKF to IT2AIFLS, all the unknown parameters are gathered in a single

vector. The computational cost of EKF is in the order of DB2 where D is the dimension
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of the output of the system and B is the total number of the parameters. Thus, for an

IT2AIFLS with n inputs, M number of rules and a single output, the total number of

parameters to be tuned is 8n+ 2M(n+ 1). The computational cost of the standard EKF

for IT2AIFLS is therefore 64n2 + 4M2(n2 + 2n+ 1) + 32nM(n+ 1) which is a very large

number in most applications. To reduce the computational cost of EKF, this research

adopt the decoupled EKF.

5.2.2 Decoupled Extended Kalman Filter

As discussed in Subsection 2.6.2, using the standard EKF is computationally burdensome

because of the high dimensionality of the parameters. In order to reduce the computational

burden, a simplified version of the EKF called the decoupled extended Kalman filter

(DEKF) proposed in [124, 252] is used as suggested in [115] and being a second order

derivative-based method, convergence is expected to be faster [115,253]. The assumption

for DEKF is that the intra-correlation among parameters of the model is high while the

inter-correlation is low [253]. Hence, by decoupling the parameters and ignoring these

inter-correlation [253], parameter interactions are made to occur only at the second-order

level [125]. Thus, instead of having one large vector of parameters, smaller groups (vectors)

of parameters are utilised with small interactions between groups, thereby increasing the

computational efficiency of the DEKF.

By using the DEKF to learn the parameters of IT2AIFLS, the antecedent and the

consequent parameters are grouped into two vectors - one for the antecedent and the

other for the consequent parameters.

5.3 Antecedent Update Rule

In the antecedent, the state space is partitioned into sets of intuitionistic fuzzy regions

which determines the set of rules generated from a piece of training data. As discussed in

Section 2.6, the design of a FLS includes the determination of the unknown parameters

of the FLS in the antecedent parts. During the antecedent parameter update, all the

unknown parameters in the antecedent parts of IT2AIFLS are gathered into a single

vector and represented as:

θ1 = [c11, c21, · · · , cnm, σ11, σ21, · · · , σnm]T (5.25)
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where n is the number of inputs and m is the number of interval type-2 intuitionistic fuzzy

partitions.

The Equation 5.25 is further decomposed into membership function antecedent pa-

rameters as in Equation 5.26

θ1µ = [c11, c12, · · · , cnm, σµ11, σ
µ
12, · · · , σnm]T (5.26)

and non-membership antecedent parameters as in Equation 5.27

θ1ν = [c11, c12, · · · , cnm, σν11, σ
ν
12, · · · , σnm]T (5.27)

where c is the center and is the same for both membership functions and non-membership

functions of the IT2AIFLS, σµ1 = σν1 and σµ2 = σν2 . The generic parameter update rule in

the ith group is as in Equation 5.28 to 5.30:

θit = θit−1 +Ki
t [yt − h(θt−1)] (5.28)

Ki
t = P itH

i
t [(H

i
t)
TP itH

i
t +Ri]−1 (5.29)

P it+1 = P it −Ki
tP

i
t (H

i
t)
T +Qi (5.30)

For the IT2AIFLS, the unknown parameters in the antecedent are gathered into the first

vector and represented as:

θ1 = [c11, c21, · · · , cnm, σ11, σ21, · · · , σnm]T (5.31)

The Equation 5.31 is further decomposed into membership function antecedent parameters

in Equation 5.32

θ1µ = [c11, c12, · · · , cnm, σµ11, σ
µ
12, · · · , σnm]T (5.32)

and non-membership antecedent parameters in Equation 5.33

θ1ν = [c11, c12, · · · , cnm, σν11, σ
ν
12, · · · , σnm]T (5.33)

The derivative matrix, H is defined in Equation 5.34 for membership function,

Hµ =
∂y

∂θµ
(5.34)

and Equation 5.35 for non membership function.

Hν =
∂y

∂θν
(5.35)
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The update rule for the parameters in θ1 then follow the Kalman filtering recursive proce-

dures as in Equation 5.28 to 5.30 with membership and non-membership functions having

separate Kalman filter parameters as shown in Equation 5.36 to 5.41:

Kµ
t = Pµt H

µ
t [(Hµ

t )TPµt H
µ
t +Rµ]−1 (5.36)

θ̂µt = θ̂µt−1 +Kµ
t [yt − h(θ̂t−1)] (5.37)

Pµt+1 = Pµt −K
µ
t P

µ
t (Hµ

t )T +Qµ (5.38)

Kν
t = P νt H

ν
t [(Hν

t )TP νt H
ν
t +Rν ]−1 (5.39)

θ̂νt = θ̂νt−1 +Kν
t [yt − h(θ̂t−1)] (5.40)

P νt+1 = P νt −Kν
t P

ν
t (Hν

t )T +Qν (5.41)

With the DEKF, the reduction in the computational cost is in the order 64n2 + 4M2(n2 +

2n+ 1) and the computational complexity of DEKF to EKF is in the ratio:

64n2 + 4M2(n2 + 2n+ 1)

64n2 + 4M2(n2 + 2n+ 1) + 32nM(n+ 1)

This is a significant improvement compared to the standard EKF for training IT2AIFLS.

The DEKF therefore has an advantage over the conventional EKF in terms of resource

utilisation and coupled with the complexity of IT2AIFLS, DEKF becomes the preferred

learning approach in this research.

5.4 Consequent Parameter Update

The parameters of the consequent are grouped into the second vector and represented as:

θ2 = [w11, w21, · · · , wMn, b1, b2, · · · , bM ]T (5.42)

where M is the number of rules, The Equation 5.42 is also decomposed into Equations

5.43 and 5.44 for membership and non-membership consequent parameters respectively

θ2µ = [wµ11, w
µ
12, · · · , w

µ
Mn, b

µ
1 , b

µ
2 , · · · , b

µ
M ]T (5.43)

θ2ν = [wν11, w
ν
12, · · · , wνMn, b

ν
1 , b

ν
2 , · · · , bνM ]T (5.44)

with the membership and non-membership functions having separate Kalman filter pa-

rameters. The derivative matrix, H, is defined as:
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Hµ =
∂y

∂θ1
and Hν =

∂y

∂θ2
(5.45)

(5.46)

for membership and non-membership function parameters respectively.

The update rule for the parameters in θ2 then follow the same recursive procedures as

in Equation 5.28 to 5.30

5.5 Experiments and Results

In this section, the evaluation of the proposed learning algorithm of IT2AIFLS is conducted

using one synthetic and two real world datasets namely Australia’s New South Wales

(NSW) electricity price data in the year 2008 and a gas compression system (GCS) dataset

obtained from a Nigerian-based power plant. The performance metrics utilised in this

chapter are the RMSE and MAE which are rewritten here for ease of reference in Equations

5.47 and 5.48 respectively:

RMSE =

√√√√ 1

N

N∑
i=1

(ya − y)2 (5.47)

MAE =
1

N

N∑
i=1

|ya − y| (5.48)

where N is the number of test samples, ya and y are the actual and predicted outputs

respectively.

5.5.1 System Identification

The proposed IT2AIFLS-DEKF model is applied to a dynamic system dataset generated

using the differential equation expressed in Equation 6.20 [121]:

y(t+ 1) =
y(t)

1 + y2(t)
+ u3(t) + f(t)

where

f(t) =


0, 1 ≤ t ≤ 1000

1.0, 1001 ≤ t ≤ 2000

0, 2001 ≤ t

(5.49)



5.5. Experiments and Results 101

The inputs to the proposed model are u(t) and y(t) while y(t + 1) is the desired output.

Similar to Juang et al. [121], the 2001 training data samples are generated using u(t) =

sin(2πt/100). There are 4 rules and 40 tunable parameters for the IT2AIFLS. A TSK type-

1 AIFLS and an IT2FLS trained with DEKF are also constructed and evaluated on the

system identification problem. The number of rules in the three models remain the same

with 36 and 24 tunable parameters for the AIFLS and IT2FLS respectively. The RMSE

is adopted as the performance metric. The RMSE is computed over 30 simulations for

each model. Shown in Figure 5.1 is the actual and predicted outputs of the identification

problem using IT2AIFLS. As presented in Table 5.1, IT2AIFLS outperforms both AIFLS

and IT2FLS in this problem instance.
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Figure 5.1: Actual and predicted output using IT2AIFLS for identification problem

Table 5.1: Comparison of IT2AIFLS vs AIFLS and IT2FLS on second-order identification

problem

Model Rules RMSE(trn) RMSE(tst)

IT2FLS 4 0.0155 0.0082

AIFLS 4 0.0155 0.0079

IT2AIFLS 4 0.0164 0.0068

5.5.2 NSW Electricity Load Forecast

The proposed EKF-based learning IT2AIFLS model is evaluated using a real world datasets

from the Australia’s National Electricity Market (NEM) namely New South Wales (NSW)
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electricity market. Similar to [254], the NSW electricity market for the year 2008 is used

for the analysis. The dataset is downloaded from [255] and consists of 17568 instances

with attributes of regional reference price as the input. The price data are treated as

time series data and are partitioned into four separate datasets according to [254] as rep-

resentatives of the four seasons in Australia. The input data for analysis is generated

from four previous values [x(t− 4), x(t− 3), x(t− 2), x(t− 1)] with x(t+ 1) as the output.

