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Abstract

This thesis contains three studies. They are connected by the idea that “no man is

an island”: each individual contributes to shaping, and is constrained by, the social

and economic structures of the organization or the society that the individual is

embedded in.

The first study, Chapter 2, examines optimal networks with weighted and di-

rected links under complementarities. A group of agents take actions that are

endogenously determined by which network the planner implements. Comple-

mentarities mean that the best-response action of each agent is increasing in the

actions of those who have a link with positive weight pointing to the agent (rep-

resenting the direction and intensity of influence). Optimal networks are those

maximizing the planner’s objective function which is an increasing function in the

effort of each agent, subject to the constraint that the total weight of the links of

the network does not exceed a certain level. The agents’ best-response function

and the planner’s objective function can be convex or concave. We show that

every optimal network exhibits dramatic concentration of influence so that a very

small number of agents impose significant impact on the productivity of the whole

organization.

The second study, Chapter 3, investigates how cooperative norms emerge and

evolve over time. I construct a stochastic dynamic model based on the idea that

cooperation in one-shot interactions is sustained by endogenous social norms. The

model shows how cooperation and punishment of defectors co-evolve. It reveals

the conditions under which cooperation emerges and persists in the long run. In
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particular, recent empirical studies find that cooperation in one-shot interactions is

positively correlated with law enforcement across societies, and that cooperation

is higher in large, modern societies with higher degrees of market integration

compared to small-scale societies. I extend the model to explain these regularities.

I show that the ability to “vote with feet” is the key to understanding the difference

in cooperation between small-scale societies and large, modern societies.

The third study, Chapter 4, is an experimental project, a joint work with

Lucas Molleman and Dennie van Dolder. Previous studies suggest that whether

individuals perceive a behavior as fair depends on its frequency in the popula-

tion. Using a prisoner’s dilemma game, we test experimentally whether informing

individuals of a higher proportion of cooperators in the population affects the

fairness perception about free riding and changes individuals’ punishment of free

riders. Different from previous studies, we use the strategy method to obtain each

participant’s complete punishment strategy. We find a remarkable heterogeneity

among participants: some participants increase punishment of free riders as the

proportion of cooperators increases, suggesting that they consider free riding to be

more unfair when more cooperators are around; yet, many others punish indepen-

dently of the proportion of cooperators. We show that the heterogeneity cannot

be captured by any single existing theory.
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Chapter 1

Introduction

There used to be a tension between the economic approach and the sociological

approach of human behavior: “Economics is all about how people make choices;

sociology is all about how they don’t have any choices to make” (Duesenberry,

1960, p. 233). In Economic Action and Social Structure: the Problem of Embed-

dedness, Mark Granovetter (1985) criticizes the under-socialized account of human

actions used by many economists, as well as the over-socialized account proposed

by many sociologists. This thesis contains three studies: two theoretical and one

experimental. While research methods vary across the three studies, there is a

common underlying assumption. That is, a social or an economic organization is

not a simple collection of actions or preferences of individuals. On the one hand,

the structure of an organization constrains the choices of individuals, and it might

also change individuals’ preferences over their actions. On the other hand, an

organization’s structure is itself endogenous: it emerges from the interactions of

individuals who are endowed with more primitive social psychologies, the “under-

lying preferences” (Becker, 1978, p. 5), that are independent of specific structures

of the organization.

In Concentration of Influence under Complementarities, I use a network ap-

proach to study the optimal structure of organizations. A motivation for this study

is Mas and Moretti (2009)’s empirical observation that: (a) complementarities,
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such as positive productivity spill-overs, exist in the work place, (b) by carefully

designing the direction of flow of information relevant for production, a planner

can control the direction of the complementarity effects, and (c) the intensity of

those complementarity effects depends on the frequency of interactions among

the workers. Hence, to capture the possibility of controlling the direction and

intensity of complementarities, we investigate optimal networks with unweighted

and directed links. This departs from most of the existing works of networks in

economics which mostly focus on unweighted networks (e.g., Baetz, 2015; Belhaj

et al., 2016; Galeotti and Goyal, 2010; Hiller, 2017).

Specifically, we investigate a setting in which there are a set of agents, each

of which needs to take a production action. Before the agents take the actions,

the planner chooses a network to implement. The network consists of the agents

as nodes and a set of unweighted and directed links that connect the agents. We

can think of the links as representing any one-way flow of information relevant

for productivity. We examine a setting with complementarities such that each

agent’s action is increasing in those who have a link with positive weighted pointing

towards that agent. The strength of the complementarities depends on the weight

of the links. The planner’s problem we aim to solve is what kind of networks that

the planner would like to implement, given that (a) the planner aims to maximize

an objective function that is increasing in the action of each agent, and that (b) the

planner facts the constraint that the total weight of the links of the implemented

network cannot exceed a certain amount. The planner objective function may be

convex or strictly concave. We call those solution networks optimal networks.

What we find is that every optimal network exhibits a dramatic concentration

of influence such that a very small number of agents impose significant impact on

the productivity of the whole group. More precisely, in every optimal network,

regardless of the size of whole group, there are two and only two agents who

would have outward-link with positive weight pointing towards others, reflecting

their influence on the rest.
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Our finding is related to Galeotti and Goyal (2010)’s observation about infor-

mation sharing networks that “a large majority of individuals get most of their

information from a very small subset of the group”. However, the scenario their

model captures is distinct from ours. Besides focusing on unweighted networks,

they consider a situation in which the actions of neighbor agents exhibit substi-

tutability instead of complementarity. Also, they investigate equilibrium networks

(formed by agents who choose their own links), whereas we characterize optimal

networks from a planner’s perspective. Yet, despite the differences, surprisingly,

we observe a very similar outcome to the law of the few. Hence, together with

Galeotti and Goyal (2010), we contribute to the literature by providing different

rationales to the pervasiveness of concentration of influence observed in the real

world, be it in decentralized information sharing networks or centralized produc-

tion organizations.

In Norm-based Resentment and the Evolution of Cooperative Norms, I inves-

tigate how cooperative norms emerge and evolve over time. I analyze a stochas-

tic dynamic model constructed on norm-based resentment (Sugden, 1984, 2000,

2004; Bicchieri, 2006; Cooper and Dutcher, 2011; Falk and Ichino, 2006; Herz and

Taubinsky, 2017; Kahneman et al., 1986; Peysakhovich and Rand, 2016). The

idea is that individuals have empirical expectations about others’ behavior. They

feel frustrated and may punish a defector if, and only if, they expect that most

others cooperate. Norm-based resentment leads to two locally stable equilibria:

the defection equilibrium in which each individual in the population defects and

does not punish defectors, and the cooperation equilibrium in which each individ-

ual cooperates and punishes defectors. A social norm is defined as a locally stable

equilibrium. Following Kandori et al. (1993), Ellison (1993, 2000), and Young

(1993, 2001), I set up a myopic best-response dynamic in which a population of

individuals is randomly matched to play a cooperation game recurrently and in-

finitely over time. Individuals may also make mistakes such that they deviate

from their best-responses with positive probability.
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In the first part of the analysis I characterize the most likely equilibrium in

an infinite span of time when the probability of making a mistake goes to zero,

the stochastically stable equilibrium (Ellison, 1993, 2000; Kandori et al., 1993;

Young, 1993, 2001). The basic result is that, given norm-based resentment, the

cooperation equilibrium can be stochastically stable. Whether and when this is

the case depends on the trade-off between the intolerance of defection generated

by norm-based resentment and the temptation to defect.

The second part of the analysis investigates two particular empirical regular-

ities observed in recent cross-cultural experiments: i) cooperation is higher in

societies with better law enforcement (Gächter and Schulz, 2016; Herrmann et al.,

2008; Tabellini, 2008), and ii) cooperation is also higher in large, modern societies

with higher degrees of market integration compared to small-scale societies (Hen-

rich et al., 2010). I show that norm-based resentment combined with the ability

to vote with feet generates a migration effect and a fitting-in effect that, together,

explain the higher cooperation level in large, modern societies.

Chapter 4, Fairness Perceptions and Punishment Types, is an experimental

study, a joint work with Lucas Molleman and Dennie van Dolder. Previous theo-

retical and empirical literature (Bicchieri, 2006; Cooper and Dutcher, 2011; Herz

and Taubinsky, 2017; Kahneman et al., 1986; Sugden, 2000, 2004) suggests that

individuals’ fairness perceptions and punishment of selfish behavior may depend

on the prevalence of the behavior in society. We design an experiment to further

investigate this issue. Using a prisoner’s dilemma game experiment, we examine

whether informing individuals of a higher level of cooperation in the population

affects their punishment of free riders. The novelty of our experiment is that we

use the strategy method to elicit each participant’s complete punishment strategy,

i.e., how each individual punishes defectors in response to each possible prevalence

level of cooperation in our sample. The advantage of the strategy method is that

it allows us to reveal any potential heterogeneity in punishment behavior among

participants. In contrast, previous studies only show the average response to dif-
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ferent levels of cooperation at the aggregate level. The individual-level data also

provide a new opportunity to test some existing theories relevant to understanding

public goods contribution that are otherwise difficult to disentangle.

We find that participants are heterogeneous in their punishment strategies.

21% of our participants punish free riders independently of the proportion of coop-

erators. These participants’ behavior is in line with standard models of inequality

aversion (Fehr and Schmidt, 1999) and intention-based reciprocity (Dufwenberg

and Kirchsteiger, 2004; Rabin, 1993). In contrast, 13% increase their punishment

as the percentage of cooperation goes up, suggesting that these participants con-

sider free riding more unfair when more participants cooperate. Interestingly, we

also find 10% of participants who punish free riders less as cooperation becomes

more common. These participants’ behavior can only be explained by a model

assuming diminishing marginal return to punishment.
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Chapter 2

Concentration of Influence under

Complementarities

2.1 Introduction

Various forms of complementarities, such as positive productivity spillovers, are

often present in the workplace. For example, Mas and Moretti (2009) examine

empirically the productivity of supermarket workers and find “strong evidence of

positive productivity spillovers from the introduction of highly productive person-

nel into a shift”. Moreover,

“Worker effort is positively related to the productivity of workers who

see him, but not workers who do not see him. Additionally, workers

respond more to the presence of coworkers with whom they frequently

interact.” (Mas and Moretti, 2009)

That is, not only complementarities exist in the workplace, but we can also con-

trol the direction and intensity of complementarities by carefully designing the

direction of the flow of information relevant for productivity and the frequency

of interactions between employees. Then a key question is—what is the optimal

arrangement of an organization given the complementarities, and especially given

that we can control the direction and intensity of the complementarities? This
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paper studies this question.

Alongside the complementarities, many real-world networks and organizations

exhibit dramatic concentration of influence—i.e., a very small number of individ-

uals can impose significant impact on the productivity of the whole organization.

For example, there is only one CEO in every firm, and one president in every

country. Empirical studies show that a remarkable payment gap exists between

CEOs and ordinary employees (Connelly et al., 2013; Edmans and Gabaix, 2016;

Faleye et al., 2013; Mishel and Sabadish, 2013). This large payment gap partly

reflects the great difference in the extent of influence between a CEO and ordinary

employees on a firm’s productivity.

More specifically, this paper uses a network approach to study the optimal

arrangement of organization given complementarities. We show that the coap-

pearance of complementarities and concentration of influence might not be a co-

incidence. Instead, optimization given complementarities leads to dramatic con-

centration of influence to a very small number of individuals, and this holds under

broad conditions.

The setting we investigate is the following. There is a group of homogenous

agents; we can think of them as employees in a firm. Each agent exerts an effort

to perform a production task. We can potentially increase an agent’s effort by

increasing the effort of some others, due to the complementarity we assume (e.g,

the peer effects documented by Mas and Moretti (2009)).1 Whether or not this

occurs, and the strength of the increase, depend on the weighted and directed links

the planner implements to connect the agents. These links could represent any

one-way flow of knowledge or information relevant for production. The agents and

the links then form a network with weighted and directed links. The planner’s

problem is to find a weighted and directed network to maximize an objective

function that is increasing in the effort of each agent—we call these networks
1The best-response function we consider is a general one; an agent’s effort can be convex, or

strictly concave, in the effort of those who influence them. The basic network game we analyze
thus nests many existing models in the literature, including Baetz (2015); Ballester et al. (2006);
Belhaj et al. (2016); Hiller (2017).
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optimal networks. The planner’s objective function can be convex, as previously

studied (e.g., Belhaj et al. 2016; Hiller 2017), or strictly concave, which, to our

knowledge, has not been examined. The constraint the planner faces is that the

total weight of the links of the network does not exceed a certain amount.

We show that every optimal network is a what we call ABC-form network.

Every ABC-form network exhibits dramatic concentration of influence to a very

small number of agents. Figure 2.1 below displays a typical ABC-form network.

Regardless of the total number of agents, there is only one agent, A, who influences

the rest (i.e., having outward links with positive weight pointing towards others).

There is also an agent, B, who influences A and is influenced by A. Intuitively, we

can think of B as A’s work assistant. The rest of agents, Cs, never influence any

others, i.e, they never have an outward link with positive weight pointing towards

any other agent. The numbers, a, b, c, next to the links in Figure 2.1 are the weight

of those links. The surprising observation is that, even if all agents are ex ante

identical, it is optimal to concentrating all resources to enhance a single agent’s

influences on the rest and another agent’s influence on the single center agent.2

Figure 2.1: A regular ABC-form network: a > b > c ≥ 0.

The two studies that are closest to ours are Belhaj et al. (2016) and Hiller

(2017), who also investigate optimal networks under complementarities. How-

ever, they restrict the search of optimal networks from those with unweighted and

undirected links. This restriction imposes two implicit assumptions. One is that,
2The class of ABC-form networks also includes those with only two agents influencing each

other while all the rest are isolated.
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since the weight of each link is either 0 or 1, this means that an upper bound

is imposed exogenously on the weight of each link. Thus, concentration of influ-

ence is suppressed in their models. Second, when restricting to undirected links

with symmetric two-way flow of complementarities, they rule out the possibility

of asymmetric influences such that some agents influence the rest while the rest

do not influence the former. In contrast, we allow for symmetric influences as well

as asymmetric ones. We show that, indeed, highly asymmetric influences could be

optimal.

Also, Belhaj et al. (2016) and Hiller (2017) only examine objective functions

that are convex in each agent’s effort. A convex objective function covers the

case where the planner is an utilitarian one who wants to maximize the sum of

the utilities of the agents, given that the agents have a linear-quadratic utility

function as in Ballester et al. (2006). However, it does not capture the cases

where the planner has a fairness concern so that she wants to trade-off equality

against aggregate efficiency. In our model, the objective function can be convex

or strictly concave, covering both cases.

More broadly, this paper, together with a recent paper by Galeotti and Goyal

(2010), provides rationales to the dramatic concentration of influence we often

observe in networks and organizations in reality. Galeotti and Goyal (2010) make

a similar observation regarding information sharing networks, namely, the law of

the few such that “a large majority of individuals get most of their information

from a very small subset of the group”. However, the scenario their model cap-

tures is very different from ours. Besides focusing on unweighted networks, they

consider a situation in which the actions of neighbor agents exhibit substitutability

instead of complementarity. Also, they investigate equilibrium networks (formed

by agents who choose their own links), whereas we characterize optimal networks

from a planner’s perspective. Yet, despite the differences, surprisingly, we observe

a very similar outcome to the law of the few. Hence, together with Galeotti and

Goyal (2010), we contribute to the literature by providing different rationales to

16



the pervasiveness of concentration of influence observed in the real world, be it

in decentralized information sharing networks or centralized production organiza-

tions.

Section 2.2 presents the model. Section 2.3 characterizes the optimal networks

in the general model. Section 2.4 applies our main result to the special case where

the best-response function of agents is linear. Section 2.5 concludes. All proofs

are provided in Appendix.

2.2 Model

Consider a set of agents N = {1, 2, . . . , n} with n ≥ 3. For each i, j ∈ N , i 6= j,

let gij ≥ 0 denote the weighted link pointing from j to i. The links are directed,

i.e., gij need not equal to gji. Let G = (gij) be the n-by-n matrix whose ijth

element is gij and has zeros at its main diagonal, i.e., gii = 0 for each i ∈ N .

Let xi(G) be the effort of i given network G. We assume that x(G) =

(x1, . . . , xn) is a solution to the following best-response system:

xi = φ

(∑
j∈N

gijxj

)
.

In general, a fixed point of φmay not exist, or it exists but is not unique. Through-

out this paper, we restrict our attention to the cases where a solution x(G) exists

and is unique (we will present the assumption that guarantees this later). The

problem we consider is that which network G we would like to implement to max-

imize a planner’s objective function f : Rn → R that is increasing in each agent’s

effort. There is also a constraint on the networks that the planner can implement.

In what follows, we properly define the planner’s problem and present the

assumptions regarding the objective function f and the constraint the planner

faces.

Assumption 2.1 (Complementarity). φ ≥0 and φ′ > 0.
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Example 2.1 (Ballester et al., 2006; Belhaj et al., 2016). Suppose each agent

takes effort xi to maximize the utility function

ui(x) =

(
1 +

∑
j∈N

gijxj

)
xi −

1

2
x2
i .

Then we have the linear best-response function

xi = 1 +
∑
j∈N

gijxj

and the closed-form solution (if a solution exists)

x(G) = [I −G]−1 · 1,

where I is the n-by-n identity matrix, and 1 = (1, 1, . . . , 1) is the column vector

of n-folds of 1s. Note also that, given each i exerts effort xi(G), we have

ui(x(G)) =
1

2
xi(G)2.

(End of Example 2.2)

Example 2.2 (The baseline model of Baetz (2015)). Consider

ui(x) = 2

(∑
j∈N

gijxj

) q
2

x
1
2
i − xi.

with 0 < q < 1. Then we have a strictly concave best-response function

xi =

(∑
j∈N

gijxj

)q

,

and, given each i exerts xi(G), we have

ui(x(G)) = xi(G).
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(End of Example 2.2)

Let η(G) be the cost of implementing network G, with η ≥ 0 and ∂η(G)/∂gij >

0 for each i, j ∈ N . Let η̄ > 0 represent the total resources that the planner

can spend to implement the networks. That is, a network G is feasible if and

only if η(G) ≤ η̄. Let G denote the collection of networks with η(G) ≤ η̄. The

planner would like to choose a network from G to maximize an objective function

f : Rn → R which is increasing in the effort of each agent. More precisely, our

task is to characterize the following:

Definition. An optimal network G is one that maximizes f(x(G)) subject to

G ∈ G.

Assumption 2.2. η(G) =
∑

i,j∈N gij.

Our model is quite general in various dimensions except for the above as-

sumption that the link-cost function is linear. Indeed, as we will discuss fur-

ther after we show our main result, the structure of optimal networks would

change if we consider alternative cost functions such as η(G) =
∑

i,j∈N h(gij) or

η(G) =
∑

i∈N h(
∑

j∈N gij) with h
′ > 0, h′′ < 0. However, assuming linear link-cost

is a reasonable benchmark. Moreover, it is by far the most widely used link-cost

function in the literature (e.g., Baetz, 2015; Belhaj et al., 2016; Galeotti and Goyal,

2010; Goyal and Bala, 2000; Hiller, 2017). Hence, it is worth investigating how far

we can push our result by maintaining this assumption.

We also assume the following to ensure that the problem is well-defined. For

each G ∈ G, define ΦG : Rn → Rn as

ΦG(x) = (φ(
∑
j∈N

g1jxj), φ(
∑
j∈N

g2jxj), . . . , φ(
∑
j∈N

gnjxj)).

Assumption 2.3. φ and G are such that ΦG is a contraction mapping for each

G ∈ G.

By the Banach fixed-point theorem, the above assumption implies that a

unique x(G) exists for eachG ∈ G, and that for each x ≥ 0 we have limt→∞Φt
G(x) =
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x(G), where Φt
G(x) is the t-th functional power of ΦG(x). Roughly speaking, this

assumption is satisfied if φ is not too convex and η̄ is not too large. For example,

consider the linear best-response function in Example 2.1. The above assump-

tion is satisfied if η̄ < 2. In Example 2.2, φ is strictly concave and φ′(y) → 0

as y → ∞. Thus, it is easy to check that, for each η̄ > 0 and G ∈ G, a unique

(strictly positive) x(G) exists and limt→∞Φt
G(x) = x(G).

The assumptions regarding the objective function f are as follows. Let fi(x)

denote the partial derivative of f with respect to its i-th argument.

Assumption 2.4. 1. fi(x) > 0 for each i ∈ N ; and

2. f is symmetric, i.e., fi(x) = fj(x) if xi = xj.

In other words, f is strictly increasing in the effort of each agent. The sym-

metry assumption is not necessary but improves exposition. Note that f can be

linear, strictly convex, or strictly concave in the effort of each agent. Moreover,

no assumption is imposed on the separability of the arguments of f .

Example 2.3. Consider a utilitarian planner with f(x(G)) ≡
∑

i∈N ui(x(G)).

Then, in the case where the agents have the utility function in Example 2.1, we

have

f(x(G)) =
1

2

∑
i∈N

xi(G)2.

That is, the planner wants to maximize the sum of squares of the agents’ effort,

and f is strictly convex in the effort of each agent.

In the case where agents have the utility function in Example 2.2, we have

f(x(G)) =
∑
i∈N

xi(G).

In this case, the planner wants to maximize the sum of the agents’ effort, and f

is linear. (End of Example 2.3)
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Example 2.4. Agents have the utility function in Example 2.2, and the planner

has a taste for fairness :

f(x(G)) ≡
∑
i∈N

lnui(x(G)) =
∑
i∈N

lnxi(G).

In this case, f is strictly concave in each xi. Also, maximizing
∑

lnxi(G) is

equivalent to maximizing Πxi(G). Hence, this example also shows that linear

separability of f is not necessary. (End of Example 2.4)

Finally, we assume the following to rule out the possibility that networks with

only one link gij = η̄ could be optimal. Let x = φ(0) and x̄ = φ(η̄x).

Assumption 2.5. φ′(η̄x)η̄ + f2(x̄,x,...,x)
f1(x̄,x,...,x)

> x
x̄
φ′(η̄x)
φ′(0)

.

All our previous examples satisfy this assumption. For example, consider the

utility function of agents in Example 2.1, and the planner is an utilitarian one,

so that we have xi = 1 +
∑

j gijxj and f(x) = 1
2

∑
x2
i . Then: x = 1, x̄ = 1 + η̄,

φ′ = 1, f2(x̄, x, . . . , x) = 1, and f1(x̄, x, . . . , x) = 1 + η̄. Thus, the left-hand side of

the inequality in the assumption equals to η̄+ 1
1+η̄

, while the right-hand side 1
1+η̄

.

Before we proceed to the analysis, let us comment that it is equally valid to

call xi(G) the centrality of i under G. This interpretation connects our analysis

to the large sociology literature on networks. For example, if φ(y) = 1 + y so that

xi = 1+
∑

j gijxj, then xi(G) is simply the famous Bonacich centrality (Bonacich,

1987; Bonacich and Lloyd, 2001). Then the question we investigate is—which

network maximizes an objective function that is increasing in the centrality of

each agent, subject to the constraint that the total weight of the links of the

network does not exceed η̄.
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2.3 Analysis

For expositional purpose, we index the agents so that

x1(G) ≥ x2(G) ≥ . . . ≥ xn(G).

Given homogenous agents, this is without loss of generality. We aim to show that,

for every f and φ that satisfy Assumptions 2.1 to 2.5, all optimal networks take

the following form.

Definition. G is an ABC-form network if

a) g12, g21 > 0;

b) gi2 = 0 for each i > 2;

c) gji = 0 for each i > 2, j ∈ N ; and

d) x1(G) ≥ x2(G) > xi(G) for each i > 2.

The first condition says that there are two agents, 1 and 2, influencing each

other. The second condition says that: a) one of the two connecting agents might

have outward-links pointing towards other agents; b) and c) say that no other

links with strictly positive weight exist. The fourth condition says that all ABC-

form networks are asymmetric in the sense that there are agents who exert strictly

higher effort than the rest. We call the networks satisfying the above conditions

ABC-form networks because we can think of agent 1 as the director at the top of

the organization (the A), agent 2 the director’s assistant or consultant (the B),

and the rest lower-level subordinates (the Cs).

For expositional purpose, we also define the following weaker notion.

Definition. G is a weak ABC-form network if

a) gi2 = 0 for each i > 2,

b) gji = 0 for each i > 2, j ∈ N .

That is, a weak ABC-form network admits the possibility that g12 = 0 or

g21 = 0, and that some agent i > 2 performs the same as agent 2. To show that all
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optimal networks are ABC-form networks, we start with the following observation,

which we call one-link-switch principle.

Lemma 2.1 (One-link-switch principle). Suppose that Assumptions 2.1, 2.2 and

2.3 hold. Consider three distinct agents i, j, k ∈ N . Let G′ be such that g′kj = 0

and g′ki = gki + gkj, while g′pq = gpq for all other elements in G′.

a) If xi(G) ≥ xj(G), then x`(G′) ≥ x`(G) for each ` ∈ N .

b) If xi(G) > xj(G) and gkj > 0, then xk(G
′) > xk(G), and x`(G′) ≥ x`(G)

for each ` ∈ N .

All proofs are provided in Appendix. The one-link-switch principle says that,

for any network G, if we can find an agent j with an outward-link gkj > 0, but

there is another agent, i, who performs better than j, then we can construct a

better network G′ in which everyone performs at least as good as before and some

does strictly better. Such G′ is obtained by re-allocating the weight of the link gkj

to the link gki.

In what follows, we consider a network G = (gij) which is not an ABC-form

network. Building on the one-link-switch principle, we show that G is not opti-

mal. Our argument involves three steps. First, Lemma 2.2 below shows that we

can usually obtain a network G′ using the one-link-switch principle such that G′

performs strictly better than G. If we indeed obtain a better G′ by switching a

link, that means G is not optimal. Next, if we cannot obtain a better network G′

by switching a link of G using the one-link-switch principle, then G must satisfy

Condition (*). Lemma 2.3 shows that, given Condition (*), we can construct a

weak ABC-form Ĝ on the basis of G so that every agent performs exactly the

same in Ĝ as they do in G. Moreover, certain properties must hold for Ĝ. Finally,

in Lemma 2.4, we examine closer Ĝ and show that Ĝ is not optimal, because

we can further find an ABC-form network Ĝε that does strictly better than Ĝ.

But Ĝ generates the same outcome as the network G we initially consider. This

establishes that the optimal networks are among the set of ABC-form networks.

First, observe that, if G = (gij) is not a weak ABC-form network, then one of

23



Figure 2.2: If x1(G) > x2(G), then x3(G′) > x3(G), and x`(G
′) ≥ x`(G) for each

` ∈ N .

Figure 2.3: If x2(G) > x3(G), then x1(G′) > x1(G), and x`(G
′) ≥ x`(G) for each

` ∈ N .

the following must hold: (a) gi2 > 0 for some i > 2, (b) g1i > 0 for some i > 2, or,

(c) gji > 0 for some i > 2, j 6= 1. However, as Figures 2.2 and 2.3 illustrate, these

conditions imply that, by switching a link of G using the one-link-switch principle,

we usually obtain a strictly better network G′ = (g′ij) with
∑

i,j∈N g
′
ij =

∑
i,j∈N gij.

Lemma 2.2. Suppose that Assumptions 2.1, 2.2 and 2.3 hold. Consider a network

G = (gij).

1. If gi2 > 0 for some i > 2, and x1(G) > x2(G), then there is a network G′ =

(g′ij) with
∑

i,j∈N g
′
ij =

∑
i,j∈N gij such that xi(G′) > xi(G) and x`(G

′) ≥

x`(G) for each ` ∈ N .

2. If g1i > 0 for some i > 2, and x2(G) > xi(G), then there is a network G′ =

(g′ij) with
∑

i,j∈N g
′
ij =

∑
i,j∈N gij such that x1(G′) > x1(G) and x`(G

′) ≥

x`(G) for each ` ∈ N .