There are a total of 336 data samples for each season which reduces to 331 after input

generation. The first 231 data points are used for training while the remaining 100 data

samples are used for testing in each season. There are 16 rules generated with a total of

8(4) + 2*16(4+1) = 192 parameters. The performance metrics employed are the RMSE

and MAE. The data for the analysis have been normalised to a small range of [0,1]. The

partitioning of the dataset for each season are shown in Table 5.2. The performance of

Table 5.2: NSW 2008 electricity price dataset partitions

Period Input Total datapoint Train datapoint Test datapoint

Summer

24 - 30/01/08 4 331 231 100

Autumn

24 - 30/05/08 4 331 231 100

Winter

24 - 30/08/08 4 331 231 100

Spring

24 - 30/10/08 4 331 231 100

the new learning algorithm of IT2AIFLS-DEKF using NSW electricity data is evaluated

on two fronts namely:

• performance comparison with another learning algorithm such as the GD and

• performance comparison with other fuzzy models trained with DEKF such as AIFLS

and classical IT2FLS.

The performance of each of the training algorithms was computed over 30 simulations.

Figure 5.2 shows the actual and the predicted outputs of IT2AIFLS-DEKF and IT2AIFLS-

GD with the corresponding prediction errors for the different seasons. As shown in

Tables 5.3 to 5.6, IT2AIFLS-DEKF exhibits superior performance over IT2AIFLS-GD.
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Table 5.3: Performance of different models and algorithms during Summer season

Period Summer

Model
AIFLS-

DEKF

IT2FLS-

DEKF

IT2AIFLS-

GD

IT2AIFLS-

DEKF

RMSE
Trn 0.0229 0.0243 0.0243 0.0225

Tst 0.1112 0.2284 0.1599 0.0979

MAE 0.0315 0.0683 0.0502 0.0284

Table 5.4: Performance of different models and algorithms during Autumn season

Period Autumn

Model
AIFLS-

DEKF

IT2FLS-

DEKF

IT2AIFLS-

GD

IT2AIFLS-

DEKF

RMSE
Trn 0.0889 0.0891 0.0896 0.0871

Tst 0.0407 0.0410 0.0789 0.0409

MAE 0.0164 0.0161 0.0393 0.0167

Table 5.5: Performance of different models and algorithms during Winter season

Period Winter

Model
AIFLS-

DEKF

IT2FLS-

DEKF

IT2AIFLS-

GD

IT2AIFLS-

DEKF

RMSE
Trn 0.0836 0.0846 0.0916 0.0791

Tst 0.0439 0.0429 0.0553 0.0422

MAE 0.0182 0.0184 0.0239 0.0175

Table 5.6: Performance of different models and algorithms during Spring season

Period Spring

Model
AIFLS-

DEKF

IT2FLS-

DEKF

IT2AIFLS-

GD

IT2AIFLS-

DEKF

RMSE
Trn 0.0715 0.0754 0.0802 0.0723

Tst 0.0960 0.0954 0.1333 0.0821

MAE 0.0342 0.0367 0.0477 0.0335
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Figure 5.2: Price prediction in summer, autumn, winter and spring using IT2AIFLS-DEKF

and IT2AIFLS-GD respectively

It is conjectured that this could be as a result of the EKF-based algorithm’s ability to

overcome local minima problems and to account for interdependence between outputs at

each iterations. In Table 5.3, the DEKF-based AIFLS, IT2FLS and IT2AIFLS for autumn
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season are very close in their modelling error. The AIFLS performs slightly better than the

type-2 models for the autumn season. This shows that a type-1 FLS can model uncertainty

and non-linearity to some degree [125, 256]. In the overall, Tables 5.3 to 5.6 show that

IT2AIFLS performs better than both AIFLS and IT2FLS trained with the same DEKF

algorithm with reduced RMSE and MAE. Hence, using IT2AIFLS can be a preferred

option for handling uncertainty in many real world applications.

5.5.3 Gas Compression System Time Series Prediction

In this subsection, the IT2AIFLS is used for the future prediction of another real-world

dataset - gas compression system (GCS) dataset of a gas turbine obtained from a Nigerian-

based power plant. The GCS data is a complex dataset consisting of different operational

conditions of a gas plant. There are a total of 825 data points. The purpose of this

simulation is to statistically analyse the performance of IT2AIFLS, IT2FLS and AIFLS.

The DEKF learning approach is adopted for this experimental analysis because of its

theoretical strength, faster convergence and its ability at finding good solutions [115]. The

GCS data is modeled as a time series dataset using input generating format: [x(t−3), x(t−

2, x(t−1)] with x(t) as the output. The input are normalised to lie between small range of

[0,1], so that larger input values do not overshadow the smaller values, thereby leading to

poor prediction and learning with the embedded ANN architecture. For each run of the

experiments, the data are randomly sampled and split into 70% training and 30% testing

set. In this approach, each data point has equal probability of being sampled for training

and testing in the simulation runs. For a clear and objective discussion and evaluation

of the three models of IT2IFLS, IT2FLS and AIFLS, the Kalman filter parameters R, Q

and P for both membership functions and non-membership functions are initially set as

40, 0.01I32 and 1.0I32 respectively for all experiments with 100 epochs for each run. The

performance metric adopted for this analysis is the RMSE. The simulation is conducted

for 30 runs. This allows for objective evaluation of the performance of the different models

under investigation. The test RMSEs averaged over 30 runs for the different fuzzy logic

models considered here are presented in Table 5.7

As shown in the box-and-whisker plots in Figure 5.7, IT2AIFLS has the smallest error

value on average. This observation points to the merits of non-membership and IF-indices

as integral parts of IT2FLS. Shown in Figures 5.3 and 5.4 are the membership and non-

membership functions of a single input attribute of GCS data before and after training
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Table 5.7: Performance comparison of IT2FLS, AIFLS and IT2AIFLS using GCS dataset

Models RMSE(trn) RMSE(tst)

IT2FLS 0.1504 0.1425

AIFLS 0.1496 0.1423

IT2AIFLS 0.1202 0.1199
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Figure 5.3: GCS membership and non-membership functions before training with

IT2AIFLS
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Figure 5.4: GCS membership and non-membership functions after training with IT2AIFLS

using IT2AIFLS. Figures 5.5 and 5.6 show the membership functions before and after

training with classical IT2FLS. As depicted in Figure 5.4, IT2AIFLS is able to minimise

the effects of membership and non-membership functions uncertainties as shown on their

reduced FOU sizes.
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Figure 5.5: GCS membership function

before training with IT2FLS
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Figure 5.6: GCS membership function

after training with IT2FLS

IT2AIFLS IT2FLS AIFLS

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

R
M

S
E

Figure 5.7: Box-and-whisker plot showing the performance of IT2AIFLS, IT2FLS and

AIFLS.

5.6 Statistical Evaluation

In this section, statistical evaluation is conducted to test the hypothesis of this research.

The main interest is to understand the effectiveness of integrating fuzzy non-membership

function and IF-indices into IT2FLSs where more uncertainty is captured in the fuzzy
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set description. The second is to investigate the performance of the proposed framework

of IT2AIFLS with its type-1 counterpart. Statistical comparison is also made between

AIFLS and classical IT2FLS. To explore these, three experiments are conducted. The

following hypotheses form the basis of evaluation:

• Hypothesis 1: With the integration of non-membership functions and IF-indices

into the classical IT2FLS, the new model of IT2AIFLS is able to model uncer-

tainty in many applications than the classical IT2FLS that do not incorporate non-

membership and IF-indices.

• Hypothesis 2: With membership and non-membership functions that are intervals,

the new model of IT2AIFLS is able to model uncertainty in many applications than

its type-1 variant with membership and non-membership functions that are not

intervals.

• Hypothesis 3: With membership and non-membership functions of AIFLS, the model

is able to model uncertainty in many applications than the classical IT2FLS with

lower and upper membership functions.

Statistical significance of differences between pairs of models are carried out using Wilcoxon

signed rank test (α level = 0.05). The Wilcoxon signed rank test is one of the most

commonly used non-parametric statistical hypothesis test for evaluating the predictive

capabilities between pairs of models to determine whether there is existence of statistical

differences among results [231].