3. If gji > 0 for some i > 2, j 6= 1, and x1(G) > xi(G), then there is a

network G′ = (g′ij) with
∑

i,j∈N g
′
ij =

∑
i,j∈N gij such that xj(G′) > xj(G)

and x`(G′) ≥ x`(G) for each ` ∈ N .
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Lemma 2.2 implies that, if G is considered to be optimal so that we cannot

obtain a strictly better network G′ by simply switching a link, then the following

properties must hold for G:

Condition (*). a) For each i > 2 with g1i > 0, we have xi(G) = x2(G);

b) for each i > 2 with gji > 0 for some j 6= 1, we have xi(G) = x1(G); and

c) if gi2 > 0 for some i > 2, then x1(G) = x2(G).

Given the above condition, we can then construct a weak ABC-form network

Ĝ = (ĝij) with
∑

i,j∈N ĝij =
∑

i,j∈N gij such that xi(Ĝ) = xi(G) for each i ∈ N .

That is, Ĝ performs exactly the same as G. We obtain such Ĝ by:

a) for each i > 2 with g1i > 0, let ĝ1i = 0 and ĝ12 = g12 + g1i;

b) for each i > 2 with gji > 0 for some j 6= 1, let ĝji = 0 and ĝj1 = gj1 + gji;

c) for each i > 2 with gi2 > 0, let ĝi2 = 0 and ĝi1 = gi1 + gi2; and

d) let ĝpq = gpq for all other elements in Ĝ.

Lemma 2.3. Suppose that Assumptions 2.1, 2.2 and 2.3 hold. Consider a network

G = (gij) and the weak ABC-form network Ĝ as constructed above. Suppose G

is not a weak ABC-form network and Condition (*) holds for G. Then, first, we

have xi(Ĝ) = xi(G) for each i ∈ N . Moreover, one of the following holds for Ĝ:

a) xi(Ĝ) = x2(Ĝ) for some i > 2, and ĝ12 > 0;

b) x1(Ĝ) = x2(Ĝ), and ĝi1 > 0 for some i > 2.

Finally, Lemma 2.4 below shows that, if condition (*) indeed holds for G

so that the conclusions of Lemma 2.3 hold for Ĝ, then there must exist room for

improvement. More precisely, we can find an ABC-form network Ĝε that performs

strictly better than Ĝ and thus also better than G. Hence, G is not optimal.

Lemma 2.4. Suppose that Assumptions 2.1 to 2.5 hold. Consider a weak ABC-

form network Ĝ = (ĝij), and suppose
∑

i,j∈N ĝij = η̄. Then ĝ12 > 0.

Moreover, suppose one of the following holds:

a) ĝ21 = 0;

b) xi(Ĝ) = x2(Ĝ) for some i > 2; or
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c) x1(Ĝ) = x2(Ĝ), and ĝi1 > 0 for some i > 2.

Then there is an ABC-form network Ĝε = (ĝεij) with
∑

i,j∈N ĝ
ε
ij = η̄ such that

f(x(Ĝε)) > f(x(Ĝ)).

Lemma 2.4 also implies that any network that is only a weak ABC-form net-

work (but not an ABC-form network) is not optimal. This is because, for any

network that is only a weak ABC-form network, we must have ĝ12 = 0 or ĝ21 = 0,

or xi(Ĝ) = x2(Ĝ) for some i > 2.

We can now state the main result of this paper.

Theorem 2.1. Suppose that Assumptions 2.1 to 2.5 hold. Then every optimal

network is an ABC-form network.

Three remarks follow. First, the set of ABC-form networks constitutes a very

tiny subset of networks in G. Hence, the result is sharp. Second, the proposition

says that all optimal networks are asymmetric in the sense that some agents exert

strictly more effort than others. This holds for every increasing f and φ that

satisfy our assumptions, regardless of their concavity, and it holds given that all

agents are assumed ex ante identical. Nevertheless, the assumption that the link-

cost function η(G) is linear is critical to this result. We provide further discussion

below. Third, as we previously mentioned, an ABC-form network can be one in

which there are only two agents connecting with each other, while the rest of

agents are all isolated. Whether or not this occurs does depend on the concavity

of φ and f . We return to this issue in Section 2.4.

Now we comment on the importance of the linear link-cost assumption, η(G) =∑
i,j∈N gij, in supporting the above argument. The linear link-cost assumption

implies that, starting from a network within the constraint η(G) ≤ η̄, we can do

any re-allocation of the weight of links without violating the constraint. Hence,

from the cost side, there is no bound on the degree of concentration of the weight

of links to just a few agents. However, suppose η(G) =
∑

i∈N h(
∑

j∈N gji) with

h′ > 0, h′′ > 0. This convex link-cost function would then limit the concentration
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of resources to enhance the influence of just a single agent. If h is sufficiently

convex, then ABC-form networks are not optimal.3

2.4 Linear best-response

In this section, we apply our general result to the following special case:

Definition. We call the problem maxG f(x(G)) s.t.
∑

i,j∈N gij ≤ η̄ the linear

best-response model if the following assumptions hold:

a) φ(y) = 1 + y, so that xi = 1 +
∑

j∈N gijxj;

b) f(x) =
∑

i∈N v(xi) with v′ > 0; and

c) η̄ < 2.

That is, we assume a linear best-response function in the linear model. A

linear best-response function is widely assumed in the literature about network

activities (e.g., Ballester et al., 2006; Belhaj et al., 2016; Bramoullé and Kranton,

2007; Bramoullé et al., 2014; Galeotti and Goyal, 2010). Hence, it is a good

benchmark and provides a concrete demonstration how our result sheds new light

on the literature. For analytical convenience, we also assume that the effort of

agents exhibits linear separability in the objective function f . The assumption

η̄ < 2 guarantees that a unique solution exists for every G with
∑

i,j∈N gij ≤ η̄.

In what follows, we examine the conditions under which the following most

stylized ABC-form network (see Figure 2.4 for illustration) is optimal.
3Despite being widely used in the literature (e.g., Baetz, 2015; Belhaj et al., 2016; Galeotti

and Goyal, 2010; Goyal and Bala, 2000; Hiller, 2017), the linear link-cost assumption is not
always plausible. For example, suppose that outward links represent “talking to” actions. Then
it seems more reasonable to assume η(G) =

∑
i∈N h(

∑
j∈N gji) with h′ > 0, h′′ > 0. That is, the

longer an agent talks to others, the more and more tired she feels and the more compensation
she requires at the margin.
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Figure 2.4: A regular ABC-form network: a > b > c > 0.

Definition. G is a regular ABC-form network if

a) G is an ABC-form network and

b) there is c > 0 such that g12 > g21 > c and gi1 = c for each i > 2.

In other words, a regular ABC-form network is an ABC-form network in which

agent 1 exerts strictly higher effort than agent 2, and agent 2 exerts strictly higher

effort than the rest. It also requires that the top agent has links with exactly the

same positive weight pointing to all i > 2.

The following statement characterizes the optimal networks of the linear best-

response model.

Proposition 2.1. Consider the linear best-response model.

a) There is λ(η̄) < 0 with λ′(η̄) < 0 such that, if v′′ < λ(η̄), then all optimal

networks are regular ABC-form networks.

b) If v′′ ≥ 0, then in every optimal network we have g12 + g21 = η̄.

The proof is provided in Appendix. The proposition says thsat, if the best-

response function is linear, and the objective function is sufficiently concave, then

all optimal networks are regular ABC-form networks. In contrast, if the objective

function is linear or strictly convex, then in every optimal network there are two

and only two agents connecting with each other. The bound on the concavity of

v for a regular ABC-form network to be optimal, λ(η̄), is decreasing in η̄. This

reflects that, the stronger the overall complementarities, the stronger the force of
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concentration of weight of links to just two agents.4

The following presents a numerical example.

Example 2.5. Suppose N = {1, 2, 3, 4} and η̄ = 1. Consider the networks in

Figure 2.5. We have the following results:

a) if v(xi) = xi then G1 is an optimal network;

b) if v(xi) = x8
i then G2 is an optimal network;

c) if v(xi) = − 1
xi

then G3 is an optimal network.

Figure 2.5: Optimal networks under different concavity assumptions of the objective
function.

2.5 Conclusion

We study optimal networks under complementarities in this paper. The distinct

feature of our analysis is that we allow for weighted and directed links to cap-

ture the possibilities that the planner can control the direction and intensity of

complementarities. We characterize the set of optimal networks that maximize

an objective function that is increasing in the effort of each agent in the network,
4We conjecture that there is a unique λ(η̄) < 0 such that if v′′ < λ(η̄) then all optimal

networks are regular ABC-form networks, and if v′′ > λ(η̄) all optimal networks involve only
two agents connecting with each other. But it turns out that this is not a straightforward result.
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subject to the constraint that the total weight of the links of the network does

not exceed a certain amount. We find that, under rather weak conditions on the

planner’s objective function and the agents’ best-response function, every optimal

network exhibits dramatic concentration of influence such that only two agents

would have outward links with positive weight which represent their influence on

others.
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2.6 Appendix

2.6.1 Proof of Theorem 2.1

Proof of Lemma 2.1. Suppose xi(G) ≥ xj(G). Consider the sequence xt =

(xt1, . . . , x
t
n), for t = 0, 1, 2, . . ., such that, for each ` ∈ N ,

x0
` = x`(G),

xt` = φ

(∑
p∈N

g′`px
t−1
p

)
for t = 1, 2, . . . .

Given Assumption 2.1, we have

x1
k = φ

(
(gki + gkj)xi(G) +

∑
`6=i,j

gk`x`(G)

)

≥ φ

(
gkixi(G) + gkjxj(G) +

∑
` 6=i,j

gk`x`(G)

)

≥ xk(G),

and x1
` = x`(G) for each ` ∈ N, ` 6= k. Now, for t ≥ 1, suppose xt ≥ xt−1, i.e.,

xt` ≥ xt−1
` for each ` ∈ N . Then, for each ` ∈ N ,

xt+1
` = φ

(∑
p∈N

g′`px
t
p

)
≥ φ

(∑
p∈N

g′`px
t−1
p

)
= xt`.

Hence, xt is a (weakly) increasing sequence.

Also, notice xt = Φt
G′(x

0) for t ≥ 1. Hence, by Assumption 2.3, limt→∞ xt =

limt→∞Φt
G′(x

0) = x(G′).

Therefore, x`(G′) ≥ x1
` ≥ x`(G) for each ` ∈ N .
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In the case of xi(G) > xj(G), we have

x1
k = φ

(
(gki + gkj)xi(G) +

∑
`6=i,j

gk`x`(G)

)

> φ

(
gkixi(G) + gkjxj(G) +

∑
` 6=i,j

gk`x`(G)

)

≥ xk(G),

Therefore, xk(G′) > xk(G). Q.E.D.

Proof of Lemma 2.2. In case (a), let G′ = (g′ij) be such that g′i1 = gi1 +gi2 and

g′i2 = 0, while g′pq = gpq for all other element in G′; in the case (b), let G′ = (g′ij)

be such that g′12 = g1i+g12 and g′1i = 0, while g′pq = gpq for all other element in G′;

in case (c), let G′ = (g′ij) be such that g′j1 = gj1 + gji and g′ji = 0, while g′pq = gpq

for all other element in G′. Then, by applying Lemma 2.1 we obtain the desired

conclusions. Q.E.D.

Proof of Lemma 2.3. Consider the contrapositive of Lemma 2.2; the conclusion

that xi(Ĝ) = xi(G) for each i ∈ N then follows.

Now, observe that, if G is not a weak ABC-form network, then one of the

following must hold: (a) gi2 > 0 for some i > 2, or (b) gji > 0 for some i > 2, j ∈ N .

First, suppose that (a) gi2 > 0 for some i > 2, and fix that i. Then, by

Condition (*)-c, we have x1(G) = x2(G), and thus: x1(Ĝ) = x2(Ĝ), and ĝi1 =

gi1 + gi2 > 0.

Next, suppose that (b) gji > 0 for some i > 2, j ∈ N . Fix that i and j. Then,

if j = 1, by Condition (*)-a, we obtain xi(G) = x2(G). Thus, xi(Ĝ) = x2(Ĝ) and

ĝ12 = g12 + g1i > 0. In the case of j 6= 1, we apply Condition (*)-b and obtain

xi(G) = x1(G). It follows that xi(Ĝ) = x1(Ĝ). Thus, x2(Ĝ) = x1(Ĝ), because

x1(Ĝ) ≥ x2(Ĝ) ≥ xi(Ĝ). Hence, that x1(Ĝ) = x2(Ĝ) and ĝk1 = gk1 + gki > 0

holds.

In either case, one of the claimed property for Ĝ holds. Q.E.D.
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Proof of Lemma 2.4. Consider a weak ABC-form network Ĝ = (ĝij) with∑
i,j∈N ĝij = η̄. First, we show that ĝ12 > 0. To see this, observe that we have

x1 = φ(ĝ12x2) in a weak ABC-form network. Hence, if ĝ12 = 0, then x1 = φ(0) = x.

But xi(Ĝ) ≤ x1(Ĝ) for each i > 2. Thus, xi = x for each i ∈ N and ĝij = 0 for

each i, j ∈ N , violating
∑

i,j∈N ĝij = η̄.

Now, we examine the three cases claimed in the lemma one by one.

Case a) ĝ21 = 0.

Suppose ĝ21 = 0. In a weak ABC-form network, we have x2 = φ(ĝ21x1). Hence,

x2(Ĝ) = φ(0) = x, and thus xi(Ĝ) ≤ x2(Ĝ) = x. It follows that ĝi1 = 0 for each

i ≥ 2. Thus, there is only one link with positive weight in the network: ĝ12 = η̄.

Now we show that, given Assumption 2.5, a network Ĝ with g12 = η̄ and gij = 0

for all the other links is not optimal. First, notice that we have xi(Ĝ) = φ(0) = x

for each i > 1, while x1(Ĝ) = φ(η̄φ(0)) = x̄. Now, let ε ≥ 0 and consider

the network Ĝε with
∑

i,j∈N ĝ
ε
ij = η̄ such that ĝε21 = ε and ĝε12 = η̄ − ε. Then

x2 = φ(εx1) and x1 = φ((η̄ − ε)x2). For brevity, denote x′i ≡
∂xi(Ĝ

ε)
∂ε

. Then

x′2 = φ′(εx1)(x1 + εx′1), x′1 = φ′((η̄ − ε)x2) [(η̄ − ε)x′2 − x2] .

Hence,

x′2|ε=0 = φ′(0)x̄, x′1|ε=0 = φ′(η̄x) [η̄φ′(0)x̄− x] .

Therefore,

∂f(x(Ĝε))

∂ε

∣∣∣
ε=0

= f1(x̄, x, . . . , x)φ′(η̄x) [η̄φ′(0)x̄− x] + f2(x̄, x, . . . , x)φ′(0)x̄.

The above expression is strictly positive if and only if

φ′(η̄x)η̄ +
f2(x̄, x, . . . , x)

f1(x̄, x, . . . , x)
>
x

x̄

φ′(η̄x)

φ′(0)
,

which is Assumption 2.5. It follows that, given Assumption 2.5, there is ε > 0

such that f(x(Ĝε)) > f(x(Ĝ)).
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Case b) xi(Ĝ) = x2(Ĝ) for some i > 2.

Fix i > 2 with xi(Ĝ) = x2(Ĝ). Since xi(Ĝ) = φ(1 + ĝi1x1(Ĝ)), x2(Ĝ) =

φ(1 + ĝ21x1(Ĝ)) and xi(G) = x2(G), we have ĝi1 = ĝ21 > 0. Also, since x1(Ĝ) ≥

x2(Ĝ), we have ĝ12 ≥ ĝ21 > 0. Now, consider an ABC-form network Ĝε with∑
i,j∈N ĝ

ε
ij = η̄ constructed as follows. Let ε ∈ [0, ĝi1]. Ĝε is such that ĝεi1 = ĝi1− ε

and ĝε21 = ĝ21 + ε, while ĝεpq = ĝpq for all other elements in Ĝε. In what follows, we

show that there is ε > 0 such that f(x(Ĝε)) > f(x(Ĝ)).

For brevity, denote x′k ≡
∂xk(Ĝε)

∂ε
for each k ∈ N . First, observe that, for

any ε > 0, we have x1(Ĝε) > x1(Ĝ). Hence, we also have x2(Ĝε) > x2(Ĝ), and

xk(Ĝ
ε) ≥ xk(Ĝ) for each k > 2, k 6= i. Thus we have x′1, x′2 > 0, and x′k ≥ 0 for

each k > 2, k 6= i. It follows that

w(ε) ≡ f1(x(Ĝε))x′1 +
∑

k>2,k 6=i

fk(x(Ĝε))x′k

≥ f1(x(Ĝε))x′1

> 0.

Second, given x2 = φ((ĝ21 + ε)x1) and xi = φ((ĝi1 − ε)x1), we have

x′2 = φ((g21 + ε)x1)[x1 + (g21 + ε)x′1]

x′i = φ((g21 − ε)x1)[−x1 + (g21 + ε)x′1].

Let r(ε) ≡ f2(x(Ĝε))x′2 + fi(x(Ĝε))x′i. Then, given x2(Ĝ) = xi(Ĝ), ĝi1 = ĝ21 and

the symmetry assumption of f (Assumption 2.4), we obtain

r(0) = f2(x(Ĝ))φ(g21x1)(x1 + g21x
′
1) + fi(x(Ĝ))φ(g21x1)(−x1 + g21x

′
1)

= 2f2(x(Ĝ))g21x
′
1

> 0.

Therefore, ∂f(x(Ĝε))
∂ε

∣∣∣
ε=0

= w(0) + r(0) > 0; thus, there is ε > 0 such that
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f(x(Ĝε)) > f(x(Ĝ)).

Case c) x1(Ĝ) = x2(Ĝ), and ĝi1 > 0 for some i > 2.

Notice that x1(Ĝ) = x2(Ĝ) implies ĝ12 = ĝ21 > 0. Now consider an ABC-form

network Ĝε ∈ G with
∑

i,j∈N ĝ
ε
ij = η̄ constructed as follows. Let ε ∈ [0, ĝ21]. Let

Ĝε be such that ĝε12 = ĝ12 + ε and ĝε21 = ĝ21 − ε, while ĝεpq = ĝpq for all other

elements in Ĝε. We shall show that there is ε > 0 such that f(x(Ĝε)) > f(x(Ĝ)).

First, denote x′k ≡
∂xk(Ĝε)

∂ε
for each k ∈ N . Also, let

r(ε) ≡ f1(x(Ĝε))x′1 + f2(x(Ĝε))x′2 + fi(x(Ĝε))x′i.

Given x1(Ĝε) = φ((ĝ12+ε)x2(Ĝε)), x2(Ĝε) = φ((ĝ21−ε)x1(Ĝε)), xk(Ĝε) = φ(ĝk1x1(Ĝε)),

we have

x′1|ε=0 = φ′(ĝ12x2(Ĝ))(g12x
′
2 + x2), x′2|ε=0 = φ′(ĝ21x1(Ĝ))(g21x

′
1 − x1),

and x′k|ε=0 = φ′(ĝk1x1(Ĝ))ĝk1x
′
1|ε=0 for each k > 2. Thus, (x′1 + x′2)|ε=0 = 0 and

x′1|ε=0 > 0. Then it follows from x1(Ĝ) = x2(Ĝ) and Assumption 2.4 that

r(0) =f1(x(Ĝ))x′1|ε=0 + f2(x(Ĝ))x′1|ε=0 + fi(x(Ĝ))x′i|ε=0

=f1(x(Ĝ)) (x′1 + x′2) |ε=0 + fi(x(Ĝ))φ′(ĝi1x1(Ĝ))ĝi1x
′
1|ε=0

=fi(x(Ĝ))φ′(ĝi1x1(Ĝ))ĝi1x
′
1|ε=0

>0.

Next, denote w(ε) ≡
∑

k>2,k 6=i fk(x(Ĝε))x′k. We have

w(0) =
∑

k>2,k 6=i

fk(x(Ĝ))φ′(ĝk1x1(Ĝ))ĝk1x
′
1|ε=0 ≥ 0.

Therefore, ∂f(x(Ĝε))
∂ε

∣∣∣
ε=0

= w(0) + r(0) > 0; thus, there is ε > 0 such that

f(x(Ĝε)) > f(x(Ĝ)). Q.E.D.
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Proof of Theorem 2.1. Consider a network G = (gij) ∈ G with
∑

i,j∈N gij = η̄.

Case 1: Suppose G is not a weak ABC-form network.

If we cannot obtain a network G′ with f(x(G′)) > f(x(G)) by switching a

link using the one-link-switch principle, then G is not optimal. By Lemma 2.2,

if we cannot obtain a network G′ with f(x(G′)) > f(x(G)) using the one-link-

switch principle, then condition (*) holds for G. But then, by Lemma 2.3, given

condition (*), we can find a weak ABC-form network Ĝ with
∑

i,j∈N ĝij = η̄ such

that f(x(Ĝ)) = f(x(G)). Moreover, the network Ĝ is such that either (a) xi(Ĝ) =

x2(Ĝ) for some i > 2 and ĝ12 > 0, or (b) x1(Ĝ) = x2(Ĝ) and ĝi1 > 0 for some

i > 2. By Lemma 2.4, this implies that there is an ABC-form network Ĝε = (ĝεij)

with
∑

i,j∈N ĝ
ε
ij = η̄ such that f(x(Ĝε)) > f(x(Ĝ)). Given f(x(Ĝ)) = f(x(G)),

we thus obtain f(x(Ĝε)) > f(x(G)). Hence, G is not optimal.

Case 2: Suppose G is already a weak ABC-form network.

Then let Ĝ = G. Since G is not an ABC-form network but a weak one, we

have ĝ12 = 0, or ĝ21 = 0, or xi(Ĝ) = x2(Ĝ) for some i > 2. However, by Lemma

2.4, for a weak ABC-form network with
∑

i,j∈N ĝij = η̄, we have ĝ12 > 0. And, if

ĝ21 = 0, or xi(Ĝ) = x2(Ĝ) for some i > 2, then there is an ABC-form network

Ĝε = (ĝεij) with
∑

i,j∈N ĝ
ε
ij = η̄ such that f(x(Ĝε)) > f(x(Ĝ)). Hence, G is not

optimal. Q.E.D.

2.6.2 Proof of Proposition 2.1

Proposition 2.1 follows from Lemma 2.5 and Lemma 2.6 below.

Lemma 2.5. Consider the linear best-response model. Then there is a threshold

λ(η̄) < 0, with λ′(η̄) < 0, such that if v′′ < λ(η̄), then all optimal networks are

regular ABC-form networks.

Proof of Lemma 2.5. Consider the linear best-response model, and v′′ < 0.

Suppose that G ∈ G is an optimal network. By Theorem 2.1, all optimal networks

are the ABC-form networks. Hence G is an ABC-form network. We establish our
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conclusion through the following steps.

Step 1: G is such that gi1 = gj1 for each i, j > 2 and i 6= j.

Consider i, j > 2, i 6= j. Given G is an ABC-form network, and φ(y) = 1 + y,

we have xi = 1 + gi1x1 and xj = 1 + gj1x1. Consider a network G′ with g′i1 + g′j1 =

gi1 + gj1 while g′pk = gpk for all other elements in G′. Since v′′ < 0, G′ maximizes

v(xi(G
′)) + v(xj(G

′)) within the constraint g′i1 + g′j1 = gi1 + gj1 if and only if

g′i1 = g′j1 = (gi1 + gj1)/2. Hence, if gi1 6= gj1, then there is a network G′ ∈ G such

that
∑

k∈N v(xk(G
′)) >

∑
k∈N v(xk(G)).

Step 2: Suppose G is such that gi1 = 0 for each i > 2. Then, given v′′ < 0,

we have g12 = g21 = η̄
2
.

Consider a network G ∈ G such that g12 = a and g21 = η̄−a. Then x1 = 1+ax2

and x2 = 1 + (η̄ − a)x1. Thus

x1(a) =
1 + a

1− a(η̄ − a)
, x2(a) =

1− a+ η̄

1− a(η̄ − a)
,

and

x1(a) + x2(a) =
2 + η̄

1− a(η̄ − a)
.

Notice a = η̄
2
is the maximum of a(η̄ − a), and thus the minimum of the denom-

inator of the expression above. Hence, a = η̄
2
is the maximum of x1(a) + x2(a).

Given v′′ < 0, we thus have, for each a 6= η̄
2
:

1

2
v(x1(a)) +

1

2
v(x2(a)) ≤ v(

1

2
x1(a) +

1

2
x2(a))

< v(x1(
η̄

2
))

=
1

2
v(x1(

η̄

2
)) +

1

2
v(x2(

η̄

2
)).

Hence, a = η̄
2
is the maximum of v(x1(a)) + v(x2(a)).

Step 3: Suppose G is such that gi1 = c for each i > 2. Then there is λ(η̄) < 0,

with λ′(η̄) < 0, such that, if v′′ < λ(η̄), then c > 0.

Denote x∗ = x1( η̄
2
), which is the effort of agent 1 as well as agent 2 when
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g12 = g21 = η̄
2
and gij = 0 for all other links. Consider an ABC-form network

G ∈ G such that gi1 = c for each i > 2. In what follows, we show that, if

v′(1) > 2
2−η̄v

′(x∗), then we must have c > 0. Notice x∗ > 1. Hence, we can always

find a sufficiently negative λ so that, given v′′ < λ, we have v′(1) > 2
2−η̄v

′(x∗).

Moreover, note that the right hand side of the inequality, 2
2−η̄v

′(x∗), is increasing

in η̄. Hence, for greater η̄, we need a tighter (more negative) λ. Our claim then

follows.

We now show that, if v′(1) > 2
2−η̄v

′(x∗), then we have c > 0. Consider the

network G such that g12 = η̄
2
, g21 = η̄

2
− (n − 2)c, and gi1 = c for each i > 2.

For brevity, denote a = η̄
2
. Then x1 = 1 + ax2, x2 = 1 + [a− (n− 2)c]x1, and

xi = 1+cx1 for each i > 2. Again for brevity, let x′i ≡
∂xi(G)
∂c

for each i ∈ N . Then

we have

x′1 = ax′2

x′2|c=0 =
(n− 2)

a2 − 1
x∗

x′3 = cax′2 + x1.

Thus,

∂
∑

i∈N v(xi)

∂c

∣∣∣
c=0

= v′(x∗)ax′2|c=0 + v′(x∗)x′2|c=0 + (n− 2)v′(1)x∗

= v′(x∗)(a+ 1)
(n− 2)

a2 − 1
x∗ + (n− 2)v′(1)x∗

= (n− 2)x∗
[
v′(x∗)

a+ 1

a2 − 1
+ v′(1)

]
= (n− 2)x∗

[
v′(x∗)

1

a− 1
+ v′(1)

]
.

Substituting with a = η̄
2
, we obtain

∂
∑

i∈N v(xi)

∂c

∣∣∣
c=0

> 0 if and only if v′(1) >
2

2− η̄
v′(x∗).

Step 4: Suppose G is such that gi1 = c > 0 for each i > 2. Then g12 > g21 >
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c.

By Theorem 2.1, we have g21 > c (otherwise x2 ≤ x3, but then G would

not be an ABC-form network). Now suppose g12 = g21 = a > c, and consider

an alternative network Gε with gε12 = a + ε, gε21 = a − ε. For brevity, denote

x′i ≡
∂x1(Gε)

∂ε
for each i ∈ N , and let x∗ be the effort of 1 given g12 = g21 = a.

Then, given x1 = 1 + (a+ ε)x2, x2 = 1 + (a− ε)x1, and xi = 1 + cx1 for i > 2, we

obtain

(x
′

1 + x′2)|ε=0 = 0

and

x′1|ε=0 =
x2 − (a+ ε)x1

1− (a+ ε)(a+ ε)

∣∣∣
ε=0

=
(1− a)x∗

1− a2
=

x∗

1 + a
> 0.

Therefore,

∂
∑

i∈N v(xi)

∂ε

∣∣∣
ε=0

= v′(x∗)x′1|ε=0 + v′(x∗)x′2|ε=0 + (n− 2)v′(x3)cx′1|ε=0

= v′(x∗)(x
′

1 + x′2)|ε=0 + (n− 2)v′(x3)cx′1|ε=0

= (n− 2)v′(x3)cx′1|ε=0

> 0

implying g12 > g21 at optimum, which completes the proof. Q.E.D.

Lemma 2.6. Consider the linear best-response model. If v′′ ≥ 0, then in every

optimal network we have g12 + g21 = η̄.

Proof of Lemma 2.6. Suppose v′′ ≥ 0, and that G is an optimal network. By

Theorem 2.1, all optimal networks are ABC-form networks. Hence G is an ABC-

form network, such that g12 ≥ g21 > gi1 for each i > 2. We show that gi1 = 0

for each i > 2, and therefore we have g12 + g21 = η̄. Suppose that, without loss

of generality, g31 > 0. Then consider an alternative network G′ with g′31 = 0 and

g′21 = g21 + g31, while g′kp = gkp for all other links. Given v′′ ≥ 0, we certainly have∑
k∈N v(xk(G

′)) >
∑

k∈N v(xk(G)). To see this, observe x2 = 1 + (g21 + g31)x1,
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x3 = 1, and x1 = 1 + g12x2. Hence, x2 increases while x3 might decrease, but

the increase of x2 is at least as great as the reduction of xi. Meanwhile, x1 also

increases due to the increase of x2. But then all xi with i > 3 increase as well.

Altogether, and given v′′ ≥ 0, we have
∑

k∈N v(xk(G
′)) >

∑
k∈N v(xk(G)). Q.E.D.
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Chapter 3

Norm-based Resentment and the

Evolution of Cooperative Norms

3.1 Introduction

It is well known that the British have strong expectation for everyone to take

queues in every possible instance (and instances not possible to form a queue,

e.g., waiting at the bus stop alone). Queuing is an example of many social rules

governing the cooperation in one-shot interactions between individuals in Britain:

if an individual jumps a queue, it benefits the individual but harms all the ones

behind him; thus, sticking to a queue is a cooperative action that benefits others

at a personal cost. However, that the British always resort to queuing is not due

to any formal regulation imposed by a central authority. Instead, it is because

queuing is a social norm, one that is “shared by other people and partly sustained

by their approval and disapproval... sustained by the feelings of embarrassment,

anxiety, guilt and shame that a person suffers at the prospect of violating them”

(Elster, 1989, p. 99-100).

This paper presents a model of the social evolution of cooperation based on

the idea that cooperation in one-shot interactions is supported by the endogenous

social norms of cooperation. That is, individuals might cooperate because they
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might perceive that a norm of cooperation exists in the society. When a norm of

cooperation does exists, people feel the emotion of resentment against, and thus

punish, those who defect. The explicit role of emotions in our model departs from

most of the existing evolutionary models of cooperation. Most existing models do

not make an explicit distinction between social evolution from biological evolution.

Instead, they view social evolution as a complete analogue to biological evolution

(e.g., Abramson and Kuperman, 2001; Eshel et al., 1998; Nowak and May, 1992;

Nowak et al., 2010; Ohtsuki, 2006; Santos and Pacheco, 2005; Szabó and Fáth,

2007).1 This paper shows that analyzing the evolution of cooperation from a

social norms’ perspective matters. More specifically, I develop a dynamic model

of the norm of cooperation that explains the regularities. The model shows how

cooperation and punishment of defectors co-evolve. It reveals the conditions under

which cooperation emerges and persists in the long run. The model explains

naturally why there is a positive correlation between cooperation and the quality

of law enforcement, as documented by Herrmann et al. (2008), Gächter and Schulz

(2016) and Tabellini (2008). The model also predicts that the level of cooperation

should be higher in societies with higher mobility, which is in sharp contrast with

the prediction of a typical model that assume the behavioral rule of imitating the

best, i.e., individuals have a tendency to imitate the behavior of those earning

higher material payoffs (e.g., Abramson and Kuperman, 2001; Eshel et al., 1998;

Nowak and May, 1992; Nowak et al., 2010; Ohtsuki, 2006; Santos and Pacheco,

2005; Szabó and Fáth, 2007).

The model builds on what I call norm-based resentment (Sugden, 1984,

2000, 2004; Bicchieri, 2006; Cooper and Dutcher, 2011; Falk et al., 2006; Herz and

Taubinsky, 2017; Kahneman et al., 1986; Peysakhovich and Rand, 2016).2 The

idea is that individuals have empirical expectations on the behavior of others in

a society. If an individual expects that most others cooperate, but he meets a
1Exceptions are Boyd and Richerson (1985) and Henrich and Boyd (1998, 2001), who inves-

tigate cultural evolution models that assume a behavioral rule of conformity, i.e., imitating the
most frequent behavior in the population.

2I use bold font for new definitions and italic for highlights in this paper.
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defector, then the individual is frustrated: the defector is acting unkindly to him.

To release his frustration, the individual may punish the defector. However, if the

individual holds the expectation that defection is commonplace, then defection

is acceptable—that is what everyone else does anyway. In this case, there is no

impulse to punish the defector. Now suppose that a population of individuals

are randomly matched into pairs to play the following stage game. One indi-

vidual moves first and decides whether to cooperate or defect. The other moves

second and decides whether to punish the first-mover if the first-mover defects.

Given norm-based resentment, there are two (sequential) equilibria: the defec-

tion equilibrium in which each individual in the population defects and does

not punish defectors, and the cooperation equilibrium in which each indi-

vidual cooperates and punishes defectors.3 I define social norm as a profile of

expectations of individuals consistent with one of the equilibria.

My goal is to analyze how behavior and expectations of individuals evolve over

time. The dynamics are adapted from Young (1993, 2001). Individuals are ran-

domly matched to play the stage game recurrently and infinitely over discrete time

periods. In each period, each individual forms expectations about others’ behavior

based on strategies used in the last period. Given expectations, each individual

plays a best-response with a high probability; best-responses are constructed on

norm-based resentment. With a small probability, individuals make mistakes, in

which case they randomly pick a strategy. I call the dynamics adaptive dy-

namics with norm-based resentment. A population state of the dynamics

specifies the strategies and the expectations of individuals in the population. The

defection equilibrium and the cooperation equilibrium are two different population

states. I examine which population state is more likely to emerge and persist in

the long run. Formally, I characterize the stochastically stable equilibrium: it

is the most likely population state in an infinite span of time when the probability

of making a mistake goes to zero (Ellison, 1993, 2000; Kandori et al., 1993; Young,
3The model keeps track of expectations (beliefs) explicitly; thus, I apply the solution concept

of sequential equilibrium.
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1993, 2001).

The basic result is that, given norm-based resentment, the cooperation equi-

librium can be stochastically stable. Whether and when this is the case depends

on two statistics: the intolerance of defection, defined by the maximum pro-

portion of defectors that is consistent with punishing defectors, and the temp-

tation to defect, defined by the minimum proportion of punishers (i.e., those

who punish defectors) that is required to induce cooperation. The intolerance of

defection is increasing in the psychological parameter of resentment and the harm

that punishment generates, and decreasing in the cost of conducting punishment.

The temptation to defect is increasing in the individual cost of cooperation, and

decreasing in the suffering from being punished. If the intolerance of defection

is greater than the temptation to defect, then the cooperation equilibrium is the

unique stochastically stable equilibrium, otherwise the defection equilibrium is the

unique stochastically stable equilibrium.

The second part of the paper investigates two key differences between large,

modern societies and small-scale societies. In small-scale societies, an individual

mostly interacts with his relatives, which is a fixed, small subset of individuals in

the population. In contrast, in large societies with higher market integration, i)

individuals interact with larger groups of people, and ii) they can choose where

to live. First, I compare global interactions with local interactions: in global

interactions, every individual interacts with everyone else in the population; in

local interactions, by contrast, each individual only interacts with a small subset

of others in the population.4 I obtain a neutrality result: whether interactions are

local or global does not affect whether the cooperation equilibrium is stochastically

stable. The reason is that whether interactions are local or global affects neither

side of the trade-off between the intolerance of defection and the temptation to

defect.

However, mobility—the ability to migrate—leads to to two effects, both sug-
4More precisely, for local interactions, individuals are located on a two-dimensional lattice,

and each individual only interacts with the four direct neighbors around them.

44



gesting that there are positive correlations between the norm of cooperation and

the size of a society. One is the migration effect in the intermediate run. Since

cooperation leads to higher aggregate efficiency, individuals will move from soci-

eties with the defection norm to the societies with the cooperation norm. Hence,

societies with the cooperation norm become larger. The other effect is about the

selection of norms in the long run. In the long run the norms in a society might

change. Then what matters is the relative difficulty of transiting from the de-

fection norm to the cooperation norm compared to transitions in the opposite

direction. Again, mobility matters: since societies with the cooperation norm

are larger, it is more difficult—i.e., it requires a larger number of mistakes—to

overthrow a society with the cooperation norm than to overthrow a society with

the defection norm. The key to the argument is the fitting-in effect generated

by norm-based resentment: when migrating to a society, individuals adjust their

behavior and expectations to make them compatible with the prevailing norms in

the society.

The result on the positive effect of mobility stands in contrast with previous

analysis on the evolution of cooperation (Abramson and Kuperman, 2001; Eshel

et al., 1998; Nowak and May, 1992; Nowak et al., 2010; Ohtsuki, 2006; Santos

and Pacheco, 2005; Szabó and Fáth, 2007). Previous analysis considers the social

evolution of cooperation as an analogue to biological evolution. It assumes the

behavioral rule of imitating the best, i.e., individuals have a tendency to imitate

the behavior of those earning higher material payoffs. Imitating the best implies

that interactions in small neighborhoods and without mobility—the small-scale

societies—are the ideal setting for cooperation to emerge. The reason is that, in

local interactions with fixed matching, cooperators can form clusters and separate

themselves from defectors. As a result, cooperators earn higher material payoffs;

their behavior is therefore imitated. However, if mobility is possible, then defectors

can move to the center of the clusters of cooperators and exploit the cooperators.

Hence, defectors always earn higher material payoffs. Eventually, if mobility is
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possible, a dynamic of imitating the best leads to universal defection.5 Hence, a

dynamic of imitating the best does not explain why cooperation and punishment of

defectors are higher in large, modern societies. The difference between a dynamic

of imitating of best and our model is that the fitting-in effect present in our model

is missing in a dynamic of imitating of best.

Finally, I examine the relationship between cooperation and law enforcement. I

extend our model to analyze the co-evolution of cooperative norms and the quality

of law enforcement. The analysis shows that there could only be two population

states to be stochastically state: one in which everyone cooperates and punishes

defectors, and there is high quality of law enforcement, and the other in which

everyone defects, no one punishes defectors, and the quality of law enforcement

is low. This result explains the observed correlation between cooperation and the

quality of law enforcement across societies (Gächter and Schulz, 2016; Herrmann

et al., 2008; Tabellini, 2008).

The paper is organized as follows. Section 3.2 introduces norm-based resent-

ment and defines the stage game that individuals play recurrently in each period.

Section 3.3 presents and analyzes an adaptive dynamic without mistakes, the “un-

perturbed” adaptive dynamic. The results for the unperturbed dynamic form the

basis for later analysis. Section 3.4 presents the adaptive dynamics where mistakes

are possible, the “perturbed” adaptive dynamics, and characterizes the stochasti-

cally stable equilibrium. All analyses so far assume global interactions. Section

3.5 examines local interactions and the effect of mobility. Section 3.6 considers

the existence of a central monitor who enforces laws.
5Introducing the opportunity to punish defectors would not change the conclusion. The reason

is that, even the cooperation norm is initially established in a society and the initial residents
punish defectors, the new comers would cooperate but they would not punish. Eventually, the
new comers “dilute” the norm to an extent such that everyone would rather defect. Axelrod’s
(1986) simulation shows this “drift”.
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3.2 The stage game and norm-based resentment

3.2.1 The stage game

Let N = {1, 2, . . . , n} be a population of individuals. n is an even number. Think

of individuals in N as generic members of a society who do not know each other

in person. The individuals are randomly matched into pairs to play the following

game. Within each matched pair, one individual moves first and the other moves

second; the identify of the first-mover is randomly determined. They then play the

game in Figure 3.1. The first-mover decides between cooperate and defect. If the

first-mover cooperates, the game ends. If the first-mover defects, the second-mover

can punish the first-mover, or not punish. Figure 1 gives the material payoffs for

the first-mover and the second-mover, respectively.

Assumption 3.1. ā > a > a and b̄ > b > b.

1

a, b̄

cooperate

2

a, b

punish

ā, b

not punish

defect

Figure 3.1: The stage game. The numbers at the terminal nodes represent material
payoffs.

Since the identity of the first-mover is randomly determined, a strategy for

i ∈ N is a pair si = (xi, yi) ∈ {1, 0} × {1, 0}: if i cooperates in the role of the

first-mover, xi = 1, otherwise xi = 0; if i punishes in the role of the second-mover,

yi = 1, otherwise yi = 0. Let s = (s1, s2, . . . , sn) be the strategy profile of all

individuals, and S = {1, 0}2n denote the set of all strategy profiles. I call the game

stage game. In the next section, I introduce a discrete dynamic, t = 0, 1, 2, . . .,

such that individuals play the stage game recurrently over time.
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For now, let us focus on the stage game and clarify the meaning of norm-based

resentment in the specific context of the base game. If the second-mover purely

seeks to maximize material payoffs, she does not punish. Anticipating this, and if

the first-mover also seeks to maximize material payoffs, she defects. However, a

large body of public goods game experiments show that many participants punish

defectors at the expense of their own earnings (Fehr and Schmidt, 2000). Why

punish? And why does the tendency to punish varies across societies as observed

by Herrmann et al. (2008) and Henrich et al. (2010; 2006)? According to Sugden

(2000; 2004) and Bicchieri (2006), individuals punish defectors because defection

is socially unacceptable, i.e., considered as a violation of a social norm. Critically,

Sugden (2000; 2004) and Bicchieri (2006) suggest that people consider defection

as more unacceptable when cooperation is common, compared to when many

others defect—what I call norm-based resentment. However, Sugden and Bicchieri

have not provided an formal account of the punishment mechanism.6 I provide a

formulation and investigate its implications here.

The second-mover’s decision. I call those individuals who choose to coop-

erate as first-movers cooperators. Consider individual i ∈ N . Let qi ∈ [0, 1]

be i’s expectation of the proportion of cooperators in the society. Suppose that

i is matched with j, and i is in the role of the second-mover. In i’s eyes, j is

not different from any others in the society. Hence, i expects her payoffs to be

bounded below by

θ(qi) = qib̄+ (1− qi)b.

The expected payoff, θ(qi), is i’s reference payoffs. Since b̄ > b, θ(qi) is strictly

increasing in qi.

Suppose now that j defects. In this case the payoff for i is bounded above by
6The models by the two authors that are closest to ours are Sugden (2000) and Bicchieri

(2006, Ch. 6).
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b. Comparing the payoff b with θ(qi), i is certainly worse-off if

qi >
b− b
b̄− b

.

The fact that i obtains less than her reference payoffs makes i frustrated. To release

her frustration, i exhibits the preferences to act unkind to unkind—a tendency

analogous to Rabin’s (1993) and Dufwenberg and Kirchsteiger’s (2004) models

of reciprocity. In particular, I focus on the negative domain of reciprocity. A

justification for this is that, empirically, “hurting hurts more than helping helps”

(Offerman, 2002), i.e., it appears that people reciprocate others’ hurtful choices

much more often than reciprocating others’ helpful choices.7

More precisely, by defecting, j produces θ(qi)− b unkindness to i. In response

to j’s defection, if i punishes j, i is unkind to j; the unkindness is ā−a
2
. If i does

not punish j, i is kind to j; the kindness is ā−a
2
. Let λ > 0 be the resentment

parameter; it measures i’s frustration given j’s unkindness. Conditional on j

defecting, and b < θ(qi), if i chooses to punish, her utility is

b+ λ
[
b− θ(qi)

](a− ā
2

)
; (3.1)

if i instead chooses not to punish, her utility is

b+ λ
[
b− θ(qi)

]( ā− a
2

)
. (3.2)

Hence, i prefers to punish if i’s reference payoffs are sufficiently high:

θ(qi) > b+

(
1

λ

)
b− b
ā− a

.

7On the other hand, it will be clear that no any qualitative result derived in this chapter
relies on the reciprocity-type specification of punishment. All results would hold as long as there
is a threshold such that individuals punish defectors if and only if the proportion of cooperators
is higher than the threshold.
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The above condition can be expressed by

qi > π(ā, a, b, b̄, b, λ) where π(ā, a, b, b̄, b, λ) =

[
1 +

1

λ(ā− a)

]
b− b
b̄− b

. (3.3)

π(ā, a, b, b̄, b, λ) is the threshold proportion of cooperators needed to activate pun-

ishment towards defectors. Note that qi > π(ā, a, b, b̄, b, λ) implies θ(qi) > b.

Hence, qi > π(ā, a, b, b̄, b, λ) is a sufficient and necessary condition for i to strictly

preferring to punish a defector.8 I call the preferences specified above norm-based

resentment.

The threshold π(ā, a, b, b̄, b, λ) for punishment has the following properties.

First, it is increasing in punishment cost (b − b). Second, it is decreasing in

the resentment parameter (λ). It is also decreasing in the effectiveness of punish-

ment (ā− a) and the payoff difference between meeting a defector and meeting a

cooperator (b̄− b). Note that, if λ is sufficiently small, or ā− a is small, then we

have π(ā, a, b, b̄, b, λ) > 1. In that case, the condition for i to punish a defector

is never satisfied regardless of her expectation qi. The sufficient and necessary

condition for π(ā, a, b, b̄, b, λ) < 1 is

λ >

(
1

ā− a

)
b− b
b̄− b

.

In Rabin’s and Dufwenberg and Kirchsteiger’s original models, the reference

point to determine the first-mover’s kindness and unkindess is independent of i’s

expectation on the behavior of other individuals. This is the distinction between

their models and ours.

The first-mover’s decision. Now, consider the decision of the first-mover.

Each individual chooses her first-mover decision to maximize expected material
8I can also introduce an individual-specific resentment parameter λi > 0 such that the utility

for choosing to punish is b + λi

[
b − θ(qi)

](
a−ā

2

)
, and the utility for choosing not to punish is

b + λi

[
b − θ(qi)

](
ā−a

2

)
. Since I do not analyze the effects of the heterogeneity in λi across

individuals in this paper, I normalize λi = λ to simplify the exposition.
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payoffs. This means that, if enough individuals punish defectors, individuals prefer

to cooperate as first-movers, otherwise they defect. I call the individuals who

choose to punish as second-movers punishers. Let pi ∈ [0, 1] be i’s expectation

of the proportion of punishers in the society. Suppose i is the first-mover. If i

cooperates, she gets material payoffs a. If i defects, her expected material payoffs

are

pia+ (1− pi)ā.

Hence, i prefers to cooperate if

pi > ϕ(a, ā, a) where ϕ(a, ā, a) =
ā− a
ā− a

. (3.4)

If pi < ϕ(a, ā, a), i prefers to defect. If pi = ϕ(a, ā, a), i is indifferent between the

two options. ϕ(a, ā, a) is increasing in temptation to defect, ā−a, while decreasing

in damage suffered from punishment, ā − a. Given a < a < ā, the range of ϕ is

(0, 1).

The thresholds π(ā, a, b, b̄, b, λ) and ϕ(a, ā, a) are important determinants of the

long-run dynamics of the population. To simply notations, I drop the arguments

and use π and ϕ to denote their values in subsequent analyses.

3.2.2 Equilibria of the stage game

I characterize the set of strict equilibria of the stage game in this subsection.

I always have an equilibrium in which each i ∈ N defects and does not punish

defectors and, for some parameter values, another equilibrium in which each i ∈ N

cooperates and punishes defectors.

Let q = (q1, . . . , qn) ∈ [0, 1]n be the individuals’ expectations on the proportion

of cooperators in the society. Let p = (p1, . . . , pn) ∈ [0, 1]n be the individuals’

expectations on the proportion of punishers. I call the pair (p, q) expectation

profile. A population state is a tuple (s, q, p) ∈ S × [0, 1]n × [0, 1]n; it consists

of the strategy profile s and the expectation profile (q, p). Let Z = S × [0, 1]n ×
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[0, 1]n be the collection of all population states. We apply the solution concept of

sequential equilibrium (Kreps and Wilson, 1982) to our specific context.9

Definition. A (sequential) equilibrium of the stage game is a population state

(s, q, p) ∈ Z such that the following two conditions hold:

1. the expectation profile (q, p) is consistent with s, namely, for each i ∈ N ,

qi =
1

n− 1

∑
j∈N,j 6=i

xi and pi =
1

n− 1

∑
j∈N,j 6=i

yj;

2. their strategies are sequentially rational given their expectations, namely,

for each i ∈ N ,

xi =


1 if pi > ϕ

0 if pi < ϕ

, yi =


1 if qi > π

0 if qi < π

. (3.5)

An equilibrium of the stage game, (s, q, p), is strict if no individual is indiffer-

ent between any two choices at any decision node of the stage game. In our model,

a strict equilibrium is one in which for each i ∈ N , we have pi 6= ϕ and qi 6= π. I

focus on strict equilibria because, as I shall show, they are the only steady states

of the society in the long run.

In particular, let sC ∈ S denote the strategy profile in which each i ∈ N

cooperates and punishes defectors, and sD ∈ S denote the strategy profile in

which each i ∈ N defects and does not punish defectors. With abuse of notation,

I use (sC , 1, 1) ∈ Z to denote the population state in which the strategy profile

is sC and each i ∈ N holds the expectations pi = 1 and qi = 1. Likewise, let

(sD, 0, 0) ∈ Z denote the population state in which the strategy profile is sD and

each i ∈ N holds the expectations pi = 0 and qi = 0. Generic cases of the

stage game are such that, for the thresholds ϕ and π, we have either ϕ+π ≥ n
n−1

9Fudenberg and Tirole (1991) provide a discussion about the relations between sequential
equilibrium and perfect Bayesian equilibrium.
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or ϕ+π ≤ n−2
n−1

. The following proposition identifies (sC , 1, 1) and (sD, 0, 0) as two

strict equilibria in the generic cases of the stage game.10

Proposition 3.1. Consider the generic cases of the stage game.

1. (sD, 0, 0) is a strict equilibrium.

2. If π < 1, then (sC , 1, 1) is also a strict equilibrium.

3. No other strict equilibrium exists.

Proof. All proofs are provided in the appendix.

I define a social norm as an expectation profile (q, p) ∈ [0, 1]n × [0, 1]n in

an strict equilibrium (s, q, p) ∈ Z of the game that takes norm-based resentment

into account. Hence, social norms are self-fulfilling expectations such that, once

the expectations are established among individuals, individuals take strategies

consistent with them, which validates their initial expectations. In our context,

there exist two social norms that can be established. One supports cooperation

and motivates people to punish defectors: pi = 1 and qi = 1 for each i ∈ N . The

other is associated with defection, leaving defectors unpunished: pi = 0 and qi = 0

for each i ∈ N . Both are self-fulfilling.

When π ≥ 1, the only strict equilibrium is the defection one. I assume the

following throughout our subsequent analyses, so that multiple strict equilibria

exist.

Assumption 3.2. π(ā, a, b, b̄, b, λ) < 1.

In the next section, I analyze which equilibrium is more likely to emerge and

persist in a society.
10Note that limn→∞

n
n−1 = limn→∞

n−2
n−1 = 1. Hence, the generic cases essentially require that

ϕ+ π is not exactly equal to 1.
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3.3 The unperturbed adaptive dynamics

This section introduces the unperturbed adaptive dynamics to study the evolution

of norms. The dynamics I consider are adapted from Young (1993). The depar-

ture from Young (1993) is that the dynamics I consider explicitly keep track of

the expectation profile over time alongside the strategy profile. Investigating the

dynamic enhances our understanding regarding the determinants of the emergence

and persistence of social norms.

3.3.1 The adaptive dynamic

Let time unfold in discrete units and be indexed by t = 0, 1, 2, . . . . I use superscript

to denote variables in period t. The strategy of i ∈ N in period t is denoted by

sti = (xti, y
t
i). The strategy profile of the population in period t is

st =
(
st1, s

t
2, . . . , s

t
n

)
=
(

(xt1, y
t
1), (xt2, y

t
2), . . . , (xtn, y

t
n)
)
.

I call zti = (sti, p
t
i, q

t
i) i’s individual state at t, and zt = (st, pt, qt) is the popula-

tion state or simply the state at t. Z = S × [0, 1]n × [0, 1]n is the collection of

all population states. Note that the state variable zt not only keeps track of the

strategy profile st of the population, but also explicitly keeps track of the expecta-

tion profile (pt, qt). In what follows, I describe how zt evolves over time. Roughly

speaking, in each period t, individuals form expectations regarding the proportions

of cooperators and punishers based on the strategy profile of the previous period,

st−1. Given their expectations, individuals play myopic best-responses to maxi-

mize their utilities at each decision node of the stage game in the current period.

The best-responses are myopic in the sense that individuals do not consider using

their current actions to influence payoffs from future periods. In addition, indi-

viduals may draw small and possibly biased samples from the previous population

state when forming their expectations. I also allow for inertia behavior (discussed

in greater detail below). These elements improve the model’s generality and allow
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us to obtain more results.

Figure 3.2: Timeline of the updating procedure.

More precisely, let z0 ∈ Z be the initial population state. Consider t ≥ 1,

and let the population state at t − 1 be (st−1, pt−1, qt−1). Let M be a sub-

set of individuals, i.e., M ⊂ N . A sample of the strategy profile st−1 =

(st−1
1 , st−1

2 , . . . , st−1
n ) is a sub-sequence (st−1

j )j∈M of it. The size of the sample,

denoted by m, is defined by the number of individuals in M . LetM be the col-

lection of all subsets of N whose size is m, i.e.,M contains all those M ⊂ N with

|M | = m. To form expectations pi and qi in the current period, each i ∈ N draws

a sample (st−1
j )j∈M of size m. The samples are drawn randomly and independently

across individuals. By counting how many cooperators and punishers there are

in the sample, each i obtains estimates about the proportions of cooperators and

punishers in the population:

q̂ti =
1

m

∑
j∈M

xt−1
j , p̂ti =

1

m

∑
j∈M

yt−1
j .

These estimates form the basics of i’s expectations in period t. The implicit

assumption here is that individuals can observe the complete strategies of the

individuals in their sample—i.e., the sample individuals’ cooperation decisions as

well as their punishment decisions—in the previous period.

Individuals’ behavior may exhibit inertia, i.e., there is a positive probability

that some individuals may behave in the same way as the past. I model inertia

behavior by allowing some individuals to not update their expectations. There

are four updating modes:
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1. qti = q̂ti and pti = p̂ti;

2. qti = q̂ti and pti = pt−1
i ;

3. qti = qt−1
i and pti = p̂ti;

4. qti = qt−1
i and pti = pt−1

i .

The updating mode for each individual is determined randomly and independently

across individuals and time. Each updating mode occurs with positive probability

for each individual at each period.

More precisely, let σi(pi, qi|st−1, pt−1, qt−1) denote the probability that i has

expectations (pi, qi) conditional on previous state (st−1, pt−1, qt−1). I assume that

σi(pi, qi|st−1, pt−1, qt−1) > 0

if, and only if, the following conditions hold:

1. if pi 6= pt−1
i then there is M ∈M such that pi = 1

m

∑
k∈M yt−1

k ;

2. if qi 6= qt−1
i then there is M ∈M such that qi = 1

m

∑
k∈M xt−1

k .

If the above conditions do not hold, then σi(pi, qi|st−1, pt−1, qt−1) = 0. Note that,

if pi = pt−1
i , or if qi = qt−1

i , then the above conditions place no restriction on the

conditional probability σi; in this case, we again have σi(pi, qi|st−1, pt−1, qt−1) > 0.

Intuitively, in this case i is in the mode of not updating at least one side of her

expectations, which occurs with positive probability.11

Now I describe the probability of transiting from one population state to an-

other. Conditional on the previous population state zt−1, let Pi(zti |zt−1) denote

the probability that i ∈ N is in state zti = (sti, p
t
i, q

t
i) in period t. According to our

previous definition, the individual state zti = (sti, p
t
i, q

t
i) is sequentially rational if

and only if it satisfies condition (3.5). Let Pi(zti |zt−1) assign positive probability
11It is not necessary for σi(.|.) to be the same across individuals. The analysis only requires

them to be stationary (invariant) across time.
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only to sequentially rational states. That is,

Pi(z
t
i |zt−1) =


σi(p

t
i, q

t
i |st−1, pt−1, qt−1) if sti is sequentially rational w.r.t. (pti, q

t
i),

0 otherwise.
(3.6)

For each two population states zt, zt−1 ∈ Z, let P 0(zt, zt−1) denote the probability

of transiting from state zt−1 to state zt. We have

P 0(zt, zt−1) =
∏
i∈N

Pi(z
t
i |zt−1).