Hypothesis 1: The first set of experiments is focused on assessing the ability of IT2AIFLS

framework to provide good estimates than the classical IT2FLS. The null and alternative

hypotheses are:

• H0: There is no significant difference (one-tailed) in the performance of the IT2FLS

that incorporates non-membership and IF-indices and those that do not.

• H1: There is a significant difference (one-tailed) in the performance of IT2FLS that

incorporates non-membership and IF-indices and those that do not.

Table 5.8: Wilcoxon’s test: IT2AIFLS and IT2FLS using test RMSE

Model Hypothesis (α = 0.05) p-value

IT2AIFLS vs IT2FLS Reject H0 0.0173
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For the first hypothesis, the statistical analysis suggests that there is a highly significant

difference in the performances of the two approaches (p-value = 0.0173). This leads to

the rejection of the null hypothesis. It is concluded that there is a significant difference in

the performances of IT2AIFLS and classical IT2FLS.

Hypothesis 2: The second set of experiments is focused on assessing the ability of

IT2AIFLS framework to provide good estimates than its type-1 counterpart. The null and

alternative hypotheses are:

• H0: There is no significant difference (one-tailed) in the performance of IT2AIFLS

with membership and non-membership functions that are intervals and AIFLS with

membership and non-membership functions that are not intervals.

• H1: There is a significant difference (one-tailed) in the performance of IT2AIFLS

with membership and non-membership functions that are intervals and AIFLS with

membership and non-membership functions that are not intervals.

Table 5.9: Wilcoxon’s test: IT2AIFLS and AIFLS using test RMSE

Model Hypothesis (α = 0.05) p-value

IT2AIFLS vs AIFLS Reject H0 0.0091

For the second hypothesis, the statistical analysis suggests that there is a highly sig-

nificant difference in the performances of IT2AIFLS and AIFLS (p-value = 0.0091). This

leads to the rejection of the null hypothesis. It is concluded that there is a significant

difference in the performances of IT2AIFLS and AIFLS. This shows that membership and

non-membership functions that are intervals may be more appropriate for uncertainty

modelling than those with membership and non-membership functions that are not inter-

vals.

Hypothesis 3: The third set of experiments is to investigate the statistical significance

between IT2FLS and AIFLS. The null and alternative hypotheses are:

• H0: There is no significant difference (one-tailed) in the performance of IT2FLS

utilising upper and lower membership functions of IT2FS and AIFLS utilising mem-

bership and non-membership functions of AIFS.

• H1: There is a significant difference (one-tailed) in the performance of IT2FLS

utilising upper and lower membership functions of IT2FS and AIFLS utilising only

membership and non-membership functions of AIFS.
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Table 5.10: Wilcoxon’s test: IT2FLS and AIFLS using test RMSE

Model Hypothesis (α = 0.05) p-value

IT2FLS vs AIFLS Fail to reject H0 0.7336

Table 5.10 shows the results of statistical comparison between classical IT2FLS and type-

1 AIFLS. The Wilcoxon’s signed rank test at 0.05 significance level shows that there is

no significant difference (p-value = 0.7336) existing between IT2FLS and AIFLS, hence

a failure to reject the null hypothesis. It can be concluded that there is no significant

difference (one-tailed) in the performance of IT2FLS utilising upper and lower membership

functions of IT2FS and AIFLS utilising membership and non-membership functions of

AIFS.

Table 5.11 summarises the results on the test datasets presented in this chapter. The

best results are indicated in bold.

Table 5.11: Summary of results

Dataset Measure Proposed Model Best other

System identification RMSE 0.0068 AIFLS - 0.0079

Poland electricity(Summer) RMSE 0.0979 AIFLS - 0.1112

Poland electricity(Autumn) RMSE 0.0409 AIFLS - 0.0407

Poland electricity(Winter) RMSE 0.0422 IT2FLS - 0.0429

Poland electricity(Spring) RMSE 0.0821 IT2FLS - 0.0954

GCS RMSE 0.1199 AIFLS - 0.1423

5.7 Summary

In this chapter, a new application of DEKF learning algorithm for IT2AIFLS is proposed

and evaluated. To aid comparison with existing FLSs, AIFLS and classical IT2FLS are

also constructed and parameters updated using the DEKF. The viability of the resulting

systems are validated by rigorous study cases and statistical tests. Particularly, the sys-

tems are used for system identification problem and evaluation of two real world datasets

namely: NSW 2008 electricity dataset obtained from Australia’s electricity market and

GCS dataset obtained from a Nigerian-based power plant. Statistical analyses reveal that

there is a significant performance improvement of IT2AIFLS over AIFLS and classical
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IT2FLS trained with the same learning apparatus. It is conjectured that the improved

performance of IT2AIFLS is because IT2AIFSs posses extra degrees of freedom, in terms

of the non-membership functions, with the capacity to model non-linear input-output re-

lationships better. The results presented in Table 5.3 to 5.6 reveal that IT2AIFLS trained

with DEKF exhibits superior performance to that trained with GD algorithm.



Chapter 6

Hybrid Learning of IT2AIFLS as

applied to Identification and

Prediction Problems

A fuzzy future is a bright future.

Anonymous

6.1 Introduction

This chapter presents a novel application of a hybrid learning approach to the optimi-

sation of membership and non-membership function parameters of the newly developed

IT2AIFLS. The hybrid algorithm consisting of DEKF and GD is used to tune the param-

eters of the IT2AIFLS for the first time [40]. The DEKF is used to tune the consequent

parameters in the forward pass while the GD method is used to tune the antecedents parts

during the backward pass of the hybrid learning. The hybrid algorithm is described and

evaluated, prediction and identification results together with the runtime are compared

with similar existing studies in the literature. Performance comparison is made between

the proposed hybrid learning model of IT2AIFLS, a type-1 AIFLS and a classical IT2FLS

on the different datasets under investigation. The empirical comparison is made on the

designed systems using three artificially generated datasets and four real world datasets.

Analysis of results reveal that IT2AIFLS outperforms its type-1 variants, IT2FLS and

most of the existing models in the literature. Moreover, the minimal run time of the

proposed hybrid learning model for IT2AIFLS also puts this model forward as a good

112
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candidate for application in real time systems.

The GD (first-order derivative based) methods have been widely used as an optimi-

sation strategy for the parameters of fuzzy systems [12]. As discussed in Section 2.6, the

important aspect of GD is that it is guaranteed to reach a minimum (local in this case),

but the difficulties with GD method are slow convergence and the possibility of getting

stuck in local minima, leading to poor solutions [124]. To address these shortcomings,

in this chapter, the first-order GD is combined with a second-order optimisation method

such as the DEKF algorithm which have a smaller possibility of getting stuck in local min-

ima [125]. The combination of these two approaches, apart from guaranteeing the goal

of reaching a minimum, may also speed up the learning process. Hence, a new learning

algorithm of DEKF and GD for tuning the parameters of IT2AIFLS [2] is introduced for

the first time in this chapter with the aim of achieving improved system performance in

terms of error minimisation and faster convergence.

6.2 IT2AIFLS Rule Structure

In this section, the generic rule structure is recalled for convenience. The generic TSK

rule representation for IT2AIFLS is as expressed in Equation 6.1:

Rk : IF x1 is Ã∗1k and x2 is Ã∗2k and · · · and xn is Ã∗nkTHEN yk =

n∑
i=1

wikxi + bk

(6.1)

where Ã∗1k,Ã∗2k, · · · ,Ã∗ik,· · · ,Ã∗nk are IT2AIFS and yk is the output of the kth rule.

6.3 Parameter Updates

In this section, the two-pass learning algorithm for the parameters of IT2AIFLS is de-

scribed. During the forward pass, the antecedent parameters are kept fixed while the

consequent parameters are updated using the DEKF. During the backward pass, the con-

sequent parameters are kept fixed while the antecedent parameters are updated using GD

method. The hybrid learning procedure of DEKF and GD is as shown in Figure 6.1 and

Algorithm 1.
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Figure 6.1: Hybrid learning procedure of IT2AIFLS using DEKF and GD

6.3.1 Consequent Parameter Updates

The decoupled EKF, is utilised to train the consequent parts of the IT2AIFLS model

because it is less complex. The parameter update rules for the consequent parts of the

membership and non-membership functions follow the Kalman filtering recursive proce-

dures as earlier discussed in Chapter 5 and rewritten here in Equation 6.2 to 6.4 for ease

of reference:

Kµ
t = Pµt H

µ
t [(Hµ

t )TPµt H
µ
t +Rµ]−1 (6.2)

θ̂µt = θ̂µt−1 +Kµ
t [yt − h(θ̂t−1)] (6.3)

Pµt+1 = Pµt −K
µ
t P

µ
t (Hµ

t )T +Qµ (6.4)

and the updates for the non-membership functions follow the same recursive procedure

but utilises non-membership function parameters as in Equation 6.5 to 6.7:

Kν
t = P νt H

ν
t [(Hν

t )TP νt H
ν
t +Rν ]−1 (6.5)

θ̂νt = θ̂νt−1 +Kν
t [yt − h(θ̂t−1)] (6.6)

P νt+1 = P νt −Kν
t P

ν
t (Hν

t )T +Qν (6.7)

6.3.2 Antecedent Parameter Updates

To adjust the antecedent parameters of the IT2AIFLS, GD algorithm is executed. The

cost function for a single output and the inference mechanism for IT2AIFLS are rewritten
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for ease of reference in Equations 6.8 and 6.9 respectively.