P 0 defines a Markov chain on finite state space Z. Following Young (1993), I

call P 0 unperturbed adaptive dynamic with sample size m. “Unperturbed”

refers to the assumption that individuals always play sequentially rational strate-

gies given their expectations. Nevertheless, the path {zt}∞t=0 is not deterministic

due to the uncertainty involved in the process of forming expectations.

3.3.2 Emergence of a social norm

I now examine whether the unperturbed adaptive dynamic necessarily converges

to one of the equilibria described by Proposition 3.1. In other words, will a social

norm—cooperation or defection—necessarily become established in the society?

The answer is yes.

The theorem below establishes that the adaptive dynamic P 0 converges almost

surely either to a population state in which every i ∈ N cooperates and punishes

defectors and this is commonly expected, or, to a state in which every i ∈ N

defects and no one punishes defectors. The convergence occurs no matter how

disordered the initial population state might be and regardless of the sample size

m. Note that when m is small relative to n, different individuals may draw

completely different samples from the past and form different expectations, leading

to different strategies. Hence, it is not obvious how a social norm can always
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become established spontaneously.

As before, I use (sC , 1, 1) ∈ Z to denote the population state in which each

i ∈ N cooperates and punishes defectors and each i ∈ N holds the expectations

pi = 1 and qi = 1. And (sD, 0, 0) ∈ Z is the opposite population state in which each

i ∈ N defects and does not punish defectors and each i ∈ N expects pi = 0 and

qi = 0. Let {zt}∞t=0 ⊂ Z be a sequence of random variables such that: i) z0 ∈ Z,

and ii) each zt with t ≥ 1 is generated according to the probability system P 0, i.e.,

for each t ≥ 1 and zt, zt−1 ∈ Z, we have Prob{zt|zt−1} = P 0(zt, zt−1). Let L ⊂ Z

be a subset of population states. We say that P 0 converges almost surely to

L if, for each z0 ∈ Z, the event

(
lim
t→∞

zt
)
∈ L

has probability one.

Theorem 3.1. For every sample size m with 1 ≤ m ≤ n, P 0 converges almost

surely to {(sC , 1, 1), (sD, 0, 0)}.

The proof of the theorem builds on a general observation regarding Markov

chains on finite state spaces. For a Markov chain, a population state z ∈ Z is an

absorbing state of the dynamic if, once reaching z, it stays at the state for all

future periods with probability one. First, observe that the absorbing states of the

adaptive dynamic P 0 are exactly the strict equilibria of the stage game: (sC , 1, 1)

and (sD, 0, 0). The reason for this is that, starting from any state not a strict

equilibrium of the stage game, some individual i would change her strategy with

positive probability in the next period. Next, observe that, since the state space

Z is finite, there is a positive probability δ > 0 that the dynamic P 0 transits from

any initial state to (sC , 1, 1) or (sD, 0, 0) within a finite number of periods. Let

that finite number of periods be T . It follows that the probability of not transiting

to {(sC , 1, 1), (sD, 0, 0)} within kT periods is at most (1 − δ)kT , which shrinks to

zero as k gets large.
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The theorem says that the adaptive dynamic converges almost surely to a

strict equilibrium of the stage game. However, there are two distinct strict equi-

libria—one in which everyone cooperates and the other in which everyone defects.

I investigate the determinants of which equilibrium the dynamic converges to in

the next subsection.

3.3.3 Selection of norms in the intermediate run

I identify the factors that affect which equilibrium the unperturbed dynamic P 0

converges to in this subsection. We discuss two factors. First, where the dynamic

starts from, the initial population state, matters. Intuitively, if the dynamic starts

from a state “close” enough to one of the two strict equilibria, the dynamic will

converge to that equilibrium almost surely. This leads to the notion of basin of

attraction. Second, when forming expectations, what samples individuals draw

from the past matter. I discuss some of the implications.

For a population state z ∈ Z, let B(z) ⊂ Z denote the basin of attrac-

tion of z under the unperturbed dynamic P 0, which is defined as follows.

B(z) is a subset of population states such that, if the dynamic P 0 starts from a

population state in B(z), it converges almost surely to z. The (relative) sizes of

the basins of attraction of the two equilibria—(sC , 1, 1) and (sD, 0, 0)—are critical

in determining which equilibrium the dynamic tends to converge to. To simplify

notations, I use zC = (sC , 1, 1) and zD = (sD, 0, 0) to denote the two equilibria

of the stage game. Let 1{.} be the indicator function, which takes the value of 1

if the statement within the parenthesis holds, and zero otherwise. For example,

1{pi ≥ ϕ} = 1 if and only if i holds the expectation pi ≥ ϕ. Then

∑
i∈N

1{pi ≥ ϕ}

counts the number of individuals in the population who expect the proportion of

individuals, pi, to be at least ϕ.
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Proposition 3.2 below characterizes the basins of attraction of the defection

equilibrium zD and the cooperation equilibrium zC , respectively. Notice that we

have requirements on individuals’ actions, xi and yi, as well as their expectations,

pi and qi. The basin of attraction of the defection equilibrium zD contains those

states in which a) the number of individuals who cooperate or punish defectors is

small, and b) the number of individuals having the expectations pi ≥ ϕ or qi ≥ π

is small. In contrast, the basin of attraction of the cooperation equilibrium zC

contains those states in which a) the number of individuals who cooperate and

punish defectors is large, and b) the number of individuals having the expectations

pi > ϕ(a, ā, a) and qi > π is large.

Proposition 3.2. Consider the unperturbed adaptive dynamic P 0 with sample

size m.

1. We have (s, p, q) ∈ B(zD) if and only if the strategy profile s = (x, y) and

the expectation profile (p, q) are such that

∑
i∈N

xi < πm,
∑
i∈N

yi < ϕm, (3.7)

and ∑
i∈N

1{pi ≥ ϕ} < πm,
∑
i∈N

1{qi ≥ π} < ϕm.

2. We have (s, p, q) ∈ B(zC) if and only if the strategy profile s = (x, y) and

the expectation profile (p, q) are such that

∑
i∈N

xi > n− (1− π)m,
∑
i∈N

yi > n− (1− ϕ)m, (3.8)

and

∑
i∈N

1{pi > ϕ} > n− (1− π)m,
∑
i∈N

1{qi > π} > n− (1− ϕ)m.

Figure 3.3 illustrates the conditions on the strategy profile (x, y) of the basins of
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Figure 3.3: The bottom-left corner is the defection equilibrium zD and the upper-right
corner is the cooperation equilibrium zC . The gray areas display the basins of attraction
of the two equilibria under unperturbed adaptive dynamic P 0 with sample size m.

attraction of the two equilibria. The x-axis represents the number of cooperators

in the population, and the y-axis represents the number of punishers. When the

population is in the defection equilibrium zD, we have
∑
xi =

∑
yi = 0. In

contrast, in the cooperation equilibrium zC , we have
∑
xi =

∑
yi = n. The gray

areas show the basins of attraction of the two equilibrium in terms of strategies.

We have the following comparative statics. First, the area of the basin of attraction

of the defection equilibrium, B(zD), is increasing in π and ϕ. By contrast, the

area of the basin of attraction of the cooperation equilibrium, B(zC), is decreasing

in π and ϕ. Hence, lower values of π and ϕ favor the emergence of the cooperation

equilibrium.

Second, the smaller the sample size m when forming expectations, the smaller

the areas of both B(zD) and B(zC). In fact, if the sample size m is much smaller

than the population size n, then the basins of attraction of the two equilibria

only consist of a small number of population states among all population states.

The reason for this is that, if sample size is small, there is positive probability

that the individuals draw samples that are not representative of the proportion

of cooperators and punishers in the whole population. That is, they may exhibit

small sample bias. In that case, the equilibrium that the adaptive dynamic

converges to depends on the exact samples that the individuals draw along the
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way. The small sample bias may explain why governments around the world often

invest considerable efforts in advertising altruistic behavior of national heroes and

other role models. By exploiting the small sample bias, they manipulate people’s

expectations on the population state and thereby affect social norms. The small

sample bias also has other implications. For instance, government officials are of-

ten seen as more “visible” individuals in the society, either because their behaviors

are revealed more often to the public than an average citizen, or people choose

to pay more attention to these government officials. It follows that, if govern-

ment officials engage in corruption activities, it not only affects the functioning

of formal institutions of the country, but also reduce individuals’ willingness to

punish defectors by negatively affecting their perceptions on the population state.

This latter effect on informal institutions further increases the incentives to cor-

rupt. While causality is not clear, evidence from the cross-cultural experiments

on dishonesty is consistent with our observeation. For example, using data from a

lying game experiment, Gächter and Schulz (2016) show that, in countries where

misconducts of government officials such as corruption and fraudulent politics are

more pervasive, participants exhibit higher dishonesty.

3.4 The perturbed adaptive dynamics and stochas-

tic stability

In this section, I investigate a perturbed version of the adaptive dynamic. In

a perturbed dynamic, individuals may make mistakes and deviate from rational

strategies. The motivations of investigating a perturbed dynamic are the following.

First, it is not realistic to assume that individuals always play rationally in the long

run. Some individuals may “tremble”, or deliberately experiment new strategies.

As previously shown by Young (1993; 2001), Kandori et al. (1993), and Ellison

(1993; 2000), these mistakes play a key role in determining which equilibrium is

more likely in the long run. Second, without knowing the initial population state
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and the exact samples that the individuals draw along the way, it is difficult to

predict which equilibrium the unperturbed dynamic converges to. However, if

mistakes are possible, the influence of the initial population state eventually dies

out. The theory then generates sharper results regarding the long-run trend of

the system.

3.4.1 The perturbed dynamics

We introduce the perturbed dynamic in this subsection. How individuals form

expectations is the same as in the unperturbed dynamic. However, under the

perturbed dynamic, each individual makes a mistake with probability ε > 0 such

that each of the four pure strategies in the stage game (cooperate or not as a first-

mover and punish or not as a second-mover) is taken with positive probability.

To simplify exposition, assume that, conditional on the event of i making a

mistake, i takes each of the four strategies with probability 1
4
.12 Let J ⊂ N be a

subset of individuals, and let |J | denote the number of individuals in J . Making a

mistake or not is a random event independent across individuals and time. Hence,

within a certain period t, the probability that the individuals in J make mistakes

while others play rationally is ε|J |(1− ε)n−|J |. Let Q(zt, zt−1, J) be the probability

of transiting from state zt−1 ∈ Z to a certain state zt ∈ Z in the next period,

conditional on that exactly the individuals in J make mistakes. We have

Q(zt, zt−1, J) =

[(
1

4

)|J |∏
i∈J

σi(p
t
i, q

t
i |st−1, pt−1, qt−1)

][∏
i/∈J

Pi(z
t
i |zt−1)

]
.

The conditional probabilities σi(., .|., ., .) and Pi(.|.) are the ones defined in Section

3.3.1. Within the first square bracket of the above expression is the probability

that individuals in J have the expectations and strategies that zt specifies. No-

tice that individuals only make mistakes in the sense that their strategies are
12This assumption is not necessary. We can even allow for each individual i to draw strategies

based on different distributions. All our subsequent theorems hold. The only requirement is
that the distributions to randomly choose strategies are invariant across time.
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not rational with respect to their expectations. However, they do not invent new

expectations without a foundation. The function σi(., .|., ., .) requires every indi-

vidual to either update expectations based on the strategy profiles st−1, or have the

same expectations as the ones in the previous period (depending on the updating

mode).

Let P ε(zt, zt−1) denote the probability of transiting from zt−1 in period t−1 to

zt in period t. Summing over different subsets of individuals who make mistakes,

we obtain:

P ε(zt, zt−1) = (1− ε)nP 0(zt, zt−1) +
∑

J⊂N,J 6=∅

(ε)|J | (1− ε)n−|J |Q(zt, zt−1, J).

P 0(zt, zt−1) is transition probability under the unperturbed adaptive dynamic. We

call P ε with ε > 0 the perturbed dynamic. P ε is also a finite Markov process

with Z as state space.

Observe from the expression of P ε(zt, zt−1) that, as the probability of making a

mistake ε goes to zero, the second term on the right-hand side goes to zero. Hence,

P ε converges to P 0 as ε goes to zero. However, there is a qualitative difference

between the unperturbed dynamic P 0 and the perturbed one P ε with ε > 0. That

is, under the unperturbed dynamic, once the society falls into a strict equilibrium

of the stage game, it locks in that state. In contrast, under the perturbed dynamic,

there is always a positive probability of the society transiting from any state to

any another one within finite periods.13 Hence, even if a norm—i.e., a strict

equilibrium of the stage game—is established in the society, there is a positive

probability of escaping from it and tipping to another population state.

We shall characterize the most frequently visited population state by the dy-

namic P ε in the long run. When the probability of making a mistake ε is small, the

most frequent population state is called stochastically stable equilibrium (Young,

1993). Formally, let µε : Z → [0, 1] denote the stationary distribution of P ε with
13That is, with ε > 0, P ε is a finite, irreducible Markov process.
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ε > 0.14 A unique stationary distribution exists for all finite irreducible Markov

processes. Hence µε is well-defined.

Definition. The population state z ∈ Z is a stochastically stable equilibrium

(SSE) if

lim
ε→0

µε(z) = 0.

3.4.2 Selection of norms in the long run

I characterize SSE in this subsection. Building on Young (1993), I show that, for

small ε, which equilibrium—zC or zD—is the most frequent state visited by P ε in

the long run is determined by the numbers of mistakes required to leave B(zC)

and B(zD), the basins of attraction of P 0. The reason is that, once reaching

zC or zD, the only way that the population transits to another equilibrium is

to have individuals making enough number of mistakes to escape from the basin

of attraction of the established equilibrium. When ε is small, mistakes are rare

events. Hence, once reaching zC or zD, the population will stay within the basin of

attraction of the established equilibrium for a very long span of time. The number

of mistakes required to escape from B(zC) compared with the number of mistakes

required to escape B(zD) then determines which equilibrium is the most frequent

one in an infinite span of time.

Now, let R(zC) denote the minimum number of mistakes required to escape

from B(zC), given that the dynamic P ε starts from zC . Analogously, let R(zD) be

the minimum number of mistakes required to escape from B(zD), given that the

dynamic P ε starts from zD. For a real number v, dve denotes the smallest integer

equal to or greater than v. We have the following lemma about R(zC) and R(zD).

Lemma 3.1. Consider the unperturbed adaptive dynamic P 0 with sample size m.

14P ε is actually a transition probability matrix with dimension |Z|× |Z|. Its element P ε(z
′
, z)

specifies the probability of transiting from state z to state z′, with z, z′ ∈ Z. Let [P ε]T denote
the T th power of the matrix P ε. Let v ∈ R|Z|+ be |Z|-dimentional probability distribution vector
such that its elements sum to 1. Then the stationary distribution of P ε can be defined by
µε ≡ limT→∞[P ε]T v.
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1. R(zD) = dmmin{π, ϕ}e.

2. R(zC) = dmmin{1− π, 1− ϕ}e.

If R(zC) > R(zD), then it is more difficult to leave B(zC) than to leave B(zD),

and thus zC is the unique SSE. Conversely, if R(zC) < R(zD), then zD is the

unique SSE. This leads to the following theorem, which characterizes SSE for all

generic cases.

Theorem 3.2. Consider the adaptive dynamic P ε with sample size m. Consider

the generic cases with dϕme 6= d(1− π)me and dπme 6= d(1− ϕ)me.

1. If 1− π < ϕ, then zD is the unique SSE.

2. If 1− π > ϕ, then zC is the unique SSE.

Remark. If dϕme = d(1 − π)me and dπme = d(1 − ϕ)me, then both zD and zC

are SSEs, and no other SSE exists.

The theorem says that, if the sum of the two thresholds, π+ϕ, is greater than 1,

then the unique stochastically stable equilibrium is the defection equilibrium zD.

In this equilibrium, each i ∈ N defects and does not punish defectors. Moreover,

each i ∈ N holds the expectations qi = 0 and pi = 0, i.e., everyone expects

everyone else to defect and not punish defectors. By contrast, if the sum of π and

ϕ is less than 1, then the unique stochastically stable equilibrium is the cooperation

equilibrium zC . In this equilibrium, everyone cooperates and punishes defectors,

as well as expecting all others to cooperate and punish defectors. This comparative

static result is not surprising. Recall that π is the threshold such that, if i expects

the proportion of cooperators is greater than π, i punishes defectors. ϕ is the

threshold such that, if i expects the proportion of punishers in greater than pi,

i cooperates. The formulas for the two thresholds are given by equations (3.3)

and (3.4). It is both intuitive and following from our previous characterization of

basins of attraction (Proposition 3.2) that lower values of the two thresholds favor

the emergence and persistence of the cooperation equilibrium.
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Nevertheless, the above theorem makes a new observation: the technologies

that shape π and the technologies that shape ϕ are perfect substitutes. It does

not require that the values of π and ϕ are both low enough; it is sufficient to have

the sum of them being low enough.

Expressing the condition in terms of underlying parameters, we obtain

[
1 +

1

λ(ā− a)

]
b− b
b̄− b

+
ā− a
ā− a

< 1.

This leads to the following comparative statics. The social norm of cooperation

tends to emerge and persist in the long run if the resentment parameter λ is large,

the loss of meeting a defector b̄ − b is large, punishment cost b − b is small, the

damage of punishment ā− a is large, or, the temptation to defect ā− a is small.

The observation that the cooperation equilibrium can ever be stochastically

stable is not trivial. Consider instead the popular cultural evolution model based

on simple conformity (Boyd and Richerson, 1985; Henrich and Boyd, 1998, 2001).

Simple conformity means that individuals have a tendency to adopt the strat-

egy that is most frequently used in the population. If material incentives favor

a different strategy from the most frequently used strategy, then individuals face

trade-offs between material incentives and conformity (Henrich and Boyd, 2001).

This model is often seen as a legitimate reduced-form model of social norms trans-

mission: it abstracts away specific psychology and emotions that are considered

important in sustaining social norms. Instead, it models individuals as machines

programmed to put decision weights on popular cultural traits. However, sim-

ple conformity implies that the the defection equilibrium is always the unique

SSE, regardless of the strength of conformity. The reason is that conformity loses

its power when half of population cooperate while the other half defect. In this

case, material incentives dictate choices of individuals in favor of defection and no

punishment. As a result, the defection equilibrium always has a larger basin of

attraction than the cooperation equilibrium.15

15More precisely, the defection equilibrium is always the unique 1
2−dominant equilibrium (El-
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Hence, the conformity model leads to a qualitatively different conclusion from

the one reached by our model that takes explicitly the psychology of norm-based

resentment into account. The difference suggests that, if a researcher does believe

that “Social norms have a grip on the mind that is due to the strong emotions

they can trigger” (Elster, 1989, p. 99-100), then he should model these emotions

explicitly rather than relying on the conformity model, for they generally make

different predictions. In The Grammar of Society, Bicchieri (2006) argues that an

essential component of social norms is individuals’ normative expectations, possibly

with sanctions, such that they expect other people to expect them to conform to

certain behavior. In other words, to show the existence of a social norm, it is

not sufficient to observe that individuals have the preferences to conform to what

others do. We must also show that individuals expect others to expect them to

behave in a certain way. If they fail to fulfill such expectations of others, they

are sanctioned, or suffer from negative social emotions such as shame and guilt

as Elster (1989) emphasizes. According to Wrong (1961), the idea that sanctions

and social emotions are essential in sustaining social orders at least dates back

to Durkheim. However, these authors emphasize the importance of sanctions and

social emotions as a fact. They have not yet shown why sanctions and social

emotions are important. Bicchieri shows that the presence of sanctions and social

emotions transform a prisoner’s dilemma game into a coordination game and,

thereby, make cooperation among unrelated individuals possible. However, simple

conformity would do the job. Why guilt, shame, and sanctions? Here I show that

sanctions and social emotions matter because they lead to qualitatively different

long-run dynamics from that of simple conformity.

lison (2000)): suppose that half of the population defect and do not punish defectors; then the
best-response of everyone is to defect and leave the defectors unpunished. By Ellison (2000), a
1
2−dominant equilibrium is a SSE.
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3.5 Local interactions and mobility

This section examines i) local interactions, i.e., each individual only interacts

with a small subset of others in the population, and ii) the effects of mobility. By

conducting a series of experiments in 15 diverse societies around the world, Henrich

et al. (2010) show that individuals exhibit stronger tendency for cooperation and

are more willing to punish selfish behaviors in large societies with higher degree of

market integration. This section aims at providing a stylized analysis to Henrich

et al. (2010)’s findings by examining the long-run evolution of societies. I show

that the ability to vote with feet is critical in understanding the relationships

between cooperation and community size. An interesting observation is that it

may not be the case that the larger size of a society leads to a higher level of

cooperation. Instead, that a society is larger may be due to the emergence of

cooperative norms in the society.

3.5.1 Local interactions

i j

Figure 3.4: Local interactions

Figure 3.5: The updating procedure under local interactions.

For tractability, I follow Ellison (2000) and consider the following local interaction

structure. Let individuals in N locate at the vertexes of a two-dimentional lattice

on the surface of a torus (see Figure 3.4). Let n1 and n2 be two integers no less than
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three. Let Ñ = {1, 2, . . . , n1} × {1, 2, . . . , n2} be a discrete coordinate system to

indicate the vertexes of the lattice. Each coordinate pair i = (l, k) ∈ Ñ represents

an individual in the population. Two individuals i, j ∈ Ñ are neighbors if the

distance between them is exactly one:

1. |i− j| = 1, or

2. i = (k, `) and j = (k′, `′) are such that k = 1, k′ = n1 and ` = `′, or

3. i = (k, `) and j = (k′, `′) are such that ` = 1, `′ = n2 and k = k′.

Hence, each individual has exactly four neighbors. Every individual in Ñ only

observes and react to the strategies of his four neighbors. Let Ni ⊂ Ñ denote the

set of i’s four neighbors. The adaptive dynamics P 0 and P ε in local interac-

tions are such that, when forming estimates about the proportions of cooperators

and punishers at the current period, each i ∈ Ñ pays attention precisely to her

neighbors. That is, for each t ≥ 1 and i ∈ Ñ , we have

q̂ti =
1

4

∑
j∈Ni

xt−1
j , p̂ti =

1

4

∑
j∈Ni

yt−1
j .

Now, I characterize SSE under local interactions. As shown by the graph on

the right of Figure 3.6, when π + ϕ is sufficiently small, the unique SSE is the

cooperation equilibrium zC in which each i ∈ Ñ cooperates and punishes defects

and expect everyone else to do so. By contrast, when π+ϕ is sufficiently large, the

unique SSE is the defection equilibrium zD in which each i ∈ Ñ defects and does

not punish defectors and expect everyone else to defect and not punish defectors.

The white squares on the line π + ϕ = 1 in the graph are non-generic cases. The

non-generic cases occupy a non-negligible area; this is due to the integer issue

arising from that q̂ti and p̂ti can only take values from {0, 1
4
, 2

4
,3
4
, 1}.

Theorem 3.3. Consider the adaptive dynamics in local interactions. Consider

the cases with d4ϕe 6= d4(1− π)e and d4πe 6= d4(1− ϕ)e.

1. If 1− π < ϕ, then zD is the unique SSE.
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Figure 3.6: Global interactions (on the left) versus local interactions (on the right).

2. If 1− π > ϕ, then zC is the unique SSE.

Remark. The white spare areas (excluding broundaries) in the right-graph of Fig-

ure 3.6 are the cases with d4ϕe = d4(1 − π)e and d4πe = d4(1 − ϕ)e. If the

combination of π and ϕ falls into these areas, then either i) both sC and sD are

SSEs, or ii) neither of them is a SSE.

In previous sections, I investigate the dynamics in which, at each period, each

individual has a positive chance of drawing any another individual’s strategy into

her sample to form estimates q̂ti and p̂ti. To compare with local interactions, I

call the dynamics examined in previous sections adaptive dynamics in global

interactions. Figure 3.6 illustrates the SSE under global interactions with the

graph on the left, alongside the case of local interactions on the right. The com-

parison reveals that whether the dynamic with norm-based resentment selects

the cooperation equilibrium zC or the defection equilibrium zD is independent of

whether interactions are local or global.

In what follows, I argue that the dynamics under norm-based resentment helps

explain recent cross-cultural studies (Henrich et al., 2010) and network experi-

ments (Cassar, 2007; Gracia-Lázaro et al., 2012; Grujic et al., 2010; Kirchkamp

and Nagel, 2007; Rand et al., 2011; Suri andWatts, 2011; Traulsen et al., 2010) that
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are difficult to explain by previous evolutionary models of cooperation (Abramson

and Kuperman, 2001; Eshel et al., 1998; Nowak and May, 1992; Nowak et al.,

2010; Ohtsuki, 2006; Santos and Pacheco, 2005; Szabó and Fáth, 2007). Henrich

et al. (2010) show that egalitarian behavior, corresponding to choosing coopera-

tion in our model, is positively correlated with the degree of market integration of

a society (measured as the percentage of food obtained from market transactions).

Moreover, punishment of defectors covaries positively with community size across

societies. Henrich et al. (2010)’s study includes 15 diverse societies around the

world, covering small-scale societies as well as large, modern ones. When com-

paring small-scale societies with large, modern ones, two things change. First, in

small-scale societies, interactions are restricted to relatives and small neighbor-

hoods, corresponding to the local interactions structure I examine. In contrast,

anonymous, long distant interactions feature many market transactions in large

societies, corresponding to the global interactions structure I examine. Second,

in small-scale societies, people interact mostly with their relatives: neighborhoods

are fixed there. In contrast, in large modern societies people choose where to live

and who to be their friends: neighborhoods are formed endogenously.

Previous evolutionary theories of cooperation often assume the behavioral rule

of imitating the best, i.e., people imitate the behavior of those earning higher ma-

terial payoffs. However, imitating the best implies that cooperation should thrive

and only thrive when interactions are local and fixed (Abramson and Kuperman,

2001; Eshel et al., 1998; Nowak and May, 1992; Nowak et al., 2010; Ohtsuki,

2006; Santos and Pacheco, 2005; Szabó and Fáth, 2007). The reason is that local

interactions allow cooperative behavioral types to form clusters and earn higher

material payoffs. Their behavior are then imitated by others, leading to high

level of cooperation. However, in global interactions, defectors can always exploit

cooperators. Also, for one-shot anonymous interactions, it is difficult to identify

who are the punishers and who are not. Hence, it is difficult, if not impossible,

to justify punishment of defectors under global interactions in term of material
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payoffs.

In contrast, the dynamics under norm-based resentment provide a better ex-

planation to Henrich et al. (2010)’s findings. First, our theorems show that, if

individuals are motivated by norm-based resentment, then whether interactions

are local or global does not affect the selection of cooperation or defection. Re-

cent controlled experiments confirm this prediction (Cassar, 2007; Gracia-Lázaro

et al., 2012; Grujic et al., 2010; Kirchkamp and Nagel, 2007; Rand et al., 2011;

Suri and Watts, 2011; Traulsen et al., 2010). For example, in Grujic et al. (2010)’s

experiment, participants are located on the same lattice structure as the one I

examine. In one treatment, participants play a prisoner’s dilemma game with

neighbors in the lattice. In another, neighbors are randomly reallocated for each

round. The experiment shows that the cooperation level is not distinguishable be-

tween the two treatments, suggesting that the lattice structure does not influence

cooperation. Rand et al. (2011) consider more arbitrary networks and examine

three treatment conditions: random-link condition (the network is randomly re-

generated for each round), fixed-link condition (the network is fixed during the

experiment), and endogenous-link condition (participants can rewire links). They

find that cooperation decays over time in both the random-link condition and in

the fixed-link condition, and average cooperation level is not statistically different

between the two conditions. However, if participants can frequently rewire links,

then cooperation persists at a high level. The pattern is clear: whether interac-

tions are local or global does not matter, but whether neighborhoods are fixed or

formed endogenously matters—the ability to vote with feet matters.