E =
1

2
(ya − y)2 (6.8)

where ya is the actual output and y is the IT2AIFLS output defined as [2, 46,47]:

y =
(1− β)

∑M
k=1

(
fµk + fµk

)
yµk∑M

k=1 f
µ
k +

∑M
k=1 f

µ
k

+
β
∑M

k=1

(
fνk + fνk

)
yνk∑M

k=1 f
ν
k +

∑M
k=1 f

ν
k

(6.9)

where fµ
k
, f

µ
k , fν

k
and f

ν
k are the lower membership, upper membership, lower non-

membership and upper non-membership functions firing strengths respectively. The generic

GD update rules for tuning the antecedent parameters (membership and non-membership)

of the proposed framework is recalled for convenience.

θik(t+ 1) = θik(t)− γ
∂E

∂θik
(6.10)

where γ is the learning rate and θ is the generic parameter.

6.4 Experimental Analysis and Evaluation

In this section, the experimental analyses on publicly available system identification and

prediction problems are presented. Similar to previous studies on these datasets, the

performance evaluation is on the basis of same datasets and performance metric, RMSE

in this case, to evaluate the prediction quality of the proposed model. The RMSE is

defined as:

RMSE =

√√√√ 1

N

N∑
i=1

(ya − y)2 (6.11)

where ya is the desired output and y is the predicted output, N is the number of testing

data points. The β value for all experiments is initialised to 0.5. The initial values of

membership and non-membership functions consequent parameters are randomly gener-

ated from unit interval [0,1].

6.4.1 Application to Artificially Generated Mackey-Glass Time Series

Mackey-Glass benchmark time series for modelling a physiological system defined by the

differential delay equation in (6.12) is examined:

dx (t)

dt
=

a ∗ x (t− τ)

1 + x (t− τ)n
− b ∗ x (t) (6.12)
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Algorithm 1 Hybrid Learning of IT2AIFLS

INPUT: Train set (−→x t, yt), t = 1...N

OUTPUT: Prediction error

1: initialise all antecedent (c, σµ, σµ, σν , σν) and consequent parameters (wµ, bµ, wν , bν)

of the IT2AIFS.
2: set the number of training epochs to unity

3: set the training sample point (t) to unity

4: propagate the input (−→x t) through the IT2AIFLS hybrid model

5: tune the consequent parameters using DEKF according to Equation 6.2 to 6.4 for MF

parameters and Equation 6.5 to 6.7 for NMF parameters
6: compute the output of the hybrid-IT2AIFLS using Equation 6.9

7: compute the difference between the actual output and predicted output of the hybrid-

IT2AIFLS model and use RMSE as the cost function
8: back-propagate the error

9: tune the antecedent parameters using gradient descent back-propagation algorithm

10: increment the training sample point by 1 (−→x t+1)

11: If trained sample point ≤ total number of training sample points Then

12: go to step 4

13: Else

14: increment training epoch by 1.

15: End If

16: If maximum epoch is reached

17: End

18: Else

19: go to step 4

20: End If
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where a, b and n are constant values, t is the current time and τ is the time delay constant.

The proposed model is evaluated with τ = 17. Similar to [2,257–260], a dataset consisting

of 1000 data points are generated using Equation 6.12. The first 500 data points are used

for training and the remaining 500 are used for testing.

For a fair comparison with existing studies, the data generating vector is [x(t−18), x(t−

12), x(t− 6), x(t);x(t+ 6)] with x(t+ 6) as the target, where t = 118 to 1117. There are

a total of 16 rules with 192 tunable parameters. The Kalman filter parameters Q and P

for both membership function and non-membership function were initially set as 0.001I80

and 1.0I80 respectively with R = 40. The learning rate is fixed at 0.01 with 500 training

epochs and 10 simulation runs. Figure 6.2 shows the actual and the predicted outputs

of Mackey-Glass using IT2AIFLS while Figure 6.3 shows the evolution of the adaptive

user define parameter, β. Comparison of results is made between IT2AIFLS trained with

DEKF and GD, and its type-1 variants on Mackey-Glass benchmark dataset. Table 6.1

shows that IT2AIFLS outperforms its type-1 counterpart. A comparison of the hybrid

learning approach of IT2AIFLS with some existing models in the literature is also shown

in Table 6.1 with IT2AIFLS exhibiting superior predictive performance to many others

but having very close predictive power to local linear wavelet neural network (LLWNN)

trained with particle swarm optimisation with diversity learning and GD (LLWNN +

hybrid) and LLWNN with GD alone in this problem domain.

Figure 6.2: Actual and predicted output of Mackey-Glass time series
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Table 6.1: Performance comparison of IT2AIFLS on Mackey-Glass time series forecasting

with existing models

Model Rules RMSE(tst)

SuPFuNIS [261] 15 0.014

Fuzzy-Singular -

Value Decomposition [212] 10 0.012

MDE-RBF NN [211] - 0.013

Genetic Fuzzy Ensemble [213] - 0.0264

Radial Basis Function AFS [210] - 0.0114

RBF-AFS [210] 21 0.013

HyFIS [113] 16 0.012

NEFPROX [262] 129 0.0332

HyFIS-Yager-gDIC [263] 0.0190

T2-HyFIS-Yager [263] 0.0694

D-FNN [264] 10 0.008

WNN + gradient [257] - 0.0071

WNN + hybrid [257] - 0.0059

LLWNN + gradient [257] - 0.0041

LLWNN + hybrid [257] - 0.0036

MLMVN [258] - 0.0056

GEFREX [265] - 0.0061

SA-T2FLS [259] 16 0.0089

TSK-SVR I [260] - 0.008

TSK-SVR II [260] - 0.007

AIFLS 16 0.0054

IT2AIFLS 16 0.0040
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Figure 6.3: The adaptation of the parameter β for Mackey-Glass prediction problem

6.4.2 System Identification Problem #1

A second-order time-varying system is investigated using the hybrid learning model of

IT2AIFLS. This first system identification problem involves a dynamic system that is

defined by Equation 6.13.

y(t+ 1) = f(y(t), y(t− 1), y(t− 2), u(t), u(t− 1)) (6.13)

where

f(x1, x2, x3, x4, x5) =
x1x2x3x5(x3 − b) + cx4

a+ x2
2 + x2

3

(6.14)

and a, b, c are time-varying parameters as shown in Figure 6.4 and defined as in Equation

6.15 to 6.17:

a(t) = 1.2− 0.2cos(2πt/T ) (6.15)

b(t) = 1.0− 0.4sin(2πt/T ) (6.16)

c(t) = 1.0 + 0.4sin(2πt/T ) (6.17)

Here, T = 1000 represents the total number of sample points. All computational proce-

dures are arranged as closely as possible to those reported in [95, 122, 243]. Two inputs
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Figure 6.4: Time varying parameters for second-order system identification problem #1

values are utilised which are u(t) and y(t).

u(t) =



sin(πt/25) t < 250

1.0, 250 ≤ t < 500

−1.0 500 ≤ t < 750

0.3sin(πt/25) + 0.1sin(πt/32)

+0.6sin(πt/10) 750 ≤ t < 1000

(6.18)

Similar to Lin et al. [122], the simulation is conducted for 1000 time steps with 100 training

epochs. A total of 4 rules with 40 tunable parameters are generated. The learning rate was

set to 0.01 while the Kalman filter parameters for P and Q are initially chosen as 1I12 and

0.001I12 respectively for the membership function and non-membership function with R

chosen as 40 where I is the identity matrix. The higher value of R is chosen to increase the

level of uncertainty in the data. In order to assess the performance of IT2AIFLS-DEKF

and GD on the time-varying dynamic system, the test signal in Equation 6.18 is used.