3.5.2 Mobility

We now extend the model to explore the ability to migrate to different societies.

Let the total population N consist of 2n individuals. Index time periods by t =

0, 1, 2, . . .. For simplicity, consider two societies, 1 and 2, that individuals can
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choose to live in.16 Let pti` denote individual i’s expectation of the proportion of

punishers in society ` = 1, 2 in period t. Likewise, let qti` denote individual i’s

expectation of the proportion of cooperators in society ` = 1, 2 in period t. Let

xti ∈ {0, 1} denote whether i cooperates and yti ∈ {0, 1} denote whether i punishes

defectors in period t.

At the beginning of each period, some individuals are randomly selected to

have the opportunity to choose which society to live for the current period. The

timeline of events within each period t is as follows:

1. 2m individuals are randomly selected to have the opportunity to choose

which society to live in for the current period, withm < n. The rest 2(n−m)

individuals are randomly and equally divided into the two societies.17 Hence,

at each period, each society has at least n −m individuals (assume n −m

is an even integer). The ratio m
n

reflects the degree of freedom of mobility.

Let N t
` ⊂ N be the set of individuals in society ` in period t.

2. Based on each individual i’s expectations on the proportion of cooperators

and punishers in her society, pti` and qti`, i chooses actions xi and yi according

to behavioral rule (3.5) supported by norm-based resentment.

3. For each i ∈ N and ` = 1, 2, each of the following expectation-updating

events occurs with positive probability: 1) qt+1
i` = qti` and pt+1

i` = pti`, 2)

qt+1
i` = qti` and p

t+1
i` = 1

N`

∑
j∈N` y

t
j, 3) q

t+1
i` = 1

N`

∑
j∈N` x

t
j and p

t+1
i` = pti`, and

4) qt+1
i` = 1

N`

∑
j∈N` x

t
j and p

t+1
i` = 1

N`

∑
j∈N` y

t
j.

How each individual chooses where to live is determined as follows. At the be-

ginning of each period, each i calculates her expected material payoffs for each

society based on the expectations pti` and qti` about the society and the actions

that she anticipates to take. Upon having the opportunity to move, each i chooses
16The argument extends to the case of more societies without extra efforts.
17That we do not allow all individuals to choose the societies to migrate is because, in that

case, a society may end up with zero population and thus a norm of that society is not well
defined. An alternative assumption to prevent this is to have a upper bound n̄ on the size of
each society, with n̄ < n.
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to live in the society with higher expected material payoffs. If i has the same

expected material payoffs for both societies, she randomly chooses a society, with

each society chosen with positive probability. All random events are independent

across individuals and time.

We call the dynamic specified above unperturbed adaptive dynamic P 0

with mobility of degree m. We define the associated perturbed adaptive

dynamic P ε with mobility of degree m as follows: at each period, with

probability ε > 0, an individual takes cooperation and punishment actions that

are not consistent with their expectations.

The state variable of the dynamics with mobility is

z =
(

(xi), (yi), (pi`), (qi`), (N`)
)
.

Let Z denote the collection of all states with |N`| ≥ n−m, ` = 1, 2. Let Zd ⊂ Z

denote the subset of states such that, for each i ∈ N , we have xi = yi = 0 and

pi` = qi` = 0. Let Zc ⊂ Z denote the subset of states such that, for each i ∈ N ,

we have xi = yi = 1 and pi` = qi` = 1.

Moreover, let Z̃c1 ⊂ Z denote the subset of states such that: society 1 is larger,

consisting of n + m individuals, whereas society 2 is smaller, consisting of n−m

individuals; in society 1, each i has xi = yi = 1 and pi` = qi` = 1; in society 2,

each i has xi = yi = 0 and pi` = qi` = 0. Let Z̃c2 ⊂ Z denote the subset of states

with the same pattern but society 2 is larger: society 1 has n − m individuals,

whereas society 2 has n + m individuals; in society 1, each i has xi = yi = 0

and pi` = qi` = 0; in society 2, each i has xi = yi = 1 and pi` = qi` = 1. In

other words, for a state in Z̃c1 or in Z̃c2, one society is larger than the other. The

cooperation norm prevails in the larger society, while the defection norm prevails

in the smaller one. The greater the degree of mobility m, the greater the size of

the society where the cooperation norm prevails.

I assume that the outcome of cooperation generates higher aggregate efficiency

than the outcome of defection and no punishment:
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Assumption 3.3. a+ b̄ > ā+ b.

The above assumption is used and only used in proving the following theorem.

Theorem 3.4. Consider the adaptive dynamics with mobility of degree m. Con-

sider the generic cases with dϕ(n −m)e 6= d(1 − π)(n −m)e and dπ(n −m)e 6=

d(1− ϕ)(n−m)e.

1. If 1− π > ϕ, then SSEs are states in Zc.

2. If 1− π < ϕ < 1− π + m
n

(1− |π − ϕ|), then SSEs are states in Z̃c1 ∪ Z̃c2.

3. If ϕ > 1− π + m
n

(1− |π − ϕ|), then SSEs are states in Zd.

The above theorem shows that mobility has two effects: the migration effect in

the intermediate run, leading to larger cooperation societies in states in Z̃c1∪ Z̃c2;

and the norm selection effect in the long run, increasing the chance of states in

Z̃c1 ∪ Z̃c2 being stochastically stable. First, consider the migration effect in the

intermediate run. Suppose that we have the cooperation norm in one society and

the defection norm in the other. Since the cooperation norm is more efficient,

everyone who has a chance to move migrates to the society where the coopera-

tion norm prevails. Hence, the society with the cooperation norm becomes larger.

Moreover, the greater the degree of mobility m, the greater the size of the so-

ciety with the cooperation norm. What is critical in the above argument is the

fitting-in effect generated by norm-based resentment, namely, when migrating

to a society, individuals adjust their behavior to make sure that it is compatible

with the prevailing norms in the society.

Now consider the long-run effect. Which equilibrium—cooperation or defec-

tion—is more likely to emerge and persist in the long run depends on the difficulty

of transitions from states in Zd to states in Z̃c1 ∪ Z̃c2 and Zc, relative to tran-

sitions in the opposite direction. The above theorem shows that the greater the

degree of mobility m, the more difficult are transitions from Z̃c1 ∪ Z̃c2 to Zd, and

the easier are transitions from Zd to Z̃c1 ∪ Z̃c2. Hence, mobility favors the emer-

gence and the persistence of the cooperation norm. The intuition is as follows.
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Consider transitions from Zd to Z̃c1 ∪ Z̃c2, corresponding to the emergence of the

cooperation norm. For the norm of cooperation to emerge in a society, we need

enough individuals to cooperate or punish defectors. When the norm of defection

prevails, these events only occur in the form of mistakes. Hence, the easiest way

to escape from Zd is to wait until a society becomes smaller, so that we need less

mistakes for the norm of cooperation to emerge in the society. Once this is done,

the migration effect in the intermediate run automatically takes place, leading to

a state in Z̃c1 ∪ Z̃c2. The size of the smallest possible society is n − m. Hence,

the greater the degree of mobility m, the easier transitions from Zd to Z̃c1 ∪ Z̃c2.

Next, consider transitions from Z̃c1 ∪ Z̃c2 to Zd, whose difficulty determines the

persistence of the cooperation norm. For a transition from Z̃c1 ∪ Z̃c2 to Zd to

occur, we need enough proportion of individuals in the society where the norm of

cooperation initially prevails to make mistakes. The greater the degree of mobility

m, the larger the society where the cooperation norm prevails, and thus the more

mistakes are required for the transition to take place.

Finally, let me compare the adaptive dynamics with norm-based resentment

with a dynamic of imitating the best. Observe that the fitting-in effect is missing

in a dynamic of imitating the best. As a result, a dynamic of imitating the best

cannot explain why mobility matters for the emergence and persistence of coop-

eration. To see this, suppose initially that the cooperation norm prevails in one

society and the defection norm prevails in the other. Since the cooperation norm

is more efficient, individuals migrate to the society where everyone cooperates.

However, individuals soon discover that choosing not to punish defectors leads to

a material payoff at least as good as punishing defectors, and it would be strictly

better if there indeed are defectors. Hence, as shown by Home et al. (2006)’s sim-

ulation, the population drifts to a state where no individual punishes defectors.

As a result, defectors obtain higher material payoffs than cooperators. Defection

is then imitated and spreads. Eventually, everyone defects and no one punishes

defectors in the whole population. Hence, defection prevails under a dynamic of
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imitating the best regardless of whether mobility is possible.

3.6 Law enforcement and cooperative norms

This section extends the basic model in another dimension in order to analyze the

interplay between law enforcement and cooperative norms. Using public goods

game experiments, Herrmann et al. (2008) show that individuals behave more

cooperative in societies with better law enforcement. Using survey data, Tabellini

(2008) also find positive relationships between quality of formal institutions and

individuals’ cooperative attitudes.

First, I model law enforcement as an exogenous central monitor who conducts

punishment towards defectors independently of the decentralized punishment sup-

ported by norm-based resentment. Such centralized punishment reduces individ-

uals’ temptation to defect and thus help cooperative norms emerge and persist in

the long run. In the second step, I endogenize the quality of law enforcement by

exploiting the fact that shirking or corruption of the central monitor is an instance

of defection behaviors against the common interests of the public.

3.6.1 Exogenous law enforcement

Consider the following law enforcement of cooperation implemented by a central

monitor. If an individual defects, the central monitor detects her defection with

probability δ > 0. If detected, the defector pays a fine v > 0. Law enforcement is

independent of the decentralized punishment conducted by matched individuals.

As Figure 3.7 shows, if an individual defects and the matched second-mover does

not punish the defector, then the defector’s expected payoffs are ā − δv. If the

matched second-mover punishes the defector, the defector’s expected payoffs are

a− δv.
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1

a, b̄

cooperate

2

a− δv, b

punish

ā− δv, b

not punish

defect

Figure 3.7: The stage game with law enforcement.

Applying our previous analysis of the stage game in Section 3.2.1, we obtain

the threshold proportion of cooperators to activate decentralized punishment of

defectors:

π =

[
1 +

1

λ(ā− a)

]
b− b
b̄− b

,

which is the same threshold (3.3) without law enforcement. Hence, law enforce-

ment does not affect the threshold proportion of cooperators to activate pun-

ishment of defectors. However, the threshold proportion of punishers to deter

defectors becomes
ā− a− δv
ā− a

= ϕ− δv

ā− a
,

where ϕ = ā−a
ā−a is the threshold (3.4) without law enforcement. Therefore, law

enforcement lowers the threshold proportion of punishers to deter defectors. We

thus have the following result, which is a corollary of Theorem 3.2.

Theorem 3.5. Consider the adaptive dynamics with sample size m in global inter-

actions with law enforcement. Let π and ϕ be the thresholds defined by (3.3) and

(3.4), corresponding to the case without law enforcement. Consider the generic

cases with d(ϕ− δv
ā−a)me 6= d(1− π)me and dπme 6= d(1− ϕ+ δv

ā−a)me.

1. If (1− π) + δv
ā−a < ϕ, then zD is the unique SSE.

2. If (1− π) + δv
ā−a > ϕ, then zC is the unique SSE.

In the inequality conditions of the above theorem, ϕ is the threshold proportion

of punishers to deter defectors when there is no law enforcement; it measures
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the temptation to defect. 1 − π is the maximum proportion of defectors in the

population that individuals still think the norm of cooperation exists and are

willing to punish defectors; it measures the strength of norm-based resentment to

sustain cooperation. δv
ā−a measures the strength of law enforcement of cooperation.

The theorem says that, if the combining force of norm-based resentment and law

enforcement is strong enough, then the cooperation equilibrium is the unique SSE.

Hence, law enforcement improves the chance of the norm of cooperation to emerge

and persist in the long run.

3.6.2 Endogenous law enforcement

The central monitoring institute that enforces laws itself consists of humans. They

might shirk or be involved in corruption. Although difficult to establish causality

in empirical studies (Gächter and Schulz, 2016; Herrmann et al., 2008; Tabellini,

2008), it is hard to believe that the influences between centralized law enforcement

and decentralized social norms only go in one direction. I examine how they might

co-evolve in this subsection.

Suppose that the central monitor can choose whether to shirk. Shirking reduce

δ, the probability of the central monitor detecting defectors. For an average indi-

vidual i in the population, pi is i’s expectation of the proportion of punishers in

the population. i also has an expectation on δ. I assume that i’s expectation on

the probability of the central monitor detecting defectors, δ(pi), is increasing in pi,

with δ(0) = δ and δ(1) = δ̄ > δ. The idea is that, when individual i assesses the

probability of detecting defectors, i reasons as follows: when the monitor chooses

whether or not to shirk, others consider the monitor as facing the same choice

between cooperation and defection as in the stage game: the monitor could have

chosen an action (not shirking) that contributes to the public good and benefits

others. Hence, i expects that, the more individuals punish defectors in the pop-

ulation, the more individuals punish the central monitor if the monitor shirks.

Therefore, if i expects a higher proportion of individuals who punish defectors,
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then i would also expect a higher probability of the central monitor enforcing the

law and detecting defectors.

Let ϕ̃ ∈ [0, 1] denote the expected proportion of punishers that makes i indif-

ferent between cooperation and defection. We have

a = ϕ̃a+ (1− ϕ̃)ā− δ(ϕ̃)v. (3.9)

If pi > ϕ̃, i cooperates. If pi < ϕ̃, i defects. In particular, ϕ̃ = ϕ̃(v) is decreasing

in v, the fine that a detected defector needs to pay. Think of v as punishment

terms written in laws, and δ as the quality of law enforcement. The observation

is that, when the quality of law enforcement is endogenous, laws might or might

not be executed. However, laws still matter. The reason is that, controlling

for decentralized punishment towards defectors (pi), a higher v does increase the

threat to defectors. Thus, it effectively lowers ϕ̃(v), the barrier of the population

tipping to the cooperation equilibrium. Applying Theorem 3.1, we obtain the

following result.

Theorem 3.6. Consider the adaptive dynamics with sample size m in global in-

teractions with law enforcement. Let π be defined by (3.3) and ϕ̃(v) by (3.9).

Consider the generic cases with dϕ̃(v)me 6= d(1−π)me and dπme 6= d(1− ϕ̃(v)me.

1. If 1 − π < ϕ̃(v), then zD is the unique SSE in which the probability of

detecting defectors is δ.

2. If 1 − π > ϕ̃(v), then zC is the unique SSE in which the probability of

detecting defectors is δ̄.

The above theorem says that the terms in laws, v, are fundamentals that affect

the selection of social norms in the long run. The social norm then feeds back to

influence δ, the quality of law enforcement.
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3.7 Conclusion

In this chapter, I have examined the conditions under which cooperative norms

emerge and persist in the long run given norm-based resentment. I conclude by

providing a remark on the evolutionary foundation of norm-based resentment. As

Henrich and Boyd (1998) argue, due to the ability to generate multiple equilibria

and for group beneficial norms to emerge and spread, conformist bias is flexible and

adaptive. As a result, the conformist bias would maximize fitness in a changing

environment in the gene-culture co-evolution history of humans. However, in terms

of the ability to generate multiple equilibria, norm-based resentment is at least as

good as the conformist bias. Moreover, I show that norm-based resentment leads

to a population dynamic that is more adaptive to environmental changes than

the conformist bias. Altogether, norm-based resentment should perform strictly

better than the conformist bias in the evolution of humans. Exploring this idea

formally would be a task for future research.
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3.8 Appendix: proofs

Proof of Proposition 3.1

A strict equilibrium must involve only pure strategies. Hence, for any candidate

strategy profile to be a strict equilibrium, it includes at most four types of indi-

viduals. Define C,C−, D,D− ⊂ N as follows:

i) C = {i ∈ N |xi = 1, yi = 1},

ii) C− = {i ∈ N |xi = 1, yi = 0},

iii) D = {i ∈ N |xi = 0, yi = 0}, and

iv) D− = {i ∈ N |xi = 0, yi = 1}.

We use |A| to denote the number of elements in the finite set A. The proof

involves several steps.

Step 1: 0 < ϕ < 1 and π > 0.

To see 0 < ϕ < 1, recall a < a < ā. Hence, 0 < ā − a < ā − a. Therefore,

0 < ā−a
ā−a < 1. Since ϕ = ā−a

ā−a , the desired result follows.

To see that π > 0, observe

π =

[
1 +

1

λ(ā− a)

]
b− b
b̄− b

>
b− b
b̄− b

> 0,

since b < b < b̄.

Step 2: There is a strict equilibrium in which |D| = n.

In the strategy profile with |D| = n, we have pi = 0 and qi = 0 for each i ∈ N .

We have shown that ϕ > 0 and π > 0. Hence, we have pi < ϕ and qi < π for each

i ∈ N , and thus choosing xi = 0 and yi = 0 is sequentially rational, as desired.

Step 3: If π < 1, then there is a strict equilibrium in which |C| = n.

In the strategy profile with |C| = n, we have pi = 1 and qi = 1 for each i ∈ N .

Given the assumption π < 1, we have qi > π for each i ∈ N . We also have

pi = 1 > ϕ for each i ∈ N . Hence, choosing xi = 1 and yi = 1 is sequentially

rational, as desired.
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Step 4: If there is a strict equilibrium in which |D| ≥ 1, then we have |D| = n

in that equilibrium.

Consider a strict equilibrium in which |D| ≥ 1. Then, for i ∈ D, we have

pi < ϕ and qi < π. Moreover, pi and qi are consistent with the strategies of others:

pi =
|C|+ |D−|
n− 1

, qi =
|C|+ |C−|
n− 1

.

Now, suppose |C| ≥ 1. Then for j ∈ C we have

qj =
|C|+ |C−| − 1

n− 1
.

But then qj < qi < π. Hence, j would rather deviate to xj = 0. Therefore, the

supposition |C| ≥ 1 does not hold; we must have |C| = 0. Likewise, if |D−| ≥ 1,

then for j ∈ D− we have qj = |C|+|C−|
n−1

> π, which contradicts qi < π. Hence, we

must also have |D−| = 0. Finally, suppose |C−| ≥ 1. Then for j ∈ |C−| we have

pj = |C|+|D−|
n−1

> ϕ, which contradicts pi < ϕ. Thus |C−| = 0, as desired.

Step 5: If there is a strict equilibrium in which |C| ≥ 1, then we have |C| = n

in that equilibrium.

This can be analogously shown as Step 4.

Step 6: If ϕ + π ≥ n
n−1

or ϕ + π ≤ n−2
n−1

, then there is no strict equilibrium in

which |C−| ≥ 1 or |D−| ≥ 1.

Suppose |C−| ≥ 1 or |D−| ≥ 1. By Steps 4 and 5, this implies |C| = 0 and

|D| = 0. Now pick i ∈ C− and j ∈ D−. For their expectations to be consistent, it

requires

pi =
|D−|
n− 1

, qi =
|C−| − 1

n− 1
, pj =

|D−| − 1

n− 1
, qj =

|C−|
n− 1

.

For their strategies to be sequential rational, it requires pj < ϕ < pi and qi < π <
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qj. Moreover, given |C| = 0 and |D| = 0, we have |C−|+ |D−| = n. It follows that

n− 2

n− 1
< ϕ+ π <

n

n− 1
,

which is ruled out by the assumption that we either have ϕ+ π ≥ n
n−1

or ϕ+ π ≤
n−2
n−1

.

Proof of Theorem 3.1

We shall show that there is δ ∈ (0, 1] such that, with at least probability δ, the

dynamic P 0 transits from any population state zt ∈ Z to a population state in

{(sC , 1, 1), (sD, 0, 0)} within three periods. It follows that the probability of the

dynamic not converging to {(sC , 1, 1), (sD, 0, 0)} within three periods is at most

1−δ < 1. Hence, the probability of not converging to {(sC , 1, 1), (sD, 0, 0)} within

3k periods is at most (1− δ)k, which goes to zero as k goes to infinity.

Now I show that there exists such δ > 0 by explicitly showing a transition path

starting from an arbitrary state zt ∈ Z to either (sC , 1, 1) or (sD, 0, 0) within three

periods, and that this path occurs with positive probability. Let the population

state in period t be zt = (st, pt, qt) ∈ Z. At t + 1, let all individuals update their

expectations on the proportions of cooperators and punishers—i.e., qi and pi, and

they draw exactly the same samples (sti)i∈M from st. Then at t + 1, each i ∈ N

has the same qt+1
i and pt+1

i . This results in the same sequentially rational strategy

st+1
i for each i ∈ N . Since st+1

i = (xt+1
i , yt+1

i ) is the same for each i ∈ N , there

are only four cases: 1) xt+1
i = yt+1

i = 1 for each i ∈ N , corresponding to sC , 2)

xt+1
i = yt+1

i = 0 for each i ∈ N , corresponding to sD, 3) xt+1
i = 1 and yt+1

i = 0 for

each i ∈ N , and finally 4) xt+1
i = 0 and yt+1

i = 1 for each i ∈ N . If it falls into one

of the first two cases, let all individuals update their expectations at t+ 2. In the

case of st+1
i = sC , each i ∈ N will then have pt+2

i = qt+2
i = 1, and thus we obtain

zt+2 = (sC , 1, 1). In the case of st+1
i = sD, each i ∈ N will have pt+2

i = qt+2
i = 0.

Thus we obtain zt+2 = (sD, 0, 0), as desired.
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Next consider the case xt+1
i = 1 and yt+1

i = 0 for each i ∈ N . At t + 2,

let all individuals update but only update their expectation of the proportion of

punishers, so that we obtain pt+2
i = 0 and qt+2

i = qt+1
i for each i ∈ N ; this occurs

with positive probability. Conditional on this event, each i ∈ N at t + 2 defects,

i.e., xt+2
i = 0. Moreover, since yt+1

i = 0 is a best-response to qt+1
i , yt+2

i = 0 must

also be a best-response to qt+2
i for each i ∈ N . Thus, it occurs with positive

probability that we have xt+2
i = 0 and yt+2

i = 0 for each i ∈ N . At t + 3, let all

individuals update their expectations on the proportion of cooperators, so that we

obtain qt+3
i = 0. As a result, the dynamic reaches zt+3 = (sD, 0, 0).

Finally, consider the case xt+1
i = 0 and yt+1

i = 1 for each i ∈ N . Similar to

the last case, at t+ 2, let all individuals update but only update their expectation

of the proportion of punishers, so that we obtain pt+2
i = 1 and qt+2

i = qt+1
i for

each i ∈ N . Conditional on this event, each i ∈ N at t + 2 would cooperate, i.e.,

we have xt+2
i = 1 for each i ∈ N . Meanwhile, since yt+1

i = 1 is a best-response

to qt+1
i , yt+2

i = 1 must also be a best-response to qt+2
i for each i ∈ N . Thus,

it occurs with positive probability that we have xt+2
i = 1 and yt+2

i = 1 for each

i ∈ N . At t + 3, let all individuals update their expectations on the proportion

of cooperators. This results in qt+3
i = 1 and thus we obtain zt+3 = (sC , 1, 1) with

positive probability.

Observe that each step involved in the transition described above occurs with

positive probability. Hence there is δ > 0 such that, with at least probability δ, dy-

namic transits from any population state to a population in {(sC , 1, 1), (sD, 0, 0)}

within three periods, as I claim.

Proof of Proposition 3.2

Step 1: Let {zt}∞t=0 ⊂ Z be a sequence of random states by such that z0 ∈ Z

satisfies: a)
∑
x0
i < πm,

∑
y0
i < ϕm,

∑
1{p0

i ≥ ϕ} < πm and
∑

1{q0
i ≥

π} < ϕm , and b) for each t ≥ 1 we have Prob{zt|zt−1} = P 0(zt, zt−1). Then

Prob{limt→∞ z
t = zD} = 1.
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First, observe that, for each z0 ∈ Z that satisfies the specified conditions, there

is at least probability δ > 0 of having z1 = zD, namely, the transition from z0

to zD is completed within one period with positive probability. This is achieved

by requiring all individuals update their expectations—both pi and qi—at t = 1,

so that we have p1
i < ϕ and q1

i < π for each i ∈ N . Then, even if an individual

includes all cooperators and punishers in her sample, she would take actions x1
i = 0

and y1
i = 0 at t = 1. The event that all individuals update expectations occurs

with positive probability. Hence there exists δ > 0 such that z1 = zD occurs with

at least probability δ.

Next, I show that, if z0 satisfies the specified conditions, then z1 must also

satisfy the specified conditions. By induction, zt satisfies the specified conditions

for each t ≥ 1. First, let J = {i ∈ N |q0
i ≥ π}. Given

∑
x0
i < πm, if an individual

j ∈ N updates her expectation of the proportion of cooperators at t = 1, then she

has q1
j < π. Hence, if and only if j ∈ J and j does not update her expectation of

the proportion of cooperators, then we have q1
j ≥ π. Let dϕme denote the smallest

integer equal to or greater than ϕm. Since |J | < ϕm, the number of individuals

with q1
j ≥ π at t = 1 is at most dϕme−1, i..e,

∑
1{q1

i ≥ π} ≤ dϕme−1. Hence, we

at most have dϕme − 1 individuals who take y1
i = 1 at t = 1. Thus,

∑
y1
i < ϕm.

Similarly, given
∑
y0
i < ϕm, if an individual j ∈ N updates her expectation of

the proportion of punishers at t = 1, then she has p1
j < ϕ. Hence, we have p1

j ≥ ϕ

if and only if j is such that p0
j ≥ ϕ and j does not update her expectation of the

proportion of cooperators. Therefore, given
∑

1{p0
i ≥ ϕ} < πm, we must also

have
∑

1{p1
i ≥ ϕ} < πm at t = 1. Hence,

∑
x1
i < πm, as desired.

To conclude, starting any state z0 satisfying the specified conditions, we have

zt satisfying the specified conditions for all future periods. Meanwhile, there is

at least probability δ > 0 of transiting from a state zt satisfying the specified

conditions to zt+1 = zD within one period. Hence, the probability of not transiting

from z0 to zD within k periods is at most (1 − δ)k, which goes to zero as k goes

to infinity.
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Step 2: There is positive probability that the dynamic P 0 transits to zC within

four periods if one of the following conditions holds for the initial state z0: a)∑
x0
i ≥ πm, b)

∑
y0
i ≥ ϕm, c)

∑
1{p0

i ≥ ϕ} ≥ πm and d)
∑

1{q0
i ≥ π} ≥ ϕm.

Case 1: Let
∑
x0
i ≥ πm. Then at t = 1 let all individuals draw the exact

sample (s0
i )i∈M with M = {i ∈ N |x0

i = 1} and update their expectations. As a

result, we have q1
i =

∑
x0i
m
≥ π for each i ∈ N . Thus, each i ∈ N takes y1

i = 1 with

positive probability. At the next period, t = 2, let all individuals update their

expectation of the proportion of punishers but not about cooperators. We then

have p2
i = 1 and q2

i = q1
i ≥ π for each i ∈ N . Each individual then takes x2

i = 1

and y2
i = 1 with positive probability at t = 2. At t = 3, let all individuals update

their expectations on the proportions of cooperators as well as the punishers; we

obtain z3 = zC .

Case 2: Let
∑
y0
i ≥ ϕm. Similarly, at t = 1 let all individuals draw the exact

sample (s0
i )i∈M with M = {i ∈ N |y0

i = 1} and update their expectations. As a

result, we have p1
i =

∑
y0i
m
≥ ϕ for each i ∈ N . Thus, each i ∈ N takes x1

i = 1 with

positive probability. At the next period, t = 2, let all individuals update their

expectation of the proportion of cooperators but not about punishers. We then

have q2
i = 1 and p2

i = p1
i ≥ ϕ for each i ∈ N . Each individual then takes x2

i = 1

and y2
i = 1 with positive probability.

Case 3: Let
∑

1{p0
i ≥ ϕ} ≥ πm. At t = 1, let all individuals do not update

their expectation of the proportion of punishers, i.e., p1
i = p0

i for each i ∈ N .

Then at t = 1 we also have
∑

1{p1
i ≥ ϕ} ≥ πm. Since the individuals with

p1
i ≥ ϕ take x1

i = 1 with positive probability, it occurs with positive probability

that
∑
x1
i ≥ πm. But then, the argument for Case 1 applies, leading to z4 = zC

with positive probability.

Case 4: Let
∑

1{q0
i ≥ π} ≥ ϕm. Similarly to Case 3, let all individuals do not

update their expectation of the proportion of cooperators at t = 1, i.e., q1
i = q0

i

for each i ∈ N . Then at t = 1 we have
∑

1{q1
i ≥ π} ≥ ϕm. The individuals

with q1
i ≥ π take y1

i = 1 with positive probability. Hence, it occurs with positive
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probability that
∑
y1
i ≥ ϕm. But then, the argument for Case 2 applies, leading

to z4 = zC with positive probability.

Step 3: Let {zt}∞t=0 ⊂ Z be a sequence of random states by such that z0 ∈ Z

satisfies: a) n−
∑
xi < (1−π)m, n−

∑
yi < (1−ϕ)m,

∑
1{pi ≤ ϕ} < (1−π)m

and
∑

1{qi ≤ π} < (1 − ϕ)m, and b) for each t ≥ 1 we have Prob{zt|zt−1} =

P 0(zt, zt−1). Then Prob{limt→∞ z
t = zC} = 1.

The proof is completely analogous to the proof of Step 1, so omitted.

Step 4: There is positive probability that the dynamic P 0 transits to zD within

two periods if one of the following conditions holds for the initial state z0: a)

n−
∑
xi ≥ (1− π)m, b) n−

∑
yi ≥ (1− ϕ)m, c)

∑
1{pi ≤ ϕ} ≥ (1− π)m and

d)
∑

1{qi ≤ π} ≥ (1− ϕ)m.

The proof is completely analogous to the proof of Step 2, so omitted.

Proof of Lemma 3.1

Step 1: R(zD) = dmmin{π, ϕ}e.

Let the dynamic start from z0 = zD. By Proposition 3.2, to leave B(zD) we

need to either have a)
∑
xi ≥ πm or

∑
yi ≥ ϕm, or b)

∑
1{pi ≥ ϕ} ≥ πm or∑

1{qi ≥ π} ≥ ϕm. However, notice that it is not possible to have the latter

condition regarding the expectations before having the former condition regarding

the actions. To see this, suppose that we have the state in period t, for some t ≥ 1,

is such that
∑

1{pti ≥ ϕ} ≥ πm, and that, for each t′ < t, we have
∑
yt
′
i < ϕm.

Then, in period t − 1, we must have
∑

1{pt−1
i ≥ ϕ} ≥ πm or

∑
yt−1
i ≥ ϕm.

Since
∑
yt
′
i < ϕm for each t′ < t, we have

∑
1{pt−1

i ≥ ϕ} ≥ πm. But then, by

induction, we have
∑

1{pt′i ≥ ϕ} ≥ πm for each t′ < t. However, in the starting

period, we have z0 = zD so that
∑

1{p0
i ≥ ϕ} = 0, which is a contradiction.

Hence, our initial supposition does not hold. If we have
∑

1{pti ≥ ϕ} ≥ πm for

some t ≥ 1, then we must have
∑
yt
′
i ≥ ϕm for some t′ < t. Likewise, if we have∑

1{qti ≥ π} ≥ ϕm for some t ≥ 1, then we must have
∑
xt
′
i ≥ πm for some

t′ < t. Hence, for a dynamic that starts from zD to leave B(zD), it must first
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require enough mistakes to have
∑
xi ≥ πm or

∑
yi ≥ ϕm. Before this is done,

we always have qi < π and pi < ϕ for each i ∈ N ; under these expectations, if

some i takes xi = 1 or yi = 1, she must be making a mistake. Hence, the shortest

path—the path involving the minimum number of mistakes—to leave B(zD) is to

make sufficient mistakes to have either
∑
xi ≥ πm or

∑
yi ≥ ϕm all at once, i.e.,

all mistakes occur in the period. It follows that, if π ≤ ϕ, then the shortest path to

leave B(zD) is to have dπme individuals to make mistakes and cooperate (xi = 1).

If π > ϕ, then the shortest path to leave B(zD) is to have dϕme individuals to

make mistakes and punish (yi = 1). Hence, R(zD) = dmmin{π, ϕ}e, as desired.

Step 2: R(zc) = dmmin{1− π, 1− ϕ}e.

Analogous to the proof of Step 1, so omitted.

Proof of Theorem 3.2

Preliminaries. To prove the statement, I apply a general result about stochas-

tic dynamics of Young (1993). We start by introducing new concepts. A recur-

rent class of a Markov process is a subset of states L ⊂ Z such that there is a

positive probability of transiting between any two states in L within finite periods,

but the probability of transiting from a state in L to a state outside of L is zero

within any finite periods. Theorem 3.1 implies that there are two and only two

absorbing states of P 0: the two strict equilibria of the stage game, and no other

recurrent class exists (otherwise it cannot be probability one of transiting from

any other state to the two strict equilibria within finite periods).

For a Markov process, a stochastic tree is a directed tree defined on the

collection of all recurrent classes of the process, which specifies how to transit

from all other recurrent classes to the recurrent class at the root of the tree.

Formally, let Ω be the collection of all recurrent classes of P 0. For a recurrent

class L of P 0, a L-tree t : Ω → Ω is such that t(L) = L, and that, for each

L′ ∈ Ω, L′ 6= L, there is a natural number k such that tk(L′) = L (where tk is the

kth functional power of t). For two recurrent classes L and L′, let c(L,L′) denote
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the minimum number of mistakes required for P ε to transit from L to L′. The

cost of a stochastic L-tree t is defined by

c(t) =
∑

L′∈Ω,L′ 6=L

c(L′, t(L′)).

Theorem (Young, 1993). A state z ∈ Z is stochastically stable if and only if it

is contained in a recurrent class L ∈ Ω such that there is a stochastic L-tree with

minimum cost among all stochastic trees defined on Ω.

In our context, there are two and only two recurrent classes of P 0: one contains

zC , and the other contains zD. Hence a stochastic tree of P 0 contains only two

vertexes, and there are only two stochastic trees. One stochastic tree is rooted

at zC , which consists of i) the state zC , ii) the state zD, and iii) a directed edge

weighted with the minimum number of mistakes required to transit from zD to

zC . The other stochastic tree is rooted at zD, which is obtained by reversing

the direction of the edge and weighting the edge with the minimum number of

mistakes to transit from zC to zD. Therefore, to identify the stochastic tree with

minimum resistance over all stochastic trees is simple in our setting. It is done by

comparing the minimum numbers of mistakes required to transit from one strict

equilibrium to the other. Observe that the minimum number of mistakes required

to transit from a strict equilibrium to the other is simply the minimum number of

mistakes required to leave the basin of attraction of the incumbent equilibrium.

Hence, we have the following lemma.

Lemma 3.2. If R(zC) > R(zD), then sC is the unique SSE. Conversely, if

R(zC) < R(zD), then zD is the unique SSE.

Proof. The statement follows from Young’s theorem and Theorem 3.1.

To establish theorem 3.2, what remains to show is the following:

Lemma 3.3. Consider the generic cases with dϕme 6= d(1 − π)me and dπme 6=

d(1− ϕ)me.
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1. If π + ϕ > 1, then dmin{π, ϕ}me > dmin{1− π, 1− ϕ}me.

2. If π + ϕ < 1, then dmin{π, ϕ}me < dmin{1− π, 1− ϕ}me.

Proof. Case 1: Let π ≥ ϕ. Then min{π, ϕ} = ϕ and min{1 − π, 1 − ϕ} = 1 − π.

In this case, suppose π + ϕ > 1. Then we have ϕm > (1− π)m and thus

dmin{π, ϕ}me = dϕme ≥ d(1− π)me = min{1− π, 1− ϕ}.

Since I consider the generic cases with dϕme 6= d(1−π)me, we obtain dmin{π, ϕ}me >

min{1 − π, 1 − ϕ}. Now suppose π + ϕ < 1. Then ϕm < (1 − π)m. Given

dϕme 6= d(1− π)me,

dmin{π, ϕ}me = dϕme < d(1− π)me = min{1− π, 1− ϕ}.

Case 2: Let π < ϕ. Then min{π, ϕ} = π and min{1 − π, 1 − ϕ} = 1 − ϕ. In

this case, suppose π + ϕ > 1. Then we have πm > (1 − ϕ)m. Combined with

dπme 6= d(1− ϕ)me, we obtain

dmin{π, ϕ}me = dπme > d(1− ϕ)me = min{1− π, 1− ϕ}.

Conversely, if π + ϕ < 1, then πm < (1− ϕ)m, and thus

dmin{π, ϕ}me = dπme < d(1− ϕ)me = min{1− π, 1− ϕ}.

Proof of Theorem 3.3

Preliminaries. To prove the statement, I apply Ellison’s theorem (2000, p. 30).

We introduce the notions of radius and coradius of a state.

Let (zt)∞t=0, with zt ∈ Z for each t ≥ 0, be a sample sequence of P ε with initial

state z0. Let γ = (z0, z1, . . . , zt) denote a path from state z0 to state zt. Let
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Γ(X, Y ) denote the set of all paths from X ⊂ Z to Y ⊂ Z, i.e.,

Γ(X, Y ) = {(z0, z1, . . . , zt)|z0 ∈ X, zt ∈ Y for some integer t ≥ 0}.

Let c(γ) denote the minimum number of mistakes that is required to go through

the path γ. We call c(γ) the cost of path γ.

Let L ⊂ Z be a subset of states. Let B(L) ⊂ Z be the basin of attraction of

L such that if P 0 starts from a state within B(L) then it converges almost surely

to states within L. Let integer R(L) denote the minimum number of mistakes

required to leave B(L). Following Ellison (2000), I call R(L) the radius of L.

More precisely, we have

R(L) = min
γ∈Γ(L,Z\B(L))

c(γ).

In words, R(L) is the minimum cost that is required to leave B(L). With abuse

of notation, if L is singleton containing only the state z ∈ Z, then I write R(z)

instead of R({z}).

For a path γ, let (L1, L2, . . . , LK) denote the sequence of recurrent classes of

P 0 through which the path passes consecutively. The modified cost of path γ

is defined by

c∗(γ) = c(γ)−
∑K−1

k=2 R(Lk).

Let c∗(z,B(L)) denote the modified cost of the path γ ∈ Γ({z}, B(L)) that has

minimum modified cost among all paths in Γ({z}, {z′}). The coradius of L is

defined by

CR(L) = max
z∈Z

c∗(z,B(L)).

If L is singleton containing only the state z ∈ S, I write CR(z).

The radius R(L) measures the difficulty of leaving B(L), whereas the coradius

CR(L) measures the difficulty of reaching B(L) from a state most distant from

B(L).
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Theorem (Ellison, 2000). If z ∈ Z is such that R(z) > CR(z), then z is the

unique SSE.

Now I apply the above result to prove our statement. We divide the proof into

a series of lemmas. We use the following notations in our proofs. We frequently

use the discrete coordinate system

Ñ = {1, 2, . . . , n1} × {1, 2, . . . , n2}

to refer to individuals in the population. Let ∆k(z) ⊂ Z denote the set of states

that can be transited from z in exactly k ≥ 1 period(s) with positive probability

under P 0, i.e., the transition involves no mistake. Also, define ∆0(z) = {z}.

For state z, let τ d1 (z) denote the minimum number of adjacent rows in the

lattice Ñ such that each individual i locating within these rows has qi < π, pi < ϕ

and xi = yi = 0. Let τ d2 (z) denote the minimum number of adjacent columns

such that each i within the columns has qi < π, pi < ϕ and xi = yi = 0. Define

τ d(z) = min{τ d1 (z), τ d2 (z)}. Also, let Λd(z) ⊂ Ñ denote the subset of individuals

who locate at the adjacent rows or columns as specified. More precisely, if τ d(z) =

0, let Λd(z) = ∅. If τ d(z) ≥ 1, we can always re-arrange the origin of the coordinate

system so that

Λd(z) = {1, . . . , τ d1 (z)} × {1, 2, . . . , n2}

∪ {1, 2, . . . , n1} × {1, . . . , τ d2 (z)}.

For each i ∈ Λd(z) we have qi < π, pi < ϕ and xi = yi = 0. Re-arrangement of the

origin is without loss of generality because vertexes are symmetric everywhere in

the local interactions structure I consider.

Analogously, let τ c1(z) denote the minimum number of adjacent rows such that

each i within these rows has qi > π, pi > ϕ and xi = yi = 1. And let τ c2(z) denote

the minimum number of adjacent columns such that each i within the columns

has qi > π and pi > ϕ and xi = yi = 1. Define τ c(z) = min{τ c1(z), τ c2(z)}. Let
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Λc(z) ⊂ Ñ denote the subset of individuals who locate at the adjacent rows or

columns and have qi > π, pi > ϕ and xi = yi = 1. If τ c(z) = 0, let Λc(z) = ∅. If

τ c(z) ≥ 1, we re-arrange the origin of the coordinate system so that

Λc(z) = {1, . . . , τ c1(z)} × {1, 2, . . . , n2}

∪ {1, 2, . . . , n1} × {1, . . . , τ c2(z)}.

Lemma 3.4. If one of the following holds then {z ∈ Z|τ d(z) ≥ 2} ⊂ B(zD):

1. π > 1
2
and ϕ > 1

2
;

2. π > 3
4
and ϕ > 1

4
;

3. π > 1
4
and ϕ > 3

4
.

Proof. Step 1: If z ∈ Z is such that τ d(z) ≥ 2, then τ d(z′) ≥ τ d(z) for each

z′ ∈ ∆t(z), t ≥ 1.

Let the dynamic P 0 start from z0 = (x0, y0, p0, q0) ∈ Z with τ d(z0) ≥ 2. Take

i ∈ Λd(z0). Then we have q0
i <

1
4
, p0

i <
1
4
,
∑

j∈Ni x
0
j ≤ 1, and

∑
j∈Ni y

0
j ≤ 1.

Let z1 = (x1, y1, p1, q1) ∈ ∆1(z0), i.e., z1 is a state in the next period that occurs

with positive probability under P 0. In the case where i does not update her

expectations, we have q1
i = q0

i <
1
4
and p1

i = p0
i <

1
4
. In the case where i update

her expectations, we have q1
i = 1

4

∑
j∈Ni x

0
j ≤ 1

4
and p1

i = 1
4

∑
j∈Ni y

0
j ≤ 1

4
. In

either case, given conditions π > 1
4
and ϕ > 1

4
, we have q1

i < π and p1
i < ϕ. Hence,

x1
i = y1

i = 0. i is an arbitrary individual taken from Λd(z0). We thus prove that

Λd(z0) ⊂ Λd(z1) and therefore τ d(z1) ≥ τ d(z0), for each z1 ∈ ∆1(z). By induction,

we have τ d(z′) ≥ τ d(z0) for each z′ ∈ ∆t(z0), t ≥ 1.

Step 2: Starting from z with τ d(z) ≥ 2, τ d1 (z) < n1 and τ d1 (z) < n2, there is a

positive integer t such that τ d(z′) > τ d(z) for some z′ ∈ ∆t(z).

There are three cases.

Case 1: π > 1
2
and ϕ > 1

2
. Let the initial state be z0 = (x0, y0, p0, q0) ∈ Z

with τ d(z0) ≥ 2, τ d1 (z) < n1 and τ d2 (z) < n2. Consider individual i = (τ d1 (z0) +
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1, τ d2 (z0) + 1). We have
∑

j∈Ni x
0
j ≤ 2, and

∑
j∈Ni y

0
j ≤ 2. Let i update ex-

pectations in the next period, so that her expectations in the next period are

p1
i = 1

4

∑
j∈Ni y

0
j ≤ 1

2
and q1

i = 1
4

∑
j∈Ni x

0
j ≤ 1

2
. We then have p1

i < ϕ and q1
i < π,

and thus x1
i = y1

i = 0. Hence, there is z1 ∈ ∆1(z0) such that we have p1
i < ϕ,

q1
i < π and x1

i = y1
i = 0 for i = (τ d1 (z0) + 1, τ d2 (z0) + 1). Now, consider integer k

with 0 ≤ k ≤ n1 − τ d1 (z0) − 1. Assume zk ∈ ∆k(z0) is such that pki < ϕ, qki < π

and xki = yki = 0 for i = (τ d1 (z0) + k + 1, τ d2 (z0) + 1). By the argument above,

there is zk+1 ∈ ∆1(zk) such that pk+1
i < ϕ, qk+1

i < π and xk+1
i = yk+1

i = 0 for

i = (τ d1 (z0) + k + 1, τ d2 (z0) + 1). This inductive argument implies that there is

zt = (xt, yt, pt, qt) ∈ ∆t(z0) for some integer t ≥ 0 such that pti < ϕ, qti < π and

xti = yti = 0 for each i ∈ {1, 2, . . . , n1} × {1, 2, . . . , τ d2 (z0) + 1}. By the same argu-

ment, starting from such state zt, there is zt+k = (xt+k, yt+k, pt+k, qt+k) ∈ ∆k(zt)

for some integer k ≥ 0 such that pt+ki < ϕ, qt+ki < π and xt+ki = yt+ki = 0 for each

i ∈ {1, 2, . . . , n1}×{1, 2, . . . , τ d2 (z0) + 2}. By induction, there is integer t ≥ 0 such

that for some zt = (xt, yt, pt, qt) ∈ ∆t(z0) we have pti < ϕ, qti < π and xti = yti = 0

for each i ∈ {1, 2, . . . , n1}×{1, 2, . . . , n2}; such state zt is the defection equilibrium

zD, as desired.

Case 2: π > 3
4
and ϕ > 1

4
. Let the initial state be z0 = (x0, y0, p0, q0) ∈ Z

with τ d(z0) ≥ 2, τ d1 (z) < n1 and τ d2 (z) < n2. Take i ∈ {1, 2, . . . , n1} × {τ d2 (z0) +

1}. We have
∑

j∈Ni x
0
j ≤ 3. Let i update expectations in the next period, so

that her expectation of the proportion of cooperators in the next period is q1
i =

1
4

∑
j∈Ni x

0
j ≤ 3

4
. We then have q1

i < π and thus y1
i = 0. Individual i is taken

arbitrarily from {1, 2, . . . , n1}×{τ d2 (z0)+1}. Hence, there is z1 = (x1, y1, p1, q1) ∈

∆1(z0) such that q1
i < π and y1

i = 0 for each i ∈ {1, 2, . . . , n1}×{τ d2 (z0) + 1}. But

then, for such z1 we also have
∑

j∈Ni y
1
j ≤ 1 for each i ∈ {1, 2, . . . , n1}×{τ d2 (z0)+1}.

Let all individuals at the (τ d2 (z0) + 1)th column update expectations in the next

period. We obtain p2
i ≤ 1

4
< ϕ and x2

i = 0, alongside q2
i < π and y2

i = 0, for each

i ∈ {1, 2, . . . , n1} × {τ d2 (z0) + 1}. We have just shown that there is z2 ∈ ∆2(z0)

such that for each i ∈ {1, 2, . . . , n1} × {1, 2, . . . , τ d2 (z0) + 1} we have p2
i < ϕ,
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q2
i < π and x2

i = y2
i = 0. By induction, there is integer t ≥ 0 such that there

is z2t = (x2t, y2t, p2t, q2t) ∈ ∆2t(z0) with p2t
i < ϕ, q2t

i < π and x2t
i = y2t

i = 0 for

each i ∈ {1, 2, . . . , n1} × {1, 2, . . . , n2}, reaching the defection equilibrium zD, as

desired.

Case 3: π > 1
4
and ϕ > 3

4
. The proof for this case is obtained from the proof

for Case 2 by replacing: π with ϕ, ϕ with π, x with y, y with x, p with q, and q

with p.

Lemma 3.5. Consider local interactions. If one of the following holds then

R(zD) ≥ dmin{n1, n2}/2e:

1. π > 1
2
and ϕ > 1

2
;

2. π > 3
4
and ϕ > 1

4
;

3. π > 1
4
and ϕ > 3

4
.

Proof. By lemma 3.4, {z ∈ Z|τ d(z) ≥ 2} ⊂ B(zD). It requires at least dmin{n1, n2}/2e

mistakes to transit from zD to a state z with τ d(z) < 2. Hence, R(zD) ≥

dmin{n1, n2}/2e.

Lemma 3.6. Consider local interactions. If π > 1
2
and ϕ > 1

2
, then CR(zD) ≤ 2.

Proof. Let z0 ∈ Z be an arbitrary initial state. We shall construct a path γ =

(z0, z1, . . . , zt) from z0 to zt with τ d(zt) ≥ 2 such that c∗(γ) ≤ 2, i.e., the modified

cost of the path is at most two. Hence, CR(zD) ≤ 2.

Step 1: Emergence of a local defection norm.

Let z0 be the initial state in period t = 0. Let each individual i ∈ {(1, 1), (2, 2)}

take x1
i = y1

i = 0 at t = 1. This event requires at most two mistakes. At

t = 2, let each individual i ∈ {(1, 2), (2, 1)} update expectations so that she has

p2
i = 1

4

∑
j∈Ni y

1
j ≤ 1

2
and q2

i = 1
4

∑
j∈Ni x

1
j ≤ 1

2
, and thus takes x2

i = y2
i = 0.

This event does not require mistakes. At t = 3, let each i ∈ {(1, 2), (2, 1)} do not

update expectations so that we have p3
i = p2

i < ϕ, q3
i = q2

i < π, x3
i = y3

i = 0.

Meanwhile, let each i ∈ {(1, 1), (2, 2)} update expectations so that she has p3
i =
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1
4

∑
j∈Ni y

2
j < ϕ and q3

i = 1
4

∑
j∈Ni x

2
j < π, and thus takes x3

i = y3
i = 0. This

event does not require mistakes. Hence, starting from any state z0, the minimum

number of mistakes to reach a state z3 in which each individual i in the 2-by-2

block {(1, 2), (2, 1), (1, 2), (2, 1)} holds p3
i < ϕ and q3

i < π and takes x3
i = y3

i = 0

is at most two.

Step 2: Expansion of the defection norm.

Let the initial state z0 be such that p0
i < ϕ, q0

i < π and x0
i = y0

i = 0 for each

individual i in the 2-by-2 block {(1, 2), (2, 1), (1, 2), (2, 1)}. Note that, for each

integer t ≥ 0 and z = (x, y, p, q) ∈ ∆t(z0), we have pi < ϕ, qi < π and xi = yi = 0

for each i ∈ {(1, 2), (2, 1), (1, 2), (2, 1)}. Now let the dynamic follow a path under

P 0, i.e., no mistake occurs, and transit to a recurrent class L1 ⊂ Z of P 0. Suppose

the dynamic reaches state zt = (xt, yt, pt, qt) ∈ L1 in period t ≥ 3. We have pti < ϕ,

qti < π and xti = yti = 0 for each i ∈ {(1, 2), (2, 1), (1, 2), (2, 1)}. Let zt+1 be the

state in the next period such that individual i = (3, 1) takes xt+1
i = yt+1

i = 0, while

all other individuals play rationally based on their expectations. This transition

requires at most one mistake. Then, for j = (3, 2), we have 1
4

∑
i∈Nj x

t+1
i ≤ 1

2
and

1
4

∑
i∈Nj y

t+1
i ≤ 1

2
. In the next period, let j = (3, 2) update expectations, leading

to qt+2
j < π and pt+2

j < ϕ, and thus xt+2
j = yt+2

j = 0. In the next period, t+ 3, let

individual (3, 1) update expectations while individual (3, 2) do not. Then for each

individual i ∈ {1, 2, 3} × {1, 2} we have pt+3
i < ϕ, qt+3

i < π and xt+3
i = yt+3

i = 0.

Note that R(L) ≥ 1 for any recurrent class L of P 0. Hence, the modified cost of

transiting from z0 to the specified state zt+3 is zero! This is because, to calculate

the modified cost of the transition, we need to extract R(L1) (which is at least 1)

from the minimum number of mistakes to reach zt+3 (which is at most 1).

By induction, we can construct a path (z0, . . . , zt, . . . , zt+k) to a state zt+k with

zero modified cost such that pt+ki < ϕ, qt+ki < π and xt+ki = yt+ki = 0 for each

i ∈ {1, 2, . . . , n1} × {1, 2}.
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By the same inductive argument, we can construct a path

(z0, . . . , zt, . . . , zt+k, . . . , zt+k+`)

to a state zt+k+` with zero modified cost such that pt+k+`
i < ϕ, qt+k+`

i < π and

xt+k+`
i = yt+k+`

i = 0 for each i in the set

Λd(zt+k+`) = {1, 2} × {1, 2, . . . , n2}

∪ {1, 2, . . . , n1} × {1, 2}.

We have τ d(zt+k+`) ≥ 2. By lemma 3.4, zt+k+` ∈ B(zD).

Hence, within 3 + t + k + ` periods, the dynamic transits from an arbitrary

initial state z to zt+k+` ∈ B(zD). The modified cost of the constructed transition

path is at most 2, which is the minimum number of mistakes required for the

2-by-2 block of defection and no punishment to emerge in Step 1.

Lemma 3.7. Consider local interactions. If π > 3
4
and ϕ > 1

4
, or if π > 1

4
and

ϕ > 3
4
, then CR(zD) ≤ 1.

Proof. We show the case of π > 3
4
and ϕ > 1

4
. The case of π > 3

4
and ϕ > 1

4
can

be analogously shown. Let z0 ∈ Z be an arbitrary initial state. Similar to the

proof of lemma, I shall construct a path γ = (z0, z1, . . . , zt) from z0 to zt with

τ d(zt) ≥ 2 such that c∗(γ) ≤ 1. Hence, CR(zD) ≤ 1.

Step 1: Emergence of a local defection norm.

Let z0 be the initial state in period t = 0. In the next period, t = 1, let

individual i = (2, 2) defect, i.e., x1
i = 0. This event requires at most one mistake.

Then, for i ∈ {(2, 1), (1, 2), (3, 2), (2, 3)}, we have
∑

j∈Ni x
1
j ≤ 3. At period t = 2,

let each i ∈ {(2, 1), (1, 2), (3, 2), (2, 3)} update expectations. We obtain q2
i ≤ 3

4
< π

and y2
i = 0 for each i ∈ {(2, 1), (1, 2), (3, 2), (2, 3)}. Transition from period t = 1

to t = 2 does not require a mistake. In the next period, t = 3, let individual (2, 2)

update expectations; then we have p3
(2,2) = 0 < ϕ and x3

(2,2) = 0. Meanwhile, let
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the four neighbors of (2, 2) do not update expectations. Then we have q3
i < π

and y3
i = 0 for each i ∈ {(2, 1), (1, 2), (3, 2), (2, 3)}. Notice that since the state z3,

individual (2, 2) defects and the four neighbors of (2, 2) do not punish defectors in

all future periods, unless some of them make a mistake. More precisely, for each

k ≥ 1, z = (x, y, p, q) ∈ ∆k(z3), we have p(2,2) < ϕ, x(2,2) = 0, as well as qi < π

and yi = 0 for each i ∈ {(2, 1), (1, 2), (3, 2), (2, 3)}.

Step 2: Expansion of the defection norm.

Let the initial state z0 be such that p0
(2,2) < ϕ, x0

(2,2) = 0, q0
i < π and y0

i = 0 for

each i ∈ {(2, 1), (1, 2), (3, 2), (2, 3)}. Now let the dynamic follow a path under P 0,

i.e., no mistake occurs, and transit to a recurrent class L1 ⊂ Z of P 0. Suppose

the dynamic reaches state zt = (xt, yt, pt, qt) ∈ L1 in period t ≥ 3. For zt, we have

pt(2,2) < ϕ, xt(2,2) = 0, qti < π and yti = 0 for each i ∈ {(2, 1), (1, 2), (3, 2), (2, 3)}. In

the next period, t + 1, let individual (3, 2) take xt+1
(3,2) = 0, leading to state zt+1.