Figure 6.5 shows the actual versus the predicted output for 200 data points of the

second-order identification problem #1 using IT2AIFLS-DEKF and GD. As shown in Ta-

ble 6.2, the hybrid model of IT2AIFLS-DEKF and GD outperforms other existing mod-

els except interval type-2 fuzzy neural network (IT2FNN) trained with EKF (IT2FNN-

EKF). Although IT2AIFLS-DEKF and GD performs better than IT2FNN-EKF on the

training set, IT2FNN-EKF outperforms IT2AIFLS-DEKF and GD on the test set. This

could be as a result of utilising the predictive power of EKF on both the antecedent



6.4. Experimental Analysis and Evaluation 121

Table 6.2: Performance comparison of IT2AIFLS with other models on second-order sys-

tem identification problem #1

Model Rules Epoch RMSE(trn) RMSE(tst)

Type-1

TSK FNS [243] 9 100 0.0282 0.0598

Type-2

TSK FNS [243] 4 100 0.0284 0.0601

Feedorward

Type-2 FNN 3 100 0.0281 0.0593

SIT2FNN [95] 4 100 0.0351 0.0560

SEIT2FNN [121] 3 100 0.0274 0.0574

TSCIT2FNN [122] 3 100 0.0279 0.0576

IT2FNN-GD [42] - 200 0.0540 0.0613

IT2FNN-EKF [42] - 200 0.0275 0.0261

IT2FNN-SMC [42] - 200 0.0360 0.0390

IT2FNN-

PSO + SMC [42] - 200 0.0199 0.0390

IT2AIFLS 4 100 0.0250 0.0310

and consequent parameters tuning of IT2FNN-EKF. Most notably is the comparison

of IT2AIFLS-DEKF and GD with self evolving interval type-2 fuzzy neural network

(SEIT2FNN) and TSK-type-based self evolving compensatory interval type-2 fuzzy neural

network (TSCIT2FNN). Similar to IT2AIFLS, both SEIT2FNN and TSCIT2FNN utilise

Kalman filter-based methodologies to adapt their consequent parameters and GD to op-

timise the antecedent parameters respectively with A2-C0 TSK-type fuzzy inference. The

proposed framework of IT2AIFLS outperforms both existing methods of SEIT2FNN and

TSCIT2FNN in this problem instance.

For a fair comparison of the runtime of IT2AIFLS - DEKF and GD with those reported

in Kayacan and Khanesar [42], 200 simulations of the experiments are conducted. As

shown in Table 6.3, IT2AIFLS-DEKF and GD has the lowest runtime of 82.04 seconds,

close to that of IT2FNN trained with sliding mode control (IT2FNN-SMC) algorithm with

the runtime of 84.39 seconds. The reason for this short execution time is that the DEKF

is only applied to learn the consequent parts of the model which has only two parameters.
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Figure 6.5: Actual and predicted output using hybrid IT2AIFLS for second-order system

identification problem #1

Thus, with the superior identification accuracy and computational efficiency in terms of

run time in this particular problem, the proposed IT2AIFLS-DEKF and GD model may

be a more appropriate choice for real time applications compared to those reported in [42].

Table 6.3: Comparison of runtime of IT2AIFLS with other approaches on second-order

identification problem #1

Model Epoch Run Time (s)

IT2FNN-GD [42] 200 124.12

IT2FNN-EKF [42] 200 229.71

IT2FNN-SMC [42] 200 84.39

IT2FNN

PSO + SMC [42] 200 7086.78

IT2AIFLS 200 82.04
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6.4.3 System Identification Problem #2

For further evaluation, IT2AIFLS is applied to a non-linear system identification problem

where the dataset is generated by the following differential equation:

y(t+ 1) =
y(t)

1 + y2(t)
+ u3(t) (6.19)

The variables u(t) and y(t) are used as inputs while y(t + 1) is the desired output.

Training samples are generated using u(t) = sin(2πt/100). Similar computational set

up in [95, 121, 122, 243, 266] are adopted with 200 samples generated and trained for 500

epochs. The proposed approach is compared with three evolving T2FLSs namely, self

evolving interval type-2 fuzzy neural network (SEIT2FNN) utilising IT2FS in the an-

tecedents and TSK interval type-1 set in the consequent, TSK-type-based self-evolving

compensatory IT2FNN (TSCIT2FNN) which utilises IT2FS in the antecedent and a lin-

ear model in the consequent and evolving type-2 neural fuzzy inference system (eT2FIS)

with antecedent T2FS and Mamdani-type consequent. Figure 6.6 shows the actual and

predicted output for this non-linear system identification problem. As shown in Table 6.4,

Table 6.4: Performance comparison of hybrid IT2AIFLS with other models on non-linear

system identification#2

Models Rules Parameter RMSE(tst)

T2FLS

(Singleton) [121] 5 49 0.034

T2FLS (TSK) [121] 3 36 0.0388

eT2FIS [266] 14 70 0.053

Type-2 TSK FNS [243] 4 24 0.03239

Feedforward

Type-2 FNN [95] 3 36 0.0281

SIT2FNN [95] 3 36 0.0241

TSCIT2FNN [122] 3 34 0.0084

SEIT2FNN [121] 3 36 0.0062

AIFLS-GD [2] 4 36 0.0146

IT2AIFLS-GD [2] 4 40 0.0052

AIFLS 4 36 0.0101

IT2AIFLS 4 40 0.0030
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Figure 6.6: Actual and predicted values for system identification#2 using IT2AIFLS

IT2AIFLS exhibits a low level of RMSE over these evolving T2FLSs. In particular, the

performance of IT2AIFLS is compared with Type-2 TSK Fuzzy Neural System (Type-2

TSK FNS) [243], TSK-type-based self evolving compensatory interval type-2 fuzzy neural

network (TSCIT2FNN) [122] and SIT2FNN [95], which also utilised the T2FLS version

of the inference mechanism proposed in this thesis. The results show a clear performance

improvement of IT2AIFLS over Type-2 TSK FNS, TSCIT2FNN and SIT2FNN. The per-

formance of hybrid IT2AIFLS trained with DEKF and GD is also compared with the

IT2AIFLS trained with GD algorithm alone. As it can be seen in Table 6.4, the hybrid

learning method of IT2AIFLS outperforms the GD-based IT2AIFLS. An AIFLS is also

constructed in order to compare the performance of the IT2AIFLS with its T1 model

on this system identification problem. From Table 6.4, there is a significant performance

improvement of IT2AIFLS over AIFLS on system identification problem#2.

6.4.4 System Identification Problem #3

The system in Subsection 6.4.3 is modified by adding a time varying parameter, f . In

this case, the parameter of the system varies with the time. The proposed hybrid model,

IT2AIFLS - DEKF and GD is applied to this dynamic system with dataset generated by
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the differential equation [121]:

y(t+ 1) =
y(t)

1 + y2(t)
+ u3(t) + f(t)

where

f(t) =


0, 1 ≤ t ≤ 1000

1.0, 1001 ≤ t ≤ 2000

0, 2001 ≤ t

(6.20)

The inputs to the model are u(t) and y(t) while y(t + 1) is the desired output. The

2001 training data samples are generated using u(t) = sin(2πt/100). There are 4 rules

and 40 tunable parameters for the IT2AIFLS-DEKF and GD model. An AIFLS and

IT2FLS trained with DEKF and GD are also constructed and evaluated on the system

identification problem #3. The number of rules in the three models remain the same

with 36 and 24 tunable parameters for the AIFLS and IT2FLS respectively. The RMSE

is computed over 10 simulations for each model. As presented in Table 6.5, IT2AIFLS

outperforms both AIFLS and IT2FLS in this problem instance.

Table 6.5: A Comparison of IT2AIFLS, AIFLS and IT2FLS on second-order identification

problem #3

Model RMSE(trn) RMSE(tst)

IT2FLS 0.0173 0.0074

AIFLS 0.0172 0.0073

IT2AIFLS 0.0151 0.0064

In the following subsections, the performance of the proposed model is evaluated on three

real world problems. These are Poland electricity load, Santa Fe A laser and gas furnace

datasets.

6.4.5 Application to Real World Electricity Load Forecasting

Similar to system identification problem in 6.4.4, this experiment is conducted to evaluate

the performance of hybrid learning of IT2AIFLS with AIFLS and IT2FLS using the same

learning procedure on a real world problem. The dataset selected is the Poland electricity

load data obtained from (http://research.cs.aalto.fi/) and contains electricity load values

of Poland in the 1990’s. Table 6.6 shows the first four input samples of Poland electricity

load data.
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Table 6.6: Excerpt from Poland electricity data

x1 x2 x3 x4 y

1 0.8743 0.9631 1.0622 1.0731 1.0477

2 1.0477 0.8743 0.9631 1.0622 1.0781

3 1.0781 1.0477 0.8743 0.9631 1.0838

4 1.0838 1.0781 1.0477 0.8743 1.1063

5 1.1063 1.0838 1.0781 1.0477 1.1037

The training dataset consist of 1400 samples while 201 data samples constitute the

testing set. The number of epochs is 100 with the RMSE computed over 10 simulations.

A one-step-ahead prediction model is constructed with the output defined by Equation

6.21.