This event requires at most one mistake. Following the argument of Step 1, there

is some zt+3 ∈ ∆2(zt+1) such for each i ∈ {(2, 2), (3, 2)} and j ∈ Ni: 1) pt+3
i < ϕ,

xt+3
i = 0 , and 2) qt+3

j < π and yt+3
j = 0. Notice that individuals (2,2) and (3,2)

are defecting as well as not punishing now, and all other neighbors of them are

not punishing. The modified cost of transiting from z0 to the specified state zt+3

is zero. This is because the modified cost of the transition equals to the minimum

number of mistakes to reach zt+3 (which is at most 1) less R(L1) (which is at least

1).

By induction, we can construct a path (z0, . . . , zt, . . . , zt+k) to a state zt+k

with zero modified cost such that for each i ∈ {1, 2, . . . , n1} × {2} and j ∈ Ni: 1)

pt+ki < ϕ, qt+ki < π and xt+ki = yt+ki = 0, and 2) qt+kj < π and yt+kj = 0. This means

that, at state zt+k, all individuals at the 2nd column defect and do not punish, and

all individuals at the 1st and the 3rd columns do not punish. Then, each individual

at the 1st and the 3rd columns has at most one neighbor punishing. That is, for

each i ∈ {1, 2, . . . , n1} × {1, 3} we have
∑

j∈Ni y
t+k
j ≤ 1. Let each individual at

the 1st and the 3rd columns update expectations in the next period. We obtain
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pt+k+1
i ≤ 1

4
< ϕ and xt+k+1

i = 0 for each i ∈ {1, 2, . . . , n1} × {1, 3}. To sum up,

in period t + k + 1, the dynamic reaches a state zt+k+1 such that pt+k+1
i < ϕ,

qt+k+1
i < π and xt+k+1

i = yt+k+1
i = 0 for each i ∈ {1, 2, . . . , n1} × {1, 2, 3}.

By the same inductive argument, we can construct a path

(z0, . . . , zt, . . . , zt+k, . . . , zt+k+`)

to a state zt+k+` with zero modified cost such that pt+k+`
i < ϕ, qt+k+`

i < π and

xt+k+`
i = yt+k+`

i = 0 for each i in the set

Λd(zt+k+`) = {1, 2, 3} × {1, 2, . . . , n2}

∪ {1, 2, . . . , n1} × {1, 2, 3}.

Since τ d(zt+k+`) ≥ 3, by lemma 3.4 we have zt+k+` ∈ B(zD).

Hence, within 3 + t + k + ` periods, the dynamic transits from an arbitrary

initial state z to zt+k+` ∈ B(zD). The modified cost of the constructed transition

path is at most 1, which is the minimum number of mistakes required for the small

block of defection and no punishment in Step 1 to emerge.

Lemma 3.8. If one of the following holds then {z ∈ Z|τ c(z) ≥ 2} ⊂ B(zC):

1. π < 1
2
and ϕ < 1

2
;

2. π < 3
4
and ϕ < 1

4
;

3. π < 1
4
and ϕ < 3

4
.

Proof. Completely analogous to the proof of Lemma 3.4, so omitted.

Lemma 3.9. Consider local interactions. We have R(zC) ≥ dmin{n1, n2}/2e if

one of the following holds:

1. π < 1
2
and ϕ < 1

2
;

2. π < 3
4
and ϕ < 1

4
;
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3. π < 1
4
and ϕ < 3

4
.

Proof. Completely analogous to the proof of Lemma 3.5, so omitted.

Lemma 3.10. Consider local interactions. If π < 1
2
and ϕ < 1

2
, then CR(zC) ≤ 2.

Proof. Completely analogous to the proof of Lemma 3.6, so omitted.

Lemma 3.11. Consider local interactions. If π < 1
4
and ϕ < 3

4
, or if π < 3

4
and

ϕ < 1
4
, then CR(zC) ≤ 1.

Proof. Completely analogous to the proof of Lemma 3.7, so omitted.

Proof of Theorem 3.4

Lemma 3.12. Consider the unperturbed adaptive dynamic P 0 with mobility of

degree m. Suppose π < 1. Consider the generic cases with dϕ(n −m)e 6= d(1 −

π)(n−m)e and dπ(n−m)e 6= d(1−ϕ)(n−m)e. There are exactly four recurrent

classes: Zc, Zd, Z̃c1, and Z̃c2.

Proof. For a state z ∈ Z and t ≥ 1, let ∆t(z) denote the set of states that the

dynamic P 0 with mobility can transit to from z in exactly t periods with positive

probability.

Step 1: Zd is a recurrent class of P 0 with mobility.

First, I show that if P 0 starts from a state in Zd, it stays in Zd thereafter. Let

z0 be an initial state in which for each i ∈ N , ` = 1, 2, we have x0
i = y0

i = 0 and

p0
i` = q0

i` = 0. Consider the next period and an arbitrary individual i ∈ N . For

each ` = 1, 2, we have either p1
i` = p0

i` or p1
i` = 1

N0
`

∑
j∈N0

`
y0
j ; in either case, we

have p1
i` = 0 < ϕ. Likewise, we have q1

i` = 0 < π. Hence, we have x1
i = y1

i = 0.

By induction, for each t ≥ 0 and state z ∈ ∆t(z0), we have xi = yi = 0 and

pi` = qi` = 0 for each i ∈ N , ` = 1, 2.

Second, there is positive probability of transiting from any state in Zd to any

another one within finite periods. The difference between the states in Zd is that

they have different partitions of the population N into the two societies. However,
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when an individual i has pi` = qi` = 0 for both ` = 1 and ` = 2, i has expected

material payoffs 1
2
(ā + b) in either of the societies. Hence, for each period, each i

randomly chooses a society to live. Therefore, starting from any z ∈ Zd, there is

a positive probability of transiting to any z′ ∈ Zd in the next period.

Step 2: If π < 1, then Zc is a recurrent class of P 0 with mobility.

Analogous to the proof of Step 1a, so omitted. The condition π < 1 ensures

that, if qi` = 1, then qi` > π.

Step 3: If π < 1, then Z̃c1 is a recurrent class of P 0 with mobility.

First, I show that, if P 0 starts from a state in Z̃c, it stays in Z̃c thereafter. Let

z0 be an initial state such that: there are n+m individuals in society 1 and n−m

individuals in society 2; in society 1, each i has xi = yi = 1 and pi1 = qi1 = 1; in

society 2, each i has xi = yi = 0 and pi2 = qi2 = 0. Consider the next period and an

arbitrary individual i ∈ N . Either because p1
i` = p0

i` or because p1
i` = 1

N0
`

∑
j∈N0

`
y0
j ,

we have p1
i1 = 1 for society 1 and p1

i2 = 0 for society 2. Likewise, q1
i1 = 1 for society

1 and q1
i2 = 0 for society 2. Hence, i takes x1

i = y1
i = 1 if i lives in society 1,

while taking x1
i = y1

i = 0 if i lives in society 2. The expected payoffs of living in

society 1 is 1
2
(a+ b̄), while the expected payoffs of living in society 2 is 1

2
(ā+b). By

Assumption 3.3, cooperation yields higher aggregate efficiency, i..e, a+ b̄ > ā+ b.

Hence, i chooses to live in society 1 upon having the opportunity to choose. Since

every individual chooses society 1 upon having the opportunity to choose, society

1 has n+m individuals. By contrast, society 2 only has n−m individuals, those

who do not have an opportunity to choose where to live. By induction, for each

t ≥ 1, we have ∆t(z0) ⊂ Z̃c1.

Second, each individual has positive probability of not having the opportunity

to choose where to live and being assigned to society 2. Thus, ∆t(z0) = Z̃c1 for

each t ≥ 1, z0 ∈ Z̃c1.

Step 4: If π < 1, then Z̃c2 is a recurrent class of P 0 with mobility.

The same as the proof of Step 3, so omitted.

Step 5: Starting from any initial state z ∈ Z, there is a positive probability
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that P 0 transits to Zc ∪ Zd ∪ Z̃c1 ∪ Z̃c2 within finite periods.

Let z0 ∈ Z be an arbitrary initial state. From period 0 to period 1, let all

individuals update expectations. Then we have q1
i` = q1

j` and p1
i` = p1

j` for each

i, j ∈ N in period 1. Let all individuals take the same actions in response to q1
i`

and p1
i`. Let ` = 1, 2. There are four cases about society `: 1) q1

i` ≥ π, p1
i` ≥ ϕ

and x1
i = y1

i = 1 for each i ∈ N1
` ; 2) q1

i` ≤ π, p1
i` ≤ ϕ and x1

i = y1
i = 0 for each

i ∈ N1
` ; 3) q1

i` ≤ π, p1
i` ≥ ϕ, x1

i = 1 and y1
i = 0 for each i ∈ N1

` ; and 4) q1
i` ≥ π,

p1
i` ≤ ϕ, x1

i = 0 and y1
i = 1 for each i ∈ N1

` . In the first two cases listed above,

let all individuals update expectations in the next period. Then in period 2, the

dynamic reaches a state z2 ∈ Zc ∪ Zd ∪ Z̃c1 ∪ Z̃c2.

Now consider the third case; fourth case can be analogously shown. At period

2, let all individuals update only their expectation of the proportion of punishers,

so that p2
i` = 1

N1
`

∑
j∈N1

`
y1
i = 0 and q2

i` = q1
i` ≤ π for each i ∈ N . Then it occurs

with positive probability that x2
i = y2

i = 0 for each i ∈ N2
` . Let this event occur.

At period 3, let all individuals update expectations, so that q3
i` = p3

i` = 0 and

x3
i = y3

i = 0 for each i ∈ N3
` . By the same construction, for the other society

`′ = 2 − `, we can have either q3
i`′ = p3

i`′ = 0 and x3
i = y3

i = 0 for each i ∈ N3
`′ , or

q3
i`′ = p3

i`′ = 1 and x3
i = y3

i = 1 for each i ∈ N3
`′ in period 3. Then in period 3, the

dynamic reaches a state z3 ∈ Zc ∪ Zd ∪ Z̃c1 ∪ Z̃c2.

In what follows, I divide the proof of Theorem 3.4 into three lemmas, each for a

different case. Let Ω = {Zc, Zd, Z̃c1, Z̃c2} be the collection of all recurrent classes

of P 0 with mobility. For each case, I identify the stochastic tree that has minimum

cost among all stochastic trees defined on Ω. The desired results then follow from

Young’s (1993) theorem. Let α = min{π, ϕ} and β = min{1−π, 1−ϕ}. Figure 3.8

shows the minimum numbers of mistakes required to transit from one recurrent

class to another.
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𝑍"𝑍#

𝑍$#% 𝑍$#&

≥ 2𝑛𝛽 − 1

≥ 2𝑛𝛼 − 1

(𝑛 −𝑚)𝛼 + (𝑛 −𝑚)𝛽

(𝑛 −𝑚)𝛼

(𝑛 +𝑚)𝛽

(𝑛 −𝑚)𝛼
(𝑛 −𝑚)𝛽

(𝑛 −𝑚)𝛼 + (𝑛 −𝑚)𝛽

(𝑛 +𝑚)𝛽

(𝑛 −𝑚)𝛼

(𝑛 −𝑚)𝛽

(𝑛 −𝑚)𝛼

Figure 3.8: The costs (the minimum numbers of mistakes) of transiting from one
recurrent class to another under the dynamics with mobility; α = min{π, ϕ}; β =
min{1− π, 1− ϕ}.
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(a) The Zc-tree with minimum cost among all Zc-trees.
𝑍"𝑍#

𝑍$#% 𝑍$#&

(𝑛− 𝑚)𝛼

(𝑛− 𝑚)𝛼
(𝑛 −𝑚)𝛼

(b) The Zd-tree with minimum cost among all Zd-trees.
𝑍"𝑍#

𝑍$#% 𝑍$#&

(𝑛− 𝑚)𝛽

(𝑛 +𝑚)𝛽

(𝑛 −𝑚)𝛼

(c) The Z̃c1-tree with minimum cost among all Z̃c1-trees.
𝑍"𝑍#

𝑍$#% 𝑍$#&

(𝑛− 𝑚)𝛽

(𝑛 −𝑚)𝛼

(𝑛−𝑚)𝛼

Figure 3.9: Candidates for the stochastic tree with minimum cost if π+ϕ < 1 + m
n (1−

|π − ϕ|).
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Lemma 3.13. Consider the unperturbed adaptive dynamic P 0 with mobility of

degree m. Consider the generic cases with dϕ(n −m)e 6= d(1 − π)(n −m)e and

dπ(n−m)e 6= d(1− ϕ)(n−m)e. If π + ϕ < 1, then the SSEs are states in Zc.

Proof. Given π + ϕ < 1, and for the generic cases, we have d(n + m)βe > d(n −

m)βe > d(n − m)αe. Figure 3.9 shows three candidate stochastic trees. Given

d(n + m)βe > d(n − m)βe > d(n − m)αe, the stochastic tree with minimum

cost among all stochastic trees defined on Ω must come from one of the three

candidates. The cost of the Zc-tree with minimum cost among all Zc-trees is

3d(n −m)αe. The cost of the Zd-tree with minimum cost among all Zd-trees is

d(n−m)αe+ d(n−m)βe+ d(n+m)βe. The cost of the Z̃c1-tree with minimum

cost among all Z̃c1-trees is 2d(n−m)αe+ d(n−m)βe. Hence, the Zc-tree shown

in Figure 3.9(a) has minimum cost among all stochastic trees defined on Ω. The

desired result then follows from Young’s (1993) theorem.

Lemma 3.14. Consider the unperturbed adaptive dynamic P 0 with mobility of

degree m. Consider the generic cases with dϕ(n −m)e 6= d(1 − π)(n −m)e and

dπ(n−m)e 6= d(1−ϕ)(n−m)e. If 1 < π+ϕ < 1 + m
n

(1− |π−ϕ|), then the SSEs

are states in Z̃c1 ∪ Z̃c2.

Proof. The condition 1 < π + ϕ < 1 + m
n

(1 − |π − ϕ|) implies d(n − m)βe <

d(n − m)αe < d(n + m)βe for the generic cases. The candidate stochastic trees

with minimum costs are the ones shown in Figure 3.9; they are the same ones as

the case of π + ϕ < 1. The cost of the Zc-tree in Figure 3.9 is 3d(n−m)αe. The

cost of the Zd-tree is d(n−m)αe+ d(n−m)βe+ d(n+m)βe. The cost of the Z̃c1-

tree is 2d(n−m)αe+ d(n−m)βe. Given d(n−m)βe < d(n−m)αe < d(n+m)βe,

the Z̃c1-tree has the minimum cost among the three. But since Z̃c1 and Z̃c2 are

completely symmetric, there must also be a Z̃c2-tree having the same cost as the

Z̃c1-tree in Figure 3.9. By Young’s (1993) theorem, the SSE states are contained

in Z̃c1 ∪ Z̃c2.
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(a) The Zc-tree with minimum cost among all Zc-trees.
𝑍"𝑍#

𝑍$#% 𝑍$#&

(𝑛− 𝑚)𝛼

(𝑛− 𝑚)𝛼

(𝑛+ 𝑚)𝛽

(b) The Zd-tree with minimum cost among all Zd-trees.
𝑍"𝑍#

𝑍$#% 𝑍$#&

(𝑛− 𝑚)𝛽

(𝑛 +𝑚)𝛽

(𝑛+ 𝑚)𝛽

(c) The Z̃c1-tree with minimum cost among all Z̃c1-trees.
𝑍"𝑍#

𝑍$#% 𝑍$#&

(𝑛− 𝑚)𝛽 (𝑛+ 𝑚)𝛽

(𝑛− 𝑚)𝛼

Figure 3.10: Candidates for the stochastic tree with minimum cost if π + ϕ > 1 +
m
n (1− |π − ϕ|).
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Lemma 3.15. Consider the unperturbed adaptive dynamic P 0 with mobility of

degree m. Consider the generic cases with dϕ(n −m)e 6= d(1 − π)(n −m)e and

dπ(n−m)e 6= d(1−ϕ)(n−m)e. If π+ϕ > 1 + m
n

(1− |π−ϕ|), then the SSEs are

states in Zd.

Proof. π+ϕ > 1+m
n

(1−|π−ϕ|) implies d(n−m)βe < d(n+m)βe < d(n−m)αe for

the generic cases. Figure 3.10 shows the candidate stochastic trees of the one with

minimum cost among all stochastic trees defined on Ω. The cost of the Zc-tree in

Figure 3.10 is 2d(n−m)αe+ d(n+m)βe. The cost of the Zd-tree is d(n−m)βe+

2d(n+m)βe. The cost of the Z̃c1-tree is d(n−m)αe+ d(n−m)βe+ d(n+m)βe.

The Zd-tree has the minimum cost among the three. Thus, we obtain the desired

result from Young’s (1993) theorem.
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Chapter 4

Fairness Perceptions and

Punishment Types1

4.1 Introduction

Now there has been a large body of experimental evidence showing that individ-

uals’ behavior is influenced by fairness and reciprocity concerns (for reviews of

the evidence see Fehr and Schmidt (2006) and O’Connell and Siafarikas (2010)).

Studies have also shown that fairness and reciprocity may play a key role in market

transactions (Kahneman et al., 1986) and optimal contracts in workplaces (e.g.,

Barr and Serneels, 2009; Fehr et al., 1997; Fehr and Schmidt, 2000, 2004). How-

ever, it is not clear what determines which behavior people perceive as fair and

others not, their fairness perceptions. Cross-cultural studies show that cooperation

and punishment of selfish behavior vary dramatically across societies (Herrmann

et al., 2008; Henrich et al., 2006, 2010). These studies indicate that fairness per-

ceptions are not fixed; they vary across societies and could be changed. However,

to date, still relatively little is known about how fairness perceptions are formed

and what policies could change them. Building on previous theoretical and empir-

ical literature (Bicchieri, 2006; Cooper and Dutcher, 2011; Herz and Taubinsky,

2017; Kahneman et al., 1986; Sugden, 2000, 2004), we hypothesize that providing
1This chapter is a joint work with Lucas Molleman and Dennie van Dolder.
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different information regarding a behavior’s prevalence in society would change

individuals’ fairness perception about the behavior. We examine this hypothesis

experimentally in a prisoner’s dilemma game involving choices between coopera-

tion and free riding. Specifically, we test: if we inform people that the proportion

of cooperators in the population is higher, it would reduce the legitimacy of free

riding and, thereby, it is more likely that individuals punish free riders.

It contributes to the literature in the following aspects. First, if the more co-

operators in a society the more people punish free riders, then we can explain the

dramatic variations in cooperation and punishment observed across societies (Her-

rmann et al., 2008; Henrich et al., 2006, 2010) through belief channels: people from

different societies may not have different preferences (Stigler and Becker, 1977); it

could be that they merely have different beliefs about the behavior of others. Sec-

ond, the tested hypothesis has direct policy implications. If the mere information

about the proportion of cooperators can affect punishment of free riders, then it

suggests that a pure informational policy might be effective in changing fairness

perceptions and promoting cooperation. In contrast, if we fail to find the effect, it

suggests that a pure informational policy might have limited power. Third, since

Olson (1965), economists have developed a variety of theories that are relevant to

understanding private contributions of public goods (Andreoni, 1990; Bergstrom

et al., 1986; Dufwenberg and Kirchsteiger, 2004; Fehr and Schmidt, 1999; Rabin,

1993; Sugden, 1982, 1984). Examining whether the proportion of cooperators

affects punishment of free riders allows us to disentangle these theories that are

otherwise difficult to disentangle.

Our experiment is as follows. We match participants into pairs and ask each

pair to play the following two-stage game. In the first stage, the two participants

play a prisoner’s dilemma game, i.e., they choose simultaneously whether to coop-

erate or to free ride. In the second stage, participants are given the opportunity to

punish their free riding partners by assigning up to 10 deduction points. For each

deduction point that a participant assigns to her partner, one point is deducted
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from the participant and three points are deducted from her partner. Hence, pun-

ishment is costly, but the damage to the other party is greater than the cost of

conducting it. We first run some sessions to obtain an estimate of the proportion

of cooperators in the subject pool. In later sessions, we inform each participant

about the proportion of cooperators before they make punishment decisions. More

specifically, we randomly draw a sample of participants from previous sessions,

and inform participants in the current sessions how many of the randomly selected

previous participants are cooperators. We provide this information to change par-

ticipants’ belief about the proportion of cooperators in the population. We use

the strategy method (Selten, 1967) to elicit each participant’s complete punishment

strategy. We classify all possible cases into five situations regarding the proportion

of cooperators in the selected sample. We ask participants to indicate, for each

of the five situations, how many deduction points they assign. A participant’s

complete punishment strategy includes her deduction points to assign in all five

situations.

We only allow participants to punish their partners if their partners free ride.

Thus, if a cooperator chooses to punish, it is not because she expects her partner

to punish her. Cooperators would punish only for the following reasons: i) the

cooperator wants to sustain a community-level threat to deter free riders, and

such threat has diminishing marginal return—the diminishing marginal return hy-

pothesis (Becker, 1974; Bergstrom et al., 1986; Kandori, 1992), ii) the cooperator

considers her partner’s behavior as morally wrong—norm-based reciprocity (Bic-

chieri, 2006; Sugden, 1984), or, iii) the cooperator considers her partner as having

bad intentions—intention–based reciprocity (Dufwenberg and Kirchsteiger, 2004;

Rabin, 1993) or she wants to reduce payoff difference between her partner and

herself—inequality aversion (Fehr and Schmidt, 1999). We observe that these the-

ories make different predictions regarding how punishment of free riders changes

according to the provided information about the proportion of cooperators. The

diminishing marginal return hypothesis predicts that the higher the proportion of
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cooperators, the less people would punish free riders. To the contrary, norm-based

reciprocity predicts that the higher the proportion of cooperators, the more people

would punish free riders. Different from both, inequality aversion and intention-

based reciprocity predict that punishment of free riders is independent of the

proportion of cooperators. Hence, our experiment provides an opportunity to dis-

entangle these theories. Indeed, the only key difference between intention-based

reciprocity and norm-based reciprocity is whether the perceived fair behavior de-

pends on the behavior of the majority of the population. Hence, examining how

punishment of free riders changes in response to a change in the proportion of

cooperators is the key to know which theory provides a better account for the

formation of fairness perceptions.

Our results are as follows. On average, the proportion of cooperators does

not significantly affect punishment of free riders. However, this is not because no

participant responds to the provided information about the proportion of cooper-

ators. Instead, it is due to the remarkable heterogeneity among participants. 42%

of our participants do not punish free-riding partners regardless of the proportion

of cooperators, as consistent with the null hypothesis that they seek to maximize

their material payoffs. 21% of our participants behave in line with inequality

aversion and intention-based reciprocity: they assign the same positive number of

deduction points to free riders, independent of the proportion of cooperators. By

contrast, 23% of participants do condition their punishment on the proportion of

cooperators. However, on the one hand, 13% behave in line with norm-based reci-

procity: they increase deduction points as the proportion of cooperators increases;

on the other, 10% decrease deduction points as the proportion of cooperators in-

creases, as consistent with the diminishing marginal return hypothesis. Hence, we

observe co-existence of four distinct punishment types. Each punishment type is

associated with a category of theory we consider, plus there is a type of partici-

pants consistent with material payoffs maximization. The four punishment types

add up to 86% of the whole sample, while the rest 14% are not consistent with
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any specified theory.2

There have been several experimental studies investigating how fairness per-

ceptions are formed and might be changed according to the frequency of behaviors

in the population. The experiment of Falk et al. (2006) shows that introducing

the law of minimum wage—forcing firms to make high wage offers—increases the

reservation wages of workers even after the restriction is removed at a later stage.

The result suggests that the minimum wage law increases workers’ reference point

regarding what offers are considered as fair. Cooper and Dutcher (2011) conduct

a meta-analysis on ultimatum game experiments with multiple rounds. They find

that, on average, responders who have experienced high offers in early rounds re-

ject low offers more often in later rounds. Hence, which offer is regarded as fair

seems to depend on past experience. Peysakhovich and Rand (2016) conduct an

experiment to see whether they can induce different “norms” of cooperation and

defection in the lab. Their experiment involves two parts. In part one, participants

play repeated prisoner’s dilemma games; this part is used to induce more coopera-

tion in some sessions and more defection in the others. In part two, they measure

the impacts of the experience in part one on participants’ pro-social attitudes and

willingness to punish selfish behavior in a series of one-shot games. They find that,

on average, participants having experienced cooperation in part one behave more

pro-socially and are more willing to punish selfish behavior in part two. Finally,

Herz and Taubinsky (2017) examine transaction behavior in market games using

the same two-part design as Peysakhovich and Rand’s. They find that transac-

tion experience in part one influences behavior in part two through two channels:

i) personal payoff experience, i.e., individuals who are used to receiving certain

payoffs feel entitled to obtain the same payoffs in similar transactions; and ii) the

information effect, i.e., individuals make inference of social norms from observing

the transactions of others.
2We verify that no any of the four punishment types can be explained by pure randomness:

if each participant had rolled a dice to make a decision, the four punishment types would have
altogether been about only 4% of the sample, instead of 86%.
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Our experiment differs from the experiments mentioned above and thus com-

plements their studies in two aspects. First, while previous experiments have the

merit of showing path-dependent behavior directly, their results admit several ex-

planations. For example, Peysakhovich and Rand’s result that participants who

experienced mutual cooperation in part one behave more pro-socially and punish

selfish behavior more later can be due to any of the following reasons: i) people

regard their own behavior as fair and expect others to do the same; ii) people

consider a distribution of earnings similar to the past as fair; and iii) people infer

social norms from observing the interactions of others. Our experiment does not

have an explicitly dynamic structure and, thus, rules out the first two possibilities.

Hence, our experiment allows us to test the pure information effect of knowing the

frequency of a behavior in the population. Second, we use the strategy method to

elicit the complete punishment strategy for each individual. In contrast, the afore-

mentioned studies all focus on examining the aggregate effect across individuals.

As a result, our experiment reveals the co-existence of four systematic punishment

types of individuals that previous experiments cannot reveal. Our results suggest

that unpacking the aggregate effect and revealing the behavior for each individual

indeed matters. If we had focused on the aggregate effect only, it would lead us to

conclude that policies of manipulating the information regarding the proportion

of cooperators results in no changes in people’s fairness perceptions and punish-

ment of free riders. However, thinking in this way is a mistake. We show that

having more cooperators crowds out the incentives to punish free riders for some

individuals, while it increases the willingness to punish for some others. Studies

from economics (Currarini et al., 2009) and sociology (McPherson et al., 1992,

2001) both show that homophily is a basic pattern of social networks in the real

world: individuals with similar preferences and attitudes tend to be friends with

each other or live in the same neighborhoods. Co-existence of different punishment

types then suggests that manipulating the information regarding the proportion of

cooperators would have significant and dramatically different effects on different
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social groups—a new and striking conclusion that we would not have obtained if

we had focused on the aggregate effect only.

The paper is organized as follows. Section 4.2 reviews theories and derives

hypotheses. Section 4.3 presents experimental design and procedures. Section 4.4

presents the results. We conclude by discussing the implications of our finding in

Section 4.5.

4.2 Theory

We review existing theories and derive hypotheses in this section. We consider

the following stylized game. Two players, Ann and Bob, who do not know each

other but encounter on a street. They face decisions as the ones in Figure 4.1.

Ann wants to get rid of a banana skin but fails to find a trash bin on the street.

Ann can take the banana skin all the way back home (cooperate), or throw the

banana skin on the street (free ride). Bob is an observer who happens to pass

by. If Ann throws the banana skin on the street, Bob can either walk away as

if nothing special occurs (not punish), or, Bob stops Ann, gives Ann a warming,

and asks Ann to pick up the banana skin (punish). The numbers at the terminal

nodes of the game tree in Figure 4.1 are the material payoffs.

Ann

18
18

cooperate

Bob

10
4

punish

25
9

not punish

free ride

Figure 4.1: The stylized game. The numbers at the terminal nodes represent material payoffs.

If Bob is a material-payoff maximizer, Bob will never punish. This leads to

the following null hypothesis.
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Null Hypothesis (Material payoffs maximization). When conducting punishment

is costly, people never punish free riders, regardless of the proportion of cooperators

in a society.