The input vector consists of some previous values and the current value of the time

series for the prediction. The current value of the electricity load provides an up-to-date

measurement to the prediction while the previous values keep track of the trend.

y(t+ 1) = [(x(t), x(t− 1), · · · , x(t− p+ 1)]

where p is the size of input with t ≥ p. The input size of four is adopted and the input

generating equation becomes:

y(t+ 1) = [(x(t), x(t− 1), x(t− 2), x(t− 3)] (6.21)

with y(t+ 1) as the output.
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Figure 6.7: Plot of Poland electricity load training data

Figure 6.7 shows the training dataset for Poland electricity load while Figure 6.8 shows

the actual and the predicted values of the test dataset. Table 6.7 shows that the perfor-
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Table 6.7: Comparison of IT2AIFLS versus AIFLS and IT2FLS on Poland electricity load

forecast

Model Train/Test set RMSE(trn) RMSE(tst)

IT2FLS 1395/196 0.0564 0.0595

AIFLS 1395/196 0.0589 0.0599

IT2AIFLS 1395/196 0.0560 0.0572

Figure 6.8: Actual and predicted values of Poland electricity load with IT2AIFLS on test

dataset

mance of IT2AIFLS is superior to those of AIFLS and IT2FLS trained with the same

hybrid algorithm of DEKF and GD.

6.4.6 Gas Furnace Time Series

The gas furnace time series is one of the most researched benchmark datasets for model

evaluation which is generated by the combustion process of methane-air mixture. The

dataset has the gas flow rate as the process input and the carbon-dioxide (CO2) concen-

tration as the process output. The gas furnace dataset is downloaded from [267]. The

dataset consist of 296 data pairs. Shown in Table 6.8 are the first four input samples

of the gas furnace data. From existing studies, the best input-output model structure

for this application domain is: y(t) = f(u(t − 4), y(t − 1)). For ease of comparison with

earlier studies, the simulation settings are arranged to be as close as possible to those
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reported in [222, 223, 257]. The task is to forecast the amount of CO2 concentration in

the gas at time (t) using the input data with methane flow rate at time (t − 4) and the

amount of CO2 produced at time (t− 1), i.e. y(t) = [u(t− 4), y(t− 1)]. After conversion

to [u(t− 4), y(t− 1); y(t)] input-output pairs, the dataset is reduced to 292 sample points

of which 200 data points are used for training and 92 samples used for testing. Figure 6.9

shows the actual and predicted outputs of gas furnace time series problem. As shown in

Table 6.8: Excerpt from gas furnace data

x1 x2 y

1 -0.109 53.5 53.4

2 0 53.4 53.1

3 0.178 53.1 52.7

4 0.339 52.7 52.4

5 0.372 52.4 52.3

Table 6.9, IT2AIFLS trained with DEKF and GD performs better than its type-1 coun-

terpart with the same training procedure. Comparison with existing studies on the other

hand shows IT2AIFLS performing better than or comparatively with other works in the

literature.
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Figure 6.9: Actual and predicted output of gas furnace time series using IT2AIFLS trained

with DEKF+GD
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Table 6.9: Performance comparison of hybrid-IT2AIFLS on gas furnace time series

Model Rules Parameter RMSE(tst)

ARMA [268] - - 0.843

Tongs’ model [269] 19 - 0.685

Pedrycz’s model [270] 81 - 0.566

Xu’s model [271] 25 0.573

Sugeno’s model [272] 6 - 0.596

Surmann’s model [273] 25 - 0.400

Lee’s model [274] 25 - 0.638

Lin’s model [275] 4 0.511

Nie’s model [276] 45 225 0.412

ANFIS [277] 4 24 0.085

Neural Tree [278] - - 0.0257

eTS [279] 5 - 0.04904

Simpl-eTS3 [279] 3 - 0.04849

WNN + gradient [257] 40 0.084

WNN + hybrid [257] 40 0.081

LWNN + gradient [257] 56 0.01643

LWNN + hybrid [257] 56 0.01378

FWNN-S (2MFs) [222] - 32 0.03085

FWNN-S (3MFs) [222] - 66 0.02778

FWNN-R (2MFs) [222] - 28 0.03171

FWNN-R (3MFs) [222] - 57 0.02794

FWNN-M (2MFs) [222] - 32 0.02963

FWNN-M (3MFs) [222] - 66 0.02324

LLNF (2 inputs) [223] - - 0.0462

OSSA-LLNF [223]

(2 inputs) - 0.0321

AIFLS 4 36 0.0273

IT2AIFLS 2(MFs) 4 40 0.0249

6.4.7 Santa Fe A Time Series

The proposed hybrid-IT2AIFLS model is also applied to the Santa Fe A time series in

order to evaluate the performance of the hybrid model on another real world application.
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The Santa Fe A time series had earlier been presented in Chapter 4, subsection 4.4.4. The

same input-output generating vector: [x(t − 1), x(t − 2), x(t − 3), x(t − 4), x(t − 5);x(t)]

is utilised. The training dataset consists of 90% of the entire dataset while the remaining

10% are used for testing with 500 training epochs and 10 number of trials. The Kalman

filter parameters P and Q are set to 1.0I192 (I192 is the 192 by 192 identity matrix) and

0.001I192 for membership and non-membership functions respectively and R is chosen as

40. The user design parameter β is initially set to 0.5 with the learning rate, γ = 0.5.

There are 32 rules generated with 8(5) + 2*32(5+1) = 424 tunable parameters. The actual

and predicted output of the Santa Fe time series is shown in Figure 6.10.

Table 6.10: Performance comparison of hybrid-IT2AIFLS with other models on Santa Fe

A time series dataset

Model Rule Parameter RMSE(trn) RMSE(tst)

ES [242] - - - 56.20

NN [242] - - - 24.6

PMRS [242] - - - 14.23

SONFIN* [202] 9 144 6.956 5.983

T2FLS-G* [118] 5 135 8.50 7.16

SEIT2FNN* [121] 5 135 7.677 5.766

IT2FNN-SVR(N) [199] 5 106 13.565 4.337

IT2FNN-SVR(F) [199] 5 106 9.094 3.474

SVR-FM* (ε = 0.1) [244] 31 188 14.370 9.707

SVR-FM* (ε = 0.001) [244] 747 4484 7.069 1.650

IT2AIFLS 32 424 6.075 1.668

* These results are adapted from [199]

In Table 6.10 the results obtained from IT2AIFLS and AIFLS, both trained with

DEKF and GD are shown together with other existing approaches in the literature. As

shown in Table 6.10, IT2AIFLS model outperforms AIFLS trained with the same hybrid

algorithm. The IT2AIFLS also performs better than other models in the literature with

very low RMSE on the test set, thus demonstrating a good generalisation and predictive

capability of the proposed IT2AIFLS model. Shown in Table 6.11 is a summary of all the

datasets and the corresponding results on the test sets presented in this chapter. The best
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Figure 6.10: Actual and predicted values of Santa Fe A time series with IT2AIFLS

results are shown in bold face.

Table 6.11: Summary of results

Dataset Measure Proposed Model Best other

Mackey-Glass RMSE 0.0040 LLWNN + hybrid - 0.0036

System identification #1 RMSE 0.0310 IT2FNN(EKF) - 0.0261

System identification #2 RMSE 0.0030 SEIT2FNN - 0.0062

System identification #3 RMSE 0.0064 AIFLS - 0.0073

Poland electricity RMSE 0.0560 IT2FLS - 0.0595

Gas furnace RMSE 0.0249 LWNN + hybrid - 0.0138

Santa Fe RMSE 1.6680 SVM-FM - 1.6500

6.5 Summary

This chapter presents a novel application of a hybrid approach of DEKF and GD to opti-

mise the parameters of IT2AIFLS. The DEKF is used to learn the consequent parameters

of the model while GD is applied to the tuning of the antecedent parameters. The hybrid

learning algorithm consisting of DEKF and GD is also used to tune the parameters of

type-1 AIFLS and IT2FLS for performance comparison between its type-1 version and

conventional IT2FLS.

From simulation analyses, IT2AIFLS exhibits superior performance quality to those
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of AIFLS and IT2FLS. In the overall, the developed model of IT2AIFLS exhibits better

or comparatively good prediction and identification performances compared to similar

studies in the literature. The run time of the proposed IT2AIFLS - DEKF and GD is

very short compared to other previous models on the same problem domain. This is an

indication that the proposed hybrid IT2AIFLS model may be more appropriate for real

time applications compared to those in [42].



Chapter 7

Conclusions and Discussion

For I know the thoughts that I think

toward you, saith the Lord, thoughts

of peace, and not of evil, to give you

an expected end.

Jeremiah 29:11

To conclude the thesis, this chapter summarises the studies of the preceding chapters,

highlights the thesis contributions, discusses the limitations of the model and outlines

potential avenues for future work.

7.1 Discussion

In recent times, there have been intensive modelling of uncertainties using the classical

IT2FLS, whose non-membership is complementary to the membership (lower or upper). It

is observed that this may not necessarily fit within the context of natural/human language

representations. This is especially the case in situations where some people are indifferent

to certain situations or are hesitant about certain concepts. This research has investigated

this short coming by modelling uncertainties using separately defined membership and non-

membership functions that are intervals, such that the sum of lower membership and upper

non-membership degrees is less than or equal to 1; and the sum of upper membership and

lower non-membership degrees is less than or equal to 1, thus relaxing the complementarity

notion of the classical IT2FSs and enabling hesitation.

In Chapter 2, a survey of related literature of FLSs is presented with a particular focus

on IT2FLS and AIFLS, both of which are key components in the model presented in this

133
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thesis. Within these context, reviews of relevant studies are conducted. The strengths

and weaknesses of these approaches are highlighted.

In Chapter 3, the IT2AIFLS framework that utilises IT2AIFS is formulated and the

different components are discussed. The IT2AIFS design is achieved through a rigorous

and systematic integration of AIFS with IT2FS. The ensued interval membership and non-

membership functions incorporate IF-indices. This concept of integrating non-membership

functions and IF-indices into the classical IT2FLS gives the new framework (IT2AIFLS) an

advantage over classical IT2FLS as demonstrated in the simulation examples in Chapters 4,

5 and 6. As argued in Eyoh et al. [3], this concept provides a synergistic capability

for uncertainty modelling with improved system performance. Atanassov and Gargov

[73] presented a similar approach that utilised interval membership and non-membership

functions, the so-called IVAIFS. As pointed out in Section 3.4, for IVAIFS, the sum of

upper membership and upper non-membership is less than or equal to 1. For the proposed

model, the sum of upper membership and lower non-membership lies in a closed interval

of 0 and 1, and the sum of lower membership and upper non-membership also lies in a

closed interval of 0 and 1. These present a point of departure of the proposed model from

existing IVAIFS. Moreover, going by Bustince et al. [84], the IT2AIFS is a broader concept

and can be used in many more ways than IVAIFS (which is a specific representation of

IT2AIFS). For a FLS to be optimally applied, the parameters have to be tuned.

In Chapter 4, a novel application of GD algorithm to tune the parameters of the an-

tecedent and consequent parts of the IT2AIFLS is presented. The GD is one of the popular

FLS parameter optimisation tools [116, 117]. The GD-based IT2AIFLS is evaluated us-

ing publicly available benchmark time series and regression problems. The experimental

analyses reveal that with the integration of non-membership functions and IF-indices into

IT2FLS, the new framework (IT2AIFLS) can increase the level of performance in terms of

prediction accuracy in many application domains. This new model is shown to outperform

its type-1 variant and some existing approaches (see [2, 3, 46]).

In Chapter 5, for the first time, the parameters of the antecedent and consequent parts

of the IT2AIFLS are optimised using the DEKF algorithm and evaluated on one synthetic

and two real world problems. The idea of adopting the second order derivative-based

method is to address the shortcomings of the first order GD methods such as slow conver-

gence and the greater possibility of getting entrapped in local minima. The IT2AIFLSs

trained with DEKF is shown to outperform its GD counterparts in terms of prediction
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accuracies (see [47]). The IT2AIFLS also exhibits statistically significant performance

compared to its type-1 counterpart and classical IT2FLS.

In Chapter 6, a novel application of hybrid approach of DEKF and GD to adjust the an-

tecedent and consequent parameters of IT2AIFLS is demonstrated. The hybrid algorithm

is evaluated using benchmark identification and prediction problems. The IT2AIFLS is

shown to outperform its type-1 and many other existing models in these problem domains

(see [40]).

7.2 Summary of Contribution

The focus of this research has been on investigating the effectiveness of integrating non-

membership FOUs and IF-indices into the classical IT2FSs. The overarching question this

research attempted to answer is: can the integration of non-membership function FOUs

and IF-indices into the classical IT2FSs improve the performance of a FLS?

In summary, the contributions of the research presented in this thesis are:

• Introduction of a new and enhanced fuzzy framework namely, IT2AIFLS, that ex-

tends on existing approach of IT2FLS through the integration of non-membership

function FOUs and IF-indices into IT2FS and thus, enabling hesitation.

• A rigorous analysis of different optimisation methods to tune the parameters of

the developed framework. By tuning the antecedent and consequent parameters

with different learning algorithms adopted in this research, IT2AIFLS significantly

increases the performance of the system in uncertain environments.

• Tuning the contributions of the membership and non-membership functions in the

final output using the learning algorithms which allows the non-uniformity of uncer-

tainties in the rule-base of IT2AIFLS to be effectively managed.

• Analysis and comparison of the new method against existing methods on benchmark

problem instances. The developed model was evaluated using benchmark problems.

The IT2AIFLS is shown to outperform type-1 AIFLSs, many classical T2FLSs and

non-fuzzy approaches on these problem instances.

• Statistical analysis and comparison of IT2AIFLS with alternative approaches. The

IT2AIFLS is evaluated using a real world problem instance obtained from a Nigerian-

based power plant. The IT2AIFLS (having membership functions, non-membership
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functions that are intervals and IF-indices) is shown to perform significantly better

than classical IT2FLS that have only the interval membership functions and type-1

AIFLS with single membership and non-membership functions in making accurate

estimate in uncertain environments.

In the overall, the clear conclusion that the new class of IT2FLS (IT2AIFLS) can enhance

the capabilities of IT2FLSs in uncertainty modelling is an important advancement in type-

2 fuzzy logic system’s research and may serve to open up more promising research areas

for uncertainty modelling.

7.3 Limitations of the Proposed Framework

The major limitation of the proposed model is the restrictive use of grid partitioning

for generating fuzzy rules. This approach leads to an exponential growth of the rules

as input space increases (the so-called curse of dimensionality). Based on this premise,

the developed model in its current state may only be appropriate for small dimensional

datasets. Other resultant limitations of the proposed model is the increased runtime and

intensive resource utilisation in terms of memory usage.

Although IT2AIFLS outperforms its type-1 counterparts and most of the classical

IT2FLSs in the simulated examples, these are achieved at the expense of greater compu-

tational burden for IT2AIFLS than either its type-1 or classical IT2FLS. Nevertheless, if

accuracy of prediction is the main essence of the evaluation, then this computational issue

may be overlooked or regarded as a small price to pay for achieving better performance

in the face of uncertainties [15].

7.4 Future Research Directions

This research has introduced a new framework namely, the IT2AIFLS for uncertainty

modelling. It is shown through simulation examples that IT2AIFLS can be a potential

tool in obtaining as accurate an estimate as possible under uncertain environments. The

promising results obtained shows that IT2AIFLS framework is indeed a viable tool that

can be adopted for uncertainty modelling in diverse problem domains and characteristics.

Following this, a number of opportunities that should be explored to further benefits from

the strengths of this class of FLSs are discussed.
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7.4.1 Non-derivative Methods for Tuning the Parameters of IT2AIFLS

One way the proposed model could be enhanced is the application of non-derivative based

methods for its parameters update. The entire learning algorithms in the framework of

this research are derivative-based methods (first and second order) which include partial

derivatives. Computing these derivatives may be quite tedious and complex. In large

and complex search spaces, the convergence speed may be relatively slow compared to

other learning algorithms. The choice of learning rate for algorithms like the GD may also

be challenging. In order to assess the developed model further, non-derivative approaches

such as genetic algorithms, simulated annealing, particle swarm optimisation, sliding mode

control algorithms and their hybrids may be exploited for tuning the parameters of the

IT2AIFLS.

7.4.2 Structure Learning of the Proposed Framework

The FLS model presented in this thesis only considers parameter tuning of the model. As

discussed in Section 2.6, FLS design methodology involves both parameter and structure

learning. The believe is that learning the structure of the proposed model can add some

interesting dimensions to the current model and to uncertainty modelling process in gen-

eral. For instance, it would be interesting to explore how adapting the model structure,

that is, adjusting the number of rules, may affect the overall performance of the proposed

model. This also points to ways of tackling the exponential growth of the model param-

eters as the input dimension increases. These can be achieved through the use of fuzzy

clustering approaches and other input partitioning strategies such as scatter partitioning.

7.4.3 Use of Adaptive Learning Rate and IF-indices

Another potential area for enhancing the model proposed here is the adaptive tuning of

the learning rate and IF-indices. Learning rate plays important role in the learning process

and affects the speed of convergence and stability of the FLS learning process [280]. The

choice of learning rate in a GD algorithm can be very challenging. Although a small

learning rate may lead to a reliable training, the learning process will take a lot of time

because small steps are taken towards the minimum of the loss function which can lead

to possible entrapment in local minima [117]. On the other hand, if the learning rate

is large, then there may be oscillation and possible instability in the learning process

and training may not converge or even diverge. It is possible to start with a small/large
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learning rate, and gradually increase/decrease the learning rate as the training progresses.