However, a large body of public goods game experiments show that many par-

ticipants punish free riders at the expense of their own earnings (e.g., Fehr and

Schmidt, 2000; Herrmann et al., 2008). Why punish? And why the tendency to

punish varies across societies as observed by Herrmann et al. (2008)? In what fol-

lows, we review existing theories that economists have developed in the past fifty

years related to punishment of free riders. We compare three categories of theo-

ries: i) the conventional view among economists up to the 1980s, ii) the theories

of inequality aversion (Fehr and Schmidt, 1999) and intention-based reciprocity

(Dufwenberg and Kirchsteiger, 2004; Rabin, 1993), and iii) theories of norm-based

motives (Bicchieri, 2006; Sugden, 1984, 2000). We show that each category gen-

erates a different prediction regarding how punishment of free riders may change

in response to a change in the public goods contribution level in the society.

4.2.1 Diminishing marginal return to punishment

We introduce the conventional view among economists up the 1980s regarding

private provision of public goods in this subsection and derive the corresponding

prediction. A fully specified model would be a combination of Bergstrom et al.

(1986) and Kandori (1992). For the purpose of this paper, we only sketch the idea.

Economists have long recognized that the assumption of private consumption

maximization cannot explain the observed level of public goods contributions in

many sectors (Becker, 1974; Olson, 1965). According to Bergstrom et al. (1986),

the dominant view among economists on public goods contribution up to the 1980s

is:

“...the case where people are concerned only about their private con-

sumptions and the total supply of public goods... is the model which
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has received the most attention so far in the literature and is, we sus-

pect, the one on which many economists base their intuitions. ” (p.

26; italic original)

This conventional view of public good contributions assumes that individuals have

intrinsic concerns for the total supply of public goods. It also assumes that

the marginal utility from public goods is diminishing. In addition, we assume

that, following the spirit of Kandori (1992), punishment of free riders generates

a community-level punishment threat to deter free riding for future interactions

and, thereby, benefits every member of society.

More precisely, let q, with 0 ≤ q ≤ 1, be the proportion of cooperators in a

society. It determines the total supply of public goods in the society. Let y ∈ {0, 1}

denote Bob’s choice of punishment: y = 1 indicates that Bob punishes, and y = 0

for not punishing. Let Y denote the number of individuals in the society who

punish free riders other than Bob. How many individuals cooperate in the society

depends on how many people punish free riders. That is, q is increasing in Y + y.

Bob cares about the proportion of cooperators in a society, q, not only because it

affects his own earnings, but also because it is a public good that benefits others.

Let V (q) denote the part of Bob’s utility that is derived from q, with V ′ > 0 and

V ′′ < 0. This term V (q) summarizes Bob’s individual benefits from q as well as

his intrinsic concern for the total supply of public goods. When deciding whether

to punish Ann, the immediate material consequence for Bob is 4y+9(1−y). Bob’s

total utility includes the immediate consequence and the term V (q):

u = 4y + 9(1− y) + V (q).

The proportion of cooperators, q, is an increasing function of Y + y. Hence we

have

uyq = V ′′q′ < 0.

That is, a higher proportion of cooperators crowds out Bob’s incentive to punish
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free riders.

Prediction 1 (Diminishing marginal return to punishment). The higher the pro-

portion of cooperators in a society, the less people punish free riders.

4.2.2 Inequality aversion and intention-based reciprocity

The theories of norm-based motives (Sugden, 1986) are introduced before the in-

troduction of inequality aversion (Fehr and Schmidt, 1999) and intention-based

reciprocity (Dufwenberg and Kirchsteiger, 2004; Rabin, 1993) into economics.

Nevertheless, for pedagogical reasons, we first discuss the theories of inequality

aversion and intention-based reciprocity.

Inequality aversion (Fehr and Schmidt, 1999). Suppose Ann free rides.

Bob has inequality aversion such that each unit of difference in material earnings

between Ann and Bob incurs α ≥ 0 units of loss of utility to Bob. Hence, if Bob

does not punish, he obtains 9− 16α units of utility. In contrast, if Bob punishes,

he obtains 4 − 6α. Bob finds it better off to punish to reduce earning difference

between Ann and him, if

α > 1/2.

Ann

18
18

cooperate

Bob

10
4 + θ(7)( 15

2 )

punish

25
9− θ(7)( 15

2 )

not punish

free ride

Figure 4.2: The game with reciprocity preferences. θ ≥ 0 is the reciprocity parameter of Bob.
The payoffs at the terminal nodes of the game tree for Bob show the utility of Bob, given Bob’s
belief that Ann knows that Bob chooses punish. The numbers for Ann show the material payoffs
for Ann.

Intention-based reciprocity (Dufwenberg and Kirchsteiger, 2004; Rabin,
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1993). The following argument is an application of Dufwenberg and Kirchsteiger

(2004).3 Suppose both Ann and Bob have the preferences to respond to unkind

with unkind. Let us verify that, if Bob’s preference for retaliate is strong enough,

punishment is the best-response of Bob.4 Bob expects that Ann correctly expects

that Bob will punish. Upon observing Ann free riding, Bob thinks that Ann could

have cooperated and given 18 points to Bob, but instead Ann free rides, resulting

in 4 points to Bob. Clearly, Ann is unkind to Bob. If Bob has sufficiently strong

preferences for retaliate, he would punish. Figure 4.2 shows the utility for Bob for

taking each action, given the specified beliefs of Bob, and θ ≥ 0 is the reciprocity

parameter of Bob.5 Bob prefers punishing if

θ > 1/21.

There is a common feature of inequality aversion and reciprocity: Bob’s pun-

ishment of Ann only depends on the behavior of Ann, not on the behavior of any

payoff-irrelevant third-parities. More explicitly, suppose that the game is played

out in our experiment, and Ann is the randomly assigned partner of Bob. Based

on inequality aversion and intention-based reciprocity, Bob’s punishment decision

should not be affected by the proportion of cooperators among other participants

who are not matched with Bob.

Prediction 2 (Intention-based reciprocity and inequality aversion): Individuals

punish free riders, and their punishment is independent of the proportion of co-

operators in a society.

3Rabin’s (1993) model fails to eliminate some unintuitive equilibria in sequential games.
4More precisely, if Ann is a material-payoff maximizer, Bob has sufficiently strong preferences

to retaliate, and their preferences are commonly known, then (cooperate, punish) is a sequential
reciprocity equilibrium (SRE) defined by Dufwenberg and Kirchsteiger (2004). If Ann also has
the preferences to retaliate, then (free ride, punish) is a SRE.

5The numbers are calculated based on the model of Dufwenberg and Kirchsteiger (2004).
The perceived kindness of Ann to Bob is −(18 − 4)/2 = −7. The kindness of Bob to Ann by
taking punish is −(25− 10)/2 = −15/2, whereas the kindness of Bob to Ann is 15/2.
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4.2.3 Norm-based reciprocity

According to Sugden (1984; 1986; 2000) and Bicchieri (2006), Bob may punish

because Ann deviates from Bob’s expectation on the norm (majority) behavior

of the population. However, neither Sugden nor Bicchieri provides an explicit

formulation of the punishment mechanism. We provide one specification as follows.

Bob has his expectation, qi ∈ [0, 1], regarding the proportion of individuals

who would cooperate if they are in the position of Ann. Bob does not know Ann

in person and, in Bob’s eyes, Ann is not so different from any other unrelated

individuals in the society. Hence, Bob expects his earnings to be at least

18qi + 4(1− qi) = 4 + 14qi. (4.1)

However, Ann free rides, in which case Bob can at most earn 9. If qi > 5/14,

Bob is certainly worse off than what he expected. Bob is frustrated about this.

In order to release his frustration, Bob may punish Ann. Bob has the same

impulse to act unkind to unkind as in the reciprocity model of Dufwenberg and

Kirchsteiger (2004). The numbers at the terminal nodes of the game tree in Figure

4.3 represent the preferences of Bob. λ ≥ 0 measures Bob’s frustration. The norm-

based unkindness of Ann towards Bob is 14qi−5, which is obtained by subtracting

the most earnings that Bob can get if Ann free rides, 9, from the least earnings

expected by Bob given belief qi, i.e., equation (4.1). It follows that Bob prefers

punishing if

λ(14qi − 5) > 1/3. (4.2)

121



Ann

18
18

cooperate

Bob

10
4 + λ(14qi − 5)

(
15
2

)
punish

25
9− λ(14qi − 5)

(
15
2

)
not punish

free ride

Figure 4.3: The game with norm-enforcement preferences. λ ≥ 0 is the norm-enforcement
parameter of Bob. The payoffs at the terminal nodes of the game tree for Bob show the utility
of Bob, conditional on qi (Bob’s belief on the fraction of individuals in the society who would
cooperate). The numbers for Ann show the material payoffs for Ann.

The distinct feature of the above norm-based reasoning is that Bob’s punish-

ment decision is conditional on qi, his expectation on the proportion of cooperators

in the society. If Bob believes that no one is going to cooperate in the society,

then condition (4.2) is never satisfied, and thus Bob does not punish Ann. The

intuition is that, when qi = 0, Ann’s free riding is completely expected by Bob.

Thus, Bob is not frustrated. In contrast, the greater the expected proportion of

cooperators, the greater is the frustration of Bob upon observing Ann free riding.

Hence, norm-based reciprocity predicts the following.

Prediction 3 (Norm-based reciprocity): The higher the proportion of cooperators

in a society, the more people punish free riders.

4.3 Experimental design and procedures

4.3.1 Design

The experimental game. We randomly match participants in pairs to play

the following two-stage game. In the first stage, the two players simultaneously

choose whether to cooperate or free ride. Throughout the experiment, we use the

word “share” to indicate cooperation and “keep” to indicate free riding in order

to improve participants’ understanding and involvement. Table 4.1 below shows
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the earnings from the first stage. If both players cooperate, each player gets 18

points. If both free ride, each player gets 16 points. Hence, the outcome of both

players cooperating Pareto-dominates the outcome of both free riding.6 If one

player cooperates and the other free rides, the free rider obtains more points than

the cooperator.

Table 4.1: The first stage of the game

cooperate free ride
cooperate 18, 18 9, 25
free ride 25, 9 16, 16

If both players cooperate in the first stage, then the game ends and each player

obtains 18 points. If at least one player free rides, the game proceeds to the second

stage. Specifically, if a player, i, free rides in the first stage, then in the second

stage her partner, j, can assign up to 10 deduction points to i. Player j may

cooperate, or free ride. The deduction ratio is 1-to-3, i.e., each deduction point

that j assigns to i costs one point to j but reduces i’s payoff by three points.

Notice that a player can assign deduction points to the other player only when

the other player free rides.

More precisely, let xi ∈ {1, 0} denote the action of player i taken in the first

stage: xi = 1 if i cooperates, and xi = 0 if i free rides. Let yi ∈ {0, 1, . . . , 10}

denote the deduction points that i assigns to the matched partner j, conditional

on j choosing to free ride. Likewise, let xj and yj be the corresponding actions

taken by j. Moreover, let π1
i be the material earnings for i from the first stage as

shown in table 4.1. Let 1{xj = 0} be the indicator function taking the value of one

if xj = 0, i.e., j free rides, and zero otherwise. We analogously define 1{xi = 0}.

Then the total material earnings for i from both stages are

πi = π1
i − 1{xj = 0} × yi − 1{xi = 0} × 3× yj.

6The payoffs when both players cooperate are not so much different from the payoffs when
both players free ride. The reason is that, in order to analyze punishment behavior towards
defectors, we need a non-negligible sample of free rider. After running some pilot sessions, we
found that if the payoffs from both players cooperating are much better than both free riding,
then most participants would choose to cooperate.
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The strategy method. Before each participant decides how many deduction

points to assign, we inform them about the proportion of cooperators among

the participants they are not matched with. This information should change

participants’ belief regarding the proportion of cooperators in the population.

Our experiment uses the strategy method to elicit, for each participant, whether

her deduction points’ decision depends on her belief regarding the proportion of

cooperators in the population. The implementation is as follows. We randomly

draw n participants from previous sessions, and tell participants at the current

session how many among the n randomly selected previous participants chose to

cooperate. Instead of providing a single piece of such information, we present

to each participant multiple possible situations that might occur. They need to

indicate the deduction points to assign in each of the situations presented to

them. After they provide their answer, we reveal to them about the situation that

actually occurred. The actually occurred situation then determines the earnings

of them and their partners’. Thus, the participants are incentivized to provide

their decision in each possible situation presented to them.

To be more concrete, in three experimental sessions, we have n = 4, the 4-peer

condition. We ask each participant to indicate their deduction points’ decision in

response to each of the following five situations:

Table 4.2: The five situations in the 4-peer condition.

Situation 1 None of the four previous participants chose to cooperate.
Situation 2 One of the four previous participants chose to cooperate.
Situation 3 Two of the four previous participants chose to cooperate.
Situation 4 Three of the four previous participants chose to cooperate.
Situation 5 All of the four previous participants chose to cooperate.

After participants provide their decisions in all five situations, we inform the

participants about how many among the four randomly selected previous partici-

pants have actually cooperated. The deduction points’ decision of each participant

in the actually occurred situation is implemented to calculate the earnings of the

participant and his partner. All the details of the elicitation procedure are thor-
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oughly explained to participants. We also include several control questions to

make sure that participants understand the rules.

In another two sessions, we have n = 50, the 50-peer condition. We present to

each participant the following five situations:

Table 4.3: The five situations in the 50-peer condition.

Situation 1 Between 0 to 10 of the fifty previous participants chose to cooperate.
Situation 2 Between 10 to 20 of the fifty previous participants chose to cooperate.
Situation 3 Between 20 to 30 of the fifty previous participants chose to cooperate.
Situation 4 Between 30 to 40 of the fifty previous participants chose to cooperate.
Situation 5 Between 40 to 50 of the fifty previous participants chose to cooperate.

We now discuss several concerns about our design. First, we agree that, strictly

speaking, the provided information in the 4-peer condition is not very statistically

informative. However, the provided information may generate additional priming

effects. Thus, we expect participants’ belief to effectively change in the 50-peer

condition as well as in the 4-peer condition. Second, regarding the validity of

the strategy method, Brandts and Charness (2011) conduct a meta-analysis to

compare the strategy method and the direct-response method. In all twenty-nine

experiments documented in their study, if a treatment effect is found when using

the strategy method, it is also observed when using the direct-response method.

Third, one may be concerned with potential experimenter demand effects in our

experiment, namely, participants take particular actions only because they think

that is what the experimenter expects them to do (Zizzo, 2010). However, it is

not obvious from reading our instructions what the experimenter’s expectation

is. On the one hand, we present to participants with multiple situations. Par-

ticipants might think that this suggests that the experimenter expects them to

condition decision on the proportion of cooperators. On the other hand, however,

we highlight in various places in the instruction that the choices of participants

from previous sessions are completely payoff-irrelevant to them. We also add con-

trol questions to test and reinforce participants’ understanding of this fact. Hence,

it is not obvious whether the experimenter expects the participants to condition
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decision on the proportion of cooperators or not. Moreover, there is no way to

guess how the experiment expects a participant to exactly condition decision on

the proportion of cooperators (increasingly or decreasingly?). The bottom line is

that, unless a participant has a strong prior of her own about what constitutes

appropriate behavior in similar contexts in real life, it is hard to imagine that she

would have a strong expectation about what the experimenter expects her to do.

4.3.2 Procedures

We used the online platform Amazon Mechanical Turk to recruit and pay par-

ticipants. We conducted our experiment on LIONESS Lab (Arechar et al., 2018)

during February 2017. LIONESS Lab is a web-based platform for online interac-

tive experiments.7 Each participant only played the game once in our experiment.

To reduce drop-out rate—which might particularly be an issue for online exper-

iments, we conducted the matching once every two participants submitted all

decisions. In total we had 246 individuals registered our experiment, while 203

went through to the end (there was a participant who we could not find another

one to match with). Participants’ age varied between twenty to seventy years

old. Average age was 34.7. 51% of our participants are male. Among the 203

participants, 91 participated in the three sessions of the 4-peer condition, and 112

participated in the two sessions of the 50-peer condition. Our experiment lasted

for about ten to twenty minutes. Earnings were paid out in US dollar. Each US

dollar corresponded to 20 experimental points in the experiment. Earnings ranged

from $1 to $2.5. Average earning was $1.95.
7Similar to our experiment, Arechar et al. (2018) conduct a public goods game experiment

on LIONESS Lab with participants recruited from Amazon Mechanical Turk. They show that
all main patterns of cooperation and punishment observed in previous laboratory experiments
are replicable in the online experiment.
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4.4 Results

We present the results of our experiment in this section. The focus is on partici-

pants’ punishment behavior.

4.4.1 Main results

Result 1—No significant effect at the aggregate level. On average, the

proportion of cooperators among previous participants does not significantly affect

punishment of free riders.

Using the strategy method, we obtain each participant’s deduction point deci-

sion for each of the five situations regarding the proportion of cooperators (Table

4.2 for participants in the 4-peer condition and Table 4.3 for participants in the 50-

peer condition). Figure 4.4 presents the overall effects. The figure shows that, on

average, a higher proportion of cooperators among previous participants does not

significantly increase deduction points assigned to free riders no matter whether

in the 4-peer condition or in the 50-peer condition. This result is confirmed by the

regressions in Table 4.5. In the regressions in Table 4.5, the dependent variable is

the deduction points that participants assign to their free riding partners, ranging

from 0 to 10. The independent variable Proportion of cooperators indicates the

percentage of cooperators among previous participants, taking values of 0, 0.25,

0.5, 0.75, and 1. The coefficient for Proportion of cooperators is, although positive,

not statistically different from zero in all five regressions at any conventional level

for all the six specifications presented. Moreover, to test whether the participants

who cooperate differ from those who free ride in terms of their sensitivity to the

Proportion of cooperators, regression (iii) includes an interaction term between

Proportion of cooperators and Cooperate, where the dummy Cooperate indicates

whether the participant cooperates or not. We do not see a significant difference.

Result 2—Coexistence of different punishment types. Participants are

heterogeneous in their punishment behavior. Most of them can be classified as one
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Figure 4.4: Average deduction points assigned to free riding partners. Provided information
about the proportion of cooperators does not significantly affect deduction points. The spikes
indicate the standard errors of means (SEM).

Figure 4.5: OLS regressions. Dependent variable—Deduction points assigned to free riding
partner (0 to 10).

(i) (ii) (iii) (iv) (v)
Proportion of cooperators 0.219 0.219 0.229 0.219 0.132

(0.174) (0.175) (0.226) (0.175) (0.229)
Cooperate 2.981∗∗ 2.988∗∗ 2.983∗∗ 2.983∗∗

(0.319) (0.319) (0.323) (0.323)
Proportion of cooperators × Cooperate -0.014

(0.324)
50-peer -0.029 -0.107

(0.421) (0.433)
Proportion of cooperators × 50-peer 0.157

(0.344)
Constant 2.455∗∗ 0.897∗∗ 0.892 0.922 0.966

(0.847) (0.795) (0.788) (0.886) (0.893)
N 1015 1015 1015 1015 1015

Notes: Within parentheses are robust standard errors clustered by participants. +p < 0.1,
∗p < 0.05 and ∗∗p < 0.005 for two-tailed tests. Proportion of cooperators takes values of
0, 0.25, 0.5, 0.75 and 1, corresponding to the situations in Table 4.2 and 4.3. Cooperate is a
dummy indicating whether the participant cooperates him- or herself. 50-peer is a dummy
indicating the 50-peer condition. All regressions include age and gender as controls.
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of the four punishment types shown in Figure 4.6.

Never punish (42%)

Punish independently (21%)

Punish increasingly (13%)

Punish decreasingly (10%)
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Figure 4.6: Deduction points assigned to free riding partners given the provided information
about the proportion of cooperators. The spikes indicate standard errors of means (SEM). Each
line displays a different punishment type. The four types add up to 86% of the sample. The
remaining 14% (not shown) do not fall into any of the four types displayed.

That we do not find a significant effect at the aggregate level is not because

no participant responds to the provided information about the proportion of co-

operators. On the contrary, about a fourth of our participants (23%) do condition

their punishment decision on how many cooperators are around. However, there

is remarkable heterogeneity among participants. Figure 4.6 presents the pooled

data for the two conditions and shows that most of the participants are classified

as one of the following four distinct punishment types :

1. Never punish. 85 among all 203 participants assign zero deduction point

to their free riding partners for all five situations, constituting 42% of the

whole sample. These participants behave in line with the Null Hypothesis of

maximizing material payoffs of themselves. On the other hand, 58% of our

participants do punish free riders by assigning at least 1 deduction point in

at least one situation.

2. Punish independently of the proportion of cooperators. 21% of participants

assign one or more deduction points to their free riding partners and they

129



make identical decisions in all five situations. Hence, these participants’ pun-

ishment decisions are independent of the proportion of cooperators among

previous participants. Their behavior is in line with intention-based reci-

procity and inequality aversion.

3. Punish increasingly in the proportion of cooperators. 13% of participants

do not decrease deduction points to assign as the proportion of cooperators

among previous participants goes up, and they strictly increase deduction

points to assign for at least one instance. The behavior of these participants

is consistent with norm-based reciprocity.

4. Punish decreasingly in the proportion of cooperators. 10% of participants do

not increase their deduction points assigned as the proportion of cooperators

among previous participants goes up, and they strictly decrease deduction

points to assign for at least one instance. The behavior of these participants

can be explained by the reasoning underpinning the conventional view of

public goods contributions. That is, their punishment is motivated by a

desire to generate a community-level threat to deter free riding and they are

intrinsically concerned with the total supply of public goods.

The four punishment types add up to 86% of the whole sample, while the behavior

of the rest of participants is not explained by previously specified theory. To test

whether the four punishment types of participants arise for systematic reasons

rather than from pure randomness, we perform a simulation exercise as follows.

We generate a simulated data of one-million individuals. Each of them randomly

chooses deduction points between 0 to 10 to assign in each of the five popularity

levels of cooperation. That is, they each time roll an eleven-sided die to give a

decision. The simulation generates the following result: among the one-million

individuals, 0.00% never punish, 0.01% punish independently of the proportion

of cooperators, 1.83% punish increasingly in the proportion of cooperators, and

1.88% punish decreasingly in the proportion of cooperators. The remaining 96.28%
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do not fall into any of the four types, in contrast to the 14% we observe in the

experiment. To conclude, the participants of each of the four punishment types in

our experiment are significantly more than they would arise from pure randomness.

4.4.2 Further results

Result 3—Punishers are cooperators.

69% of our participants (140/203) are cooperators, i.e., they cooperate in the

first stage of the game, while 31% free ride.8 Figure 4.7 shows the distributions of

punishment types among cooperators and among free riders, respectively. Among

free riders, 73% never assign a positive deduction point to their free riding part-

ners. In contrast, 72% of cooperators assign 1 or more deduction points to their

free riding partners in at least one situation. Statistically we reject the hypothesis

that cooperators and free riders have the same probability of punishing free rid-

ing partners (Fisher’s exact p < 0.001). Regressions in Table 4.5 provide further

estimates of the difference between cooperators and free riders. The dummy Coop-

erate indicates whether the participant cooperates or not. The results show that

cooperators assign significantly more deduction points to their free riding partners

than free riders would do, and the difference is sizable—about 3 deduction points

on average.
8The 203 participants are those who registered and completed the experiment. In addition,

there were 10 participants who only completed the first stage of the game. Among all 213
participants who we have data on their stage-one decision, 147 (69%) choose to cooperate.
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Figure 4.7: Percentage of each punishment type among cooperators and among free riders.

Result 4. Assigning deduction points to equalize earnings is the mode behavior

of the cooperators who punish independently.

Figure 4.8 presents the percentage distributions of deduction points among

cooperators ; we separate the distributions according to their different punishment

behavior. In our experiment, if a cooperator meets a free rider, and the cooperator

aims at equalizing the final earnings between her and the free rider, then the

cooperator would assign 8 deduction points. Hence, assigning exactly 8 deduction

points indicates that a cooperator is motivated by inequality aversion (Fehr and

Schmidt, 1999). Interestingly, we find that assigning 8 deduction points is the

most popular choice among those, and only among those, who punish free riders

independently of how many other cooperators are around.
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between her and her free riding partner.

Result 5. More participants condition their punishment of free riders on the

proportion of cooperators in the 50-peer condition than in the 4-peer condition;

however, the difference is not statistically significant.

Figure 4.9 displays the percentage of each punishment type for each of the two

conditions. The participants who punish free riders increasingly in the proportion

of cooperators increases from 11% in the 4-peer condition to 15% in the 50-peer

condition. Meanwhile, the participants who punish decreasingly in the proportion

of cooperators increases from 8% in the 4-peer condition to 12% in the 50-peer

condition. Nevertheless, we cannot reject the hypothesis that the sample distri-

butions for the 4-peer condition and for the 50-peer condition are drawn from the

same population distribution (Fisher’s exact p = 0.397). Regression (v) in Table

4.5 also shows that the coefficient for the interaction term between Proportion of

cooperator and the dummy for 50-peer condition is not significantly different from

zero.
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4.5 Conclusion

We ask whether manipulating the information regarding the frequency of a be-

havior affects people’s fairness perception about the behavior. To answer the

question, we design an experiment to test whether informing people of a higher

proportion of cooperators affects the legitimacy of free riding and the punishment

of free riders. Our results indicate that there is no simple answer to the question.

On the one hand, we don’t observe that the information about the proportion of

cooperators significantly affects punishment of free riders on average. This result

speaks to previous studies (Cooper and Dutcher, 2011; Falk et al., 2006; Herz and

Taubinsky, 2017; Peysakhovich and Rand, 2016) about how fairness perceptions

are formed and could be changed. Previous studies show that, on average, people

punish selfish behavior of others more after experiencing more cooperative inter-

actions. However, previous studies admit several interpretations. In contrast, our

experiment focuses on the pure information effect of a change in the cooperation

level in a society. Comparing our result with previous ones, we conclude that a
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large part of the average change in fairness perceptions previously observed is due

to other channels than the pure information effect. The other channels include

that people regard their own behavior as fair and expect others to do the same,

and that people consider a distribution of earnings similar to the past as fair.

On the other hand, however, it would be a mistake to think that our result

implies that a policy of changing the information about the cooperation level of

a society would not affect punishment of free riders and the cooperation level in

the field. Using the strategy method, our experiment reveals the remarkable het-

erogeneity among individuals that previous studies cannot reveal. We discover

co-existence of four distinct punishment types: i) individuals who never punish,

ii) those who punish but independently of the proportion of cooperators, iii)

those who punish increasingly in the proportion of cooperators, and iv) those

who punish decreasingly in the proportion of cooperators. What does the hetero-

geneity imply in the field? Studies from economics (Currarini et al., 2009) and

sociology (McPherson et al., 1992, 2001) both indicate that homophily features

many social networks: individuals with similar preferences and attitudes tend to

be friends with each other or live in the same neighborhoods. Co-existence of

different punishment types then implies that changing the information regarding

the proportion of cooperators would lead to significant and dramatically different

impacts on different social groups. Hence, our finding suggests that implementing

an informational policy could be fruitful if, and only if, it is combined with policies

to identify the punishment type of individuals in the targeted groups.
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4.6 Appendix: experimental instructions

This appendix provides the complete screen shots of our experiment.

The 4-peers treatment
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The 50-peers treatment

The welcome page and the instructions for the first stage of the game are identical

to the 4-peers treatment. Hence they are omitted. The instructions for the second

stage of the game—the punishment stage—are provided below.
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Chapter 5

Conclusion

In this concluding chapter, I briefly mention some ideas for future research. In

Concentration of Influence under Complementarities, I analyze optimal networks

by setting aside incentive problems that might arise due to asymmetric informa-

tion. However, asymmetric information appears in many natural settings and new

complexities may arise. For example, when a manager designs the production net-

work between a set of workers, the manager may not know each worker’s ability ex

ante, and the workers’ efforts may be unobservable to the manager. When a finan-

cial regulator wants to intervene in the inter-bank network to improve the stability

of the financial system, the regulator may not have precise information about each

bank’s financial status. There are also situations in which the agents may build

their own collusion networks within the interaction and incentive constraints set

by the planner, and the collusion networks are not observable to the planner. To

analyze these settings, we need to combine contract theory and network analysis,

which constitutes an important agenda for future research.
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