Two possible guidelines for increasing or decreasing the learning rate are provided in [42].

In Abiyev and Kaynak [243], an acceptable learning rate can also be obtained using the

Lyapunov function. With GD algorithm, the IF-indices can be tuned by following the GD

parameter update rule (see Subsection 2.6.1). It will be interesting to investigate further,

the performance of the proposed model with learning rate and IF-indices that are tuned

as compared to those with fixed values.

7.4.4 Application of other Membership and Non-membership Functions,

t− norms and Fuzzification Procedure

The FLS framework presented in this thesis is restricted to only the Gaussian functions.

One of the challenges in FLSs is the membership (non-membership) functions specification.

This is because the particular membership function (non-membership) and the associated

parameters significantly influence the performance of FLSs. A variety of strategies to

improve upon the membership functions selection have been researched for both the type-

1 and type-2 FLSs based on the use of human experts, evolutionary approaches and neural

networks [155]. Recently, Mendel [16] pointed out that appriopriate choice of membership

functions in a FLS contributes to increased performance. Mendel laid more emphasis

on triangular and trapezoidal membership functions because they tend to have greater

sculpting (partitioning) capability of the input space. Hence, another potential research

direction is to exploit ways of selecting appropriate membership and non-membership

functions for the proposed IT2AIFLS. Albeit, Wu [193] has provided twelve important

considerations for selecting between Gaussian and trapezoidal membership functions in a

classical IT2FLS. Borrowing from the words of Wagner and Hagras [155], “there is still

much work needed to standardise and simplify the selection of appropriate membership

(non-membership) functions” in an IT2AIFLS.

Also, the performance of IT2AIFLS using only the product t−norm is investigated in

this research. It will be interesting in the future to see the effects other aggregation func-

tions such as minimum t−norm and Lukasiewicz t−norm may have on the performance

of the system.

Moreover, this research employs singleton type-2 fuzzification where the inputs are

assumed to be perfect. With singleton type-2 fuzzification, the uncertainty in the input is

handled through linguistic labels in the antecedent fuzzy sets. Another interesting research
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direction is to investigate the modelling of input uncertainty by using non-singleton type-2

fuzzification.

7.4.5 Stability Analysis of IT2AIFLS

Furthermore, with the inference mechanism of IT2AIFLS represented in closed form, an

interesting research opportunity therefore presents itself; which is the stability analysis

of the IT2AIFLS. Stability is a fundamental concepts in complex dynamic systems to

establish the necessary conditions for its safety. The stability analyses have been conducted

for classical IT2FLS based on Lyapunov stability theory [281, 282]. This is a non−trivial

problem and it will be worth exploring the developed model further in this direction.

7.4.6 Integration of AIFS with GT2FLS

This research focused strictly on the simplified version of the T2FLS. Another interesting

research direction is to investigate ways of integrating AIFS with a GT2FLS. A GT2FS,

apart from the primary membership functions, also has supports on the third dimension

called the secondary membership degrees that defines the possibilities for the primary

memberships. The current model representation based on interval type-2 cannot model

the variations of the uncertainty within the FOU because the uncertainties are weighted

evenly across the FOU and this leads to loss of some important information [155]. It

is well known that the third dimension of a GT2FSs offers extra degrees of freedom for

a GT2FS, and learning this third dimension provides greater capability, thereby making

it possible for GT2FLSs to model uncertainties better than IT2FLSs [207]. In recent

years, there has been a steady growth in the applications of GT2FLSs [155,207, 283–285]

to uncertainty modelling, thanks to the simplification of GT2FS by Liu [19] and Mendel

et al. [17] through the α-plane representation. In this way, it is possible to represent a

GT2FS, in a much more straightforward way, as a union of 2-D α-planes and it therefore

stands as a realistic and promising alternative for the future.

7.4.7 Formulating the Model based on Mamdani Fuzzy Inference

Two widely used types of fuzzy inferencing are the Mamdani [286] and TSK [91,92] fuzzy

inference. The major difference between the two is that the consequents of Mamdani are

represented by fuzzy sets while those of TSK are represented as functions of the inputs.

Their applicability depends on the level of interpretability or accuracy expected of the
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designed system. Thus, the two models differ in their representation and output evaluation

which ultimately affect their levels of interpretability and accuracy. In this research, the

aim is to optimise the parameters of the system in order to obtain a fuzzy system that

closely approximates the input-output relationship of the modelled system, hence the

use of a TSK-fuzzy inference for IT2AIFLS. Another future research is to investigate

ways of formulating the proposed model based on Mamdani fuzzy inference, where the

uncertainties are captured by both the antecedent and consequent parts of the rules.

That is, both the antecedent and consequent parts are IT2AIFSs. The current work,

presented in this thesis, used a TSK fuzzy inference where only the antecedent part of

the rule is uncertain and the consequent is a linear combination of the inputs. This

constraint may limit the applicability of IT2AIFLS-TSK fuzzy inference, as some real-

world applications may require the consequents to also be IT2AIFSs, in order to support

system interpretability. Thus, in such cases, with uncertain antecedent and consequent

parts, Mamdani fuzzy inference suffices. It will be worth exploring the Mamdani-based

IT2AIFLS in the future and compare their performances.

7.4.8 Analysis of Data Stream

The work presented in this thesis relies on algorithms that use static information. The

assumption here is that the entire training set is available. It is, however, rarely the

case that real-world problems are static. Another interesting research direction therefore,

is the application of the proposed methodology to data stream analysis that requires

special treatment due to changing concept, different from the traditional approaches where

every new instance contribute to the overall concept. Data stream comes in large volume

and speed that it is impossible to store the whole data on disk and to process these

information on the fly. Due to changes in the data, the model built on old data may

change with the new data as they arrive, requiring regular updating of the model to

accommodate new instances - a process often referred to as concept drift. Algortihms

must be designed in order to account for these changes in the evolving structure of the

system. Although the GD method used in this thesis is incremental in nature, studies

show that tracking concept drifting characteristics is beyond ordinary incremental learning

procedures [287]. There may be some processing delay and this may not be acceptable in

some problem domains. Also, GD may not be able to appropriately cope with changes

in data relationships such as a change from linear to non-linear relationship. It may



7.5. Summary 141

therefore be beneficial to exploit some form of incremental learning algorithm adaptation

for IT2AIFLS that scales/evolves accordingly with the incoming data and this may require

the use of some forms of forgetting mechanisms [288,289]. The forgetting mechanism allows

the model to track changes of the observed phenomenon such that parts of the knowledge

which do not reflect current observations are removed. The idea of the application of

fuzzy systems to data streams has been investigated in [289–291] for type-1 fuzzy models.

Recently, Pratama [292] has proposed the use of classical type-2 recurrent fuzzy neural

networks for managing concepts drift in data streams. This is a virgin area, and it will

be interesting to investigate an adaptation of the proposed model to data stream analysis

with concept drifting characteristics.

7.5 Summary

In this chapter, a reflection of the research presented in this thesis is provided, its draw-

backs and possible future directions to assess it further are enumerated. The contributions

of this research are also highlighted.

As a final remark, the high level of uncertainties encountered in modern day society has

called for more enhanced methods for handling these uncertainties. Whilst the classical

IT2FLSs have made significant waves in modelling large amounts of uncertainties, they

are not able to manage indeterminate (hesitant) state well, therefore, a new and enhanced

class of IT2FLS that enables hesitation, the so-called IT2AIFLS, has been introduced in

this thesis for managing these high level of uncertainties more efficiently (better). The

model presented takes cognisance of non-membership function FOUs and IF-indices. The

non-membership function FOUs allow IT2AIFLS to capture more information than the

classical IT2FLSs while the IF-indices allow evaluation of concepts to be more meaningful

and consistent with human reasoning and natural language representation than other

representative FLSs such as classical IT2FLSs. Whilst the proposed model has been

defined in general terms, care has been taken to investigate some concrete examples and

application settings involving classical IT2FLS and the proposed model. As demonstrated

in this thesis through simulation examples, the IT2AIFLS significantly improves prediction

performances compared to some existing approaches. It is believed that the value of this

new and enhanced class of IT2FLS has far-reaching impact especially in environments

where the description of a problem in terms of only fuzzy membership functions seems too

restrictive. By harnessing the potentials of the classical IT2FS and AIFS, this research
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has contributed to addressing the existing problem of uncertainty modelling.
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[172] P. Hájek and V. Olej, “Intuitionistic fuzzy neural network: The case of credit scoring

using text information,” in Engineering Applications of Neural Networks, pp. 337–

346, Springer, 2015.
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